
AN ABSTRACT MATHEMATICAL FRAMEWORK

FOR SEMANTIC MODELING AND SIMULATION

OF URBAN CRIME PATTERNS

Komal Singh

B.I.T, University of Delhi, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Komal Singh 2005

SIMON FRASER UNIVERSITY

Fall 2005

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Komal Singh

Degree: Master of Science

Title of thesis: An Abstract Mathematical Framework for Semantic Model-

ing and Simulation of Urban Crime Patterns

Examining Committee: Dr. Richard Vaughan

Chair

Dr. Uwe Glasser, Senior Supervisor

Dr. Martin Ester, Supervisor

Dr. Evgenia Ternovska, SFU Examiner

Date Approved: 5~~7,F: k/ , 3 L I{ C >coj-
L= ,/

11

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has
granted to Simon Fraser University the right to lend this thesis, project or
extended essay to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its own behalf
or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of this work
for scholarly purposes may be granted by either the author or the Dean of
Graduate Studies.

It is understood that copying or publication of this work for financial gain shall
not be allowed without the author's written permission.\

Permission for public performance, or limited permission for private scholarly
use, of any multimedia materials forming part of this work, may have been
granted by the author. This information may be found on the separately
catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University

Bumaby, BC, Canada

Abstract

Crime is not random. Criminologists contend there is predictable rationality and definite

patterning behind urban crime. Conventional research for crime analysis is statistical and

empirical in nature. However, with increasing complexity of the involved sociological system,

empirical deduction is not sufficient; mathematical and computational models are needed

for reasoning about system dynamics.

In this thesis, we posit a novel approach of computational modeling of urban crime pat-

terns. By combining the Abstract State Machine (ASM) formalism with the Multi Agent

System (MAS) modeling paradigm, we obtain an abstract formal framework for semantic

modeling and integration of established theories of crime analysis. Such a firm mathematical

foundation also provides a quintessential platform for constructing discrete event simulation

models.

The framework can be applied for predictive and explanatory modeling of crime patterns.

The virtue of this work is in its pioneering nature. It introduces an unprecedented, inter-

disciplinary research field of Computational Criminology.

"Any intelligent fool can make things bigger, more complex, and more violent. I t takes a

touch of genius - and a lot of courage - to move in the opposite direction. "

Acknowledgments

This work could not have seen its consummation without Dr. Uwe Glaesser, my senior

supervisor. I offer my enduring gratitude to him for his unflagging guidance, vision and

support.

Special thanks to Dr. Patricia Brantingham for introducing me to the fascinating field of

Criminology and making the idea of Computational Criminology a reality.

Acknowledgments are due to Drs. Eugenia Ternovska and Martin Ester for their valuable

inputs.

Many thanks to Mona Vajihollahi for her insight and for helping me shape my bohemian

ideas. Heartfelt thanks to Steven Bergner for his selfless contribution and fancy visualization

for our mundane results.

Last, but not least, I am eternally grateful to my family and friends for their unwaivering

love and moral support.

Contents

Approval

Abstract

Dedication

Quotation

Acknowledgments

Contents

List of Tables

List of Figures

List of Specifications

ii

iii

iv

v

vi

vii

xii

xiii

xv

Abbreviations and Acronyms xviii

PART I BACKGROUND 1

1 Introduction 2
. 1.1 Motivation 4

. 1.2 Significance and Objective 5
. 1.3 Thesis Organization 6

2 Environmental Criminology 8
. 2.1 Introduction. 8

vii

. 2.2 Activity and Awareness Space 10

. 2.3 Target Selection 13

3 Abstract State Machines 17

. 3.1 High-Level System Engineering with ASMs 18

. 3.1.1 Ground Models 19

. 3.1.2 Refinement Techniques 19

. 3.1.3 Agile Development 21

. 3.2 Basic Abstract State Machines (ASM) 22

. 3.2.1 Transition Rules 23

. 3.2.2 Parallelism 24

. 3.2.3 Non-Determinism 25

. 3.2.4 Classification of Functions 25

. 3.3 Distributed Abstract State Machines (DASM) 26

. 3.3.1 Concurrency and Coherence 27

. 3.3.2 Reactivity and Real-Time Behavior 28
. 3.4 Notational Conventions 28

PART I1 ABSTRACT MODEL 30

4 Overview of the Model 31

5 Modeling Paradigm 34
. 5.1 Multi-Agent Based Modeling 34

. 5.1.1 Agent Based Social Simulation (ABSS) 37

. 5.1.2 Formal Approaches to Agent-Based Systems (FAABS) 38

. 5.2 Our Approach: Linking Social Systems to DASM Models 41

. 5.2.1 Classification of Agents: DASM Organization 42

6 Representation of Environment 46
. 6.1 Overview 46

. 6.2 Our Approach: Layering of Environment 48
. 6.2.1 Objective Environment 49
. 6.2.2 Subjective Environment 53

viii

7 High-Level DASM Model 58

. 7.1 Agent Architecture 58

7.1.1 BDI Agent Architecture: Introduction 58

7.1.2 Our Approach: Person Agent Architecture 60

7.2 Space Evolution Module (SEM) . 65

. 7.2.1 Level 0 66

. 7.2.2 Level 1 70

. 7.2.3 Level 2 78

7.2.4 Our Navigation Approach in Comparison to Related Work 82

. 7.3 Target Selection Module (TSM) 84

. 7.3.1 Level 0 84

. 7.4 Agent Decision Module (ADM) 89

. 7.4.1 Level 0 89

. 7.4.2 Level 1 90

PART I11 REFINED MODEL 9 5

8 Reasoning and Learning 96
. 8.1 Case-Based Reasoning (CBR) 96

. 8.1.1 Why Use CBR? 98

. 8.1.2 Integrations of Case-Based R.easoning 99

. 8.2 Our Approach: Integrating CBR into the Framework 100

. 8.2.1 A CBR-MBR Hybrid System 101

. 8.2.2 High-Level Specification of an Abstract CBR 102

. 8.2.3 Instantiation of Abstract CBR: Concrete CBR of SEM 115

9 Shortes t P a t h Planning 123
. 9.1 Shortest Path Problem 123

. 9.1.1 Shortest Path Algorithms 124

. 9.2 Our Approach: Proposed Shortest Path Algorithm 125

. 9.2.1 Overview 126

. 9.2.2 ASM Specification: Path Explorer Submachine 130

PART IV EXECUTABLE MODEL 136

10 The AsmL Executable Model 137
. 10.1 Abstract State Machine Language (AsmL) 138

. 10.2 Overview of the AsmL Model 139

. 10.2.1 Global Definitions 140

. 10.2.2 AsmL Abstract Model 144

. 10.2.3 AsmL Refined Model 147

. 10.2.4 Execution Specific Additions 147

. 10.2.5 Visualization 148

11 Validation of the Model 152
. 11.1 Overview 152

. 11.2 Experimental Validation 154

. 11.2.1 Space Evolution Module (SEM) 157

. 11.2.2 Target Selection Module (TSM) 163

PART V PUTTING IT ALL TOGETHER 165

12 Conclusion. Contribution and Challenges 166

13 Opportunities and Future Research 169

APPENDICES 172

A Abstract ASM Model 172
. A.l Global Definitions 172

. A.l.l Environment 172

. A.1.2 Linking Social Systems to DASM Models 177

. A.1.3 Person Agent 179
. A.1.4 Signals 181

. A.2 Space Evolution Module (SEM) 183

. A.2.1 Level 0 183

. A.2.2 Level 1 185

. A.2.3 Level 2 187

. A.2.4 Level 3 188

A.3 Target Selection Module (TSM) . 190

A.3.1 Level 0 . 190

A.4 Agent Decision Module (ADM) . 192

A.4.1 Level 0 . 192

A.4.2 Level 1 : ADM-SEM-MONITOR . 193

A.4.3 Level 1: ADM-TSM-MONITOR . 194

A.4.4 Level 2 . 195

B Refined ASM Model 197

B.1 Case-Based Reasoner (CBR) . 197

B.l.l Abstract CBR: Level 0 . 3 . 197

B.1.2 Concrete CBR : Level 4 . 205

B.2 Path Explorer Submachine . 211

B.2.1 Level0 . 211

B.2.2 Level 1 . 211

B.2.3 Level 2 . 212

C Executable AsmL Model 214

C.l Global Definitions . 214

C.2 AsmL Abstract Model . 214

C.3 AsmL Refined Model . 215

C.4 Execution Specific Additions . 215

C.5 Visualization Specific Additions . 215

BIBLIOGRAPHY 216

List of Tables

5.1 Entity Classification and Taxonomy through Different Layers 44

11.1 Response Time o f the Shortest Path Algorithm w.r.t Graph Size 157

11.2 Response Time Variations for Three Cases o f the Navigation Algorithm 159

11.3 Hierarchical Cases of the Navigation Algorithm . 160

11.4 Influence o f Factor Weights in the Shortest Path Path 162

11.5 Non-Determinism in the Navigation Algorithm . 162

11.6 Growth o f Activity Space as Given by Size of Case Base 163

11.7 Target Selection . 164

xii

List of Figures

. 1.1 ASM as the Core of a Multi-Disciplinary Confluence 3

2.1 Formation of Activity and Awareness Space . 12

2.2 Crime Occurrence Space as the Intersection of Awareness and Opportunity
. Space 15

3.1 The Hierarchical Software Development Process 21

. 5.1 ABSS as the Intersection of Three Fields 37

. 5.2 Mapping Social Systems to DASM Models 41

5.3 Hierarchical Classification of Entities . 44

6.1 Categorization o f Environment . 49

. 7.1 Person Agent Architecture 61

. 8.1 Case-Based Reasoning Process 103

. 9.1 Path Influence Factors 127

. 9.2 Selecting a Path from Source S to Destination D 129

. 10.1 AsmL Spec for Basic Entities 141

. 10.2 AsmL Spec for GRAPH 142

. 10.3 AsmL Spec for GEOGRAPHIC-ENV 143

. 10.4 AsmL Spec for PERSON AGENT 144

. 10.5 AsmL Spec for SEM Definitions 145

. 10.6 AsmL Spec for SEM Program 146

. 10.7 AsmL Spec for Main() 147

. 10.8 An Aggregate View of the Visualization 149

. 10.9 Car Theft Opportunities and Probability 150

...
Xlll

. 10.10Shop Lift Opportunities and Probability 151

. 10.11 Robbery Opportunities and Probability. 151

. 11.1 Experimental Graph of Vancouver Downtown 160

xiv

List of Specifications

5.1 Hierarchical Classification and Mapping of Entities
6.1 Representation of the Road Map .
6.2 Some Operations on Nodes and Edges .
6.3 Categorization of Geographic Environment Attributes
6.4 Geographic Environment .
6.5 Refinement of Geographic Environment Attributes
6.6 Categorization of Subjective Environment Attributes
6.7 Subjective Environment .
6.8 Refinement of Perception Attributes .
6.9 Refinement of Awareness Space Attributes .
6.10 Refinement of Activity Space Attributes .
6.11 Refining the Abstract Domain VALUE .
7.1 Person Agent Architecture .
7.2 CBR Components of Person Agent Modules .
7.3 Signals of SEM .
7.4 Data Structures of SEM .
7.5 Space Evolution Module (SEM) Program .
7.6 INITIALIZE .

. 7.7 GETPATH

7.8 G e t - S u g g e ~ t e d - P a t h ~ ~ ~ ~ ~ ~ ~ ~ .
7.9 Get-Suggested?athMemOTY .
7.10 HANDLE-ADM-SIGNALS .
7.11 GET-SUGGESTED-EDGE .
7.12 Get-SuggestedEdgeRand,, .
7.13 G e t - S u g g e ~ t e d E d g e ~ ~ .
7.14 RECORD-SELECTEDEDGE .

7.15 FINALIZE-EDGE-TRAVERSAL . 77

7.16 SET-SEMMODE . 78

7.17 FINALIZETRIP . 79

7.18 GET-SUGGESTED.PATHcBR . 79

7.19 GET.SUGGESTED.PATHMiZed . 80

. 7.20 Domains o f TSM 85

. 7.21 Functions o f TSM 86

. 7.22 TSM Program 86

. 7.23 ADM Program 90

7.24 Personal Schedule used by ADM-SEMMONITOR 91

. 7.25 ADM Functions used by ADM-SEM-MONITOR 92

. 7.26 ADM-SEMNONITOR 93

7.27 ADM-TSM-MONITOR . 94

. 8.1 Basic Definitions for Abstract CBR 104

. 8.2 Abstract CBR Program 105

. 8.3 Refining the Abstract Domain CASE 106

. 8.4 Refining the Abstract Function RETRIEVE 107

. 8.5 Refining the Abstract Function REUSE 109

. 8.6 Basic Definitions for POST-SOLMODULE 110

. 8.7 Refinement o f UNEVAL-CASE 110

. 8.8 POST-SOL-MODULE Program 111

. 8.9 Refining the Abstract Function EVALUATE 113

8.10 Refining the Abstract Function RETAIN . 114

. 8.11 Concrete CBR and POST-SOLMODULE 116

. 8.12 Refining the Abstract Domain CASE 116

. 8.13 Refining the Abstract Domain PROBLEM and FEEDBACK 117

. 8.14 Refining the Abstract Rule IDENTIFY 117

. 8.15 Refining the Abstract Rule MATCH 118

. 8.16 Refining the Abstract Rule RANK 119

. 8.17 addAsUnevaJCase and integrateFeed back 120

. 8.18 Refining the Abstract Rule EXTRACT 121

. 8.19 Refining the Abstract Rule INTEGRATE 122

. 9.1 PATH EXPLORER Submachine 131

. 9.2 edgePref Function 132

. 9.3 influence Factors and Weights 132

xvi

9.4 1ocalEdgePre f in terms of 1ocalFactorValue. 134

9.5 gEdgePre f in terms of globalFactorValue. 134

xvii

Abbreviations and Acronyms

ASM

ABM

ABSS

A1

BDI

CBR

DASM

FAABS

FM

MABS

MAS

MBR

Abstract State Machine

Agent Based Modeling

Agent-Based Social Simulation

Artificial Intelligence

Belief Desire Intention

Case-Based Reasoner

Distributed Abstract State Machine

Formal Approaches to Agent-Based Systems

Formal Methods

Multi-Agent Based Systems

Multi-Agent Systems

Model-Based Reasoning

Application Specific

ADM Agent Decision Module

SEM Space Evolution Module

TSM Target Selection Module

xviii

PART I

BACKGROUND

Chapter 1

Introduction

Crime is not random. Any crime consists of four dimensions -- the law, the offender, the

target and the place [ll]. Environmental Criminology is the study of the fourth dimension,

the geography of the place, which is defined as the discrete location in time and space at

which the other three dimensions intersect and a criminal event occurs. Criminologists have

developed various theories of crime [lo] that contend there is definite patterning in the tern-

porn1 and spatial characteristics of physical urban crime.

The main theoretical theme argues that criminal events can be understood in the context

of peoples' movements during the course of their everyday lives, and that criminals behave

much like non-criminals most of the time. This implies there are a set of patternslrules

that govern the working of a typical real-life social system - composed of criminals, non-

criminals, victims and targets, interacting with each other, in a given dynamic environment.

The locomotion of people belonging to this system is influenced by the underlying urban

landscape - city's land use patterns, street networks, transportation systems and typogra-

phy. Furthermore, as chaotic as it may appear, there is predictable rationality that guides

the victimization and decision-making process exhibited by criminals. Since there is definite

patterning in crime, these patterns can be studied, stated and hence predicted.

In this thesis, we posit an abstract mathematical framework for semantic modeling and

integration of established theories of crime ana.lysis and prediction. This is obtained by

combining the Abstract State Machine (ASM) formalism [6] with the Multi-Agent System

(MAS) modeling paradigm [89]. The model serves as a platform for predictive (prescriptive)

CHAPTER 1. INTRODUCTION

and explanatory (descriptive) modeling of crime patterns.

The abstract framework serves as a ground model and provides a logical backbone for

interfacing with diverse knowledge-based, and model-based systems through well-defined

functions, and thus incorporating cross-disciplinary perspectives in an elegant fashion. The

power of abstraction accompanied with step-wise refinement [7] provides a means to incre-

mentally extend the model along different dimensions and units of functionality. Although

abstract, the model is complete and precise, with respect to the given level of detail [5].

At the same time, as a secondary outcome, we obtain discrete event simulation models that

serve as effective instruments for prediction and prevention of urban crime. These tools allow

for experimentation and sample runs to reason about 'what if' and 'most likely' scenarios.

They provide us with means of performing simulation-enhanced thought experiments aimed

at improving our intuition and understanding about the modeled phenomenon.

Specifically, we focus here on physical crime in urban areas and model spatial and temporal

aspects of criminal events, potentially involving multiple offenders and multiple targets.

The scope of the model includes a broad range of crimes, ranging from mundane crime like

robbery, car theft, burglary etc., to crimes of passion such as serial murder, homicide, rape

etc. [8] [93] [83] [lo].

This work thus introduces a novel, cross-disciplinary research initiative, broadly classified

as Computational Criminology - spanning the fields of Modeling & Simulation, Formal

Methods, AI, Algorithms, Criminology and Psychology. The core of this multi-disciplinary

confluence is the ASM framework, that concerts with other fields to form the basis for a

hybrid system (Figure 1 .I) .

Figure 1 .l: ASM as the Core o f a Multi-Disciplinary Conff uence.

CHAPTER 1. INTRODUCTION

1.1 Motivation

The primary impetus behind this work is the fact that personal security is of paramount

importance. In the current day, post Cold-War era, significant interest is vested in areas

of terrorism research, intelligence analysis, and security-related public policy. There is a

pressing need for the study and development of advanced information technologies, com-

putational sciences for national/international and homeland security related applications,

through an integrated technological, organizational, and policy based approach.

To this end, our work in Computational Criminology pioneers in exploring the development

of formal and computational models for crime analysis and prediction, and advancing the

state of knowledge.

Conventional research for crime analysis is typically statistical and empirical in nature using

methods that entirely rely on direct extrapolations from past data. Novel research direc-

tions [16], [56] however suggest a fundamentally different approach. Due to the increasing

complexity, dynamics and intricate nature of the underlying sociological systems, empirical

deduction is not sufficient any more; mathematical and computational models are needed for

reasoning about most likely scenarios [17]. Although theories of crime are well established

in their respective fields, the lack of a coherent and a consistent semantic framework for

integrating the four dimensions of crime inhibits their applicability to real-life scenarios.

((Most research in criminology and criminal justice is structured in a n attempt to repli-

cate laboratory science by addressing simple issues ... while assuming other things have been

controlled. W e have concluded that there is a strong need for criminological research that

addresses complexity instead of attempting to control for it. [17]"

Thus, there is a need for a firm semantic foundation which is a prerequisite for the system-

atic construction of well defined computational models in order to overcome the limitations

of purely statistical methods [56].

Finally, although the original definition of ASMs is intended to capture any kind of dis-

crete dynamic system [57], their application to social systems is novel and unprecedented.

This work thus gives us an interesting exploratory opportunity to apply ASMs beyond the

traditional real of hardware and software systems.

CHAPTER 1. INTRODUCTION

1.2 Significance and Objective

The virtue of this work is in its pioneering nature [19] [20] [IS] [21]. It is the forerunner in

rendering the theoretical field of Computational Criminology 1171, [16] a pragmatic and a

tangible base, sound both from a computational and a criminological perspective. To the

author's best knowledge, there has been no former published research in Computational

Criminology, of the magnitude presented in this work. [56] posits a framework for crime

analysis, however it is only theoretical and very preliminary in nature with no concrete

results.

Mathematical modeling of crime serves multiple purposes. It has a direct value in law en-

forcement, in intelligence led policing, and in proactive crime reduction and prevention. For

intelligence led policing, this model would make it possible to predict likely activity space

for serial offenders for precautions and for apprehension. For proactive policing, modeling

of crime makes it feasible to build scenarios in crime analysis and prevention, and provides

a basis for experimental research allowing experiments that can often not easily be done in

the real world [IS].

Environmental criminologists could utilise this technique to test and refine theory, to an-

ticipate consequences accruing from diffemnt intervention choices, and to provide informed

policy guidance to crime control agencies. A n agent-based simulation modeling technique

will allow the study of the macro-level crime patterns emerging from the micro-level actions

of many individual agents, behaving in accordance with rules derived from environmental

criminology, human ecology, routine activities theory and situational crime prevention. [16].

The goal is twofold. First, to formalize the existing expertise and knowledge of the criminol-

ogists to derive an ASM ground model, that is precise, flexible, understandable, complete

and operational [5] . Such a model is used for semantic modeling that greatly simplifies

the systematic integration and validation of crime patterns and theories, and helps gain a

better understanding of complex social system aspects. Second, such a solid mathematical

foundation provides a quintessential platform for subsequent refinement into and construc-

tion of discrete event simulation models. Simulation models can be used for experimental

validation and verification. They are also effective instruments for prediction and prevention

of crime.

Although the model currently focuses on spatial and temporal aspects of physical crime

CHAPTER 1. INTRODUCTION 6

in urban environments, it is abstract and general, and in principle scalable for different

types of crime and also different levels of spatial analysis. In addition to conventional crime

being already captured, the model can be potentially extended to simulate patterns of non-

conventional crime like corporate crime, cyber crime, intrusion detection. In principle, it can

also be applied to simulate patterns at different levels of spatial aggregation viz: airports,

malls, downtown; within cities, provinces; and between countries, geopolitical crime.

The target audience of the system thus developed can be criminologists using it for deeper

understanding of crime patterns, verification of hypothetical theories; modern policing agen-

cies using it for geographic profiling of criminals, inversion of crime to identify suspects; city

planners using it for for effective urban planning by taking geography of crime into account.

1.3 Thesis Organization

For sake of perspicuity, the ASM model and hence the thesis is divided into five parts. Part

I and Part V present the background and conclusions; Parts 11,111, and IV discuss the ASM

model at different levels of abstraction in an increasing order of detail and complexity viz:

Abstract Model, Refined Model and Executable Model respectively.

Part I of the document is intended to provide the reader an overview of the problem domain

and the formal modeling technique used. Chapter 1, the current chapter, introduces the

research work being presented and discusses the motivation and significance of the work.

Chapter 2 gives a brief introduction to the fascinating field of Environmental Criminology

and explains the problem domain. Chapter 3 provides an introductory knowledge of Basic

and Distributed Abstract State Machines (ASM) and investigates the technique for high-

level system analysis and design.

Part I1 of the document describes the ASM ground model at the first level of abstraction.

We call the model a t this preliminary level of detail the Abstract Model. There are inter-

mediate hierarchical levels of refinement of the Abstract Model within this part, however,

we still group these refinements under the Abstract Model. Chapter 4 provides an overview

of the model. Chapter 5 talks about techniques for modeling social systems, discusses the

predominant view of Multi-Agent Systems, and provides an overview of the adopted mod-

eling paradigm. Chapter 6 details the approach we take on representation of the subjective

CHAPTER 1. INTRODUCTION 7

and objective environment. Chapter 7 provides an explanation and corresponding ASM

specification of the architecture of the model and its constituent modules.

Part I11 of the document describes the ASM ground model at the intermediate layer of

abstraction. We call the model at this level of abstraction the Refined Model. The refined

Model is obtained by applying a refinement step to the Abstract Model of Part 11. Chapter

8 gives an introduction to the mechanism of Case-Based Reasoning, and further describes

the proposed learning and reasoning mechanism. Chapter 9 provides an overview of the

shortest path problem and further describes the proposed shortest path algorithm.

Part IV of the document describes the model at the final layer of abstraction. We call the

model at this level the Executable Model. The Executable Model is obtained by applying a

refinement step to the Refined Model of Part 111, and provides formal executabIe semantics

of the ASM ground model. Chapter 10 starts with introducing the Abstract State Machine

Language (AsmL) that is used to derive the Executable Model, provides an overview of

our AsmL model, and discusses the visualization we develop. Chapter 11 is devoted to

experimental validation of the AsmL model.

Part V of the document provides a closure. Chapter 12 gives the conclusions of the work,

talks about challenges met and main contributions; finally Chapter 13 discusses challenging

opportunities for future research and expansion of the current work.

Chapter 2

Environmental Criminology

2.1 Introduction

Crime is a complex multi-dimensional event; albeit not random. There are four dimensions

of crime - a legal dimension, an offender dimension, a target dimension and a spatio-

temporal dimension [ll]. Each dimension has many research vectors, and these are often

similar. To understand crime, those dimensions must be understood and interpreted against

a complex historical and situational backcloth of social, economic, political, biological and

physical characteristics [12].

Environmental Criminology is a discipline devoted to the study of the fourth dimension

- the spatio-temporal aspects of crime - that can be seen as a discrete location in time

and space at which the other three dimensions intersect and a criminal event occurs. It

attempts to analyze the role of time and space in the shaping and distribution of criminal

events. First issued in the works of urban planners, where the authors propounded that the

alteration of urban design and urban architecture would exacerbate or abate crime, it has

become a field of study in its own right.

Environmental Criminologists set to answer questions such as [17]:

How do crime patterns change with the introduction of new motorways connecting

two cities, or transit system failing to operate on a given day.

0 How is crime attracted to areas around large shopping centres?

CHAPTER 2. ENVIRONMENTAL CRIMINOLOGY

How do urban setting create crime attractors or crime generators?

Why does increased enforcement displace crime in one city but abate it in another?

Why is crime high along one main road and low along another?

How would crime patters change with increased mobility or migration?

Why does regulation of pub hours have different impacts in different cities?

The first stance taken in Environmental Criminology is that criminal events can be un-

derstood in the context of peoples7 movements in the course of their everyday lives. Most

crimes are observed in the areas criminals are highly active in and highly familiar with;

most victims are victimized in and around areas they are most familiar with. This comfort

zone of people is termed as their awareness space. While the above line of reasoning seems

counter-intuitive, there is sufficient theoretical and empirical evidence in support of same.

Section 2.2 investigates this line of reasoning in more detail.

The second major stance is that there is sufficient predictability and rationality behind an

offender's choice of a target. The location of crime is determined through a premeditated

decision process of the offender, supplemented by subjective perceptions of environment

that separate good criminal opportunities from bad risks - targets located along highly

accessible street networks attract crime. This in general can be termed a s target templating,

and is further explored in Section 2.3.

The third most important stance is that movements of people are influenced by the under-

lying urban landscape in concert with their subjective perceptions of the environment. The

land use patterns, the structure of street networks, the transportation systems, the typog-

raphy, traffic and transit patterns all play their respective roles in shaping the movements

of people. In addition, the way people measure and filter this absolute knowledge depends

on a set of socio-cultural and behavioral beliefs. Thus people have varying perceptions of

the same geographic reality. This behavioral aspect of criminology is probably the lesser

developed one. We set to explore the factors that determine the movements of people in

Chapter 9 and the role of perception in Chapter 6.

Thus, environmental criminologists view the learning and decision-making process for crim-

inals to be much the same as that for non-criminals. Criminals are rarely criminal all of

the time. Everyone has a degree of criminal potential; what differs is the level of criminal

CHAPTER 2. ENVIRONMENTAL CRIMINOLOGY 10

propensity - more criminally predisposed agents will respond to observed crime opportu-

nities more frequently than people with low crime potentials. What requires modeling is

the process by which agents move from node to node, and when, if at all, do they act upon

an observed criminal opportunity.

There are three levels of spatial analysis in current studies of environmental criminology viz

macro-analysis, meso-analysis and micro-analysis [12], [lo].

Macro-analysis is the highest level of spatial aggregation, and analyzes spatial distribution

of crime between countries, provinces or cities. Countries are seen as passing through stages

of development and interacting with each other, along which comes a host of demographic

and economic change that results in crime. Meso-analysis is the intermediate level of spatial

aggregation, and studies crime distribution within larger regions such as provinces and cities.

Micro-analysis is the lowest level of spatial analysis and involves studying crime within ve y

specific areas, such as small part of a city.

Spatial patterns in crime differ depending on the level of analysis selected, although the

principles remain the same. The work presented in this thesis, can be best described as

belonging to the third level of analysis, i.e the micro-level.

The principles of environmental criminology can be used to explain the very nature and

occurrence of a broad range of crimes - ranging from mundane crime like robbery, car

theft, burglary etc., to crimes of passion such as serial murder, homicide, rape etc. [8] [93]

[83] [lo]. While conventional research in criminology is best applied for the study of physical

crime of spatial nature, one should be cognizant of the fact that the notion can potentially be

extended to other non-conventional modes of crime, such as white-collar crimes, corporate

crime, cyber crime, intrusion detection etc. This line of contention, however, needs more

thorough analytical research.

2.2 Activity and Awareness Space

The task of simulating the movement of a hypothetical offender is complex, but the main

elements can be shown here. Criminals, to the extent, that they live in everyday society are

bound by normal limitations on human activity, shaped by dictates of work, family, sleep,

food, entertainment, and so forth. They all live within the confines of their own knowledge

CHAPTER 2. ENVIRONMENTAL CRIMINOLOGY 11

and experiences and habits [25]. Each person is tied to what is called 'Anchor Points' and

there are three main classes of these anchor points or activity nodes : home, work and

recreation [42]. During the course of everyday life, to carry out everyday routine, the agent

then travels between these nodes using familiar pathways; the more often an area is visited,

the more knowledge the agent will gain regarding the immediate surroundings for both the

nodes and the pathways connecting them [15].

Based on this movement and a priori knowledge, a person develops a mental map, which

is a representation of the spatial form of environment that an individual carries in his or

her mind. Mental maps of familiar areas such as neighborhoods or cities, are formed from

a distillation of the particular transactions a person has with his or her surroundings [25].

These cognitive images are the result of the reception, coding, storage, recall, decoding, and

interpretation of information [lo].

The mental map of a person is built around their awareness space, which is composed of

all locations about which a person has knowledge above a minimum threshold level even

without visiting some of them. This awareness is developed by knowledge-exchange with

other people, past experiences and current events. The awareness space is derived from

a number of factors - primarily based on the activity space described below - such as

strength of activity space, mobile visibility, accessibility from activity space, willingness to

leave activity space, attractiveness of adjacent areas, speed and model of travel etc.

Within this generalized awareness space, a specialized knowledge is formed by direct expe-

rience, knows as the activity space. The activity space can be defined as the space in which

majority of an individual's activity is carried out, and contains those places and connecting

routes which comprise a person's habitual geography on a daily basis [lo]. "Where we go

depends upon what we know ... what we know depends on where we go" [25]. The activity

space contains only that sub-set of the awareness space that is visited and traveled by a

person on a regular and a current basis. Typically, people make natural and intuitive choices

while trying to decide on a path to take, such as trying to minimize time and distance of

travel, moving toward the destination instead of away from it, preferring major roads to mi-

nor roads, using familiar paths as compared to unknown paths etc. Based on these intuitive

decisions, one can model the temporal and spatial movement patterns of people.

Both the activity and awareness space are dynamic in nature. Spaces grow with increased

CHA PTEn 2. ENVIRONlMENTAL CRIlMINOLOG Y

movement, a.nd as new locations are discovered or new information gathered. At t l ~ c sanie

time, the spaces may slirink if the person has not visited or recalled th tw spaces il l a given

intcrval of t,ime, i.e the person's memory fades over time unless refreslied. However, after an

initial learning pc:riod in a new location, the activit,y and awsreliess spaces become relatively

fixed. Furt,hermore, the spaces vary in their strength - -- highly active paths, sucll as tlioso

locatcd on daily homework schedules, have a higher intensity, than those paths talien rarely,

such as a ~ ~ e i ~ r l y hiking trip. Figure 2.1 expla.ins pictorially the forma.tion of activity and

awa.reness space.

Figure 2.1: Formation of Activity and A u w c ~ ~ e s s Space.

The daily routine of people vary with their tlemographic backgrounds, and as such the

awareiiess spaces tend to be different for difkrent people. Demographic factors such as age,

race, gender, profession, economic level etc. play a role in carving out the activity and

awareness space. For example: a person between the age of 60-70 will be a lot less irlobilc

than a teenager, a traveling salesinan will have a larger activity/awareness space t l ~ a n a.

housewife.

CHAPTER 2. ENVIRONMENTAL CRIMINOLOGY

An example in point is needed. Assuming that our criminal agent moves about in space

much like most people, the agent is tied to at least three main classes of activity nodes:

home, work and recreation. The agent travels between these nodes using familiar pathways.

If the agent starts his or her day at home, and then travels to either work (or school),

for example, he or she will typically take the most direct and most easily navigated route.

Along the way, the agent will take notice of a range of phenomena in his activity space.

For example, he might see a favorite coffee house, or take notice of a particular shopping

opportunity along the way to his work node. Even if the agent does not stop and interact

specifically with potential activity sites, he will often remember such sites the next time he

wants to purchase a cup or coffee or to patronize a particular business. The same learning

process applies to the travel paths to and from other significant activity spaces.

The activity and awareness spaces of people are of crucial significance. These represent the

'comfort zones' of individuals in which they are most likely to direct all their actions. Thus,

it is in these spaces that potential opportunities are observed by criminally-disposed people

and subsequently acted upon [15].

2.3 Target Selection

As chaotic as the process of target selecting seems, there is predictable rationality behind

it that guides the process; this is called target templating [14].

We use the term opportunity space to refer to the space of potential targets; this space is

typically an objective reality and is universally defined for all criminals, different criminals

however might have different perceptions of it. The term crime occurrence space refers to

the space where targets are highly probable of being victimized or selected by a criminal;

this space is typically agent-specific or could be an aggregate.

The Rational Choice Hypothesis developed by Cornish & Clarke [27] [30] suggests that the

decision to choose a target is a rational one based on a rough cost-benefit analysis assessing

the risk involved and the potential payoff. Offenders rationally assess all information about

potential crime and make a rational choice based on an assessment of consequences, com-

bined with the offender's background (intelligence, personality, upbringing) and situational

factors. The important point is that this hypothesis views the committing of a crime as a

CHAPTER 2. ENVIRONMENTAL CRIMINOLOGY

series of decisions and processes made by the offender in the commission of that crime.

The same theme of predictability runs in the Rout ine Act iv i ty Hypothesis [28] [42], which

sees crime as convergence in space and time of three minimal elements : 1) motivated

offenders, 2) suitable targets, and 3) absence of a capable/motivated guardian. This theory

introduces the crime triangle (also called the problem analysis triangle (PAT)), centered

around offender, target and place, that forms a tool in crime analysis. The focus is on the

nature of everyday patterns of social interaction to analyse crime: the routine activity of

leaving the home unattended, absent a guardian, during the workday increases probability

of crime.

The Model of C r i m e Select ion as proposed by the Brantinghams [9] [lo] uses the above

concepts of opportunity, motivat ion, and decision-making and ties it with mobil i ty and

perception. It contends that crimes are most probable to occur in those areas where the

awareness space of the offender intersects with the perceived suitable targets, i.e the cr ime

occurrence space i s the intersect ion of the awareness space and the opportunity space (Figure

2.2). Within this crime occurrence space, the offender then uses target templating - assesses

'cues' from the environment and targets, weighs opportunities and risks, makes rational

choices and finally chooses specific targets for victimization. Once a template is established,

it becomes relatively fixed and self-reinforcing.

Brantinghams' Model of Crime Site Selection views target selection as an information pro-

cessing model given as propositions - Proposition I: Given the motivation of an individual

to commit an offense, the actual commission is the end result of a multi-staged decision

process. In case of high emotional involvement, the process involves a minimal number of

steps; in case of low emotional involvement, the process may include more deliberative steps.

Proposition 11: The environment emits many signals or cues about its physical, spatial, cul-

tural, legal and psychological characteristics. Proposi t ion 111: The motivated criminal uses

these cues, learned through experience or social interactions, to locate and identify targets.

Proposition IV: As experiential knowledge grows, motivated criminals learn which individ-

ual cues are associated with 'good' victims. These cue sequences (spatial, temporal etc) can

be considered a t e m p l a t e for target selection; potential targets are compared against this

target template and either rejected or accepted depending on consequences. Proposition V:

Once the template is established, it become relatively fixed and self-enforcing. Proposition

VI: Because of multiplicity of targets and victims, many potential crime selection templates

CHAPTER. 2. ENVIRONMENTAL CRMIAJOLOG Y

Figure 2.2: Crime Occnrrence Space as the Intersection of Awareness anti 0pportunif;y
Space.

could be constructed; however iudividual templates have sinlilarities which can be identified.

Based on the above Model of Crime Site Selection, the Brantinghanls further tlevelop differ-

ent 'cases' of spatial distribution of offenders and t,a.rget,s, ranging frorn single to multiple,

fro111 uniform t,o nun-uniform, and sl~our t,he search areas ol~tained in different cases [13].

Finally, demographic factors play a role in determining the 'criminal propensity' of offerlders.

Offenders wit-h a high propensity are likely to commit crime more often. Factors such as

high drug use, hcquent nights out, high poverty, etc. exace~abate crime.

A brief emmple in point is needed to illustrate the rationirlity bcllind crime selection. A

typical crime in large cities is that of burglary, otherwise known as tt,rca,k arid enter, or

"B&EV. In the large majority of cases, for the agelit t,o be aware of a potential ta.rgct,? the

site must be 1oca.ted within the agent's a.ct,ivity space - which, ill turn, is defined by the

set of common activity nodes, as discussed earlier. The burglar would travel from Nodc

1 (home) to Node 2 (work), as his routirie may require. Along the way he recognizes s

residential building that is suggestive of a 'good' target, as it 'fits' witahin that particular

agent's crime template. Research on burglars [80] [81] [40] suggests that variables such as

CHAPTER 2. ENVIRONMENTAL CRIMINOLOGY 16

property value, lack of occupants or potential witnesses capable of intervening, and obvious

entry opportunities, all form 'cues' [39] from which the agent assesses quickly to determine

if either the criminal event will be attempted, or at least investigated further.

Chapter 3

Abstract State Machines

The abstract framework presented in this thesis is based on the Abstract State Machine

(ASM) formalism. This chapter is intended to provide the reader a lucid working definition

of the theory of Abstract State Machines.

Abstract State Machines (ASM) are a universal mathematical approach for modeling discrete

dynamic systems. Based on first order logic, abstract state machines can be used to specify,

analyze and construct complex systems at their natural levels of abstraction, in a simple

yet elegant manner. With an operational semantics, and a light-weight agile methodology,

it is universal in its appeal for modeling a plethora of systems.

Propounded by Yuri Gurevich in the early 1980s, whence they were called Evolving Algebras

[57], they were an attempt to bridge the gap between formal models of computation and

practical specification methods. The ASM technique has now evolved into a mature and a

pragmatic technology that provides a rigorous approach for modeling systems with precision,

consistency and unambiguity.

ASMs have been successfully deployed in a wide array of applications - verification of

algorithms and protocols, specification of hardware and software architectures (DLX, PVM;

COM), modeling of real-time distributed systems, semantic modeling of languages (SDL,

VHDL, UML), verification of compilers (Java, Occam), software engineering etc [6].

We begin with Section 3.1 that explores the applicability of ASMs for systems-engineering

and high level s y s t e m analysis and design. Section 3.2 explains the theory of Basic ASMs,

CHAPTER 3. ABSTRACT STATE MACHINES 18

and examines the constructs of pamllelism and non-determinism. This is followed by an

investigation of Distributed Abstract State Machines (DASM) in Section 3.3, that are widely

used for modeling distributed, real-time, concurrent systems. Finally, Section 3.4 enumerates

some commonly used notational conventions.

For an in-depth study, and a mathematical investigation of the subject, the reader is referred

to popular literature [58] [57] [6].

3.1 High-Level System Engineering with ASMs

The history of Software Engineering stands witness to the fact that more often than not

software systems run over-time and over-budget, are inconsistent and incomplete, and al-

most never capture user needs fully. The formidable task of Requirement Engineering [76] is

quintessential to good software design and consequently quality software construction. How-

ever, unlike classical engineering disciplines, the field of software engineering is relatively

open-ended, and hence there exists no silver bullet [24] that can attack the very essence

of software development and ensure the right software. Fortunately, the realm of Formal

Methods posits a solution to one very important aspect of successful software development

- requirements engineering in a consistent, complete and unambiguous manner [4].

ASMs are applied in the same spirit, to bridge the gap between informal user requirements

and formal software construction; in other words turning English into Mathematics, while

preserving lucidity and perspicuity of the model. ASMs provide an accurate semantics

for a formalism without providing the hassle of understanding the mathematics behind

the formalism. The basic definition of ASMs accompanied with the three building blocks

of Abstmct ion, Ground Model Construction [5] and Refinement Techniques [7], make it a

universal and a pragmatic tool for systems engineering.

In this Section we seek to explain the suitability and applicability of ASMs for high-level

system analysis and design: Section 3.1.1 and 3.1.2 examine the concepts of ASM ground

model construction and refinement techniques respectively; Section 3.1.3 explores the role

of ASM as a software development methodology.

CHAPTER 3. ABSTRACT STATE MACHINES

3.1.1 Ground Models

As mentioned above, the task of Requirements Engineering [76] is quintessential to good

software design. The process of formalizing the requirements is what can be termed as

ground model construction. It is clearly the problem of turning English into Mathematics,

while preserving the ease of understanding of natural language. Ground models fneeze or

ground the requirements, so that one may have a blueprint of the desired system.

Boerger [5] identifies three broad problems that all ground models should address. Firstly,

ground models should provide a suitable formalism to mediate between the problem domain

and the world of models; this is the language of communication and should be easy to

understand by people of both the domains. Secondly, the problem of verification should

be addressed; verification is the process of proving that you are building the 'system right'.

Thirdly, the validation problem, whether you are building the 'right system' should be

addressed.

Further, the author enumerates five intrinsic properties that all ground models should have.

Firstly, they should be precise yet flexible. Secondly, they should be simple yet concise.

Thirdly, they should be abstract yet complete. Fourthly, they should be validatable. Finally,

they should have a precise semantic foundation.

ASM Ground Models satisfy all of the above desired characteristics. Based on a mathe-

matical foundation, they provide a precise semantics. With a lucid syntax, they provide

a simple and easy to understand formalism. This can be used to build specifications that

are concise and flexible. Using different functions, one can build strong abstractions, and

yet a complete model. It solves the verification problem by allowing one to use symbolic

model checking, type checking etc. It also solves the validation problem by its operational

character that can be used to build executable models or draw mental simulations.

3.1.2 Refinement Techniques

Refinement goes hand-in-hand with the inverse process of abstraction and plays a central

role in incremental system development. With :respect to other refinement techniques, the

ASM refinement method is rather informal. It is not based on any concrete principle, and

thus can be customized according to the need of the application. It should howe,ver, meet

CHAPTER 3. ABSTRACT STATE MACHINES

the following principle of substitutivity:

Principe of Substitutivity: it is acceptable to replace one program by another, provided it

is impossible for a user to observe that the substitution has taken place [32].

There can be two types of Refinements, viz: Horizontal Extensions and Vertical Extensions.

Horizontal extensions provide new modules with new functionality to the existing applica-

tion. Vertical extensions build upon existing functionality by elaborating the corresponding

data structures and/or rules.

In addition, the ASM refinement method provides three types of refinement patterns. These

are discussed below, as adopted from [7].

Conservative Refinement

Conservative refinement or conservative extension as it is widely called, is a type of incre-

mental refinement. In support of modular system design, this can be used to introduce

brand new functionality to the system. An example would be extending an abstract Java

Virtual Machine with the functionality of exception handling.

For conservative refinement, a new machine is defined with corresponding behavior. The

new machine is executed with the triggering of a condition for new case. At the same time,

the old machine can be executed by negating the condition of the new case.

Procedural Refinement

Procedural refinement, or submachine refinement as it is widely called, is performed by re-

placing a given rule (or a submachine) by another rule (or a machine). One may use multiple

submachines to achieve this affect, where the behavior of applying multiple submachines is

abstracted away and seen as only one step.

Data Refinement

Data Refinements are those where abstract states and rules are mapped to concrete ones

such that the result of applying concrete rules to concrete types is the same as applying

abstract rules to abstract types. One such example is Instantiation, where the ASM rules

remain unchanged and abstract functions are refined further.

CHAPTER 3. ABSTRACT STATE MACHINES

3.1.3 Agile Development

Abstract State Machine provide an avenue for agile software development. Agile software

development emphasises the need for being adaptive rather than predictive, being people-

oriented rather than process oriented, less document-oriented and more code-oriented [47].

With the concepts of abstraction and refinement techniques, ASMs provide a means for

iterative development as opposed to traditional waterfall-like methodologies. This style of

development is most suitable for addressing the problem of requirements creep and being

adaptive in nature.

Beginning with an abstract ground model (Section 3.1.1), and using proper step-wise re-

finement (Section 3.1.2) one can relegate ground models to executable code. This by itself

provides a disciplined process of software deve:lopment accompanied with verification and

validation. As a by-product, the formal specifications can be used as valuable system doc-

umentation. Figure 3.1, adapted from [6], summarizes how ASM models are used in the

hierarchical design and construction of software systems.

Application Domain Knowledge

dynamic functions domains
transition systems external functions

Ground Model I SIMULATOR p--< (manual, mechanized)

Validation Verification

TEST I I

Step-wise

CASES refinement i

Using data from
application domain

Figure 3.1: The Hierarchical Software Development Process.

CHAPTER 3. ABSTRACT STATE MACHINES

3.2 Basic Abstract State Machines (ASM)

Basic ASMs can be seen as the definition of ASMs in their most original form. The intuitive

understanding is to view them as pseudo-code over abstract data stmctures. A basic ASM

is a single agent machine, as opposed to its DASM counterpart which can be multi-agent

and asynchronous. Basic ASMs are endowed with potentially unlimited non-determinism

and parallelism. The sequential ASM thesis contends that any sequential algorithm can be

simulated at its natural level of abstraction by an appropriate ASM [59].

A basic abstract state machine has a signature V, which is nothing but a collection of

function names. The machine transitions over abstract data structures called state S of the

ASM, which in mathematical terms is nothing but a first-order algebraic structure. The

machine is associated with a program P, which is a set of so called transition mles. Finally,

the machine comes equipped with an initial state Si.

Thus, a basic ASM can be seen as a tuple [V, P, S, Si].

Every ASM signature1 is assumed to contain the static functions undef, tme , false. The

functions of signature V are called basic functions. Each function has an arity which is the

number of parameters the function takes. Relations are similar to functions, except that

they always map to either true or false. The default value for basic functions is undef and

false for basic relations. Constants are represented as nullary functions.

A state S for the signature V consists of a non-empty set X , which is the supemiverse

of V, together with the interpretations of the function and relation names of V. If f is

an n-ary function name of V, then its interpretation in state S is denoted by f S , which

is a function from Xn to X. The superuniverse X of the state S is denoted by IS1 and is

also called the base set of a state. Function names in a given state are interpreted as total

functions, however, every total function can be viewed as partial w.r.t unde f .

A basic Program P is a basic rule without free variables.

A pure m n of P is a sequence (Sn : n < i) of states of vocabulary V, such that each

is obtained from Sn by firing P at Sn. A pure run also called internal w n is one that is

not affected by the environment, as opposed to an interactive run. The notion of a run

is similar to that of a state transition in classical systems. An ASM step in a given state

 he terms Signature and Vocabulary are used interchangeably.

CHAPTER 3. ABSTRACT STATE MACHINES 23

executes all updates sets of all transition rules simultaneously. A legal move yields the next

state, whereas an illegal move halts the machine.

3.2.1 Transition Rules

The basic language of transition rules is very modest and even minimal in some justifiable

sense. There are four basic rules viz. update rule, conditional rule, block rule, and import

rule. The only primitive transition rule is the local function update; other rules are variants

and extensions of this rule [57].

The Update Rule has the form:

f (tl, ..., t,) := to

where, f is the name of a basic dynamic function, r is the arity of f and every ti is a closed

term. The pair (f , (tl, ..., t,)) is called a location, and the value f (tl, ..., t,) is called the

content of the location in given state S.

An update is a pair (1, v), where 1 is a location and v is a term. An update set is a set of

such updates. Firing an update(set) has the semantics of replacing the content of location 1

with new value v. With the in-built parallelism, an update set may have rules, that update

the same location at the same time with different values. This produces a clash and the

update set is said to be inconsistent. For a consistent update set, firing the set produces a

new state with the same superuniverse, but different interpretations of dynamic functions.

The Conditional Rule has the form:

if b then R1 else R2 endif

where, b (the guard) is a boolean valued predicate, and R1, R2 are updates.

The semantics of an update rule are equivalent to a guarded update. If b evaluates to true

on the given static algebra, then perform R1; otherwise perform R2. Simplified version of

this form, need not use the else clause or endif explicitly.

The Block Rule has the form:

do-in-parallel

R1

R2

where, R1 and R2 are update rules.

The semantics of such a block rule is equivalent to executing the rules R1, R2 simultaneously,

CHAPTER 3. ABSTRACT STATE MACHINES 24

such that the order is immaterial. However, if the block rule produces an inconsistent update

set, the machine halts. Simplified versions of the block rule, need not use the do-in-parallel

explicitly.

The Import Rule has the form:

import x do

P

where, x is an element of the reserve and P is some statement.

The semantics of import rule is to select non-deterministically an element x from the reserve,

delete it from the reserve, and execute P. This allows for dynamic allocation of resources

during program runs. There are a few syntactic variations of the import rule.

3.2.2 Parallelism

At a high-level of abstraction, it is highly desirable to abstract away from sequentiality

where it is irrelevant. The construct of parallelism in ASM extends the two concepts that

time is sequential, and that only a bounded amount of work is performed in a step.

One may introduce agents that perform a substantial amount of work in a single step. A

step may involve numerous parallelism; such work, in principle may be executed by several

auxiliary agents executing in parallel. Nevertheless on a natural level of abstraction of

an algorithm, such work is accomplished by a single agent, and those auxiliary agents are

invisible [58].

The parallelism is expressed with the following syntax:

for all z E X with f (x)

R(x)
where, x is a variable, X is a domain, f is a fun.ction defined on x and R is a rule.

The semantics of the forall construct is that for every x that satisfies the condition given

by f , execute the rule R. There can be multiple rules, that are executed simultaneously,

where the order of execution is immaterial. Thus, one may perform potentially unbounded

work in a single step.

CHAPTER 3. ABSTRACT STATE MACHIN%S

3.2.3 Non-Determinism

The phenomenon of non-determinism allows one to model scenarios that are not necessarily

under an algorithmic control or are irrelevant at a high level of abstraction. Non-determinism

may be modeled by using external functions (explained later), or by using the in-built ASM

construct of choose.

The syntax of the choose construct is as follows:

choose x E X with f (x)

R(x)
where, x is a variable, X is a domain, f is a function defined on x, and R is a rule.

The semantics of such a construct is to execute the rule R for any arbitrary x that satisfies

the property f .

3.2.4 Classification of Functions

In support of principles of modularization, info:rmation hiding, data abstraction and sepa-

ration of concerns, the ASM method exploits the following distinction among the types of

functions and locations [6].

An ASM M may have static functions - those that never change during a run of M , or

dynamic functions - those that may change d.uring a program run. Static functions are

defined by the initial state of the ASM. Static and dynamic functions can be thought of as

constants and variables of programming languages respectively.

The dynamic functions are further divided into four sub-categories2.

Monitored or In functions are those that are updated by the environment only and not by

the rules of M, but can be read by M. The monitored functions provide a strong abstraction

mechanism and can be used to model irrelevant details or details not under the control of

the model. These functions can be thought of as oracles, that given a set of arguments,

magically provide the desired result. The oracle need not be consistent and may give dif-

ferent results for the same argument at different; times. The seeming inconsistency may be

quite natural. However, the oracle should be consistent during the execution of any one

step of the program [57].

2An additional term External is used to refer to functions that are eit.her static or monitored.

CHAPTER 3. ABSTRACT STATE MACHITVES 26

Controlled functions are dynamic functions that are updatable by and only by the rules of

M . These are also known as Internal functions.

To describe a combination of internal and external control of functions, we have Interaction

or Shared functions. Such functions are updatable by the rules of M as well as by the

environment, and can be read by both. The concept of monitored and shared functions

allows one to separate the computation concerns from communication concerns [6] .

Finally, Out functions are dynamic functions which are updated, but not read by M . Con-

versely, they are read, but not updated by the environment. These functions allow the

machine to pass information to the environment or to other agents in the environment.

Another taxonomy of functions is that of derived and basic functions. Basic functions

come with the signature of an ASM by default. Derived functions are dynamic auxiliary

functions which have a computational definition, and can be seen as storing some pre-

computed results. They are not updated by 1VI or the environment, but can be read by

both.

3.3 Distributed Abstract State Machines (DASM)

Distributed Abstract State Machines (DASM) extend Basic ASMs to incorporate the no-

tion of multi-agent computations - a scenario, where multiple agents, each equipped with

their own set of states and rules, run in parallel, independent of each other, but possibly

interacting with each other.

The agents may be synchronous in their behavior or asynchronous. In case of synchronous

systems, an implicit global system clock is used to orchestrate computations. Synchronous

ASMs support modularity for the design of large systems. Asynchronous ASMs support the

design and analysis of distributed systems.

Semantically, a distributed ASM D is composed of:

A finite set of agents, called AGENTS. AGENTS is a dynamic function.

Each agent a is associated with a program Pa. The function name MODULES or

PROGRAMS is used to represent the set of all such programs, which is a static

nullary function name.

CHAPTER 3. ABSTRACT STATE MACHINES 27

e Vocabulary V , which is the union of the signatures of each constituent component.

Initial State So which is a collection of in-itial states.

The DASM D has a global state and the agents interact with each other by sharing locations

of this global state. Each agent a has a view V, of the global state. Further, a static nullary

function Self is used by agents for self-identification.

An agent a can make a move at state S by firing Program, at View,(S); to perform a

move of agent a, fire

Updates(a, S) = Updates(Program,, View, (S))

Runs of a distributed ASM are defined in the following section.

3.3.1 Concurrency and Coherence

In case of Distributed ASMs, a problem may arise of the possible incompatibility of moves

due to different data, time clocks, duration of executions [6].

Hence, the run of a DASM D , as quoted from [58], is defined as a triplet (M , A , (T) satisfying

the following four properties:

1. " M is a partially ordered set, where all sets { y : y 5 x) are finite.

Elements of M represent moves made by various agents during the run.

2. A is a function on M such that every nonempty set { x : A (x) = a) is linearly ordered.

A (x) is the agent performing move x. The moves of any single agent are supposed to

be linearly ordered.

3. a assigns a state of D to the empty set and each finite initial segment of M; a (9) is

an initial state.

a (X) is the result of performing all moves in X.

4. The Coherence Condition: If x is a maximal element in a finite initial segment X

of M and Y = X - { x) , then A (x) is an agent in a (Y) and a (X) is obtained from

a (Y) by firing A (x) at a(Y) ."

This definition produces two corollaries: (1) All linearizations of partially ordered moves

of X (a finite initial segment) yield runs with the same final state. (2) A property holds

CHAPTER 3. ABSTRACT STATE MACHIi'qES 28

in every reachable state of a run R if and only. if it holds in every reachable state of every

linearization of R.

The above scheme is as liberal as possible, and thus can be instantiated by any well-defined

synchronization mechanism.

3.3.2 Reactivity and Real-Time Behavior

ASMs are typically reactive systems as opposed to transformational systems.

The provision of different categories of functions (see Section 3.2.4) allows one to model dif-

ferent types of reactive behavior at desired levels of abstraction. These well-defined functions

act as interfaces for communication to-and-fro a machine and its operational environment

(or other machines). Monitored functions can be used to send information from environment

to the machine. External functions can be used to delineate a system from its operational

environment. Internal functions can be used to communicate information from the machine

to the environment.

ASMs operate with a discrete t ime notion. Continuous time is mapped (by using sampling

or other techniques) to discrete intervals.

Real time behavior imposes additional constraints on DASM runs requiring that the agents

react instantaneously. An assumption is made that all actions take place in atomic time.

Timing aspects are simulated with an abstract global system clock. A monitored function

now acts as an oracle that provides the current time. The now function returns values from

an abstract universe TIME.

3.4 Notational Convent ions

The following notational conventions are used €or ASM specifications, for improved read-

ability:

Agent Names start with a block letter. The individual words also start with block

letters and are separated by an underscore -. The rest of the letters are also written

in upper case (e.g. SEM, AGENT-DECISIONIVIODULE).

CHAPTER 3. ABSTRACT STATE MACHINES 29

a Program names are derived by the name of the Agent written in block letters, followed

by an underscore and appended with the word 'Program' (e.g. SEM-Program).

a Function names start with a lowercase first letter. The individual words start with

block letters and the rest of the letters are written in lowercase (e.g. bestPathPref).

Abstract rule names are written in block letters and the individual words are divided

by an underscore - (e.g. CHOOSE-NEX'T-ROAD).

a Rule names start with a block letter. The individual words also start with block letters

and are separated by an underscore -. The rest of the letters are written in lower case

(e.g. Choose-Next-Road).

a To denote an inheritance like relation between domains, the specialized domain is

written on the left hand side of the - sign, the general domain is written on the

right hand side, and this is appended by a keyword 'where' (e.g ACTIVE-OBJECT

G PASSIVE-OBJECT where). Following where are the functions defined on the

specialized domain; these functions may be interspersed throughout the model.

a ASM keywords are written in lowercase using bold font (e.g. else).

0 Domains are written in block letters (e.g. PERSON).

a Comments inserted within specifications are preceded by '//' and are usually gray

colored.

PART I1

ABSTRACT MODEL

Chapter 4

Overview of the Model

We model a social system composed of criminals, cops, regular people, and other entities,

interacting with each other and their environment as a discrete time, discrete event model,

using the ASM formalism.

The goal of the model is to evolve the activity and awareness spaces of people over a period

of time. Using the simulated awareness spaces, for a given hypothetical offender, the crime

occurrence space is simulated.

The DASM model we present here is built on a multi-agent system view as explained in

Chapter 5. The system context calls for a combination of two basically different views -

agents interacting with each other and with the environment in which they live. These

interactions form a dynamic open system, whose behavioral pattern is best characterized as

a combination of reactive system and cognitive system.

We perform Micro Simulation, whereby we model the behavior of constituent individual

units i.e the agents, from which the aggregate behavior (macro-level) of the populations, or

groups of agents, can be obtained.

Persons are viewed as autonomous agents with. a complex architecture, based on a BDI-

theoretic view (Chapter 7).

Agents operate in a highly dynamic, discrete environment. The environment is typically an

urban landscape; the logical representation of the environment is categorized into different

layers to derive the true behavior of the agents, as explained in Chapter 6.

CHAPTER 4. OVERVIEW OF THE M0DE.L 32

To model the interaction between an agent and its environment, we use the notion of

open system view. The boundary between the system and its operational environment is

delineated using well-defined ASM functions that allow one to model two-way interactions.

The system is embedded into its environment through actions and events as observable at

interfaces. The external world affects the system though externally controlled or monitored

functions.

Timing aspects are modeled based on an abstract notion of global system time. In a given

state, the time (as measured by some global clock) is given by a monitored unary function

now taking values in a linearly ordered domain TIME.

The decision-making process of autonomous agents is emulated using a combination of case-

based reasoning and model-based reasoning. The idea is to have a balance of learning and

exploring; this approach closely resembles intuitive human reasoning. Coupled with the

process of reasoning thus is the process of learning. The autonomous agents are capable of

learning using a form of behavioral reinforcement learning, where based on past experiences,

certain preferences are developed that may influ.ence future choices that an agent will make.

The learning reinforcement can be both positive or negative in effect. This hybrid case-based

reasoning is explained in Chapter 8.

Inter-agent communication is achieved by reading and writing shared locations of ASM

global states. For synchronization purposes, we use an explicit event triggering mechanism

defined in 1411.

Intuitively, communicating agents may develop various forms of interactions like indiffer-

ence, coopemtion or antagonism, which in turn lead to the formation of organizations such

as egalitarian or hierarchical [44]. At this stage, we essentially restrict to two forms of inter-

action, indifference (agents operate independently without influencing one another) and, to

some extent, cooperation, but potentially allow for other forms of interactions as well. This

type of interaction renders an organization structure that is typically egalitarian, however

with future inclusion of complex interactions, the structure may potentially emerge into a

hierarchy, community of experts, market, scientific community 1891.

The behavior of agents is simulated by making them follow their daily routines, and carry on

with day-to-day activities. In due course of time, with the movement of people in the given

urban environment, their activity space and awareness space starts building and expanding.

People thus start exhibiting relatively fixed temporal and spatial patterns of movement. We

CHAPTER 4. OVERVIEW OF THE MODEL 33

use the Brantingham Model of Crime Selection, as explained in Chapter 2, to get an estimate

of the crime selection sites. For criminally-disposed people, given a predefined opportunity

space, the intersection of their awareness space with the opportunity space gives us the

crime occurrence space. This area has a very high probability of criminal activities. Within

this area, based on their criminal profile and ch:zracteristics of the target, the criminals then

perform target templating which leads to victimization of targets.

Chapter 5

Modeling Paradigm

Traditionally, statistical models, differential equations, and stochastic modeling have been

the dominant approaches for modeling discrete event systems [95]. However, for modeling

emergent human behavior amidst dynamic environment - a particular kind of discrete

event system - multi-agent systems prove to be a very promising approach.

This chapter is devoted to examining the suitability of multi-agent systems as a modeling

paradigm in the context of our application. We begin with Section 5.1 providing a brief

overview of the eclectic field of multi-agent based modeling; this is continued in Section 5.1.1

that analyzes their applicability to modeling of social processes in particular, and Section

5.1.2 that explores the need for introducing formal approaches to agent based systems.

Finally, Section 5.2 explains our approach, and how the ASM formalism is combined with

the multi-agent system view to obtain a robust modeling paradigm for social systems.

5.1 Multi- Agent Based Modeling

The field of MAS emerged from the study of Distributed Artificial Intelligence (DAI) in the

1980s. The research areas of multi-agent systems and distributed systems coincide, and form

the research area of distributed agent computing; in short, multi-agent systems are often

distributed systems, and distributed systems are platforms to support multi-agent systems.

Multi Agent Systems (MAS) are electronic or computing models made up of artificial entities

which communicate with each other and act in an environment [44]. The study of MAS

CHAPTER 5. MODELING PARADIGM 35

focuses on systems in which many intelligent agents interact with each other. The agents are

considered to be autonomous entities, such as software programs or robots; their interactions

can be either cooperative or selfish.

Multi-Agent Systems (MAS) [89], [92], [44] halve gained widespread popularity as a mod-

eling paradigm due to their inherent ability to model a plethora of systems - comprising

of simple entities to groups of complex entities, emanating simple to complex interactions,

embedded in static to open dynamic environments1.

Multi-Agent Based Systems (MABS) should not be seen as a completely new and original

modeling and simulation paradigm. It is influenced by and partially builds upon some ex-

isting paradigms, such as, parallel and distributed discrete event simulation, object oriented

simulation, as well as dynamic micro simulation [31].

The motivation behind using MAS as a modeling platform are many-fold: to solve problems

that are beyond the realm of a single entitylagent due to bounded rationality, to provide

solutions in situations where expertise/information sources are distributed e.g. weather

forecast system, to provide modularity, to model open and highly dynamic environments

[89]. In particular, agent-based models have enormous potential to capture the dynamics

of systems that can naturally be regarded as a society of interacting agents, e.g. human

societies [52], [3].

Pertinent to our context, the multi-agent modeling paradigm plays a vital role in bring-

ing together the predominant view of the world of social systems with the formal ASM

view. They serve as a natural ontology for modeling social phenomenon [3]. This nexus

provides a coherent framework to incrementally refine the model by integrating approaches

from other disciplines such as AI, algorithmics, criminology, etc and thus incorporating

cross-disciplinary perspectives in an elegant fashion. Section 5.1.1 explores the suitability

of multi-agent systems for modeling social systems.

As a secondary benefit, the use of ASM formalism in specifying such a system helps under-

stand and alleviate many of the semantic and methodological problems met in the multi-

agent system community. This is discussed in Section 5.1.2.

We now recall some basic definitions of an agent and a multi-agent system. There is a be-

wildering list of notions of agents [48]; however, there is no universally accepted definition.

'See the Springer series on Multi-Agent Systems ana! Application for innovative applications of MAS.

CHAPTER 5. MODELING PARADIGM

Furthermore, a clear distinction exists between Agents and Autonomous Agents that cannot

always be explicitly defined. Ferber [44] describes an agent as a "physical or virtual entity

which is capable of acting in an environment, which can communicate, which is driven by

a set of tendencies, which possesses resources of its own, which is capable of perceiving its

environment,which has only a partial representation of this environment, which possesses

skill ". In [48] the authors describe the 'essence of agency' and offer the following def-

inition: " A n autonomous agent is a system situated within a part of an environment that

senses environment and acts on it, over time, in pursuit of i t s own agenda and so as to

effect what it senses in the future." In [91], the agent definition reads as: a hardware or

a software-based computer system that enjoys the following properties: autonomy: agents

operate without the direct intervention of humans or others, and have some kind of control

over their actions and internal state; social ability: agents interact with other agents via

some kind of agent-communication language; reactivity: agents perceive their environment,

and respond in a timely fashion to changes that occur in it; pro-activeness: agents do not

simply act in response to their environment, they are able to exhibit goal-directed behavior

by taking the initiative.

The term multi-agent system is applied to a system comprising of (1) an environment (2)

a set of objects (3) an assembly of agents (4) relations which link objects and agents to

each other (5) operations of agents to act on objects, and (6) laws of the universe [44]. The

characteristics of MAS are that (1) each agent hLas incomplete information or capabilities for

solving the problem and, thus, has limited viewpoint (2) there is no system global control,

and (3) data are decentralized, and computation is asynchronous [89].

Although MABS enjoys a lot of benefits, the framework, methodology and software engi-

neering techniques for same are not well-established. In [38], the authors define the success

of MABS as ambiguous: "While most of the researchers seem to agree o n a common ter-

minology for designating the core multi-agent concepts used in M A B S , it appears that this

agreement is, a t best, syntactic. The semantics associated differ considerably from one model

to another, or from one implementation to another. This fuzziness, at the computational

level ... can be found in all the other levels required for the design of a simulation."

CHAPTER 5. MODELING PARADIGM

5.1.1 Agent Based Social Simulation (ABSS)

A social system can be seen as a set of actors, individuals or groups behaving in an in-

terdependent pattern in order to adapt to environmental contingencies [52]. The authors

in [53] trace the history of simulation in the field of Social Sciences - from its' genesis in

differential equations to stochastic processes, t,o game theory, to cellular automata and fi-

nally blossoming to distributed artificial intelligence. They compare the above modeling

techniques and extol the usefulness of agent-based modeling to capture non-linear system

dynamics. Bankes [3] terms the use of agent-based modeling in the social sciences as revolu-

tionary and extols its virtuosity in meeting the: challenges demanded in the social sciences,

that differential equations and statistical models cannot meet. Agent-based models have

enormous potential to capture the dynamics of systems that can naturally be regarded as

a society of interacting agents, e.g. human societies; they serve as a natural ontology for

modeling social phenomenon [3] [52].

One way of characterizing the inter-disciplinary research area of Agent-Based Social Simu-

lation (ABSS) is that it constitutes the intersection of three scientific fields - Agent-Based

Computing, the Social Sciences, and Computer. Simulation [31] (Figure: 5.1).

,-----------------------------

j Social Aspects of Agent Systems j

MABS

Figure 5.1 : ABSS as the Intersection of Three Fields.

There are numerous advantages in using agent-based models of social phenomenon. Drougal

and Ferber [37] cite that they allow one to Test Hypotheses about the emergence of social

structure from individual behaviors, i.e by experimenting at the micro level and deriving

CHAPTER 5. MODELING PARADIGM 38

patters at the macro-level; Build Theories that contribute to sociological development, by

relating behavior to structure; Integrate Differential Partial Theories from different disci-

plines into a general framework, by providing 1;ools that allow for integration.

They allow one to capture complex interdependencies among a large number of units, in-

corporate interdisciplinary perspectives, follow reasoning by simulation runs, handle large

amounts of data [52]. Furthermore, mathematical models of social processes provide rigorous

a priori frameworks that allow formal or informal reasoning of the target system [84].

Gilbert and Doran [52] cite two main categories of agent-based social models: (1) Exploratory

models: that give insights into systems (2) Predictive Models: to predict reliably the be-

havior of the target system under key conditions. They also state two kinds of inferences

that can be draw on the model: (1) By Simulation: having a running executable version of

the model and performing experiments on it ('2) By Analysis: reasoning directly from the

knowledge embedded in the model. The reasoning can be informal or formal and is usually

applied on the formal specification of the model.

There are two kinds of Social Simulation viz. Micro Simulation, that explicitly attempts

to model the behavior of constituent individual units, from which the aggregate behavior is

obtained and Macm Simulation which models the system as a whole where the character-

istics of a population are averaged together. The two classifications of simulation are not

completely orthogonal, for example in order to aggregate behavior, we might want to give

an agent a model of other agents in the environment.

Many successful applications of agent-based social simulation can be found in [52]. The

MANTA system [37] and the EOS project [36] are two well-known examples of a reactive

and a cognitive system respectively. MANTA uses a multi-agent model to show the evolution

of ant colonies; EOS simulates the process of emergence of fishermen societies.

5.1.2 Formal Approaches to Agent-Based Systems (FAABS)

Although agent based systems are widely used, they still lack a formal semantic foundation.

Such a firm foundation is quintessential to the process of good design and quality construc-

tion of agent-based systems. Introducing formal methods in the realm of agent-oriented

analysis and design may serve as a solution to many problems being met in the MAS re-

search.

CHAPTER 5. MODELING PARADIGM 39

The authors in [34] contend that there is a dire need for formalism in agent-based systems:

"There is a lot of formal theory in the area but it is often not obvious what such theories

should represent and what role the theory is intended to play. Theories of agents are often

abstract and obtuse and not related to concrete computational models."

The same theme is reinstated in [35] - "Our own view i s that work on formal models of

agent-based systems are valuable inasmuch as they contribute to a fundamental goal of com-

puting of building real agent systems."

Furthermore, the lack of a mature off-the-shelf methodology that provides a practical frame-

work guiding the process of specification, design, development and verification inhibits their

applicability to real agent commercial applications [61] [85].

Invernoe et a1 [34] point out two directions in which this field can develop viz: construct new

techniques for reasoning about and specifying multi-agent system or use existing formalisms

as far as possible.

Wooldridge and Fisher [46] outline a formal approach for the specification, verification, and

rapid prototyping of multi-agent systems. The agent specification is developed in a tempo-

ral multi-modal belief logic called PML. For prototyping, the agent-specifications are made

executable by using the 'Concurrent METAEILI' platform. Verification is done by using

an extended temporal belief logic ; a range of proof methods for TBL are also developed.

Limitations include inability to address true concurrency and distribution, inability to di-

rectly execute logic specifications, non-applicability of TBL to realistic systems, complicated

proof-methods.

Luck and Inverno [71] propose a formal framework for Agency and Autonomy. Using the Z

specification language, they describe a three-tiered hierarchy composed of Objects, Agents,

and Autonomous Agents. They extend their work in [35] by addressing methodological is-

sues of agent systems specification, agent development and agent deployment. The concepts

of 'inter-agent relationships', 'sociological behavior' and 'agent plans' are also formalized.

The critique of their work include the limitations of the Z specification language [45]. They

also do not address certain key issues of agent memory, external environment, goal adoption

etc [go].

Hilaire et a1 [61] present a formal approach to MAS that fits in with prototyping and simu-

lation. They choose a multi-formalism approach based on Object Z and state charts. MAS

is specified based on an organizational model which has three interrelated concepts: Role,

CHAPTER 5. MODELING PARADIGM 40

Interaction and Organization. Object-Z is used to specify the transformational aspects of

the system and state charts to specify the reactive aspects.

There also exist a number of agent-based modeling techniques and platforms such as DE-

SIRE, SWARM, REPAST etc. [51] gives a brief sketch of the history of these platforms for

modeling agent-based systems. A comparative study of some of these techniques is carried

out in [85]. The conclusion drawn in both the cited works is that there is a need for further

exploration of agent-based modeling techniques.

Based on the above rhetoric, one can draw the conclusion that relatively little work has been

done in terms of formal approaches to agent-based systems. Researchers have enumerated

various facets that an agent formalism should a.ddress. Main amongst these are agent-based

characteristics such as distribution, concurrency, autonomy, communication; and software

engineering characteristics such as preciseness, refinability, executability, methodology [52]

1851 P41.

To this end, our work based on the ASM formalism provides a mathematical framework

to alleviate and solve the aforementioned crucial problems. It fills the dire need for a

robust formal framework that, beyond issues of formalization, also deals with methodological

aspects and software engineering techniques. ASM formalism and abstraction principles in

combination with the underlying methodological framework [6] provide a universal formal

basis for semantic modeling of multi-agent systems at arbitrary levels of abstraction in a

coherent and consistent framework. Specifically, we address here crucial aspects such as

distribution, concurrency, communication, environment, and real time [85].

CHAPTER 5. MODELING PARADIGM 41

5.2 Our Approach: Linking Social Systems to DASM Models

The DASM model we present here is built on a multi-agent system view. We build upon the

existing knowledge and expertise of applying t,he multi-agent based paradigm to modeling

of social systems, and then use the DASM framework for building a concise mathematical

model of a particular class of such systems. This is depicted in Figure 5.2, where the derived

DASM model is linked to the underlying social system through an intermediate layer which

is of Multi- Agent System (MAS).

DASM Model

Multi-Agent System (MAS)
A

Social System

Figure 5.2: Mapping Social Systems to DASM Models

The primary reason for the mapping is that this is the intuitive way to model the system;

fundamentally the system is nothing but a set of agents interacting with each other in the

given environment. Agent-based models have enormous potential to capture the dynamics

of systems that can naturally be regarded as a society of interacting agents, e.g. human

societies; they serve as a natural ontology for modeling social phenomenon [3] [52].

" Agent-based modeling is relatively new to the social science, but holds the promise of

becoming a powerful new computational tool i n crime analysis and i n policy analysis. With

agent-based modeling it is possible to see that what happens to be very different under

different conditions ... different urban backcloths, but with the agents acting under the same

rules; or the result of agents acting under the same rules but against different urban

backcloths [I 71."

Thus, in our model, the multi-agent system layer acts as a linchpin; it renders an organization

to the underlying social system and makes it amenable for the task of formalization. It

also provides an avenue for incorporating various techniques and solutions developed in

CHAPTER 5. MODELING PARADIGM 42

the discipline of MAS research for common problems encountered in the design of agent-

based systems, such as coordination & planning:, conflict-resolution, team formation etc [89].

Although at this level of abstraction the inter-agent interaction is minimal, and the above

techniques are typically not required, we nevertheless provide a basis for future extensions

of the model in this manner.

At the same time, the reader should be cognizant of that fact that we view the introduction

of this intermediate layer only as a facilitating means for modeling social systems; i.e. only

those principles of multi-agent systems that help in streamlining our target system are

incorporated. This stems in part from the fact that although the discipline of MAS is well-

established, there is still no universally accepted methodology for engineering agent-based

systems, and often the designer is at discretion to make application-specific design choices.

Having explained the general idea of deriving a DASM model of the social system via the

multi-agent system layer, in the following section (5.2.1) we explain the specifics that need

to be achieved in order to do so.

5.2.1 Classification of Agents: DASM Organization

The above approach of juxtaposing the DASM model with the social system via the MABS

layer calls for orchestrating first, the constituent entities within each layer and second, the

mapping of entities derived in each layer to its immediate above layer. This sections explains

how the classification and mapping of entities is done to obtain a solid DASM organization.

At the bottom most layer, the social system is composed of different types of entities. There

are independent live entities with self-controlled action and behavior, such as criminals, cops,

regular people etc. There are lifeless entities urith behavior albeit not self-controlled, such

as traffic lights, atms, buses etc. Finally, there are entities urith properties but no behavior

such as buildings, streets, valuables etc.

Since the above social structure is mapped to a Multi-Agent System (MAS), it is required

to derive the same distinction in this intermediate layer as well. This task of classification of

agents in the multi-agent system layer also s~b~sumes making a distinction between agency

and autonomy. We propose a generic hierarchical classification of entities into three dif-

ferent categories: passive objects, active objects and autonomous agents. The core of this

CHAPTER 5. MODELING PARADIGM 43

classification is based on the essentials of the Belief Desire Intention (BDI) agent architec-

ture [Xi], [91] and the framework for agency and autonomy [71].

A passive object is an entity that comprises of a set of attributes. An attribute is nothing

but a characteristic feature; for instance, jewelery is a passive object that has attributes

such as value, color, shape.

An active object is an entity that, in addition to a set of attributes, has an associated behav-

ior. Behavior is described as an observable change in the internal state of the entity or its

external environment, where this behavior is induced by the environment (or some external

entity) and not generated by the active object itself. A car is an active object that has a set

of attributes (color, model, engine) and changhg behavior (running, stationery, honking),

where this behavior is controlled by an external entity (the driver).

An autonomous agent is an entity that, in addition to attributes and behavior, has a set of

rules, motivations, and a memory. The behavior of an autonomous agent is generated by

the rules triggered by the agent itself to change its internal state (by way of cognition rules)

or the state of its environment (by way action rules). Consequently, an autonomous agent

is responsible for generating all its behavior. Motivations are reasons (goals or incentives)

toward which the behavior is oriented, and memory is nothing but a collection of facts rep-

resenting agent's knowledge of the environment. A criminal is an autonomous agent that

has attributes (age, race, sex), behavior (worki:ng, eating, stealing) which is determined by

motivations (hunger, greed), and has a memory that saves the agent's knowledge about the

environment such as the locations of the targets. The definition of the autonomous agent

is in essence similar to an BDI agent, whereby, analogous to a BDI architecture, memory

represents the beliefs, motivations represent the desires, and the rules represent the delib-

erative and means-end reasoning phase of the BDI agents.

This three-tier hierarchy of entities is depicted in figure 5.3.

It should however be noted that although generic, this categorization is not intended to

be a universal taxonomy for classification of sociological agents. It is derived mainly to

capture the dynamics of our target system, which is a typical example of a social system,

and thus may be carried forward as a generic classification for social systems. This same

line of thought is reinstated by Russel and No:rvig "The notion of agent is meant to be a

tool for analyzing systems, not an absolute characterization"

The last step is to map each MABS entity onto an entity in the DASM model. As explained

CHAPTER 5. MODELING PARADIGM

Entities

Figure 5.3: Hierarchical Classification of Entities

in Chapter 3, there are only two kinds of entities in ASMs viz. agents that have an as-

sociated program, and objects that only have characteristic functions. A passive object is

modeled as an ASM object with static functions representing its attributes. Active objects

are also modeled as ASM objects with both static and dynamic functions; dynamic functions

are used to represent the changes in state corresponding to externally-controlled behavior.

Finally, autonomous agents are modeled as DASM agents where the program of each agent

characterizes the rules governing its behavior; its memory and motivations are abstractly

represented by functions.

Table 5.1 illustrates the entity mapping through the different layers for some typical entities.

Table 5.1 : Entity Classification and Taxonomy through Different Layers.

Social System
Offender, Victim

Car, ATM

Cash, Drugs

Spec 5.1 shows the ASM snippet of classification and mapping of entities through the dif-

ferent layers 2 .

2While we use explicit domains here for MEMORY, RULES, BEHAVIOR, and ATTRIBUTES, in the
subsequent instantiation of autonomous agents, we don't extend these domains vis-a-vis. Instead, we may
use abstract and derived functions, and other domains, that constitute these domains indirectly.

MABS Model
Autonomous Agent

(Attributes, Behavior, Rules, Memory, Motivations)
Active Object

(Attributes, Behavior)

Passive Object
(Attributes)

ASM Model
DASM Agent

Object
(Staticldynamic functns.)

Object
(Static functions)

CHAPTER 5. MODELING PARADIGM

, :
i ! ... I:nti(,\i (.~lassifica~ioll all(1 Mtlpl,irlg . . ~

i I

/ / Social Entitic?s
domain COP, CRIMINAL
domain CAR, BUS
domain DRUGS, CASH
, . ;/ \:1:\S F.nt,it.i(:s

domain ENTITY
domain PASSIVE-OBJECT
domain ACTIVE-OBJECT
domain AUTONOMOUSAGENT
ENTITY = PASSIVE-OBJECT U ACTIVE-OBJECT U AUTONOMOUSAGENT
// i\ SJfI Er~t.ii.ics
domain AGENT

, I J1~1p~)ing

PASSIVE-OBJECT = DRUGS U CASH
ACTIVE-OBJECT - CAR U BUS
AUTONOMOUSAGENT - COP U CRIMINAL

AUTONOMOUSAGENT = AGENT where

!! .
: : Ilitrrarc.hic:iiI Classification --
i i

domain ATTRIBUTES, BEHAVIOR, RULES, MEMORY, MOTIVATIONS

i ,' P c i 4 x - c O l) j (~ s l -
static attributes : PASSIVE-OBJECT -+ ATTRIBUTES

i / , \ c ~ (i \ o O h j (~ . t
ACTIVE-OBJECT - PASSIVE-OBJECT where
dynamic behavzor : ACTIVE-OBJECT -+ ATTRIBUTES

~ ~ t o ~ ~ ~ ~ n o u s ~ l g c ~ i l
i :

AUTONOMOUSAGENT = ACTIVE-OBJECT where
rules : AUTONOMOUSAGENT --+ RULES

rules(a) - Program(a)
memory : AUTONOMOUSAGENT -4 MEMORY
motivations : AUTONOMOUSAGENT -+ MOTIVATION - Set

Spec 5.1: Hierarchical Classification and Mapping o f Entities.

Chapter 6

Represent at ion of Environment

The relation between Man and his Environment has been of interest to scholars of diverse

disciplines. As highlighted in Chapter 2, one of the major stances taken in Environmental

Criminology is that the movements and behavior of people is influenced by the underly-

ing urban landscape, accompanied by their subjective perceptions of the same objective

environment. The agents are embedded in and operate within the confines and vagarities

of a given environment, which is a dynamically changing reality. This thus calls for a ro-

bust representation of the environment in a manner that can include the notions of both

objective reality and subjective perceptions. This chapter explains the approach taken on

abstract formal representation of the environment. We begin with Section 6.1 that explores

comprehensively the extant views of the criminologists and psychologists; we conclude with

Section 6.2 that explains our proposed approach which attempts to complement the popular

views.

6.1 Overview

The relation between Man and his Environment has been of interest to scholars of diverse

disciplines. Although the disciplines might be different, the views bear close semblance. In

this section we comprehensively present the broad outlook on environment held by crimi-

nologists and psychologists.

CHAPTER 6. REPRESENTATION OF ENVIRONMENT 47

Environmental criminologists set out to use the geographic imagination in concert with

the sociological imagination of people to describe, understand, and control criminal events

[l l] . This maxim thus encompasses two different views of the environment - an objective

view and a subjective view. The objective view describes the geographic environment as a

universal mathematical reality, that includes the totality of all things. This objective space

has the same interpretation at all times for all individuals. The subjective view relates to an

individual's perception of the objective geographic environment. Each individual perceives

his or her environment differently which is shaped by a number of factors such as sociological,

economical, biological etc. These perceptions are also based on past knowledge and current

experiences. For e.g. an infant's understanding and knowledge of its environment is very

different from an adult's understanding.

Criminologists contend that absolute geographic arrangements cannot be used in crime

analysis without being transformed into subjective coordinates [lo].

The criminological thinking is greatly influenced by works of leading psychologists. Im-

manuel Kant argued that we do not perceive the world as it is; we impose cause and effect

relationships on it and therefore our perceptions are influenced by.our experiences.

The classical work of K o a a in his book Principles of Gestalt Psychology [64] explains the

relation between nature and human mind. The author categorizes the environment into ge-

ographical environment, which is the actual physical structure, and behavioral environment,

which is an individual's perception of the geographical environment. People behave in the

ways they do based on how they perceive the environment (behavioral) instead of how the

environment actually is (geographical). The practical application of this would be in un-

derstanding someones behavior within the context of their environment instead of our own.

Further, he classifies peoples' reactions into two categories, viz. distal stimuli and proximal

stimuli: distal stimuli describes things as they exist in the geographical environment and

proximal stimuli are the effects that distal stimuli have on sensory perception.

The same theme runs in [86], where the author in addition to propounding the notion of

geographic and subjective environment, categorizes the subjective environment into three

sub-categories with a hierarchical relation - operational environment, which is that part

of the geographic environment that has impact on an individual; perceptual environment,

that part of the operational environment that, an individual is aware of; and behavioral

environment, that part of the perceptual environment which triggers responses.

CHAPTER 6. REPRESENTATION OF ENVIRONMENT

6.2 Our Approach: Layering of Environment

The approach we propose on modeling the urban environment attempts to embody and

complement the extant theories of environment in the behavioral sciences, as discussed

above. The view incorporates the fundamenta,l fact that environment can be divided into

two broad categories - the objective environm,ent and the subjective environment.

The objective environment, in our case called the Geographic Environment, is external to

an agent and encompasses the totality of all th.ings. This is the physical reality and cannot

be manipulated by the agents. All agents have the same representation and interpretation

of the geographic environment. It is potentially composed of the natural typography, roads

and street network, transit and traffic patterns, people and other objects. Section 6.2.1

discusses the representation of geographic environment formally.

The subjective environment, in our case is called also Subjective Environment and is divided

into three sub-categories with a hierarchical relation viz. Perception, Awareness Space and

Activity Space. The subjective environment is specific to an agent (person) as opposed to

being universal to all agents.

Perception is how each person 'perceives' the objective environment (geographic environ-

ment), depending on personal preferences, past knowledge and current experiences, and

other socio-cultural factors. For instance, an ignorant person might perceive Antarctica to

be a desert; a person traveling to work might perceive a road with heavy traffic as being

unfavorable, whereas a car thief might perceive this road as highly favorable with good

opportunities. This perceived environment is the effective environment that triggers agent

behavior. A person, in general, cannot possibly 'perceive' the entire geographic environment;

perception is thus a sub-part of the geographic environment. The notion of perception is

similar to a mental map, as discussed in Chapter 2.

That sub-part of the perception, that an agent is aware of by way of current events, past

experiences, interaction with other agents, forms the Awareness Space of the agent. It is

composed of all locations in the perception about which a person has knowledge above a

minimum threshold level even without visiting some of them. For instance, the ignorant

person hears from someone that Antarctica is not a desert but a polar region, so this infor-

mation becomes a part of his or her awareness space; while traveling on an edge a person

looks around and admires the scenery, this admired scenery then becomes a part of his

CHAPTER 6. REPRESENTATION OF ENVIRONMENT 49

awareness space. This notion of awareness space is the same as that of criminologists, as

discussed in Chapter 2.

Activi ty Space is that sub-set of the awareness space that the agent has physically traveled

on frequently in a given past time interval. The general paths treaded by people during ev-

eryday activity, such as home-work, work-lunc:h, home-recreation, form the activity space.

The agent typically has very detailed information about this part of the environment. This

notion of Activity Space corresponds to that of the criminologists (Chapter 2).

Section 6.2.2 explains the representation of subjective environment in formal terms.

The aforementioned categorization of environment helps in deriving the true behavior of the

agent with respect to criminal activity and is tllustrated in Figure 6.2.

] Geographic Environment > Objective
Environment

> Subjective
Environment

Figure 6.1: Categorization of Environment

Further, we base the structuring and representation of the environment using gmph theo y.

The following sections explain the formalization of environment discussed in this section, in

graph theoretic terms and alongside in ASM terms, in a step-by-step manner.

6.2.1 Objective Environment

The objective environment, in our case called the Geographic Environment, represents the

urban landscape. We abstractly represent the given geographic environment, as a directed

attributed g m p h defined in several steps as follows.

Let H = (V, E) be a directed graph representing the road map of some urban area. V =

{vl, ..., v,) is the set of vertices l ; a vertex represents the intersection of two edges on the

'We use the terms vertex and node interchangeably.

CHAPTER 6. REPRESENTATION OF ENVIRONMENT 50

map. E = {el, ..., en) is the set of directed edges representing roads, where E C V x V;

unidirectional roads are represented by a single edge and bidirectional ones by a pair of

oppositely directed edges connecting the same two vertices. This road map is formally

defined in Spec 6.1.

I - . '1 hc. Enui~oi~rr ic~~r Graph -

H - E.U\'1ItOS51CX 1-CTIAPII, 1. SSOE, r, = E1lC:E I I

d o m a i n ENVIRONMENT-GRAPH
d o m a i n NODE
d o m a i n EDGE

(: ~ i ~ ~) l l S i n
(11. ..-: \:. 1.). y ... ::: ll{)(~c$j(~~., I< ::::::

nodeset : ENVIRONMENT-GRAPH .-, NODE - set
edgeset : ENVIRONMENT-GRAPH -+ EDGE - set

Spec 6.1: Representation o f the Road Map.

We can then define some general operations on the NODES and EDGES of the environ-

ment graph (Spec 6.2).

I / -- Sodc
0utIncidentEdge.s : NODE --+ EDGE - set
adjacent : NODE x NODE -+ BOOLEAN

i ! / / -.. Ftlgc - -

edgeHead : EDGE -+ NODE
edgeTai1: EDGE -+ NODE

Spec 6.2: Some Operations on Nodes and Edges.

Next, for attributing the graph H, let O = (O,, O,), where 0, and 0, denote the attribute

sets for vertices and edges respectively. 0, splits into two disjoint subsets, Oztat and OF,
the edge attributes that are statically defined, such as distances, and those that my change

dynamically, like traffic conditions, respectively. Similarly, O, splits into two disjoint sub-

sets, Oztat and &Y", the node attributes that are statically defined, such as location, and

CHAPTER 6. REPRESENTATION OF ENVIRONMENT 5 1

those that my change dynamically, like density of people. The terms static and dynamic are

used to refer to changes with respect to time. Static attributes typically do not change dur-

ing the course of a simulation run, whereas static attributes represent dynamic fluctuating

conditions and may change during simulation runs. Spec 6.3 represents this categorization

of geographic attributes.

j : : , ! . , , (::ra.p]l ntt.ri},utcs
domain GEO-STATNODEATTR / / (-):t'L'

domain GEODYNNODEATTR // 8 < j 1 ' '

// = (@y: gfwj
domain GEONODEATTR = GEOSTATJODEATTR U GEODYNNODEATTR

domain GEOSTATEDGE-ATTR / / (3~~"""
domain GEODYNEDGEATTR //' G)-):f?ll'

; ; (+<! .,:,:: ((y t (1 t . (~) ~ ? l l l)
i : C .

domain GEOEDGEATTR - GEO-STAT.EDGEATTR U GEODYNEDGEATTR

j 1 (3 = ((-I,, . Ot:) : ,

domain GEOATTR r GEOEDGEATTR. U GEONODEATTR

Spec 6.3: Categorization of Geographic Environment Attributes

We can now define the objective environment, henceforth called Geographic Environment as

an attributed directed graph GGeoEnv = (H , O), where I9 represents the collective geographic

attribution. Formally, this is expressed by an attribution scheme 6 = (O,, 19,) with 6, =

(19,stat, 19tyn) representing the mapping of edge attributes, and 8, = (Bitat, 19,dyn) representing

the mapping of vertex attributes. This thus consists of four finite mappings:

19,"tat : V -+ F(OEtat) assigns a set of static vertex attributes to each vertex in V

19,dyn : V -+ F (@ $ Y ~) assigns a set of dynamic vertex attributes to each vertex in V.

0 I9Ztat : E -+ F(Oztat) assigns a set of static edge attributes to each edge in E.

19,dyn : E -+ ?(Ofyn) assigns a set of dynamic edge attributes to each edge in E.

Spec 6.4 depicts this attribute mapping of geographic environment. The abstract attribution

schema allows one to include as many attributes as desired as per the need of the application.

CHAPTER 6. REPRESENTATION OF ENVIRONMENT

I
3 -

1 / Chgrapl~ic . I<u\-i~ onrnor~t
/ ' : (11. Q!
GEOENV = ENVIRONMENT-GRAPH where
geoAttr : GEOENV + GEOATTR

, / Gco E.~l.virorl~rlc>l~~. func:tionu
/ ; # , ~ t < I l . I,,- ,,,,.,,4 .p((-).;,/hr)

8 ; t , .
g e o ~ t a t i c ~ o d e ~ t t r : NODE x GEOENV x GEOSTATNODEATTR + VALUE
j ; fjp 17 77((3??/~7
geoDynamicNodeAttr : NODE x GEOEN'V x GEO-DYNNODEATTR + VALUE
/; #;to" ' : ,, 'p((-),;t".')
geoStaticEdgeAttr : EDGE x GEOENV x GEO-STATEDGEATTR -4 VALUE

geoDynamicEdgeAttr : EDGE x GEOENV x GEODYNEDGEATTR -+ VALUE

Spec 6.4: Geographic Environment

Specific to our application, we refine Sta t ic Ver tex Attr ibutes to include information such

as geographic coordinates. Sta t ic Edge Attr ibutes yield information on distances, and road

type. D y n a m i c Edge Attr ibutes store fluctuating information such as road condition, speed

limits, traffic situation (Spec 6.5).

,; - Cko Static Sotie At.t:rihutc? --
coordinate : + GEOSTATNODEAT'TR
nodeName : -+ GEOSTATNODEATTR

, . Geo Static Fdge Att:ribute -

distance : + GEOSTATEDGEATTR
roadType : + GEO-STATEDGEATTR
edgeName : + GEO-STATEDGEATTR
;! -
; I

Goo I>yna~r~ic .Sodc Attrihutc
traf ic : + GEODYNEDGEATTR
roadCondztion : + GEODYNEDGEATTR

Spec 6.5: Refinement o f Geographic Environment Attributes

CHAPTER 6. REPRESENTATION OF ENVIRONMENT

6.2.2 Subjective Environment

Having defined the objective environment in terms of the Geographic Environment GGeoEnvl

we now have a basis for defining the subjective environment. We model the subjective

environment by introducing additional attribution on top of GGeoEnv. The fact that, in

general, each agent perceives the geographic environment differently implies that distinct

agents see different attributions of the same GGeoEnv. Thus, the subjective environment

GSubjEnv, can be seen as an attributed directed graph with colored attributes. Each color

refers to the specific interpretation of an individual agent.

We use X to denote the collective attribute set of the subjective environment, where X

is composed of three dis-joint sets that represent the attributes of the three layers of the

subjective environment.

XPER identifies the attribute set of the Perception, with XPER = (X r , X y) , where

X r and X y represent the perception edge and vertex attributes respectively.

XAW identifies the attribute set of the Awarenes Space, with XAW = (XEW, Xzw) , where

A t w and Xzw represents the awareness edge and vertex attributes respectively.

XAC identifies the attribute set of the Activity Space, with XAC = (A?, A?), where X?

and X? represent the activity edge and vertex attributes respectively.

Further, for the purpose of attribute mapping, we split X into A, and A,, to denote the

collective attribute sets for vertices and edges respectively from the three layers. It should

be noted that there is no classification of subjective environment attributes into static and

dynamic; this is because none of these attributes are static but are dynamically changing.

This categorization of subjective environment attributes is depicted in Spec 6.6.

The subjective environment is then defined abstractly as an attributed directed graph

GSubEnv = (GGeoEnv,A) where A = (A,, A,) abstractly represents the agent specific at-

tribution of vertices and edges by means of two injective mappings such that

A, : AGENT x V + P(X,), for each a,gent and each vertex in V, yields a set of

subjective node attributes, and

A, : AGENT x E + P(X,), for each agent and each edge in El yields a set of subjective

edge attributes.

CHAPTER 6. REPRESENTATION OF ENVIRONMENT 54

> ,
i l Subjcc.t i\-e Erivi~.onrnmt: At:.~..rit)u~ PS -- .-

domain PEREDGEATTR // ,\gf"'
domain PER-NODEATTR // A!""
domain PERATTR - PEREDGEATTR U P'ERNODEATTR // X~.;';" = (At"", A$;"")

domain AWEDGEATTR // AT"
domain AW-NODEATTR // X:,:":
domain AWATTR AWEDGEATTR U AU'NODEATTR /: A;\\v -- (A:":! A::"')

domain ACEDGEATTR / / A?'
domain ACNODEATTR // ,\EL
domain ACATTR = ACEDGEATTR U AC-UODEATTR / ! ,\.,,(, = (A:'': X z r)

domain SUBJATTR c PERATTR U AWATTR U ACATTR / / A = (A,:: A,)
domain SUBJEDGEATTR - PEREDGEATTR U AW-EDGEATTR U ACEDGEATTR
domain SUBJ-NODEATTR - PERNODEAT'I'R U AWNODEATTR U AC-NODEATTR

Spec 6.6: Categorization of Subjective Environment Attributes

Spec 6.7 depicts this mapping of subjective environment attributes.

Although subjective environment is defined as a total function, i.e every vertex and edge

of the underlying graph is associated with all the attribute sets of the three layers of the

subjective environment, it is not necessarily the case that all attributes have a 'defined' value.

We use default or nullary values for non-inclusion of edges and vertices to reflect the fact

that only a sub-set of the graph constitutes a particular layer of subjective environment. For

instance, in general it is not necessarily the case that an agent perceives the entire geographic

environment; an agent has knowledge of only some parts of the geographic environment,

so only those edges and attributes that have a define value for perception attributes form

the perception of the agent. The same holds for awareness space and activity space; i.e

only those edges that have defined values for awareness and activity attributes form the

awareness and activity space respectively of the agent.

The first layer of subjective environment, called perception, is the agent's subjective inter-

pretation of the geographic environment. Intuitively, this perception can be seen as a filter

through which the agent views the geographic environment. For instance, a road with high

density of people may be seen as a nuisance to someone traveling to work; alternately it may

CHAPTER 6. REPRESENTATION OF ENVIRONMENT

, ,
i I . -
i i , . Subjrcr i\:c Ihviron~nen(. --

; : I,

/ / (. r ~ ~ b ~ , , .. (C:(:eoi;,, ,;. A)
SUBJENV = GEOENV where
subjAttr : PERSON x SUBJENV + SUBJATTR

1 , S111)lccti~ e r; ln~-i~onn~cm Hc1,ltc.d FI I I IL~~O~L-
1 ; A, . !jCrn.r x E P (A ,)
subjEdgeAttr : PERSON x EDGE x SUBJENV x SUBJ-EDGEATTR + VALUE
J ,' ,IT IGF\I7 \ 1,' 'P(,\?)
subjNodeAttr : PERSON x NODE x SUBJENV x SUBJNODEATTR + VALUE

Spec 6.7: Subjective Environment

be seen as a good opportunity to a pick pocket. We refine A T and A T to include node and

edge Perception Attributes respectively. The node perception attributes are the same as

geographic node attributes, and edge perception attributes are the same as geographic edge

attributes. Abstract functions are used to yield the agent-specific subjective interpreted

values of the geographic attributes. An agent's perception can then be computed by using

a derived function on GSubjEnv that extracts the subset of edges with a defined value of

perception attributes. (Spec 6.8).

/ I - - I'c1c'ty)r ion At t ributcs
PEREDGEATTR GEOEDGEATTR / i A?"
PERNODEATTRRIBUTE - GEO-NODEATTR I I Xf"

' 1 , , t lcr~wtl I'iurc:t io11 thr pcr.cLclpt ion
perception : PERSON x SUBJENV + EDGE - Set

Spec 6.8: Refinement of Perception Attributes

The second layer of subjective environment, called the Awareness Space, is identified by the

attributes Azw and Azw associated with each vertex and edge respectively. The awareness

space is a sub-part of the perception, and so only those edges and vertices that have a

defined value for Ape, constitute the awareness space. We refine Azw to include the attribute

intensity, which stores the magnitude of the agent's awareness of this edge. The intensity

CHAPTER 6. REPRESENTATION OF ENVIRONMENT 56

of awareness depends on a number of factors such as strength of activity space, mobile

visibility, accessibility from activity space, willingness to leave activity space, attractiveness

of adjacent areas, speed and model of travel etc. We define the intensity of an edge using

abstract functions2. By means of a derived function on subjective environment, we can

compute the set of edges that have a defined value for awareness attributes, and thus form

the awareness space of the agent. Further, we can impose an additional restriction and

return only those edges that have an intensity value above a certain predefined threshold;

this is called the active awareness space of the agent (Spec 6.9).

; ; dcrivuti ti~rlc:t , ior~ for awareuvss spwc
awarenessSpace : PERSON x SUBJENV + EDGE - S e t

x VALUE + EDGE - S e t

Spec 6.9: Refinement of Awareness Space Attributes

The third and the final layer of the subjective environment, the Activi ty Space, is defined by

the attribute set X,aC, which stores the values for frequency, trip importance and reinforce-

ment . Frequency refers to the number of times an agent has traversed this edge; the more

an agent traverses an edge, the more he remembers it for future traversal. Trip Importance

refers to the significance of the trip on which this edge was taken; edges on important trips

(pathway to work) yield a higher value for awareness space and are remembered for a longer

period of time. Reinforcement refers to the experience an agent had on this edge, edges

with a positive (pleasant) experience have a higher likelihood of being taken again, whereas

edges with a negative (bad) experience are less likely to be taken again. This enables us to

incorporate reinforcement learning by defining the reinforcement values of edges abstractly.

An agent's activity space can then be computed by using a derived function on GSllbjEnv

that extracts the subset of edges with a defined value of activity attributes. We can also use

a derived function that returns the active activity space, which is those set of edges with a

compound value of activity attributes that are above a certain threshold (Spec 6.10).

21n the simplest case, the value of intensity of awareness space is typically a distance decay function that
also considers the strength of the activity space.

CHAPTER 6. REPRESENTATION OF ENVIRONMENT

Activity Attrihuics
frequency :+ ACEDGE-ATTR
triplmportance :+ ACXDGEATTR
reinforcement :+ ACEDGEATTR
j i dcrivc:d S111w1.ion for ac:l,ivit.y s p ~ c t
activityspace : PERSON x SUBJXNV --, EDGE - Set
activeActivitySpace : PERSON x SUBJXNV x VALUE --, EDGE - Set

Spec 6.10: Refinement of Activity Space Attributes

Lastly, the abstract domain VALUE denoting the possible values of the different attributes

is refined in Spec 6.11. Detailed listing can be found in Appendix A.

VALUE - REINFORCEMENT U TRIP JMPORTANCE U FREQUENCY U TRAFFIC
INTENSITY U DISTANCE U ROAD-TYPE U ROAD-CONDITION

DISTANCE - INTENSITY 5 FREQUENCY - FLOAT

positive :+ REINFORCEMENT
negative :+ REINFORCEMENT
neutral :+ REINFORCEMENT

obligatory :--, TRIPJMPORTANCE
required :+ TRIP JMPORTANCE
notRequired :+ TRIPJMPORTANCE

low :+ TRAFFIC
medium :+ TRAFFIC
high :+ TRAFFIC

minor :+ ROAD-TYPE
maior :--, ROAD-TYPE

Spec 6.11: Refining the Abstract Domain VALUE

Chapter 7

High-Level DASM Model

This chapter explains the operational DASM model at the highest level of abstraction.

Section 7.1 explains the devised architecture of the autonomously acting agents in the model,

and describes the functional decomposition of the agents into respective modules. Next, we

start detailing the working of the constituent modules of the agents; Section 7.2 describes

the Space Evolution Module, Section 7.3 illustrates the Target Solution Module, and finally

Section 7.4 explains the functioning of the Age.nt Decision Module.

7.1 Agent Architecture

This Section explains the architecture of the autonomously acting entity in our system -

the Person Agent. The person agent architecture is BDI-theoretic; a brief introduction to

the Belief Desire Intention (BDI) architecture is provided in Section 7.1.1, and Section 7.1.2

explains how our approach incorporates this view.

7.1.1 BDI Agent Architecture: Introduction

An agent is characterized by its architecture. The agent architecture dictates how the func-

tional complexity of the agent is organized; the structuring, type of approach for reasoning,

the behavior etc. Broadly, agent architectures can be characterized into four categories, viz:

Logic-Based, Reactive, BDI, and Layered [91].

CHAPTER 7. HIGH-LEVEL DASM MODEL 59

The Belief Desire Intention (BDI) [22] agent architecture, first issued in works of Bratman

et al, is the most mature approach for modeling autonomous agents. It has its their roots

in the philosophical tradition of understanding pmctical reasoning; deciding what goals we

want to achieve, and how we are going to achieve these goals. The former process is known

as deliberation, the latter as means-ends reasoning. The central constructs in the BDI model

are Beliefs, Desires and Intentions.

Beliefs represent the informational state of the agent, that is, what it knows about itself

and the world, by way of past experiences or current events. Desires or goals are its motiva-

tional state, that is, what the agent is trying to achieve. Since all desires or goals may not be

consistent, the agent has to commit to a consistent set of goals and focus actions for these

selected goals. These persistent goals are called Intentions and represent the deliberative

state of the agent, that is, which plans the agent has chosen for eventual execution. To

execute intentions, the agent has proceduml knowledge constituted by a set of Plans which

are sequences of. actions to be performed to achieve a certain goal or react to a specific

situation. Some view intentions as being a subset of goals which the agent commits to,

while others view intentions as the set of selected plans.

Simply stated, Beliefs are agents' knowledge of its world; by applying the process of de-

liberation on current beliefs and current intentions, we obtain Desires; by committing to

desires (also considering beliefs, previous intentions), we obtain Intentions; and by applying

means-end reasoning on beliefs, intentions, desires, we acquire a Plan of Action, which upon

execution fulfills intentions and eventually desires.

Intentions are fulfilled by executing an action (of the plan) one step at a time. A step can

change the beliefs, perform actions on the external world, submit new goals, create new

intentions. Since the state of the external world and the internal memory of the agent is

continuously changing, it becomes necessary to re-evaluate plans of actions, and reconsider

committed intentions, to determine whether one is still on the right track. Bold agents

never reconsider alternative options, while cautious agents constantly reconsider alternative

options; a good balance between the two is desirable [50].

The main advantage of the BDI architecture is that it is intuitive, and that it provides a

clear functional decomposition of the agent behavior. It has a wide array of applications in

both industrial and research applications.

However, there is also rampant criticism of the architecture. The main difficulty is knowing

CHAPTER 7. HIGH-LEVEL DASM MODEL 60

how to efficiently implement its functionality, since the BDI approach is at a high-level of

design. It can be argued that the current BDI architecture lacks an adequate computational

model expressing concurrency and distribution semantics, does not clearly show the activ-

ities an agent is performing at a given time, and how they relate to one another [77]. BDI

model is also inappropriate for building systems that learn and adapt their behavior, and

does not provide explicit considerations for multi-agent aspects of behavior [50].

Therefore, in designing our Person Agent architecture, we keep the above limitations in

mind, and start with a BDI-theoretic core and build upon it, instead of limiting to a pure

BDI architecture. This is explained in the following section.

7.1.2 Our Approach: Person Agent Architecture

We developed our Person Agent architecture as a pragmatic BDI-based model.We start with

a BDI-theoretic core, followed by incremental refinements, and incorporate other problem-

solving techniques as demanded by the application domain. Having a BDI-theoretic kernel

allows us to reap the benefits of the strong theoretical foundation of the BDI model, while

we also garner the pragmatics of practical and extensible reasoning techniques, in particular

Case-Based Reasoning and Model-Based Reasoning. Our concrete BDI-based architecture

can be seen as a system of concurrent sub-systems, that renders the original abstract archi-

tecture a firm computational semantics.

Figure 7.1 illustrates the structural decomposition of the person agent into different logical

components. It shows the architecture from a functional perspective, which is in tandem

with the philosophical foundations of the BDI model.

Memory is a collection of facts/beliefs/knowledge, present and past, that the agent holds

about its environment and about itself, which :may change dynamically over time. Memory

thus represents everything that the agent 'knows', by way of past experiences and current

events. The agent's main memory component is the Subjective Environment - a filtered

view of the geographic environment which is the environment as the agent 'perceives' it; it

is thus the subjective reality and is constantly updated by the SEM and the TSM.

The Space Evolution Module (SEM) is responsible for carving out the activity space and the

awareness space of the person agent. It is represented as an ASM agent. It uses a navigation

algorithm to move the agent from a given origin to a given destination, considering the

CHAPTER 7. HIGH-LEVEL DASM MODEL

Subjective Env 1
I Target Selection
I

I & Module
PSM) " $- Module (ADM)

(Motivations)

i Case i
! Base

Space Evolution
Module
(SEMI

-
I Case i
I Base
-----a -

I- - - - - - - I : - . . . - . j Memory i Beliefs h d Means-End Action Rule

4

-
L

4

4

1 () Desires

v . >
Action Rules

Cognition Rule 1 I=] ~ntentions Deliberation

Figure 7.1 : Person Agent Architecture

CHAPTER 7. HIGH-LEVEL DASM MODEL 62

particular preferences of the agent. The naviga,tion algorithm uses a 'reasoning mechanism'

which combines case-based reasoning (CBR) and model-based reasoning (MBR). The CBR

component is represented as an ASM Agent whereas the MBR component can be realized

by a submachine. The CBR component works with a case-base, which is a type of memory,

that stores all previous paths (cases) the agent has taken; i.e an agent remembers previous

path planning decisions and merely recollects these decisions in solving a new path planning

problem. The MBR component on the other hand uses an algorithmic approach to explicitly

solve the path planning problem; it calculates path preferences by considering a variety of

aspects such as choosing shorter routes, avoiding traffic, using familiar roads, et cetera.

The Target Selection Module (TSM), implemented as an ASM Agent, is responsible for

monitoring potential targets on the routes taken by the agent, and for selecting attractive

targets based on given selection criteria. This leads to the creation of the crime occurrence

space of the agent. For the process of target selection, a hybrid reasoning mechanism

composed of case-based reasoning (CBR) and model-based reasoning (MBR) is used; the

two components are represented as ASM agents and submachine respectively. The case-

based reasoner has a case-base, which is a kind of memory, storing previous target selection

decisions an agents has made; in selecting a new target, an agent then merely matches the

characteristics of the potential target against victimized targets and decides whether it is

a 'good' or a 'bad' target. The MBR component on the other hand uses an algorithmic

approach to explicitly determine the suitability of the targets.

The Agent Decision Module (ADM) monitors the working of the TSM and SEM and provides

relevant inputs to the two modules. It decides on 'what to do' and then relegates the decision

to the TSM or the ADM on 'how to do it'. For e.g, it decides that the agent should go

from home to work, and then gives this 'goal' to the SEM. The decisions are based on

agent's motivations, the current state of the agent, and the information in the memory.

Motivations are long-term goals (earn livelihood, greed), that in turn give rise to short term

goals (go from home-tework, car theft), which are then passed to one of the two modules for

realization. In our case, motivations are always persistent, whereas goals are non-persistent

and change with varying conditions.

The working of the SEM, the TSM, and the ADM is stated using rules; intuitively divided

into action rules and cognition rules. Cognition rules change the state of the internal

memory, whereas action rules, when fired, affect the state of the external environment.

CHAPTER 7. HIGH-LEVEL DASM MODEL 63

Finally, the profile represents the personal attributes of the agent and stores information

such as preferences, skills, home locations, demographic factors etc. The profile of the agent

determines crucial aspects of an agent's individual behavior such as moving in space and

time, target selection etc.

Based on the above description, it is easy to see the semblance between the pure BDI-model

and our concrete BDI-theoretic agent architecture. Beliefs are nothing but person agent's

memory (subjective environment, profile, case-bases). Motivations are similar to Desires,

that are derived from beliefs about the world. The ADM represents the deliberation process

of the BDI, that based on memory, motivations, and current intentions, decides which

motivations (in the form of goals) persist. These goals are then communicated to the

TSM/SEM, that represent the Intentions1. The TSM and SEM realize these intentions

by generating and executing a plan of action for them; they thus represent the means-end

reasoning phase of the BDI-model. The SEM and TSM continually monitor the external

environment and the proposed plan of action to determine if it needs to be revised, and

if so generate an alternate plan; e.g in going from home-to-work, the SEM first proposes

a suggested path, which after a while might have a heavy traffic jam, in which case the

SEM takes this into consideration and proposes an alternate suggested path. The ADM too

continually monitors the environment, motivations, and goals and revises the motivations

and goals if required. For e.g while going to work, a person gets a flat tyre, the person's goal

is then be to go to a mechanic instead of work. This new goal (intention) is then passed to

the SEM. Further, the cases stored in the case-bases represent the cached plans.

Spec 7.1 gives the formal ASM representation of the functional components of the Person

Agent at the highest level of abstraction.

In the next level of refinement, we show the constituent CBR components of the TSM and

SEM (Spec 7.2). The domain CBR represented as an ASM Agent denotes the Abstract CBR.

Instantiations of this abstract CBR yield problem-specific CBRs, TSM-CBR and SEM-CBR,

for the modules TSM and SEM respectively. The MBR components are implemented as

submachines whose definitions are implicit to the module definitions, and not shown here.

'we do not explicitly represent the motivations and goals, but certain abstract and derived data structures
represent these implicitly.

C H A P T E R 7. HIGH-LEVEL DASM MODEL

I
I Pc.1 son Xgt.11~ Archi t cc; urc ---

d o m a i n PERSON
,'; \lotlu!c~
d o m a i n SEM
d o m a i n TSM
d o m a i n ADM
MODULE E SEM U TSM U ADM
AGENT - PERSON U MODULE i l),lSLI .lqcwt
' ' L~~l1lc~l011> 011 I't~r>011
spaceModule : PERSON --, SEM
targetModule : PERSON --, TSM
deczsionModule : PERSON --, ADM

Spec 7.1 : Person Agent Architecture.

' /

d o m a i n CBR
d o m a i n SEM-CBR, d o m a i n TSM-CBR
CBR - SEM-CBR U TSM-CBR
, Rciptv ~ i i c ('HH componcmts

semCBR : SEM --, SEM-CBR
tsmCBR : TSM --, TSM-CBR

Spec 7.2: CBR Components of Person Agent Modules.

CHAPTER 7. HIGH-LEVEL DASM MODEL 65

7.2 Space Evolution Module (SEM)

The Space Evolution Module (SEM) of the Person Agent is responsible for deciding the path

a person chooses from a given source to a given destination. The source and destination

are provided to the SEM by the Agent Decision Module (ADM). The problem of finding a

path is essentially the problem of navigation, and we can say that the SEM implements a

Cognitive Navigation algorithm.

We present here a cognitive navigation algorithm, that integrates learning, exploration and

human cognition of geography. The navigation algorithm reflects natural and intuitive

choices a person makes while moving in an urban landscape. The path taken might not be

a globally optimal and best one, but a more natural and good-enough one. The algorithm

takes into account the factors that are known to influence human path planning and is

developed in collaboration with the domain experts. Overall, navigation is modeled as a

combination of exploration and reinforcement learning. Reinforcement Learning is achieved

by developing a Case-Based Reasoner, which basically implies the person makes all deci-

sion based solely on past experiences that are stored in memory. Exploration is achieved

by a 'shortest path algorithm', that forms the model-based component of the SEM, which

basically algorithmically decides the path based on a number of influence factors such as

minimizing distance, road traffic; maximizing experience, familiarity etc. Each influence

factor is associated with a weight that decides its importance in the overall path prefer-

ence. Human cognition of geography is achieved by basing all decisions considering the

person-specific subjective environment along with the universal geographic environment, as

described in Chapter 6.

First, we focus on the high-level view of the navigation algorithm. We formalize the nav-

igation algorithm at the highest natural level of abstraction (level 0). We then apply in-

termediate refinement steps explained in the subsequent sections, that increase the level of

detail in a step-by-step manner (level 1-2). The case-based and model-based components

that are derived as a final refinement step of the SEM, form the model at the next major

level of abstraction called Refined Model, and are discussed in detail in Chapters 8 and 9

respectively.

CHAPTER 7. HIGH-LEVEL DASM MODEL

7.2.1 Level 0

Level 0 of the SEM represents the highest level of abstraction, and describes the SEM

and hence the navigation algorithm at the most natural level of detail. To formalize the

navigation algorithm as given by the SEM, we first associate certain data structures with

this module. Spec 7.3 enumerates the signals that the SEM uses interspersed through all

levels of abstraction, and Spec 7.4 gives a self-explanatory enumeration of the constituent

data structures of Level 0.

SIGNAL - SIGNAL U PROBLEM-SOLVED U WEIGHTS-UPDATED
U NEWPROBLEM U FEEDBACKAVAILABLE U NEWDEST U INFORMARRIVAL

Spec 7.3: Signals of SEM.

CHAPTER 7. HIGH-LEVEL DASM MODEL 67

'!-- --
I I)'lln St rwtr~rc~s of SI'A1
,'/ Alodc5 nssocl'llccl n-lt I1 SEAL.
MODE - {idle,pathPlanning, roadselection, localRePlanning, running, pathCompleted)
mode : SEM -+ MODE ! , SF11 ha> i l r~~odo .

destNode : SEM -+ NODE I ! Curl cr~t c h i 1 r 1 d ion rlodc!.
sourceNode : SEM -+ NODE : i ' l ' t ~ ~ sourrv ~rodc.
currentEdge : SEM -+ NODE ,' ' CIII writ cdqc iiorcd ~ I L -1'cv iori' .\[:(li11.
currentEdge(a) = currentEdge(parentAgent(a))
currentNode : SEM -+ NODE / , I Clu i c\r11 i d (, stm cd i r ~ .I'c~soil' .\gc.~~t
currentNode(a) = currentNode(parentAgent(a))

,;
;; 1)ci:idcs whclt tiw 's11ggestedI;3dge' is lit lor I-ravorsal. bnscd or1 cllrrriit road cxmditiorls.
acceptable : SEM x EDGE -+ BOOLEAN
, ,
; ./ Dctcicles n-hct tic1 i lic t inic r c q r ~ i ~ d thr trax-cling along thc c ~ u w n t ctlgr has c?lapactl.
currentEdgeTrauersed : SEM -+ BOOLEAN
jl 1)ecides n-llct her the agent has rcac.lwcl the dwl inat ion iiotlc.
destNodeReached : SEM -+ BOOLEAN
destNodeReached - currentNode(se1f) = destNode(se1f)

Spec 7.4: Data Structures of SEM.

The specification of the SEM as given in Spec 7.5 formalizes the navigation algorithm at

the highest natural level of abstraction and forms Level 0 of the SEM.

The SEM is initialized to be in the idle mode. It stays in this mode until it receives a signal

NEW-DEST from the Agent Decision Module (ADM), informing that a new destination

node is available to be traveled to. In this case, the abstract function INITIALIZE is

called, that sets the new destination node of the SEM as passed by the signal and other

supplementary information; the SEM mode is then changed to pathplanning.

In the pathplanning mode, the agent makes some global decisions or guesses as to which

path it is going to take toward the destination. This initial path is then set as the suggested

path suggestedpath. The idea is that generally people do not just start moving toward their

C H A P T E R 7. HIGH-LEVEL D A S M M O D E L

met. E\:c.)lul ion Module (SEkI)
P r o g r a m s ~ ~ =

case mode of
idle +

onsignal s : NEWDEST
INITIALIZE(currentNode, newDest(s))
mode := path Planning

pathplanning +

GET-PATH 1 ~ c ~ y y c d c d l ' a l h 15 ~ ~ p t h r c d
mode := roadselection

roadselection +

if destNodeReached then
mode := pathCompleted

else
if signalFromADM then

HANDLESIGNALS-FROMADM
mode := path Planning

else
GET-SUGGESTED-EDGE / / s.~~~!lcistcicll?(~~~e is rrplakd
mode := local Re Planning

local Replanning +

if acceptable(suggestedEdge) then
mode := running
currentEdge := suggestedEdge

else
mode := pathplanning

RECORD-SELECTED-EDGE

running -+

if currentEdge Traversed then
UPDATE-EDGE-PERCEPTION
FINALIZE-EDGE-TRAVERSAL
SETSEM-MODE

pathcompleted +

FINALIZE-TRIP
mode := idle

Spec 7.5: Space Evolution Module (SEM) Program.

CHAPTER 7. HIGH-LEVEL DASM MODEL 69

destination randomly, they first do some preliminary global planning as to which path they

are going to take. This decision can be based either solely on person's past path traversal

experiences stored in its memory; or by explicitly solving the problem from scratch such

as by using a road map; or a combination of the two. This thus achieves a combination of

reinforcement learning and exploration. The path decided on is typically a combination of a

number of influence factors such as minimizing distance, traffic, angle; maximizing quality

of experience, speed etc. In making such a decision, the person needs to know the local

characteristics of the constituent edges of the potential paths; the person typically relies

on information in its memory based on past experiences for the dynamic conditions of non-

visible distant edges of the path (traffic, road conditions, density of people); however, for the

adjacent edges that are visible, the person has access to real-time current local information.

The SEM mode is then changed to roadselection.

In the roadselection mode, a guard is checked to see if the person has already reached

its destination; if so the mode is changed to pathCompleted. Another check is made to

see if there are any signals from the ADM, such as a change in destination etc; if so the

mode is changed to pathplanning indicating that the suggested path is no longer valid,

and a new path needs to be re-calculated. If none of the above two conditions hold, the

person then gets the next immediate edge to traverse which is set as the suggestedEdge.

This suggested edge could be an edge of the suggested path, or a completely random choice.

This incorporates randomness in the navigation algorithm. The SEM mode is then changed

to 1 ocalReplanning.

In the 1ocalReplanning mode, the person assesses the local information of the suggested

edge such as the traffic flow, road conditions etc and decides whether this edge is suitable

for traversal. For e.g if there is a very heavy traffic jam, the person likely wants to revise the

suggested path to an alternative path. If the suggested edge is found to be acceptable, the

current edge for traversal currentEdge is set to the suggested edge suggestedEdge, and the

SEM mode is changed to running; lest the mode is changed to pathPlanning, indicating

that a new alternative path needs to be planned. This local re-planning is important since

when the decision was made on a suggested path (suggestedpath), the person did not have

access to the current real-time local information of any of the intermediate edges, it had this

information for only the edges that were adjacent to its initial position. The idea is to be

able to revise previous path planning decisions on-the-fly as new information is discovered.

CHAPTER 7. HIGH-LEVEL DASM MODEL 70

This incorporates real time local re-planning in addition to global planning in the algorithm.

In the running mode, it is emulated that the person is currently traversing the current-

Edge. Once the person has traversed the edge, indicated by the derived function cur-

rentEdgeTmversed, two main actions are performed. First, using the abstract function

UPDATE-EDGE-PERCEPTION, the agent specific interpretation of information for this

edge, such as distance, road type, traffic, frequency, experience are updated and stored in its

memory. This function ensures that the person remembers road-level decisions it has made

in the past. Second, the function SET-SEM-MODE is called to decide which should be

the next mode of the SEM; pathplanning in case of random edge selection or roadselection

otherwise.

In the pathcompleted mode, reached from the mode roadselection when the destination

is reached, the abstract function FINALIZE-TRIP is called to perform some book keeping

and the SEM mode is changed back to idle. FINALIZE-TRIP stores all the path level

information that has been made available to the person by virtue of taking a path, into the

memory (case-base) of the person. This ensures that the person remembers all the path-

level decisions it makes, such as the path it took, along with supplementary information

such as experience, road conditions etc of taking this path as a whole. This newly stored

information plays an important role in subsequent path planning decisions, and in this way

we achieve reinforcement learning.

7.2.2 Level 1

In this level, we apply a refinement step on Level 0 and obtain a more detailed specification

of all the abstract functions of the SEM Program.

In the idle mode, on receiving the signal NEW-DEST from the ADM, which embeds the

new destination node in the signal, the function INITIALIZE is called. INITIALIZE (Spec

7.6) updates the destination node of the agent (destNode) to the new node sent by the

signal; sets the source node of the path to be computed to the current node of the agent;

and resets the taken path to the source of the path. The mode of the SEM is then changed

to pathplanning.

In the pathplanning mode, the person decides which path to take from the given source

CHAPTER 7. HIGH-LEVEL DASM MODEL

i ! -- 1x1'1 ! .ZI,lZ1< -- -

INITIALIZE(source : NODE, dest : NODE) =
destNode := dest
sourceNode := source

Spec 7.6: INITIALIZE.

to the given destination. This is done by calling the function GET-PATH, which returns

a path in the form of suggestedPath. The seemingly simple looking function G E T M T H

is a complicated one, that basically incorporates the reasoning mechanism based on rein-

forcement learning implemented as a case-based reasoner and exploration implemented

by a model-based reasoner (Spec 7.7). The function checks a predicate of the Person

/ : (:' '[;yr p1yl7.:[.;[.-
i i .I. ..' . . -

cbrDominant : SEM --, BOOLEAN
cbrDominant(sem) = semCBRDominant(parentAgent(sem))
GET-PATH =

if cbrDominant then
G e t - S u g g e s t e d - P a t h ~ ~ ~ ~ ~ ~

else
Get-Suggested- path^,,^,,,,

Spec 7.7: GETPATH.

agent called cbrDominant, (or more appropriately called memoryDominant) to deter-

mine whether the person likes to make decisions by recollecting facts from past experi-

ences or by exploring new options. If the person has a memory dominant architecture,

the function Get-SuggestedPathMemOTY is called, which interfaces with a case-based rea-

soner and bases decisions considering past experiences stored in memory; else the function

G e t - S u g g e ~ t e d - P a t h ~ ~ ~ ~ ~ ~ ~ ~ is called which interfaces with a model-based reasoner and solves

the problem of finding a path from scratch.

Spec 7.8 shows the details of the function Get-SuggestedPathExplorer. It calls the function

GETSUGESTED-PATHExpl,,, which represents the model-based component of the SEM

CHAPTER 7. HIGH-LEVEL DASM MODEL 72

that solves the problem of going from a given source currentNode to a given destination

destNode, explicitly from scratch. This can be seen as a person opening a road map of the

city and using it to compute the desired path. The suggested path suggetedpath is set with

the path returned by the model-based component.

/
I ! C~cL_Suggc~teti-I':~:I~I~~!;,,,~ ,,.,.. ,. - --

- Get-Suggested-PathEzplorer =
suggestedpath + G E T - S U G E S T E D - P A T H E ~ ~ ~ ~ ~ ~ ~ (S ~ ~ ~ , currentNode, destNode)

Spec 7.8: Get-Suggested-Path~~~~~~~~.

Get-Suggested-PathMemOrY (Spec 7.9) represents a hierarchical problem-solving technique,

whereby, first the person relies on memory to calculate a complete path that takes him from

the given source to the destination; if no such path exists, the person relies on memory

to get a partial path that takes him 'close enough' to the destination and then calculates

the rest of the path from scratch by using a map; if this too does not work, the person

then has to solve the entire problem from scratch, exclusively using a map. This hierarchy

can however be overridden in the case where the path returned form memory is one that

has already been found to be unacceptable (by the function acceptable), in which case the

person tries to explore new options.

- Get-Suggested-PathMemorY =
let pathCBR + GETSUGGESTED-PATHcBR in

if l empty (pa thCBR) A newPath(pathCBR) then
if complete@athCB R) then

suggestedpath := pathCBR
if lcomplete(pat h C B R) then

suggestedpath t GET-SUGGESTED-PATHM~,,~(~~~~CB R)
if empty(pathCBR) V l newPath@athCBR) then

suggestedpath + GETSUGESTED-PATHEzplorer(self, currentNode, destNode)
where

complete(p) E tail@) = destNode
newPath(pathCBR) E pathCBR 7 C suggedtedPath(se1f)

Spec 7.9: Get-Suggested-PathMenorY.

CHAPTER 7. HIGH-LEVEL DASM MODEL 73

We achieve this by first calling the abstract function GET-SUGGESTEDPATHcBR that

interfaces with the case-based reasoner and returns a path (pathCBR) based solely on

past experiences in the memory of the agent. There can be three cases with the returned

path pathCBR with respect to completeness: first a complete path is returned from source

to destination, second a complete path is not returned but a path 'close enough' to the

destination is, and third no path is returned at all. There can be another case that the

pathCBR is a redundant path, i.e in case an edge was found to be unacceptable in the

mode 1ocalReplanning the CBR was called again in the mode pathplanning, but it still

returned a path that is (or contains) the old suggested path which is albeit unacceptable;

that is the person has no knowledge of an alternative path.

If pathCBR is not empty, and it is a non-redundant path as determined by the derived

function newpath, and it is also a complete path as determined with the derived function

complete, this is set as the suggested path suggestedpath.

If pathCBR is not empty, is not redundant, but an incomplete path that takes the person

closer to the destination, the agent performs mixed reasoning, i.e solves half the prob-

lem by using memory and the other half using a map. This is done by the abstract

function GET-SUGGESTEDPATHMixed which returns such a path and sets it as the

suggestedpat h.

If pathCBR is empty i.e, the person has neither a complete nor a partial path in mem-

ory for the given problem; or if pathCBR is a redundant path, i.e the person has no

knowledge of an alternative path that does not include the unacceptable edge, the abstract

function GET-SUGGESTED-PATHExpl,,, is invoked. GET-SUGGESTED-PATHExpl,,,

returns a path based on explicit problem solving from scratch, and this path is set as the

suggestedpath.

Thus, with the function GETPATH, we have effectively used a hybrid reasoning system

which is an integration of a Case-Based Reasoner and a Model-Based Reasoner, to emulate

the decision making process of the person agent in deciding which path to take. The main

idea presented here is that human reasoning is analogous to a process where we first try to

solve new problems by recollecting past experiences; if this proves futile we try to reuse

and adapt similar problem in hope of getting a solution; and only if this too proves futile,

do we try to explicitly solve the problem from scratch using some generalized knowledge.

For example, a person wishing to travel from home to work already 'knows' the path he

CHAPTER 7. HIGH-LEVEL DASM MODEL 74

is going to take since he has been taking this path for many years; he does not explicitly

'solve' the problem of which path to take, he merely recollects from memory the old path

taken, and treads on it. On the other hand, the same person traveling from home to a

new restaurant opening, first tries to see if he knows the path to this restaurant; if not,

the person might recollect a point close enough to the restaurant, and then use a map to

compute the rest of the path. In the worst case, when the person has no clue about how to

get here, he opens a map to calculate the entire path.

This process of recollecting the path solely from memory is similar to using the CBR and

is performed by the function GET-SUGGESTEDPATHcBR; recollecting from memory in

conjunction with using the map corresponds to using the MBR and CBR together, and is per-

formed by GET-SUGGESTEDPATHMixed; and using the map for the entire path is similar

to using the model-based component solely and is performed by GET-SUGGESTED-PATH

~ ~ ~ l ~ ~ ~ ~ . The CBR and MBR components form the model at the next major level of ab-

straction and are discussed in detail in Chapters 8 and 9 respectively.

In the roadselection mode, we have a suggested path (suggestedpath) in mind and a

decision is made which edge should be followed next. First it is checked whether the person

has reached the destination node, if so the mode is changed to pathCompleted and rest

of the steps of this mode are skipped. If not, then it is checked through the predicate

signalFromADM whether there are any signals sent to the SEM by the ADM; if so the

function HANDLEADM-SIGNALS (Spec 7.10) is called.

1 ; 11-1s ~~I,I<~~~1~~l~sl~~s~1l>s -

HANDLE-ADM-SIGNALS =
onsignal s : NEWDEST

INITIALIZE(currentNode, newDest(s))
onsignal s : WEIGHTS-UPDATED

UPDATE-WEIGHTS(s)

Spec 7.10: HANDLE-ADM-SIGNALS.

This function checks for two kinds of signals from the ADM viz: NEWDEST and

WEIGHTS-UPDATED. The NEW-DEST signal is triggered when the agent decides to

abandon the current destination and picks a new destination; in this case the function INI-

TIALIZE is called again to reset all the required information. The WEIGHTS-UPDTED

CHAPTER 7. HIGH-LEVEL DASM MODEL 75

signal is triggered when the weights associated with the influence factors are changed; the

abstract function UPDATE-WEIGHTS is then called to reset the new weights. Both of

these signals require that the suggestedpath be revised since it is no longer valid; accord-

ingly the SEM mode is thus changed back to pathPlanning.

If neither the destination has changed nor is there any signal from ADM, the function

GET-SUGGESTEDEDGE is called that sets the next edge for traversal as suggestedEdge,

and changes the SEM mode to the next mode ZocalReplanning. GET-SUGGESTED-EDGE

(Spec 7.11) basically decides whether the person follows an edge of the suggested path

(Get-Suggested-Edgepath) or follows a completely random edge (Get-Suggested-EdgeElandm),

by checking the predicate goRandom. This gives us the power to model non-deterministic

and whimsical choices people sometimes make. At this level of abstraction however, we do

not explicitly model how or when the predicate goRandom is (re)set.

. .

GETSUGGESTED-EDGE =
if goRandom then

Get-Suggested-Edgepath
if # goRandom then

Get-Suggested-EdgeRandOm

Spec 7.11: GET-SUGGESTED-EDGE.

The function Get-SuggestedEdgeRandm as specified in Spec 7.12 simply makes a non-

deterministic choice in selecting an edge in the set of all edges adjacent to the person's

current location (currentNode). This selected edge is then set as the next suggested edge

suggestedEdge. This very simply and effectively models randomness in the navigation

algorithm. The predicate randomEdgeSelected is set to indicate the same.

The function Get-Suggested-Edgepath as specified in Spec 7.13 selects the first edge of the

suggested path suggestedPath, removes this edge from the suggested path, and sets the

next suggested edge suggetedEdge with this selected edge.

In the 1ocalRePlanning mode, we have a suggested edge (suggestedEdge) to follow, how-

ever we reconsider the decision whether to take this edge or not. This is because the person

discovers real-time local conditions of that edge (traffic flow, road condition etc) on the fly.

CHAPTER 7. HIGH-LEVEL DASM MODEL

I *
i : C:et-S~rgq~stc d-l:dgc.rt ,,,, ,,, --
randomEdgeSelected : SEM + BOOLEAN
Get-Suggested-EdgeRandom =

choose e in outIncidentEdges(currentNode)
suggestedEdge := e
randomEdgeSelected := true

I ,
- - (;<'I s~lg<~'hl ('(1 r(i~('{><,~,? - -- --

Get-Suggested-Edgepath -
let edge = firstEdge(suggestedPath) in

suggestedEdge := edge
remove head(suqqestedPath) from suqqestedPath

Spec 7.13: Get-SuggestedEdgepath.

The GET-PATH in giving a suggested path does not consider current local information of

a distant edge (but only of the edges adjacent to the initial source node) in suggesting the

path since the person can have access to this information only when it is positioned on

that edge, and not when it is 10 kms away from it. Thus, in this mode we examine the

GEODYNAMIC-ATTRIBUTES of the suggested edge to decide on the acceptability of the

edge, through the derived function acceptable. If the edge is found to be acceptable, the

current edge of the agent currentEdge is set to suggested edge suggestedEdge, meaning

the person has decided to traverse on this edge; and the SEM mode is set to the next mode

running. If the edge however is not acceptable, the mode is set back to pathplanning

which re-calculates the path, now taking into account the local information of the current

edge; for e.g. if there is a heavy traffic jam on the suggested edge, the person most likely

wants to take another alternative road that is not jammed.

At the end of this mode, we do some bookkeeping activities using RECORD-SELECTED-

EDGE (Spec 7.14). If the edge was found to be acceptable, the function changes the cur-

rent node to undefined, indicating the person is located on an edge now and has started

traversing it, and records the current time the agent has started traversing the edge; if the

edge was found to be non acceptable, it records that this edge was attempted for traversal.

CHAPTER 7. HIGH-LEVEL DASM MODEL

' I REC'O HI)-? t1.I?C"l11: I)-l3)CI<
attemptedEdge : SEM -+ EDGE
traverseStartTzme : SEM -+ TIME
RECORD-SELECTED-EDGE =

if acceptable(suggestedEdge) then
currentNode := undef

' I , , t IK; ag~111 ht a r (pa>t , i ry t h d q (~
traverseStartTzme := now

else
attemptedEdge := suggestedEdge

Spec 7.14: RECORDSELECTEDEDGE.

In the running mode, the person stays within this mode until the time required to traverse

the edge has elapsed; this is indicated by the derived function currentEdgeTraversed.

Once the current edge has been traversed, we call an abstract function UPDATE-EDGE -

PERCEPTION to update the agent specific interpretation of information for this edge, such

as PERXDGE-ATTRIBUTES (distance, road type, traffic) and AC-EDGE-ATTRIBUTES

(frequency, experience). The resulting updated values are typically an average of the past

stored values and the current values. This function ensures that the person remembers

road-level decisions it has made in the past.

The function FINALIZEXDGE-TRAVERSAL (Spec 7.15) is called to set the current edge

to undefined and current node to the tail of this traversed edge, meaning the person has

now traversed the edge and its current location is that of a node; the tail node of the edge

is also added to the taken path.

I . I~l~.ll,lzl-:~l~~l~~;I~~~~1~~l~I~~ls!~I~ - --
1 ,

FINALIZE-EDGE-TRAVERSAL -
let node = edgeTail(currentEdge) in

currentNode := node
currentEdge := undef
add node to takenPath

Spec 7.15: FINALIZE-EDGE-TRAVERSAL.

CHAPTER 7. HIGH-LEVEL DASM MODEL 78

Finally the function SET-SEM-MODE is called to decide which should be the next mode

of the SEM (Spec 7.16). If a random edge was not selected, the SEM mode is changed to

roadSelection, since we already have a suggested path and now just need to determine the

next edge to be taken. However, if a random edge was selected, the person probably is on

a new path that is different from the suggested path. In this case, the mode is changed to

pathPlanning, implying we need to recalculate the path to the destination from the current

node which was reached by following a random edge.

, f --_ - , , - SE I ' 3 E \I-SIOIIF
SET-SEM-MODE =

if 1randomEdgeSelected then
mode := roadse lec t ion

else
randomEdgeSelected := false
mode := path P l a n n i n g

Spec 7.16: SET-SEMMODE.

Lastly, in the pathcompleted mode, all supplementary book keeping is performed with

the function FINALIZE-TRIP (Spec 7.17) and the SEM mode is changed back to idle.

There are two main tasks performed here. First is informing the ADM with the sig-

nal INFORM-ARRIVAL, and second is informing the associated CBR with the function

SendEeedback-To-CBR, that the path from the given source to the given destination has

been traversed. The triggered signal to the ADM contains information such as the path taken

and the current time. Informing the CBR through the function SendEeedback-To-CBR in-

timates the CBR that new information is available for storing which is integrated into the

existing memory (case-base) of the person; this ensures that the person remembers all the

path-level decisions it makes, along with supplementary information such as experience,

road conditions etc of taking this path as a whole.

This level of refinement basically refines the abstract functions of GET-PATH not defined

in Level 1 viz: GET-SUGGESTEDA'ATHcBR and GET-SUGGESTED-PATHMized.

CHAPTER 7. HIGH-LEVEL DASM MODEL

, I _ I ~ l N . I I ~ l Z I ~ ~ ~ I ' R I 1 '
FINALIZE-TRIP =

trigger s : INFORMARRIVAL, decisionModule(parentAgent)
ar-rivalTime(s) := now
path(s) := talcenpath

Send-Feed back-To-CBR(curProb1em. .oathCBR. talcenpath)

Spec 7.17: FINALIZE-TRIP.

As mentioned before, GET-SUGGESTEDPATHcBR interfaces with the CBR of the SEM

and gets a complete or a partial path from the CBR from a given source to a given des-

tination, if such a path exists. This is analogous to the person making its decisions based

solely on its memory which stores past experiences. This function defined in Spec 7.18 first

checks the predicate waitingFor Signal to determine whether the SEM is already waiting

to hear back from CBR or it can proceed with sending a new problem. If the predicate is

false, the problem is sent to the CBR using the function SENDJEW-PROBLEM-TO-CBR

and the predicate is set to true, indicating that a solution is awaited. The SEM then loops

over this function until a solution is returned by the CBR indicated by the signal PROB-

LEM-SOLVED, in which case the solution embedded in this signal is returned to the SEM

(which forms the pathCBR), and the predicate is set to false.

:/ -- c ~ I ~ : ' I ~ ~ s ~ ~ c ~ ~ I < s ' ~ I ~ I ~ ~ l ' ~ Y I ~ l l ~ ~ [3 1 (-

GET-SUGGESTED-PATHcBR
if ~waitingForSigna1 then

SEND-NEW-PROBLEM-TO-CBR(currentNode, destNode, closeness)
waitingForSigna1 := true

if waitingForSigna1 then
onsignal s : PROBLEM-SOLVED

return solution(s)
waitingForSigna1 := false

where
closeness = closeness(self)

Spec 7.18: GET-SUGGESTED-PATHcBR.

The parameter closeness of SENDJEWPROBLEM-TO-CBR is a derived function that

CHAPTER 7. HIGH-LEVEL DASM MODEL 80

is used to indicate how 'incomplete' a partial path can be. If only an exact match from

source to the destination is expected, closeness is set to 0. For partial paths, closeness is

non-zero and indicates the maximum number of hops by which the destination of the partial

path can be away from the final destination. Naturally, when a non-zero value of closeness

is passed, the CBR first tries to retrieve a path that is complete, and then monotonically

increases the number of hops by which the final destination can be away from the partial

path destination.

GET-SUGGESTED-PATHMixed as given in Spec 7.19 represents a form of hybrid reasoning.

It takes the partial path returned by GET-SUGGESTED-PATHcm, which is passed to it

as a parameter partialPathCBR. It then calls the model-based component of the SEM

GET~SUGGESTEDI'ATHExplOTeT to compute the rest of the path, i.e, a path from the

tail of the partialPathCBR to the final destination; this path is the partialPathExplorer.

The concatenation of the above two paths gives the complete path, and forms the desired

mixed path (pathMixed). Next, we invoke the function GET-SUGGESTED-PATHExplmeT

to return a path based on explicit problem solving from scratch, as pathExplorer. A com-

parison between the complete path returned by the explorer and the path formed by con-

catenation is performed by the abstract function superior (pathMixed, pathExplorer) that

checks to see whether pathMixed is within an acceptable interval of inferiority as compared

to pathExplorer; if so pathMixed is returned as the suggested path, else pathExplorer is

returned as the suggestedpath. This comparison is important since by concatenation of

partial paths one might end up with a path that does reach the destination but is a very

undesirable path.

GET-SUGGESTED-PATHMixed(partialPathGBR : PATH) -
let partialPathExplorer + GETSUGGESTED-PATHExplO,.eT(self, ta i l (par t ia lPathCBR) ,

des tNode)
in

let
pathMixed + concat(part ialPathCBR, part ialPathExplorer)
pathExplorer + PATH-EXPLORER(self, currentNode, destNode)

in
return superior(pathMixed,pathExplorer)

Spec 7.19: GET-SUGG.ESTED-PATHM~,,~.

CHAPTER 7. HIGH-LEVEL DASM MODEL 8 1

Although in the mixed approach we currently restrict to finding a partial path from the

source to the destination, one should be cognizant that the converse case, i.e, finding a

partial path from the destination to the source, can also be easily incorporated into the

framework.

The abstract functions SEND-NEW-PROBLEM-TO-CBR and SEND-FEEDBACK-TO-CBR

are the ones that actually send the problem and the feedback to the CBR, by first initializing

them and then triggering the CBR with them. These form the next level of refinement of

the SEM model - Level 3. The details of these functions however are not discussed here,

since the working is pretty basic and self-explanatory, but can be found in Appendix A.

CHAPTER 7. HIGH-LEVEL DASM MODEL

7.2.4 Our Navigation Approach in Comparison to Related Work

The navigation problem is a crucial one that finds applications in various fields, most im-

portantly Intelligent Transportation Systems, and GPS systems. While there is abundant

literature highlighting the approaches taken in these fields, our approach is significantly

different and offers numerous advantages in a number of ways.

Our path planning algorithm effectively combines Case-Based Reasoning, Model-Based Rea-

soning and Human Perception in a novel manner. We take a holistic view of the cognitive

decisions a person makes while moving in an urban landscape; the path might not be

a globally optimal one, but it is a good-enough one that mimics human reasoning and

decision-making more closely. Specifically, the fortes of our algorithm include: (1) it takes

reinforcement learning into account (positive and negative) (2) it combines global planning

with real-time local re-planning (3) it takes subjective human perception into account (4) the

shortest path algorithm takes a number of factors into account (not just distance or travel

time) whose influence in the overall preference can be dynamically changed (5) it effectively

makes a distinction between people recollecting paths from the memory vs. re-computing

paths using maps (case-based reasoning vs. model-based reasoning) (6) it can make both

road level and path level decisions, by taking cases of roads (in MBR) and cases of paths (in

CBR) into account respec. (7) it can model random and non-deterministic decisions that

people may sometimes make.

We have presented the contention that people do not move in an urban environment based

on how it physically is, but how they 'perceive' it to be. This perception is incorporated

by dividing the environment into Geographic Environment and Subjective Environment,

as explained in Chapter 6; both these categories then play an integrated role in shaping

decisions. To the best of our knowledge, there has been no work presented so far that takes

cognition of geography into account while path planning.

Our algorithm relies on the CBR to immediately return solutions for a shortest path prob-

lem from a given source to destination, if any. This is similar to a person trying to recall

solutions from memory rather than re-computing them.

If this proves futile, we rely on the CBR to return a path that is close-enough to the des-

tination, and then use the MBR to compute the remaining path. This is similar to people

relying on memory to recall a partial path, and then computing the remaining from a map.

If this proves fruitless, the problem is then relegated to the MBR, which uses a shortest path

CHAPTER 7. HIGH-LEVEL DASM MODEL 83

algorithm, based not only on distance, but a number of other factors (road type, traffic,

road conditions, familiarity, experience, angle, # of intervening roads etc) that determine

the preference or cost of a path. To the best of our knowledge, no other approach has taken

into account such a vast number of factors in path planning. Most algorithms typically seek

to minimize only the travel time, or the distance of travel.

Bing Liu et a1 [69] propose an algorithm based on case-based reasoning, knowledge-based

approach and Dijkstra algorithm for route finding. However, they restrict only to distance

or travel time for cost calculation. Their interaction between the CBR and the KBR is not

well-defined and produces inefficient results, when the reasoner returns partial paths. Our

algorithm uses a number of cost factors, the influence of which can be changed dynamically.

Also the interaction between our CBR and MBR is well-defined that produces efficient re-

sults.

Anwar and Yoshida [2] integrate cases, knowledge and object-oriented road network for

route finding. However, their approach is restricted to only a very specific kind of road

network composed of must be passed links, and not applicable to general networks. Their

approach does not update the cases dynamically and hence the reasoner cannot learn. Our

approach integrates new knowledge into the CBR case-base, and the MBR cases every time

a road or a path is taken; this ensures both the reasoners learn and become competent over

time.

The authors of [68] present another approach that combines cases, knowledge and a Dijkstra

like algorithm. However, they restrict learning and experience to road levels only and do not

consider path level learning and experiences. They ignore the merits of a case-based rea-

soner in returning a path when an exact match can be found. Further their algorithm first

prunes off the search space based on major and minor roads and then applies the Dijkstra's

algorithm; this forces a person to takes major roads that might be longer when there can

be minor road short-cuts. Our approach on the other hand considers both road and path

level preferences, by using road cases in the the Dijkstra algorithm and using path cases in

the case-based reasoner, respectively. We do not partition the graph based on major and

minor roads; instead we dynamically change the weight associated with factor 'road type'

to increase or decrease the preference of major/minor roads.

CHAPTER 7. HIGH-LEVEL DASM MODEL

7.3 Target Selection Module (TSM)

The Target Selection Module (TSM), implemented as an ASM Agent, is responsible for

monitoring potential targets on the routes taken by the agent, and for selecting attractive

targets based on selection criteria. This leads to the creation of the crime occurrence space

of the agent. We essentially base the logic represented by the TSM on the Basic Model of

Target Selection as given by the Brantinghams [lo], [9]. The model views the target selec-

tion process as an information processing model. It states given that there is a motivated

offender, the search process is a sequence of spatial decisions in which the objective environ-

ment is perceived and evaluated. The criminal carries a template of target selection in its

mind which is learnt by experience or by social interactions. In contemplating a new target

selection decision, it compares the characteristics of this potential target (spatial, temporal,

legal etc.) against its own template, decides on the suitability of the target and either rejects

or accepts it for victimization. The template is established with experience and time and

become relatively fixed and self-enforcing. Due to the multiplicity of targets and victims,

many potential crime selection templates could be constructed for a given criminal.

For the process of target selection, we use a hybrid reasoning mechanism composed of

case-based reasoning (CBR) and model-based reasoning (MBR); the two components are

represented as ASM agent and submachine respectively. At this level of abstraction however,

none of these two components are refined. The case-based reasoner has a case-base, which is

a kind of memory, that stores previous target templating and target selection decisions an

agents has made; in selecting a new target, an agent then merely matches the characteristics

of the potential target against victimized targets in its memory and decides whether it is

a 'good7 or a 'bad' target. The MBR component on the other hand uses an algorithmic

approach to explicitly determine the suitability of the targets.

7.3.1 Level 0

We first introduce some domains and data structures with the TSM. The domain CRIME-

TYPE identifies different types of crime that can be modeled, such as car theft, burglary,

shop lift etc.; it can be extended to include other crimes. The domain LOCATION can

CHAPTER 7. HIGH-LEVEL DASM MODEL 85

either be a NODE or an EDGE. The domain TARGET represents a criminal opportu-

nity. The target could be PASSIVE-OBJECT such as a stationery car, or it could be

an ACTIVE-OBJECT such as a person. There are additional functions associated with

a TARGET such as its location, and the type of criminal opportunity it represents. We

then associate derived functions potentialTargets with NODES and EDGES, that gives the

targets located on that node or edge.

; :
l j
: i

Dom;ljns for tilt. , T"; L._ 11
domain CRIME-TYPE
carTheft :+ CRIME-TYPE
shopli f t :+ CRIME-TYPE
robbery :+ CRIME-TYPE

I l '1'qc.t
domain LOCATION = NODE U EDGE
domain PASSIVE-OBJECT
domain ACTIVE-OBJECT
domain TARGET = PASSIVE-OBJECT U ACTIVE-OBJECT

crimeType : TARGET + CRIME-TYPE
location : TARGET + LOCATION

Spec 7.20: Domains o f TSM.

Next, to refine the abstract rule TSM, we enumerate the functions that it uses. This is

formulated in Spec 7.21 in a self-explanatory manner.

Finally, the TSM Program gives the working of the TSM, and is shown in spec 7.22. The

TSM is initialized to be in the observing mode; this mode does not perform anything unless

a signal CRIMINALNOTIVATED is received from the ADM. This signal indicates that

the person is criminally motivated and will indulge in criminal activities. Upon receiving

this signal, all targets that are adjacent or visible to the criminal from its current location

are recorded as potentialTargets by the abstract function GET-POTENTIAL-TARGETS.

The mode is now changed to targetTemplat ing.

CHAPTER 7. HIGH-LEVEL DASM MODEL

F~~uc t ions 01 'l'Sl1 -

MODE = {observing, targetTemplating, targetSelection)
mode : TSM + MODE 1,' 'l'Sl1 11as ~1 1t10d~

/ / Kepr ill Profile
criminality : TSM x CRIME-TYPE + PROBABILITY// Specially ol criruinal fbr dilf c~iines

/ / K ~ p t in iVorIiing ll(!ii~ory
potentialTargets : TSM + TARGET - Set ;/ A11 o l ~ s c i . ~ - ~ l t;irgcts.
goodTargets : TSM + TARGET - Set i / 'I'argct;; 'l:clr~plarccl' as 'go~:)d'
selectedTargets : TSM + TARGET - Set / i ' 'I:i,rgcts cvc~r~t.~[all!; victirtlizerl

// Auxiliary
cunentLocation : TSM + LOCATION / / C'11rrcrit ilodc or edge o f 1 . 1 ~ person

Spec 7.21: Functions of TSM.

I : - . _ -_ rs11 l'rogl<iIll
TSMProgram =

case mode of
observzng +

onsignal s : CRIMINALMOTIVATED
if currentLocation # undef then

, , (k t ,111 l l ~ c largcts located .nror~iid. on' cSullcwl I,or,ttiorl
GET-POTENTIAL-TARGETS(currentL0cation) I 1 Seth potcwt ~ d ' l ~ i ~ g c t s .
mode := targetTemplating

target Selectzon +

,', \'ictinli~c good l argcxls. rcinforcc t<li get ternpL~tc
SELECT-TARGETS(g0odTargets) / , Sot sclcc tcd'Ihrgct s

mode := observing

Spec 7.22: T S M Program.

C H A P T E R 7. HIGH-LEVEL DASM MODEL 87

In the targetTemplating mode, the person assesses the environmental cues about the poten-

tial target such as its physical, spatial, temporal, cultural, legal, psychological characteristics

against its own target template, and based on this comparison categorizes the potential tar-

gets into different categories such as 'good' and 'bad'. This is done by the abstract rule

TARGET-TEMPLATING. The cues that are used to assess the suitability of the targets

form the target template. As experiential knowledge grows, the person learns which indi-

vidual cues are associated with 'good' targets; for e.g a car parked at a position which is

within the criminal's awareness space forms a good spatial cue. These cues, cue clusters,

and cue sequences (spatial, temporal, social, and so on) are the template against which

targets are compared and accepted or rejected for victimization. This mode thus compares

the properties of the potential target against the person's target template and categorizes

the targets as good or bad; the function goodTargets is set and the mode is changed to

targetselection.

This entire process of target templating as performed by TARGET-TEMPLATING can be

based on past learnt experience (CBR) for repeat offenders, or performed explicitly from

scratch (MBR) for first time offenders, or a combination of the two. The CBR typically

stores all the previous target templating decisions the person has made, i.e for the given

target which template it used and what was the assessment (good, bad). For each target

template and its assessment, the CBR could even store the consequence of target selection

(successful, failed).

In the targetselection mode, it is emulated that the goodTargets as determined in the previ-

ous step are potentially victimized. This is done by the abstract rule TARGET-SELECTION

This rule could even record the outcome of target selection, and accordingly reinforce the

target template. Thus once the template is established, it becomes relatively fixed and in-

fluences future searching behavior, thereby becoming self-reinforcing. Finally, the mode is

changed back to observing.

It should be noted that the entire SEM program is performed for a given location of the

agent, i.e the location of the agent should not change until target selection has been per-

formed. This thus requires synchronizing the working of the TSM with the SEM. We assume

there is an implicit clock that orchestrates this synchronization such that while the TSM

performs its steps, the SEM does not change the current location of the person.

CHAPTER 7. HIGH-LEVEL DASM MODEL 88

In the next level of refinement, i.e Level 1, the abstract rules GET-POTENTIAL-TARGETS,

TARGET-TEMPLATING and SELECT-TARGETS are stated. We have not yet broached

the details of this level. For the purpose of this thesis, we select and victimize targets non-

deterministically provided they are within the criminal's awareness space. It is anticipated

future work will involve detailing these abstract functions. This would entail understanding

the intricacies of target templating and selection more thoroughly, formulating the various

factors and variables that come into play and how they correlate with each other; this step

needs to be carried out in consultation with the criminologists.

CHAPTER 7. HIGH-LEVEL DASM MODEL

7.4 Agent Decision Module (ADM)

The Agent Decision Module (ADM) monitors the working of the TSM and SEM and provides

relevant inputs to the two modules. It decides on 'what to do7 and then relegates the decision

to the TSM or the ADM on 'how to do it7. Ebr e.g., it decides that the agent should go

from home to work, and then gives this 'goal' to the SEM. The decisions are based on

agent's motivations, the current state of the agent, and the information in the memory.

Motivations are long-term goals (earn livelihood, greed), that in turn give rise to short term

goals (go from home-to-work, car theft), which are then passed to one of the two modules

for realization.

7.4.1 Level 0

We use abstract functions to interface with motivations; currently, we associate two broad

categories of motivations with abstract functions viz: the motivation routine activity with

the abstract function ROUTINEACTIVITY and the motivation criminal propensity with

the abstract function CRIMINAL-PROPENSITY. Routine Activity basically decides the

level of motivation a person has to carry on daily activity routines; this thus indirectly

controls the working of the SEM. Criminal Propensity gives the current level of motivation

of the person for criminally disposed activities which decides if the person will indulge in

committing crimes; this thus indirectly controls the working of the TSM. Both of these

motivations can be based on a number of other finer grains of motivations and demographic

factors of the person, at this stage however we abstract away from such complicated func-

tionality.

Currently in our model, at the given level of abstraction, motivations are typically always

persistent. This implies that for non-criminals the motivation routine activity is always

above a threshold level and the motivation criminal propensity is always below the thresh-

old level, such that person never commits a crime; for criminals, both the motivations rou-

tine activity and criminal propensity are true, such that the criminal is always criminally

disposed.

We can then associate two kinds of rules with the ADM Program, one that monitors the

working of the SEM based on the motivation of routine activity, and the other that controls

CHAPTER 7. HIGH-LEVEL DASM MODEL 90

the working of the TSM based on the motivation of criminal propensity. The ADM at the

first level of abstraction is shown in Spec 7.23.

i ,/
f , l lo t nxl ion
routinedctivity :-+ MOTIVATION
criminalPropensity :-+ MOTIVATION

/ / l<cy)t in I'rofilc
motivations : ADM -+ MOTIVATION - Set / / l'c-lrso~l h ; ~ mot,ivdions

ADMProgram =
if ROUTINE-ACTIVITY(routineActivity, self) 2 threshold(routineActivity)
then

ADM-SEM-MONITOR
if CRIMINAL-PROPENSITY(criminalyPropensity, self) > threshold(criminalyPropensity)
then

ADM-TSM-MONITOR

Spec 7.23: ADM Program.

7.4.2 Level 1

We first refine the abstract rule ADM-SEMMONITOR. Once the person has the routine

activity motivation above a certain threshold, this function is called. Its main responsibility

is to provide the SEM the next destination node to travel to; which forms the 'goal' that is

communicated to the SEM. This thus requires that each person should be associated with

a schedule. We refine the function ADM-SEM-MONITOR by first associating a schedule

with it (Spec 7.24).

Each person has two kinds of schedules, specialSchedule and regularSchedule. The regular

schedule is an everyday schedule that is continually repeated and is differentiated by week

day and weekday; what we do on weekends is different from what we do on weekdays. The

special schedule can be used to override the regular schedule, and is specified for a date range;

e.g. people going on vacations. For any given day, a person has a daily schedule as given

by dailySchedule; this is nothing but a set of probabilistic destination nodes (toNodeSet)

associated with the time of the day (t ime0 f Day). The toNodeSet assigns a probability for

CHAPTER 7. HIGH-LEVEL DASM MODEL 91

1 1
i 1 12ERS()SLIL SCIIrI)[.yI,E
/ / 1~11.01-3hBLEDFS'I:
' i

toNode : PROBABLEDEST --, NODE
prob : PROBABLE-DEST --, PROBABILITY
/ ; - A [)p()'I NrI'A;[IT;I.S']: ; ,
timeOfDay : APPOINTMENT --, TIMEOFDAY
toNodeSet : APPOINTMENT -+ PROBABLEDEST - Set ''S(:III~~~I)I:I.E
i ;

fromDate : SCHEDULE -+ DATE
toDate : SCHEDULE --+ DATE
dayType : SCHEDULE + DAYTYPE // \\.cfiliil;-~~~ wcclicr~ti
dailyschedule : SCHEDULE -+ APPOINTMENT - Set
. .
; i 1'1.;RSOSh12-SC;fIEllI;LE.- . .
regularSchedule : PERSONALSCHEDULE -+ SCHEDULE - Set // fri>~rl I)a~.o=tol.)~atc:--nllileE
specialSchedule : PERSONALSCHEDULE -+ SCHEDULE - Set / I li:o~rllh(c no[. ~.~rldeF

Spec 7.24: Personal Schedule used by ADM-SEMMONITOR.

each destination node; for e.g. at 2 pm a person may either go for lunch with a 80% chance,

or go back home with a 20% chance.

The rule ADM-SEM-MONITOR is responsible for continually monitoring time, and check-

ing the schedule of the person to see if there is a new destination available corresponding

to the new time change. It may then decides whether to inform the SEM with this new

destination. In order to do so, we associate some basic functions with this rule as given in

Spec 7.25; these are self-explanatory.

The working of the rule ADM-SEM-MONITOR at the first level of abstraction, level 0,

is shown in Spec 7.26. It is specified as a submachine that is a sequence of four steps;

although for the sake of lucidity the steps are associated with controlled modes, they are

all still executed in sequence one after the other. The ASM-SEM-MONITOR submachine

is initialized to be in monitor mode.

In the idle mode, the time as derived from the abstract domain TIME, is continually mon-

itored using the abstract function MONITOR-TIME to see if there is a change in current

time from the last recorded time, and if so the mode is changed to calculate. The gran-

ularity of change in time is person dependant and could be a change by the hour, by the

minute etc. This thus decides whether the person makes decision by the minute or hour.

CHAPTER 7. HIGH-LEVEL DASM MODEL 92

Spec 7.25: ADM Functions used by ADM-SEALMONITOR.

Also monitored in this mode is a signal from the SEM which indicates whether the person

has reached its current destination, this is recorded in the predicate arrived.

In calculate mode, the function CALCULATE.NEXT-DEST uses the schedule of the per-

son to decide the next destination based on probabilistic choices. The function nex tDes t is

set with this chosen destination, and the mode is changed to decide.

In decide mode, it is checked whether a destination was available from the schedule. If so,

the function DECIDE-TOINFORM determines whether the agent should be informed with

this new destination by setting the predicate i n f o r m ; the mode is now changed to inform.

If no destination was set, the mode is changed back to monitor. Typically in making the

decision on whether to inform the agent with the new destination, if the person has already

reached its destination, i n f o r m is set to true; else a non-deterministic choice is made.

In the in f o r m mode, the predicate in f o r m is checked to determine if the person should

indeed be informed of the new destination, if so the signal NEW-DEST is triggered to the

SEM, and the mode is changed back to monitor.

Next, we refine the abstract rule ADM-TSMMONITOR. Once the person has the criminal

propensity motivation above a certain threshold, the rule ADM-TSMNONITOR is called.

Its main responsibility is to provide certain 'goals' to the TSM. At this level of abstraction,

ADM-TSM-MONITOR provides minimal functionality; it merely triggers the TSM with

the signal CRIMINALMOTIVATED indicating the fact that the TSM should proceed with

the process of target selection. Upon receiving this information as a 'goal', the TSM then

CHAPTER 7. HIGH-LEVEL DASM MODEL

. . ,> ;,. aI,~:l_sl.j;>[_~:[o~~'roR, ~

ADM-SEM-MONITOR =
case mode of

monitor --+

j / Rc~corti I he fact agcmt has arrived a t 3 clcst.
onsignal s : INFORMARRIVAL

arrived(se1f) := true
MONITOR-TIME(se1f)
/ j Keep ~rionit.c.rirlg [i r w 1.0 srw iC i i c:l~iuiges(e.~. ~norning 1.0 noon. 3pn1 (0 :lp111)
/ / I:' t:lla.ilgcs: st:(inocit: to c.alc~ilalr.

seq
calculate -+

I / :l'robabiSist.ic:~~Il;y c-l:~oose (l ~ c nesr clestirration ill i . 1 1 ~ sclleclule.
, . / / So(: ncxi 1)ost.

CALCULATE-NEXT-DEST(self)
mode := decide

seq
decide -+

if nextDest(self) then
/'/ Ilecido n.11otht.r t o i11hn11 thr. agent. or not - Stt 1nli:riri prctdicate

Usually if iwrivcd = t r w ir~f'c:rrrl, else dc?c.itlc.
DECIDE-TO-INFORM(se1f)
mode := i n f o r m

else
I / Yo ;icticxlulo ~ v i ~ i l i ~ b l e . C h t-rijvk lo Sloniboling time.
mode := monitor

seq
i n f o r m -+

if i n f orm(se1f) then
/ , ~r~iggers the SEA3 with ilit: Scw 1)c:si.iriat:ion.
trigger s : NEWDEST, spaceModule(parentAgent)

newDest(s) := nextDest(se1f)
mode := monitor

Spec 7.26: ADM-SEM-MONITOR.

CHAPTER 7. HIGH-LEVEL DASM MODEL

proceeds with executing its functionality. This can be seen in Spec 7.27.

Spec 7.27: ADM-TSM-MONITOR.

In the next level of refinement, Level 2, the abstract functions MONITOR-TIME, CAL-

CULATEBEXT-DEST, DECIDE-TOINFORM are detailed. The abstract domain TIME

and the relevant functions defined on it are also explicitly specified. We do not show these

here, but refer the reader to AppendixA.

PART 111

REFINED MODEL

Chapter 8

Reasoning and Learning

We use a mechanism of hybrid reasoning - based on case-based reasoning and model-

based reasoning - to emulate the problem solving and decision making process of the

agents. This chapter is devoted to analyzing the case-based reasoning component of the

hybrid framework. We begin with Section 8.1 which is intended to provide the reader an

introductory knowledge of Case-Based Reasoning and we conclude with Section 8.2 which

explains how we develop, formalize, and integrate a case-based reasoner into our framework,

to solve the problem of path planning.

To the best knowledge of the author, there has been no prior attempt in establishing a

formal specification and executable semantics of the case-based reasoning process. Thus,

this sub-part of our work, by itself, forms an original contribution.

8.1 Case-Based Reasoning (CBR)

"Case-Based Reasoning is an approach to reasoning whereby instead of solving the problem

from scratch using rules, it is solved by remembering previous similar situations called cases,

and by reusing this knowledge from past experiences7' [I]. Thus, in CBR reasoning is based

on remembering.

CBR is based on two tenets about the world - the first tenet is that the world is regular:

similar problems have similar situations; the second tenet is that the types of problems an

agent encounters tend to recur [67]. Thus, a CBR can be used to solve routine problems, or

CHAPTER 8. REASONING AND LEARNING

novel problems by adapting the solution of similar problems.

The foundational motivations of CBR stem primarily from two fields, (1) from cognitive

Science - to model human reasoning and learning; (2) from A1 - to develop pragmatic

technology [67]. The approach of Case-Based Reasoning relates to other areas such as

memory-based reasoning, analogical reasoning, exemplar-based reasoning [67], [I]. Case-

Based Reasoning can also be seen as a formal computational model of problem solving

based on memory organization and reminding [72].

Learning plays a central role in Case Based Reasoning. Learning is an emergent behavior

that arises from the case-based reasoner's normal functioning [65].

A CBR learns from past experiences, and these experiences then supplement further rea-

soning; forming an intertwined cycle. Once a CBR solves a problem, the solution is retained

as a case, and this case becomes available as a potential solution to similar problems in the

future. Thus, complementary to the principle of reasoning by remembering is the principle

that reasoning is remembered [67]. CBR is an approach to incremental, sustained learning

[I]. Learning in CBR systems is by both success-driven and failure-driven [67].

Case-based reasoners also become more competent and ef ic ient over time [66]. They be-

come more efficient by remembering old solutions and adapting them, rather than deriving

solutions from scratch using rules. They become more competent by deriving better answers

with experience, than they would without experience.

Case-Based Reasoners can be of two types - problem solving reasoners or interpretive rea-

soners [66]. Interpretive Reasoners use prior cases for classifying or characterizing new prob-

lems. Problem Solvers use case-based reasoning to suggest solutions to the given problem

based on past experiences. Problem-Solving CBR can be further divided into derivational

and transfornational CBR. In transformational CBR, past solutions are used directly; in

derivational CBR, the problem-solving process by which solutions are derived are used.

For practical applications of CBR, it may be implemented as Autonomous Systems -

that solve problems solely by themselves, Human-Machine Systems - that work along

with people to solve problems, Embedded/Hybrid Systems - that in addition to CBR, use

multiple knowledge sources, reasoning methods [66].

Case-Based Reasoning has a wide array of applications in fields of medicine, law, automotive,

robotics etcetera [65], [67], [82].

CHAPTER 8. REASONING AND LEARNING

8.1.1 Why Use CBR?

Fortes of CBR as compared to other reasoning mechanisms are many-fold: case-based sys-

tems allow for intra-domain reasoning; they save time by re-using old solutions, rather than

deriving solutions from scratch; case-based reasoning provides creative thinking by solving

problems by using similarity of past experiences; they emulate the natural way that human

beings solve problems; case-based reasoners integrate learning and reasoning hand-in-hand;

case-based reasoners facilitate both positive and negative reinforcement learning [65], [67].

Pertinent to our context, the use of case-based reasoning is justified and supported by three

tenets as highlighted below:

The primary motivation for using a CBR based approach is that it captures the very essence

of human reasoning, in the most intuitive and natural way. The cognitive process by which

agents perform reasoning and learning is based very closely to the philosophical foundations

of case-based reasoning. We learn from past experiences and use these very experiences in

solving new problems rather than re-solving the problem from scratch. Virtually whenever

there is a case available to reason from, people will match it, retrieve it, adapt it, evaluate

it, use it, and finally store it as a solution - the process is analogous to that of a CBR.

The same thought is re-instated in [82] - "People really don't think all that much, they

remember. First, we remember the the things we do, including the thinking we do. Second,

most of the time we don't need to think , we just have to remember what we thought before."

The authors explain that human beings are not systems of rules, but libraries of experiences,

and people re-use these past experiences for problem solving, rather than re-inventing the

solution by original thinking - "Real thinking has nothing to do with logic at all. Real

thinking means retrieval of the right information at the right time."

Secondly, with case-based reasoning, we effectively incorporate Learning in our model. In

CBR, both reasoning and learning go hand in hand. Complementary with the principle of

reasoning by remembering is the principle that reasoning is remembered [67]. We mimic

Behavioral Reinforcement Learning by using the candidacy of past cases as potential solu-

tions to current problems. If an agent has taken a certain route X from A to B before, this

route gets recorded as a case. Next time, the agent wishes to travel from A to B again, this

stored route X gets retrieved as a potential solution. Hence, once a person does something,

the more he/she does it again - old habits die hard!

CHAPTER 8. REASONING AND LEARNING 99

By storing the outcome of the proposed solution in the case, both positive and negative

reinforcement learning can be incorporated. If the outcome of the proposed solution/case

had a negative reinforcement - the person took a certain path X from A to B, but got

robbed along this path - this gets recorded as a negative outcome for the case X. Next

time the person wishes to move from A to B, path X will be retrieved as a negative case,

and will prevent the person from taking this path. This is similar to 'learning the moral of

the story' [82].

Thirdly, using CBR helps in modeling idiosyncrasies of people. Some people exhibit certain

'exceptional' behavior, which clearly cannot be captured by using general rules, since rules

portray 'generalized behavior' of people. These exceptions can then be stored as 'cases' in

the case-base, after which behavior can be emdated.

8.1.2 Integrations of Case-Based Reasoning

It is generally believed that complex problems can be easier solved with Hybrid Systems. The

goal of hybrid systems is to tap information from different knowledge representations, and

augment the positive aspects of the integrated formalisms while simultaneously minimizing

their negative aspects. A hybrid model of CBR provides a flexible and comprehensive model,

by integrating multiple levels of knowledge - specific situations from past experience and

generalized domain knowledge [72].

CBR can be integrated with other reasoning modalities and computing techniques, including

rule-based reasoning (RBR), constraint-satisfaction problem (CSP), model-based reasoning

(MBR), genetic algorithms and information retrieval [73]. Integrated approaches increase ac-

curacy, efficiency, problem-solving strength, combine the advantages of different approaches,

and help attain a more complete and cognitive problem-solving model.

The hybrid architecture can be trichotomized as follows: (1) Master-Slave: other reasoning

methods support the CBR component; (2) Slave-Master: CBR component supports other

reasoning methods; (3) Collaborating: CBR and other reasoning components are balanced

in their roles [73].

One such hybrid system is an integration of a Rule-Based and a Case-Based System.

In [55], authors use a case-based system to improve the accuracy and efficiency of a Rule-

Based system, that the system could not have achieved with its rules alone. First, the RBR

CHAPTER 8. REASONING AND LEARNING 100

is used to find an approximation to the problem, but if the problem is similar to an exception

stored as a case, then the aspect is modeled after the case rather than the rules. To facilitate

a decision process, an agent may use a rule dominant architecture - where the rule-based

component plays the primary role and is supplemented by the case-based component; or a

case dominant architecture - where the case-based component prevails and the rule-based

component plays a supportive role; or a balanced architecture -where the roles of both the

components are equal [79]. Another categorization of such a system can be on the basis of

integration being eficiency-improving or accuracy-improving [55]. In efficiency-improving

integrations, cases and rules are derived from each other, and the efficiency of the integrated

system exceeds that of using cases or rules alone. Those that are dependent can be further

classified according to which knowledge source was derived from which. Usually most such

integrations have cases derived from rules; cases are records of how rules were applied to

particular situation encountered previously. In accuracy-improving systems, cases and rules

are independent, which once integrated yield higher accuracy. The primary motivation

behind such systems is to increase accuracy, by tapping into as many knowledge sources as

possible, and incorporating their strengths.

Successful examples can be found on the integration of CBR with other techniques in a wide

array of fields [79], [55], [69], [73].

Our approach uses a hybrid framework composed of a model-based and a case-based com-

ponent. The principles discussed above for a general CBR hybrid and a specific RBR-CBR

hybrid can both be applied to our approach. The proposed approach is explored further in

the following Section.

8.2 Our Approach: Integrating CBR into the Framework

This section explains how we incorporate case-based reasoning into our existing framework.

Section 8.2.1 discusses the need for integration of case-based reasoner with a model-based

reasoner. In order to do so, we first provide a high-level ASM specification of a generalized

abstract reasoner in Section 8.2.2. This abstract reasoner can then be instantiated to a

concrete reasoner for a given problem, as per the need of the application; in Section 8.2.3,

we instantiate the abstract reasoner for solving the problem of path planning.

CHAPTER 8. REASONING AND LEARNING

8.2.1 A CBR-MBR Hybrid System

We use a hybrid system which is an integration of a Case-Based Reasoner (CBR) and a

Model-Based Reasoner (MBR), to emulate the decision making process of the person agent.

Typically, each kind of problem - path finding, selecting targets - will have its own CBR

and MBR components. For the problem of path planning, the model-based component is

called the path explorer and is discussed in Chapter 9, and the case-based component is the

case-based reasoner being discussed in this chapter.

The role of CBR is analogous to humans solving problems by remembering and recollect-

ing past experiences stored in their memory. The role of MBR is analogous to humans

explicitly solving problems right from scratch, this thus typically represents an algorithmic

computation.

The relation between the two components is hierarchical in nature. Typically, the case-

based reasoner is called first to provide a solution; if a satisfactory solution is not returned,

the case-based component in conjunction with the model-based component is invoked; and

as the last resort the model-based component solely is invoked. However, the hierarchy is

not fixed for all person agents, and depends on their personal preferences (stored in profile).

The main idea is that human reasoning is analogous to a process where we first try to solve

new problems by recollecting past experiences; if this proves futile we try to reuse and adapt

similar problem in hope of getting a solution; and only if this too proves futile, do we try to

explicitly solve the problem from scratch using some generalized knowledge. Thus, model-

based component and case-based component have complementary strengths - model-based

systems use generalized knowledge to assist in solving a new problem; case-based systems

on the other hand, store past experience derived from this knowledge as specific episodes for

individual problem solving. The cases can then be seen as specific applications of general

knowledge.

For example, a person wishing to travel from home to work already 'knows' the path he

is going to take since he has been taking this path for many years; he does not explicitly

'solve' the problem of which path to take, he merely recollects from memory the old path

taken, and treads on it. On the other hand, the same person traveling from home to a new

restaurant opening, first tries to see if he knows the path to this restaurant, or a similar

old path that when modified a bit will take him to this restaurant; if not, the person might

CHAPTER 8. REASONING AND LEARNING 102

recollect a point close enough to the restaurant, and then use a m a p to compute the rest of

the path. In the worst case, when the person has no clue about how to get here, he opens

a m a p to calculate the entire path.

This process of recollecting the path from memory is similar to using the CBR of the hybrid

system, recollecting from memory in conjunction with using the map corresponds to using

the MBR and CBR together, and using the map for the entire path is similar to using the

model-based component solely.

8.2.2 High-Level Specif icat ion of an .Abstract CBR

In this section we devise a high-level ASM specification of an abstract case-based rea-

soner. The reasoner is abstract in the sense that it is a generalized reasoner independent of

any application or domain-specific requirements. The reasoner uses powerful abstractions

for processes that otherwise require sophisticated algorithms and are application-specific.

Step-by-step refinements of this generic reasoner can be used to build a concrete, specialized

reasoner for a given problem and domain.

To the best knowledge of the author, there has been no prior attempt in establishing a

formal semantic specification of a case-based reasoner. Thus, this sub-part of our work in

itself forms an original research contribution.

We describe the case-based reasoning process in a step-by-step manner, adapted from pop-

ular literature [66] [I] [65], and alongside show the respective formal ASM specification.

Top-Level Architecture

First and foremost, a case-based reasoner has a case base, which is the repository or the

library of all past experiences/cases. Given that there is a new pmblem to solve, the basic

cycle of a case based reasoner is a four-step sequential process. The Retrieve phase retrieves

a case from the case base that best matches the problem; this case gives the ballpark solution.

The Reuse phase simply reuses or adapts the retrieved solution (ballpark solution) to better

suit the problem description; this is the final solution that is returned to the user. The

Evaluate phase takes external feedback from the user (system) of applying this proposed

solution to the problem, assesses the outcome of selecting this case as a potential solution,

determines if the solution was faulty, and repairs it if required; this forms the repaired

CHAPTER 8. REASONING AND LEARNING 103

solution. Lastly, the Retain phase extracts new information embedded in the external

feedback, and integrates this extracted information into the case base. Each of the above

four top-level phases can be broken down into a number of sub-tasks. Figure 8.1 illustrates

the CBR process.

PROBLEM

FEEDBACK

(identify features, match, rank, 1 -
Ballpark Solution

I

+
Final Solution

(analyze feedback,

Repaired Solution
I p""^"

(extract, index, insert)

(Case Content,
Case Index,
Case Outcome,
Storing) L

Extracted
Info
_____I

Figure 8.1: Case-Based Reasoning Process.

As is clear from the above description, the phases Retrieve and Reuse form the pre-solution

phase that computes a solution for the given problem; the phases Evaluate and Retain form

the post-solution phase that performs supplementary tasks once the solution has been pro-

posed and its feedback received. Therefore, for modularizing the above functional units,

we decompose the working of the case-based reasoner into two modules. The first is the

case-based reasoner itself that handles the functionality of retrieve and reuse. The second

module is the Post Solution Module, that handles the functionality of evaluate and retain.

The Post Solution Module is a component of the CBR, and is invoked by the CBR once a

solution has been proposed. The main idea behind this break-down is the fact that once a

CHAPTER 8. REASONING AND LEARNING 104

solution has been proposed, the Post Solution Module can work independent of the CBR;

in particular it may take months or years for some feedbacks to be made available (e g

treating a cancer patient) and under these circumstances the working of the CBR should

not stop.

Based on the above description, we come up with basic data structures used in the formula-

tion of CBR (Spec 8.1). The CBR and Post Solution Module are represented by ASM agents

that have an associated program, and the Post Solution Module operates asynchronously

w.r.t the CBR.

. :
; /
:! lhsic C: I311 I)c.finit.ions
!/ 1')oluiiiu~
domain CBR
domain POSTSOLMODULE
domain CASE
domain PROBLEM
domain SOLUTION
AGENT = POSTSOL-MODULE U CBR / I ASl~l Agent

, / Mttii~. U 3 R FII~~.CI.IOM
caseBase : CBR -+ CASE - Set
postSolModule : CBR -+ POST-SOL-MODULE
ballParkSolution : CBR -+ SOLUTION
finalSolution : CBR -+ SOLUTION
problem : CBR -+ PROBLEM

Spec 8.1: Basic Definitions for Abstract CBR.

Based on the above algebraic specification, we can show the CBR process to be as depicted

in Spec 8.2. The associated CBR phases are represented by abstract ASM rules viz: R E

TRIEVE and REUSE. We split the working of the CBR into four modes, collectively called

cbrMode - in the idle mode, the signaling mechanism is used to trigger the fact that a new

problem needs to be solved and the mode then changes to retrieve; retrieve mode calls the

abstract function RETRIEVE, which sets the ballparkSolution, and changes the mode to

reuse; reuse mode calls the abstract function REUSE, which sets the finalSolution and

changes the mode to done; the done mode signals the user (system) that the problem has

been solved along with providing the final solution, and also triggers the associated Post

Solution Module, which once signaled starts working independently.

CHAPTER 8. REASONING AND LEARNING

1 i , :
1 I C131t I'rogra~rl
/ / l.)dii~itioris
domain CBR-MODE = {idle, retrieve, reuse, done)
cbrMode : CBR -+ CBR-MODE
:/ 1 ~ 1 l l C

CBRPrograrn =
case cbrMode of

idle -+

onsignal s : NEWPROBLEM
problem(se1f) := problem(s)
cbrMode := retrieve

retrieve -+

Tliis wi,s i.lic t) t~l lI '~irkS(:~I~~ti~~ri ' ! :l'his
/ / aers tllc c:brNotl~~ LO rcuw
RETRIEVE(se1f)

reuse -+

// 'This scts t.hv firialSolution
// 'This sets (,hc, c:brMotlc to ciol~c:
REUSE(self)

done -+

;/ (.riggt:r [.lie l 'osl.Sol~~Iotl~~1 to st.ar! r~uii~ii ig in parallel
trigger s : INIT, postSolModule(self)
// Smtl the. solution Imck t o t:hc usor.
trigger s : PROBLEM-SOLVED, user(se1f)

solution(s) := f inalSolution(se1f)
cbrMmode := idle

Spec 8.2: Abstract CBR Program

Next, we refine the abstract definition of the domain CASE and the rules RETRIEVE and

REUSE.

Case Representation

A case-based reasoner has a case-base, which is the repository or library of all past experi-

ences or cases. A case can be defined as a piece of knowledge, that records past experiences

of the reasoner in a given context, and also decides the future behavior of the reasoner based

on the knowledge it contains.

Abstractly speaking, a case should have the following three constituents: (1) Problem De-

scriptors: the state of the world when the episode recorded in the case occurred. This can

CHAPTER 8. REASONING AND LEARNING 106

be also be seen as the index vocabulary of the case. (2) Solution: the solution to the problem

the case stores, or the method by which the solution was constructed. (3) Outcome: the re-

sulting state of the world after the solution was applied to the problem. This usually records

the success or failure of the proposed solution based on the external feedback provided by

the user.

Based on the above information, we can now refine the abstract domain CASE to include

these three constituents (Spec 8.3).

(hx R.e~)l.(i~(:~.~t.zlt;ioii

domain CASE-Index
domain CASE-Content
domain CASEOutcome

/ r I;'l~ric.liou oil C4SE
caseIndex : CASE + CASE-Index
caseContent : CASE -+ CASE-Content
caseOutcome : CASE + CASE-Outcome

Spec 8.3: Refining the Abstract Domain CASE

The organization and indexing of the case library is crucial as it determines the retrieval of

the right case at the right time.

The indexing problemis the problem of making sure that a case is assigned appropriate

labels, so that the right case is retrieved at the right time. Deciding on an index vocabulary

is a crucial task. An index decides on the usefulness of a case in a given context. Indexes

can represent surface features or abstract derived features.

The contents of the case can be organized as an attribute-value (index-value) pair, as a

hierarchy of part-subpart relationships or other sophisticated mechanisms may be used.

As the case library becomes large, efficient retrieval becomes a bottleneck and storage mech-

anisms of hash tables, multi-level index trees etc may be employed.

Clearly, all the aforementioned issues are implementation details that need to be given due

thought at the instantiation stage of the abstract reasoner, and thus not further discussed

here. We address some of these issues while instantiating a concrete reasoner in Section

8.2.3.

CHAPTER 8. REASONING AND LEARNING

Retrieve

In the abstract CBR, the retrieve phase was represented by an abstract ASM rule called

RETRIEVE. We now refine this abstract rule to the next level of detail, although it is still

based on abstract functions (Spec 8.4). The overall responsibility of this phase is to find

cases in the case base that are similar to the current problem and return a potential solution,

called ballpark solution. In this light, the retrieval process can be further broken down into

sub-tasks, and each sub-task is represented by a mode.

1 ! --
: :

11 I{yy{, 1 I<
i/ Tlcfinitions
:

domain RETRIEVE-MODE - {idle, i d e n t i f y , match , r a n k)
retrieveMode : CBR -+ RETRIEVEMODE
identifiedIndex : CBR -+ CASE-Index
matchedCases : CBR -+ CASE - Se t
// Itlllc.
RETRIEVE(se1f : CBR) =

case retrieveMode of
idle -+

retrieueMode := i d e n t i f y
i d e n t i f y -+

// ' h is sck i itloi~fific:cilntl~:x
IDENTIFY(self,problem(self))
retrieveMode := match

ma tch 4

// 'L'his sets u1atchcdC8,sc~s. h s e d on icicrilihdIndex
MATCH(self, identi f iedIndex(se1f))
retrieueMode := rank

rank -+

/; 'Tl~is s~t:s tl:~: hllparkS0111t ion: bastrtl on t~latcl~.c.dCascs
RANK(self, matchedCases(se1f))
retrieueMode := idle
cbrMode := reuse

Spec 8.4: Refining the Abstract Function RETRIEVE.

The idle mode simply enables the i d e n t i f y mode. The identify mode calls the ab-

stract function IDENTIFY, that identifies the relevant indexes (features/descriptors) of

the problem description and sets i d e n t i f i e d l n d e x ; the mode is then changed to m a t c h .

CHAPTER 8. REASONING AND LEARNING 108

The match mode calls the abstract function MATCH that matches the identified in-

dexes (identi fiedIndexes) of the current problem against the indexes of the existing cases

(caseIndex) in the case base and sets matchedCases; the mode is then changed to rank.

The match can be an exact match or a partial match. Finally, the rank mode calls the

abstract function RANK, that uses some pre-defined metric to rank the matched cases

(matchedCases) and proposes the case with the highest rank as a ballpark solution (ball-

parkSolution). This mode also changes the cbrMode to reuse and the retrieveMode to

idle; this thus implies that the retrieve phase has completed and the reuse phase should be

invoked.

Reuse

We now refine the abstract function REUSE to the next level of detail; albeit still abstract.

The responsibility of the reuse function is to return the final solution, based on the ballpark

solution (Spec 8.5). This consists of either re-using the ballpark solution as is or adapting

it to better suit the current problem. We achieve this by associating three explicit modes

with the REUSE function - idle mode checks the predicate iscopy to determine whether

the ballpark solution (ballparkSolution) can be copied as is or needs to be adapted, and

consequently changes the mode to either copy or adapt. The copy mode simply returns the

ballpark solution as the final solution (finalSolution). The adapt mode uses an abstract

function ADAPT to modify the ballpark solution into a final solution. Both the modes,

copy and adapt, change the cbrMode to done and the reuseMode to idle, implying that the

Reuse process is over and that the CBR can proceed with the next phase.

CHAPTER 8. REASONING AND LEARNING

I I 1)cfiriitionr
domain REUSEXODE - {idle, copy, adapt)
reuseMode : CBR -+ REUSEXODE
iscopy : CBR -+ BOOLEAN
/ , l l l l l~!
REUSE(self : CBR) =

case reuseMode of
idle -+

if isCopy(se1f) then
reuseMode := copy

else
reuseMode := adapt

COPY -+ - -

f inalSolution(self) := ballparkSolution(self)
reuseMode := idle
cbrMode := done

adapt -+
3 , -

, 1 I'his st>th iinalSoluliol~. h~ adaptillg t l i ~ l) a l l p ~ ~ i l ~ Solul io i~
ADAPT(self, ballparkSolution(selj))
reuseMode := idle
cbrMode := done

Spec 8.5: Refining the Abstract h n c t i o n REUSE.

Post Solution Module

The Post Solution Module is a component of the CBR that handles the Evaluate and Retain

phases of the CBR Process. It is defined as an ASM agent (POST-SOLNODULE), which

once triggered by the CBR works asynchronously with respect to the CBR. The overall

working of the Post Solution Module includes recording the case proposed as a solution

as an unevaluated case, and waiting for the external environment to provide the feedback

for this unevaluated case. Based on the feedback received, the Post Solution Module then

analyzes and repairs the unevaluated solution; this is handled by the Evaluate phase. Once

the unevaluated solution is repaired, the case base is then updated with this new repaired

solution and other extracted information that is derived from the external feedback; this is

handled by the Retain phase.

Based on the above description, we come up with the basic definitions of the Post Solution

CHAPTER 8. REASONING AND LEARNING

Module (Spec 8.6).

1 ,
, I l)t~linitio~is for 1'OS'L'-SO1.-1ZOI)I;LE
domain FEEDBACK
domain UNEVAL-CASE

, ; / / 'F~ulctions 011 l'ostSol3~Iot:l~llc
parentCBR : POSTSOLMODULE + CBR
unevalcaseset : POST-SOLMODULE + UNEVAL-CASE - Set
/ / Auxi1ial-y Fn~lctiolis
unevalcase : POSTSOL-MODULE + UNEVAL-CASE
addAsUnevalCase : POST-SOLMODULE + BOOLEAN
integrateFeedback : POSTSOL-MODULE + BOOLEAN

Spec 8.6: Basic Definitions for POST-SOL-MODULE.

The abstract domain UNEVAL-CASE represents a case that has been proposed as a solution

but for which the feedback is not yet available, and the function unevalCaseSet represents

a set of all such cases. UNEVAL-CASE can be refined to hold basic information that

is required for storing it and later retrieving it, like the associated problem, the proposed

solution, associated feedback, the repaired solution derived by repairing the proposed solution

based on feedback, the new information extracted from the feedback (Spec 8.7).

' f

domain EXTRACTEDJNFO
unevalProblem : UNEVAL-CASE + PROBLEM
unevalSolution : UNEVAL-CASE + SOLUTlON
feedback : UNEVAL-CASE + FEEDBACK
repairedsolution : UNEVAL-CASE + SOLUTION
extractedInfo : UNEVAL-CASE + EXTRACTEDJNFO

Spec 8.7: Refinement of UNEVAL-CASE.

Based on the above definitions, the working of the POST-SOLMODULE as given by its

Program is depicted in Spec 8.8'. The associated phases are represented by abstract ASM

'Only relevant portions are shown here.

CHAPTER 8. REASONING AND LEARNING 111

rules viz: EVALUATE and RETAIN. The process is a sequence of four steps, represented

by modes.

-

-

/ / : . I'osi. Solut:ioli Mc)d111a Program --
// 1'1t.f nitions
domain POSTSOL-MODE - {idle, evaluate, retain, done)
psMode : POSTSOLMODULE -+ POST-SOLMODE

;: :y{,,llc
i j

POSTSOL-MODULE-Program -
case psMode of

idle -+

onsignal s : INIT
if addAsUnevalCase(se1f) then

extend UNEVAL-CASE with newcase
Fill assoc.isi.etl info ill the new mw. i i

add newcase to unevalCaseSet(self)
onsignd s : FEEDBACKAVAILABLE

choose x in unevalCaseSet(self) with match(x, s)
/ / Scts unc~'alC~asc~ with x arid its fc tcd l)xk from er~viror~~r~cwc.

if none
extend UNEVAL-CASE with unevalCase

/ / Fill associi~t.ittl i r h iutn ~~ricvalCasc:.
:

add uneva2Case to unevalCaseSet(self)
if integrateFeedback(s) then

psMode := evaluate
else

psMode := done
evaluate -+

EVALUATE(self) / / Sots rcpairc>dSol~~t.iuu. psllodct 1.0 :H.et.ai.n
retain -+

RETAIN(se1f) / / Sot:: t h c psMode to tlo~it:.
done -+

remove unevalCase(self) from unevalCaseSet(self)
psMode := idle

Spec 8.8: P O S T S O L N O D U L E Program.

In the idle mode, the module checks for two kinds of signals. The signal INIT triggered by

the associated CBR signals the fact that a solution has been proposed for the given problem,

upon which the module calls addAsUnevalCase, specified as an abstract derived function,

which determines whether the proposed case gets stored as an unevaluated case along with

CHAPTER 8. REASONING AND LEARNING 112

all associated information, or not. The signal FEEDBACK-AVAILABLE is triggered by

the external environment (via the CBR) when the feedback for an existing unevaluated case

or a new feedback is available. Upon this signal the corresponding case is then retrieved

from the unevalCaseSet and its feedback recorded; if there is no match for such a case,

i.e the feedback being reported is an independent one, a new unevalCase is created with

all associated information and stored in the unevalCaseSet. Now, the abstract derived

function integrateFeedback is checked to determine whether to proceed with integrating

this feedback into the case-base; if yes, the mode changes to evaluate; if no, the mode

changes to done2. The evaluate mode calls the abstract function EVALUATE to repair

the unevaluated solution based on feedback, which sets repairedSolution and changes the

mode to retain. The retain mode calls the abstract function RETAIN, which extracts new

information from the feedback by setting extractedIn f o. It then integrates the repaired

solution and the extracted information into the existing case base, and changes the mode to

done. The done mode removes this unevaluated case from the unevalCaseSet, since this

case has now been successfully evaluated, and changes the mode back to idle.

Evaluate

We now refine the abstract function EVALUATE as shown in Spec 8.9. The overall re-

sponsibility of the evaluate function is to analyze the feedback provided by the external

environment and repair the unevaluated solution if required. This is achieved by associat-

ing four modes with the EVALUATE function, collectively called evaluateMode. The idle

mode simply changes the mode to analyze. The analyze mode calls the abstract function

ANALYZE, which examines the feedback and determines whether repair is indeed needed,

sets the repairNeeded predicate accordingly, and changes the mode to check. The check

mode checks the repairNeeded predicate and changes the mode to repair if true. If false,

the unevaluated solution (unevalSolution) is returned as the repaired solution (repaired-

Solution); the mode is changed back to idle, and cbrMode is set to retain to invoke the

next phase Retain. The repair mode calls the abstract function REPAIR, which repairs

'Generally, in the CBR life cycle, both the predicates addAsUnevalCase and integrateFeedback are
true, meaning that the proposed solution is always stored as an unevaluated case, and its feedback, when
available, is integrated into the case-base. However, in the spirit of being abstract, we give the designer the
flexibility to do otherwise.

CHAPTER 8. REASONING AND LEARNING 113

the solution and updates unevalSolution with repaired solution. It then changes the mode

to a n a l y z e , which determines if the repaired result is satisfactory and performs recursive

repairing until an acceptable result is reached.

/ ' ---- EYA1'LT-u I3 --
,!' Ihtir~it ioi~s

domain EVALUATE-MODE - {idle, analyze, check, repair)
eualuateMode : POST-SOLMODULE + EVALUATEMODE
repairedNeeded : POSTSOLMODULE + BOOLEAN

,I R l l k

EVALUATE(se1f : POSTSOLMODULE) -
case eualuateMode of

idle +

eualuateMode := analyze
analyze +

ANALYZE(self, uneualCase) / , I Yet5 rcyairScetlcd 1)reciicale.
eualuateMode := check

check +

if repairNeeded(se1f) then
eualuateMode := repair

else
repairedSolution(uneva2Case) := uneualSolution(uneva2Case)
eualuateMode := idle
mode := retain

repair +

REPAI R(self, unevalCase) ,': Lpdatc.: t l ~ uiic~alSolut iuu(~unt:vK!;lse).
eualuateMode := analyze ,',' litxursivclv repillr sol. uutil sa~isfietl.

Spec 8.9: Refining the Abstract Function EVALUATE.

The Evaluate phase ensures that the reasoner is able to evaluate its performance and become

more efficient with time.

Retain

We now refine the abstract function RETAIN used in the POSTSOLMODULE. This phase

incorporates new knowledge available from the problem-solving episode into the case base.

In particular, by storing the outcome (success or failures) of the proposed solutions, it can

lead to positive or negative reinforcement learning. Every time a problem is solved, the case

CHAPTER 8. REASONING AND LEARNING

base is updated. This step also leads to Learning in a case-based reasoner.

We do so by associating three modes with this function. The idle mode simply enables

the extract mode. The extract mode calls the abstract function EXTRACT, that decides

which information from the unevaluated case and feedback to retain, and in what form

to retain it; the mode is then changed to integrate. The integrate mode then calls the

abstract function INTEGRATE to integrate the extracted information into the case base.

Integration can be done by either inserting a new case, or by updating the existing cases.

It then changes the mode back to idle and the cbrMode to done.

domain RETAINMODE - {idle, extract, integrate)
retainMode : POST-SOLMODULE -+ RETAINMODE
// Rule
RETAIN(se1f : POSTSOL-MODULE) =

case retainMode of
idle -r

retainMode := extract
extract -r

EXTRACT(self, unevalcase) / / Sets estractctllrifo.
retainMode := integrate

integrate -+
, #

j , Intcgratcs t.kw cxtrectcd to tllo C:asc:'Rasc?.
INTEGRATE(self, extractedln f o(uneva1Case))
retainMode := idle
cbrMode := done

Spec 8.10: Refining the Abstract finction RETAIN.

This completes the formalization of the Abstract Case-Based Reasoner. The next step in

instantiating a Concrete Reasoner is to refine the abstract functions: IDENTIFY, MATCH

and RANK in the function RETRIEVE; ADAPT in function REUSE; ANALYZE, REPAIR

in the abstract function EVALUATE; EXTRACT and INTEGRATE in function RETAIN.

These functions are typically algorithmic in nature and are determined by the nature and

need of the application domain. There exist sophisticated ranking algorithms, adaptation

algorithms etc that increase speed and efficiency [67], [82]. We produce simple refinements

of these function in Section 8.2.3 to instantiate a concrete reasoner for the path planning

problem of our application.

CHAPTER 8. REASONING AND LEARNING

8.2.3 Instantiation of Abstract CBR: Concrete CBR of SEM

In this section we use the abstract CBR as developed in the preceding sections and apply

data refinements to the abstract functions and abstract rules, to derive a concrete reasoner

for the navigation problem of the SEM. The resultant CBR is called the SEM-CBR and

forms the CBR component of the Space Evolution Module (SEM).

Such a step-by-step refinement of the abstract CBR into the concrete, also proves the sound-

ness and generality of the abstract CBR, and also shows the feasibility and the tractability

of achieving such a concrete model through refinements.

The SEM-CBR takes a problem that contains a source and destination, and the overall

responsibility of the CBR is to return the best path it contains in its case base from the

given source to the destination. This path is preferably a complete path, or if such a path

cannot be found, a partial path toward the destination. The SEM-CBR does not perform

any adaptation, and its post solution module does not evaluate and repair the proposed

solution, since these two tasks are not required in the intuitive logic of our problem domain.

Every time the SEM is in the pathplanning mode, a call is made to the CBR giving it a

problem to solve, and once the path has been traversed, a feedback for the traversed path

is made available to the CBR from the SEM mode pathCompleted. New information is

extracted from the feedback and integrated into the case base3 This ensures that the CBR

becomes more efficient and effective with time.

SEM-CBR is an instantiation of the abstract CBR, that refines its abstract functions

and rules followed by the keyword where. It is composed of a concrete post solution

module SEM-POST-SOLMODULE, that is an instantiation of its abstract counterpart

POST-SOLMODULE. SEM-POSTSOLMODULE refines the abstract functions and rules

of the abstract POST-SOLMODULE, followed by the keyword where. Spec 8.11 shows

some miscellaneous data structures that are refined. The abstract domain SOLUTION is

3However, not every problem is marked as an unevaluated problem whose feedback is awaited and not
every feedback that is made available is inserted into the case base. In case of a person abandoning the current
destination without completing it, an empty feedback is sent by the SEM function SendEeedback-To-CBR,
which is not integrated with the case base. This is checked by the function integrateFeedback. In case of the
influence factor weights being changed, although a new problem is sent, it is not inserted as an unevaluated
case since the problem is still the same of going from the same source to the same destination which already
exists as an unevaluated case. This is determined by the function addAsUnevalCase which checks if a similar
problem already exists in the set of unevalcase or not.

CHAPTER 8. REASONING AND LEARNING 116

refined to a PATH which is a sequence of Nodes, and the owner of the CBR is refined to be

the space evolution module SEM.

/ ,' - C'ONCRE'LT DOSLZINS
domain SEM-CBR CBR where ...
domain SEMPOST-SOLMODULE r POST-SOLMODULE where ...

domain PATH = NODE - Seq
SOLUTION = PATH
OWNER = SEM

Spec 8.11: Concrete CBR and POSTSOL-MODULE.

The abstract domain CASE holds the information for the CASE-Index, CASEContent and

CASE-Outcome, which are refined as shown in Spec 8.12.

C'OSC'ItE 1 E

source : CASE-Index -+ NODE
dest : CASEIndex -+ NODE
timeType : CASE-Index -+ TIMETYPE
date : CASE-Index -+ DATE

CASE-C'o~ilciil
path : CASE-Content -+ PATH

i I C:.\ST;'.-Outco~rw
frequency : CASEOutcome -+ VALUE
reznforcement : CASE-Outcome -+ REINFORCEMENT
trip&ortance : CASE-Outcome -+ TRIP-IMPORTANCE

Spec 8.12: Refining the Abstract Domain CASE.

The abstract domain PROBLEM holds all the information about the problem posed to the

CBR. It holds the source and destination node of the path to be computed (source, dest),

the time when this problem was given to the CBR (time), and the parameter closeness

which decides by how may hops the partial path can be away from the final destination.

CHAPTER 8. REASONING AND LEARNING 117

The abstract domain FEEDBACK stores the actual path taken by the person (talcenpath).

The two domains are formulated in Spec 8.13.

,

/ 1 - 1 ' ~ ? 0 1 ~ 1 ~ 1 ~ ~ 1 -- --

source : PROBLEM + NODE
dest : PROBLEM + NODE
t ime : PROBLEM + TIME
closeness : PROBLEM + INTEGER

Spec 8.13: Refining the Abstract Domain P R O B L E M and FEEDBACK.

Next, we refine the abstract rules. We start with the abstract CBR rules, and then move

on to POST-SOLMODULE rules.

The abstract rule IDENTIFY is responsible for identifying the problem descriptors from the

given problem (problem). These descriptors then help in retrieving the appropriate cases, by

matching them against the case indexes. The task of identifying these descriptors is simple,

as the structure of the problem already contains them; the contents of the identi f iedIndex

(source, dest etc.) are then merely copied from the problem (Spec 8.14)

I !
i I Y
IDENTIFY(se1f : CBR,problem : PROBLEM) =

source(identi f i ed lndex) := source(prob1em)
dest(identi f i e d l n d e z) := dest(prob1em)
t imeType(ident i f i ed lndez) := t imeType(t ime(prob1em))
date(identi f i ed lndez) := date(time(prob1em))

where
ident i f i ed lndez c ident i f iedIndex(se1f)

Spec 8.14: Refining t he Abstract Rule IDENTIFY .

The abstract rule MATCH, refined in Spec 8.15 is responsible for matching the identified

indexes against the indexes of the cases, and storing all those cases that fulfill the matching

CHAPTER 8. REASONING AND LEARNING 118

criteria as matched cases matchedcases. This is basically a two step process. First, the case

base is checked for cases that yield an exact match, i.e cases that store complete paths are

retrieved. The criteria for an exact match as performed by the derived function exactMatch

is that the source and destination of the identified index (identi fiedlndex) are the same

as the source and destination of the case index(caseIndex(c)). All such cases are added

to the set of matched cases. However, if no exact matches are found, a search is made for

partial paths, i.e a path whose destination is 'close enough' to the final destination. The

parameter closeness gives the maximum number of hops by which the destination of the

partial path can be away from the final destination. The case base is now searched for such

cases, starting with the closeness of 1 and monotonically incrementing the number of hops;

as soon as matched cases are found for a given level of hop, the next increment of the hop

is not made, i.e preference is given to paths that are closer to the final destination. The

function partialMatch performs a check for partial paths by comparing the size of the best

path from the tail node of the retrieved path to the final destination, against the set number

of hops, such that the size is either less than or equal to the number of hops.

forall c E caseBase(se1f) with exactMatch(c, identi f iedIndex)
add c to matchedCases(se1f)

seq
if matchedCases(se1f) = {) then

let hops = 1 in
while matchedCases(se1f) = {) /\ hops < closeness(problem(se1f))

forall c E caseBase(se1f) with partialMatch(c, identi fiedIndex, hops)
add c to matchedCases(se1f)

hops = hops + 1

where
exactMatch(c, identi f iedIndex) - source(caseIndex(c)) = source(identi f iedlndex)

/\ dest(caseIndex(c)) = dest(identi f iedIndex)
partialMatch(c, identi f iedIndex, hops) = source(caseIndex(c)) = source(identi f iedIndex)

/\ Size(bestPath(dest(caseIndex(c)), dest(identi f iedIndex))) <= hops

Spec 8.15: Refining the Abstract Rule MATCH.

The abstract rule RANK ranks all the cases is the set of matched cases and returns the one

CHAPTER 8. REASONING AND LEARNING 119

with the highest rank as the ballpark solution ballparkSolution. The ranking is executed

by first sub ranking the set of matched cases (matchedCases) by the function DoSubRank,

and then selecting the case with the latest date (highestDate) as the ballpark solution. The

I ! . - - - '2L-K / / h.!. .

RANK(self : CBR, matchedCases : C A S E - Se t) -=
DoSubRank(se1f)
seq
choose c in subrankedCases(se1f) with highestDate(c)

ballparkSolution(self) := path(caseContent(c))
where

highestDate(c) V x (x E subrankedcases) + date(caseIndex(c)) 2 date(caseIndex(x))

DoSubRank(self : CBR) -
forall c in positiveCases with highestSubRank(c)
add c to subrankedCases(se1f)

where
highestSubRank(c) - V x (x E positiveCases()) + subRank(c) > subRank(x)
positiveCases() -= {all n jn E matchedCases(self)

A rein f orcement(caseOutcome(c)) # negative))
subRank(z) = weightCost(se1f) * CostValue(z)

+ weightOutcome(self) * outcomeValue(z)
+ weightTime(se1f) * r ightTime(z)

Spec 8.16: Refining the Abstract Rule RANK.

DoSubRank function performs sub ranking only on those set of matched cases that have a

positive outcome, i.e those cases that have a reinforcement or experience associated with

them that is not negative. This thus incorporates both positive and negative reinforcement

learning in our navigation algorithm. A sub rank is then assigned to each of the positive

cases, which is a weighted sum of costValue, outcomeValue and rightTime. Cost Value

is the summation of perception attributes PER-EDGE-ATTR (distance, road type, traffic

etc.) of the constituent edges of the path, as given by the SUBJ-ENV of the person. A point

to be noted is that in calculating the costvalue of the path, the current real-time local infor-

mation of the edges adjacent to the person's current position are considered. Outcome Value

can typically be the summation of the activity attributes AC-EDGE-ATTR (frequency, re-

inforcement, trip importance) of the constituent edges, as given by the SUBJ-ENV of the

person; or it can be derived from AC-EDGE-ATTR values stored in the CASE-outcome,

CHAPTER 8. REASONING AND LEARNING 120

which are the values of the path as a whole. Right Time is a boolean value that returns a

true if the case path was taken in the same time interval (morning, afternoon, evening) as

the time interval of the problem, or 0 otherwise. Tacit representation of RANK is given in

Spec 8.16, for details of function costValue, outcomeValue, rightTime, refer to AppendixA.

We do not perform any adaptation of the ballpark solution in the SEM-CBR. This is achieved

by the derived function iscopy that returns a value true.

Next, we refine the abstract function and rules of the abstract post solution module,

POST-SOLMODULE. The concrete post solution module is called SEM-POST-SOL- MOD-

ULE. The abstract functions addAsUnevalCase determines whether the new problem posed

to the CBR gets stored as an unevaluated case whose feedback is then awaited. In case of

the influence factor weights being changed, although a new problem is sent, it is not inserted

as an unevaluated case since the problem is still the same of going from the same source

to the same destination, which already exists as an unevaluated case. addAsUnevalCase

performs this check (Spec 8.17).

integrateFeedback determines whether the feedback that is made available for an uneval-

uated problem is integrated into the case base. In case of a person abandoning the cur-

rent destination without completing it, an empty feedback is sent by the SEM function

SendEeedback-To-CBR, which is not integrated with the case base. This is checked by the

function integrateFeedback (Spec 8.17).

;:

!! a(:l(iAxl71lc~.alC~se
addAsUnevalCase(se1f : POST-SOLMODULE)

choose x E uneualCaseSet(se1f) with uneualProblem(x) = pr~blem(~aren tCBR(se l f))
A uneualSolution(x) = solution(parentCBR(se1f))

return true
if none

return false
I / - i i i~lt,eg~atc?I;i,ot~bnck -

integrateFeedback(f a : FEEDBACKAVAILABLE)
if takenPath(externalFeedback(fa)) <> [I then

return true
else

return false

Spec 8.17: addAsUnevalCase and integrateFeedback.

CHAPTER 8. REASONING AND LEARNING 121

The abstract rule ANALYZE which decides whether the proposed solution needs repair or

not, by setting the predicate repairNeeded, sets it to false in the SEMPOST-SOLAIODULE.

The abstract rule EXTRACT extracts all the information that is made available from the

external feedback stored in the unevalCase, which basically is the path that the person

has taken. In order to extract all such information, the domain EXTRACTEDlNFO is

refined to be a set of CASES, so that it makes the integration of information into the case

base easier. From the path that the person traversed, a combination of other paths can be

derived, i.e we can compute its transitive closure; for e.g if a person went from A-B-C, it

also 'knows' the paths B-C, C-B-A . We calculate all such permutations using the function

GetAllPermutations, which returns a set of new paths newpathset. For each of these

paths, we then extract the indexes, content and outcome using the functions Extract-Index,

Extract-Content and Extract-Outcome respec. These functions perform simplistic work

and can be found in Appendix B. Each of these extracted cases is then added to the set of

extracted info. It should be noted that while we compute all possible permutations of the

taken path, we also have the option of computing all new paths created by concatenating

two paths that gives a path which hasn't been directly traveled on, but whose sub-paths

have been traveled on. This however produces sub-standard results as it can return paths

that are clearly not desirable and unintuitive, and hence we do not employ this technique.

i i ~~ EYTIl :\("I' . , : : r 1 . . ,A

EXTRACTEDJNFO - CASE - Set

EXTRACT(se1f : POST-SOLMODULE, unevalCase : UNEVAL-CASE) =
let newPathSet(se1f) + GetAlIPerrnutations(pathTaken(f eedback(uneva1Case))) in
' sct of all ~)c)ssil)lo paths.

forall path in newPathSet(self)
extend CASE with extractedCase

caseIndex(extractedCase) := Extract-l ndex(path)
caseContent(extractedCase) := Extract-Contentbath)
caseOutcome(extractedCase) := Extract-Outcomebath)
add extractedCase to extractedInfo(unevalcase(self))

Spec 8.18: Refining the Abstract Rule EXTRACT.

Finally, we refine the abstract rule INTEGRATE in Spec 8.19. This rule is responsible for

integrating all the extracted information extractedInfo into the case base. This can be

CHAPTER 8. REASONING AND LEARNING 122

done in two ways, either by inserting a new case or by updating an existing case with the

new information. For each extracted case in the set of extracted cases, a check is performed

to determine if this case already exists in the case base. This is done by the derived function

matchExists that returns true if the source, destination, path, and time type of the case

in the case base are all the same as the new extracted case. In this case the function

Updatecase is called to merely reset or update the relevant information of this existing

case to incorporate new extracted information. However, if no such case exists, then the

extracted case is inserted into the CBR as a new case.

'! 1X'rI 'x 13 11 l-1.:
INTEGRATE(self : POST-SOL-MODULE, extractedIn f o : CASE - Set) =

forall newcase in extractedIn f o(uneualCase(self))
choose oldcase from caseBase with matchExists(oldCase, newcase)

U pdateCase(oldCase, newcase)
if none

add newcase to caseBase

where
matchExists(oldCase, newcase) =

source(caseIndex(oldCase)) = source(caseIndex(newCase))~
dest(caseIndex(o1dCase)) = dest(caseIndex(newCase))~
timeType(caseIndex(o1dCase)) = tinzeType(caseIndex(newCase))~
path(caseContent(oldCase)) = path(caseCmtent(newCase))

caseBase - caseBase(.~arentCBR(self))

Spec 8.19: Refining the Abstract Rule INTEGRATE.

Chapter 9

Shortest Path Planning

The problem of Navigation is a complicated one, that in simple terms can be viewed as

moving an entity from source S to destination D by first deciding the different paths that

can be taken, evaluating the cost of taking these paths under given circumstances, choosing

the shortest (most suitable) path, and finally executing this theoretical route by actually

moving the entity.

Taking the shortest path or the path with least cost is a sub-problem of this bigger problem.

This chapter is devoted to analyzing shortest path algorithms and deriving one as per the

demands of our application. The algorithm presented here forms the Model-Based Reasoning

(MBR) component of the Space Evolution Module.

We survey some basic algorithms in Section 9.1 and present our approach in Section 9.2.

9.1 Shortest Path Problem

The shortest path problem is the problem of finding a path from source S to destination Dl

that has the least cost associated with it, where the cost parameters can be anything such

as distance, travel time, etc. Formally, this problem can be stated as follows [29]:

In a shortest-path problem, we are given a weighted, directed graph G = (V, E), with

weight function w : E -t R, mapping edges to real-valued-weights. The weight of path

CHAPTER 9. SHORTEST PATH PLANNING

p =< vo,vl, ..., vk > is the sum of the weights of its constituent edges:

The shortest-path weight from u to v is defined by:

{w(p) : u 3 v) if there is a path from u to v.
q u , v) =

otherwise.

A shortest path from vertex u to v is then defined as any path p with weight w(p) = 6(u, v).

Calculating shortest paths for a given graph can be discerned into the following categories:

one- to-one, one-to-some, one-to-all (single source shortest path) , all-to-one, all-to-all (all

source shortest path).

9.1.1 Shortest Path Algorithms

The field of shortest path algorithms is well-studied and entails decades of research and

experimentation. The shortest path problem is also one of the most fundamental Network

Optimization as well as Intelligent Transportation problems.

In [33] is a description of the most famous shortest path algorithm viz Dijkstra's Shortest

Path Algorithm. This greedy algorithm guarantees to find the optimal shortest path in the

given graph with non-negative edges in time O(n * n). There are several implementations of

this basic algorithm to improve time and space efficiency, using sophisticated data structures

of heaps, queues, buckets etc. Most other shortest path algorithms are variations of this

generic algorithm. A good description of the classical algorithms and their implementation

appears in [49].

There is a class of shortest path algorithms that use a form of Heuristic Search. These set

of algorithms such as A * have some estimate (heuristic) of how far from the goal any vertex

is. A* is the classical game algorithm that is most widely used in gaming and A1 [78]. These

algorithms work faster since the use of heuristic avoids looking in directions with fruitless

search. The construction of this heuristic function involves some overhead and should be

CHAPTER 9. SHORTEST PATH PLANNING 125

weighed against the yielded benefits. Although these algorithms do not guarantee to find the

most optimal path, under certain imposed conditions (of the heuristic function), optimality

can be achieved. One has to consider the trade-off between speed and optimality while using

this class of algorithms.

Liner Programming and Dynamic Programming techniques have also been explored in cal-

culating shortest paths [29]. Another genre of shortest-path algorithms is the Bi-Directional

Search, which entails computing a path from both origin and destination, and meeting in

the middle.

A survey of shortest path algorithms for dynamic graphs can be found in [62]. Path planning

is dynamic when the path is continually recomputed as more information becomes available.

Such algorithms mainly aim to optimize the creation, updation, and maintenance of the

associated data structures affected by graph updates, to ensure time efficient solutions.

Several surveys and experimental evaluations have been carried out to compare the perfor-

mance of different shortest path algorithms : classical and new.

In [26] , the authors carry an exhaustive study of 17 shortest path algorithms including

the Dijkstra's algorithm and its varying implementations. A number of simulated networks

with varying degrees of complexity are used. The results of their study suggest that there is

no universally best algorithm for all problems; however for graphs with non-negative edges,

Dijkstra's algorithm outperforms the rest.

Zhan and Noon 1751 test 15 of the 17 shortest path algorithms on 21 real road networks. In

their study, Dijkstra-based algorithms outperform other algorithms.

Based primarily on above two studies, Zhan 1961 identifies three fastest algorithms for real

road networks, two of which are Dijkstra based.

9.2 Our Approach: Proposed Shortest Path Algorithm

This section explains our approach for a shortest path algorithm, that is best suited to the

context of our application. This algorithm forms the Model-Based Reasoning component

of the Space Evolution Module (SEM). We start by providing an informal explanation of

the algorithm is Section 9.2.1, and subsequently the formal specification in ASM syntax in

Section 9.2.2.

CHAPTER 9. SHORTEST PATH PLANNING

9.2.1 Overview

The shortest path algorithm that we present reflects natural and intuitive decisions a person

makes while moving in an urban landscape. The algorithm depicts the path planning process

based on the fact that the person is given a road m a p of the underlying urban landscape,

which he uses for making decisions. The path taken might not be a globally optimal and

the best one, but it is a more natural and a good-enough one. The algorithm takes into

account the factors that are known to influence human path planning.

Typically, the following factors play an integrated role in influencing the path selection

process. We name these factors Inf luence Factors.

1. Distance - typically distance of travel is sought to be minimized.

2. Road Type - people tend to take major roads compared to minor roads.

3. N o . of Intervening S tops - people tend to take routes with lesser intervening stops.

4. Angle - generally people do not travel in the opposite direction of the destination, and

thus angle toward the destination is sought to be minimized.

5. B a f i c - people tend to avoid roads with heavy traffic.

6. Road Condi t ion - roads that are under construction, not well-made, dangerous to take

are certainly avoided.

7. Famil iari ty - people use familiar roads more often; a road taken once has higher

likelihood of being taken again. This corresponds to behavioral reinforcement learning.

8. Quali ty of Experience - people tend to take roads with which they associated positive

experiences, e.g if one gets robbed on a road, one would try to avoid that road. This

corresponds to positive o r negative reinforcement learning.

Some of these factors are stat ic - that typically do not change over time, and some dynamic

- those that may change over time. The Inf luence Factors are tabulated in Figure 9.1.

As described in Chapter 6, with each edge we associate a set of geographic attributes

GEO-EDGE-ATTR , the 'perceived' values of which form the SUBJBDGE-ATTR.

CHAPTER 9. SHORTEST PATH PLANNING

Angle Familiarity
Road Type Experience

Figure 9.1: Path Influence Factors.

Thus, the values for the factors distance, road type, trufic density, road condition come from

GEO-EDGE-ATTR of the GEO-ENV and PEREDGE-ATTR of the SUBJ-ENV.

The values for familiarity are derived from the attributes frequency, triplmportance and

intensity of Ac-EDGE-ATTR and AW-EDGEATTR. The values for experience are de-

rived from the attribute reinforcement of the AC-EDGE-ATTR. The values of all these

factors are person specific, and represent how different people 'perceive' the same environ-

ment. Thus, in this way, we incorporate subjective human perception in calculating their

respective preferred paths.

The factors angle and number of intervening nodes are dependent on the orientation and

length of the path and not dependent on edges solely, and hence are computed alongside by

the path finding algorithm.

With each factor is associated a Factor Weight, which decides the importance of that factor

in the overall edge preference. These weights reflect personal preferences and vary from

individual to individual. They may change dynamically during the course of travel. For

e.g, while starting a journey, minor roads are taken first to get on a highway, and once a

highway is taken, we keep traveling on it, and then revert to taking minor roads once closer

to the destination; thus the weight for road type changes with time.

The overall preference of an edge is then a weighted sum of all the aforementioned factors1.

When a person has access to a map, he or she has access to general knowledge about the

roads such as distance, directional orientation, # of intervening nodes, road type. In other

words, for the static influence factors, the navigator can easily get information from the

map. Generally, a navigator also has some a priori knowledge about the environment from

'The factor values are normalized to fall between an interval of 0-1, unless we wish to associate excep-
tionally high or low preferences to force an agent to take or avoid an edge respc. The factor values are also
relative to the length of the edge.

CHAPTER 9. SHORTEST PATH PLANNING 128

past experiences, such as traffic density, road conditions, familiarity, quality of experience.

In other words, for the dynamic influence factors, the navigator has partial knowledge about

the values based on past experiences, which may not correspond to real-time absolute values.

Thus, based on the information made available by opening a map (static attributes), and

past knowledge (dynamic attributes), one can easily compute potential routes from any

given source to destination. We name the preference of a person for such a path as Global

Path Preference.

In addition to global path knowledge based on past experiences, a person while moving

discovers real-time information about the roads - for e.g. a person might have thought

of Sam Street as being a low traffic street, but now while traveling on it, he/she discovers

there is a heavy traffic jam on it. Thus, the algorithm should also consider the real-time

local information that is discovered by the navigator as and when he/she moves on the

chosen path. The idea is to avoid taking roads with dense traffic once discovered on-the-fly,

by revising the previous path selection decision. In other words, for the dynamic influence

factors, the values can be revised to real-time absolute values once you are on that edge.

We incorporate this specialized, current knowledge about the roads in the algorithm as the

Local Edge Preference of an agent for that edge.

Hence, our navigation algorithm reflects a balance between Global Path Planning, and Real-

Time Local Negotiation.

CHAPTER 9. SHORTEST PATH PLANNING

Figure 9.2: Selecting a Path from Source S to Destination D

Assume a person wants to move from source S to destination D (Figure 9.2). The preference

of an edge e for a person agent a is defined as:

edgePreference(e, D) -
local Weight * 1ocalEdgePref (e, D)

+ globalweight * globalPathPref (e, D)

where

0 globalPathPre f (e, D) corresponds to Global Path Preference - preference of taking

a 'best' path from B to destination D. We use a Dijkstra like algorithm to compute

an all-pairs shortest path. The cost function is based on weighted sum of the influence

factor values, where the values of static factors (GEO-STATEDGE-ATTR) are

based on information made available from the map (GEO-ENV), and the dynamic

factors (SUB J-EDGE-ATTR) are based on past experiences (SUB J E N V) .

0 1ocalEdgePre f (e, D) corresponds to Local Edge Preference. It is a weighted sum of

all the Influence Factor values. For both the static and dynamic geographic factors

(GEO-EDGE-ATTR), the values are based on the current real-time values derived

from GEO-ENV as opposed to past learnt values. This gives the algorithm the

power to perform local negotiation.

0 The effect of Global Planning and Real-Time Local Negotiation in the overall edge

preference is controlled by the weights assigned to each type of preference, namely

global Weight and local Weight respectively. When global Weight is 0, the algorithm

becomes purely 'greedy'; this would be similar to using a random search that may

result in back-tracking and fruitless result. When both the weights are set to 1, the

algorithm becomes purely global in nature; this would be similar to using Dijkstras',

CHAPTER 9. SHORTEST PATH PLANNING 130

which guarantees a globally optimal path based on influence factors. A non-zero value

of both weights, makes the algorithm exhibits a combination of Global Planning and

Local Negotiation.

The algorithm can be seen as a combination of A* [78] and Dijkstra's [33] algorithm for

finding the shortest paths. The function edgePre f erence, looks similar to the one used in

A* algorithm where ZocalEdgePre f corresponds to the cost function and globa2EdgePre f

corresponds to the heuristic function. However, our algorithm is significantly different from

A* since the function globalEdgePref is an accurate estimate of the cost based on well-

defined influence factors. Also, A* is essentially global in nature, while our algorithm can

incorporate combinations of global planning and local negotiation, by playing with the

weights of globalweight and 1ocalWeight.

9.2.2 ASM Specification: Path Explorer Submachine

This section describes the ASM specification of the shortest path planning algorithm de-

scribed in the previous section. The process is represented by an ASM submachine, and for

simplicity we refer to it as Path Explorer Submachine, which represents the Model-Based

Reasoner (MBR) of the Space Evolution Module (SEM). Spec 9.1 gives the ASM specifica-

tion of the P A T H E X P L O R E R submachine at the highest level of abstraction.

The submachine has some abstract data structures associated with it, defined in the defi-

nitions section of the Spec; logically these are all stored in the volatile memory (see agent

architecture). These are refined later on. The submachine takes three parameters viz: the

S E M (sem) that it is a part of, the current node of the person which is the source of the

path to be computed (currentNode), and the destination of the path (destNode).

The function GLOBALRE-CALC of the submachine is the actual performer of all calcula-

tions required to compute a shortest path. The submachine merely uses the data structures

set by this function to return the shortest path. The function is detailed later.

The predicate readyToExplore is checked to determine whether the function GLOBAL-

RE-CALC has performed all the calculations or not. If not, the function is called and the

predicate is set to true. Once the predicate is true, the submachine 'chooses' an edge in the

set of all edges incident to the current node, that has the maximum value (maxPref) of

the edge preference, edgePre f .

CHAPTER 9. SHORTEST PATH PLANNING 131

! !
/ / i'nt 11 Exp1ol.w S ~ ~ l m a ~ l ~ i l i ~
// 1)c~Iinitiorl;; ,, I<c>pi ill '\:7(>lalilk! >ll>mory'
edgePref: SEM x EDGE x NODE + PREF-VALUE
readyToExplore : SEM + BOOLEAN
bestpath : SEM x NODE x NODE + PATH

, , Rllh!

GET-SUGGESTED-PATH~,,~,T,T(sem : SEM, currentNode : NODE, destNode : NODE) -
if readyToExplore then

choose edge in outInczdentEdges(currentNode) with maxPref(edge)
return concat(currentNode, bestPath(tail(edge), des tNode))

else
GLOBAL-RE-CALC
readyToExplore := true

where
maxprefledge) = Ve(e E outIncidentEdges(currentNode)

+ edgePref(sem, edge, destNode) > edgepreflsem, e , des tNode))
initialize : readyToExplore = false

Spec 9.1 : PATH EXPLORER Su bmachine.

The preference of an edge is defined using the equation of the previous section, and is

represented in the submachine as a derived function edgePre f (Spec 9.2).

As described before, global Weight(a) and local Weight (a) are the agent-specific (a) values

of weights for global planning and local negotiation; logically these can be seen as stored in

the 'Profile' of the agent.

globalPathPref is a derived function that stores the preference of the shortest path from

from the source which is the tail of the current edge e, to the dest, for an agent a. This

preference is based on the factor values derived from agent's past experiences. The values of

globalpathpre f are set by the GLOBALRE-CALC function. globalPathPre f represents

the Global Planning phase of the algorithm.

ZocalEdgePref is also a derived function, that gives the preference of the current edge e,

based on real-time current values of the factors. Although to calculate the preference of an

edge we don't need the destination, it is specified here as it is used for some other purposes,

explained later on. These two derived functions can be seen as stored in the 'Volatile

Memory' of the agent, since they re-computed with varying conditions. ZocalEdgePref

CHAPTER 9. SHORTEST PATH PLANNING

? ! !; r :dgc,~rc~f
/ / liopt in file'
global Weight : SEM + WEIGHT-VALUE
local Weight : SEM + WEIGHT-VALUE
/ / Kept i i : ~ '\~f>lii.t:ik~ 11cr110ry'
1ocalEdgePref: SEM x EDGE x NODE + PREF-VALUE
globalpathpref : SEM x NODE x NODE + PREF-VALUE

edgePref(a, e , dest) G

globalWeight(a) * globalPathPre f (a , tai l(e) , dest)+
localWeight(a) * 1ocalEdgePre f (a , e , dest)

Spec 9.2: edgePref Function.

represents the Local Negotiation phase of the algorithm.

The submachine finally returns the overall shortest path based on global planning and local

negotiation. This is the concatenation of the current node currentNode with the path from

tail node of e (the chosen edge) to the destination dest, as given by bestpath. bestpath is

set by the GLOBAL-RE-CALC function, and represents the path with the highest value of

globalPathPre f .

We now refine the submachine to the next level of detail, to define the derived functions

1ocalEdgePre f and globalPathPre f used above. In order to do so, we first specify the

Influence Factors that influence the path selection process (Spec 9.3).

d o m a i n INDUCEDEACTOR
d o m a i n FACTOR - SUBJEDGEATTR U INDUCEDEACTOR

,'; 111dnc~~i l-;lc.t or:,
numberOfStops : + INDUCEDEACTOR
angle : + INDUCEDEACTOR
,: lhcror L2cights kq)t in the '2<~latilc S l c n l o ~ ~ '
factorweight : SEM x FACTOR + FACTOR-WEIGHT

Spec 9.3: Influence Factors and Weights.

The domain FACTOR represents all the influence factors collectively. It is composed of the

CHAPTER 9. SHORTEST PATH PLANNING 133

subjective edge attributes SUBJEDGE-ATTR which represent the factors distance, road

type, road conditions, traffic, familiarity etc; and induced factors INDUCEDPACTOR

that don't belong to an edge but are the properties of the path taken, viz: angle, and # of

intervening nodes.

Furthermore, with each factor is associated a factor weight which determines the extent of

influence of that factor in the overall preference. The factor weights are agent-specific and

also dynamic with respect to time. For e.g. if a value 0 is assigned with the factor roadType,

this would mean the agent doesn't discern between major and minor roads; if the value is

changed to non-zero, this would mean the agent has preferences for road types. We associate

high preference values with major roads than with minor roads, and this gets reflected in

the overall preference value of the edge.

The derived function 1ocalEdgePre f can now be specified in terms of 1ocalFactorValue as

given in Spec 9.4. For local edge preference of an edge el we calculate a weighted sum of

all the influence factors. If the factor is a geographic attribute (GEO-EDGE-ATTR), and

the edge e is immediately adjacent to an agent's current position, the value of the factor

is derived from the geoEdgeAttr; meaning that the agent can 'see7 the current statistics

of the edge and counts on real-time values, rather than relying on values based on past

experiences only2. If the agent is not adjacent to edge e, or the factor being considered is

not a GEO-EDGEATTR (but a SUBJATTR) , the value of the factor is derived from

subjEdgeAttr; meaning the agent counts on past experiences only to calculate the preference

of this edge. For the value of angle, a triangle composed of head node of edge, tail node of

edge, and destination node is formed; meaning the preference of an edge takes into account

that the person moves toward the direction of destination, not opposite from it.

The function global PathPre f and best Path are set by the function GLOBALRE L'ALC.

GLOBALRE-CALC performs all-pairs shortest path computation on the given GEO-ENV

for all nodes. In computing such a path, the preference value considered for each edge

(gEdgePre f) is based on geoStaticEdgeAttr for the GEO-STATEDGE-ATTR and on

subj Attr for a11 other attributes. This is because exploring a path is analogous to planning

a path by having access to a road map. In such a case, the person can easily see and derive

'Here, the terms GEOEDGEATTR and PEREDGEATTR are used interchangeably, since they both
have the same constituents. Ideally, the value is not derived solely from geoEdgeAttr, but based on an
'interpretation' or 'perception' of this value.

CHAPTER 9. SHORTEST PATH PLANNING 134

/' I,c.)c;~l Edge Prof'
localEdgePref(a, e, dest) = CfEFACTOR localFactorValue(a, f , dest, e)
j' Lor;rl Facior Value
localFactorVaEue : SEM x FACTOR x NODE x EDGE -+ FACTOR-VALUE
localFactorValue(a, f , dest, e) -
' angle(dest, e) *factor Weight(a, f) : f = angle

1 : f = numberOfStops
interpret(geoEdgeAttr(e, f)) * factorWeight(a, f) : f E GEOEDGEATTR A

[currentNode(a) = head(e)
V currentNode(a) = tail(e))]

, subjEdgeAttr(parentAgent(a), e, f) * factorWeight(a, f) : otherwise.

Spec 9.4: 1ocalEdgePre f in terms of localFactorValue.

the values of static geographic attributes (distance, road type etc) from the GEO-ENV

which are the actual values3. For all other attributes however, such as traffic, reinforcement

it still has to rely on its past experiences, i.e S U B J E N V . This can be seen in Spec 9.5,

where globalFactorValue is a weighted sum of all the factor values.

;',/ Global FMqcl I'wf
gEdgePref(a, e) z C f EFACTOR globalFactorValue(a, f , e)

1 C:lot)al Far1 or \'a In('
globalFactorValue : SEM x FACTOR x EDGE -+ FACTOR-VALUE
globalFactorValue(a, f , e) =

0 : f = angle
1 * factorWeight(a, f) : f = numberOfStops
interpret(geoStaticEdgeAttr(e, f)) * factor Weight(a, f) : f E GEOSTATEDGEATTR.
subjEdgeAttr(parentAgent(a), e, f) * factor Weight(a, f) : otherwise.

Spec 9.5: gEdgePre f in terms of globalFactorValue.

It should be noted that the function GLOBAL-RE-CALC is called every time there is a

change in the factor weights, or S U B J E N V , since these are the two dynamic data struc-

tures it depends on.

3~deally, the value is not derived solely from geoEdgeAttr, but based on an 'interpretation' or 'perception'
of this value.

CHAPTER 9. SHORTEST PATH PLANNING 135

We do not show here the specification of GLOBAL-RE-CALC, since it is only an algorith-

mic function. The specification can be found in APPENDIX B. It is sufficient to say that

the function applies the Dijkstra algorithm for computing an all-pair shortest path. This

can typically be replaced by any other algorithm.

The S U B J A T T R values of an edge, i.e the values for factors based on past experience,

can be seen as a case for that edge. In this manner, we can say the MBR works with

edge cases represented implicitly as edge attributes, while the CBR works with an explicit

case-base that stores path level information. The Path Explorer or the MBR thus makes

edge level decisions, while the CBR makes path level decisions. The edge cases are updated

dynamically as and when a person traverses an edge or becomes 'aware' of it. This way the

MBR is constantly 'learning' and becomes more efficient and effective with time.

In conclusion, a note on the use of hierarchical graphs for path planning is noteworthy.

Instead of using a one level 'flat' graph for the computation of shortest path, a multi-level

hierarchical g m p h may be used. The main aim of one class of hierarchical graph algorithms

is pruning of search space so as to increase the time efficiency. By using a hierarchical graph

model, the underlying structure of the complex topographical map can be exploited, that

while path calculation may restrict search space to a sub-set of the graph, and thus result

in search time and speed benefits. [88], [63] use such a structure and develop algorithms

that significantly reduce the search space and time as compared to A*, and also guarantee

the optimality of the algorithms.

A second class of hierarchical graph algorithms use such a graph structure with the aim of

introducing abstraction in addition to space pruning, i.e computing the shortest path w.r.t

a particular level of the hierarchy and then refining it to other levels of the hierarchy [70]

[94]. While these approaches introduce the more natural way in which people make path

planning decisions, they are sub-optimal, and in some may even greatly compromise on the

optimality of the path by forcing people to take non-intuitive paths.

Our approach uses a flat graph, mainly because at this stage we are not concerned with

time and speed efficiency, since we are modeling the navigation process at a semantic level.

However, one major benefit of such a pruning of search space would embody the fact that

people search for paths only in the direction of their destination, i.e it will combine direction

finding with route finding. This has been kept in mind and may be considered as a possible

future extension of the underlying graph structure.

PART IV

EXECUTABLE MODEL

Chapter 10

The AsmL Executable Model

This chapter is devoted to deriving an abstract executable semantics of the ASM ground

model of the previous sections. The executable model is obtained by applying a refinement

step in AsmL - a formal executable specification language - to the ground model.

Executable specifications are important as they provide a means for experimental validation

and verification of the system. Since 60-80% of errors are introduced in the requirements

engineering phase, rigorous specifications can significantly improve the quality and preci-

sion of the modeled system [4]. Executable Specifications (ES) help achieve a high level of

confidence in the correctness of the system, by detecting errors in earlier stages of software

development, which significantly reduces the repair cost of errors in the later stages of devel-

opment. Executable specifications can be used for test-case generation, runtime verification,

and scenario-based modeling and testing [54].

Furthermore, ES can also form the basis for a simulation model to verify the operation of the

modeled part in the wider system context. Behavioral simulations help us analyze system

behavior and evolution spanning large time leaps in shorter time intervals. They provide

us with means of performing simulation-enhanced thought experiments aimed at improving

our intuition and understanding about the modeled phenomenon.

Our executable specification is based on the Abstract State Machine Language, introduced

in Section 10.1. Section 10.2 provides an understanding of the structure and derivation of

the AsmL model; Sections 10.2.1 through 10.2.5 present the gist of the AsmL model. The

entire AsmL model can be found in Appendix C.

CHAPTER 10. THE ASML EXECUTABLE MODEL

10.1 Abstract State Machine Language (AsmL)

To deploy ASMs in an industrial environment, we need an industrial-strength language;

AsmL is one such language [54]. Abstract State Machine Language (AsmL) [74] is a high-

level executable specification language based on the theory of Abstract State Machines. It

is used for creating human-readable, machine-executable models of a system in a way that

is minimal and complete with respect to any desired level of abstraction. The syntax and

semantics of AsmL conform to the ASM modeling paradigm.

The language is being developed by Microsoft Research; the current version, AsmL 2, is

embedded into Microsoft Word and Microsoft Visual Studio.NET.

Asml is object-oriented, strongly-typed, case-sensitive and uses indentation to denote block

structure. AsmL has a rich type system containing type constructs for sequences, maps,

sets, that support a number of high-level set-theoretic and sequence-theoretic built-in op-

erations.

Consistent with the ASM theory, AsmL provides a parallel execution environment, whereby

all statements within a scope are executed in parallel (i.e the order of execution does not

matter); sequentiality is introduced by explicitly using the keyword step. An AsmL program

is defined using a fixed vocabulary of symbols of our choosing. It has two components: the

names of its state variables, denoted by the keyword var, and a fixed set of operations

of an abstract state machine. State can be seen as a particular association of variable

names to values. A run of the machine is a series of states connected by state transitions.

Each state transition, or step, occurs when an operation is applied to an input state and

produces an output state. The program consists of statements. A typical statement is

the conditional update 'if condition then update'. Each update is in the form 'a := b' and

indicates that variable name a will be associated with the value b in the output state. The

program never alters the input state, instead each update statement adds to an update set.

Pending updates are not visible in any program context, but when all program statements

have been invoked, the pending updates are merged with a copy of the input state and

returned as the output state. An inconsistent update error occurs if the update set contains

conflicting information.

AsmL has the construct forall to support parallelism. Such constructs are required for

high-level modeling, where it may be desirable to abstract from sequentiality or the order

CHAPTER 10. THE ASML EXECUTABLE MODEL 139

of execution of statements. The current version of AsmL does not have runtime support

for true concurrency; instead concurrent behavior is simulated by means of interleaving the

steps of the agents. The AsmL construct choose construct can be used for making non-

deterministic decisions, where it is not required to model algorithmic patterns behind the

selection criteria.

The basic introduction provided here should serve the purpose for understanding the AsmL

specifications that follow. For a more detailed understanding of the language, the reader is

referred to [74] and [54].

10.2 Overview of the AsmL Model

In rendering an executable semantics to our DASM ground model, we advocate the use of

AsmL. AsmL is a rich language, with advance language constructs, and close in semblance

to the ASM modeling paradigm.

We use the AsmL specification primarily with the aim to explore and validate the require-

ments and design, and to test the conformance of the implementation with the specification.

As a secondary outcome, the executable specification is used as a simulation tool, by build-

ing a graphical visualization on top of it. Our main goal is to establish a minimal, yet

principal executable model to reveal the feasibility of achieving such a model through re-

finement. Through such a model we also show the importance of executable specifications

in early design stages and prove how simulation and testing, by using such a model, can

provide useful feedbacks to establish key system attributes.

It is worth mentioning that although the current executable model covers the ASM ground

model at the given level of abstraction, it does not do so in its entirety. Some abstract

functions (in the TSM and ADM) need to be refined further to derive true real-time and

emergent behavior of the agents. These functions call for interfaces to sophisticated problem-

solving and decision-making techniques, which are beyond the time scope of this thesis.

There is also a need for the use of sophisticated programming and visualization techniques,

such as event-driven programming, GIs etc, to supplement the operational and graphical

results. It is anticipated that this work will be carried forward by the research group in near

future, to give it a complete picture.

CHAPTER 10. THE ASML EXECUTABLE MODEL 140

Refining the DASM ground model to the AsmL executable model requires considerations

with respect to the translation aspects, refining abstract parts of the model, and achieving

a useful method of visualization.

Intuitively, the AsmL encoding splits into five separate chunks, each of which deals with a

basically different level of abstraction and distinct part of the ASM model: (1) the Global

Definitions as explained in Section 10.2.1 are the major ASM data structures that are used

throughout the model, these are primarily the data structures of the ASM Abstract Model

(2) the AsmL Abstract Model as explained in Section 10.2.2 is the translation of the modules

of the ASM Abstract Model (3) the AsmL Refined Model as explained in Section 10.2.3 is

the translation of the ASM Refined Model (4) Execution-Specific Additions as explained in

Section 10.2.4, and (5) Visualization Specific Additions as explained in Section 10.2.5.

In the following sections we illustrate the translation aspects that require heed in order to

derive an AsmL model. While we try to maintain a congruent relation between the ASM

and AsmL models, some changes are but inevitable.

10.2.1 Global Definitions

The global definitions entail defining the Entities used in the model, Environment (subjective

and objective), the Person Agent Architecture, the Signals, the domain Time, and other

miscellaneous and auxiliary data structures. In this section we illustrate some translation

aspects by explicating the first three global definitions; the definitions for latter three can

be found in Appendix C.1.

Linking Social Systems t o DASM Models

The basic entities used in modeling the underlying sociological system through DASM mod-

els embodies defining some basic entities at the three levels. The ASM definitions as given

in Chapter 5 translate to the AsmL data structures as shown in Figure 10.1.

It can be seen that all ASM domains for different entities are specified as of AsmL data

type Class. DASM AGENT represented as Class AGENT in the AsmL model has a Pro-

gram associated with it, which defines the behavior of this agent. All instantiations of this

CHAPTER 10. THE ASML EXECUTABLE MODEL 141

public class PASSIVE-OBJECT
11 Attrlhutss are rcprcsented hy \tam funct~ons

public class ACTIVE-OBJECT extends PASSIVE_OBJECT
I'Bchavior is represented by dynamic functions

//This class should idcally extend both AGENT and ACI'IVE-0H.ECT.
!kIo\vsvcr, current Asml~. version docs not support multiple inheritancc.
public class AUTONOMOUS-AGENT extends AGENT ;,'extends ACTIVEpOBIECT
I! Motivations are represeotcd as abstractlderived functions.
I! Menlory is rcprescnted as runctions.
!I Behavior is represented by the Program()

Figure 10.1: AsmL Spec for Basic Entities.

class override the virtual function Program to define agent-specific behavior. Clearly, Au-

tonomous Agent is a kind of Agent and hence extends or inherits the class Agent.

The translation aspects discussed here with respect to Agents apply to other data structures

having similar properties.

Environment

The Geographic Environment and Subjective Environment as defined in Chapter 6 translate

to the AsmL model as described in this section.

The underlying graph called ENVIRONMENT-GRAPH in the ASM model is shown in

Figure 10.2. The domains NODE and EDGE are represented as AsmL class and structure

respectively. The domain ENVIRONMENT-GRAPH is defined as a class with variables

that represent the set of nodes and edges contained in the graph. Various derived functions

defined on the ENVIRONMENT-GRAPH are represented as member functions of the class.

The domain GEOGRAPHIC-ENV can then be defined as shown in Figure 10.3. Each ASM

CHAPTER 10. THE ASML EXECUTABLE MODEL

, " ...
//Class NODE ~qxcsenting NODE of the GRAPH
public class NODE

/'5tructurc L UGb lcpreaentmg 1 D(il ot the GKAPlI
public structure EDGE
edgeHead as NODE
edgeTad as NODE

//Class GKAPlI lepresentmg INVIRONMCNl-GR4PII
public class GRAPH
var nodeset as Set of NODE = {) //All the nodes of the GRAPII
var edgeset as Set of EDGE = {) !'All the edged o 'the (?RAP11

!/Rctu~ns the set of cdges mudent to the g~ben NODE
outInctdentEdges(node as NODE) as Set of EDGE
i!Kctu~ns \\ hcther the glven NODLS t o m an LDGI
adjacent(u as NODE, v as NODE) as Boolean
1 Ketu~na the 1-DGF formed hy the two gwen NOLI S
edge (u as NODE, v as NODE) as EDGE?

Figure 10.2: AsmL Spec for GRAPH.

domain representing the basic ATTRIBUTES (e.g GEO-STATICATTRIBUTE) is trans-

lated to AsmL data type enum, where the enum values represent the actual factors (e.g

traffic, distance). The AsmL data structure type is used to denote a union (by or) of dif-

ferent domain types. Finally, GEOGRAPHIC-ENV is represented as a class that extends

the GRAPH. The variables of this class which are of type map represent the attribution

schema.

The definition of SUBJECTIVEENV is similar to GEOGRAPHIC-ENV. The only differ-

ence being since it is agent-specific, it is defined inside the class agent as can be seen in the

next section.

CHAPTER 10. THE ASML EXECUTABLE MODEL 143

/!***Domains for A'l'TRIRIIl'HS***
enum DYNAMIC-NODE-ATTRIBUTE 11 I.. 10

enum STATIC-NODE-ATTRIBUTE 111 1 ..20
coordinate = 11 '

nodeName = 12

enum DYNAMIC-EDGE-ATTRIBUTE 112 1 ..30
traffic = 2 1
roadcondition = 22

enum STATIC-EDGE-ATTRIBUTE 113 1 30
distance = 3 1
roadType = 32
edgeName = 33

type GEO-EDGE-ATTRIBUTE = DYNAMIC-EDGE-ATTRIBUTE or STATIC-EDGE-ATTRIBUTE
type GEO-NODE-ATTRIBUTE = DYNAMIC-NODE-ATTRIBUTE or STATIC-NODE-ATTRIBUTE
type GEO-ATTRIBUTE = GEO-EDGE-ATTRIBUTE or GEO-NODE-ATTRIBUTE

!/***Class rcprcsenting thc GEO(iKAPH1C ENVIRONMENT***
public class GEOGRAPHIC-ENV extends GRAPH

var geoStaticNodeAttr as Map of NODE to
(Map of STATIC-NODE-ATTRIBUTE to VALUE) = (->}

var gwStaticEdgeAttr as Map of EDGE to
(Map of STATIC-EDGE-ATTRIBUTE to VALUE) = {->)

var geoDynamicEdgeAttr as Map of EDGE to
(Map of DYNAMIC-EDGE-ATTRIBUTE to VALUE) ={->)

var geoDynamicNodeAttr as Map of NODE to
(Map of DYNAMIC-NODE-ATTRIBUTE to VALUE) =={->)

Figure 10.3: AsmL Spec for GEOGRAPHIC-EW.

Person Architecture

The Person Agent Architecture as described in Section '7.1.2 of Chapter 7 using ASM for-

malism, translates to the AsmL spec as shown in Figure 10.4. The domain MODULE is

represented as a class that extends DASM Agent AGENT since it has associated behavior.

The different kinds of modules (e.g TSM, SEM) are also represented as classes that extend

MODULE.

The autonomously acting entity PERSON is implemented as a class that inherits AU-

TONOMOUSAGENT and has the modules associated with it declared as variables of the

class. The subjective environments is composed of different attributions that are represented

CHAPTER 10. THE ASML EXECUTABLE MODEL 144

as variables of type map. The virtual Program of the DASM AGENT is overridden by

the PERSON class - the step until fixpoint construct is used to loop through the following

statements to emulate the fact that the PERSON is continuously working.

ii'llach Module has iu correspnding parent agcnt.
public class MODULE extends AGENT
var parentAgent as PERSON = null

I Dtl'crent Modules
public class TARGET-SELECTION-MODULE extends MODULE Ill SM
public class SPACE-MODULE extends MODULE iISEM
public class DECISION-MODULE extends MODULE IIADM

public class PERSON extends AUTONOMOUS-AGENT
var spaceModule as SPACE-MODULE = null 1) SEM
var targetModule as TARGET-SELECTION-MODULE = null /I 1 SM
var decisionlvlodule as DECISION-MODULE = null IADM

i:**%ubjectiw 13nir~mmnct***
//NOTE: Subjl?nv can be declared as shared in person agent OR
//as a global var to capture ASM global state.
var subjEdgeAttr as Map of EDGE to (Map of SUBJ-EDGE-ATTRIBUTE to VALUE) = {->)
var subjNodeAttr as Map of NODE to (Map of SUBJ-NODE-ATTRIBUTE to VALUE) = {->)

!! ***Kept in Working Memory ***
var currentNode as NODE = null
var currentEdge as EDGE = null

/;***program***

override Program()
step until figpoint
me.decisionModule.Program()
me.spaceModule.Program()
me.targetModule.Program()

Figure 10.4: AsmL Spec for PERSON AGENT

10.2.2 AsmL Abstract Model

The AsmL Abstract Model is composed of the three modules viz. Space Evolution Module

(SEM), Target Selection Module (TSM) and Agent Decision Module (ADM). In this section

we illustrate the translation aspects w.r.t the SE,M only. The same principles apply for TSM

and ADM as can be seen in Appendix C.2.

CHAPTER 10. THE ASML EXECUTABLE MODEL 145

First, the definitions of the SEM are described in Figure 10.5. The different modes associ-

ated with the SEM are grouped using the AsmL data type enum; the enum values represent

the individual modes. SEM is implemented as a class whose member data types (var) rep-

resent the functions associated with the SEM. Derived functions are represented as member

functions of this class.

enum Mode
idle
pathplanning
roadselection
1ocalRePlanning
running

var destNode as NODE = null // Current Jcstiilation.
var sourceNode as NODE = null i; The source of the path.
var suggestedpath as PATH = [I ,;' Path suggested for traversal
var suggestedEdge as EDGE = null ! I l:dge suggested for traversal
var takenPath as PATH = [I !/ 'I'hc iinal path person actually traverses

1,' Functions***"**

currentNode0 as NODE i!eurrcnt node as sto-ed in Pcrson
currentEdge() as EDGE /lcul~ent edge as stnl-ed in Pcrson
destNodeReached() as Boolean ll Calculates ~f the current destination reached
signalFromADM() as Boolean //Checks ~f'there is any signal frnni ADR.1.
currentEdgeTraversed() as Boolean /! Dctern~incs ~f current cdgc has been traversed

Figure 10.5: AsmL Spec for SEM Definitions.

The SEM Program overrides the virtual function Program of AGENT (Figure 10.6). There

are a set of parallel i f s corresponding to each mode of the SEM. At any point of time only

one of the modes is active; SEM is initialized to be in idle mode. At the end of each mode,

the next immediate mode is set as the active mode. The abstract rules used by the SEM

are written in block letters. At the next level of refinement, these abstract functions are

detailed. The SEM goes through a number of intermediate refinement steps.

CHAPTER 10. THE ASML EXECUTABLE MODEL

if me.mode = idle then
let x = SIGNAL.OnSignal(newDest,me)
if x 0 null then

let s = x as NEW-DEST
INITIALIZE(parentAgent.cmentNode, s.newDest)
me.mode := pathPlanning

else
skip

if me.mode = pathPlanning then
GET-PATH()
mode := roadSelection

if me.mode = roadSelection then
if destNodeReached0 = true then

me.mode := pathcompleted
else

if signalFrornADM() then
HANDLE-ADM-SIGNAL S()
mode := pathPlanning

else
GET-SUGGESTEDEDGE()
mode := 1ocalRePlanning

if me.mode = 1ocalRePlanning then
if acceptableEdge(suggestedEdge) then

me.parentAgent.currentEdge := suggestedEdge
me.mode :=running

else

if me.mode = running then
if me.currentEdgeTraversed() then
WDATKEDGE-PERCEPTION(parentAgent.currentEdge)

FINALIZE-EDGE-rnvERSAL()

Figure 10.6: AsmL Spec for SEM Program.

CHAPTER 10. THE ASML EXECUTABLE .MODEL

10.2.3 AsmL Refined Model

The AsmL Refined Model is the AsmL version of the ASM Refined Model, and is composed of

the definitions of the Abstract CBR and Concrete CBR; and the Path Explorer submachine.

The translation aspects related to these two components are the same as described above,

and so we do not further elaborate on them. Interested reader is referred to Appendix C.3.

10.2.4 Execution Specific Additions

In order to make the model run and produce output, we need to carry out further refinement

steps. While there are a number of complex execution specific additions (Appendix C.4),

we concentrate here on the function Main(). The function Main is the entry point of the

AsmL model and is shown in Figure 10.7.

Main0
step

InitGraphXML() I/ To initialirc Geogra~hic 13nIronment from XML File
step

:'Initial iring I'ERSON Propertics
let personl =

InitPersonAuto("O","o", 1.0, 1.0,0.0,
(frequency ->l.O,tripImportance->O.O,reinforcement ->O.O,intensity->O.O,
distance-> 1.0, roadType ->O.O,edgeName->O.O, angle ->0.0,
numberOfStops ->0.0, traffic ->0.50 },
true, node("OV), node("l9"), node("24"))

/!create other person agcnts ...
step

add personl to personset
!/add othcr agcnts. .

step until exit = true
forall p in personset //Run thc Program h r each Person

P Program0

Figure 10.7: AsmL Spec for Main().

First, it initializes the geographic environment from an XML repository using the function

InitGraphXML. Next, it creates a number of person agents using the function Initperson-

Auto and adds all these agents to personset. Then for each person agent in the person set,

it uses the AsmL construct forall to run the program of all agents concurrently. Finally

CHAPTER 10. THE ASML EXECUTABLE MODEL 148

the time is increased to the next time step and the program keeps running until an exit

condition is met.

Both the functions, InitGraphXML and InitPersonAuto are complex functions that use a

number of other subordinate functions. InitGraphXML reads an XML file into an interim

data structure and then initializes the geographic environment related data structures from

this interim data structure. InitPersonAuto calls a number of other functions to initialize

person's SEM, TSM, ADM, subjective environment etc.

Another important aspect that needs to be addressed in the stepwise refinement of the

model, is of refining the abstract functions acting as 'oracles'. These oracles are non-

computable functions and clearly in order to have a meaningful executable model, these need

to be translated into computable functions. Abstract rules are refined either by introducing

non-determinism using the AsmL construct choose or by assigning pseudo deterministic

behavior to them.

10.2.5 Visualization

For effective and meaningful projection of results as produced by the AsmL executable

model, a user-friendly graphically enhanced visualization is needed. Such a visualization is

also a tool for user-controlled simulation and testing.

For the purpose of this thesis, we use a modest visualization implemented in C++ and

OpenGL. This visualization has been developed by Steven Bergner, a PhD candidate in the

SFU Gruvi Lab.

The AsmL model communicates with the Visualization using a number of commands. Both

the AsmL model and the visualization utilize an XML based data structure of the urban

area. The communication commands and the XML graph are detailed in Appendix C.5.

Some snapshots of the visualization are provided here.

Figure 10.8 shows the primary view of the visualization - aggregate activity space and

crime occurrence space for all agents and all crime types. The geographic environment is

composed of a small Vancouver Downtown area containing 32 nodes and 40 edges. The

connecting roads (edges) are in bright blue; major roads appear thicker than minor roads

for distinction. There are six person agents (0-5) initially located on this map at different

node locations. Different colors represent different agents (e.g person 0 is blue in color);

CHAPTER 10. THE ASML EXECUTABLE 1iODEL

filled sinall boxes reprosent current location and unfilled boxes represent current destillation

of a given agent. The: activity spaces of the agents are: sllown in yellow along the edges.

The int,eiisity of color represents the aggregate spacos of tlifferent agent,s, and the spread

representas the strengt,h (frequeiicy) of tshe activity spacc. 7:he colored boxes located on the

nocles show the aggregate crime occz,,r7.e7rccJ space of t,lie dilfereiit agents; the spread of the

box represents the probability of crirne. Rcd colorcd boxes represents car theft probability,

green represents shop lift probability and black represents robbcry proba.bility. At bottom

left coriler, one can sec the current time of the simulation; t.his slot is also used for showing

some iniscellaneous information during simulation rum.

ne: Tuesdav 1 lan,2:54

Figure 10.8: -411 Aggregate View o f the 'I'isui~liaatiun.

CHAPTER 10. THE ASML EXECUTABLE MODEL

The visualizatioii ca.n be also be viewed for a specific crime type for all agents. Figlire

10.9, Figurc? 10.10 and Figure 10.11 show the car theft, shop lift a.nd robbery probabilities

respectively. Thc slmded area in gray in each of these sna:;,shots represents the predefined

oppo~ tun i t y spuces. As call be deducccl, red boxcs are coinc:itlcnt with the ca.r theft opportu-

nities arid represent the probability of car theft,; green boxc:s represent shop lift probabilit,y

and black boxes represent robbery probability.

Figurc 10.9: Car Theft 0pportu11itic.s and Probabilit,~.

Lastly, onc can also view t,he visualization for a specific agent for aggregate crirncs or a

specific crimc. This howevPr is not sliown here.

CHAPTER 10. THE ASML EXECUTABLE MODEL

Figure 10.10: Shop Lift Opportunities a110 Pro6a.bility.

Figure 10.11 : Robbery Opportunities and Proba bility.

Chapter 11

Validation of the Model

This chapter discusses the need for validation of the model, particular challenges and hurdles

met, possible evaluation techniques and finally some preliminary experimental results.

11.1 Overview

Computational and mathematical modeling of real-world phenomena is meaningful only if

one can establish the validity of a model and assess the quality of the results it produces.

For descriptive modeling, the problem of providing evidence for the validity of a model has

a different meaning than in prescriptive modeling where quantitative measures of reliability

of predictions apply [18].

However there are even greater problems involved in validating models of human societies.

Even though the model has been experimentally validated, just because the model is only

a model, it will always be possible to dispute any parallel claims between its behavior and

of the target [52].

An obvious open-ended question is then how can one validate such a model and prove its

soundness from both a criminological and a computational perspective. Apparently, there

is no simple way to do this, but there is also no better alternative other than modeling. One

can combine qualitative and quantitative evaluation techniques.

Quantitatively, one can evaluate the model in two different ways. One is to compare results

CHAPTER 11. VALIDATION OF THE MODEL 153

of simulation runs to results produced by other prediction models using statistical methods

as proposed in [56] and attempt to reduce the observed error and deviance. The other way is

to use real-world data from crime databases as a basis for comparison. In this case, the goal

is to reproduce results matching those derived from real-world data of comparable scenarios.

For instance, in software cost estimation, a widely accepted rule of thumb suggests that a

model is acceptable if 75% of the predicted values fall within 25% of their actual values 1431.

Both approaches provide feedback mechanisms for calibrating the various model parameters.

The latter approach is being focused upon as another research project in the ST Lab

Qualitatively, typical purposes of such experimental research, among others, include [87]:

a) use of a model for generating and testing hypothesis through controlled experiments,

b) use of a model for predicting the effects of change in the system under study. In this

context, the role of modeling and simulation is descriptive rather than prescriptive and,

for instance, focuses on aspects such as: a) identification of behavior characteristics from

response patterns generated by simulations, and b) identification of the system boundary

and the factors that influence the behavior of interest. Clearly, the key issue is not to obtain

a quantitative simulation response as the main result but to inspect the underlying trace

that generated the response and suggest changes on that basis.

An obvious way of validating the model is by simulating scenarios and comparing the results

with what the theories predict. However, there is no guarantee that the theories make correct

predictions under all circumstances. A possibility is the use of compositional techniques with

the idea to divide the validation task by applying different approaches specific to each of the

model components (e.g., cross-validation can be used for validating neural networks). The

problem is then, how to validate coherence and consistence of the integration of components.

Another qualitative aspect includes addressing the consistency of both the symbolic rep-

resentation of the model as well as its definition with regard to the underlying theories of

crime. We exploit the concept of ASM ground models 161 - an abstract, complete, precise

and yet understandable mathematical model - and by carefully analyzing and eliciting re-

quirements is the best one can do in the overall attempt toward making the semantic model

as sound and complete as possible.

'Another interesting possibility is to use the crime databases for past years, for e.g. 2000-2004, to build
the model and subsequently use the model to predict 2005-2006 crimes.

CHAPTER 11. VALIDATION OF THE MODEL 154

Some authors have developed qualitative criteria in evaluating agent-based systems of hu-

man societies.

Gilbert and Doran [52] highlight certain aspects that must have an impact upon the mod-

eling and simulation of human societies - environment, complexity, distribution, cognition,

communication.

She and Stu [85] develop a criteria to measure the performance of agent-based modeling

techniques. The criteria is divided into software engineering characteristics (preciseness,

accessibility, expressiveness, modularity, complexity, executability, refinability, analyzabil-

ity, openness) and agent-based characteristics (autonomy, complexity, adaptability, concur-

rency, distribution, communication).

The authors of [34] contend that an agent formalism should have the following character-

istics: precise and unambiguous language; move in a principled way from specifications to

implementations; deal with multiplicity of agents; address the needs of practical applica-

tions of agents by being capable of expressing some or all of the aspects of agency such as

perception, action, belief, knowledge,goals, motivation, intention, desire, emotion, etc; help

identify properties of agent systems against which implementations can be measured and

assessed; measure, evaluate, classify, and study implementations.

To this end, the ASM formalism and abstraction principles in combination with the un-

derlying methodological framework of ground models and refinement techniques provide a

universal formal basis for semantic modeling of multi-agent human societies at arbitrary

levels of abstraction in a coherent and consistent framework. The theory of ASM modeling

paradigm successfully captures most if not all of the aforementioned key issues.

11.2 Experimental Validation

Based on the above rhetoric, one can conclude there is apparently no simple way to validate

such a model, but there is also no better alternative other than modeling. In this section on

experimental validation, we make an attempt to report on some observations made while

simulating typical scenarios.

It should be noted that the model is still abstract and non-deterministic measures are used

as oracles that produce results which otherwise require sophisticated techniques. This stage

of infancy and abstraction inhibits the capability of the model to produce 'true' emergent

CHAPTER 11. VALIDATION OF THE MODEL 155

results, we merely experiment with artificial and 'dummy' data. Further we use only a pro-

totype of the simulation implemented in a specification language that uses high-level data

structures, and thus the luxury of sophisticated data structures implemented in program-

ming languages for time efficiency cannot be enjoyed.

Therefore, this attempt on reporting some observations should not be considered as a hard

and fast statement of the experimental validation and verification of the model. This as-

pect deserves a more thorough investigation, and is beyond the time scope of this thesis,

and is subject of our future work. These observation however do provide an insight on the

soundness of our model.

The goal of the executable model is to simulate the movement patterns of hypothetical

offenders in a given urban environment that evolves their activity spaces over a period of

time. Based on the activity spaces, the model carves out the crime occurrence spaces of the

criminals for different crime types (burglary, shop lift, car theft).

We start with a prototype of Vancouver Downtown area. Currently, the graph consists of

32 nodes (vertices) and 40 edges. Although minimal, it represents a typical urban area; the

graph size can potentially be extended to any number of nodes and edges.

These edges area all bidirectional. With each edge is associated information about its ge-

ographic attributes, both static and dynamic - distance, road type (major, minor), edge

name, traffic (low, medium, high, blocked). With each node is stored information about

its geographic attributes - coordinates, node name. This forms the universal Geographic

Environment (GeoEnv) .
With each agent is associated its subjective environment. We initialize the agent-specific

subjective environment as this. For the perception attributes, which are perceived or in-

terpreted values of geographic attributes, we initialize them to be the same as geographic

attributes2. For the activity attributes - frequency, reinforcement (positive, negative, neu-

tral), trip importance(obligatory, required, not required) - the values are initialized to

default values as 0, neutral, not required respectively. For the awareness attributes - in-

tensity - the value is initialized to default as 0.

As and when an agent moves around in the given environment, its subjective environment

starts building up, i.e we update the values of perception, activity and awareness attributes.

'Ideally, perception attributes should represent interpreted values of geographic attributes which are
different from the actual values. However, since we use abstract functions this can be achieved easily in the
later refinements.

CHAPTER 11. VALIDATION OF THE MODEL 156

For the perception attributes, the old values in memory are updated to be the current

geographic values. For frequency, the count is increased by 1. For reinforcement, trip im-

portance, intensity, the updated values are an average of old values in memory and the

current values; this however is achieved by abstract functions. The simulation at its pre-

liminary stage carves the activity space of the different constituent agents. Each agent is

endowed with its activity schedule, although ideally this schedule should be derived from a

person's demographic factors. The ADM-SEMNONITOR provides the next destination to

be traveled to based on the schedule. The abstract data structures for schedule allows for

probabilistic destinations to be associated with any given time, i.e an agent probabilistically

chooses the next destination; however, in this version, we merely associate a probability 1

with each destination. The SEM then moves the agent to the proposed destination. Hence,

the SEM and ADM-SEMNONITOR collectively model the spatial and temporal aspects

of movement of person agents in the given urban landscape.

Using a predefined opportunity space and an agent's activity space3, the simulation produces

crime occurrence space of an agent. The abstract ADM-TSM-MONITOR decides whether

the agent is criminally disposed based on its abstract motivations. If so, the SEM module

is called. At this point, the SEM non-deterministically selects those targets that are on

locations which are above a certain threshold of the activity space. The crime occurrence

space is a function of the criminal opportunities(car theft, robbery, burglary) located on the

nodes of the graph, and the criminal skills of the agent for that particular crime. Hence,

the TSM and ADM-TSMNONITOR collectively model the spatial and temporal aspects

of target selection of person agents in the given urban landscape.

All simulation runs were carried out on an IBM PC with an Intel Pentium 4 processor of

2.40 GHz, and 1.0 GB of RAM.

31deally, awareness space should be used instead of activity space. However, since activity space is a
proper subset of the awareness space and simpler to compute, we restrict to this case.

CHAPTER 11. VALIDATION OF THE MODEL

11.2.1 Space Evolution Module (SEM)

Time Performance of the Shortest Path Algorithm

In finding a shortest path for an agent from a given source to a given destination, we use the

'shortest path algorithm' as developed in Chapter 9, which combines global planning with

local negotiation; the algorithm can also be seen as a combination of A* and Dijkstra. In

our shortest path algorithm, the dominant cost is of the Dijkstra's algorithm to calculate the

global path preference of the agents; this entails computing an all source shortest path for

an agent. The complexity of our algorithm is thus 0(n3), where n is the number of vertices

in the graph. The navigation algorithm as used in the SEM performs real-time local re-

planning at each intervening node if the suggested edge is found to be non-acceptable or

the influence factor weights have changed, in which case the 'shortest path algorithm' is

executed again. In the worst case, all of n nodes might be on the suggested path and

for each intervening node, one might have to do local re-planning. The time complexity

thus increases to 0 (n3 * n). Further, since each agent has different influence factor weights

that determine the cost of the paths, in the overall simulation where all agents are running

concurrently, the time delay may increase to 0 (n3 * n * a), where a is the number of agents

in the simulation. 0 (n3 * n * a) clearly is not a negligible amount of time delay. Hence, the

performance of the 'shortest path algorithm' is a bottleneck factor in the performance of

the Navigation algorithm.

We ran our simulation with a graph size of 32 nodes and 40 edges, and gradually increased

it to 63 nodes and 74 edges. Tabulated below (Table 11.1) are the time responses of the

shortest path algorithm. The reported time for each graph size is an average of ten runs to

different destinations for different agents. The cost of each edge (weighted sum of factors)

is precomputed and hence the time delay for this calculation is negligible.

11 G r a ~ h Size I Res~onse Time I
11 32 Nodes, 40 Edges I 3.5 sec I
11 42 Nodes, 50 Edges I 14 sec I

52 Nodes, 62 Edges I 47 sec

62 Nodes, 74 Edges I 2.15 mts

Table 11.1: Response Time of the Shortest Path Algorithm w.r.t Graph Size.

Thus with increasing graph size, the computation time increases drastically. This small

CHAPTER 11. VALIDATION OF THE MODEL 158

experimentation has lead us to consider optimizations techniques to increase the time effi-

ciency. Two kinds of optimizations can be performed : (1) using special data structures for

computation of the Dijkstra7s algorithm and (2) using a hierarchical graph structure.

Various implementations of the Dijkstra use data structures such as buckets, heap struc-

tures, hash tables in increasing the speed efficiency [26], [75]. Such advanced data structures

however require the luxury of a programming language.

By using a hierarchical graph model, the underlying structure of the complex topographical

map can be exploited, that while path calculation may restrict search space to a sub-set of

the graph, and thus result in search time and speed benefits. [88], [63] use such a structure

and develop algorithms that significantly reduce the search space and time.

Implementing theses optimization techniques are part of our future work.

Time Performance of the Navigation Algorithm

The SEM implements a hierarchical navigation algorithm, that integrates CBR and a short-

est path algorithm, based on Dijkstra. This is detailed in Section 7.2 of Chapter 7. We make

a few observations on the time performance of the algorithm with respect to the different

cases it represents. A graph of 32 nodes and 40 edges is used.

In the first case, if there is a path stored in the persons7 memory (CBR) for a given source

to destination, it is returned instantly with negligible time delay. This as opposed to the

shortest path algorithm saves 3-4 seconds.

In the second case, if there is not an exact match, a path close enough to the destination

is returned. This again takes negligible computation time. In computing the remainder of

the path however, the shortest path algorithm is called for the entire graph. This nuance

can easily be resolved by considering hierarchical graphs (as mentioned above), whereby the

search area can be pruned and only a very small subset of the graph containing both the

ultimate destination and the interim destination is considered. Since we do not have a hier-

archical graph, we emulate this time saving by using the pre-stored global path preference

stored as globalPathPre f . This case takes more time than the first case, however it takes

much less time than the third case where no exact or partial match exists in the CBR.

In the third case, if there is no exact or even partial match in the CBR, the shortest path

algorithm is called that runs on the entire graph, or in case of hierarchical graphs on a

CHAPTER 11. VALIDATION OF THE MODEL 159

subset of the graph. This takes the most time, between 3 - 4 seconds for a given path.

Thus, the ordering of the three levels of the hierarchy also represents increasing time delay

as shown in Table 11.2.

Table 11.2: Response Time Variations for Three Cases o f the Navigation Algorithm.

Case
Pure CBR (exact match)

Mixed Case (partial match)
Shortest Path Algorithm

It is observed experimentally which fulfills the natural expectation that initially when an

agent is 'new' to its surrounding, it takes a long time in trying to figure out which paths to

take. There is a learning curve and after a while the movement patterns become relatively

fixed and self reinforcing; the agent merely recalls from memory all path planning decisions.

Response Time
6 sec

0 - 4 sec
3 - 4 sec

In graphs of very large sizes, for e.g our experimental graph of 62 nodes which took nearly

2.5 minutes in computing a shortest path, such a time gain with a CBR technique can be

a bottleneck factor. Although time efficiency is not of utmost importance in our model, in

typical real-time transportation systems or in time critical applications such a time benefit

can be highly desirable.

Characteristic Features of the Navigation Algorithm

All observations reported henceforth are performed on a subgraph of Vancouver Downtown

area composed of 32 nodes and 40 edges as shown in Figure 11.1.

The navigation algorithm successfully demonstrates the hierarchical decision-making process

- calling the CBR for an exact match (pure CBR), if not calling the CBR for a partial

match and the shortest path algorithm for the remaining path (mixed CBR), and lastly

calling the shortest path algorithm (Explorer). This is evident in Table 11.3 which is shown

for a given agent (Agent 1) that is CBR dominant.

The algorithm uses a normalized weighted sum of a number of influence factors (distance,

road type etc) in calculating the overall preference of an edge and subsequently the path.

The different factors play a composite role in determining the overall edge preference where

the influence of each factor is controlled by the influence factor weight (value between 0-1).

CHAPTER 11. VALIDATION OF THE MODEL

Figure 11.1 : Experimental Gra.ph o f Va.ncouver Downtown

Table 11.3: Hierarchical Cases o f the Na.vigation Algorithul.

CHAPTER 11. VALIDATION OF THE MODEL 161

A very interesting observation that came to light while experimenting with the model was

the fact that although the individual factor values were normalized to fall within a certain

range, it was not taken care of that the values be also normalized with respect to the distance

of the edge. For e.g let's take two edges A-B and C-D that are of same length and have low

traffic on them, A-B does not have any intervening nodes, while C-D has two intervening

nodes. Since C-D has two intervening nodes, the Dijkstra algorithm in computing the cost

of this edge counts the traffic of this edge three times which might make the overall value

of traffic high, whereas it should still be low. To avoid this, we also normalize the values of

factors with respect to the length of the edge.

As mentioned before, the influence of each factor in the overall path preference is deter-

mined by the influence factor weight whose value is between 0-1. These values are different

for different agents and typically depend on their demographic factors and personal liking.

However, for general scenarios we use a weight value of 1 and 0 to indicate the fact that

this factor plays or does not play a role in the overall preference, respectively. For e.g if a

value 0 is assigned to the influence factor weight for road type, this implies the person has

the same preference for minor roads as for major roads; if this value is changed to 1, this

implies the person prefers major roads to minor roads.

We produced numerous runs of the simulation by altering the weights of the different influ-

ence factors and observed the path taken. Since there are a number of factors and all the

factors together play an integrated role in the overall preference, it is not easy to determine

whether the computed path is the actual desired path. The best one can do is analyze the

influence of factors one at a time. We do so by setting all other factors to 0 and setting the

influence of factor under study to 1; the path computed is recorded and the weight of this

factor is then reverted back to 0 4. Clearly if alternate paths exist, the paths taken in the

two cases should be different. Tabulated below (Table 11.4) are some observed results.

Thus, it is evident that the shortest path algorithm responds correctly to changes in influence

factor weights. Since single factors produce correct results, it can be deduced that composite

factors, when the weights of multiple factors is non-zero, also produces correct paths.

A point to be noted is on behavioral reinforcement that the algorithm successfully emulates.

4While the weights of all other factors are set to 0, the weight of Distance is still kept 1, to produce
intuitive results

CHAPTER 11. VALIDATION OF THE MODEL

Factor Under Observation I Weight I Source

Distance cw
Road T v ~ e

of Intervening Stops

Dest. I Path Taken 11
1 I 11

I ... many more 11

1
0

Table 11.4: Influence o f Factor Weights in the Shortest Path Path.

29
29

If a path was taken once from a given source S to destination D, and if the agent encounters

the problem of traveling from S to D (or a subset of this path) again, the invocation of the

CBR returns this path (or sub-path). The same case holds for the mixed case. Exhaustive

number of runs of the simulation demonstrate this faithfully time and again.

The navigation algorithm also successfully models non-determinism. Given that there are

two paths from source S to destination D with the same value of preference, different runs

of the simulation will return different paths and not just the same path over and over again.

This holds for the path returned by the CBR as well. Table 11.5 demonstrates this fact.

Table 11.5: Non-Determinism in the Navigation Algorithm.

Source
29

9

19

The algorithm also responds well to changes in the underlying environment. Since our

visualization does not allow us to dynamically change the environment during a run, we

checked the response to such changes by simulating different scenarios dis-jointly.

With time, the activity space of the agent grows. This is evident from the fact that initially

the case-base associated with each agent is empty. It grows steadily with time, new paths

Path Taken
29-23-9
29-12-9
9-12-13
9-2-13

19-5-6-7-27
19-5-4-7-27

Dest.
9

13

27

Run No.
1
3
1
2
1
5

CHAPTER 11. VALIDATION OF THE MODEL 163

keep getting added, or the strength of added paths keeps increasing. Those agents that are

more active have a larger activity space whereas those that are passive have a much smaller

activity space. The size of activity space is the size of the SEM case-base, which is reported

as the sum of distinct paths (cases) multiplied by their frequency. Refer to Table 11.6 for

these results5.

Table 11.6: Growth of Activity Space as Given by Size of Case Base.

E n d of Day
Monday
Tuesday

Wednesday
Thursday

Friday
Saturday
Sunday

11.2.2 Target Selection Module (TSM)

The current TSM is at a very high level of abstraction. It checks to see if the target is a good

target - if the location of the target is on an edge whose frequency (of activity space) is

above a predefined threshold, it is then returned as a safe target or else a risky target. The

simulation should thus produce this causal effect, whereby the working of the TSM depends

on the activity space as created by the SEM. This causal effect does indeed happen.

With each agent is associated its 'crime likes', which is a value between 0 - 100 for the

different crimes (car theft, shop lift, robbery). With each node (of the edge) is associated

the targets located on that node called 'criminal opportunity'; which is a value between

0 - 100 for the different crimes. If a target is found to be suitable (i.e located on an

edge above a certain frequency threshold) the probability of victimization is computed as

a function of 'crime likes', 'criminal opportunity' and 'frequency'. We then decide whether

the victimization of targets was successful or not based on the calculated crime probability

and by using non-determinism; if it was successful the value of 'crime likes' is increased for

that agent for that crime, or else decreased. This emulates the fact that agents reinforce

Agent 1 (Active)

325

649
973
1297

1621

1849

2107

51t should be noted however, that with each path taken we store the possible combinations of this path
as separate paths in the case-base, so indirectly the length of the path affects the size of the case-base.

Agent 2 (Medium)
119

227
335

443

551

667

759

Agent 2 (Passive)

115
217

319

421

523
559

625

CHAPTER 11. VALIDATION OF THE MODEL 164

their decisions positively or negatively depending on the outcome of their behavior.

Table 11.7 shows an output snippet for an agent that has initial 'crime likes' [cartheft =

100, shoplift = 10, robbery = 701 ; and activity edge threshold of 2 (i.e only considers

targets located on edges that he has visited at least twice as good targets). We show some

scenarios for edge 2-3 that has criminal opportunities on node 2 as [Cartheft = 38, Shoplift

= 0,Robbery = 01 and 3 as [Cartheft = 38, Shoplift = 0, Robbery = 0 1. Only car theft

scenarios are shown here.

Run I Edge Activity Strength I Crime Likes I Crime Probability I Successful I

4 1 3

Table 11.7: Target Selection.

6 1 5

40

5 1 4
44

45 Yes
42

60

7 1 6

No
40 50

55

Yes

Yes

PART V

PUTTING IT ALL TOGETHER

Chapter 12

Conclusion, Contribution and

Challenges

In this thesis we have proposed a novel approach to modeling and simulation of crime

patterns and theories in crime analysis and prevention - a key aspect in Computational

Criminology [17]. This is achieved by combining the abstract state machine (ASM) paradigm

for mathematical modeling of discrete dynamic systems, with multi-agent systems, and other

problem-solving techniques.

The virtuosity of this work is extolled in its pioneering nature [19] [20] [18] [21]. It is

the forerunner in rendering the theoretical field of Computational Criminology [17], [16]

a pragmatic and a tangible base, sound both from a computational and a criminological

perspective. To the author's best knowledge, there has been no former published research

in Computational Criminology, of the magnitude presented in this work.

We exemplify our approach by modeling and simulating spatial and temporal aspects of

crime in urban environments. Emphasizing the need for a well-defined and robust mathe-

matical framework, we devise a distributed abstract state machine model as a formal basis

for the development of simulation models. Although unconventional, the application of the

ASM formalism and abstraction principles to social systems turns out to be a promising

approach; it nicely combines with the established view of multi-agent modeling of social

systems and provides a precise semantic foundation - something multi-agent system mod-

eling is lacking.

CHAPTER 12. CONCLUSION, CONTRIBUTION AND CHALLENGES

We incorporate reasoning and learning into the model by refining the abstract model with

Case-Based Reasoning. In so doing, we also develop formal executable semantics of an ab-

stract case-based reasoner, with its subsequent refinement to a concrete CBR. This by itself

deserves mention, since to the best of our knowledge there has been no prior attempt at

deriving a formal specification of the Case-Based Reasoning Process.

We also present a novel Cognitive Navigation Algorithm, that incorporates a combination

of exploration and learning, and takes into account person specific cognition of geography,

in forming path planning decisions.

Mathematical and computational modeling of crime serves multiple purposes. It has a di-

rect value in law enforcement, in intelligence led policing, and in proactive crime reduction

and prevention. For intelligence led policing, this model would make it possible to predict

likely activity space for serial offenders for precautions and for apprehension. For proactive

policing, modeling of crime makes it feasible to build scenarios in crime analysis and pre-

vention, and provides a basis for experimental research allowing experiments that can often

not easily be done in the real world.

The particular challenge we face is the complexity and diversity of the problem space due to

two major factors: a) the inherent complexity and dynamics of social systems, and b) the

cross-disciplinary nature of the research field spanning Criminology, Environment Planning,

Modeling & Simulation, AI, Navigation.

To this end, we can say that the ASM abstraction mechanisms greatly simplified the task of

extracting and formalizing behavioral aspects of the system under study and were invaluable

for delineating the borderline between the system and its operational environment.

Our main theoretical result is the abstract behavioral model of person agents interacting with

their objective and subjective environments, and potentially with each other. Specifically,

the model carves out the activity, awareness and crime occurrence space of criminal agents

depending on their personal preferences. Although abstract, the model is complete with

respect to the given level of detail. Our main practical result is an executable version of

the distributed ASM model which is based on AsmL and is used for experimental validation

of the abstract model. The AsmL model also serves as a platform for the construction of

discrete event simulation models.

The model is designed for robustness with the intention to extend and refine it as required

CHAPTER 12. CONCLUSION, CONTRIBUTION AND CHALLENGES 168

to gradually incorporate principles and techniques from other research disciplines, e.g., for

dealing with various cognitive aspects, especially in modeling the target selection process.

Although the current model focuses on physical crime in urban environments, the model is

general and abstract, and thus in principle scalable not only to different modes of crime,

but different levels of spatial aggregation. It can thus be used to simulate a broad range

of crimes - mundane crime like robbery, car theft, burglary etc.; crimes of passion such

as serial murder, homicide, rape etc; non-conventional crime like corporate crime, cyber

crime, intrusion detection. It can also be used at different levels of spatial aggregation viz,

micro-level (airports, malls, downtown), meso-level (within cities, provinces) and macro-

level (between countries, geopolitical crime).

Chapter 13

Opportunities and Future Research

As mentioned before, to the best of our knowledge, this work forms the first published

research in Computational Criminology [I91 [20] [18],[21] . In this vein, the abstract frame-

work serves as a backbone for extending the model along different dimensions of refinement,

for its full composition. This opens avenues for incorporating various problem-solving and

decision-making techniques spanning multiple fields, that fill the niche space created by the

abstract functions of the DASM model.

To begin with, various abstract functions of the Target Selection Module need to be refined.

These functions will typically represent a combination of Case-Based Reasoning and Model-

Based Reasoning, similar to the reasoning approach adopted in SEM. This entails deriving a

concrete CBR from the abstract CBR for target selection; and also formalizing the patterns

in target templating and selection, which needs to be carried out in consultation with the

criminologists.

As highlighted in [56], Data Mining has great potential in Computational Criminology.

Pertinent to our model, classification, clustering and feature selection algorithms commonly

used in data mining [60] can be used for instantiating agents with their daily schedules

and their personal preferences (profile). Daily schedules and preferences are typically based

on demographic factors (age, race, gender) and socio-economic factors (income, race etc),

and play a paramount role in determining the awareness space and subsequently the crime

occurrence space of agents. These algorithms can be applied on data sets of criminals and

their profiles. The School of Criminology at SFU has access to such databases, and it is

CHAPTER 13. OPPORTUNITIES AND FUTURE RESEARCH

anticipated that the model will be integrated with such techniques in near future.

Probabilistic extensions of the model would help in supplementing predictive modeling.

Since it is nearly impossible to attain a cent percent predictive power, probabilistic guesses

are a better estimate for some scenarios. Specifically, by using a probabilistic technique

in ADM, one can assign probabilities to the 'next destination' a person is likely to visit.

Similarly, in the TSM, one can associate probabilities for the victimization of targets.

A mature visualization developed using sophisticated GIs applications such as ArcGis, Map-

Info etc, and event-driven programming, with active user interaction would greatly enhance

the analytics and understanding of the dynamics of the system. It would also supplement in

carrying out further verification and validation of the model. We use a modest visualization

developed in C++ and OpenGL by the Graphics Lab at SFU for the purpose of this thesis.

However, further collaboration is anticipated with the Graphics Lab on this front.

One might pose the lack of substantial numerical results as a critique to measure the reli-

ability of the model. However, as highlighted in Chapter 11, the problem of experimental

validation is more daunting than it seems. In descriptive modeling, the problem of providing

evidence for the validity of a model has a different meaning than in prescriptive modeling.

A combination of qualititive and quantitative methods are called for. Developing effective

verification and validation techniques deserves a more thorough investigation and is subject

of our future work.

Finally, a note on the scalability of the model is noteworthy. The model is scalable with

respect to two aspects (1) different modes of crime, and (2) different levels of spatial ag-

gregation. Although currently we focus on physical crime in urban areas which includes a

broad range of crimes - mundane crime like robbery, car theft, burglary etc.; crimes of pas-

sion such as serial murder, homicide, rape etc. - principles of environmental criminology

suggest that that the theories embody the essence of other non conventional crimes as well.

In principle, the model can be extended to simulate patterns of non-conventional crime like

corporate crime, cyber crime, intrusion detection. It can also be applied to simulate pat-

terns at different levels of spatial aggregation viz, micro-level (airports, malls, downtown),

meso-level (within cities, provinces) and macro-level (between countries, geopolitical crime).

This line of contention, however, needs more thorough analytical research, and is part of

our future work.

APPENDICES

Appendix A

Abstract ASM Model

A. 1 Global Definitions

A. 1 .I Environment

Level 0 : Environment Graph

Err.viro~~rner~i G1.111111
d o m a i n ENVIRONMENT-GRAPH
d o m a i n NODE
d o m a i n EDGE

OpornOio~is w.r.1 1 IN: g m p h s t r l ~ d .
nodeset : ENVIRONMENT-GRAPH + NODE - set
edgeset : ENVIRONMENT-GRAPH + EDGE - set

8 ;
!! . ..
i /

x\;otl<.

outIncidentEdges : NODE x ENVIRONMENT-GRAPH -+ EDGE - set
adjacent : NODE x NODE x ENVIRONMENT-GRAPH + BOOLEAN

edgeHead : EDGE + NODE
edgeTail : EDGE + NODE

APPENDIX A. ABSTRACT ASM MODEL

Level 1: Geographic Environment

1 , Goo So&) . I t ~ i ~ t) ~ ~ t o s -
d o m a i n GEO-STAT-NODEATTR , , O:'"'
d o m a i n GEODYNNODEATTR , /' c-):""
, , (4, - (e);!ilt (.yi1/12 I - - ,)

d o m a i n GEONODEATTR - GEO-STATNODEATTR U GEODYNNODEATTR

; ,/ -- .- - . . - GCO I?dgc , I t t r ~ h t c s

d o m a i n GEO-STATEDGEATTR ;,I 8,;""
d o m a i n GEODYNEDGEATTR , ' 8ft/''
/' f (-)((@y'. (3 ! 7 ~ 1 1)

d o m a i n GEOEDGEATTR - GEO-STATEDGEATTR U GEODYNEDGEATTR
, c3 = ((+(. (9))
d o m a i n GEOATTR -= GEOEDGEATTR U GEO-NODEATTR

... - - (kwgragl~ic I * h ii ormrcrl: --- --- . -

1 ! G'c: ,>,, = (11. q
GEOENV = ENVIRONMENT-GRAPH where
geoAttr : GEOENV 4 GEOATTR

/,' (:PO Kin I ~ O I I I I I C ~ ~ f[111(l i on<
1 ; {y~' \ - q(-);'q
geoStatzcNodeAttr : NODE x GEOENV x GEO-STATNODEATTR 4 VALUE
I / {);to' \ - ?((,>:I"'L)
geoDynamzcNodeAttr : NODE x GEOENV x GEODYNNODEATTR 4 VALUE
; I {) p i p 4 ?((+;'('+)
geoStatzcEdgeAttr : EDGE x GEOENV x GEO-STATEDGEATTR 4 VALUE
1, {y@ . 1,' 7 ? ((5 y 1 ~ 7 3)

geoDynamzcEdgeAttr : EDGE x GEOENV x GEO-DYNEDGEATTR 4 VALUE

APPENDIX A. ABSTRACT ASM MODEL

Level 2: Subjective Environment

/ / Suhjcct ivc? 1-hvironrncmt At tribut,rs
d o m a i n PEREDGEATTR /; ,\jlC I.

d o m a i n PERNODEATTR /! A?"'
d o m a i n PERATTR - PEREDGEATTR U PERNODEATTR /; A::'' = (A:'"'. .\JI"")

d o m a i n AWEDGEATTR , / A:'"
d o m a i n AWNODEATTR / I %!IL'

d o m a i n AWATTR - AWEDGEATTR U AW-NODEATTR / / A,zrt - (A;'."': A?':)

d o m a i n ACEDGEATTR ,' A:'
d o m a i n ACNODEATTR /, A T
d o m a i n ACATTR - ACEDGEATTR U ACNODEATTR , A,\(j ,\tC, ,)

d o m a i n SUBJATTR - PERATTR U AWATTR U ACATTR
d o m a i n SUBJEDGEATTR - PEREDGEATTR U AW-EDGEATTR U ACEDGEATTR
d o m a i n SUBJ-NODEATTR - PERNODEATTR U AWNODEATTR U AC-NODEATTR

j /
; I Sub,joct,i\-c> I~nviroimmt
I / (;S7,415r,1, -- :I)
SUBJENV - GEOENV where
subjAttr : PERSON x SUBJENV -+ SUBJATTR

I ,' SII~)] (Y t i \ FII\ i~ o lm~mt ll(~lilt(~(i I?111rtlor1+
!; .I, !I(:I:ST x l< --. ?(A,)
subjEdgeAttr : PERSON x EDGE x SUBJENV x SUBJEDGEATTR -+ VALUE
' ! &I,, . A(:EN I x 1- -- f (A , j
subjNodeAttr : PERSON x NODE x SUBJENV x SUBJNODEATTR -+ VALUE

Level 3: R e f i n e d Attributes

I I -- - (:PO St,il IC Nocic .\ttlibvtc - -

coordinate : -+ GEOSTATNODEATTR
nodeName : -+ GEOSTATNODEATTR

(:co St,') l I(* R&,(l .It t I ilm
tance : -+ GEOSTATEDGEATTR

roadType. -+ GEO-STATEDGEATTR
edgeName : -+ GEO-STATEDGEATTR

1 Ceo I)yn.~rnic Sodc Att I ih111 c.

trafic : -+ GEODYNEDGEATTR
roadcondition : -+ GEO-DYNEDGEATTR

APPENDIX A. ABSTRACT ASM MODEL

i f -- 1 ' ~ rq)I ion ail I r~ 1n1t cs - -- -

PEREDGEATTR GEOEDGEATTR 1 1 A:!"
PERNODEATTRRIBUTE = GEONODEATTR 1, A?''

' tlm i \ tvl furl(.(loll lo1 >In ,ur:nc>~. spec
awarenessSpace : PERSON x SUBJENV + EDGE - S e t
actzveAwarenessSpace : PERSON x SUBJENV x VALUE + EDGE - S e t

,frequency :+ ACEDGEATTR
triplmportance :+ ACEDGEATTR
rein,forcement :+ ACEDGEATTR

, (IcI.I\ ~d f ~ m (t ~ o n foi KI i~ 11 v s p x ~

actzvztySpace : PERSON x SUBJENV + EDGE - S e t
actzveActzvztySpace : PERSON x SUBJENV x VALUE + EDGE - S e t

Level 4: Refining the abstract domain VALUE

VALUE = REINFORCEMENT U TRIPJMPORTANCE U FREQUENCY
INTENSITY U TRAFFIC U DISTANCEU
ROAD-TYPE U ROAD-CONDITION

DISTANCE - INTENSITY = FLOAT
FREQUENCY = INTEGER

I / 1 1 1 - : 1 ~ 1 ~ ~ ~ 1 ~ ~ ~ 1 ~ ~ 1 1 - ~ \ - ~ - ---
positive :+ REINFORCEMENT
negatzve :+ REINFORCEMENT
neutral :+ REINFORCEMENT

r >

,' I I I Z I P - l ~ 1 I ' o l ~ I : \ ~ C I 1 : -----

obligatory :+ TRIPJMPORTANCE
required :+ TRIPJMPORTANCE
notRequired :++ TRIPJMPORTANCE

APPENDIX A. ABSTRACT ASM MODEL

1 ' , , 'I- It:! I:I.7 I c --

low :-+ TRAFFIC
medium : 4 TRAFFIC
high :-+ TRAFFIC
blocked :4 TRAFFIC

, I _-
- 1tOAI)~'~YI'E

minor :-+ ROAD-TYPE
major :-+ ROAD-TYPE
highway :-+ ROAD-TYPE

, I 1 ~ ~) ~ \ 1 ~ ~ ~ ~ 0 ~ 1 ~ 1 1 - ~ 0 ~ . . .

favorable :-+ ROAD-CONDITION
unfavorable :-+ ROAD-CONDITION
neutral :* ROAD-CONDITION

APPENDIX A. ABSTRACT ASM MODEL

A.1.2 Linking Social Systems to DASM Models

! 1 1 Icq)ping
, ' I Soil~c Soc.1~11 Erlt itirs
domain COP, CRIMINAL
domain CAR, BUS
domain DRUGS, CASH

I ! \l-\S I<ulitics
d o m a i n ENTITY
d o m a i n PASSIVE-OBJECT
domain ACTIVE-OBJECT
domain AUTONOMOUSAGENT
ENTITY - PASSIVE-OBJECT U ACTIVE-OBJECT U AUTONOMOUSAGENT

', lhpp111g
PASSIVE-OBJECT - DRUGS U CASH
ACTIVE-OBJECT = CAR U BUS
AUTONOMOUSAGENT 2 COP U CRIMINAL
AGENT - AUTONOMOUSAGENT

I I-Iierarchical (' la~~il ica~iori
domain ATTRIBUTES
domain BEHAVIOR
domain RULES
domain MEMORY
domain MOTIVATIONS

APPENDIX A. ABSTRACT ASM MODEL

.wive 0
static attributes : PASSIVE-OBJECT -+ ATTRIBUTES

1 -Jlct IVC C)l).j<Tl
ACTIVE-OBJECT - PASSIVE-OBJECT where

behavior : ACTIVE-OBJECT -+ BEHAVIOR
behavior(a) - dynamic attributes

," - -- &\ lit o l ~ o l ~ l o ~ l ' , . \ ~ < M
AUTONOMOUSAGENT = ACTIVE-OBJECT where

rules : AUTONOMOUSAGENT --, RULES
ruLes(a) = Program(a)

memory : AUTONOMOUSAGENT -+ MEMORY

motivations : AUTONOMOUSAGENT -+ MOTIVATION - Set

It should be noted that the formal representation of the classification presented here is
used as a means for understanding the system. While we use explicit domains here for
MEMORY, RULES, BEHAVIOR, ATTRIBUTES, in the subsequent instantiation of au-
tonomous agents, we don't extend these domains vis-a-vis. Instead, we may use abstract
and derived functions, and other domains, that constitute these domains indirectly.

APPENDIX A. ABSTRACT ASM MODEL

A.1.3 Person Agent

Level 0

d o m a i n PERSON
d o m a i n MODULE
d o m a i n AGENT

d o m a i n SEM
d o m a i n TSM
d o m a i n ADM
MODULE = SEM U TSM U ADM

AGENT - PERSON U MODULE

' 1
i '

Ttw in i1 O I ~ I I W I I ~ - - - -

m o n i t o r e d geoEnv : + GEOENV

/ /' - --- llodulc.
parentAgent : MODULE + PERSON

, ! I -- l'w-m
spaceModule : PERSON + SEM
targetModule : PERSON + TSM
decisionModule : PERSON + ADM

1 ,' i t i x i l ~ x v h t a bt I w t tiivs

currentNode : PERSON + NODE
currentEdge : PERSON + EDGE

APPENDIX A. ABSTRACT ASM MODEL

Level 1

,'I - CllR Cor~~poi~i~rl t . i 01 l h l l o t l r h
d o m a i n CBR
d o m a i n SEM-CBR
d o m a i n TSM-CBR
CBR - SEM-CBR U TSM-CBR

tsmCBR : TSM + TSM-CBR
tsmCBRDominant : TSM + BOOLEAN I I)r\lr: IIIIIIC* i f \ l ~ r ~ ~ o i > or E X ~ I O I C I 15 i10111illi111t

APPENDIX A. ABSTRACT ASM MODEL

A. 1.4 Signals

/I ' Siqn& - --- -

SIGNAL -
INFORMARRIVAL U NEWPROBLEM U FEEDBACKAVAILABLE
NEWDEST U WEIGHTS-UPDATED U CRIMINALMOTIVATED
PROBLEM-SOLVED U INIT

The structure of each SIGNAL is formulated in the corresponding level of the model it
is used in. However, for sake of simplicity, we enumerate below the structure of all the
signals. For details on the keywords 'Trigger' and 'Onsignal', the reader is referred to [41].

,'! IS1~'ol:~I 1111:\1. -

anivalTime : INFORMARRIVAL + TIME
path : INFROMARRIVAL + PATH

APPENDIX A. ABSTRACT ASM MODEL

:, T1~I\Y_l'l~O131,1:11 -

problem : NEWPROBLEM --t PROBLEM
owner : NEWPROBLEM --t SEM

I - - I~~~l~~l~13~l~yli~~\~~~llI~.\131,1~ - - -

cbrProblem : FEEDBACKAVAILABLE -. PROBLEM
cbrSolution : FEEDBACKAVAILABLE --t SOLUTION
externalFeedbaclc : FEEDBACKAVAILABLE --t FEEDBACK

: : --. .- .t'E\l~_LlES'l'
newDest : NEWDEST --, NODE

, I
I r l ' lmH1,~1 l ~ s ~ ~ I > ~ - E I ~ -

. .. --

solution : PROBLEMSOLVED --t PATH

APPENDIX A. ABSTRACT ASM MODEL

A.2 Space Evolution Module (SEM)

Definitions

domain PATH - NODE - Seq

domain MODE - { id le , pathPlanning, roadSelection, localR.ePlanning, running, pathcompleted)

currentEdge : SEM + NODE , ' , I Curlcwt ctlgc slolotl I ~ I .I'rrsoil' ! lq1111
currentEdge(a) = ~urrentEdge(~arentA~ent(a))

currentNode : SEM + NODE // Current node slored ill 'Persor~' Agciit.
currentNode(a) - c~rrentNode(~arentAgent(a))

,:
/: 1)ecides \~-lletl~er .~uggc?stedEilgc' is fi t , for t.rawl.scr1: hascd oil (:IIITCII~ row1 condit~ioi~s.
acceptable : SEM x EDGE + BOOLEAN
,/ 1)trc:ides wlictllcr the tiinc rcquirt?d for t~.;r.veliilg :.alo~ig t . 1 ~ curreill ctlgc 11;)s elapsed.
currentEdgeTkaversed : SEM + BOOLEAN
;; , I>c:ci.dcs \vhcl.h(n: t l ~ c a,gc>nt has rcacl~cd [lie dest~inaitlr i~otlo. . .
destNodeReached: SEM + BOOLEAN
destNodeReached = currentNode(se1f) = destNode(self)

APPENDIX A. ABSTRACT ASM MODEL

Rules

S E M - P r o g r a m =
case mode of

i d l e -+

onsignal s : NEWDEST
INITIALIZE(currentNode, n e w D e s t (s))
mode := p a t h p l a n n i n g

roadse lec t ion -+

if destNodeReached then
mode := pathcomple ted

else
if szgnalFromADM then

HANDLEADM-SIGNALS
mode := p a t h p l a n n i n g

else
GET-SUGGESTED-EDGE i l l s ~ ~ q q t aItdl;.'dvc is ~ ip t l i l~cd
mode := 1ocalRePlanning

1oca lReP lann ing -+

if acceptable(suggestedEdge) then
mode := r u n n i n g
currentEdge := suggestedEdge

else
mode := p a t h p l a n n i n g

RECORD-SELECTED-EDGE

r u n n i n g -+

if currentEdge Traversed then
UPDATE-EDGE-PERCEPTION
FINALIZE-EDGE-TRAVERSAL
S E T S E M - M O D E

pa thcomple ted -+

FINALIZE-TRIP
mode := i d l e

where
currentEdge - currentEdge(parentAgent(se1f))
destNodeReached - currentNode(parentAgent(se1f)) = destNode(se1f)

APPENDIX A. ABSTRACT ASM MODEL

Definitions

i i ; :. ~~ -p-----....-......

1 ; Ijtxucl WP (11' Sigili.>.l ISFO1I ~~1..AR~ltIVASi - -

arrivalTzme : INFORMARRIVAL + TIME
path : INFROMARRIVAL + PATH

Kcpt in
cbrDominant : SEM + BOOLEAN
cbrDominant(sem) = semCBRDominant(parentAgent(sem))

)t. in 'Working J~ltm
readyToExplore : SEM + BOOLEAN
, : . .
/ ! 11 t riuc, ~xplor(:i: is lwdy to oxplorc>

randomEdgeSelected : SEM --t BOOLEAN

attemptedEdge : SEM + EDGE

traversestart T ime : SEM + TIME

Rules

INITIALIZE(source : NODE, dest : NODE) =
destNode := dest
sourceNode := source
takenPath := {source)

GET-PATH =
if cbrDominant then

Get-Suggested-PathMemoTY
else

G e t - S u g g e s t e d - P a t h ~ ~ ~ ~ ~ ~ ~ ~

APPENDIX A. ABSTRACT ASM MODEL

Get-Suggested-PathEzplorer =
suggestedpath t G E T - S U G E S T E D - P A T H E , ~ ~ ~ ~ ~ ~ (S ~ ~ ~ , currentNode, destNode)

G e t - S u g g e s t e d - P a t h ~ . ~ ~ ~ ~ ~ ~ =
let pathCBR t GETSUGGESTED-PATHcB~(currentNode, destNode) in

if Tempty(pathCBR) A newPath(pathCB R) then
if complete(pathCBR) then

suggestedpath := pathCBR
if Tcomplete@athCBR) then

suggestedpath t GET-SUGGESTED-PATHM~,~~(~~~~CBR)
if empty(pathCBR) V TnewPath(pathCBR) then

suggestedpath t GET-SUGESTED-PATHExPlorer(self, currentNode, destNode)
where

complete@) - tail(p) = destNode
newPath(pathCBR) - pathCBR 7 E suggedtedPath(self)

HANDLE-ADM-SIGNALS r
onsignal s : NEWDEST

INITIALIZE(currentNode, newDest(s))
onsignal s : WEIGHTS-UPDATED

UPDATE-WEIGHTS(s)

GET-SUGGESTED-EDGE =
if goRandom then

Get-Suggested-Edgepath
if # goRandom then

Get-Suggested-EdgeRandOm

Get-Suggested_EdgeRandom -
choose e in outInccidentEdges(currentNode)

suggestedEdge := e
randomEdgeSelected := true

Get-Suggested-Edgepath
let edge = firstEdge(suggestedPath) in

suggestedEdge := edge
remove head(suggestedPath) from suggestedpath

where
firstEdge(p) = edge(head(p), second@))

APPENDIX A. ABSTRACT ASM MODEL

RECORD-SELECTED-EDGE -
if acceptable(suggestedEdge) then

currentNode := undef
/! the :i.gcnl sr art s passing t.he edge
i I

traverseStart Time := now
else

attemptedEdge := suggestedEdge

FINALIZE-EDGE-TRAVERSAL -
let node = edgeTail(currentEdge) in

cunentNode := node
currentEdge := undef
add node to talcenpath

SET-SEM-MODE =
if 7randomEdgeSelected then

mode := roadSelection
else

randomEdgeSelected := false
mode := pathPlanning

FINALIZE-TRIP -
trigger s : INFORMARRIVAL, decisionModule(parentAgent)

arrivalTzme(s) := now
path(s) := talcenpath

SEND-FEEDBACK-TO-CBR(curProblem, pathCBR, talcenpath)
readyToExplore := false

A.2.3 Level 2

Definitions

/ , I 1iq) t iu \ V o ~ k i ~ ~ g l l ~ m o r y -- - -.

~ ~ ~ P r o b l e m : SEM 4 PROBLEM
closeness : SEM + INTEGER

APPENDIX A. ABSTRACT ASM MODEL

Rules

GET-SUGGESTED-PATHcBR(currentNode : NODE, destNode : NODE) -
if ~waitingForSigna1 then

SEND-NEW-PROBLEM-TO-CBR(currentNode, destNode, closeness)
waitingForSigna1 := true

if waitingForSigna1 then
onsignal s : PROBLEM-SOLVED

return solution(s)
waitingForSigna1 := false

where
closeness = closeness(self)

GET-SUGGESTED-PATHMiXed(partialPathCBR : PATH) r
let partialPathExplorer + GET-SUGGESTED-PATHE,,~,,,,(self, ta i l (par t ia lPathCBR) ,

destNode)
in

let
pathMixed + concat(part ialPathCBR, part ialPathExplorer)
explorerpath + G E T - S U G G E S T E D - P A T H E ~ ~ ~ ~ ~ ~ ~ (sel f , currentNode, dest Node)

in
return superior(pathMixed,pathExplorer)

Definitions

domain PROBLEM
domain FEEDBACK
domain SOLUTION = PATH

St.r~.~ci.urc> 01' S i g ~ ~ d S E W-1'II.O'RI',F,lL
EM -+ PROBLEM

owner : NEWPROBLEM -+ SEM

! ;
i ! Structure of Sigrid FEEl:~F3iZC~K-iZ\~'~iIL.14R1j.F, --

cbrproblem : FEEDBACKAVAILABLE --t PROBLEM
cbrSolution : FEEDBACKAVAILABLE -+ SOLUTION
externalFeedbaclc : FEEDBACKAVAILABLE --t FEEDBACK

APPENDIX A. ABSTRACT ASM MODEL

I -- .- l ' l ~ o l ~ I , I ~ . \ I -- -. -

source : PROBLEM + NODE
dest : PROBLEM + NODE
t ime : PROBLEM 4 TIME
closeness : PROBLEM -+ INTEGER

, I FITFllH!lC!li
pathTaken : FEEDBACK 4 PATH

Rules

SEND-NEW-PROBLEM-TO-CBR(source : NODE, dest : NODE, closeness : INTEGER) -
let p = CREATE-NEW-PROBLEM(source, dest , n o w , closeness) in

trigger s : N E W P R O B L E M , s e m C B R
problem(s) := p
owner(s) := self

SEND~FEEDBACK~FOR~PARTIALSEND_FEEDBACK_FOR_PARTIAL_SOLUTIONSOLUTION
curProblem := p

SEND-FEEDBACK-TO-CBR(p : PROBLEM, sol : SOLUTION, t p : PATH) G

trigger s : FEEDBACKAVAILABLE, s e m C B R
cbrSolut ion(s) := sol
cbrProblem(s) := p
externalFeedback(s) + CREATE-FEEDBACK(takenPath)

SEND-FEEDBACK-FOR-PARTIAL-SOLUTION -
if abandonedSolution then

SEND-FEEDBACK-TO-CBR(curProblem,pathCBR, undefl
! ' S (> I I [~ I ~ I ~ u r d (his S~~(~(ll)ct(,k i~rlpl~(ls 1 ho pat 11 wa> a t) a r ~ < l o ~ ~ ~ d ,

where
abandonedSolutzon - dest(curProb1em) # currentNode

APPENDIX A. ABSTRACT ASM MODEL

A.3 Target Selection Module (TSM)

Definitions

I! I)oiiiairi> foi 1 lic 1 S\I - .-. -.

d o m a i n MODE = {observing, targetTemplating, targetSelection)

d o m a i n CRIME-TYPE
carTheft :+ CRIME-TYPE
shoplift:-+ CRIME-TYPE
robbery :--t CRIME-TYPE

/ , I l'argc.1
d o m a i n LOCATION - NODE U EDGE
d o m a i n TARGET = PASSIVE-OBJECT U ACTIVE-OBJECT

crimeType : TARGET + CRIME-TYPE
location : TARGET + LOCATION

!, 12~mrtioiis atltlcd to Etlgc arid \ (N I P
potentzalTargets : EDGE + TARGET - set
potentzalTargets : NODE --t TARGET - set

potentialTargets : TSM + TARGET - S e t / / ;\I1 o b s o ~ ~ c d t i ~ l . g ~ l , ~ .
goodTargets : TSM + TARGET - Se t / / 'I'argcti~ 't:e~nplatcd' as 'gooil'
selectedTargets : TSM + TARGET - Se t // Tai:gc?t~ cwiitliaIIy ~i~ti ir i izccl
currentlocation : TSM + LOCATION / / (hirrent. riodc or edge: of tlhc! ptmon

APPENDIX A. ABSTRACT ASM MODEL

Rules

; j
, :
TSM-Program z

case mode of
observing +

onsignal s : CRIMINALMOTIVATED
if currentLocation # undef then

. . / / &I. all lhe (mge ls l(.)c.ated 'arollird, on' currcwt I:.,oc;~~io~i.
GET-POTENTIAL-TARGETS(c~rrentLocation)/, Scts ~)oLent.ial':I:i~rgets.
mode := targetTemplating

APPENDIX A. ABSTRACT ASM MODEL

A.4 Agent Decision Module (ADM)

Definitions

, ! j - . . C)ol,l;l ;I,< ~

/ / l!l.t.)I;i ViI i i01.1
routineActivity :-+ MOTIVATION
criminalPropensity :+ MOTIVATION

Rules

ADM-Program =
if ROUTINE-ACTIVITY(routineActivity, self) 1 threshold(routineActivity)
then

ADMSEM-MONITOR
if CRIMINAL-PROPENSITY(criminalyPropensity, self) _> threshold(criminalyPropensity)
then

ADM-TSM-MONITOR

APPENDIX A. ABSTRACT ASM MODEL

A.4.2 Level 1 : ADM-SEM-MONITOR

Definitions

/ / - I:>oIrl;Lills

d o m a i n MODE - {monitor, calculate, decide, i n f o r m)

domain TIME
d o m a i n DATE
d o m a i n DAY
d o m a i n TIMEOFDAY
d o m a i n DAYTYPE = {weekday, weekend)

d o m a i n PROBABILITY

, l'R.C)13XBl.iE-1)ES'I"
toNode : PROBABLEDEST + NODE
prob : PROBABLE-DEST + PROBABILITY
l ,/ . A,I']:"O ry?'l:[x.'JT
; :

timeOfDay : APPOINTMENT + TIMEOFDAY
toNodeSet : APPOINTMENT + PROBABLEDEST - Set
! / ~ (: ~ J ~ : :] : :) [, - ~ , ; ~ - .
i i

fromDate : SCHEDULE --, DATE
toDate : SCHEDULE 4 DATE
dayType : SCHEDULE + DAYTYPE / / wccldty?.: T Y C F ~ O ~ ~

dailySchedule : SCHEDULE + APPOINTMENT - Set
;!' I%llSOTXT>-SCf IEIIL IIl'.:
regularSchedule : PERSONALSCHEDULE --, SCHEDULE - Set // frorr~l1ai.c:. -- toDale = rurtiel'
specialSchedule : PERSONALSCHEDULE + SCHEDULE - Set // .rornl)at~c uot 1111.d(:f

i : I kp t ill PI ohlc
schedule : ADM + PERSONALSCHEDULE

APPENDIX A. ABSTRACT ASM MODEL

Rules

/ j A l l >:I 5'EM .YJO TITO 1.1, .

ADM-SEM-MONITOR =
case mode of

monitor +
: ,
;! 1i.r:coid tlic fact a.gr:nt llas ar.ri'i'd at a (lost:.
onsignal s : INFORMARRIVAL

arrived(self) := true
MONITOR-TIME(self)
/ j Iiecp riiol~itorii~g Lime LIU st:<: if it. ckiar~~es(ex: niorrlirig to noon, 3pm to .1pii1.)
; . / / I l c.l~;tr~ges~ svl, ruotiv 1.0 c:alr:.~~l;t(c,.

seq
calculate +

;/ F'rol);tl~ili.st:i~iilly c:kioc)w thc irt:sr. tli:st:irirtt.iai~ in thc sc:hec:111lc
/ / Sot: n c x t l h t .
CALCULATE-NEXT-DEST(se1f)
mode := decide

seq
decide +

if nextDest (self) then
l j l)ecid(~ whellier LO i ~ i l i x n ~ t.hr: agwl or 1101 - Set: Iiiforni prcdicete

? i : Ilsually if nrriwd =. trua int'orlrl. oli:c! dwidc.
DECIDE-TO-INFORM(self)
mode := i n f o r m

else
/ / No scl~rxlulc amilahlc. Go hack to hI.o.r~ii;ciririg I.ilric1.
mode := monitor

seq
i n f o r m -+

if in f orm(self) then
. :
.!/ l;riggers l:11(: SF11 wilh lkic Xew 1)est.inatiori.
trigger s : NEWDEST, spaceModule(parentAgent)

newDest(s) := nextDest(se1f)
mode := monitor

A.4.3 Level 1: ADM-TSM-MONITOR

Rules

i : ; /
: 2j~)~!1-rp~>il-y[() 3 Irr() 1.1, - -. . . .
ADM-TSM-MONITOR =

/ i t;rigg:.crs t:lw TSM to inilia.lizc its execution. , ,
trigger s : CRIMINALLYMOTIVATED, targetModule(parentAgent)

APPENDIX A. ABSTRACT ASM MODEL

A.4.4 Level 2

Definitions

domain HH
domain MM
domain MONTH
domain DAYOFMONTH
domain YEAR
domain TIMETYPE - {morning, afternoon, evening)

/ I ; - ~ - ... 'I'TMT;: ..
1 :

Get Year : TIME + YEAR
GetYear(t) = t l (12 * 30 * 24 c 60) mod 1

GetMonth : TIME + MONTH
GetMonth(t) t l (30 * 24 * 60) mod 12

GetDay : TIME + DAYOFMONTH
GetDay(t) - t l (24 * 60) mod 30

GetHour : TIME + HH
GetHour(t) :- (t /60) mod 24

GetMinute : TIME + MM
GetMznute(t) :r (t l l) mod 60

GetDayType : TIME + DAYTYPE
weekday : GetDay(t) mod 7 i n {0..4)

GetDay Type(t) -
weekend : otherwise

Rules

j i i ; , ' - - -
: ,

MONITOR-TIME(ADM : self) -
/ i; Hert.? Tiye 11iouil:or cllangos in I : im I:)y t h e Honr
: 1

let currentHour = GetHour(now) in
if currentHour # lastTime then

timeChanged(self) := true
lastTime(self) := currentHour
mode := calculate

APPENDIX A. ABSTRACT ASM MODEL

1 -
, , ('alculcitr Scs t l h t
CALCULATE-NEXT-DEST(ADM : self) =

choose ss from specialSchedule(schedule) with matchss(ss)
FindAppt(self, ss)

if none
choose rs from regularSchedule(schedule) with matchrs(rs)

FindAppt(self, r s)
if none

nextDest(se1f) := undef
where

matchss(ss) = GetDate(notu) E date(ss) A GetDay(notu) = day(ss)
matchrs(rs) - GetDayType(now) = GetDayType(rs)
date(ss) - { f rornDate(ss) - toDate(ss))
day(ss) - dayType(ss) V undef

FindAppt(se1f : ADM, s : SCHEDULE) =
choose app from dail y Schedul e(s) with rnatcht (app)

ChooseDest(self, app)
if none

nextDest(se1f) := undef
where

matcht(app) - GetHour(now) = GetHour(time0 f Day(app))

ChooseDest(ADM : self, app : APPOINTMENT) =
choose d in toNodeSet(app) with PROB(d)

nextDest (self) := toNode(d)
, , Sots rwv [)ost i l l cvrd~ug (0 thv pro1)ahlilicr ,~ssig~ioti

9 : . . , , I,:)c.ci(ic

DECIDE-TO-INFORM(ADM : self) =
if arrived(se1f) then

i n f orrn(self) := true
else

, / Ask (116: ngoilt is it wcruts Lo cl~ailgcl ils dcstiiitirliou.
in f orm(self) := ASKAGENT(se1f)

Appendix B

Refined ASM Model

B. 1 Case-Based Reasoner (CBR)

B. l . l Abstract CBR: Level 0 - 3

Level 0

Definitions

domain CBR
domain POSTSOLMODULE
domain OWNER
AGENT - CBR U POSTSOLMODULE U OWNER

domain MODE r {idle, retrieve, reuse, done)

domain CASE
domain CASE-Index
domain CASE-Content
domain CASE-Outcome

domain PROBLEM
domain SOLUTION

I , - - -
1 , -C!XSE
caselndex : CASE -+ CASE-Index
casecontent : CASE -+ CASE-Content
caseOutcome : CASE -4 CASE-Outcome

APPENDIX B. REFINED ASM MODEL

mode : CBR -+ MODE
caseBase : CBR -+ CASE - Set
postSolModule : CBR -+ POST-SOL-MODULE
owner : CBR -+ OWNER

ballParkSolution : CBR -+ SOLUTION
finalSolution : CBR -+ SOLUTION
problem : CBR -+ PROBLEM

Rules

CtIR I'rogl<\lll

CBR-Program =
case mode of

idle --t
onsignal s : NEWJROBLEM

problem(self) := problem(s)
owner(self) := owner(s)
mode := retrieve

done --t
, , 11 Ig#>rh th0 pO>l%l ~ ~ O d l d O t o dilrl f l l l l ~ l ~ l l ~ 111 pilr ; l~I(~~.

trigger s : INIT,postSolModule(self)
1 Scnd t h solut i u ~ r hack (o t h c owlrc~.

trigger s : PROBLEM-SOLVED, owner(self); ! scud 10 n llom '
solution(s) := f inalSolution(self)

mode := idle

where
mode = mode(se1f)

APPENDIX B. REFINED ASM MODEL

Level 1

Definitions

Csetl 1)) lict r i t~ l c Rule
d o m a i n RETRIEVEMODE - {idle, i den t i f y , match, rank)
retrieveMode : CBR + RETRIEVE-MODE
zdentijiedIndex : CBR + CASE-Index
matchedcases : CBR + CASE - Set

, ,' L%Yl 1)) ll(~11h~~ 1<111(~
d o m a i n REUSEMODE = {idle, copy, adapt)
reuseMode : CBR + REUSEMODE
zscopy : CBR + BOOLEAN

Rules

, , - I1I1I1I? 1l:i'P:
RETRIEVE(se1f : CBR) -

case retrieveMode o f
idle +

retrieveMode := i den t i f y

iden t i f y +

: / 'l 'l~is aels idmt ilidIndr~x-
IDENTIFY(self, problem(self))
retrieveMode := match

match +

l'lm sot< nlatc.llcd(',~ws. l ~ s d on id<mtilioclIiltlcx-
MATCH(self, identi f iedIndex(se1f))
retrieveMode := rank

rank +

,',' I ' h w t s I I I C t)~illparkSoI~~(1011. ~ M Y I OII I I I ~ ~ c h d (' l r ~ s (+
RAN K(self, matchedCases(se1f))
retrieveMode := idle
mode := reuse

where
retrieveMode r retrieveMode(se1f)
mode = mode(self)

APPENDIX B. REFINED ASM MODEL

; --------- --
, , l{p'(;S].;
REUSE(se1f : CBR) =

case reuseMode of
idle --,

if isCopy(self) then
reuseMode := copy

else
reuseMode := adapt

COPY +

f inalSolut ion(sel f) := bal lparkSolution(se1f)
I

; Sets linalSol11l ion
reuseMode := idle
mode := done

where
reuseMode reuseMode(sel f)
mode - mode(se1f)

Level 2 : Post Solution Module

Definitions

domain POSTSOLMODE - {idle, evaluate, retain, done)
domain FEEDBACK
domain UNEVAL-CASE
domain EXTRACTEDJNFO

I
1 L.s1-:\ A l ~ ~ . ~ l ' I m

unevalProblem : UNEVAL-CASE + PROBLEM
uneva~Solution : UNEVAL-CASE + SOLUTION
feedback : UNEVAL-CASE + FEEDBACK
repairedSolution : UNEVAL-CASE + SOLUTION
extractedlnfo : UNEVAL-CASE + EXTRACTEDJNFO

APPENDIX B. REFINED ASM MODEL

I '
1 I'OS'f _SOI._.\ lOl~~~I,I<

mode : POST-SOLMODULE + POST-SOLMODE
parentCBR : POST-SOL-MODULE --, CBR
unevalCaseSet : POST-SOLMODULE -+ UNEVAL-CASE - Set

:; -1 nxil ia~y
unevalCase : POSTSOLMODULE + UNEVAL-CASE
addAsUnevalCase : POSTSOLrVIODULE + BOOLEAN
integrateFeedbaclc : POST-SOL-MODULE --, BOOLEAN

APPENDIX B. REFINED ASM MODEL

Rules

~'ost.Sol~~t;.ioi~\:lo~l~~lc~ Ihvg
POST-SOL-MODULE-Program -

c a s e mode of
idle +

o n s i g n a l s : INIT
if addAsUnevalCase(se1f) then

extend UNEVAL-CASE w i t h newcase
unevalProblem(newCase) := problem(parentCBR(self))
unevalSolution(newCase) := finalSolution(parentCBR(self))
add newcase to unevalCaseSet(se1f)

o n s i g n a l s : FEEDBACKAVAILABLE
c h o o s e x i n unevalCaseSet(se1f) w i t h match(x, s)

unevalCase(se1f) := x
f eedback(x) := externalFeedback(s)
ii; Sets ~~nc.w:lCa.sc with x and its S ~ d b a ~ l i lroin c~~virorlirieil~. . .

if none
extend UNEVAL-CASE w i t h unevalcase

:'/ 141 a,ssociat.ec.l info illto ur~e\dCasi:.
unevalProblem(uneva1Case) := cbrProblem(s)
unevalSolution(unevalCase) := cbrSolution(s)
f eedback(uneva1Case) := externalFeedback(s)
add unevalcase to unevalCaseSet(se1f)

if integrateFeedback(s) t h e n
psMode := evaluate

e l s e
psMode := done

evaluate +

.// Sets lltc ~qairet iSt lui ion.
/ / Sets the ~rlodt-: t o Etei.ain.
EVALUATE(self)

done -+

r e m o v e unevalCase(self) f r o m unevalCaseSet(self)
mode := idle

where
mode - mode(self)
match(x, s) - unevalProblem(x) = ~ r o b l e m (s) A unevalSolution(x) = solution(s)

APPENDIX B. REFINED ASM MODEL

Level 3

Definitions

domain EVALUATE-MODE = {idle, analyze, repair}
domain RETAINMODE - {idle, extract , integrate}

', Fllll(*t 1011s llsP(1 I)>- El-;lllli~~ (?

evaluateMode : POST-SOLAIODULE -+ EVALUATEMODE
repairedNeeded : POSTSOLMODULE -+ BOOLEAN

, Frulct ious 1 1 4 1)) Rot aiu
retainMode : POSTSOLAIODULE -+ RETAINMODE

APPENDIX B. REFINED ASM MODEL

Rules

lXAS2 ~ . x T l ?

LUATE(self : POSTSOLNODULE) =
case evaluateMode of

idle +
evaluateMode := analyze

analyze +

// Sk?k ~qmirSwd(?d pl'~di(l~tc.
ANALYZE(self, unevalCase)
evaluateMode := check

check +
,; 'Rasccl on fi:c?tll);ick. Alialilyzo t h p r o b l t w , sol111 ioil 1.0 seo if rqxrir ncedetl
if repairNeeded(self) then

evaluateMode := repair
else

unevalSolution(unevalCase) := undef
repairedSolution(unevalCase) := unevalSolutim(unevalCase)
/ / scb the c.oi11irined soh~tiorl
evaluateMode := idle
mode := retain

where
evaluateMode G evaluateMode(se1f)
mode - mode(se1f)
unevalCase - unevalCase(self)

APPENDIX B. REFINED ASM MODEL

, - [il'.l' \IS
RETAIN(self : POSTSOLXODULE) -

case retaznMode o f
i d l e +

r e t a i n M o d e := extract

ex t rac t +

i , r x t ractctiln h).
EXTRACT(self , uneva lCase)
r e t a i n M o d e := i n tegra te

in tegra te +

/ / I.ni:.ogra.tcs t h o c??ctl:ac:t.c:ti t ~ o thr: Chsdhsc..
INTEGRATE(self , e x t r a c t e d I n f o(uneva1Case))
r e t a i n M o d e := i d le
mode := done

where
r e t a i n M o d e = re ta inMode(se l f)
mode - mode(se1f)

B.1.2 Concrete C B R : Level 4

Level 1 - Concrete Case-Based Reasoner

Definitions

d o m a i n TIMETYPE = { m o r n i n g , a f te rnoon , even ing)
d o m a i n TIME
d o m a i n TIMEOFDAY
d o m a i n DATE

d o m a i n VALUE
d o m a i n WEIGHT

d o m a i n SEM-CBR r CBR where
d o m a i n PATH - NODE - Seq
SOLUTION G NODE - Seq
OWNER = SEM
EXTRACTEDlNFO = CASE - Set

APPENDIX B. REFINED ASM MODEL

1 rl'llll<
date : TIME + DATE
tzmeOfDay : TIME + TIMEOFDAY
timeType : TIME + TIMETYPE

i ' I > R O l < I J : l l
source : PROBLEM + NODE
dest : PROBLEM + NODE
time : PROBLEM + TIME
closeness : PROBLEM + INTEGER

- FI.:171>13.1Cli--- -- .

pathTaken : FEEDBACK + PATH

I -('.\SF-Iotlcx
source : CASE-Index + NODE
dest : CASE-Index + NODE
timeType : CASE-Index + TIMETYPE
date : CASE-Index + DATE

J I

/ ~'.lSE-C'Oll~ Pl11

path : CASE-Content + PATH

/ , I -. c ~ l s E - ~ ~ l l 1 ~ ~ o r l l ~ ~ -
frequency : CASE-Outcome + VALUE
reinforcement : CASE-Outcome + REINFORCEMENT
tripImportance : CASE-Outcome + TRIP-IMPORTANCE

weightcost : CBR + WEIGHT
weightOutcome : CBR + WEIGHT
weightTime : CBR + WEIGHT
subrankedcases : CBR + CASE - Set

/,, lrwd 13 EWTH \Ci'l'-
newpathset : POSTSOLMODULE + PATH - Set

APPENDIX B. REFINED ASM MODEL

rightTime -
1 : timeType(time@roblem)) = timeType(caseIndex(c))
0 : otherwise

outcomeValue : CASE --, VALUE

outcomeValue(c) - CecEdgeS(casecontent (c)) C~EAC-EDGE-ATTR f adorValue(e, f)

factorvalue : EDGE x FACTOR --, VALUE
factorValue(e, f) -=

localFactorValue(owner, f , dest(problem), e) : e E outIncidentEdges(source(problem))
globalFactorValue(owner, f , e) : otherwise

: / I I o c ~ ? l l 17?\clOr \-aluv
localFactorValue : SEM x FACTOR x NODE x EDGE --, FACTOR-VALUE
localFactorValue(a, f , dest, e) =

angle(dest, e) * factor Weight(a, f) : f = angle
0 : f = numberOfStops
i n t e ~ r e t (~ e o E d ~ e A t t r (e , f)) * factorWeight(a, f) : f E GEOEDGEATTRIBUTE

A currentNode(a) = head(e)
subjEdgeAttr(~arentAgent(a), e, f) * factor Weight(a, f) : otherwise.

,' C: \ oh1 F a c h \;\llw
globalFactorValue : SEM x FACTOR x EDGE --, FACTOR-VALUE
globalFactorValue(a, f , e) -

: f = angle
1 * factorWeight(a, f) : f = numberOfStops
subjEdgeAttr(parentAgent(a), e, f) * factorWezght(a, f) : otherwise.

Rules

where
identi f iedIndex G identi f iedIndex(self)

APPENDIX B. REFINED ASM MODEL

! ! , ,
i /

--------- 4<1iyr'(-:'[.I --- .-

MATCH(self : CBR, identi fiedIndex : CASE-Index) -
forall c E caseBase(self) with exactMatch(c, identi f iedIndex)

add c to matchedCases(se1f)
seq
if matchedCases(se1f) = {) then

let hops = 1 in
while matchedCases(self) = {) A hops < closeness(problem(self))

forall c E caseBase(se1f) with partialMatch(c, identi f iedIndex, hops)
add c to matchedCases(self)

hops = hops + 1

where
exactMatch(c, identi f iedIndex) = source(caseIndex(c)) = source(identi f iedIndex)

A dest(caseIndex(c)) = dest(identi f iedIndex)
partial Match(c, identi f iedIndex, hops) - source(caseIndex(c)) = source(identi f iedIndex)

A Size(bestPath(dest(caseIndex(c)), dest(identi f i edIndex))) <= hops

RANK(self : CBR, matchedCases : CASE - Se t) =
DoSu bRank()
seq
choose c in subrankedCases(se1f) with highestDate(c)

ballparkSolution(self) := path(caseContent(c))

where
highestDate(c) - V x (x E subrankedcases) =+ date(caseIndex(c)) 2 date(caseIndex(x))

DoSubRank(self : CBR) -
forall c in positiveCases with highestSubRank(c)

add c to subrankedCases(self)

where
highestSubRank(c) - V x (x E positiveCases) =X subRank(c) > subRank(x)
positiveCases - {all nln E matchedCases(self)

A rein f orcement(caseOutcome(c)) # negative)
subRank(z) - weightCost(self) * CostValue(z)+

weightOutcome(self) * outcomeValue(z)+
weightTime(self) * r igh tT ime(z)

1 , , -- is('opy - , r
isCopy(self : CBR) -

return true

APPENDIX B. REFINED ASM MODEL

, : ! /
i ,

i~~tcgrrlt&~Lxi.c(-[b ?LC k
integrateFeedback(f a : FEEDBACKAVAILABLE)

if takenPath(externalFeedback(fa)) <> [I then
return t rue

else
return false

choose x E unevalCaseSet(sel f) with unevalProblem(x) = problem(parentCBR(self))
A unevalSolut ion(x) = f inalSolut ion(parentCB R(se l f))

return false
if none

return t rue

i . . - - - .lSAI.\r ZE --

ANALYZE(sel f : POSTSOLMODULE, unevalCase : UNEVAL-CASE) -
repairNeeded(self) := false

: ; ! /
; ; l<.X.Tl~.A(~T --

EXTRACT(sel f : POSTSOLMODULE, unevalCase : UNEVAL-CASE) -
i// sci of all posd)lc patlls(Sodc-Seq)

let newPathSet (se l f) + GetAllPermutations(pathTaken(f eedback(uneva1Case))) in
forall path in newPathSet(se1f)

extend CASE with extractedCase
caseIndex(extractedCase) := Extract-Indexbath)
caseContent(extractedCase) := Extract-Content(path)
caseOutcome(extractedCase) := Extract-Outcorne(path)
add extractedCase to extractedIn f o(unevalcase(sel f))

Extract-Content(path : NODE - Seq) EE
extend CASE-Content with extractedcontent

path(extractedContent) := path
return extractedcontent

APPENDIX B. REFINED ASM MODEL

Extract-lndex(path : NODE - Seq) -
extend CASE-Index with extractedIndex

source(extractedIndex) := source(path)
dest(extraded1ndex) := dest(path)
timeType(extracted1ndex) := timeType(time(unevalProblem(unevalCase)))
date(extracted1ndex) := date(time(unevalProblem(unevalCase)))
return extractedIndex

Extract-Outcome(path : NODE - Seq) =
extend CASE-Outcome with extractedOutcoine

frequency(extractedOutcome) := GETFREQUENCY0
re in f orcement(extraded0utcome) := GETREIN FORCEM ENT()
tripImportance(extracted0utcome) := GETTRI PI M PORTANCEO
return extractedOutwme

, ' i 1 > (, . .

INTEGRATE(self : POST-SOLMODULE, extractedIn f o : CASE - S e t) =
forall newcase in extractedIn f o(unevalCase(se1f))

choose oldcase from caseBase with matchExists(oldCase, newcase)
UpdateCase(oldCase, newcase)

if none
add newcase to caseBase

where
matchExists(oldCase, newcase) -

source(caseIndex(o1dCase)) = source(caseIndex(newCase))~
dest(caseIndex(o1dCase)) = dest(caseIndex(newCase))~
timeType(caseIndex(oldCase)) = timeType(caseIndex(newCase))~
path(caseContent(o1dCase)) = path(caseContent(newCase))

caseBase - caseBase(parentCBR(se1f))

Update-Case(o1dCase : CASE, newcase : CASE) =
date(caseIndex(o1dCase)) := date(caseIndex(newCase))
f requency(caseOutcome(oldCase)) := f requency(caseOutcome(newCase)) + 1
rein f orcement(caseOutcome(oldCase)) := AVG(oldCase, newcase)
tripImportance(caseOutcome(oldCase)) := AVG(oldCase, newcase)

APPENDIX B. REFINED ASM MODEL

B.2 Path Explorer Submachine

B.2.1 Level 0

Definitions

I -- - Iicpl ill 'I'olal ilc l l r n o i i~' - --------- --

edgePref: SEM x EDGE x NODE + PREF-VALUE
readyToExplore : SEM + BOOLEAN
bestpath : SEM x NODE x NODE + PATH

Rules

Rxplolw Sul,Sl.s.chir
GET-SUGGESTED-PATH~IplOTeT(sem : SEM, currentNode : NODE, destNode : NODE) =

if readyToExplore then
choose edge in outIncidentEdges(currentNode) with maxPref(edge)

return concat(currentNode, bestPath(taiE(edge), destNode))
else

GLOBAL-RE-CALC
ready ToExplore := true

where
maxprefledge) EF Ve(e E outIncidentEdges(currentNode)

+ edgepreflsem, edge, destNode) > edgePref(sem, e, destNode))
initialize : readyToExplore = false

B.2.2 Level 1

Definitions

1 ' ____-- - licpt in '1'1 ufilc' ---

global Weight : SEM + WEIGHT-VALUE
local Weight : SEM + WEIGHT-VALUE

1 '\'olatilc Flemol:!;'
NODE + PREF-VALUE

globalPathPref: SEM x NODE x NODE + PREF-VALUE

j! ~ t l g ~ l ' ~ ~f
edgeprefla, e, dest) =

globalWeight(a) * globalPathPre f (a , tail(e), dest)+
localWeight(a) * LocalEdgePref (a , e, dest)

APPENDIX B. REFINED ASM MODEL

B.2.3 Level 2

Definitions

I
/ , l h r n a i ~ ~ \ ---

d o m a i n INDUCEDEACTOR
d o m a i n FACTOR - SUBJEDGEATTR U INDUCEDEACTOR

/ j Ir~drlcetl Factors
numberOfStops : -+ INDUCEDEACTOR
angle : -+ INDUCEDEACTOR

// I;oc<rl :Kclgc L'rcf
localEdgePref(a, e, dest) = CfEFACToR localFactorValue(a, f , dest, e)
1' Iiocal Fi1c.t or \.'aluc , ,
localFactorValue : SEM x FACTOR x NODE x EDGE -+ FACTOR-VALUE
localFactorValue(a, f , dest, e) E

angle(dest, e) * factor Weight(a, f) : f = angle
1 : f = numberOfStops
interpret(geoEdgeAttr(e, f)) * factor Wezght(a, f) : f E GEOEDGEATTR A

[currentNode(a) = head(e)
v currentNode(a) = tail (e))]

subjEdgeAttr(parentAgent(a), e, f) * factorWezght(a, f) : otherwise.

I Glohal F d g ~ I'rd

gEdgePref(a, e) - C f globalFactorValue(a, f , e)
1 ' Glolx~l F'K t I)r \ 7 a l u ~
globalFactorValue : SEM x FACTOR x EDGE -+ FACTOR-VALUE
globalFactor Value(a, f , e) =

: f = angle
1 * factor Weight(a, f) : f = numberOfStops
interpret(geoStaticEdgeAttr(e, f)) * factor Weight(a, f) : f E GEOSTATEDGEATTR.
subjEdgeAttr(parentAgent(a), e, f) * factor Weight(a, f) : otherwise.

Rules

I .
I G1ol)al 114':d(ulat ion

GLOBAL-RE-CALCULATION r
fora l l s i n nodeSet(env)

Calculate-Best-Path(self, s)

APPENDIX B. REFINED ASM MODEL

I>i , j
Calculate-Best-Path(sem : SEM, origin : NODE, type : PREF-TYPE) =

local pref [forall a in n o d e s e t
prefla) := 0]

local tempNodeSet := 0
(forall n in nodeset

forall m in nodeset
bestPath(sem, n, m, t y p e) := 0)

seq
(while (tempNodeSet # nodeset) / / ' ITsi~ig T11i~boAS14 cwnst;~:r~ct:s

{let u = Node WithMinLabel(nodeSet - tempNodeSet)
add u to tempNodeSet
bestPathPwf(sem, or ig in , u , t y p e) := pref(u)
bestPath(sem, or ig in , u, t y p e) := concat(bestPath(sem, or ig in , u , t y p e) , u)
forall v in (nodese t - tempNodeSet) with adjacent(u, v)

Update-Pref(sem, u, v , t y p e)))
where

n o d e s e t - nodeSet(env)
nodeWithMinLabel(aN0deSet) - p where p E a N o d e S e t A

V s (s E (a N o d e S e t - P)) + pre f (p) 2 pre f (s)

1, - l i t ' 1 --

U p d a t e - P r e f (s e m : SEM, u : NODE, v : NODE, t ype : PREF-TYPE) -
let u-v = gEdgePref(sem, edge(u , v) , t y p e)

if pref(u) + u-v > pref(v) then
preflv) := preflu) + u-v

where
edge(u , v) - a where a E edgeSet(env) A edgeHead(a) = u A edgeTai l (a) = v

Appendix C

Executable AsmL Model

The Executable AsmL Model is contained in the attached CD with file name "ASMLModel.doc".
It is composed of approximately 3,000 lines of code (LOC) and is written using the MS Word
editor.
It can be viewed using the MS Word editor or MS Visual Studio. To run the code, you need
to install .Net Framework and AsmL on your machine. See also the attached README file
for help.
As described in Chapter 10, the AsmL model is organized as five distinct parts.

C. 1 Global Definitions

Global Definitions are contained in the file "ASMLModel.doc" as Section 1. These are as
follows:
Section 1.1: LINKING SOCIAL SYSTEMS TO DASM MODELS
Section 1.2: ENVIRONMENT REPRESENTATION
Section 1.3: PERSON AGENT
Section 1.4: SIGNALS
Section 1.5: OTHER GLOBAL FUNCTIONS (TIME, etc)

C.2 AsmL Abstract Model

AsmL Abstract Model is contained in the file "ASMLModel.doc" as Section 2. It is com-
prised of the following:
Section 2.1: SPACE EVOLUTION MODULE (SEM)
Section 2.2: TARGET SELECTION MODULE (TSM)
Section 2.3: AGENT DECISION MODULE (ADM)

APPENDIX C. EXECUTABLE ASML MODEL 215

C.3 AsmL Refined Model

AsmL Refined Model is contained in the file "ASMLModel.doc" as Section 3. It is comprised
of the following:
Section 3.1: CASE BASED RESONER (CBR) - Abstract and Concrete
Section 3.2: PATH EXPLORER SUBMACHINE

C.4 Execution Specific Addit ions

Execution Specific Additions are contained in the file "ASMLModel.doc" as Section 4.

C. 5 Visualization Specific Addit ions

Visualization Specific Additions are contained in the file "ASMLModel.docn as Section 5.
These are comprised of the following:
Section 5.1: DATA STRUCTURE OF XML FILE.
Section 5.2: COMMUNICATION COMMANDS (between the AsmL Model and Visualiza-
tion)

Bibliography

[I] Agnar Aamodt and Enric Plaza. Case-Based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches. AI Commun., 7(1):39-59, 1994.

[2] M. A. Anwar and T. Yoshida. Integrating 00 Road Network Database, Cases and Knowledge for

Route Finding. In SAC '01: Proceedings of the 2001 ACM Symposium on Applied Computing,

pages 215-219, New York, NY, USA, 2001. ACM Press.

[3] S. Bankes. Agent-based Modeling: A Revolution? Proceedings of the National Academy of

Science of the United States of America, 99:7199-7200, 2002.

[4] Daniel M. Berry. Formal Methods: The Very Idea Some Thoughts About Why They Work

When They Work. Electronic Notes in Theoretical Computer Science, 25, 1999.

[5] E. Borger. The ASM Ground Model Method as a Foundation for Requirements Engineering.

Verification: Theory and Practice, pages 145-160, 2003.

[6] E. Borger and R. Stark. Abstract State Machines: A Method for High-Level System Design and

Analysis. Springer-Verlag, 2003.

[7] Egon Borger. The ASM Refinement Method. Formal Aspects of Computing, 15(2-3):237-257,

2003.

[8] A. E. Bottoms and P. Wale. Environmental Criminology. In The Oxford Handbook of Crimi-

nology (3rd ed.), pages 620-656. Oxford University Press, 2002.

[9] P. J. Brantingham and P. L. Brantingham. A Theoretical Model of Crime Site Selection. In

M. D. Krohn and R. L. Akers, editors, Crime, Law and Sanctions. Sage Publications Inc., 1978.

[lo] P. J. Brantingham and P. L. Brantingham. Patterns in Crime. New Tork: Macmillan Publishing

Company, 1984.

[ll] P. J. Brantingham and P. L. Brantingham. Introduction: The Dimensions of Crime. In P. J.
Brantingham and P. L. Brantingham, editors, Environmental Criminology, pages 7-26. Wave-

land Press, 1991.

BIBLIOGRAPHY 217

1121 P. J. Brantingham and P. L. Brantingham. Introduction to the 1991 Reissue: Notes on Envi-

ronmental Criminology. In P. J . Brantingham and P. L. Brantingham, editors, Environmental

Criminology, pages 7-26. Waveland Press, 1991.

1131 P. J . Brantingham and P. L. Brantingham. Notes on the Geometry of Crime. In P. J. Branting-

ham and P. L. Brantingham, editors, Environmental Criminology, pages 7-26. Waveland Press,

1991.

1141 P. J. Brantingham and P. L. Brantingham. Environment, Routine and Situation: Toward a

Pattern Theory of Crime. Advances in Criminological Theory, pages 259-294, 1993.

1151 P. J . Brantingham and P. L. Brantingham. Nodes, Paths and Edges: Considerations on the

Complexity of Crime and the Physical Environment. Journal of Environmental Psychology,

pages 3-28, 1993.

[16] P. J. Brantingham and P. L. Brantingham. Computer Simulation as a Tool for Environmental

Criminologists. Security Journal, pages 22-30, 2004.

[17] P. J . Brantingham, P. L. Brantingham, and U. Glasser. Computer Simulation in Criminal

Justice Research. Criminal Justice Matters, (58), February 2005.

[18] P. L. Brantingham, U. Glasser, B. Kinney, K. Singh, and M. Vajihollahi. A Computational

Model for Simulating Spatial Aspects Crime in Urban Environments. In Proceedings of the

IEEE International Conference on Systems, Man, and Cybernetics, Oct 2005.

1191 P. L. Brantingham, U. GlGser, B. Kinney, K. Singh, and M. Vajihollahi. Mastermind: Modeling

and Simulation of Criminal Activity in Urban Environments. Technical Report SFU-CMPT-

TR-2005-01, Simon Fraser University, Feb 2005.

1201 P. L. Brantingham, U. GlGser, B. Kinney, K. Singh, and M. Vajihollahi. Modeling Urban Crime

Patterns: Viewing Multi-Agent Systems as Abstract State Machines. In E. Brger D. Beauquier

and A. Slissenko, editors, Proc. 12th International Workshop on Abstract State Machines, pages

101-117, March 2005.

1211 P. L. Brantingham, U. Glasser, K. Singh, and M. Vajihollahi. Mastermind: Modeling and Simu-

lation of Criminal Activity in Urban Environments. Technical Report SFU-CMPT-TR-2005-14,

Simon Fraser University, July 2005. Revised version of SFU-CMPT-TR-2005-01, February 2005.

[22] M. E. Bratman, D. Israel, and M. Pollack. Plans and Resource-Bounded Practical Reasoning.

In R. Cummins and J. L. Pollock, editors, Philosophy and AI: Essays at the Interface, pages

1-22. The MIT Press, Cambridge, Massachusetts, 1991.

[23] M. E. Bratman, D. Israel, and M. E. Pollack. Plans and Resource-Bounded Practical Reasoning.

Computational Intelligence, 4:349-355, 1988.

[24] Frederick P. Brooks. No Silver Bullet: Essence and Accidents of Software Engineering. IEEE

Computer, 2O(4): 10-19, 1987.

BIBLIOGRAPHY

[25] D. Canter. Criminal Shadows. Authorlink, 1994.

[26] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest Paths Algorithms:

Theory and Experimental Evaluation. Math. Program, 73(2):129-174, 1996.

[27] R. V. Clarke. Situational Crime Prevention: Its Theoretical Basis and Practical Scope. In

M. Tonry and N. Morris, editors, Crime and Justice: An Annual Review of Research, pages

225-256, 1983.

[28] L. E. Cohen and M. Felson. Social Change and Crime Rate Trends: A Routine Activity

Approach. American Sociological Review, pages 588-608, 1979.

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction To Algorithms, Second
Edition. MIT Press, September 2001.

[30] D. Cornish and R. V. Clarke. Introduction. In D. Cornish and R. V. Clarke, editors, The Rea-
soning Criminal: Rational Choice Perspectives on Offending, Research in Criminology, pages

1-16. New York: Springer-Verlag, 1986.

[31] P. Davidsson. Agent Based Social Simulation: A Computer Science View. Journal of Artificial

Societies and Social Simulation, 5, January 2002.

[32] John Derrick and Eerke Boiten. Refinement i n 2 and Object-2: Foundations and Advanced
Applications. Formal Approaches to Computing and Information Technology. Springer, May

2001.

[33] E. W. Dijkstra. A Note On Two Problems In Connection With Graphs. Numerische Mathematik,
1:269-271, 1959.

[34] M. dlInverno, M. Fisher, A. Lomuscio, M. Luck, M. de Rijke, M. Ryan, and M. Wooldridge.

Formalisms For Multi-Agent Systems. In In First UK Workshop on Foundations of Multi-Agent

Systems, 1996.

[35] M. d'Inverno and M. Luck. Formal Agent Development: Framework to System. In J . L. Rash,

C. Rouff, W. Truszkowski, D. F. Gordon, and M. G. Hinchey, editors, Formal Approaches to

Agent-Based Systems, First International Workshop, FAABS 2000. Revised Papers, volume

1871 of Lecture Notes i n Computer Science. Springer, 2001.

[36] J. Doran, M.Palmer, N. Gilbert, and P. Mellars. The EOS Project: Modelling Upper Palae-

olithic Social Change. In N. Gilbert and J. Doran, editors, Simulating Society: The Computer
Simulation of Social Phenomena, chapter 9, pages 195-221. UCL Press, London, 1994.

[37] A. Drogoul and J . Ferber. Multi-Agent Simulation as a Tool for Studying Emergent Processes

in Societies. In N. Gilbert and J. Doran, editors, Simulating Society: The Computer Simulation

of Social Phenomena, chapter 6, pages 127-142. UCL Press, London, 1994.

[38] A. Drogoul, D. Vanbergue, and T. Meurisse. Multi-Agent Based Simulation: Where Are the

Agents? Journal of Artificial Societies and Social Simulation, 6, July 2002.

BIBLIOGRAPHY 219

1391 J . E. Eck and D. Weisburd. Crime Places in Crime Theory. In Crime and Place, Crime

Prevention Studies, pages 1-33. The Police Executive Research Forum, 1995.

[40] P. Ekblom and N. Tilley. Going Equipped: Criminology, Situational Crime Prevention and the

Resourceful Offender. British Journal of Criminology, pages 376-398, 2000.

[41] Roozbeh Farahbod. Extending and Refining an Abstract Operational Semantics of the Web

Services Architecture for the Business Process Execution Language. Master's thesis, Simon
Fraser University, Burnaby, Canada, July 2004.

1421 M. Felson. Routine Activities and Crime Prevention in the Developing Metropolis. Criminology,

pages 91 1-931, 1987.

1431 N.E. Fenton and S.L. Pfleeger. Software Metrics: Rigorous and Practical Approach. Interna-

tional Thomson Press, 1997.

1441 J . Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison

Wesley, February 1999.

[45] M. Fisher. If Z is he Answer, What Could the Question Possibly Be? In J . P. Muller, M. J .

Wooldridge, and N. R. Jennings, editors, Proceedings of the ECAI'96 Workshop on Agent Theo-

ries, Architectures, and Languages: Intelligent Agents 111, volume 1193, pages 6546 . Springer-

Verlag: Heidelberg, Germany, 12-13 1997.

[46] M. Fisher and M. Wooldridge. Towards Formal Methods for Agent-Based Systems. In D. Duke

and A. Evans, editors, BCS-FACS Northern Formal Methods Workshop. Electronic Workshops

in Computing. Springer Verlag, 1997.

[47] Martin Fowler. The New Methodology, April 2003.

[48] S. Franklin and A. Gasser. Is it an Agent, or just a Program?: A Taxonomy for Autonomous

Agents. In Proceedings of the Third International Workshop on Agent Theories, Architectures

and Languages. Springer-Verlag, 1996.

1491 G. Gallo and S. Pallottino. Shortest Paths Algorithms. Annals of Operations Research, 13:3-79,

1988.

1501 M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge. The Belief-Desire-Intention

Model of Agency. In J . Muller, M. P. Singh, and A. S. Rao, editors, Proceedings of the 5th
International Workshop on Intelligent Agents: Agent Theories, Architectures, and Languages

(ATAL-98), volume 1555, pages 1-10. Springer-Verlag: Heidelberg, Germany, 1999.

[51] N. Gilbert and S. Bankes. Platforms and Methods for Agent-Based Modeling. Proceedings of

the National Academy of Science of the United States of America, 99:7197-7198, 2002.

[52] N. Gilbert and J . Doran. Simulating Societies. UCL Press, 1995.

[53] N. Gilbert and K. G. Troitzsch. Simulation for the Social Scientist. Open University Press,

1999.

BIBLIOGRAPHY 220

[54] U. Glasser, Y. Gurevich, and M. Veanes. An Abstract Communication Model for Distributed

Systems. IEEE Transactions on Software Engineering, 30(7):458-472, 2004.

[55] A. R. Golding and P. S. Rosenbloom. Improving Rule-Based Systems Through Case-Based

Reasoning. In National Conference on Artificial Intelligence, pages 22-27, 1991.

[56] L. Gunderson and D.Brown. Using a Multi-Agent Model to Predict Both Physical and Cyber

Criminal Activity. IEEE International Conference on Systems, Man, and Cybernetics, 4:2338-

2343, 2000.

[57] Y. Gurevich. Evolving Algebras. A Tutorial Introduction. Bulletin of EATCS, 43:264-284,

1991.

[58] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, editor, Specification and

Validation Methods, pages 9-36. Oxford University Press, 1995.

[59] Y. Gurevich. Sequential Abstract State Machines Capture Sequential Algorithms. ACM Trans-

actions on Computational Logic, 1(1):77-111, July 2000.

[60] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2000.

[61] V. Hilaire, A. Koukam, P. Gruer, and J. P. Miiller. Formal Specification and Prototyping of

Multi-agent Systems. Lecture Notes in Computer Science, 1972, 2001.

[62] Jan Husdal. Fastest Path Problems in Dynamic Transportation Networks, 2000.

[63] N. Jing., Y. W. Huang, and E. A. Rundensteiner. Hierarchical Optimization of Optimal Path

Finding For Transportation Applications. In Proceedings of the Fifth International Conference

on Information and Knowledge Management, pages 261-268. ACM Press, 1996.

[64] K. KO&. Principles of Gestalt Psychology. Harcourt, 1967

[65] J . Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers Inc., 1993.

[66] J. Kolodner and D. Leake. A Tutorial Introduction to Case-Based Reasoning. In D. Leake,

editor, Case-Based Reasoning: Experiences, Lessons, and Future Directions, pages 31-65. AAAI

Press, 1996.

[67] David B. Leake. Case-Based Reasoning: Experiences, Lessons and Future DDictions. MIT

Press, 1996.

[68] B. Liu. Intelligent Route Finding: Combining Knowledge and Cases and an Efficient Search

Algorithm. In European Conference on Artificiul Intelligence, pages 380-384, 1996.

[69] B. Liu, S.H. Choo, S.L. Lok, S.M. Leong, S.C. Lee, F.P. Poon, and H.H. Tan. Integrating

Knowledge-Based Approach, Case-Based Reasoning and Dijkstra Algorithm for Routing Find-

ing. In Proceedings of The Tenth IEEE Conference on Artificial Intelligence for Applications,

pages 149-155, 1994.

BIBLIOGRAPHY 221

[70] B. Liu and J . Tay. Using Knowledge about the Road Network for Route Finding. In In IEEE
Transactions on Systems, Man and Cybernetics, volume 27. IEEE, July 1997.

[71] M. Luck and M. d'Inverno. A Formal Framework for Agency and Autonomy. In V. Lesser and

L. Gasser, editors, Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS-95), pages 254-260, San Francisco, CA, USA, 1995. AAAI Press.

[72] M. L. Maher, M. Balachandran, and D. M. Zhang. Case-Based Reasoning in Design. Lawrence

Erlbaum Associates, 1995.

1731 C. Marling, M. Sqalli, E. Rissland, H. Munoz-Avila, and D. Aha. Case-Based Reasoning Inte-

grations. AI Mag., 23(1):69-86, 2002.

[74] Microsoft Foundations of Software Engineering Group. The Abstract State Machine Language.

Last visited June 2005, http://research.microsoft.com/fse/asml/.

[75] C. E. Noon and F. B. Zhan. Shortest Path Algorithms: An Evaluation Using Real Road

Networks. Transportation Science, 1996.

[76] Bashar Nuseibeh and Steve Easterbrook. Requirements Engineering: A Roadmap. In ICSE

'00: Proceedings of the Conference on The Future of Software Engineering, pages 35-46, New

York, NY, USA, 2000. ACM Press.

[77] K. Ramamohanarao P. Busetta, J. Bailey. A Reliable Computational Model for BDI Agents.

Proceedings of 1st International Workshop on Safe Agents, July 2003.

[78] A. J. Patel. Amit's Thoughts on Path Finding and A-Star, 2003.

http://theory.stanford.edu/-amitp/GameProgramming/.

1791 J. Prentzas and I. Hatzilygeroudis. Integrations of Rule-Based and Case-Based Reasoning.

In In Proceedings of the International Conference on Computer, Communication and Control
Technologies (CCCT-03), volume 4, pages 81-85, 2003.

[80] G. F. Rengert. Burglary in Philadelphia: A Critique of an Opportunity Structure Model. In

Environmental Criminology, pages 189-201. Waveland Press Inc., 1991.

1811 G. F. Rengert. The Journey to Crime: Conceptual Foundations and Policy Implications. In

Crime, Policing and Place: Essays in Environmental Criminology, pages 109-117. Routlede,

1992.

[82] Christopher K. Riesbeck and Roger C. Schank. Inside Case-Based Reasoning. Lawrence Erl-

baum Associates, Inc., Mahwah, NJ, USA, 1989.

[83] D. K. Rossmo. Geographic Profiling. CRC Press, 2000.

1841 A. Seror. Simulation of Complex Organizational Processes: A Review of Methods and Their

Epistemological Foundations. In N. Gilbert and J . Doran, editors, Simulating Societies. UCL

Press. 1994.

BIBLIOGRAPHY 222

[85] 0. Shehory and A. Sturm. Evaluation of Modeling Techniques for Agent-Based Systems. In

Proceedings of the Fifth International Conference on Autonomous agents, pages 624-631. ACM

Press, 2001.

[86] J. Sonnenfeld. Geography, Perception and the Behavioral Environment. In P. W. English and

R. C. Mayfield, editors, Man, Space and the Environment, pages 244-251. Oxford University

Press, New York, 1972.

[87] P. J. Starr. Modeling Issues and Decisions in System Dynamics. In J R A. A. Legasto, J. W.

Forrester, and J. M. Lyneis, editors, System Dynamics. North Holland, 1980.

[88] J. Sungwon and S. Pramanik. An Efficient Path Computation Model For Hierarchically Struc-

tured Topographical Road Maps. IEEE Transactions on Knowledge and Data Engineering,

14:1029-1046, Sep/Oct 2002.

[89] K. P. Sycara. Multiagent Systems. AI Magazine, pages 79-92, 1998.

[go] G. Wagner. Practical Theory and Theory-Based Practice. In J . P. Muller, M. J. Wooldridge, and

N. R. Jennings, editors, Proceedings of the ECAI'96 Workshop on Agent Theories, Architectures,

and Languages: Intelligent Agents I , volume 1193, pages 67-69. Springer-Verlag: Heidelberg,

Germany, 12-13 1997.

[91] M. Wooldridge. Intelligent Agents: The Key Concepts. In M. Luck, V. Marik, 0. Stepankova,

and R. Trappl, editors, Multi-Agent Systems and Applications 11, pages 3-43. Springer, 2001.

[92] M. Wooldridge. An Introduction to Multiagent Systems. John Wiley and Sons Ltd, 2002.

[93] R. T. Wright and S. H. Decker. Armed Robbers in Action: Stickups and Street Culture. North-

eastern University Press, 1997.

[94] W. Yimin, X. Jianmin, H. Yucong, and Y. Qinghong. A Shortest Path Algorithm Based on

Hierarchical Graph Model. Intelligent Transportation Systems, 2:1511-1514, October 2003.

[95] B. P. Zeigler, T. G. Kim, and H. Praehofer. Theory of Modeling and Simulation. Academic

Press, Inc., Orlando, FL, USA, 2000.

[96] F. B. Zhan. Three Fastest Shortest Path Algorithms on Real Road Networks: Data Structures

and Procedures. Journal of Geographic Information and Decision Analysis, 1(1):69-82, February

1997.

