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Abstract 

Crime is not random. Criminologists contend there is predictable rationality and definite 

patterning behind urban crime. Conventional research for crime analysis is statistical and 

empirical in nature. However, with increasing complexity of the involved sociological system, 

empirical deduction is not sufficient; mathematical and computational models are needed 

for reasoning about system dynamics. 

In this thesis, we posit a novel approach of computational modeling of urban crime pat- 

terns. By combining the Abstract State Machine (ASM) formalism with the Multi Agent 

System (MAS) modeling paradigm, we obtain an abstract formal framework for semantic 

modeling and integration of established theories of crime analysis. Such a firm mathematical 

foundation also provides a quintessential platform for constructing discrete event simulation 

models. 

The framework can be applied for predictive and explanatory modeling of crime patterns. 

The virtue of this work is in its pioneering nature. It introduces an unprecedented, inter- 

disciplinary research field of Computational  Criminology. 





"Any intelligent fool can make things bigger, more complex, and more violent. I t  takes a 

touch of genius - and a lot of courage - to move in the opposite direction. " 
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Chapter 1 

Introduction 

Crime is not random. Any crime consists of four dimensions -- the law, the offender, the 

target and the place [ll]. Environmental Criminology is the study of the fourth dimension, 

the geography of the place, which is defined as the discrete location in time and space at 

which the other three dimensions intersect and a criminal event occurs. Criminologists have 

developed various theories of crime [lo] that contend there is definite patterning in the tern- 

porn1 and spatial  characteristics of physical urban crime. 

The main theoretical theme argues that criminal events can be understood in the context 

of peoples' movements during the course of their everyday lives, and that criminals behave 

much like non-criminals most of the time. This implies there are a set of patternslrules 

that govern the working of a typical real-life social system - composed of criminals, non- 

criminals, victims and targets, interacting with each other, in a given dynamic environment. 

The locomotion of people belonging to this system is influenced by the underlying urban 

landscape - city's land use patterns, street networks, transportation systems and typogra- 

phy. Furthermore, as chaotic as it may appear, there is predictable rationality that guides 

the victimization and decision-making process exhibited by criminals. Since there is definite 

patterning in crime, these patterns can be studied, stated and hence predicted. 

In this thesis, we posit an abstract mathematical framework for semantic modeling and 

integration of established theories of crime ana.lysis and prediction. This is obtained by 

combining the Abstract State Machine (ASM) formalism [6] with the Multi-Agent System 

(MAS) modeling paradigm [89]. The model serves as  a platform for predictive (prescriptive) 



CHAPTER 1. INTRODUCTION 

and explanatory (descriptive) modeling of crime patterns. 

The abstract framework serves as a ground model and provides a logical backbone for 

interfacing with diverse knowledge-based, and model-based systems through well-defined 

functions, and thus incorporating cross-disciplinary perspectives in an elegant fashion. The 

power of abstraction accompanied with step-wise refinement [7] provides a means to incre- 

mentally extend the model along different dimensions and units of functionality. Although 

abstract, the model is complete and precise, with respect to the given level of detail [5]. 

At the same time, as a secondary outcome, we obtain discrete event simulation models that 

serve as effective instruments for prediction and prevention of urban crime. These tools allow 

for experimentation and sample runs to reason about 'what if' and 'most likely' scenarios. 

They provide us with means of performing simulation-enhanced thought experiments aimed 

at improving our intuition and understanding about the modeled phenomenon. 

Specifically, we focus here on physical crime in urban areas and model spatial and temporal 

aspects of criminal events, potentially involving multiple offenders and multiple targets. 

The scope of the model includes a broad range of crimes, ranging from mundane crime like 

robbery, car theft, burglary etc., to crimes of passion such as serial murder, homicide, rape 

etc. [8] [93] [83] [lo]. 

This work thus introduces a novel, cross-disciplinary research initiative, broadly classified 

as Computational Criminology - spanning the fields of Modeling & Simulation, Formal 

Methods, AI, Algorithms, Criminology and Psychology. The core of this multi-disciplinary 

confluence is the ASM framework, that concerts with other fields to  form the basis for a 

hybrid system (Figure 1 .I) .  

Figure 1 .l: ASM as the Core o f  a Multi-Disciplinary Conff uence. 
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1.1 Motivation 

The primary impetus behind this work is the fact that personal security is of paramount 

importance. In the current day, post Cold-War era, significant interest is vested in areas 

of terrorism research, intelligence analysis, and security-related public policy. There is a 

pressing need for the study and development of advanced information technologies, com- 

putational sciences for national/international and homeland security related applications, 

through an integrated technological, organizational, and policy based approach. 

To this end, our work in Computational Criminology pioneers in exploring the development 

of formal and computational models for crime analysis and prediction, and advancing the 

state of knowledge. 

Conventional research for crime analysis is typically statistical and empirical in nature using 

methods that entirely rely on direct extrapolations from past data. Novel research direc- 

tions [16], [56] however suggest a fundamentally different approach. Due to the increasing 

complexity, dynamics and intricate nature of the underlying sociological systems, empirical 

deduction is not sufficient any more; mathematical and computational models are needed for 

reasoning about most likely scenarios [17]. Although theories of crime are well established 

in their respective fields, the lack of a coherent and a consistent semantic framework for 

integrating the four dimensions of crime inhibits their applicability to real-life scenarios. 

(( Most research in criminology and criminal justice is  structured in a n  attempt to  repli- 

cate laboratory science by addressing simple issues ... while assuming other things have been 

controlled. W e  have concluded that there is a strong need for criminological research that 

addresses complexity instead of attempting to control for it. [17]" 

Thus, there is a need for a firm semantic foundation which is a prerequisite for the system- 

atic construction of well defined computational models in order to overcome the limitations 

of purely statistical methods [56]. 

Finally, although the original definition of ASMs is intended to capture any kind of dis- 

crete dynamic system [57], their application to social systems is novel and unprecedented. 

This work thus gives us an interesting exploratory opportunity to apply ASMs beyond the 

traditional real of hardware and software systems. 
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1.2 Significance and Objective 

The virtue of this work is in its pioneering nature [19] [20] [IS] [21]. It is the forerunner in 

rendering the theoretical field of Computational Criminology 1171, [16] a pragmatic and a 

tangible base, sound both from a computational and a criminological perspective. To the 

author's best knowledge, there has been no former published research in Computational 

Criminology, of the magnitude presented in this work. [56] posits a framework for crime 

analysis, however it is only theoretical and very preliminary in nature with no concrete 

results. 

Mathematical modeling of crime serves multiple purposes. It has a direct value in law en- 

forcement, in intelligence led policing, and in proactive crime reduction and prevention. For 

intelligence led policing, this model would make it possible to predict likely activity space 

for serial offenders for precautions and for apprehension. For proactive policing, modeling 

of crime makes it feasible to build scenarios in crime analysis and prevention, and provides 

a basis for experimental research allowing experiments that can often not easily be done in 

the real world [IS]. 

Environmental criminologists could utilise this technique to  test and refine theory, to an- 

ticipate consequences accruing from diffemnt intervention choices, and to  provide informed 

policy guidance to  crime control agencies. A n  agent-based simulation modeling technique 

will allow the study of the macro-level crime patterns emerging from the micro-level actions 

of many individual agents, behaving in accordance with rules derived from environmental 

criminology, human ecology, routine activities theory and situational crime prevention. [16]. 

The goal is twofold. First, to formalize the existing expertise and knowledge of the criminol- 

ogists to derive an ASM ground model, that is precise, flexible, understandable, complete 

and operational [ 5 ] .  Such a model is used for semantic modeling that greatly simplifies 

the systematic integration and validation of crime patterns and theories, and helps gain a 

better understanding of complex social system aspects. Second, such a solid mathematical 

foundation provides a quintessential platform for subsequent refinement into and construc- 

tion of discrete event simulation models. Simulation models can be used for experimental 

validation and verification. They are also effective instruments for prediction and prevention 

of crime. 

Although the model currently focuses on spatial and temporal aspects of physical crime 
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in urban environments, it is abstract and general, and in principle scalable for different 

types of crime and also different levels of spatial analysis. In addition to conventional crime 

being already captured, the model can be potentially extended to simulate patterns of non- 

conventional crime like corporate crime, cyber crime, intrusion detection. In principle, it can 

also be applied to simulate patterns at different levels of spatial aggregation viz: airports, 

malls, downtown; within cities, provinces; and between countries, geopolitical crime. 

The target audience of the system thus developed can be criminologists using it for deeper 

understanding of crime patterns, verification of hypothetical theories; modern policing agen- 

cies using it for geographic profiling of criminals, inversion of crime to identify suspects; city 

planners using it for for effective urban planning by taking geography of crime into account. 

1.3 Thesis Organization 

For sake of perspicuity, the ASM model and hence the thesis is divided into five parts. Part 

I and Part V present the background and conclusions; Parts 11,111, and IV discuss the ASM 

model at different levels of abstraction in an increasing order of detail and complexity viz: 

Abstract Model, Refined Model and Executable Model respectively. 

Part I of the document is intended to provide the reader an overview of the problem domain 

and the formal modeling technique used. Chapter 1, the current chapter, introduces the 

research work being presented and discusses the motivation and significance of the work. 

Chapter 2 gives a brief introduction to the fascinating field of Environmental Criminology 

and explains the problem domain. Chapter 3 provides an introductory knowledge of Basic 

and Distributed Abstract State Machines (ASM) and investigates the technique for high- 

level system analysis and design. 

Part I1 of the document describes the ASM ground model at the first level of abstraction. 

We call the model a t  this preliminary level of detail the Abstract Model. There are inter- 

mediate hierarchical levels of refinement of the Abstract Model within this part, however, 

we still group these refinements under the Abstract Model. Chapter 4 provides an overview 

of the model. Chapter 5 talks about techniques for modeling social systems, discusses the 

predominant view of Multi-Agent Systems, and provides an overview of the adopted mod- 

eling paradigm. Chapter 6 details the approach we take on representation of the subjective 
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and objective environment. Chapter 7 provides an explanation and corresponding ASM 

specification of the architecture of the model and its constituent modules. 

Part I11 of the document describes the ASM ground model at the intermediate layer of 

abstraction. We call the model at this level of abstraction the Refined Model. The refined 

Model is obtained by applying a refinement step to the Abstract Model of Part 11. Chapter 

8 gives an introduction to the mechanism of Case-Based Reasoning, and further describes 

the proposed learning and reasoning mechanism. Chapter 9 provides an overview of the 

shortest path problem and further describes the proposed shortest path algorithm. 

Part IV of the document describes the model at the final layer of abstraction. We call the 

model at this level the Executable Model. The Executable Model is obtained by applying a 

refinement step to the Refined Model of Part 111, and provides formal executabIe semantics 

of the ASM ground model. Chapter 10 starts with introducing the Abstract State Machine 

Language (AsmL) that is used to derive the Executable Model, provides an overview of 

our AsmL model, and discusses the visualization we develop. Chapter 11 is devoted to 

experimental validation of the AsmL model. 

Part V of the document provides a closure. Chapter 12 gives the conclusions of the work, 

talks about challenges met and main contributions; finally Chapter 13 discusses challenging 

opportunities for future research and expansion of the current work. 



Chapter 2 

Environmental Criminology 

2.1 Introduction 

Crime is a complex multi-dimensional event; albeit not random. There are four dimensions 

of crime - a legal dimension, an offender dimension, a target dimension and a spatio- 

temporal dimension [ll]. Each dimension has many research vectors, and these are often 

similar. To understand crime, those dimensions must be understood and interpreted against 

a complex historical and situational backcloth of social, economic, political, biological and 

physical characteristics [12]. 

Environmental Criminology is a discipline devoted to the study of the fourth dimension 

- the spatio-temporal aspects of crime - that can be seen as a discrete location in time 

and space at which the other three dimensions intersect and a criminal event occurs. It 

attempts to analyze the role of time and space in the shaping and distribution of criminal 

events. First issued in the works of urban planners, where the authors propounded that the 

alteration of urban design and urban architecture would exacerbate or abate crime, it has 

become a field of study in its own right. 

Environmental Criminologists set to answer questions such as [17]: 

How do crime patterns change with the introduction of new motorways connecting 

two cities, or transit system failing to operate on a given day. 

0 How is crime attracted to areas around large shopping centres? 
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How do urban setting create crime attractors or crime generators? 

Why does increased enforcement displace crime in one city but abate it in another? 

Why is crime high along one main road and low along another? 

How would crime patters change with increased mobility or migration? 

Why does regulation of pub hours have different impacts in different cities? 

The first stance taken in Environmental Criminology is that criminal events can be un- 

derstood in the context of peoples7 movements in the course of their everyday lives. Most 

crimes are observed in the areas criminals are highly active in and highly familiar with; 

most victims are victimized in and around areas they are most familiar with. This comfort 

zone of people is termed as their awareness space. While the above line of reasoning seems 

counter-intuitive, there is sufficient theoretical and empirical evidence in support of same. 

Section 2.2 investigates this line of reasoning in more detail. 

The second major stance is that there is sufficient predictability and rationality behind an 

offender's choice of a target. The location of crime is determined through a premeditated 

decision process of the offender, supplemented by subjective perceptions of environment 

that separate good criminal opportunities from bad risks - targets located along highly 

accessible street networks attract crime. This in general can be termed a s  target templating, 

and is further explored in Section 2.3. 

The third most important stance is that movements of people are influenced by the under- 

lying urban landscape in concert with their subjective perceptions of the environment. The 

land use patterns, the structure of street networks, the transportation systems, the typog- 

raphy, traffic and transit patterns all play their respective roles in shaping the movements 

of people. In addition, the way people measure and filter this absolute knowledge depends 

on a set of socio-cultural and behavioral beliefs. Thus people have varying perceptions of 

the same geographic reality. This behavioral aspect of criminology is probably the lesser 

developed one. We set to explore the factors that determine the movements of people in 

Chapter 9 and the role of perception in Chapter 6. 

Thus, environmental criminologists view the learning and decision-making process for crim- 

inals to be much the same as that for non-criminals. Criminals are rarely criminal all of 

the time. Everyone has a degree of criminal potential; what differs is the level of criminal 
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propensity - more criminally predisposed agents will respond to observed crime opportu- 

nities more frequently than people with low crime potentials. What requires modeling is 

the process by which agents move from node to node, and when, if at all, do they act upon 

an observed criminal opportunity. 

There are three levels of spatial analysis in current studies of environmental criminology viz 

macro-analysis, meso-analysis and micro-analysis [12], [lo]. 

Macro-analysis is the highest level of spatial aggregation, and analyzes spatial distribution 

of crime between countries, provinces or cities. Countries are seen as passing through stages 

of development and interacting with each other, along which comes a host of demographic 

and economic change that results in crime. Meso-analysis is the intermediate level of spatial 

aggregation, and studies crime distribution within larger regions such as provinces and cities. 

Micro-analysis is the lowest level of spatial analysis and involves studying crime within ve y 

specific areas, such as small part of a city. 

Spatial patterns in crime differ depending on the level of analysis selected, although the 

principles remain the same. The work presented in this thesis, can be best described as 

belonging to the third level of analysis, i.e the micro-level. 

The principles of environmental criminology can be used to explain the very nature and 

occurrence of a broad range of crimes - ranging from mundane crime like robbery, car 

theft, burglary etc., to crimes of passion such as serial murder, homicide, rape etc. [8] [93] 

[83] [lo]. While conventional research in criminology is best applied for the study of physical 

crime of spatial nature, one should be cognizant of the fact that the notion can potentially be 

extended to other non-conventional modes of crime, such as white-collar crimes, corporate 

crime, cyber crime, intrusion detection etc. This line of contention, however, needs more 

thorough analytical research. 

2.2 Activity and Awareness Space 

The task of simulating the movement of a hypothetical offender is complex, but the main 

elements can be  shown here. Criminals, to the extent, that they live in everyday society are 

bound by normal limitations on human activity, shaped by dictates of work, family, sleep, 

food, entertainment, and so forth. They all live within the confines of their own knowledge 
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and experiences and habits [25]. Each person is tied to what is called 'Anchor Points' and 

there are three main classes of these anchor points or activity nodes : home, work and 

recreation [42]. During the course of everyday life, to carry out everyday routine, the agent 

then travels between these nodes using familiar pathways; the more often an area is visited, 

the more knowledge the agent will gain regarding the immediate surroundings for both the 

nodes and the pathways connecting them [15]. 

Based on this movement and a priori knowledge, a person develops a mental map, which 

is a representation of the spatial form of environment that an individual carries in his or 

her mind. Mental maps of familiar areas such as neighborhoods or cities, are formed from 

a distillation of the particular transactions a person has with his or her surroundings [25]. 

These cognitive images are the result of the reception, coding, storage, recall, decoding, and 

interpretation of information [lo]. 

The mental map of a person is built around their awareness space, which is composed of 

all locations about which a person has knowledge above a minimum threshold level even 

without visiting some of them. This awareness is developed by knowledge-exchange with 

other people, past experiences and current events. The awareness space is derived from 

a number of factors - primarily based on the activity space described below - such as 

strength of activity space, mobile visibility, accessibility from activity space, willingness to 

leave activity space, attractiveness of adjacent areas, speed and model of travel etc. 

Within this generalized awareness space, a specialized knowledge is formed by direct expe- 

rience, knows as the activity space. The activity space can be defined as the space in which 

majority of an individual's activity is carried out, and contains those places and connecting 

routes which comprise a person's habitual geography on a daily basis [lo]. "Where we go 

depends upon what we know ... what we know depends on where we go" [25]. The activity 

space contains only that sub-set of the awareness space that is visited and traveled by a 

person on a regular and a current basis. Typically, people make natural and intuitive choices 

while trying to decide on a path to take, such as trying to minimize time and distance of 

travel, moving toward the destination instead of away from it, preferring major roads to mi- 

nor roads, using familiar paths as compared to unknown paths etc. Based on these intuitive 

decisions, one can model the temporal and spatial movement patterns of people. 

Both the activity and awareness space are dynamic in nature. Spaces grow with increased 
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movement, a.nd as new locations are discovered or new information gathered. At t l ~ c  sanie 

time, the spaces may slirink if the person has not visited or recalled th tw spaces il l  a given 

intcrval of t,ime, i.e the person's memory fades over time unless refreslied. However, after an 

initial learning pc:riod in a new location, the activit,y and awsreliess spaces become relatively 

fixed. Furt,hermore, the spaces vary in their strength - -- highly active paths, sucll as tlioso 

locatcd on daily homework schedules, have a higher intensity, than those paths talien rarely, 

such as a ~ ~ e i ~ r l y  hiking trip. Figure 2.1 expla.ins pictorially the forma.tion of activity and 

awa.reness space. 

Figure 2.1: Formation of Activity and A u w c ~ ~ e s s  Space. 

The daily routine of people vary with their tlemographic backgrounds, and as such the 

awareiiess spaces tend to be different for difkrent people. Demographic factors such as age, 

race, gender, profession, economic level etc. play a role in carving out the activity and 

awareness space. For example: a person between the age of 60-70 will be a lot less irlobilc 

than a teenager, a traveling salesinan will have a larger activity/awareness space t l ~ a n  a. 

housewife. 
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An example in point is needed. Assuming that our criminal agent moves about in space 

much like most people, the agent is tied to at least three main classes of activity nodes: 

home, work and recreation. The agent travels between these nodes using familiar pathways. 

If the agent starts his or her day at home, and then travels to either work (or school), 

for example, he or she will typically take the most direct and most easily navigated route. 

Along the way, the agent will take notice of a range of phenomena in his activity space. 

For example, he might see a favorite coffee house, or take notice of a particular shopping 

opportunity along the way to his work node. Even if the agent does not stop and interact 

specifically with potential activity sites, he will often remember such sites the next time he 

wants to purchase a cup or coffee or to patronize a particular business. The same learning 

process applies to the travel paths to and from other significant activity spaces. 

The activity and awareness spaces of people are of crucial significance. These represent the 

'comfort zones' of individuals in which they are most likely to direct all their actions. Thus, 

it is in these spaces that potential opportunities are observed by criminally-disposed people 

and subsequently acted upon [15]. 

2.3 Target Selection 

As chaotic as the process of target selecting seems, there is predictable rationality behind 

it that guides the process; this is called target templating [14]. 

We use the term opportunity space to refer to the space of potential targets; this space is 

typically an objective reality and is universally defined for all criminals, different criminals 

however might have different perceptions of it. The term crime occurrence space refers to 

the space where targets are highly probable of being victimized or selected by a criminal; 

this space is typically agent-specific or could be an aggregate. 

The Rational Choice Hypothesis developed by Cornish & Clarke [27] [30] suggests that the 

decision to choose a target is a rational one based on a rough cost-benefit analysis assessing 

the risk involved and the potential payoff. Offenders rationally assess all information about 

potential crime and make a rational choice based on an assessment of consequences, com- 

bined with the offender's background (intelligence, personality, upbringing) and situational 

factors. The important point is that this hypothesis views the committing of a crime as a 
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series of decisions and processes made by the offender in the commission of that crime. 

The same theme of predictability runs in the Rout ine  Act iv i ty  Hypothesis [28] [42], which 

sees crime as convergence in space and time of three minimal elements : 1) motivated 

offenders, 2) suitable targets, and 3) absence of a capable/motivated guardian. This theory 

introduces the crime triangle (also called the problem analysis triangle (PAT)), centered 

around offender, target and place, that forms a tool in crime analysis. The focus is on the 

nature of everyday patterns of social interaction to analyse crime: the routine activity of 

leaving the home unattended, absent a guardian, during the workday increases probability 

of crime. 

The Model of C r i m e  Select ion as proposed by the Brantinghams [9] [lo] uses the above 

concepts of opportunity, motivat ion,  and  decision-making and ties it with mobil i ty  and  

perception. It contends that crimes are most probable to occur in those areas where the 

awareness space of the offender intersects with the perceived suitable targets, i.e the  cr ime 

occurrence space i s  the  intersect ion of the  awareness space and the  opportunity  space (Figure 

2.2). Within this crime occurrence space, the offender then uses target templating - assesses 

'cues' from the environment and targets, weighs opportunities and risks, makes rational 

choices and finally chooses specific targets for victimization. Once a template is established, 

it becomes relatively fixed and self-reinforcing. 

Brantinghams' Model of Crime Site Selection views target selection as an information pro- 

cessing model given as propositions - Proposition I: Given the motivation of an individual 

to commit an offense, the actual commission is the end result of a multi-staged decision 

process. In case of high emotional involvement, the process involves a minimal number of 

steps; in case of low emotional involvement, the process may include more deliberative steps. 

Proposition 11: The environment emits many signals or cues about its physical, spatial, cul- 

tural, legal and psychological characteristics. Proposi t ion 111: The motivated criminal uses 

these cues, learned through experience or social interactions, to locate and identify targets. 

Proposition IV: As experiential knowledge grows, motivated criminals learn which individ- 

ual cues are associated with 'good' victims. These cue sequences (spatial, temporal etc) can 

be considered a t e m p l a t e  for target selection; potential targets are compared against this 

target template and either rejected or accepted depending on consequences. Proposition V: 

Once the template is established, it become relatively fixed and self-enforcing. Proposition 

VI: Because of multiplicity of targets and victims, many potential crime selection templates 
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Figure 2.2: Crime Occnrrence Space as the Intersection of Awareness anti 0pportunif;y 
Space. 

could be constructed; however iudividual templates have sinlilarities which can be identified. 

Based on the above Model of Crime Site Selection, the Brantinghanls further tlevelop differ- 

ent 'cases' of spatial distribution of offenders and t,a.rget,s, ranging frorn single to multiple, 

fro111 uniform t,o nun-uniform, and sl~our t,he search areas ol~tained in different cases [13]. 

Finally, demographic factors play a role in determining the 'criminal propensity' of offerlders. 

Offenders wit-h a high propensity are likely to commit crime more often. Factors such as 

high drug use, hcquent nights out, high poverty, etc. exace~abate crime. 

A brief emmple in point is needed to illustrate the rationirlity bcllind crime selection. A 

typical crime in large cities is that of burglary, otherwise known as tt,rca,k arid enter, or 

"B&EV. In the large majority of cases, for the agelit t,o be aware of a potential ta.rgct,? the 

site must be 1oca.ted within the agent's a.ct,ivity space - which, ill turn, is defined by the 

set of common activity nodes, as discussed earlier. The burglar would travel from Nodc 

1 (home) to Node 2 (work), as his routirie may require. Along the way he recognizes s 

residential building that is suggestive of a 'good' target, as it 'fits' witahin that particular 

agent's crime template. Research on burglars [80] [81] [40] suggests that variables such as 
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property value, lack of occupants or potential witnesses capable of intervening, and obvious 

entry opportunities, all form 'cues' [39] from which the agent assesses quickly to determine 

if either the criminal event will be attempted, or at least investigated further. 



Chapter 3 

Abstract State Machines 

The abstract framework presented in this thesis is based on the Abstract State Machine 

(ASM) formalism. This chapter is intended to provide the reader a lucid working definition 

of the theory of Abstract State Machines. 

Abstract State Machines (ASM) are a universal mathematical approach for modeling discrete 

dynamic  systems.  Based on first order logic, abstract state machines can be used to specify, 

analyze and construct complex systems at their natural levels of abstraction, in a simple 

yet elegant manner. With an operational semantics, and a light-weight agile methodology, 

it is universal in its appeal for modeling a plethora of systems. 

Propounded by Yuri Gurevich in the early 1980s, whence they were called Evolving Algebras 

[57], they were an attempt to bridge the gap between formal models of computation and 

practical specification methods. The ASM technique has now evolved into a mature and a 

pragmatic technology that provides a rigorous approach for modeling systems with precision, 

consistency and unambiguity. 

ASMs have been successfully deployed in a wide array of applications - verification of 

algorithms and protocols, specification of hardware and software architectures (DLX, PVM; 

COM), modeling of real-time distributed systems, semantic modeling of languages (SDL, 

VHDL, UML), verification of compilers (Java, Occam), software engineering etc [6]. 

We begin with Section 3.1 that explores the applicability of ASMs for systems-engineering 

and high level s y s t e m  analysis and design. Section 3.2 explains the theory of Basic ASMs, 
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and examines the constructs of pamllelism and non-determinism. This is followed by an 

investigation of Distributed Abstract State Machines (DASM) in Section 3.3, that are widely 

used for modeling distributed, real-time, concurrent systems. Finally, Section 3.4 enumerates 

some commonly used notational conventions. 

For an in-depth study, and a mathematical investigation of the subject, the reader is referred 

to popular literature [58] [57] [6]. 

3.1 High-Level System Engineering with ASMs 

The history of Software Engineering stands witness to the fact that more often than not 

software systems run over-time and over-budget, are inconsistent and incomplete, and al- 

most never capture user needs fully. The formidable task of Requirement Engineering [76] is 

quintessential to good software design and consequently quality software construction. How- 

ever, unlike classical engineering disciplines, the field of software engineering is relatively 

open-ended, and hence there exists no silver bullet [24] that can attack the very essence 

of software development and ensure the right software. Fortunately, the realm of Formal 

Methods posits a solution to one very important aspect of successful software development 

- requirements engineering in a consistent, complete and unambiguous manner [4]. 

ASMs are applied in the same spirit, to bridge the gap between informal user requirements 

and formal software construction; in other words turning English into Mathematics, while 

preserving lucidity and perspicuity of the model. ASMs provide an accurate semantics 

for a formalism without providing the hassle of understanding the mathematics behind 

the formalism. The basic definition of ASMs accompanied with the three building blocks 

of Abstmct ion,  Ground Model Construction [5] and Refinement Techniques [7], make it a 

universal and a pragmatic tool for systems engineering. 

In this Section we seek to explain the suitability and applicability of ASMs for high-level 

system analysis and design: Section 3.1.1 and 3.1.2 examine the concepts of ASM ground 

model construction and refinement techniques respectively; Section 3.1.3 explores the role 

of ASM as a software development methodology. 
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3.1.1 Ground Models 

As mentioned above, the task of Requirements Engineering [76] is quintessential to good 

software design. The process of formalizing the requirements is what can be termed as 

ground model construction. It is clearly the problem of turning English into Mathematics, 

while preserving the ease of understanding of natural language. Ground models fneeze or 

ground the requirements, so that one may have a blueprint of the desired system. 

Boerger [5] identifies three broad problems that all ground models should address. Firstly, 

ground models should provide a suitable formalism to mediate between the problem domain 

and the world of models; this is the language of communication and should be easy to 

understand by people of both the domains. Secondly, the problem of verification should 

be addressed; verification is the process of proving that you are building the 'system right'. 

Thirdly, the validation problem, whether you are building the 'right system' should be 

addressed. 

Further, the author enumerates five intrinsic properties that all ground models should have. 

Firstly, they should be precise yet flexible. Secondly, they should be simple yet concise. 

Thirdly, they should be abstract yet complete. Fourthly, they should be validatable. Finally, 

they should have a precise semantic foundation. 

ASM Ground Models satisfy all of the above desired characteristics. Based on a mathe- 

matical foundation, they provide a precise semantics. With a lucid syntax, they provide 

a simple and easy to understand formalism. This can be used to build specifications that 

are concise and flexible. Using different functions, one can build strong abstractions, and 

yet a complete model. It solves the verification problem by allowing one to use symbolic 

model checking, type checking etc. It also solves the validation problem by its operational 

character that can be used to build executable models or draw mental simulations. 

3.1.2 Refinement Techniques 

Refinement goes hand-in-hand with the inverse process of abstraction and plays a central 

role in incremental system development. With :respect to other refinement techniques, the 

ASM refinement method is rather informal. It is not based on any concrete principle, and 

thus can be customized according to the need of the application. It should howe,ver, meet 
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the following principle of substitutivity: 

Principe of Substitutivity: it is acceptable to replace one program by another, provided it 

is impossible for a user to observe that the substitution has taken place [32]. 

There can be two types of Refinements, viz: Horizontal Extensions and Vertical Extensions. 

Horizontal extensions provide new modules with new functionality to the existing applica- 

tion. Vertical extensions build upon existing functionality by elaborating the corresponding 

data structures and/or rules. 

In addition, the ASM refinement method provides three types of refinement patterns. These 

are discussed below, as adopted from [7]. 

Conservative Refinement 

Conservative refinement or conservative extension as it is widely called, is a type of incre- 

mental refinement. In support of modular system design, this can be used to introduce 

brand new functionality to the system. An example would be extending an abstract Java 

Virtual Machine with the functionality of exception handling. 

For conservative refinement, a new machine is defined with corresponding behavior. The 

new machine is executed with the triggering of a condition for new case. At the same time, 

the old machine can be executed by negating the condition of the new case. 

Procedural Refinement 

Procedural refinement, or submachine refinement as it is widely called, is performed by re- 

placing a given rule (or a submachine) by another rule (or a machine). One may use multiple 

submachines to achieve this affect, where the behavior of applying multiple submachines is 

abstracted away and seen as only one step. 

Data Refinement 

Data Refinements are those where abstract states and rules are mapped to concrete ones 

such that the result of applying concrete rules to concrete types is the same as applying 

abstract rules to abstract types. One such example is Instantiation, where the ASM rules 

remain unchanged and abstract functions are refined further. 
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3.1.3 Agile Development 

Abstract State Machine provide an avenue for agile software development. Agile software 

development emphasises the need for being adaptive rather than predictive, being people- 

oriented rather than process oriented, less document-oriented and more code-oriented [47]. 

With the concepts of abstraction and refinement techniques, ASMs provide a means for 

iterative development as opposed to traditional waterfall-like methodologies. This style of 

development is most suitable for addressing the problem of requirements creep and being 

adaptive in nature. 

Beginning with an abstract ground model (Section 3.1.1), and using proper step-wise re- 

finement (Section 3.1.2) one can relegate ground models to executable code. This by itself 

provides a disciplined process of software deve:lopment accompanied with verification and 

validation. As a by-product, the formal specifications can be used as valuable system doc- 

umentation. Figure 3.1, adapted from [6], summarizes how ASM models are used in the 

hierarchical design and construction of software systems. 

Application Domain Knowledge 

dynamic functions domains 
transition systems external functions 

Ground Model I SIMULATOR p--< (manual, mechanized) 

Validation Verification 

TEST I I 

Step-wise 

CASES refinement i 

Using data from 
application domain 

Figure 3.1: The Hierarchical Software Development Process. 
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3.2 Basic Abstract State Machines (ASM) 

Basic ASMs can be seen as the definition of ASMs in their most original form. The intuitive 

understanding is to view them as pseudo-code over abstract data stmctures. A basic ASM 

is a single agent machine, as opposed to its DASM counterpart which can be multi-agent 

and asynchronous. Basic ASMs are endowed with potentially unlimited non-determinism 

and parallelism. The sequential ASM thesis contends that any sequential algorithm can be 

simulated at  its natural level of abstraction by an appropriate ASM [59]. 

A basic abstract state machine has a signature V, which is nothing but a collection of 

function names. The machine transitions over abstract data structures called state S of the 

ASM, which in mathematical terms is nothing but a first-order algebraic structure. The 

machine is associated with a program P, which is a set of so called transition mles. Finally, 

the machine comes equipped with an initial state Si. 

Thus, a basic ASM can be seen as a tuple [V, P, S, Si]. 

Every ASM signature1 is assumed to contain the static functions undef, tme ,  false. The 

functions of signature V are called basic functions. Each function has an arity which is the 

number of parameters the function takes. Relations are similar to functions, except that 

they always map to either true or false. The default value for basic functions is undef and 

false for basic relations. Constants are represented as nullary functions. 

A state S for the signature V consists of a non-empty set X ,  which is the supemiverse 

of V, together with the interpretations of the function and relation names of V. If f is 

an n-ary function name of V, then its interpretation in state S is denoted by f S ,  which 

is a function from Xn to X. The superuniverse X of the state S is denoted by IS1 and is 

also called the base set of a state. Function names in a given state are interpreted as total 

functions, however, every total function can be viewed as partial w.r.t unde f .  

A basic Program P is a basic rule without free variables. 

A pure m n  of P is a sequence (Sn : n < i )  of states of vocabulary V, such that each 

is obtained from Sn by firing P at Sn. A pure run also called internal w n  is one that is 

not affected by the environment, as opposed to an interactive run. The notion of a run 

is similar to that of a state transition in classical systems. An ASM step in a given state 

 he terms Signature and Vocabulary are used interchangeably. 
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executes all updates sets of all transition rules simultaneously. A legal move yields the next 

state, whereas an illegal move halts the machine. 

3.2.1 Transition Rules 

The basic language of transition rules is very modest and even minimal in some justifiable 

sense. There are four basic rules viz. update rule, conditional rule, block rule, and import 

rule. The only primitive transition rule is the local function update; other rules are variants 

and extensions of this rule [57]. 

The Update Rule has the form: 

f (tl, ..., t,) := to 

where, f is the name of a basic dynamic function, r is the arity of f and every ti is a closed 

term. The pair (f ,  (tl, ..., t,)) is called a location, and the value f (tl, ..., t,) is called the 

content of the location in given state S. 

An update is a pair (1, v), where 1 is a location and v is a term. An update set is a set of 

such updates. Firing an update(set) has the semantics of replacing the content of location 1 

with new value v. With the in-built parallelism, an update set may have rules, that update 

the same location at the same time with different values. This produces a clash and the 

update set is said to be inconsistent. For a consistent update set, firing the set produces a 

new state with the same superuniverse, but different interpretations of dynamic functions. 

The Conditional Rule has the form: 

if b then R1 else R2 endif 

where, b (the guard) is a boolean valued predicate, and R1, R2 are updates. 

The semantics of an update rule are equivalent to a guarded update. If b evaluates to true 

on the given static algebra, then perform R1; otherwise perform R2. Simplified version of 

this form, need not use the else clause or endif explicitly. 

The Block Rule has the form: 

do-in-parallel 

R1 

R2 

where, R1 and R2 are update rules. 

The semantics of such a block rule is equivalent to executing the rules R1, R2 simultaneously, 
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such that the order is immaterial. However, if the block rule produces an inconsistent update 

set, the machine halts. Simplified versions of the block rule, need not use the do-in-parallel 

explicitly. 

The Import Rule has the form: 

import x do 

P 

where, x is an element of the reserve and P is some statement. 

The semantics of import rule is to select non-deterministically an element x from the reserve, 

delete it from the reserve, and execute P. This allows for dynamic allocation of resources 

during program runs. There are a few syntactic variations of the import rule. 

3.2.2 Parallelism 

At a high-level of abstraction, it is highly desirable to abstract away from sequentiality 

where it is irrelevant. The construct of parallelism in ASM extends the two concepts that 

time is sequential, and that only a bounded amount of work is performed in a step. 

One may introduce agents that perform a substantial amount of work in a single step. A 

step may involve numerous parallelism; such work, in principle may be executed by several 

auxiliary agents executing in parallel. Nevertheless on a natural level of abstraction of 

an algorithm, such work is accomplished by a single agent, and those auxiliary agents are 

invisible [58]. 

The parallelism is expressed with the following syntax: 

for all z E X with f (x) 

R(x) 
where, x is a variable, X is a domain, f is a fun.ction defined on x and R is a rule. 

The semantics of the forall construct is that for every x that satisfies the condition given 

by f ,  execute the rule R. There can be multiple rules, that are executed simultaneously, 

where the order of execution is immaterial. Thus, one may perform potentially unbounded 

work in a single step. 
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3.2.3 Non-Determinism 

The phenomenon of non-determinism allows one to model scenarios that are not necessarily 

under an algorithmic control or are irrelevant at a high level of abstraction. Non-determinism 

may be modeled by using external functions (explained later), or by using the in-built ASM 

construct of choose. 

The syntax of the choose construct is as follows: 

choose x E X with f (x) 

R(x) 
where, x is a variable, X is a domain, f is a function defined on x, and R is a rule. 

The semantics of such a construct is to execute the rule R for any arbitrary x that satisfies 

the property f .  

3.2.4 Classification of Functions 

In support of principles of modularization, info:rmation hiding, data abstraction and sepa- 

ration of concerns, the ASM method exploits the following distinction among the types of 

functions and locations [6]. 

An ASM M may have static functions - those that never change during a run of M ,  or 

dynamic functions - those that may change d.uring a program run. Static functions are 

defined by the initial state of the ASM. Static and dynamic functions can be thought of as 

constants and variables of programming languages respectively. 

The dynamic functions are further divided into four sub-categories2. 

Monitored or In  functions are those that are updated by the environment only and not by 

the rules of M, but can be read by M. The monitored functions provide a strong abstraction 

mechanism and can be used to model irrelevant details or details not under the control of 

the model. These functions can be thought of as oracles, that given a set of arguments, 

magically provide the desired result. The oracle need not be consistent and may give dif- 

ferent results for the same argument at different; times. The seeming inconsistency may be 

quite natural. However, the oracle should be consistent during the execution of any one 

step of the program [57]. 

2An additional term External is used to refer to functions that are eit.her static or monitored. 
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Controlled functions are dynamic functions that are updatable by and only by the rules of 

M .  These are also known as Internal functions. 

To describe a combination of internal and external control of functions, we have Interaction 

or Shared functions. Such functions are updatable by the rules of M as well as by the 

environment, and can be read by both. The concept of monitored and shared functions 

allows one to separate the computation concerns from communication concerns [6 ] .  

Finally, Out functions are dynamic functions which are updated, but not read by M .  Con- 

versely, they are read, but not updated by the environment. These functions allow the 

machine to pass information to the environment or to other agents in the environment. 

Another taxonomy of functions is that of derived and basic functions. Basic functions 

come with the signature of an ASM by default. Derived functions are dynamic auxiliary 

functions which have a computational definition, and can be seen as storing some pre- 

computed results. They are not updated by 1VI or the environment, but can be read by 

both. 

3.3 Distributed Abstract State Machines (DASM) 

Distributed Abstract State Machines (DASM) extend Basic ASMs to incorporate the no- 

tion of multi-agent computations - a scenario, where multiple agents, each equipped with 

their own set of states and rules, run in parallel, independent of each other, but possibly 

interacting with each other. 

The agents may be synchronous in their behavior or asynchronous. In case of synchronous 

systems, an implicit global system clock is used to orchestrate computations. Synchronous 

ASMs support modularity for the design of large systems. Asynchronous ASMs support the 

design and analysis of distributed systems. 

Semantically, a distributed ASM D is composed of: 

A finite set of agents, called AGENTS.  AGENTS is a dynamic function. 

Each agent a is associated with a program Pa. The function name MODULES or 

PROGRAMS is used to represent the set of all such programs, which is a static 

nullary function name. 
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e Vocabulary V ,  which is the union of the signatures of each constituent component. 

Initial State So which is a collection of in-itial states. 

The DASM D has a global state and the agents interact with each other by sharing locations 

of this global state. Each agent a has a view V, of the global state. Further, a static nullary 

function Self is used by agents for self-identification. 

An agent a can make a move at state S by firing Program, at View,(S);  to perform a 

move of agent a, fire 

Updates(a, S )  = Updates(Program,, View, ( S ) )  

Runs of a distributed ASM are defined in the following section. 

3.3.1 Concurrency and Coherence 

In case of Distributed ASMs, a problem may arise of the possible incompatibility of moves 

due to different data, time clocks, duration of executions [6]. 

Hence, the run  of a DASM D ,  as quoted from [58], is defined as a triplet ( M ,  A ,  (T) satisfying 

the following four properties: 

1. " M  is a partially ordered set, where all sets { y  : y 5 x )  are finite. 

Elements of M represent moves made by various agents during the run. 

2. A is a function on M such that every nonempty set { x  : A ( x )  = a )  is linearly ordered. 

A ( x )  is the agent performing move x. The moves of any single agent are supposed to 

be linearly ordered. 

3. a assigns a state of D to the empty set and each finite initial segment of M; a ( 9 )  is 

an initial state. 

a ( X )  is the result of performing all moves in X. 

4. The Coherence Condition: If x is a maximal element in a finite initial segment X 

of M and Y = X - { x ) ,  then A ( x )  is an agent in a ( Y )  and a ( X )  is obtained from 

a ( Y )  by firing A ( x )  at a(Y) ."  

This definition produces two corollaries: (1) All linearizations of partially ordered moves 

of X ( a  finite initial segment) yield runs with the same final state. (2)  A property holds 
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in every reachable state of a run R if and only. if it holds in every reachable state of every 

linearization of R. 

The above scheme is as liberal as possible, and thus can be instantiated by any well-defined 

synchronization mechanism. 

3.3.2 Reactivity and Real-Time Behavior 

ASMs are typically reactive systems as opposed to transformational systems. 

The provision of different categories of functions (see Section 3.2.4) allows one to model dif- 

ferent types of reactive behavior at desired levels of abstraction. These well-defined functions 

act as interfaces for communication to-and-fro a machine and its operational environment 

(or other machines). Monitored functions can be used to send information from environment 

to the machine. External functions can be used to delineate a system from its operational 

environment. Internal functions can be used to communicate information from the machine 

to the environment. 

ASMs operate with a discrete t ime  notion. Continuous time is mapped (by using sampling 

or other techniques) to discrete intervals. 

Real time behavior imposes additional constraints on DASM runs requiring that the agents 

react instantaneously. An assumption is made that all actions take place in atomic time. 

Timing aspects are simulated with an abstract global system clock. A monitored function 

now acts as an oracle that provides the current time. The now function returns values from 

an abstract universe TIME. 

3.4 Notational Convent ions 

The following notational conventions are used €or ASM specifications, for improved read- 

ability: 

Agent Names start with a block letter. The individual words also start with block 

letters and are separated by an underscore -. The rest of the letters are also written 

in upper case (e.g. SEM, AGENT-DECISIONIVIODULE). 
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a Program names are derived by the name of the Agent written in block letters, followed 

by an underscore and appended with the word 'Program' (e.g. SEM-Program). 

a Function names start with a lowercase first letter. The individual words start with 

block letters and the rest of the letters are written in lowercase (e.g. bestPathPref). 

Abstract rule names are written in block letters and the individual words are divided 

by an underscore - (e.g. CHOOSE-NEX'T-ROAD). 

a Rule names start with a block letter. The individual words also start with block letters 

and are separated by an underscore -. The rest of the letters are written in lower case 

(e.g. Choose-Next-Road). 

a To denote an inheritance like relation between domains, the specialized domain is 

written on the left hand side of the - sign, the general domain is written on the 

right hand side, and this is appended by a keyword 'where' (e.g ACTIVE-OBJECT 

G PASSIVE-OBJECT where). Following where are the functions defined on the 

specialized domain; these functions may be interspersed throughout the model. 

a ASM keywords are written in lowercase using bold font (e.g. else). 

0 Domains are written in block letters (e.g. PERSON). 

a Comments inserted within specifications are preceded by '//' and are usually gray 

colored. 
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ABSTRACT MODEL 



Chapter 4 

Overview of the Model 

We model a social system composed of criminals, cops, regular people, and other entities, 

interacting with each other and their environment as a discrete time, discrete event model, 

using the ASM formalism. 

The goal of the model is to evolve the activity and awareness spaces of people over a period 

of time. Using the simulated awareness spaces, for a given hypothetical offender, the crime 

occurrence space is simulated. 

The DASM model we present here is built on a multi-agent system view as explained in 

Chapter 5. The system context calls for a combination of two basically different views - 

agents interacting with each other and with the environment in which they live. These 

interactions form a dynamic open system, whose behavioral pattern is best characterized as 

a combination of reactive system and cognitive system. 

We perform Micro Simulation, whereby we model the behavior of constituent individual 

units i.e the agents, from which the aggregate behavior (macro-level) of the populations, or 

groups of agents, can be obtained. 

Persons are viewed as autonomous agents with. a complex architecture, based on a BDI- 

theoretic view (Chapter 7). 

Agents operate in a highly dynamic, discrete environment. The environment is typically an 

urban landscape; the logical representation of the environment is categorized into different 

layers to derive the true behavior of the agents, as explained in Chapter 6. 
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To model the interaction between an agent and its environment, we use the notion of 

open system view. The boundary between the system and its operational environment is 

delineated using well-defined ASM functions that allow one to model two-way interactions. 

The system is embedded into its environment through actions and events as observable at 

interfaces. The external world affects the system though externally controlled or monitored 

functions. 

Timing aspects are modeled based on an abstract notion of global system time. In a given 

state, the time (as measured by some global clock) is given by a monitored unary function 

now taking values in a linearly ordered domain TIME. 

The decision-making process of autonomous agents is emulated using a combination of case- 

based reasoning and model-based reasoning. The idea is to have a balance of learning and 

exploring; this approach closely resembles intuitive human reasoning. Coupled with the 

process of reasoning thus is the process of learning. The autonomous agents are capable of 

learning using a form of behavioral reinforcement learning, where based on past experiences, 

certain preferences are developed that may influ.ence future choices that an agent will make. 

The learning reinforcement can be both positive or negative in effect. This hybrid case-based 

reasoning is explained in Chapter 8. 

Inter-agent communication is achieved by reading and writing shared locations of ASM 

global states. For synchronization purposes, we use an explicit event triggering mechanism 

defined in 1411. 

Intuitively, communicating agents may develop various forms of interactions like indiffer- 

ence, coopemtion or antagonism, which in turn lead to the formation of organizations such 

as egalitarian or hierarchical [44]. At this stage, we essentially restrict to two forms of inter- 

action, indifference (agents operate independently without influencing one another) and, to 

some extent, cooperation, but potentially allow for other forms of interactions as well. This 

type of interaction renders an organization structure that is typically egalitarian, however 

with future inclusion of complex interactions, the structure may potentially emerge into a 

hierarchy, community of experts, market, scientific community 1891. 

The behavior of agents is simulated by making them follow their daily routines, and carry on 

with day-to-day activities. In due course of time, with the movement of people in the given 

urban environment, their activity space and awareness space starts building and expanding. 

People thus start exhibiting relatively fixed temporal and spatial patterns of movement. We 
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use the Brantingham Model of Crime Selection, as explained in Chapter 2, to get an estimate 

of the crime selection sites. For criminally-disposed people, given a predefined opportunity 

space, the intersection of their awareness space with the opportunity space gives us the 

crime occurrence space. This area has a very high probability of criminal activities. Within 

this area, based on their criminal profile and ch:zracteristics of the target, the criminals then 

perform target templating which leads to victimization of targets. 



Chapter 5 

Modeling Paradigm 

Traditionally, statistical models, differential equations, and stochastic modeling have been 

the dominant approaches for modeling discrete event systems [95]. However, for modeling 

emergent human behavior amidst dynamic environment - a particular kind of discrete 

event system - multi-agent systems prove to be a very promising approach. 

This chapter is devoted to examining the suitability of multi-agent systems as a modeling 

paradigm in the context of our application. We begin with Section 5.1 providing a brief 

overview of the eclectic field of multi-agent based modeling; this is continued in Section 5.1.1 

that analyzes their applicability to modeling of social processes in particular, and Section 

5.1.2 that explores the need for introducing formal approaches to agent based systems. 

Finally, Section 5.2 explains our approach, and how the ASM formalism is combined with 

the multi-agent system view to obtain a robust modeling paradigm for social systems. 

5.1 Multi- Agent Based Modeling 

The field of MAS emerged from the study of Distributed Artificial Intelligence (DAI) in the 

1980s. The research areas of multi-agent systems and distributed systems coincide, and form 

the research area of distributed agent computing; in short, multi-agent systems are often 

distributed systems, and distributed systems are platforms to support multi-agent systems. 

Multi Agent Systems (MAS) are electronic or computing models made up of artificial entities 

which communicate with each other and act in an environment [44]. The study of MAS 
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focuses on systems in which many intelligent agents interact with each other. The agents are 

considered to be autonomous entities, such as software programs or robots; their interactions 

can be either cooperative or selfish. 

Multi-Agent Systems (MAS) [89], [92], [44] halve gained widespread popularity as a mod- 

eling paradigm due to their inherent ability to model a plethora of systems - comprising 

of simple entities to groups of complex entities, emanating simple to complex interactions, 

embedded in static to open dynamic environments1. 

Multi-Agent Based Systems (MABS) should not be seen as a completely new and original 

modeling and simulation paradigm. It is influenced by and partially builds upon some ex- 

isting paradigms, such as, parallel and distributed discrete event simulation, object oriented 

simulation, as well as dynamic micro simulation [31]. 

The motivation behind using MAS as a modeling platform are many-fold: to solve problems 

that are beyond the realm of a single entitylagent due to bounded rationality, to provide 

solutions in situations where expertise/information sources are distributed e.g. weather 

forecast system, to provide modularity, to model open and highly dynamic environments 

[89]. In particular, agent-based models have enormous potential to capture the dynamics 

of systems that can naturally be regarded as a society of interacting agents, e.g. human 

societies [52], [3]. 

Pertinent to our context, the multi-agent modeling paradigm plays a vital role in bring- 

ing together the predominant view of the world of social systems with the formal ASM 

view. They serve as a natural ontology for modeling social phenomenon [3]. This nexus 

provides a coherent framework to incrementally refine the model by integrating approaches 

from other disciplines such as AI, algorithmics, criminology, etc and thus incorporating 

cross-disciplinary perspectives in an elegant fashion. Section 5.1.1 explores the suitability 

of multi-agent systems for modeling social systems. 

As a secondary benefit, the use of ASM formalism in specifying such a system helps under- 

stand and alleviate many of the semantic and methodological problems met in the multi- 

agent system community. This is discussed in Section 5.1.2. 

We now recall some basic definitions of an agent and a multi-agent system. There is a be- 

wildering list of notions of agents [48]; however, there is no universally accepted definition. 

'See the Springer series on Multi-Agent Systems ana! Application for innovative applications of MAS. 
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Furthermore, a clear distinction exists between Agents and Autonomous Agents that cannot 

always be explicitly defined. Ferber [44] describes an agent as a "physical or virtual entity 

which is capable of acting in an environment, which can communicate, which is driven by 

a set of tendencies, which possesses resources of its own, which is capable of perceiving its 

environment,which has only a partial representation of this environment, which possesses 

skill .... ". In [48] the authors describe the 'essence of agency' and offer the following def- 

inition: " A n  autonomous agent is a system situated within a part of an environment that 

senses environment and acts on  it, over time, in pursuit of i t s  own agenda and so as to 

effect what it senses in the future." In [91], the agent definition reads as: a hardware or 

a software-based computer system that enjoys the following properties: autonomy: agents 

operate without the direct intervention of humans or others, and have some kind of control 

over their actions and internal state; social ability: agents interact with other agents via 

some kind of agent-communication language; reactivity: agents perceive their environment, 

and respond in a timely fashion to changes that occur in it; pro-activeness: agents do not 

simply act in response to their environment, they are able to exhibit goal-directed behavior 

by taking the initiative. 

The term multi-agent system is applied to a system comprising of (1) an environment (2) 

a set of objects (3) an assembly of agents (4) relations which link objects and agents to 

each other (5) operations of agents to act on objects, and (6) laws of the universe [44]. The 

characteristics of MAS are that (1) each agent hLas incomplete information or capabilities for 

solving the problem and, thus, has limited viewpoint (2) there is no system global control, 

and (3) data are decentralized, and computation is asynchronous [89]. 

Although MABS enjoys a lot of benefits, the framework, methodology and software engi- 

neering techniques for same are not well-established. In [38], the authors define the success 

of MABS as ambiguous: "While most of the researchers seem to  agree o n  a common ter- 

minology for designating the core multi-agent concepts used in M A B S ,  it appears that this 

agreement is, a t  best, syntactic. The semantics associated differ considerably from one model 

to another, or from one implementation to  another. This fuzziness, at the computational 

level ... can be found in all the other levels required for the design of a simulation." 
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5.1.1 Agent Based Social Simulation (ABSS) 

A social system can be seen as a set of actors, individuals or groups behaving in an in- 

terdependent pattern in order to adapt to environmental contingencies [52]. The authors 

in [53] trace the history of simulation in the field of Social Sciences - from its' genesis in 

differential equations to stochastic processes, t,o game theory, to cellular automata and fi- 

nally blossoming to distributed artificial intelligence. They compare the above modeling 

techniques and extol the usefulness of agent-based modeling to capture non-linear system 

dynamics. Bankes [3] terms the use of agent-based modeling in the social sciences as revolu- 

tionary and extols its virtuosity in meeting the: challenges demanded in the social sciences, 

that differential equations and statistical models cannot meet. Agent-based models have 

enormous potential to capture the dynamics of systems that can naturally be regarded as 

a society of interacting agents, e.g. human societies; they serve as a natural ontology for 

modeling social phenomenon [3] [52]. 

One way of characterizing the inter-disciplinary research area of Agent-Based Social Simu- 

lation (ABSS) is that it constitutes the intersection of three scientific fields - Agent-Based 

Computing, the Social Sciences, and Computer. Simulation [31] (Figure: 5.1). 

,----------------------------- 

j Social Aspects of Agent Systems j 

MABS 

Figure 5.1 : ABSS as the Intersection of Three Fields. 

There are numerous advantages in using agent-based models of social phenomenon. Drougal 

and Ferber [37] cite that they allow one to Test Hypotheses about the emergence of social 

structure from individual behaviors, i.e by experimenting at the micro level and deriving 
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patters at the macro-level; Build Theories that contribute to sociological development, by 

relating behavior to structure; Integrate Differential Partial Theories from different disci- 

plines into a general framework, by providing 1;ools that allow for integration. 

They allow one to capture complex interdependencies among a large number of units, in- 

corporate interdisciplinary perspectives, follow reasoning by simulation runs, handle large 

amounts of data [52]. Furthermore, mathematical models of social processes provide rigorous 

a priori frameworks that allow formal or informal reasoning of the target system [84]. 

Gilbert and Doran [52] cite two main categories of agent-based social models: (1) Exploratory 

models: that give insights into systems (2) Predictive Models: to predict reliably the be- 

havior of the target system under key conditions. They also state two kinds of inferences 

that can be draw on the model: (1) By Simulation: having a running executable version of 

the model and performing experiments on it ('2) By Analysis: reasoning directly from the 

knowledge embedded in the model. The reasoning can be informal or formal and is usually 

applied on the formal specification of the model. 

There are two kinds of Social Simulation viz. Micro Simulation, that explicitly attempts 

to model the behavior of constituent individual units, from which the aggregate behavior is 

obtained and Macm Simulation which models the system as a whole where the character- 

istics of a population are averaged together. The two classifications of simulation are not 

completely orthogonal, for example in order to aggregate behavior, we might want to give 

an agent a model of other agents in the environment. 

Many successful applications of agent-based social simulation can be found in [52]. The 

MANTA system [37] and the EOS project [36] are two well-known examples of a reactive 

and a cognitive system respectively. MANTA uses a multi-agent model to show the evolution 

of ant colonies; EOS simulates the process of emergence of fishermen societies. 

5.1.2 Formal Approaches to Agent-Based Systems (FAABS) 

Although agent based systems are widely used, they still lack a formal semantic foundation. 

Such a firm foundation is quintessential to the process of good design and quality construc- 

tion of agent-based systems. Introducing formal methods in the realm of agent-oriented 

analysis and design may serve as a solution to many problems being met in the MAS re- 

search. 
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The authors in [34] contend that there is a dire need for formalism in agent-based systems: 

"There is a lot of formal theory in the area but it is often not obvious what such theories 

should represent and what role the theory is  intended to  play. Theories of agents are often 

abstract and obtuse and not related to  concrete computational models." 

The same theme is reinstated in [35] - "Our own view i s  that work on  formal models of 

agent-based systems are valuable inasmuch as they contribute to  a fundamental goal of com- 

puting of building real agent systems." 

Furthermore, the lack of a mature off-the-shelf methodology that provides a practical frame- 

work guiding the process of specification, design, development and verification inhibits their 

applicability to real agent commercial applications [61] [85]. 

Invernoe et a1 [34] point out two directions in which this field can develop viz: construct new 

techniques for reasoning about and specifying multi-agent system or use existing formalisms 

as far as possible. 

Wooldridge and Fisher [46] outline a formal approach for the specification, verification, and 

rapid prototyping of multi-agent systems. The agent specification is developed in a tempo- 

ral multi-modal belief logic called PML. For prototyping, the agent-specifications are made 

executable by using the 'Concurrent METAEILI' platform. Verification is done by using 

an extended temporal belief logic ; a range of proof methods for TBL are also developed. 

Limitations include inability to address true concurrency and distribution, inability to di- 

rectly execute logic specifications, non-applicability of TBL to realistic systems, complicated 

proof-methods. 

Luck and Inverno [71] propose a formal framework for Agency and Autonomy. Using the Z 

specification language, they describe a three-tiered hierarchy composed of Objects, Agents, 

and Autonomous Agents. They extend their work in [35] by addressing methodological is- 

sues of agent systems specification, agent development and agent deployment. The concepts 

of 'inter-agent relationships', 'sociological behavior' and 'agent plans' are also formalized. 

The critique of their work include the limitations of the Z specification language [45]. They 

also do not address certain key issues of agent memory, external environment, goal adoption 

etc [go]. 

Hilaire et a1 [61] present a formal approach to MAS that fits in with prototyping and simu- 

lation. They choose a multi-formalism approach based on Object Z and state charts. MAS 

is specified based on an organizational model which has three interrelated concepts: Role, 
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Interaction and Organization. Object-Z is used to specify the transformational aspects of 

the system and state charts to specify the reactive aspects. 

There also exist a number of agent-based modeling techniques and platforms such as DE- 

SIRE, SWARM, REPAST etc. [51] gives a brief sketch of the history of these platforms for 

modeling agent-based systems. A comparative study of some of these techniques is carried 

out in [85]. The conclusion drawn in both the cited works is that there is a need for further 

exploration of agent-based modeling techniques. 

Based on the above rhetoric, one can draw the conclusion that relatively little work has been 

done in terms of formal approaches to agent-based systems. Researchers have enumerated 

various facets that an agent formalism should a.ddress. Main amongst these are agent-based 

characteristics such as distribution, concurrency, autonomy, communication; and software 

engineering characteristics such as preciseness, refinability, executability, methodology [52] 

1851 P41. 

To this end, our work based on the ASM formalism provides a mathematical framework 

to alleviate and solve the aforementioned crucial problems. It fills the dire need for a 

robust formal framework that, beyond issues of formalization, also deals with methodological 

aspects and software engineering techniques. ASM formalism and abstraction principles in 

combination with the underlying methodological framework [6] provide a universal formal 

basis for semantic modeling of multi-agent systems at arbitrary levels of abstraction in a 

coherent and consistent framework. Specifically, we address here crucial aspects such as 

distribution, concurrency, communication, environment, and real time [85]. 
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5.2 Our Approach: Linking Social Systems to DASM Models 

The DASM model we present here is built on a multi-agent system view. We build upon the 

existing knowledge and expertise of applying t,he multi-agent based paradigm to modeling 

of social systems, and then use the DASM framework for building a concise mathematical 

model of a particular class of such systems. This is depicted in Figure 5.2, where the derived 

DASM model is linked to the underlying social system through an intermediate layer which 

is of Multi- Agent System (MAS). 

DASM Model 

Multi-Agent System (MAS) 
A 

Social System 

Figure 5.2: Mapping Social Systems to DASM Models 

The primary reason for the mapping is that this is the intuitive way to model the system; 

fundamentally the system is nothing but a set of agents interacting with each other in the 

given environment. Agent-based models have enormous potential to capture the dynamics 

of systems that can naturally be regarded as a society of interacting agents, e.g. human 

societies; they serve as a natural ontology for modeling social phenomenon [3] [52]. 

" Agent-based modeling is relatively new to the social science, but holds the promise of 

becoming a powerful new computational tool i n  crime analysis and i n  policy analysis. With 

agent-based modeling it is possible to see that what happens to be very different under 

different conditions ... different urban backcloths, but with the agents acting under the same 

rules; or the result of agents acting under the same rules but against different urban 

backcloths [I 71." 

Thus, in our model, the multi-agent system layer acts as a linchpin; it renders an organization 

to the underlying social system and makes it amenable for the task of formalization. It 

also provides an avenue for incorporating various techniques and solutions developed in 
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the discipline of MAS research for common problems encountered in the design of agent- 

based systems, such as coordination & planning:, conflict-resolution, team formation etc [89]. 

Although at this level of abstraction the inter-agent interaction is minimal, and the above 

techniques are typically not required, we nevertheless provide a basis for future extensions 

of the model in this manner. 

At the same time, the reader should be cognizant of that fact that we view the introduction 

of this intermediate layer only as a facilitating means for modeling social systems; i.e. only 

those principles of multi-agent systems that help in streamlining our target system are 

incorporated. This stems in part from the fact that although the discipline of MAS is well- 

established, there is still no universally accepted methodology for engineering agent-based 

systems, and often the designer is at discretion to make application-specific design choices. 

Having explained the general idea of deriving a DASM model of the social system via the 

multi-agent system layer, in the following section (5.2.1) we explain the specifics that need 

to be achieved in order to do so. 

5.2.1 Classification of Agents: DASM Organization 

The above approach of juxtaposing the DASM model with the social system via the MABS 

layer calls for orchestrating first, the constituent entities within each layer and second, the 

mapping of entities derived in each layer to its immediate above layer. This sections explains 

how the classification and mapping of entities is done to obtain a solid DASM organization. 

At the bottom most layer, the social system is composed of different types of entities. There 

are independent live entities with self-controlled action and behavior, such as criminals, cops, 

regular people etc. There are lifeless entities urith behavior albeit not self-controlled, such 

as traffic lights, atms, buses etc. Finally, there are entities urith properties but no behavior 

such as buildings, streets, valuables etc. 

Since the above social structure is mapped to a Multi-Agent System (MAS), it is required 

to derive the same distinction in this intermediate layer as well. This task of classification of 

agents in the multi-agent system layer also s~b~sumes making a distinction between agency 

and autonomy. We propose a generic hierarchical classification of entities into three dif- 

ferent categories: passive objects, active objects and autonomous agents. The core of this 
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classification is based on the essentials of the Belief Desire Intention (BDI) agent architec- 

ture [Xi], [91] and the framework for agency and autonomy [71]. 

A passive object is an entity that comprises of a set of attributes. An attribute is nothing 

but a characteristic feature; for instance, jewelery is a passive object that has attributes 

such as value, color, shape. 

An active object is an entity that, in addition to a set of attributes, has an associated behav- 

ior. Behavior is described as an observable change in the internal state of the entity or its 

external environment, where this behavior is induced by the environment (or some external 

entity) and not generated by the active object itself. A car is an active object that has a set 

of attributes (color, model, engine) and changhg behavior (running, stationery, honking), 

where this behavior is controlled by an external entity (the driver). 

An autonomous agent is an entity that, in addition to attributes and behavior, has a set of 

rules, motivations, and a memory. The behavior of an autonomous agent is generated by 

the rules triggered by the agent itself to change its internal state (by way of cognition rules) 

or the state of its environment (by way action rules). Consequently, an autonomous agent 

is responsible for generating all its behavior. Motivations are reasons (goals or incentives) 

toward which the behavior is oriented, and memory is nothing but a collection of facts rep- 

resenting agent's knowledge of the environment. A criminal is an autonomous agent that 

has attributes (age, race, sex), behavior (worki:ng, eating, stealing) which is determined by 

motivations (hunger, greed), and has a memory that saves the agent's knowledge about the 

environment such as the locations of the targets. The definition of the autonomous agent 

is in essence similar to an BDI agent, whereby, analogous to a BDI architecture, memory 

represents the beliefs, motivations represent the desires, and the rules represent the delib- 

erative and means-end reasoning phase of the BDI agents. 

This three-tier hierarchy of entities is depicted in figure 5.3. 

It should however be noted that although generic, this categorization is not intended to 

be a universal taxonomy for classification of sociological agents. It is derived mainly to 

capture the dynamics of our target system, which is a typical example of a social system, 

and thus may be carried forward as a generic classification for social systems. This same 

line of thought is reinstated by Russel and No:rvig "The notion of agent is  meant to be a 

tool for analyzing systems, not  an  absolute characterization ...." 

The last step is to map each MABS entity onto an entity in the DASM model. As explained 
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Entities 

Figure 5.3: Hierarchical Classification of Entities 

in Chapter 3, there are only two kinds of entities in ASMs viz. agents that have an as- 

sociated program, and objects that only have characteristic functions. A passive object is 

modeled as an ASM object with static functions representing its attributes. Active objects 

are also modeled as ASM objects with both static and dynamic functions; dynamic functions 

are used to represent the changes in state corresponding to externally-controlled behavior. 

Finally, autonomous agents are modeled as DASM agents where the program of each agent 

characterizes the rules governing its behavior; its memory and motivations are abstractly 

represented by functions. 

Table 5.1 illustrates the entity mapping through the different layers for some typical entities. 

Table 5.1 : Entity Classification and Taxonomy through Different Layers. 

Social System 
Offender, Victim 

Car, ATM 

Cash, Drugs 

Spec 5.1 shows the ASM snippet of classification and mapping of entities through the dif- 

ferent layers 2 .  

2While we use explicit domains here for MEMORY, RULES, BEHAVIOR, and ATTRIBUTES, in the 
subsequent instantiation of autonomous agents, we don't extend these domains vis-a-vis. Instead, we may 
use abstract and derived functions, and other domains, that constitute these domains indirectly. 

MABS Model 
Autonomous Agent 

(Attributes, Behavior, Rules, Memory, Motivations) 
Active Object 

(Attributes, Behavior) 

Passive Object 
(Attributes) 

ASM Model 
DASM Agent 

Object 
(Staticldynamic functns.) 

Object 
(Static functions) 
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, :  
i ! ... I:nti(,\i (.~lassifica~ioll all(1 Mtlpl,irlg . . ~ 

i I 

/ / Social Entitic?s 
domain COP, CRIMINAL 
domain CAR, BUS 
domain DRUGS, CASH 
, . ;/ \:1:\S F.nt,it.i(:s 

domain ENTITY 
domain PASSIVE-OBJECT 
domain ACTIVE-OBJECT 
domain AUTONOMOUSAGENT 
ENTITY = PASSIVE-OBJECT U ACTIVE-OBJECT U AUTONOMOUSAGENT 
// i\ SJfI Er~t.ii.ics 
domain AGENT 

, I  J1~1p~)ing 

PASSIVE-OBJECT = DRUGS U CASH 
ACTIVE-OBJECT - CAR U BUS 
AUTONOMOUSAGENT - COP U CRIMINAL 

AUTONOMOUSAGENT = AGENT where 

!! . 
: :  Ilitrrarc.hic:iiI Classification -- 
i i 

domain ATTRIBUTES, BEHAVIOR, RULES, MEMORY, MOTIVATIONS 

i ,' P c i 4 x - c  O l ) j ( ~ s l  - 
static attributes : PASSIVE-OBJECT -+ ATTRIBUTES 

i /  , \ c ~ ( i \ o O h j ( ~ . t  
ACTIVE-OBJECT - PASSIVE-OBJECT where 
dynamic behavzor : ACTIVE-OBJECT -+ ATTRIBUTES 

~ ~ t o ~ ~ ~ ~ n o u s  ~ l g c ~ i l  
i :  

AUTONOMOUSAGENT = ACTIVE-OBJECT where 
rules : AUTONOMOUSAGENT --+ RULES 

rules(a) - Program(a) 
memory : AUTONOMOUSAGENT -4 MEMORY 
motivations : AUTONOMOUSAGENT -+ MOTIVATION - Set 

Spec 5.1: Hierarchical Classification and Mapping o f  Entities. 



Chapter 6 

Represent at ion of Environment 

The relation between Man and his Environment has been of interest to scholars of diverse 

disciplines. As highlighted in Chapter 2, one of the major stances taken in Environmental 

Criminology is that the movements and behavior of people is influenced by the underly- 

ing urban landscape, accompanied by their subjective perceptions of the same objective 

environment. The agents are embedded in and operate within the confines and vagarities 

of a given environment, which is a dynamically changing reality. This thus calls for a ro- 

bust representation of the environment in a manner that can include the notions of both 

objective reality and subjective perceptions. This chapter explains the approach taken on 

abstract formal representation of the environment. We begin with Section 6.1 that explores 

comprehensively the extant views of the criminologists and psychologists; we conclude with 

Section 6.2 that explains our proposed approach which attempts to complement the popular 

views. 

6.1 Overview 

The relation between Man and his Environment has been of interest to scholars of diverse 

disciplines. Although the disciplines might be different, the views bear close semblance. In 

this section we comprehensively present the broad outlook on environment held by crimi- 

nologists and psychologists. 
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Environmental criminologists set out to use the geographic imagination in concert with 

the sociological imagination of people to describe, understand, and control criminal events 

[ l l ] .  This maxim thus encompasses two different views of the environment - an objective 

view and a subjective view. The objective view describes the geographic environment as a 

universal mathematical reality, that includes the totality of all things. This objective space 

has the same interpretation at all times for all individuals. The subjective view relates to an 

individual's perception of the objective geographic environment. Each individual perceives 

his or her environment differently which is shaped by a number of factors such as sociological, 

economical, biological etc. These perceptions are also based on past knowledge and current 

experiences. For e.g. an infant's understanding and knowledge of its environment is very 

different from an adult's understanding. 

Criminologists contend that absolute geographic arrangements cannot be used in crime 

analysis without being transformed into subjective coordinates [lo]. 

The criminological thinking is greatly influenced by works of leading psychologists. Im- 

manuel Kant argued that we do not perceive the world as it is; we impose cause and effect 

relationships on it and therefore our perceptions are influenced by.our experiences. 

The classical work of K o a a  in his book Principles of Gestalt Psychology [64] explains the 

relation between nature and human mind. The author categorizes the environment into ge- 

ographical environment, which is the actual physical structure, and behavioral environment, 

which is an individual's perception of the geographical environment. People behave in the 

ways they do based on how they perceive the environment (behavioral) instead of how the 

environment actually is (geographical). The practical application of this would be in un- 

derstanding someones behavior within the context of their environment instead of our own. 

Further, he classifies peoples' reactions into two categories, viz. distal stimuli and proximal 

stimuli: distal stimuli describes things as they exist in the geographical environment and 

proximal stimuli are the effects that distal stimuli have on sensory perception. 

The same theme runs in [86], where the author in addition to propounding the notion of 

geographic and subjective environment, categorizes the subjective environment into three 

sub-categories with a hierarchical relation - operational environment, which is that part 

of the geographic environment that has impact on an individual; perceptual environment, 

that part of the operational environment that, an individual is aware of; and behavioral 

environment, that part of the perceptual environment which triggers responses. 
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6.2 Our Approach: Layering of Environment 

The approach we propose on modeling the urban environment attempts to embody and 

complement the extant theories of environment in the behavioral sciences, as discussed 

above. The view incorporates the fundamenta,l fact that environment can be divided into 

two broad categories - the objective environm,ent and the subjective environment. 

The objective environment, in our case called the Geographic Environment,  is external to 

an agent and encompasses the totality of all th.ings. This is the physical reality and cannot 

be manipulated by the agents. All agents have the same representation and interpretation 

of the geographic environment. It is potentially composed of the natural typography, roads 

and street network, transit and traffic patterns, people and other objects. Section 6.2.1 

discusses the representation of geographic environment formally. 

The subjective environment, in our case is called also Subjective Environment and is divided 

into three sub-categories with a hierarchical relation viz. Perception, Awareness Space and 

Activity Space. The subjective environment is specific to an agent (person) as opposed to 

being universal to all agents. 

Perception is how each person 'perceives' the objective environment (geographic environ- 

ment), depending on personal preferences, past knowledge and current experiences, and 

other socio-cultural factors. For instance, an ignorant person might perceive Antarctica to 

be a desert; a person traveling to work might perceive a road with heavy traffic as being 

unfavorable, whereas a car thief might perceive this road as highly favorable with good 

opportunities. This perceived environment is the effective environment that triggers agent 

behavior. A person, in general, cannot possibly 'perceive' the entire geographic environment; 

perception is thus a sub-part of the geographic environment. The notion of perception is 

similar to a mental map, as discussed in Chapter 2. 

That sub-part of the perception, that an agent is aware of by way of current events, past 

experiences, interaction with other agents, forms the Awareness Space of the agent. It is 

composed of all locations in the perception about which a person has knowledge above a 

minimum threshold level even without visiting some of them. For instance, the ignorant 

person hears from someone that Antarctica is not a desert but a polar region, so this infor- 

mation becomes a part of his or her awareness space; while traveling on an edge a person 

looks around and admires the scenery, this admired scenery then becomes a part of his 
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awareness space. This notion of awareness space is the same as that of criminologists, as 

discussed in Chapter 2. 

Activi ty Space is that sub-set of the awareness space that the agent has physically traveled 

on frequently in a given past time interval. The general paths treaded by people during ev- 

eryday activity, such as home-work, work-lunc:h, home-recreation, form the activity space. 

The agent typically has very detailed information about this part of the environment. This 

notion of Activity Space corresponds to that of the criminologists (Chapter 2). 

Section 6.2.2 explains the representation of subjective environment in formal terms. 

The aforementioned categorization of environment helps in deriving the true behavior of the 

agent with respect to criminal activity and is tllustrated in Figure 6.2. 

] Geographic Environment > Objective 
Environment 

> Subjective 
Environment 

Figure 6.1: Categorization of Environment 

Further, we base the structuring and representation of the environment using gmph  theo y. 

The following sections explain the formalization of environment discussed in this section, in 

graph theoretic terms and alongside in ASM terms, in a step-by-step manner. 

6.2.1 Objective Environment 

The objective environment, in our case called the Geographic Environment, represents the 

urban landscape. We abstractly represent the given geographic environment, as a directed 

attributed g m p h  defined in several steps as follows. 

Let H = (V, E) be a directed graph representing the road map of some urban area. V = 

{vl, ..., v,) is the set of vertices l ;  a vertex represents the intersection of two edges on the 

'We use the terms vertex and node interchangeably. 
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map. E = {el, ..., en) is the set of directed edges representing roads, where E C V x V; 

unidirectional roads are represented by a single edge and bidirectional ones by a pair of 

oppositely directed edges connecting the same two vertices. This road map is formally 

defined in Spec 6.1. 

I - .  '1 hc. Enui~oi~rr ic~~r  Graph - 

H - E.U\'1ItOS51CX 1-CTIAPII, 1. SSOE, r, = E1lC:E I I 

d o m a i n  ENVIRONMENT-GRAPH 
d o m a i n  NODE 
d o m a i n  EDGE 

( : ~ i ~ ~ ) l l  S i n  
(11. ..-: \:. 1.). y ... ::: ll{)(~c$j(~~., I< :::::: 

nodeset : ENVIRONMENT-GRAPH .-, NODE - set 
edgeset : ENVIRONMENT-GRAPH -+ EDGE - set 

Spec 6.1: Representation o f  the Road Map. 

We can then define some general operations on the NODES  and EDGES of the environ- 

ment graph (Spec 6.2). 

I / -- Sodc 
0utIncidentEdge.s : NODE --+ EDGE - set 
adjacent : NODE x NODE -+ BOOLEAN 

i !  / /  -.. Ftlgc - - 

edgeHead : EDGE -+ NODE 
edgeTai1: EDGE -+ NODE 

Spec 6.2: Some Operations on Nodes and Edges. 

Next, for attributing the graph H, let O = (O,, O,), where 0, and 0, denote the attribute 

sets for vertices and edges respectively. 0, splits into two disjoint subsets, Oztat and OF, 
the edge attributes that are statically defined, such as distances, and those that my change 

dynamically, like traffic conditions, respectively. Similarly, O, splits into two disjoint sub- 

sets, Oztat and &Y", the node attributes that are statically defined, such as location, and 
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those that my change dynamically, like density of people. The terms static and dynamic are 

used to refer to changes with respect to time. Static attributes typically do not change dur- 

ing the course of a simulation run, whereas static attributes represent dynamic fluctuating 

conditions and may change during simulation runs. Spec 6.3 represents this categorization 

of geographic attributes. 

j :  : , ! .  , , (::ra.p]l ntt.ri},utcs 
domain GEO-STATNODEATTR / /  (-):t'L' 

domain GEODYNNODEATTR // 8 < j 1 ' '  

// = (@y: gfwj 
domain GEONODEATTR = GEOSTATJODEATTR U GEODYNNODEATTR 

domain GEOSTATEDGE-ATTR / /  (3~~""" 
domain GEODYNEDGEATTR //' G)-):f?ll' 

; ; (+<! .,:,:: ( ( y t ( 1 t .  ( ~ ) ~ ? l l l )  
i :  C .  

domain GEOEDGEATTR - GEO-STAT.EDGEATTR U GEODYNEDGEATTR 

j 1 (3 = ((-I,, . Ot:) : ,  

domain GEOATTR r GEOEDGEATTR. U GEONODEATTR 

Spec 6.3: Categorization of Geographic Environment Attributes 

We can now define the objective environment, henceforth called Geographic Environment as 

an attributed directed graph GGeoEnv = ( H ,  O), where I9 represents the collective geographic 

attribution. Formally, this is expressed by an attribution scheme 6 = (O,, 19,) with 6, = 

(19,stat, 19tyn) representing the mapping of edge attributes, and 8, = (Bitat, 19,dyn) representing 

the mapping of vertex attributes. This thus consists of four finite mappings: 

19,"tat : V -+ F(OEtat) assigns a set of static vertex attributes to each vertex in V 

19,dyn : V -+ F ( @ $ Y ~ )  assigns a set of dynamic vertex attributes to each vertex in V. 

0 I9Ztat : E -+ F(Oztat) assigns a set of static edge attributes to each edge in E. 

19,dyn : E -+ ?(Ofyn) assigns a set of dynamic edge attributes to each edge in E. 

Spec 6.4 depicts this attribute mapping of geographic environment. The abstract attribution 

schema allows one to include as many attributes as desired as per the need of the application. 
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I 
3 - 

1 / Chgrapl~ic .  I<u\-i~ onrnor~t 
/ ' : (11. Q! 
GEOENV = ENVIRONMENT-GRAPH where 
geoAttr : GEOENV + GEOATTR 

, /  Gco E.~l.virorl~rlc>l~~. func:tionu 
/ ; # , ~ t < I l  . I,,- ,,,,.,,4 .p((-).;,/hr) 

8 ;  t ,  . 
g e o ~ t a t i c ~ o d e ~ t t r  : NODE x GEOENV x GEOSTATNODEATTR + VALUE 
j ;  fjp 17 77((3??/~7 
geoDynamicNodeAttr : NODE x GEOEN'V x GEO-DYNNODEATTR + VALUE 
/; #;to" ' : ,, 'p((-),;t".') 
geoStaticEdgeAttr : EDGE x GEOENV x GEO-STATEDGEATTR -4 VALUE 

geoDynamicEdgeAttr : EDGE x GEOENV x GEODYNEDGEATTR -+ VALUE 

Spec 6.4: Geographic Environment 

Specific to our application, we refine Sta t ic  Ver tex  Attr ibutes to include information such 

as geographic coordinates. Sta t ic  Edge Attr ibutes yield information on distances, and road 

type. D y n a m i c  Edge  Attr ibutes store fluctuating information such as road condition, speed 

limits, traffic situation (Spec 6.5). 

,; - Cko Static Sotie At.t:rihutc? -- 
coordinate : + GEOSTATNODEAT'TR 
nodeName : -+ GEOSTATNODEATTR 

, . Geo Static Fdge Att:ribute - 

distance : + GEOSTATEDGEATTR 
roadType : + GEO-STATEDGEATTR 
edgeName : + GEO-STATEDGEATTR 
;! - 
; I 

Goo I>yna~r~ic  .Sodc Attrihutc 
traf ic  : + GEODYNEDGEATTR 
roadCondztion : + GEODYNEDGEATTR 

Spec 6.5: Refinement o f  Geographic Environment Attributes 
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6.2.2 Subjective Environment 

Having defined the objective environment in terms of the Geographic Environment GGeoEnvl 

we now have a basis for defining the subjective environment. We model the subjective 

environment by introducing additional attribution on top of GGeoEnv. The fact that, in 

general, each agent perceives the geographic environment differently implies that distinct 

agents see different attributions of the same GGeoEnv. Thus, the subjective environment 

GSubjEnv, can be seen as an attributed directed graph with colored attributes. Each color 

refers to the specific interpretation of an individual agent. 

We use X to denote the collective attribute set of the subjective environment, where X 

is composed of three dis-joint sets that represent the attributes of the three layers of the 

subjective environment. 

XPER identifies the attribute set of the Perception, with XPER = ( X r ,  X y ) ,  where 

X r  and X y  represent the perception edge and vertex attributes respectively. 

XAW identifies the attribute set of the Awarenes Space, with XAW = (XEW, Xzw) ,  where 

A t w  and Xzw represents the awareness edge and vertex attributes respectively. 

XAC identifies the attribute set of the Activity Space, with XAC = (A?, A?), where X? 

and X? represent the activity edge and vertex attributes respectively. 

Further, for the purpose of attribute mapping, we split X into A, and A,, to denote the 

collective attribute sets for vertices and edges respectively from the three layers. It should 

be noted that there is no classification of subjective environment attributes into static and 

dynamic; this is because none of these attributes are static but are dynamically changing. 

This categorization of subjective environment attributes is depicted in Spec 6.6. 

The subjective environment is then defined abstractly as an attributed directed graph 

GSubEnv = (GGeoEnv,A) where A = (A,, A,) abstractly represents the agent specific at- 

tribution of vertices and edges by means of two injective mappings such that 

A, : AGENT x V + P(X,), for each a,gent and each vertex in V, yields a set of 

subjective node attributes, and 

A, : AGENT x E + P(X,), for each agent and each edge in El yields a set of subjective 

edge attributes. 
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> ,  
i l Subjcc.t i\-e Erivi~.onrnmt: At:.~..rit)u~ PS -- .- 

domain PEREDGEATTR // ,\gf"' 
domain PER-NODEATTR // A!"" 
domain PERATTR - PEREDGEATTR U P'ERNODEATTR // X~.;';" = (At"", A$;"") 

domain AWEDGEATTR // AT" 
domain AW-NODEATTR // X:,:": 
domain AWATTR AWEDGEATTR U AU'NODEATTR /: A;\\v -- (A:":! A::"') 

domain ACEDGEATTR / /  A?' 
domain ACNODEATTR // ,\EL 
domain ACATTR = ACEDGEATTR U AC-UODEATTR / !  ,\.,,(, = (A:'': X z r )  

domain SUBJATTR c PERATTR U AWATTR U ACATTR / /  A = (A,:: A,) 
domain SUBJEDGEATTR - PEREDGEATTR U AW-EDGEATTR U ACEDGEATTR 
domain SUBJ-NODEATTR - PERNODEAT'I'R U AWNODEATTR U AC-NODEATTR 

Spec 6.6: Categorization of Subjective Environment Attributes 

Spec 6.7 depicts this mapping of subjective environment attributes. 

Although subjective environment is defined as a total function, i.e every vertex and edge 

of the underlying graph is associated with all the attribute sets of the three layers of the 

subjective environment, it is not necessarily the case that all attributes have a 'defined' value. 

We use default or nullary values for non-inclusion of edges and vertices to reflect the fact 

that only a sub-set of the graph constitutes a particular layer of subjective environment. For 

instance, in general it is not necessarily the case that an agent perceives the entire geographic 

environment; an agent has knowledge of only some parts of the geographic environment, 

so only those edges and attributes that have a define value for perception attributes form 

the perception of the agent. The same holds for awareness space and activity space; i.e 

only those edges that have defined values for awareness and activity attributes form the 

awareness and activity space respectively of the agent. 

The first layer of subjective environment, called perception, is the agent's subjective inter- 

pretation of the geographic environment. Intuitively, this perception can be seen as a filter 

through which the agent views the geographic environment. For instance, a road with high 

density of people may be seen as a nuisance to someone traveling to work; alternately it may 
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, , 
i I . -  
i i , . Subjrcr i\:c Ihviron~nen(. -- 

; : I, 

/ / ( . r ~ ~ b ~ , ,  .. (C:(:eoi;,, ,;. A) 
SUBJENV = GEOENV where 
subjAttr : PERSON x SUBJENV + SUBJATTR 

1 ,  S111)lccti~ e r; ln~-i~onn~cm Hc1,ltc.d FI I I IL~~O~L-  
1 ;  A, . !jCrn.r x E P ( A , )  
subjEdgeAttr : PERSON x EDGE x SUBJENV x SUBJ-EDGEATTR + VALUE 
J ,' ,IT IGF\I7 \ 1,' 'P(,\? ) 
subjNodeAttr : PERSON x NODE x SUBJENV x SUBJNODEATTR + VALUE 

Spec 6.7: Subjective Environment 

be seen as a good opportunity to a pick pocket. We refine A T  and A T  to include node and 

edge Perception Attributes respectively. The node perception attributes are the same as 

geographic node attributes, and edge perception attributes are the same as geographic edge 

attributes. Abstract functions are used to yield the agent-specific subjective interpreted 

values of the geographic attributes. An agent's perception can then be computed by using 

a derived function on GSubjEnv that extracts the subset of edges with a defined value of 

perception attributes. (Spec 6.8). 

/ I - -  I'c1c'ty)r ion At t ributcs 
PEREDGEATTR GEOEDGEATTR / i A?" 
PERNODEATTRRIBUTE - GEO-NODEATTR I I Xf" 

' 1  , , t lcr~wtl  I'iurc:t io11 thr pcr.cLclpt ion 
perception : PERSON x SUBJENV + EDGE - Set 

Spec 6.8: Refinement of Perception Attributes 

The second layer of subjective environment, called the Awareness Space, is identified by the 

attributes Azw and Azw associated with each vertex and edge respectively. The awareness 

space is a sub-part of the perception, and so only those edges and vertices that have a 

defined value for Ape, constitute the awareness space. We refine Azw to include the attribute 

intensity, which stores the magnitude of the agent's awareness of this edge. The intensity 
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of awareness depends on a number of factors such as strength of activity space, mobile 

visibility, accessibility from activity space, willingness to leave activity space, attractiveness 

of adjacent areas, speed and model of travel etc. We define the intensity of an edge using 

abstract functions2. By means of a derived function on subjective environment, we can 

compute the set of edges that have a defined value for awareness attributes, and thus form 

the awareness space of the agent. Further, we can impose an additional restriction and 

return only those edges that have an intensity value above a certain predefined threshold; 

this is called the active awareness space of the agent (Spec 6.9). 

; ; dcrivuti ti~rlc:t , ior~ for awareuvss spwc 
awarenessSpace : PERSON x SUBJENV + EDGE - S e t  

x VALUE + EDGE - S e t  

Spec 6.9: Refinement of Awareness Space Attributes 

The third and the final layer of the subjective environment, the Activi ty Space, is defined by 

the attribute set X,aC, which stores the values for frequency, trip importance and reinforce- 

ment .  Frequency refers to the number of times an agent has traversed this edge; the more 

an agent traverses an edge, the more he remembers it for future traversal. Trip Importance 

refers to the significance of the trip on which this edge was taken; edges on important trips 

(pathway to work) yield a higher value for awareness space and are remembered for a longer 

period of time. Reinforcement refers to the experience an agent had on this edge, edges 

with a positive (pleasant) experience have a higher likelihood of being taken again, whereas 

edges with a negative (bad) experience are less likely to be taken again. This enables us to 

incorporate reinforcement learning by defining the reinforcement values of edges abstractly. 

An agent's activity space can then be computed by using a derived function on GSllbjEnv 

that extracts the subset of edges with a defined value of activity attributes. We can also use 

a derived function that returns the active activity space, which is those set of edges with a 

compound value of activity attributes that are above a certain threshold (Spec 6.10). 

21n the simplest case, the value of intensity of awareness space is typically a distance decay function that 
also considers the strength of the activity space. 
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Activity Attrihuics 
frequency :+ ACEDGE-ATTR 
triplmportance :+ ACXDGEATTR 
reinforcement :+ ACEDGEATTR 
j i  dcrivc:d S111w1.ion for ac:l,ivit.y s p ~ c t  . . . . 
activityspace : PERSON x SUBJXNV --, EDGE - Set  
activeActivitySpace : PERSON x SUBJXNV x VALUE --, EDGE - Set  

Spec 6.10: Refinement of Activity Space Attributes 

Lastly, the abstract domain VALUE denoting the possible values of the different attributes 

is refined in Spec 6.11. Detailed listing can be found in Appendix A. 

VALUE - REINFORCEMENT U TRIP JMPORTANCE U FREQUENCY U TRAFFIC 
INTENSITY U DISTANCE U ROAD-TYPE U ROAD-CONDITION 

DISTANCE - INTENSITY 5 FREQUENCY - FLOAT 

positive :+ REINFORCEMENT 
negative :+ REINFORCEMENT 
neutral :+ REINFORCEMENT 

obligatory :--, TRIPJMPORTANCE 
required :+ TRIP JMPORTANCE 
notRequired :+ TRIPJMPORTANCE 

low :+ TRAFFIC 
medium :+ TRAFFIC 
high :+ TRAFFIC 

minor :+ ROAD-TYPE 
maior :--, ROAD-TYPE 

Spec 6.11: Refining the Abstract Domain VALUE 



Chapter 7 

High-Level DASM Model 

This chapter explains the operational DASM model at the highest level of abstraction. 

Section 7.1 explains the devised architecture of the autonomously acting agents in the model, 

and describes the functional decomposition of the agents into respective modules. Next, we 

start detailing the working of the constituent modules of the agents; Section 7.2 describes 

the Space Evolution Module, Section 7.3 illustrates the Target Solution Module, and finally 

Section 7.4 explains the functioning of the Age.nt Decision Module. 

7.1 Agent Architecture 

This Section explains the architecture of the autonomously acting entity in our system - 

the Person Agent. The person agent architecture is BDI-theoretic; a brief introduction to 

the Belief Desire Intention (BDI) architecture is provided in Section 7.1.1, and Section 7.1.2 

explains how our approach incorporates this view. 

7.1.1 BDI Agent Architecture: Introduction 

An agent is characterized by its architecture. The agent architecture dictates how the func- 

tional complexity of the agent is organized; the structuring, type of approach for reasoning, 

the behavior etc. Broadly, agent architectures can be characterized into four categories, viz: 

Logic-Based, Reactive, BDI, and Layered [91]. 
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The Belief Desire Intention (BDI) [22] agent architecture, first issued in works of Bratman 

et al, is the most mature approach for modeling autonomous agents. It has its their roots 

in the philosophical tradition of understanding pmctical reasoning; deciding what goals we 

want to achieve, and how we are going to achieve these goals. The former process is known 

as deliberation, the latter as means-ends reasoning. The central constructs in the BDI model 

are Beliefs, Desires and Intentions. 

Beliefs represent the informational state of the agent, that is, what it knows about itself 

and the world, by way of past experiences or current events. Desires or goals are its motiva- 

tional state, that is, what the agent is trying to achieve. Since all desires or goals may not be 

consistent, the agent has to commit to a consistent set of goals and focus actions for these 

selected goals. These persistent goals are called Intentions and represent the deliberative 

state of the agent, that is, which plans the agent has chosen for eventual execution. To 

execute intentions, the agent has proceduml knowledge constituted by a set of Plans which 

are sequences of. actions to be performed to achieve a certain goal or react to a specific 

situation. Some view intentions as being a subset of goals which the agent commits to, 

while others view intentions as the set of selected plans. 

Simply stated, Beliefs are agents' knowledge of its world; by applying the process of de- 

liberation on current beliefs and current intentions, we obtain Desires; by committing to 

desires (also considering beliefs, previous intentions), we obtain Intentions; and by applying 

means-end reasoning on beliefs, intentions, desires, we acquire a Plan of Action, which upon 

execution fulfills intentions and eventually desires. 

Intentions are fulfilled by executing an action (of the plan) one step at a time. A step can 

change the beliefs, perform actions on the external world, submit new goals, create new 

intentions. Since the state of the external world and the internal memory of the agent is 

continuously changing, it becomes necessary to re-evaluate plans of actions, and reconsider 

committed intentions, to determine whether one is still on the right track. Bold agents 

never reconsider alternative options, while cautious agents constantly reconsider alternative 

options; a good balance between the two is desirable [50]. 

The main advantage of the BDI architecture is that it is intuitive, and that it provides a 

clear functional decomposition of the agent behavior. It has a wide array of applications in 

both industrial and research applications. 

However, there is also rampant criticism of the architecture. The main difficulty is knowing 
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how to efficiently implement its functionality, since the BDI approach is at a high-level of 

design. It can be argued that the current BDI architecture lacks an adequate computational 

model expressing concurrency and distribution semantics, does not clearly show the activ- 

ities an agent is performing at a given time, and how they relate to one another [77]. BDI 

model is also inappropriate for building systems that learn and adapt their behavior, and 

does not provide explicit considerations for multi-agent aspects of behavior [50]. 

Therefore, in designing our Person Agent architecture, we keep the above limitations in 

mind, and start with a BDI-theoretic core and build upon it, instead of limiting to a pure 

BDI architecture. This is explained in the following section. 

7.1.2 Our Approach: Person Agent Architecture 

We developed our Person Agent architecture as a pragmatic BDI-based model.We start with 

a BDI-theoretic core, followed by incremental refinements, and incorporate other problem- 

solving techniques as demanded by the application domain. Having a BDI-theoretic kernel 

allows us to reap the benefits of the strong theoretical foundation of the BDI model, while 

we also garner the pragmatics of practical and extensible reasoning techniques, in particular 

Case-Based Reasoning and Model-Based Reasoning. Our concrete BDI-based architecture 

can be seen as a system of concurrent sub-systems, that renders the original abstract archi- 

tecture a firm computational semantics. 

Figure 7.1 illustrates the structural decomposition of the person agent into different logical 

components. It shows the architecture from a functional perspective, which is in tandem 

with the philosophical foundations of the BDI model. 

Memory is a collection of facts/beliefs/knowledge, present and past, that the agent holds 

about its environment and about itself, which :may change dynamically over time. Memory 

thus represents everything that the agent 'knows', by way of past experiences and current 

events. The agent's main memory component is the Subjective Environment - a filtered 

view of the geographic environment which is the environment as the agent 'perceives' it; it 

is thus the subjective reality and is constantly updated by the SEM and the TSM. 

The Space Evolution Module (SEM) is responsible for carving out the activity space and the 

awareness space of the person agent. It is represented as an ASM agent. It uses a navigation 

algorithm to move the agent from a given origin to a given destination, considering the 
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Figure 7.1 : Person Agent Architecture 
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particular preferences of the agent. The naviga,tion algorithm uses a 'reasoning mechanism' 

which combines case-based reasoning (CBR) and model-based reasoning (MBR). The CBR 

component is represented as an ASM Agent whereas the MBR component can be realized 

by a submachine. The CBR component works with a case-base, which is a type of memory, 

that stores all previous paths (cases) the agent has taken; i.e an agent remembers previous 

path planning decisions and merely recollects these decisions in solving a new path planning 

problem. The MBR component on the other hand uses an algorithmic approach to explicitly 

solve the path planning problem; it calculates path preferences by considering a variety of 

aspects such as choosing shorter routes, avoiding traffic, using familiar roads, et cetera. 

The Target Selection Module (TSM), implemented as an ASM Agent, is responsible for 

monitoring potential targets on the routes taken by the agent, and for selecting attractive 

targets based on given selection criteria. This leads to the creation of the crime occurrence 

space of the agent. For the process of target selection, a hybrid reasoning mechanism 

composed of case-based reasoning (CBR) and model-based reasoning (MBR) is used; the 

two components are represented as ASM agents and submachine respectively. The case- 

based reasoner has a case-base, which is a kind of memory, storing previous target selection 

decisions an agents has made; in selecting a new target, an agent then merely matches the 

characteristics of the potential target against victimized targets and decides whether it is 

a 'good' or a 'bad' target. The MBR component on the other hand uses an algorithmic 

approach to explicitly determine the suitability of the targets. 

The Agent Decision Module (ADM) monitors the working of the TSM and SEM and provides 

relevant inputs to the two modules. It decides on 'what to do' and then relegates the decision 

to the TSM or the ADM on 'how to do it'. For e.g, it decides that the agent should go 

from home to work, and then gives this 'goal' to the SEM. The decisions are based on 

agent's motivations, the current state of the agent, and the information in the memory. 

Motivations are long-term goals (earn livelihood, greed), that in turn give rise to short term 

goals (go from home-tework, car theft), which are then passed to one of the two modules for 

realization. In our case, motivations are always persistent, whereas goals are non-persistent 

and change with varying conditions. 

The working of the SEM, the TSM, and the ADM is stated using rules; intuitively divided 

into action rules and cognition rules. Cognition rules change the state of the internal 

memory, whereas action rules, when fired, affect the state of the external environment. 
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Finally, the profile represents the personal attributes of the agent and stores information 

such as preferences, skills, home locations, demographic factors etc. The profile of the agent 

determines crucial aspects of an agent's individual behavior such as moving in space and 

time, target selection etc. 

Based on the above description, it is easy to see the semblance between the pure BDI-model 

and our concrete BDI-theoretic agent architecture. Beliefs are nothing but person agent's 

memory (subjective environment, profile, case-bases). Motivations are similar to Desires, 

that are derived from beliefs about the world. The ADM represents the deliberation process 

of the BDI, that based on memory, motivations, and current intentions, decides which 

motivations (in the form of goals) persist. These goals are then communicated to the 

TSM/SEM, that represent the Intentions1. The TSM and SEM realize these intentions 

by generating and executing a plan of action for them; they thus represent the means-end 

reasoning phase of the BDI-model. The SEM and TSM continually monitor the external 

environment and the proposed plan of action to determine if it needs to be revised, and 

if so generate an alternate plan; e.g in going from home-to-work, the SEM first proposes 

a suggested path, which after a while might have a heavy traffic jam, in which case the 

SEM takes this into consideration and proposes an alternate suggested path. The ADM too 

continually monitors the environment, motivations, and goals and revises the motivations 

and goals if required. For e.g while going to work, a person gets a flat tyre, the person's goal 

is then be to  go to a mechanic instead of work. This new goal (intention) is then passed to 

the SEM. Further, the cases stored in the case-bases represent the cached plans. 

Spec 7.1 gives the formal ASM representation of the functional components of the Person 

Agent at the highest level of abstraction. 

In the next level of refinement, we show the constituent CBR components of the TSM and 

SEM (Spec 7.2). The domain CBR represented as an ASM Agent denotes the Abstract CBR. 

Instantiations of this abstract CBR yield problem-specific CBRs, TSM-CBR and SEM-CBR, 

for the modules TSM and SEM respectively. The MBR components are implemented as 

submachines whose definitions are implicit to the module definitions, and not shown here. 

'we do not explicitly represent the motivations and goals, but certain abstract and derived data structures 
represent these implicitly. 
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I Pc.1 son Xgt.11~ Archi t cc; urc --- 

d o m a i n  PERSON 
,'; \lotlu!c~ 
d o m a i n  SEM 
d o m a i n  TSM 
d o m a i n  ADM 
MODULE E SEM U TSM U ADM 
AGENT - PERSON U MODULE i l),lSLI .lqcwt 
' ' L~~l1lc~l011> 011 I't~r>011 
spaceModule : PERSON --, SEM 
targetModule : PERSON --, TSM 
deczsionModule : PERSON --, ADM 

Spec 7.1 : Person Agent Architecture. 

' /  

d o m a i n  CBR 
d o m a i n  SEM-CBR, d o m a i n  TSM-CBR 
CBR - SEM-CBR U TSM-CBR 
, Rciptv ~ i i c  ('HH componcmts 

semCBR : SEM --, SEM-CBR 
tsmCBR : TSM --, TSM-CBR 

Spec 7.2: CBR Components of Person Agent Modules. 
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7.2 Space Evolution Module (SEM) 

The Space Evolution Module (SEM) of the Person Agent is responsible for deciding the path 

a person chooses from a given source to a given destination. The source and destination 

are provided to the SEM by the Agent Decision Module (ADM). The problem of finding a 

path is essentially the problem of navigation, and we can say that the SEM implements a 

Cognitive Navigation algorithm. 

We present here a cognitive navigation algorithm, that integrates learning, exploration and 

human cognition of geography. The navigation algorithm reflects natural and intuitive 

choices a person makes while moving in an urban landscape. The path taken might not be 

a globally optimal and best one, but a more natural and good-enough one. The algorithm 

takes into account the factors that are known to influence human path planning and is 

developed in collaboration with the domain experts. Overall, navigation is modeled as a 

combination of exploration and reinforcement learning. Reinforcement Learning is achieved 

by developing a Case-Based Reasoner, which basically implies the person makes all deci- 

sion based solely on past experiences that are stored in memory. Exploration is achieved 

by a 'shortest path algorithm', that forms the model-based component of the SEM, which 

basically algorithmically decides the path based on a number of influence factors such as 

minimizing distance, road traffic; maximizing experience, familiarity etc. Each influence 

factor is associated with a weight that decides its importance in the overall path prefer- 

ence. Human cognition of geography is achieved by basing all decisions considering the 

person-specific subjective environment along with the universal geographic environment, as 

described in Chapter 6. 

First, we focus on the high-level view of the navigation algorithm. We formalize the nav- 

igation algorithm at the highest natural level of abstraction (level 0). We then apply in- 

termediate refinement steps explained in the subsequent sections, that increase the level of 

detail in a step-by-step manner (level 1-2). The case-based and model-based components 

that are derived as a final refinement step of the SEM, form the model at the next major 

level of abstraction called Refined Model, and are discussed in detail in Chapters 8 and 9 

respectively. 



CHAPTER 7. HIGH-LEVEL DASM MODEL 

7.2.1 Level 0 

Level 0 of the SEM represents the highest level of abstraction, and describes the SEM 

and hence the navigation algorithm at the most natural level of detail. To formalize the 

navigation algorithm as given by the SEM, we first associate certain data structures with 

this module. Spec 7.3 enumerates the signals that the SEM uses interspersed through all 

levels of abstraction, and Spec 7.4 gives a self-explanatory enumeration of the constituent 

data structures of Level 0. 

SIGNAL - SIGNAL U PROBLEM-SOLVED U WEIGHTS-UPDATED 
U NEWPROBLEM U FEEDBACKAVAILABLE U NEWDEST U INFORMARRIVAL 

Spec 7.3: Signals of SEM. 
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'!-- -- 
I I)'lln St rwtr~rc~s of SI'A1 
,'/ Alodc5 nssocl'llccl n-lt I1 SEAL. 
MODE - {idle,pathPlanning, roadselection, localRePlanning, running, pathCompleted) 
mode : SEM -+ MODE ! , SF11 ha> i l  r~~odo .  

destNode : SEM -+ NODE I ! Curl cr~t c h i  1 r 1 d  ion rlodc!. 
sourceNode : SEM -+ NODE : i ' l ' t ~ ~  sourrv ~rodc. 
currentEdge : SEM -+ NODE ,' ' CIII writ cdqc iiorcd ~ I L  -1'cv iori' .\[:(li11. 
currentEdge(a) = currentEdge(parentAgent(a)) 
currentNode : SEM -+ NODE / , I  Clu i c\r11 i d ( ,  stm cd i r ~  .I'c~soil' .\gc.~~t 
currentNode(a) = currentNode(parentAgent(a)) 

,; 
;; 1)ci:idcs whclt tiw 's11ggestedI;3dge' is lit lor I-ravorsal. bnscd or1 cllrrriit road cxmditiorls. 
acceptable : SEM x EDGE -+ BOOLEAN 
, , 
; ./ Dctcicles n-hct tic1 i lic t inic r c q r ~ i ~ d  thr trax-cling along thc c ~ u w n t  ctlgr has c?lapactl. 
currentEdgeTrauersed : SEM -+ BOOLEAN 
jl 1)ecides n-llct her the agent has rcac.lwcl the dwl inat ion iiotlc. 
destNodeReached : SEM -+ BOOLEAN 
destNodeReached - currentNode(se1f) = destNode(se1f) 

Spec 7.4: Data Structures of SEM. 

The specification of the SEM as given in Spec 7.5 formalizes the navigation algorithm at 

the highest natural level of abstraction and forms Level 0 of the SEM. 

The SEM is initialized to be in the idle mode. It stays in this mode until it receives a signal 

NEW-DEST from the Agent Decision Module (ADM), informing that a new destination 

node is available to be traveled to. In this case, the abstract function INITIALIZE is 

called, that sets the new destination node of the SEM as passed by the signal and other 

supplementary information; the SEM mode is then changed to pathplanning. 

In the pathplanning mode, the agent makes some global decisions or guesses as to which 

path it is going to take toward the destination. This initial path is then set as the suggested 

path suggestedpath. The idea is that generally people do not just start moving toward their 
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met. E\:c.)lul ion Module (SEkI) 
P r o g r a m s ~ ~  = 

case mode of 
idle + 

onsignal s : NEWDEST 
INITIALIZE(currentNode, newDest(s) )  
mode := path Planning 

pathplanning + 

GET-PATH 1 ~ c ~ y y c d c d l ' a l h  15 ~ ~ p t h r c d  
mode := roadselection 

roadselection + 

if destNodeReached then 
mode := pathCompleted 

else 
if signalFromADM then 

HANDLESIGNALS-FROMADM 
mode := path Planning 

else 
GET-SUGGESTED-EDGE / /  s.~~~!lcistcicll?(~~~e is rrplakd 
mode := local Re Planning 

local Replanning + 

if acceptable(suggestedEdge) then 
mode := running 
currentEdge := suggestedEdge 

else 
mode := pathplanning 

RECORD-SELECTED-EDGE 

running -+ 

if currentEdge Traversed then 
UPDATE-EDGE-PERCEPTION 
FINALIZE-EDGE-TRAVERSAL 
SETSEM-MODE 

pathcompleted + 

FINALIZE-TRIP 
mode := idle 

Spec 7.5: Space Evolution Module (SEM) Program. 
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destination randomly, they first do some preliminary global planning as to which path they 

are going to take. This decision can be based either solely on person's past path traversal 

experiences stored in its memory; or by explicitly solving the problem from scratch such 

as by using a road map; or a combination of the two. This thus achieves a combination of 

reinforcement learning and exploration. The path decided on is typically a combination of a 

number of influence factors such as minimizing distance, traffic, angle; maximizing quality 

of experience, speed etc. In making such a decision, the person needs to know the local 

characteristics of the constituent edges of the potential paths; the person typically relies 

on information in its memory based on past experiences for the dynamic conditions of non- 

visible distant edges of the path (traffic, road conditions, density of people); however, for the 

adjacent edges that are visible, the person has access to real-time current local information. 

The SEM mode is then changed to roadselection. 

In the roadselection mode, a guard is checked to see if the person has already reached 

its destination; if so the mode is changed to pathCompleted. Another check is made to 

see if there are any signals from the ADM, such as a change in destination etc; if so the 

mode is changed to pathplanning indicating that the suggested path is no longer valid, 

and a new path needs to be re-calculated. If none of the above two conditions hold, the 

person then gets the next immediate edge to traverse which is set as the suggestedEdge. 

This suggested edge could be an edge of the suggested path, or a completely random choice. 

This incorporates randomness in the navigation algorithm. The SEM mode is then changed 

to 1 ocalReplanning. 

In the 1ocalReplanning mode, the person assesses the local information of the suggested 

edge such as the traffic flow, road conditions etc and decides whether this edge is suitable 

for traversal. For e.g if there is a very heavy traffic jam, the person likely wants to revise the 

suggested path to an alternative path. If the suggested edge is found to be acceptable, the 

current edge for traversal currentEdge is set to the suggested edge suggestedEdge, and the 

SEM mode is changed to running; lest the mode is changed to pathPlanning, indicating 

that a new alternative path needs to be planned. This local re-planning is important since 

when the decision was made on a suggested path (suggestedpath), the person did not have 

access to the current real-time local information of any of the intermediate edges, it had this 

information for only the edges that were adjacent to its initial position. The idea is to be 

able to revise previous path planning decisions on-the-fly as new information is discovered. 
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This incorporates real time local re-planning in addition to global planning in the algorithm. 

In the running mode, it is emulated that the person is currently traversing the current- 

Edge. Once the person has traversed the edge, indicated by the derived function cur- 

rentEdgeTmversed, two main actions are performed. First, using the abstract function 

UPDATE-EDGE-PERCEPTION, the agent specific interpretation of information for this 

edge, such as distance, road type, traffic, frequency, experience are updated and stored in its 

memory. This function ensures that the person remembers road-level decisions it has made 

in the past. Second, the function SET-SEM-MODE is called to decide which should be 

the next mode of the SEM; pathplanning in case of random edge selection or roadselection 

otherwise. 

In the pathcompleted mode, reached from the mode roadselection when the destination 

is reached, the abstract function FINALIZE-TRIP is called to perform some book keeping 

and the SEM mode is changed back to idle. FINALIZE-TRIP stores all the path level 

information that has been made available to the person by virtue of taking a path, into the 

memory (case-base) of the person. This ensures that the person remembers all the path- 

level decisions it makes, such as the path it took, along with supplementary information 

such as experience, road conditions etc of taking this path as a whole. This newly stored 

information plays an important role in subsequent path planning decisions, and in this way 

we achieve reinforcement learning. 

7.2.2 Level 1 

In this level, we apply a refinement step on Level 0 and obtain a more detailed specification 

of all the abstract functions of the SEM Program. 

In the idle mode, on receiving the signal NEW-DEST from the ADM, which embeds the 

new destination node in the signal, the function INITIALIZE is called. INITIALIZE (Spec 

7.6) updates the destination node of the agent (destNode) to the new node sent by the 

signal; sets the source node of the path to be computed to the current node of the agent; 

and resets the taken path to the source of the path. The mode of the SEM is then changed 

to pathplanning. 

In the pathplanning mode, the person decides which path to take from the given source 
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i ! -- 1x1'1 ! .ZI,lZ1< -- - 

INITIALIZE(source : NODE, dest : NODE) = 
destNode := dest 
sourceNode := source 

Spec 7.6: INITIALIZE. 

to the given destination. This is done by calling the function GET-PATH, which returns 

a path in the form of suggestedPath. The seemingly simple looking function G E T M T H  

is a complicated one, that basically incorporates the reasoning mechanism based on rein- 

forcement learning implemented as a case-based reasoner and exploration implemented 

by a model-based reasoner (Spec 7.7). The function checks a predicate of the Person 

/ : (:' '[;yr p1yl7.:[.;[ .- 
i i .I. ..' . . - 

cbrDominant : SEM --, BOOLEAN 
cbrDominant(sem) = semCBRDominant(parentAgent(sem)) 
GET-PATH = 

if cbrDominant then 
G e t - S u g g e s t e d - P a t h ~ ~ ~ ~ ~ ~  

else 
Get-Suggested- path^,,^,,,, 

Spec 7.7: GETPATH. 

agent called cbrDominant, (or more appropriately called memoryDominant) to deter- 

mine whether the person likes to make decisions by recollecting facts from past experi- 

ences or by exploring new options. If the person has a memory dominant architecture, 

the function Get-SuggestedPathMemOTY is called, which interfaces with a case-based rea- 

soner and bases decisions considering past experiences stored in memory; else the function 

G e t - S u g g e ~ t e d - P a t h ~ ~ ~ ~ ~ ~ ~ ~  is called which interfaces with a model-based reasoner and solves 

the problem of finding a path from scratch. 

Spec 7.8 shows the details of the function Get-SuggestedPathExplorer. It calls the function 

GETSUGESTED-PATHExpl,,, which represents the model-based component of the SEM 
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that solves the problem of going from a given source currentNode to a given destination 

destNode, explicitly from scratch. This can be seen as a person opening a road map of the 

city and using it to compute the desired path. The suggested path suggetedpath is set with 

the path returned by the model-based component. 

/ 
I !  C~cL_Suggc~teti-I':~:I~I~~!;,,,~ ,,.,.. ,. - -- 

- Get-Suggested-PathEzplorer = 
suggestedpath + G E T - S U G E S T E D - P A T H E ~ ~ ~ ~ ~ ~ ~ ( S ~ ~ ~ ,  currentNode, destNode) 

Spec 7.8: Get-Suggested-Path~~~~~~~~. 

Get-Suggested-PathMemOrY (Spec 7.9) represents a hierarchical problem-solving technique, 

whereby, first the person relies on memory to calculate a complete path that takes him from 

the given source to the destination; if no such path exists, the person relies on memory 

to get a partial path that takes him 'close enough' to the destination and then calculates 

the rest of the path from scratch by using a map; if this too does not work, the person 

then has to solve the entire problem from scratch, exclusively using a map. This hierarchy 

can however be overridden in the case where the path returned form memory is one that 

has already been found to be unacceptable (by the function acceptable), in which case the 

person tries to explore new options. 

- Get-Suggested-PathMemorY = 
let pathCBR + GETSUGGESTED-PATHcBR in 

if l empty (pa thCBR)  A newPath(pathCBR) then 
if complete@athCB R )  then 

suggestedpath := pathCBR 
if lcomplete(pat h C B R )  then 

suggestedpath t GET-SUGGESTED-PATHM~,,~(~~~~CB R) 
if empty(pathCBR) V l newPath@athCBR)  then 

suggestedpath + GETSUGESTED-PATHEzplorer(self, currentNode, destNode) 
where 

complete(p) E tail@) = destNode 
newPath(pathCBR) E pathCBR 7 C suggedtedPath(se1f) 

Spec 7.9: Get-Suggested-PathMenorY. 
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We achieve this by first calling the abstract function GET-SUGGESTEDPATHcBR that 

interfaces with the case-based reasoner and returns a path (pathCBR) based solely on 

past experiences in the memory of the agent. There can be three cases with the returned 

path pathCBR with respect to completeness: first a complete path is returned from source 

to destination, second a complete path is not returned but a path 'close enough' to the 

destination is, and third no path is returned at all. There can be another case that the 

pathCBR is a redundant path, i.e in case an edge was found to be unacceptable in the 

mode 1ocalReplanning the CBR was called again in the mode pathplanning, but it still 

returned a path that is (or contains) the old suggested path which is albeit unacceptable; 

that is the person has no knowledge of an alternative path. 

If pathCBR is not empty, and it is a non-redundant path as determined by the derived 

function newpath, and it is also a complete path as determined with the derived function 

complete, this is set as the suggested path suggestedpath. 

If pathCBR is not empty, is not redundant, but an incomplete path that takes the person 

closer to the destination, the agent performs mixed reasoning, i.e solves half the prob- 

lem by using memory and the other half using a map. This is done by the abstract 

function GET-SUGGESTEDPATHMixed which returns such a path and sets it as the 

suggestedpat h. 

If pathCBR is empty i.e, the person has neither a complete nor a partial path in mem- 

ory for the given problem; or if pathCBR is a redundant path, i.e the person has no 

knowledge of an alternative path that does not include the unacceptable edge, the abstract 

function GET-SUGGESTED-PATHExpl,,, is invoked. GET-SUGGESTED-PATHExpl,,, 

returns a path based on explicit problem solving from scratch, and this path is set as the 

suggestedpath. 

Thus, with the function GETPATH, we have effectively used a hybrid reasoning system 

which is an integration of a Case-Based Reasoner and a Model-Based Reasoner, to emulate 

the decision making process of the person agent in deciding which path to take. The main 

idea presented here is that human reasoning is analogous to a process where we first try to 

solve new problems by recollecting past experiences; if this proves futile we try to reuse 

and adapt similar problem in hope of getting a solution; and only if this too proves futile, 

do we try to explicitly solve the problem from scratch using some generalized knowledge. 

For example, a person wishing to travel from home to  work already 'knows' the path he 
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is going to take since he has been taking this path for many years; he does not explicitly 

'solve' the problem of which path to take, he merely recollects from memory the old path 

taken, and treads on it. On the other hand, the same person traveling from home to a 

new restaurant opening, first tries to see if he knows the path to this restaurant; if not, 

the person might recollect a point close enough to the restaurant, and then use a map to 

compute the rest of the path. In the worst case, when the person has no clue about how to 

get here, he opens a map to calculate the entire path. 

This process of recollecting the path solely from memory is similar to using the CBR and 

is performed by the function GET-SUGGESTEDPATHcBR; recollecting from memory in 

conjunction with using the map corresponds to using the MBR and CBR together, and is per- 

formed by GET-SUGGESTEDPATHMixed; and using the map for the entire path is similar 

to using the model-based component solely and is performed by GET-SUGGESTED-PATH 

~ ~ ~ l ~ ~ ~ ~ .  The CBR and MBR components form the model at the next major level of ab- 

straction and are discussed in detail in Chapters 8 and 9 respectively. 

In the roadselection mode, we have a suggested path (suggestedpath) in mind and a 

decision is made which edge should be followed next. First it is checked whether the person 

has reached the destination node, if so the mode is changed to pathCompleted and rest 

of the steps of this mode are skipped. If not, then it is checked through the predicate 

signalFromADM whether there are any signals sent to the SEM by the ADM; if so the 

function HANDLEADM-SIGNALS (Spec 7.10) is called. 

1 ;  11-1s ~~I,I<~~~1~~l~sl~~s~1l>s - 

HANDLE-ADM-SIGNALS = 
onsignal s : NEWDEST 

INITIALIZE(currentNode, newDest(s)) 
onsignal s : WEIGHTS-UPDATED 

UPDATE-WEIGHTS(s) 

Spec 7.10: HANDLE-ADM-SIGNALS. 

This function checks for two kinds of signals from the ADM viz: NEWDEST and 

WEIGHTS-UPDATED. The NEW-DEST signal is triggered when the agent decides to 

abandon the current destination and picks a new destination; in this case the function INI- 

TIALIZE is called again to reset all the required information. The WEIGHTS-UPDTED 
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signal is triggered when the weights associated with the influence factors are changed; the 

abstract function UPDATE-WEIGHTS is then called to reset the new weights. Both of 

these signals require that the suggestedpath be revised since it is no longer valid; accord- 

ingly the SEM mode is thus changed back to pathPlanning. 

If neither the destination has changed nor is there any signal from ADM, the function 

GET-SUGGESTEDEDGE is called that sets the next edge for traversal as suggestedEdge, 

and changes the SEM mode to the next mode ZocalReplanning. GET-SUGGESTED-EDGE 

(Spec 7.11) basically decides whether the person follows an edge of the suggested path 

(Get-Suggested-Edgepath) or follows a completely random edge (Get-Suggested-EdgeElandm), 

by checking the predicate goRandom. This gives us the power to model non-deterministic 

and whimsical choices people sometimes make. At this level of abstraction however, we do 

not explicitly model how or when the predicate goRandom is (re)set. 

. . 

GETSUGGESTED-EDGE = 
if goRandom then 

Get-Suggested-Edgepath 
if # goRandom then 

Get-Suggested-EdgeRandOm 

Spec 7.11: GET-SUGGESTED-EDGE. 

The function Get-SuggestedEdgeRandm as specified in Spec 7.12 simply makes a non- 

deterministic choice in selecting an edge in the set of all edges adjacent to the person's 

current location (currentNode). This selected edge is then set as the next suggested edge 

suggestedEdge. This very simply and effectively models randomness in the navigation 

algorithm. The predicate randomEdgeSelected is set to indicate the same. 

The function Get-Suggested-Edgepath as specified in Spec 7.13 selects the first edge of the 

suggested path suggestedPath, removes this edge from the suggested path, and sets the 

next suggested edge suggetedEdge with this selected edge. 

In the 1ocalRePlanning mode, we have a suggested edge (suggestedEdge) to follow, how- 

ever we reconsider the decision whether to take this edge or not. This is because the person 

discovers real-time local conditions of that edge (traffic flow, road condition etc) on the fly. 
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I * 
i : C:et-S~rgq~stc d-l:dgc.rt ,,,, ,,, -- 
randomEdgeSelected : SEM + BOOLEAN 
Get-Suggested-EdgeRandom = 

choose e in outIncidentEdges(currentNode) 
suggestedEdge := e 
randomEdgeSelected := true 

I ,  
- - (;<'I s~lg<~'hl  ('(1 r(i~('{><,~,? - -- -- 

Get-Suggested-Edgepath - 
let edge = firstEdge(suggestedPath) in 

suggestedEdge := edge 
remove head(suqqestedPath) from suqqestedPath 

Spec 7.13: Get-SuggestedEdgepath. 

The GET-PATH in giving a suggested path does not consider current local information of 

a distant edge (but only of the edges adjacent to the initial source node) in suggesting the 

path since the person can have access to this information only when it is positioned on 

that edge, and not when it is 10 kms away from it. Thus, in this mode we examine the 

GEODYNAMIC-ATTRIBUTES of the suggested edge to decide on the acceptability of the 

edge, through the derived function acceptable. If the edge is found to be acceptable, the 

current edge of the agent currentEdge is set to suggested edge suggestedEdge, meaning 

the person has decided to traverse on this edge; and the SEM mode is set to the next mode 

running. If the edge however is not acceptable, the mode is set back to pathplanning 

which re-calculates the path, now taking into account the local information of the current 

edge; for e.g. if there is a heavy traffic jam on the suggested edge, the person most likely 

wants to take another alternative road that is not jammed. 

At the end of this mode, we do some bookkeeping activities using RECORD-SELECTED- 

EDGE (Spec 7.14). If the edge was found to be acceptable, the function changes the cur- 

rent node to undefined, indicating the person is located on an edge now and has started 

traversing it, and records the current time the agent has started traversing the edge; if the 

edge was found to be non acceptable, it records that this edge was attempted for traversal. 
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' I  REC'O HI)-? t1.I?C"l11: I)-l3)CI< 
attemptedEdge : SEM -+ EDGE 
traverseStartTzme : SEM -+ TIME 
RECORD-SELECTED-EDGE = 

if acceptable(suggestedEdge) then 
currentNode := undef 

' I  , , t IK; ag~111 ht  a r (  pa>t , i ry  t h  d q ( ~  
traverseStartTzme := now 

else 
attemptedEdge := suggestedEdge 

Spec 7.14: RECORDSELECTEDEDGE. 

In the running mode, the person stays within this mode until the time required to traverse 

the edge has elapsed; this is indicated by the derived function currentEdgeTraversed. 

Once the current edge has been traversed, we call an abstract function UPDATE-EDGE - 

PERCEPTION to update the agent specific interpretation of information for this edge, such 

as PERXDGE-ATTRIBUTES (distance, road type, traffic) and AC-EDGE-ATTRIBUTES 

(frequency, experience). The resulting updated values are typically an average of the past 

stored values and the current values. This function ensures that the person remembers 

road-level decisions it has made in the past. 

The function FINALIZEXDGE-TRAVERSAL (Spec 7.15) is called to set the current edge 

to undefined and current node to the tail of this traversed edge, meaning the person has 

now traversed the edge and its current location is that of a node; the tail node of the edge 

is also added to the taken path. 

I  . I~l~.ll,lzl-:~l~~l~~;I~~~~1~~l~I~~ls!~I~ - -- 
1 ,  

FINALIZE-EDGE-TRAVERSAL - 
let node = edgeTail(currentEdge) in 

currentNode := node 
currentEdge := undef 
add node to takenPath 

Spec 7.15: FINALIZE-EDGE-TRAVERSAL. 
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Finally the function SET-SEM-MODE is called to decide which should be the next mode 

of the SEM (Spec 7.16). If a random edge was not selected, the SEM mode is changed to 

roadSelection, since we already have a suggested path and now just need to determine the 

next edge to be taken. However, if a random edge was selected, the person probably is on 

a new path that is different from the suggested path. In this case, the mode is changed to 

pathPlanning, implying we need to recalculate the path to  the destination from the current 

node which was reached by following a random edge. 

, f --_ - , ,  - SE I ' 3 E  \I-SIOIIF 
SET-SEM-MODE = 

if 1randomEdgeSelected then 
mode := roadse lec t ion  

else 
randomEdgeSelected := false 
mode := path  P l a n n i n g  

Spec 7.16: SET-SEMMODE. 

Lastly, in the pathcompleted mode, all supplementary book keeping is performed with 

the function FINALIZE-TRIP (Spec 7.17) and the SEM mode is changed back to idle. 

There are two main tasks performed here. First is informing the ADM with the sig- 

nal INFORM-ARRIVAL, and second is informing the associated CBR with the function 

SendEeedback-To-CBR, that the path from the given source to the given destination has 

been traversed. The triggered signal to the ADM contains information such as the path taken 

and the current time. Informing the CBR through the function SendEeedback-To-CBR in- 

timates the CBR that new information is available for storing which is integrated into the 

existing memory (case-base) of the person; this ensures that the person remembers all the 

path-level decisions it makes, along with supplementary information such as experience, 

road conditions etc of taking this path as a whole. 

This level of refinement basically refines the abstract functions of GET-PATH not defined 

in Level 1 viz: GET-SUGGESTEDA'ATHcBR and GET-SUGGESTED-PATHMized. 
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, I _ I ~ l N . I I ~ l Z I ~ ~ ~ I ' R I 1 '  
FINALIZE-TRIP = 

trigger s : INFORMARRIVAL, decisionModule(parentAgent) 
ar-rivalTime(s) := now 
path(s) := talcenpath 

Send-Feed back-To-CBR(curProb1em. .oathCBR. talcenpath) 

Spec 7.17: FINALIZE-TRIP. 

As mentioned before, GET-SUGGESTEDPATHcBR interfaces with the CBR of the SEM 

and gets a complete or a partial path from the CBR from a given source to a given des- 

tination, if such a path exists. This is analogous to the person making its decisions based 

solely on its memory which stores past experiences. This function defined in Spec 7.18 first 

checks the predicate waitingFor Signal to determine whether the SEM is already waiting 

to hear back from CBR or it can proceed with sending a new problem. If the predicate is 

false, the problem is sent to the CBR using the function SENDJEW-PROBLEM-TO-CBR 

and the predicate is set to true, indicating that a solution is awaited. The SEM then loops 

over this function until a solution is returned by the CBR indicated by the signal PROB- 

LEM-SOLVED, in which case the solution embedded in this signal is returned to the SEM 

(which forms the pathCBR), and the predicate is set to false. 

:/ -- c ~ I ~ : ' I ~ ~ s ~ ~ c ~ ~ I < s ' ~ I ~ I ~ ~ l ' ~ Y I ~ l l ~ ~  [ 3 1 (  - 

GET-SUGGESTED-PATHcBR 
if ~waitingForSigna1 then 

SEND-NEW-PROBLEM-TO-CBR(currentNode, destNode, closeness) 
waitingForSigna1 := true 

if waitingForSigna1 then 
onsignal s : PROBLEM-SOLVED 

return solution(s) 
waitingForSigna1 := false 

where 
closeness = closeness(self) 

Spec 7.18: GET-SUGGESTED-PATHcBR. 

The parameter closeness of SENDJEWPROBLEM-TO-CBR is a derived function that 
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is used to indicate how 'incomplete' a partial path can be. If only an exact match from 

source to the destination is expected, closeness is set to 0. For partial paths, closeness is 

non-zero and indicates the maximum number of hops by which the destination of the partial 

path can be away from the final destination. Naturally, when a non-zero value of closeness 

is passed, the CBR first tries to retrieve a path that is complete, and then monotonically 

increases the number of hops by which the final destination can be away from the partial 

path destination. 

GET-SUGGESTED-PATHMixed as given in Spec 7.19 represents a form of hybrid reasoning. 

It takes the partial path returned by GET-SUGGESTED-PATHcm, which is passed to it 

as a parameter partialPathCBR. It then calls the model-based component of the SEM 

GET~SUGGESTEDI'ATHExplOTeT to compute the rest of the path, i.e, a path from the 

tail of the partialPathCBR to the final destination; this path is the partialPathExplorer. 

The concatenation of the above two paths gives the complete path, and forms the desired 

mixed path (pathMixed). Next, we invoke the function GET-SUGGESTED-PATHExplmeT 

to return a path based on explicit problem solving from scratch, as pathExplorer. A com- 

parison between the complete path returned by the explorer and the path formed by con- 

catenation is performed by the abstract function superior (pathMixed, pathExplorer) that 

checks to see whether pathMixed is within an acceptable interval of inferiority as compared 

to pathExplorer; if so pathMixed is returned as the suggested path, else pathExplorer is 

returned as the suggestedpath. This comparison is important since by concatenation of 

partial paths one might end up with a path that does reach the destination but is a very 

undesirable path. 

GET-SUGGESTED-PATHMixed(partialPathGBR : PATH) - 
let partialPathExplorer + GETSUGGESTED-PATHExplO,.eT(self, ta i l (par t ia lPathCBR) ,  

des tNode)  
in 

let 
pathMixed  + concat(part ialPathCBR, part ialPathExplorer)  
pathExplorer + PATH-EXPLORER(self, currentNode,  destNode) 

in 
return superior(pathMixed,pathExplorer) 

Spec 7.19: GET-SUGG.ESTED-PATHM~,,~. 
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Although in the mixed approach we currently restrict to finding a partial path from the 

source to the destination, one should be cognizant that the converse case, i.e, finding a 

partial path from the destination to the source, can also be easily incorporated into the 

framework. 

The abstract functions SEND-NEW-PROBLEM-TO-CBR and SEND-FEEDBACK-TO-CBR 

are the ones that actually send the problem and the feedback to the CBR, by first initializing 

them and then triggering the CBR with them. These form the next level of refinement of 

the SEM model - Level 3. The details of these functions however are not discussed here, 

since the working is pretty basic and self-explanatory, but can be found in Appendix A. 
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7.2.4 Our Navigation Approach in Comparison to Related Work 

The navigation problem is a crucial one that finds applications in various fields, most im- 

portantly Intelligent Transportation Systems, and GPS systems. While there is abundant 

literature highlighting the approaches taken in these fields, our approach is significantly 

different and offers numerous advantages in a number of ways. 

Our path planning algorithm effectively combines Case-Based Reasoning, Model-Based Rea- 

soning and Human Perception in a novel manner. We take a holistic view of the cognitive 

decisions a person makes while moving in an urban landscape; the path might not be 

a globally optimal one, but it is a good-enough one that mimics human reasoning and 

decision-making more closely. Specifically, the fortes of our algorithm include: (1) it takes 

reinforcement learning into account (positive and negative) (2) it combines global planning 

with real-time local re-planning (3) it takes subjective human perception into account (4) the 

shortest path algorithm takes a number of factors into account (not just distance or travel 

time) whose influence in the overall preference can be dynamically changed (5) it effectively 

makes a distinction between people recollecting paths from the memory vs. re-computing 

paths using maps (case-based reasoning vs. model-based reasoning) (6) it can make both 

road level and path level decisions, by taking cases of roads (in MBR) and cases of paths (in 

CBR) into account respec. (7) it can model random and non-deterministic decisions that 

people may sometimes make. 

We have presented the contention that people do not move in an urban environment based 

on how it physically is, but how they 'perceive' it to be. This perception is incorporated 

by dividing the environment into Geographic Environment and Subjective Environment, 

as explained in Chapter 6; both these categories then play an integrated role in shaping 

decisions. To the best of our knowledge, there has been no work presented so far that takes 

cognition of geography into account while path planning. 

Our algorithm relies on the CBR to immediately return solutions for a shortest path prob- 

lem from a given source to destination, if any. This is similar to a person trying to recall 

solutions from memory rather than re-computing them. 

If this proves futile, we rely on the CBR to return a path that is close-enough to the des- 

tination, and then use the MBR to compute the remaining path. This is similar to people 

relying on memory to recall a partial path, and then computing the remaining from a map. 

If this proves fruitless, the problem is then relegated to the MBR, which uses a shortest path 
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algorithm, based not only on distance, but a number of other factors (road type, traffic, 

road conditions, familiarity, experience, angle, # of intervening roads etc) that determine 

the preference or cost of a path. To the best of our knowledge, no other approach has taken 

into account such a vast number of factors in path planning. Most algorithms typically seek 

to minimize only the travel time, or the distance of travel. 

Bing Liu et a1 [69] propose an algorithm based on case-based reasoning, knowledge-based 

approach and Dijkstra algorithm for route finding. However, they restrict only to distance 

or travel time for cost calculation. Their interaction between the CBR and the KBR is not 

well-defined and produces inefficient results, when the reasoner returns partial paths. Our 

algorithm uses a number of cost factors, the influence of which can be changed dynamically. 

Also the interaction between our CBR and MBR is well-defined that produces efficient re- 

sults. 

Anwar and Yoshida [2] integrate cases, knowledge and object-oriented road network for 

route finding. However, their approach is restricted to only a very specific kind of road 

network composed of must be passed links, and not applicable to general networks. Their 

approach does not update the cases dynamically and hence the reasoner cannot learn. Our 

approach integrates new knowledge into the CBR case-base, and the MBR cases every time 

a road or a path is taken; this ensures both the reasoners learn and become competent over 

time. 

The authors of [68] present another approach that combines cases, knowledge and a Dijkstra 

like algorithm. However, they restrict learning and experience to road levels only and do not 

consider path level learning and experiences. They ignore the merits of a case-based rea- 

soner in returning a path when an exact match can be found. Further their algorithm first 

prunes off the search space based on major and minor roads and then applies the Dijkstra's 

algorithm; this forces a person to takes major roads that might be longer when there can 

be minor road short-cuts. Our approach on the other hand considers both road and path 

level preferences, by using road cases in the the Dijkstra algorithm and using path cases in 

the case-based reasoner, respectively. We do not partition the graph based on major and 

minor roads; instead we dynamically change the weight associated with factor 'road type' 

to increase or decrease the preference of major/minor roads. 
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7.3 Target Selection Module (TSM) 

The Target Selection Module (TSM), implemented as an ASM Agent, is responsible for 

monitoring potential targets on the routes taken by the agent, and for selecting attractive 

targets based on selection criteria. This leads to the creation of the crime occurrence space 

of the agent. We essentially base the logic represented by the TSM on the Basic Model of 

Target Selection as given by the Brantinghams [lo], [9]. The model views the target selec- 

tion process as an information processing model. It states given that there is a motivated 

offender, the search process is a sequence of spatial decisions in which the objective environ- 

ment is perceived and evaluated. The criminal carries a template of target selection in its 

mind which is learnt by experience or by social interactions. In contemplating a new target 

selection decision, it compares the characteristics of this potential target (spatial, temporal, 

legal etc.) against its own template, decides on the suitability of the target and either rejects 

or accepts it for victimization. The template is established with experience and time and 

become relatively fixed and self-enforcing. Due to the multiplicity of targets and victims, 

many potential crime selection templates could be constructed for a given criminal. 

For the process of target selection, we use a hybrid reasoning mechanism composed of 

case-based reasoning (CBR) and model-based reasoning (MBR); the two components are 

represented as ASM agent and submachine respectively. At this level of abstraction however, 

none of these two components are refined. The case-based reasoner has a case-base, which is 

a kind of memory, that stores previous target templating and target selection decisions an 

agents has made; in selecting a new target, an agent then merely matches the characteristics 

of the potential target against victimized targets in its memory and decides whether it is 

a 'good7 or a 'bad' target. The MBR component on the other hand uses an algorithmic 

approach to explicitly determine the suitability of the targets. 

7.3.1 Level 0 

We first introduce some domains and data structures with the TSM. The domain CRIME- 

TYPE identifies different types of crime that can be modeled, such as car theft, burglary, 

shop lift etc.; it can be extended to include other crimes. The domain LOCATION can 
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either be a NODE or an EDGE. The domain TARGET represents a criminal opportu- 

nity. The target could be PASSIVE-OBJECT such as a stationery car, or it could be 

an ACTIVE-OBJECT such as a person. There are additional functions associated with 

a TARGET such as its location, and the type of criminal opportunity it represents. We 

then associate derived functions potentialTargets with NODES and EDGES, that gives the 

targets located on that node or edge. 

; :  
l j  
: i  

Dom;ljns for tilt. , T"; L._ 11 
domain CRIME-TYPE 
carTheft :+ CRIME-TYPE 
shopli f t  :+ CRIME-TYPE 
robbery :+ CRIME-TYPE 

I l '1'qc.t . . . . 
domain LOCATION = NODE U EDGE 
domain PASSIVE-OBJECT 
domain ACTIVE-OBJECT 
domain TARGET = PASSIVE-OBJECT U ACTIVE-OBJECT 

crimeType : TARGET + CRIME-TYPE 
location : TARGET + LOCATION 

Spec 7.20: Domains o f  TSM. 

Next, to refine the abstract rule TSM, we enumerate the functions that it uses. This is 

formulated in Spec 7.21 in a self-explanatory manner. 

Finally, the TSM Program gives the working of the TSM, and is shown in spec 7.22. The 

TSM is initialized to be in the observing mode; this mode does not perform anything unless 

a signal CRIMINALNOTIVATED is received from the ADM. This signal indicates that 

the person is criminally motivated and will indulge in criminal activities. Upon receiving 

this signal, all targets that are adjacent or visible to the criminal from its current location 

are recorded as potentialTargets by the abstract function GET-POTENTIAL-TARGETS. 

The mode is now changed to targetTemplat ing.  
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F~~uc t ions  01 'l'Sl1 - 

MODE = {observing, targetTemplating, targetSelection) 
mode : TSM + MODE 1,' 'l'Sl1 11as ~1 1t10d~ 

/ /  Kepr ill Profile 
criminality : TSM x CRIME-TYPE + PROBABILITY// Specially ol criruinal fbr dilf c~iines 

/ /  K ~ p t  in iVorIiing ll(!ii~ory 
potentialTargets : TSM + TARGET - Set ;/ A11 o l ~ s c i . ~ - ~ l  t;irgcts. 
goodTargets : TSM + TARGET - Set i /  'I'argct;; 'l:clr~plarccl' as 'go~:)d' 
selectedTargets : TSM + TARGET - Set / i '  'I:i,rgcts cvc~r~t.~[all!; victirtlizerl 

// Auxiliary 
cunentLocation : TSM + LOCATION / /  C'11rrcrit ilodc or edge o f  1 . 1 ~  person 

Spec 7.21: Functions of TSM. 

I :  - . _ -_ rs11 l'rogl<iIll 
TSMProgram = 

case mode of 
observzng + 

onsignal s : CRIMINALMOTIVATED 
if currentLocation # undef then 

, , ( k t  ,111 l l ~ c  largcts located .nror~iid. on' cSullcwl I,or,ttiorl 
GET-POTENTIAL-TARGETS(currentL0cation) I 1 Seth potcwt ~ d ' l ~ i ~ g c t s .  
mode := targetTemplating 

target Selectzon + 

,', \'ictinli~c good l argcxls. rcinforcc t<li get ternpL~tc 
SELECT-TARGETS(g0odTargets) / ,  Sot sclcc tcd'Ihrgct s 

mode := observing 

Spec 7.22: T S M  Program. 
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In the targetTemplating mode, the person assesses the environmental cues about the poten- 

tial target such as its physical, spatial, temporal, cultural, legal, psychological characteristics 

against its own target template, and based on this comparison categorizes the potential tar- 

gets into different categories such as 'good' and 'bad'. This is done by the abstract rule 

TARGET-TEMPLATING. The cues that are used to assess the suitability of the targets 

form the target template. As experiential knowledge grows, the person learns which indi- 

vidual cues are associated with 'good' targets; for e.g a car parked at a position which is 

within the criminal's awareness space forms a good spatial cue. These cues, cue clusters, 

and cue sequences (spatial, temporal, social, and so on) are the template against which 

targets are compared and accepted or rejected for victimization. This mode thus compares 

the properties of the potential target against the person's target template and categorizes 

the targets as good or bad; the function goodTargets is set and the mode is changed to 

targetselection. 

This entire process of target templating as performed by TARGET-TEMPLATING can be 

based on past learnt experience (CBR) for repeat offenders, or performed explicitly from 

scratch (MBR) for first time offenders, or a combination of the two. The CBR typically 

stores all the previous target templating decisions the person has made, i.e for the given 

target which template it used and what was the assessment (good, bad). For each target 

template and its assessment, the CBR could even store the consequence of target selection 

(successful, failed). 

In the targetselection mode, it is emulated that the goodTargets as determined in the previ- 

ous step are potentially victimized. This is done by the abstract rule TARGET-SELECTION 

This rule could even record the outcome of target selection, and accordingly reinforce the 

target template. Thus once the template is established, it becomes relatively fixed and in- 

fluences future searching behavior, thereby becoming self-reinforcing. Finally, the mode is 

changed back to observing. 

It should be noted that the entire SEM program is performed for a given location of the 

agent, i.e the location of the agent should not change until target selection has been per- 

formed. This thus requires synchronizing the working of the TSM with the SEM. We assume 

there is an implicit clock that orchestrates this synchronization such that while the TSM 

performs its steps, the SEM does not change the current location of the person. 
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In the next level of refinement, i.e Level 1, the abstract rules GET-POTENTIAL-TARGETS, 

TARGET-TEMPLATING and SELECT-TARGETS are stated. We have not yet broached 

the details of this level. For the purpose of this thesis, we select and victimize targets non- 

deterministically provided they are within the criminal's awareness space. It is anticipated 

future work will involve detailing these abstract functions. This would entail understanding 

the intricacies of target templating and selection more thoroughly, formulating the various 

factors and variables that come into play and how they correlate with each other; this step 

needs to be carried out in consultation with the criminologists. 
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7.4 Agent Decision Module (ADM) 

The Agent Decision Module (ADM) monitors the working of the TSM and SEM and provides 

relevant inputs to the two modules. It decides on 'what to do7 and then relegates the decision 

to the TSM or the ADM on 'how to do it7. Ebr e.g., it decides that the agent should go 

from home to work, and then gives this 'goal' to the SEM. The decisions are based on 

agent's motivations, the current state of the agent, and the information in the memory. 

Motivations are long-term goals (earn livelihood, greed), that in turn give rise to short term 

goals (go from home-to-work, car theft), which are then passed to one of the two modules 

for realization. 

7.4.1 Level 0 

We use abstract functions to interface with motivations; currently, we associate two broad 

categories of motivations with abstract functions viz: the motivation routine activity with 

the abstract function ROUTINEACTIVITY and the motivation criminal propensity with 

the abstract function CRIMINAL-PROPENSITY. Routine Activity basically decides the 

level of motivation a person has to carry on daily activity routines; this thus indirectly 

controls the working of the SEM. Criminal Propensity gives the current level of motivation 

of the person for criminally disposed activities which decides if the person will indulge in 

committing crimes; this thus indirectly controls the working of the TSM. Both of these 

motivations can be based on a number of other finer grains of motivations and demographic 

factors of the person, at this stage however we abstract away from such complicated func- 

tionality. 

Currently in our model, at the given level of abstraction, motivations are typically always 

persistent. This implies that for non-criminals the motivation routine activity is always 

above a threshold level and the motivation criminal propensity is always below the thresh- 

old level, such that person never commits a crime; for criminals, both the motivations rou- 

tine activity and criminal propensity are true, such that the criminal is always criminally 

disposed. 

We can then associate two kinds of rules with the ADM Program, one that monitors the 

working of the SEM based on the motivation of routine activity, and the other that controls 
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the working of the TSM based on the motivation of criminal propensity. The ADM at the 

first level of abstraction is shown in Spec 7.23. 

i ,/ 
f , l lo t  nxl ion 
routinedctivity :-+ MOTIVATION 
criminalPropensity :-+ MOTIVATION 

/ /  l<cy)t in I'rofilc 
motivations : ADM -+ MOTIVATION - Set / /  l'c-lrso~l h ; ~  mot,ivdions 

ADMProgram = 
if ROUTINE-ACTIVITY(routineActivity, self) 2 threshold(routineActivity) 
then 

ADM-SEM-MONITOR 
if CRIMINAL-PROPENSITY(criminalyPropensity, self) > threshold(criminalyPropensity) 
then 

ADM-TSM-MONITOR 

Spec 7.23: ADM Program. 

7.4.2 Level 1 

We first refine the abstract rule ADM-SEMMONITOR. Once the person has the routine 

activity motivation above a certain threshold, this function is called. Its main responsibility 

is to provide the SEM the next destination node to travel to; which forms the 'goal' that is 

communicated to the SEM. This thus requires that each person should be associated with 

a schedule. We refine the function ADM-SEM-MONITOR by first associating a schedule 

with it (Spec 7.24). 

Each person has two kinds of schedules, specialSchedule and regularSchedule. The regular 

schedule is an everyday schedule that is continually repeated and is differentiated by week 

day and weekday; what we do on weekends is different from what we do on weekdays. The 

special schedule can be used to override the regular schedule, and is specified for a date range; 

e.g. people going on vacations. For any given day, a person has a daily schedule as given 

by dailySchedule; this is nothing but a set of probabilistic destination nodes (toNodeSet) 

associated with the time of the day (t ime0 f Day). The toNodeSet assigns a probability for 
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1 1  
i 1 12ERS()SLIL SCIIrI)[.yI,E 
/ / 1~11.01-3hBLEDFS'I: 
' i  

toNode : PROBABLEDEST --, NODE 
prob : PROBABLE-DEST --, PROBABILITY 
/ ; - A [)p()'I NrI'A;[IT;I.S']: ; ,  
timeOfDay : APPOINTMENT --, TIMEOFDAY 
toNodeSet : APPOINTMENT -+ PROBABLEDEST - Set  '' .....S(:III~~~I)I:I.E 
i ;  

fromDate : SCHEDULE -+ DATE 
toDate : SCHEDULE --+ DATE 
dayType : SCHEDULE + DAYTYPE // \\.cfiliil;-~~~ wcclicr~ti 
dailyschedule : SCHEDULE -+ APPOINTMENT - Set  
. . 
; i 1'1.;RSOSh12-SC;fIEllI;LE.- . . 
regularSchedule : PERSONALSCHEDULE -+ SCHEDULE - Set  // fri>~rl I)a~.o=tol.)~atc:--nllileE 
specialSchedule : PERSONALSCHEDULE -+ SCHEDULE - Set  / I  li:o~rllh(c no[. ~.~rldeF 

Spec 7.24: Personal Schedule used by ADM-SEMMONITOR. 

each destination node; for e.g. at 2 pm a person may either go for lunch with a 80% chance, 

or go back home with a 20% chance. 

The rule ADM-SEM-MONITOR is responsible for continually monitoring time, and check- 

ing the schedule of the person to see if there is a new destination available corresponding 

to the new time change. It may then decides whether to inform the SEM with this new 

destination. In order to do so, we associate some basic functions with this rule as given in 

Spec 7.25; these are self-explanatory. 

The working of the rule ADM-SEM-MONITOR at the first level of abstraction, level 0, 

is shown in Spec 7.26. It is specified as a submachine that is a sequence of four steps; 

although for the sake of lucidity the steps are associated with controlled modes, they are 

all still executed in sequence one after the other. The ASM-SEM-MONITOR submachine 

is initialized to be in monitor mode. 

In the idle mode, the time as derived from the abstract domain TIME, is continually mon- 

itored using the abstract function MONITOR-TIME to  see if there is a change in current 

time from the last recorded time, and if so the mode is changed to calculate. The gran- 

ularity of change in time is person dependant and could be a change by the hour, by the 

minute etc. This thus decides whether the person makes decision by the minute or hour. 
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Spec 7.25: ADM Functions used by ADM-SEALMONITOR. 

Also monitored in this mode is a signal from the SEM which indicates whether the person 

has reached its current destination, this is recorded in the predicate arrived. 

In calculate mode, the function CALCULATE.NEXT-DEST uses the schedule of the per- 

son to decide the next destination based on probabilistic choices. The function nex tDes t  is 

set with this chosen destination, and the mode is changed to decide. 

In decide mode, it is checked whether a destination was available from the schedule. If so, 

the function DECIDE-TOINFORM determines whether the agent should be informed with 

this new destination by setting the predicate i n f o r m ;  the mode is now changed to inform. 

If no destination was set, the mode is changed back to monitor. Typically in making the 

decision on whether to inform the agent with the new destination, if the person has already 

reached its destination, i n f o r m  is set to true; else a non-deterministic choice is made. 

In the in f o r m  mode, the predicate in f o r m  is checked to determine if the person should 

indeed be informed of the new destination, if so the signal NEW-DEST is triggered to the 

SEM, and the mode is changed back to monitor. 

Next, we refine the abstract rule ADM-TSMMONITOR. Once the person has the criminal 

propensity motivation above a certain threshold, the rule ADM-TSMNONITOR is called. 

Its main responsibility is to provide certain 'goals' to the TSM. At this level of abstraction, 

ADM-TSM-MONITOR provides minimal functionality; it merely triggers the TSM with 

the signal CRIMINALMOTIVATED indicating the fact that the TSM should proceed with 

the process of target selection. Upon receiving this information as a 'goal', the TSM then 
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. . ,> ;,. aI,~:l_sl.j;>[_~:[o~~'roR, ~ 

ADM-SEM-MONITOR = 
case mode of 

monitor --+ 

j /  Rc~corti I he fact agcmt has arrived a t  3 clcst. 
onsignal s : INFORMARRIVAL 

arrived(se1f) := true 
MONITOR-TIME(se1f) 
/ j Keep ~rionit.c.rirlg [ i r w  1.0 srw iC i i  c:l~iuiges(e.~. ~norning 1.0 noon. 3pn1 ( 0  :lp111) 
/ /  I:' t:lla.ilgcs: st:( inocit: to c.alc~ilalr. 

seq 
calculate -+ 

I /  :l'robabiSist.ic:~~Il;y c-l:~oose ( l ~ c  nesr clestirration ill i . 1 1 ~  sclleclule. 
, . / /  So(: ncxi 1)ost. 

CALCULATE-NEXT-DEST(self) 
mode := decide 

seq 
decide -+ 

if nextDest(self) then 
/'/ Ilecido n.11otht.r t o  i11hn11 thr. agent. or not - Stt  1nli:riri prctdicate 

Usually if iwrivcd = t r w  ir~f'c:rrrl, else dc?c.itlc. 
DECIDE-TO-INFORM(se1f) 
mode := i n f o r m  

else 
I /  Yo ;icticxlulo ~ v i ~ i l i ~ b l e .  C h  t-rijvk lo Sloniboling time. 
mode := monitor 

seq 
i n f o r m  -+ 

if i n  f orm(se1f) then 
/ ,  ~r~iggers the SEA3 with ilit: Scw 1)c:si.iriat:ion. 
trigger s : NEWDEST, spaceModule(parentAgent) 

newDest(s)  := nextDest(se1f) 
mode := monitor 

Spec 7.26: ADM-SEM-MONITOR. 
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proceeds with executing its functionality. This can be seen in Spec 7.27. 

Spec 7.27: ADM-TSM-MONITOR. 

In the next level of refinement, Level 2, the abstract functions MONITOR-TIME, CAL- 

CULATEBEXT-DEST, DECIDE-TOINFORM are detailed. The abstract domain TIME 

and the relevant functions defined on it are also explicitly specified. We do not show these 

here, but refer the reader to AppendixA. 
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Chapter 8 

Reasoning and Learning 

We use a mechanism of hybrid reasoning - based on case-based reasoning and model- 

based reasoning - to emulate the problem solving and decision making process of the 

agents. This chapter is devoted to analyzing the case-based reasoning component of the 

hybrid framework. We begin with Section 8.1 which is intended to provide the reader an 

introductory knowledge of Case-Based Reasoning and we conclude with Section 8.2 which 

explains how we develop, formalize, and integrate a case-based reasoner into our framework, 

to solve the problem of path planning. 

To the best knowledge of the author, there has been no prior attempt in establishing a 

formal specification and executable semantics of the case-based reasoning process. Thus, 

this sub-part of our work, by itself, forms an original contribution. 

8.1 Case-Based Reasoning (CBR) 

"Case-Based Reasoning is  an approach to reasoning whereby instead of solving the problem 

from scratch using rules, it is solved by remembering previous similar situations called cases, 

and by reusing this knowledge from past experiences7' [I]. Thus, in CBR reasoning is based 

on remembering. 

CBR is based on two tenets about the world - the first tenet is that the world is regular: 

similar problems have similar situations; the second tenet is that the types of problems an 

agent encounters tend to recur [67]. Thus, a CBR can be used to solve routine problems, or 



CHAPTER 8. REASONING AND LEARNING 

novel problems by adapting the solution of similar problems. 

The foundational motivations of CBR stem primarily from two fields, (1) from cognitive 

Science - to model human reasoning and learning; (2) from A1 - to develop pragmatic 

technology [67]. The approach of Case-Based Reasoning relates to other areas such as 

memory-based reasoning, analogical reasoning, exemplar-based reasoning [67], [I]. Case- 

Based Reasoning can also be seen as a formal computational model of problem solving 

based on memory organization and reminding [72]. 

Learning plays a central role in Case Based Reasoning. Learning is an emergent behavior 

that arises from the case-based reasoner's normal functioning [65]. 

A CBR learns from past experiences, and these experiences then supplement further rea- 

soning; forming an intertwined cycle. Once a CBR solves a problem, the solution is retained 

as a case, and this case becomes available as a potential solution to similar problems in the 

future. Thus, complementary to the principle of reasoning by remembering is the principle 

that reasoning is remembered [67]. CBR is an approach to incremental, sustained learning 

[I]. Learning in CBR systems is by both success-driven and failure-driven [67]. 

Case-based reasoners also become more competent and ef ic ient  over time [66]. They be- 

come more efficient by remembering old solutions and adapting them, rather than deriving 

solutions from scratch using rules. They become more competent by deriving better answers 

with experience, than they would without experience. 

Case-Based Reasoners can be of two types - problem solving reasoners or interpretive rea- 

soners [66]. Interpretive Reasoners use prior cases for classifying or characterizing new prob- 

lems. Problem Solvers use case-based reasoning to suggest solutions to the given problem 

based on past experiences. Problem-Solving CBR can be further divided into derivational 

and transfornational CBR. In transformational CBR, past solutions are used directly; in 

derivational CBR, the problem-solving process by which solutions are derived are used. 

For practical applications of CBR, it may be implemented as Autonomous Systems - 

that solve problems solely by themselves, Human-Machine Systems - that work along 

with people to solve problems, Embedded/Hybrid Systems - that in addition to CBR, use 

multiple knowledge sources, reasoning methods [66]. 

Case-Based Reasoning has a wide array of applications in fields of medicine, law, automotive, 

robotics etcetera [65], [67], [82]. 
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8.1.1 Why Use CBR? 

Fortes of CBR as compared to other reasoning mechanisms are many-fold: case-based sys- 

tems allow for intra-domain reasoning; they save time by re-using old solutions, rather than 

deriving solutions from scratch; case-based reasoning provides creative thinking by solving 

problems by using similarity of past experiences; they emulate the natural way that human 

beings solve problems; case-based reasoners integrate learning and reasoning hand-in-hand; 

case-based reasoners facilitate both positive and negative reinforcement learning [65], [67]. 

Pertinent to our context, the use of case-based reasoning is justified and supported by three 

tenets as highlighted below: 

The primary motivation for using a CBR based approach is that it captures the very essence 

of human reasoning, in the most intuitive and natural way. The cognitive process by which 

agents perform reasoning and learning is based very closely to the philosophical foundations 

of case-based reasoning. We learn from past experiences and use these very experiences in 

solving new problems rather than re-solving the problem from scratch. Virtually whenever 

there is a case available to reason from, people will match it, retrieve it, adapt it, evaluate 

it, use it, and finally store it as a solution - the process is analogous to that of a CBR. 

The same thought is re-instated in [82] - "People really don't think all that much, they 

remember. First, we remember the the things we do, including the thinking we do. Second, 

most of the time we don't need to  think , we just have to  remember what we thought before." 

The authors explain that human beings are not systems of rules, but libraries of experiences, 

and people re-use these past experiences for problem solving, rather than re-inventing the 

solution by original thinking - "Real thinking has nothing to  do with logic at all. Real 

thinking means retrieval of the right information at the right time." 

Secondly, with case-based reasoning, we effectively incorporate Learning in our model. In 

CBR, both reasoning and learning go hand in hand. Complementary with the principle of 

reasoning by remembering is the principle that reasoning is remembered [67]. We mimic 

Behavioral Reinforcement Learning by using the candidacy of past cases as potential solu- 

tions to current problems. If an agent has taken a certain route X from A to B before, this 

route gets recorded as a case. Next time, the agent wishes to travel from A to B again, this 

stored route X gets retrieved as a potential solution. Hence, once a person does something, 

the more he/she does it again - old habits die hard! 
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By storing the outcome of the proposed solution in the case, both positive and negative 

reinforcement learning can be incorporated. If the outcome of the proposed solution/case 

had a negative reinforcement - the person took a certain path X from A to B, but got 

robbed along this path - this gets recorded as a negative outcome for the case X. Next 

time the person wishes to move from A to B, path X will be retrieved as a negative case, 

and will prevent the person from taking this path. This is similar to 'learning the moral of 

the story' [82]. 

Thirdly, using CBR helps in modeling idiosyncrasies of people. Some people exhibit certain 

'exceptional' behavior, which clearly cannot be captured by using general rules, since rules 

portray 'generalized behavior' of people. These exceptions can then be stored as 'cases' in 

the case-base, after which behavior can be emdated. 

8.1.2 Integrations of Case-Based Reasoning 

It is generally believed that complex problems can be easier solved with Hybrid Systems. The 

goal of hybrid systems is to tap information from different knowledge representations, and 

augment the positive aspects of the integrated formalisms while simultaneously minimizing 

their negative aspects. A hybrid model of CBR provides a flexible and comprehensive model, 

by integrating multiple levels of knowledge - specific situations from past experience and 

generalized domain knowledge [72]. 

CBR can be integrated with other reasoning modalities and computing techniques, including 

rule-based reasoning (RBR), constraint-satisfaction problem (CSP), model-based reasoning 

(MBR), genetic algorithms and information retrieval [73]. Integrated approaches increase ac- 

curacy, efficiency, problem-solving strength, combine the advantages of different approaches, 

and help attain a more complete and cognitive problem-solving model. 

The hybrid architecture can be trichotomized as follows: (1) Master-Slave: other reasoning 

methods support the CBR component; (2) Slave-Master: CBR component supports other 

reasoning methods; (3) Collaborating: CBR and other reasoning components are balanced 

in their roles [73]. 

One such hybrid system is an integration of a Rule-Based and a Case-Based System. 

In [55], authors use a case-based system to improve the accuracy and efficiency of a Rule- 

Based system, that the system could not have achieved with its rules alone. First, the RBR 
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is used to find an approximation to the problem, but if the problem is similar to an exception 

stored as a case, then the aspect is modeled after the case rather than the rules. To facilitate 

a decision process, an agent may use a rule dominant architecture - where the rule-based 

component plays the primary role and is supplemented by the case-based component; or a 

case dominant architecture - where the case-based component prevails and the rule-based 

component plays a supportive role; or a balanced architecture -where the roles of both the 

components are equal [79]. Another categorization of such a system can be on the basis of 

integration being eficiency-improving or accuracy-improving [55]. In efficiency-improving 

integrations, cases and rules are derived from each other, and the efficiency of the integrated 

system exceeds that of using cases or rules alone. Those that are dependent can be further 

classified according to which knowledge source was derived from which. Usually most such 

integrations have cases derived from rules; cases are records of how rules were applied to 

particular situation encountered previously. In accuracy-improving systems, cases and rules 

are independent, which once integrated yield higher accuracy. The primary motivation 

behind such systems is to increase accuracy, by tapping into as many knowledge sources as 

possible, and incorporating their strengths. 

Successful examples can be found on the integration of CBR with other techniques in a wide 

array of fields [79], [55], [69], [73]. 

Our approach uses a hybrid framework composed of a model-based and a case-based com- 

ponent. The principles discussed above for a general CBR hybrid and a specific RBR-CBR 

hybrid can both be applied to our approach. The proposed approach is explored further in 

the following Section. 

8.2 Our Approach: Integrating CBR into the Framework 

This section explains how we incorporate case-based reasoning into our existing framework. 

Section 8.2.1 discusses the need for integration of case-based reasoner with a model-based 

reasoner. In order to do so, we first provide a high-level ASM specification of a generalized 

abstract reasoner in Section 8.2.2. This abstract reasoner can then be instantiated to a 

concrete reasoner for a given problem, as per the need of the application; in Section 8.2.3, 

we instantiate the abstract reasoner for solving the problem of path planning. 
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8.2.1 A CBR-MBR Hybrid System 

We use a hybrid system which is an integration of a Case-Based Reasoner (CBR) and a 

Model-Based Reasoner (MBR), to emulate the decision making process of the person agent. 

Typically, each kind of problem - path finding, selecting targets - will have its own CBR 

and MBR components. For the problem of path planning, the model-based component is 

called the path explorer and is discussed in Chapter 9, and the case-based component is the 

case-based reasoner being discussed in this chapter. 

The role of CBR is analogous to humans solving problems by remembering and recollect- 

ing past experiences stored in their memory. The role of MBR is analogous to  humans 

explicitly solving problems right from scratch, this thus typically represents an algorithmic 

computation. 

The relation between the two components is hierarchical in nature. Typically, the case- 

based reasoner is called first to provide a solution; if a satisfactory solution is not returned, 

the case-based component in conjunction with the model-based component is invoked; and 

as the last resort the model-based component solely is invoked. However, the hierarchy is 

not fixed for all person agents, and depends on their personal preferences (stored in profile). 

The main idea is that human reasoning is analogous to a process where we first try to solve 

new problems by recollecting past experiences; if this proves futile we try to reuse and adapt 

similar problem in hope of getting a solution; and only if this too proves futile, do we try to 

explicitly solve the problem from scratch using some generalized knowledge. Thus, model- 

based component and case-based component have complementary strengths - model-based 

systems use generalized knowledge to assist in solving a new problem; case-based systems 

on the other hand, store past experience derived from this knowledge as specific episodes for 

individual problem solving. The cases can then be seen as specific applications of general 

knowledge. 

For example, a person wishing to travel from home to work already 'knows' the path he 

is going to take since he has been taking this path for many years; he does not explicitly 

'solve' the problem of which path to take, he merely recollects from memory the old path 

taken, and treads on it. On the other hand, the same person traveling from home to a new 

restaurant opening, first tries to see if he knows the path to this restaurant, or a similar 

old path that when modified a bit will take him to this restaurant; if not, the person might 
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recollect a point close enough to the restaurant, and then use a m a p  to compute the rest of 

the path. In the worst case, when the person has no clue about how to get here, he opens 

a m a p  to calculate the entire path. 

This process of recollecting the path from memory is similar to using the CBR of the hybrid 

system, recollecting from memory in conjunction with using the map corresponds to using 

the MBR and CBR together, and using the map for the entire path is similar to using the 

model-based component solely. 

8.2.2 High-Level Specif icat ion of an .Abstract CBR 

In this section we devise a high-level ASM specification of an abstract case-based rea- 

soner. The reasoner is abstract in the sense that it is a generalized reasoner independent of 

any application or domain-specific requirements. The reasoner uses powerful abstractions 

for processes that otherwise require sophisticated algorithms and are application-specific. 

Step-by-step refinements of this generic reasoner can be used to build a concrete, specialized 

reasoner for a given problem and domain. 

To the best knowledge of the author, there has been no prior attempt in establishing a 

formal semantic specification of a case-based reasoner. Thus, this sub-part of our work in 

itself forms an original research contribution. 

We describe the case-based reasoning process in a step-by-step manner, adapted from pop- 

ular literature [66] [I] [65], and alongside show the respective formal ASM specification. 

Top-Level Architecture 

First and foremost, a case-based reasoner has a case base, which is the repository or the 

library of all past experiences/cases. Given that there is a new pmblem to solve, the basic 

cycle of a case based reasoner is a four-step sequential process. The Retrieve phase retrieves 

a case from the case base that best matches the problem; this case gives the ballpark solution. 

The Reuse phase simply reuses or adapts the retrieved solution (ballpark solution) to better 

suit the problem description; this is the final solution that is returned to the user. The 

Evaluate phase takes external feedback from the user (system) of applying this proposed 

solution to the problem, assesses the outcome of selecting this case as a potential solution, 

determines if the solution was faulty, and repairs it if required; this forms the repaired 
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solution. Lastly, the Retain phase extracts new information embedded in the external 

feedback, and integrates this extracted information into the case base. Each of the above 

four top-level phases can be broken down into a number of sub-tasks. Figure 8.1 illustrates 

the CBR process. 

PROBLEM 

FEEDBACK 

(identify features, match, rank, 1 -  
Ballpark Solution 

I 

+ 
Final Solution 

(analyze feedback, 

Repaired Solution 
I p""^" 

(extract, index, insert) 

( Case Content, 
Case Index, 
Case Outcome, 
Storing) L 

Extracted 
Info 
_____I 

Figure 8.1: Case-Based Reasoning Process. 

As is clear from the above description, the phases Retrieve and Reuse form the pre-solution 

phase that computes a solution for the given problem; the phases Evaluate and Retain form 

the post-solution phase that performs supplementary tasks once the solution has been pro- 

posed and its feedback received. Therefore, for modularizing the above functional units, 

we decompose the working of the case-based reasoner into two modules. The first is the 

case-based reasoner itself that handles the functionality of retrieve and reuse. The second 

module is the Post Solution Module, that handles the functionality of evaluate and retain. 

The Post Solution Module is a component of the CBR, and is invoked by the CBR once a 

solution has been proposed. The main idea behind this break-down is the fact that once a 
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solution has been proposed, the Post Solution Module can work independent of the CBR; 

in particular it may take months or years for some feedbacks to be made available ( e g  

treating a cancer patient) and under these circumstances the working of the CBR should 

not stop. 

Based on the above description, we come up with basic data structures used in the formula- 

tion of CBR (Spec 8.1). The CBR and Post Solution Module are represented by ASM agents 

that have an associated program, and the Post Solution Module operates asynchronously 

w.r.t the CBR. 

. : 
; / 
:! lhsic C: I311 I)c.finit.ions 
!/ 1')oluiiiu~ 
domain CBR 
domain POSTSOLMODULE 
domain CASE 
domain PROBLEM 
domain SOLUTION 
AGENT = POSTSOL-MODULE U CBR / I  ASl~l Agent 

, /  Mttii~. U 3 R  FII~~.CI.IOM 
caseBase : CBR -+ CASE - Set 
postSolModule : CBR -+ POST-SOL-MODULE 
ballParkSolution : CBR -+ SOLUTION 
finalSolution : CBR -+ SOLUTION 
problem : CBR -+ PROBLEM 

Spec 8.1: Basic Definitions for Abstract CBR. 

Based on the above algebraic specification, we can show the CBR process to be as depicted 

in Spec 8.2. The associated CBR phases are represented by abstract ASM rules viz: R E  

TRIEVE and REUSE. We split the working of the CBR into four modes, collectively called 

cbrMode - in the idle mode, the signaling mechanism is used to trigger the fact that a new 

problem needs to be solved and the mode then changes to retrieve; retrieve mode calls the 

abstract function RETRIEVE, which sets the ballparkSolution, and changes the mode to 

reuse; reuse mode calls the abstract function REUSE, which sets the finalSolution and 

changes the mode to done; the done mode signals the user (system) that the problem has 

been solved along with providing the final solution, and also triggers the associated Post 

Solution Module, which once signaled starts working independently. 
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1 i , : 
1 I C131t I'rogra~rl 
/ /  l.)dii~itioris 
domain CBR-MODE = {idle, retrieve, reuse, done) 
cbrMode : CBR -+ CBR-MODE 
:/ 1 ~ 1 l l C  

CBRPrograrn = 
case cbrMode of 

idle -+ 

onsignal s : NEWPROBLEM 
problem(se1f) := problem(s) 
cbrMode := retrieve 

retrieve -+ 

Tliis wi,s i.lic t ) t~l lI '~irkS(:~I~~ti~~ri  ' ! :l'his 
/ / aers tllc c:brNotl~~ LO rcuw 
RETRIEVE(se1f) 

reuse -+ 

// 'This scts t.hv firialSolution 
// 'This sets (,hc, c:brMotlc to ciol~c: 
REUSE(self) 

done -+ 

;/ (.riggt:r [.lie l 'osl.Sol~~Iotl~~1 to st.ar! r~uii~ii ig in parallel 
trigger s : INIT, postSolModule(self) 
// Smtl the. solution Imck t o  t:hc usor. 
trigger s : PROBLEM-SOLVED, user(se1f) 

solution(s) := f inalSolution(se1f) 
cbrMmode := idle 

Spec 8.2: Abstract CBR Program 

Next, we refine the abstract definition of the domain CASE and the rules RETRIEVE and 

REUSE. 

Case Representation 

A case-based reasoner has a case-base, which is the repository or library of all past experi- 

ences or cases.  A case can be defined as a piece of knowledge, that records past experiences 

of the reasoner in a given context, and also decides the future behavior of the reasoner based 

on the knowledge it contains. 

Abstractly speaking, a case should have the following three constituents: (1) Problem De- 

scriptors: the state of the world when the episode recorded in the case occurred. This can 
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be also be seen as the index vocabulary of the case. (2) Solution: the solution to the problem 

the case stores, or the method by which the solution was constructed. (3) Outcome: the re- 

sulting state of the world after the solution was applied to the problem. This usually records 

the success or failure of the proposed solution based on the external feedback provided by 

the user. 

Based on the above information, we can now refine the abstract domain CASE to include 

these three constituents (Spec 8.3). 

(hx R.e~)l.(i~(:~.~t.zlt;ioii 

domain CASE-Index 
domain CASE-Content 
domain CASEOutcome 

/ r I;'l~ric.liou oil C4SE 
caseIndex : CASE + CASE-Index 
caseContent : CASE -+ CASE-Content 
caseOutcome : CASE + CASE-Outcome 

Spec 8.3: Refining the Abstract Domain CASE 

The organization and indexing of the case library is crucial as it determines the retrieval of 

the right case at the right time. 

The indexing problemis the problem of making sure that a case is assigned appropriate 

labels, so that the right case is retrieved at the right time. Deciding on an index vocabulary 

is a crucial task. An index decides on the usefulness of a case in a given context. Indexes 

can represent surface features or abstract derived features. 

The contents of the case can be organized as an attribute-value (index-value) pair, as a 

hierarchy of part-subpart relationships or other sophisticated mechanisms may be used. 

As the case library becomes large, efficient retrieval becomes a bottleneck and storage mech- 

anisms of hash tables, multi-level index trees etc may be employed. 

Clearly, all the aforementioned issues are implementation details that need to be given due 

thought at the instantiation stage of the abstract reasoner, and thus not further discussed 

here. We address some of these issues while instantiating a concrete reasoner in Section 

8.2.3. 



CHAPTER 8. REASONING AND LEARNING 

Retrieve 

In the abstract CBR, the retrieve phase was represented by an abstract ASM rule called 

RETRIEVE. We now refine this abstract rule to the next level of detail, although it is still 

based on abstract functions (Spec 8.4). The overall responsibility of this phase is to find 

cases in the case base that are similar to the current problem and return a potential solution, 

called ballpark solution. In this light, the retrieval process can be further broken down into 

sub-tasks, and each sub-task is represented by a mode. 

1 ! -- 
: : 

11 I{yy{, 1 I< 
i/ Tlcfinitions 
: 

domain RETRIEVE-MODE - {idle, i d e n t i f y ,  match ,  r a n k )  
retrieveMode : CBR -+ RETRIEVEMODE 
identifiedIndex : CBR -+ CASE-Index 
matchedCases : CBR -+ CASE - Se t  
// Itlllc. 
RETRIEVE(se1f : CBR) = 

case retrieveMode of 
idle -+ 

retrieueMode := i d e n t i f y  
i d e n t i f y  -+ 

// ' h is  sck i  itloi~fific:cilntl~:x 
IDENTIFY(self,problem(self)) 
retrieveMode := match  

ma tch  4 

// 'L'his sets u1atchcdC8,sc~s. h s e d  on icicrilihdIndex 
MATCH(self, identi  f iedIndex(se1f))  
retrieueMode := rank  

rank  -+ 

/; 'Tl~is s~t:s tl:~: hllparkS0111t ion: bastrtl on t~latcl~.c.dCascs 
RANK(self,  matchedCases(se1f)) 
retrieueMode := idle 
cbrMode := reuse 

Spec 8.4: Refining the  Abstract Function RETRIEVE.  

The idle mode simply enables the i d e n t i f y  mode. The identify mode calls the ab- 

stract function IDENTIFY, that identifies the relevant indexes (features/descriptors) of 

the problem description and sets i d e n t i f i e d l n d e x ;  the mode is then changed to m a t c h .  
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The match mode calls the abstract function MATCH that matches the identified in- 

dexes (identi fiedIndexes) of the current problem against the indexes of the existing cases 

(caseIndex) in the case base and sets matchedCases; the mode is then changed to rank. 

The match can be an exact match or a partial match. Finally, the rank mode calls the 

abstract function RANK, that uses some pre-defined metric to rank the matched cases 

(matchedCases) and proposes the case with the highest rank as a ballpark solution (ball- 

parkSolution). This mode also changes the cbrMode to reuse and the retrieveMode to 

idle; this thus implies that the retrieve phase has completed and the reuse phase should be 

invoked. 

Reuse 

We now refine the abstract function REUSE to the next level of detail; albeit still abstract. 

The responsibility of the reuse function is to return the final solution, based on the ballpark 

solution (Spec 8.5). This consists of either re-using the ballpark solution as is or adapting 

it to better suit the current problem. We achieve this by associating three explicit modes 

with the REUSE function - idle mode checks the predicate iscopy to determine whether 

the ballpark solution (ballparkSolution) can be copied as is or needs to be adapted, and 

consequently changes the mode to either copy or adapt. The copy mode simply returns the 

ballpark solution as the final solution (finalSolution). The adapt mode uses an abstract 

function ADAPT to modify the ballpark solution into a final solution. Both the modes, 

copy and adapt, change the cbrMode to done and the reuseMode to idle, implying that the 

Reuse process is over and that the CBR can proceed with the next phase. 
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I I 1)cfiriitionr 
domain REUSEXODE - {idle, copy, adapt) 
reuseMode : CBR -+ REUSEXODE 
iscopy : CBR -+ BOOLEAN 
/ , l l l l l~! 
REUSE(self : CBR) = 

case reuseMode of 
idle -+ 

if isCopy(se1f) then 
reuseMode := copy 

else 
reuseMode := adapt 

COPY -+ - - 

f inalSolution(self) := ballparkSolution(self) 
reuseMode := idle 
cbrMode := done 

adapt -+ 
3 , -  

, 1 I'his st>th iinalSoluliol~. h~ adaptillg t l i ~  l ) a l l p ~ ~ i l ~  Solul io i~  
ADAPT(self, ballparkSolution(selj)) 
reuseMode := idle 
cbrMode := done 

Spec 8.5: Refining the Abstract h n c t i o n  REUSE. 

Post Solution Module 

The Post Solution Module is a component of the CBR that handles the Evaluate and Retain 

phases of the CBR Process. It is defined as an ASM agent (POST-SOLNODULE), which 

once triggered by the CBR works asynchronously with respect to the CBR. The overall 

working of the Post Solution Module includes recording the case proposed as a solution 

as an unevaluated case, and waiting for the external environment to provide the feedback 

for this unevaluated case. Based on the feedback received, the Post Solution Module then 

analyzes and repairs the unevaluated solution; this is handled by the Evaluate phase. Once 

the unevaluated solution is repaired, the case base is then updated with this new repaired 

solution and other extracted information that is derived from the external feedback; this is 

handled by the Retain phase. 

Based on the above description, we come up with the basic definitions of the Post Solution 
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Module (Spec 8.6). 

1 ,  
, I l)t~linitio~is for 1'OS'L'-SO1.-1ZOI)I;LE 
domain FEEDBACK 
domain UNEVAL-CASE 

, ; / /  'F~ulctions 011 l'ostSol3~Iot:l~llc 
parentCBR : POSTSOLMODULE + CBR 
unevalcaseset : POST-SOLMODULE + UNEVAL-CASE - Set 
/ /  Auxi1ial-y Fn~lctiolis 
unevalcase : POSTSOL-MODULE + UNEVAL-CASE 
addAsUnevalCase : POST-SOLMODULE + BOOLEAN 
integrateFeedback : POSTSOL-MODULE + BOOLEAN 

Spec 8.6: Basic Definitions for POST-SOL-MODULE. 

The abstract domain UNEVAL-CASE represents a case that has been proposed as a solution 

but for which the feedback is not yet available, and the function unevalCaseSet represents 

a set of all such cases. UNEVAL-CASE can be refined to hold basic information that 

is required for storing it and later retrieving it, like the associated problem, the proposed 

solution, associated feedback, the repaired solution derived by repairing the proposed solution 

based on feedback, the new information extracted from the feedback (Spec 8.7). 

' f  

domain EXTRACTEDJNFO 
unevalProblem : UNEVAL-CASE + PROBLEM 
unevalSolution : UNEVAL-CASE + SOLUTlON 
feedback : UNEVAL-CASE + FEEDBACK 
repairedsolution : UNEVAL-CASE + SOLUTION 
extractedInfo : UNEVAL-CASE + EXTRACTEDJNFO 

Spec 8.7: Refinement of UNEVAL-CASE. 

Based on the above definitions, the working of the POST-SOLMODULE as given by its 

Program is depicted in Spec 8.8'. The associated phases are represented by abstract ASM 

'Only relevant portions are shown here. 
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rules viz: EVALUATE and RETAIN. The process is a sequence of four steps, represented 

by modes. 

- 

- 

/ / : .  I'osi. Solut:ioli Mc)d111a Program -- 
// 1'1t.f nitions 
domain POSTSOL-MODE - {idle, evaluate, retain, done) 
psMode : POSTSOLMODULE -+ POST-SOLMODE 

;: :y{,,llc 
i j 

POSTSOL-MODULE-Program - 
case psMode of 

idle -+ 

onsignal s : INIT 
if addAsUnevalCase(se1f) then 

extend UNEVAL-CASE with newcase 
Fill assoc.isi.etl info ill the new mw. i i 

add newcase to unevalCaseSet(self) 
onsignd s : FEEDBACKAVAILABLE 

choose x in unevalCaseSet(self) with match(x,  s )  
/ /  Scts unc~'alC~asc~ with x arid its fc tcd l )xk  from er~viror~~r~cwc. 

if none 
extend UNEVAL-CASE with unevalCase 

/ /  Fill associi~t.ittl i r h  iutn ~~ricvalCasc:. 
: 

add uneva2Case to unevalCaseSet(self) 
if integrateFeedback(s) then 

psMode := evaluate 
else 

psMode := done 
evaluate -+ 

EVALUATE(self) / /  Sots rcpairc>dSol~~t.iuu. psllodct 1.0 :H.et.ai.n 
retain -+ 

RETAIN(se1f) / /  Sot:: t h c  psMode to tlo~it:. 
done -+ 

remove unevalCase(self) from unevalCaseSet(self) 
psMode := idle 

Spec 8.8: P O S T S O L N O D U L E  Program. 

In the idle mode, the module checks for two kinds of signals. The signal INIT triggered by 

the associated CBR signals the fact that a solution has been proposed for the given problem, 

upon which the module calls addAsUnevalCase, specified as an abstract derived function, 

which determines whether the proposed case gets stored as an unevaluated case along with 
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all associated information, or not. The signal FEEDBACK-AVAILABLE is triggered by 

the external environment (via the CBR) when the feedback for an existing unevaluated case 

or a new feedback is available. Upon this signal the corresponding case is then retrieved 

from the unevalCaseSet and its feedback recorded; if there is no match for such a case, 

i.e the feedback being reported is an independent one, a new unevalCase is created with 

all associated information and stored in the unevalCaseSet. Now, the abstract derived 

function integrateFeedback is checked to determine whether to proceed with integrating 

this feedback into the case-base; if yes, the mode changes to evaluate; if no, the mode 

changes to done2. The evaluate mode calls the abstract function EVALUATE to repair 

the unevaluated solution based on feedback, which sets repairedSolution and changes the 

mode to retain. The retain mode calls the abstract function RETAIN, which extracts new 

information from the feedback by setting extractedIn f o. It then integrates the repaired 

solution and the extracted information into the existing case base, and changes the mode to 

done. The done mode removes this unevaluated case from the unevalCaseSet, since this 

case has now been successfully evaluated, and changes the mode back to idle. 

Evaluate 

We now refine the abstract function EVALUATE as shown in Spec 8.9. The overall re- 

sponsibility of the evaluate function is to analyze the feedback provided by the external 

environment and repair the unevaluated solution if required. This is achieved by associat- 

ing four modes with the EVALUATE function, collectively called evaluateMode. The idle 

mode simply changes the mode to analyze. The analyze mode calls the abstract function 

ANALYZE, which examines the feedback and determines whether repair is indeed needed, 

sets the repairNeeded predicate accordingly, and changes the mode to check. The check 

mode checks the repairNeeded predicate and changes the mode to repair if true. If false, 

the unevaluated solution (unevalSolution) is returned as the repaired solution (repaired- 

Solution); the mode is changed back to idle, and cbrMode is set to retain to invoke the 

next phase Retain. The repair mode calls the abstract function REPAIR, which repairs 

'Generally, in the CBR life cycle, both the predicates addAsUnevalCase and integrateFeedback are 
true, meaning that the proposed solution is always stored as an unevaluated case, and its feedback, when 
available, is integrated into the case-base. However, in the spirit of being abstract, we give the designer the 
flexibility to do otherwise. 
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the solution and updates unevalSolution with repaired solution. It then changes the mode 

to a n a l y z e ,  which determines if the repaired result is satisfactory and performs recursive 

repairing until an acceptable result is reached. 

/ ' ---- EYA1'LT-u I3 -- 
,!' Ihtir~it  ioi~s 

domain EVALUATE-MODE - {idle, analyze, check, repair) 
eualuateMode : POST-SOLMODULE + EVALUATEMODE 
repairedNeeded : POSTSOLMODULE + BOOLEAN 

,I R l l k  

EVALUATE(se1f : POSTSOLMODULE) - 
case eualuateMode of 

idle + 

eualuateMode := analyze 
analyze + 

ANALYZE(self, uneualCase) / , I  Yet5  rcyairScetlcd 1)reciicale. 
eualuateMode := check 

check + 

if repairNeeded(se1f) then 
eualuateMode := repair 

else 
repairedSolution(uneva2Case) := uneualSolution(uneva2Case) 
eualuateMode := idle 
mode := retain 

repair + 

REPAI R(self, unevalCase) ,': Lpdatc.: t l ~  uiic~alSolut iuu(~unt:vK!;lse). 
eualuateMode := analyze ,',' litxursivclv repillr sol. uutil sa~isfietl. 

Spec 8.9: Refining the Abstract Function EVALUATE. 

The Evaluate phase ensures that the reasoner is able to evaluate its performance and become 

more efficient with time. 

Retain 

We now refine the abstract function RETAIN used in the POSTSOLMODULE. This phase 

incorporates new knowledge available from the problem-solving episode into the case base. 

In particular, by storing the outcome (success or failures) of the proposed solutions, it can 

lead to positive or negative reinforcement learning. Every time a problem is solved, the case 
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base is updated. This step also leads to Learning in a case-based reasoner. 

We do so by associating three modes with this function. The idle mode simply enables 

the extract mode. The extract mode calls the abstract function EXTRACT, that decides 

which information from the unevaluated case and feedback to retain, and in what form 

to retain it; the mode is then changed to integrate. The integrate mode then calls the 

abstract function INTEGRATE to integrate the extracted information into the case base. 

Integration can be done by either inserting a new case, or by updating the existing cases. 

It then changes the mode back to idle and the cbrMode to done. 

domain RETAINMODE - {idle, extract, integrate) 
retainMode : POST-SOLMODULE -+ RETAINMODE 
// Rule 
RETAIN(se1f : POSTSOL-MODULE) = 

case retainMode of 
idle -r 

retainMode := extract 
extract -r 

EXTRACT(self, unevalcase) / /  Sets estractctllrifo. 
retainMode := integrate 

integrate -+ 
, # 

j ,  Intcgratcs t.kw cxtrectcd to tllo C:asc:'Rasc?. 
INTEGRATE(self, extractedln f o(uneva1Case)) 
retainMode := idle 
cbrMode := done 

Spec 8.10: Refining the Abstract finction RETAIN. 

This completes the formalization of the Abstract Case-Based Reasoner. The next step in 

instantiating a Concrete Reasoner is to refine the abstract functions: IDENTIFY, MATCH 

and RANK in the function RETRIEVE; ADAPT in function REUSE; ANALYZE, REPAIR 

in the abstract function EVALUATE; EXTRACT and INTEGRATE in function RETAIN. 

These functions are typically algorithmic in nature and are determined by the nature and 

need of the application domain. There exist sophisticated ranking algorithms, adaptation 

algorithms etc that increase speed and efficiency [67], [82]. We produce simple refinements 

of these function in Section 8.2.3 to instantiate a concrete reasoner for the path planning 

problem of our application. 
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8.2.3 Instantiation of Abstract CBR: Concrete CBR of SEM 

In this section we use the abstract CBR as developed in the preceding sections and apply 

data refinements to the abstract functions and abstract rules, to derive a concrete reasoner 

for the navigation problem of the SEM. The resultant CBR is called the SEM-CBR and 

forms the CBR component of the Space Evolution Module (SEM). 

Such a step-by-step refinement of the abstract CBR into the concrete, also proves the sound- 

ness and generality of the abstract CBR, and also shows the feasibility and the tractability 

of achieving such a concrete model through refinements. 

The SEM-CBR takes a problem that contains a source and destination, and the overall 

responsibility of the CBR is to return the best path it contains in its case base from the 

given source to the destination. This path is preferably a complete path, or if such a path 

cannot be found, a partial path toward the destination. The SEM-CBR does not perform 

any adaptation, and its post solution module does not evaluate and repair the proposed 

solution, since these two tasks are not required in the intuitive logic of our problem domain. 

Every time the SEM is in the pathplanning mode, a call is made to the CBR giving it a 

problem to solve, and once the path has been traversed, a feedback for the traversed path 

is made available to the CBR from the SEM mode pathCompleted. New information is 

extracted from the feedback and integrated into the case base3 This ensures that the CBR 

becomes more efficient and effective with time. 

SEM-CBR is an instantiation of the abstract CBR, that refines its abstract functions 

and rules followed by the keyword where. It is composed of a concrete post solution 

module SEM-POST-SOLMODULE, that is an instantiation of its abstract counterpart 

POST-SOLMODULE. SEM-POSTSOLMODULE refines the abstract functions and rules 

of the abstract POST-SOLMODULE, followed by the keyword where. Spec 8.11 shows 

some miscellaneous data structures that are refined. The abstract domain SOLUTION is 

3However, not every problem is marked as an unevaluated problem whose feedback is awaited and not 
every feedback that is made available is inserted into the case base. In case of a person abandoning the current 
destination without completing it, an empty feedback is sent by the SEM function SendEeedback-To-CBR, 
which is not integrated with the case base. This is checked by the function integrateFeedback. In case of the 
influence factor weights being changed, although a new problem is sent, it is not inserted as an unevaluated 
case since the problem is still the same of going from the same source to the same destination which already 
exists as an unevaluated case. This is determined by the function addAsUnevalCase which checks if a similar 
problem already exists in the set of unevalcase or not. 
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refined to a PATH which is a sequence of Nodes, and the owner of the CBR is refined to be 

the space evolution module SEM. 

/ ,' - C'ONCRE'LT DOSLZINS 
domain SEM-CBR CBR where ... 
domain SEMPOST-SOLMODULE r POST-SOLMODULE where ... 

domain PATH = NODE - Seq 
SOLUTION = PATH 
OWNER = SEM 

Spec 8.11: Concrete CBR and POSTSOL-MODULE. 

The abstract domain CASE holds the information for the CASE-Index, CASEContent and 

CASE-Outcome, which are refined as shown in Spec 8.12. 

C'OSC'ItE 1 E 

source : CASE-Index -+ NODE 
dest : CASEIndex -+ NODE 
timeType : CASE-Index -+ TIMETYPE 
date : CASE-Index -+ DATE 

CASE-C'o~ilciil 
path : CASE-Content -+ PATH 

i I C:.\ST;'.-Outco~rw 
frequency : CASEOutcome -+ VALUE 
reznforcement : CASE-Outcome -+ REINFORCEMENT 
trip&ortance : CASE-Outcome -+ TRIP-IMPORTANCE 

Spec 8.12: Refining the Abstract Domain CASE. 

The abstract domain PROBLEM holds all the information about the problem posed to the 

CBR. It holds the source and destination node of the path to be computed (source, dest), 

the time when this problem was given to the CBR (time), and the parameter closeness 

which decides by how may hops the partial path can be away from the final destination. 
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The abstract domain FEEDBACK stores the actual path taken by the person (talcenpath). 

The two domains are formulated in Spec 8.13. 

# ,  

/ 1 - 1 ' ~ ? 0 1 ~ 1 ~ 1 ~ ~ 1  -- -- 

source : PROBLEM + NODE 
dest : PROBLEM + NODE 
t ime  : PROBLEM + TIME 
closeness : PROBLEM + INTEGER 

Spec 8.13: Refining the  Abstract Domain P R O B L E M  and FEEDBACK.  

Next, we refine the abstract rules. We start with the abstract CBR rules, and then move 

on to POST-SOLMODULE rules. 

The abstract rule IDENTIFY is responsible for identifying the problem descriptors from the 

given problem (problem). These descriptors then help in retrieving the appropriate cases, by 

matching them against the case indexes. The task of identifying these descriptors is simple, 

as the structure of the problem already contains them; the contents of the identi f iedIndex 

(source, dest etc.) are then merely copied from the problem (Spec 8.14) 

I ! 
i I Y 
IDENTIFY(se1f : CBR,problem : PROBLEM) = 

source(identi f i ed lndex )  := source(prob1em) 
dest( identi  f i e d l n d e z )  := dest(prob1em) 
t imeType( ident i  f i ed lndez )  := t imeType(t ime(prob1em)) 
date( identi  f i ed lndez )  := date(time(prob1em)) 

where 
ident i  f i ed lndez  c ident i  f iedIndex(se1f) 

Spec 8.14: Refining t he  Abstract Rule IDENTIFY .  

The abstract rule MATCH, refined in Spec 8.15 is responsible for matching the identified 

indexes against the indexes of the cases, and storing all those cases that fulfill the matching 
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criteria as matched cases matchedcases. This is basically a two step process. First, the case 

base is checked for cases that yield an exact match, i.e cases that store complete paths are 

retrieved. The criteria for an exact match as performed by the derived function exactMatch 

is that the source and destination of the identified index (identi fiedlndex) are the same 

as the source and destination of the case index(caseIndex(c)). All such cases are added 

to the set of matched cases. However, if no exact matches are found, a search is made for 

partial paths, i.e a path whose destination is 'close enough' to the final destination. The 

parameter closeness gives the maximum number of hops by which the destination of the 

partial path can be away from the final destination. The case base is now searched for such 

cases, starting with the closeness of 1 and monotonically incrementing the number of hops; 

as soon as matched cases are found for a given level of hop, the next increment of the hop 

is not made, i.e preference is given to paths that are closer to the final destination. The 

function partialMatch performs a check for partial paths by comparing the size of the best 

path from the tail node of the retrieved path to the final destination, against the set number 

of hops, such that the size is either less than or equal to the number of hops. 

forall c E caseBase(se1f) with exactMatch(c, identi f iedIndex) 
add c to matchedCases(se1f) 

seq 
if matchedCases(se1f) = {) then 

let hops = 1 in 
while matchedCases(se1f) = {) /\ hops < closeness(problem(se1f)) 

forall c E caseBase(se1f) with partialMatch(c, identi fiedIndex, hops) 
add c to matchedCases(se1f) 

hops = hops + 1 

where 
exactMatch(c, identi f iedIndex) - source(caseIndex(c)) = source(identi f iedlndex) 

/\ dest(caseIndex(c)) = dest(identi f iedIndex) 
partialMatch(c, identi f iedIndex, hops) = source(caseIndex(c)) = source(identi f iedIndex) 

/\ Size(bestPath(dest(caseIndex(c)), dest(identi f iedIndex))) <= hops 

Spec 8.15: Refining the Abstract Rule MATCH. 

The abstract rule RANK ranks all the cases is the set of matched cases and returns the one 
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with the highest rank as the ballpark solution ballparkSolution. The ranking is executed 

by first sub ranking the set of matched cases (matchedCases) by the function DoSubRank, 

and then selecting the case with the latest date (highestDate) as the ballpark solution. The 

I !  . - - -  '2L-K ........................ ......................... / / h.!. . 

RANK(self : CBR, matchedCases : C A S E  - Se t )  -= 
DoSubRank(se1f) 
seq 
choose c in subrankedCases(se1f) with highestDate(c) 

ballparkSolution(self) := path(caseContent(c)) 
where 

highestDate(c) V x ( x  E subrankedcases) + date(caseIndex(c)) 2 date(caseIndex(x)) 

DoSubRank(self : CBR)  - 
forall c in positiveCases with highestSubRank(c) 
add c to subrankedCases(se1f) 

where 
highestSubRank(c) - V x ( x  E positiveCases()) + subRank(c) > subRank(x) 
positiveCases() -= {all n jn  E matchedCases(self) 

A rein  f orcement(caseOutcome(c)) # negative)) 
subRank(z) = weightCost(se1f) * CostValue(z) 

+ weightOutcome(self) * outcomeValue(z) 
+ weightTime(se1f) * r ightTime(z)  

Spec 8.16: Refining the Abstract Rule RANK. 

DoSubRank function performs sub ranking only on those set of matched cases that have a 

positive outcome, i.e those cases that have a reinforcement or experience associated with 

them that is not negative. This thus incorporates both positive and negative reinforcement 

learning in our navigation algorithm. A sub rank is then assigned to each of the positive 

cases, which is a weighted sum of costValue, outcomeValue and rightTime. Cost Value 

is the summation of perception attributes PER-EDGE-ATTR (distance, road type, traffic 

etc.) of the constituent edges of the path, as given by the SUBJ-ENV of the person. A point 

to be noted is that in calculating the costvalue of the path, the current real-time local infor- 

mation of the edges adjacent to the person's current position are considered. Outcome Value 

can typically be the summation of the activity attributes AC-EDGE-ATTR (frequency, re- 

inforcement, trip importance) of the constituent edges, as given by the SUBJ-ENV of the 

person; or it can be derived from AC-EDGE-ATTR values stored in the CASE-outcome, 
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which are the values of the path as a whole. Right Time is a boolean value that returns a 

true if the case path was taken in the same time interval (morning, afternoon, evening) as 

the time interval of the problem, or 0 otherwise. Tacit representation of RANK is given in 

Spec 8.16, for details of function costValue, outcomeValue, rightTime, refer to AppendixA. 

We do not perform any adaptation of the ballpark solution in the SEM-CBR. This is achieved 

by the derived function iscopy that returns a value true. 

Next, we refine the abstract function and rules of the abstract post solution module, 

POST-SOLMODULE. The concrete post solution module is called SEM-POST-SOL- MOD- 

ULE. The abstract functions addAsUnevalCase determines whether the new problem posed 

to the CBR gets stored as an unevaluated case whose feedback is then awaited. In case of 

the influence factor weights being changed, although a new problem is sent, it is not inserted 

as an unevaluated case since the problem is still the same of going from the same source 

to the same destination, which already exists as an unevaluated case. addAsUnevalCase 

performs this check (Spec 8.17). 

integrateFeedback determines whether the feedback that is made available for an uneval- 

uated problem is integrated into the case base. In case of a person abandoning the cur- 

rent destination without completing it, an empty feedback is sent by the SEM function 

SendEeedback-To-CBR, which is not integrated with the case base. This is checked by the 

function integrateFeedback (Spec 8.17). 

;: 

!! a(:l(iAxl71lc~.alC~se 
addAsUnevalCase(se1f : POST-SOLMODULE) 

choose x E uneualCaseSet(se1f) with uneualProblem(x) = pr~blem(~aren tCBR(se l f ) )  
A uneualSolution(x) = solution(parentCBR(se1f)) 

return true 
if none 

return false 
I /  - i i  i~lt,eg~atc?I;i,ot~bnck - 

integrateFeedback(f a : FEEDBACKAVAILABLE) 
if takenPath(externalFeedback(fa)) <> [I then 

return true 
else 

return false 

Spec 8.17: addAsUnevalCase and integrateFeedback. 



CHAPTER 8. REASONING AND LEARNING 121 

The abstract rule ANALYZE which decides whether the proposed solution needs repair or 

not, by setting the predicate repairNeeded, sets it to false in the SEMPOST-SOLAIODULE. 

The abstract rule EXTRACT extracts all the information that is made available from the 

external feedback stored in the unevalCase, which basically is the path that the person 

has taken. In order to extract all such information, the domain EXTRACTEDlNFO is 

refined to be a set of CASES, so that it makes the integration of information into the case 

base easier. From the path that the person traversed, a combination of other paths can be 

derived, i.e we can compute its transitive closure; for e.g if a person went from A-B-C, it 

also 'knows' the paths B-C, C-B-A . We calculate all such permutations using the function 

GetAllPermutations, which returns a set of new paths newpathset. For each of these 

paths, we then extract the indexes, content and outcome using the functions Extract-Index, 

Extract-Content and Extract-Outcome respec. These functions perform simplistic work 

and can be found in Appendix B. Each of these extracted cases is then added to the set of 

extracted info. It should be noted that while we compute all possible permutations of the 

taken path, we also have the option of computing all new paths created by concatenating 

two paths that gives a path which hasn't been directly traveled on, but whose sub-paths 

have been traveled on. This however produces sub-standard results as it can return paths 

that are clearly not desirable and unintuitive, and hence we do not employ this technique. 

i i ~~ EYTIl :\("I' . , :  : r 1 . .  ,A 

EXTRACTEDJNFO - CASE - Set 

EXTRACT(se1f : POST-SOLMODULE, unevalCase : UNEVAL-CASE) = 
let newPathSet(se1f) + GetAlIPerrnutations(pathTaken(f eedback(uneva1Case))) in 
' sct of all ~)c)ssil)lo paths. 

forall path in newPathSet(self) 
extend CASE with extractedCase 

caseIndex(extractedCase) := Extract-l ndex(path) 
caseContent(extractedCase) := Extract-Contentbath) 
caseOutcome(extractedCase) := Extract-Outcomebath) 
add extractedCase to extractedInfo(unevalcase(self)) 

Spec 8.18: Refining the Abstract Rule EXTRACT. 

Finally, we refine the abstract rule INTEGRATE in Spec 8.19. This rule is responsible for 

integrating all the extracted information extractedInfo into the case base. This can be 
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done in two ways, either by inserting a new case or by updating an existing case with the 

new information. For each extracted case in the set of extracted cases, a check is performed 

to determine if this case already exists in the case base. This is done by the derived function 

matchExists that returns true if the source, destination, path, and time type of the case 

in the case base are all the same as the new extracted case. In this case the function 

Updatecase is called to merely reset or update the relevant information of this existing 

case to incorporate new extracted information. However, if no such case exists, then the 

extracted case is inserted into the CBR as a new case. 

'! 1X'rI 'x 13 11 l-1.: 
INTEGRATE(self : POST-SOL-MODULE, extractedIn f o : CASE - Set)  = 

forall newcase in extractedIn f o(uneualCase(self)) 
choose oldcase from caseBase with matchExists(oldCase, newcase) 

U pdateCase(oldCase, newcase) 
if none 

add newcase to caseBase 

where 
matchExists(oldCase, newcase) = 

source(caseIndex(oldCase)) = source(caseIndex(newCase))~ 
dest(caseIndex(o1dCase)) = dest(caseIndex(newCase))~ 
timeType(caseIndex(o1dCase)) = tinzeType(caseIndex(newCase))~ 
path(caseContent(oldCase)) = path(caseCmtent(newCase)) 

caseBase - caseBase(.~arentCBR(self))  

Spec 8.19: Refining the Abstract Rule INTEGRATE. 



Chapter 9 

Shortest Path Planning 

The problem of Navigation is a complicated one, that in simple terms can be viewed as 

moving an entity from source S to destination D by first deciding the different paths that 

can be taken, evaluating the cost of taking these paths under given circumstances, choosing 

the shortest (most suitable) path, and finally executing this theoretical route by actually 

moving the entity. 

Taking the shortest path or the path with least cost is a sub-problem of this bigger problem. 

This chapter is devoted to analyzing shortest path algorithms and deriving one as per the 

demands of our application. The algorithm presented here forms the Model-Based Reasoning 

(MBR) component of the Space Evolution Module. 

We survey some basic algorithms in Section 9.1 and present our approach in Section 9.2. 

9.1 Shortest Path Problem 

The shortest path problem is the problem of finding a path from source S to destination Dl 

that has the least cost associated with it, where the cost parameters can be anything such 

as distance, travel time, etc. Formally, this problem can be stated as follows [29]: 

In a shortest-path problem, we are given a weighted, directed graph G = (V, E), with 

weight function w : E -t R, mapping edges to real-valued-weights. The weight of path 
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p =< vo,vl, ..., vk > is the sum of the weights of its constituent edges: 

The shortest-path weight from u to v is defined by: 

{w(p) : u 3 v) if there is  a path from u to v. 
q u ,  v) = 

otherwise. 

A shortest path from vertex u to v is then defined as any path p with weight w(p) = 6(u, v). 

Calculating shortest paths for a given graph can be discerned into the following categories: 

one- to-one, one-to-some, one-to-all (single source shortest path) , all-to-one, all-to-all (all 

source shortest path). 

9.1.1 Shortest Path Algorithms 

The field of shortest path algorithms is well-studied and entails decades of research and 

experimentation. The shortest path problem is also one of the most fundamental Network 

Optimization as well as Intelligent Transportation problems. 

In [33] is a description of the most famous shortest path algorithm viz Dijkstra's Shortest 

Path Algorithm. This greedy algorithm guarantees to find the optimal shortest path in the 

given graph with non-negative edges in time O(n * n). There are several implementations of 

this basic algorithm to improve time and space efficiency, using sophisticated data structures 

of heaps, queues, buckets etc. Most other shortest path algorithms are variations of this 

generic algorithm. A good description of the classical algorithms and their implementation 

appears in [49]. 

There is a class of shortest path algorithms that use a form of Heuristic Search. These set 

of algorithms such as A * have some estimate (heuristic) of how far from the goal any vertex 

is. A* is the classical game algorithm that is most widely used in gaming and A1 [78]. These 

algorithms work faster since the use of heuristic avoids looking in directions with fruitless 

search. The construction of this heuristic function involves some overhead and should be 
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weighed against the yielded benefits. Although these algorithms do not guarantee to find the 

most optimal path, under certain imposed conditions (of the heuristic function), optimality 

can be achieved. One has to consider the trade-off between speed and optimality while using 

this class of algorithms. 

Liner Programming and Dynamic Programming techniques have also been explored in cal- 

culating shortest paths [29]. Another genre of shortest-path algorithms is the Bi-Directional 

Search, which entails computing a path from both origin and destination, and meeting in 

the middle. 

A survey of shortest path algorithms for dynamic graphs can be found in [62]. Path planning 

is dynamic when the path is continually recomputed as more information becomes available. 

Such algorithms mainly aim to optimize the creation, updation, and maintenance of the 

associated data structures affected by graph updates, to ensure time efficient solutions. 

Several surveys and experimental evaluations have been carried out to compare the perfor- 

mance of different shortest path algorithms : classical and new. 

In [26] , the authors carry an exhaustive study of 17 shortest path algorithms including 

the Dijkstra's algorithm and its varying implementations. A number of simulated networks 

with varying degrees of complexity are used. The results of their study suggest that there is 

no universally best algorithm for all problems; however for graphs with non-negative edges, 

Dijkstra's algorithm outperforms the rest. 

Zhan and Noon 1751 test 15 of the 17 shortest path algorithms on 21 real road networks. In 

their study, Dijkstra-based algorithms outperform other algorithms. 

Based primarily on above two studies, Zhan 1961 identifies three fastest algorithms for real 

road networks, two of which are Dijkstra based. 

9.2 Our Approach: Proposed Shortest Path Algorithm 

This section explains our approach for a shortest path algorithm, that is best suited to the 

context of our application. This algorithm forms the Model-Based Reasoning component 

of the Space Evolution Module (SEM). We start by providing an informal explanation of 

the algorithm is Section 9.2.1, and subsequently the formal specification in ASM syntax in 

Section 9.2.2. 
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9.2.1 Overview 

The shortest path algorithm that we present reflects natural and intuitive decisions a person 

makes while moving in an urban landscape. The algorithm depicts the path planning process 

based on the fact that the person is given a road m a p  of the underlying urban landscape, 

which he uses for making decisions. The path taken might not be a globally optimal and 

the best one, but it is a more natural and a good-enough one. The algorithm takes into 

account the factors that are known to influence human path planning. 

Typically, the following factors play an integrated role in influencing the path selection 

process. We name these factors Inf luence Factors. 

1. Distance - typically distance of travel is sought to be minimized. 

2. Road Type  - people tend to take major roads compared to minor roads. 

3. N o .  of Intervening S tops  - people tend to take routes with lesser intervening stops. 

4. Angle - generally people do not travel in the opposite direction of the destination, and 

thus angle toward the destination is sought to be minimized. 

5. B a f i c  - people tend to avoid roads with heavy traffic. 

6. Road Condi t ion  - roads that are under construction, not well-made, dangerous to take 

are certainly avoided. 

7.  Famil iari ty  - people use familiar roads more often; a road taken once has higher 

likelihood of being taken again. This corresponds to behavioral reinforcement learning. 

8. Quali ty  of Experience - people tend to take roads with which they associated positive 

experiences, e.g if one gets robbed on a road, one would try to avoid that road. This 

corresponds to positive o r  negative reinforcement learning. 

Some of these factors are stat ic  - that typically do not change over time, and some dynamic  

- those that may change over time. The Inf luence Factors are tabulated in Figure 9.1. 

As described in Chapter 6, with each edge we associate a set of geographic attributes 

GEO-EDGE-ATTR , the 'perceived' values of which form the SUBJBDGE-ATTR. 
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Angle Familiarity 
Road Type Experience 

Figure 9.1: Path Influence Factors. 

Thus, the values for the factors distance, road type, trufic density, road condition come from 

GEO-EDGE-ATTR of the GEO-ENV and PEREDGE-ATTR of the SUBJ-ENV. 

The values for familiarity are derived from the attributes frequency, triplmportance and 

intensity of Ac-EDGE-ATTR and AW-EDGEATTR. The values for experience are de- 

rived from the attribute reinforcement of the AC-EDGE-ATTR. The values of all these 

factors are person specific, and represent how different people 'perceive' the same environ- 

ment. Thus, in this way, we incorporate subjective human perception in calculating their 

respective preferred paths. 

The factors angle and number of intervening nodes are dependent on the orientation and 

length of the path and not dependent on edges solely, and hence are computed alongside by 

the path finding algorithm. 

With each factor is associated a Factor Weight, which decides the importance of that factor 

in the overall edge preference. These weights reflect personal preferences and vary from 

individual to individual. They may change dynamically during the course of travel. For 

e.g, while starting a journey, minor roads are taken first to get on a highway, and once a 

highway is taken, we keep traveling on it, and then revert to taking minor roads once closer 

to the destination; thus the weight for road type changes with time. 

The overall preference of an edge is then a weighted sum of all the aforementioned factors1. 

When a person has access to a map, he or she has access to general knowledge about the 

roads such as distance, directional orientation, # of intervening nodes, road type. In other 

words, for the static influence factors, the navigator can easily get information from the 

map. Generally, a navigator also has some a priori knowledge about the environment from 

'The factor values are normalized to fall between an interval of 0-1, unless we wish to associate excep- 
tionally high or low preferences to force an agent to take or avoid an edge respc. The factor values are also 
relative to the length of the edge. 
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past experiences, such as traffic density, road conditions, familiarity, quality of experience. 

In other words, for the dynamic influence factors, the navigator has partial knowledge about 

the values based on past experiences, which may not correspond to real-time absolute values. 

Thus, based on the information made available by opening a map (static attributes), and 

past knowledge (dynamic attributes), one can easily compute potential routes from any 

given source to destination. We name the preference of a person for such a path as Global 

Path Preference. 

In addition to global path knowledge based on past experiences, a person while moving 

discovers real-time information about the roads - for e.g. a person might have thought 

of Sam Street as being a low traffic street, but now while traveling on it, he/she discovers 

there is a heavy traffic jam on it. Thus, the algorithm should also consider the real-time 

local information that is discovered by the navigator as and when he/she moves on the 

chosen path. The idea is to avoid taking roads with dense traffic once discovered on-the-fly, 

by revising the previous path selection decision. In other words, for the dynamic influence 

factors, the values can be revised to real-time absolute values once you are on that edge. 

We incorporate this specialized, current knowledge about the roads in the algorithm as the 

Local Edge Preference of an agent for that edge. 

Hence, our navigation algorithm reflects a balance between Global Path Planning, and Real- 

Time Local Negotiation. 
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Figure 9.2: Selecting a Path from Source S to Destination D 

Assume a person wants to move from source S to destination D (Figure 9.2). The preference 

of an edge e for a person agent a is defined as: 

edgePreference(e, D )  - 
local Weight * 1ocalEdgePref (e, D )  

+ globalweight * globalPathPref (e, D)  

where 

0 globalPathPre f (e, D) corresponds to Global Path Preference - preference of taking 

a 'best' path from B to destination D. We use a Dijkstra like algorithm to compute 

an all-pairs shortest path. The cost function is based on weighted sum of the influence 

factor values, where the values of static factors (GEO-STATEDGE-ATTR) are 

based on information made available from the map (GEO-ENV), and the dynamic 

factors (SUB J-EDGE-ATTR) are based on past experiences (SUB J E N V ) .  

0 1ocalEdgePre f (e, D) corresponds to Local Edge Preference. It is a weighted sum of 

all the Influence Factor values. For both the static and dynamic geographic factors 

(GEO-EDGE-ATTR), the values are based on the current real-time values derived 

from GEO-ENV as opposed to past learnt values. This gives the algorithm the 

power to perform local negotiation. 

0 The effect of Global Planning and Real-Time Local Negotiation in the overall edge 

preference is controlled by the weights assigned to each type of preference, namely 

global Weight and local Weight respectively. When global Weight is 0, the algorithm 

becomes purely 'greedy'; this would be similar to using a random search that may 

result in back-tracking and fruitless result. When both the weights are set to 1, the 

algorithm becomes purely global in nature; this would be similar to using Dijkstras', 
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which guarantees a globally optimal path based on influence factors. A non-zero value 

of both weights, makes the algorithm exhibits a combination of Global Planning and 

Local Negotiation. 

The algorithm can be seen as a combination of A* [78] and Dijkstra's [33] algorithm for 

finding the shortest paths. The function edgePre f erence, looks similar to the one used in 

A* algorithm where ZocalEdgePre f corresponds to the cost function and globa2EdgePre f 

corresponds to the heuristic function. However, our algorithm is significantly different from 

A* since the function globalEdgePref is an accurate estimate of the cost based on well- 

defined influence factors. Also, A* is essentially global in nature, while our algorithm can 

incorporate combinations of global planning and local negotiation, by playing with the 

weights of globalweight and 1ocalWeight. 

9.2.2 ASM Specification: Path Explorer Submachine 

This section describes the ASM specification of the shortest path planning algorithm de- 

scribed in the previous section. The process is represented by an ASM submachine, and for 

simplicity we refer to it as Path Explorer Submachine, which represents the Model-Based 

Reasoner (MBR) of the Space Evolution Module (SEM). Spec 9.1 gives the ASM specifica- 

tion of the P A T H E X P L O R E R  submachine at the highest level of abstraction. 

The submachine has some abstract data structures associated with it, defined in the defi- 

nitions section of the Spec; logically these are all stored in the volatile memory (see agent 

architecture). These are refined later on. The submachine takes three parameters viz: the 

S E M  (sem) that it is a part of, the current node of the person which is the source of the 

path to be computed (currentNode), and the destination of the path (destNode). 

The function GLOBALRE-CALC of the submachine is the actual performer of all calcula- 

tions required to compute a shortest path. The submachine merely uses the data structures 

set by this function to return the shortest path. The function is detailed later. 

The predicate readyToExplore is checked to determine whether the function GLOBAL- 

RE-CALC has performed all the calculations or not. If not, the function is called and the 

predicate is set to true. Once the predicate is true, the submachine 'chooses' an edge in the 

set of all edges incident to the current node, that has the maximum value (maxPref) of 

the edge preference, edgePre f .  
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! ! 
/ /  i'nt 11 Exp1ol.w S ~ ~ l m a ~ l ~ i l i ~  
// 1)c~Iinitiorl;; ,, I<c>pi ill '\:7(>lalilk! >ll>mory' 
edgePref: SEM x EDGE x NODE + PREF-VALUE 
readyToExplore : SEM + BOOLEAN 
bestpath : SEM x NODE x NODE + PATH 

, , Rllh! 

GET-SUGGESTED-PATH~,,~,T,T(sem : SEM, currentNode : NODE, destNode : NODE) - 
if readyToExplore then 

choose edge in outInczdentEdges(currentNode) with maxPref(edge) 
return concat(currentNode, bestPath(tail(edge), des tNode))  

else 
GLOBAL-RE-CALC 
readyToExplore := true 

where 
maxprefledge) = Ve(e  E outIncidentEdges(currentNode) 

+ edgePref(sem, edge, destNode) > edgepreflsem, e ,  des tNode))  
initialize : readyToExplore = false 

Spec 9.1 : PATH EXPLORER Su bmachine. 

The preference of an edge is defined using the equation of the previous section, and is 

represented in the submachine as a derived function edgePre f (Spec 9.2). 

As described before, global Weight(a) and local Weight (a) are the agent-specific (a) values 

of weights for global planning and local negotiation; logically these can be seen as stored in 

the 'Profile' of the agent. 

globalPathPref is a derived function that stores the preference of the shortest path from 

from the source which is the tail of the current edge e, to the dest, for an agent a. This 

preference is based on the factor values derived from agent's past experiences. The values of 

globalpathpre f are set by the GLOBALRE-CALC function. globalPathPre f represents 

the Global Planning phase of the algorithm. 

ZocalEdgePref is also a derived function, that gives the preference of the current edge e, 

based on real-time current values of the factors. Although to calculate the preference of an 

edge we don't need the destination, it is specified here as it is used for some other purposes, 

explained later on. These two derived functions can be seen as stored in the 'Volatile 

Memory' of the agent, since they re-computed with varying conditions. ZocalEdgePref 
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? !  !; r :dgc,~rc~f  
/ / liopt in  file' 
global Weight : SEM + WEIGHT-VALUE 
local Weight : SEM + WEIGHT-VALUE 
/ /  Kept i i : ~  '\~f>lii.t:ik~ 11cr110ry' 
1ocalEdgePref: SEM x EDGE x NODE + PREF-VALUE 
globalpathpref : SEM x NODE x NODE + PREF-VALUE 

edgePref(a, e ,  dest)  G 

globalWeight(a) * globalPathPre f (a ,  tai l(e) ,  dest)+ 
localWeight(a) * 1ocalEdgePre f (a ,  e ,  dest) 

Spec 9.2: edgePref Function. 

represents the Local Negotiation phase of the algorithm. 

The submachine finally returns the overall shortest path based on global planning and local 

negotiation. This is the concatenation of the current node currentNode with the path from 

tail node of e (the chosen edge) to the destination dest, as given by bestpath. bestpath is 

set by the GLOBAL-RE-CALC function, and represents the path with the highest value of 

globalPathPre f .  

We now refine the submachine to the next level of detail, to define the derived functions 

1ocalEdgePre f and globalPathPre f used above. In order to do so, we first specify the 

Influence Factors that influence the path selection process (Spec 9.3). 

d o m a i n  INDUCEDEACTOR 
d o m a i n  FACTOR - SUBJEDGEATTR U INDUCEDEACTOR 

,'; 111dnc~~i l-;lc.t or:, 
numberOfStops : + INDUCEDEACTOR 
angle : + INDUCEDEACTOR 
,: lhcror L2cights kq)t in  the '2<~latilc S l c n l o ~ ~ '  
factorweight : SEM x FACTOR + FACTOR-WEIGHT 

Spec 9.3: Influence Factors and Weights. 

The domain FACTOR represents all the influence factors collectively. It is composed of the 
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subjective edge attributes SUBJEDGE-ATTR which represent the factors distance, road 

type, road conditions, traffic, familiarity etc; and induced factors INDUCEDPACTOR 

that don't belong to an edge but are the properties of the path taken, viz: angle, and # of 

intervening nodes. 

Furthermore, with each factor is associated a factor weight which determines the extent of 

influence of that factor in the overall preference. The factor weights are agent-specific and 

also dynamic with respect to time. For e.g. if a value 0 is assigned with the factor roadType, 

this would mean the agent doesn't discern between major and minor roads; if the value is 

changed to non-zero, this would mean the agent has preferences for road types. We associate 

high preference values with major roads than with minor roads, and this gets reflected in 

the overall preference value of the edge. 

The derived function 1ocalEdgePre f can now be specified in terms of 1ocalFactorValue as 

given in Spec 9.4. For local edge preference of an edge el we calculate a weighted sum of 

all the influence factors. If the factor is a geographic attribute (GEO-EDGE-ATTR), and 

the edge e is immediately adjacent to an agent's current position, the value of the factor 

is derived from the geoEdgeAttr; meaning that the agent can 'see7 the current statistics 

of the edge and counts on real-time values, rather than relying on values based on past 

experiences only2. If the agent is not adjacent to edge e, or the factor being considered is 

not a GEO-EDGEATTR (but a SUBJATTR) ,  the value of the factor is derived from 

subjEdgeAttr; meaning the agent counts on past experiences only to calculate the preference 

of this edge. For the value of angle, a triangle composed of head node of edge, tail node of 

edge, and destination node is formed; meaning the preference of an edge takes into account 

that the person moves toward the direction of destination, not opposite from it. 

The function global PathPre f and best Path are set by the function GLOBALRE L'ALC. 

GLOBALRE-CALC performs all-pairs shortest path computation on the given GEO-ENV 

for all nodes. In computing such a path, the preference value considered for each edge 

(gEdgePre f )  is based on geoStaticEdgeAttr for the GEO-STATEDGE-ATTR and on 

subj Attr for a11 other attributes. This is because exploring a path is analogous to planning 

a path by having access to a road map. In such a case, the person can easily see and derive 

'Here, the terms GEOEDGEATTR and PEREDGEATTR are used interchangeably, since they both 
have the same constituents. Ideally, the value is not derived solely from geoEdgeAttr, but based on an 
'interpretation' or 'perception' of this value. 
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/' I,c.)c;~l Edge Prof' 
localEdgePref(a, e,  dest) = CfEFACTOR localFactorValue(a, f ,  dest, e )  
j' Lor;rl Facior Value 
localFactorVaEue : SEM x FACTOR x NODE x EDGE -+ FACTOR-VALUE 
localFactorValue(a, f ,  dest, e )  - 
' angle(dest, e )  *factor Weight(a, f )  : f = angle 

1 : f = numberOfStops 
interpret(geoEdgeAttr(e, f ) )  * factorWeight(a, f )  : f E GEOEDGEATTR A 

[ currentNode(a) = head(e) 
V currentNode(a) = tail(e))] 

, subjEdgeAttr(parentAgent(a), e,  f )  * factorWeight(a, f )  : otherwise. 

Spec 9.4: 1ocalEdgePre f in terms of localFactorValue. 

the values of static geographic attributes (distance, road type etc) from the GEO-ENV 

which are the actual values3. For all other attributes however, such as traffic, reinforcement 

it still has to rely on its past experiences, i.e S U B J E N V .  This can be seen in Spec 9.5, 

where globalFactorValue is a weighted sum of all the factor values. 

;',/ Global FMqcl I'wf 
gEdgePref(a, e )  z C f  EFACTOR globalFactorValue(a, f ,  e )  

1 C:lot)al Far1 or  \'a In(' 
globalFactorValue : SEM x FACTOR x EDGE -+ FACTOR-VALUE 
globalFactorValue(a, f ,  e) = 

0 : f = angle 
1 * factorWeight(a, f )  : f = numberOfStops 
interpret(geoStaticEdgeAttr(e, f ) )  * factor Weight(a, f )  : f E GEOSTATEDGEATTR.  
subjEdgeAttr(parentAgent(a), e,  f )  * factor Weight(a, f )  : otherwise. 

Spec 9.5: gEdgePre f in terms of  globalFactorValue. 

It should be noted that the function GLOBAL-RE-CALC is called every time there is a 

change in the factor weights, or S U B J E N V ,  since these are the two dynamic data struc- 

tures it depends on. 

3~deally, the value is not derived solely from geoEdgeAttr, but based on an 'interpretation' or 'perception' 
of this value. 
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We do not show here the specification of GLOBAL-RE-CALC, since it is only an algorith- 

mic function. The specification can be found in APPENDIX B. It is sufficient to say that 

the function applies the Dijkstra algorithm for computing an all-pair shortest path. This 

can typically be replaced by any other algorithm. 

The S U B J A T T R  values of an edge, i.e the values for factors based on past experience, 

can be seen as a case for that edge. In this manner, we can say the MBR works with 

edge cases represented implicitly as edge attributes, while the CBR works with an explicit 

case-base that stores path level information. The Path Explorer or the MBR thus makes 

edge level decisions, while the CBR makes path level decisions. The edge cases are updated 

dynamically as and when a person traverses an edge or becomes 'aware' of it. This way the 

MBR is constantly 'learning' and becomes more efficient and effective with time. 

In conclusion, a note on the use of hierarchical graphs for path planning is noteworthy. 

Instead of using a one level 'flat' graph for the computation of shortest path, a multi-level 

hierarchical g m p h  may be used. The main aim of one class of hierarchical graph algorithms 

is pruning of search space so as to increase the time efficiency. By using a hierarchical graph 

model, the underlying structure of the complex topographical map can be exploited, that 

while path calculation may restrict search space to a sub-set of the graph, and thus result 

in search time and speed benefits. [88], [63] use such a structure and develop algorithms 

that significantly reduce the search space and time as compared to A*, and also guarantee 

the optimality of the algorithms. 

A second class of hierarchical graph algorithms use such a graph structure with the aim of 

introducing abstraction in addition to space pruning, i.e computing the shortest path w.r.t 

a particular level of the hierarchy and then refining it to other levels of the hierarchy [70] 

[94]. While these approaches introduce the more natural way in which people make path 

planning decisions, they are sub-optimal, and in some may even greatly compromise on the 

optimality of the path by forcing people to take non-intuitive paths. 

Our approach uses a flat graph, mainly because at this stage we are not concerned with 

time and speed efficiency, since we are modeling the navigation process at a semantic level. 

However, one major benefit of such a pruning of search space would embody the fact that 

people search for paths only in the direction of their destination, i.e it will combine direction 

finding with route finding. This has been kept in mind and may be considered as a possible 

future extension of the underlying graph structure. 
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Chapter 10 

The AsmL Executable Model 

This chapter is devoted to deriving an abstract executable semantics of the ASM ground 

model of the previous sections. The executable model is obtained by applying a refinement 

step in AsmL - a formal executable specification language - to the ground model. 

Executable specifications are important as they provide a means for experimental validation 

and verification of the system. Since 60-80% of errors are introduced in the requirements 

engineering phase, rigorous specifications can significantly improve the quality and preci- 

sion of the modeled system [4]. Executable Specifications (ES) help achieve a high level of 

confidence in the correctness of the system, by detecting errors in earlier stages of software 

development, which significantly reduces the repair cost of errors in the later stages of devel- 

opment. Executable specifications can be used for test-case generation, runtime verification, 

and scenario-based modeling and testing [54]. 

Furthermore, ES can also form the basis for a simulation model to verify the operation of the 

modeled part in the wider system context. Behavioral simulations help us analyze system 

behavior and evolution spanning large time leaps in shorter time intervals. They provide 

us with means of performing simulation-enhanced thought experiments aimed at improving 

our intuition and understanding about the modeled phenomenon. 

Our executable specification is based on the Abstract State Machine Language, introduced 

in Section 10.1. Section 10.2 provides an understanding of the structure and derivation of 

the AsmL model; Sections 10.2.1 through 10.2.5 present the gist of the AsmL model. The 

entire AsmL model can be found in Appendix C. 
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10.1 Abstract State Machine Language (AsmL) 

To deploy ASMs in an industrial environment, we need an industrial-strength language; 

AsmL is one such language [54]. Abstract State Machine Language (AsmL) [74] is a high- 

level executable specification language based on the theory of Abstract State Machines. It 

is used for creating human-readable, machine-executable models of a system in a way that 

is minimal and complete with respect to any desired level of abstraction. The syntax and 

semantics of AsmL conform to the ASM modeling paradigm. 

The language is being developed by Microsoft Research; the current version, AsmL 2, is 

embedded into Microsoft Word and Microsoft Visual Studio.NET. 

Asml is object-oriented, strongly-typed, case-sensitive and uses indentation to denote block 

structure. AsmL has a rich type system containing type constructs for sequences, maps, 

sets, that support a number of high-level set-theoretic and sequence-theoretic built-in op- 

erations. 

Consistent with the ASM theory, AsmL provides a parallel execution environment, whereby 

all statements within a scope are executed in parallel (i.e the order of execution does not 

matter); sequentiality is introduced by explicitly using the keyword step. An AsmL program 

is defined using a fixed vocabulary of symbols of our choosing. It has two components: the 

names of its state variables, denoted by the keyword var, and a fixed set of operations 

of an abstract state machine. State can be seen as a particular association of variable 

names to values. A run of the machine is a series of states connected by state transitions. 

Each state transition, or step, occurs when an operation is applied to an input state and 

produces an output state. The program consists of statements. A typical statement is 

the conditional update 'if condition then update'. Each update is in the form 'a := b' and 

indicates that variable name a will be associated with the value b in the output state. The 

program never alters the input state, instead each update statement adds to an update set. 

Pending updates are not visible in any program context, but when all program statements 

have been invoked, the pending updates are merged with a copy of the input state and 

returned as the output state. An inconsistent update error occurs if the update set contains 

conflicting information. 

AsmL has the construct forall to support parallelism. Such constructs are required for 

high-level modeling, where it may be desirable to abstract from sequentiality or the order 
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of execution of statements. The current version of AsmL does not have runtime support 

for true concurrency; instead concurrent behavior is simulated by means of interleaving the 

steps of the agents. The AsmL construct choose construct can be used for making non- 

deterministic decisions, where it is not required to model algorithmic patterns behind the 

selection criteria. 

The basic introduction provided here should serve the purpose for understanding the AsmL 

specifications that follow. For a more detailed understanding of the language, the reader is 

referred to [74] and [54]. 

10.2 Overview of the AsmL Model 

In rendering an executable semantics to our DASM ground model, we advocate the use of 

AsmL. AsmL is a rich language, with advance language constructs, and close in semblance 

to the ASM modeling paradigm. 

We use the AsmL specification primarily with the aim to explore and validate the require- 

ments and design, and to test the conformance of the implementation with the specification. 

As a secondary outcome, the executable specification is used as a simulation tool, by build- 

ing a graphical visualization on top of it. Our main goal is to establish a minimal, yet 

principal executable model to reveal the feasibility of achieving such a model through re- 

finement. Through such a model we also show the importance of executable specifications 

in early design stages and prove how simulation and testing, by using such a model, can 

provide useful feedbacks to establish key system attributes. 

It is worth mentioning that although the current executable model covers the ASM ground 

model at the given level of abstraction, it does not do so in its entirety. Some abstract 

functions (in the TSM and ADM) need to be refined further to derive true real-time and 

emergent behavior of the agents. These functions call for interfaces to sophisticated problem- 

solving and decision-making techniques, which are beyond the time scope of this thesis. 

There is also a need for the use of sophisticated programming and visualization techniques, 

such as event-driven programming, GIs etc, to supplement the operational and graphical 

results. It is anticipated that this work will be carried forward by the research group in near 

future, to  give it a complete picture. 
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Refining the DASM ground model to the AsmL executable model requires considerations 

with respect to the translation aspects, refining abstract parts of the model, and achieving 

a useful method of visualization. 

Intuitively, the AsmL encoding splits into five separate chunks, each of which deals with a 

basically different level of abstraction and distinct part of the ASM model: (1) the Global 

Definitions as explained in Section 10.2.1 are the major ASM data structures that are used 

throughout the model, these are primarily the data structures of the ASM Abstract Model 

(2) the AsmL Abstract Model as explained in Section 10.2.2 is the translation of the modules 

of the ASM Abstract Model (3) the AsmL Refined Model as explained in Section 10.2.3 is 

the translation of the ASM Refined Model (4) Execution-Specific Additions as explained in 

Section 10.2.4, and (5) Visualization Specific Additions as explained in Section 10.2.5. 

In the following sections we illustrate the translation aspects that require heed in order to 

derive an AsmL model. While we try to maintain a congruent relation between the ASM 

and AsmL models, some changes are but inevitable. 

10.2.1 Global Definitions 

The global definitions entail defining the Entities used in the model, Environment (subjective 

and objective), the Person Agent Architecture, the Signals, the domain Time, and other 

miscellaneous and auxiliary data structures. In this section we illustrate some translation 

aspects by explicating the first three global definitions; the definitions for latter three can 

be found in Appendix C.1. 

Linking Social Systems t o  DASM Models 

The basic entities used in modeling the underlying sociological system through DASM mod- 

els embodies defining some basic entities at the three levels. The ASM definitions as given 

in Chapter 5 translate to the AsmL data structures as shown in Figure 10.1. 

It can be seen that all ASM domains for different entities are specified as of AsmL data 

type Class. DASM AGENT represented as Class AGENT in the AsmL model has a Pro- 

gram associated with it, which defines the behavior of this agent. All instantiations of this 
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public class PASSIVE-OBJECT 
11 Attrlhutss are rcprcsented hy \tam funct~ons 

public class ACTIVE-OBJECT extends PASSIVE_OBJECT 
I'Bchavior is represented by dynamic functions 

//This class should idcally extend both AGENT and ACI'IVE-0H.ECT. 
!kIo\vsvcr, current Asml~. version docs not support multiple inheritancc. 
public class AUTONOMOUS-AGENT extends AGENT ;,'extends ACTIVEpOBIECT 
I! Motivations are represeotcd as abstractlderived functions. 
I! Menlory is rcprescnted as runctions. 
!I Behavior is represented by the Program() 

Figure 10.1: AsmL Spec for Basic Entities. 

class override the virtual function Program to define agent-specific behavior. Clearly, Au- 

tonomous Agent is a kind of Agent and hence extends or inherits the class Agent. 

The translation aspects discussed here with respect to Agents apply to other data structures 

having similar properties. 

Environment 

The Geographic Environment and Subjective Environment as defined in Chapter 6 translate 

to the AsmL model as described in this section. 

The underlying graph called ENVIRONMENT-GRAPH in the ASM model is shown in 

Figure 10.2. The domains NODE and EDGE are represented as AsmL class and structure 

respectively. The domain ENVIRONMENT-GRAPH is defined as a class with variables 

that represent the set of nodes and edges contained in the graph. Various derived functions 

defined on the ENVIRONMENT-GRAPH are represented as member functions of the class. 

The domain GEOGRAPHIC-ENV can then be defined as shown in Figure 10.3. Each ASM 
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, ............................ ..... ........... . .............. . .................................. " ....................................................................................... 
//Class NODE ~qxcsenting NODE of the GRAPH 
public class NODE 

/'5tructurc L UGb lcpreaentmg 1 D(il ot the GKAPlI 
public structure EDGE 
edgeHead as NODE 
edgeTad as NODE 

//Class GKAPlI lepresentmg INVIRONMCNl-GR4PII 
public class GRAPH 
var nodeset as Set of NODE = {) //All the nodes of the GRAPII 
var edgeset as Set of EDGE = {) !'All the edged o 'the (?RAP11 

!/Rctu~ns the set of cdges mudent to the g~ben NODE 
outInctdentEdges(node as NODE) as Set of EDGE 
i!Kctu~ns \\ hcther the glven NODLS t o m  an LDGI 
adjacent(u as NODE, v as NODE) as Boolean 
1 Ketu~na the 1-DGF formed hy the two gwen NOLI S 
edge (u as NODE, v as NODE) as EDGE? 

Figure 10.2: AsmL Spec for GRAPH. 

domain representing the basic ATTRIBUTES ( e.g GEO-STATICATTRIBUTE) is trans- 

lated to AsmL data type enum, where the enum values represent the actual factors (e.g 

traffic, distance). The AsmL data structure type is used to denote a union (by or) of dif- 

ferent domain types. Finally, GEOGRAPHIC-ENV is represented as a class that extends 

the GRAPH. The variables of this class which are of type map represent the attribution 

schema. 

The definition of SUBJECTIVEENV is similar to GEOGRAPHIC-ENV. The only differ- 

ence being since it is agent-specific, it is defined inside the class agent as can be seen in the 

next section. 
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/!***Domains for A'l'TRIRIIl'HS*** 
enum DYNAMIC-NODE-ATTRIBUTE 11 I.. 10 

enum STATIC-NODE-ATTRIBUTE 111 1 ..20 
coordinate = 11 ' 

nodeName = 12 

enum DYNAMIC-EDGE-ATTRIBUTE 112 1 ..30 
traffic = 2 1 
roadcondition = 22 

enum STATIC-EDGE-ATTRIBUTE 113 1 30 
distance = 3 1 
roadType = 32 
edgeName = 33 

type GEO-EDGE-ATTRIBUTE = DYNAMIC-EDGE-ATTRIBUTE or STATIC-EDGE-ATTRIBUTE 
type GEO-NODE-ATTRIBUTE = DYNAMIC-NODE-ATTRIBUTE or STATIC-NODE-ATTRIBUTE 
type GEO-ATTRIBUTE = GEO-EDGE-ATTRIBUTE or GEO-NODE-ATTRIBUTE 

!/***Class rcprcsenting thc GEO(iKAPH1C ENVIRONMENT*** 
public class GEOGRAPHIC-ENV extends GRAPH 

var geoStaticNodeAttr as Map of NODE to 
(Map of STATIC-NODE-ATTRIBUTE to VALUE) = (->} 

var gwStaticEdgeAttr as Map of EDGE to 
(Map of STATIC-EDGE-ATTRIBUTE to VALUE) = {->) 

var geoDynamicEdgeAttr as Map of EDGE to 
(Map of DYNAMIC-EDGE-ATTRIBUTE to VALUE) ={->) 

var geoDynamicNodeAttr as Map of NODE to 
(Map of DYNAMIC-NODE-ATTRIBUTE to VALUE) =={->) 

Figure 10.3: AsmL Spec for GEOGRAPHIC-EW. 

Person Architecture 

The Person Agent Architecture as described in Section '7.1.2 of Chapter 7 using ASM for- 

malism, translates to the AsmL spec as shown in Figure 10.4. The domain MODULE is 

represented as a class that extends DASM Agent AGENT since it has associated behavior. 

The different kinds of modules (e.g TSM, SEM) are also represented as classes that extend 

MODULE. 

The autonomously acting entity PERSON is implemented as a class that inherits AU- 

TONOMOUSAGENT and has the modules associated with it declared as variables of the 

class. The subjective environments is composed of different attributions that are represented 
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as variables of type map.  The virtual Program of the DASM AGENT is overridden by 

the PERSON class - the step until fixpoint construct is used to loop through the following 

statements to  emulate the fact that the PERSON is continuously working. 

ii'llach Module has iu correspnding parent agcnt. 
public class MODULE extends AGENT 
var parentAgent as PERSON = null 

I Dtl'crent Modules 
public class TARGET-SELECTION-MODULE extends MODULE Ill SM 
public class SPACE-MODULE extends MODULE iISEM 
public class DECISION-MODULE extends MODULE IIADM 

public class PERSON extends AUTONOMOUS-AGENT 
var spaceModule as SPACE-MODULE = null 1) SEM 
var targetModule as TARGET-SELECTION-MODULE = null /I 1 SM 
var decisionlvlodule as DECISION-MODULE = null IADM 

i:**%ubjectiw 13nir~mmnct*** 
//NOTE: Subjl?nv can be declared as shared in person agent OR 
//as a global var to capture ASM global state. 
var subjEdgeAttr as Map of EDGE to (Map of SUBJ-EDGE-ATTRIBUTE to VALUE) = {->) 
var subjNodeAttr as Map of NODE to (Map of SUBJ-NODE-ATTRIBUTE to VALUE) = {->) 

!! ***Kept in Working Memory *** 
var currentNode as NODE = null 
var currentEdge as EDGE = null 

/;***program*** 

override Program() 
step until figpoint 
me.decisionModule.Program() 
me.spaceModule.Program() 
me.targetModule.Program() 

Figure 10.4: AsmL Spec for PERSON AGENT 

10.2.2 AsmL Abstract Model 

The AsmL Abstract Model is composed of the three modules viz. Space Evolution Module 

(SEM), Target Selection Module (TSM) and Agent Decision Module (ADM). In this section 

we illustrate the translation aspects w.r.t the SE,M only. The same principles apply for TSM 

and ADM as can be seen in Appendix C.2. 
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First, the definitions of the SEM are described in Figure 10.5. The different modes associ- 

ated with the SEM are grouped using the AsmL data type enum;  the enum values represent 

the individual modes. SEM is implemented as a class whose member data types (var)  rep- 

resent the functions associated with the SEM. Derived functions are represented as member 

functions of this class. 

enum Mode 
idle 
pathplanning 
roadselection 
1ocalRePlanning 
running 

var destNode as NODE = null // Current Jcstiilation. 
var sourceNode as NODE = null i; The source of the path. 
var suggestedpath as PATH = [I ,;' Path suggested for traversal 
var suggestedEdge as EDGE = null ! I  l:dge suggested for traversal 
var takenPath as PATH = [I !/ 'I'hc iinal path person actually traverses 

1,' Functions***"** 

currentNode0 as NODE i!eurrcnt node as sto-ed in Pcrson 
currentEdge() as  EDGE /lcul~ent edge as stnl-ed in Pcrson 
destNodeReached() as  Boolean ll Calculates ~f the current destination reached 
signalFromADM() as Boolean //Checks ~f'there is any signal frnni ADR.1. 
currentEdgeTraversed() as Boolean /! Dctern~incs ~f current cdgc has been traversed 

Figure 10.5: AsmL Spec for SEM Definitions. 

The SEM Program overrides the virtual function Program of AGENT (Figure 10.6). There 

are a set of parallel i f  s corresponding to each mode of the SEM. At any point of time only 

one of the modes is active; SEM is initialized to be in idle mode. At the end of each mode, 

the next immediate mode is set as the active mode. The abstract rules used by the SEM 

are written in block letters. At the next level of refinement, these abstract functions are 

detailed. The SEM goes through a number of intermediate refinement steps. 
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if me.mode = idle then 
let x = SIGNAL.OnSignal(newDest,me) 
if x 0 null then 

let s = x as NEW-DEST 
INITIALIZE(parentAgent.cmentNode, s.newDest) 
me.mode := pathPlanning 

else 
skip 

if me.mode = pathPlanning then 
GET-PATH() 
mode := roadSelection 

if me.mode = roadSelection then 
if destNodeReached0 = true then 

me.mode := pathcompleted 
else 

if signalFrornADM() then 
HANDLE-ADM-SIGNAL S() 
mode := pathPlanning 

else 
GET-SUGGESTEDEDGE() 
mode := 1ocalRePlanning 

if me.mode = 1ocalRePlanning then 
if acceptableEdge(suggestedEdge) then 

me.parentAgent.currentEdge := suggestedEdge 
me.mode :=running 

else 

if me.mode = running then 
if me.currentEdgeTraversed() then 
WDATKEDGE-PERCEPTION(parentAgent.currentEdge) 

FINALIZE-EDGE-rnvERSAL() 

Figure 10.6: AsmL Spec for SEM Program. 
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10.2.3 AsmL Refined Model 

The AsmL Refined Model is the AsmL version of the ASM Refined Model, and is composed of 

the definitions of the Abstract CBR and Concrete CBR; and the Path Explorer submachine. 

The translation aspects related to these two components are the same as described above, 

and so we do not further elaborate on them. Interested reader is referred to Appendix C.3. 

10.2.4 Execution Specific Additions 

In order to make the model run and produce output, we need to carry out further refinement 

steps. While there are a number of complex execution specific additions (Appendix C.4), 

we concentrate here on the function Main(). The function Main is the entry point of the 

AsmL model and is shown in Figure 10.7. 

Main0 
step 

InitGraphXML() I/ To initialirc Geogra~hic 13nIronment from XML File 
step 

:'Initial iring I'ERSON Propertics 
let personl = 

InitPersonAuto("O","o", 1.0, 1.0,0.0, 
(frequency ->l.O,tripImportance->O.O,reinforcement ->O.O,intensity->O.O, 
distance-> 1.0, roadType ->O.O,edgeName->O.O, angle ->0.0, 
numberOfStops ->0.0, traffic ->0.50 }, 
true, node("OV), node("l9"), node("24")) 

/!create other person agcnts ... 
step 

add personl to personset 
!/add othcr agcnts. . 

step until exit = true 
forall p in personset //Run thc Program h r  each Person 

P Program0 

Figure 10.7: AsmL Spec for Main(). 

First, it initializes the geographic environment from an XML repository using the function 

InitGraphXML. Next, it creates a number of person agents using the function Initperson- 

Auto and adds all these agents to  personset. Then for each person agent in the person set, 

it uses the AsmL construct forall to run the program of all agents concurrently. Finally 
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the time is increased to the next time step and the program keeps running until an exit 

condition is met. 

Both the functions, InitGraphXML and InitPersonAuto are complex functions that use a 

number of other subordinate functions. InitGraphXML reads an XML file into an interim 

data structure and then initializes the geographic environment related data structures from 

this interim data structure. InitPersonAuto calls a number of other functions to initialize 

person's SEM, TSM, ADM, subjective environment etc. 

Another important aspect that needs to be addressed in the stepwise refinement of the 

model, is of refining the abstract functions acting as 'oracles'. These oracles are non- 

computable functions and clearly in order to have a meaningful executable model, these need 

to be translated into computable functions. Abstract rules are refined either by introducing 

non-determinism using the AsmL construct choose or by assigning pseudo deterministic 

behavior to them. 

10.2.5 Visualization 

For effective and meaningful projection of results as produced by the AsmL executable 

model, a user-friendly graphically enhanced visualization is needed. Such a visualization is 

also a tool for user-controlled simulation and testing. 

For the purpose of this thesis, we use a modest visualization implemented in C++ and 

OpenGL. This visualization has been developed by Steven Bergner, a PhD candidate in the 

SFU Gruvi Lab. 

The AsmL model communicates with the Visualization using a number of commands. Both 

the AsmL model and the visualization utilize an XML based data structure of the urban 

area. The communication commands and the XML graph are detailed in Appendix C.5. 

Some snapshots of the visualization are provided here. 

Figure 10.8 shows the primary view of the visualization - aggregate activity space and 

crime occurrence space for all agents and all crime types. The geographic environment is 

composed of a small Vancouver Downtown area containing 32 nodes and 40 edges. The 

connecting roads (edges) are in bright blue; major roads appear thicker than minor roads 

for distinction. There are six person agents (0-5) initially located on this map at  different 

node locations. Different colors represent different agents (e.g person 0 is blue in color); 
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filled sinall boxes reprosent current location and unfilled boxes represent current destillation 

of a given agent. The: activity spaces of the agents are: sllown in yellow along the edges. 

The int,eiisity of color represents the aggregate spacos of tlifferent agent,s, and the spread 

representas the strengt,h (frequeiicy) of tshe activity spacc. 7:he colored boxes located on the 

nocles show the aggregate crime occz,,r7.e7rccJ space of t,lie dilfereiit agents; the spread of the 

box represents the probability of crirne. Rcd colorcd boxes represents car theft probability, 

green represents shop lift probability and black represents robbcry proba.bility. At bottom 

left coriler, one can sec the current time of the simulation; t.his slot is also used for showing 

some iniscellaneous information during simulation rum. 

ne: Tuesdav 1 lan,2:54 

Figure 10.8: -411  Aggregate View o f  the 'I'isui~liaatiun. 
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The visualizatioii ca.n be also be viewed for a specific crime type for all agents. Figlire 

10.9, Figurc? 10.10 and Figure 10.11 show the car theft, shop lift a.nd robbery probabilities 

respectively. Thc slmded area in gray in each of these sna:;,shots represents the predefined 

oppo~ tun i t y  spuces. As call be deducccl, red boxcs are coinc:itlcnt with the ca.r theft opportu- 

nities arid represent the probability of car theft,; green boxc:s represent shop lift probabilit,y 

and black boxes represent robbery probability. 

Figurc 10.9: Car Theft 0pportu11itic.s and Probabilit,~. 

Lastly, onc can also view t,he visualization for a specific agent for aggregate crirncs or a 

specific crimc. This howevPr is not sliown here. 
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Figure 10.10: Shop Lift Opportunities a110 Pro6a.bility. 

Figure 10.11 : Robbery Opportunities and Proba bility. 



Chapter 11 

Validation of the Model 

This chapter discusses the need for validation of the model, particular challenges and hurdles 

met, possible evaluation techniques and finally some preliminary experimental results. 

11.1 Overview 

Computational and mathematical modeling of real-world phenomena is meaningful only if 

one can establish the validity of a model and assess the quality of the results it produces. 

For descriptive modeling, the problem of providing evidence for the validity of a model has 

a different meaning than in prescriptive modeling where quantitative measures of reliability 

of predictions apply [18]. 

However there are even greater problems involved in validating models of human societies. 

Even though the model has been experimentally validated, just because the model is only 

a model, it will always be possible to dispute any parallel claims between its behavior and 

of the target [52]. 

An obvious open-ended question is then how can one validate such a model and prove its 

soundness from both a criminological and a computational perspective. Apparently, there 

is no simple way to do this, but there is also no better alternative other than modeling. One 

can combine qualitative and quantitative evaluation techniques. 

Quantitatively, one can evaluate the model in two different ways. One is to compare results 
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of simulation runs to results produced by other prediction models using statistical methods 

as proposed in [56] and attempt to reduce the observed error and deviance. The other way is 

to use real-world data from crime databases as a basis for comparison. In this case, the goal 

is to reproduce results matching those derived from real-world data of comparable scenarios. 

For instance, in software cost estimation, a widely accepted rule of thumb suggests that a 

model is acceptable if 75% of the predicted values fall within 25% of their actual values 1431. 

Both approaches provide feedback mechanisms for calibrating the various model parameters. 

The latter approach is being focused upon as another research project in the ST Lab 

Qualitatively, typical purposes of such experimental research, among others, include [87]: 

a) use of a model for generating and testing hypothesis through controlled experiments, 

b) use of a model for predicting the effects of change in the system under study. In this 

context, the role of modeling and simulation is descriptive rather than prescriptive and, 

for instance, focuses on aspects such as: a) identification of behavior characteristics from 

response patterns generated by simulations, and b) identification of the system boundary 

and the factors that influence the behavior of interest. Clearly, the key issue is not to obtain 

a quantitative simulation response as the main result but to inspect the underlying trace 

that generated the response and suggest changes on that basis. 

An obvious way of validating the model is by simulating scenarios and comparing the results 

with what the theories predict. However, there is no guarantee that the theories make correct 

predictions under all circumstances. A possibility is the use of compositional techniques with 

the idea to divide the validation task by applying different approaches specific to each of the 

model components (e.g., cross-validation can be used for validating neural networks). The 

problem is then, how to validate coherence and consistence of the integration of components. 

Another qualitative aspect includes addressing the consistency of both the symbolic rep- 

resentation of the model as well as its definition with regard to the underlying theories of 

crime. We exploit the concept of ASM ground models 161 - an abstract, complete, precise 

and yet understandable mathematical model - and by carefully analyzing and eliciting re- 

quirements is the best one can do in the overall attempt toward making the semantic model 

as sound and complete as possible. 

'Another interesting possibility is to use the crime databases for past years, for e.g. 2000-2004, to build 
the model and subsequently use the model to predict 2005-2006 crimes. 
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Some authors have developed qualitative criteria in evaluating agent-based systems of hu- 

man societies. 

Gilbert and Doran [52] highlight certain aspects that must have an impact upon the mod- 

eling and simulation of human societies - environment, complexity, distribution, cognition, 

communication. 

She and Stu [85] develop a criteria to measure the performance of agent-based modeling 

techniques. The criteria is divided into software engineering characteristics (preciseness, 

accessibility, expressiveness, modularity, complexity, executability, refinability, analyzabil- 

ity, openness) and agent-based characteristics (autonomy, complexity, adaptability, concur- 

rency, distribution, communication). 

The authors of [34] contend that an agent formalism should have the following character- 

istics: precise and unambiguous language; move in a principled way from specifications to 

implementations; deal with multiplicity of agents; address the needs of practical applica- 

tions of agents by being capable of expressing some or all of the aspects of agency such as 

perception, action, belief, knowledge,goals, motivation, intention, desire, emotion, etc; help 

identify properties of agent systems against which implementations can be measured and 

assessed; measure, evaluate, classify, and study implementations. 

To this end, the ASM formalism and abstraction principles in combination with the un- 

derlying methodological framework of ground models and refinement techniques provide a 

universal formal basis for semantic modeling of multi-agent human societies at arbitrary 

levels of abstraction in a coherent and consistent framework. The theory of ASM modeling 

paradigm successfully captures most if not all of the aforementioned key issues. 

11.2 Experimental Validation 

Based on the above rhetoric, one can conclude there is apparently no simple way to validate 

such a model, but there is also no better alternative other than modeling. In this section on 

experimental validation, we make an attempt to report on some observations made while 

simulating typical scenarios. 

It should be noted that the model is still abstract and non-deterministic measures are used 

as oracles that produce results which otherwise require sophisticated techniques. This stage 

of infancy and abstraction inhibits the capability of the model to produce 'true' emergent 
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results, we merely experiment with artificial and 'dummy' data. Further we use only a pro- 

totype of the simulation implemented in a specification language that uses high-level data 

structures, and thus the luxury of sophisticated data structures implemented in program- 

ming languages for time efficiency cannot be enjoyed. 

Therefore, this attempt on reporting some observations should not be considered as a hard 

and fast statement of the experimental validation and verification of the model. This as- 

pect deserves a more thorough investigation, and is beyond the time scope of this thesis, 

and is subject of our future work. These observation however do provide an insight on the 

soundness of our model. 

The goal of the executable model is to simulate the movement patterns of hypothetical 

offenders in a given urban environment that evolves their activity spaces over a period of 

time. Based on the activity spaces, the model carves out the crime occurrence spaces of the 

criminals for different crime types (burglary, shop lift, car theft). 

We start with a prototype of Vancouver Downtown area. Currently, the graph consists of 

32 nodes (vertices) and 40 edges. Although minimal, it represents a typical urban area; the 

graph size can potentially be extended to any number of nodes and edges. 

These edges area all bidirectional. With each edge is associated information about its ge- 

ographic attributes, both static and dynamic - distance, road type (major, minor), edge 

name, traffic (low, medium, high, blocked). With each node is stored information about 

its geographic attributes - coordinates, node name. This forms the universal Geographic 

Environment (GeoEnv) . 
With each agent is associated its subjective environment. We initialize the agent-specific 

subjective environment as this. For the perception attributes, which are perceived or in- 

terpreted values of geographic attributes, we initialize them to be the same as geographic 

attributes2. For the activity attributes - frequency, reinforcement (positive, negative, neu- 

tral), trip importance(obligatory, required, not required) - the values are initialized to 

default values as 0, neutral, not required respectively. For the awareness attributes - in- 

tensity - the value is initialized to default as 0. 

As and when an agent moves around in the given environment, its subjective environment 

starts building up, i.e we update the values of perception, activity and awareness attributes. 

'Ideally, perception attributes should represent interpreted values of geographic attributes which are 
different from the actual values. However, since we use abstract functions this can be achieved easily in the 
later refinements. 
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For the perception attributes, the old values in memory are updated to be the current 

geographic values. For frequency, the count is increased by 1. For reinforcement, trip im- 

portance, intensity, the updated values are an average of old values in memory and the 

current values; this however is achieved by abstract functions. The simulation at its pre- 

liminary stage carves the activity space of the different constituent agents. Each agent is 

endowed with its activity schedule, although ideally this schedule should be derived from a 

person's demographic factors. The ADM-SEMNONITOR provides the next destination to 

be traveled to based on the schedule. The abstract data structures for schedule allows for 

probabilistic destinations to be associated with any given time, i.e an agent probabilistically 

chooses the next destination; however, in this version, we merely associate a probability 1 

with each destination. The SEM then moves the agent to the proposed destination. Hence, 

the SEM and ADM-SEMNONITOR collectively model the spatial and temporal aspects 

of movement of person agents in the given urban landscape. 

Using a predefined opportunity space and an agent's activity space3, the simulation produces 

crime occurrence space of an agent. The abstract ADM-TSM-MONITOR decides whether 

the agent is criminally disposed based on its abstract motivations. If so, the SEM module 

is called. At this point, the SEM non-deterministically selects those targets that are on 

locations which are above a certain threshold of the activity space. The crime occurrence 

space is a function of the criminal opportunities(car theft, robbery, burglary) located on the 

nodes of the graph, and the criminal skills of the agent for that particular crime. Hence, 

the TSM and ADM-TSMNONITOR collectively model the spatial and temporal aspects 

of target selection of person agents in the given urban landscape. 

All simulation runs were carried out on an IBM PC with an Intel Pentium 4 processor of 

2.40 GHz, and 1.0 GB of RAM. 

31deally, awareness space should be used instead of activity space. However, since activity space is a 
proper subset of the awareness space and simpler to compute, we restrict to this case. 
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11.2.1 Space Evolution Module (SEM) 

Time Performance of the Shortest Path Algorithm 

In finding a shortest path for an agent from a given source to a given destination, we use the 

'shortest path algorithm' as developed in Chapter 9, which combines global planning with 

local negotiation; the algorithm can also be seen as a combination of A* and Dijkstra. In 

our shortest path algorithm, the dominant cost is of the Dijkstra's algorithm to calculate the 

global path preference of the agents; this entails computing an all source shortest path for 

an agent. The complexity of our algorithm is thus 0(n3),  where n is the number of vertices 

in the graph. The navigation algorithm as used in the SEM performs real-time local re- 

planning at each intervening node if the suggested edge is found to be non-acceptable or 

the influence factor weights have changed, in which case the 'shortest path algorithm' is 

executed again. In the worst case, all of n nodes might be on the suggested path and 

for each intervening node, one might have to do local re-planning. The time complexity 

thus increases to 0 (n3  * n). Further, since each agent has different influence factor weights 

that determine the cost of the paths, in the overall simulation where all agents are running 

concurrently, the time delay may increase to 0 (n3  * n * a), where a is the number of agents 

in the simulation. 0 (n3  * n * a) clearly is not a negligible amount of time delay. Hence, the 

performance of the 'shortest path algorithm' is a bottleneck factor in the performance of 

the Navigation algorithm. 

We ran our simulation with a graph size of 32 nodes and 40 edges, and gradually increased 

it to 63 nodes and 74 edges. Tabulated below (Table 11.1) are the time responses of the 

shortest path algorithm. The reported time for each graph size is an average of ten runs to 

different destinations for different agents. The cost of each edge (weighted sum of factors) 

is precomputed and hence the time delay for this calculation is negligible. 

11  G r a ~ h  Size I Res~onse Time I 
11  32 Nodes, 40 Edges I 3.5 sec I 
11  42 Nodes, 50 Edges I 14 sec I 

52 Nodes, 62 Edges I 47 sec 

62 Nodes, 74 Edges I 2.15 mts 

Table 11.1: Response Time of the Shortest Path Algorithm w.r.t Graph Size. 

Thus with increasing graph size, the computation time increases drastically. This small 
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experimentation has lead us to consider optimizations techniques to increase the time effi- 

ciency. Two kinds of optimizations can be performed : (1) using special data structures for 

computation of the Dijkstra7s algorithm and (2) using a hierarchical graph structure. 

Various implementations of the Dijkstra use data structures such as buckets, heap struc- 

tures, hash tables in increasing the speed efficiency [26], [75]. Such advanced data structures 

however require the luxury of a programming language. 

By using a hierarchical graph model, the underlying structure of the complex topographical 

map can be exploited, that while path calculation may restrict search space to a sub-set of 

the graph, and thus result in search time and speed benefits. [88], [63] use such a structure 

and develop algorithms that significantly reduce the search space and time. 

Implementing theses optimization techniques are part of our future work. 

Time Performance of the Navigation Algorithm 

The SEM implements a hierarchical navigation algorithm, that integrates CBR and a short- 

est path algorithm, based on Dijkstra. This is detailed in Section 7.2 of Chapter 7. We make 

a few observations on the time performance of the algorithm with respect to the different 

cases it represents. A graph of 32 nodes and 40 edges is used. 

In the first case, if there is a path stored in the persons7 memory (CBR) for a given source 

to destination, it is returned instantly with negligible time delay. This as opposed to the 

shortest path algorithm saves 3-4 seconds. 

In the second case, if there is not an exact match, a path close enough to the destination 

is returned. This again takes negligible computation time. In computing the remainder of 

the path however, the shortest path algorithm is called for the entire graph. This nuance 

can easily be resolved by considering hierarchical graphs (as mentioned above), whereby the 

search area can be pruned and only a very small subset of the graph containing both the 

ultimate destination and the interim destination is considered. Since we do not have a hier- 

archical graph, we emulate this time saving by using the pre-stored global path preference 

stored as globalPathPre f . This case takes more time than the first case, however it takes 

much less time than the third case where no exact or partial match exists in the CBR. 

In the third case, if there is no exact or even partial match in the CBR, the shortest path 

algorithm is called that runs on the entire graph, or in case of hierarchical graphs on a 
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subset of the graph. This takes the most time, between 3 - 4 seconds for a given path. 

Thus, the ordering of the three levels of the hierarchy also represents increasing time delay 

as shown in Table 11.2. 

Table 11.2: Response Time Variations for Three Cases o f  the Navigation Algorithm. 

Case 
Pure CBR (exact match) 

Mixed Case (partial match) 
Shortest Path Algorithm 

It is observed experimentally which fulfills the natural expectation that initially when an 

agent is 'new' to its surrounding, it takes a long time in trying to figure out which paths to 

take. There is a learning curve and after a while the movement patterns become relatively 

fixed and self reinforcing; the agent merely recalls from memory all path planning decisions. 

Response Time 
6 sec 

0 - 4 sec 
3 - 4 sec 

In graphs of very large sizes, for e.g our experimental graph of 62 nodes which took nearly 

2.5 minutes in computing a shortest path, such a time gain with a CBR technique can be 

a bottleneck factor. Although time efficiency is not of utmost importance in our model, in 

typical real-time transportation systems or in time critical applications such a time benefit 

can be highly desirable. 

Characteristic Features of the Navigation Algorithm 

All observations reported henceforth are performed on a subgraph of Vancouver Downtown 

area composed of 32 nodes and 40 edges as shown in Figure 11.1. 

The navigation algorithm successfully demonstrates the hierarchical decision-making process 

- calling the CBR for an exact match (pure CBR), if not calling the CBR for a partial 

match and the shortest path algorithm for the remaining path (mixed CBR), and lastly 

calling the shortest path algorithm (Explorer). This is evident in Table 11.3 which is shown 

for a given agent (Agent 1) that is CBR dominant. 

The algorithm uses a normalized weighted sum of a number of influence factors (distance, 

road type etc) in calculating the overall preference of an edge and subsequently the path. 

The different factors play a composite role in determining the overall edge preference where 

the influence of each factor is controlled by the influence factor weight (value between 0-1). 
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Figure 11.1 : Experimental Gra.ph o f  Va.ncouver Downtown 

Table 11.3: Hierarchical Cases o f  the Na.vigation Algorithul. 
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A very interesting observation that came to light while experimenting with the model was 

the fact that although the individual factor values were normalized to fall within a certain 

range, it was not taken care of that the values be also normalized with respect to the distance 

of the edge. For e.g let's take two edges A-B and C-D that are of same length and have low 

traffic on them, A-B does not have any intervening nodes, while C-D has two intervening 

nodes. Since C-D has two intervening nodes, the Dijkstra algorithm in computing the cost 

of this edge counts the traffic of this edge three times which might make the overall value 

of traffic high, whereas it should still be low. To avoid this, we also normalize the values of 

factors with respect to the length of the edge. 

As mentioned before, the influence of each factor in the overall path preference is deter- 

mined by the influence factor weight whose value is between 0-1. These values are different 

for different agents and typically depend on their demographic factors and personal liking. 

However, for general scenarios we use a weight value of 1 and 0 to indicate the fact that 

this factor plays or does not play a role in the overall preference, respectively. For e.g if a 

value 0 is assigned to the influence factor weight for road type, this implies the person has 

the same preference for minor roads as for major roads; if this value is changed to 1, this 

implies the person prefers major roads to minor roads. 

We produced numerous runs of the simulation by altering the weights of the different influ- 

ence factors and observed the path taken. Since there are a number of factors and all the 

factors together play an integrated role in the overall preference, it is not easy to determine 

whether the computed path is the actual desired path. The best one can do is analyze the 

influence of factors one at a time. We do so by setting all other factors to 0 and setting the 

influence of factor under study to 1; the path computed is recorded and the weight of this 

factor is then reverted back to 0 4. Clearly if alternate paths exist, the paths taken in the 

two cases should be different. Tabulated below (Table 11.4) are some observed results. 

Thus, it is evident that the shortest path algorithm responds correctly to changes in influence 

factor weights. Since single factors produce correct results, it can be deduced that composite 

factors, when the weights of multiple factors is non-zero, also produces correct paths. 

A point to be noted is on behavioral reinforcement that the algorithm successfully emulates. 

4While the weights of all other factors are set to 0, the weight of Distance is still kept 1, to produce 
intuitive results 
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Factor Under Observation I Weight I Source 

Distance cw 
Road T v ~ e  

# of Intervening Stops 

Dest. I Path Taken 11  
1 I 11 

I ... many more 11  

1 
0 

Table 11.4: Influence o f  Factor Weights in the Shortest Path Path. 

29 
29 

If a path was taken once from a given source S to destination D, and if the agent encounters 

the problem of traveling from S to D (or a subset of this path) again, the invocation of the 

CBR returns this path (or sub-path). The same case holds for the mixed case. Exhaustive 

number of runs of the simulation demonstrate this faithfully time and again. 

The navigation algorithm also successfully models non-determinism. Given that there are 

two paths from source S to destination D with the same value of preference, different runs 

of the simulation will return different paths and not just the same path over and over again. 

This holds for the path returned by the CBR as well. Table 11.5 demonstrates this fact. 

Table 11.5: Non-Determinism in the Navigation Algorithm. 

Source 
29 

9 

19 

The algorithm also responds well to changes in the underlying environment. Since our 

visualization does not allow us to dynamically change the environment during a run, we 

checked the response to such changes by simulating different scenarios dis-jointly. 

With time, the activity space of the agent grows. This is evident from the fact that initially 

the case-base associated with each agent is empty. It grows steadily with time, new paths 

Path Taken 
29-23-9 
29-12-9 
9-12-13 
9-2-13 

19-5-6-7-27 
19-5-4-7-27 

Dest. 
9 

13 

27 

Run No. 
1 
3 
1 
2 
1 
5 
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keep getting added, or the strength of added paths keeps increasing. Those agents that are 

more active have a larger activity space whereas those that are passive have a much smaller 

activity space. The size of activity space is the size of the SEM case-base, which is reported 

as the sum of distinct paths (cases) multiplied by their frequency. Refer to Table 11.6 for 

these results5. 

Table 11.6: Growth of Activity Space as Given by Size of Case Base. 

E n d  of Day 
Monday 
Tuesday 

Wednesday 
Thursday 

Friday 
Saturday 
Sunday 

11.2.2 Target Selection Module (TSM) 

The current TSM is at a very high level of abstraction. It checks to see if the target is a good 

target - if the location of the target is on an edge whose frequency (of activity space) is 

above a predefined threshold, it is then returned as a safe target or else a risky target. The 

simulation should thus produce this causal effect, whereby the working of the TSM depends 

on the activity space as created by the SEM. This causal effect does indeed happen. 

With each agent is associated its 'crime likes', which is a value between 0 - 100 for the 

different crimes (car theft, shop lift, robbery). With each node (of the edge) is associated 

the targets located on that node called 'criminal opportunity'; which is a value between 

0 - 100 for the different crimes. If a target is found to be suitable (i.e located on an 

edge above a certain frequency threshold) the probability of victimization is computed as 

a function of 'crime likes', 'criminal opportunity' and 'frequency'. We then decide whether 

the victimization of targets was successful or not based on the calculated crime probability 

and by using non-determinism; if it was successful the value of 'crime likes' is increased for 

that agent for that crime, or else decreased. This emulates the fact that agents reinforce 

Agent  1 (Active) 

325 

649 
973 
1297 

1621 

1849 

2107 

51t should be noted however, that with each path taken we store the possible combinations of this path 
as separate paths in the case-base, so indirectly the length of the path affects the size of the case-base. 

Agent  2 (Medium) 
119 

227 
335 

443 

551 

667 

759 

Agent  2 (Passive) 

115 
217 

319 

421 

523 
559 

625 
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their decisions positively or negatively depending on the outcome of their behavior. 

Table 11.7 shows an output snippet for an agent that has initial 'crime likes' [cartheft = 

100, shoplift = 10, robbery = 701 ; and activity edge threshold of 2 (i.e only considers 

targets located on edges that he has visited at least twice as good targets). We show some 

scenarios for edge 2-3 that has criminal opportunities on node 2 as [Cartheft = 38, Shoplift 

= 0,Robbery = 01 and 3 as [Cartheft = 38, Shoplift = 0, Robbery = 0 1. Only car theft 

scenarios are shown here. 

Run I Edge Activity Strength I Crime Likes I Crime Probability I Successful I 

4 1 3 

Table 11.7: Target Selection. 

6 1 5 

40 

5 1 4 
44 

45 Yes 
42 

60 

7 1 6 

No 
40 50 

55 

Yes 

Yes 
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PUTTING IT ALL TOGETHER 



Chapter 12 

Conclusion, Contribution and 

Challenges 

In this thesis we have proposed a novel approach to modeling and simulation of crime 

patterns and theories in crime analysis and prevention - a key aspect in Computational 

Criminology [17]. This is achieved by combining the abstract state machine (ASM) paradigm 

for mathematical modeling of discrete dynamic systems, with multi-agent systems, and other 

problem-solving techniques. 

The virtuosity of this work is extolled in its pioneering nature [19] [20] [18] [21]. It is 

the forerunner in rendering the theoretical field of Computational Criminology [17], [16] 

a pragmatic and a tangible base, sound both from a computational and a criminological 

perspective. To the author's best knowledge, there has been no former published research 

in Computational Criminology, of the magnitude presented in this work. 

We exemplify our approach by modeling and simulating spatial and temporal aspects of 

crime in urban environments. Emphasizing the need for a well-defined and robust mathe- 

matical framework, we devise a distributed abstract state machine model as a formal basis 

for the development of simulation models. Although unconventional, the application of the 

ASM formalism and abstraction principles to social systems turns out to be a promising 

approach; it nicely combines with the established view of multi-agent modeling of social 

systems and provides a precise semantic foundation - something multi-agent system mod- 

eling is lacking. 
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We incorporate reasoning and learning into the model by refining the abstract model with 

Case-Based Reasoning. In so doing, we also develop formal executable semantics of an ab- 

stract case-based reasoner, with its subsequent refinement to a concrete CBR. This by itself 

deserves mention, since to the best of our knowledge there has been no prior attempt at 

deriving a formal specification of the Case-Based Reasoning Process. 

We also present a novel Cognitive Navigation Algorithm, that incorporates a combination 

of exploration and learning, and takes into account person specific cognition of geography, 

in forming path planning decisions. 

Mathematical and computational modeling of crime serves multiple purposes. It has a di- 

rect value in law enforcement, in intelligence led policing, and in proactive crime reduction 

and prevention. For intelligence led policing, this model would make it possible to predict 

likely activity space for serial offenders for precautions and for apprehension. For proactive 

policing, modeling of crime makes it feasible to build scenarios in crime analysis and pre- 

vention, and provides a basis for experimental research allowing experiments that can often 

not easily be done in the real world. 

The particular challenge we face is the complexity and diversity of the problem space due to 

two major factors: a) the inherent complexity and dynamics of social systems, and b) the 

cross-disciplinary nature of the research field spanning Criminology, Environment Planning, 

Modeling & Simulation, AI, Navigation. 

To this end, we can say that the ASM abstraction mechanisms greatly simplified the task of 

extracting and formalizing behavioral aspects of the system under study and were invaluable 

for delineating the borderline between the system and its operational environment. 

Our main theoretical result is the abstract behavioral model of person agents interacting with 

their objective and subjective environments, and potentially with each other. Specifically, 

the model carves out the activity, awareness and crime occurrence space of criminal agents 

depending on their personal preferences. Although abstract, the model is complete with 

respect to the given level of detail. Our main practical result is an executable version of 

the distributed ASM model which is based on AsmL and is used for experimental validation 

of the abstract model. The AsmL model also serves as a platform for the construction of 

discrete event simulation models. 

The model is designed for robustness with the intention to extend and refine it as required 
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to gradually incorporate principles and techniques from other research disciplines, e.g., for 

dealing with various cognitive aspects, especially in modeling the target selection process. 

Although the current model focuses on physical crime in urban environments, the model is 

general and abstract, and thus in principle scalable not only to different modes of crime, 

but different levels of spatial aggregation. It can thus be used to simulate a broad range 

of crimes - mundane crime like robbery, car theft, burglary etc.; crimes of passion such 

as serial murder, homicide, rape etc; non-conventional crime like corporate crime, cyber 

crime, intrusion detection. It can also be used at different levels of spatial aggregation viz, 

micro-level (airports, malls, downtown), meso-level (within cities, provinces) and macro- 

level (between countries, geopolitical crime). 



Chapter 13 

Opportunities and Future Research 

As mentioned before, to the best of our knowledge, this work forms the first published 

research in Computational Criminology [I91 [20] [18],[21] . In this vein, the abstract frame- 

work serves as a backbone for extending the model along different dimensions of refinement, 

for its full composition. This opens avenues for incorporating various problem-solving and 

decision-making techniques spanning multiple fields, that fill the niche space created by the 

abstract functions of the DASM model. 

To begin with, various abstract functions of the Target Selection Module need to be refined. 

These functions will typically represent a combination of Case-Based Reasoning and Model- 

Based Reasoning, similar to the reasoning approach adopted in SEM. This entails deriving a 

concrete CBR from the abstract CBR for target selection; and also formalizing the patterns 

in target templating and selection, which needs to be carried out in consultation with the 

criminologists. 

As highlighted in [56], Data Mining has great potential in Computational Criminology. 

Pertinent to our model, classification, clustering and feature selection algorithms commonly 

used in data mining [60] can be used for instantiating agents with their daily schedules 

and their personal preferences (profile). Daily schedules and preferences are typically based 

on demographic factors (age, race, gender) and socio-economic factors (income, race etc), 

and play a paramount role in determining the awareness space and subsequently the crime 

occurrence space of agents. These algorithms can be applied on data sets of criminals and 

their profiles. The School of Criminology at SFU has access to such databases, and it is 
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anticipated that the model will be integrated with such techniques in near future. 

Probabilistic extensions of the model would help in supplementing predictive modeling. 

Since it is nearly impossible to attain a cent percent predictive power, probabilistic guesses 

are a better estimate for some scenarios. Specifically, by using a probabilistic technique 

in ADM, one can assign probabilities to the 'next destination' a person is likely to visit. 

Similarly, in the TSM, one can associate probabilities for the victimization of targets. 

A mature visualization developed using sophisticated GIs applications such as ArcGis, Map- 

Info etc, and event-driven programming, with active user interaction would greatly enhance 

the analytics and understanding of the dynamics of the system. It would also supplement in 

carrying out further verification and validation of the model. We use a modest visualization 

developed in C++ and OpenGL by the Graphics Lab at  SFU for the purpose of this thesis. 

However, further collaboration is anticipated with the Graphics Lab on this front. 

One might pose the lack of substantial numerical results as a critique to measure the reli- 

ability of the model. However, as highlighted in Chapter 11, the problem of experimental 

validation is more daunting than it seems. In descriptive modeling, the problem of providing 

evidence for the validity of a model has a different meaning than in prescriptive modeling. 

A combination of qualititive and quantitative methods are called for. Developing effective 

verification and validation techniques deserves a more thorough investigation and is subject 

of our future work. 

Finally, a note on the scalability of the model is noteworthy. The model is scalable with 

respect to two aspects (1) different modes of crime, and (2) different levels of spatial ag- 

gregation. Although currently we focus on physical crime in urban areas which includes a 

broad range of crimes - mundane crime like robbery, car theft, burglary etc.; crimes of pas- 

sion such as serial murder, homicide, rape etc. - principles of environmental criminology 

suggest that that the theories embody the essence of other non conventional crimes as well. 

In principle, the model can be extended to simulate patterns of non-conventional crime like 

corporate crime, cyber crime, intrusion detection. It can also be applied to simulate pat- 

terns at different levels of spatial aggregation viz, micro-level (airports, malls, downtown), 

meso-level (within cities, provinces) and macro-level (between countries, geopolitical crime). 

This line of contention, however, needs more thorough analytical research, and is part of 

our future work. 



APPENDICES 



Appendix A 

Abstract ASM Model 

A. 1 Global Definitions 

A. 1 .I Environment 

Level 0 : Environment Graph 

Err.viro~~rner~i G1.111111 
d o m a i n  ENVIRONMENT-GRAPH 
d o m a i n  NODE 
d o m a i n  EDGE 

OpornOio~is w.r.1 1 IN: g m p h  s t r l ~ d .  
nodeset : ENVIRONMENT-GRAPH + NODE - set 
edgeset : ENVIRONMENT-GRAPH + EDGE - set 

8 ; 
!! . .. 
i / 

x\;otl<. . .. .. 

outIncidentEdges : NODE x ENVIRONMENT-GRAPH -+ EDGE - set 
adjacent : NODE x NODE x ENVIRONMENT-GRAPH + BOOLEAN 

edgeHead : EDGE + NODE 
edgeTail : EDGE + NODE 
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Level 1: Geographic Environment 

1 ,  Goo So&) . I t ~ i ~ t ) ~ ~ t o s  - 
d o m a i n  GEO-STAT-NODEATTR , , O:'"' 
d o m a i n  GEODYNNODEATTR , /' c-):"" 
, , (4, - (e);!ilt (.yi1/12 I - - , )  

d o m a i n  GEONODEATTR - GEO-STATNODEATTR U GEODYNNODEATTR 

; ,/ -- .- - . . - GCO I?dgc , I t t r ~ h t c s  

d o m a i n  GEO-STATEDGEATTR ;,I 8,;"" 
d o m a i n  GEODYNEDGEATTR , ' 8ft/'' 
/' f (-)( (@y'. ( 3 ! 7 ~ 1 1  ) 

d o m a i n  GEOEDGEATTR - GEO-STATEDGEATTR U GEODYNEDGEATTR 
, c3 = ((+(. (9) ) 
d o m a i n  GEOATTR -= GEOEDGEATTR U GEO-NODEATTR 

... - - (kwgragl~ic I * h  ii ormrcrl: --- --- . - 

1 ! G'c: ,>,, = (11. q 
GEOENV = ENVIRONMENT-GRAPH where 
geoAttr : GEOENV 4 GEOATTR 

/,' (:PO Kin I ~ O I I I I I C ~ ~  f[111( l i on<  
1 ;  {y~' \ - q(-);'q 
geoStatzcNodeAttr : NODE x GEOENV x GEO-STATNODEATTR 4 VALUE 
I /  {);to' \ - ?((,>:I"'L) 
geoDynamzcNodeAttr : NODE x GEOENV x GEODYNNODEATTR 4 VALUE 
; I  { ) p i  p 4  ?((+;'('+) 
geoStatzcEdgeAttr : EDGE x GEOENV x GEO-STATEDGEATTR 4 VALUE 
1, {y@ . 1,' 7 ? ( ( 5 y 1 ~ 7 3 )  

geoDynamzcEdgeAttr : EDGE x GEOENV x GEO-DYNEDGEATTR 4 VALUE 
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Level 2: Subjective Environment 

/ /  Suhjcct ivc? 1-hvironrncmt At  tribut,rs 
d o m a i n  PEREDGEATTR /; ,\jlC I. 

d o m a i n  PERNODEATTR /! A?"' 
d o m a i n  PERATTR - PEREDGEATTR U PERNODEATTR /; A::'' = (A:'"'. .\JI"") 

d o m a i n  AWEDGEATTR , /  A:'" 
d o m a i n  AWNODEATTR / I  %!IL' 

d o m a i n  AWATTR - AWEDGEATTR U AW-NODEATTR / /  A,zrt - (A;'."': A?':) 

d o m a i n  ACEDGEATTR ,' A:' 
d o m a i n  ACNODEATTR /, A T  
d o m a i n  ACATTR - ACEDGEATTR U ACNODEATTR , A,\( j ,\tC, ,) 

d o m a i n  SUBJATTR - PERATTR U AWATTR U ACATTR 
d o m a i n  SUBJEDGEATTR - PEREDGEATTR U AW-EDGEATTR U ACEDGEATTR 
d o m a i n  SUBJ-NODEATTR - PERNODEATTR U AWNODEATTR U AC-NODEATTR 

j / 
; I Sub,joct,i\-c> I~nviroimmt 
I /  (;S7,415r,1, -- :I) 
SUBJENV - GEOENV where 
subjAttr : PERSON x SUBJENV -+ SUBJATTR 

I ,' SII~) ] (Y t i \  FII\  i~ o lm~mt  ll(~lilt(~(i I?111rtlor1+ 
!; .I, !I(:I:ST x l< --. ?(A,) 
subjEdgeAttr : PERSON x EDGE x SUBJENV x SUBJEDGEATTR -+ VALUE 
' ! &I,, . A(:EN I x 1- -- f ( A ,  j 
subjNodeAttr : PERSON x NODE x SUBJENV x SUBJNODEATTR -+ VALUE 

Level 3: R e f i n e d  Attributes 

I I -- - (:PO St,il IC Nocic .\ttlibvtc - - 

coordinate : -+ GEOSTATNODEATTR 
nodeName : -+ GEOSTATNODEATTR 

(:co St,') l I(* R&,(l .It t I ilm 
tance : -+ GEOSTATEDGEATTR 

roadType. -+ GEO-STATEDGEATTR 
edgeName : -+ GEO-STATEDGEATTR 

1 Ceo I)yn.~rnic Sodc Att I ih111 c. 

trafic : -+ GEODYNEDGEATTR 
roadcondition : -+ GEO-DYNEDGEATTR 
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i f  -- 1 ' ~  rq)I  ion ail I r~ 1n1t cs - -- - 

PEREDGEATTR GEOEDGEATTR 1 1 A:!" 
PERNODEATTRRIBUTE = GEONODEATTR 1, A?'' 

' tlm i \  tvl furl(.( loll lo1 >In ,ur:nc>~. spec 
awarenessSpace : PERSON x SUBJENV + EDGE - S e t  
actzveAwarenessSpace : PERSON x SUBJENV x VALUE + EDGE - S e t  

,frequency :+ ACEDGEATTR 
triplmportance :+ ACEDGEATTR 
rein,forcement :+ ACEDGEATTR 

, (IcI.I\ ~d f ~ m (  t ~ o n  foi KI i~ 11 v s p x ~  

actzvztySpace : PERSON x SUBJENV + EDGE - S e t  
actzveActzvztySpace : PERSON x SUBJENV x VALUE + EDGE - S e t  

Level 4: Refining the abstract domain VALUE 

VALUE = REINFORCEMENT U TRIPJMPORTANCE U FREQUENCY 
INTENSITY U TRAFFIC U DISTANCEU 
ROAD-TYPE U ROAD-CONDITION 

DISTANCE - INTENSITY = FLOAT 
FREQUENCY = INTEGER 

I /  1 1 1 - : 1 ~ 1 ~ ~ ~ 1 ~ ~ ~ 1 ~ ~ 1 1 - ~ \ - ~  - --- 
positive :+ REINFORCEMENT 
negatzve :+ REINFORCEMENT 
neutral :+ REINFORCEMENT 

r > 

,' I I  I Z I P - l ~ 1 I ' o l ~ I : \ ~ C I 1 :  ----- 

obligatory :+ TRIPJMPORTANCE 
required :+ TRIPJMPORTANCE 
notRequired :++ TRIPJMPORTANCE 
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1 ' , , 'I- It:! I:I.7 I c -- 

low :-+ TRAFFIC 
medium : 4  TRAFFIC 
high :-+ TRAFFIC 
blocked :4 TRAFFIC 

, I _- 
- 1tOAI)~'~YI'E 

minor :-+ ROAD-TYPE 
major :-+ ROAD-TYPE 
highway :-+ ROAD-TYPE 

, I  1 ~ ~ ) ~ \ 1 ~ ~ ~ ~ 0 ~ 1 ~ 1 1 - ~ 0 ~  . .  . 

favorable :-+ ROAD-CONDITION 
unfavorable :-+ ROAD-CONDITION 
neutral :* ROAD-CONDITION 
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A.1.2 Linking Social Systems to  DASM Models 

! 1 1 Icq)ping 
, ' I Soil~c Soc.1~11 Erlt itirs 
domain COP, CRIMINAL 
domain CAR, BUS 
domain DRUGS, CASH 

I ! \l-\S I<ulitics 
d o m a i n  ENTITY 
d o m a i n  PASSIVE-OBJECT 
domain ACTIVE-OBJECT 
domain AUTONOMOUSAGENT 
ENTITY - PASSIVE-OBJECT U ACTIVE-OBJECT U AUTONOMOUSAGENT 

', lhpp111g 
PASSIVE-OBJECT - DRUGS U CASH 
ACTIVE-OBJECT = CAR U BUS 
AUTONOMOUSAGENT 2 COP U CRIMINAL 
AGENT - AUTONOMOUSAGENT 

I I-Iierarchical ( ' la~~il ica~iori  
domain ATTRIBUTES 
domain BEHAVIOR 
domain RULES 
domain MEMORY 
domain MOTIVATIONS 
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.wive 0 
static attributes : PASSIVE-OBJECT -+ ATTRIBUTES 

1 -Jlct IVC C)l).j<Tl 
ACTIVE-OBJECT - PASSIVE-OBJECT where 

behavior : ACTIVE-OBJECT -+ BEHAVIOR 
behavior(a) - dynamic attributes 

," - -- &\ lit o l ~ o l ~ l o ~ l ' ,  . \ ~ < M  
AUTONOMOUSAGENT = ACTIVE-OBJECT where 

rules : AUTONOMOUSAGENT --, RULES 
ruLes(a) = Program(a) 

memory : AUTONOMOUSAGENT -+ MEMORY 

motivations : AUTONOMOUSAGENT -+ MOTIVATION - Set 

It should be noted that the formal representation of the classification presented here is 
used as a means for understanding the system. While we use explicit domains here for 
MEMORY, RULES, BEHAVIOR, ATTRIBUTES, in the subsequent instantiation of au- 
tonomous agents, we don't extend these domains vis-a-vis. Instead, we may use abstract 
and derived functions, and other domains, that constitute these domains indirectly. 
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A.1.3 Person Agent 

Level 0 

d o m a i n  PERSON 
d o m a i n  MODULE 
d o m a i n  AGENT 

d o m a i n  SEM 
d o m a i n  TSM 
d o m a i n  ADM 
MODULE = SEM U TSM U ADM 

AGENT - PERSON U MODULE 

' 1  
i '  

Ttw  in i1 O I ~ I I W I I ~  - - - - 

m o n i t o r e d  geoEnv : + GEOENV 

/ /' - --- llodulc. 
parentAgent : MODULE + PERSON 

, ! I  -- l'w-m 
spaceModule : PERSON + SEM 
targetModule : PERSON + TSM 
decisionModule : PERSON + ADM 

1 ,' i t i x i l ~ x v  h t  a bt I w t  tiivs 

currentNode : PERSON + NODE 
currentEdge : PERSON + EDGE 
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Level 1 

,'I - CllR Cor~~poi~i~rl t . i  01 l h  l l o t l r h  
d o m a i n  CBR 
d o m a i n  SEM-CBR 
d o m a i n  TSM-CBR 
CBR - SEM-CBR U TSM-CBR 

tsmCBR : TSM + TSM-CBR 
tsmCBRDominant : TSM + BOOLEAN I I)r\lr: IIIIIIC* i f  \ l ~ r ~ ~ o i >  or E X ~ I O I C I  15 i10111illi111t 
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A. 1.4 Signals 

/I '  Siqn& - --- - 

SIGNAL - 
INFORMARRIVAL U NEWPROBLEM U FEEDBACKAVAILABLE 
NEWDEST U WEIGHTS-UPDATED U CRIMINALMOTIVATED 
PROBLEM-SOLVED U INIT 

The structure of each SIGNAL is formulated in the corresponding level of the model it 
is used in. However, for sake of simplicity, we enumerate below the structure of all the 
signals. For details on the keywords 'Trigger' and 'Onsignal', the reader is referred to [41]. 

,'! IS1~'ol:~I 1111:\1. - 

anivalTime : INFORMARRIVAL + TIME 
path : INFROMARRIVAL + PATH 
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:, T1~I\Y_l'l~O131,1:11 - 

problem : NEWPROBLEM --t PROBLEM 
owner : NEWPROBLEM --t SEM 

I - - I~~~l~~l~13~l~yli~~\~~~llI~.\131,1~ - - - 

cbrProblem : FEEDBACKAVAILABLE -. PROBLEM 
cbrSolution : FEEDBACKAVAILABLE --t SOLUTION 
externalFeedbaclc : FEEDBACKAVAILABLE --t FEEDBACK 

: : --. .- .t'E\l~_LlES'l' 
newDest : NEWDEST --, NODE 

, I  
I r l ' lmH1,~1 l ~ s ~ ~ I > ~ - E I ~  - 

. .. -- 

solution : PROBLEMSOLVED --t PATH 
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A.2 Space Evolution Module (SEM) 

Definitions 

domain PATH - NODE - Seq 

domain MODE - { id le ,  pathPlanning, roadSelection, localR.ePlanning, running, pathcompleted) 

currentEdge : SEM + NODE , ' , I  Curlcwt ctlgc slolotl I ~ I  .I'rrsoil' ! lq1111  
currentEdge(a) = ~urrentEdge(~arentA~ent(a)) 

currentNode : SEM + NODE // Current node slored ill 'Persor~' Agciit. 
currentNode(a) - c~rrentNode(~arentAgent(a))  

,: 
/: 1)ecides \~-lletl~er .~uggc?stedEilgc' is fi t ,  for t.rawl.scr1: hascd oil (:IIITCII~ row1 condit~ioi~s. 
acceptable : SEM x EDGE + BOOLEAN 
,/ 1)trc:ides wlictllcr the tiinc rcquirt?d for t~.;r.veliilg :.alo~ig t . 1 ~  curreill ctlgc 11;)s elapsed. 
currentEdgeTkaversed : SEM + BOOLEAN 
;; , I>c:ci.dcs \vhcl.h(n: t l ~ c  a,gc>nt has rcacl~cd [lie dest~inaitlr i~otlo. . . 
destNodeReached: SEM + BOOLEAN 
destNodeReached = currentNode(se1f) = destNode(self) 
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Rules 

S E M - P r o g r a m  = 
case mode of 

i d l e  -+ 

onsignal s : NEWDEST 
INITIALIZE(currentNode,  n e w D e s t ( s ) )  
mode := p a t h p l a n n i n g  

roadse lec t ion  -+ 

if destNodeReached then 
mode := pathcomple ted  

else 
if szgnalFromADM then 

HANDLEADM-SIGNALS 
mode := p a t h p l a n n i n g  

else 
GET-SUGGESTED-EDGE i l l  s ~ ~ q q t  aItdl;.'dvc is ~ ip t l i l~cd  
mode := 1ocalRePlanning 

1oca lReP lann ing  -+ 

if acceptable(suggestedEdge) then 
mode := r u n n i n g  
currentEdge := suggestedEdge 

else 
mode := p a t h p l a n n i n g  

RECORD-SELECTED-EDGE 

r u n n i n g  -+ 

if currentEdge Traversed then 
UPDATE-EDGE-PERCEPTION 
FINALIZE-EDGE-TRAVERSAL 
S E T S E M - M O D E  

pa thcomple ted  -+ 

FINALIZE-TRIP 
mode := i d l e  

where 
currentEdge - currentEdge(parentAgent(se1f)) 
destNodeReached - currentNode(parentAgent(se1f)) = destNode(se1f) 
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Definitions 

i i ; :. .. ..... ~~ -p-----....-...... 

1 ;  Ijtxucl WP (11' Sigili.>.l ISFO1I ~~1..AR~ltIVASi - - 

arrivalTzme : INFORMARRIVAL + TIME 
path : INFROMARRIVAL + PATH 

Kcpt in 
cbrDominant : SEM + BOOLEAN 
cbrDominant(sem) = semCBRDominant(parentAgent(sem)) 

)t. in 'Working J~ltm 
readyToExplore : SEM + BOOLEAN 
, : . .  
/ ! 11 t riuc, ~xplor(:i: is lwdy to oxplorc> 

randomEdgeSelected : SEM --t BOOLEAN 

attemptedEdge : SEM + EDGE 

traversestart T ime : SEM + TIME 

Rules 

INITIALIZE(source : NODE, dest : NODE) = 
destNode := dest 
sourceNode := source 
takenPath := {source) 

GET-PATH = 
if cbrDominant then 

Get-Suggested-PathMemoTY 
else 

G e t - S u g g e s t e d - P a t h ~ ~ ~ ~ ~ ~ ~ ~  
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Get-Suggested-PathEzplorer = 
suggestedpath t G E T - S U G E S T E D - P A T H E , ~ ~ ~ ~ ~ ~ ( S ~ ~ ~ ,  currentNode, destNode) 

G e t - S u g g e s t e d - P a t h ~ . ~ ~ ~ ~ ~ ~  = 
let pathCBR t GETSUGGESTED-PATHcB~(currentNode, destNode) in 

if Tempty(pathCBR) A newPath(pathCB R )  then 
if complete(pathCBR) then 

suggestedpath := pathCBR 
if Tcomplete@athCBR) then 

suggestedpath t GET-SUGGESTED-PATHM~,~~(~~~~CBR) 
if empty(pathCBR) V TnewPath(pathCBR) then 

suggestedpath t GET-SUGESTED-PATHExPlorer(self, currentNode, destNode) 
where 

complete@) - tail(p) = destNode 
newPath(pathCBR) - pathCBR 7 E suggedtedPath(self) 

HANDLE-ADM-SIGNALS r 
onsignal s : NEWDEST 

INITIALIZE(currentNode, newDest(s))  
onsignal s : WEIGHTS-UPDATED 

UPDATE-WEIGHTS(s) 

GET-SUGGESTED-EDGE = 
if goRandom then 

Get-Suggested-Edgepath 
if # goRandom then 

Get-Suggested-EdgeRandOm 

Get-Suggested_EdgeRandom - 
choose e in outInccidentEdges(currentNode) 

suggestedEdge := e 
randomEdgeSelected := true 

Get-Suggested-Edgepath 
let edge = firstEdge(suggestedPath) in 

suggestedEdge := edge 
remove head(suggestedPath) from suggestedpath 

where 
firstEdge(p) = edge(head(p), second@)) 
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RECORD-SELECTED-EDGE - 
if acceptable(suggestedEdge) then 

currentNode := undef 
/! the :i.gcnl sr art s passing t.he edge 
i I 

traverseStart Time := now 
else 

attemptedEdge := suggestedEdge 

FINALIZE-EDGE-TRAVERSAL - 
let node = edgeTail(currentEdge) in 

cunentNode := node 
currentEdge := undef 
add node to talcenpath 

SET-SEM-MODE = 
if 7randomEdgeSelected then 

mode := roadSelection 
else 

randomEdgeSelected := false 
mode := pathPlanning 

FINALIZE-TRIP - 
trigger s : INFORMARRIVAL, decisionModule(parentAgent) 

arrivalTzme(s) := now 
path(s) := talcenpath 

SEND-FEEDBACK-TO-CBR(curProblem, pathCBR, talcenpath) 
readyToExplore := false 

A.2.3 Level 2 

Definitions 

/ , I 1iq) t  iu \ V o ~ k i ~ ~ g  l l ~ m o r y  -- - -. 

~ ~ ~ P r o b l e m  : SEM 4 PROBLEM 
closeness : SEM + INTEGER 
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Rules 

GET-SUGGESTED-PATHcBR(currentNode : NODE, destNode : NODE) - 
if ~waitingForSigna1 then 

SEND-NEW-PROBLEM-TO-CBR(currentNode, destNode,  closeness) 
waitingForSigna1 := true 

if waitingForSigna1 then 
onsignal s : PROBLEM-SOLVED 

return solution(s) 
waitingForSigna1 := false 

where 
closeness = closeness(self) 

GET-SUGGESTED-PATHMiXed(partialPathCBR : PATH) r 
let partialPathExplorer + GET-SUGGESTED-PATHE,,~,,,,(self, ta i l (par t ia lPathCBR) ,  

destNode) 
in 

let 
pathMixed + concat(part ialPathCBR, part ialPathExplorer)  
explorerpath  + G E T - S U G G E S T E D - P A T H E ~ ~ ~ ~ ~ ~ ~  (sel f ,  currentNode,  dest Node)  

in 
return superior(pathMixed,pathExplorer) 

Definitions 

domain PROBLEM 
domain FEEDBACK 
domain SOLUTION = PATH 

St.r~.~ci.urc> 01' S i g ~ ~ d  S E  W-1'II.O'RI',F,lL 
EM -+ PROBLEM 

owner : NEWPROBLEM -+ SEM 

! ; 
i ! Structure of Sigrid FEEl:~F3iZC~K-iZ\~'~iIL.14R1j.F, -- 

cbrproblem : FEEDBACKAVAILABLE --t PROBLEM 
cbrSolution : FEEDBACKAVAILABLE -+ SOLUTION 
externalFeedbaclc : FEEDBACKAVAILABLE --t FEEDBACK 
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I -- .- l ' l ~ o l ~ I , I ~ . \ I  -- -. - 

source : PROBLEM + NODE 
dest : PROBLEM + NODE 
t ime  : PROBLEM 4 TIME 
closeness : PROBLEM -+ INTEGER 

, I  FITFllH!lC!li 
pathTaken : FEEDBACK 4 PATH 

Rules 

SEND-NEW-PROBLEM-TO-CBR(source : NODE, dest : NODE, closeness : INTEGER) - 
let p = CREATE-NEW-PROBLEM(source, dest ,  n o w ,  closeness)  in 

trigger s : N E W P R O B L E M ,  s e m C B R  
problem(s) := p 
owner(s) := self 

SEND~FEEDBACK~FOR~PARTIALSEND_FEEDBACK_FOR_PARTIAL_SOLUTIONSOLUTION 
curProblem := p 

SEND-FEEDBACK-TO-CBR(p  : PROBLEM, sol : SOLUTION, t p  : PATH) G 

trigger s : FEEDBACKAVAILABLE, s e m C B R  
cbrSolut ion(s)  := sol 
cbrProblem(s)  := p 
externalFeedback(s)  + CREATE-FEEDBACK(takenPath) 

SEND-FEEDBACK-FOR-PARTIAL-SOLUTION - 
if abandonedSolution then 

SEND-FEEDBACK-TO-CBR(curProblem,pathCBR, undefl 
! ' S ( > I I [ ~ I ~ I ~  u r d (  his S~~(~(ll)ct(,k i~rlpl~(ls 1 ho pat 11 wa> a t ) a r ~ < l o ~ ~ ~ d ,  

where 
abandonedSolutzon - dest(curProb1em) # currentNode 
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A.3 Target Selection Module (TSM) 

Definitions 

I!  I)oiiiairi> foi 1 lic 1 S\I - .-. -. 

d o m a i n  MODE = {observing, targetTemplating,  targetSelection) 

d o m a i n  CRIME-TYPE 
carTheft :+ CRIME-TYPE 
shoplift:-+ CRIME-TYPE 
robbery :--t CRIME-TYPE 

/ , I  l'argc.1 
d o m a i n  LOCATION - NODE U EDGE 
d o m a i n  TARGET = PASSIVE-OBJECT U ACTIVE-OBJECT 

crimeType : TARGET + CRIME-TYPE 
location : TARGET + LOCATION 

!, 12~mrtioiis atltlcd to Etlgc arid \ ( N I P  
potentzalTargets : EDGE + TARGET - set 
potentzalTargets : NODE --t TARGET - set 

potentialTargets : TSM + TARGET - S e t  / /  ;\I1 o b s o ~ ~ c d  t i ~ l . g ~ l , ~ .  
goodTargets : TSM + TARGET - Se t  / /  'I'argcti~ 't:e~nplatcd' as 'gooil' 
selectedTargets : TSM + TARGET - Se t  // Tai:gc?t~ cwiitliaIIy ~i~ti ir i izccl  
currentlocation : TSM + LOCATION / /  (hirrent. riodc or edge: of tlhc! ptmon 
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Rules 

; j 
, :  
TSM-Program z 

case mode of 
observing + 

onsignal s : CRIMINALMOTIVATED 
if currentLocation # undef then 

. . / /  &I. all lhe (mge ls  l(.)c.ated 'arollird, on' currcwt I:.,oc;~~io~i. 
GET-POTENTIAL-TARGETS(c~rrentLocation)/, Scts ~)oLent.ial':I:i~rgets. 
mode := targetTemplating 
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A.4 Agent Decision Module (ADM) 

Definitions 

, !  j . ... . - . . C)ol,l;l ;I,< ~ 

/ / l!l.t.)I;i ViI i i01.1 
routineActivity :-+ MOTIVATION 
criminalPropensity :+ MOTIVATION 

Rules 

ADM-Program = 
if ROUTINE-ACTIVITY(routineActivity, self) 1 threshold(routineActivity) 
then 

ADMSEM-MONITOR 
if CRIMINAL-PROPENSITY(criminalyPropensity, self) _> threshold(criminalyPropensity) 
then 

ADM-TSM-MONITOR 
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A.4.2 Level 1 : ADM-SEM-MONITOR 

Definitions 

/ / - I:>oIrl;Lills 

d o m a i n  MODE - {monitor, calculate, decide, i n f o r m )  

domain TIME 
d o m a i n  DATE 
d o m a i n  DAY 
d o m a i n  TIMEOFDAY 
d o m a i n  DAYTYPE = {weekday, weekend) 

d o m a i n  PROBABILITY 

, l'R.C)13XBl.iE-1)ES'I" 
toNode : PROBABLEDEST + NODE 
prob : PROBABLE-DEST + PROBABILITY 
l ,/ . A,I']:"O ry?'l:[x.'JT 
; : 

timeOfDay : APPOINTMENT + TIMEOFDAY 
toNodeSet : APPOINTMENT + PROBABLEDEST - Set 
! / ...... ~ ( : ~ J ~ : : ] : : ) [ , - ~ , ; ~ - .  
i i 

fromDate : SCHEDULE --, DATE 
toDate : SCHEDULE 4 DATE 
dayType : SCHEDULE + DAYTYPE / /  wccldty?.: T Y C F ~ O ~ ~  

dailySchedule : SCHEDULE + APPOINTMENT - Set 
;!' I%llSOTXT>-SCf IEIIL IIl'.: ........ 
regularSchedule : PERSONALSCHEDULE --, SCHEDULE - Set // frorr~l1ai.c:. -- toDale = rurtiel' 
specialSchedule : PERSONALSCHEDULE + SCHEDULE - Set // .rornl)at~c uot 1111.d(:f 

i : I kp t  ill PI ohlc 
schedule : ADM + PERSONALSCHEDULE 
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Rules 

/ j  A l l  >:I 5'EM .YJO TITO 1.1, . 

ADM-SEM-MONITOR = 
case mode of 

monitor + 
: , 
;! 1i.r:coid tlic fact a.gr:nt llas ar.ri'i'd at a (lost:. 
onsignal s : INFORMARRIVAL 

arrived(self) := true 
MONITOR-TIME(self) 
/ j  Iiecp riiol~itorii~g Lime LIU st:<: if it. ckiar~~es(ex: niorrlirig to noon, 3pm to .1pii1.) 
; . / /  I l  c.l~;tr~ges~ svl, ruotiv 1.0 c:alr:.~~l;t(c,. 

seq 
calculate + 

;/ F'rol);tl~ili.st:i~iilly c:kioc)w thc irt:sr. tli:st:irirtt.iai~ in thc sc:hec:111lc 
/ /  Sot: n c x t l h t .  
CALCULATE-NEXT-DEST(se1f) 
mode := decide 

seq 
decide + 

if nextDest  (self)  then 
l j l)ecid(~ whellier LO i ~ i l i x n ~  t.hr: agwl  or 1101 - Set: Iiiforni prcdicete 

? i : Ilsually if nrriwd =. trua int'orlrl. oli:c! dwidc. 
DECIDE-TO-INFORM(self) 
mode := i n f o r m  

else 
/ /  No scl~rxlulc amilahlc. Go hack to hI.o.r~ii;ciririg I.ilric1. 
mode := monitor 

seq 
i n f o r m  -+ 

if in f orm(self)  then 
. : 
.!/ l;riggers l:11(: SF11 wilh lkic Xew 1)est.inatiori. 
trigger s : NEWDEST, spaceModule(parentAgent) 

newDest(s)  := nextDest(se1f) 
mode := monitor 

A.4.3 Level 1: ADM-TSM-MONITOR 

Rules 

i :  ; / 
: 2j~)~!1-rp~>il-y[() 3 Irr() 1.1, - -. . . . 
ADM-TSM-MONITOR = 

/ i  t;rigg:.crs t:lw TSM to inilia.lizc its execution. , , 
trigger s : CRIMINALLYMOTIVATED, targetModule(parentAgent) 
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A.4.4 Level 2 

Definitions 

domain HH 
domain MM 
domain MONTH 
domain DAYOFMONTH 
domain YEAR 
domain TIMETYPE - {morning, afternoon, evening) 

/ I ;  - ~ -  ................................................................... 'I'TMT;: ...................................................................... 
1 :  

Get Year : TIME + YEAR 
GetYear(t) = t l (12  * 30 * 24 c 60) mod 1 

GetMonth : TIME + MONTH 
GetMonth(t) t l (30  * 24 * 60) mod 12 

GetDay : TIME + DAYOFMONTH 
GetDay(t) - t l (24  * 60) mod 30 

GetHour : TIME + HH 
GetHour(t) :- ( t /60)  mod 24 

GetMinute : TIME + MM 
GetMznute(t) :r ( t l l )  mod 60 

GetDayType : TIME + DAYTYPE 
weekday : GetDay(t)  mod 7 i n  {0..4) 

GetDay Type(t) - 
weekend : otherwise 

Rules 

j i .................. i ;  , ' - - -  
: ,  

MONITOR-TIME(ADM : self) - 
/ i; Hert.? Tiye 11iouil:or cllangos in I : im I:)y t h e  Honr 
: 1 

let currentHour = GetHour(now) in 
if currentHour # lastTime then 

timeChanged(self) := true 
lastTime(self) := currentHour 
mode := calculate 
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1 -  
, ,  ('alculcitr Scs t  l h t  
CALCULATE-NEXT-DEST(ADM : self) = 

choose ss from specialSchedule(schedule) with matchss(ss) 
FindAppt(self, ss)  

if none 
choose rs  from regularSchedule(schedule) with matchrs(rs) 

FindAppt(self, r s )  
if none 

nextDest(se1f) := undef 
where 

matchss(ss) = GetDate(notu) E date(ss) A GetDay(notu) = day(ss) 
matchrs(rs) - GetDayType(now) = GetDayType(rs) 
date(ss) - { f rornDate(ss) - toDate(ss)) 
day(ss) - dayType(ss) V undef 

FindAppt(se1f : ADM, s : SCHEDULE) = 
choose app from dail y Schedul e(s)  with rnatcht (app) 

ChooseDest(self, app) 
if none 

nextDest(se1f) := undef 
where 

matcht(app) - GetHour(now) = GetHour(time0 f Day(app)) 

ChooseDest(ADM : self, app : APPOINTMENT) = 
choose d in toNodeSet(app) with PROB(d) 

nextDest (self) := toNode(d) 
, , Sots rwv [)ost i l l  cvrd~ug ( 0  thv pro1)ahlilicr ,~ssig~ioti 

9 :  . . , , I,:)c.ci(ic 

DECIDE-TO-INFORM(ADM : self) = 
if arrived(se1f) then 

i n  f orrn(self) := true 
else 

, /  Ask (116: ngoilt is it wcruts Lo cl~ailgcl ils dcstiiitirliou. 
in f orm(self) := ASKAGENT(se1f) 
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Refined ASM Model 

B. 1 Case-Based Reasoner (CBR) 

B. l . l  Abstract CBR: Level 0 - 3 

Level 0 

Definitions 

domain CBR 
domain POSTSOLMODULE 
domain OWNER 
AGENT - CBR U POSTSOLMODULE U OWNER 

domain MODE r {idle, retrieve, reuse, done) 

domain CASE 
domain CASE-Index 
domain CASE-Content 
domain CASE-Outcome 

domain PROBLEM 
domain SOLUTION 

I ,  - - - 
1 ,  -C!XSE 
caselndex : CASE -+ CASE-Index 
casecontent : CASE -+ CASE-Content 
caseOutcome : CASE -4 CASE-Outcome 
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mode : CBR -+ MODE 
caseBase : CBR -+ CASE - Set 
postSolModule : CBR -+ POST-SOL-MODULE 
owner : CBR -+ OWNER 

ballParkSolution : CBR -+ SOLUTION 
finalSolution : CBR -+ SOLUTION 
problem : CBR -+ PROBLEM 

Rules 

CtIR I'rogl<\lll 

CBR-Program = 
case mode of 

idle --t 
onsignal s : NEWJROBLEM 

problem(self) := problem(s) 
owner(self) := owner(s) 
mode := retrieve 

done --t 
, , 11 Ig#>rh th0  pO>l%l  ~ ~ O d l d O  t o  dilrl f l l l l ~ l ~ l l ~  111 pilr ; l~I(~~. 

trigger s : INIT,postSolModule(self) 
1 Scnd t h  solut i u ~ r  hack ( o  t h c  owlrc~.  

trigger s : PROBLEM-SOLVED, owner(self); ! scud 10 n llom ' 
solution(s) := f inalSolution(self) 

mode := idle 

where 
mode = mode(se1f) 
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Level 1 

Definitions 

Csetl 1)) lict r i t~ l c  Rule 
d o m a i n  RETRIEVEMODE - {idle, i den t i f y ,  match, rank )  
retrieveMode : CBR + RETRIEVE-MODE 
zdentijiedIndex : CBR + CASE-Index 
matchedcases : CBR + CASE - Set  

, ,' L%Yl 1 ) )  ll(~11h~~ 1<111(~ 
d o m a i n  REUSEMODE = {idle, copy, adapt) 
reuseMode : CBR + REUSEMODE 
zscopy : CBR + BOOLEAN 

Rules 

, ,  - I1I1I1I? 1l:i'P: 
RETRIEVE(se1f : CBR) - 

case retrieveMode o f  
idle + 

retrieveMode := i den t i f y  

iden t i f y  + 

: / 'l 'l~is aels idmt ilidIndr~x- 
IDENTIFY(self, problem(self)) 
retrieveMode := match 

match + 

l'lm sot< nlatc.llcd(',~ws. l ~ s d  on id<mtilioclIiltlcx- 
MATCH(self, identi f iedIndex(se1f)) 
retrieveMode := rank 

rank + 

,',' I ' h  w t  s I I I C  t)~illparkSoI~~( 1011. ~ M Y I  OII I I I ~ ~  c h d ( ' l r ~ s ( +  
RAN K(self, matchedCases(se1f)) 
retrieveMode := idle 
mode := reuse 

where 
retrieveMode r retrieveMode(se1f) 
mode = mode(self) 
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; --------- -- 
, , l{p'(;S].; 
REUSE(se1f : CBR) = 

case reuseMode of 
idle --, 

if isCopy(self) then 
reuseMode := copy 

else 
reuseMode := adapt 

COPY + 

f inalSolut ion(sel f)  := bal lparkSolution(se1f) 
I 

; Sets linalSol11l ion 
reuseMode := idle 
mode := done 

where 
reuseMode reuseMode(sel f)  
mode - mode(se1f) 

Level 2 : Post Solution Module 

Definitions 

domain POSTSOLMODE - {idle,  evaluate, retain,  done) 
domain FEEDBACK 
domain UNEVAL-CASE 
domain EXTRACTEDJNFO 

I 
1 L.s1-:\ A l ~ ~ . ~ l ' I m  

unevalProblem : UNEVAL-CASE + PROBLEM 
uneva~Solution : UNEVAL-CASE + SOLUTION 
feedback : UNEVAL-CASE + FEEDBACK 
repairedSolution : UNEVAL-CASE + SOLUTION 
extractedlnfo : UNEVAL-CASE + EXTRACTEDJNFO 
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I '  
1 I'OS'f _SOI._.\ lOl~~~I,I< 

mode : POST-SOLMODULE + POST-SOLMODE 
parentCBR : POST-SOL-MODULE --, CBR 
unevalCaseSet : POST-SOLMODULE -+ UNEVAL-CASE - Set 

:; -1 nxil ia~y 
unevalCase : POSTSOLMODULE + UNEVAL-CASE 
addAsUnevalCase : POSTSOLrVIODULE + BOOLEAN 
integrateFeedbaclc : POST-SOL-MODULE --, BOOLEAN 
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Rules 

~'ost.Sol~~t;.ioi~\:lo~l~~lc~ Ihvg 
POST-SOL-MODULE-Program - 

c a s e  mode of  
idle + 

o n s i g n a l  s : INIT 
if addAsUnevalCase(se1f) then 

extend UNEVAL-CASE w i t h  newcase 
unevalProblem(newCase) := problem(parentCBR(self)) 
unevalSolution(newCase) := finalSolution(parentCBR(self)) 
add newcase to  unevalCaseSet(se1f) 

o n s i g n a l  s : FEEDBACKAVAILABLE 
c h o o s e  x i n  unevalCaseSet(se1f) w i t h  match(x,  s )  

unevalCase(se1f) := x 
f eedback(x) := externalFeedback(s) 
ii; Sets ~~nc.w:lCa.sc with x and its S ~ d b a ~ l i  lroin c~~virorlirieil~. . . 

if none 
extend UNEVAL-CASE w i t h  unevalcase 

:'/ 141 a,ssociat.ec.l info illto ur~e\dCasi:. 
unevalProblem(uneva1Case) := cbrProblem(s) 
unevalSolution(unevalCase) := cbrSolution(s) 
f eedback(uneva1Case) := externalFeedback(s) 
add unevalcase to  unevalCaseSet(se1f) 

if integrateFeedback(s) t h e n  
psMode := evaluate 

e l s e  
psMode := done 

evaluate + 

.// Sets lltc ~qairet iSt lui  ion. 
/ /  Sets the ~rlodt-: t o  Etei.ain. 
EVALUATE(self) 

done -+ 

r e m o v e  unevalCase(self) f r o m  unevalCaseSet(self) 
mode := idle 

where 
mode - mode(self) 
match(x,  s )  - unevalProblem(x) = ~ r o b l e m ( s )  A unevalSolution(x) = solution(s) 
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Level 3 

Definitions 

domain EVALUATE-MODE = {idle,  analyze,  repair} 
domain RETAINMODE - {idle,  extract ,  integrate} 

', Fllll(*t 1011s llsP(1 I)>- El-;lllli~~ (? 

evaluateMode : POST-SOLAIODULE -+ EVALUATEMODE 
repairedNeeded : POSTSOLMODULE -+ BOOLEAN 

, Frulct ious 1 1 4  1)) Rot aiu 
retainMode : POSTSOLAIODULE -+ RETAINMODE 
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Rules 

lXAS2 ~ . x T l ?  .. ...... . 

LUATE(self : POSTSOLNODULE) = 
case evaluateMode of 

idle + 
evaluateMode := analyze 

analyze + 

// Sk?k ~qmirSwd(?d  pl'~di(l~tc. 
ANALYZE(self, unevalCase) 
evaluateMode := check 

check + 
,; 'Rasccl on fi:c?tll);ick. Alialilyzo t h  p r o b l t w ,  sol111 ioil 1.0 seo if rqxrir ncedetl 
if repairNeeded(self) then 

evaluateMode := repair 
else 

unevalSolution(unevalCase) := undef 
repairedSolution(unevalCase) := unevalSolutim(unevalCase) 
/ /  scb the c.oi11irined soh~tiorl 
evaluateMode := idle 
mode := retain 

where 
evaluateMode G evaluateMode(se1f) 
mode - mode(se1f) 
unevalCase - unevalCase(self) 
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, - [il'.l' \IS 
RETAIN(self  : POSTSOLXODULE) - 

case retaznMode o f  
i d l e  + 

r e t a i n M o d e  := extract  

ex t rac t  + 

i , r x t  ractctiln h). 
EXTRACT(self ,  uneva lCase)  
r e t a i n M o d e  := i n tegra te  

in tegra te  + 

/ /  I.ni:.ogra.tcs t h o  c??ctl:ac:t.c:ti t ~ o  thr: Chsdhsc.. 
INTEGRATE(self ,  e x t r a c t e d I n  f o(uneva1Case)) 
r e t a i n M o d e  := i d le  
mode := done 

where 
r e t a i n M o d e  = re ta inMode(se l f )  
mode - mode(se1f) 

B.1.2 Concrete C B R  : Level 4 

Level 1 - Concrete Case-Based Reasoner 

Definitions 

d o m a i n  TIMETYPE = { m o r n i n g ,  a f te rnoon ,  even ing)  
d o m a i n  TIME 
d o m a i n  TIMEOFDAY 
d o m a i n  DATE 

d o m a i n  VALUE 
d o m a i n  WEIGHT 

d o m a i n  SEM-CBR r CBR where  
d o m a i n  PATH - NODE - Seq 
SOLUTION G NODE - Seq 
OWNER = SEM 
EXTRACTEDlNFO = CASE - Set  
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1 rl'llll< 
date : TIME + DATE 
tzmeOfDay : TIME + TIMEOFDAY 
timeType : TIME + TIMETYPE 

i ' I > R O l < I J : l l  
source : PROBLEM + NODE 
dest : PROBLEM + NODE 
time : PROBLEM + TIME 
closeness : PROBLEM + INTEGER 

- FI.:171>13.1Cli--- -- . 

pathTaken : FEEDBACK + PATH 

I -('.\SF-Iotlcx 
source : CASE-Index + NODE 
dest : CASE-Index + NODE 
timeType : CASE-Index + TIMETYPE 
date : CASE-Index + DATE 

J I 

/ ~'.lSE-C'Oll~ Pl11 

path : CASE-Content + PATH 

/ , I  -. c ~ l s E - ~ ~ l l 1 ~ ~ o r l l ~ ~  - 
frequency : CASE-Outcome + VALUE 
reinforcement : CASE-Outcome + REINFORCEMENT 
tripImportance : CASE-Outcome + TRIP-IMPORTANCE 

weightcost : CBR + WEIGHT 
weightOutcome : CBR + WEIGHT 
weightTime : CBR + WEIGHT 
subrankedcases : CBR + CASE - Set 

/,, lrwd 13 EWTH \Ci'l'- 
newpathset : POSTSOLMODULE + PATH - Set 
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rightTime - 
1 : timeType(time@roblem)) = timeType(caseIndex(c)) 
0 : otherwise 

outcomeValue : CASE --, VALUE 

outcomeValue(c) - CecEdgeS(casecontent (c ) )  C~EAC-EDGE-ATTR f adorValue(e, f )  

factorvalue : EDGE x FACTOR --, VALUE 
factorValue(e, f )  -= 

localFactorValue(owner, f ,  dest(problem), e )  : e E outIncidentEdges(source(problem)) 
globalFactorValue(owner, f ,  e )  : otherwise 

: / I  I o c ~ ? l l  17?\clOr \-aluv 
localFactorValue : SEM x FACTOR x NODE x EDGE --, FACTOR-VALUE 
localFactorValue(a, f ,  dest, e )  = 

angle(dest, e )  * factor Weight(a, f )  : f = angle 
0 : f = numberOfStops 
i n t e ~ r e t ( ~ e o E d ~ e A t t r ( e ,  f ) )  * factorWeight(a, f )  : f E GEOEDGEATTRIBUTE 

A currentNode(a) = head(e) 
subjEdgeAttr(~arentAgent(a), e,  f )  * factor Weight(a, f )  : otherwise. 

,' C: \ oh1  F a c h  \;\llw 
globalFactorValue : SEM x FACTOR x EDGE --, FACTOR-VALUE 
globalFactorValue(a, f ,  e )  - 

: f = angle 
1 * factorWeight(a, f )  : f = numberOfStops 
subjEdgeAttr(parentAgent(a), e,  f )  * factorWezght(a, f )  : otherwise. 

Rules 

where 
identi f iedIndex G identi f iedIndex(self) 
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! !  , , 
i / 

--------- 4<1iyr'(-:'[.I --- .- 

MATCH(self : CBR, identi fiedIndex : CASE-Index) - 
forall c E caseBase(self) with exactMatch(c, identi f iedIndex) 

add c to matchedCases(se1f) 
seq 
if matchedCases(se1f) = {) then 

let hops = 1 in 
while matchedCases(self) = {) A hops < closeness(problem(self)) 

forall c E caseBase(se1f) with partialMatch(c, identi f iedIndex,  hops) 
add c to matchedCases(self) 

hops = hops + 1 

where 
exactMatch(c, identi f iedIndex) = source(caseIndex(c)) = source(identi f iedIndex) 

A dest(caseIndex(c)) = dest(identi f iedIndex) 
partial Match(c,  identi f iedIndex,  hops) - source(caseIndex(c)) = source(identi f iedIndex) 

A Size(bestPath(dest(caseIndex(c)), dest(identi f i edIndex)) )  <= hops 

RANK(self : CBR, matchedCases : CASE - Se t )  = 
DoSu bRank() 
seq 
choose c in subrankedCases(se1f) with highestDate(c) 

ballparkSolution(self) := path(caseContent(c)) 

where 
highestDate(c) - V x ( x  E subrankedcases) =+ date(caseIndex(c)) 2 date(caseIndex(x))  

DoSubRank(self : CBR) - 
forall c in positiveCases with highestSubRank(c) 

add c to subrankedCases(self) 

where 
highestSubRank(c) - V x ( x  E positiveCases) =X subRank(c) > subRank(x) 
positiveCases - {all nln E matchedCases(self) 

A rein f orcement(caseOutcome(c)) # negative) 
subRank(z)  - weightCost(self) * CostValue(z)+ 

weightOutcome(self) * outcomeValue(z)+ 
weightTime(self) * r igh tT ime(z )  

1 , , -- is('opy - , r 
isCopy(self : CBR) - 

return true 
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, :  ! / 
i ,  

i~~tcgrrlt&~Lxi.c(-[b ?LC k 
integrateFeedback(f a : FEEDBACKAVAILABLE) 

if takenPath(externalFeedback(fa)) <> [I then 
return t rue  

else 
return false 

choose x E unevalCaseSet(sel f)  with unevalProblem(x) = problem(parentCBR(self)) 
A unevalSolut ion(x)  = f inalSolut ion(parentCB R(se l f ) )  

return false 
if none 

return t rue  

i . . - - - .lSAI.\r ZE -- 

ANALYZE(sel f  : POSTSOLMODULE,  unevalCase : UNEVAL-CASE) - 
repairNeeded(self) := false 

: ; ! / 
; ;  l<.X.Tl~.A(~T -- 

EXTRACT(sel f  : POSTSOLMODULE,  unevalCase : UNEVAL-CASE) - 
i// sci  of all posd)lc patlls(Sodc-Seq) 

let newPathSet (se l f )  + GetAllPermutations(pathTaken(f eedback(uneva1Case))) in 
forall path in newPathSet(se1f)  

extend CASE with extractedCase 
caseIndex(extractedCase) := Extract-Indexbath) 
caseContent(extractedCase) := Extract-Content(path) 
caseOutcome(extractedCase) := Extract-Outcorne(path) 
add extractedCase to extractedIn f o(unevalcase(sel f))  

Extract-Content(path : NODE - Seq)  EE 
extend CASE-Content with extractedcontent  

path(extractedContent) := path 
return extractedcontent  
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Extract-lndex(path : NODE - Seq) - 
extend CASE-Index with extractedIndex 

source(extractedIndex) := source(path) 
dest(extraded1ndex) := dest(path) 
timeType(extracted1ndex) := timeType(time(unevalProblem(unevalCase))) 
date(extracted1ndex) := date(time(unevalProblem(unevalCase))) 
return extractedIndex 

Extract-Outcome(path : NODE - Seq) = 
extend CASE-Outcome with extractedOutcoine 

frequency(extractedOutcome) := GETFREQUENCY0 
re in  f orcement(extraded0utcome) := GETREIN FORCEM ENT() 
tripImportance(extracted0utcome) := GETTRI PI M PORTANCEO 
return extractedOutwme 

, '  i 1 > ( ,  . . 

INTEGRATE(self : POST-SOLMODULE, extractedIn f o : CASE - S e t )  = 
forall newcase  in extractedIn f o(unevalCase(se1f)) 

choose oldcase from caseBase with matchExists(oldCase, newcase )  
UpdateCase(oldCase, newcase )  

if none 
add newcase  to caseBase 

where 
matchExists(oldCase, newcase )  - 

source(caseIndex(o1dCase)) = source(caseIndex(newCase))~ 
dest(caseIndex(o1dCase)) = dest(caseIndex(newCase))~ 
timeType(caseIndex(oldCase)) = timeType(caseIndex(newCase))~ 
path(caseContent(o1dCase)) = path(caseContent(newCase)) 

caseBase - caseBase(parentCBR(se1f)) 

Update-Case(o1dCase : CASE, newcase  : CASE) = 
date(caseIndex(o1dCase)) := date(caseIndex(newCase)) 
f requency(caseOutcome(oldCase)) := f requency(caseOutcome(newCase)) + 1 
rein f orcement(caseOutcome(oldCase)) := AVG(oldCase, newcase )  
tripImportance(caseOutcome(oldCase)) := AVG(oldCase, newcase )  
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B.2 Path Explorer Submachine 

B.2.1 Level 0 

Definitions 

I -- - Iicpl ill 'I'olal ilc l l r n o i  i~' - --------- -- 

edgePref: SEM x EDGE x NODE + PREF-VALUE 
readyToExplore : SEM + BOOLEAN 
bestpath : SEM x NODE x NODE + PATH 

Rules 

Rxplolw Sul,Sl.s.chir 
GET-SUGGESTED-PATH~IplOTeT(sem : SEM, currentNode : NODE, destNode : NODE) = 

if readyToExplore then 
choose edge in outIncidentEdges(currentNode) with maxPref(edge) 

return concat(currentNode, bestPath(taiE(edge), destNode)) 
else 

GLOBAL-RE-CALC 
ready ToExplore := true 

where 
maxprefledge) EF Ve(e E outIncidentEdges(currentNode) 

+ edgepreflsem, edge, destNode) > edgePref(sem, e,  destNode)) 
initialize : readyToExplore = false 

B.2.2 Level 1 

Definitions 

1 ' ____-- - licpt in '1'1 ufilc' --- 

global Weight : SEM + WEIGHT-VALUE 
local Weight : SEM + WEIGHT-VALUE 

1 '\'olatilc Flemol:!;' 
NODE + PREF-VALUE 

globalPathPref: SEM x NODE x NODE + PREF-VALUE 

j! ~ t l g ~ l ' ~  ~f 
edgeprefla, e,  dest) = 

globalWeight(a) * globalPathPre f (a ,  tail(e),  dest)+ 
localWeight(a) * LocalEdgePref (a ,  e,  dest) 



APPENDIX B. REFINED ASM MODEL 

B.2.3 Level 2 

Definitions 

I 
/ ,  l h r n a i ~ ~ \  --- 

d o m a i n  INDUCEDEACTOR 
d o m a i n  FACTOR - SUBJEDGEATTR U INDUCEDEACTOR 

/ j Ir~drlcetl Factors 
numberOfStops : -+ INDUCEDEACTOR 
angle : -+ INDUCEDEACTOR 

// I;oc<rl :Kclgc L'rcf 
localEdgePref(a, e, dest) = CfEFACToR localFactorValue(a, f ,  dest, e )  
1' Iiocal Fi1c.t or \.'aluc , , 
localFactorValue : SEM x FACTOR x NODE x EDGE -+ FACTOR-VALUE 
localFactorValue(a, f ,  dest, e )  E 

angle(dest, e )  * factor Weight(a, f )  : f = angle 
1 : f = numberOfStops 
interpret(geoEdgeAttr(e, f ) )  * factor Wezght(a, f )  : f E GEOEDGEATTR A 

[ currentNode(a) = head(e) 
v currentNode(a) = tail ( e ) ) ]  

subjEdgeAttr(parentAgent(a), e,  f )  * factorWezght(a, f )  : otherwise. 

I Glohal F d g ~  I'rd 

gEdgePref(a, e )  - C f  globalFactorValue(a, f ,  e )  
1 ' Glolx~l F'K t I )r \ 7 a l u ~  
globalFactorValue : SEM x FACTOR x EDGE -+ FACTOR-VALUE 
globalFactor Value(a, f ,  e )  = 

: f = angle 
1 * factor Weight(a, f )  : f = numberOfStops 
interpret(geoStaticEdgeAttr(e, f )) * factor Weight(a, f )  : f E GEOSTATEDGEATTR.  
subjEdgeAttr(parentAgent(a), e,  f )  * factor Weight(a, f )  : otherwise. 

Rules 

I .  
I G1ol)al 114':d( ulat ion 

GLOBAL-RE-CALCULATION r 
fora l l  s i n  nodeSet(env) 

Calculate-Best-Path(self, s )  
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I>i , j  
Calculate-Best-Path(sem : SEM,  origin : NODE, type : PREF-TYPE)  = 

local pref [forall a in n o d e s e t  
prefla) := 0 ] 

local tempNodeSet  := 0 
(forall n in nodeset  

forall m in nodeset  
bestPath(sem, n, m, t y p e )  := 0 )  

seq 
( while ( tempNodeSet  # nodeset) / / '  ITsi~ig T11i~boAS14 cwnst;~:r~ct:s 

{let u = Node WithMinLabel(nodeSet - tempNodeSet)  
add u to tempNodeSet  
bestPathPwf(sem,  or ig in ,  u ,  t y p e )  := pref(u) 
bestPath(sem, or ig in ,  u, t y p e )  := concat(bestPath(sem, or ig in ,  u ,  t y p e ) ,  u )  
forall v in (nodese t  - tempNodeSet)  with adjacent(u, v )  

Update-Pref(sem, u,  v ,  t y p e ) ) )  
where 

n o d e s e t  - nodeSet(env)  
nodeWithMinLabel(aN0deSet) - p where p E a N o d e S e t  A 

V s ( s  E ( a N o d e S e t  - P ) )  + pre f ( p )  2 pre f ( s )  

1, - l i t  ' 1  -- 

U p d a t e - P r e f ( s e m  : SEM,  u : NODE, v : NODE, t ype  : PREF-TYPE)  - 
let u-v = gEdgePref(sem, edge(u ,  v ) ,  t y p e )  

if pref(u) + u-v > pref(v) then 
preflv) := preflu) + u-v 

where 
edge(u ,  v )  - a where a E edgeSet(env) A edgeHead(a)  = u A edgeTai l (a )  = v 
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Executable AsmL Model 

The Executable AsmL Model is contained in the attached CD with file name "ASMLModel.doc". 
It is composed of approximately 3,000 lines of code (LOC) and is written using the MS Word 
editor. 
It can be viewed using the MS Word editor or MS Visual Studio. To run the code, you need 
to install .Net Framework and AsmL on your machine. See also the attached README file 
for help. 
As described in Chapter 10, the AsmL model is organized as five distinct parts. 

C. 1 Global Definitions 

Global Definitions are contained in the file "ASMLModel.doc" as Section 1. These are as 
follows: 
Section 1.1: LINKING SOCIAL SYSTEMS TO DASM MODELS 
Section 1.2: ENVIRONMENT REPRESENTATION 
Section 1.3: PERSON AGENT 
Section 1.4: SIGNALS 
Section 1.5: OTHER GLOBAL FUNCTIONS (TIME, etc) 

C.2 AsmL Abstract Model 

AsmL Abstract Model is contained in the file "ASMLModel.doc" as Section 2. It is com- 
prised of the following: 
Section 2.1: SPACE EVOLUTION MODULE (SEM) 
Section 2.2: TARGET SELECTION MODULE (TSM) 
Section 2.3: AGENT DECISION MODULE (ADM) 
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C.3 AsmL Refined Model 

AsmL Refined Model is contained in the file "ASMLModel.doc" as Section 3. It is comprised 
of the following: 
Section 3.1: CASE BASED RESONER (CBR) - Abstract and Concrete 
Section 3.2: PATH EXPLORER SUBMACHINE 

C.4 Execution Specific Addit ions 

Execution Specific Additions are contained in the file "ASMLModel.doc" as Section 4. 

C. 5 Visualization Specific Addit ions 

Visualization Specific Additions are contained in the file "ASMLModel.docn as Section 5. 
These are comprised of the following: 
Section 5.1: DATA STRUCTURE OF XML FILE. 
Section 5.2: COMMUNICATION COMMANDS (between the AsmL Model and Visualiza- 
tion) 
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