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Abstract 

Experimental studies of coordination games consistently show that large groups are 

unable to escape the inefficient equilibrium. Weber (2005) modifies experimental 

design and obtains large groups that coordinate on the efficient equilibrium. This 

feature is incorporated into a computer testbed. After examining both individual and 

social learning, it is found that experimental results cannot be described with a simple 

learning process. A discussion on possible explanations concludes the project. 
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Introduction 

Coordination games are an important tool in macro and development economics. The 

team production model is used in macroeconomics to model fluctuations in macroeco- 

nomic activity that result from changes in agents' expectations and not economic fun- 

damentals, Cooper and John (1988). In development economics coordination games 

describe situations where an economy can get stuck in a poverty trap as a result of 

poor coordination. 

Experiments with coordination games have shown that large groups are unable 

to coordinate on the payoff dominant equilibrium (e.g. Van Huyck et a t  (1990)). 

This result seems to contradict the real world observations of efficiently-operating 

large firms and suggests that a particular feature is ~nissing in the experiments. An 

example from airline business is ~reparat~ion of an airplane for departure. The plane 

needs to be fueled, catered, checked for safety and prepared in other ways for the 

flight. A delay in one of these procedures will lead to a delay in the departure, 

Camerer (2003). 

Weber (2005) modifies the experimental design by allowing groups that are in- 

creasing in size at  an exogenously determined rate. In his experiments the groups 

that grow sufficiently slow are able to coordinate on the efficient equilibrium. In a 

related set of experiments, Weber (2005) allows for endogenous growth by selecting a 

"manager", who decides whether to increase group size or not at  each time period. 

The motivation for this project is to see whether it is possible to construct a 

computer model that would generate results similar to the experimental data. While 

such a 'testbed' cannot substitute an actual experiment it would allow forming a 

fast and cheap prediction of the likely experimental outcome. For other examples of 



testbeds see Arifovic and Ledyard (2005) and Haruvy et a1 (2003). 

The working assumption of this project is that human subjects' behavior can be 

modeled by an adaptive process. A good tool for modeling adaptive processes is 

genetic algorithm (GA). The paper begins with presentation of experimental results 

from Weber (2005). In the following section I present several attempts to replicate 

these experimental results with GA models. Starting from simple models and increas- 

ing their sophistication does not generate results that strongly resemble experimental 

data. 

Both social and individual learning are considered. Social learning corresponds to 

the environment where players are able to learn from each other, either by means of 

genetic inheritance or by imitation. This implicitly assumes either some communica- 

tion or large populations and biological inheritance. In individual learning, the player 

learns from her own potential choices. While in general the player can be allowed to 

communicate with others and modify her strategies to accomodate for more optimal 

strategies, here no such communication is assumed to mimic the experimental setup. 

The simplest model forces players to pick strategies that pick an action, uncondi- 

tional of group size or past minima. Sophistication of players is improved when they 

base their action on past period's choice as in Arifovic (2001) speficiation. In that 

paper each agent is represented by a string that encodes initial choice and actions to 

be taken conditional on past observation. Arifovic (2001) uses social learning and it 

results in transitions across Nash equilibria, with negative correlation between group 

size and average minimum. 

Individual learning with similar specification results in convergence to the low 

action equilibrium. In individual learning each agent is represented by a population 

of strings, with each string encoding a strategy as in social learning model. Only one 

string from that population is chosen to represent the player during a game. Other 

strings do not participate and their fitness needs to be estimated. The conventional 

potential payoff evaluation results in coi~vergence of average minimum towards the 

lowest action level. 

Social learning version of Arifovic (2001) generates results that are better than 

individual learning considered here, despite being inappropriate for experiments on 



coordination games by Weber (2005). Social learning requires agents to be able to 

observe others' strategies, which is not a feature that is available in Van Huyck et 

a1 (1990) or Weber (2005). This suggests that the potential payoff evaluation prin- 

ciples used in individual learning need to be examined further. I conclude that a 

revision to individual learning procedure will help in construction of a useful tesbed 

for coordination games. 



Experimental results 

Experimental design 

Overall design of Weber (2005) is similar to previous work (e.g. Van Huyck et a1 

(1990)). The main difference is that in Weber (2005) the group size is not fixed and 

weakly increases over time. There are two sets of experiments: in the first, set the rate 

of growth is exogenous (pre-determined by the experimenter) and in the second one 

it is endogenous and is determined by a player ("manager") whose payoffs are tied to 

equilibrium of the group that is playing the coordination game. Payoffs for subjects 

playing the coordination game are given in Table 1. 

Table 1: Payoffs for Weber(2005) 



Exogenous growth: design 

Groups of 12 students were presented the game (framed in the context of report com- 

pletion) and anonymously assigned participant numbers. The subjects were given the 

pre-determined exogenous growth path that specified the period at  which a partici- 

pant would join the game. For example, the path might specify that player # 7 will 

join the game in 15th period. All games started with participants #1 and #2 playing 

the game and other players observing the game quietly (participants were told that 

they would receive a 'fair' compensation for the periods not spent in the game). In 

all growth paths, all 12 subjects were participating by the last few periods and games 

after 22 periods. 

In each period, the participants recorded a number from 1 to 7 (action) on a piece 

of paper and handed it to the experimenter. At the end of each period, the minimum 

was announced to all the subjects, including those who weren't actively participating 

yet. This was the only feedback provided. 

Exogenous growth: results 

Nine sessions were conducted with three growth paths that were chosen to give sub- 

jects opportunity for a successful experience with initial growth. The main results 

are: 

in the initial stages when the group size is small they coordinated on a high-level 

of efficiency for a t  least two consecutive periods (8 out of 9 groups coordinated 

on the highest level) 

0 growth does not always work, in 4 out 9 sessions the minimum by period 20 is 1 

however, in 3 out of 9 sessions the groups coordinate on the highest level and 

in the remaining 2 sessions the minimum does not fall below 3 

in several sessions a pattern emerged whereby the minimum would drop by 1 

whenever a new player joined 



Weber (2005) conducts a series of formal tests to compare choices in the growth 

sessions with control session (where group size was fixed at  12). The statistical tests 

mildly support that the distribution of choices was different, with growth sessions 

giving higher number of players playing the efficient strategy. 

Endogenous growth: design 

The only modification from previous design is addition of a "manager" who determines 

the growth path during the experiment (note that manager was allowed to decrease 

the group size). The manager was placed in a separate room from the group and 

an experimenter carried information between the two rooms. The coordination game 

played by the group was described to the manager. Manager's payoffs rewarded large 

groups that are efficiently coordinated and punished large groups that are inefficiently 

coordinated. 

In the first period the group size was restricted to two, but a t  the beginning of 

each subsequent period the manager wrote down a number between 2 and 12, and 

then the participants from 1 to that number played the game in that period (note 

that the manager had the option to reassign participant numbers). The subjects were 

informed that the number of active participants would be determined at  the beginning 

of each period by the manager. 

Endogenous growth: results 

Four sessions were conducted, each lasting for 35 periods. The four managers grew 

their groups very quickly initially, but later reduce the group size and attempted 

slower growth paths. Results: 

the initial rapid growth resulted in coordination failure (medium to low levels 

of efficiency) 

0 two managers reduced group size following coordination failure, but did not 

recognize the need for slow growth and continued to add players at  a fast rate 



two managers did realize the need for slower growth and managed to coordinate 

on high levels of efficiency (6 and 7) 

in one of the sessions, the minimum increased by 1 for each period that the 

group stayed the same size and dropped every time a new player was added. 

This is similar to the pattern from exogenous growth experiments and suggests 

a strong effect of previous experience with growt,h. 



Computer testbed 

Specifics of the game 

There are two approaches to modeling strategy in the coordination games1: 

0 directly allow the agent to pick an action (this action need not be the optimal 

one, perhaps due to bounded rationality of the agent, e.g. the past minimum 

choices were 1 during the last several games yet an agent chooses to play 5); 

0 allow the agent to form an expectation and, imposing rationality, the agent's 

optimal strategy is given by her expectation of the minimum choice, e.g. if the 

agent expects the minimum to be 3 she is better off playing 3. 

Each approach has its advantages and problems. The first approach is easy to 

model, but it takes a simplistic view of human behavior. The second approach is 

more sophisticated but requires a mechanism through which expectations are formed. 

This project attempts to use adaptive learning to explain the experimental results. 

In coordination games explicit and implicit (beliefs) models are equivalent since a 

belief and an optimal choice given that belief coincide. For example, if an agent's 

string encodes 4 then in an explicit model she would choose 4 (because she takes the 

action that is prescribed by the string) arid in the implicit model she would belief that 

the minimum will be 4. By construction, the optimal response to that belief is 4. 

Strategies (or expectations) could be made more sophisticated by allowing condi- 

tioning on some information, for example group size, past action. The first model will 

'This project assumes basic familiarity with genetic algorithms, for a good introduction to this 
subject see Arifovic (1994). 



use simple (unconditional) strategies and the next step is to use strategies conditional 

on group size (for model with strategies conditional upon past choice, see Arifovic 

(2001)). Due to inability of even sophisticated models to explain successful coordina- 

tion in small groups, we had to resort to the specification that achieved it: Arifovic 

(2001). Following this demonstration we extend the model to allow for conditioning 

the strategy on the group size as well. 

Finally, learning could occur at an individual level or at a social level. Weber's 

experimental design did not allow for communication between players and the only 

information obtained after each period was the game minimum. This precludes possi- 

bility of social learning as subjects are not made aware of others' choices (e.g. through 

mean statistic). Generally GA models yield different results for the social and indi- 

vidual learning. In this game the two types of learning give similar results in simple 

specification (unconditional strategies) a.nd different results in Arifovic (2001) speci- 

fication. 

For simple specifications, the results are similar because in individual learning with 

potential payoff evaluation all strategies aside from the observed one will give strictly 

less payoff. For example, if a minimum during previous period was 4, then social 

learning would generate a new population that would have 4 as the fittest strategy. If 

an individual consists of a population of strings that decode in 1-7 range, individual 

selection would generate a new population with 4 as the fittest string. (Note: an 

assumption is needed to  assign potential payoffs if an individual's potential choice is 

below the actual minimum in the game. For example, if minimum was 4 and one of 

potential choices is 1, then the payoff is not defined from Table 1. I assume that in 

this situation agent would imagine his potential choice would also be the lowest and 

hence pick the corresponding payoff .) 

Bearing the above in mind, the models below use explicit, social and individual 

learning models with conditional and unconditional strategies. 



Social learning with unconditional strategies 

Fixed group size 

Each agent is modeled as a binary string of length k. This string can be decoded 

to an integer between zero and (2"l). This integer represents the strategy that the 

player will choose, independent of group size or past choice (hence, unconditional). 

The strategy space is (1,7) and so the string values are normalized with each agent's 

choice given by (6 x dec$~$;'ue + 1). 

A population of N such agents is generated randomly and the game is started. 

Each period the strings are decoded to represent the agents' choices. The minimum 

choice is found and the payoffs are assigned using table 1. Following this the genetic 

operators of reproduction, crossover and mutation are applied. 

The results for N = 2 show that high effort levels were not always achieved, and 

when they were achieved they were not stable. For example, even if initialized at  

the high effort level the coordination does not persist because the first mutant will 

bring the minimum down and make 7 a less fit strategy. Note, while this could in 

principle be corrected by addition of the election operator it would require several 

further assumptions and would only improve stability. At the same time it would 

hinder the dynamics, since by construction of the game any choices apart from the 

minimum are less fit. With election this would imply history dependence, in the sense 

that the minimum choice in the first period would persist. 

The sample simulation in Figure 1 shows the case when population starts off at a 

high effort level. The first mutant at period 4, brings the minimum down. 

If the initial population is generated randomly then high levels of efficiency are not 

always attained. For example, in the following simulation the minimum stays below 

4 (figure 2). 

With larger group size coordination on high effort becomes impossible, because it 

requires all agents to suddenly swtich to high effort (figure 3). 
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Figure 1: Parameter set 1, N = 2, high effort initializatior~ 
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Figure 2: Parameter set 1, N = 2, random initialization 
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Figure 3: Parameter set 1, N = 15, random initialization 
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This is a continuation of the previous model with group size weakly increasing over 

time. At the beginning of simulation a growth path is specified. Growth path contains 

information on the periods of the game at  which the number of players changes. Note 

that since the strategies are simple (unconditional) this does not require a change 

in the strategies of agents. The major change that is required now is specifying the 

learning for agents that are not actively playing the game. 

These players' choices are decoded and their potential payoff is computed from 

Table 1, if possible. If an agent's choice is below the actual minimum in the game 

then she assumes that her choice would be the minimum one and computes the cor- 

responding payoff. 

The growth path used for all simulations was: start with 2 players and add 1 player 

every 30 periods until the group has 9 agents (faster growth paths did not allow to 

distinguish between random effects and growth effects). Simulation results show that 

increasing group size 'dooms' the group to low level of effort (figure 4). 
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Figure 4: Parameter set 2, No = 2, random initialization 

Strategies conditional on size 

This model extends the previous one by allowing agents to condition their strategies 

upon group size, since growth path was announced at  the beginning of the game. 

It was an experimentally observed result that adding a player lead to a drop in the 

minimum choice. To add possibility for this feature the model was modified as follows: 

each agent's strategy prescribes an action to be taken given a group size 

if an agent's action differs from the minimum that occurs when group of that 

size actually plays then the agent adjusts her future actions; for example, if 

agent's strategy prescribed to play 5 when group size was 4 people but the 

actual minimum effort in that game was 3 then the agent decreases her choices 

for larger group sizes by 1. 

Note, that for agents that are actively playing the game it is not possible to 

adjust their future actions upward since they do not have information other than the 

minimum outcome of a game. For agents that are not actively in the game it is possible 
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to adjust their future actions both upward and downward. A sample simulation is 

shown on Figure 5. 
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Figure 5: Parameter set 2, No = 2, random initialization 

This model points out the difficulties in estimating potential payoffs (and fore- 

shadows the results for individual learning). The conventional procedure results in 

estimation that is negatively biased and hence results in a very fast convergence to 

the inefficient action. At the same time there is no clear alternative. 

Arifovic (2001) specification 

In Arifovic (2001) the strategies are conditional on the previous period's minimum 

effort. This specification allows the groups of any (fixed) size to achieve any equilib- 

rium, but the time spent in high effort equilibria is negatively correlated with group 

size. First, we attempt to reconstruct this model and then extend it to allow for 

increasing group size. 

Since social learning model is used, each agent is represented by a string that 

encodes actions to be taken in the first and subsequent periods. The first part of the 



string tells what the player should choose in the first round, the latter parts of the 

string tell what the player should choose given previous period's minimum. 

This specification is interesting because it allows multiple equilibria in the repeated 

game, including cyclical equilibria for 'monomorphic' (i.e. equilibrium strategies are 

homogenous) populations. The simulation results from Arifovic (2001) show that the 

evolved strategies appear to have 'hedging' against mutant invasions. This hedging 

takes form of encoding strings so that (almost) no matter what the previous outcome 

was the player picks the minimum that is the prevalent equilibrium at the moment. 

For example, if the minimum in the game was 5, then the strings will encode 'play 5, 

if past outcome was l','play 5, if past outcome was 2', and so on. 

The whole population is divided into groups of fixed size and each group plays for T 

periods. After T periods the fitnesses are assigned to each player and genetic operators 

are applied. Arifovic (2001) uses tournament selection: pick two random strings (with 

replacement) from the population and compare their fitness, then transfer a copy of 

the more fit one into new population. Tournament selection is repeated until a new 

population of the same size is generated. 

Fixed group size 

The results from Arifovic (2001) were replicated. A sample simulation in Figure 6 (30 

players; 2 players per group) shows that there are transitions across Nash equilibria. 

Such transitions take place even in larger groups but with less time spent in high 

effort equilibrium, see Figure 7 (30 players; 5 players per group). 

Growing groups within or between epochs 

There were two possibilities for growing groups. One was to allow groups play with 

each other and then increase group every tenth epoch. The other possibility was to 

allow groups play with increasing group size each epoch. 

In the second approach, an assumption had to be made about how updating took 

place for players that weren't playing. The same potential payoff evaluation was used 

as in the case of individual learning with simple strategies. 



Figure 6: Parameter set 3, 2 player per group, random initialization, fixed group size 

Figure 7: Parameter set 3, 5 player per group, random initialization, fixed group size 



Figure 8: Parameter set 4, No = 2, random initialization, group grows between epochs 

For simulations presented, the group started with 2 agents and was grown to 16 

agents. Total number of players was 90 agents, so that in the end there were 5 groups. 

The growth path was add 1 player every 10 epochs (between epochs) or add 1 player 

every 5 periods (within epochs). 

Overall, results show that growing groups between epochs proved to be somewhat 

better (Figure 8). As group size increased the effort levels gone down to the lowest 

level (longer simulations do not show transitions across Nash equilibria). This fall 

was more drastic for growing groups within an epoch (Figure 9). 

The problem here is with evaluation of potential payoffs in growing-within-epoch 

specification, since they are biased downwards. While growing groups between epochs 

is essentially smooth transitions between groups as in Arifovic (2001), adding players 

within epochs is similar to invidiual learning treatments. 



Figure 9: Parameter set 4, No = 2, random initialization, group grows within epochs 

Individual learning 

Individual learning was implemented in a standard way (e.g. Arifovic and Ledyard 

(2005)). Each agent is represented by a population of strings. One string is selected 

randomly from population each epoch and it represents the agent's strategy for that 

epoch. The strings that are not playing are evaluated using the same criteria as 

mentioned in the simple GA with growing groups. 

In particular, if a strategy prescribed an action that  is higher than the current 

period's minimum then this strategy would receive payoff according to  Table 1. If a 

strategy prescribed action that is lower than minimum effort, then the agent would 

assume that this action is the lowest during period. The payoff would be obtained 

from the main diagonal of Table 1. 

Fixed group size and growing groups 

The two treatments are put together in t,his section because they did not yield qual- 

itatively different predictions. What seemed to matter is the size of each agent's 



population. When size of the group was 5 (total 80 players) and each agent had 52 

strings, the high effort equilibrium was not sustainable, even when initialized at it 

(Figure 10). From Figure 11, the qualitative results did not change in small groups 

(2 people per group, everything else the same). 

Figure 10: Parameter set 3, 5 players per group, random initialization 

The description of individual learning seems to  match the experimental conditions. 

In particular, without information about other players' strategies and no communica- 

tion, the subjects had to learn only from their own choices and experience. Yet this 

type of learning failes to describe experimental data. This confirm the earlier find- 

ings that suggest that, a t  least in experiments on coordination, an alternative payoff 

evaluation scheme must be used. 

Intuition for why the conventional payoff evaluation fails can be seen from the 

following example: suppose a player has a population of strings and the string the is 

chosen to play for next T periods encodes to play 7 no matter what. The potential 

payoff evaluation then would take the realized minima and use them to estimate 

fitness for other rules. If another rule prescribes actions equal to or above the realized 

minima then the payoffs are obtained from Table 1,  otherwise the actions are assumed 



Figure 11: Parameter set 3, 2 players per group, random initialization 

to be the minima and payoffs are obtained from the diagonal of Table 1. With this 

evaluation scheme, a more conservative strategy would have a higher fitness (a mutant 

strategy could invade). 

This invasion is even faster when the updating is done within an epoch, because 

early within any epoch there are players that are not actively playing the game. None 

of their strategies are used and hence the potential payoff evaluation applies even to 

the rule that would be selected otherwise (the one that would get actual payoff, if 

played). Due to negative bias in evaluation, there is a fast convergence to the low 

effort equilibrium. 



Conclusion 

The aim of the paper was to test if a computer testbed could be built with the basic 

assumptions about individual learning. Such a testbed would allow for a fast and 

cheap prediction of aggregate experimental results (e.g. Arifovic and Ledyard (2005)). 

The simple models constructed in this project fail to replicate the experimental data. 

In many cases genetic algorithm have been shown to replicate human-generated 

data, and the reason it was not successful here is due to a very limited information 

transfer and potential payoff evaluation procedure. By observing the minimum effort 

only, agents are not able to figure out if there's only one person that is 'shirking' 

or more. If agents could observe more information, e.g. mean action, then genetic 

algorithm might have performed better. 

Finally, improving the potential payoff evaluation might lead to better predictions 

of experimental results when the experiment subjects have to rely only on individual 

learning. Given the particular design of coordination games, a model that combines 

elements of forecasting and adaptation might be the most appropriate candidate for 

a testbed. 



Appendix 

Parameter I Parameter set number I 

Table 2: The parameter values used. 

Treatment 

Soc, cond. on past min, gr. between 
Ind, cond. on past min, fixed 

Ind,cond.onpastmin,growing 

Table 3: Rounded frequency of average minimum choice in the past 100 periods in %, 
1000 simulations 

100 

100 

0 

0 

0 

0 

0 
1 0 0 0 0 0 0 0 0  

0 

0 

0 

0 

0 

0 

0 
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