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Abstract 

Studies of recurring infection or chronic disease often collect longitudinal data on the 

disease status of subjects. Multi-state transitional models are commonly used for 

describing the development of such longitudinal data. In this setting, we model a 

stochastic process, which at any point in time will occupy one of a discrete set of 

states and interest centers on the transition process between states. For example, 

states may refer to the number of recurrences of an event or the stage of a disease. 

Geographic referencing of data collected in longitudinal studies is progressively 

more common as scientific databases are being linked with GIs systems. This has 

created a need for statistical methods addressing the resulting spatial-longitudinal 

structure of the data. In this thesis, we develop hierarchical mixed multi-state models 

for the analysis of such longitudinal data when the processes corresponding to different 

subjects may be correlated spatially over a region. Methodological developments have 

been strongly driven by studies in forestry and spatial epidemiology. 

Motivated by an application in forest ecology studying pine weevil infestations, 

the second chapter develops methods for handling mixtures of populations for spa- 

tial discrete-time twestate processes. The two-state discrete-time transitional model, 

often used for studying chronic conditions in human populations, is extended to set- 

tings where subjects are spatially arranged. A mixed spatially correlated mover-stayer 

model is developed. Here, clustering of infection is modelled by a spatially correlated 

random effect reflecting the density or closeness of the individuals under study. Analy- 

sis is carried out using maximum likelihood with a Monte Carlo EM algorithm for 

implementation and also using a fully Bayesian analysis. 

The third chapter presents continuous-time spatial multi-state models. Here, joint 



modelling of both the spatial correlation as well as correlation between different transi- 

tion rates is required and a multivariate spatial approach is employed. A proportional 

intensities frailty model is developed where baseline intensity functions are modelled 

using both parametric Weibull forms as well as flexible representations based on cu- 

bic B-splines. The methodology is applied to a study of invasive cardiac procedure in 

Quebec examining readmission and mortality rates over a four-year period. 

Finally, in the fourth chapter we return to the two-state discrete-time setting. 

An extension of the mixed mover-stayer model is motivated and developed within 

the Bayesian framework. Here, a multivariate conditional autoregressive (MCAR) 

model is incorporated providing flexible joint correlation structures. We also consider 

a test for the number of mixture components, quantifying the existence of a hidden 

subgroup of 'stayers' within the population. Posterior summarization is based on a 

Metropolis-Hastings sampler and methods for assessing the model goodness-of-fit are 

based on posterior predictive comparisons. 
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Chapter 1 

Introduction 

1.1 Background 

Multi-state modelling is a powerful and convenient approach for describing the pro- 

gression of longitudinal data. The framework is broad and encompasses techniques 

for the analysis of multivariate censored event-time data as well as methods for the 

analysis of longitudinal discrete data. In this thesis, multi-state transitional models 

are considered in a spatial setting. In essence, the work blends ideas adapted from lon- 

gitudinal data analysis and spatial statistics. Methodological developments have been 

strongly motivated by studies in: 1)  forest ecology, where interest lies in managing 

trees, forests and their associated resources for human benefit, and 2) epidemiologic 

studies, where investigators are interested in the spatial distribution of health-related 

states or events. 

In the forest ecological setting, we have developed methods for analysis of data 

arising from a study of recurrent white pine weevil (Pissodes strobi) infestation in 

a white pine plantation in British Columbia. In this seven-year longitudinal study, 

conducted by the Ministry of Forests in British Columbia, each tree within the plan- 

tation was inspected each Fall for the presence of infection. Our main interest was to 

describe the pattern of weevil infestation throughout the area over the seven years of 

observation. White pine weevil infection poses a significant threat to British Columbia 

forests and there has been enormous investment recently on studying this disease. 
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In the spatial epidemiological setting, we have developed techniques for analysis 

of spatial data arising from a study of revascularization intervention in Quebec. In 

this four-year longitudinal study, patients hospitalized for acute coronary syndrome 

were followed over time and information regarding subsequent hospital readmissions 

and mortality was obtained. Additional demographic and treatment information was 

also obtained for each patient along with the local health unit in which the subject 

resides. The local health units serve as a geographical stratification of the subjects 

involved in the study. Here, interest lies in the identification of spatial heterogeneity 

in both mortality and readmission rates across the various local health units of the 

province. 

We begin, in this section, with a review of some preliminary ideas that form the 

basis for model building and inference in later chapters. We then outline the remainder 

of the thesis in the next section. 

1.1.1 Multi-State Models 

In the multi-state modelling framework we assume that individuals in some population 

will occupy one of states 1, ..., k over a period of time. As subjects are observed over 

time, they may make changes from one state to another and we refer to such changes of 

state as transitions. Examining transitions can give insight into the dynamic aspects 

of the process under consideration. The sta.te structure, often depicted gmphically, 

specifies the states and which state-to-state transitions are possible. Figure 1.1 gives 

examples of two state structures which are often employed for models of chronic 

disease. The state structure depicted in Figure l . l a  will be employed in Chapters 

2 and 4 where we consider models for recurring tree infection. The structure shown 

in Figure l . lb ,  the so-called illness-death model (Houga.ard 2000), is a.ppropriate for 

modelling both disease and mortality simultaneously. 

Models describing the evolution of a discrete-time process Y (t), t = 0,1,2,  . . . are 

typically specified through transition probabilities 

where H(t)  = {Y(u), u = 0, ..., t - 1) denotes the history of the process up to time 
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Disease Free Diseased [-]I [I] 

Disease Free Diseased 

Figure 1 .l: State structures commonly employed for modelling chronic diseases (a) 
a typical state structure used for modelling a recurring disease process; (b) a state 
structure for joint modelling of disease and mortality. 
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t. In the continuous-time setting, the transition process is governed by transition 

intensity functions which are defined by 

Pr(Y(t  + s) = jlY(t-) = i, H( t ) )  
qij(t) = lim 

s-0 S 
(1.2) 

where H (t ) = {Y (u), 0 5 u < t). Typically, a Markov assumption is made where it 

is assumed that the entire history of the process is captured by the current state. In 

this case, (1.1) reduces to pij(t) = Pr (Y  (t)  = jlY(t - 1) = i )  (for a lSt order chain) 
Pr(Y(t+s)=jlY(t-)=i) and (1.2) reduces to qij(t) = lim8,0 

S 
. In more complex situations, 

Markov processes can be used as building blocks in a hierarchical framework used to 

specify mixed Markov models. This approach was considered by Cook and Ng (1997), 

Ng and Cook (1997) and Albert and Waclawiw (1998) in non-spatial settings. 

1.1.2 Hierarchical Spatial Modelling 

The modelling of non-Gaussian spatially correlated data typically proceeds in a hier- 

archical framework. Within such a framework, observations are assumed conditionally 

independent at the lowest level of the hierarchy and dependence is introduced at the 

second level through spatially correlated random effects. The random effects account 

for heterogeneity and, in many settings, represent covariates that are missing from 

the model. Within the realm of generalized linear models, the incorporation of spatial 

random effects has been studied extensively (see e.g., Besag et al., 1991, Bernardinelli 

and Montomoli, 1992, Best et al., 1999, Zhang 2002). In this thesis we adopt a similar 

approach, introducing random effects into the second level of hierarchical multi-state 

Markov processes. 

A convenient distributional form for a vector of N spatially correlated random 

effects b = (bl, ..., bN) is the multivariate Gaussian with mean 0 and spatially struc- 

tured covariance matrix C. Here, associated with each b, is either a point location 

(x,, y,) E R2 or a position on a (possibly irregular) lattice. Typically, one of two 

approaches is adopted for specifying C. A direct and simple approach, known as geo- 

statistical modelling (Cressie, 1993, Diggle et al. 1998), requires knowledge of the point 

locations (x,, y,), i = 1, ... , N, and specifies C as a parametric function of these loca- 

tions. A simple example is the exponential form which sets C,, = o2 exp(-pd(i, j)) 
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and is based on two parameters p > 0 and u2 > 0 and the distance, d(i, j), be- 

tween points i and j .  An alternative approach, known as conditional autoregressive 

modelling (CAR) (Besag, 1974, Cressie 1993, Carlin and Louis 1996) is the spatial 

analogue of autoregressive time-series modelling and specifies C indirectly through 

the set of conditional distributions bilbjfi - N(pi ,  u:), i = 1, ..., N.  Here, each con- 

ditional distribution is assumed univariate normal with conditional variance u: > 0 

and conditional mean pi = x y = l  wijbj with wii = 0, i = 1, ..., N.  The weight wij 2 0 

can be based on either the distance between units i and j or indicators for their adja- 

cency on a lattice and reflects the influence of bj on the conditional mean of bi. With 

these conditional specifications, the results of Besag (1974) can be used to show that 

C = (I- W)-'M where W = (wij), M = diag{u;, ..., u$) and we impose the restric- 

tion wijuj2 = wjiu: to ensure the symmetry of C. A special case which has been used 

extensively in disease mapping is the intrinsic autoregression which sets wij = 2 
and 0: = $ where the CiJ7s are known user defined weights and Ci. = x, C,. This 

specification leads to a singular multivariate Gaussian distribution for b. 

Geostatistical models, due to their direct specification of C are easily interpreted; 

whereas, CAR models are most sensibly interpreted in a conditional sense. On the 

other hand, CAR models can be based on either point locations or derived at a 

lower spatial resolution using only the adjacency structure of a lattice. In addition, 

the conditional specification of CAR models makes them ideal for use with Markov 

chain Monte Carlo methods described in the next subsection. We adopt here the 

CAR modelling approach. Finally, we note that multivariate generalizations of the 

CAR modelling framework have been developed (see e.g. Kim et al. 2001, Carlin 

and Banerjee, 2002, Gelfand and Vounatsou 2003) which allow for the joint spatial 

modelling of k > 1 random effects associated with each spatial unit. We incorporate 

such joint spatial structures into our multi-state modelling framework in Chapters 3 

and 4 of this thesis. 
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1.1.3 Markov chain Monte Carlo 

Markov chain Monte Carlo is a collection of numerical simulation methods which 

allow the approximation of integrals that are analytically intractable. Even though 

the theory behind MCMC was developed much earlier (Metropolis et al. 1953), the 

techniques have become increasingly popular within the last decade, a result owing 

to the availability of cheap computing power. 

The principle behind MCMC is the ergodic theorem applied to Markov chains. 

Inference with respect to some target distribution .rr is based on the construction of a 

Markov chain having .rr as its invariant distribution. The ergodic theorem then links 

expected values under .rr with observations, xO,  x', x2,..., from the Markov chain via 

for any function f ,  integrable with respect to .rr. Expected values under .rr may then be 

approximated using realizations of the Markov chain. The technique is most useful 

when drawing realizations directly from .rr is not feasible and .rr is sufficiently high 

dimensional and complex so that importance sampling methods cannot be en~ployed. 

This is typically the case with hierarchical spatial models involving large numbers of 

random effects. 

The two most common MCMC algorithms are the Gibbs sampler (Geman and Ge- 

man 1984) and the Metropolis-Hastings algorithm (Hastings 1970). The Gibbs sam- 

pler is based on drawing from full conditional distributions. Suppose x = (xl ,  ..., xlv) 

and it is feasible to obtain realizations from the full conditional distribution T ( X ~ ( X - ~ )  

where x-j denotes x with x j  removed. The Gibbs sampler changes the state of the 

chain xi  to xi+' by updating each x, , j = 1, . . . , N, in turn by sampling the replacement 

value from the corresponding full conditional distribution . r r ( . l ~ ; + ~ ,  ..., x z i ,  ..., xk). 

The algorithm depends on the ability to draw from full conditional distributions. Of- 

ten, the full conditional distributions will not take standard forms but the correspond- 

ing densities will be log-concave. In this case, adaptive rejection sampling (Gilks and 

Wild 1992) may be employed. 

In situations where it is difficult to sample from full conditional distributions, the 
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Metropolis-Hastings algorithm, a generalization of the Gibbs sampler, may be used. 

In this case, the update from xi to xi+' proceeds by first generating a candidate x' 

from a proposal distribution q(-(xi). The proposed value, x', is accepted as the new 

state of the chain, xi+', with probability 

Otherwise we set xi+' = xi and the chain does not move. Note also that T only needs 

to be known up to a normalizing constant. When the proposal density is symmetric 

(1.3) reduces to a (x i ,  x') = min{l, 3) and the resulting special case is referred to as 

the Metropolis algorithm. Often, it is not feasible to update the whole of x in one step. 

In this case, as in the Gibbs sampler, we divide x into components x = (xl, ..., xN) 
and apply a Metropolis-Hastings step to each component. This scheme includes, as 

a special case, the secalled hybrid samplers (Gilks et al. 1996) that update some 

components via Gibbs steps and others using Metropolis-Hastings steps. 

In practice, an initial portion of the realized Markov chain is discarded as burn-in, 

a period required for the chain to 'forget' its initial state and converge to the stationary 

distribution. Determination of convergence is best assessed through running multiple 

chains, each initialized at different points in the sample space of n-. Analysis then 

compares the output of each chain using diagnostics (see eg. Gelman and Rubin 

1992) and through the examination of sample trace plots, most importantly plots 

which display the value of the log(.) (up to an additive constant) at each state of the 

chain. 

In Chapter 2, we employ the Gibbs sampler within each iteration of an EM al- 

gorithm to approximate the conditional expectations required at each E-step. In 

Chapters 3 and 4 we use the Metropolis-Hastings algorithm to draw samples from 

posterior distributions arising from Bayesian model specifications. 

1.1.4 Splines and Temporal Smoothing 

Splines provide a conceptually sinlple approach for approximating complex nonlinear 

functions (De Boor 1978). In this thesis, splines of one variable are employed for 
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modelling temporal variation in the process governing the state-to-state transitions of 

a multi-state model. The basic idea behind splines is the representation of a possibly 

complicated curve through a combination of relatively simple smooth segments where 

each segment is represented by a polynomial of order D. To ensure smoothness of 

the composite curve, constraints are imposed on each segment at the joining points 

which are called inner knots. Given a set of L inner knots t l  < t2 < ... < t L  a spline 

S of degree D may be written as 

where 
D 

where to < tL+l are boundary knots typically defined by the range of the data; and the 

ais are constrained to ensure that S has continuous derivatives of all degrees < D - 1. 

As discussed by MacNab (1999) ,  the collection of all functions taking the form (1 .4)  

forms a linear space of dimension D + L + 1. It is therefore spanned by any D + L + 1 

linearly independent members of the space forming a basis. The approximation of 

a function f over the interval [to, tL+l] using a spline of degree D and inner knots 

t l  < t z  < . .. < t L  is therefore given by 

where p(t) = { p o ( t ) ,  ..., pD+L( t ) )  is any such basis and ao ,  ..., ~ D + L  are unknown 

parameters. A convenient choice, which we employ in this thesis, is the B-spline basis 

that is easily computed using the recursive algorithm of De Boor (1978) .  In addition, 

our functional approximations will take D = 3 and incorporate an intercept yielding 

where we exclude the first B-spline basis function po( t )  in order to identify the inter- 

cept. 
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Out line of Thesis 

This thesis consists of three projects examining spatial variation in longitudinal multi- 

state processes. Chapters 2 and 4 deal with processes in discrete-time and methods 

developed therein are applied to the aforementioned forest ecological study. Chapter 

3 develops methods for continuous-time processes in a spatial epidemiological setting. 

Each chapter is written in a style similar to that for publication and the summaries 

of the chapters provided below reflect the corresponding abstracts. As a result, some 

introductory material is repeated. 

1.2.1 Chapter 2 

Studies of recurring infection or chronic disease often collect longitudinal data on the 

disease status of subjects. Two-state transitional models are useful for analysis in 

such studies where, at any point in time, an individual may be said to  occupy either 

a diseased or disease-free state and interest centers on the transition process between 

the two states. Here, two additional features are present. The data are spatially 

arranged and it is important to account for spatial correlation in the transitional 

processes corresponding to different subjects. In addition there are subgroups of 

individuals with different mechanisms of transitions. These subgroups are not known 

a priori and hence group membership must be estimated. Covariates modulating 

transitions are included in a logistic additive framework. Inference for the resulting 

mixture spatial Markov regression model is not straightforward. We develop here a 

Monte Carlo EM algorithm for maximum likelihood estimation and a Markov Chain 

Monte Carlo sampling scheme for summarizing the posterior distribution in a Bayesian 

analysis. The methodology is applied to a study of recurrent weevil infestation in 

British Columbia forests. 
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1.2.2 Chapter 3 

Follow-up medical studies often collect longitudinal data on patients. Multi-state 

models can be employed for analysis in such studies where at any point in time, in- 

dividuals may be said to occupy one of a discrete set of states and it is of interest 

to examine the process governing state-to-state transitions. For example, states may 

refer to the number of recurrences of an event, or the stage of a disease. We de- 

velop a hierarchical Bayesian model for the analysis of such longitudinal data when 

the processes corresponding to different subjects may be correlated spatially over a 

region. Continuous-time Markov chains incorporating spatially correlated random 

effects are introduced. Here, joint modelling of both spatial correlation as well as 

correlation between different transition rates is required and a multivariate spatial 

approach is employed. A proportional intensities frailty model is developed, where 

baseline intensity functions are modelled using both parametric Weibull forms and 

flexible representations based on cubic B-splines. The methodology is applied to a 

study of revascularization intervention in Quebec. We consider patients admitted for 

acute coronary syndrome throughout the 139 local health units of the province and 

examine readmission and mortality rates over a four-year period. 

1.2.3 Chapter 4 

In this final chapter we return to the discrete-time setting of Chapter 2 and develop 

an extended model with inference conducted from a Bayesian perspective. A joint 

spatial random effects model is incorporated into the transitional process of a hier- 

archical mover-stayer model. In this case, the random effects allow for two types of 

correlation. In addition to  allowing for spatial correlation, we also permit correlation 

between subject specific transition probabilities. This flexible correlation structure 

is accommodated through a multivariate conditional autoregressive (MCAR) model. 

The chapter also develops a test for the number of mixture components, quantifying 

the existence of a hidden subgroup within the population. That is, we develop a test 

for 'stayers' in the mover-stayer model. The test is based on assigning a discrete mass 
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prior to the mixing proba.bility. Testing of this point null hypothesis wa.s of substan- 

tial interest to investigators in our forest ecological application. Inference is based 

on samples drawn from the posterior distribution using a Metropolis-Hastings algo- 

rithm. Finally, methods for assessing the model goodness-of-fit are developed based 

on posterior predictive comparisons. 

1.2.4 Chapter 5 

The thesis closes with a discussion of future work. 



Chapter 2 

A Discrete-Time Spatial Two-State 

Process 

Studies of recurring infection or chronic disease often collect longitudinal data on the 

disease status of subjects. In many such studies, subjects are observed at regular 

time intervals and assessed for the presencelabsense of a condition, such as a disease. 

Statistical analysis of the resulting longitudinal binary data is conveniently conducted 

through the use of two-state transitional models; in particular, when interest lies in 

the probabilities of transition between the diseased and disease-free states. In such 

analyses, it is typically assumed that individuals under observation are independent. 

Markov chain modelling is a commonly used approach for describing a process 

which yields temporally dependent binary sequences. Inference in such models was 

considered in an early paper by Anderson and Goodman (1957) for the simple case 

where all subjects share the same transition probabilities. Muenz and Rubinstein 

(1985) allow the transition process to vary from subject to subject through regres- 

sion modelling of the transition probabilities. In many scenarios there exists extra- 

variation which is not explained by the available covariates. To account for this extra 

variation, two stage, conditionally Markov processes can be employed. At the first 

stage, the data obtained from each subject are assumed to be drawn from a two-state 

Markov chain. At the second stage, continuous mixing distributions are used to model 

heterogeneity in transitions. Cook and Ng (1997) develop such a model incorporating 
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bivariate Gaussian random effects into transition probabilities and conduct maximum 

likelihood estimation using numerical integration. Albert and Waclawiw (1998) de- 

velop a similar model but specify only the first two moments of the independent 

random effects and conduct inference using generalized estimating equations. 

An alternative approach to account for heterogeneity in a Markov Chain analysis is 

based on finite mixtures. In particular, this is useful when it is thought that a subgroup 

of individuals, known as 'stayers', will remain in their initial state throughout the 

course of observation. Such an approach can be employed for studying disease in 

populations where it is hypothesized that some members are resistant or immune to 

the condition studied. Models of this sort have been discussed by F'rydman (1984), 

Fuchs and Greenhouse (1988) and Cook, Kalblfleisch and Yi (2002). 

Independence between subjects is an assumption that is made in all models dis- 

cussed above. In the application we consider, the subjects under observation are 

spatially arranged and it is of essence to describe the spatial correlation. Our moti- 

vating example is a study of recurrent weevil infestation in a white pine plantation 

in British Columbia. In this seven-year longitudinal study conducted by the Ministry 

of Forests in British Columbia each tree within the plantation was examined in the 

fall for the presence of infection. Of primary interest was to describe the pattern of 

weevil infestation throughout the area over the seven years of observation. White 

pine weevil infection poses a significant threat to British Columbia forests and there 

has been enormous investment recently on studying this disease. 

In this chapter we present a transitional model for spatio-temporal two-state 

processes. There are several features of this model and our analysis which distin- 

guish them from the usual two-state model analysis. Importantly, spatial random 

effects are incorporated into transition probabilities to accommodate correlation. In 

our study it was hypothesized that heterogeneity might arise through the presence 

of trees which were resistant to infection. In fact a major scientific objective in a 

follow-up analysis would be to identify and characterize such resistant trees with the 

goal of populating secondary forests with such qualities. To address this statistically. 

excess heterogeneity is accommodat~ed by allowing for a subgroup of individuals whose 

initial state is absorbing. The resulting two-component model is of the mover-stayer 
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type with spatially correlated random effects introduced into the component associ- 

ated with 'movers'. With the two layers of mixing distributions, one discrete and one 

involving a high dimensional spatial mixture, analytic tools for conducting inference 

need careful consideration. We develop these in both the likelihood and Bayesian 

frameworks and present a comparison of such methods in our analysis. Estimation is 

approached by maximum likelihood using a Monte Carlo EM algorithm in the classical 

framework and through Markov Chain Monte Carlo summarization of the posterior 

distribution in the Bayesian setting. 

The remainder of the chapter is organized as follows. In Section 2.1 we specify 

the mixed spatially correlated mover-stayer model. Section 2.2 develops maximum 

likelihood inference for our model. A spatio-temporal analysis of weevil infestation 

in a white pine plantation in British Columbia is discussed in Section 2.3. In Section 

2.4 we discuss extensions involving multivariate spatial processes and continuous time 

modelling. 

2.1 Spatio-Temporal Mixed Two-State Model 

Suppose there are N subjects, spatially arranged throughout some region and subject 

i is observed over a sequence of ni equally spaced time points. Upon observation, 

each individual will occupy one of two possible states representing say, the presence 

or absence of some condition, for example an infection. We let state 1 denote the 

infected state and state 0, the infection-free state. Let yi(t) be the binary variable 

denoting the state occupied by subject i at time t and yi = (yi(0), ..., yi(ni - 1))' the 

sequence of states occupied by subject i, i = 1, ..., N. 

The mixed mover-stayer model is specified hierarchically where, at the first stage 

of the model, we assume each response vector, yi, is independently drawn from a 

compartmental model having density 

where Z = {zl, z2. ..., tN) is a vector of latent variables with z, E {O,1) allocating 
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subject i into one of two mixture components and we adopt independent allocations 
ind 

to these components, zi Bernoulli(pM,) i = 1, ..., N ,  where p~~ = Pr(zi  = 1). 

Extensions, allowing the components of Z to be spatially correlated, are considered 

in section 5. In (2.1), one mixture component places all its mass on the zero vector 

while the other component distributes mass according to the density fMc(yi(bo, bl), 

which is that of a 13t order, two-state Markov chain given by 

X n plot (t) - Y ' ( ~ )  (1 - plot (t))"@) (2.2) 
tED1, 

where Dli = {t > Olyi(t- 1) = 11, 1 = 0,1? p ~ ,  is an initial state probability and pol,(t) 

and plot (t) are transition probabilities. The transition probabilities are modelled using 

additive logistic specifications 

i = 1, ..., N, t = 1, ..., n,i - 1, where x i ( t )  is a pvector of covariates associated with 

subject i at  time t ;  p a vector of regression parameters; go(t, a o )  and g,(t ,  al) are 

functions of time describing temporal trends in transitions and boi and bli are random 

effects accounting for spatial correlation. 

Several types of temporal trends can be considered. We allow for flexible forms 

using cubic B-splines. The cubic B-spline representations used here are given by 

KI +3 

gi(t, or) = al0 + C ar,~i ,( t) ,  1 = 0 , l  (2.4) 
j=1 

where cq = (alo, .. . , al,, +,), 1 = 0,1,  are vectors of unknown coefficients and 

{pl, ( t) ,  ..., plKl+, ( t)) ,  1 = 0,1,  are sets of known B-spline basis functions with Kl ,  

1 = 0,1,  representing the number of inner knots used in the representations. For the 

spatial random effects, bo = (bol , ... , boN)' and bl = (bll, . .. , bl N)', we adopt Gaussian 

intrinsic autoregressive (IAR) models based on conditional specifications of the form 
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where Cij are user-defined weights measuring the closeness or adjacency of subjects i 

and j (Cii = 0) with bo, bl and Z assumed independent. As a result of (2.5), each 

vector bl, 1 = 0,1,  is distributed as N ( 0 ,  El), with El having generalized inverse 

C - l =  -r(D 1 - C ) ,  1 = 0.1; C = (Cij) is often called the neighbourhood matrix and 
ubl 

D = diag{Cl., Cz, ..., CN.) with C i  = CEl Cij. 

Under this model, the marginal likelihood for Y = {yl ,  ..., yN)  takes the form 

where O = {Po, Pl, a&, uzl, {pI,), { p ~ , } ,  ao, al) denotes the model parameters and 

the expectation in (2.6) is taken with respect to the distributions of bo, bl and Z. 

There are two situations where the above compartmental model may be considered. 

Empirically, the data may suggest that several individuals never change states over 

time; additionally, scientific considerations may point to a need to address the presence 

of subgroups even if this is not empirically obvious. The mixed mover-stayer model 

allows for a subgroup of subjects whose initial state is absorbing. These so called 

'stayers' can represent individuals who are immune to infection and will therefore be 

observed in the disease-free state (state 0) a t  all times. 

2.2 Inference Procedures 

In this section we outline procedures for maximum likelihood inference. As the mar- 

ginal likelihood function (2.6) is analytically intractable, we develop a Monte Carlo 

maximum likelihood scheme. 

The EM algorithm (Dempster et al., 1977) is a popular tool for conducting maxi- 

mum likelihood inference in situations involving missing data. We outline maximum 

likelihood procedures based on a Monte Carlo implementation of the algorithm (Wei 

and Tanner 1990), where the random effects and latent variables are treated as miss- 

ing data. In situations where the E-step of the EM algorithm does not admit a closed 

form, Wei and Tanner (1990), among others, proposed that the E-step can be carried 
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out using Monte Carlo integration resulting in what has been called the MCEM algo- 

rithm. This algorithm is useful for estimation in our model since the expectation in 

(2.6) involves an integral of high dimension. Alternative approaches could use analytic 

approximations to these integrals. For example MacNab and Dean (2000) investigate 

the use of penalized quasi-likelihood (Breslow and Clayton, 1993) for estimation in 

spatial random effect models. Such an approach, while being less computationally 

intensive than MCEM, can yield severely biased estimates in the case of binary data 

(Lin and Breslow, 1993). Previous applications of the MCEM algorithm include Chan 

and Ledolter (1995), who study a model for count data incorporating temporally cor- 

related random effects, and Chan and Kuk (1997) who examine probit-linear mixed 

models with correlated random effects. Most recently, Zhang (2002) developed a 

Monte Carlo version of the EM gradient algorithm, in a geostatistical setting. 

Procedures for Bayesian inference are more carefully detailed in the following sec- 

tion where the application is considered. To simplify the presentation we assume 

PI, = pr and p ~ ,  = p ~ ,  i = 1, . . ., N.  Permitting variation, for example, regression 

modelling of the initial probabilities is easily accommodated. Note that a prime focus 

here is on investigating transition probabilities so we direct attention to modelling 

these. 

Under the mixed mover-stayer model, a sufficient statistic for Q is given by T = 

(Yo, Y1) where 

and 

Y1 = {{yi(t)lt E Dli); i = 1, ..., N). (2.8) 

The marginal likelihood function for Y ,  given in (2.6), can be correspondingly factor- 

ized into two terms 

where Q0 = (Po, om, PI, p ~ ,  ao)' and Q1 = (Ol, obi, a l ) '  divide the model parameters 

into two disjoint sets. As a result, maximum likelihood estimates can be obtained by 
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maximizing Lo(.) and L1(.) separately with 

N 

~ l ( 3  = ~ { n  n  exp(Pllxi(t) + gl (t,  al) + b l i ) ' - ~ t ( ~ )  

1 + e x ~ ( P l ' x i ( t )  + gl ( t l  al) + hi) (2.9) 
i=l % D l ,  

where the expectation in (2.9) is taken with respect to the distribution of bl and 

where 

and the expectation in (2.10) is taken with respect to the distributions bo and Z .  

Both (2.9) and (2.10) are maximized using separate MCEM algorithms; however, we 

note that the form of (2.10) reduces to  that of (2.9) when Z = 1 and q(Yo, Z ,p l )  E 1. 

We therefore outline the MCEM procedure for (2.10), maximization of (2.9) being a 

special case. 

Treating bo and Z as missing data, the complete-data loglikelihood associated 

with (2.10) takes the form: 

where, 
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Starting with initial parameter estimates, O r )  and setting h = 0, the algorithm 

consists of four steps: 

1. R u n  the Gibbs sampler and generate J realizations, b r ) ,  z('), ..., by ) ,  z ( ~ ) ,  from 

the conditional distribution f (bo,  ZIYo, O r ) )  

2. Calculate Q(OO; o r ) )  = j lc(BO,YO, b r ) ;  Z(k)) 

( h + l )  3. Maximize Q ( e O ;  ~ p ) )  over eO to  obtain Oo 

4. Assess convergence. If convergence has been achieved then stop. Else Set  h = 

h + 1 and go to  step 1 

In implementing this algorithm, two important issues arise: first is the choice of 

Monte Carlo sample size, J, to be used a t  each iteration and second is monitoring 

convergence of the algorithm. Wei and Tanner (1990) suggest using small values of J 

in the initial stages of the algorithm and increasing J as the algorithm moves closer 

to convergence. Regarding convergence, they recommend plotting estimates at  each 

iteration of the algorithm. Convergence is then indicated by the stabilization of the 

process with random fluctuations about some fixed value. 

Gibbs sampling a t  the ( h  + iteration requires simulation from the full con- 
(h)  ditional distributions, [boilyo,  bb-'), Z, O r ) ]  and [zilYO, Z(-i), bO, O O  1 ,  i = 1, ..., N .  

These full conditional distributions are given by fi (boi lYo, bb-'), Z O r ) )  

"- 

and [zilYo, z(-'), bo, O r ) ]  - Bernoulli(p,) with 
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To sample from (2.11) we generate a Gaussian deviate if zi = 0 or, if zi = 1, 

realizations are obtained using rejection sa.mpling (Ripley, 1987). Since the joint dis- 

tribution of bo, specified conditionally via (2.5), is improper, we impose an identifying 

sum-to-zero constraint in our Gibbs sampler by recentering the simulated values of 

bo around zero after each iteration. 

Having generated values, b t ) ,  z('), ..., bj;'), Z(J), using the Gibbs sampler, the 

updated parameter estimates for p1 and pM are given by: p!"+l) = Tfi;"('it and 
Ct=l Z l  

("l) = where fi = f EL=, r jk)  To obtain P ~ ( ~ + ~ )  and ao(h+l) we maximize PM 
the following objective function: 

Numerical maximization is accomplished using a standard quasi-Newton routine (Fletcher 

1987). The variance component is updated via: o p l )  = [& b r ) ' ( ~  - 

C )  b r ) ]  4. 

2.2.1 Observed Information Matrix 

Following Chan and Ledolter (1995), Chan and Kuk (1997) and Zhang (2002) we 

obtain standard errors using a Monte Carlo approximation of the observed information 

matrix. We describe the technique in a general setting. Let Y denote the observed 

data and r denote a vector of unobserved stochastic quantities (for example, random 

effects) which we treat as missing data in an EM framework to obtain maximum 

likelihood estimates of some parameter O .  We let l ( 0 ,  Y )  denote the observed data 

log-likelihood and lC(O, Y ,  r) the corresponding complete data log-likelihood. From 

Louis (1982) we have 
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Having obtained an estimate, 6, from our MCEM algorithm, we run one final Gibbs 

sampler and obtain a set of realizations, dl), ..., dJ), from the conditional distribution 

with density f (rlY, 8 ) .  We then a,pproximate the conditional expectations in (2.13) 

using ergodic averages and obtain an estimate of the observed information matrix 

evaluated at 8. 

We apply this technique to the complete data log-likelihood functions associated with 

both (2.9) and (2.10) to obtain standard errors. In our analysis, the Monte Carlo 

sample size, J, is increased until the standard errors become stable to  a desired 

number of decimal places. 

2.3 Study of Weevil Infestation 

The weevil infestation data were obtained over a seven year period beginning in 1996 

and ending in 2002. The study region is a plantation in British Columbia covering 

an area of 21, 960m2 and containing a population of N = 2662 trees susceptible to 

weevil attack. The positions of trees within the plantation are depicted in Figure 2.1. 

Each tree was inspected for the presence of weevil attack in the fall. In any given 

year, each tree is therefore classified into one of two states, either weevil-infected or 

not. The event history of the i th tree is represented with a binary response vector 

yt = ( ~ ~ ( 0 ) .  ..., yi(6)) where yi(t) indica.tes infection at year t .  The purpose of the 

analysis is to provide a spatietemporal description of the transition process between 

the infected and uninfected states. 

For each year following 1996, the proportion of infected trees! conditioning on the 

infection status of the previous year, are shown in Figure 2.2. Two key features are 

evident. First, it seems that the state occupied at time t depends on the state of time 
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t - 1 since, in each year, the raw estimates indicate 

Pr(infected at tlinfected at  t - 1) > Pr(infected at tlnot infected at  t - 1). 

Second, the process governing transitions seems to be inhomogeneous over time. 

It was hypothesized by ecologists that some pine trees may be resistant to weevil 

attack. This seemed reflected in our study where 27 percent of the 2662 trees under 

investigation were not infected during the 7 years of observation. Such resistant trees 

are accommodated by our spatial mover-stayer model which allows for a group of 

'stayers' in the uninfected state. Conversely, only 1 tree had been infected every year; 

therefore, a model accounting for 'stayers' in the infected state seems unnecessary. 

To investigate the possibility and scale of spatial correlation in transitions we fit a 

preliminary model where each yi is assumed to be independently drawn from a two- 

state Markov chain incorporating independent random effects with transition prob- 

abilities given by logit(polz(t)) = go(t, ao) + uoi and logit(plo,(t)) = g l ( t , a l )  + uli, 
"d 

i = 1, ..., 2662, t = 1, ..., 6 with u ~ i  N(0,of)  1 = 0 , l .  The terms go(t, ao) and 

gl(t, al) account for temporal variation and are modelled using cubic B-splines with 

one inner knot placed at t = 4 years. The random effects, u1 = (ul,, . . . , I L ~ ~ , , ~ )  

and uo = (uO,, .. . , UO,,,,), account for tree-to-tree variation in transit,ions. Figure 2.3 

displays the fitted temporal trends go(t, &o), gl(t, bl) as well as the empirical semivar- 

iograms of G1 and Go based on a bin size of 1 meter. Examining the semivariograms, 

there appears to be spatial correlation i11 both G1 and Go at  the smaller distances, 

each having a range of about 5 to 10 meters. Dependence of this scale in our spatial 

mixed mover-stayer model is accommodated by setting the weights associated with 

the spatial random effects defined in (2.5) to Cij = I{d(i, j) 5 10m) where d(i, j) 

denotes the distance between trees i and j .  In addition, we define spatially varying 

covariates Di = Cjf Cij, a local measure of tree density and Ai(t) = Cjfi Cij yj (t) ,  

a local measure of infection density at year t. The regression specifications are then 
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Figure 2.1: Positions of trees within the plantation. The boundary is taken to be the 
convex hull of these positions. 
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Figure 2.2: Raw estimates of the conditional probabilities of infection in each year. 
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given by 

where go(t, ao) and g l ( t , a l )  are cubic splines with Kl = 1, I = 0,1, and an inner 

knot at t = 4 years as in the preliminary analysis. 

Starting values for al, a o ,  P1 and Po in the MCEM algorithm were based on 

estimates from simpler models incorporating no spatial dependence. Starting values 

for p ~  and p ~  were based on the raw proportions obtained from the data. A burn-in 

of 1000 samples was used at each iteration of the algorithm. The Monte Carlo sample 

size was set to J = 500 for the first 100 iterations and then increased to J = 1000 

until trace plots of the MCEM estimates indicate convergence had been achieved. The 

resulting trace plots of MCEM estimates are shown for several parameters in Figure 

2.4. Upon convergence, an additional 100 iterations were run with J = 5000 to reduce 

Monte Carlo error. 

For the purpose of comparison, a Bayesian analysis was also conducted. In this 

setting, the model specification is made complete by assigning a prior distribution to 

O. The resulting posterior distribution can be summarized using MCMC sampling. A 

program for drawing MCMC samples from the posterior distribution has been imple- 

mented in WinBUGS 1.4. which is freely available from the Medical Research Council 

Biostatistics Unit in Cambridge in the U.K. (www.mrc-bsu.cam.ac.uk/bugs). We em- 

ployed weakly informative prior distributions for the model parameters. All regression 

coefficients and parameters of the cubic spline terms were assigned N(0, lo3) priors, 

except for the intercepts ao, and al, which were assigned Uniform(-co, co) distrib- 

utions. Variance components were assigned Uniform(0,lO) priors and Uniform(0,l) 

prior distributions were assigned to p ~  and P I .  Sensitivity with respect to  these prior 

distributions was assessed by comparisons from repeating the analysis with other 

weakly informative prior specifications. This comparison indicated results to be fairly 

robust over the forms of prior considered. Markov Chain Monte Carlo sampling was 

based on two chains run in parallel and convergence to the posterior distribution was 
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Figure 2.3: Estimates from initial model exploring spatial scale and spatial correlation. 
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Figure 2.4: Monte Carlo EM estimates by iteration for selected parameters in the 
spatial mover-stayer model (a) Do,; (b) Po2; (c) Dl1; (d)P12; (e) ubo; ( f )  ubl; (g) PI; (h) 
PM . 
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assessed through the examination of sample tra.ce plots and Gelman-Rubin (1992) sta- 

tistics. A burn-in of 20,000 iterations was used with an additional 80,000 iterations 

from each chain retained for posterior sumn~arization. 

Parameter estimates of the regression coefficients and variance components are 

presented in Table 2.1. The Bayesian and maximum likelihood estimates are very 

similar. From the estimates of p ~ ,  we see that roughly 10 percent of the trees under 

study are estimated to be resistant to weevil infection. Regarding covariate effects, 

local tree density, Di, seems to have an effect on both types of transitions. Trees 

located in denser regions tend to have lower probability of transition into the infected 

state and higher probability of transition out of the infected state. Local attack 

density, Ai(t - I ) ,  appears to affect transitions out of the uninfected state such that 

trees surrounded by a larger number of infected trees at time t - 1 have a higher 

probability of making a transition from the uninfected to the infected state at  time t .  

Table 2.1: Parameter estimates for the spatial mover-stayer model. Bayes estimates 
are posterior means and sta,ndard deviations. Maximum likelihood estimates are 
obtained using the Monte Carlo EM algorithm. 

Parameter 
Intercept. 

Di 
Ai(t - 1) 
u ~ / u ~ ~  

PI 
PM 

Estimates of the temporal trends, go(t, ao) and g,(t, al), are shown in Figure 

2.5 and correspond with the patterns observed in the preliminary analysis. Posterior 

mean (from the Bayes analysis) and empirical Bayes (from the likelihood analysis) 

estimates of the random effects bo and bl are also obtained. To gain insight into tree- 

specific residual risks of transitions in and out of the infected state we have marked, 

in Figure 2.6, the locations within the plantation associated with the 100 largest and 

Uninfected + Infected 
MLE (SE) Bayes (Sd) 

-0.505 (0.142) -0.496 (0.132) 
-0.017 (0.003) -0.018 (0.003) 
0.016 (0.008) 0.017 (0.008) 
2.064 (0.561) 1.98 (0.340) 
0.177 (0.008) 0.178 (0.009) 
0.895 (0.018) 0.894 (0.021) 

Infected + Uninfected 
MLE (SE) Bayes (Sd) 

-0.189 (0.195) -0.169 (0.198) 
0.014 (0.005) 0.014 (0.005) 

-0.0174 (0.011) -0.015 (0.011) 
2.25 (0.449) 2.619 (0.494) 
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smallest of these estimates. These maps of unmodeled heterogeneity can be useful for 

postulating additional covariates missing from the current model. Spatial clustering 

of the largest and smallest values is apparent. For bo, the largest estimates appear to 

be clustered in the far north of the plantation; whereas, the smallest estimates occur 

in two clusters lying on the boundary of the region, one located in the far west and the 

other occurring in the south. For b l ,  the largest estimates occur towards the south 

and south-east and the smallest estimates occur towards the far north and north-west. 

In Figure 2.7 we have located those 100 trees having the highest estimated posterior 

probability of resistance, Pr(zi  = OJY), the majority of these being located in the 

mid-north section of the plantation. Maps identifying such trees can be useful in 

determining the characteristics which may lead to resistance. 

2.4 Discussion 

Some alternatives to our modelling above should be mentioned. First, other forms for 

the weights, Cij, in the IAR model (2.5) could be entertained. Our choice of Cij = 

I{d(i, j) _< 10m) could be expanded to forms such as Cij = I{d(i, j) <_ w) x f (d(i, j)) 

where f (.) is a positive, decreasing function of distance and w > 0 is an unknown para- 

meter. The flexible neighbourhood structures proposed by Conlon and Waller (1998) 

may also be fruitfully employed here. As discussed by Besag and Kooperberg (1995) 

and Waller and Gotway (2005) the relationship between the neighbour weights Cij 

in the IAR model and the spatial covariance range suggested by the semivariograms 

in Figure 2.3 is complex and the adequacy of determining the weights based on the 

semivariogram range will be investigated in future work. As a second alternative, 

one might consider Gaussian geostatistical models for the random effects. Indeed, 

examination of the empirical semivariograms in Figure 2.3 suggests a spherical corre- 

lation function might be employed (Cressie, 1993). Implementation of geostatistical 

covariance structures would increase the computational burden involved in model fit- 

ting whereas Markov random field models are ideally suited for computation within 

a Gibbs sampler. In addition, geostatistical models are typically used when predic- 

tion of random effects a t  unsampled sites is of interest which was not the case in our 
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Figure 2.5: Maximum likelihood estimates of temporal trends from the spatial mover- 
sta.yer model with 95% confidence intervals (a,) go( t , ao) ;  (b) gl(t,  a l ) .  Bayesiaa 
(posterior mea.n) estimates of temporal trends with 95% credible sets (c) go(t, 00); 
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Figure 2.6: Locations of t.he 100 largest (triangles) i t ~ l  smallest (circles) estirna.ted 
ra.ntlorn effects from the spatia.1 mover-shyer model (a) bo - Likelihood A~lalysis; (11) 
bl - Likelihood Analysis; (c) bo - Bayesian Analysis; ((1) bl - Bayesian Analysis. 
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Figure 2.7: Loca.tioils of the 100 tmes having t,he highest estinmted posterior proba- 
bility of resistanre (a) Likelilioocl Arialysis - Pr(zi = OIY; 6); (h) Bayesia,ii Aiiillysis 
- P.I.(z~ = OIY). 
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analysis. 

More flexible correlation structures for the random effects could be considered. 

In particular, the assumption of independence between bo and bl could be relaxed 

allowing for joint modelling of the spatial random effects associated with the two 

types of transitions. Such modelling will allow for the borrowing of information across 

spatial units as well as across different transition types within units. The required joint 

correlation structures can be accommodated using multivariate Markov random field 

models which have received some recent attention in the literature (Kim et al., 2001; 

Gelfand and Vounatsou, 2003; Carlin and Banerjee, 2002). Another useful extension 

would allow for spatial correlation in the mixture allocation variables, Z, allowing 

for spatial clusters of resistant trees. In our application resistance was thought to be 

the result of genetic factors and spatial correlation in resistance was not expected. In 

other cases; however, such correlation might be postulated and would represent latent 

environmental factors contributing to resistance. Along these lines, Wu and Huffer 

(1997) and Huffer and Wu (1998) considered spatial autologistic models for describing 

the distribution of plant species. Their approach might be incorporated into our model 

by assuming that the latent variables, Z, are drawn from an autologistic model. 

Regarding the state structure, extended models allowing for more than two states 

are easily conceived. These extended models might prove useful in applications of 

infectious disease modelling where models typically incorporate three states: (1) a 

state representing individuals who are uninfected but susceptible to infection (2) a 

state representing individuals who are currently infected and infectious and (3) a state 

representing individuals who have recovered with lifelong immunity. Such models 

may be employed for examining infectious disease in animal studies; however. these 

applications require care for example when modelling spatial correlation due to the 

possibility of migration or in handling the mechanisms of the infectious transmission 

process. 

Related models for continuous time data where spatially correlated random effects 

are incorporated into the transition intensities of a multi-state Markov process are 

reported in the next chapter. Here, joint modelling of both spatial correlation as well 

as correlation between transition rates is required and multivariate spatial approaches 
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need be employed. 



Chapter 3 

Continuous-Time Spatial 

Multi-State Processes 

Clinical trials and medical studies are oRen concerned with the event histories of 

individuals in a population. In such studies, subjects are observed over time and 

significant events or changes in their health status are recorded. Statistical analysis 

of the resulting longitudinal data is conveniently conducted within the multi-state 

modelling framework. In this setting, we model a stochastic process, which at  any 

point in time, will occupy one of a discrete set of states and interest centers on the 

transition process between states. For example, states may refer to  the number of 

recurrences of an event, or the stages of a disease. Multi-state modelling provides a 

broad framework for the analysis of longitudinal data. which encompasses, as a special 

case, methods for the analysis of censored event-time data including methods for the 

analysis of competing risks. 

Most commonly employed are the Ma.rkov models which have found wide appli- 

cation in many fields including biostatistics, demography and the social sciences (see 

e.g. Clayton, 1988; Hougaard, 2000). In many situations, it is useful to account 

for heterogeneity in the state-testate transition processes corresponding to different 

subjects. In the simplest of such cases, this heterogeneity can be explained entirely 

through covariates and Markov chain regression models are employed (Muenz and 
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Rubenstein 1985, Prentice et al. 1981). In cases where the extra-variation is not ad- 

equately explained by the available covariates, random effects can be introduced in 

a hierarchical setting. Several authors have examined such mixed-effects models for 

the analysis of heterogeneous multi-state data. Aalen (1982) explored mixing dis- 

tributions on a Markov process in a general setting. More recently, Cook and Ng 

(1997), Ng and Cook (1997) and Albert and Waclawiw (1998) developed two-state 

mixed Markov models incorporating subject specific random effects. In these mod- 

els, the focus has been accounting for within-subject heterogeneity and subjects were 

assumed independent. Extensions to handle bivariate two-state processes have been 

recently considered by Zeng and Cook (2004) in context of paired data arising from 

studies examining visual acuity. We consider a multivariate setting where subjects 

are clustered into geographical strata such as provincial districts or local health units. 

In this case, the assumptions of between-subject or between-cluster independence of 

processes may not be viable as subjects arising from the same or neighbouring strata 

may yield correlated outcomes. Such correlation can be attributed to latent, spatially- 

varying factors such as shared environmental influences. A thorough analysis must 

therefore address the possibility of spa,tial correlation in the longitudinal outcomes of 

different subjects in a broad multivariate setting and this is a fundamental focus of 

our work. 

Generalized linear mixed models incorporating spatially correlated random effects 

have been studied extensively in disease mapping applications (see e.g., Besag et al., 

1991, Bernardinelli and Montomoli, 1992, Best et al., 1999) where data typically take 

the form of spatially correlated counts or proportions. In a similar vein, several authors 

have recently developed random effect models for the analysis of spatially correlated 

survival data (Li and Ryan 2002, Henderson et al. 2002, Carlin and Banerjee 2002, 

Banerjee et al. 2003). In the more general multi-state setting, spatial models have 

received considerably less attention. A two-state model of this sort was developed in 

Chapter 2 in a discrete-time setting. There, a mixed mover-stayer model was devel- 

oped for describing a spatio-temporal recurring disease process; however, more general 

continuous-time spatial multi-sta,te models have not been considered previously and 

would serve usefully in many situations. 
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In this chapter we present spatial continuous-time multi-state models for the analy- 

sis of geographically referenced event history data. Mixed Markov transitional models 

are developed. Transition intensity functions are modelled through a proportional 

intensities frailty model that incorporates covariates and correlated random effects. 

Baseline transition intensity functions are modelled using both parametric Weibull 

forms as well as flexible representations based on cubic B-splines. Here, modelling of 

both spatial correlation across regions as well as correlation between different transi- 

tion rates is desirable and a joint spatial model is required. In particular, we employ 

a multivariate Gaussian Markov random field as a prior distribution for the random 

effects operating across different transition rates. The use of a joint spatial model in 

this context is particularly novel as it allows for the borrowing of information, not 

only spatially, but also across different transition rates. When certain transitions cor- 

respond to rare events, the resulting joint correlation structure enables information 

to  be obtained from other related events. 

Our work is motivated by a study of invasive cardiac procedure in Quebec, in 

which patients hospitalized for acute coronary syndrome were followed over time and 

information regarding subsequent hospital readmissions and mortality was obtained. 

Additional demographic and treatment information was also obtained from each pa- 

tient along with the local health unit (LHU) in which the subject resides. The local 

health units serve as the geographical strata in this study. Interest lies in the iden- 

tification of spatial heterogeneity in the disease profile of subjects across the various 

local health units of the province. Our analysis reveals interesting trends in this 

heterogeneity. 

In Section 3.1 we specify our models. We discuss joint spatial modelling of the 

random effects as well as two alternative representations for the baseline intensity 

functions. Model fitting and inference using Markov Chain Monte Carlo (MCMC) is 

also discussed. Section 3.2 presents an analysis of the Quebec cardiac study data. In 

Section 3.3 we summarize our findings and discuss future work. 
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3.1 Spatial Continuous-Time Multi-State Models 

Suppose there are N subjects followed over time and each subject is located in one 

of J regions. Associated with the l th subject is a continuous-time stochastic process, 

x ( t ) ,  t 2 0, which takes values in a finite state-space, S = (1, ..., k) and which we 

observe over a finite time interval [0, Cl]. In addition, we assume that associated with 

the l th subject, 1 = 1, ..., N, there are two vectors of covariates z~ and rl each described 

below. 

We further assume that all N processes have the same state structure specifying 

which state-to-state transitions are allowable. Depending on the application, the state 

structure may not allow the maximum of k(k - 1) possible state-to-state transitions. 

This occurs, for example, when some states are absorbing or if the state structure 

is progressive. For any particular state structure, we define the set T = {(i, j) E 

S x SIPr(i  + j) > 0), so that T contains all ordered pairs, (i, j), i # j, corresponding 

to  i + j transitions which are allowed by the state structure. We further assume that 

the elements ( 2 ,  j) of T are sorted in ascending order in terms of the first index, i, and 

then by the second index, j, and we let NT denote the cardinality of T which is the 

number of allowable transitions. As an example, the state structure employed for the 

modelling in our application is depicted in Figure 3.1. Here, there are k = 4 states, 

with T = {(1,2) ,  (1,4), (2,3), (2,4), (3,4))) and NT = 5 allowable transitions. 

To model the processes corresponding to all subjects, we work in a hierarchical 

Bayes framework. At the first level of the model, we assume that the processes, 

x ( t ) ,  1 = 1, ..., N, are independent with each following a continuous-time Markov 

chain with state-space S and transition intensity functions {ql,,(t), (2 ,  j) E T). To 

model the intensity functions, we assume that covariates and spatial terms have a 

multiplicative effect given by 

where, for each (i, j) E T, zl is a vector of covariates corresponding to  fixed effects Pij 
(including an intercept); rl is a vector of covariates corresponding to  random effects 

bij; and qoij(t) is a baseline transition intensity function common to all subjects. This 
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Figure 3.1: State structure for the Quebec cardiac study. 

mixed transitional model is general and can be applied usefully in many situations 

where clustered multi-state processes are observed and there exists correlation both 

within and between clusters. This broad framework is similar to that adopted by 

Breslow and Clayton (1993) in their development of generalized linear mixed mod- 

els. For spatial modelling in our application, we assume that bij = (bij,, . .. , bij,)' is 

a vector of region specific random effects accounting for spatial correlation in tran- 

sitions from state i to state j .  The vector of covariates rl is taken to  be a binary 

vector of length J, indicating the region associated with subject I and is defined by: 

rl, = I{Subject 1 is located in region i)  , i = 1, ... , J with I{-) denoting the indicator 

function. 

We consider two alternative representations for modelling the baseline intensity 

functions. The first allows for flexible forms using cubic B-splines. The B-spline 
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representation is given by 

where, for each (i, j) E T,  aij = (a,, , ..., aij,,,+,)' is a vector of unknown coefficients, 

Bi j( t )  = (B,,(t), ..., BQkz1+,(t))' is a set of known B-spline basis functions and k ,  

represents the number of inner knots used in the representation. A second, simpler, 

representation assumes a standard parametric form, for example a Weibull form 

where pij > 0 is a shape parameter. 

Upon observation of the l th process, we denote by El 2 0, the number of observed 

state-to-state transitions; slo E S, the initial state occupied at time tlo = 0; tlm, m = 

1, ... ,E l ,  the time at which the mth transition occurs and slm E S the state entered at 

the mth transition, m = 1 , . .. , El. From these, we define indicators 

and risk set functions 

where K1 = El + 1 and XK, = Cl. Letting O = {{aij), {Pij), {bij), (i, j) E T )  for 

the spline model (3.2) and O = {{pij), {Pij), {bij), (i, j) E T)  for the Weibull model 

(3.3), XI = {El, {sl,, m = 0, ..., El), {X,, m = 0, ..., El + 1)) and X = {XI, 1 = 

1, ..., N), the likelihood takes the form 

where 
N El CI 

L, = [n n o , ( z ~ ) ~ ~ ~ ~ ~ I  .xP(- x J ~ ~ ~ ( ~ ) ~ ~ , ( ~ ) d ~ )  (3.5) 
1=1 m=l  1=1 O 
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3.1.1 A Joint Spatial Model for Random Effects 

The model contains a separate set of region specific random effects, bij, for each allow- 

able i --+ j transition. As a result, there are a total of NT such sets, where the vector 

bij = (bzJ1, ..., bzJJ)' contains a set of spatially correlated random variables operating 

on transitions from state i to state j .  Examining Figure 3.1, we see that for modelling 

in our application, there are five such sets, bI2, b14, b23, b24, b34, of local health unit 

specific random effects. In addition to allowing for spatial correlation across regions 

(within each bij) we also wish to accommodate correlation in the different transition 

rates (across the b,j). For example, given the transition structure displayed in Figure 

3.1, it was postulated that there may be positive correlation across the three sets 

of random effects, b14, b24, b34, operating on mortality rates. We thus seek a joint 

spatial model for the NT sets of random effects bij, (i, j) E T.  

To accommodate the joint correlation structure, we assume at the second level of 

the model, that the random effects are drawn from a multivariate generalization of the 

intrinsic Gaussian autoregression (Besag et al. 1991). Initially proposed by hgardia 

(1988) in an image processing context, multivariate conditional autoregressive models 

of this sort have received recent attention in the literature by Kim et al. (2001) 

and Knorr-Held and Rue (2002) for the joint mapping of several disease rates over 

a geographical region; by Gamerman et al. (2002) where they are employed as prior 

distributions in space-varying regression models and by Gelfand and Vounatsou (2003) 

for other applications in Bayesian hierarchical modelling. We let bh' = {b,,, 1 ( i ,  j) E 

T), denote the vector of random effects, having length NT,  associated with region 

h, h = 1, ..., J, and b = (blt, .... bJt)' be the vector of all random effects, grouped by 

regions. The model for b is a Markov random field, where the joint distribution is 

determined through a set of local specifications. In particular, for each region h, we 

define a neighbourhood dh = {k(k N h) where k N h is typically meant to  represent 

the adjacency of regions k and h. The model for b is then specified through the 

conditional distributions 

where p h  = CkEah b k ,  Eh = L C  and n,, denotes the number of neighbours of 
n h  n h  
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region h. The conditional mean vector, ph, in (3.6) is taken as an average of the 

random effects associated with the neighbours of region h. The NT x NT positive 

definite and symmetric matrix C is a hyperparameter representing the (conditional) 

within region covariance of the random effects. With these conditional specifications, 

the joint distribution for b is a (singular) normal distribution, b - NJxNT(O, B) with 

B having generalized inverse B-' = (D - C) @ C-' , where D = diag{nl, ... , n J), 
and C, the so-called neighbourhood matrix, is defined by Cij = I{ j - i )  and C,, = 0. 

As discussed by Gamerman et al. (2002), this distribution for b is improper, due to 

the rank deficiency of B-l .  When employing this prior in our MCMC setting, we 

adopt the usual convention of working with the proper conditional distributions (3.6) 

and imposing a set of NT identifying linear constraints, bijll = 0 ,  (i, j) E T. Posterior 

propriety is then ensured by assigning a proper hyperprior to  C (see eg. Sun et al. 

1999 or Besag et al. 1995). Other approaches to dealing with this impropriety involve 

extending the model to incorporate secalled propriety parameters (see e.g. Carlin and 

Banerjee, 2002; Gelfand and Vounatsou, 2003) and such extensions will be considered 

in Chapter 4. 

The model specification is made complete by assigning prior distributions to the 

remaining parameters: .rr({pij)), .rr({aij)) (or .rr({pij)), (i, j) E T and a hyperprior, 

.rr(C). Our analysis in section 3 employs relatively vague priors for these parameters. 

The posterior distribution for the representation (3.2) is then 

where, .rr(blC) is the density of the multivariate normal distribution associated with 

the random effects. When the Weibull representation (3.3) is used, the posterior 

replaces n({aij)) with .rr({pij)). 

3.1.2 Computational Implementation 

Posterior summarization is based on RilCMC samples drawn from (3.7) using a com- 

ponent-wise Metropolis sampler. We have coded our algorithm in the C programming 

language. The full conditional distribution of each regression coefficient is easily 
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computed and is log-concave. As such, these are updated individually using Gibbs 

steps in conjunction with Adaptive Rejection Sampling. The shape parameters, pi,, in 

the representation (3.3) are individually updated in a similar fashion. For the model 

based on (3.2), each vector aij is block updated using a random walk Metropolis step 

employing a multivariate Gaussian proposal. The random effects are block updated 

by region in a similar manner. Finally, C is easily updated with a Gibbs step when 

a conditionally conjugate inverse-Wishart prior is employed. The variance of the 

proposal distributions in Metropolis steps are tuned in an adaptive phase to ensure 

acceptance rates of between 20 and 50 percent. Inference is then based on a second 

phase where these values are held fixed. When computing the likelihood terms (3.5) 

a large number of 1-dimensional integrals must be evaluated. For the Weibull model 

(3.3) these integrals have closed form expressions and are thus easily con~puted. This 

is not the case for the spline model (3.2) and we therefore use Romberg numerical 

integration for evaluation. This leads to a higher computational overhead when fitting 

the model based on splines. Details of the sampling algorithm for the spline model 

are given below. Modifications to the algorithm required for fitting the Weibull model 

are straightforward. 

Denoting by ({aij), {&), b, C) the current state of the chain, we follow steps 1 

to  4 below. One iteration of the sampler consists of a complete sweep through the 

four steps, a t  the end of which the new state is recorded. 

1. Update spline coefficients aij, (Z, j )  E T :  

We update each vector of spline coefficients, aij, separately. The full condi- 
2nd 

tional distribution for aij based on the prior aij Nk,3+3(0, a21) has p.d.f. 

proportional to 

1 
kt3 +3 

 ex^(-^ C a:,,) x L, 
/ I  = 1 

where Li, is given by (3.5). We use a random walk Metropolis step with candi- 

date generated from a multivariate normal distribution. 
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2. Update regression coefficients Pij, ( i ,  j )  E T :  

For each ( i ,  j )  E T and lc = 1, . . . , p ,  we update each scalar parameter Pijk 
zzd 

separately. The full conditional distribution for Pijk based on the prior Pij N 

N,(O, a21) has p.d.f. proportional to 

and is easily shown to be log-concave. As such, we employ adaptive rejection 

sampling to obtain draws from this full conditional distribution in a Gibbs step. 

3. Update random effects b: 

We update the random effects associated with each region sequentially. Let bh 

denote the vector of random effects, having length NT, associated with region 

h, h = 1, ..., J. The full conditional distribution of bh has p.d.f. proportional to 

where the terms Lij ,  are likelihood contributions associated with the set of 

subjects arising from region h. We use a random walk Metropolis step with 

candidate generated from a multivariate normal distribution. 

4. Update variance components C: 

A convenient prior for the NT x NT positive definite and symmetric matrix C is 

the conditionally conjugate inverse-Wishart having degrees of freedom v 2 NT 

and positive definite scale parameter A. The resulting full conditional distrib- 

ution is also inverse-Wishart with degrees of freedom v' = v +, J and scale 

from which we can draw directly in a Gibbs step. 
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3.2 Study of Invasive Cardiac Procedure 

The cardiac study involves patients, aged 25 years and older, who had been hospital- 

ized for acute coronary syndrome (ACS) throughout the J = 139 local health units of 

Quebec during the period beginning January 1, 1996 and ending December 31, 1999. 

A total of 61,107 patients were recruited into the study, of which 40,031 were male. 

Upon discharge from index hospitalization, that corresponding to the first incidence 

of ACS, patients were followed over time and monitored for additional readmissions 

for the disease or death. Each patient was observed from discharge until December 

31, 1999 or until the time of their death if this came first. All patients had either 0,l 

or 2 readmissions for the disease and there were no subjects having more than two 

readmissions. Thus, at any time following discharge, each subject in the study can 

be said to occupy one of the four states depicted in Figure 3.1. Roughly one-third 

of the study subjects received some sort of invasive cardiac procedure during index 

hospitalization. This consisted of either angiography, angioplasty or aorto-coronary 

bypass. In addition to information on invasive cardiac procedure, other covariate in- 

formation included the age (a.t discharge) and the gender of each subject. Of primarv 

interest was the identification of residual spatial differences in mortality and readmis- 

sion rates over the local health units, that is, spatial variation not accounted for by 

the covariates. A site-map of the local health unit structure is provided in Figure 3.2. 

We fit the spatial continuous-time multi-state models described in the previous 

section with state space S = {1,2,3,4) depicted in Figure 3.1 and both Weibull 

and cubic B-spline representations for the baseline intensity functions. The B-spline 

representation for each qoij(t) is based on kij = 1 inner knot placed at the median of 

the observed i --t j transition times. The spline repre~ent~ations are then based on 

dim(aij) = 4 parameters; whereas, the Weibull forms use only 1 parameter, pij, for 
iid 

each ( 2 ,  j) E T. Regarding prior distributions, we assume aij - N4(0, 1021) for the 
izd spline coefficients and pij - Gamma(O.1,O.I) for the shape parameters in the Weibull 

iid 
model. For the remaining parameters, both models assume Pij - N,(O, 10'1) with 

p = 4 (three covariates plus intercept) and X-' - Wishart(u, A)  where setting u = 5 

and A = I ensure a relatively va.gue prior. Each model was fit by running four 
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Figure 3.2: Site map of Quebec divided into 139 local health units. 
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MCMC chains in parallel and convergence of the samplers to posterior distributions 

was assessed through the examination of trace plots, log-posterior monitoring and 

Gelman-Rubin (1992) statistics. For the Weibull model, a burn-in of 7,000 iterations 

was followed by an additional 9,000 iterations from each chain yielding a total of 

36,000 samples to be used for posterior summarization. The spline model required 

a greater number, 15,000, of burn-in iterations followed by another 11,000 iterations 

resulting in 44,000 posterior samples. 
t Defining cumulative baseline transition intensities: Qoij(t) = So qoij(u)du, poste- 

rior summaries of QOl4(t): QO24(t) and QO34(t), the cumulative intensities associated 

with mortality (state 4) are displayed in Figure 3.3 for both the spline and Weibull 

models. To assess and compare the fit of each model, Figure 3.3 also displays the 

semiparametric step-funct,ion estimates obtained from a simpler analysis. The sim- 

pler analysis ignores the random effects altogether and for each ( I : ,  j) E T: estimates 

regression coefficients using partial likelihood (via the coxph() function in R) and ob- 

tains nonparametric estimates of the cumulative baseline intensity function using the 

Breslow generalization of the Nelson-Aalen estimator (via the survfit() function in 

R). Along the same lines, posterior summaries of the cumulative baseline intensities 

associated with first and second readmission, Qo12(t) and QoZ3(t) are given in Figure 

3.4. Comparing with the semiparametric estima.tes, the spline model appeaxs to fit 

very well in all cases. In contrast, the simple 1-parameter Weibull representations do 

not perform as well particularly for estimation of QOl4(t) (Figure 3.3b) and Qo12(t) 

(Figure 3.4b). 

In addition, we have also considered several submodels which make simplified as- 

sumptions on the spatial random effects, bij, ( i , j )  € T. In the first, we simplify 

the conditional specifications (3.6) by setting p h  = 0 and C h  = Z, h = 1, ..., J. 
iid 

As a result, we have bh N N5(0, Z), h = 1, ... , J, for each 5-vector of region spe- 

cific random effects. Such a model assumes spatial independence across regions 

but allows for within region dependence across transitions within each vector bh = 

(b12h, b14h, b23h, b24h, b34h)'. In the second submodel, we assume independent Gaussian 
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Figure 3.3: Estimated cumulative baseline intensities associated with mortality after 
0, 1 and 2 readmissions (posterior means and 95% credible intervals) a) Q014(t) - 
Spline; b) QOl4(t) - Weibull; c) QO24(t) - Spline; d) Q024(t) - Weibull; e) QO34(t) - 
Spline; f )  QO34(t) - Weibull. For comparison, the step-function estimates obtained 
from the semiparametric analysis are indicated within each plot by the grey curve. 
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Figure 3.4: Estimated cumulative baseline intensities of first and second readmission 
(posterior means and 95% credible int,ervals) a) QOl2(t) - Spline; b) Qolz(t) - Weibull; 
c) QOz3(t) - Spline; d) QOz3(t) - Weibull. For comparison, the step-function estimates 
obtained from the semipammetric analysis are indicated within each plot by the grey 
curve. 
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ind intrinsic autoregressions for each bij, bij N IAR(uij), (i, j )  E T which implies 

This model allows for spatial dependence across regions but assumes independence 

between the random effects operating on different types of transitions. Finally, our 

third submodel sets the random effects bij = 0 ,  V ( i ,  j )  E T. Such a model ignores 

the spatial aspect altogether and is a standard continuous-time Markov regression 

model. For each of the three submodels we examine both Weibull and spline rep- 

resentations for the intensity functions. In total, eight models are fit, representing 

different assumptions on the spatial effects and intensity functions. 

To compare the various models we employ the deviance information criterion 

(DIC)? a 'fit plus penalty' model selection tool, proposed by Spiegelhalter et al. (2002). 

The criterion is given by 

DIC = D ( 0 )  + p~ 

where the deviance, D(O), is defined in terms of (3.4) via D(O) = -210g L(XIO) 

and D(O), the posterior mean of the deviance, is a measure of model fit. The penalty 

term, p ~ ,  is defined by p~ = D(O) - D(O) where 6 is the posterior mean of O. 

The term p~ measures the effective number of model parameters and will be lower 

when the data imposes a higher level of shrinkage in the random effects. Models with 

lower DIC scores are preferred as they achieve more optimal combinations of fit and 

parsimony. 

Table 3.1 lists the DIC and p~ values for all eight models considered. The DIC 

scores for the B-spline models are uniformly lower than those for the Weibull models. 

For each row in Table 3.1, the p~ values for the B-spline models are greater than those 

for the Weibull models by about 16, a value slightly larger than the raw difference 

of 15 parameters. The spline representations prove to be more flexible however as 

they result in substantial improvement in model fit with the DIC scores differing 

by over 700 in each case. Comparing the various models for the random effects, 

the criterion seems to favor the joint spatial model defined in (3.6) over the various 

submodels. Among the submodels, submodel 1 which assumes spatial independence 

across regions but incorporates within region dependence in each bh is preferred over 



CHAPTER 3. CONTINUOUS-TIME SPATIAL MULTI-STATE PROCESSES 51 

submodel 2 which assumes that each vector, bij, of spatial effects is independently 

drawn from an IAR(ai3) model. Indeed, the data seem to encourage a greater level 

of shrinkage in the random effects for submodel 1 compared with submodel 2 as the 

p~ values of the former are smaller than those of the latter. Finally, the non-mixed 

models (submodel 3) preform the worst. As expected, the p~ values for these models 

are the lowest and are essentially equal to the raw parameter counts of 40 (spline 

model) and 25 (Weibull model); however, the resulting poor fits yield the largest DIC 

scores in both cases. Overall, the model which employs B-spline representations for 

intensity functions and the joint spatial model for the random effects is considered 

most optimal according to the criterion. We therefore summarize the results of this 

model further. 

B-Spline Weibull 
Model for random effects p~ D I C  p~ D I C  
b - N5J(0, B ) ,  B-' = (D - C )  @ C-I 268 71 252 787 

iid 
bh N N5(0,C),  h =  1 ,..., J 353 128 336 839 

ind 
bij - IAR(aij), (i, j) E T 426 156 410 873 
bij 0,  V ( i , j )  T 40 612 24 1,336 

Table 3.1: DIC scores (after subtracting 340,000) and p~ for the eight models consid- 
ered for Quebec cardiac data. 

Table 3.2 presents posterior summaries for the regression coefficients, P14, P24 and 

P3*, associated with each of the three transitions related to mortality (transitions into 

state 4). Invasive cardiac procedure is associated with substantially lower mortality 

rates in all three cases. The posterior mean (95% CI) age and gender adjusted relative 

risks are 0.44 (0.40,0.47) for patients with no readmissions, 0.53 (0.45,0.62) for patients 

with one readmission and 0.50 (0.37,0.66) for those who have been admitted twice 

for the disease. Table 3.3 presents posterior summaries of the regression coefficients 

associated with the remaining two transitions, those related to readmission. We note 

that invasice cardiac procedure is associated with decreased rates of first readmission. 

The age and gender adjusted posterior mean (95 % CI) relative risk is 0.76 (0.73,0.79). 
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From Tables 3.2 and 3.3 we also note that event histories depend on the age of  subject,^. 

Older patients tend to have higher rates of mortality and readmission, an intuitive 

result. 

Table 3.4 gives posterior summaries of the variances and correlations associated 

with the hyperparameter C. Interpretation here is delicate as C h  = $C is not di- 

rectly interpretable as the variance matrix of bh. Rather, it is the variance of bh 

conditional on the random effects at the neighbouring sites. Most striking in the 

table is the relatively large and positive conditional correlation between b12, and bZ3, 

suggesting that regions which have above average residual first readmission rates will 

also tend to have above average residual second readmission rates. The positive cor- 

relation also suggests that missing (area level) covariates. represented by the random 

effects, would have consistent effects on the two types of transitions (see e.g. Cook and 

Ng 1997). Figure 3.5 compares the estimates of each bij in a matrix scatter plot. The 

plots seem to indicate positive correlation among the estimates of b14,, b24,, and b34h, 

the random effects which operate on mortality rates as well as positive correlation 

between estimates of b12, and b23,. 

The random effects capture residual variation in mortality and readmission rates 

over the local health units. To examine the extent of this variation, Figure 3.6 dis- 

plays boxplots summarizing t,he posterior samples of bI4, b24 and b34. The posterior 

distributions of these spatial effects seem to vary considerably across the local health 

units, perhaps further justifying their inclusion in the model. The posterior means of 

these random effects are ma.pped in Figure 3.7. The three maps reveal similar patterns 

and indicate higher residual mortality risks towards the southern most regions of the 

province. The fact that residual mortality risks are higher in these predominantly 

urban areas might be further studied as in Kunzli et al. (2005) who report associa- 

tions between air pollution and cardiovascular morbidity and mortality. The posterior 

samples of b12 and bz3 are summarized and estimates mapped in Figures 3.8 and 3.9 

respectively. Figure 3.8 reveals substantial differences in the posterior distributions 

across the local health units and the maps indicate higher risks of readmission towards 

the southwest and northeast regions of the province. These are primarily rural areas, 

in contrast with the higher mortality risks for urban areas noted above. The higher 
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Table 3.3: Posterior summaries of regression coefficients associated with each of the 
two transitions associated with readmission 

1 1 2  2 1 3  
Parameter Mean 95% GI Mean 95% CI 
Intercept -5.90 (-6.029,-5.77) -6.77 (-7.1 1,-6.48) 
Revasc -0.27 (-0.32,-0.23) -0.0056 (-0.10,0.088) 
Age 0.0049 (0.0034,0.0065) 0.013 (0.0094,0.016) 
Gender(Ma1e) -0.0085 (-0.050,0.033) -0.15 (-0.24,-0.060) 

Table 3.4: Posterior summaries for the conditional covariance matrix, C, obtained 
from the final chosen model. 

Parameter Mean 95% GI 
C11 (variance component bizh ) 0.12 (0.083, 0.17) 

C22 (variance component b14h) 

C33 (variance component bZ3,,) 

Cq4 (variance component bZ4,,) 

C55 (variance component b34,,) 
C d+ (conditional correlation b12, and b14,) 
1 1  Czz 

& (conditional correlation b12, and bZ3,) 
C d* (conditional correlation blzh and b2qh) 

(conditional correlation blnh and b3%) 
C Jx2& (conditional correlation b14, and bZ3,) 
C d+ (conditional correlation bI4, and bZ4,) 
2 2 x 4 4  

C  J$& (conditional correlation b14, and b3qh) 

C J& (conditional correlation bZ3, and bZ4,) 
C d& (conditional correlation b23h and b34h) 
C J& (conditional correlation b2qh and b34,,) 
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a 
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Figure 3.5: Matrix scat,t,er plot comparing the posterior mean estimates of b14, b24, 
b34, b12 and b23. 
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residual readmission rates could be reflecting differing health policy in these regions. 

Geographic trends such as those revealed in Figures 3.7 and 3.9 can be useful as they 

may give clues regarding missing variables that underlie the autocorrelation observed 

in the maps. 

3.3 Discussion 

There are several directions for future work which are currently being investigated. 

First, the methodology presented here will be extended to accommodate processes 

under panel observation. In this scenario, subjects can only be observed at discrete 

and irregular time points and the exact timing of events is unknown. With panel data, 

the complexity of the likelihood increases significantly compared with the form (3.4) 

considered here. The Bayesian framework adopted here, allows for data augmentation 

which may prove useful in such a missing data setting. 

In our modelling we have allowed the spatial effects, bij, to be correlated across 

different transition types (i, j) E T; whereas, the regression coefficients, Pij, are 

assumed independent. This assumption could be relaxed allowing for correlation in 

the covariate effects across transitions. For example, examination of Table 3.2 reveals 

that both invasive cardiac procedure and age have similar effects on all transitions 

into state 4. In addition, models containing subject specific (in addition to the region 

specific) frailty terms are also being investigated. 

Techniques for the modelling of intensity functions using splines will also be re- 

fined by addressing the crucial problem of choosing the number and positions of the 

knots. In situations where the transition intensities follow more complicated func- 

tional forms, a larger number of knots and advanced knot selection techniques may 

prove useful. For example, a close examination of Figures 3.3 and 3.4 suggests the 

need for an additional knot at some point during early time periods to model the 'dip' 

apparent when compared to the semiparametric estimates. We are examining several 

approaches including the use of penalized splines (P-splines) as well as adaptive knot 

selection where inference is conducted within a reversible jump MCMC setting. 

Finally, moving beyond the spatial epidemiologic setting considered here, it is 
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Region ID 

Region ID 

Figure 3.6: Boxplots (arranged i n  iilcreasiiig order by posterior rneclian) obtained fro111 
posterior samples of random effects associated with mortality a) bI4:  1)) bZ4: ~ ) b ~ ~  
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Figure 3.7: Post,erior mean maps of random effects associated with n~ort~ality a )  bI41 
b24 ; ~ ) b 3 4 .  
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Region ID 

Region ID 

Figure 3.8: Boxplots (arranged i11 increasing order by posterior mediaii) oI>tainecl froin 
posterior s~uriples of rantlorn effects associated with readmission a)  b12: 1)) b23. 
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Figure 3.9: Posterior mean maps of those random effects associated 
second readmission a.) bI2;  b) b23. 

I 

with first and 
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envisioned that our methodology can be applied in other areas where multi-state data 

are collected and spatial aspects are present but perhaps more subtle. For example, 

this may be the case in longitudinal studies in physiology, where several joints on the 

human body are examined and dependence between joints is a factor. 



Chapter 4 

Extending the Spatial 

Mover-Stayer Model 

In this Chapter we return to the discrete-time setting and refocus our attention on 

the spatially correlated mover-stayer model developed in Chapter 2. There, method- 

ological developments focussed primarily on inference through maximum likelihood 

although a supplementary Bayesian analysis was carried out for comparison. In this 

Chapter, we focus on Bayesian inference and develop methodological extensions within 

this framework. 

We begin in Section 4.1 by motivating an expansion of the model. Such an ex- 

pansion incorporates a joint spatial structure for the random effects. As with the 

multivariate intrinsic autoregression employed in Chapter 3, the model for the ran- 

dom effects, which we present in Section 4.2, allows for both spatial correlation as 

well as correlation across transition probabilities. Section 4.2 also takes up the issue 

of hypothesis testing with respect to  the number of mixture components. Specifically, 

we develop a test for 'stayers' in our mover-stayer model. Such a test is based on the 

assignment of a discrete mass prior to the mixing probability. A Metropolis-Hastings 

algorithm is then developed to produce posterior summaries including the posterior 

probability associated with the hypothesis of interest. We illustrate the techniques 

through an analysis of synthetic data in Section 4.3 and through a re-analysis of the 

weevil infestation data in Section 4.4. Section 4.4 also considers model validation 
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based on posterior predictive methods (Gelman et al. 1996). 

4.1 Motivation 

The mover-stayer model presented in Chapter 2 allowed for spatial correlation through 

the incorporation of two vectors of random effects: bo = (bol, ..., boN)' and bl = 

(bill ..., blN)'. For the ith subject, boi and bli operate on transition probabilities ac- 

counting for spatial correlation in transitions out of states 0 and 1 respectively. Each 

vector of spatial effects bo and bl was assumed independently drawn from a Gaussian 
ind 

intrinsic autoregression: bl - IAR(al),  1 = 0 , l .  While allowing for spatial correla- 

tion, this prior assumes independence within each pair b[i) = (boi, bli)' and thus the 

prior can be factorized n(bo, bl lao, al) = n(bo(ao)n(bl (al). Upon observation of the 

data, Y , this prior independence, when combined with the likelihood which factorizes 

in a similar manner, results in a separable posterior 

where O = Oo U el denotes the remaining model parameters separated into two 

disjoint sets, and Yo and Y1 are defined in (2.7) and (2.8) respectively. The resulting 

a posteriori independence of bo and bl, when justzfied, can be used advantageously 

for model fitting allowing the use of standard software. In this case, the posterior 

factorization (4.1) implies that two separate and independent MCMC samplers may 

be used: one to  draw posterior samples of bo and O0 and another to draw post,erior 

samples of bl and O1. Sampling from the individual posterior factors n(bo, OolYo) 

and n(bl,  Oil Yl ) can be accomplished using the UrinBugs software. 

Figure 4.la compares the posterior mean estimates of boi and bli in a scatter 

plot obtained from the analysis of the weevil infestation data in Chapter 2. Under 

the model (4.1), these estimates should not display correlation (as posterior samples 

should be independent). Nevertheless, the scatter plot appears to indicate a residual 

negative correlation within each pair b(i) = (boi, bli)' of estimates. Considering the 

context of the analysis, the negative correlation is intuitive. It implies that those trees 

having an above average probability of transition into the infected state (large boi) will 
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Figure 4.1: Scatter plot comparing posterior mean estimates of bo and bl :  a) Esti- 
2nd 

mates obtained in Chapter 2 assuming bl N IAR(al),  1 = 0 , l ;  b) Estimates obtained 
from expa.nded model assuming b N 2CAR(&, E). 
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have a correspondingly lower than average probability of transition into the uninfected 

state (small bli). An expanded model, accommodating such correlation is presented 

in the next section. Moving beyond our specific application, such an extended model 

will serve usefully in a wide variety of scenarios where random effects represent hetero- 

geneity arising from missing covariates. The within-pair correlation accommodated 

by the extended model can lend insight into the nature of this heterogeneity. 

4.2 An Extended Spatial Mover-Stayer Model 

Following the notation of Chapter 2, we assume there are N spatially arranged sub- 

jects and each subject is observed over a set of equally spaced time points. As before, 

we let yi = (yi (0), . .., yi (nri - I))', i = 1, ... , N,  denote the response vector of binary 

values obtained from subject i ,  where yi(t) indicates the state occupied by subject i 

at time t and x i ( t )  is a corresponding vector of covariates. 

We let O denote the collection of all model parameters (now including the random 

effects). At the first level of the model, we assume, conditional on O, that each yi is 

independently drawn from a two-component mixture having density fMS (yi 1 0) given 

by 

fMS(~il@) = P M ~ M C ( Y ~ ~ @ )  + (1 - P M ) ~ ( Y ~  = 0) (4.2) 

where p~ E [O,1] is a mixing probability; and fMc(yilQ) is the density of a lst order 

two-state Markov chain, which, upon adopting the mixed logistic specifications (2.3) 

takes the form 

fMc(yilO) = Py(0)(l - PI) l-ya(0) x Loi x Lli (4.3) 

where 

and, as before, p~ is an initial sta.te probability; go(t, ao) and gl(t, al) are temporal 

trends modelled using the B-spline representations (2.4); and 
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Dli = { t  > Olyi(t - 1) = 11, 1 = 0, 1. At this lowest level of the hierarchy, the model 

is the same as that presented in Chapter 2. Changes in the model structure occur at 

the second level, where we assign a prior distribution to the random effects. 

To jointly model the two vectors of spatial random effects, bo and bl, we adopt a 

bivariate conditional autoregressive model. We let b denote the vector of all random 

effects, grouped by subjects b = (b;,), ..., biN))'. As with the joint spatial model 

employed in Chapter 3, the prior for b is a Markov random field specified through a 

set of conditional distributions: 

where 

and Ci = &C. Here, as in Chapter 2, Cij is a scalar weight measuring the closeness 

or adjacency of subjects i and j (Cii = 0); Ci. = Cj Ci3; and n is a secalled propriety 

parameter. With these conditional specifications, the joint distribution for the vector 

of all random effects (grouped by subjects) is given by b - NZN(O, B) with B having 

generalized inverse B-l = (D - KC) @ C-l, where D = diag{C~., C2., ... , CN.). Note 

that by taking n = 1 we obtain a 2-dimensional version of the multivariate intrin- 

sic autoregression employed in Chapter 3. Along the same lines, taking K = 1 and 

C = diag{a&,, atl) we obtain the spatial structure used in Chapter 2. As discussed 

by Cressie (1993) and Sun et al. (1999) in the univariate spatial setting and by Carlin 

and Banerjee (2002) and Gelfand and Vounatsou (2003) in the multivariate setting, 

restricting n to an appropriate range ensures that the joint prior for the random effects 

is proper. In particular, taking K E [O! 1) will result in propriety (a wider range allow- 

ing negative values is allowable but not desirable). Within this range, lower values 

of n imply a lesser degree of spatial dependence with n = 0 corresponding to  spatial 

independence. Following Carlin and Banerjee (2002) we denote this distribution by 

~ C A R ( K ,  C). 

The model specification is made complete by assigning prior distributions to  the 
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remaining components of Q = {b, K ,  C ,  Po, Dl, a o ,  al, pM, pI). The posterior distri- 

bution then takes the form 

In section 4.2.2 we outline two separate Metropolis-Hastings algorithms to  draw sam- 

ples from this distribution. 

4.2.1 Hypothesis Testing for Stayers 

Consider testing the point-null hypothesis: Ho : y~ = 1 against H1 : p~ # 1 cor- 

responding to the mixing probability. In this case, Ho corresponds to a particular 

submodel of interest: that model which reduces the number of mixture components 

from two to one. In the forest ecological setting, such a test is of scientific interest 

and relates to  the existence of infection resistant trees. Examining (4.2) it is clear 

that p~ = 1 implies that the Markov component, fMc(yilQ), completely describes 

the transition process and the point mass, I (y i  = 0 ) ,  corresponding to stayers, has no 

role to play. 

Within the frequentist framework, testing for stayers in the mover-stayer model 

was considered by Albert (1999) in a purely longitudinal setting. There, a likelihood 

ratio (LR) test was employed. Such a test is slightly non-standard as the null hy- 

pothesis occurs on the boundary of the parameter space. The resulting asymptotic 

distribution of the LR statistic, under the null, was presented as a mixture of the 

standard chi-squared (with 1 d.f.) and a point mass at  zero. An alternative testing 

procedure might have enlployed methods based on the score statistic. In our more 

complicated spatial-longitudinal setting, such an approach might be integrated within 

a Monte Carlo maximum likelihood framework such as that developed in Chapter 1. 

For example, a simulated version of the score test could be conceived. While such an 

approach warrants further investigation, we proceed here within the Bayesian frame- 

work. 

The Bayesian approach to hypothesis testing is less formal and is typically based 
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on the posterior probability Pr(HolY) = JHo dx(OlY), with large values providing 

evidence in favor of Ho. The posterior probability is an appealing measure of evidence; 

it is easily interpreted and communicated to subject matter specialists. A closely 

related approach employs the Bayes factor (Kass and Raftery 1995) which is defined 

as the posterior odds in favor of Ho over the prior odds in favor of Ho: BF = 
P r ( H o  Y) W H O )  In fact, when a fair prior, Pr(Ho) = Pr (Hl )  = 1, is employed (as 

we shall do here), the two approaches are equivalent. Assuming such a fair prior, 

Table 4.1, adapted from Raftery (1996), gives a scale for interpreting the posterior 

probability as a summary of evidence for Ho provided by the data. 

- pr(HoIy) 
< $ 

Table 4.1: 
Pr(H1) = 
the Bayes 

evidence for Ho 
negative (supports HI)  

1 
? to 
3 12 
7i 13 

12 150 
13 iJT 

150 
>151 

Calibration of the posterior probability assuming a fair prior Pr(Ho) = 

i. The table is adapted from Raftery (1996), where it was use to calibrate 
factor. 

barely worth mentioning 

positive 

strong 

very strong 

A critical issue is the choice of prior for p ~ .  A continuous prior distribution 

such as the Uniform(0,l) which we employed in Chapter 2,  or more generally, a beta 

distribution are not compatible with a point-null hypothesis. Such continuous priors 

would imply that Ho is a, priori impossible. The data will not modify this absolute 

information and the posterior probability of Ho will also be zero. As a solution, we 

adopt a discrete mass approach adopting the prior 

which is a mixture of a beta distribution with a point mass on the null value. Such 

discrete mass priors were considered by Geweke (1996) and George and McCullough 
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(1997) for variable selection problems in regression. Here, we set w = 0.5 correspond- 

ing to the fair prior mentioned above. By choosing a prior for p~ with a point mass 

at  1, prior probability is allocated to the submodel with only one mixture component. 

Finally, we note that a simpler approach would avoid testing the point-null hy- 

pothesis altogether and simply examine the posterior distribution of p~ under the full 

mover-stayer model. Indeed, such an approach is advocated by Gelman et al. (2003 

p.339) in a related problem. Along these lines, our analysis of the weevil infestation 

data in Chapter 2 produced a posterior 95% credible interval for p~ of (0.86,0.93). 

From this, we might conclude that the posterior places a sufficiently small amount 

of mass in the neighbourhood of p~ = 1 and there no need to consider the simpler 

model. Nevertheless, in other applications of our model, the posterior interval may 

not be so clearly bounded away from p~ = 1 and the choice between the full model 

and the submodel will be less clear. In addition, the scientific importance of the null 

hypothesis in our application seems to warrant a more rigorous approach. 

4.2.2 Computat ional Implementat ion 

Posterior summarization is based on MCMC samples drawn from (4.8) using a com- 

ponent-wise Metropolis-Hastings sampling algorithm. We present two such algorithms 

which have both been coded in the C programming language. Following the data 
i id  augmentation strategy of Chapter 2, we introduce N latent allocation variables, zi - 

Bernoulli(pM), i = 1, ... , N ,  where each zi allocates subject i into one of two mixture 

components 

This alternative representation of the mixture model through the use of hidden allo- 

cation variables simplifies computation. 

The full conditional distribution of each regression and B-spline coefficient is log- 

concave. As such, we employ adaptive rejection sampling obtaining draws from each 

full conditional distribution in a Gibbs upda,te step. The initial state probability, p,, 

is assigned a conditionally conjugate beta prior and is thus also updated in a Gibbs 
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step. The random effects are blocked into subject pairs and updated using a random 

walk Metropolis step employing a bivariate Gaussian proposal. As in Chapter 3, 

we assign the hyper-parameter, C, a conditionally conjugate inverse-Wishart prior 

and draw directly from the full conditional distribution. The hyper-parameter K is 

updated using a Metropolis-Hastings step employing a logit-normal proposal. In other 

words, we transform K to the real line and update via random walk Metropolis using 

a Gaussian proposal (after re-transforming the proposal is not symmetric and hence 

this is a Metropolis-Hastings step). Each allocation variable, zi, is easily updated by 

drawing directly from the corresponding full conditional distribution. Finally, careful 

consideration must be given to the update of the mixing probability, p ~ ,  due to the 

discrete mass prior (4.9). We consider two different methods for updating p~ and this 

leads to two different algorithms. The first is based on a Metropolis-Hastings update 

where the allocation variables, zi, i = 1, ... , N, have been integrated out. The second 

is based on a Gibbs update which includes the allocation variables. 

A Metropolis-Hastings update may be employed with careful choice of the proposal 

distribution. For example, a standard random walk Metropolis step is not available 

here. Gottardo and Raftery (2004) discuss the measure theoretic details of defining a 

Markov transition kernel in this setting and more general settings involving Bayesian 

computation with mixtures of singular distributions. In our case, we must employ 

a proposal distribution which places an atom at p~ = 1. In doing so, the usual 

Metropolis-Hastings formula for the acceptance probability will yield a valid update 

step. This leads to our first algorithm, which we present below in full detail. 

Algorithm 1 

Denoting by (pM, {zi),pI, b, C, K, Po, PI, ao, al) the current state of the chain, we 

follow steps 1 to 8 below. One iteration of the sampler consists of a complete sweep 

through the eight steps, at the end of which the new state is recorded. 

1. Update p ~ :  

If the current value of p~ does not equal 1, then follow step (a); otherwise, 

follow step (b). 
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(a) p~ # 1 : Propose a new value p b  = 1. The Metropolis-Hastings accep- 

tance probability for this move, assuming the prior (4.9) is p = Min(1, A) 

where 

(b) p~ = 1 : Propose a new value p h  from a Beta(a,b) distribution. The 

Metropolis-Hastings acceptance probability for this move, assuming the 

prior (4.9) is p = Min(1, A) where 

In (4.11) and (4.12), No = #{i(yi = 0 ) ;  f (.lx, y)  is the density of a beta distrib- 

ution with mean & and variance ( z + y ) < ~ + y + l ) ,  a and b are tuning parameters; 

and finally, Loi is a likelihood contribution given by (4.4). 

Overall, starting from p ~ ,  the proposal sets the candidate value pL to 1 if 

p~ # 1. Otherwise, the proposal generates a candidate p h  # 1 from a Beta(a, b) 

distribution. From theorem 1 of Gottardo and Raftery (2004) the density of this 

proposal is given by 

To set the tuning parameters a and b, we run a pilot analysis and fit a simpler 

model that assumes a uniform(0,l) prior for p ~ .  The values of a and b are then 

chosen so that the mean and variance of the corresponding beta distribution 

match the posterior mean and variance of p~ obtained from the pilot run. 

2. Update zi, i = 1, ..., N: 

If = 1 set zi = 1, i = 1, ..., N. Otherwise, the full conditional distribution of 
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each zi is Bernoulli(p,,) where 

We draw directly from this distribution in a Gibbs step. 

3. Conditional update of p~ 

If p~ = 1 we skip this step. Otherwise, we perform another update of p ~ ,  by 

obtaining a draw from the full conditional distribution of p~ given p~ # 1. 

This full conditional is a Beta(a + xcl zi, N + P - x:, zi) distribution from 

which we draw directly. 

This conditional update, is not strictly necessary for the Markov chain to be 

ergodic; nevertheless, it is included with the aim of improving mixing of the 

sampler. 

4. Update pr: 

Assuming a uniform(0, 1) prior, the full conditional distribution for pr is Beta(l+ 

xLl Yi (0)zi, 1 + zi [I - Yi (O)])  from which we draw directly in a Gibbs step. 

5. Update random effects b: 

We update the pair of random effects associated with each subject sequentially. 

The full conditional distribution of each pair, b(i), i = 1, ..., N,  has p.d.f. pro- 

portional to 

where Loi and Lli are given by (4.4) and (4.5) respectively. We use a random 

walk Metropolis step with candidate generated from a bivariate normal distrib- 

ution. 
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6. Update variance components C:  

A convenient prior for the 2 x 2 positive definite and symmetric matrix E is the 
conditionally conjugate inverse-Wishart having degrees of freedom v > 2 and 

positive definite scale parameter A. The resulting full conditional distribution 

is also inverse-Wishart with degrees of freedom v' = u + N and scale 

from which we can draw directly in a Gibbs step. 

7. Update n: 

We employ a ~niform(0~0.99) prior for n. The resulting full conditional distrib- 

ution then has p.d.f. proportional to 

where X1, ..., A N  are the eigenvalues of D-'C. A candidate value n* is obtained 

by transforming n to the real line and applying a random walk Metropolis step 

as follows: 

Obtain a draw, x, from a normal(0, c) distribution, where c > 0 is a tuning 

parameter. 

Let y* = log(&) + x 

Let n* = 0.99 * expO 
l+ex!J(y*) 

Metropolis-Hastings acceptance probability for this move, is p = Min(1, A) 

where 
fc(r ') n'(O.99 - n') A = -  
fc(n) n(0.99 - n) 

The second term on the right hand side of (4.14) arises from the Jacobian of 

the transformation. 
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8. Update regression coefficients Po: 

We update each scalar parameter Do, separately. The full conditional distribu- 
i id 

tion for Po, based on the prior Po, N N(0, a2) has p.d.f. proportional to 

and is easily shown to be log-concave. As such, we employ adaptive rejection 

sampling to obtain draws from this full conditional distribution in a Gibbs step. 

The parameters Pl , al and a 0  are updated analogously. 

We note a connection between this algorithm and the reversible jump MCMC method- 

ology proposed by Green (1995) for Bayesian model determination. In the reversible 

jump setting, a Markov chain is constructed for sampling over both parameter and 

model space where the dimension of the parameter space is allowed to vary from one 

model to another. In our problem, there are two competing models: the full spatial 

mover-stayer model and the model with only one mixture component obtained by 

setting p~ = 1. Within the reversible jump literature, step 1 of our algorithm would 

be referred to as a between-model move and all other steps would be termed within- 

model moves. As the two models are nested, the only dimension change necessary 

is the addition or deletion of p~ from the parameter vector. As such, the standard 

Metropolis-Hastings formula holds provided the proposal incorporates a point mass 

at pM = 1. The reversible jump fornmlism is therefore not explicitly needed. Never- 

theless, if such an approach were employed, we would obtain the same algorithm. 

Algorithm 2 

In step 1 of our first algorithm, the allo~at~ion variables, zi ,  i = 1, ... , N ,  were 

integrat,ed out. If they are included, the full conditional distribution for p~ is available 

N N 

full conditional bM] p*I(p, = 1) + (1 - p*)Beta(o x t i ,  N + P-- x G) (4.15) 
i=l a=l 

where p* is the full conditional probability of Ho and is given by 
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where B(., -) denotes the beta function. Our second algorithm, is obtained as a 

modification of the first by replacing step 1 with a Gibbs update. That is, we draw 

p~ directly from the full conditional (4.15). In addition, step 3, the conditional update 

of p~ in algorithm 1, is removed. All other steps remain the same. 

To test our sampling algorithms, we analyze three synthetic datasets in Section 

4.3. We then conduct a reanalysis of the weevil infestation data in Section 4.4. 

4.3 Analysis of Synthetic Data 

To test our MCMC algorithms, we fit our model to synthetic data. We simulate 

data from the spatial mover-stayer model under three different scenarios. Spatially, 

we assume that data are collected on a 20 x 20 regular lattice corresponding to  400 

subjects under observation; where, associated with each subject is a position on the 

lattice given by coordinates (x, y), x = 1, ..., 20, y = 1, ..., 20. Data are generated 

for each subject over seven time points corresponding to t = 0, ..., 6. For all three 

simulation scenarios, we assume an initial state probability of pl = 0.15 and time- 

homogeneous subject specific transition probabilities given by logit(pol, ( t))  = Po + boZ 

and logit(plo,(t)) = P1 + bl,, i = 1, ..., 400, t = 1, ..., 6. Transitions are therefore 

governed by two intercepts, Po and P1 and random effects which we assume follow the 

~ C A R ( K ,  C) model. We set the intercepts to  Po = -0.1 and P1 = 0.1. For the random 

effects, we assume a la' order neighbourhood system. That is, we set the weights, Cz,, 

in (4.7) to  C,, = I{d(i, j) 5 1) where d(i, j) denotes the distance between subjects i 

and j .  Depending on their position, each subject will therefore have either 4, 3 or 2 

neighbours. The hyperparameters in the 2CAR model are set to K = 0.9 and 

Using these values of the hyperparameters in conjunction with the full conditionals 

(4.6), we ran the Gibbs sampler to obtain a realization of the random effects b. This 

realization is displayed in Figure 4.2, where we have mapped the simulated random 

effects on their corresponding lattice positions, and in Figure 4.3 where a scatter plot 
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illustrates the negative correlation between each pair b(i) = (boz, biz)' of simulated 

values. Finally, the three different data sets correspond to three different values for 

the mixing probability: p~ = 0.90, p~ = 0.93 and ph, = 1.0. 

For each simulated dataset, we fit the extended spatial mover-stayer model as- 

suming: go(t, ao) - 0 and gl(t ,  al) - 0; independent N(0, lo3) priors for the two 

intercepts; a Uniform(0,l) prior for pl; a Uniform(O,0.99) prior for K ;  a vague inverse- 

Wishart(v, A)  prior C, with v = 2 and A = I; and finally, we take cr = ,B = 1 in the 

discrete mass prior (4.9) assigned to p ~ .  We apply both of our sampling algorithms 

to obtain draws from the corresponding posterior distribution. For each algorithm, 

we run one chain for 50,000 burn-in iterations, followed by an additional 200.000 it- 

erations used for posterior summarization. Posterior 95% credible intervals for each 

parameter are given in Table 4.2 along with estimates of Pr(pM = 1IY). These esti- 

mates are obtained from the Monte Carlo output as I%-(H~~Y) = j ztZl I ( ~ $  = 11, 

where pg, j = 1, ..., J, are the posterior draws of phi. The Monte Carlo error for this 

estimate is computed based on the method of batch means. 

In each case, both algorithms give similar results. Regarding the model parame- 

ters, the results are in line with our expectations as all 95% credible intervals cover 

the true values. When data are simulated with a true value p~ = 1 (simulation 3), 

support for the null hypothesis Ho : p~ = 1, as measured by the posterior probability 

Pr(pM = 1 IY), is strong. In simulation 2, where the true value is set to p~ = 0.93, 

the evidence for Ho is negative as the posterior supports p~ f 1. Finally, we note 

that in simulation 1, where the true value of p~ was set to its smallest value of 0.90, 

neither of the two algorithms produce a single iteration where p~ = 1 (resulting in 

P ~ ( ~ M  = 1IY) = 0). This is presumably due to  an essentially negligible amount of 

posterior mass placed on this value for data simulated under this scenario. In all three 

cases, results seem reasonable and intuitive given the simulation settings. As our two 

algorithms employ vastly different mechanisms for updating p ~ ,  we are encouraged 

by the similarity of the estimates, PT(H~  I Y ) .  obtained from each one. 
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Figure 4.2: Maps of simulated random effects. Each map plots the exponential of the 
simula,ted random effect aa a, circle, where larger circles correspond to larger values 
(a) exp(boi), i = 1, ..., 400; (b) exp(bli), i = 1, ..., 400. 
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Figure 4.3: Scatter plot comparing simulated values of bo and bl .  
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4.4 Analysis of Tree Infection data 

In this section we build upon the analysis of the weevil infestation data conducted 

in Chapter 2 by fitting the extended spatial mover-stayer model developed in this 

chapter. We employ the same regression regression specifications as Chapter 2 

where, Di is a local measure of tree density; Ai(t - 1) is a local measure of infection 

density; and go(t, ao) and gl(t ,  al) are cubic B-splines with one inner knot placed at  

t = 4 years. For the random effects, we define the weights in the ~ C A R ( K ,  C )  model 

by Cij = I { d ( i ,  j )  5 lorn), as justified in Chapter 2. Regarding prior distributions, 

we assume a Uniform(0,l) prior for p~ and assign independent N(0, lo3) priors for the 

regression coefficients and parameters of cubic spline terms. The hyperparameters, 

K and C ,  are assigned Uniform(O,0.99) and inverse-Wishart(u, A )  priors respectively 

where we again set u = 2 and A = I. Finally, for the discrete mass prior assigned 

to p ~ ,  we take a = ,B = 1. The prior is then a mixture of a point mass and a 

Uniform(0, 1) distribution. 

We fit the model using both of our MCMC algorithms. For each algorithm, we 

ran two initially overdispersed sampling chains in parallel. With regards to initial 

values for p ~ ,  one chain was initialized at  p~ = 1 while the other was initialized at  

p~ = 0.89, the point estimate obtained from the Chapter 2 analysis. Each chain was 

run for an initial 50,000 burn-in iterations followed by an additional 500,000 iterations. 

This resulted in a total of 1,000,000 iterations to be used for posterior inference. As 

with our analysis of the simulated data in Section 4.3, the results obtained from both 

algorithms are virtually identical. As such, we only present the results obtained from 

algorithm 1. Posterior summaries of model parameters are given in Table 4.3. Results 

regarding regression coefficients and the initial probability, PI, are very similar to those 

obtained from the simpler model fit in Chapter 2 (see Table 2.1 for comparison). 

Estimates of the temporal trends are shown in Figure 4.4. These are also similar to 
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Uninfected + Infected Infected + Uninfected 
Parameter Mean Sd Mean Sd 
Intercept -0.52 0.15 0.027 0.21 

Di -0.018 0.0032 0.0092 0.0047 
Ai(t - 1) 0.013 0.0079 -0.0062 0.011 
am/abl 2.86 0.35 3.26 0.48 

PI 0.18 0.0084 - - 

PM 0.90 0.017 - - 

P -0.96 0.030 - - 
K. 0.98 0.015 - - 

Table 4.3: Posterior summaries obtained from fittine: the extended s ~ a t i a l  mover- - 
stayer model to the weevil infestation data. Here, we have defined OM, = 6, 

C obi = \/%;; and = JA. 
CllCzz 

the estimates obtained from the simpler model (see Figure 2.5 for comparison). The 

estimate of r; is close to its upper bound, indicating that an intrinsic autoregression, 

which sets r; = 1, is likely sufficient in this case. Regarding variance components, the 

posterior distribution of the conditional correlation parameter, p = h, indicates 

a strong negative correlation within each pair b(i)  = (boi, bli). A 95% credible interval 

for p is given by (-0.99, -0.88). This strong correlation is also evident in Figure 

4.lb where we compare posterior mean estimates of boi and bli. Allowing for such 

correlation has attenuated point estimates of the variance con~ponents, and 

6, as both estimates are larger compared to those obtained in Chapter 2. Thus it 

seems that the bivariate spatial model, by allowing for the borrowing of information 

across the two transition types, indicates a greater level of heterogeneity than was 

initially estimated in Chapter 2, where the simplifying independence assumption was 

made. This increased variability is also evident when comparing Figures 4.la and 4.lb 

as the estimates of bo and bl obtained from the extended model encompass a larger 

range than those obtained in Chapter 2. In Figure 4.5 we have mapped the extreme 

random effects, locating those trees having the 100 largest and 100 smallest estimates 

of bo (4.5a) and bl (4.5b). As before, spatial clustering of the largest and smallest 

values is apparent; however, compared to the maps obtained in Chapter 2 (see Figure 
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Year 

Year 

Figure 4.4: Posterior mean estimates of the temporal trends with 95% credible sets 
(a) 90(t, a o ) ;  (b) gl(tr 4 .  
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2.6 for comparison), the map of extreme do corresponds more closely to that of dl; 
a result owing to the correlation we have allowed between the two. In Figure 4.6 we 

locate those trees which may be resistant. Figure 4.6a locates those 100 trees which, 

based on our model, have the highest estimated posterior probability of resistance, 

Pr(z,  = OIY), and Figure 4.6b simply locates all trees which were never infected. 

The latter is easily obtained but not very informative; whereas, the former selects a 

subset of trees whose known characteristics can not adequately explain a long period 

without infection. These trees are the prime candidates for further study. 

For testing the hypothesis Ho : p ~ l  = 1, we obtain an estimate of the posterior 

probability ~ r ( p M  = 1IY) = 2 . 6 ~  lop5 with a Monte Carlo standard error of 2 . 5 ~  

(based on a batch means estimate employing 100 batches each of size 10,000). Even 

after accounting for Monte Carlo error, it is clear that the posterior lends very little 

support to the null hypothesis. 

Finally, we compare the 2CAR(tc, C )  specification for the random effects with two 

submodels. The first sets K: = 1 leading to a bivariate intrinsic autoregression. The 

second sets K: = 1 and C = diag{a&,, a;,) leading to the original model presented in 

Chapter 2. As in Chapter 3, we use the DIC criterion to compare across random effect 

specifications. Table 4.4 lists the DIC and p~ values for the three models considered. 

The lowest DIC score belongs to the full model; however, the DIC score associated 

with the intrinsic version which sets tc = 1 is very close and the two models can not 

be distinguished. This is in agreement with our estimate of K: in Table 4.3 which was 

very close to its upper bound. Finally, allowing for a joint spatial structure appears 

to be beneficial as both models are preferred over the original model which assumes 
2nd 

bl N IAR(al) ,  1 = 0 , l .  

4.4.1 Model Validation 

In this section we discuss how to employ Bayesian model checking for our spatial 

mover-stayer model using the posterior predictive distribution. As before, we let Y 

denote the observed data, L (Y  I@) = fl:, fnrs(yilO) denote the (normalized) like- 

lihood of the data under our model and .ir(OlY) denote the posterior distribution. 
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Figure 4.6: Locations of the 100 largest (triangles) a11d smallest (circles) (%tin)~t('d 
mn(lom effects from tlic exteirlrd spatial mover-stmr.~ inodel ( t i )  bo: (I,) b l .  
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Figure 4.6: Locations of trees nrhich may bc resistant (a) Thosc 100 trees having the  
highest posterior probability of resistance Pr(z ,  = OIY) : (1)) Those 715 trecs which 
were never infected. 
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Table 4.4: DIC scores and p~ for three models fit to the weevil infestation data which 
consider different structures for the random effects. 

Model for random effects 
2CAR(n, C) 
2CAR(1, Z) 

2nd bl IAR(ol), 1 = 0 , l  

Posterior predictive model checking is based upon the notion of a hypothetical replica- 

tion of the data, YTep, drawn from the sampling distribution assumed by our model, 

L(Y(O) ,  and under the same conditions as the observed data. If it were possible to 

simulate YTep from L(YTeP(0) we could compare the observed data, Y ,  to the data 

simulated under our model, YTep, to assess how well the hypothesized model repli- 

cates the observed data. Unfortunately, O is unknown. A natural approach within 

the Bayesian 

the posterior 

pD 
469 
406 

254 

setting is to integrate out O against the posterior r(O1Y). This yields 

D I C  
679 
683 

759 

predictive distribution. 

To simulate from (4.16) we first obtain J draws from the posterior 01, ..., OJ .  

Using these draws, we then simulate J replicate datasets, Y y p ,  ..., Y y p ,  where Y y p  

is drawn from the sampling distribution assumed by our model, given the simulated 

parameters Oi .  As discussed by Gelman et al. (1996), if the model is reasonably 

accurate, the replications should look similar to the observed data. 

To compare the observed data to the data simulated under the model, we de- 

fine a test statistic, T(Y) ,  and compare the observed value to the simulated values 

T (Y y p )  , . . . , T (Yyp) .  Such comparisons can be accomplished visually by comparing 

the histogram of simulated values to the observed value. If the data are in conflict 

with the proposed model, the observed value, T(Y) ,  will lie in or beyond the tails 

of the histogram. Several test statistics can be chosen, each reflecting a particular 

aspect of the model we wish to check. To examine the fit of our model, we define four 
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test statistics 

Here, Tl (Y)  is the total number of transitions from state 0 to state 1 (summed over 

all subjects); T2(Y) is the total number of transitions from state 1 to state 0; T3(Y) 

is the overall total number of transitions; and T4(Y) is the total number of subjects 

who remain in state 0 throughout the course of observation. 

To check the fit of our extended mover-stayer model to the weevil infestation 

data, we drew J = 500 replicate datasets from the posterior predictive distribution, 

Y y p ,  . . . , Yi::, and obtained the corresponding histograms for each of the four test 

statistics. The histograms are displayed in Figure 4.7 along with the observed values. 

Comparing the observed values to the histograms, we see no indication of a lack of fit. 

For the purpose of comparison, we fit the submodel obtained by setting p~ = 1 with 

all other aspects of the model remaining the same. Posterior predictive comparisons 

for this model, based on J = 500 replications are shown in Figure 4.8. It is clear 

from Figure 4.8d that the submodel is a poor fit with respect to the total number 

of trees which were never infected. In addition, by not allowing for trees that never 

make transitions between the diseased and disease-free states ('stayers'), the predicted 

number of 0 + 1 and 1 + 0 transitions under the submodel is substantially greater 

than the number of such transitions in the observed data. These results are consistent 

with our results concerning the posterior probability Pr(pM = 1 IY). 
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4.5 Discussion 

This Chapter has presented an extension of the spatial mover-stayer model initially 

proposed in Chapter 2. A joint spatial model has been incorporated, allowing for cor- 

relation within each pair of subject specific random effects. In addition, a hypothesis 

test for stayers was developed. In our application this test relates to the existence 

of infection resistance trees. A discrete mass prior was incorporated for the mixing 

probability and this enabled the calculation of the required posterior probability. Two 

MCMC algorithms were developed to draw samples from the posterior distribution 

of our model. A reanalysis of the weevil infestation data was conducted based on the 

extended model. This analysis revealed a strong negative correlation within each pair 

of tree specific random effects. From this, we can conclude that missing covariates 

may which underlie the spatial autocorrelation are likely to have opposite effects on 

the two types of transitions. Applying our hypothesis test, we found overwhelming 

evidence in favor of the model containing two mixture components and thus it seems 

viable that some trees may be resistant to infection. Finally, we discussed a goodness- 

of-fit procedure based on the posterior predictive distribution. Applying this to our 

analysis of the weevil infestation data, we found no evidence indicating a lack of fit 

for the mover-stayer model. 

The mover-stayer model developed for our forestry application assumes that those 

trees which make transitions ('movers') between the infected and uninfected states do 

so without restriction. Future work will consider extensions allowing for subjects who, 

upon infection, are no longer susceptible to reinfection. Tests for such monotonicity 

in infection might also be developed using the discrete-mass prior approach. Moving 

beyond the random intercepts employed here, a more general model allowing covari- 

ate effects to vary from subject to subject would be interesting to explore. Other 

extensions will incorporate spatial adaptive splines and allow for spatial correlation 

in mover-stayer allocations. The next chapter discuss these extensions in detail. 



Chapter 5 

Future Work 

Directions for future work will consider refinements of the multi-state models devel- 

oped here as well as new directions in the arena of mixture models. 

5.1 Spatially Correlated Mover-Stayer Allocations 

In Chapters 2 and 4 of this thesis we have examined methods for handling mixtures 

of populations for spatial discrete-time two-state processes. There, spatial correlation 

was imbedded into the transitional process of a two-state Markov chain. This, in 

turn, was then fused into a two-component mixture model. Allocation of subjects to 

each of the mixture conlponents was assumed spatially independent. While this was 

suited to the forestry application considered, more general forms of mixture alloca- 

tion could be constructed which would serve usefully in many other situations, for 

example, incorporating spatial clustering into the mixture allocations. In the forest 

ecological setting, this relates to spatial clusters of infection-resistant trees. In the 

spirit of Fernandez and Green (2002), such spatial allocation to mixture components 

could be accomplished through a logistic transformation of an autoregressive Gaussian 

process. Alternatively, a latent autologistic process may be used to govern mixture 

allocations. Tests for spatial correlation in the mixture allocations will be useful in 

this context. Methods based on Bayes factors (Kass and Raftery 1995) could be em- 

ployed. As discussed by Sinharay and Stern (2005), computation of Bayes factors 
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in high dimensional spatial settings is challenging. Several techniques for computing 

Bayes factors in this context might be considered: Bridge sampling (Meng and Wong 

1996), Reversible jump MCMC (Green 1995)) Importance sampling and the MCMC 

based approaches proposed by Chib and Jeliazkov (2001). 

5.2 Spatial Adaptive Splines and P-Splines 

Regression splines are an attractive approach for modelling nonlinear smooth trends. 

The methodology is based on the representation of such trends through a sequence of 

piecewise polynomials. A crucial problem with regression splines is the choice of the 

number and positions of the knots defining the piecewise polynomials. In this thesis, 

where splines have been used for modelling temporal trends and intensity functions, 

we have addressed this problem primarily through exploratory methods, fixing the 

number of knots and their positions. Alternative, more rigorous, approaches will 

incorporate sophisticated techniques developed in the smoothing literature. 

In the context of additive models, Denison et al. (1998) set up a joint distribution 

over the number and location of the knots and conduct inference in the Bayesian 

framework using Reversible Jump MCMC (Green 1995). The resulting adaptive 

splines avoid over-fitting resulting from the incorporation of too many knots while 

maintaining sufficient flexibility. An alternative approach is based on penalized re- 

gression splines (P-splines) and was considered in the context of Bayesian additive 

mixed models by Lang and Brezger (2004). In the P-spline approach, a moderate 

number of equally spaced knots are chosen and sufficient smoothness of the fitted 

curve is achieved through a difference penalty imposed on adjacent spline coefficients. 

Both techniques will be investigated and incorporated into methodology for spatial 

multi-state processes. In addition, extensions will allow temporal trends to vary by 

location in a smooth manner. That is, region specific temporal trends will be incorpo- 

rated by assuming that the spline coefficients are themselves a realization of a spatial 

process. Such an extension would prove useful for analysis in longitudinal agricultural 

studies where growth curves or incidence rates vary substantially across the region 

under study. As discussed by Gelfand et al. (2003) and Gamerman et al. (2002), 
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who considered similar ideas in the context of space-varying regression models for 

Gaussian data, a multivariate spatial process would be required to  jointly model all 

spline coefficients. Methods for adaptive space-varying splines based on multivariate 

spatial processes have not been considered previously. Such methods would represent 

a significant contribution to the spatio-temporal modelling literature. 

5.3 Accelerated Failure Time Models with Spatial 

Frailties 

The modelling of clustered or multivariate event-time data arises in many applications 

of statistics including, but not limited to: health, biology, ecology, demography as well 

as industrial applications (see e.g., Hougaard 2000). A popular approach for modelling 

such data introduces random effects or 'frailties' into the widely used proportional 

hazards regression model. Recently, several authors have extended the proportional 

hazards frailty model to the spatial setting by incorporating spatial correlation in 

the random effects. These include Li and Ryan (2002) who develop the proportional 

hazards spatial frailty model in the classical framework and Henderson et al. (2002) 

and Banerjee et al. (2003) who develop Bayesian methods. These methods were 

then further extended by Carlin and Banerjee (2002) and Jin and Carlin (2005) who 

develop joint spatial models based on multivariate spatial mixing distributions. Along 

these lines, the continuous-time models presented in Chapter 4 of this thesis are an 

extension of these methods to the more general state-space encompassed by multi- 

state models. All such work has been based upon the proportional hazards regression 

framework. 

An important alternative to  the proportional hazards model is the accelerated fail- 

ure time (AFT) model (Kalbfleisch and Prentice 1980). Models in this framework are 

appealing due to their ease of interpretability. The ba.sic models in this class assume 

observations are independent and adopt parametric distributional forms. More flexible 

AFT models adopt a semi-parametric approach and avoid distributional assumptions. 

In the Bayesian setting, semiparametric AFT regression models for univariate survival 
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times have been considered by, among others, Christenson and Johnson (1988) and 

Kuo and Mallick (1998), who develop methods based on the Dirichlet process and 

Walker and Mallick (1998) who employ a Polya tree prior for the error distribution. 

More recently, Komrek and Lesaffre (2004) develop a semiparametric approach which 

models the error distribution as a normal mixture with an unknown number of com- 

ponents and further allow for multivariate event-times through the inclusion of a 

random effect. Accelerated failure time models for multivariate event-time data have 

not been considered in the spatial setting. These spatial AFT models would serve 

usefully in forest ecological applications for examining the survival times of white 

spruce trees with respect to infection by the white pine weevil. Indeed, ecologists (see 

e.g., He and Alfaro 2000) have used simplified parametric AFT survival models for 

precisely this purpose but have ignored the possibility of spatial correlation. Exten- 

sions which develop semiparametric AFT models incorporating spatial frailties would 

prove extremely useful for the analysis of forest ecological time-to-event data. Various 

specifications for the spatial random effects might be explored and compared includ- 

ing: Gaussian Markov random fields, non-Gaussian Markov random fields (pairwise 

interaction random fields employing absolute value or log cosh potential functions) 

and Gaussian geostatistical forms. 

5.4 Spatial Finite Mixtures 

In this thesis, spatial correlation in the transition processes of multi-state models has 

been represented by spatially correlated random effects. Continuous mixture models 

of this sort have been widely used for modelling spatial and spatio-temporal corre- 

lation in many other settings. In the context of generalized linear mixed models, a 

broad framework for spatio-temporal analysis has been developed over the last decade 

through numerous publications in the literature: see for example, Waller et al. 1997, 

Diggle et al. 1998, Zhang 2002, Zhu et al. 2005 and references therein. In the spa- 

tial epidemiological setting, the random effects-Poisson model introduced by Besag 

et al. (1991) has been used extensively. Indeed, application of these models has been 
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made relatively straightforward through the freely available and user-friendly Win- 

Bugs software. What is often ignored in the spatial setting is the possibility that 

the random effects distribution, typically assumed multivariate normal, has been mis- 

specified. This is particularly problematic when the underlying spatial heterogeneity 

may be subject to sharp boundaries, as random effect models do not naturally allow 

for such discontinuities. As discussed by Knorr-Held and Rasser (2000), the resulting 

oversmoothing may mask such boundaries and these may be of substantial interest. 

Finite mixtures provide a robust alternative to random effect models. While 

methodology for finite mixtures has been studied extensively (see e.g., Lindsay 1995), 

they have received limited attention in the spatial realm. Often, as in Chapters 

2 and 4 of this thesis, finite mixtures are used to represent hidden subpopulations 

corresponding to different models for the quantity of interest. Alternatively, they 

may be viewed as a flexible, semiparametric specification for a mixing distribution, 

particularly when the number of mixture components is left unspecified (Richardson 

and Green 1997). In recent ground-breaking work, Fernandez and Green (2002) and 

Green and Richardson (2002) have developed finite mixture Poisson models for the 

analysis of spatially indexed count data. Future work will consider the development 

of a flexible class of spatial finite mixtures, providing an alternative to random effect 

models. Spatial allocation to mixture components could be based on discrete val- 

ued latent processes. Several latent process models will be considered including the 

Gibbs random fields, which have been employed in statistical mechanics and image 

processing (Geman and Geman 1984). As discussed in Qian and Titterington (1991), 

estimation for models containing latent Gibbs fields is extremely challenging. Both 

Bayesian and Likelihood based inferential methods could be developed, with the for- 

mer being based on reversible jump MCMC and the later achieved through Monte 

Carlo maximum likelihood techniques (Geyer and Thompson 1992). Within the spa- 

tial finite mixture context, several extensions could also be investigated including: 1) 

spatio-temporal data 2) multivariate spatial structures for joint modelling of several 

response variables and 3) censored event-time data. 
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