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ABSTRACT 

Researchers are integrating emerging technologies into interactive play environments, 

and established game markets continue to expand, yet evaluating play environments is 

challenging. While task performance metrics are commonly used to objectively and 

quantitatively analyse productivity systems; with play systems, the quality of the 

experience, not the performance of the participant is important. This research presents 

three experiments that examine users' physiological signals to continuously model 

user emotion during interaction with play technologies. Modeled emotions are 

powerful because they capture usability and playability, account for user emotion, are 

quantitative and objective, and can be represented continuously. 

In Experiment One we explored how physiological signals respond to interaction with 

play technologies. We collected a variety of physiological measures while observing 

participants playing a computer game in four difficulty conditions, providing a basis 

for experimental exploration of this domain. 

In Experiment Two we investigated how physiological signals differ between play 

conditions, and how physiological signals co-vary with subjective reports. A different 

physiological response was observed when playing a computer game against a co- 

located friend versus a computer. When normalized, the physiological results mirrored 

subjective reports. 



In Experiment Three we developed a method for modeling emotion using 

physiological data. A fuzzy logic model transformed four physiological signals into 

arousal and valence. A second fuzzy logic model transformed arousal and valence 

into five emotions: boredom, challenge, excitement, frustration, and fun. The 

modeled emotions' means were evaluated with test data, and exhibited the same trends 

as the reported emotions for fun, boredom, and excitement, but modeled emotions 

revealed differences between three play conditions, while differences between 

reported emotions were not significant. 

Mean emotion modeled from physiological data fills a knowledge gap for objective 

and quantitative evaluation of entertainment technologies. Using our technique, user 

emotion can be analyzed over an entire experience, revealing variance within and 

between conditions. This continuous representation has a high evaluative bandwidth, 

and is important because the process, not the outcome of playing determines success. 

The continuous representation of modeled emotion is a powerful evaluative tool, that 

when combined with other approaches, forms a robust method for evaluating user 

interaction with play technologies. 

Keywords: 

User Interfaces, human-computer interaction, emotion, play, computer games, fun, 

evaluation methodology, physiology, GSR, EMG, HR, fuzzy logic, affective 

computing 
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CHAPTER ONE: INTRODUCTION 1 

Chapter 1 INTRODUCTION 

1.1 Background 

Computer games have grown during recent years into a popular entertainment form 

with a wide variety of game types and a large consumer group spread across the 

world. An increasing number of people are playing electronic games, placing them 

among other favorite leisure activities, like reading books and watching films [55]. 

When surveyed on the most fun entertainment activities in the year 2000, 35 percent 

of all Americans identified computer and video games, whereas watching television 

fell second at 18 percent, followed by surfing the internet (l5%), reading books (13%) 

and going to the movies (1 1%) [55]. 

On-line gaming has offered people new means of having social interaction with 

garners in other locations, and has let gamers access and play out fantasy-driven 

identities that they are unable to manifest in the real world [132]. In 2002, the 

percentage of gamers that play online rose to 31 percent up from 24 percent the year 

before [55]. In 2004, the percentage increased to 43% [55]. Within the games, or 

through the use of websites based around the games, dedicated communities have 

formed which have created new content, sometimes leading to commercial ventures. 

Electronic game play, however, is not limited to home use. Game parlors and 
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LAN (Local Area Network) parties are becoming a popular means to play online 

games [49]. Also, 37 percent of Americans who own game consoles (or computers 

used to play games), report that they also play games on mobile devices such as PDAs 

(Personal Digital Assistants) and mobile phones [55]. The popularity of computer 

games has made them important carriers of culture and trends but also a vehicle for 

the development and deployment of new hardware, software and user interface 

techniques. 

According to the Interactive Digital Software Association (www.idsa.com), revenue 

from the computer and video game software industry in the US nearly doubled from 

$3.2 billion in 1994 to $6.35 billon in sales from 225 million units in 2001 (up 7.9% 

and 4.5% from 2000 respectively). In the same year in the United States, movie box 

office grosses were $8.41 billion [55]. In 2004, game sales increased to $7.3 billion, 

inching closer to the total revenues from the film industry. In Great Britain in the year 

2000, the entertainment software industries grossed •’300 million more than the British 

cinema box offices and almost double that of home video rentals [32]. 

1.2 Motivation 

In addition to growth in traditional computer and console games, emerging 

technologies in ubiquitous computing and ambient intelligence offer exciting new 

interface opportunities for play technology, as evidenced in a recent growth in the 

number of conference workshops and research articles devoted to this topic [6, 8, 9, 

71,721. Our research team is interested in employing these new technologies to foster 

interactions between users in co-located, collaborative entertainment environments. 
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We want technology not only to enable fun, compelling experiences, but also to 

enhance interaction and communication between players. 

We have created a few novel game environments with the goal of enhancing 

interaction between players and to create a compelling experience [22, 75, 761. One 

of our game environments, False Prophets [76], was a hybrid boardlvideo game, 

played on an interactive tabletop with a tangible interface. After creating False 

Prophets, which is described in more detail in Appendix 2, we wanted to determine 

whether our novel game features created an interactive and engaging experience. 

However, we found that none of the current evaluation methodologies were robust 

enough to answer our research questions. Other researchers have also used emerging 

technologies to create entertainment environments [6, 8,51, 71,721, yet evaluating the 

success of these new interaction techniques and environments is an open research 

challenge for the ubiquitous gaming community. Upon further examination, we noted 

that traditional computer game developers were also suffering from a lack of effective 

evaluation methods. 

Traditionally, human-computer interaction research (HCI) has been rooted in the 

cognitive sciences of psychology and human factors, and in the applied sciences of 

engineering, and computer science [94]. Although the study of human cognition has 

made significant progress in the last decade, the notion of emotion is equally 

important to design [94], especially when the primary goals are to challenge and 

entertain the user. This emotion-centric approach presents a shift in focus from 

usability analysis to human experience analysis. 
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The first issue prohibiting good evaluation of entertainment technologies is the 

inability to define what makes a system successful. We are not interested in 

traditional performance measures, we are interested in what kind of emotional 

experience is provided by the play technology and environment [96]. Although 

traditional usability measures may still be relevant, they are subordinate to the 

emotional experiences resulting from interaction with play technologies and with 

other players in the environment. 

Once we determine what makes an entertainment system successful, we need to 

resolve how to measure the chosen variables. Unlike performance metrics, the 

measures of success for collaborative entertainment technologies are more elusive. 

The current research problem lies in what emotions to measure, and how to measure 

them. These metrics will likely be interesting to researchers and developers of games 

and game environments. 

1.3 Overview of Research 

Our goal is to develop an evaluation methodology for entertainment environments 

that: 

1. captures usability and playability through metrics relevant to ludic' 
experience; 

2. accounts for user emotion; 

3. is objective and quantitative; and 

4. has a high evaluative bandwidth. 

- - 

1 Of, or referring to play or playfulness [26]. 
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Researchers in human factors have used physiological measures as indicators of 

mental effort and stress [137]. Psychologists use physiological measures to 

differentiate human emotions such as anger, grief, and sadness [31]. However, 

physiological data have not been employed to identify a user's emotional states such 

as fun and excitement when engaged with entertainment technologies. Based on 

previous research on the use of psychophysiological techniques, we believe that 

capturing, measuring, and analyzing autonomic nervous system (ANS) activity will 

provide researchers and developers of technological systems with access to the 

emotional experience of the user. Used in concert with other evaluation methods (e.g. 

subject reports and video analysis), a complex, detailed account of both conscious and 

subconscious user experience could be formed. 

This dissertation describes a research program designed to test the efficacy of 

physiological measures for use in evaluating player experience with collaborative 

entertainment technologies. We have three main conjectures: 

Conjecture A: Physiological measures can be used to objectively measure a player's 

experience with entertainment technology. 

Conjecture B: Normalized physiological measures of experience with entertainment 

technology will correspond to subjective reports. 
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Conjecture C: Physiological metrics can be used to model user emotional experience 

when playing a game, providing continuous, quantitative, and objective metrics of 

evaluation for interactive play technologies. 

1.3.1 Orgaluia tional Overview 

We begin by describing current techniques for evaluating interactive technologies in 

Chapter 2. Many of these methods were developed to evaluate productivity 

applications and environments. As such, we discuss how the methods have been 

adapted to evaluate play technologies. Although some evaluation methods have been 

successfully used to evaluate game and play environments, Section 2.3.4 describes 

where current methods fall short, and shows the lack of objective and quantitative 

methods for evaluating play. 

In Chapter 3 we introduce some of the psychological concepts relevant to our 

research. These concepts include an overview of the Human Nervous System (section 

3.1), arousal (section 3.2), valence (section 3.3), habituation (section 3.4), flow 

(section 3 S), and emotion (section 3.6). 

To provide an introduction for readers unfamiliar with physiological measures, in 

Chapter 4 we briefly introduce the physiological measures used in our research, 

describe how these measures are collected, and explain their inferred meaning. 

Metrics relating to electrodermal activity (section 4. l), cardiovascular activity (section 

4.2), respiration (section 4.3), and muscle activity (section 4.4) are discussed. Chapter 

4 also presents information on indexing psychological events from physiological data 
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(section 4.5). This includes competing theories on the classification of emotion 

(section 4.5.1), and issues and limitations associated with sensing physiological 

responses (section 4.5.2). 

In the field of Human Factors, researchers have been using physiological signals as an 

evaluation metric in many domains. As such, Chapter 5 provides related literature on 

using physiological signals as metrics of evaluation in laboratory tasks (section 5.1), 

in field tasks (section 5.2), in dispatch, air traffic control and simulator tasks (section 

5.3), and with adaptive technologies (section 5.4). Although there has been little 

research on using physiological signals as evaluation metrics for interaction with 

computer technologies, work in the domain of HCI is discussed in section 5.5. 

In Chapter 5 we also introduce the research area of affective computing (section 5.6), 

which is computing that relates to, arises from, or deliberately influences emotion 

[loll .  Physiological signals have been used as input to interactive systems, and 

although we propose to use physiological signals as an evaluation methodology, in 

section 5.6.1 we present relevant research on using body signals as input. The 

chapters on related literature close with a brief examination of wearable biometric 

sensors in section 5.6.2. 

The remainder of the dissertation presents research designed to investigate the 

applicability of physiological measures as indicators of human experience with 

entertainment technologies. We describe three experiments that we designed to test 

our main conjectures. Throughout the experiments, we record users' physiological, 

verbal and facial reactions while they play NHL 2003 by EA Sports in different play 
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conditions. We apply post-processing techniques to correlate an individual's 

physiological data with their subjective reported experience. 

In Experiment One, we manipulated game difficulty and explored how a user's 

physiological signals responded to interaction with play technologies. Chapter 6 

describes the participants (section 6.1), play conditions (section 6.2), experimental 

setting (section 6.3), and data analysis techniques (section 6.4). Results of the 

experiment are presented in section 6.5. We experienced some methodological 

problems in Experiment One, which are discussed in section 6.6. The issues that we 

experienced, and the results of the experiment allowed us to generate rules for 

conducting experiments in this domain, which are presented in Chapter 6. 

Based on the lessons we learned, and the results from Experiment One, we conducted 

Experiment Two. Experiment Two investigated how physiological signals co-varied 

with subjective reports, lending support for Conjecture A, that physiological measures 

can be used to objectively measure a player's experience with entertainment 

technology, and Conjecture B, that normalized physiological measures of experience 

with entertainment technology will correspond to subjective reports. We manipulated 

game opponent (co-located friend or stranger), and Chapter 7 describes the 

participants (section 7.1), play conditions (section 7.2), experimental setting (section 

7.3), and data analysis techniques (section 7.4). Results of the experiment are 

presented in section 7.5. Because of the methodological issues that we experienced in 

the first experiment, and the subsequent rules that we developed, we made many 

adjustments in Experiment Two to our data collection techniques and experimental 
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design. Although these changes are described in the relevant aforementioned sections, 

we also highlight the adjustments, and their impact in section 7.6. 

Based on the knowledge acquired in Experiments One and Two, in Experiment Three 

we developed a method for modeling emotion, using physiological signals. Due to the 

success of Experiment Two, we collected data in three play conditions: against a co- 

located friend, against a co-located stranger, and against the computer. We developed 

a fuzzy logic model that transformed four physiological signals into values of arousal 

and valence. A second fuzzy logic model transformed the arousal and valence values 

into continuous values for five emotions: boredom, challenge, excitement, frustration, 

and fun. 

Chapter 8 presents details on how we collected the data and generated the modeled 

emotions. In section 8.2, we present a brief introduction to fuzzy logic, then present 

the details of how we modeled arousal-valence space in section 8.3. Our modeled 

arousal and valence values compared favorably to values generated using a brute force 

approach (section 8.3.5). There were some outstanding issues related to modeling 

arousal and valence, which are discussed in section 8.3.6. Our second model, which 

transforms arousal and valence into the five modeled emotions is presented in section 

8.4. The outstanding issues with modeling emotion are also discussed in this section. 

Chapter 9 presents how we used the model to objectively and quantitatively evaluate 

emotional experience during interaction with NHL2003 by EA Sports. Results for 

modeled emotions (section 9.1) are presented along with results for reported emotions 

(section 9.2) for the same five emotions. The modeled emotions were successfully 
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compared to subjective reports in section 9.3, supporting Conjecture C, that 

physiological metrics can be used to model user emotional experience when playing a 

game, providing continuous, quantitative, and objective rnetrics of evaluation for 

interactive play technologies. Although successful, our modeled emotions suffer from 

scaling issues, which are presented in section 9.4 along with potential solutions. In 

addition to providing a quantitative and objective methodology for evaluating user 

interaction with play technologies, modeled emotions can be represented 

continuously, yielding a method with a very high evaluative bandwidth. The 

continuous nature of modeled emotions is highlighted in section 9.5. 

Finally, we conclude the dissertation with a summary of the results and contributions 

in section 10.1, and discuss our plans for future work in section 10.3. Chapter 11 

provides a list of the references used in this dissertation. 

Twelve appendices are included at the end of the dissertation. Appendix 1 lists the 

abbreviations and acronyms used throughout the dissertation. Appendix 2 gives more 

detailed information on False Prophets, the game environment that we developed 

which motivated this research direction. Appendix 3 provides results from electrode 

placement tests that we conducted to ensure valid results from our sensor placement. 

Appendix 4 contains the consent form used in all of our experiments as required by 

the guidelines for conducting research on human participants from the Simon Fraser 

University Research Ethics Board. Appendices 5 through 11 include questionnaires 

used in the three experiments, while Appendix 12 through Appendix 14 contain extra 

information and results from the process of modeling emotion. 
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1.4 Summary 

Researchers are using emerging technologies to develop novel play environments, 

while established computer and console game markets continue to grow rapidly. Even 

so, evaluating the success of interactive play environments is still an open research 

challenge. Both subjective and objective techniques fall short due to limited evaluative 

bandwidth, and there remains no corollary in play environments to task performance 

with productivity systems. In addition, we want to incorporate a user's attitudes, 

behaviours, and emotions into an evaluation. 

This dissertation presents an investigation into the efficacy of a user's physiological 

signals as evaluators of interaction with play technologies. This approach could be 

powerful as it captures usability and playability through metrics relevant to ludic 

experience, accounts for user emotion, is quantitative and objective, and is represented 

continuously over a session. 
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Chapter 2 CURRENT METHODS OF EVALUATING 
ENTERTAINMENT TECHNOLOGIES 

Methods of evaluating computing technologies range from rigorous to casual, and can 

be qualitative or quantitative, subjective or objective, or some hybrid approach. The 

common methods of evaluating user interaction with technology are described in this 

section. We include descriptions of subjective and objective techniques for hypothesis 

testing and evaluation. We do not present methods of hypothesis generation common 

to some social sciences (e.g., ethnography) as these methods are used for forming 

theories used to inform the design of technology rather than to evaluate technology in 

any stage of development. Although these social techniques could be utilized to study 

garners and gaming culture, we are more interested in how to evaluate specific 

technologies. 

2.1 Subjective Methods of Evaluation 

Subjective measures of evaluation for human computer interaction (HCI) typically 

include questionnaires, interviews, and focus groups. There are other subjective 

evaluation techniques commonly used in the social sciences such as ethnography and 

social observational schemes, and recently some of these social science techniques 

have been adapted for use in HCI research. For example, contextual inquiry [52] and 

rapid ethnography [84] have been used to discover trends in work practices for 
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technology-rich office environments. These subjective social science methodologies 

are generally used for hypothesis generation, using qualitative techniques, rather than 

hypothesis testing, using quantitative techniques [35, 79, 811. As such, they are not 

discussed in detail in this section. The subjective evaluation methods of 

questionnaires, interviews, and focus groups are presented. 

2.1.1 Questionnaires 

Techniques such as questionnaires and surveys that require users to rate their 

experience through a series of statements and questions are common and 

straightforward methods of subjectively evaluating technologies [79, 1221. 

Questionnaires and surveys are considered to be generalizable, convenient, amenable 

to rapid statistical analysis, and easy to administer. The large amount of data that can 

be gathered from surveys offers the results a sense of conviction [122]. Rating a 

statement or a user interface feature using a series of bipolar semantically anchored 

items or a Likert scale provides numerical data that can be analyzed using non- 

parametric statistical methods. 

Some drawbacks of using questionnaires or surveys are that: survey techniques aren't 

conducive to finding complex patterns; questionnaires can invade privacy; and 

because subjective reports are cognitively mediated, they may not correspond to the 

actual experience of the survey participant [79, 1491. Knowing that their answers are 

being recorded, participants will sometimes answer what they think you want to hear, 

perhaps without even realizing it. 
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2.1.2 Interviews and Focus Groups 

Interviews are different from questionnaires in that they cannot be administered by a 

computer or on paper, but involve an experimenter asking the questions and recording 

the answers given by the participant [92]. Thus, interviews can be more free-form 

than questionnaires since the experimenter can rephrase difficult questions and prompt 

participants for more depth on any given question [92, 1221. This makes interviews 

harder to analyze quantitatively since not all subjects may be asked the same questions 

under the same conditions. Conversely, they often provide rich descriptions and may 

elucidate the quantitative results from questionnaires. Interviewers must be careful to 

not bias the participant's responses and to ask questions in a neutral, non-leading 

manner. 

Focus groups are a fairly informal technique that involves bringing a small number of 

participants together with a moderator to discuss user needs and feelings [92]. A 

focus group should be free-flowing from a participant's perspective, but the moderator 

should maintain the focus. Focus groups are sometimes preferred over interviews due 

to the time saved by interviewing multiple people simultaneously, but also because of 

the spontaneous reactions and ideas that emerge through the participants' interactions 

[92]. Focus groups are also limiting in that the results are always qualitative and 

subjective. In addition, participants' opinions may be swayed by other, more vocal 

participants in the group [92]. 

Focus groups are perhaps the most utilized method for evaluating games [41]. Game 

companies use surveys less often due to the expertise needed in analyzing the data 
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[41], but surveys can yield results not available from focus groups (e.g., quantitative 

evaluation). Subjective techniques have been used to evaluate game usability as well 

as game playability, and the advantage of subjective techniques is that a researcher or 

developer can access information related to user preferences and attitudes, an 

important factor in playability evaluation. 

2.2 Objective Methods of Evaluation 

One of the most common methods of objectively evaluating interactive technologies is 

using task performance, but other objective measures gathered through video analyses 

can be equally informative. In this section, we present an overview of some objective 

methods of evaluation and the techniques used to obtain them. 

2.2.1 Task Performance 

Depending on the task, a number of task performance indicators can be used. There 

are comprehensive general lists of task performance measures that can be adapted for 

most experimental situations [92, 122, 1261. In addition, certain specific research 

areas have well-studied and well-documented methods of evaluating task 

performance. For example, text-entry and target selection on devices has been studied 

from the earliest interactive computer through to recent mobile devices. Fitts 

presented models for serial tapping tasks in 1954 [36], and discrete aiming tasks in 

1964 [37] that have been adapted for use with modem computer interfaces, and are 

widely used today to analyze and predict movement times for targeting tasks on 

personal computers, cell phones, and PDAs. Card, Moran, and Newel1 [15] discussed 
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a keystroke-level model for user performance in a 1980 issue of Communications of 

the ACM, and this area of research is still being advanced and iteratively evaluated. 

General measures of task performance include but are not limited to [92, 1261: 

- Task completion time 
- The number of user errors 

- Percent tasks completed 
- The number of system features that can be remembered during a 

debriefing 
- Time spent using the Help functions 

- How frequently the Help system solved the user's problem. 

After logging this information, standard quantitative statistical methods are used to 

analyze the data. 

Usability testing (in terms of user experience, rather than Quality Assurance), has not 

been a standard method for evaluating games, although testing techniques offer 

potential for gathering information related to usability of the interface, as opposed to 

playability [18, 411. The time it takes to test games is negligible when considering the 

time needed to fix the problems that usability testing might find. There has been a 

recent effort into rapid usability testing, which would more likely be adopted by game 

companies. Rapid Iterative Testing and Evaluation (the RITE method) was used to 

evaluate a popular game (Age of Empires 11) at Microsoft Games Studios [82]. 

Although the case study suggests that RITE was useful in evaluating Age of Empires 

11, RITE has not been tested for general use over a wide variety of games. 
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In 1982, Malone [73] published one of the earliest papers on game evaluation. The 

goal was to bring the appealing elements of games into productivity applications, to 

make tedious productivity software more enjoyable to use. He created eight versions 

of an educational math game, successively removing motivational features from each 

version. Participants were given the option of playing their version of the game or an 

entirely different control game. The primary measure of appeal for each of the 

versions was how long the participants played their version of the game, as compared 

to a control game. This measure of appeal correlated with subjective reports of how 

well the participants liked the game. Although this worked well in the early 1980s, 

games are so complex now, with so many motivating attributes, that it would be 

difficult to separate out game features in order to test their appeal. However, 

measuring the appeal of a game by how long participants choose to play is still a valid, 

but limited approach. 

2.2.2 Observational Techniques and Video Analysis 

Observational data recorded on video and in computer-generated logs may include 

data about the system (e.g., modes and outputs), the environment (e.g., interruptions, 

network load), or about the user's behaviour (e.g., eye movements, gestures, 

verbalizations, facial expressions, etc.) 1351. Analysis techniques of observational 

data from video include conversation analysis, verbal and nonverbal protocol 

analysis, cognitive task analysis, and discourse analysis [35]. 

Sanderson and Fisher have described Exploratory Sequential Data Analysis (ESDA) 

techniques, which are empirical ways of seeking answers to research questions 
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through the use of observational data under the guidance of formal concepts [35, 1171. 

In addition, ESDA techniques encompass the three broad traditions of observational 

research - behavioural, cognitive, and social traditions. In the behavioural tradition, 

researchers usually construct questions that can be answered objectively and 

quantitatively, using the scientific method [35, 1381. Analysis tends to focus on 

events that can be compartmentalized and coded without much interpretation and 

subjectivity from the researcher. Results are generally quantitative, and stress 

replicability and generalizability [35, 1171. In the cognitive tradition, verbalizations 

are as important to analysts as the behavioural data, since verbalizations can offer 

insights into the cognitive processes underlying and inspiring user action [35, 1 111. In 

the social tradition, questions often focus on the social, interpersonal, cultural or 

communicative events2 [35, 401. Encoding and analysis is an iterative process, 

grounded in the data itself [81], and the results tend to be qualitative, validated using 

formal methods of qualitative analysis. 

Analyzing video by coding gestures, body language, verbal comments and other 

subject data as an indicator of human experience is a lengthy and rigorous process that 

needs to be undertaken with great care [79]. Researchers have to be careful to 

acknowledge their biases, address inter-rater reliability, and not read inferences where 

none are present [79]. There is an enormous time commitment associated with 

observational analysis. The analysis time to data sequence time ratio (AT:ST) 

Note that although observation techniques are generally considered objective methods of 
evaluation, the social tradition focuses on communication, process, and cultural events. 
These measures are subject to the experimenter's biases and pre-conceived notions, thus are 
not considered objective measures. 
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typically ranges from 5: 1 to 100: 1 [35]. Even five hours of analysis for every hour of 

data may be too high, so some usability professionals have decreased the analysis time 

to two hours of analysis for every hour of data, which could result in jeopardizing the 

quality of the analysis. On the other hand, some cognitive scientists have increased 

the analysis time to 1000 hours of analysis for every hour of data, for a thorough 

treatment of the data [35]. As a result of the time commitment, many researchers rely 

on subjective data for user preference, rather than objective observational analysis. 

Given the tremendous time commitment and the need for specialized training, video 

observational methods have not been widely adopted for the evaluation of games. 

Since most game development companies do not have the necessary expertise in 

evaluation, companies like XeoDesign [15 11 specialize in observational evaluation of 

game playability and game usability. Using video recordings of what players say and 

do, questionnaire responses, and verbal and non-verbal emotional cues, expert 

evaluators assess a player's experience and provide qualitative feedback to clients on 

how to make their games more fun [65]. 

2.2.2.1 Facial Expression Analysis 

Observational data from video is not limited to verbalizations or observable 

behaviour. Facial expressions are another commonly observed data source, since 

facial expressions can be used to identify emotions. A standard method of interpreting 

facial expressions is to record and analyze them in context. It is quite common to 

observe a look of concentration, frustration or celebration when people interact with 
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technology. These "looks" are often associated with body movements and verbal 

comments. 

The study of facial expressions has been centered on the question of whether people 

use their face to represent emotion. Keltner and Ekman [61] provide a summary of the 

research domain and the issues and findings that have been encountered since the late 

1800s. There have been several significant results relevant to determining whether 

facial expression can play a role in analyzing user reaction to technology. 

Firstly, we know that facial expressions have links to emotions. We smile when we 

are happy or pleased, and frown when we are discouraged or upset. Our eyes crinkle 

in myriad ways when we feel different emotions, or are trying to convey our feelings 

to another person. The unique combination of how each facial element is changed can 

convey specific emotions. In addition, facial expressions have physiological ties. Our 

body responds differently when we generate different facial expressions, even when 

the underlying emotion is not present. For example, expressions of anger, fear and 

sadness produce greater heart acceleration than other emotions and the expression for 

anger produces greater finger temperature than that for fear. Although we can't see 

most of the physiological changes that accompany the making of facial expressions, 

people are very good at accurately judging facial expressions. In fact, we can judge 

facial expression of emotion with level of accuracy that exceeds chance (60 to 80% 

success when chance is calculated between 17 and 50%) [61]. 

Although facial expressions can be recognized at a rate greater than chance, and a 

system for coding expressions into distinct categories has been developed [30], this 
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area of research is still fraught with unanswered questions and methodological issues 

1611. 

2.3 Standard Usability Methods 

Much of the recent research on HCI analysis techniques is related to usability analysis. 

The goal of usability analysis is to inform the design of software and hardware 

products to ensure that the products adhere to established usability principles, as well 

as to users' expectations of how the technology will behave. There are some usability 

methods that do not require the involvement of users; however, many methods involve 

watching a user work through a set of tasks. 

Although some techniques may not be useful for empirical research, these techniques 

can be adapted or integrated into an experiment, enhancing the empirical data. 

2.3.1 Think Aloud Protocols 

Asking participants in an experiment to verbalize their experiences is known as a 

think-aloud protocol. Thinking aloud is a valuable method, used to understand how 

participants view the technology, and feel about their interactions with the technology 

[92]. Although this technique is based in psychological research [33, 771, it has been 

adopted by computer scientists and software developers [90]. Traditionally, there is a 

significant amount of analysis conducted on the verbal data including verbal 

transcriptions and coding the utterances according to an iteratively-defined scheme. 

This process has a high cost in terms of time commitment, requiring an AT:ST ratio of 

about 25:l [77, 901. Other researchers have adopted a "discount" approach to the 



CHAPTER TWO: CURRENT METHODS OF EVALUATION 22 
- 

think-aloud protocol, requiring only half an hour of analysis for each hour of 

videotape recording [90]; however, this "discount" approach does not provide enough 

time to even listen to the entire recording, and will only reveal a user's thought 

processes that are readily apparent. 

One of the disadvantages of concurrent verbalization is that the process may interfere 

with task performance [33, 921. By asking users to perform another task (think aloud) 

in addition to their primary task, data gathered on their primary task might be 

compromised. The fast pace and time constraints associated with entertainment 

technology exacerbate this problem. Asking subjects to verbalize what they are 

thinking also interferes with their natural utterances. To avoid this issue while still 

getting the benefits of a think aloud protocol, participants can be asked to perform the 

think aloud protocol retrospectively using video replay. This method is referred to as 

a retrospective think aloud protocol [33, 921 and is very valuable as the user can make 

more extensive comments than when constrained by the primary task. One drawback 

of retrospective testing is the time commitment needed to replay the task situation. 

With many specialized user groups (e.g., doctors, lawyers), the time factor would 

impede the use of this test; however, with some user groups (e.g., university students, 

computer game players) the benefits of using the technique outweigh the time 

commitment. Also, retrospection may lose some fidelity that would be present when 

discussing the task in real time. 
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2.3.2 Discount Techniques 

There is significant overhead in terms of time and personnel required for an extensive 

empirical evaluation of software or an ethnographic study of users' habits and patterns 

of activity. Due to this overhead, a set of evaluation techniques called discount or low 

cost methods was introduced [70]. Used mainly for traditional usability testing, 

discount methods have become popular, but do not address some of the deeper issues 

that can be uncovered with a more formal investigation. Usability inspection [70], a 

type of discount technique, is the generic name for a set of methods anchored in 

having reviewers inspect or examine aspects of an interface related to usability. Two 

of the most popular inspection techniques are cognitive walkthrough and heuristic 

evaluation. 

2.3.2.1 Cognitive Walkthrough 

Many users prefer to learn about the functionality of a piece of software as the need 

arises, rather than through formal training. One feature of this approach is that the 

overhead invested in learning a new feature or task gives immediate benefit to the 

user. Cognitive walkthrough [68, 106, 1421 is a usability inspection method with the 

goal of evaluating an interface for ease of learning through exploration [142]. The 

complex interactions between the cognitive processes of the user, the characteristics of 

the task, and the details of the interface create the processes through which a user 

learns a system [68]. Using a list of questions to focus their attention on the aspects of 

the interface that are important in facilitating the learning process, reviewers evaluate 

the interface in the context of a specific user task [68]. In a test, cognitive 

walkthrough detected almost 50% of the usability problems uncovered with a full- 
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scale evaluation [68], yet only took a fraction of the time. However, evaluators who 

were familiar with the theory of exploratory learning found more agreement and 

observed more error paths than evaluators unfamiliar with the theory [68]. 

Recently, Pinelle and Gutwin [104, 1051 adapted the method of cognitive walkthrough 

for use with groupware systems. In groupware walkthrough, reviewers step through 

the tasks with the intention of evaluating how well the interface supports teamwork. 

The technique can be applied at any stage of the iterative design cycle, from low- 

fidelity prototypes to functioning applications [105]. Pinelle and Gutwin introduced 

the mechanics of collaboration [45, 1051, a breakdown of the components of 

teamwork that support group members in working towards a shared outcome. 

2.3.2.2 He uristic Evalua tion 

Heuristic evaluation [70, 91, 931 is one of the most informal methods of usability 

inspection. It involves having usability specialists judge whether each interface 

element is consistent with established usability principles called heuristics [70]. 

Heuristic evaluation has been promoted as a cheap and quick method of identifying 

usability problems [93]. A set of evaluators should be used because a single 

individual will not be able to identify all of the usability problems in an interface. In 

fact, averaged over six projects, single evaluators only found 35% of the usability 

problems [91]. Through a review of the methodology in a number of studies, Nielsen 

recommends using 3-5 evaluators to identify most of the usability issues, and states 

that 5 evaluators will uncover 80% of the problems [9l, 931. 
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Although Molich and Nielsen [86] identified a standard set of heuristics (discussed in 

detail in [92]), other heuristics can be used depending on the interface, application 

domain, and intended set of users. For example, Baker et al. [4, 51 developed a 

heuristic evaluation methodology for shared workspace groupware based on Gutwin 

and Greenberg's mechanics of collaboration [45]. Showing similar performance 

results to Nielsen's traditional heuristic evaluation, the groupware heuristics evaluate 

teamwork (the work of working together), in addition to taskwork [5]. 

A decade before Nielsen presented heuristic evaluation as a means of finding usability 

problems in productivity applications [91], Malone suggested a number of heuristics 

to make productivity software enjoyable to use, based on his evaluation of children 

playing different versions of an educational game [73]. These heuristics were 

organized into themes of challenge, fantasy, and curiosity. Game design has changed 

immensely since Malone's heuristics, and his choices were not made with the 

intention of evaluating games, but with the purpose of learning lessons from game 

design to apply to the design of productivity systems. Recently, there has been a 

renewed attempt to design heuristics specific to the domain of games [24, 341. 

In 2002, Federoff [34] created a list of heuristics informed by a case study at a game 

development company. Federoff's heuristics were broken into three themes: interface 

(controls and display), mechanics (interacting with the game world), and gameplay 

(problems and challenges). She compared her heuristics to current game industry 

guidelines and Nielsen's heuristics, [93] and found that although Nielsen's heuristics 

encompassed many of the game interface issues, there were issues specific to 
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playability that were missing. Desurvire [24] introduced Heuristic Evaluation for 

Playability (HEP), a comprehensive set of heuristics for playability. HEP was based 

on productivity literature and playtesting heuristics that were specifically tailored to 

evaluate video, computer, and board games. An evaluation of the effectiveness of HEP 

showed the heuristics to be most salient for uncovering general issues in the early 

stages of development, using a prototype or mock-up. 

More recently, Sweetsner and Wyeth [I271 used heuristics to create a model for player 

enjoyment in games based on Csikszentmihalyi' s [21] concept of flow, which refers 

to optimal experience due in part to the appropriate balance between the skill of the 

participant and the challenge of the activity (see Section 3.5 for more detail on flow). 

Sweetsner and Wyneth's model, GameFlow [127], consists of eight elements: 

concentration, challenge, skills, control, clear goals, feedback, immersion, and social 

interaction. Each element includes a set of criteria for achieving enjoyment in games. 

Industry experts, using the strategy games Warcraft 111 and Lords of Everquest, 

evaluated the GameFlow model to expose weakness, ambiguities, or other problems 

with the model. The ratings provided by the evaluation matched fairly well with 

average ratings provided by professional game reviewers. Like other heuristic 

evaluation methods, the GameFlow model provides qualitative information on the 

enjoyment criterion (heuristics), as well as a rating scale for each element of the 

model. 
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2.3.3 Our Experiences with Current Methodologies to Evaluate 

Interactive Play 

Since there have been no commonly used objective techniques for determining 

whether a certain technology creates an enjoyable experience, we have previously 

used many of the methods discussed in this chapter to evaluate interaction with play 

technologies. 

We have used questionnaires extensively to gather user preference responses to 

different technological environments. For example, we used this technique to 

determine whether children (aged 11-13) preferred playing together on the same 

shared computer, side-by-side on separate computers, or on separate computers 

connected by a network [120]. We created and used child-friendly questionnaires, 

asking the children to rate the ease of the game on a scale from 1 to 5, where 1 

corresponded to 'easy'; and 5 corresponded to 'hard'. We were able to determine that 

children found the game easier to play in the shared-display setting (mean = 2.3, S.D. 

= 0.8), compared to the side-by-side (mean = 2.8, S.D. = 0.8) or the separated (mean = 

2.9, S.D. = 0.8) displays settings, (x2= 10.7, p < 0.01, Friedman two-way ANOVA). 

Although the children found it easier to play in the shared-display setting, we found 

that students did not always prefer playing in the shared-display setting. On interface 

evaluations conducted after each display configuration, children rated all three settings 

as being somewhat fun on a five-point scale, where one corresponded to 'fun', and 

five corresponded to 'not much fun' (shared: mean = 2.4, S.D. = 1.4; side-by-side: 

mean = 2.6, S.D. = 1.5; separated: mean = 2.6, S.D. = 1.4). On the post-experimental 
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questionnaire, when asked to choose which setting was the most fun to play, their 

preferences varied (shared: 30%, side-by-side: 25%, separated: 45%, X2 = 1.3, ns). 

In another research project, we designed an interface that semantically partitioned data 

over a number of handheld computers for children (pre-teen) to use while playing a 

game that helped them learn genetics concepts [22, 751. Afterwards, the children 

filled out a post-session questionnaire. All seven participating students reported that 

they would prefer to play the game with a friend than by themselves. The children 

reported overwhelmingly that the face-to-face component was their favorite part of the 

experience. All seven children were extremely positive; six of the children ranked 

their enjoyment as either a four or a five on a five-point scale and the remaining child 

ranked their enjoyment a three [75]. Although the questionnaires provided numerical 

data concerning the children's enjoyment of the game, explanations were needed to 

elucidate their opinions. In many questionnaires using numerical scales, places are 

provided to explain the choices made [122]. However, it is sometimes difficult for 

participants to verbalize what aspect of a certain experimental condition they found 

less fun, challenging, or interesting. 

Although there is a substantial time commitment, we have used observation analysis 

of video data to determine children's engagement when playing the same game in a 

paper condition, on a computer with one mouse, or on a computer with multiple mice 

input [120]. In the behavioural tradition, we recorded the play sessions, coded the 

events, and analyzed the results quantitatively. Our analysis included the amount of 

time in which the children played synchronously, the amount of time children engaged 
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in off-task behaviour, the amount of time children were inactive, and the children's 

physical pointing behaviour. The results of an ANOVA showed that the children 

exhibited significantly more off-task behaviour during the one-mouse computer 

condition (mean = 43.8 secs., S.D. = 70.0 secs.) than in the two-mice computer 

condition (mean = 13.1 secs., S.D. = 32.1 secs., F1,32 = 9.835, p < 0.01). In addition, a 

repeated-measures ANOVA showed a significant difference between the average 

inactivity across collaborative settings (F2,26 = 123.51, p < 0.001). A Tukey's HSD 

posthoc test showed that there was significantly more time in the one-mouse setting 

(mean = 374.6 secs., S.D. = 22.0 secs.) when both partners were inactive than in either 

the paper-based setting (mean = 195.4 secs., S.D. = 57.3 secs., p < 0.05), or the two- 

mice setting (mean = 173.4 secs., S.D. = 27.4 secs., p < 0.05). 

We also used observational analysis techniques in the social tradition to examine the 

impact of display configuration on children's enjoyment playing a computer game 

while sharing a single display, sitting side-by-side with separate displays, or being 

separated by a network [119, 1201. In addition to event data (e.g., looking at the 

partner's screen), we coded verbal data including clarification statements, deictic 

references, and other conversational components. This enabled us to analyze the 

processes by which students interacted in these various collaborative settings, not 

simply the variance between the settings. Analysis of the conversations showed that 

the children sometimes had trouble reaching a mutual understanding of the workspace 

when using individual displays. The same conversational patterns were not present 

when sharing a display. 
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2.3.4 Mere Current Methods Fall Short 

Although we have previously used many of the methods discussed in this chapter, 

they all have limitations for understanding user experience with entertainment 

technologies. Our motivation is to evaluate traditional entertainment environments, 

but also to evaluate emerging play environments. This includes understanding how 

emerging technologies can enhance a player's experience with entertainment 

technologies, and how people respond to the inclusion of emerging technologies in 

their play environments. 

Due to the market success of computer and video games (see section 1.1), there has 

been recent interest in using traditional methods to evaluate the playability of games, 

and to adapt traditional methods when they fall short. The evaluation of games 

requires a different set of tools than the evaluation of productivity systems because the 

ultimate goals of these domains are fundamentally different. 

Pagulayan et al. [96], discuss nine characteristics in which games differ from 

productivity applications, and how these differences impact the choice of evaluation 

methodology. For example, the design intentions behind most productivity 

applications are to make tasks easier and quicker, to reduce errors made, and to 

increase the quality of the result. Evaluation of productivity systems focuses on 

producing a better result, and the process of using a well-designed application 

enhances the result. On the other hand, games are intended to be fun to play. The 

goal is to stimulate thinking and feeling, and the result of a game serves to enhance the 

pleasure of the process of playing. This fundamental difference between an emphasis 
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on result or process is just one of the many ways in which games and productivity 

applications differ [96]. A consequence of these differences is that the traditional 

techniques for evaluating productivity applications that are outlined in this chapter 

may fall short when used to evaluate entertainment technologies. 

Subjective techniques such as questionnaires are good approaches to understanding 

the attitudes of the users, but subjects are bad at self-reporting their behaviours in 

game situations [43]. As previously discussed, since subjective reports are cognitively 

mediated, they may not correspond to the actual experience [79, 1491. In addition, 

participants' reaction to new play environments might be skewed by the novelty of the 

entertainment technologies. Although subjective techniques are a good approach to 

understand user preferences, these techniques do not uncover much information on 

user behaviours. 

Task performance is a widely used metric in HCI, when improved productivity and 

performance are the goals of the technology. Performance metrics are not particularly 

useful for evaluating play technologies since the success of an entertainment 

technology is not related to the pe@ormance of the participant, but to the experience of 

the participant. A player can have a very enjoyable play experience while losing a 

game, and can also be bored with an overwhelming win. In play, the process is more 

important to success than the result [96]. As such, task performance is not a very 

useful metric for evaluating user experience with play technologies. 

Observational techniques including verbal transcriptions, gesture analysis, and facial 

expression analysis can provide insight into a play experience. These observations 
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can be analyzed as they occur within the play context, grounding the data within the 

experience. However, the tremendous time commitment, and the need for specialized 

training renders observational analysis impractical for many researchers, while 

developers of play technologies are completely prohibited by time and budget. There 

are a few consulting firms (e.g., [151]), that specialize in observational analysis of 

entertainment technologies, but game companies may pass up these services since 

shipping dates of games takes priority over the evaluation of playability. There has 

been recent interest in observational usability testing methods in order to access 

information about user behaviour [41], but little testing has been performed to 

determine the efficacy of usability testing for games. 

Standard discount usability methods, such as heuristic evaluation and cognitive 

walkthrough are useful for finding where there are breakdowns between a user's 

cognitive model of how a system functions, and the actualization of the system. 

Although useful for uncovering usability issues within play environments, there has 

been minimal comparable research on using heuristics to evaluate the playability of an 

entertainment technology [24], or to evaluate the impact of the introduction of an 

emerging technology on user experience. Most importantly, these discount methods 

do not involve actual users, but are administered by specialists in the domain of 

usability. When research involves incorporating novel technologies into a play 

experience, there are no "experts" who can use their expertise to determine how a 

regular user will feel. At this point, researchers can only guess how the technologies 

will impact the users. 
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Traditional evaluation methods have been adopted, with some success, for 

quantitative-subjective, qualitative-subjective, and qualitative-objective assessment of 

entertainment technologies. When evaluating productivity systems, metrics of task 

performance are used for quantitative-objective analysis (see Figure I), but as 

previously mentioned, task performance is not very relevant when evaluating 

entertainment technologies. As such, there is a knowledge gap for quantitative- 

objective evaluation of entertainment and play (see Figure 2) and a new evaluation 

methodology is needed. 
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Figure 1 : Current methods for evaluating productivity applications. 
Evaluators have a lot of choice and can pick the evaluation 
method that best suits their needs. Note that heuristic evaluation 
can be seen as a quantitative methodology since experts can 
provide ratings for how well software adheres to the heuristics. 
Observational analysis is a tool that can be used to generate 
quantitative or qualitative results. 
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Figure 2: Current methods for evaluating entertainment technologies. 
Evaluators have a lot of choice, but there is a knowledge gap in 
the quantitative-objective quadrant since task performance 
metrics aren't relevant. Heuristic evaluation can be seen as a 
quantitative methodology since experts can provide ratings for 
how well software adheres to the heuristics. Observational 
analysis is a tool that can be used to generate quantitative or 
qualitative results, but is not used quantitatively to evaluate 
entertainment technologies due to the time commitment and 
expertise needed. 
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Chapter 3 RELEVANT PSYCHOLOGICAL CONCEPTS 

Chapter 2 shows how current evaluation methods fall short for evaluating play 

technologies. In the next three chapters, we will present literature that supports the 

idea that physiological signals from the body can be used to generate a new, objective 

and quantitative evaluation methodology, fit for evaluating interaction with play 

technologies. 

Before discussing the physiological measures and how to apply them to an evaluation 

methodology, it is important to identify and describe some of the most important 

physiological and psychological concepts related to this area of research. The nervous 

system is described first, followed by the psychological concepts of arousal, valence, 

and habituation, which are central to psychophysics research. An introduction to the 

study of affect and emotion is also provided. 

3.1 Human Nervous System 

The nervous system (see Figure 3) is divided into two components: the central nervous 

system (CNS) which consists of the brain and spinal cord, and the peripheral nervous 

system (PNS), which is composed of all of the ganglia and nerves that lie outside of 

the CNS [60]. The PNS carries information between the body and the CNS [80]. This 

information is either gathered from sensory receptors and sent to the CNS (afferent 
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division), or can be output from the CNS to the body (efferent division). The PNS is 

divided into the somatic nervous system and autonomic nervous system (ANS) [80]. 

The somatic nervous system is a voluntary system that controls the skeletal muscles 

for body movement and provides information to the CNS on muscle and limb position 

[60]. The ANS (sometimes called the visceral nervous system) controls actions in the 

body that we do not have conscious control over, including smooth muscle control, 

cardiac muscles, and glandular activity. The ANS regulates body temperature, and 

coordinates cardiovascular, digestive, respiratory, excretory, and reproductive 

functions [80]. 
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Figure 3: The Human Nervous System. 
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The ANS is further subdivided into three anatomically separate branches, the 

sympathetic nervous system (SNS), the parasympathetic nervous system (PNS), and 

the enteric branch [28, 601, which is responsible for controlling the function of the 

smooth muscle of the gut [60]. We will focus on PNS and SNS activity. The SNS has 

dominant function in emergency situations and is used in "fight or flight" situations, 

such as athletic competition, combat, severe temperature changes, and blood loss [28]. 

SNS activation causes us to experience increased alertness, a feeling of energy, 

increased activity in the cardiovascular and respiratory systems, pupil dilation, and the 

mobilization of energy reserves [28, 801. The PNS is the relaxed activity controller 

and is responsible for activities such as resting and digesting. Also called the anabolic 

system, effects produced by the PNS include: constriction of the pupils; increased 

muscle and glandular activity related to digestion; stimulation and correlation for 

excretion; reduction in heart rate; and sexual arousal [go]. Under normal 

circumstances, there is a balance between the PNS and SNS systems. 

3.2 Arousal 

The concept of arousal stems from Cannon's theory of the unified body preparing for 

fight or flight [123]. It is described as "a state of heightened physiological activity" 

[26]. Although used extensively by psychologists as a means of describing 

psychological activity, the concept of arousal is still grounded in physiological 

changes in the body. 
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3.3 Valence 

The psychological definition of valence is "the degree of attraction or aversion that an 

individual feels toward a specific object or event" [26]. Valence describes where an 

emotional reaction sits on an axis from the positive to the negative. 

3.4 Habituation 

Where arousal suggests a heightened response to a stimuli, habituation refers to the 

reduction of response based on exposure to previous and repeated presentation of the 

same stimulus [123]. Habituation can be differentiated into short and long-term 

habituation, where short-term occurs within a short period of time, such as within a 

single testing session. Long-term habituation can occur over days or even weeks. 

Habituation is important to consider, because as participants of a study are exposed to 

a stimulus, it is possible that their responses (both overt and autonomic) to the same 

stimuli will adapt over the course of a session. 

3.5 Flow 

Csikszentmihalyi 1211 was interested in what makes experiences enjoyable, and 

conducted extensive research over a decade, collecting survey and interview data from 

several thousand participants all over the world. He discovered that optimal 

experience, which he labeled as 'flow', is the same for very different tasks, and that 

flow transcends culture, social class, age, and gender. 

Flow refers to an experience state that causes deep enjoyment, due in part to the right 

balance between the skill of the participant and the challenge of the activity. 
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Csikszentrnihalyi developed a set of eight elements that contribute to a state of flow, 

including: (1) a task that can be completed; (2) the ability to concentrate on the task; 

(3) that concentration is possible because the task has clear goals; (4) that 

concentration is possible because the task provides immediate feedback; (5) the ability 

to exercise a sense of control over actions; (6) a deep but effortless involvement that 

removes awareness of the frustrations of everyday life; (7) concern for self disappears, 

but sense of self emerges stronger afterwards; and (8) the sense of the duration of time 

is altered [21]. 

3.6 Emotion 

Emotions have historically been examined from two perspectives: 

1. Emotions are cognitive, stressing their mental component 
2. Emotions are physical, stressing their physical component [ lol l .  

The former theory can be traced to Cannon, who believed that emotion is experienced 

by the brain and that emotion is possible without sensations from our bodies (Cannon, 

1927 as cited in [loll).  He also provided evidence that autonomic events are too 

slow, too insensitive, and not distinct enough to contribute to emotions [14]. The 

original proponent of the physical theory of emotion was William James. James 

emphasized that emotion was experienced as bodily changes, such as sweating hands 

and a fast beating heart (James, 1890 as cited in [loll).  Not only did he maintain that 

discrete emotional experiences could be identified by unique patterns of bodily 

changes, he believed that the perception of these physiological changes is the 

emotional experience [14]. Recent research has shown that the answer lies 
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somewhere between these two extremes, as both brain and body can shape human 

experience. Thoughts and relived memories can elicit an emotional experience, as can 

changes in our body chemistry. Although our present research is not concerned with 

the underlying theory of emotional experience, it is important to understand the 

historical perspective as many of the recent efforts in using ANS activity as an 

indicator of experience were inspired by James's theory. 
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Chapter 4 PHYSIOLOGICAL MEASURES AND EMOTION 

In 1964, John Stem defined psychophysiology as any research in which the dependent 

variable (the subject's response) is a physiological measure and the independent 

variable (the factor manipulated by the experimenter) a behavioural one [123]. Recent 

work has shown this view to be limiting since it is equally likely that we could 

manipulate physiological variables and view the effect on the psychological variables. 

Thus, the modern definition states that psychophysiology is effectively the study of 

the interaction between mind and body [123]. 

In medical fields, biofeedback is a technique whereby patients receive feedback about 

their physiological state to learn to control some aspect of their health [95]. For 

example, physiological indicators of tension and stress may be presented to patients 

who suffer from stress disorders, panic attacks, and hyperventilation. Biofeedback 

can help patients manage their stress by prompting them to engage in breathing 

exercises or other stress reduction techniques during times when their stress levels are 

too high. Patients can then see their stress reducing as a direct result of the stress- 

reduction techniques employed. 

This section presents information relevant to the physiological measures used in 

biofeedback or psychophysical research. Organized by anatomical system, each 
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subsection presents: the measure; its psychological counterpart; other factors it is 

affected by; devices used to measure it; and references of its use. 

4.1 Skin: Electrodermal Activity 

Electrodermal activity refers to the electrical properties of the skin. Also called the 

galvanic skin response (GSR) or the psychogalvanic reflex, it is easily measured as 

either skin resistivity or skin conductance. This choice has implications for the 

interpretation of results [13]. Electrodermal activity is one of the most commonly used 

physiological responses in psychophysiological research and in computing systems 

that integrate body responses. 

There are two components to the electrodermal response: the tonic baseline and the 

short term phasic responses superimposed on the baseline [123]. The phasic response 

is called the electrodermal response (EDR), skin conductance startle response (usually 

as a response to extreme stimuli), skin conductance orienting response (general term), 

skin resistance response (SRR), or the skin conductance response (SCR) [lo]. It is 

thought that the electrodermal response evolved for locomotion, manipulation and 

defense [123]. There are specific sweat glands, called the eccrine sweat glands, which 

are used for measuring GSR. Located in the palms of the hands and soles of the feet, 

these sweat glands respond to psychic stimulation instead of simply to temperature 

changes in the body. For example, many people have cold clammy hands when they 

are nervous. In fact, subjects do not have to even be sweating on the palms of the 

hands or soles of the feet to generate differences in skin conductance because the 

eccrine sweat glands act as variable resistors on the surface. As sweat rises in a 
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particular gland, the resistance of that gland decreases even though the sweat may not 

overflow onto the surface of the skin [123]. 

4.1.1 Psychological Counterpart 

Galvanic skin response is a linear correlate to arousal [63] and reflects emotional 

responses as well as cognitive activity [lo]. GSR has been used extensively as an 

indicator of stress and mental workload in both non-technical domains (see [lo] for a 

comprehensive review), and technical domains. It is considered the most sensitive 

response used in the detection of deception (lie detectors) [lo] and has also been used 

to differentiate between anger and fear [12]. 

Although electrodermal activity is widely recognized in psychophysiology, there are 

other factors that affect the galvanic skin response including age, sex, race, 

temperature, humidity, stage of menstrual cycle, time of day, season, sweating through 

exercise, and deep breathing [lo, 123, 1361. There are also individual differences 

stemming from personality traits such as whether an individual is introverted or 

extroverted [lo]. Due to these differences, it is difficult to compare GSR across 

groups of individuals or in the same individual across different test sessions. In a 

single session, skin conductance does not have to be corrected for base level, whereas 

skin resistivity does [123]. 

4.1.2 DevicesandUse 

Devices used to measure GSR range from simple circuits attached to aluminum foil 

finger cuffs to high-end systems used to detect deception. Wearable devices, devices 
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that are embedded into clothing or accessories, have recently been designed to 

decrease interference from bulky equipment. The MIT Media Lab has designed a 

glove called the galvactivator [42], GSR rings and bracelets [I], GSR shoes [ 11, and a 

standard skin sensor [85] .  A brief visit to the Lego Mindstorms community bulletin 

boards [66] revealed a few instances of using Lego components to build simple lie 

detectors using GSR. 

Figure 4: Galvanic skin response (GSR) was collected using surface 
electrodes that snap onto Velcro straps worn around the index 
and ring fingers. 

We measured GSR using surface electrodes sewn in Velcro straps that were placed 

around two fingers on the same hand (see Figure 4). Previous testing of numerous 

electrode placements was conducted to ensure that there was no interference from 

movements made when manipulating the game controller (see Appendix 3). We found 

that finger clips were as responsive to GSF. as pre-gelled electrodes on the feet, while 

electrodes on the palms suffered from movement artifacts. 
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GSR feedback has been used in the medical community for relaxing and 

desensitization training, and in the treatment of excessive sweating (hyperhydorses) 

and related dermatological conditions. As an input to interactive systems, GSR has 

been used in the Relax-to-Win racing game [7], in the analysis of driver stress [48], in 

an instant message application called Conductive Chat [25] ,  for an automated music 

selection DJ [46], and in the Conductor's Jacket [78] (see Chapter 5.6 for a more 

detailed description of these systems). 

4.2 Cardiovascular System 

The cardiovascular system includes the organs that regulate blood flow through the 

body. Measures of cardiovascular activity include heart rate (HR), interbeat interval 

(IBI), heart rate variability (HRV), blood pressure (BP), and blood volume pulse 

(BVP). Heart rate indicates the number of contractions of the heart each minute, 

while HRV refers to the oscillation of the interval between consecutive heartbeats. 

Blood pressure is a measure of the pressure generated to push blood through the 

arteries, veins, and capillaries, while BVP refers to the amount and timing of blood 

flowing through the periphery of an individual. 

4.2.1 Blood Pressure 

Blood pressure indicates how much pressure is needed to push blood through the 

system of arteries, veins, and capillaries. Although blood pressure is known to be 

affected by age, diet, posture, and weight, it is also affected by the setting (clinical vs. 

normal) and by highly stressful situations [l23]. Generally, BP is collected using an 

inflated arm cuff (sphygmomanometer) that is inflated, and subsequently deflated 
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while readings are taken. As a result of cuff inflation and deflation, blood pressure 

responses to stimuli cannot generally be collected in real-time. There were some 

sophisticated and expensive pieces of equipment that were developed to collect BP 

continuously, but these systems were removed from the market due to their lack of 

commercial success. Automated machines have been developed for use with 

polygraph machines, but cannot accurately take more than one reading per minute 

[123]. 

4.2.2 Blood Volume and Pulse Volume 

Blood volume reflects slow changes in the tonic level of an appendage while pulse 

volume is a phasic measure of the pulsatile change in blood flow related to both the 

pumping of the heart and to the dilation and constriction of blood vessels in the 

periphery [123]. Thus, pulse volume (BVP) measures the amplitude of individual 

pulses. BVP increases in response to pain, hunger, fear and rage and decreases in 

response to relaxation [123]. BVP is difficult to collect outside of a clinical 

environment because it is affected by room temperature and is very sensitive to 

placement and motion. Due to these same factors, comparison between subjects is not 

possible. 

4.2.2.1 Devices and Use 

BVP is collected using a plethysmograph. Photoelectric plethysmography uses a 

photocell placed over an area of tissue (e.g., finger). A light source is passed through 

the tissue (or bounced off the tissue), and the amount of light passed through (or 

bounced back) is measured by a photoelectric transducer [123]. Impedance 
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plethysmography employs two electrodes through which a high-frequency alternating 

current is passed. Changes in blood volume affect the electrical impedance giving a 

reading of BVP [123]. Strain gauge plethysmography uses a strain gauge placed 

around the finger or toe. Changes in resistance or voltage of the strain gauge can be 

considered an indirect measurement of blood volume [123]. Venous occlusion 

plethysmography uses two inflated cuffs on the same appendage. As with BP 

measurements, since cuffs are used, real time measurements are not possible [123]. 

BVP is generally collected using the finger or toe. Since blood pulses through the 

earlobe, one might think that the earlobe is a convenient location to measure BVP. 

However, for BVP measurements, the earlobe is not as responsive as the finger to 

typical laboratory tasks [123]. When responding to stimuli, the body prepares for 

fight or flight by increasing or decreasing blood flow to the peripheral organs. The 

earlobe is not one of the places that selective increases in blood flow occur. We did 

not collect BVP in any of our experiments because the sensing technology used on the 

finger is extremely sensitive to movement artifacts. As our subjects were operating a 

game controller, it wasn't possible to constrain their movements. 

4.2.3 Heart Rate 

Heart rate (HR) indicates the number of contractions of the heart each minute, and can 

be gathered from a variety of sources. HR has been used to differentiate between 

positive and negative emotions, with further differentiation made possible with finger 

temperature [97]. Distinction has been made in numerous studies between anger and 

fear using HR [97] (for a comprehensive review, see [12]). 
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In addition to the psychological differences that HR elicits, it is also affected by age, 

posture, level of physical conditioning, breathing frequency, and circadian cycle3. 

4.2.4 Heart Rate Variability 

Heart rate variability (HRV) refers to the oscillation of the interval between 

consecutive heartbeats (IBI). The heart rate of a normal subject at rest is irregular. 

This irregularity is called sinus or respiratory arrhythmia [59]. Fluctuations around 

the mean heart rate are respiratory-related, baroflex-related4, and thermoregulation- 

related. We are most concerned with the baroflex-related fluctuation. Blood pressure 

changes are detected by baroreceptors in the aorta. An increase in blood pressure 

causes a sympathetic inhibitory response, and in turn, the effects of this response 

cause a decrease in blood pressure, creating a negative feedback loop [133]. The 

passage of the neural signal from the baroreceptors through the brainstem is associated 

with a time delay of about 1 sec [87]. This time delay creates a phase shift and causes 

the system to oscillate. The oscillation frequency is about 0.1 Hz [87]. If IBI is fairly 

constant, then HRV will be low, whereas if IBI is changing (regardless of absolute 

value), then HRV will be higher. 

In 1963, Kalsbeek and Ettema [58] found a gradual suppression of heart rate 

irregularity due to increasing task difficulty. Later, Kalsbeek and Sykes [59] tested a 

motivated group versus a non-motivated group (using money as a motivator), and 

found that the motivated group maintained a constant level of suppression while the 

3 Relating to or exhibiting approximately 24-hour periodicity [26]. 
Bar0 is relating to pressure [26]. 



CHAPTER FOUR: PHYSIOLOGICAL MEASURES AND EMOTION so 

non-motivated group started at a lower level of suppression and continued to decline. 

Since then, many researchers have attempted to use HRV as an indicator of mental 

effort. 

HRV has been used extensively in the human factors literature as an indication of 

mental effort and stress in adults. In high stress environments such as ambulance 

dispatch [I411 and air traffic control [113], HRV is a very useful measure. When 

subjects are under stress, HRV is suppressed and when they are relaxed, HRV 

emerges. Similarly, HRV decreases with increases in mental effort [I131 and 

cognitive workload [144], but as the mental effort needed for a task increases beyond 

the capacity of working memory, HRV will increase [110, 1 131. Many researchers 

have found significant differences in HRV as a function of mental workload (see 

Chapter 5), while others have not [83, 871. HRV has also been used to differentiate 

between epistemic behaviour (concerning the acquisition of information and 

knowledge), and ludic behaviour (playful activities which utilize past experience) in 

children [53]. 

One method of determining HRV is through a short-term power spectral density 

analysis of interbeat interval, which is described in the next section. 

4.2.4.1 Spectral Analysis of Sin usarrhythmia 

Power spectral density analysis describes how power is distributed as a function of 

frequency. Using the interbeat interval (R-R interval on an EKG, see Figure 5), power 

spectral density analysis provides a measure of how the heart fluctuates as a result of 

changes in the autonomic nervous system [113]. The high frequency component (0.15- 
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0.4 Hz) is associated with parasympathetic nervous system activity (resting and 

digesting), while the low frequency component (0.04-0.15 Hz) is associated with 

sympathetic nervous system activity (fight or flight) [56, 831. A ratio of the low 

frequency to high frequency energy in the spectral domain is representative of the 

relative influences of the sympathetic to parasympathetic influences on the heart. 

Recently, researchers have used spectral analysis of sinus arrhythmia (heart rate 

variability) to provide an objective measure of mental effort5. Mulder proposed that 

controlled processing is required to: locate and maintain information in short term 

memory; retrieve information and programs from long term memory; and make 

decisions, and that the total amount of controlled processing is a function of the 

amount of effort a subject invests in a task 1871. Associated with controlled 

processing are spontaneous oscillations in blood pressure (and the cardiac interval 

signal) around 0.1 Hz 1871. A loss of the 0.1 Hz frequency component would decrease 

the variance and thus suppress heart rate variability. Measuring HRV using the 0.1 Hz 

frequency component has the important advantage of being able to discriminate 

between the effort-related blood pressure component, and the effects due to 

respiration, motor activity, and thermoregulation, since these other factors influence 

other parts of the power spectrum 11371. 

In order to perform spectral analysis, researchers used to convert the interval signal to 

an equidistant time series using interpolation, or filtering 1871. Recent digital 

5 Note that mental effort does not seem to vary as a function of mean heart rate, but of the 
variability of heart rate [83]. 
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technology produces a measure of the interbeat interval at 4Hz, which can be used 

directly. This time series data is then smoothed and Fourier-transformed. The 

frequency range sensitive to changes in mental effort is between 0.06 and 0.14 Hz 

[137], while the area between 0.22 and 0.4 Hz reflects activity related to respiration 

[56, 871. Integrating the power in the band related to mental effort provides a measure 

of HRV. Vicente recommends normalizing the measure by dividing by the average of 

all resting baselines and subtracting from one [137]. Then, a value between zero and 

one is produced where zero indicates no mental effort and one indicates maximum 

mental effort. 

4.2.5 Electrocardiography 

EKG (Electrocardiography) measures electrical activity of the heart. During each 

cardiac cycle, a wave of depolarization radiates through the heart [go]. This electrical 

activity can be measured on the body using surface electrodes. An example of an 

EKG signal is shown in Figure 5. 

Figure 5: EKG signal. The P wave appears as the atria depolarize, the QRS 
complex accompanies the depolarization of the ventricles, and 
the T wave denotes ventricular repolarization. The R to R interval 
is the interbeat interval used to determine heart rate variability. 
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Figure 6: Three common electrode placements for EKG. A) Chest 
placement. B) Forearm placement. C) Forearm and leg 
placement. (Adapted from Thought Technologies [130].) 

Heart rate, interbeat interval (IBI), HRV, and respiratory sinus arrhythmia (RSA) can 

all be gathered from EKG. Although there is a standard medical configuration for 

placement of electrodes, any two electrodes placed fairly far apart will produce an 

EKG signal [123]. The main placement method is on the chest with the negative 

electrode on the right shoulder, the positive electrode on the abdomen, and the ground 

on the left shoulder (see Figure 6: A), although the forearm provides a good 

measurement location for less intrusive measurement (Figure 6: B and C). EKG 

provides a good signal with which to derive the aforementioned physiological cardiac 

measurements. 
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Figure 7: EKG was measured using three surface electrodes, with two 
placed on the chest, and one placed on the abdomen. 

We placed three pre-gelled surface electrodes (see Figure 7) in the standard 

configuration of two electrodes on the chest and one electrode on the abdomen (see 

Figure 6: A). Body hair can interfere with an EKG signal, and shaving the regions for 

electrode placement is a common clinical practice. As an alternative, we screened our 

participants to have little to no body hair on  he chest or abdomen. 

4.3 Respiratory System 

Respiration can be measured as the rate or .volume at which an individual exchanges 

air in their lungs. Respiration can be characterized by the following metrics: tidal 

volume (VT), which is the volume that is displaced in a single breath; duration of 

inspiration; duration of expiration; and total cycle duration [143]. Minute volume 

(VbIm) is calculated as the tidal volume divided by the respiration rate, and indicates 
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the volume that is displaced during one minute [143]. The comm.only used measures 

in psychophysiological research are simply the rate of respiration and depth 

(amplitude) of breath [123]. 

Respiratory measures are most accurately measured by gas exchange in the lungs, but 

the technology inhibits talking and moving [ 1231. Instead, chest cavity expansion can 

be used to capture breathing activity using either a Hall effect sensor, strain gauge, or 

a stretch sensor [123]. In our experiments, we used a stretch sensor sewn into a 

Velcro strap, positioned around the thorax (see Figure 8). 

Figure 8: A stretch sensor was positioned around the thorax to measure 
respiration. 
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Emotional arousal increases respiration rate while rest and relaxation decrease 

respiration rate [123]. Although respiration rate generally decreases with relaxation, 

startle events and tense situations may result in momentary respiration cessation. 

Negative emotions generally cause irregularity in the respiration pattern [123]. In 

addition, states of pain, apprehension, anxiety and fear, threat and anger have been 

associated with hyperventilation [143]. Mental effort, stressful mental task 

performance, and high cognitive activity have been associated with an increase in 

respiration rate and VMm, and with a decrease in VT, depth of respiration, and in the 

variability of respiration [143, 1441. Besides its psychological counterparts, 

respiration is affected by physical activity. Also, a deep breath can affect 

cardiovascular measures because respiration is closely linked to cardiac functioning. 

Examples of the use of respiration measures are in the Conductor's Jacket [78], to 

quantify driver stress [48], and to measure stress in air traffic control simulations [134, 

1351. 

4.4 Muscles: Electromyography 

Electromyography (EMG) is the measure of muscle activity either through needles or 

surface electrodes. EMG measures muscle activity by detecting surface voltages that 

occur when a muscle is contracted [123]. Two electrodes are placed along the muscle 

of interest and a third ground is placed off the axis. 

In isometric conditions (no movement) EMG is closely correlated with muscle tension 

[123]; however, this is not true of isotonic movements (when the muscle is moving). 
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When used on the jaw, EMG provides a very good indicator of tension in an 

individual due to jaw clenching [12]. On the face, EMG has been used to distinguish 

between positive and negative emotions [39]. EMG activity over the brow region 

(corrugator supercilii, the frown muscle) is lower and EMG activity over the cheek 

(zygomaticus major, the smile muscle) and preiocular (orbicularis oculi) muscle 

regions are higher when emotions are mildly positive, as opposed to mildly negative 

[12]. These effects are stronger when averaged over a group rather than for individual 

analysis, and have been able to distinguish between positive, neutral and negative 

valence at a rate greater than chance when viewing pictures or video as stimuli [99]. 

Tonic activity from EMG on the forehead (musculus frontalis, the eyebrow-raising 

muscle) has been used as a measure of mental effort [23, 391. In addition to emotional 

stress and emotional valence, EMG has been used to distinguish facial expressions and 

gestural expressions [ 1231. 

EMG feedback is generally used for relaxation training, headache, chronic pain, 

muscle spasm, partial paralysis, speech disorder, or other muscular dysfunction due to 

injury, stroke, or congenital disorders. 
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Figure 9: A preconfigured triangular arrangement of electrodes was used 
to collect EMG activity on the cheek and jaw. 

In our experiments, we used surface electrodes to detect EMG on the jaw, (indicative 

of tension), and on the forehead (indicative of frowning), and cheek (indicative of 

smiling). On the jaw and cheek, we used three electrodes preconfigured in a triangular 

arrangement (see Figure 9). Due to the small size of the corrugator supercilli muscle, 

we used the extender cables (like the EKG electrodes seen in Figure 7) to collect EMG 

on the forehead. The disadvantage of using surface electrodes is that the signals can be 

muddied by other jaw activity, such as smiling, laughing, and talking. Needles are an 

alternative to surface electrodes that minimize interference, but were not appropriate 

for our experimental setting. Body hair can interfere with an EMG signal, and shaving 

the regions for electrode placement is a common clinical practice. As an alternative, 

we screened our participants to have clean-shaven faces in any of the regions where 

electrodes were to be placed. 
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Indexing Psychological Events From Physiological Data 

William James first speculated that patterns of physiological response could be used to 

recognize emotion [13], and although this viewpoint is too simplistic, recent evidence 

suggests that ANS activity can differentiate among some emotions [67]. There are 

myriad issues associated with this process, creating a difficult, poorly understood 

space that psychophysiologists must operate in. These issues and limitations will be 

discussed along with some potential solutions. 

4.5.1 Classifia tion of Emotion 

There have been many methods proposed for classifying basic emotions. Researchers 

who adopt the idea of discrete, specific emotions hold that there are eight or nine 

basic, inborn emotions [27]. Emotions included in the set of basic emotions have 

varied. Ekman initially proposed seven distinct emotions (anger, disgust, fear, 

happiness, sadness, surprise, and contempt), but recently amended the list, adding: 

amusement, contentment, embarrassment, excitement, guilt, pride in achievement, 

relief, satisfaction, sensory pleasure, and shame [29]. Although comprehensive, this 

list may not represent a typical emotional response to entertainment technology. One 

would expect excitement, pride, and satisfaction to play a role, but shame and guilt 

might be excluded. Lazarro [65] has qualitatively identified relevant emotions during 

game play including fear, surprise, disgust, naches (a Yiddish term for pleasure or 
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pride at the accomplishment of a child or mentee), fiero (an Italian term for personal 

triumph over adversity), schadenfreude (a German term for gloat over the misfortune 

of a rival), and wonder. Lazzaro has not made an attempt to measure these relevant 

emotions, and perhaps human experience states such as engagement, frustration, 

boredom and challenge are more salient descriptions than human emotions in our 

domain of study. 

Another method of classifying emotion is by positioning an emotion along multiple 

axes in space, where the axes represent metrics of similarity. The arousal-valence 

space used by Lang [63] places stimuli in a 2-D space defined by arousal and valence 

(pleasure). Using pictures as stimuli, Lang and colleagues mapped individual pictures 

to arousal and valence levels. 

Russell also used an arousal-valence space to create the Affect Grid. Based on their 

circumplex model of emotion, the affect grid is a tool to quickly assess affect along 

the dimensions of pleasure and arousal [114]. Subjects place checkmarks in the 

squares of the grid, as a response to different stimuli. Instead of only having two axes, 

the circumplex model has four axes including Stress-Relaxation and Depression- 

Excitement in addition to Arousal-Sleepiness and Pleasure-Misery (see Figure 10). 

Although the circumplex model uses four axes, emotions are still defined in two 

dimensions, arousal and valence. 

One problem with the arousal-valence method of classifying mood is that arousal and 

valence may not be entirely independent and can impact each other. For example, 

Lang et al. [64] had difficulty finding images that represent the extreme regions of the 
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unpleasant/calm quadrant. It seems that if an image is truly unpleasant, it cannot also 

be calm, suggesting some interplay between these two axes. 

stress high arousal excitement 

unpleasant 
feelings 

depression sleepiness 

valence 

pleasant 
feelings 

relaxation 

Figure 10: The Affect Grid: Based on the circumplex model of emotion, the 
affect grid allows for a quick assessment of mood as a response to 
stimuli [114]. Adapted from Russell et al. (1989) [114]. 

4.5.2 Issues and Limitations with Sensing Physiological 

Responses 

Some of the criticism of James's theory can be attributed to issues and limitations with 

sensing patterns of physiological change. Ekrnan, Levenson and Friesen attribute 

many of the inconsistencies in this line of research to methodological problems [3 11. 

These methodological problems include: the inability to isolate a single emotion; the 

failure to address the intensity of the emotion; the mistiming of ANS recording; and 

the need for simultaneous examination of a number of metrics [12, 141. Beyond 
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methodological issues, there are issues inherent to examining emotions, and 

physiological correlates of emotional state. 

4.5.2.1 Emotions 

Emotions are very short-lived and typically last only for a few seconds [67]. They 

also occur in complex contexts along with many other psychological processes such as 

orienting, startle, and defense responses, attention, and social interaction [67]. Finally, 

emotion-relevant ANS activity is superimposed on other physiological activity 

responsible for contributing to internal processes (e.g., resting and digesting, 

metabolic needs), and external demands (e.g., orienting, startle, and defense 

responses) [67]. Although it is not important to identify specific emotions in order to 

use psychophysiology as an objective evaluation methodology for entertainment 

technology, these issues are important when interpreting physiological data gathered 

from the sensors. 

4.5.2.2 Physical Activity 

There is no question that physical activities can overwhelm the physiological readings 

from psychological events [102]. Even in a laboratory under very controlled resting 

conditions, physiological responses to physical needs have to be accounted for. When 

evaluating entertainment technology, users will move their hands, arms, and perhaps 

their whole bodies as they interact with the technology and with each other. 

Acknowledging the effects of physical activity is important, as many physiological 

sensors produce movement artifacts and physical movement affects many of the 

physiological measures. 



CHAPTER FOUR: PHYSIOLOGICAL MEASURES AND EMOTION 63 

4.5.2.3 Inferring Significance 

Aside from the methodological issues, there are also theoretical challenges associated 

with inferring psychological significance from physiological data. It is imperative to 

acknowledge the theoretical limitations to ensure a valid experimental methodology. 

After having identified correlations between events related to the task, psychological 

events, and physiological data, the eventual goal of an evaluation methodology is to be 

able to index psychological events from sensor readings. Although possible, there are 

many issues to address. For a very simple example, if when playing a computer 

hockey game, a user's GSR reading drops after every period of a hockey game and 

rises at the beginning of the next period, it is apparent that arousal is lower between 

hockey periods. However, basic logic prevents us from thinking that a lower arousal 

between hockey periods means that every time a user's GSR drops, they are in 

between hockey periods. This seems like an obvious example, but it illustrates the 

care that must be taken when making inferences. 

Cacioppo discusses four classes of psychophysiological relationships called outcomes, 

markers, concomitants, and invariants [13]. These relations are based on the 

specificity (one-to-one vs. many-to-one), and generality (context-bound vs. context 

free) of the relationship between the psychological event and the physiological 

response (see Figure 1 1). Outcomes are many-to-one, situation-specific relationships, 

and reflect the fact that a physiological response varies as a function of a 

psychological event in a specific situation. When the physiological response follows 

the psychological event across situations (generality), the relationship is concomitant 

(many-to-one, cross-situational associations). With outcomes and concomitants, it is 
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unclear whether the physiological response only follows changes for that 

psychological event or whether other psychological events (specificity) can also 

inspire the same physiological response. Markers are one-to-one, situation-specific 

relationships, and reflect that a physiological response can predict the occurrence of a 

psychological event in a specific situation. Invariants are like markers, except that the 

psychophysiological relationship is maintained across situations (one-to-one, cross- 

situational associations). Invariants provide a strong basis for psychological 

inference. The issue for a researcher is in establishing the invariant relationship 

instead of simply assuming that the relationship between a psychological event and a 

physiological response is an invariant. 

Figure 11: The four types of relationships between psychological events and 
physiological responses as defined by Cacioppo [13]. 
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Chapter 5 RELATED LITERATURE ON 
PSYCHOPHYSIOLOGY AS A METRIC FOR THE 

EVALUATION OF INTERACTIVE SYSTEMS 

Traditional evaluation methodologies are presented in Chapter 2, and background 

information on psychophysiological techniques are presented in Chapter 4. This 

chapter discusses the current state of using psychophysiological techniques for the 

evaluation of interactive systems. 

The field of human factors has been concerned with optimizing the relationship 

between humans and their technological systems. The quality of a computer system 

has been judged not only on how it affects user performance in terms of productivity 

and efficiency, but on what kind of effect it has on the well being of the user. 

Psychophysiology demands that a holistic understanding of human behaviour be 

formed from the triangulation of three fundamental dimensions: overt behaviour, 

physiology, and subjective experience [141]. 

Few investigations have been conducted to determine whether psychophysiological 

techniques could be of use when evaluating HCI issues in computer software. Most of 

the previous experiments have been concerned with identifying stress and high mental 

workload in typical productivity environments such as web page navigation [139], 
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videoconferencing [148], and air traffic control [113]. In this chapter, we first present 

examples of the use of psychophysiological measures in laboratory tasks, followed by 

examples of psychophysiological measures used in field studies. There has been an 

abundance of work conducted in the traditional Human Factors domains of study of 

dispatch, air traffic control, and simulators. Although these experiments do not deal 

directly with the evaluation of entertainment, they are the best indicators of the use of 

psychophysiological measures to evaluate interactive systems. Of most interest is 

similar research in the domain of HCI; however, this area is where the least amount of 

work has been conducted. 

5.1 Laboratory Tasks 

Experimental psychologists and human factors specialists have performed many 

controlled laboratory experiments in order to investigate the feasibility of 

psychophysiological measures as an evaluative tool. These controlled experiments 

have mostly focused on understanding how we physiologically respond to different 

stimuli. A few examples follow. 

Measuring EKG from the forearms, and respiration using a strain gauge sensor around 

the chest, Sarnrner [I161 computed HRV and IBI for a mental task (addition of 

numbers in an array), a physical task (moving a lever), and a combination of both. 

Sammer found that IBI increased from the dual task, to the physical task, to the 

cognitive task. In addition, HRV was suppressed for the dual task in both the 

baroflex-related and the respiration-related frequency bands, but no difference of task 

factor was found between the cognitive and physical tasks. 
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Fournier et al. [38] collected subjective ratings, eye blinks, respiration rate, respiration 

amplitude, HR, and HRV in the baroflex-related (.06-.14Hz) and respiration-related 

(.15-.40Hz) bands while subjects performed either a single task or three multiple tasks 

of increasing difficulty. The single task was a communication task, while a 

monitoring, tracking, and detection task was added to the communication task to 

create the multi-task. Difficulty of the multi-tasks was manipulated by varying the 

number of events requiring attention. They found that respiration rate, eye blink rate, 

duration, and amplitude, HR, and HRV in both bands differentiated between the single 

tasks and the multi-task workload. Within the three multi-tasks, they found only that 

HR could differentiate the high difficulty task from the mid and low difficulty tasks, 

and that HRV in the baroflex related band could differentiate between the low and 

high difficulty tasks. This corresponded with the subjective scores for workload, 

which were higher in the multi-task medium and high workload conditions than the 

multi-task low workload condition. 

Boutcher, Nugent, McClaren and Weltman [ l l ]  collected HRV while participants 

performed either an arithmetic task or a Stroop task [124]. There was no difference in 

measured HRV between rest and the arithmetic task; however, HRV decreased for 

both mid (.07-. 11 Hz) and high (. 12-.40 Hz) bands when performing the Stroop task, 

versus resting. 

5.2 Field Tasks 

Although the following field studies are not directly related to measuring 

entertainment using psychophysiological measures, they have some similarities. 
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Laboratory tasks are nicely controlled, but one must measure entertainment in context, 

increasing the complexity of an experimental setting. Physical movements, changing 

graphics, and the effects of narrative and plot all have impact on the experimental 

protocol. In addition, the relationship between subjective measures and 

psychophysiological measures is very important. The following three examples 

illustrate some of these issues and how they were handled. 

The majority of airplane pilot and air traffic control researchers rely on cardiovascular 

measures of heart rate, interbeat interval, and heart rate variability, along with brain 

activity through EEG, eye blinks, and subjective measures. Wilson gathered 

physiological measures during actual flights from 10 male pilots flying a Piper Arrow 

[145]. The study also examined electrodermal activity (GSR), and EMG of the leg. 

Electrodermal activity was gathered on the sole of the foot, thus the EMG was 

gathered to determine whether leg movements influenced GSR on the foot. Wilson 

found that takeoffs and landings produced the greatest psychophysiological changes, 

especially in terms of increases in HR and GSR. They believe that the increased 

cognitive demands during these flight sequences are highlighted by the physiological 

changes. In addition, examination of leg EMG revealed that leg movements did not 

influence the electrodermal responses. 

Richter et al. [I101 conducted a field study that considered subjective measures and 

multiple physiological measures. They collected subjective difficulty, electrodermal 

response, blink rate, heart rate, and heart rate variability while 31 student drivers 

drove real cars on rural roads with varying rates of curvature change. They found that 
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subjectively perceived difficulty of the road varied with curvature change rate and that 

blink rate consistently decreased with increases in curvature change rate of the road. 

In addition, the number of spontaneous fluctuations of GSR increased with curvature 

change rate. They also found that HRV was highest during baseline measurements, 

and then continuously decreased as curvature change rate rose, until the highest 

curvature change rate, when HRV increased again. For the highest curvature change 

rate, the increase in HRV could be due in part to a decrease in speed. It could also be 

due to overwhelming workload. 

Healey and Picard [47] used EKG, GSR, Respiration, and EMG to detect driver stress 

for ten drivers on real roads. They created four stress categories from the participants' 

subjective ratings and found that they could recognize driver stress at a rate of 88.6% 

using combinations of the physiological signals. 

Myrtek et al. [88] measured HR, HRV (using an ambulatory monitoring device), and 

subjective stress levels of 50 female university students throughout their day. They 

found that although physical activity was higher during leisure, HR was higher during 

study time. The cognitive aspects of study overwhelmed the effects of physical 

activity on HR. The students rated leisure activities as more enjoyable, but less 

arousing or exciting than studying, and HRV was suppressed during university-related 

activities (e.g., studying). In addition, chronically stressed students (determined by a 

pre-test) had higher HR values, and lower HRV, indicating greater mental workload. 

No correlations between subjective variables and physiological variables were 

attempted. 
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5.3 Dispatch, Air Traffic Control, and Simulators 

There has been an abundance of work conducted in the traditional Human Factors 

domains of dispatch, air traffic control, and simulators. These experiments are 

generally concerned with the evaluation of cognitive workload and mental effort. 

Although not directly related to the evaluation of fun and engagement, it is the most 

well studied domain for the use of psychophysiological measures to evaluate 

interactive systems. Although there is a large amount of work in this area, we only 

present examples of some of the seminal research conducted using a variety of tasks. 

Wastell and Newman [I411 used the physiological measures of blood pressure and 

heart rate in conjunction with task performance and subjective measures (Likert 

scales) to determine the stress of ambulance dispatchers in Britain as a result of 

switching from a paper-based to a computer-based system. When normalized for job 

workflow, systolic reactivity showed that dispatchers stress increased more for 

increases in workload in the paper-based system than in the computer system. This 

was consistent with non-significant results obtained from the post-implementation 

questionnaires. The authors concluded that this triangulation of data sources provides 

compelling and complementary insight into stress in the work environment, and is 

more sensitive than subjective ratings or task performance alone. 

Using complex tasks in a flight simulator, Veltman and Gaillard [I341 measured heart 

rate, blood pressure, respiration and eye blinks to try to index mental workload. The 

flight was the primary task, but users were also required to listen to letters of the 

Dutch alphabet that were presented through headphones and to press a button to 
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indicate when one of four target letters was presented. They found that respiration 

was slower and deeper just after landing the aircraft. In addition, they found that 

power in the mid (.07-.14Hz) and high bands (.15-.50Hz) of heart rate variability was 

higher just after landing the aircraft than when flying, and that BVP increased just 

after landing. The only differences found for the presence of the secondary task 

versus flying alone were that IBI decreased and BP increased. Similar to other field 

studies [56, 1441, the authors found that some psychophysiological measures (e.g., 

HRV) can differentiate between rest and task, but not well between different tasks, or 

different levels of the same task. 

In another experiment, the same authors [I351 studied twelve pilots flying through 

tunnels with varying levels of difficulty. During the tunnel flying tasks, they also had 

to perform a memory task with four levels of difficulty which were matched to the 

difficulty of the flying tasks. Additionally, they flew a pursuit task in between each 

tunnel task. Subjective ratings of difficulty, IBI, HRV, BP, respiration, and eye blinks 

were collected. All collected measures discriminated between rest and the tasks, and 

in this experiment, the measures also differentiated between the tunnel and pursuit 

tasks. Subjects perceived the tunnel tasks as requiring more effort than the pursuit 

task, and also rated the more difficult tasks as requiring more effort. For 

discriminating between the different difficulty levels of the tunnel tasks, only IBI 

revealed consistent results. IBI systematically decreased with increasing levels of task 

difficulty. 
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Rau [log] collected HR and BP data during simulations of an electrical distribution 

system with trained operators. Fifty operators were tested in pairs, with one operator 

acting as the leader, and the other as the co-operator. Three tasks chosen to reflect 

different levels of cognitive workload were performed. The operators also gave 

subjective responses for strain, emotion, motivation, perceived control, and success by 

means of a pocket computer. For the task factor, HR was lower for the least 

demanding condition than the two higher demand conditions, while perceived strain 

and mental effort were higher for the demanding conditions. The operators acting as 

leader showed higher HR, systolic BP, and reported strain than the co-operators, while 

the co-operators perceived more control and success than the shift leaders for all three 

tasks. 

Cnossen et al. [17] collected HRV in a driving simulator, while subjects drove either 

fast or accurately (resulting in a lower speed). They repeated each condition twice and 

were required to attend to a secondary memory task in half of the trials. They found 

that neither speed nor HRV were influenced by the presence of the secondary memory 

task, although they rated the memory task as more demanding and their mean HR was 

higher during the memory task for both fast and accurate driving. 

In an air traffic control (ATC)-inspired task, Rowe et al. found that users with ATC 

experience showed a significant decrease in HRV when the complexity of the task was 

increased, but found that HRV increased when the complexity increased beyond a 

threshold value [113]. This increase may be an indication that the task became too 
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difficult and users weren't trying as hard to achieve good results or that the demands 

of the task exceeded the capacity of working memory [113]. 

The aforementioned studies collected both subjective measures and 

psychophysiological data. Although the authors reported patterns in both of these 

types of measures, they did not attempt to determine whether the subjective and 

objective responses co-varied. This is due in part to the difficulties of dealing with 

high individual variability. Using a hovercraft simulation display, Vicente et al. 

collected HRV. Instead of examining the raw scores, they normalized HRV to a ratio 

between 0 and 1 by dividing the HRV scores for each task by the average HRV scores 

of the rest periods. They were then able to correlate subjective ratings to 

physiological data. They determined that normalized HRV significantly correlated to 

subjective ratings of effort, but not workload or task difficulty [137]. Participants 

were instructed to rate effort as the amount of attentional demand they allocated to the 

task, or how hard they were trying, while workload was rated on the overall level of 

demand imposed by the task, and difficulty was rated on how hard the task was. 

5.4 Adaptive Technologies 

Adaptive technologies seek to trigger changes among modes based on real-time 

performance, critical events, or operator models [118]. Recently, researchers in this 

area have become interested in the use of psychophysiological signals to reflect 

changes in operator workload. Some psychophysiological measures have the 

advantage that they can be obtained continuously, in real-time, with little computation. 

In addition, although physiological sensors can be very clinical, and personally 
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invasive, they do not interfere with an operator's task in the same way as a think-aloud 

protocol, or a randomly-prompted Likert scale [ l  181. 

Wilson, Lambert, and Russell [146] monitored EEG and respiration while subjects 

performed tasks in two difficulty levels, and a resting condition. Physiological data 

from the sessions were used to train a neural network to recognize these three different 

conditions. The goal was to demonstrate that performance on these tasks could be 

improved by adaptively reducing the number of subtasks when high levels of mental 

workload were detected. This adaptive technique, based on physiological signals, 

reduced errors in a tracking task by 44% and in a monitoring task by 33%. Although 

successful, these results reflect that participants exhibited improved performance 

when mental workload was decreased, regardless of adaptation. 

Piechulla et al. [103] estimated workload for drivers in order to create an adaptive 

interface. Dividing attention between driving and talking on cell phones can cause 

traffic accidents, even when the cell phone is hands-free. In the authors' system, 

whenever workload estimates (from simulation data) exceeded a threshold, incoming 

calls were automatically redirected to voice mail without notifying the driver. Both 

subjective measures and psychophysiological estimates of workload were used to 

favourably assess the system in a field study. Piechulla et al. used HRV and Lateral 

Frontalis EMG (eyebrow-raising muscle) as estimates of workload. 

Rani et al. [lo81 used HRV to determine the stress of an online robot operator in order 

to create a robot that could respond accordingly. They classified stress using a fuzzy 

logic model. Using sympathetic and parasympathetic heart activity through HRV 
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calculations, they modeled the stress level of two participants in an experimental 

situation that involved playing video games. No comparison to another data source 

(such as subjective ratings) were made, and the experimental session only involved 

playing the game in one session, so no comparisons were made across difficulty 

levels. In a subsequent study, Rani et al. [I071 collected HRV, GSR, and EMG of the 

forehead and jaw, for one participant who performed problem solving tasks. A fuzzy 

logic model transformed the physiological variables into an anxiety index, which 

exhibited the same trends as the subject's self-reported anxiety levels. 

5.5 Psychophysiology in Human-Computer Interaction 

Wilson (and Sasse) [147-1491 employed the triangulation of data sources to evaluate 

subject responses to audio and video degradations in videoconferencing software. 

Describing their approach as three-tiered, the authors suggest that subjective ratings of 

user satisfaction and objective measures of task performance be augmented with 

physiological measures of user cost (impact of media quality on the user) [147]. 

Using three physiological signals to determine user cost, they found significant 

increases in GSR and HR, and significant decreases in BVP for video shown at 5 

frames per second versus 25 frames per second [148], even though 84% of subjects 

did not report noticing a difference in media quality. In another experiment, 

significant physiological responses (increase in HR, decrease in BVP) were found for 

poor audio quality [149], but these results weren't always consistent with subjective 

responses. For example, a bad microphone induced more physiological stress than a 

quiet speaker or a 5% packet loss, but was only rated subjectively worse than the 5% 

packet loss. Also, an induced echo was physiologically more stressful than a quiet 
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mike, but was not rated worse by the participants. These discrepancies between 

physiological and subjective assessment must be noted. In this audio experiment, a 

bad microphone was the first and second most stressful condition physiologically but 

was not subjectively rated as poor. If only subjective ratings were considered, the 

effects of a bad mike on quality of media would have been missed. 

Ward et al. [139, 1401 collected GSR, BVP, and HR while subjects attempted to 

answer questions by navigating through either well- and ill- designed web pages. No 

significant differences in physiological measures were found for navigating the two 

types of web pages, which is not surprising considering the large individual 

differences associated with physiological data, and the between-subjects experiment 

design. However, distinct trends were seen between the two groups when the data 

were normalized and plotted. Users of the well-designed website tended to relax after 

the first minute whereas users of the ill-designed website showed a high level of stress 

for most of the experiment (exhibited through increasing skin conductance and heart 

rate). Because the data were collected in a naturalistic setting, using a real-life task, 

rather than with pure stimuli in a controlled environment, the data show promise for 

using physiological data to evaluate HCI issues. Using trends in skin conductivity 

alone, the authors suggest that it may be possible to distinguish between low, medium, 

and high levels of stress in the user, both over periods of time and as a direct result of 

an event in the interface. It is important to note that these authors achieved only 

somewhat reliable results when distinguishing between two well-understood, already 

evaluated web site designs. In many HCI evaluations, there isn't a controlled 
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environment with baseline performance that evaluators can compare their design to, 

making the task of recognizing and interpreting physiological data more difficult. 

Partala and Surakka [98] used facial EMG activity to investigate affective audio 

intervention during computer malfunction. Audio intervention informed the user that 

the system was not functioning properly and then provided a short emotional 

statement using either positive or negative terms (e.g., 'great that it will be working 

again soon' versus 'sorry this is so frustrating'). They recorded EMG activity on the 

zygomaticus major (smiling muscle) and corrugator supercilii (frowning muscle) 

while participants performed a problem-solving task on a computer with 

preprograrnmed mouse delays. Following the task, positive, negative, or no audio 

intervention regarding the mouse delay was provided. Smiling activity was higher 

during positive feedback than during negative feedback, and after either intervention, 

smiling activity was higher than after no intervention. Frowning activity attenuated 

significantly more after the positive intervention than no intervention. In addition, 

performance improved more following the positive intervention than no intervention. 

Chen and Vertegaal [16] used brainwave activity and HRV to distinguish between 

four attentive states of a user: at rest, moving, thinking, and busy. They used this 

approach to change the interruption behaviour of a cell phone, and found during a six- 

person trial, that the system identified the appropriate notification level in 83% of the 

trials. 

There has not been much attention paid to using psychophysiology to objectively 

evaluate entertainment technology. Sykes and Brown [I281 measured the pressure 
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that gamers exerted on the gamepad controls and correlated this with game difficulty; 

however, there has not been much work on using psychophysiology to create direct 

metrics of human experience with entertainment technology. 

5.6 Mective Computing 

Affective computing [ lol l  is described as "computing that relates to, arises from, or 

deliberately influences emotions" [ loll .  Research in affective computing is 

concerned with having computers respond to our emotional state and introducing 

emotional responses into our computers. Potential domains of use for affective 

technologies span work applications, travel, communication, and entertainment. 

For example, a few research groups have been interested in creating affective cars that 

can analyze the stress of the drivers 147, 48, 891. This stress level information could 

be used to automatically adjust non-critical systems such as music selection and 

climate control. Gathered over time, records of stress-induced alterations provide a 

valuable source of data to the driver as well as a holistic representation of driver 

stress. 

5.6.1 Psychophysiology a s  an Input Stream 

Physiological measures have traditionally been used for evaluating stress and for 

biofeedback applications. For affective computing researchers, there is a new interest 

in using physiological data as an input mechanism, instead of or in addition to explicit 

input through mice, keyboards, and other controllers. New sensing technologies 

facilitate this interest, in which some input devices will evolve from current explicit 
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manipulation of electromechanical devices to the implicit input of subtle human 

physiology [3]. 

For example, physiological data has been used as an input stream for communications 

technologies. In Conductive Chat [25], an instant messaging client incorporates users' 

fluctuating skin conductivity levels into the dialogue interface. The size and color of 

the font are adjusted based on the skin conductance of the user. In this way, 

collaborators have a visual display of their partner's level of arousal without any 

explicit input. 

Replacing the input devices of mobile technologies with smaller, more context aware 

technologies is another arena for physiological input. The Biofeedback Pointer is a 

graphic input device that operates by sensing EMG signals of the wrist and 

interpreting this data with a neural network to determine where the user is pointing 

[112]. Using Fitts's law [36, 371, the index of performance (a measure of the 

information capacity of the human motor system) of this prototype device was found 

to be only 1 .O6 as compared to the mouse at 7.10 [112]. Isometric EMG of the arm 

has also been used for subtle and intimate input, requiring very little movement from 

the user. Without calibration or training, an armband EMG device was able to reliably 

recognize a motionless gesture across users with different muscle volumes [19]. 

Another line of research uses gaze for targeting and voluntary facial muscle activation 

(from EMG readings) for selection [125]. The eye is a great targeting tool, but as it is 

a perceptual organ, gaze as a selection mechanism suffers from accidental activation 

[152]. Surakka et al. [I251 implemented a system that used gaze for targeting and 
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corrugator supercilli (eye frowning) activation for target selection. They compared 

their method to mouse selection and found that the mouse was faster for close targets, 

but that there was no difference between the mouse and their new technique for mid 

and far targets. In fact, their regression analysis showed that at very far distances, 

their gaze and frown technique might be superior to mouse control. Their gaze and 

frown technique was also much more prone to errors than mouse control. 

Developments such as the biofeedback pointer and the gaze and frown technique 

provide good starting points for developing physiological input devices. 

There is great potential for enriching entertainment technology with physiological 

input. Current entertainment applications using physiological input include a music 

selection DJ that picks music based on a user's affective state [46], and a jacket worn 

by a conductor that can create music and visualizations of music based on the 

conductor's affective state [78]. There are also a few examples of using affective state 

as an input to a game environment. AffQuake [2] alters game play in the popular 

Quake first person shooter game with GSR signals from a player. For example, when 

a player is startled, the player's avatar is also startled and jumps back. AffQuake also 

relates the size of the player's avatar to the arousal of the player. Brainball [50] is a 

game where brain waves (from EEG) are used to alter the direction that a physical ball 

rolls on a physical table. Players sit across from each other and need to relax to make 

the ball move towards their opponent. 

There also have been a few games developed as biofeedback applications to treat 

disorders such as stress and Attention Deficit Hyperactivity Disorder (ADHD). In 
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Relax To Win [7], a player controls the speed of a racing dragon through GSR. As a 

player relaxes, their dragon moves faster. This was also the principle behind a 

commercially unsuccessful car racing game released by Human Engineered Software 

and promoted by Leonard Nimoy. Using NASA technology, S.M.A.R.T. Braingames 

[I151 uses real Playstation video games as a biofeedback application. Using EEG 

signals, the system determines whether the user is in the desired brain state, and 

adjusts accordingly. If the user does maintain the desired brain state, full control of 

the game controller is provided. If not, the speed and steering control decreases. 

Basically, as the player maintains their focus, the game responds, and when they lose 

their focus, they lose ground. Researchers tested this game environment against a 

traditional biofeedback training environment and found no difference between the 

successes of the two systems in terms of clinical improvements, but found that both 

parents and children preferred using the video game system [62]. 

In the Affective Computing Lab at MIT, researchers have sensed a game player's 

affective state while playing DOOM, but have not released any information on how 

they propose to use this data [ lol l .  An extensive literature search has not revealed 

any use of physiological data to create direct metrics of human experience (e.g., for 

use as a tool for game developers), or to deepen engagement with a console or 

computer game as an input. 

5.6.2 Wearable Biome trics 

Because of the clinical and personally invasive nature of physiological sensors, many 

research groups are creating intimate, wearable sensors [102]. Commercial initiatives 
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for smart fabrics are abundant. For example, Philips created smart underwear (bras 

and briefs) that monitor your heart rate and dial for help in case of an emergency 

[loo]. Based on research conducted at the Georgia Institute of Technology [44], the 

Sensatex smart shirt collects biometric information such as heart rate, respiration rate, 

body temperature, and caloric burn, and provides readouts via a wristwatch, PDA, or 

voice. Biometric information is also wirelessly transmitted to a personal computer and 

ultimately, the Internet [121]. The Lifeshirt garment collects over 30 physiological 

signals related to pulmonary cardiac and posture data [69]. Optional peripherals can 

collect many other physiological states including blood pressure, blood oxygen 

saturation, EEG, periodic leg movement, core body temperature, skin temperature, and 

cough. 
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Chapter 6 EXPERIMENT ONE: GOLDILOCKS 

To begin to understand how physiology can be used to objectively measure user 

experience with entertainment technology, we collected a variety of physiological 

measures while observing participants playing a computer game. Participants played 

in four different conditions of difficulty: beginner, easy, medium, and difficult. We 

called this initial experiment Goldilocks because of these game difficulty 

manipulations. Our goal was to either create an experience that was too easy; that was 

too hard; or that matched a player's experience to the difficulty level in the game, 

creating a condition that was 'just right'. 

We expected that participants would prefer playing in the condition that was best 

matched to their level of expertise, experiencing the most enjoyment, satisfaction, and 

engrossment in this condition. These preferences would be reflected in their subjective 

experience as well as their physiological experience. Our previous studies on play 

technologies, as well as the literature on physiology and emotion were used to 

generate the following experimental hypotheses. 

HI: GSR will increase in conditions where players report a greater sense of fun and 

excitement, and a lesser sense of boredom. 
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H2: EMG of the jaw will increase in conditions where players report a greater sense 

of challenge and frustration. 

H3: Respiration Rate will increase in conditions where the players experience greater 

challenge. 

6.1 Participants 

Eight male participants were recruited from computer science and engineering 

students at Simon Fraser University to participate in the experiment. We chose to test 

only male participants in order to reduce any potential confounds since females 

respond differently to computer game environments, and also have different 

physiological and emotional reactions in general. 

Participants were given a free game from EA Sports to thank them for their 

participation in the experiment. One participant did not complete the experiment, so 

we have data for seven participants aged 20 to 266. Before participating in the 

experiment, all participants filled out a background questionnaire (see Appendix 5). 

The questionnaire was used to gather information on their computer use, experience 

with computer and video games, game preference, console exposure, and personal 

statistics such as age and handedness. 

6 An eighth participant was recruited to balance the experimental design; however, the 
laboratory where the experiment was conducted was dismantled before we were able to test 
the final participant. Testing the eighth participant under different laboratory conditions 
would have introduced confounds and issues with the analysis and interpretation of the data. 
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All participants were frequent computer users. When asked to rate how often they 

used computers on a 5-point Likert scale (1-5), all seven subjects used them every day 

(corresponding to 5). The participants were also all self-declared garners. When 

asked how often they played computer games, two of the participants played every 

day, four played often, and one played occasionally. For the frequencies of responses 

to questions on computer usage and game play, see Table 1 and Table 2. When asked 

how much they liked different game genres, role-playing was the favorite, followed by 

strategy and action games (see Table 3). 

Table 1: Frequency of computer usage and game play for Experiment 
One. Participants were asked to respond to how often they do 
each of the following activities: 

Use computers? 

Play computer games? 

Play video (console) games? 

Play computedvideo games 
over the internet or network? 
Play computer/video games 
with another co-located player? 

Never 

2 

Rarely 

1 

2 

1 

Occasionally 

1 

1 

3 

4 

Often 

4 

3 

2 

Every day 

7 

2 

2 
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Table 2: Frequency of computer usage and game play for Experiment 
One. Participants were asked to respond to how much time they 
spend doing each of the following activities: 

Table3: Results of game genre preference from background 
questionnaires for Experiment One. A 5-point Likert scale was 
used with "1" corresponding to "Dislike a lot" and "5" 
corresponding to "Like a lot". 

Use computers? 

Play computer games? 

Play video (console) games? 

Play computer/video games over 
the internet or network? 
Play computer/video games with 
another co-located player? 

( Mean 1 St-Dev. I 
I I 

Action 1 4.57 1 .54 

Never 

I I 

Adventure 1 4.29 1 .76 
I I 

Puzzle 3 .OO 1.2 

< 3  
hours a 

week 

1 

1 

2 

3 

I 

Racing 1 3.57 1 1.4 
I I 

Roleplaying 4.86 .38 

3-7 
hours a 

week 

3 

3 

3 

3 

Shooting 4.57 .79 

I Simulation ( 3.86 1 1.1 I 

1-2 
hours 
aday 

2 

2 

1 

1 

I I 

Sports 1 3.86 1 1.2 

> 2  
hours a 

day 

7 

1 

1 

1 

I I 
Strategy 4.57 .54 
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6.2 Play Conditions 

Participants played the game in four difficulty conditions: beginner, easy, medium, 

and difficult. To balance the order of presentation of the difficulty conditions, we 

used a reversed Latin Square design. The order of the conditions was either BEMD, 

EMDB, MDBE, DBEM, or the reversed DMEB, MEBD, EBDM, BDME, where B 

stands for beginner, E for easy, M for medium, and D for difficult. 

Participants played NHL 2003 by EA Sports in all conditions (see Figure 12 for a 

screen shot). In the background questionnaire, we asked participants to state how 

experienced they were with NHL 2003 or previous versions of the game. When asked 

to rate their experience on a 5-point scale, three of the participants selected "very 

experienced", one selected "somewhat experienced", two chose "somewhat 

inexperienced", and one chose "very inexperienced". As a result, we had three 

players who were experts, three players who were novices, and one player who had 

played the game in the past, but did not consider himself an expert. 

Each play condition consisted of one 5-minute period of hockey. The game settings 

were kept consistent during the course of the experiment. All players played the 

Dallas Stars while the computer played the Philadelphia Flyers. These two teams 

were chosen because they were comparable in the 2003 version of the game. All 

players used the overhead camera angle, and the home and away teams were kept 

consistent. This was to ensure that any differences observed within subjects could be 

attributed to the change in play setting, and not to the change in game settings, camera 

angle, or direction of play. 
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Figure 12: Screen shot of NHL 2003 by EA Sports. 

6.3 Experimental Setting and Protocol 

The experiment was conducted in the Human Centered Design Laboratory at the New 

Media Innovation Centre, located in downtown Vancouver. NHL 2003 was played on 

a Sony PS2, and viewed on a 36" television. Cameras captured a player's facial 

expressions and their use of the controller. All audio was captured with a boundary 

microphone. The game output, the camera recordings, and the screen containing the 

physiological data were synchronized into a single quadrant video display, and 

recorded onto a hard disk (see Figure 13). The audio from the boundary microphone, 

and the audio from the game were integrated into the exported video file. 
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Figure 13: Quadrant display for Goldilocks including a) the screen capture 
of the biornetrics, b) video of the participant's face, c) video of 
the controller, and d) a screen capture of the game. Audio of the 
participant's comments an0 audio from the game were included 
in the quadrant video. 

Physiological data were gathered using the I'roComp Infiniti system and sensors (see 

Figure 14), and BioGraph Software from Thought Technologies. Based on previous 

literature, we chose to collect galvanic skin response (GSR), electrocardiography 

(EKG), electromyography of the jaw (EMGj:,,"), and respiration. Heart rate (HR) was 

computed from the EKG signal, while respiration amplitude (RespAmp) and 

respiration rate (RespRate) were computed from the raw respiration data. We did not 

collect blood volume pulse data (BVP) because the sensing technology used on the 

finger is extremely sensitive to movement. As our subjects were operating a game 

controller, it wasn't possible to constrain their movements. 
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Figure 14: The ProComp lnfiniti system from Thought Technologies. 
Sensors described in Chapter 4 were connected to the 8 ports in 
the front of the unit, while the unit was connected to the 
computer's serial port via fiber-optic cable and a serial port 
converter. 

Upon arriving, participants signed a consent form (see Appendix 4), after which they 

were fitted with the physiological sensors. 'The participants then rested for 5 minutes, 

after which they played the game in their first difficulty level. After each difficulty 

condition, the primary experimenter interviewed the participants, using the 

questionnaire in Appendix 6. Participants wzre asked to rate the challenge, frustration, 

boredom, and fun of each condition OK a 5-point scale ("l"=low, YV=high). 

Explanation of their answers was encouraged. After completing the experiment, the 

same experimenter interviewed the participants again, using the questionnaire in 

Appendix 7. Participants were asked to rank the four difficulty conditions in terms of 

challenge, excitement, and fun. Again, they were encouraged to explain their answers. 

6.4 Data Analyses 

The subjective data from both the condition questionnaires and the post experiment 

questionnaires were collected into a database, and analyzed using non-parametric 

statistical techniques. 
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In terms of the physiological data, EKG data were collected at 256 Hz, while GSR, 

respiration, and EMGjaw were collected at 32 Hz. HR, RespRate, and RespAmp were 

computed at 4 Hz. Physiological data for the rest period and each condition were 

exported into a file. 

When the ProComp Infiniti system records information from the EKG sensor, it may, 

on occasion, record extra information that is not related to the EKG signal [129]. This 

could be very small electrical activity from a nearby muscle group or some 

electrostatic noise that is picked up from the environment. Whatever the source, this 

noise may confuse the software and cause it to erroneously calculate HR values in two 

different ways. A sudden surge in the recorded voltage may be interpreted as an extra 

heartbeat, or a real heartbeat may be lost in the noise, causing the BioGraph software 

to miss a beat. Using a method prescribed by Thought Technologies, producers of the 

ProComp Infiniti and Biograph software [129], we corrected these erroneous 

computations by inspecting each HR sample and contextualizing it in the surrounding 

samples. If the value of sample was clearly half the value or double the value of 

surrounding samples, it was corrected. For each condition and the rest period, HR 

data were then computed into the following measures for each participant: mean HR, 

peak HR, min HR, and standard deviation of HR. The same four measures (mean, 

peak, min, and standard deviation) were also computed on the GSR data, EMGja, 

data, RespAmp data, and RespRate data. We did not compute HRV. The computation 

involves a standard-sized time window, and a controlled setting. Due to our ecological 

approach, we could not ensure that the conditions necessary for HRV analysis were 

met. 
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6.5 Results and Discussion 

Results of the subjective data analyses are described first, followed by results of the 

physiological data analyses. 

6.5.1 SubjectiveResponses 

Participants rated their experience playing the game in terms of boredom, challenge, 

frustration, and fun on a 5-point scale after playing in each of the conditions. The 

mean results are shown in Table 4 and Figure 15. When averaged across participants, 

boredom decreased, challenge increased, and frustration increased with increasing 

difficulty in the game. These differences between conditions are a result of averaging 

across all players; however, when each player is examined individually, there aren't 

consistent trends. Each player did not have the same subjective experience. 

A Friedman test revealed that only the mean ratings for challenge were significantly 

different across difficulty conditions (X2= 13.1, p=.004). Although mean perceived 

challenge increased with every increase in difficulty level, post-hoc analysis revealed 

that only the beginner level was perceived as significantly less challenging than the 

medium level and difficult levels (see Table 5). A larger number of participants might 

yield results where each successive difficulty level is perceived as more challenging 

than the previous level. 
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Table 4: Mean subjective responses for each difficulty level. A response of 
"1" corresponded to "low" and "5" corresponded to "high". Only the 
ratings for challenge were significantly different across difficulty 
conditions. 

Table 5: Wilcoxon Signed Ranks Test results (2-scores and p values) for 
perceived challenge. Only the beginner level was perceived as 
significantly more challenging than the medium and difficult levels. 

Boredom Challenge Frustration Fun 

Emotion 

D Beginner 

64 Easy 

Medium 

Difficult 

Figure 15: Mean subjective responses (+ SE) for each difficulty level. 
Participants rated four emotional states on a scale from 1 (low) to 
5 (high) after each difficulty condition. Difficulty condition only 
had a significant effect on the challenge ratings. 
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6.5.2 Physiological Measures 

Because the subjective ratings were not consistent across participants, we can infer 

that the manipulation of the difficulty levels did not produce consistent experiences 

for all participants. As a result, we did not expect that the physiological results would 

be consistent across participants. Even so, we used a multivariate analysis of variance 

(MANOVA) with the four difficulty levels as an independent variable and the three 

levels of self-identified player expertise as a between-subjects factor, to determine if 

the level of difficulty or expertise of the player had any measurable effect on the mean 

physiological measures. 

Figure 16 shows plots of the five mean physiological measures, separated by difficulty 

condition. There were no main effects of difficulty level on any of the physiological 

measures (HR: F3,12 =1.55, p=.252,712=.28; GSR: F3,12 =.19, p=.899, 712=.05; EMGjaw: 

F3,,2 =1.1, p=.375, 712=.22; RespRate: F3,12 =.78, p=.527, 712=.16; RespAmp: F3,12 =.96, 

p=.441, 712=.19). Between subjects, there was an effect of level of expertise on mean 

respiration rate, measured in breathslminute (F2,4 =24.2, p=.006, 712=.92). Post-hoc 

analysis revealed that expert players (mean=33.3, SE=.79) had a higher mean 

respiration rate than either novice players (mean=27.9, SE=1.4), or semi-experienced 

players (mean=25.7, SE=.79). 
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Level of Play 

Level of Play 

Beginner 

Ed Easy 

Medium 

eve1 of Play 

Level of Play Level of Play 

Figure 16: Mean physiological results (-+ SE) separated by difficulty 
condition. There were no main effects of difficulty level on any of 
the physiological measures. HR: Heart rate; EMGiaw: 
Electromyography of the jaw; GSR: Galvanic skin response; RR: 
Respiration Rate; RA: Respiration Amplitude 
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As shown in Figure 17, there was also an interaction between difficulty and expertise 

on heart rate (F6,~2 =6.03, p=.004, ~l~=.75),  but not on any of the other physiological 

measures. The interaction revealed that there was no difference in HR for expert 

players, but that HR was higher in the easy condition than the beginner, medium, or 

hard conditions for novice players; and that HR was higher in the difficult condition 

than the beginner or easy conditions for semi-experienced players. There is no simple 

explanation for this result, but considering that HR tends to increase with positive 

affect as compared to negative affect [150], it could be that the game level best 

matched with the participant's level of expertise produced a positive play experience, 

generating higher heart rates. 

E Beginner 

B E a v  ! 
Medium 

0 Difficult 

Novice Semi- Expert 
experienced 

Expertise of Player 

Figure 17: Mean Heart Rate (& SE) split by difficulty condition and expertise. 
There were no differences between conditions for experts, but 
there were significant differences for semi-experienced and 
novice players. 
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6.5.3 Correlation of Physiological Measures to Subjective 

Results 

Based on our subjective results, we didn't expect that difficulty level would impact the 

physiological measures, and upon further examination, we discovered that players 

were not responding consistently to the experimental manipulations. 

Although participants did not respond consistently to the difficulty settings, our 

hypotheses for this experiment expected any given participant's physiological results 

to correspond to their subjective reports. This doesn't require consistent subjective or 

physiological responses across participants, just that each individual's physiological 

responses match with their subjective experience. 

Unlike subjective ratings, there are large individual variations in physiological data. 

We wanted to correlate the subjective ratings to the physiological data, but in order to 

handle these individual differences we correlated the mean of each physiological 

measure to the subjective ratings for each participant individually. We then looked to 

see whether these correlations were consistent across individuals. A relationship 

between a physiological measure and a subjective rating would be evidenced by a 

significant number of the participants showing the correlation between the 

physiological measure and the subjective rating. The individual correlations, and the 

number of occurrences of each significant correlation are shown in Table 6. 
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Table 6: Significant correlations between subjective ratings and mean 
physiological measures for each participant. The four subjective 
ratings for each of the four difficulty conditions were correlated with 
the five mean physiological ratings for the four difficulty levels, for 
each participant. Direction indicates whether the correlation was 
direct (+) or inverse (-). The number of occurrences represents the 
number of times the correlation between that subjective rating and 
physiological measure is seen over all participants. For example, the 
Challenge-RespAmp correlation is seen three times, (for participants 
1, 6, and 7), while the Frustration-HR correlation is seen only once, 
(for participant 4). 

* For participant 2, the ratings for boredom, frustration, and challenge were constant. As 
such, only the ratings for fun were tested, resulting in no significant correlations. 

ID 

1 
2 * 
3 

4 

5 
6 

7 

Although there were correlations for most individuals, these correlations weren't 

consistent across participants. The most common correlation, between challenge and 

respiration amplitude, only occurred for three of the seven participants. GSR increased 

with perceived challenge for two of the participants, while all other significant 

correlations between subjective measures and perceived measures occurred for only 

one participant. Given the fact that our hypotheses were not confirmed, we needed to 

determine whether our hypotheses were initially wrong, or whether we were not 

measuring accurately. Our hypotheses were based on the extensive literature on 

Subjective 
Rating 

Challenge 

Boredom 
Challenge 

Fun 
Boredom 

Frustration 
Frustration 
Frustration 
Challenge 
Frustration 
Challenge 
Challenge 
Challenge 

Physiological 
Measure 
RespAmp 

EMGjaw 
GSR 

Resp Rate 
Resp Rate 

HR 
IBI 

GSR 
GSR 

RespAmp 
EKG 

RespAmp 
RespAmp 

Direction 

+ 

+ 
+ 

+ 

+ 

+ 
+ 

Pearson 
Correlation 

,967 

.973 

.966 

.977 

.984 

.977 

.958 

.974 

.988 

.950 

.965 

.997 

.994 

Sig. 

.033 

.027 

.034 

.029 

.016 

.023 

.042 

.026 

.012 

.050 

.035 

.003 

.006 

# 
occurrences 

3 

1 
2 
1 
1 
1 
1 
1 
2 
1 
1 
3 
3 
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physiological responses and emotional states; so in order to explain the inconsistencies 

between our expectations and our results, we carefully inspected the data. Upon 

further examination, we discovered that the participants were responding more to the 

experimental situation than the experimental manipulations. Our methodological 

decisions were impacting the physiological measures and the subjective ratings in 

ways we had not anticipated. These issues are discussed further in the next section. 

6.6 Issues in Experiment One 

There were a number of issues in Experiment One. These issues were mostly 

methodological, and each is described in detail. 

Subjects enjoyed playing in all conditions: One problem was that the subjects 

enjoyed playing in all of the conditions, even if the difficulty level didn't match their 

experience. The results of the condition questionnaires showed that the median result 

for perceived fun was 3.0 for all conditions. Subjects engaged in meta gaming to make 

the experience more enjoyable, such as by creating challenges for themselves in the 

easier levels. For example, when playing in the beginner condition, one player set up 

fancy plays to score pretty goals to make the game interesting since he was able to 

score at will. Another player tried to get as many goals as possible to see if he could 

beat his friend who had participated on a previous day. These activities changed the 

nature of the difficulty conditions, confounding the results. Our pilot subjects had 

responded to the different difficulty conditions; however, this choice of experimental 

manipulation did not produce a significantly different experience for the seven 

subjects in the experiment. 
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Variability inherent in game play: A significant challenge in analysing this 

experiment was relating single point data (subjective ratings) to time series data 

(physiology). To match these two types of data, previous researchers in other domains 

have converted the time series data to a single point through averaging (e.g., mean) or 

integrating (e.g., HRV) the time series. This method has been used successfully in the 

domain of human factors but doesn't apply well to gaming. For example, an air traffic 

controller would suppress their anxiety and cope with stress, essentially flattening 

HRV and minimizing variability in other measures. In games, engagement is partially 

obtained through successful pacing. Variability, in terms of required effort and 

reward, creates a compelling situation for the player. Collapsing the time series into a 

single point erases the variance within each condition, causing us to lose valuable 

information. 

High resting baseline: Resting rates were sometimes higher than game play rates for 

measures where this result is unexpected (e.g., HR, HRV, GSR). Anticipation and 

nervousness caused the resting baselines to be artificially high. Vicente et al. [I371 

recommended collecting a number of baselines throughout the experimental session 

and averaging them to create a single baseline value. In addition, using participants 

who are familiar with the process of being connected to physiological sensors would 

help lower the resting values. Beginning the experiment with a training or practice 

condition, before collecting the resting values, might help the participants to relax. 

Finally, a relaxation CD used during the resting period may also help to achieve valid 

resting baselines. 
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Interview effects: The process of interviewing caused significant physiological 

reaction from each of the players. This could be because the interviewer was 

unfamiliar to the participants, of the opposite sex, within their personal space, or 

simply because the process of answering questions was arousing for the participants. 

One participant began to stutter during the condition interviews even though he had 

not stuttered in previous casual conversation with the interviewer. We expect that 

some combination of these reasons contributed to the participants' reactions. 

Order Effects: When examining the data, we noticed that the order of condition may 

have impacted the results. For example, one participant's GSR signal over the course 

of the experiment is shown in Figure 18. GSR tends to drift, but note how the 

increases in the GSR signal over time are catalyzed by the interview. The areas shaded 

in light grey represent when the participant was being interviewed. The extreme 

reaction to the interview is seen at the beginning of each light grey shaded area. The 

areas shaded in dark grey represent when the participant was playing. The GSR signal 

drops off at the beginning of each game condition from the reaction to the interview 

process but does not return to baseline levels. These interview peaks cannot be 

excluded from the analysis, because there were no rest periods in between play 

conditions. The effects of relaxing post-interview and being excited by the game are 

inseparable, thus the interview peaks cannot be eliminated. 

We cannot include order as a factor in our MANOVA, since we used a Reverse Latin 

Square design to balance the order of presentation of difficulty conditions. Thus, each 

participant performed the experiment in a unique order. So, although order may have 
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impacted the results, we cannot separate out the effects of order from the effects of 

condition. 

Figure 18: Participant 7's GSR signal over the course of the experiment. 
The areas shaded in light grey represent when the participant 
was being interviewed. The areas shaded in dark grey represent 
when the participant was playing the game. 

6.7 Summary of Experiment One 

Although we found many significant correlations for each individual, these 

correlations weren't consistent across participants. The main reason for the 

inconsistent results is likely the experimental manipulation that was chosen; however, 

there were also some methodological issues that contributed to irregular patterns of 

physiological activity. Primarily, the act of conducting the experiment produced 
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different phases in the experiment (e.g., play, interview, rest) that created greater 

physiological responses than the experimental manipulations themselves. In addition, 

the experimental manipulation that was chosen did not produce consistent subjective 

results across all participants. Without consistent subjective results, we cannot expect 

consistent physiological results. Given the data available, we cannot eliminate 

interview peaks, or change our experimental design to have a different control 

condition or a different experimental manipulation. Our sample size was also very 

small, but rather than add more participants to an imperfect experimental design, we 

took the methodological lessons learned and conducted a second experiment. 
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Chapter 7 EXPERIMENT TWO: TURING 

We conducted a second study to further understand how body responses can be used 

to create an objective evaluation methodology. Because this methodology is a novel 

approach to evaluate play technologies, and the results from Experiment One were 

ambiguous, we used an experimental manipulation designed to maximize the 

difference in the experience for the participant. The participants played in two 

conditions: against another co-located player, and against the computer. 

We chose these play conditions because we have previously observed pairs (and 

groups) of participants playing together under a variety of collaborative conditions 

[22, 54, 75, 1201. Our previous observations revealed that players seem to be more 

engaged with a game when another co-located player is involved. The chosen 

manipulation should yield consistent subjective results, and thus consistent 

physiological patterns of experience. Once we better understand how the body 

responds to play environments, more subtle manipulations could be explored. 

Our goal was not to investigate whether there are differences between playing against 

a computer and a friend. We already know that the two play conditions are different. 

Our goal was to determine whether the physiological measurements could reveal 

differences between the two play conditions. As such, we called this experiment 
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Turing, since we were investigating whether we could use physiology to differentiate 

whether people were playing against a computer or a friend. 

Our main suppositions for Experiment Two were that participants would be more 

excited, and would prefer playing against a friend over playing against a computer. 

Also, they would have more fun, and would be more engrossed in play against a 

friend. This preference would be reflected in their subjective experience as well as 

their physiological experience. Our previous studies on collaborative play, as well as 

the literature on physiology and emotion were used to generate the following 

experimental hypotheses. 

H4: Participants will prefer playing against a friend to playing against a computer. 

They will also find playing against a friend more fun, and engaging, and less boring. 

H5: Participants will experience higher GSR values when playing against a friend 

than against a computer, a reflection of being more engaged, and having more fun. 

H6: Participants will experience higher EMGja, values along the jaw when playing 

against a friend than against a computer, as a result of trying harder due to greater 

engagement. 

H7: The diferences in the participants' GSR signal in the two conditions will 

correlate to the diferences in their subjective responses of engagement, fun, andlor 

excitement. 
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Ratification of these hypotheses would provide support for two of our three main 

conjectures: 

Conjecture A: Physiological measures can be used to objectively measure a player's 

experience with entertainment technology. 

Conjecture B: Normalized physiological measures of experience with entertainment 

technology will correspond to subjective reports. 

7.1 Participants 

Ten male participants age 19 to 23 took part in the experiment. Participants were 

recruited from computer science and engineering students and recent graduates and 

were given a monetary remuneration of $20 for their participation. Before the 

experimental session, all participants filled out a background questionnaire (see 

Appendix 5).  The questionnaire was used to gather information on their computer 

use, experience with computer and video games, game preference, console exposure, 

and personal statistics such as age and handedness. 

All participants were frequent computer users. When asked to rate how often they 

used computers, nine subjects used them every day, and one subject used them often. 

The participants were also all self-declared garners. When asked how often they 

played computer games, two played every day, seven played often, and one played 

rarely. The one participant who played computer games rarely, played console games 

occasionally. For the frequencies of responses to questions on computer usage and 
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game play, see Table 7 and Table 8. When asked how much they liked different game 

genres, role-playing was the favorite, followed by strategy games (see Table 9). 

Table 7: Frequency of computer usage and game play from Experiment 
Two. Participants were asked to respond to how often they do 
each of the following activities: 

I Play video (console) games? I l 2 1  3  1 4 1  I 

Use computers? 

Play computer games? 

I I I I I 

Play computer/video games 1 4  1 3 1  2 I 

Never 

Table 8: Frequency of computer usage and game play from Experiment 
Two. Participants were asked to respond to how much time they 

over the internet or network? 
Play computer/video games 
with another co-located player? 

spend doing each of the following activities: 

Rarely 

1 

3  

Often 

1 

7 

Occasionally 

Use computers? 

Play computer games? 

Every day 

9 

2 

3  

Play video (console) games? 1 

Never 

Play computer/video games over 
the internet or network? 
Play computer/video games with 
another co-located player? 

3  

5 

1 

< 3 
hours a 

week 

3  

1 

3  

3-7 
hours a 

week 

3 

1 

4  

6 

1-2 
hours 
a day 

1 

1 

4  

2 

> 2 
hours a 

day 

9 

3  

2 

1 
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Tableg: Results of game genre preference from background 
questionnaires from Experiment Two. A 5-point Likert scale was 
used with "1" corresponding to "Dislike a lot" and "5" 
corresponding to "Like a lot". 

Mean I St.Dev. 

Action 

Adventure 

I puzzle 1 3.50 1 1.1 I 

Shooting 4.10 1 .99 

I Simulation 1 4.30 1 .68 1 
I I 

Sports 1 3.90 1 1.3 
I I 

Strategy 1 4.78 1 .44 

Play Conditions 

Participants played NHL 2003 by EA Sports in both conditions (see Figure 12 for a 

screen shot). Two of the pairs were very experienced with the game, while the other 

three pairs were somewhat familiar or inexperienced with the game. 

Participants played the game in two conditions: against another player, and against the 

computer. Participants were recruited in pairs so that they would be playing against 

friends rather than against strangers. Because they were recruited in pairs, one player 

competed against the computer before playing against their partner, while the other 

player competed against the computer after playing against their partner. This was to 

acknowledge effects due to the order of the presentation of conditions. Pairs who were 

somewhat inexperienced with NHL 2003 were given time to practice before the 

experiment in order to learn the controls. 
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Each play condition consisted of one 5-minute period of hockey. The game settings 

were kept consistent within each pair during the course of the experiment. All players 

used the Dallas Stars and the Philadelphia Flyers as the competing teams, as these two 

teams were comparable in the 2003 version of the game. All players used the 

overhead camera angle, and the home and away teams were kept consistent. This was 

to ensure that any differences observed within subjects could be attributed to the 

change in play setting, and not to the change in game settings, camera angle, or 

direction of play. The only difference between pairs was that experienced pairs played 

both conditions in a higher difficulty setting than non-experienced players. 

7.3 Experimental Setting and Protocol 

The experiment was conducted in a laboratory at Simon Fraser University. NHL 2003 

was played on a Sony PS2, and viewed on a 36" television. A camera captured both of 

the players, their facial expressions and their use of the controllers, while an 

omnidirectional microphone captured the participants' comments. The game output, 

the camera recording, and the screen containing the physiological data were 

synchronized into a single quadrant video display, recorded onto tape, and digitized 

(see Figure 19). The quadrant video also contained the audio of the participants' 

comments, and the audio generated from the game. A diagram of the complete 

experimental setup can be seen in Figure 20. 

Physiological data were gathered using the ProComp Infiniti system and sensors (see 

Figure 14), and BioGraph Software from Thought Technologies. Based on previous 

literature, we chose to collect galvanic skin response (GSR), electrocardiography 
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(EKG), electromyography of the jaw (EMGjaw), and respiration. Heart rate (HR) was 

computed from the EKG signal, while respiration amplitude (RespAmp) and 

respiration rate (RespRate) were computed from the raw respiration data. We did not 

collect blood volume pulse data (BVP) because the sensing technology used on the 

finger is extremely sensitive to movement. As our subjects were operating a game 

controller, it wasn't possible to constrain their movements. 

Upon arriving, participants signed a consent form (see Appendix 4). They were then 

fitted with the physiological sensors. One participant rested for 5 minutes, and then 

played the game against the computer. Both participants then rested for 5 minutes 

after which they played the game against each other. The second participant then 

rested again and played the game against the computer. When one participant was 

playing against the computer, the other participant waited outside of the room during 

the pre-play rest and the play condition. Because the participants were required to rest 

in the same room before playing each other, they wore headphones and listened to a 

CD containing nature sounds. This helped them to relax and ignore the other player in 

the room. They also listened to the CD when resting alone to maintain consistency. 

The resting period was included to allow the physiological measures to return to 

baseline levels prior to each condition. Experiment One showed that the act of filling 

out the questionnaires and communicating with the experimenter altered the 

physiological signals. The resting periods corrected for these effects. In order to 

utilize the resting periods as baseline controls, we would need much longer rest 

periods, and ensure that the nature sounds were indeed restful. We wanted to create an 
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environment that was as natural as possibl:, and extended periods of rest in between 

play conditions did not fit with this approach. 

Figure 19: Quadrant display for Experiment Two including: a) the screen 
capture of the biometrics, b) a screen capture of the game, and c) 
the camera feed of the participants. Audio of the participants' 
comments and audio from the game were included in the 
quadrant video. 
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Figure 20: A diagram of the complete experimental set-up for Experiment 
Two. 
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After each condition, the participants filled out a condition questionnaire. The 

condition questionnaire contained their participant ID, the condition name, the level of 

play, and the final score (see Appendix 8). We also had subjects rate the condition 

using a Likert Scale. They were asked to consider the statement, "This condition was 

boring", rating their agreement on a 5-point scale with 1 corresponding to "Strongly 

Disagree" and 5 corresponding to "Strongly Agree". The same technique was used to 

rate how challenging, easy, engaging, exciting, frustrating, and fun that particular 

condition was. The questionnaire was filled out online using a laptop computer. 

Experiment One revealed that the physiological measurements for all participants 

reacted strongly to the interview process between each condition. We don't know 

what caused this effect but feel that the act of speaking and answering questions may 

have contributed. As a result, we chose to have participants fill out html-based 

questionnaires using a laptop computer, and then rest again for 5 minutes. After 

completing the experiment, subjects completed a post-experiment questionnaire (see 

Appendix 9). We asked them to decide in retrospect which condition was more 

enjoyable, more fun, more exciting, and more challenging. They were also asked in 

which condition they would choose to play, given the choice to play against a friend 

or against the computer. Discussion of their answers was encouraged. The 

experimenter verbally administered the post-experiment questionnaire. 

7.4 Data Analyses 

The subjective data from both the condition questionnaires and the post experiment 

questionnaires were collected into a database, and analyzed using non-parametric 

statistical techniques. 
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In terms of the physiological data, EKG data were collected at 256 Hz, while GSR, 

respiration, and EMGjaw were collected at 32 Hz. HR, RespRate, and RespAmp were 

computed at 4 Hz. Physiological data for each rest period and each condition were 

exported into a file. As in Experiment One, noisy EKG data may produce heart rate 

(HR) data where two beats have been counted in a sampling interval or one beat has 

only been counted in two sampling intervals. We inspected the HR data and corrected 

these erroneous samples. For each condition and rest period, HR data were then 

computed into the following measures: mean HR, peak HR, rnin HR, and standard 

deviation of HR. The same four measures (mean, peak, min, and standard deviation) 

were also computed on the GSR data, EMGjaw data, RespAmp data, and RespRate 

data. 

7.5 Results and Discussion 

Results of the subjective data analyses are described first, followed by results of the 

physiological data analyses. Finally, correlations between the subjective data and the 

physiological data are presented. 

Z 5.1 Subjective Responses 

In Experiment One, our experimental setting seemed to have impacted the results 

more than our experimental manipulations. Although we addressed these issues, to be 

certain of our results, we wanted to closely examine any potential methodological 

problem. We used the chi-squared statistic to determine whether subjective responses 

were influenced by order of presentation of condition or outcome of the condition 

(win, loss, or tie). There were no significant effects of order on any of the subjective 
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measures, either on the condition questionnaire, or on the post-experiment 

questionnaire. There was a significant effect of condition outcome on boredom rating, 

when participants played against the computer. Participants who lost to the computer 

rated the condition as significantly more boring (mean=4.0, N=2) than subjects who 

beat the computer (mean=2.0, N=5), or who tied the computer (mean=1.67, N=3) 

(~2=12.38, p=.015). However, there was no difference in boredom ratings depending 

on game outcome when participants played against a friend (mean(win)=1.67, N=3, 

mean(loss)=2.0, N=3, mean(tie) = IS ,  N=4) (~2=4.50, p=.343, see Figure 21). The 

game outcome had no significant impact on any of the other subjective measures. 

Tie 

o C 
Computer 

Play Condition 

Friend 

Figure 21: Mean subjective ratings (k SE) for boredom in Experiment Two, 
separated by game outcome (win, loss, tie). Participants who 
lost to the computer rated the condition as significantly more 
boring than those who beat or tied the computer. Boredom 
rating when playing against a friend was not impacted by game 
outcome. Note that the standard error for those who beat (N=5) 
or lost (N=2) to the computer was zero. 
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In addition, the ratings for playing against the computer were compared to the ratings 

for playing against a friend. Players found it significantly more boring (x2=4.0, 

p=.046) to play against a computer than against a friend, and significantly more 

engaging (x2=4.0, p=.046), exciting (x2=6.0, p=.014), and fun (x2=6.0, p=.014) to play 

against a friend than a computer (Friedman test for two related samples). See Figure 

22, and Table 10 for a synopsis of these results. 

Emotions Rated J 

Figure 22: Mean subjective ratings (2 SE) for Experiment Two, separated by 
condition. Subjects were asked to rate each experience state on 
a 5-point scale. Identifying strongly with that experience state is 
reflected in a higher mean. Participants found it significantly 
more boring to play against the computer, and significantly more 
engaging, exciting, and fun to play against a friend. 

On the post-experiment questionnaire, when asked whether it was more enjoyable to 

play against the computer or a friend, all 10 subjects chose playing against a friend. 

All 10 subjects also stated that it was more fun and more exciting to play against a 
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friend; however, half of the subjects thought it was more challenging to play against 

the computer. When those five participants were asked why it was more challenging 

to play against the computer, most felt that their partner was not as good of a player as 

the computer. The five participants who were more challenged by their partner felt 

that the computer was too predictable. The participants were grouped into two 

"challenge groups", depending on whether they felt more challenged by their friend or 

the computer. When asked if given a choice, in which condition they would choose to 

play, all 10 subjects reported that they would choose to play against a friend. 

It isn't surprising that the participants found the game fun, and that they enjoyed 

playing against a friend more than the computer. When recruiting players, we asked 

that they be computer game players familiar with a game controller, drawing people 

that generally enjoy playing computer games (as seen in the results from the 

background questionnaire). We recruited the participants individually, but asked them 

to bring their own partner. We didn't want the participants playing against strangers, 

which may have discouraged people who prefer playing alone from signing up. 

Our first experimental hypothesis stated that participants would prefer playing against 

a friend to playing against a computer. The described subjective results confirm this 

hypothesis. 
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Table 10: Results of condition questionnaires for Experiment Two. 
Subjects were asked to rate each experience state on a 5-point scale. 
Identifying strongly with that experience state is reflected in a higher mean. 

Boring 

Challenging 

Easy 

Engaging 

Exciting 

Frustrating 

Fun 

Playing against I I Difference between Playing against friend computer conditions 1 
I I 

Mean I St.Dev. I Mean 1 St.Dev. 1 x2 P 1 

Z 5.2 Physiological Measures 

Each physiological measure was computed into means for each participant. Means for 

the physiological data (GSR, EMGja,, HR, RespRate, and RespAmp) were analysed 

using a repeated measures multivariate analysis of variance (MANOVA) with play 

conditions as the independent variable, and the five physiological signals as dependent 

variables. Order of presentation and challenge group (as identified in the post- 

experiment questionnaire) were included as factors to determine whether there were 

effects due to order of condition, and to differentially analyze the physiological results 

for the two different challenge groups identified in the post-experiment questionnaire. 

There were no significant main effects of order, or any interactions between the play 

condition and the order in which it was presented. Thus, the resting period between 

play conditions served the purpose of returning the physiological measures to a 

baseline state. We also examined whether game outcome (win, loss, tie) differentially 
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affected the participants' physiological measures. There were no systematic effects of 

game outcome on any of the physiological measures analysed. 

Play Condition 

Play Condition 

Play Condition 

W Computer 

.Friend 1 

Play Condition Play Condition 

Figure 23: Mean physiological results (+ SE) separated by play condition. 
GSR and EMGja, were significantly higher when playing against a 
friend. There was no difference in HR, RespAmp, or RespRate 
between conditions. Note that the error bars are exagerrated 
since there are large individual differences in physiological 
measures, and these values are averaged over the group. 
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Our second experimental hypothesis assumed that GSR would be greater when 

playing against a friend as compared to playing against the computer, due to greater 

engagement. Figure 23 shows how mean GSR was significantly higher when playing 

against a friend (mean=4.19pm, SD =3.0) as compared to playing against a computer 

(mean=3.58 pm, SD=2.8), (F1,5 =7.4, p=.042, ~l~=.60).  Because of the individual 

variability in physiological data, the standard deviations are quite high; however, the 

average increase in GSR when playing against a friend was 36% of the signal span 

(using the resting value of GSR as the lower bound and the maximum GSR value 

during the experiment as the upper bound). Also, the partial eta-squared value of .60 

reveals that 60% of the total variability in the measure can be attributed to play 

condition. 

In addition, when examined individually, Figure 24 shows how the pattern of higher 

GSR when playing a friend was consistent for 9 of the 10 subjects, which is a 

significant trend (Z=2.4, p=.017). The one participant whose GSR did not increase 

was also the only participant who did not increase his subjective rating for fun when 

playing against a friend, and as such, we would not expect his GSR to be higher when 

playing against his friend. He felt more challenged playing against the computer than 

against his partner (challenge(computer) = 5, challenge(friend) = 2). He also felt that it 

was easier to play against his partner than the computer (easy(computer) = 2, 

easy(friend) = 4)). Throughout the experiment, his partner had difficulty learning the 

controls to the game. This circumstance could have created an anomalous play 

experience against his friend, and explain his lower GSR. 
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Figure 24: Mean GSR values (pm) for Experiment Two, separated by 
participant and play condition. Mean GSR was higher when 
playing against a friend as compared to playing against a 
computer. This pattern was seen in all players with the exception 
of participant 6. 

Our third hypothesis states that we expected EMG activity along the jaw to be greater 

when playing against a friend, as we expected participants to try harder and be more 

competitive when playing against a friend, due to greater engagement. Although we 

placed the surface EMG on the jaw to collect data on tension in the jaw, these results 

are likely overshadowed by interference from smiling and laughing. We cannot 

separate out these effects, to determine the EMG scores for jaw clenching alone. With 

this in mind, mean EMGjaw was significantly higher when playing against a friend 

(mean=12.8 pV, SD=8.2) as compared to playing against a computer (mean=6.3 pV, 

SD=3.3), (F1,5 =14.8, p=.012, ~ l~= .75 ,  see Figure 23). The factor of condition 

accounts for 75% of the variability in the measure, and Figure 25 shows how the 

increase was consistent for 9 of the 10 subjects, which is a significant trend (Z=2.7, 

p=.007). 
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Figure 25: Mean EMGiaW values for Experiment Two, separated by 
participant and play condition. Mean EMGIa, was higher when 
playing against a friend as compared to playing against a 
computer. This pattern was seen in all players with the exception 
of participant 7. 

Based on psychophysiological theories, we didn't expect to see any differences 

between the conditions in heart rate (HR), respiratory amplitude (RespAmp), or 

respiratory rate (RespRate). The MANOVA showed no significant differences in HR, 

RespAmp, or RespRate between the two play conditions (HR: F1,5 =1.58, p=.264, 

2 '1 =.24; RespAmp: Fl,s =2.15, p=.202, -q2=.30; RespRate Fl,5 =.69, p=.444, ~l~=.121,  

see Figure 23). 

In the post-experiment questionnaires, half of our participants felt that playing against 

the computer was more challenging, and half felt that playing against their friend was 

more challenging. As such, we included this grouping as a between subjects factor in 

our MANOVA on the physiological data to investigate whether the perception of 

challenge differentially affected the physiological measures, as shown in Figure 26. 
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Figure 26: Mean physiological results (-+ SE) separated by challenge group. 
EMGjaw was significantly higher for the group that felt more 
challenged when playing against a computer. This effect did not 
interact with play condition. There was no difference in GSR, HR, 
RespAmp, or RespRate between challenge groups. Note that the 
error bars are exagerrated since there are large individual 
differences in physiological measures, and these values are 
averaged over the group. 

There was a main effect of challenge group on EMGjaw. Those who felt that playing 

against the computer was more challenging had a higher mean EMGjaw over both play 
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conditions (mean=14.6 pV, SE=1.4) than those who felt that playing their friend was 

more challenging (mean=6.2 pV, SE=1.3) (Fi.5 =19.4, p=.007, ~l~=.80).  This effect did 

not interact with play condition. The MANOVA showed no significant differences in 

GSR, HR, RespAmp, or RespRate between the two challenge groups (GSR: 

F1,5=0.009, p=.928, ~l~=.002; HR: F1,5=l .55, p=.268, ~l~=.24;  RespAmp: F1,5=l .87, 

p=.229, ~ l~=.27 ;  RespRate F1,5=.86, p=.397, ~l~=.15).  

2 5.3 Physiological Measures as a Continuous Data Source 

The comparison between the means for two conditions provides a good basis for using 

physiological measures as an objective indicator of experience with entertainment 

technology. However, we can't say with any degree of certainty whether the tonic 

level is raised, or whether there are more phasic responses7. As such, in addition to 

comparing the means from the two conditions, we investigated GSR responses for 

individual events. One of the advantages of using physiological data to create 

evaluation metrics is that physiological signals provide high-resolution, continuous, 

contextual data. GSR is a highly responsive body signal, it provides a fast-response 

time-series, reactive to events in the game. To inspect GSR response to specific 

events, we chose to examine small windows of time surrounding goals scored and 

fights in the game. Goal events were windowed for 10 seconds before scoring and 15 

seconds after scoring, in order to establish a pre-event level as well as contain an 

entire potential GSR response to a goal. There were 10 instances where participants 

7 Tonic activity refers to the baseline measure of a system; the background or resting level of 
the activity of a particular physiological measure. Phasic activity refers to a discrete 
response to a stimulus, or an evoked response. Phasic activity can be either an increase or a 
decrease in frequency, amplitude, or latency [1231. 
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scored in both play conditions. All of these participants experienced a significantly 

larger GSR response to goals scored against another player versus goals scored against 

the computer (t4=6.7, p=.003). The magnitude of the response was calculated as the 

span of the response (peak minus min) during the windowed time period. An example 

of one participant's result scoring against the computer twice and against a friend once 

is shown in Figure 27. 

When two players begin a hockey fight, the game cuts to a different scene and the 

players throw punches using buttons on the controller (see Figure 28). Fight sequences 

were analysed from the time when the pre-fight cut scene began to when the post-fight 

cut scene ended. There were three instances of participants who participated in hockey 

fights both against the computer and against their friend. One participant won both 

fights, one lost both, and one won against the computer and lost against their friend. 

Even so, all participants exhibited a significantly larger response to the fight against 

the friend than the fight against the computer (t2=6.0, p=.027). An example of one 

player's response to a fight sequence against the computer and against a friend is 

shown in Figure 29. 
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Figure 27: Participant 2's GSR response to scoring a goal against a friend 
and against the computer twice. Note the much larger response 
when scoring against a friend. Data were windowed 10 seconds 
prior to the goals and 15 seconds after. 
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Figure 28: Fight sequence in NHL 2003 by EA Sports. The first frame shows 
the players in a fight. The second frame is after the Dallas Stars player won. 
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Friend 

Fight Begin Fight End 

Figure 29: Participant 9's GSR response to engaging in a hockey fight while 
playing against a friend versus playing against the computer. 

Z 5.4 Correlation of SuLyective Responses and Physiological 

Data 

Since physiological data has very large individual differences, and individual 

baselines have to be taken into account, we could not directly compare the means of 

the time-series data to the results from the subjective data from the condition 

questionnaires. In previous literature, (see [74] for an overview), researchers have 

rarely correlated physiological data to other types of data. One exception is Vicente et 

al. [I371 who normalized HRV and compared subjective ratings to normalized HRV. 

In Experiment One, we correlated physiological results to subjective results for each 

individual and then determined whether these patterns were consistent across 

individuals. In this case, we only have two conditions (friend and computer), 
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rendering this method unusable, since with only two conditions, correlations will 

either be zero or one depending on the direction of the differences. 

In order to perform a group analysis, we transformed both the physiological and 

subjective results into dimensionless numbers between zero and one. For each player, 

the difference between the conditions was divided by the span of that individual's 

results. The physiological data were converted using the following formula: 

MeanC - MeanF 
P h y s i o l o g i ~ a l ~ ~ , , , ~ ~  = 

MAX{PeakC-MinC,  PeakF-MinF} 

where C refers to playing against the computer and F refers to playing against a 

friend. 

The subjective results were handled similarly: 

These normalized measures were then correlated across all individuals. We weren't 

interested in how the subjective results correlated with each other. For example, it is to 

be expected that boredom will be negatively related to excitement. Similarly, we 

didn't correlate physiological measures with other physiological measures. All 

correlations between subjective measures and physiological measures are shown in 

Table 1 1. 
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Table 11: Correlations between normalized subjective measures and 
normalized physiological measures. Significant correlations (p, 2- 
tailed) are shaded in grey. r values are Pearson correlation 
coefficients. 

Since mean GSR was higher when playing against a friend, and participants also rated 

this condition as more fun and exciting, we hypothesized that a correlation between 

GSR and fun, excitement, or boredom might exist. By themselves, the subjective and 

physiological results reveal that a participant's GSR is higher in a condition that they 

also rate as more fun. A correlation of the normalized differences would show that the 

amount by which subjects increased their fun rating when playing against a friend is 

proportional to the amount that GSR increased in that condition. Using Pearson's 

coefficient, we found that normalized GSR was correlated with normalized fun (r=.69, 
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p=.026). Thus, the level of arousal experienced by the subjects corresponded with 

their subjective reported experience of fun (see Figure 30). We also found that 

normalized GSR was inversely correlated with normalized frustration (r=.64, p=.046). 

Thus, the amount by which their GSR decreased when playing against the computer is 

comparable to the increased amount in their frustration rating. 

N o r m a l i z e d  GSR 

- Normalized Fun 

-0.4 
Participant ID 

Figure 30: Normalized GSR is correlated with normalized fun (r .70, 
=.026). 

We also found that normalized respiratory amplitude was correlated with normalized 

challenge (r=.70, p=.025) and inversely correlated with normalized ease (r=.68, 

p=.029). We had previously seen the Challenge-RespAmp correlation in Experiment 

One when observing people playing NHL 2003 in different difficulty levels. In the 

present experiment, respiration amplitude increased for all 10 participants when 

playing against a friend, although this result was non-significant. Although half the 

participants said in the post-experiment questionnaire that playing against the 

computer was more challenging, the condition questionnaires revealed that 9 of the 10 
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subjects rated the challenge of playing against a friend as the same or higher than 

playing against the computer. 

Normalized respiration rate was inversely correlated with frustration (r=.64, p=.047). 

Respiration rate tends to increase with emotional arousal, so we might expect that an 

aroused state of frustration would increase respiration rate; however, the frustration 

that players were experiencing with the controls might have caused them to 'shut 

down' rather than become more aroused. In our experiment, participants were neither 

encouraged, nor discouraged to talk, but it seemed that there was more talking and 

laughing when playing against a friend than when playing against a computer. Given 

that talking and laughing affect respiration, results involving respiration need to be 

interpreted with caution. 

Normalized EMGj,, correlated with boredom and challenge, (r=.82, p=.003; r=.78, 

p=.008) and inversely with ease (r=.64, p=.042). We would expect the mean increase 

in jaw clenching to correspond to an increase in challenge and a decrease in ease since 

people clench their jaws when concentrating. The boredom correlation is a little 

surprising since we would expect a bored participant to be more relaxed; however, 

since boredom was indexed to game outcome when playing against the computer 

(section 7.5.1), those same participants could have been clenching their jaw in 

concentration trying to beat the computer. Although the EMG sensors were placed to 

sense jaw clenching, there may have been interference from smiling and laughing, so 

these results need to be interpreted with caution. 
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There were no significant correlations between heart rate and any of the subjective 

measures. 

7.6 How Issues From Goldilocks were Addressed 

Although our approaches to solving the methodological issues uncovered in 

Experiment One are described throughout Sections 7.1 through 7.4, they are reiterated 

in this section. The four issues from Goldilocks and how we altered the design and 

analysis of Experiment Two follow: 

Subjects enjoyed playing in all conditions: We chose a new experimental 

manipulation. Previous studies revealed a different subjective experience when 

playing against a co-located friend than playing alone. Although this manipulation 

seemed obvious in terms of the research contribution, it allowed us to examine 

physiological responses in an experiment where we expected homogeneous subjective 

reports across participants. 

Variability inherent in game play: We continued to collapse the time series 

physiological data into a single data point through averaging. In addition, we 

examined windows of data surrounding interesting game events. This formed the 

basis for our investigation into the use of physiological measures as a source of 

continuous data. 

High resting baseline: The participants listened to a relaxation CD during the resting 

periods. This helped them to relax and not be as aware of the experimental 

surroundings. In addition, they rested for longer than in Experiment One. Participants 
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also rested prior to each condition allowing their physiological measures to return to 

baseline levels. 

Interview effects: In Experiment One, the interview process had greater impact on 

their physiological measures than the experimental manipulations. As a result, we 

chose to administer the questionnaires online, without the presence of an interviewer. 

We also introduced a resting period prior to each condition in order to allow any 

artificially elevated signals to return to baseline levels. 

Order effects: In Experiment One, the interview process raised the participants' GSR 

signals, which caused a steep upwards drift over the experiment. The rest periods in 

between conditions allowed the physiological measures to return to resting values. 

Also, the use of two conditions allowed us to evaluate order as a between subjects 

factor, and we determined that order did not impact any of the physiological measures 

or interact with play condition. 

7.7 Summary of Experiment Two 

After addressing our methodological issues from Experiment One, Experiment Two 

tested and supported four experimental hypotheses: 

H4: Participants preferred playing against a friend to playing against a computer. 

They also found playing against a friend more fun, and engaging, and less boring. 

H5: Participants experienced higher GSR values when playing against a friend than 

against a computer, a reflection of being more engaged, and having more fun. 
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H6: Participants experienced higher EMG,,, values along the jaw when playing 

against a friend than against a computer, possibly as a result of trying harder due to 

greater engagement. 

H7: The differences in the participants' GSR signal in the two conditions correlated to 

the differences in their subjective responses for fun and/or excitement. 

We also found other correlations between the normalized subjective measures and the 

normalized physiological measures. 

The ratification of these hypotheses, along with the other results, provide support for 

our first two conjectures: 

Conjecture A: Physiological measures can be used to objectively measure a player's 

experience with entertainment technology. 

Conjecture B: Normalized physiological measures of experience with entertainment 

technology will correspond to subjective reports. 

Normalizing and correlating the data is a powerful tool because it shows that the 

amount by which participants increased their subjective ratings corresponded to the 

amount by which their mean physiological data increased. In addition, this approach 

contains results that may otherwise get lost. For example, we saw in section 7.5.2 that 

participant 6's GSR decreased when playing against a friend. Further inspection 

revealed that he was the only participant who didn't increase his rating of fun when 

playing against a friend. Figure 30 shows how this explanation is encompassed in the 
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normalization and correlation technique. The ANOVAs show results when all 

participants are responding in a similar manner, however the normalization and 

correlation will reveal patterns even when participants are responding differently from 

one another, a useful tool when investigating something as individual as engagement 

with play technologies. 

The confirmation of our hypotheses provided support for our two main conjectures: 

that physiological measures can be used as objective indicators for the evaluation of 

co-located, collaborative play; and that the normalized physiological results will 

correspond to subjective reported experience. 

Subjective data yield valuable quantitative and qualitative results. However, when 

used alone, they do not provide sufficient information. In game design, reward and 

pacing are important features. Utilizing a single subjective rating can wash out this 

variability, since subjective ratings provide researchers with a single data point 

representing an entire condition. Think-aloud techniques [90], which are popular for 

use in productivity systems cannot effectively be used with entertainment technology 

because of the disturbance to the player, and the impact they have on the condition 

itself. In pilot testing, we employed a retrospective think-aloud technique, conducted 

while playing back the condition to the participant. Although informative, this 

technique qualifies the experience, rather than providing concrete quantitative data. In 

addition, the think-aloud process does not occur within the context of the task, but in 

reflection of the task. Finally, we found that participants were very good at reported 



CHAPTER SEVEN: EXPERIMENT TWO 136 

what happened in the game, but were very bad at reporting what they felt about what 

happened. 

This experiment showed that when physiological data are analysed into averages for 

each condition, they yield meaningful results that respond in a similar manner to 

subjective reports. These results have the same disadvantage as subjective results, in 

that they are single points of data representing an entire condition; however, unlike 

subjective reporting, they represent an objective measure of user experience. Used in 

concert, these two methods can provide a more detailed and accurate representation of 

the player's experience. 

The raised GSR signals when playing against a friend reveal that players are more 

aroused when playing against a friend than when playing against a computer. 

However, we do not know whether this elevated result can be attributed to a higher 

tonic level or more phasic responses. Physiological data provides a high-resolution 

time series, responsive to player experience. Using methods like the time-window 

analysis presented here provides continuous objective data that can be used to evaluate 

the player experience, yielding salient information that can discriminate between 

experiences with greater resolution than averages alone. In this experiment, we 

graphically represented continuous responses to different game events, and looked at 

the magnitude of the response using the span of the physiological measure. In the 

next experiment, we propose to take advantage of the high-resolution, contextual 

nature of physiological data to provide an objective, continuous measure of player 

experience. Based on the results of Experiment Two, we believe that physiological 
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metrics can be used to model user emotional experience when playing a game; 

providing continuous and objective metrics of emotion. 
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Chapter 8 EXPERIMENT THREE: CONTINUOUS 
EVALUATION OF EMOTION STATE 

We conducted a third study to investigate whether we could model emotional 

responses to play technologies, creating an objective and quantitative method of 

evaluation. Successful results would provide support for our last conjecture: 

Conjecture C: Physiological metrics can be used to model user emotional experience 

when playing a game, providing continuous, quantitative, and objective metrics of 

evaluation for interactive play technologies. 

Because of the success of the experimental manipulation used in Experiment Two, we 

continued to use the manipulation of the playing partner to create different 

experimental conditions. The participants played in three conditions: against a co- 

located friend, against a co-located stranger, and against the computer. We added the 

stranger condition to yield more information on how play condition affects the gaming 

experience. As with our previous experiments, we were not interested in whether there 

was a difference between playing against a friend, a stranger, or a computer. We have 

observed many groups of people playing with interactive technologies, and we know 

that these three play conditions yield very different play experiences; rather, we were 
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interested in whether our model of emotion could detect the differences between the 

conditions. 

Modeling emotions could be a powerful evaluative tool because modeled emotions are 

quantitative and objective, filling the knowledge gap for evaluating entertainment 

technologies identified in section 2.3.4. In addition, modeled emotions could be 

represented continuously over a session, drastically increasing the evaluative 

bandwidth over current techniques. 

We used normalized GSR, HR, EMGsmiling, and EMGfrowning signals as inputs to a 

fuzzy logic model. To generate values for user emotion, we modeled the data in two 

parts. First, we computed arousal and valence values from the normalized 

physiological signals, and then we used these arousal and valence values to generate 

emotion values for boredom, challenge, excitement, frustration, and fun. 

8.1 Experimental Details 

The details in the section apply to data that was collected for 12 participants. Six of 

the participants were used to generate the emotion models, which are described in this 

chapter. The remaining six participants were used to validate the modeled emotions 

by comparing the results to reported emotions through subjective responses. The 

validation is discussed in Chapter 9. 

8.1. I Participants 

Twenty-four male participants aged 18 to 27 took part in the experiment. Participants 

were recruited from university undergraduate and graduate students. Participants were 
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recruited in pairs to ensure that they would be playing against a stranger in only one of 

the co-located conditions. We wanted all of the participants to be independent 

subjects, statistically unrelated to any of the other participants, so we only treated one 

player in each pair as the participant. As such, we designed the experiment for 12 

participants in 12 pairs, and we report data for 12 participants; one member of each 

pair. 

Before the experimental session, all participants filled out a background questionnaire 

(see Appendix 5). The questionnaire was used to gather information on their 

computer use, experience with computer and video games, game preference, console 

exposure, and personal statistics such as age and handedness. 

All participants were frequent computer users. When asked to rate how often they 

used computers, all 12 subjects used them every day. When asked how often they 

played computer games, one played every day, four played often, three played 

occasionally, and four played rarely. When asked how often they played video 

(console) games, two played every day, three played often, four played occasionally, 

two played rarely, and one never played console games. The one participant who 

never played video games replied that he occasionally played console games. For the 

frequencies of responses to questions on computer usage and game play, see Table 12 

and Table 13. When asked how much they liked different game genres, action was the 

favorite, followed by sports, and adventure games (see Table 14). 
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Table 12: Frequency of computer usage and game play. Participants were 
asked to respond to how often they do each of the following 
activities. Note that it was two different participants who replied 
never to playing computer and video games. 

Table 13: Frequency of computer usage and game play. Participants were 
asked to respond to how much time they spend doing each of the 
following activities. Note that it was two different participants 

Use computers? 

Play computer games? 

Play video (console) games? 

Play computer/video games 
over the internet or network? 
Play computer/video games 
with another co-located player? 

who repied never to playing computer and video games. 

Never 

1 

1 

2 

2 

Use computers?* 

Play computer games? 

Play video (console) games? 

Play computer/video games over 
the internet or network? 
Play computer/video games with 
another co-located player? 

Rarely 

2 

2 

2 

* missing one data point 

Never 

1 

1 

3 

2 

Occasionally 

4 

3 

3 

6 

< 3 
hours a 

week 

3 

5 

5 

7 

Ofien 

2 

5 

3 

3 

Every day 

12 

3 

1 

2 

1 

3- 7 
hours a 

week 

2 

3 

2 

1-2 
hours 
a day 

2 

4 

2 

3 

1 

> 2 
hours a 

day 

9 

2 

1 

1 
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Table14: Results of game genre preference from background 
questionnaires. A five-point Likert scale was used with "1" 
corresponding to "Dislike a lot" and "5" corresponding to "Like a 
lot". 

I Mean I St.Dev. 1 
Action 

Adventure 

I Puzzle 1 3.8 1 1.1 1 
I Racing 1 3.7 1 1.2 ( 

I 

Shooting 3.8 1 0.9 

I I 

Roleplaying 3.9 1.5 

I I 

Strategy I 3.8 1 1.5 

Simulation 3.3 

Sports I 4.1 

8.1.2 Play Conditions 

Participants played the game in three conditions: against a co-located friend, against a 

co-located stranger, and against the computer. Order of the presentation of the 

conditions was fully counterbalanced. The stranger remained constant for all 

participants, and was a 29 year-old male gamer, who was instructed to match each 

participant's level of play to the best of his ability. 

1.4 

1.2 

Because we recruited participants in pairs, and were only treating one member of the 

pair as the participant, we needed to decide at the beginning of the session which 

player we would test. When the participants arrived, we chose the person with the 

least amount of facial hair to be the participant. If we couldn't discriminate between 

participants using facial hair, we took the player who was wearing a hat. If this didn't 

discriminate, we took the player who entered the room first. 
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For pairs that were tested in the friend condition first, we began with both players in 

the room, asking the non-participant to wait outside of the experiment room for their 

turn during the computer and stranger conditions. At the end of the experiment, we 

told both players that they were done, and didn't actually test the non-participant in 

the computer or stranger condition. For pairs who began in the computer or stranger 

condition, we had the non-participant wait outside of the experiment room until we 

were ready for the friend condition, and then released them both at the end of the 

experiment, again not testing the non-participant in the computer or stranger 

condition. For the duration of the experiment, both players thought that they were 

being tested, and it wasn't until the end of the experiment that one player realized that 

he would only play in one condition rather than three. Both participants received 

equal compensation of an Electronic Arts game of their choice to thank them for their 

participation. 

Participants played NHL 2003 by EA Sports in both conditions (see Figure 12 for a 

screen shot). Six of the pairs were very experienced or somewhat experienced with 

the game, three pairs were neutral in their experience, while the other three pairs were 

somewhat inexperienced with the game. 

Each play condition consisted of one 5-minute period of hockey. The game settings 

were kept consistent within each pair during the course of the experiment. All players 

used the Dallas Stars and the Philadelphia Flyers as the competing teams, as these two 

teams were comparable in the 2003 version of the game. All players used the 

overhead camera angle, and the home and away teams were kept consistent. This was 
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to ensure that any differences observed within subjects could be attributed to the 

change in play setting, and not to the change in game settings, camera angle, or 

direction of play. The only difference between pairs was that experienced pairs played 

all conditions in a higher difficulty setting than non-experienced players. 

8.1.3 Experimental Setting and Protocol 

The experiment was conducted in an office at Simon Fraser University. NHL 2003 

was played on a Sony PS2, and viewed on a 36" television. A camera captured both of 

the players, their facial expressions and their use of the controller. All audio was 

captured with a boundary microphone. The game output, the camera recording, and 

the screen containing the physiological data were synchronized into a single quadrant 

video display, recorded onto tape, and digitized (see Figure 31) along with the audio 

from the game and the audio from the boundary microphone. The experimental setup 

was similar to the setup of Experiment Two, and a diagram of the complete 

experimental setup can be seen in Figure 20). 
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Figure 31: Quadrant display: a) camera feed of the participants, b) screen 
capture of the game, c) screen capture of the biometries, audio of 
the game, and audio of the participants' comments. 

Physiological data were gathered using the ProComp Infiniti system and sensors (see 

Figure 14), and BioGraph Software from Thought Technologies. Based on previous 

literature, we chose to collect galvanic skin response (GSR), electrocardiography 

(EKG), electromyography of the face (EMGsmiling and EMGfrowning), and respiration. 

Heart rate (HR) was computed from the 13KG signal, while respiration amplitude 

(RespAmp) and respiration rate (RespRate) were computed from the raw respiration 

data. We did not collect blood volume pulse data (BVP) because the sensing 

technology used on the finger is extremely sensitive to movement artifacts. As our 

subjects were operating a game controller, it wasn't possible to constrain their 

movements. Although we collected respiration data, we did not use respiration in this 

study. Respiration is most accurately measured by gas exchange in the lungs, but the 
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sensor technology inhibits talking and moving [123]. Instead, chest cavity expansion 

can be used to capture breathing activity using either a Hall effect sensor, strain gauge, 

or a stretch sensor, which produces much noisier data. The noise from using a stretch 

sensor is amplified in the computed respiration rate and amplitude. Although this 

noise can be treated when using the mean respiration rate or amplitude, we examine 

the entire time series in this experiment. As such, although we collected respiration 

data, it wasn't feasible to include respiration in our model. 

Because we collected EMG in two locations on the face, we needed to gather five 

physiological signals for each participant. The ProComp Infiniti system that we used 

to collect the data (see Figure 14) only allows for eight inputs. As a result, we only 

collected physiological data for the participant, not for the friend or stranger. To 

maintain the perception that both players were participants in the experiment, we 

treated both players as if their physiological signals were being collected. We fitted 

both players with sensors, "tested" the sensor placement to ensure that the signals 

were good, and plugged the extra sensors into ports on the back of the unit. 

Upon arriving, participants signed a consent form (see Appendix 4). They were then 

fitted with the physiological sensors. Before each experimental condition, participants 

rested for 5 minutes. Because the participants were required to rest in the same room 

before playing each other, they wore headphones and listened to a CD containing 

nature sounds. They also listened to the CD when resting alone to maintain 

consistency. The resting period allowed the physiological measures to return to 

baseline levels prior to each condition. Experiment One showed that the act of filling 



CHAPTER EIGHT: EXPERIMENT THREE- MAKING A MODEL OF EMOTION 147 

out the questionnaires and communicating with the experimenter altered the 

physiological signals. The resting periods corrected for these effects. In order to 

utilize the resting periods as baseline controls, we would need much longer rest 

periods, and ensure that the nature sounds were indeed restful. We wanted to create an 

environment that was as natural as possible, and extended periods of rest in between 

play conditions did not fit with this approach. 

After each condition, the participants filled out a condition questionnaire. The 

condition questionnaire contained their participant ID, the condition name, the level of 

play, and the final score (see Appendix 10). We also had subjects rate the condition 

using a Likert Scale. They were asked to consider the statement, "This condition was 

boring", rating their agreement on a 5-point scale with 1 corresponding to "Strongly 

Disagree" and 5 corresponding to "Strongly Agree". The same technique was used to 

rate how challenging, easy, engaging, exciting, frustrating, and fun that particular 

condition was. The questionnaire was filled out online using a laptop computer. 

Experiment One revealed that the physiological measurements for all participants 

reacted strongly to the interview process between each condition. We don't know 

what caused this effect but feel that the act of speaking and answering questions may 

have contributed. As a result, we chose to have participants fill out questionnaires 

online and then rest again for 5 minutes. After completing the experiment, subjects 

completed a post-experiment questionnaire using a laptop computer (see Appendix 

11). We asked them to decide in retrospect which condition was most enjoyable, most 

fun, most exciting, and most challenging. They were also asked which condition they 

would choose to play in, given the choice to play against a co-located friend, against a 
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co-located stranger, or against the computer. Discussion of their answers was 

encouraged. 

8.1.4 Data Analyses 

The subjective data from the condition and post-experiment questionnaires were 

analyzed using non-parametric statistical techniques. In terms of the physiological 

data, EKG data were collected at 256 Hz, while GSR, respiration, and EMG were 

collected at 32 Hz. HR was computed at 4 Hz. Physiological data for each rest period 

and each condition were exported into a file. Noisy EKG data may produce heart rate 

(HR) data where two beats have been counted in a sampling interval or one beat has 

been counted in two sampling intervals. We inspected the HR data and corrected these 

erroneous samples, as described in section 6.4. In addition, HR data were interpolated 

since HR was sampled at a lower frequency than the EMG or GSR signals. After 

interpolation, HR was smoothed using a 4 frame moving average window. 

Each EMG signal was smoothed with a moving average window of 4 frames (0.125 

seconds) [39], while GSR was filtered using a 5-second window [lo]. We then 

normalized each signal into a percentage between 0 and 100. There are very large 

individual differences associated with physiological data, and normalizing the data is 

necessary to perform a group analysis. We transformed each sample into a percentage 

of the span for that particular signal, for each participant across all three conditions. 

Using GSR as an example, a global minimum and maximum GSR were obtained for 

each participant using all three conditions and the rest period, and the same global 

values were used for normalizing within each condition. 
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Normalized GSR(i) = ~ G S R ( ~ )  - GSRmin 1 

The same method was used to normalize the EMGsmiling, EMGfmwning, and HR data. 

8.2 Fuzzy Logic 

We used normalized GSR, HR, EMGsmiling, and EMGfrowning signals as inputs to a 

fuzzy logic model. To generate values for user emotion, we modeled the data in two 

parts. First, we computed arousal and valence values from the normalized 

physiological signals, then used these arousal and valence values to generate emotion 

values for boredom, challenge, excitement, frustration, and fun. 

Fuzzy logic mimics human control logic in that it uses an imprecise but descriptive 

language to deal with input data, much like a human operator [20]. Fuzzy logic 

systems address the imprecision of the input and output variables by defining them 

with fuzzy numbers and fuzzy sets that are expressed in linguistic terms (e.g., cold, 

warm, hot) [13 11. Simple, plain-language IF/THEN rules are used to describe the 

desired system response in terms of the linguistic variables, rather than through 

complex mathematical formulas [57]. 

If we wanted to classify temperatures as cold, warm, or hot, classical sets would 

require hard boundaries and binary memberships. For example, a set of all warm 

temperatures between 15•‹C and 35•‹C would not include a temperature of 35.01•‹C. 

Fuzzy sets use linguistic definitions and could include temperatures around the 

boundaries. Binary memberships still exist, with 25•‹C being a full member of the 
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warm set and 50•‹C existing fully outside of the warm set. But fuzzy sets allow for 

partial membership around the boundaries. Figure 32a shows how a classical set has 

firm boundaries and binary memberships for classifying temperatures, whereas fuzzy 

sets allow for partial membership. In fuzzy sets, the membership functions transform 

the membership of a specific temperature into a degree of membership in the set. 

Membership functions can take a number of shapes; however, triangular and 

trapezoidal membership functions are the most common [131]. The trapezoidal 

membership function in Figure 32b specifies that temperatures between 20•‹C and 

30•‹C have full membership in the warm set, while temperatures from 15•‹C to 20•‹C 

and 30•‹C to 35•‹C have partial membership in the set. The temperatures that are closer 

to 30•‹C have a greater degree of membership than those that closer to 35•‹C. With 

fuzzy sets, the values that exist in the boundaries between sets can exist in both sets. 

In our example, 35•‹C has partial membership in the warm set and partial membership 

in the hot set, and has an equal degree of membership in both sets. The value of 33•‹C 

also has membership in both the warm and hot sets, but has a greater degree of 

membership in the warm set than in the hot set. 

Fuzzy logic can easily represent continuous processes that are not easily broken into 

discrete segments, when the change of state from one linguistically-defined level to 

the next is not clear [20]. For example, there does not have to be a definitive point 

when a rising temperature moves from cold to warm. In general, fuzzy logic should 

be used when [20]: 
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1. one or more of the control variables are continuous; 

2. when a mathematical model of the process does not exist; 

3. when high ambient noise levels must be dealt with; 

4. when an expert can identify the rules underlying the system behaviour and the 
fuzzy sets that represent that characteristics of each variable. 

cold warm hot 

Temperature 
(degrees C) 

cold warm hot 

Temperature 
(degrees C) 

Figure 32: A graphical representation of set membership for classifying 
temperature for both classical (a) and fuzzy (b) sets. Classical 
sets have firm boundaries and binary membership, whereas 
fuzzy sets allow for partial membership around the edges. 
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The fuzzy logic system consists of inputs, outputs, membership functions, and rules. 

The membership function is a graphical representation of the magnitude of 

participation of each input [57]. It weights each input signal, defines overlap between 

the levels of input, and determines an output response. The IFITHEN rules use the 

input membership values as weighting factors to determine their influence on the 

fuzzy solution sets [20, 571. Once the functions are inferred, scaled, and combined, 

they are defuzzifiedg into a solution variable (scalar output) [20, 571. Membership 

functions can be different for each input and output response. 

There are other machine learning methods available, including neural nets. Neural 

nets and fuzzy systems take opposite approaches to dealing with uncertainty [131]. 

Neural nets use precise inputs and outputs which are used to train a generic model, 

while in fuzzy systems, the inputs and outputs are fuzzy and their interrelationships 

take the form of well-defined IFITHEN rules [131]. One of the disadvantages of 

neural nets is that they need substantial data that cover the entire range over which the 

different variables are expected to change [13 11. Our participants are generally happy; 

however, there could easily be moments when participants are bored or frustrated. We 

cannot guarantee that the complete span of any emotion will be covered by game 

playing. 

Fuzzy logic systems are best used when variables are continuous [20], as with the 

physiological signals that we collect. We chose to use a fuzzy approach since there is 

8 We used the centroid method of defuzzification. 
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a strong theoretical basis for the transformation from input to output; an expert can use 

linguistic terms to describe this transformation; we have noisy input signals; and the 

physiological variables are continuous. 

8.3 Modeling Arousal-Valence Space 

The first stage was to transform the physiological signals into AV space (arousal- 

valence space). To generate the models, we used half of the participants (one for each 

play condition order), reserving the other six participants for validation of the model. 

We randomly chose which participants were used to generate the model, and which 

were used for the validation of the model. To make use of the continuous nature of 

physiological data, we used the complete time series for each input. As such, we were 

able to generate a new time series of the participant's experience in AV space, rather 

than having only one data point for an entire condition (e.g. mean). 

Our model to transform physiology to AV space had four inputs (GSR, HR, 

EMGs,iling, and EMGfmwning) and two outputs (arousal and valence) (see Figure 33). 

Inputs were normalized signals (0-loo), while outputs were percentages of the 

possible maximum (0-100) value for arousal and valence. 
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Fuzzy System: Physiological Data to AV space 

GSR (4) 

EMGfrown (3) 

fuzzy system 

(mamdani) 

22 rules 

arousal (4) 

valence (5) 

Figure33: Modeling arousal and valence from physiological data. The 
number of membership functions applied to that input or output 
follows the input 1 output labels. The system used 22 rules to 
transform the 4 inputs into the 2 outputs. 
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8.3.1 Mem bershp Functions 

Membership functions were applied to the four physiological inputs and the two 

outputs. In terms of the inputs, the membership functions describe what defines a low, 

medium, or high value of the input. The fuzzy aspect comes in such that any value of 

the input doesn't necessarily belong to any one set (low, medium, or high), but there 

are areas of overlap between the levels. For example, a HR input value of 30% may 

fall in a "fuzzy" area where it could be considered a low or medium value of HR. 

8.3.1.1 InputDataHistograms 

For each input signal, the membership functions were generated using characteristics 

of that particular signal over the six participants and three conditions. For each of the 

input signals, there are a total of 147176 samples. We generated histograms for each 

input, with 1000 bins, in order to have approximately 150 samples per bin. These 

values were chosen to maximize the number of bins while maintaining statistical 

relevance, and to ensure the division of value didn't exceed the precision of 

measurement of the samples (see Figure 34: HR; Figure 35: GSR; Figure 36: 

EMGSmilin,; Figure 37: EMGfrowning). 

8.3.1.2 Deriva tion of the Membership Functions 

Figure 38 through Figure 41 show how the membership functions were generated for 

each input signal, using the statistical characteristics of the histograms shown in the 

previous section. As seen in Figure 34, HR approaches a normal distribution, where 

68.27% of the area under the curve is within one standard deviation of the mean, and 

95.45% of the area is within two standard deviations. For HR, these characteristics 
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Normalized HR 
Across all participants and conditions 

900 

Normalized HR 

Figure 34: Histogram of normalized HR for all six participants across all 
three play conditions. HR approximates a normal distribution. 

Normalized GSR 
Across all participants and conditions 

0 20 40 60 80 100 

Normalized GSR 

Figure 35: Histogram of normalized GSR for all six participants across all 
three play conditions. GSR is a multi-peaked non-normal 
distribution. 
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Normalized Smiling EMG 
Across all participants and conditions 

Normalized Smiling EMG 

Figure 36: Histogram of normalized EMGsmiling for all six participants across 
all three play conditions. EMGsmi~ing approximates a lognormal 
distribution. 

Normalized Frowning EMG 
Across all participants and conditions 

2500 o 

Normalized Frowning EMG 

Figure 37: Histogram of normalized EMGfrOwning for all six participants across all 
three play conditions. EMGf,ownlng approximates a lognormal 
distribution. 
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were used to define membership functions that suit the distribution of the input signal. 

Figure 38 shows how three membership functions describe low, medium, and high HR 

activity. The membership functions were all triangular, as seen in Figure 33. 

Figure 35 shows how GSR was distributed across the entire span, although more 

activity occurred in the mid and high range. As the distribution of GSR contained 

multiple peaks, four membership functions were used: low, mid-low, mid-high, and 

high. The statistical characteristics of the signal were used to determine where the 

membership functions were positioned (see Figure 39). The membership functions 

were triangular and trapezoidal as seen in Figure 33. 

Both EMGsmisng and EMGfrowning were clustered towards the low end of activation (see 

Figure 36 and Figure 37), approximating lognormal distributions. For both EMG 

signals, three membership functions were defined, representing low, medium, and 

high EMG activity. Due to the statistical characteristics of a lognormal distribution, 

the membership functions were clustered towards the low end of activation (see 

Figure 40 and Figure 41). The medium membership function was triangular, while the 

low and high membership functions were trapezoidal. The trapezoids were used to 

remove fuzziness from the extreme values of input. 
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HR Histogram 
with Membership Functions 
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Figure38: Histogram of HR with statistical characteristics and three 
membership functions superimposed. 

GSR Histogram 
with Membership Functions 

0 L  
0 20 40 60 80 100 

Normalized GSR 

Figure 39: Histogram of GSR with statistical characteristics and four 
membership functions superimposed. 
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Smiling EMG Histogram 
with Membership Functions 

7000 1 mean m'esn mean 
tlSD +2SD 

Normalized Smiling EMG 

Figure 40: Histogram of EMGsmljlng with statistical characteristics and three 
membership functions superimposed. 

Frowning EMG Histogram 
with Membership Functions 

"0 20 40 60 80 100 
Normalized Frowning EMG 

Figure 41 : Histogram of EMGfmWning with statistical characteristics and three 
membership functions superimposed. 
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Membership functions for the two outputs (arousal and valence) were distributed 

evenly across the entire spectrum. Arousal was defined with four memberships: low, 

mid-low, mid-high, and high. Valence was described by five memberships: very 

low, low, neutral, high, and very high. The neutral membership was introduced to 

accommodate the large percentage of smiling and frowning activity that occurred at 

less than 5% of total activation. The output membership functions were all triangular 

as seen in Figure 33. 

8.3.2 Rules 

The 22 rules were grounded in the theory of how the physiological signals relate to the 

psychological concepts of arousal and valence. Arousal was generated from GSR and 

HR, while valence was generated from EMGsmiling, EMGfrowning, and HR. 

GSR correlates with arousal, and increasing GSR was mapped to increasing arousal. 

The extreme high and low levels of GSR were modulated by HR data; if HR 

contradicted GSR, arousal was altered, otherwise arousal was maintained. Figure 42 

shows how GSR and HR combine through the defined rules and membership 

functions to generate arousal. 
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Figure 42: GSR and HR combine to generate arousal. GSR has more of an 
impact on arousal; however, arousal is modulated by HR when 
HR and GSR are contradictory. This is reflected in the 'wings' on 
the arousal surface. 

Since smiling activity reflects positive emotions, and frowning activity represents 

negative emotions, valence generally increased with increasing levels of EMGsmiling, 

and decreased with increasing levels of EMGfIowning. Figure 43 shows how EMGsmiling 

and EMGfIowning combine through the rules and membership functions to generate 

valence. Because the majority of the activation for both EMG signals occurred at less 

than 5%, (neutral facial expression) we would expect valence to be neutral most of the 

time. In addition, when EMGsmiling and EMGfrOwning were both high, the valence output 

resolved to a neutral state. This type of activation would occur when participants were 

making a face other than smiling or frowning, and did not occur very often. When 

both EMG signals are low, EMG does not provide enough information to predict 
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valence. As a result, we used HR to modulate these occurrences (see rules 18 and 19 

below). HR tends to increase with positive affect [97, 1501, so when we were unable 

to distinguish valence for EMG alone, we used high HR values to move valence from 

neutral to high, and low HR values to move valence from neutral to low. The 22 rules 

are presented in Appendix 12. 

Figure 43: EMGsmiling and EMGfrowning are converted into valence. Since the 
majority of the activation for both EMG signals occurred at less 
than 5%, (neutral facial expression) we would expect valence to 
be neutral most of the time. In addition, when EMGsmiling and 
EMGfrowning were both high, the valence output resolved to a 
neutral state. 
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8.3.3 Fuzzy Approach Results 

Experiment Two revealed that GSR and EMGjaw were higher when playing against a 

friend, over playing against a computer. We would expect that arousal and valence 

would be higher when playing against a friend, over playing against the computer. To 

examine whether our model is achieving the predicted results, we looked at the mean 

values of arousal and valence across the play conditions. 

The mean results are shown in Table 15. A repeated measures ANOVA shows that 

there was a significant difference in valence between the three play conditions. Post- 

hoc analysis revealed that valence was higher when playing against a friend than when 

playing against the computer (p = .005). There was no significant difference in 

arousal between the conditions, although mean arousal was greater when playing 

against a friend over playing against a computer. 

Table 15: Mean arousal and valence values from the fuzzy approach. There 
was a difference in valence between conditions, but not in 
arousal. 

Playing against 
corn uter , 

arousal 

valence 65.5 7.4 

Playing against 
friend 



CHAPTER EIGHT: EXPERIMENT THREE- MAKING A MODEL OF EMOTION 165 

T / a  valence I 

computer friend stranger 

Play Conditions 

Figure44: Mean results of arousal and valence (kSE) from the fuzzy 
approach, separated by play condition. 

8.3.4 Manual Approach 

We also used a manual approach to calculate arousal and valence for each sample. 

The manual approach was implemented in order to confirm that the output from the 

fuzzy logic model was on track. For the manual calculations, we used the normalized 

GSR signal as the arousal metric since GSR is a linear correlate to arousal. For 

valence, we took normalized EMGsmiling, and subtracted normalized EMGfrowning, and 

re-normalized to generate a number between 0 and 100. 

Table 16: Mean arousal and valence values from the manual approach. 
There was a difference in valence between conditions, but not in 
arousal. 
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a r o u s a l  
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Play Conditions 

Figure 45: Mean results of arousal and valence ( S E )  from the manual 
approach, separated by play condition. 

The mean results are shown in Table 16. A repeated measures ANOVA shows that 

there was a significant difference in valence between the three play conditions. Post- 

hoc analysis revealed that valence was higher when playing against a friend than when 

playing against the computer (p = .001) or a stranger (p = .005). There was no 

difference in arousal between conditions. 

8.3.5 Comparing Fuzzy and Manual Results 

We wanted to compare the arousal and valence results from the fuzzy model to the 

results from a manual approach using a distance metric. As such, we took the absolute 

difference between the fuzzy result and the manual result for each value for arousal 

and valence for all six participants, in all three conditions. The mean differences and 

maximum differences for each condition are shown in Table 17, while Figure 46 

through Figure 51 show histograms of the total differences in arousal and valence for 
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each condition. When averaged for each condition, the mean differences between the 

fuzzy and manual approach were between 3% and 6% for both arousal and valence. 

The maximum difference between the fuzzy and manual approaches for both arousal 

and valence occurred in the friend condition (arousal = 20.4% and valence = 41.8%). 

In all, the fuzzy approach performs in a very similar manner to the manual approach. 

Differences were computed for every sample in the time series, (a total of 147176 

samples), yet average differences were only on the order of 5%, and maximum 

differences were always less than 50%. 

We used a repeated measures ANOVA to see if the manual and fuzzy approaches 

were more or less comparable in each play condition. There was a significant 

difference in mean valence difference (see Table 17). Post hoc analysis revealed that 

for valence, the manual and fuzzy approaches were more similar in the stranger (p = 

.010) and computer condition (p = .035), than in the friend condition. 

Table 17: Mean differences between the manual approach and the fuzzy 
approach, separated by condition. Mean valence difference was 
higher in the friend condition than in the computer or stranger 
condition. 

mean arousal diff. (%) 

mean valence diff. (%) 

max arousal diff. (%) 

max valence diff. (%) 

Playing against 
computer 

Mean 

5.3 

3.9 

19.4 

26.6 

St. Dev. 

3.4 

2.3 

10.2 

9.6 

Playing against 
friend 

Mean 

3.6 

5.5 

20.4 

41.8 

St. Dev. 

1.6 

1.6 

9.9 

8.4 

Playing against 
stranger 

Mean 

3.4 

3.7 

16.6 

30.3 

Difference between 
conditions 

St. Dev. 

0.6 

1.9 

7.0 

13.4 

v2 
.21 

.66 

.07 

.40 

F 

1.29 

9.83 

0.39 

3.27 

P 

.316 

.004 

.685 

.081 
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Arousal: :Computer 

Percentage Different 

Figure 46: A histogram reveals the total differences between the fuzzy and 
manual approaches for arousal in the computer condition. The 
majority of the samples were less than 5% different. 

Valence: :Computer 

12000 0 

Figure 47: A histogram reveals the total differences between the fuzzy and 
manual approaches for valence in the computer condition. The 
majority of the samples were less than 5% different. 
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Arousal: :Friend 
12000 
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Percentage Different 

Figure 48: A histogram reveals the total differences between the fuzzy and 
manual approaches for arousal in the friend condition. The 
majority of the samples were less than 5% different. 

Valence: :Friend 
12000 

Percentage Different 

Figure 49: A histogram reveals the total differences between the fuzzy and 
manual approaches for valence in the friend condition. The 
majority of the samples were less than 5% different. 
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Arousal: :Stranger 
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Figure 50: A histogram reveals the total differences between the fuzzy and 
manual approaches for arousal in the stranger condition. The 
majority of the samples were less than 5% different. 

Valence: :Stranger 
10000 

0 10 20 30 
Percentage Different 

Figure 51: A histogram reveals the total differences between the fuzzy and 
manual approaches for valence in the stranger condition. The 
majority of the samples were less than 5% different. 
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8.3.5.1 A V-Spa ce Graphs 

The fuzzy and manual approaches reveal fairly similar results. In order to visualize 

how the two approaches differ, we generated graphs of a participant's experience in 

AV space over time. Traditionally, the affect grid [I141 asks participants to mark an 

X to describe their experience in AV space. Since our approach is continuous, it is 

important to visualize their experience as it changed over time. 

Appendix 14 shows all of the participants' experiences as graphed in AV space. In 

general, we noticed that the manual approach tends to place activity in the extreme 

areas of AV space. Figure 52 and Figure 53 show Participant 16's experience in AV 

space when playing against a friend. The manual approach (Figure 52) reaches the 

extreme positive values of both arousal and valence, whereas the fuzzy approach 

(Figure 53) is less reactionary, and more moderate. 

The manual approach is also more reactive to participants' facial expressions. For 

example, when a participant smiles, their valence increases instantly to the maximum 

value, whereas the fuzzy approach is a bit more moderate in evaluating valence. 

Figure 54 and Figure 55 show the AV experience for Participant 16 playing against 

the computer. The manual approach (Figure 54) seems to use the neutral state as a 

'home base'. Valence is generally neutral, but sometimes increases and subsequently 

returns to the neutral state. In contrast, the fuzzy approach (Figure 55) is much less 

volatile and there is more continuity in valence throughout the experience. 
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Figure52: The experience of Participant 16, in AV space while playing 
against a friend. This graph is generated using the manual 
approach. 
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Figure 53: The experience of Participant 16, in AV space while playing 
against a friend. This graph is generated using the fuzzy 
approach. 
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Figure 54: The experience of Participant 16, in AV space while playing 
against the computer. This graph is generated using the manual 
approach. 
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Figure 55: The experience of Participant 16, in AV space while playing 
against the computer. This graph is generated using the fuzzy 
approach. 
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8.3.6 Issues with Modeling Arousal and Valence 

Although our AV space model is based in a theoretical understanding of the 

psychophysiology signals, there are some outstanding implementation issues 

involving the scaling of the arousal and valence axes. Our data successfully shows 

arousal and valence changing over time; however, the absolute positioning of this 

experience in AV space is difficult. In order to determine maximum arousal and 

valence, we used the minimum and maximum values from the all three play 

conditions and the rest period. We determined the baseline arousal and valence 

values to the best of our ability, given the available data; however, the available data 

may not have contained accurate baseline values. 

A better approach to scaling the arousal and valence axes would have been to use the 

IAPS [64] to calculate baselines for participants' arousal and valence. Presenting 

pictures from the IAPS data set, and measuring a subject's responses could provide 

accurate scaling information that we could use to position that subject's game-playing 

experience in AV space. Although informative, this process would be riddled with 

logistic problems since GSR is not consistent across experimental sessions [lo]. 

Baselining a participant's GSR response on one day might not apply to the following 

day or week. Using a variety of baselines and dynamically adjusting for the day-to- 

day variations would be a feasible approach, requiring additional research. 

8.4 Modeling Emotion from AV Space 

The second phase of the emotion model is to use the arousal and valence information 

to model different emotions. To make the most of the rich, continuous physiological 
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data, we modeled the entire AV space time series, creating continuous metrics of 

emotional experience. Five emotions were modeled: boredom, challenge, excitement, 

frustration, and fun. These are five of the seven emotions that participants rated after 

each play condition. As such, our AV to emotion model (see Figure 56) had two 

inputs (arousal and valence), and five outputs (boredom, challenge, excitement, 

frustration, and fun). Inputs and outputs were represented as percentages of the 

possible maximum. 

8.4. I Mem bershp Functions 

The membership functions and rules for converting arousal and valence into emotion 

were generated using the Affect Grid, developed from the circumplex model of 

emotion ([114], see Figure 10). We modified the Affect Grid to have six levels of 

arousal and valence instead of nine levels (see Figure 10 and Figure 57), Using the 

modified Affect Grid, we mapped our arousal and valence values from the first model 

into a language of emotion. We represented arousal and valence in six levels: 

verylow, low, midlow, midHigh, high, and veryHigh. As such, our inputs of arousal 

and valence used six evenly distributed membership functions. Because our mappings 

from arousal and valence to emotion were based on the six levels, we used trapezoidal 

membership functions rather than the triangular membership functions employed in 

the first model. The trapezoidal functions allow for a flat 'roof' on the membership 

function, rather than a 'point' (see Figure 56). We wanted to remove fuzziness for the 

input values that were securely in the middle of any given level, and only make use of 

fuzziness at the boundaries between levels. 
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Fuzzy System: AV space to Emotion 

arousal (6) 

valence (6) 

fuzzy system 

(mamdani) 
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challenge (4) 

boredom (4) 

%+ m 
frustration (4) 

excitement (4) 

Figure 56: Modeling emotion from arousal and valence. The number of 
membership functions applied to that input or output follows the 
input 1 output labels. The system used 67 rules to transform the 2 
inputs into the 5 outputs. 
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Figure 57: Our interpretation of the Affect Grid: Based on the circumplex 
model of emotion, the affect grid allows for a quick assessment 
of mood as a response to stimuli in arousal-valence space [114]. 
We changed the grid from having nine levels of arousal and 
valence, to having six levels of arousal and valence. 

As shown in Figure 58, we defined the five emotion outputs to have three levels: low, 

medium, and high, and mapped these levels onto the six levels of AV space. There 

are no established methods of describing levels of emotions as they vary in AV space. 

As such, we used guidelines from the labels on the circumplex model of emotion 

([I 141, see Figure 57) to define the levels of fun, challenge, boredom, frustration, and 

excitement (see Figure 58). The areas in AV space where there was no mapping for a 

particular emotion was defined as very low for that emotion. As such, our emotion 

outputs were in four levels: very low, low, medium, and high (Figure 58). As with the 

inputs, we used trapezoidal membership functions to only make use of fuzziness 

around the boundaries between levels of modeled emotion (see Figure 56). 
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Figure 58: Our representation of levels of emotion in arousal-valence space. 
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8.4.2 Rules 

The rules were generated to simply map the levels of arousal and valence in Figure 58 

to the levels of fun, boredom, challenge, frustration, and fun, also shown in Figure 58. 

Both arousal and valence contributed equally to the generation of, boredom, 

challenge, excitement, frustration, and fun. 

The combination of the membership functions and rules produce the surfaces shown is 

Figure 59 for the conversion of arousal and valence into fun, boredom, challenge, 

frustration, and excitement. The 67 rules are presented in Appendix 13. 

Because we used data from the six subjects to iteratively generate the model, we will 

not present the mean results from the emotion model. See Chapter 9 for an analysis of 

the output of the emotional model for the other six subjects in the experiment. 

8.4.3 Issues with Modefing Emotion 

The transition from AV space to the five modeled emotions was fairly straightforward. 

The main issue arises from the fact that there are no established guidelines for 

transforming levels of arousal and valence to levels of emotion in a continuous 

manner. We defined the membership functions and the rules to translate AV space to 

emotion based on the circumplex model of emotion, common sense, and our own 

understanding of where the five emotions exist in AV space. 
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fun 

excitement 

boredom 

frustration 

Figure 59: Surfaces showing how arousal and valence are converted into 
fun, boredom, challenge, frustration, and excitement. 

In addition, there are emotions that we wanted to model that aren't easily defined in 

AV space. We asked subjects to rate their experience along seven subjective 

dimensions, including ease and engagement. Ease and engagement aren't emotions, 

and have no well-defined relation to AV space. There are other emotions of interest to 
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evaluating experience with interactive play technologies such as schadenfreude, 

naches, and fiero (see section 4.5.1) that aren't easily defined in AV space. How 

would one use arousal and valence to describe increasing levels of pride in triumphing 

over adversity or gloating over the misfortune of opponents? More research needs to 

be conducted to determine how these emotions can be described by arousal and 

valence before they can successfully be modeled using our fuzzy logic approach. 
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Chapter 9 USING THE MODEL OF EMOTION 

To analyze the effectiveness of our model, we used data gathered from the six subjects 

not used in the generation of the model. Obtaining successful results using a clean set 

of data would show the generalizability of our model across individuals, but not across 

situations or applications. 

Data were smoothed and normalized using the previously described method (see 

Chapter 8.1.4). The physiological signals to AV space and AV space to emotion 

models were applied to the data and the time series for each emotion were averaged so 

that we could compare modeled emotion to the subjective responses. Although 

subjective responses sometimes deviate from actual experience [79, 1491, we can use 

the reported emotions to gauge the accuracy of our model. 

9.1 Modeled Emotion 

Mean modeled emotions (represented as a percentage) from the six new subjects were 

analyzed using a repeated measures MANOVA with the five emotions as dependent 

measures, and play condition as a within-subjects factor. Mean results and statistics 

are shown in Table 18. Play condition significantly impacted fun and excitement, but 

not frustration, boredom, or challenge (see Figure 60). Post-hoc analysis revealed that 

players were having more fun when playing against a friend than when playing against 
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a stranger (p = .001) or a computer (p = .004), and that playing against a stranger was 

more fun than playing against a computer (p = .014). Playing against a friend was 

more exciting than playing against the computer (p=.031), while playing against a 

stranger was marginally more exciting than playing against the computer (p = .053). 

There was no difference in excitement between playing against a stranger or a friend 

(p = .412). 

Table 18: Means for modeled emotion. re~resented as a Dercentaae. There 
was a significant difference-in excitement and'fun between play 
conditions. 

Emotions from Physiological Model 

701 7 computer 
El friend 

boredom challenge excitementfrustration fun 

Figure 60: Means (+SE) of modeled emotion, represented as a percentage, 
separated by play condition. 
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9.2 Reported Emotion 

Participants were asked to rate the boredom, challenge, excitement, frustration, and 

fun of each condition on a 5-point scale. Mean results and statistics are shown in 

Table 19. Friedman tests for 3-related samples revealed no differences between 

conditions (see Figure 61). 

Table 19: Means for subjective responses on a Spoint scale. A response of 
"1" corres~onded to "low" and "5" to "high". There were no - 
differences between play conditions. 

( Computer I Friend I Stranger ( X2 I Sig. I 
I I 

Boredom 1 2.2 [ 1.5 1 2.2 1 1.4 1 SO4 
I I I I I 

Challenge 4.2 3.7 3.5 1.6 .444 

Excitement 3.7 1 4.7 4.2 4.5 .lo4 

( Frustration 1 3.5 1 3.0 1 2.3 ( 2.5 1 .291 1 
I I 1 I I I Fun 4.0 1 5.0 1 4.3 1 5.6 1 .062 

Emotions from Subjective Reports 
computer 

Q friend 

T 

boredom challenge excitement frustration fun 

Figure 61: Means (kSE) of the subjective reports on a 9point scale, 
separated by play condition. 
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9.3 Comparing Modeled and Reported Emotion 

Although there were no subjective differences between conditions, plotting the means 

reveals that there were definite trends (see Figure 61). Furthermore, plotting the 

modeled emotion means reveals the same trends for boredom, excitement, and fun 

(see Figure 60). 

To determine how closely the modeled (objective) emotion resembled reported 

(subjective) emotion, we correlated the two data sources for each emotional state. We 

used Spearman's rho, since the subjective reports are non-parametric, while the 

modeled emotion means are parametric. The subjective and physiological emotional 

state were significantly correlated for fun (rho=.99, p<.001), and excitement (rho=.99, 

p<.001); the same two emotional states where the model revealed significant 

differences across play conditions. There was no correlation for boredom (rho=.50, 

p=.333) or frustration (rho=.50, p=.333). Although the same trends were present for 

reported boredom and modeled boredom, the values for modeled boredom were very 

low and similar; the same problem existed with frustration. Both of these modeled 

emotions suffered from issues with scaling, which are discussed later in section 9.4. 

There was a correlation for challenge (rho=.99, p<.00 I), but the correlation was 

inverse, as seen in Figure 60 and Figure 61. Subjective ratings for challenge decreased 

from computer to friend to stranger, while modeled challenge increased from 

computer to friend to stranger. There were no significant differences in play condition 

for either modeled or reported challenge; however, the correlation reveals an inverse 

relationship. In modeling challenge, we assumed that a player's arousal would 
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increase with challenge; however, upon further examination, this pattern was only true 

for about half of the participants, while the opposite was true for the other half. Some 

participants' comments revealed a strategy to attempt to relax when challenged, in 

order to improve their performance. Obviously, how participants handle challenge in a 

game is an individual strategy and additional work is required before challenge can be 

modeled accurately. 

We also examined the subjective results from the post-experiment questionnaires. 

Frequencies of responses for which condition was deemed the most fun, most 

challenging, and most exciting were tabulated, as were frequencies for the play 

condition with the maximum modeled fun, challenge, and excitement. For fun, 

subjective choice and modeled choice were matched for 5 of the 6 (83%) participants; 

for excitement, subjective choice and modeled choice matched for all 6 (100%) 

participants. For challenge, only 1 of the 6 (17%) matched. These results corroborate 

aforementioned mean results for each condition. Participants were not asked which 

condition they perceived as the most frustrating or boring, thus these emotional states 

cannot be compared to the post-experiment questionnaires. 

9.4 Scaling Issues 

Although the trends between conditions are similar for most of the emotions, there are 

apparent differences in the relative strength of the emotions. Our model represents the 

emotion as a percentage of the possible maximum and minimum, given the available 

data. Computer games are generally fun, enjoyable experiences. Although a user may 

be frustrated, and may rate this frustration as fairly high on a 5-point scale, this 
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frustration will be low when compared to the frustration experienced by getting a flat 

tire on the way to an important appointment, or by trying to contact technical support 

for a lousy local internet provider. By the same logic, the boredom reported by 

subjects will be much lower than the boredom experienced during a really boring 

lecture given by a monotonous professor. We asked participants to agree with the 

statement "this condition was frustrating". Had we asked them to rate their response as 

a ratio of how frustrating it was compared to a flat tire on the way to an appointment, 

we probably would have seen much different subjective results. In contrast, our model 

takes a global approach to the scaling of emotion, so a user's frustration is given as a 

percentage of the maximum possible frustration, given the available data. As seen in 

Figure 60 and Figure 61, boredom, challenge, and frustration are significantly lower 

for modeled emotion than for reported emotion, while fun and excitement are only 

somewhat lower. This result is expected, since playing a computer game can be quite 

fun and exciting, but perhaps not as much fun, nor as exciting as riding a rollercoaster 

or attending a rock concert. 

In addition to the scaling issues with subjective reports, sections 8.3.6 and 8.4.3 

discuss the scaling issues with the modeled emotions. Although we took a global 

approach to scaling, given the available data, we cannot be certain that our modeled 

emotions represent the percentage of the maximum value of each particular emotion 

exactly. We can only be certain that our values represent percentages of emotion for 

playing a console game. For example, had we collected GSR, HR, and facial EMG 

when participants were riding a rollercoaster or dealing with a flat tire, we may have 

seen different absolute values for our modeled emotions. Using the IAPS to scale 
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responses in AV space, as discussed in section 8.3.6, may have provided a slightly 

different scale. 

9.5 Modeled Emotion: a Continuous Data Source 

Mean modeled emotion is an objective and quantitative metric for evaluating 

interactive play technologies that reveals variance between conditions. In addition, 

modeled emotion from physiological data is very powerful as it can continuously and 

objectively provide a quantitative metric of user experience within a play condition. 

The mean values shown in Figure 60 are derived from a time series for the five 

modeled emotions. As such, we can not only see the difference between conditions, 

but can follow the variance within a condition. Figure 62 shows one participant's 

modeled frustration over time when playing against a friend and a stranger. The mean 

values reveal that participant three was most frustrated when playing against the 

computer, (mean = 19.8%), followed by playing against a stranger (mean=13.1%), and 

playing against a friend (mean=6.5%). Means alone do not tell us whether the tonic 

level was raised or whether there were more phasic responses. Modeled emotion 

pinpoints moments in time when a user's frustration was changing. This is particularly 

beneficial when there is no baseline or comparative condition. Researchers and 

developers can uncover individual moments when a user begins to get stressed, starts 

having fun, or becomes bored. 

One of the main drawbacks to using observational analysis is the enormous time 

commitment associated with watching and annotating hours of video data. 

Continuously modeling emotion can significantly reduce the amount of time needed to 



CHAPTER NINE: EXPERIMENT THREE- USING THE MODEL OF EMOTION 189 

tion for Partici ant Thre 
100 

Q 
I) - 
I= 
V1 

50 
E 
!! 
2Si 

0 
0 50 100 150 200 250 

Time (seconds) 

Figure 62: Frustration for one participant in three conditions. Examining the 
mean output may reveal differences between conditions; 
however, examining the entire time series reveals how a 
participant's emotional state changes over time. 
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perform observational analysis. By modeling emotion, researchers can look for 

interesting features in the emotional experience, then refer to the corresponding video 

to examine what events preceded the emotional reactions such as increasing boredom, 

increasing fun, or sustained levels of high frustration. 

Researchers could also use continuous emotions to examine how the emotional 

experiences co-vary. Flow (see section 3.5) refers to an experience state that causes 

deep enjoyment, due in part to the right balance between the skill of the participant 

and the challenge of the activity [21]. By monitoring the change in challenge along 

with corresponding changes in frustration and boredom, researchers can see when 

players may be in danger of leaving a flow state due to an imbalance between skill and 

challenge. Continuously modeling emotion can reveal when challenge decreases 

enough to cause boredom to increase, or conversely, when challenge increases enough 

to cause frustration to increase. Future research could include using this information 

to dynamically adjust the challenge of the activity, keeping the player in a state of 

flow. 

9.6 Summary of Modeling Emotion 

We used a fuzzy logic approach to transform GSR, HR, EMGsmiling, and EMGfrowning 

into arousal and valence. The results from the fuzzy model were comparable to a 

manual approach. In addition, the results were consistent with predictions based on 

the results from Experiment Two. A second fuzzy model was used to convert arousal 

and valence into five emotions: fun, challenge, boredom, frustration, and excitement. 
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Modeled emotion was represented both as an average over a condition, and as a time 

series that represents an entire condition. 

Mean emotion modeled from physiological data provides a metric to fill in the 

knowledge gap in the objective-quantitative quadrant of evaluating user interaction 

with entertainment technologies. In addition, the emotion of the user can be viewed 

over an entire experience, revealing the variance within a condition, not just the 

variance between conditions. This is especially important for evaluating user 

experience with entertainment technology, because the success is determined by the 

process of playing, not the outcome of playing [96]. The continuous representation of 

emotion is a powerful evaluative tool that can be easily combined with other 

evaluative methods, such as video analysis. Given a time series of emotional output, 

researchers can identify interesting features, such as a sudden increase or decrease in 

an emotional state, then investigate the corresponding time frame in a video recording. 

This method would drastically reduce the time required to qualitatively examine video 

of user interaction with entertainment technologies. 

Modeled emotion corresponds to reported emotion for most of the emotions that we 

investigated. Challenge was an exception that requires additional research on how 

people differentially respond to challenge in play environments. For the other 

emotions, the trends were similar between the subjective and objective methods, but 

the relative strength was different. When modeling emotion, we took the maximum 

potential experience into consideration, whereas the same was not true of reported 

emotion. To scale reported emotion, one could choose to ask questions that contained 
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scaling elements. To better scale modeled emotion, one could collect baseline data 

using the IAPS. 
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Chapter 10 SUMMARY AND CONCLUSIONS 

10.1 Summary 

We have presented a series of experiments to determine the efficacy of using 

physiological signals as indicators of emotional experience with entertainment 

technologies. Chapter 2 demonstrated that there is a lack of objective and 

quantitative evaluation methodologies for studying user interaction with play 

technologies. The three presented experiments advance the understanding of body 

reactions to play technologies, and move towards an objective and quantitative 

methodology of evaluation. 

Experiment One was an exploration of how physiological signals respond to 

interaction with play technologies. Experiment Two investigated how physiological 

signals co-vary with subjective reports. Based on the knowledge acquired in 

Experiments One and Two, Experiment Three presented a method for modeling 

emotion, using physiological signals. The modeled emotions were successfully 

compared to subjective reports. The summaries and contributions of each phase of the 

presented research follow. 
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10.1. 1 Experiment One: Goldilocks 

Our first experiment was designed to explore how physiology can be used to 

objectively measure user experience with entertainment technology. Prior to the first 

experiment, we only had theoretical information, based on the literature, on how the 

body would respond to play environments. We collected a variety of physiological 

measures (GSR, EKG, EMGjaw, respiration) while observing participants playing NHL 

2003. Participants played in four difficulty conditions (beginner, easy, medium, and 

difficult), to either create an experience that was too easy, that was too hard, or that 

matched a player's experience to the difficulty level in the game, creating a condition 

that was 'just right'. We expected that participants would prefer playing in the 

condition that was best matched to their level of expertise, and that these preferences 

would be reflected in their subjective experience as well as their physiological 

experience. 

The chosen experimental manipulation did not produce consistent subjective results 

across all participants. We saw no differences in boredom, frustration, or fun across 

difficulty conditions, and only reported challenge increased with increases in 

difficulty. Without consistent subjective results, we did not expect consistent 

physiological results, and determined that our experimental manipulation was not 

appropriate for exploration of how the body responds to interactive play 

environments. In addition, further analyses uncovered some methodological issues 

that contributed to irregular patterns of physiological activity. Primarily, the act of 

conducting the experiment produced different phases in the experiment (e.g., play, 

interview, rest) that created greater physiological responses than the experimental 
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manipulations themselves. In addition, we could not remove artifacts from the 

upwards drift in GSR over time. 

Although Experiment One did not produce interesting subjective or physiological 

results, we were able to achieve our goal of exploring how the body responds to 

interactive play environments. We were also able to generate some rules for 

conducting experiments in this domain that aided us in our subsequent experiments. 

Having corrected the methodological issues, we designed a second experiment with a 

different experimental manipulation that we felt would produce a consistent 

experience for all players. 

10.1.2 Experiment Two: Turing 

We conducted a second study to further understand how body responses can be used 

to create an objective evaluation methodology. Because this methodology is a novel 

approach to evaluate play technologies, and the results from Experiment One were 

ambiguous, we used an experimental manipulation designed to maximize the 

difference in the experience for the participant. The participants played in two 

conditions: against a co-located friend, and against the computer. 

We chose these play conditions because we have previously observed pairs (and 

groups) of participants playing together under a variety of collaborative conditions 

[22, 54, 75, 1201. Our previous observations revealed that players seem to be more 

engaged with a game when another co-located player is involved. Thus, we thought 

that participants would be more excited, have more fun, and prefer playing against a 
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friend than when playing against a computer. Additionally, we hypothesized that 

differences in the participants' subjective experiences would be reflected in their 

physiological activities. 

After addressing our methodological issues from Experiment One, Experiment Two 

tested and supported four experimental hypotheses. We found that participants 

preferred playing against a friend to playing against a computer; participants 

experienced higher GSR values when playing against a friend than against a 

computer; participants experienced higher EMG values along the jaw when playing 

against a friend than against a computer; and the differences in the participants' GSR 

signal in the two conditions was correlated to the differences in their subjective 

responses for fun. We also found other correlations between the normalized subjective 

measures and the normalized physiological measures. The confirmation of our 

hypotheses provided support for our two main conjectures: that physiological 

measures can be used as objective indicators for the evaluation of co-located, 

collaborative play; and that the normalized physiological results will correspond to 

subjective reported experience. 

Experiment Two showed that when a physiological time series is averaged for each 

condition, mean values yield meaningful results that respond in a similar manner to 

subjective reports. These results have the same disadvantage as subjective results, in 

that they are single points of data representing an entire condition; however, unlike 

subjective reporting, they represent an objective measure of user experience. Used in 
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concert with subjective reporting, the two methods can provide a more detailed and 

accurate representation of the player's experience. 

The raised average GSR when playing against a friend revealed that players were 

more aroused when playing against a friend than when playing against a computer. 

However, Experiment Two did not show whether this elevated result is due to a higher 

tonic level or more phasic responses. Physiological data provide a high-resolution 

time series that can discriminate between experiences with greater resolution than 

averages alone. In Experiment Two, we graphically represented continuous responses 

to different game events. In the next experiment, we wanted to take advantage of the 

high-resolution, contextual nature of physiological data to provide an objective, and 

continuous measure of player experience. 

10.1.3 Experiment Three: Modeling Emotion 

Experiment Three was designed to test the conjecture that physiological metrics could 

be used to model user emotional experience when playing a game, providing 

continuous, quantitative, and objective metrics of evaluation for interactive play 

technologies. Therefore, our third experiment presented a method of modeling user 

emotional state when interacting with play technologies. Due to the success of 

Experiment Two in separating responses from playing against a computer versus 

playing against a friend, we continued this approach and added a third condition 

(playing against a stranger. Thus, we collected data in three play conditions: against a 

co-located friend, against a co-located stranger, and against the computer. Using the 

entire time series, we developed a fuzzy logic model that transformed four 
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physiological signals (GSR, HR, EMGsfiang, and EMGfrowning) into values of arousal 

and valence. The output from the model conformed to expected values for each play 

condition. In addition, modeled arousal and valence were similar, but superior to a 

brute force approach of calculating arousal and valence. A second fuzzy logic model 

transformed the arousal and valence values into continuous values for five emotions: 

boredom, challenge, excitement, frustration, and fun. 

The modeled emotions show the same trends as reported emotions for fun, boredom, 

and excitement; however, the modeled emotions revealed differences between play 

conditions, while the differences between the subjective reports failed to reach 

significance. Modeled challenge did not correspond to reported challenge, and more 

research is needed to understand how people physiologically respond to challenging 

play environments. 

Mean emotion modeled from physiological data provides a metric to fill in the 

knowledge gap in the objective-quantitative quadrant of evaluating user interaction 

with entertainment technologies. Figure 63 shows that there are several choices in 

methodologies for evaluating user interaction with play technologies, but that there are 

no appropriate techniques for objective and quantitative evaluation since task 

performance metrics aren't relevant to play. Heuristic evaluation could be seen as a 

quantitative methodology since experts can provide ratings for how well software 

adheres to the heuristics. Observational analysis is a tool that can be used to generate 

quantitative or qualitative results, but is not used quantitatively to evaluate 

entertainment technologies due to the time commitment and expertise needed. Figure 
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64 shows how modeled emotions provide an alternative evaluation methodology for 

researchers interested in a quantitative and objective evaluation. 

In addition, the emotion of the user can be viewed over an entire experience, revealing 

the variance within a condition, not just the variance between conditions. This is 

especially important for evaluating user experience with entertainment technology, 

because success is determined by the process of playing, not the outcome of playing 

~961. 

10.2 Thesis Contributions 

The goal of this research is to investigate the efficacy of physiological signals as 

indicators of user experience with interactive play technologies. In the course of this 

work, we have made significant contributions to affective computing, HCI evaluation 

methodologies, and extended the applicability of fuzzy logic to a new domain. 

Specific contributions are outlined in this section. 
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Figure 63: Current methods for evaluating entertainment technologies. 
Evaluators have a lot of choice, but there is a knowledge gap in 
the quantitative-objective quadrant since task performance 
metrics aren't relevant. 

Figure 64: Contribution of this dissertation. There was a knowledge gap in 
the quantitative-objective quadrant, since task performance 
metrics were not used. Modeled emotions from physiological 
data fill this quadrant, providing a new choice for evaluators of 
entertainment technologies. 
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10.2.1 Systematic Explra tion of How the Body Responds to 

Interactive Play Environments 

In Experiment One, we systematically examined how a user's physiological signals 

respond to changes in difficulty level when interacting with a computer game. 

Although physiological signals have been used extensively as indicators of mental 

effort and stress, there has been no previous research investigating how the body 

responds to interactive play technologies. 

10.2.2 Rules and Guidelines for Conducting Research 

in this Domain 

Although our participants did not respond consistently to the changes in difficulty 

level, the first experiment revealed issues in our methodology that were potentially 

confounding our results. When examining play environments, researchers have to 

deal with unique issues, not apparent when examining typical productivity software. 

For example, variability of game intensity is incorporated into game design as a 

method of pacing the play experience. Collapsing a time series into a single point 

erases the variance within each condition, causing researchers to lose valuable 

information. In addition, participants create ways to enjoy themselves in all 

experimental conditions, which should impact the researcher's choice of experimental 

manipulation. 

Physiological metrics have high individual variability, making comparison across 

subjects impossible without some form of normalization. Also, physiological metrics 

are highly responsive signals, so resting periods must be incorporated into the 
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experiment design in order to allow the signals to return to baseline levels prior to 

each experimental condition. Even with resting periods, order effects can remain and 

researchers need to acknowledge effects due to order. Finally, the act of applying 

sensors to the body and monitoring body responses can be a stressful experience for a 

participant, and every effort must be made to allow the participant to relax and feel at 

ease. 

10.2.3 Physiological Measures Can be Used to Objectively 

Measure a Player's Experience with Entertainment 

Technology 

In Experiment Two, we found evidence that there is a different physiological response 

when playing against a computer versus playing against a friend. Examining the 

means of the physiological signals revealed elevated levels of GSR and EMG of the 

jaw when playing against a friend. The mean results do not tell us whether the tonic 

level of the signal is elevated or whether there are more phasic responses. 

Physiological data provide a high-resolution time series that can discriminate between 

experiences with greater resolution than averages alone. In Experiment Two, we 

graphically represented continuous responses to goals and fights in the game. By 

windowing and graphing GSR, we saw bigger reactions to goals and fights when 

playing against a friend over playing against a computer. This windowing technique 

was the first step towards making use of the continuous nature of physiological 

signals. 



CHAPTER TEN: SUMMARY AND CONCLUSIONS 203 

10.2.4 Normalized Physiological Measures of Experience 

with Entertainment Technology Correspond 

to SubJ'ective Reports 

In Experiment Two, we found many correlations between normalized physiological 

measures and normalized subjective reports. Normalizing and correlating the data, as 

we did in Experiment Two, is a powerful tool because it shows that the amount by 

which participants increased their subjective ratings corresponded to the amount by 

which their mean physiological data increased. In addition, this approach contains 

results that may otherwise get lost. ANOVAs show results when all participants are 

responding in a similar manner, however correlations will reveal patterns even when 

participants are responding differently from one another, a useful tool when 

investigating something as individual as engagement with play technologies. 

10.2.5 A Method of Modelr'ng Emotion 

The results that we gathered in the first two experiments formed a basis for developing 

a model of user emotion, based on physiological reactions. Our first model 

transformed physiological signals into AV space. Representing a participant's 

experience in AV space is a great method of objectively and quantitatively measuring 

their experience when engaged with entertainment technologies. We graphed the 

participant's experience continuously in AV space to determine how our model 

compared to a manual approach. These graphs visually represent the positive and 

negative stimulation that the participant feels as they engage with the technology. 
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We moved beyond AV space by creating a method to transform AV space into five 

emotions: boredom, challenge, excitement, frustration, and fun. Emotions modeled 

from physiological data provide a metric to fill the knowledge gap in the objective- 

quantitative quadrant of evaluating user interaction with entertainment technologies. 

The modeled emotions were compared to subjective reports and showed the same 

trends for fun, boredom, and excitement; however, modeled emotions revealed 

differences between play conditions, while the differences between the subjective 

reports failed to reach significance. 

Our modeled emotions were based on fuzzy transformation functions from 

physiological variables to AV space and then from AV space to emotions. We based 

our decisions for the membership functions and rules on a theoretical understanding of 

how the physiological signals operate, and how we expect users to feel when playing a 

game. Although other mappings could be considered, our results provide a proof of 

concept of the modeling technique. In addition, integrating data from more 

participants engaged in a broader range of play situations could improve our mappings 

from physiological metrics to emotion. 

10.2.6 Modeled Emotions Provide a Continuous Metric 

for Evaluation 

In addition to providing an objective and quantitative approach to evaluating play 

technologies, modeled emotion can be viewed over an entire experience, revealing the 

variance within a condition, not just the variance between conditions. This is 

especially important for evaluating user experience with entertainment technology, 
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because the success during play is determined by the process of playing, not the 

outcome of playing [96]. Continuously representing emotion is a powerful evaluative 

tool that can be easily combined with other methods. Given a time series of emotional 

output, researchers can use interesting features in the modeled emotion output to index 

other evaluative data sources such as video or screen captures of the play 

environment. 

10.3 Future Work 

Although our modeled emotions correspond well to reported emotion, there are still 

improvements to the model that could be made. First, the scaling of the arousal and 

valence axes could be improved. In order to determine maximum arousal and valence, 

we used the minimum and maximum values from the all three play conditions and the 

rest period. We determined the baseline arousal and valence values to the best of our 

ability, given the available data; however, the available data may not have contained 

accurate baseline values. A better approach to scaling the arousal and valence axes 

would have been to use the IAPS [64] to baseline participants' arousal and valence by 

presenting pictures from the IAPS data set, and measuring a subject's physiological 

responses. Since GSR is not consistent across experimental sessions, baselining a 

participant's GSR response on one day might not apply to the following day or week. 

Using a variety of baselines and dynamically adjusting for the day-to-day variations 

would be a feasible approach, but would require additional research in order to be 

implemented correctly. 
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We developed models for five emotional states that we felt were relevant to 

interaction with entertainment technology. We would like to consider other relevant 

emotional states that can be described by arousal and valence, such as disappointment, 

anger, or pride. Other emotions, such as schadenfreude or fiero might be more 

difficult to describe in terms of arousal and valence, and more research needs to be 

conducted on these emotions which are less easily defined. 

Of the five emotional states that we modeled, boredom, excitement and fun compared 

well to reported emotions through subjective responses. Our model of challenge 

produced results that were in direct opposition to reported challenge. We thought that 

challenge could be modeled mainly through increasing arousal and neutral valence; 

however, it was made known from the comments that some participants responded to 

increasing challenge by actively trying to relax in order to improve their performance. 

Further work needs to be conducted on how people respond to challenge and 

frustration in play environments for these emotions to be effectively modeled. 

In addition to comparing the modeled emotions to subjective reports, we would like to 

relate them to another objective data source, gathered through observational analysis. 

Facial expressions, verbalizations, or game events could be used to connect the 

emotional responses to events that were occurring in the context of play. 

Along these lines, we would like to investigate how we can combine modeled 

emotions with other evaluation methods to produce a better, more complete 

understanding of a player's interaction with play technologies. For example, we could 

use modeled emotions to reduce the time commitment associated with observational 
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video analysis. Given a time series of emotional output, researchers can identify 

interesting features, such as a sudden increase or decrease in an emotional state, then 

investigate the corresponding time frame in a video recording. This method would 

drastically reduce the time required to qualitatively examine video of user interaction 

with entertainment technologies. Modeled emotions could also be used in conjunction 

with other methods of evaluation, such as heuristics. 

In addition, we would like to see if our method can generalize to interaction with other 

play technologies, specifically, to study user behaviour in ubiquitous play [9, 711 

environments. In our earlier studies [120], described in section 2.3.4, we used more 

traditional methods of evaluating user interactions with the technology and with other 

players. These methods, including subjective reports and observational analysis fell 

short due in part to limited evaluative bandwidth. When determining how to evaluate 

play environments that used emerging technologies, such as the False Prophets game 

environment [76], there was no comparative environment that could compete in terms 

of novelty. Traditional methods were not robust enough to evaluate our novel 

ubiquitous play environments. We regard modeled emotions as a means to 

successfully evaluate novel play environments objectively, quantitatively, and 

continuously. As such, we plan to conduct more research on applying the methods for 

modeling emotion to the evaluation of ubiquitous play environments. This includes 

the introduction of mobility, the use of less invasive sensors, and an algorithmic 

approach to contend with the effects of physical activity. 
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We have demonstrated how modeled emotions can be used as an evaluative tool, but 

they could also be used to dynamically adapt play environments to keep users 

engaged. Flow (see section 3.5) refers to an experience state that causes deep 

enjoyment, due in part to the right balance between the skill of the participant and the 

challenge of the activity [21]. By monitoring the change in challenge along with 

corresponding changes in frustration and boredom, researchers could see when players 

were in danger of leaving a flow state due to an imbalance between skill and 

challenge. 

Finally, the techniques described in this paper could be adapted to analyze a user's 

emotional response to productivity software, or other work-related interactive 

technologies. Although task performance is used to objectively and quantitatively 

assess interaction with productivity technologies, modeled emotions have a high 

evaluative bandwidth, not seen in many other evaluation methodologies. 

10.4 Conclusions 

Researchers are using emerging technologies to develop novel play environments, 

while established computer and console game markets continue to grow rapidly. Even 

so, we have demonstrated how evaluating the success of interactive play environments 

is still an open research challenge. Traditional evaluation methods have been adopted, 

with some success, for quantitative-subjective, qualitative-subjective, and qualitative- 

objective assessment of play technologies. While performance metrics are used for 

quantitative-objective analysis of productivity systems, the success of play 

environments is determined by the experience of playing, not the performance of the 
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participant. As such, there is a knowledge gap for quantitative-objective evaluation of 

play technologies. In addition, the existing techniques suffer from low evaluative 

bandwidth. 

We have presented a series of three experiments, based on physiological signals, that 

generate a model of user emotion for interaction with play technologies. Modeled 

emotions can be a powerful evaluation technique because they: 

1. capture usability and playability through metrics relevant to ludic experience; 

2. account for user emotion; 

3. are quantitative and objective; and 

4. can be represented continuously. 

In Experiment One, we explored how a user's physiological signals respond to 

interaction with play technologies. The results allowed us to generate rules for 

conducting experiments in this domain. In Experiment Two, we investigated whether 

physiological signals could differentiate between play conditions, and how 

physiological signals co-vary with subjective reports. We found evidence that there is 

a different physiological response in the body when playing a computer game against 

a co-located friend versus playing against a computer. When normalized, many 

physiological results were mirrored in the subjective reports. Our results provided 

support for Conjecture A, that physiological measures can be used to objectively 

measure a player's experience with entertainment technology, and Conjecture B,  that 

normalized physiological measures of experience with entertainment technology will 

correspond to subjective reports. 
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In Experiment Three, we presented a method for modeling emotion using 

physiological data. We developed a fuzzy logic model that transformed four 

physiological signals into arousal and valence. The output from the model conformed 

to expected values for each play condition (against a computer, a co-located friend, or 

a co-located stranger). A second fuzzy logic model transformed arousal and valence 

into five emotions: boredom, challenge, excitement, frustration, and fun. When 

evaluated with a test data set, our modeled emotions showed the same trends as 

reported emotions for fun, boredom, and excitement; however, modeled emotions 

revealed differences between three play conditions, while the differences between 

reported emotions failed to reach significance. These results support Conjecture C, 

that physiological metrics can be used to model user emotional experience when 

playing a game, providing continuous, quantitative, and objective metrics of 

evaluation for interactive play technologies. 

Mean emotion modeled from physiological data fills a knowledge gap for objective 

and quantitative evaluation of user interaction with entertainment technologies. In 

addition, user emotion can be viewed continuously over an entire experience, 

revealing variance within a condition, not just variance between conditions. This is 

especially important for evaluating play experiences, because success is determined by 

the process of playing, not the outcome of playing. The continuous representation of 

modeled emotion is a powerful evaluative tool that can be combined with other 

approaches for a robust method of evaluating user interaction with play technologies. 
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Appendix 1 ABBREVIATIONS AND ACRONYMS 

"C: 

ACM: 

ADHD: 

ANOVA: 

ANS: 

ATC: 

AT:ST: 

AV space: 

BP: 

BVP: 

CD: 

CNS: 

EA: 

degrees Celsius 

Associated of Computing Machinery 

Attention Deficit Hyperactivity Disorder 

Analysis of Variance 

Autonomic Nervous System 

Air Traffic Control 

Analysis Time to Sequence Time Ratio 

Arousal-Valence Space 

Blood Pressure 

Blood Volume Pulse 

Compact Disk 

Central Nervous System 

Electronic Arts 
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ECG: 

EDR: 

EEG: 

EKG: 

EMG: 

ESDA: 

FFT: 

GSR: 

HCI: 

HEP: 

HP: 

HSD: 

HR: 

HRV: 

Electrocardiography 

Electrodermal Response 

Electroencephalography 

Electrocardiography 

Electromyography 

Exploratory Sequential Data Analysis 

Fast Fourier Transform 

Galvanic Skin Response 

Human Computer Interaction 

Heuristic Evaluation for Playability 

Heart Period 

Honestly Significant Difference 

Heart Rate 

Heart Rate Variability 
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Hz: Hertz (unit of frequency) 

IAPS : International Affective Picture System 

IBI: Inter-beat Interval 

ID: Identification 

LAN: Local Area Network 

MANOVA: Multivariate Analysis of Variance 

MIT: 

NASA: 

NHL: 

ns: 

PDA: 

PNS : 

PS2: 

Massachusetts Institute of Technology 

National Aeronautics and Space Administration 

National Hockey League 

non-significant 

Personal Digital Assistant 

Parasympathetic Nervous System 

Playstation 2 

RespAmp: Respiration Amplitude 
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RespRate: 

RITE: 

RSA: 

SC: 

SD: 

SE: 

SNS: 

SRR: 

VMIN: 

VT: 

Respiration Rate 

Rapid Iterative Testing and Evaluation 

Respiratory Sinus Arrhythmia 

Skin Conductance 

Standard Deviation (also St. Dev.) 

Standard Error 

Somatic Nervous S ys t e d S  ympathetic Nervous System 

Skin Resistance Response 

Minute Volume 

Tidal Volume 



APPENDICES 229 

Appendix 2 FALSE PROPHETS 

Board games are highly interactive, provide a non-oriented interface, are mobile, and 

allow for a dynamic number of players and house rules. They also are limited to a 

fairly static environment, don't allow players to save the game state, and have simple 

scoring rules. On the other hand, computer games provide complex simulations, 

impartial judging, evolving environments, suspension of disbelief, and the ability to 

save game state. But computer games often support interaction with the system, rather 

than with other players. Even in a co-located environment, players sit side-by-side 

and interact with each other through the interface. The goal of developing a hybrid 

game system was to leverage the advantages of both of these mediums, encouraging 

interaction between the players. In False Prophets, players use tangible pieces to 

move around a digital game board, projected onto a table. The playing pieces are 

equipped with a button to perform simple game operations, while more complex 

interactions and private information is managed through a handheld computer. This 

unique game environment has the computational advantages of a computer game 

environment, while still supporting interpersonal interactions. In addition, it allowed 

for the development of novel game elements that couldn't exist with either of the 

traditional game technologies. 

The Game 

We created a hybrid platform to investigate this new class of games. Our game 
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environment consisted of a tabletop display system with a custom sensor interface. 

Initially, we configured the game for six players although the goal was to have 

dynamically changing groups. The game board was a projected map, tessellated into a 

grid of 20 by 30 hexagons. Each hexagon represented a space that the characters were 

allowed to occupy and was one of four terrain types: water, plains, forest, and 

mountains. Initially, the map was not projected, with the exception of 

hexagons where players were located. As the players moved around the board, the 

map was dynamically revealed. The players were separated into two teams and were 

initially unaware of their team members. The goal of the game was to discover which 

team each player belonged to. This was accomplished by gathering virtual clues, 

making virtual observations of the other players, and using this information to solve a 

logic puzzle. To support interpersonal interactions our rules encouraged players to 

concurrently and physically move around the board while communicating with each 

other in a face-to-face verbal or non-verbal exchange. We accomplished this through a 

number of game features. 

Players gathered clues about others by physically moving their character around the 

game board, collecting clues that remained hidden in clue holders like rocks and logs. 

Players made observations by physically passing near other players on the game 

board. The level of detail of virtual observations (height vs. freckles) depended on 

the physical proximity of the playing pieces. 
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Private communication such as the exchange of clues and observations was not 

supported or mediated by the game. Any bargaining or player alliances had to occur 

between players in the physical world. 

To avoid a static turn-taking strategy, which would not support interactivity, we 

implemented an energy-based system to move around the board. Each type of 

terrain had an associated energy factor that depleted the player's energy as they moved 

around the board. The characters' energy was replenished cyclically throughout the 

game and they had to time their explorations accordingly. 

The Sensor Interface 

To support players moving their characters around the projected display, we 

implemented a custom sensor interface. The playing surface contained an array of 

infraredphototransistors, each corresponding to a hexagon in the game. Each 

character playing piece contained an infrared light emitting diode. The pieces emitted 

a pulse that was sent though the phototransistors to the serial port and interpreted by 

the game software. Pieces also had buttons that were pressed to correspond to actions 

in the game. Pressing a button changed the pulse transmitted to the game. The pieces 

were a natural interface for players accustomed to dealing with physical figurines, yet 

provided a great deal of interactive functionality. These pieces, combined with 

the sensor array, provided us with seamless input to the game system. By making 

interaction with the computer components of the game seamless, we allowed players 

to focus on each other, and not on the interface. 
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The Handheld Interface 

The display system consisted of both the tabletop projection for public information as 

well as handheld computers for private information. The handheld computers also 

acted as input to the game by allowing players to perform actions and make choices 

that could not be communicated naturally via the game pieces. We deliberately limited 

the interaction through the handhelds to maintain focus on the other players, not on the 

private displays. The handhelds communicated to the game control through an 

802.11 wireless network. All public input occurred through thepieces, which 

connected to the game control via the serial port. The game control handled all game 

input, logic, and updated the display based on events in the game. 



APPENDICES 233 

Appendix 3 GSR ELECTRODE PLACEMENT TESTS 

Before beginning Experiment One, we ran a number of electrode placement tests to 

see whether electrode placement affected the GSR signal. One subject had the 

electrodes placed in two different locations and watched a video clip intended to 

create arousing and relaxing experiences. Electrodes were tested on the fingers, palm 

of the hand, and sole of the foot using big and small electrodes. The size of the metal 

contact in the large electrode was the same as the size of the metal contact in the small 

electrode; however, the size of the surrounding sticker that attaches the electrode to 

the skin was larger in the big electrode. The following locations were tested: 

Finger clips: Two electrodes were attached to the index and ring finger using elastic 

and Velcro finger clips. 

Feet: big electrodes: Two large electrodes were placed on the sole of the foot in the 

following configuration: 
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Feet: Pinky and Big Toe, small electrodes: Two small electrodes were placed on 

the sole of the foot in the following configuration: 

Feet: Big Toe down and across, big electrodes: Two small electrodes were placed 

on the sole of the foot in the following configuration: 

Palm: Pinky and thumb, small electrodes: Two small electrodes were placed on 

the palm of the hand in the following configuration: 
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Palm: index, down and across, big electrodes: Two big electrodes were placed on 

the palm of the hand in the following configuration: 

The results showed that using big electrodes on the feet produced the best (least noisy) 

signal; however, the finger clips were just as responsive (although on a different 

absolute pm scale), as the feet electrodes. Asking participants to remove their shoes 

and socks may have made them uncomfortable, thus the finger clips were judged less 

invasive than electrodes on the feet. Although the signal was slightly noisier, we 

decided that we could easily filter the GSR signal generated from the finger clips. 

The following graphs show the output of the tests. 
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Feet: Big 
electrodes 

Palm: Pinky and 
thumb, small 
electrodes 
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We also observed the GSR signal generated by playing NHL2003 to see if hand 

movements impacted the signal. Electrodes on the palm did not work well, since 

movement when operating a game controller caused slight variations in the 

connectivity between the electrode and the skin, impacting the conductivity of the 

connection. Movements made when operating a game controller did not impact 

electrodes on the feet and the finger clips. An example of a test on the foot and palm 

follows: 
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Feet: big toe, 
down and 
across, big 
electrodes 

Palm: index, 
down and 
across, big 
electrodes 
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Appendix 4 CONSENT FORM (ALL EXPERIMENTS) 

Sf MON FRASER UNtVERSlTY 

The Ifnwersfty and those eondud! tkrs pfojat s~$SGrifx to the ethical conduct of $@search and to 
ail Qmes of the iritezests, comfotl; ;md wtaty of subgets This mearcP1 rs beli?g 
permission of the Simon Frasss Rmarch Ethics Board TBe chiif concern of ?he 

Board rs h r  the hm& safety and pyckiwical  weti-ketng of research prtjtinpants 

Should yoff wish to obrtaln mnfmmation abut  your ffghts as a participant in research or about the 
reswnwblt*~ of sesearckm, of tf you have any questions, cowerns or complaints about the 
lnanmr in which you wre ire nhct ths Difector, Office of Research Ethcs 
by ernaii at tppremberQs~ca 

Your signature on this Perm wIB s&nrfy Wat you have recewed a dwument whrch describes the 
procedures, posslbie nsks, and knsfits ef this rmsreh project that you have receked an adequate 
op~raunity to consider the Informabun in tW docomecn-ta descnmng the project or ex 
t&at you voiuntar~ly agree b partklpate fn the. project or expdment. 

ng enjoyment of computer games using psychopRysloioglca1 techniques 
ame Regan Nlanslryk 

Irareloapsr Department Cornputlng Sctence 

research pno~ect or e x p  ythatthaver 
experiment t ta nd 

the procedures to be m d  In thb ex taking prt in the project 
or experiment, 8s stated blow. 

Risks and Benefits 
There are n@ risks Involved. You wiIT mehe a manetary stipend or a product from EB Sports 
for participating in this study. There are no direct bn~rffts to you howevers the muffs of this 
research may emtribute to the knowledge base af Human-Computer Inferaction research and 
also may lead ado the development of better game Interfaces and game &slg~ techniques. 

I unckfsbnd that I may withdraw my participmon at any bme. I also understand that I may register 
any complamt wfth the Director of the Onlce of Research Ethtcs or the researcher named above or 
with the CRair. D i m r  or Dean ofthe Department, %hod or Faculty as shown below 

Department, Schooi at Facubty. Chair, aitec:Por or Dean: 
Computing Scknce Dr. Ze4lan LI 
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I may obtak copies d the rescllts of thk: study, upon k 3  tseompletion by ComcPng: 
Regan Mandfyk or Dr. Torn Calwrt at Simon Fraaer UnSvesity, 8888 University Way, Burnilby, 
E, V5A 4 56, Can- 

my supervisor at emploSter may require me to oMam h l ~  Or her permission prlor 83 
my w&:icipat'~n In a study of this kind 

8-30 year oki tndlvfduals drawn from the Unkersw pooputatlon thrwgh word 
all rwfuttemena, Your task wlll be to piay slycomputer games on a 

tranr by yourself or rrrlth a paastner. Games are chasm from 
Sparts. Game scenatkre [e.g. snewboard w e  dowrn a 
ce ~ Q U  have finlstred them. As these scenarios are 

tthlpl~~&* you wilt be asked to verbally relate the eaxperiencea you Rad whfk compkttlng that 
gerne smarla. During the sesskn, videocameras wlli recard your phystca! aacztions a h  the 
game cmtroRar, your bclal exwesskns, and any verbal comrnunlcatbn, and a researcher Mil 
otlserve and take notes rwardlng qFbur lnteractbns with the console gaming system. Y w r  
phyhs!doglcSl responses wilt ba monitored using biomda'e equipment provided by Thought 
Tec hese responses include EKG (sl.aetrmar&fqraphy], EMG 
(ele arf. the jaw& resplratlon, and G S R  (galvanic skin response). BKG wltl k 
senssd using three surface efectrodw on efther the skQuldersfabdamrn or on the forearm, 
F,MO wfll k sensed using three surface electm&s on the jaw, Senstng resplratlcm involves 
using a Vekro and rubber fsrrap w~apped araund the chest, whtle GSR invofves usinptwo 
su&e eieetrodes on &her the hands or feet. You will be e k e d  to comptete a questionnaire 
befere the expetiment. This background questimnalie, will help us detennlne your familiarity 
wlth earnputern, gaming systems and computer games. After the experiment, an informal 
Dntewlew wlik gather your crpinlans about pfaylng the different games in the different 
conditions, YOU are allowed to wrphdraw y w r  partlclpation In the experiment at any time. 
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Appendix 5 BACKGROUND QUESTIONNAIRE 

All of the following questionnaires were administered online. 

9). Age: 

r Male 
Femaila 
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8* %%c11 gmiag qstem du you own? (check all &st vpply): 
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12a. Wach g a ~ x m ?  

13. WXm y w  haw b m  redly inro a game, kctw lorag haw you sorazimondy played a gmana;7 
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Appendix 6 GOLDILOCKS CONDITION 
QUESTIONNAIRE 

Participant ID: 

Level of Play: Beginner Easy 

Order: BEMD EMDB MDBE 

DMEB MEBD EBDM 

Date: 
Time: 

Medium Hard 

DBEM 

BDME 

Beginner 

Boredom: 
Frustration: 
Challenge: 
Fun: 

Easy 

Boredom: 
Frustration: 
Challenge: 
Fun: 

Medium, 

Boredom: 
Frustration: 
Challenge: 
Fun: 

Hard 

Boredom: 
Frustration: 
Challenge: 
Fun: 

low 

0 
0 
0 
0 

low 

0 
0 
0 
0 

low 

0 
0 
0 
0 

low 

0 
0 
0 
0 

high 

high 

high 

high 
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Appendix 7 GOLDILOCKS: POST EXPERIMENT 
QUESTIONNAIRE 

Rankings: 

Challenge: - Beginner -Easy - Medium - Hard 

Explanation: 

Excitement: - Beginner -Easy - Medium - Hard 

Explanation: 

- Hard Fun: - Beginner 

Explanation: 

- -- 

Comments and notes: 
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Appendix 8 TURING CONDITION QUESTIONNAIRE 

Condition Questiann 
1. 

5, Aeasr rate rvkehur ym gw or clifiogtcw with %be follomt~p s t ~ t m a i t s  Th is  oond~hon was 
- -- -- ---. . - - - Qinw words betow] 
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Appendix 9 TURING POSTEXPERIMENT 
QUESTIONNAIRE 

PostExperimen t Questionnaire 
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Appendix 10 EXP. 3: CONDITION QUESTIONNAIRE 

Condition Questionilaire 
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Appendix 11 EXP. 3: POST EXP. QUESTIONNAIRE 

Post Experiment Questionnaire 
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Appendix 12 RULES FOR TRANSFORMING 
PHYSIOLOGICAL SIGNALS INTO 
AROUSAL AND VALENCE 

The following 22 rules were used in concert with the membership functions 
described in section 8.3.1 to convert GSR, HR, EMGsmiling, and EMGfrowning into 
arousal and valence: 

1. If (GSR is high) then (arousal is high) 

2. If (GSR is mid-high) then (arousal is mid-high) 

3. If (GSR is mid-low) then (arousal is mid-low) 

4. If (GSR is low) then (arousal is low) 

5. If (HR is low) then (arousal is low) 

6. If (HR is high) then (arousal is high) 

7. If (GSR is low) and (HR is high) then (arousal is mid-low) 

8. If (GSR is high) and (HR is low) then (arousal is mid-high) 

9. If (EMGfrown is high) then (valence is very low) 

10. If (EMGfrown is mid) then (valence is low) 

11. If (EMGsmile is mid) then (valence is high) 

12. If (EMGsmiIe is high) then (valence is very high) 

13. If (EMGsmile is low) and (EMGfiown is low) then (valence is neutral) 

14. If (EMGsmile is high) and (EMGfrown is low) then (valence is very high) 

15. If (EMGSmile is high) and (EMGfrown is mid) then (valence is high) 

16. If (EMGsmile is low) and (EMGfiown is high) then (valence is very low) 

17. If (EMGsmile is mid) and (EMGfrown is high) then (valence is low) 

18. If (EMGsmile is low) and (EMGfrown is low) and (HR is low) then (valence is 
low) 

19. If (EMGSmile is low) and (EMGfrow, is low) and (HR is high) then (valence is 
high) 

20. If (GSR is high) and (HR is mid) then (arousal is high) 

21. If (GSR is mid-high) and (HR is mid) then (arousal is mid-high) 

22. If (GSR is mid-low) and (HR is mid) then (arousal is mid-low) 
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Appendix 13 RULES FOR TRANSFORMING AROUSAL 
AND VALENCE INTO FIVE EMOTIONAL 
STATES 

The following 67 rules were used in concert with the membership functions described 

in section 8.4.1 to convert arousal and valence into boredom, challenge, excitement, 

frustration, and fun: 

1. If (arousal is not verylow) and (valence is midHigh) then (fun is low) 

2. If (arousal is not low) and (valence is midHigh) then (fun is low) 

3. If (arousal is not verylow) and (valence is high) then (fun is medium) 

4. If (valence is veryHigh) then (fun is high) 

5. If (arousal is midHigh) and (valence is midlow) then (challenge is low) 

6. If (arousal is midHigh) and (valence is midHigh) then (challenge is low) 

7. If (arousal is high) and (valence is midlow) then (challenge is medium) 

8. If (arousal is high) and (valence is midHigh) then (challenge is medium) 

9. If (arousal is veryHigh) and (valence is midlow) then (challenge is high) 

10. If (arousal is veryHigh) and (valence is midHigh) then (challenge is high) 

11. If (arousal is midlow) and (valence is midlow) then (boredom is low) 

12. If (arousal is midlow) and (valence is low) then (boredom is medium) 

13. If (arousal is low) and (valence is low) then (boredom is medium) 

14. If (arousal is low) and (valence is midlow) then (boredom is medium) 

15. If (arousal is midlow) and (valence is verylow) then (boredom is high) 

16. If (arousal is low) and (valence is verylow) then (boredom is high) 

17. If (arousal is verylow) and (valence is verylow) then (boredom is high) 

18. If (arousal is verylow) and (valence is low) then (boredom is high) 

19. If (arousal is verylow) and (valence is midlow) then (boredom is high) 

20. If (arousal is midHigh) and (valence is midlow) then (frustration is low) 

21. If (arousal is midHigh) and (valence is low) then (frustration is medium) 

22. If (arousal is high) and (valence is low) then (frustration is medium) 

23. If (arousal is high) and (valence is midlow) then (frustration is medium) 
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24. If (arousal is midHigh) and (valence is verylow) then (frustration is high) 

25. If (arousal is high) and (valence is verylow) then (frustration is high) 

26. If (arousal is veryHigh) and (valence is verylow) then (frustration is high) 

27. If (arousal is veryHigh) and (valence is low) then (frustration is high) 

28. If (arousal is veryHigh) and (valence is midlow) then (frustration is high) 

29. If (valence is verylow) then (fun is veryLow)(challenge is verylow) 

30. If (valence is low) then (fun is veryLow)(challenge is verylow) 

31. If (valence is high) then (challenge is veryLow)(boredom is 
veryLow)(frustration is verylow) 

32. If (valence is veryHigh) then (challenge is veryLow)(boredom is 
veryLow)(frustration is verylow) 

33. If (valence is midHigh) then (boredom is veryLow)(frustration is verylow) 

34. If (arousal is verylow) then (challenge is veryLow)(frustration is verylow) 

35. If (arousal is low) then (challenge is veryLow)(frustration is verylow) 

36. If (arousal is midlow) then (challenge is veryLow)(frustration is verylow) 

37. If (arousal is midHigh) then (boredom is verylow) 

38. If (arousal is high) then (boredom is verylow) 

39. If (arousal is veryHigh) then (boredom is verylow) 

40. If (arousal is verylow) and (valence is midHigh) then (fun is verylow) 

41. If (arousal is low) and (valence is midHigh) then (fun is verylow) 

42. If (arousal is verylow) and (valence is high) then (fun is low) 

43. If (valence is midlow) then (fun is verylow) 

44. If (arousal is verylow) and (valence is high) then (boredom is low) 

45. If (arousal is low) and (valence is midHigh) then (boredom is low) 

46. If (arousal is verylow) and (valence is rnidHigh) then (boredom is medium) 

47. If (arousal is veryHigh) and (valence is verylow) then (challenge is medium) 

48. If (arousal is veryHigh) and (valence is veryHigh) then (challenge is medium) 

49. If (arousal is high) and (valence is low) then (challenge is low) 

50. If (arousal is high) and (valence is high) then (challenge is low) 

51. If (arousal is veryHigh) and (valence is low) then (challenge is high) 

52. If (arousal is veryHigh) and (valence is high) then (challenge is high) 

53. If (arousal is rnidHigh) and (valence is midHigh) then (excitement is low) 

54. If (arousal is high) and (valence is midHigh) then (excitement is medium) 

55. If (arousal is high) and (valence is high) then (excitement is medium) 

56. If (arousal is midHigh) and (valence is high) then (excitement is medium) 

57. If (arousal is veryHigh) and (valence is midHigh) then (excitement is high) 
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58. If (arousal is veryHigh) and (valence is high) then (excitement is high) 

59. If (arousal is veryHigh) and (valence is veryHigh) then (excitement is high) 

60. If (arousal is high) and (valence is veryHigh) then (excitement is high) 

61. If (arousal is midHigh) and (valence is veryHigh) then (excitement is high) 

62. If (arousal is midlow) then (excitement is verylow) 

63. If (arousal is low) then (excitement is verylow) 

64. If (arousal is verylow) then (excitement is verylow) 

65. If (valence is verylow) then (excitement is verylow) 

66. If (valence is low) then (excitement is verylow) 

67. If (valence is midlow) then (excitement is verylow) 
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Appendix 14 Em 3: AV SPACE GRAPHS 

Unpleasant 

Arousal Valence Space-Pair5-computer 
Manual Approach 

Stress- Hiah Arousal 

Feelings 

start TIME PASSING 

Depression Sleepiness 

Arousal Valence Space-Pair5-computer 
Fuzzy Logic Approach 

Stress Hiah Arousal 

Unpleasant Feelings- 

TIME "ISSING end 

Excitement 

Pleasant Feelings 

Relaxation 

Excitement 

Pleasant Feelings 

Depression Sleepiness Relaxation 
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Arousal Valence Space-Pairs-friend 
Manual Approach 

Stress Hiah Arousal -Excitement 

Unpleasant Feelings - 

start 

k-.. - e. = - --I-=- 

- Pleasant Feelings 

end 

Depression Sleepiness Relaxation 

Arousal Valence Space-Pair5-friend 
Fuzzy Logic Approach 

Stress Hiah Arousal 

Unpleasant Feelings - 

start 

L 

Depression Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 
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Arousal Valence Space-Pairfi-stranger 
Manual Approach 

Stress Hiah Arousal Excitement 

4 Pleasant Feelings 

I I 

Depression Sleepiness Relaxation 

Arousal Valence Space-Pairs-stranger 
Fuzzy Logic Approach 

Stress 

TtLA5 PASSING end 

L 

Depression Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 
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Arousal Valence Space-Pair1 4computer 
Manual Approach 

Stress 

Unpleasant Feelings t 
TIME PASSING 

Excitement 

Pleasant Feelings 

Depression Sleepiness Relaxation 

Arousal Valence Space-Pair1 komputer  
Fuzzy Logic Approach 

Stress Hiah Arousal 

Unpleasant Feelings - 

Depression Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 
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Stresc 

Unpleasant Feeling! 

Arousal Valence Space-Paira14-friend 
Manual Approach 

Hiah Arousal 

TlMF PASSING end 

I 

Depression Sleepiness 

Stres: 

Unpleasant Feelings 

Arousal Valence Space-PairBl4-friend 
Fuzzy Logic Approach 

Hiah Arousal 

Excitement 

Pleasant Feelings 

Depression Sleepiness 

Relaxation 

Excitement 

Pleasant Feelings 

Relaxation 
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Arousal Valence Space-Pairl4-stranger 
Manual Approach 

Stress Hiah Arousal Excitement 
I 

dart  

Pleasant Feelings 

I d 
Depression Sleepiness Relaxation 

Arousal Valence Space-Pair1 &stranger 
Fuzzy Logic Approach 

Stress Hiah Arousal 

Unpleasant Feelings - 

TIME PASSING end 

Depression Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 
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Arousal Valence Space-Pair1 Ci-computer 
Manual Approach 

Stress Hiah Arousal 

Unpleasant Feelings I 

Depression Sleepiness 

Stres! 

Unpleasant Feeling! 

Arousal Valence Space-Pair1 6-computer 
Fuzzy Logic Approach 

Hiah Arousal 

Depression Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 

Excitement 

Pleasant Feelings 

Relaxation 
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Arousal Valence Space-Pair1 6-friend 
Manual Approach 

Stress 

Unpleasant Feelings 

Excitement 

Pleasant Feelings 

I start TIME PASSING end 

I I ,  
Depression Sleepiness Relaxation 

Arousal Valence Space-Pair1 6-friend 
Fuzzy Logic Approach 

Stress Hiah Arousal 

Unpleasant Feelings- 

I 

Depression Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 
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Stress 

Unpleasant Feelings 

Arousal Valence Space-Pair1 &stranger 
Manual Approach 

Hiah Arousal 

end 

I 

I 

Excitement - 

Pleasant Feelings 

start 

Depression Sleepiness Relaxation 

Arousal Valence Space-Pair1 &stranger 
Fuzzy Logic Approach 

Stress Hiah Arousal 

Unpleasant Feelings - 

start 
m 

L 

Depression Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 
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Arousal Valence Space-Pair1 7-computer 
Manual Approach 

Stress Hiah Arousal Excitement 

Unpleasant Feelings I 
end - . 

Depression Sleepiness Relaxation 

- 

Arousal Valence Space-Pair1 7-computer 
Fuzzy Logic Approach 

Stress 

Pleasant Feelings 

Unpleasant Feelings _ 

Depression Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 
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Arousal Valence Space-Pair1 7-friend 
Manual Approach 

Stress, Hiah Arousal 

Unpleasant Feelings - 

end I start 

I 

Depression Sleepiness 

Unpleasant Feelings I 

Arousal Valence Space-Pair1 7-friend 
Fuzzy Logic Approach 

Hiuh Arousal 

1" "1 PASSING end 

1 

Depression Sleepiness 

Zxcitement 

'leasant Feelings 

ielaxation 

Excitement 

Pleasant Feelings 

Relaxation 
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Arousal Valence Space-Pair1 7-stranger 
Manual Approach 

Excitement 

Unpleasant Feelings I 
I start TIME P~SSING 

I -- 

- Pleasant Feelings 

Depression Sleepiness Relaxation 

Arousal Valence Space-Pair1 7-stranger 
Fuzzy Logic Approach 

Stress Hiah Arousal 

Unpleasant Feelings t 
Depression Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 
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Stres: 

Unpleasant Feeling: 

Arousal Valence Space-Pair1 9-computer 
Manual Approach 

Hiah Arousal 

TlhAE PASSING end 

Excitement 

'leasant Feelings 

Depression Sleepiness Relaxation 

Stres! 

Unpleasant Feeling! 

Arousal Valence Space-Pair1 9-computer 
Fuzzy Logic Approach 

Hiah Arousal 

start 
m 

Depression 
I 

snd 

Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 
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Arousal Valence Space-Pair1 9-friend 
Manual Approach 

Stress Excitement 

Unpleasant Feelings - 

I 

Depression 

Pleasant Feelings 

TIME DASSING end I 

Sleepiness Relaxation 

Arousal Valence Space-Pair1 9-friend 
Fuzzy Logic Approach 

Stress Hiah Arousal 

Unpleasant Feelings I 
L 

Depression 

end 

Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 
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Arousal Valence Space-Pairl:9-stranger 
Manual Approach 

Stress Hiah Arousal 

Unpleasant Feelings - 

! 

Depression 

and 

Sleepiness 

Arousal Valence Space-Pair1 !%stranger 
Fuzzy Logic Approach 

Stress Hiah Arousal 

Unpleasant Feelings t 

ASSING end 
I 

Excitement 

Pleasant Feelings 

Relaxation 

Excitement 

'leasant Feelings 

Depression Sleepiness Relaxation 
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Arousal Valence Space-Pair20-computer 

Stress 

Unpleasant Feelings 

Manual Approach 
Hiah Arousal Excitement 

Pleasant Feelings 

I 

Depression Sleepiness Relaxation 

Arousal Valence Space-Pair20-computer 
Fuzzy ~ o g i c  Approach 

Hiah Arousal 

Depression Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 
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Stress 

Unpleasant Feelings 

Arousal Valence Space-Pair20-friend 
Manual Approach 

Hiah Arousal 

TIME PASSING end - 

Excitement 

Pleasant Feelings 

start , . I 
Depression Sleepiness Relaxation 

Arousal Valence Space-Pair20-friend 
Fuzzy Logic Approach 

Stress 

Unpleasant Feelings. 

end 

Excitement 

Pleasant Feelings 

Depression Sleepiness Relaxation 
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Arousal Valence Space-Pair20-stranger 
Manual Approach 

Stress Hiah Arousal 
-- x 

_ I -  

Unpleasant Feelings - 

I 

Depression Sleepiness 

Arousal Valence Space-Pair2Q-stranger 
Fuzzy Logic Approach 

Stress 

Unpleasant Feelings - 

TIME PASSINc snd 
I - 

Depression Sleepiness 

Excitement 

Pleasant Feelings 

Relaxation 

Excitement 

Pleasant Feelings 

Relaxation 


