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Abstract

Let F be a field, f,g € Fiz] with m = degf > degg > 0. Our problem is to find
a rational function n/d € F(r) where n/d = g mod f, ged(f,d) = ged(n,d) = 1 and
degn 4 degd < m. If degree bounds N > degn and D > degd satisfying N + D < m are
known, then the problem is solved by the Extended Euclidean Algorithm in F[z]. If degree
bounds are not known it is still possible to find n/d with high probability. One way is to
use maximal quotient rational function reconstruction. We have implemented the algorithm
for Flz] = Zylx], with p a prime. To speed up the algorithm, our implementation uses
Karatsuba’s algorithm for multiplication in Z,[«] and a Fast Extended Euclidean Algorithm.
As an application, we have modified Brown's modular GCD algorithm to use the maximal
quotient algorithm. The modification reduces the number of evaluation points needed by

the algorithm.
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Fast Extended Fuclidean Algorithm, Rational Reconstruction, Rational Function Interpo-

lation
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Chapter 1

Ihtroduction

Rational reconstruction has become an important tool with many applications inn computer
algebra. It enables the algorithms to recover rational numbers from their images modulo a
large integer (a prime, a prime power or product of several primes) or to recover rational
functions from their images modulo a given polynomial.

Let F be a field. Given a rational function n/d € F(z) and a polynomial m € Flx]
where degm > 0 and ged(m, d) = ged(n,d) = 1, we can easily compute u € F[z] such that
u = n/d mod m. The rational function reconstruction algorithm presents a solution for
the reverse problem. That is, for given polvnomials m,u € F|x] where 0 < degu < degm it
outputs a rational function n/d € F(z) where n/d = v mod m and ged(d, m) = ged(n, d) =
1.

The rational function reconstruction problem does not necessarily have a unique solution.
The Extended Euclidean Algorithm finds all solutions satisfying degn -+ degd < degm.
However, it is not hard to see that there is only one solution when degree bounds N > degn

and D > degd satistying N + D < degm are given.
Example 1.1. Let F' = Z7. We are given
) =57f2)=2738) =1
where f € Zr[x]. We want to find a rational function n/d € Z(x) such that

n{a) o
d(a) = f(a); d(a) #0, ac {17273}'

Using polynomial interpolation we can easily compute u = 2 +z +3 satisfying u(a) = f(a),
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and rewrite the above problem in the form of the following rational function reconstruction
problem:
Given m,u € Zy[z] with m = (z — 1)(x — 2)(z — 3) and u = 2% + = + 3, find a rational

function n/d € Z7(x) such that
n/d=u mod m, gcd(m,d)=1.

Let N =1 and D = 1 be respectively degree bounds for the numerator and the de-
nominator of the solution. Using the Extended Euclidean Algorithm we get the following

solutions
ni _z*4+z+3 ng 6r+6 ng 3

dy 1 " dy oz ) dg 2241
Among these 3 solutions only ny/ds satisfies the degree bound requirement, that is, deg ny <
1 and degdy < 1.

If degree bounds N, D are not available we can use either Wang’s algorithm (Algo-

rithm 3.1) or the maximal quotient rational reconstruction algorithm (Algorithm 3.3). Both
of these algorithms assume an external mechanism exists which enables us to check whether
or not the output of the algorithin is the one we were expecting. In this example we assume
that this mechanism gives us u(e;) with o; € Z~ a new evaluation point.

The output of Wang’s algorithm with inputs m = (z — 1)(z — 2)(z — 3),u = 2% + z +3
would be (6z + 6)/z. Assuming u(4) = 5 we have m = (2 — 1)(z — 2)(z — 3)(z — 4) and
u = 42° + 522 + 3x. This time Wang’s algorithm returns (22 + 2)/(z +1). Adding another
point (5,1) or u(5) =1 and calling Wang’s algorithm with inputs m = (x — 1)(z — 2)(z —
3)(z — 4)(z — 5) and u = dz* + 62° + 522 + 62 + 5 we get the same solution. At this point

we require an external mechanism to check whether (z2+ 1)/(z + 1) is the correct solution.

Background

In 1981, Wang [20] presented a new algorithm for the partial fraction decomposition of
rational functions in Q(z). To get a more efficient algorithm he suggested that one first
solve the problem modulo a suitably selected prime and then lift the problem p-adically
to get the desired solution over Q(z). When devising this algorithm he encountered the
rational number reconstruction problem and developed an algorithm that enabled him to
reconstruct rational coefficients of a polynomial in Q[z] from their images modulo m = p¥,
a prime power. The algorithm gets m,u € Z as input and outputs a rational number n/d

satisfying n/d = u mod m if a solutiou exists.
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Wang showed, by adding the requirement 0 < |n|,d < /m/2, or equivalently m >
2(max(|n|,d))?, that the algorithm uniquely determines the solution if it exists. In fact,
Wang’s algorithm is the Extended Euclidean Algorithm equipped with a different stopping
condition. Wang did not provide any proof as to the correctness of his algorithm in the
original paper, however in [19] Wang, Guy and Davenport proved that if there is a solution,
it will be found by his algorithm.

Since then, Wang’s algorithm has been used in many contexts including polynomial
factorization (see [21] and [4]), Grébner basis computations over @ (see [16] and [14]),
polynomial interpolation (see [7]), solving linear systems over Q (see [13]) and polynomial
GCD computation (see [5] and {17]).

Monagan in [11] presented a more efficient solution for the rational reconstruction prob-
lem, which he called Mazimal Quotient Rational Reconstruction. His algorithm also runs
the Extended Euclidean algorithm on inputs m,u and outputs the rational number r;/t;
where ¢ represents the index of the maximal quotient g; appearing in the Euclidean algo-
rithm. He introduced input T to the algorithm and claimed that if we determine a good
value for T such that m > |n|dT then with high probability the algorithm outputs n/d for
g the maximal quotient. He also stated that his algorithm can be applied to the rational
function reconstruction problem over a finite field with p elements.

Wang’s algorithm can be easily modified to solve the problem of rational function re-
construction as well. Von zur Gathen and Gerhard in [18, sec. 5.7] show how to use the
Extended Euclidean Algorithm to solve the rational function reconstruction problem. The
algorithm in addition to polynomials m and u, gets a third input k € {0,...,degm} and
outputs n, d such that degn < £ and deg d < deg'm — k. The problem with this algorithm is
that it needs the degree bound % for the numerator and hence, deg m —k for the denominator
which is not always available in advance.

In this thesis we present a fast algorithm for the rational function reconstruction problemn
which is based on Monagan’s maximal quotient algorithm. We show that if degm > degn+
degd + 1, then with high probability the algorithm outputs n/d. The advautage of this
algorithm is that it requires no degree bounds as in [18] and it requires approximately one
more point than the minimum necessary, i.e., deg n+degd+1 points in total, to reconstruct
n/d.

Let m; = szl(g: — «;) where o; € F and degm; = degn + degd + 1. To interpolate

n/d we need at least j points, hence, m; is the smallest polynomial in terms of degree for
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which the rational function reconstruction can succeed in recovering n/d. Our algorithm

has the following properties:

e for my with & > j our algorithm outputs n/d with high probability, such that we need

approximately one more evaluation point than the minimum necessary,
o if degmy > 2(degn + degd) then our algorithm outputs n/d with probability 1, and
o if £ < j the algorithm fails with high probability.

Similar to any rational reconstruction algorithm, our algorithm is based on the Extended
Fuclidean Algorithm. In order to be more efficient it uses the Fast Extended Euclidean
Algorithm which has time complexity O(M(n) log n), where M(n) denotes the number of field
operations required to multiply two polynomials of degree less than n. For fast polynomial
multiplication, we have implemented Karatsuba’s algorithm which runs in O(nl"g2 3.

To show one of the applications of our algorithm we have implemented an algorithm for
computing the GCD of two multivariate polynomials. We have modified Brown’s modular
GCD algorithm to use the maximal quotient algorithm. This not only solves the leading
coeflicient problem in this algorithm but also reduces the number of trial division attempts
to 1 with high probability. Moreover, the number of evaluation points required to recover

the coefficients of the GCD is reduced.

Outline

In Chapter 2 we will explain three fast polynomial arithmetic operations, namely fast poly-
nomial multiplication, the Fast Extended Euclidean Algorithm (FEEA) and fast polynomial
interpolation. In order for the FEEA to be fast, one must implement the fast multiplication
algorithm carefully. In Section 2.1 we discuss Karatsuba’s multiplication algorithm and how
it can be implemented so that it only uses a linear amount of memory with respect to the
size of input polynomials. In Section 2.2 we explain the Extended Euclidean Algorithm and
a fast version of it which is going to be the main part of the Rational Function Reconstruc-
tion atgorithm. “Modern Computer Algebra” by von zur Gathen and Gerhard [18] is the
main reference for the material discussed in this chapter.

In Chapter 3 we will explore the rational function reconstruction problem. First we
describe the problem and then we present Wang’s algorithm. Next our algorithm is in-

troduced. For a fast solution, we show how to modify the FEEA to do maximal quotient
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rational reconstruction.
Brown’s modular algorithm for multivariate GCD computation is described in Chapter 4.

We show how we can use rational function reconstruction presented in Chapter 3 to make
Brown’s algorithm work more efficiently. We show this modification reduces the number of

evaluation points needed by the algorithm.

In the last chapter, we give a summary of what we have done in this thesis.



Chapter 2
Fast Polynomial Arithmetic

In this chapter we will mainly explore Schénhage’s Fast Extended Euclidean Algorithin.
We refer to a polynomial’s degree plus one as the size of the polynomial. For univariate
polynomials of size at most n over a field, this algorithm finds all of the quotients and
a single remainder r (which is the GCD) together with corresponding values of s and ¢,
satisfying as + bt = r, using O(M(n)logn) field operations. M(n) denotes the number of
field operations required to multiply two univariate polynomials of size n.

In the first section of this chapter we will introduce’Karatsuba’s algorithm as a fast
multiplication algorithm. In the second section we will present the Fast Extended Euclidean

Algorithm and apply it to solve the polynomial interpolation problem fast.

2.1 Fast Polynomial Multiplication

The polynomial multiplication algorithms which are asymptotically faster than the classical
O(n?) method are considered to be fast polynomial multiplication algorithms. There are
two well-known fast multiplication algorithms, namely Karatsuba’s [8] algorithm and an
FFT*-based multiplication algorithm. In the case of univariate polynomials of size n, the
classical method uses O(n?) steps to compute the product, while Karatsuba’s algorithm has
a time complexity of O(n'®®) and the FFT-based algorithm costs O(nlogn). The FFT-
based algorithm is asymptotically the fastest known algorithm for multiplication but it is

more complicated to implement. Also Karatsuba’s algorithm is faster than the FFT up to a

*Fast Fourier Transform
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certain size, e.g., in MAGMA, Karatsuba’s algorithm for integer multiplication is faster than

the FFT for integers of size up to 50,000 bits.

2.1.1 Karatsuba’s Multiplication Algorithm

Let R be a ring and a,b € R[z] of size n. The classical multiplication method uses n?

multiplications and (n — 1)? additions in R to compute ab. Yet, we can compute the
product faster if we use Karatsuba’s multiplication algorithm.
For simplicity assume that n = 2% for some & € N. Split a and b into two polynomials

of size n/2:

a = ayx™? +ay (a1,a2 € R[z]) (2.1)
b=byz™? +b; (b1,bs € Rlz]). (2.2)

Then the product ab can be written as

ab = agboz™ + (a1bs + a;gbl):v”/2 +a1bp
= aoboz” + ((a1 + ag)(b1 + bz) —aib — azbg)l‘nm + a1b. (2.3)

Relation (2.3) can be used for computing ayb1, asbs and (a; + a2)(by + b2) recursively. This
results in Algorithm 2.1.

Figure 2.1 illustrates Karatsuba’s algorithm step by step. As shown in this figure,
computing the product ab requires three multiplications and two additions on polynomials

of size n/2, two subtractions on polynomials of size n — 1 and one addition of size n — 2.
Remark 2.1. Note that there is a “gap” between c¢; and cza™.

Let T'(n) denote the cost of multiplying two polynomials of size n. The following table

shows the cost of each step of Algorithm 2.1 as illustrated in Figure 2.1.

Step | 1 | 2 3 4 5
Cost | — | — | 3T(n/2)+n {2(n—1){n—2
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ALGORITHM 2.1: Karatsuba’s Algorithm for input polynomials of size n = 2%

Input: Polynomials a,b € R[x] of size n = 2, where R is a ring and dega = degbh =

n—1.

Output: Polynomial ¢ = ab € Rlz].

1.

ifn=1thenreturna-bec R

. let a = aoxz™? 4 a; and b = byz™? + by where a1, az, b1, by € Rlx] are of size n/2

. compute ¢; = a1by, ¢ = (a1 + a2)(by + be) and ¢3 = azbs by recursively applying

the algorithm

. compute cg = ¢ — ¢1 — c3

. return ¢ = c3z™ 4 c2z™? + 1

Assuming T'(1) = 1 we have the following recurrence relation:

Hence

T(n)=3T(n/2)+4n -4
= 32T(n/2%) + 3(4(n/2) — 4) + 4n — 4

k—1
=35T(n/2") + 4> ((3/2)'n — 3")
i=0

= 3*T(1) + 8n((3/2)F — 1) — 2(8* — 1)
= 7nlo%23 _ 8p 4 2.

T(n) € O(n'°823) = O(n!*%%).
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Step
2)

Operation

a=asx™? +aq

b= bgl‘n/2 + b1

a =a;+ap

b =b+by
d=dl

c1 = arb;
c3 = ashy

Co :C/—Cl — C3
n/2

CT

czz™

czz™ + cx™? + ¢

Cost

n/2

n/2

T(n/2)

T(n/2)

T(n/2)

2(n—1)

3
|
)

n—2 0
Ll | |
n—2 0
L] [ ]
n—2 0
L1 L
n—2 0
r - [ ]
n/2
[ ]
L
n/2
e {, 0

C3T

']

n n—2

Figure 2.1: Steps of Karatsuba’s nmltiplication algorithm
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In case n is not a power of 2 but a and b are still of equal size, we can assume that they
are both of size 2/°%2"! with some top coefficients equal to zero. However, this may not be
efficient if n is only slightly larger than a power of 2. Alternately, a and b can be divided
into sub-polynomials of size n; = [n/2] and ny = |n/2]. It is obvious that if n is even then
n1 = ng = n/2 and otherwise n; = ng + 1. Assuming we split the polynomials in a way that

the lower half is of size n; and the upper half is of size ng, we will have
a=ax" +a1 (a1,az € R[z])
b=box™ + b (bl, by € R{IIJ])

and

ab = (12b2$2n1 + (albg -+ (I,le).’linl -+ a1b1
= a2b2x2"1 -+ ((a1 -+ ag)(bl -+ bg) —aib — agbg)x"l +ai1b;. (2.4)
Algorithm 2.1 can easily be modified to compute the product of two input polynomials of
the same size, not necessarily a power of 2, without affecting the asymptotic complexity.

We next consider the case where input polynomials are not of the same size. Algo-

rithin 2.2 describes Karatsuba's multiplication algorithm in this case.

ALGORITHM 2.2: Karatsuba’s Algorithm for polynomials of different sizes

Input: Polynomials a,b € R[x] where R is a ring, m = degb + 1,
n=dega+l=gm-+r, (r<m)andn>m
Output: Polynomial ¢ = ab € R[z].

1. let @ = agz™7 + aq_ixm(q_l) + ...+ a1z™ + ap, where all a;’s are in R[z] and of
size m except a, which is of size 7

2. compute ¢; = a;b for 0 < 7 < ¢ using Algorithm 2.1 (after a small modification),
and ¢, = agb by recursively calling Algorithm 2.2.

3. return ¢ = g™ + cq_lz'"’(q_l) + ... +cz™+ o

Let a and b be two polynomials of size n and m respectively. Without loss of generality

assume n > m. Let ¢ and r be respectively the quotient and the remainder of dividing n by
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m, i.e. n=gm+r {r <m). In the first step of Algorithm 2.2 polynomial a is divided into

chunks of size at most m namely a;s as follows
a= aquq + aq_la:m(q_l) +...+ax™ + ag.

Thus
ab = (agh)z™ + (ag_1b)™ TV & 4 (a16)z™ + (aob).

Polynomial b and all a;’s except a4 are of size m. Thus, Algorithm 2.1 can be applied for
computing ¢; = a;b (0 <4 < ¢). But a4 and b are of different sizes so to compute ¢, = agb
we recursively use Algorithm 2.2 with b and a4 as inputs. In the last step'of Algorithm 2.2

we perform ¢ additions and obtain the product
c=cx™ 4 cq_larm(q_l) + .o ™+ .

In practice for small input polynomials the classical method performs better than Karat-
suba’s algorithm. Therefore, a hybrid impleinentation which makes use of both algorithms
is the best choice. We find a cutoff degree above which we use Karatsuba’s algorithm and
below that the classical method is applied. The cutoff degree can be computed by running
both algorithms on random input polynomials of increasing size. We can easily incorporate
this change in Algorithms 2.1 and 2.2.

Figure 2.2 shows the timings of Karatsuba’s algorithm (hybrid implementation) on two
random polynomials of degree 1500 with the cutoff degree changing from 10 to 100. As

illustrated, the best cutoff degree is 55.

n | Karatsuba | Classical
128 0.34 0.38
256 0.98 1.40
512 2.93 5:40

1024 8.93 21.62
2048 26.48 84.43
4096 79.78 345.67
8192 245.04 | 1375.42

Table 2.1: The classical and Karatsuba’s multiplication algorithm timings (in ms)

The data in Table 2.1 includes the timings, in milliseconds, we gathered for our Java

implementation of Karatsuba’s algorithm and the classical multiplication method over Zy[z],
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Time {ms)
b &
[a3] ch
-"'T"A
J /__‘_..«»—'-‘"‘“

. -

> o

13 o
|4

Figure 2.2: Timings (in ms) of Karatsuba’s algorithm for different cutoff degrees

where n denotes the polynomial degree and p is a 15 bit prime. The timings for Karatsuba’s
algorithm increase by a factor close to 3 as the degree doubles which confirms that our

implementation of Karatsuba’s algorithin is of time complexity O(n!°823).

2.1.2 Memory Requirements of Karatsuba’s Algorithm

A naive implementation of Karatsuba’s algorithm makes use of some extra storage in each
recursive call to the algorithin. Let A (n) denote the total amount of memory required
to multiply polynomials a and b of size n using Karatsuba’s algorithm, where n = 2% for
some k € N. The following table displays the amount of memory used in each step of

Algorithm 2.1.

Step 1§ 2 3 4 5
Memory | — | 2n | 3M(n/2)+n |{n—11|2n —1]

Note that M(n) does not include the memory required to store a and b which is itself 2n
(step 2). Assuming M (1) = 1 we will have
Mn)=n/24+n/2+3Mn/2)+n~-1+2n—1

= 8nlo823 — 8p + 1 € O(nloe2?),
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=2 > e Split @ and b into subpolynomials of
1 : : a Q
() b: loa] 0] @ [az] o] size ny = [n/2] and ne = |n/2].
M(n)
@) s e o s oo o s oo s m e nnnes ’l Allocate M (n) units of storage for
1 computing ab.
2n; — 1 ™ ny , )
b Compute a’ = a1 + a2 and ¥ = by + bs.
1 ] i3 N4 / 7
(3) L e _I_ — g_b_ — ,, b | a Compute a’b’ recursively.
M(ny)
Lol Move @'’ to the end of the allocated
4) ' dy ] ! [ aby [ memory and then compute a1b;
-0- _]\_/I_(;LI)_ R recursively.
2n0 — 1
+—
(5) gy ! | @by | aby | Compute agb; recursively.
——————————— —————»
277,1 -1 M(n2) 277,1
(6) : c [ | abe 0| ahi ] Compute ¢ = a'b’ — a1 — asbs
L 2n—1
(7) - I‘ 2 'I Obtain ab by computing asbsz?™ +
'4______________________a _________ 5 cx™ 4 a1by
M(n)

Figure 2.3: Memory requirements of Karatsuba’s algorithm in our implementation

Therefore, the total amount of memory required to compute ab using Karatsuba’s algorithm

is of order O(n'°823). In 1993 Maeder in [9] suggested an “in place” implementation for
Karatsuba’s integer multiplication algorithm. He gave upper and lower bounds for the
amount of auxiliary storage required.

We used the same method in our implementation of Karatsuba’s algorithm for poly-
normial multiplication. In our Java implementation the total amount of memory required
for multiplying the input polynomials—taking into account the memory required for per-
forming intermediate calculations—is computed and allocated in advance, and passed as a
parameter to the method implementing the multiplication algorithm.

Let a and b be two polynomials of the same size which is not necessarily a power of 2.

Figure 2.3 illustrates the order in which the computations must be done so that the number



CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 14

of necessary copies is minimized and the results are put in their final location. We show
below that by implementing the algorithm “in place” only 4n words of memory are required
which is linear in the size of the input polynomials.

In Figure 2.3 the total amount of memory required for any multiplication is marked by
dashed lines and arrows, while the required amount of memory to keep the result only, is
marked by solid lines. Row (5) shows that it is sufficient to allocate totally 2n; + M (na) +

2n1 — 1 memory cells for coniputing ab, in other words

M(|[n/2]) +4[n/2] -1, n>3;
M(n)=1< 3, n=2; (2.5)
1, n=1

We claim 4n is an upper bound for M(n) and prove our claim by strong induction. So

we must show that the following inequality holds for all integer values of n:
M(n) < 4n. (2.6)

The basis is to verify that M (1) = 1 < 4 and M(2) = 3 < 8. Now we must prove that if
(2.6) holds for all ¥ <n —~ 1, it also holds for £ = n,

M(n)=M(ny)+4n1 — 1 <4dno+4n; —1=4dn—1<4n. O

2.2 The Euclidean Algorithm

The Euclidean algorithm finds the greatest common divisor of two integers or two polyno-
mials. However, it has a number of nice properties and applications which go far beyond
that of just computing greatest conimon divisors.

In Section 2.2.1 we describe how the Classical and the Extended Euclidean Algorithms
work and investigate some properties of the latter algorithm. Then in Section 2.2.2 we will
explore the Fast Extended Euclidean Algorithm, also called Half-GCD. Given two polynomi-
als of size n with coefficients from a field F, the Extended Euclidean Algorithm uses O(n?)
field operations to compute their greatest common divisor. However, the fast Euclidean
algorithm computes the same GCD in O(M(n)logn) field operations, where M(n) denotes
the numnber of field operations required to multiply two univariate polynomials of size n.
Hence using Karatsuba’s multiplication the GCD can be computed using O(nl9823logn)

field operations.
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2.2.1 The Extended Euclidean Algorithm

In Chapter 3 we will introduce an algorithm for reconstructing a rational function from
its image modulo a univariate polynoinial, the basic component of which is the Extended
Euclidean Algorithm. The Euclidean Algoritlim is an effective algorithm for computing the

GCD in any Fuclidean domain.

Definition 2.2. An integral domain! R with a valuation function v : R\ {0} - N U {0} is

a Buclidean domain if
1. for all a,b € R\{0} we have v(ab) > v(a),

2. for all @,b € R with b = 0, we can divide a by b to obtain elements ¢, € R such that
a = bq + r where either r = 0 or v(r) < v(b).

Polynoinials ¢ and r are called the quotient and the remainder, respectively, and the
valuation function v is a Fuclidean norm function on R. For example, if F’ is a field then

Flz], the ring of univariate polynomials over F, is a Euclidean domain with v(a) = dega.

Definition 2.3, Let R be a ring and a,b, g € R. g is a greatest common divisor or a GCD
of a and b if

(i) gla and g¢b.
(i1) if ¢Ja and ¢|b then clg, for all ¢ € R.

In general the GCD of a and b is not unique, but all their GCDs are associates’. Al-
gorithm 2.3 describes how the classical Euclidean algorithm computes the GCD of two
elements in a Euclidean domain. It can easily be proved that the output of this algorithm
is a GCD of the inputs. Thus, the GCD is simply the last nonzero element of the remainder

sequence generated by Algorithm 2.3.

TAn Integral Domain is a commutative ring which satisfies the Cancelation Law.

¥The elements a and b are associate if ¢ = ub for u € R and u has a multiplicative inverse in R.
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ALGORITHM 2.3: Classical Euclidean Algorithm (EA)

Input: a,b € R, where R is a Euclidean domain.
Output: Greatest common divisor of a and b.

1.7‘02(17 7‘1=b

2.i=1
while r; # 0 do
gi =ri—1quo 1 /* g; is the quotient of dividing r;_1 by r;. */
Ti4l = Ti—1 — Tiqi
t1=1+1

3. return r;_1.

The classical Euclidean algorithm can be readily extended so that it computes not only
g = ged(a, b), but also the elements s and ¢ satisfying sa+tb = g. Algorithm 2.4, also called
the monic Extended Euclidean Algorithm, presents the Extended Euclidean Algorithm for
the Euclidean domain Fz], with F a field. This algorithmm makes all remainders in the
remainder sequence monic, that is, to have 1 as the leading coeflicient. This results in

outputting a monic form of the GCD which is unique.

ALGORITHM 2.4: Extended Euclidean Algorithm (EEA)

Input: f, g € Fiz], where F is a field and deg f > deg g.
Output: [ € N, 7y, 5;,t; € Flz], p; € F,for 0<i<{+1,and ¢; € F[zr] for 1 <i <.

1. po=1c(f), m7o=f/po, so=1/po, to=0
pr=1c(g), r1=g/p1, s1=0, t1=1/m

2.i=1
while r; £ 0 do
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qi = Ti—1quUo T;

pi+1 = le(rio1 — ¢i;) /* for consistency we let lc(0) = 1. */
Tir1 = (Tis1 — @iTi)/ piy1

8i+1 = (Si—l - Qisi)/,ﬁi-i-l

tiv1 = (tie1 — @iti)/piv1

i=i+1

3.l=1-1
return [, 7y, 84,8, 0, for 0 <i <[+ 1,and ¢; for 1 <i <.

The elements r;, s; and ¢;, with 0 < 4 <[+ 1, are called the ith row of the Extended

Fuclidean Algorithm. For a better understanding of the algorithm consider the matrices

so to 0 1
Ry = » Q=
s1 1/pit1 —4i/pit1

in F[z]**? and R; = Q;...Q1Ro for 1 <i <. From the algorithm we have

0 Si-1 b1} & t; 7
84 t; Sit+1  tit
Qi i - " 3
Ty Ti+1

for 1 < i < [. The following lemma presents some known properties of the Extended

Euclidean Algorithm which are int the scope of this thesis.

Lemma 2.4. Let n; = degr; in the EEA for inputs f aud g. We let ro = f/1lc(f),m1 =
g/1c¢(g) and ri41 = 0. Then for 0 < ¢ < we have

(i) ny > nyy1 where i # 0,

(i) ged(f,9) = ged(rs, rit1) = 71,

S; t;
(i) Ri={ "),
Sit1 tita

o))
g Ti+1
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1)t
(v) sitiv1 — siv1ti = ——(—)—,
PO Pitl
(vi) sif +tig = ry; in particular, s;f + 19 = ged(f, 9),
(vii) ged(s;, t;) =1,
(viii) ged(rs, i) = ged(f, t;),

(ix) degs;y1 = n1 —ny, deg tir1 = ng — n; where 7 # 0.

Proof. (i) and (ii) are easy to show. (iii), (iv) and (v) are easily proved by induction on i.
(vi) follows from (iii) and (iv). (vii) follows directly from (v).

To prove (viii), we let g1 = ged(f, t;). Thus 91|(sif + t;9 = 7;) or g1] ged(ri, ¢;). On the
other hand, if we let go = ged(ry, t;), then go|r; — tig = s;f. But according to (vii) we have
ged(s;, ;) = 1 and thus go|f or go| ged(f,t;). This proves (viii).

By induction we can easily show that degs; > degs;—; for ¢ > 1, which implies that

i i
deg si+1 = deg(s;—1 — ¢;s;) = degq; + degs; = Zdegqj = Z(nj—l —nj) =n1 —n;.
j=2 =2

The proof is the same for degt;+ ;. O

Cost Analysis of the EEA

Let f,g € Flz], with F a field and deg f = n > degg = m > 0. We let n; = degr; for
0 <i <41, with riy; =0, where r;’s are monic remainders generated by Algorithm 2.4
for inputs f and g.

To compute the quotient and the remainder of a monic polynomial of degree n;_; divided
by another monic polynomial of degree n; < n;—1, we use at most n;(n;—; — n;) multipli-
cations and n;(n;_1 — n; + 1) subtractions in F. Then to obtain a monic remainder we
compute one inverse plus n;+; multiplications in F'. So the cost of computing all quotients

and monic remainders in the EEA is
4 -1
Z(Zni(m_1 —n;) +n;) + Z Tit1 (2.7)
i=1 i=1

subtractions and multiplications plus [ — 1 inversious in F'. It is obvious that the nunber of

division steps [ is bounded by m + 1. To evaluate (2.7), we consider the worst case where
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the degree drops by 1 at each step, so that n; = m —i+1for 1 <7 <[ =m+ 1. This

simplifies (2.7) to
!

2m(n —m)+m +4Zni =2mn —m.
=2
It remains to analyze the cost for computing s;11 and ¢;,11. We can multiply the monic
polynomial g; by 7, using only 2deg?; - deg ¢; + degq; operations in F. Subtracting the
product from #;_; and multiplying the result by p;rll takes another 2(degt;+1 + 1) additions
and multiplications. Thus the total number of additions and multiplications for computing
all t11's (1 < i <1)is
1
> (degqi(2degt; + 1) + 2(degtisy + 1))
i=1
{
= Z((n,;_l —n3)(2(n ~mni—1) + 1) + 2(n —n; + 1))

i=1

which simplifies to
!
3n-m)+2+ Z(4(n —m) + 44 — 3)) = 4nm — 2m? + 3n + 2.
=2
Using a similar argument as the one used for ¢; the cost of computing all s;’s is obtained

to be 2m? + 2m + n + 2. Normalizing f and g in step 1 of Algorithm 2.4 also requires two
inverses and n +m multiplications. Thus the total cost of the EEA is at most m+ 2 inverses

and 6mn + O(n) additions and multiplications in F.

2.2.2 The Fast Extended Euclidean Algorithm

In 1971 Schonhage in [15] presented a fast integer GCD algorithm with time complexity
O(nlog? nloglogn). Assuming a multiplication algorithm of time complexity O(n log?n)
is available for polynomials in F[z|, Moenck in [10] adapted Shoiihage’s algorithm into an
O(nlog® ! n) algorithm for polynomial GCD computation in F[z]. However, its correctness
was restricted to imput polynomials of the form “normal remainder sequences”. In 1992
Montgomery in his PhD thesis {12] presented a fast extended Euclidean algorithm for poly-
nomials in Zp[x] which is of O(M(n)logn). Maple v. 10, Mathematica v. 4.0 and Magma
v. 2.10 have fast integer multiplication and division. Only Magma has fast integer GCD.
As a part of this thesis, we have implemented the Fast Extended Euclidean Algorithm

presented in {18, Ch. 11] for polynomials in Flz] = Z,[z], with p a prime. However, the
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algorithm presented in the book needs some corrections. We have made some nodifications
to this algorithm by removing some unnecessary outputs (Algorithm 2.5) and adding some
parts for computing the quotient with maximal degree (Algorithm 3.2).

Let f = fua™ + fu_12" ' + ... + fo € Flz) and f, # 0. Following [18], we define the

truncated polynomial
f1k=fquo vk = f.n:r;]” + J‘n_m‘]‘"1 + ot ks

forkeZ. Weset fy=0ifi <Oand f [ k=0if k¥ < 0. The polynomial f [ k& is of degree
k for k > 0 and its coefficients are the k& + 1 highest coefficients of f.

Definition 2.5. The pairs (f,g) and (f*,g*) coincide up to k if
flk=f"Tk,
g1 (k—(degf —degg)) =g" I (k— (deg f* —degg"), (2.8)

where f, g, f*, g% € Flz]\{0}, deg f > degg, deg f* > degg* and k € Z. If k > deg f —deg g,
then deg f — deg g = deg f* — deg g™.

Example 2.6. Consider f = 228 + 27 + 42° 4+ 322 + 1, g = 27 + 52° + 32¢ + 2% + 6 and
f* =227+ 25 +42* + 32 + 5, g* = 28+ 52* + 323 4+ 2. Then (£, ) and (f*, g*) coincide up
to 6 because

fré6=r16=2c5+2%+42"+3

gibs=gqg"1 :$5+5!E3+3.7:2+1

Lemma 2.7. [18, Lemma 11.1] Let k € Z, f, g, %, ¢* € Flz]\{0}. If (f,g) and (f*,¢%)
coincide up to 2k and £ > deg f — deg g then

1. g =¢* and

2. if r # 0 and k—degq > deg g—deg r then (g,r) and (g*, 7*) coincide up to 2(k—degq),
where ¢,7,q*,r* € F|z] are defined by
f=qg+r, (degr < degyg),
ff=q"¢"+r*, (degr* <degg").
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Lemma 2.7 gives the requirements necessary for the quotients to be equal. Let n; = degr;
for 0 <i<Il+1 and r;y; = 0, where 2,73, ..., 741 are monic polynomials in the remainder
sequence generated by the Euclidean Algorithm for monic polvnomials 7o and r;. We let
m; = deggq; = n;—1—n; for 1 < i <[, where g; is the ¢th quotient in the Fuclidean Algorithm.

Then we have

J
o — Ny == Z myi. (2‘9)
i=1
For any £ € N and f,g € F[z], define the positive integer number 7 (k) by
= < 2.
ns,9(k) 51<1a;{l{j Z m; < k}. (2.10)

The following inequality is derived from (2.9) and (2.10),

ns.9(k) n7.g(k)+1
Z mi = N — Ny, (k) <k <ng-— Mg o (k) +1 = Z m;. (2.11)
i=1 i

Lemma 2.8. [18, Lemma 11.3] Let k € N, h = 1y, (k) and A* = 12 ox (%), with ro, 71,78, 7]
monic polynomials in F|z]. If (ro,r1) and (r§, r]) coincide up to 2k and & > degro —degry,

then
1. h=h*
2. gi=gq for 1 <7 <h,
3. pp=p; for 2<i < h,
where ¢;,¢F € F(z] and p;, pf € F are defined by
Ticl1 = gri T piv1mivl (12 <), rmy =0,
Tii1 = G F PiaTi (1<i<I®), 75y =0

Remark 2.9. Note that the original lemma in [18] states that ps1 = pj,; which is not

correct and we have excluded h + 1 in Lemma 2.8.

The proof for Lemma 2.8 follows directly from Lemma 2.7. Refer to {18, Lemma 11.3] for
a detailed proof of this lemna. To improve the efficiency of the EEA, a divide-and-conquer
algorithm is designed based on Lemma 2.8. This algorithm is called the Fast Frtended

Fuclidean Algorithm and is presented as Algorithm 2.5.
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Algorithm 2.5 works by dividing the sequence of the quotients into two parts such that
the sum of the degrees in both parts is almost the same. Let [ be the number of division
steps in the Euclidean algorithm. Then in the case of a normal degree sequence, in which the
quotient degree drops exactly by 1 at each step, the problem is divided into two subproblems
of size 1/2.

To obtain the quotient of the division of a large monic polynomial rg by another large
monic polynomial rq, one can divide two smaller polynomials r; and 7}, provided that
(ro,71) and (r},r}) coincide up to 2k, where k > degry —degri. This can even be extended
to applying the Euclidean Algorithm on 7§, r] instead of ry,71 to obtain the same first
Tro,r1 (k) quotients, and the same first 7, », (k) — 1 leading coefficients of the remainders, by
Lemina 2.8.

Algorithm 2.5 gets two monic polynomials rg, 71 and a positive integer k as input, with
np/2 < k < ng. Input k lLelps us divide the problem into two subproblems of almost the
same size (k/2). The FEEA is then recursively applied to solve each problem. The sum
of degrees of the quotients computed in each call to the FEEA is legs than or equal to k.
That is, if we let m; = deggq; then it should return whenever Zfill m; > k. According to
(2.10) h = 9y, r, (k). If the algorithm is called with a value of k which satisfies the condition
np/2 < k < ng, then in any further call to the FEEA we will have & = np/2. We will explore
the special cases where 0 < k < np/2, or inputs r¢ and r1 are not monic or degrg = degry
later.

The following four items describe the four outputs of Algorithm 2.5:

e h =1, (k) specifies the total number of steps of the Extended Euclidean Algorithm
performed in one call to Algorithm 2.5. Note that the FEEA computes all the elements
of the EEA except the remainders.

® ppi1 is the leading coefficient of the (A + 1)th remainder in the Extended Euclidean
Algorithm, that is ppp17h41 = Tho1 — Thqp Where rh_1,7y and rp.41 are all monic

polynomials.

spo tn Y, . . .
o Ry = is a matrix that helps us compute the monic remainders rp, and
Sht1 Thet
rp+1 from g and r1, in addition to holding the values of sp, s, Spy1, tht1-

7 T
. ( & ) =Ry, ( 0) is a vector containing the hth and the (h+ 1)th monic remainders
Thil 1
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ALGORITHM 2.5: Fast Extended Euclidean Algorithin (FEEA)

Input: rg, 71 two monic polynomials in Flz| with ng = degrg > n; = degr; > 0 and
k € N with ng/2 < k < ng. /* ng is strictly greater than ny. */

Output: h = 1y (k) €N, ppg1 € F, Ry, = (Siil t)ff—l) and (T:J};) =Ry (:‘;)

1. if ry =0 or k < ng — n1 then

10 70
return 0, 1, (0 1) and <r1>

else if ng < cutoff then /+ cutoff degree of the FEEA */
return EEA(rg, r1, k)

2. ky = |k/2]

3.r5=ro 2k, ri=r1[(2k—(no—n1))
call the algorithm recursively by writing FEEA(rf, r3,k1), to obtain

0 1
J=1=nmmk1), pf, R} = Q5_1Qj2...Qiwhere Q5_; = [ 1 —¢-1
;P

* o

ri 7

and { 1) =R, [0
T J r]

4. /* in this step we want to determine p;, r;j_1, 7; and R;j_1. */

(%57) =7 (%)
7']' T

10 \
Bj-1= (0 1/1c(f-j)> B

pj = p; Ic(7;), 15 =75/ 1c(Fy)

5. (1) - degrj_1
’ nj deg Ty
if r; =0 or k < ng — n; then
return j — 1, p;, B; 1, <Tj_1>
T

6. g =rj_1quo rj
pj+1 = le(rj_1 — gjrj) /= for consistency we let 1c(0) = 1. */
Tjrl = (Ti-1 = g;75)/pjs1
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nj+1 = degrji1

0 1
R< = R‘_
! (1/Pj+1 _qj/pj+1> i-1

7. ko =k — (no —ny) /* up to now we have computed j quotients. */

8. 17 =1 [ 2ke, 717y =141 [ 2k — (nj — njy1))
call the algorithm recursively by writing FEEA(r]*., Tit1s k2), to obtain
0 1
h—j=nwue (k) phy1, S = QiQh-1--- Q1 where Qp = | _1 ~ —an |,

* *
Pry1 Prya
T} ={ T
Tht1 Tit1

* (2)-5()
Th+1 Tj+1
1 0 ~
S = .
O 1/ lC(Th+1)
Pht1 = P 1c(Fry1),  Thet = Try1/le(Fry)

10. return h, pp11, SR;, <TTh >
Rt 1

in the Extended Euclidean Algorithm. If A is equal to the total number of steps of the

Extended Euclidean Algorithm on ry and ry i.e. I, then rp = ged(rg,r1) and rpy1 = 0.

In step 3 of Algorithin 2.5, a recursive call is made with k1 = | k/2] as the integer input, so
that when completed 7,5 -+ (k1) = j—1 quotients have been computed. This is almost half of
the quotients in the case of a normal degree sequence. The pairs (g, 71) and (rg, 77) coincide
up to 2k; and ng — n1 < k, thus according to Lemma 2.8 9y, (k1) = nr&r;(kl) =j-1,
gi=q; for 1 <7< j—1and p; = p; for 2 <i < j - 1. Note that p; is not necessarily
equal to p;f. In step 6 we compute the next quotient ¢;, and then in step 8 another recursive
call is made with ko = k — (ng — n;) =k — >_7_, degg;. This will perform the rest of the

divisions and when completed all the expected quotients have been computed.
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In step 4 we obtain the values of p;, 7;_1, r; and R;_;. We have
0 1 si—1  ti_
Sj_2 tj_ -1 4-1
R;_l = Q;_]Rj_fz =1 —gi ( j—2 tj 2) = &5 Blt. , (2.12)
% * Si— i— *°J w ]
Pi P R Pi P

hence

- Pj . . .
Let 7; = ~Tj Since r; is monic we get
]

pi = p;f lc(fj) == T;= T‘Nj/lc(fj),

R 1 0 R 0 0

= 1 =51 ... (.

? 0 1/le(fy)) 7t

As stated before 7y, ,, (k1) = j — 1, thus according to (2.11) we have
no — nj—1 < k1 < ng ~ nj.

If now k < ng — n; in step 5, then 7, , (k) = j — 1 and the algorithm returns the correct
result; otherwise, 7, , (k) > j and the next quotient g; is computed in step 6.

In step 8 after the recursive call we have S = QrQr—1-.-Qj41, and by Lemma 2.4 (iv)

we obtain
Ti41 1 71 Th

3,

O 1 ’r‘h_l ‘rh
1 —qn = | Prt1 _
Phit T P '

*
ph+1 h+1

o 1 .
Let 7pyy = p:_,_ Thy1. By analogous reasoning as for step 4 we get

h+1

Pr1 = Phyr le(Fri1) = Thyr = Fpgr/ le(Fry),

1 0 -
(0 1/10(fh+1)> O Qi
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As stated before, the inputs of the FEEA are expected to be two monic polynomials
ro, 71 and a positive integer k, where degrg > degry and ng/2 < k < ng. Let f,g € F[z] be
two arbitrary polynomials and & € N. We now explain how to handle the special cases that

might occur.

1. f and g are monic, but deg f = degg:
Let p2 =lc(f — g). If f = g then we let pa = Ic(0) = 1. We can call the FEEA with

8h, th

ro = g,71 = (f — ¢)/p2 and then instead of Ry = ( ) return the following

Shy1 thyl

Rh( 0 1 ) _ ( tn/p2 Sh—th/p2 )
1/p2 —1/p2 thi1/pP2  Sht1 — tht1/p2

The subtraction, normalization and the corresponding corrections of Ry, cost only O(n)

matrix

field operations and hence do not affect the asymptotic running time of the algorithm.

2. deg f > degg, but f and ¢ are not monic:
We run the algorithm on ro = f/lc(f),r1 = g/lc(g) and divide the first and the
second column of the result Ry, by le(f) and le(g), respectively. This takes only O(n)
additional field operations.

3. 0<k<ng/2:
It suffices to call the algorithm with input ro [ 2k, 71 | (2k — (degry — degr1)) and
k, and make the same corrections on ppy1,7h41 and Ry as we did in step 4 of the

algorithm.

Now one question is, what value should we choose for input & when we want to compute
ged(ro, 1) using the FEEA? The output A = 1y, (k) denotes the number of steps of the
EEA performed, or equivalently, the number of quotients computed in the FEEA with inputs
ro,71 and k. Let [ denote the total number of steps of the EEA. We have

!
Z deggq; < degno.

i=1
If we set k = degro, then h =y, r, (degro) = ! which results in computing all the quotients

and ged(rg, r1) as well.
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Cost Analysis of the FEEA

Let T'(k) denote the number of additions and multiplications that Algorithm 2.5 performs in
F with input k. Step 3 of the algorithm performs 7'(k;) = T(|k/2]) operations for solving
a subproblem of the same kind. Definition of k2 and inequality (2.11) imply that

kg:k—(no——nj)<k—k1:fk/2]

or k3 < |k/2]. Thus step 8 takes T'(k2) or at most T'(|k/2|) operations in F.
To make the algorithm work more efficiently, in step 4 instead of multiplying R;_, by
(ro, rl)T whose entries are at most of degree 2k, we multiply it by a vector with entries of

degree at most ng — 2k — 1 < k as follows

* o
B o) . To) * o)} (Ti—1 Fro—2k1
-1 m) -1 r I g 7
1 1 1 j
. TO _ Ta‘r’no~—2k1 ,r.;f 11:’”0—2‘01
i=1 N 10 —2k] * .ng—2k) :
ry —rix riz
Sj-1 ti_1

PilPisi Pilpits
no—nj—_1, by (2.12) and Lemina 2.4 (ix). All four values are at most ng—n,—1 < k1 = |k/2].

The entries of R;f_l = ( ) are of degrees n1 —n;_9, ng—nj_2, N1 —n;_1 and

Thus we have four multiplications of polynomials of degree at most |k/2] by polynomials of
degree less than or equal to k, plus some multiplications by constants and some additions.
Thus the cost for step 4 is 4M(k) + O(k).

In step 9 instead of multiplying S by (rj,m41)7 we do the same computations as we
did in step 4 to get the result more efficiently. The entries of S are of degrees nj11 — np_1,
Tj —Nh—1, Nj41 — Ny and n; —ny which are at most n; —np < ko < [£/2]. The polynomials
in the vector to which S is applied are of degree n; — 2kg — 1 =ng —k — ka — 1 < k. Thus
as step 4, the cost for step 9 is bounded by 4M(k) + O(k).

In step 6 we divide r;_; by r; and compute the quotient ¢; and the remainder ;1 of this
division. Polynomial r; is of degree n; < ng < 2k and the quotient g; is of degree n; ;1 —n; <
ng — (ng — k) = k. Fast division as explained in [18, Algorithm 9.5] takes 4M(k) + O(k)
operations in F' for computing the quotient and at most 2M(k) + O(k) operations in F for
computing the remainder on inputs r;_; and r;. So the cost of performing the division

would be 6M(k) + O(k).
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Remark 2.10. We did not implement Fast Division in our iinplementation of the FEEA.
The Fast Division Algorithm is needed when the degree of the quotient is not small, but in
the normal case where the degree drops by a small amount at each step of the FEEA there

is no need to use this algorithm.

Another computation performed in step 6 is to compute R;, the first row of which
is exactly the same as the second row of R;_;. Thus, we only want to compute s;1.1 =
(8j-1 — 85q;)/pj+1 and tjo1 = (t;—1 — t;q;)/pj+1 as the elements of the second row of R;.
As stated before s; and ¢; are at most of degree |k/2| and g¢; is at most of degree £,
which implies computing the elements of the second row of R; takes at most 2M(k) + O(k)
operations in F.

The entries in the first row of R; = ( b > are of degree |k/2] and the entries

Sj+1 tj4
in the second row are at most of degree ng — n; < k. Also as shown before, the degrees

of the entries of S are at most |k/2|. Thus computation of S.R; in step 10, takes at most
6M(k) + O(k) operations in F.

The only inversions that take place in Algorithm 2.5 are 1/1c(7;), 1/p;j+1 and 1/le(Fhq41)-
They all can be computed only once. Therefore the total number of inversions during the
recursive process is at most 3k. The following table illustrates the cost of each step of the

FEEA.

Step Cost
3 T({k/2])
4 AM(E) + O(k)
6 8M(k) + O(k)
8 T(1k/2])
9 AM(k) + O(k)
10 6M(k) + O(k)
Total | 27°([k/2]) + 22M(k) + O(k)

Table 2.2: The number of multiplications and additions of steps of Algorithm 2.5

T satisfies the following recursive inequalities
T0)=0, T(k)<2T(lk/2])+22M(k) + ck,

for some constant ¢ € R.



CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 29

Hence
T(k) < (22M(k) + O(k)) logk € O(M(k)logk).

We used Karatsuba’s multiplication algorithm in our implementation of the Fast Ex-
tended Euclidean Algorithm. In this case M(k) € O(k'°823) and thus the implemented
FEEA is of time complexity O(k1823]og k). The EEA performs better than the FEEA
for polynomials of low degrees. Thus we have computed a cutoff degree for the dividend
ro below which we use the EEA in Algorithm 2.5. Our Java implementation of the EEA
accepts 3 inputs and returns the same number of outputs as the FEEA, so that it can be

used in step 1 of the FEEA.
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Figure 2.4: Timings (in ms) of the FEEA for different cutoff degree

Figure 2.4 illustrates the timings (in ms) of the FEEA on two random polynomials of
degree 10000. We can choose 150 as the cutoff degree, but it seems that any value in the
range 100 to 300 can be chosen as the cutoff degree.

Table 2.3 illustrates some timings for the EEA and the FEEA using cutoff degree 150.
The first column (n) specifies the degree of the two randomly chosen polynomials. The
second and the third columns show the time it takes to run the EEA and the FEEA,
respectively, on input polynomials of degree n. We have divided the timings presented in
the third column by n!°823logn for each value of n and obtained a constant factor in the

fourth column, which confirms that our implementation of the FEEA is of O(n!823logn).
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n EEA(ms) | FEEA(ms) | FEEA/(n"°223logn) | EEA/FEEA
1000 373.80 295.63 0.00052 1.26
2000 1427.18 942.83 0.00050 1.51
4000 5602.18 2972.08 0.00049 1.88
8000 | 22295.47 9588.76 0.00048 2.33
16000 | 88766.90 | 31278.50 0.00049 2.84
32000 | 354085.71 |  99273.77 0.00048 3.54

Table 2.3: Timings (in ms) of the FEEA compared to the EEA
All our computations were performed modulo a 15 bit prime.

2.2.3 Fast Polynomial Interpolation (Application)

To complete this chapter we show how the FEEA can be applied to solve the polynomial
interpolation problem fast by using a more or less obvious divide and conquer algorithm.
Let F be a field and a1,...,q, € F be pairwise distinct. Given arbitrary 51,...,0, € F,
we want to find f € F[z] of degree less than n such that f(a;) = G; fori=1...n. It is well
known that if ¢;’s are distinct a solution exists and is unique. The solution can be found by

solving a system of linear equations. Let f(x) = a,_12" ! 4+ ... + @12 + ag. Then we have

flog) =8, = 10V + . +aia;+ag, i=1...n.

i
The system can be solved in ()(713) operations in F. It is also well known that the problem
can be solved in O(n?) operations in F using either Lagrange or Newton Interpolation.

Here we show how to use the FEEA to generate a divide-and-conquer algorithm for fast

polynomial interpolation. Description of the algorithm follows:

1. Find f; the polynomial interpolating a1, ..., oy, 2 by recursively calling the algorithm.
Let m)(x) = H?ﬁ(z — ;). Then f1(z) and m,(z) satisfy f(z) = fi(z) mod my(x).

2. Find fy the polynomial interpolating v g41,-..,n by recursively calling the al-
gorithm. Let ma(z) = [[iL,/»,1(¥ — ;). Then fo(z) and ma(z) satisfy f(z) =

fa(z) mod mo(r).
3. Find f using the Chinese Remainder Algorithm. Let

flx) = vi(z) + valz)ma (),
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where 0 < degv; < degm,;. Thus we have

v1(z) mod m(z),

fl (.’1‘,)
fa(x)

I

vi(z) + vo(x)myi(z) mod ma(x).

If we choose v1 (z) = fi(z), then we can compute

va(2) = (fo(#) = fi(z))/ma(x) mod ma(x)
by solving smj + tmgp = 1 for s, to find the inverse of mj(z) mod my(z), using the
FEEA.

All f1, fo,m; and my are at most of degree n/2, thus computing v, needs one application
of the FEEA to compute 1/mi(z) mod ma(z) which takes O(M(n/2)log(n/2)) field oper-
ations and one multiplication of O(M(n/2)) field operations. Let T'(n) denote the cost of
computing f(x), the polynomial interpolating n distinct points using the fast interpolation

algorithm explained above. Then we have
T(n) = 2T(n/2) + 2M(n/2) + O(M(n/2)log(n/2)).

Hence
T(n) € O(M(n)log?n).

Remark 2.11. Fast Polynomial Interpolation can be even done in O(M(n)logn) using the

algorithm described in [18, Sec. 10.2].

In the following chapter we will describe the application of polynomial interpolation in

Rational Function Reconstruction.



Chapter 3

Rational Function Reconstruction

The general problem of rational reconstruction consists of rational number reconstruction
and rational function reconstruction problems. The former problem reconstructs a rational
number (in Q) which is congruent to some integer modulo another integer, while the lat-
ter reconstructs a rational function that is congruent to some polynomial modulo another
polynomial. We will address the second problem in this chapter.

In Section 3.1 we describe the rational function interpolation problem and in Section 3.2
we introduce two solutions for the rational function reconstruction problem: Wang’s algo-

rithm and a fast maximal quotient algorithm.

3.1 Rational Function Interpolation (Cauchy Interpolation)

Rational Function Interpolation, also called Cauchy Interpolation, is the most general form
of polynomial interpolation. Let F be a field and a1,...,an, € F be pairwise distinct.
Given arbitrary 81,...,03n € F, we are looking for a rational function f = n/d € F(z),
with n,d € Fz], such that

(o)

d(ay) # 0, f(CYi)=m= 3 1<i<m.

We want the rational function f to be in canonical form, that is, d to be monic and
ged(n,d) = 1. Yet, f is not unique since n and d should only satisty degn + degd < m.
Solving a system of equations and Wang’s algorithm are the two solutions we describe in

this section for the Rational Function Interpolation problem.
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The System of Equations

Let a; and B; be defined as above and f = n/d be the rational function we want to find. To
have a uunique solution for f we let the denominator to be of the given degree 0 < k& < m.

Then the numerator would be at most of degree m — k — 1. Thus we let
n(z) = am,k‘_lxm_k_l + ...+ a1z + ao,
d(z) = F + b2 4+ bz + by
The rational function f = n/d is obtained by solving the following system of equations

nla;) =d(e)Bi d(e) #0 i=1...m,

for the coeflicients of n and d. Using Gaussian elimination it takes O(m?) operations in F.

Using Wang’s Algorithm

In the second solution, we first find the unique interpolating polynomial g € F[z] of degree

less than m such that g{a;) = 6; for i = 1...m. Thus we will have

flz)= Z((i)) =g(z) mod (z — o), d(a;) #0 fori=1...m. (3.1)
Let M(z) = [[",(z — ;). Then (3.1) is equivalent to
fla)= Z((;:i =g(z) mod M(x), ged(M,d) =1. (3.2)

Now the problem is, given polynomial M (z) of degree m and polynomial g of degree less
than m, find the rational function f = n/d satisfying (3.2). This problem is called the
rational function reconstruction problem. We describe the solutions to this problem in
Section 3.2. Computing g using Newton interpolation takes O(m?) operations in F. The
cost of computing M is O(M(m)logm). If we use Wang’s algorithm to reconstruct the
rational function f = n/d which uses the Extended Euclidean Algorithm, then the cost of
computing f would be of O(m?) operations in F. Thus the total cost would be of O(m?)

operations in F.

Remark 3.1. In Section 3.2.1 we briefly describe how the FEEA can be modified so that
it can be used by Wang’s algorithm for recovering a rational function. Also we can use the
fast polynornial interpolation algorithin described in [18] to compute g. This will result in

an algorithm taking O(M(m)logm) operations in F.
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3.2 Rational Function Reconstruction (RFR)

Let F = Zj1;. We want to compute a rational function n/d € F(z) where n/d = g mod f,
with f = szl(a: —4) and g = 2% 4 32% + 82 + 427 + 622 + 2 + 9. If we run the Extended
Euclidean Algorithm with input f and g, then according to Lemma 2.4 (vi) we have fs; +
gt; = 7 or, equivalently, r; = gt; mod f. Now if ged(f,#) = 1 then we have r;/t; =
g mod f. This implies that (n,d) can be equal to any pair of (r;,t;), generated by the
EEA, provided that ged(f,t;) = 1. The following table illustrates the values of r;,¢; and
g; in each iteration of the Extended Euclidean Algorithm for given inputs f and g defined

above.

i T % £
0| 27+ 52% + 32° + 92 + 42% + 222 4+ 9 — 0
1 2 +32° + 8z + 42 + 622+ 2+ 9 z+2 1
2 ' 23 +2 1 23+ 322+ 8z +2 10z 4+ 9
3 Tr+5 802 +10x +7 | 2 + 523 + 322 + T2z +5

From row 1, 2 and 3 we get the following solutions

ri 2% +325+ 8z +423 + 622+ +9
t 1 ’
79 w3+2_10x3+9
ty  102+9  z+2
73 71‘+5

t3 i+ b623+322 7245

We seek a way to choose one rational function among all possible solutions. It is not

)

hard to see that if we want to recover a rational function with degn < N and degd < D,
then we must have N + D < deg f.

Let M = deg f. Wang in [20] gave a solution to the rational number reconstruction
problem. His algorithm can be readily extended for the rational functions as well, by setting
N =|M/2] and D =M — N — 1. We will describe Wang’s algorithm for rational functions
in Section 3.2.1. Thus if we use Wang’s algorithm the solution to the above example would
be ro/tz = (1023 4+ 9)/(x + 2). In Section 3.2.2 we introduce a fast algorithm for solving
the rational function reconstruction problem. This algorithm outputs the rational function
with the smallest total degree (degn + degd) provided that degn+ degd < deg f — 1. Thus
the output of this algorithm for the example presented above is the same as Wang’s output.

The following lemma gives us some hint on the general solutions to the RFR problem.
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Lemma 3.2. (Uniqueness of the EEA entries) [18, Lemina 5.15] Let F' be a field, f, g, 7, 5,1 €
Flz] with r =sf +1tg, t £0,degf > 0, and

degr + degt < deg f. (3.3)

Moreover, let 7;,s;,%; for 0 < i < [+ 1 be the elements of the ith row in the Extended

Euclidean Algorithm for f and g. There exists a nonzero element o € F|x| such that
r=ar;, $=«as;, t=aty,
where degr; < degr < degr;_;.

Proof. By (3.3) we have degr < degf = degry, so there exists a row namely j in the
Extended Euclidean Algorithm for inputs f and g, where degr; < degr < degr;_1. We
have 7; = s; f +t;9 by Lemnia 2.4 (vi), thus we obtain

t'r'j e tj’l' = (tSj - th)f. (34)
Assume ts; # t;s then the degree of the right hand side of (3.4) is at least deg f, while

deg(tr; — t;r) < max{degt + degr;,degt; + degr}
< max{degt + degr,deg f — degr;_1 + degr}
< deg f,

hence we have a contradiction which implies that ¢s; = ¢;s or s;|s, by Lemma 2.4 (vii). We

write s = as; where o € Flz]\{0}, then ¢ = at; and r = sf + tg = ar;. O

The above lemina implies that any linear combination r» = sf + tg of f and g, with r
and ¢ having small degrees, is a multiple of a row in the Extended Euclidean Algorithm
for inputs f an g. In the RFR problem, we are looking for a rational function n/d where
n/d =g mod f and degn + degd < deg f. Thus according to Lemma 3.2 any solution for

n and d is a multiple of some row in the EEA for inputs f and g.

3.2.1 Wang’s Algorithm

Let F be a field, in the rational reconstruction problem we are looking for a rational fuuction
n/d € F|x] where n/d = g mod f, with f,g € F[z] and deg f > degg > 0. A solution to

the rational number reconstruction problem was first introduced by Wang in [20], however he
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gave no proof for his algorithm. Afterwards in [19], Wang, Guy & Davenport showed that if
a solution exists to the rational reconstruction problem, this solution is produced by Wang’s
algorithm. Moreover, they claimed that if the pair n, d is output by the algorithm then n/d is
the expected solution. While there were some cases with no solution but Wang’s Algorithm
did not FAIL on them. This problem occurred because of not checking whether the condition
ged(d, f) = 1 is met or not. Wang rectified this problem later in [21]. Algorithm 3.1 is an

extension of Wang’s algorithin for Fiz].

ALGORITHM 3.1: Wang’s Rational Function Reconstruction Algorithm

Input: f.g € Flx] with F a field and M = deg f > degg > 0.
Output: Either n,d € Fz] with degn + degd < deg f, le(d) = 1, ged(n,d) =1,
ged(f,d) =1 and n/d = ¢ mod f, or FAIL implying no such n/d exists.

I.N=|[M/2|, D=M-N-1
TOZfa to=0
r=gt=1

2. while degr; > N do
g =70 qUO T
(ro,r1) = (r1.70 — q71)
(to.t1) = (t1,t0 — qt1)

3. if ged(r1,81) # 1 then return FAIL. /+ ged(ry, ¢1) = ged(f, 1) */
return (ri/le(t1),t1/1c(t1)) /xdegti =M —degro < M —N=D+1 %/

Wang’s algorithm outputs the rational function n/d if degn < |deg f/2] and degd <
[deg f/2] — 1, i.e. deg f > 2max(degn,degd). In step 3 of Algorithin 3.1 we have

ry =81 +t1g =tyg mod f,

aud degt; = degf —degro < M — N = D + 1 or degt; < D. Thus if ged(f,#;) = 1
then (r1/lc(¢1))/(t1/1c(t1)) is a canonical form solution to the RFR problem. Collins and
Encarnacién in [3] point out that it is more efficient to make the test ged(n, d) = 1 instead of
ged(f,d) = 1. By Lemma 2.4 (viii) we have ged(n, d) = ged(d, f), thus instead of checking

the invertibility of the denominator, we can check the coprimality of the numerator and the
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denominator. This costs less since the size of n is strictly smaller than the size of f.

Cost Analysis of Wang’s Algorithm

In Section 2.2.1 we showed that the cost of the EEA on inputs of size n is O(n?). Therefore,
step 2 of Algorithm 3.1 costs O(M?). In step 3 we have one inversion and O(M) multipli-
cations in F. Computing ged(r1, ) takes another O(M 2)., thus the total cost of Wang’s
Algorithm is O(M?).

Remark 3.3. Given degree bound N, the FEEA can be used for returning r;, a remainder
in the remainder sequence of the EEA for monic inputs 79 and r1, satisfying degr; < N <

degr;_1. Let h = 1y, (k), then in the FEEA with inputs rg,r; and k we have

h+1 h
degrp1 =degrg — Zdeg q; < degrg—k < degrg — Zdeg q; = degrp,
i=1 i=1

according to (2.11), or equivalently,
degrpi1 <degro—k —1<degry.

Therefore 7; is returned if we call the FEEA with inputs ro, 71 and (degrg — N — 1).
Thus if we use the FEEA in steps 2 and 3 of Algorithm 3.1 then the total cost of Wang’s
algorithm would be of O(M(M)log M) operations in F'.

3.2.2 Maximal Quotient Rational Function Reconstruction

Wang’s algorithm works well when the numerator and the denominator are both of almost
the same degree, but in practice the degrees of the numerator and the denominator of
the rational functions are not necessarily the same. For example if we want to recover
the rational function z/(z® + 1), Wang’s algorithm needs the modulus f to be at least
of degree 11, however the minimum number of points necessary for recovering the same
rational function is 7. Since the degrees of the numerator and the denominator of the
rational function are not always known, we do not know the best choice for V and D in
advance. One approach could be to choose the rational function with the minimum total
degree (numerator degree plus denominator degree).

Example 3.4. Let F = Z17, f = [[;2,(z ~ 1), g = 62 + 1320 + 72% + 112® + 27 + 102% +
1525 4 2% + 132% + 622 + 3. The Extended Euclidean Algorithm for f and g yields the

following table.
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i | degq; | degr; | degt; | degr; + degt;
1 1 11 0 11
2 4 7 1 8
3 1 6 5 11
4 1 5 6 11
5 1 4 7 11
6 1 3 8 11
7 1 2 9 11
8 1 1 10 11

As illustrated in the table, r9/t2 has minimal total degree of 8. Note that ry/ts also corre-
sponds to the quotient of maximal degree ga. The reason for this is easily explained by the

following lemma.
Lemma 3.5. Let F be a field and f,g € F[z]. In the EEA for f and ¢ we have
degr; + degt; +degg; =deg f
for 1 < < (I is the total number of steps of the EEA).
Proof. According to Lemma 2.4 (vii) we have degt;, = deg f — degr;—1. thus
degr; + degt; + degq; = degr; + (deg f — degr;—1) + degr;—1 — degr; = deg f.
O

In [11], Monagan suggests a new method called Mazimal Quotient Rational Reconstruc-
tion for reconstructing a rational number from its integer image modulo another integer
number. Our algorithin for recovering rational functions is based on his method and is
called Maximal Quotient Rational Function Reconstruction (MQRFR).

Let F be afield, f, g € F[z] with deg f > degg > 0. We want to find a rational function
n/d € F{x), where

n/d=g¢ mod f, ged(f,d)=1, ged(n,d)=1, le{d)=1.

Let | denote the total number of steps of the EEA for f and g. The maximal quotient

algorithm outputs a rational function n/d = r;/t; with degr; + deg¢; minimal fori =1...[.
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To speed up the algorithm we prefer to use the FEEA instead of the EEA. But as explained
in the previous chapter, the FEEA does not compute the intermediate remainders (r;’s).
Thus we can not determine which pair of (r;,¢;) we should choose. Lemma 3.5 resolves this
problem.

Although the FEEA does not compute the intermediate remainders, it does compute
all ¢;’s!! Also s; and t; are available as the entries of the first row of ;. So according
to Lemma 3.5 instead of finding the minimal degr; + degt; we can find g;, the quotient
with maximal degree, using the FEEA. r; is then obtained from s; and ¢; using two long
multiplications (r; = s;f + tig).

The modified FEEA is called MQFEEA and is presented by Algorithm 3.2. In addi-
tion to the outputs returned by Algorithm 2.5, this algorithm returns three other values
(max, Smax, tmax- The value of gmax is the quotient with maximal degree and smax, tmax
represent the corresponding values of s and t that are in the same row with gpay.

In step 3, after returning from the recursive call, gmax holds the quotient with maximal

degree, between the first j — 1 computed quotients. We have

5i Y
R; = ,
(Sj-(—l tj+1>

thus in step 6, if deg ¢; > deg gmax We can easily update smax and tmax by the entries of the
first row of R;. In step 8 gmax is updated by g .y, it deggm,« > deg gmax. Let | represent

the index of ¢ .. in the EEA for ry and r1. We need to compute s; and t;. We have
max

Sy t sx t
=R =QQ-1...Qjp1 Ry ={ ™ TR,
St tg _ Moy Mas

where My, Mas € Flx], hence

(Sl tl) = (8;;1ax tlth) Rj‘

So to update the values of syax and tyax by 5, respectively, and t;, we multiply the vector

(3* t;fnax> by matrix R;.

max

Remark 3.6. In Algorithm 3.2, we are just using the degree of the maximal quotient, thus

instead of returning gqma.x we could return deg gmax-



CHAPTER 3. RATIONAL FUNCTION RECONSTRUCTION

ALGORITHM 3.2: Modified FEEA to return the maximal quotient(MQFEEA)

/% underlined parts illustrate modifications made to Algorithm 2.5 (FEEA). */
Tuput: 79,71 two monic polynomials in Fz] with ng = degrg > ny = degry 2 0 and
k € N with n9/2 < k < ng. /* ng is strictly greater than ny. */
Sh th n L)
Output: h = n, k) eN, € F, Ry, = and =R ,
P nro,Tl( ) + Ph+1 y Lvp <5h+1 th+l> (Th—H) h <’I‘1>'

Qnaxs Swax, bmax-

1. if ry =0 or kK <mg—ny then

. 1 0 To
return 0, 1, (O 1>., <r1>’ 1,1.0

else if ng < cutoff then /* cutoff degree of the FEEA %/
return EEA(rg, 1, k) /* EEA is modified to return gmax, Smax, tmax */

2. k1 = [k/2]
3. 7‘8 =70 r 2k1, TI =71 r (2k1 _ (nO i nl))

call the algorithm recursively by writing MQFEEA(r§, 71,k1), to obtain
0 1

G l=mge (k) pf Bi_ = Q1Qy—2.. . Quwhere @y = | L —4-11,

;P
ri_ rg
T = *_1 2 and Gmax, Smax; bmax
T 7 ]
4. /* in this step we want to determine p;, 751, r; and R;_j. */
7‘_7'_1 - R o
fj j—1 71

1 0 .
Rj-1= (0 1/1c(fj)> R

pj = p;le(7y), 1 =7;/lc(Fj)

5 nj—1 _ degrj_l
) U deg’l‘j

if r; =0 or k <ng—n; then

*

. Ti 1
return j — 1, pj, Rj_1, ';, )7 Gmax; Smax: Pmax
J
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6.

10. return h, pp11. SRj, <

g; =rj—1quo Ty
pj+1 = le(rj_1 — gjr;) /* for consistency we let Ic(0) = 1. * /
rj+1 = (Tjo1 = qT5)/ pj+
njr1 = degrjia
0 1
B = 1/pjs1 _Qj/pj+1) R
if degg; > deg gmax then

Gmax Smax; tmax=4;, Rj (17 1]1 Rj {L 2]

kzzk—<n0—nj)

ry =715 12k, Ty =7 [ (2ke — (0 — ny4))

call the algorithm recursively by writing MQFEEA(r}, 7744, k2), to obtain
0 1

h—j =, (k) phyr, S = @i@h-1- .- Q@j11 where @ = 1~

" *
Pr+1 Pyl
T‘* ~ 7'*
hy=—g( " * : N
(r* >_b<r* >21_mx_’_5r@_£ilﬂﬁ
h+1 Jj+1

if deg g a > d€g gmax then

Gmax — Q;lax
(Smax 75max) = (S;knax tfnax) Rj

() =5()
Tht1 Tj+1

g < (1 0
0 1/ 1C(fh+1)
pht1 = Phop 1c(Pre1),  Thar = Frvr/ 1e(Frin)

1

Th
» Gmax; Smax; bmex-
Th+1
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Let F' = 7Zp, paprime, f,g € Flz] and deg f > degg > 0. We want to recover n/d € F[z]
using the maximal quotient algorithm where n/d = g mod f, gcd(n,d) =1 and ged(f,d) =
1. According to Lemma 3.2 the solution to this problem is the pair (r;,%;), where r; and ¢,
are the elements of the jth row in the EEA for inputs f and g. If deg f > 2(degn + degd),
then we have degg; > deg f/2 and thus ¢; is the unique maximal quotient. This implies
that by imposing deg f > 2(degn + degd), the expected rational function is returned with
probability 1.

The following conjecture implies that if we impose deg f > degn + degd + 1 or, equiv-
alently, we require degg; > 1, then the probability of getting a correct result is still high,

provided that p is not small compared to deg f.

Conjecture 3.7. Let F = Z,, where p is prime. Let f,g € F[z] where f =[], (z — a;)
and n = deg f > degg > 0. Let q be a quotient in the EEA for inputs f, g and & € N\{1}.

If a; € F is chosen uniformally at random and g is a random polynomial, then

Prob{degq > k) ~

n
pkr—l :

We run the EEA with inputs f and a randomly chosen polynomial g. Our conjecture is
that the number of polynomials ¢ for which there is a quotient of degree at least & in the
EEA is bounded by (n — k + 1)p"~*+1. The total number of possible choices for g is p™ — 1.

Thus
(n—k+Dp" 1 n—k+1

pn —-1 - pk—l

Prob(degqg > k) =

The maximal quotient algorithm is presented by Algorithm 3.3. It is supposed to return
the rational function n/d = r;/t; where ¢; is the quotient with the maximal degree. Let 7, ¢

and gmax be the elements of the same row of the EEA with f and g as input. In step 3 we

have ;
——ft g ez 3
r_le(f)” le(g)” _ le(g)ro+itry) o F
t i = F =le(g)7,
le(g)

and thus ged(r, t) = ged(7, ). Therefore if ged(7, ) # 1, then in step 4 n = lc(g)/1c(f)7 and

d = t/lc(t) is returned as the canonical solution.
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ALGORITHM 3.3: Maximal Quotient Rational Function Reconstruction (MQRFR)

Input: f, g € Zp[z], where p is prime and m = deg f > degg > 0.
Output: Either n,d € Zy[z| satistying degn + degd + 1 < deg f, n/d =g mod f,
ged(n, d) = ged(f, d) = 1,1¢(d) = 1 or FAIL implying there is no such solution.

Lro= f/le(f), 1 =g/lk(g)

I o
2. h, ppy1. R, (W::l) , Gmax, $,t = MQFEEA ((rg, 71, m)

if deg gmax < 1 then
return FAIL

3.7 =38rg+ frl
if ged(7,%) # 1 then
return FAIL

4. n =lc(g)/ le(t) - 7
d=1/lc(t)
return (n, d).

Cost Analysis of the MQRFR

As mentioned before, Algorithni 3.2 is a modification of Algorithm 2.5. Among all the
modifications made only the multiplication in step 8 might affect the asymptotic cost of
the algorithm which originally was O(M(k)log k) for input k. The entries of matrix R; are
at most of degree ng — n; < k, moreover by Lemma 2.4 (ix), deg s} < Mj+1 < 2k and
degth.x < nj < 2k. Thus multiplying (s;lax t:nzn) by R; at most takes 8M(k) + O(k)
operations in I’ and does not change the asymptotic cost of the algorithin.

Step 1 of Algorithm 3.3 consists of two inversions in Z, and two multiplications of O(m)
in Zp. Step 2 costs O(M(m)logm). We have degs < degg < m and degt < deg f = m.
Thus to compute  in step 3, we perform two multiplications on polynomials of size at most m
and one addition that costs O(2m). The total cost for computing r is thus 2M(m) + O(m).
r is a remainder in the remainder sequence generated by the Euclidean Algorithm for f

and g, thus we have degr < deg f = m. Checking the coprimality of r and t, using the
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FEEA, takes O(M(m)logm) operations in F. In step 4 we have one inversion and at
most 2m multiplications in Z, that costs O(m). Thus the total cost of Algorithm 3.3 is
O(M(m)logm) operations in Zj.




Chapter 4
Polynomial GCD Computation

In this chapter we will explain the application of Rational Function Reconstruction in com-
puting the GCD of multivariate polynomials. We have modified Brown’s algorithm [1] to
use the maximal quotient algorithm. Owr modification reduces the number of evaluation

points needed by the algorithm.

4.1 Multivariate GCD Computation (Brown’s Algorithm)

Definition 4.1. Let R; and R» be two rings. The mapping ¢ : R; — Ra is a ring morphism

or a homomorphism if
(i) ¢la+b) = p(a) + &(b) for all a,b € Ry,
(i) ¢(ab) = ¢(a)d(b) for all a,b € Ry,
(iif) $(1) = 1.

Brown’s algorithin applies the following homomorphisms:

e The modular homomorphism ¢, : Z{x1, ..., Tk — Zm[Z1, ..., k] that replaces all the
integer coeflicients of a polynomial f € Z[x1,.. ., 2] by their modulo m representation.
e The evaluation homomorphism ¢z, _o @ D[x1,...,2k] — Dlx1,...,Z5-1, Tit1, . - - Tk)

that substitutes the value of @ € D for the indeterminate x; in the polynomial f €

D[l’], ce 7-Tk]-
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Let f € Z[xy,-..,x). For each term in f, we define a vector of size & whose ith element
is the power of z; in that term. Degree of f with respect to zy,...,zy (or simply degree of
f); which is denoted by degy;, . ., f; is defined to be the maximum of these vectors when
compared lexicographically.

The leading coefficient of a multivariate polynomial f € Z[zi,..., 2] with respect to
x1,...,7; (i < k) denoted by le,, . 4,1(f) is defined to be the coefficient of the term with
the highest degree with respect to z1,...,x;.

Definition 4.2. Let f,g € Z[z,,...,zk], h = ged(f, g) and p be a prime.
o If 1C[m1,...,wk]<h‘) =0 mod p then we call p a bad prime.

® Let f, = f mod p, g, = g mod p and A, be the output of the Euclidean Algorithm
mod p on f, and g,. If
deg[wl,.“,wk] hp > deg[wl,,..r;tk] h,

then p is called an unlucky prime.

Example 4.3. Let f = (z + Ty)(5zy + 1) and ¢ = z(5zy + 1). Then h = 5zy + 1,
ged(fs, gs) = 1 and ged(fr, g7) = 5z?y + -, and thus p = 5 is a bad prime and p = 7 is an

untucky prime.

Definition 4.4. Let f,g € Zy|z1,...,2%], h = ged(f,g) mod p and « € Zp, where p is a

prime.
o Iflcy,, 20 q)(h) =0 mod (z1 — ), then we call @ a bad evaluation point.

o Let fz,—o = f mod (4 — @), guy—« = g mod (zy — a) and hy, _, be the output of
the Euclidean Algorithm mod p on fg, _ and gg, —q. If

deg, By —a > degyy, h,

Loeen@E—1} o Py

then « is called an unlucky evaluation point.

Example 4.5. Let f = ((y — 1)z + 1)(z —2) and g = {((y — 1)z + 1)(2 ~ y). Then
h=(y—-1z+1, ng(fy—lagy—l) =1 and ged(fy-2, gy—2) = (x+1)(z —2), and thus y = 1

is a bad evaluation point and y = 2 is an unlucky evaluation point.
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Assume f and g are two multivariate polynomials as defined above and h = ged(f, g)-
Let ¢ be a modular or an evaluation homomorphism. It is obvious that lc(h)|le(f) and

le(h)|1le{g), which tinplies that le(h)| ged(le(f), le(g)). Thus
¢(ged(lc(f),lc(g))) # 0 = &(lc(h)) # 0. (4.1)

Relation (4.1) can be useful for avoiding bad primes and bad evaluation points when com-
puting the GCD of two multivariate polynomials. The following lemma helps us to detect

and discard unlucky primes and evaluation points.

Lemma 4.6. Let ¢ : R — R’ be a homomorphism of rings, f,g € R[z,...,x] and
h = gcd(f,g). Let f = fh and g = gh. Assume é(lc(h)) # 0 and at least one of ¢(f) and

¢(g) is nonzero. Then
degged(¢(f), ¢(g)) = degged(f, g)-

Proof. By Definition 4.1 (ii) we have

o(f) = o(f)o(h).é(g) = &(g)8(h),
and thus we obtain
deg ged(6(f), ¢(9)) > deg d(h) = deg ged(f, g),
since we assumed ¢(Ic(h)) # 0. O

Example 4.7. Let f and g be defined as in Example 4.5. We have h = gcd(f.g) =
(y =Dz +1. If y = 2 is chosen to be an evaluation point then we have h,_s =z +1 and
ged(fy—2, gy—2) = (z + 1)(z — 2), that is, deg ged(fy—2,gy—2) > deg hy_s. Thus y =2 is an

unlucky evaluation point and should be discarded.

Assume for homormorphism ¢ we have ged(é(f), #(g)) = 1 and ¢{le(ged(f, g9))) # 0.

Then according to Lemma 4.6 we have

deg ged(4(f), #(g)) = 0 > deg ged(f, g),

which implies that f, g are relatively prime. Thus another use of Lemma 4.6 is to help us

detect the coprimality of input polynomials.
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Originally Collins in [2] developed an algorithm for computing the GCD of univariate
polynomials using the modular homomorphism. Then Brown in [1] extended the algorithm
to compute the GCD in the multivariate case using the evaluation homomorphism. Brown’s
original algorithm did not use trial divisions. However, in [6] the algorithm was modified
to use trial division and less evaluation points. In this thesis whenever we refer to Brown’s
algorithm we refer to the modified one. Brown’s algorithm is a composition of modular
homormorphisms (MGCD algorithm) and evaluation homomorphisms (PGCD algorithmn).

To avoid the problem of coefficient growth, MGCD gets two multivariate polynomials
f,9 € Zx1, ...,z and applies the modular homomorphism ¢, : Z — Z, on the coeflicients
of f and g, with p a machine prime, e.g. a 32 bit prime on a 32 bit machine. At the end of
the algorithm the modular homomorphism is inverted by applying the Chinese Remainder
Algorithm on homomorphic images.

The PGCD algorithm, presented by Algorithm 4.1, gets polynomials f, g € Zp[zy, ..., zk]
and outputs h = ged(f, g) € Zp[x1, ..., z). It recursively makes use of evaluation homomor-
phism ¢g, —o : Zplx1, - .., 2] — Lplzi, ..., 2k—1] to ultimately get to the Euclidean domain
Zylx1) where the ordinary Euclidean algorithm can be used. In order to be able to recover
the solution in the original domain we need more than one projection. The evaluation ho-
momorphism is inverted by interpolating homomorphic images. Since MGCD and PGCD
algorithins are very similar, and since in the next section we are going to modify PGCD so
that it uses Rational Function Reconstruction, we have chosen to present only the PGCD
algorithm.

As presented in Algorithm 4.1, to compute ged(f, g) PGCD computes the contents* and
the primitive parts’ of f and g, and then computes the GCD using

ged(f, g) = ged(cont(f), cont(g)) gcd(pp(f), PP(9))-

PGCD always returns a monic GCD, thus vy, _o is always monic, although ged(f, g) is not
necessarily monic. To recover the correct GCD, in Algorithm 4.1, vg, _o is multiplied by

v(@) (leading coefficient correction).

*The content of a nonzero polynomial is the unit normal GCD of its coeflicients.
tThe primitive part pp(f) of f is defined by f = cont(f) - pp(f).
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ALGORITHM 4.1: Brown’s multivariate reduction algorithm (PGCD)

Input: f,g € Zylx1, ..., x|
Output: ged(f, 9) € Zp[z1,. .., zx]

1. if k =1 then return ged(f, g). /* use FEEA to compute ged(f, g) € Zplz1] */

2.

cr= cont[zl:"ka—l](f)7 Cg = Cont{wh..,,wk_l](g) /* CfyCg € Zp(l'k] */

f=f/ey, g=9/cq /* f,g are now primitive */

b =1y, o )(F)s Ly =10y ee1(9) /x1psly € Zplzy] */

df =degp, o f dg=degy, . 19 /[*dy dgarevector degrees x/

. cp = ged(ey, ¢g) /* cp, € Zp[xg] and holds the content of the output */

v = ged(ly, ly) [* Y € Lplxr) */
n = min(dy,dg) /* nis a vector holding the minimum of dy and dg */

(m,u) = (1,1)

. while true do

o = a new random element of Z,, such that vy(a) # 0

frr—a = f mod (zx — @)

9z)—a = g mod (g — @) /* Jzi—ar Gui—a € Zp[a?l, ces a-'l"k—l} */
Upp—a = PGCD(fz,—as Grp—ar D) /* Vap—a € Zplx1,. .. Tr_1] */

if vz, = 1 then return ¢,

Uz —a= 7(Q) Vg, —a /* solve the leading coefficient problem */ (i)

d =deg, . s ) Usc—a /* d is a vector degree */

if d > n then /* skip this (unlucky) evaluation point */
else if d < n then /* previous points were unlucky */
(m,u) = (Tp — @, Ugp~a)
n=d
else
(m,u) = ((xr — a)ym, Interp(m, u, &, Uz, —a)) /* v € Zp[x1,..., 28] */
if leg, .. zp_,)(w) = v then (ii)
b= pp[wl,...,mk‘l](u’) (iii)

if Alf and h|g then return cph (iv)
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One way of determining when we should stop coustructing images is to test whether
h = pp(u) divides f and g or not. But these divisions are expensive and it is better to
avoid them as much as possible. One simple way to avoid attempting the divisions is to
check whether lc(u) is equal to v or not and if it is then do the divisions. A better solution
is to divide % into f and g only when the result of interpolation does not change in two
consecutive iterations.

The following example shows how the GCD of two bivariate polynomials is computed

using the PGCD algorithm.

Example 4.8. Let f = (yz? +yz + (2 + Dz + 1), g = (y2® + yz + 1)((¥* + 1)z + 2))
and p = 7. We have v = 3% + y. Let us assume « is initialized by 1 and is increased by 1 in

each iteration. The following table shows the value of u;, _, and v in each iteration.

a | y(a) Uy —cx u

1] 2 |222+2x+2 222 4 2 + 2

2| 3 32243245 (y+1)z?+(y+ )z +3y+6

31 2 20242243 | (62 +4y +6)2% + (692 +4y +6)z +y? + 1
41 5 |5z24+5z+3 (v + )22+ (2 +y)z + 9% +1

At the end of the fourth iteration lcy(u) = . Thus A = pp(u) = yx? + yz + 1 is returned
after making sure that it divides both f and g.

4.2 Application of RFR to Brown’s Algorithm

As mentioned earlier, to solve the leading coefficient problem in Brown’s PGCD algorithm,
the homomorphic images are multiplied by the image of the GCD of the leading coefficients
of input polynomials. Another solution to the leading coefficient problem is to use the Ra-
tional Function Reconstruction. Originally Encarnacién in [5] used Wang’s rational number
reconstruction algorithm for computing the GCD of univariate polynomials over algebraic
number fields.

We have marked two rows of PGCD which should be modified for this purpose. Row (i)
should be deleted, vz, —o should be replaced by ugz, —» and rows (ii), (iit) and (iv) should be
replaced by the following code
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h = LCR(m, u)
if h # FAIL then
let h represent the result of clearing denominators of h

if h|f and hlg then return cxh

Algorithm 4.2 displays the body of LLCR. This algorithm gets a univariate polynomial m
in Zy[zx] and a multivariate polynomial u in Zy[z1, . .., 2] as input, and for each coefficient

of u in Zp[xy] attempts to reconstruct a rational function in Zy(x), resulting a polynomial

in Zp(ze)z1,. .. xp—1]-

ALGORITHM 4.2: Leading Coefficient Retrieval (LCR)

Input: m € Zplxy], u € Zplx1, ..., k),
Output: h € Zy[z1,...,x%] where h =u mod m.

1. if deg m = 1 then return FAIL /x deggq < 2 and thus MQRFR must fail %/

2. while there are more coefficients to reconstruct do
r = MQRFR(m, nextcoeff(u) € Zy|zt])
if r = FAIL then return FAIL
else /+ r is a rational function in Zy(xg) */
replace current coefficient of u by »

3. return wu.

Example 4.9. Let f, g and p be defined as in Example 4.8. If we use LCR in the PGCD

algorithm then we will have

« Ug, —a U h
1|22 +z+1 ?+z+1 FAIL
22?2 +z+4 r*+z+3y+5 FAIL
3|22 +z+5 |2t +a+6y2+6y+3|at+a+1/y
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As illustrated in the above table, we need only 3 points, while in Example 4.8, 4 points were
required. After clearing the denominators we get h = yz? + yz + 1 which is the same result

as what we had obtained before.

In practice if MQRFR does not fail on one coefficient of u in one call, with high proba-
bility it will not fail on the same coefficient in subsequent calls either. Thus we can reduce
the total number of tines MQRFR is called by using a global variable to keep track of the
index of the last coefficient of u on which MQRFR failed.

Example 4.10. Let u = 23+ (y+1)2?+(4dy® +2y+6)a+ (203 +y+6), m = y(y+1)(y+2)(y+3)
and p = 7. The following table illustrates the intermediate values of u when LCR is called
with m, v as inputs. At the end of the fourth iteration denominators of u are cleared and

u=(y+6)x%+ (y>+6)z% + (y + 1)z + 1 is returned.

nextcoeff(u) r u
1 1 |+ (y+1)2?+ (4y° +2y +6)z+ (20> + y + 6)
y+1 y+1 |28+ (y+1)22+ 4y +2y +6)z+ (2 +y +6)
+1 y+1
43 +2y+6 576 a:3+(y+1)z2+(—;—%)z+(2y3+y+6)
1 Coy+1 1
2 +y+6 34 (y+ Da? + T+
Y +y TG 2+ (y+ 1)z (y+6)$ ('</+6)

Now want to obtain an upper bound for the number of evaluation points required for
computing the primitive GCD of two multivariate polynomials using the modified PGCD
algorithm. Let f, g, H € Zy[x,. .., zx], where H is the primitive GCD of f and g in z. H

can be expressed in the following form
H = cp(zp)tn(X) + cno1(zx)tn-1(x) + . .. + col@p)to(x),

where x = #1,..., 2k_1, ¢;(2x) Is a univariate polynomial in Z,{xs] and ¢;(x) is a monomial
in indeterminants x1,...,25—1. We assume lcy, . (H) = cp(zr). Let d represent the
minimum number of points required for recovering H using polynomial interpolation for x,
that is

d=deg,, H+1= Oxgiag)%{deg clzi)} + L

Before the last trial division in modified PGCD, which results in outputting the GCD,

LCR is called on % and m where v is a monic multivariate polynomial in Zp[z1,. .., %) and



CHAPTER 4. POLYNOMIAL GCD COMPUTATION 53

m = (zx — o1)... (2% — q) is a univariate polynomial in Zp[z,]. Thus the last value of

h =LCR(m, u) before returning H is

P an—1(Z) ao(z)
h = tn(x) + mtn_l(x) + ...t mto(x)
_ cn—1() co(T)
=t (X) + @) tn1(X)+ ...+ e (:rk)t (x),
where
en(zk) = lan(bn_1(2g), - . ., bo(xk)).
We have

ai(zr)|ci(zr), degel(zr) < d = dega;(zy) < d,
bi(zr)en(zr), degen(xg) < d => degb;(xy) < d,

for 0 <¢ < n— 1. As shown before, if

degm > 2(O<m<ax 1{deg ai(zg) + deg bi(xx)}),
Sisn—

then with probability 1, the modified PGCD algorithm returns cp H. Thus in the worst case

4d evaluation points are required. But even if we have
degm > max {dega,(zk) + degh;(xr)} + 2,
0<i<n—1

then with high probability ¢, H is resulted. Therefore in the normal case 2d evaluation

points are required.
On the other hand, in Algorithm 4.1 we first compute L2t )) H and then take the primitive

cn{xy

part by removing the common factor. Therefore the total number of evaluation points
required to obtain H in Algorithmn 4.1 is at least (degy(zx) — deg cn (k) + d). This number
may be much greater than d when y(zy) is of a large degree and deg e, (zy) = 1.

In the square-free factorization algorithm for a polynomial f we need to compute h =
ged(f, f'). The following exawnple shows the difference between the minimum number of
evaluation points required in the original and modified PGCD algorithm when computing

h.

Example 4.11. Let f = (zy+1)?(y1%z+1) and g = £ = (zy+ 1)(32y' P +3*+2)y. Then
H, the primitive gcd(f,g) in y, is xy + 1. In this example d = deg, H + 1 = 2,degy = 102
and deg, lc, (H) = 1. Thus the original PGCD algorithm requires at least 103 evaluation

points while the modified one requires only 3 evaluation points to compute ged(f, ).
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As stated before we also try to minimize the number of times the trial divisions are
attempted. Rational Function Reconstruction not only solves the leading coefficient prob-
lem but also helps us with reducing the number of trial division tests, so that with high
probability the divisions are performed only on the true GCD. The point is that when LCR
fails on a coefficient, it returns to PGCD and PGCD goes back to the beginning of the while
loop without performing a division.

Let n be the number of coefficients of u with respect to [zi,...,25—1] and [ be the
number of evaluation points required for computing the GCD. Then the expected number
of times MQRFR is called is of O(l+n). Note that as soon as m gets large enough MQRFR

will not fail on any coefficient and exactly n more calls to MQRFR are made.




Chapter 5

Summary

We have designed and implemented a Fast Rational Function Reconstruction algorithm
based on Monagan’s Maximal Quotient Rational Number Reconstruction algorithm [11].
In contrast to Wang’s algorithm, the maximal quotient algorithm does not require any
degree bounds for the numerator and the denominator. Moreover, with high probability
it requires only one more point than the minimum necessary to reconstruct the expected
rational function.

The maximal quotient rational function reconstruction algorithm is based on the Ex-
tended Euclidean Algorithm. We have implemented the maximal quotient algorithm in
Java for polynomials in Zp[z] where p is a machine prime. To speed up the reconstruction
algorithm we have implemented Karatsuba’s algorithm for polynomial multiplication over
Zplx] and Schénhage’s Fast Extended Euclidean Algorithm (FEEA) for Zp[z]. We followed
the presentation of Schonhage’s algorithm in [18]. The most difficult and time consuming
part of the thesis was understanding the details of the FEEA.

To show one of the applications of this algorithm, we have modified Brown’s modular
GCD algorithm to use the maximal quotient algorithm. The modification reduces the
number of evaluation points required by the algorithm. Also it reduces the number of times
the trial divisions are attempted. Rational function reconstruction also solves the leading
coefficient problem when computing the GCD of two multivariate polynomials using Brown’s

algorithm.

ot
w
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