
FAST RATIONAL FUNCTION RECONSTRUCTION

Sara Khodadad

B.Sc., Sharif University of Technology, 2002

X THESIS SUBMITTED IN PARTIAL FIJLFILLMENT

OF THE REQCIREMENTS FOR TIIE DEGREE OF

MASTER OF SCIENCE

in the School

of

Cornput ing Scierice

@ Sara Khodadad 2005

SIMON FRASER UNIVERSITY

Fall 2005

All rights rcservcd. This work may not be

reproduced in whole or in part. by photocopy

or other means, without the pcrmissioil of the author

APPROVAL

Name: Sara Khodadatl

Degree: Master of Science

Tit le of thesis: Fast Rational l+nction Reconstruction

Examining Committee: Dr. Daniel Wejskopf

Chair

D a t e Approved:

Dr. hiicliael Monagan, Senior Supervisor

Dr. Arvind Gupta, Supervisor

Dr. Petr Lisonek, Exa~niner

'Z":, SIMON FRASER ' $ tk-4 u u ~ l v ~ ~ s r n l I bra ry

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesislproject or extended essays, if technically possible,
to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Let F be a field, f , g E F[z] with rn = deg f > deg g > 0. Our problem is to find

a rational f~mction n/d E F(x) where n / d = g mod f : gcd(f, d) = gcd(n, d) = 1 and

deg n + deg d < m. If degree bounds N > deg 12 and D > deg d satisfying N + D < m are

known, then bhe problem is solved by the Extended Euclidean Algorithm in F[z]. If degree

bounds are not known it is still possible to find n/d with high probability. One way is to

use rnaximal q~~otient rational f~mction reconstruction. We have implemented the algorithm

for F[x] = Zp[x], with p a prime. To speed up the algorithm, our implementation uses

Karatsuba's algorithm for multiplication in Z,[z] and a Fast Extended Euclidean Algorithm.

As an application, we have modified Brown's modular GCD algorithm to use the maximal

quotient algorithm. The modification reduces the number of evaluation points needed by

the algorithm.

Keywords:

Fast Extended Euclidean Algorithm, Rational Reconstruction, Rational Function Interpo-

lation

To my dearest parents, Faridelz and Ahmad,

nn.d my beloved h,u,sbnnd, Roozbeh

"Sciencc is what wc understand well mough to explain to a computer.

Art is everything else we do."

-DONALD E . KNUTH

Acknowledgments

I am really grateful to my supervisor Dr. Michael hlonagan whose help, suggestions and

encouragement helped me in all the time of research for and writing of this thesis.

I have to thank my co-supervisor, Dr. Arvind Gupta, for reviewing this thesis.

Especiall3i, I would like to give my special thanks to my dearest husband Roozbeh for

all his help, support, interest and valuable hints that enabled me t,o complete this work.

Finally I would like to express my gratihde to my dear friends Amir, Laleh, Maryarn,

Sara, Shirin and Soroush who are there for me whenever I need them.

Contents

Approval

Abstract

Dedication

Quotation

Acknowledgments

Contents

List of Tables

List of Figures

iii

vii

List of Algorithms xi

1 Introduction 1

2 F'ast Polynomial Arithmetic 6
. 2.1 Fast Polynomial Multiplication 6

. 2.1.1 Karatsuba's Multiplication Algorithm 7

. 2.1.2 Memory Requirements of Karatsuba's Algorithm 12

. 2.2 The Euclidean Algorithm 14

. 2.2.1 The Extcnded Euclidean Algorithm 15

. 2.2.2 The Fast Extended Euclidean Algorithm 19

. 2.2.3 Fast Poly~lo~nial Interpolation (Application) 30

3 Rational Function Reconstruction

3.1 Rational Function Interpolation (Cauchy Interpolation)

3.2 Rational Function Reconstruction (RFR)

3.2.1 J%Tang's Algorithm .
3.2.2 Maxirrial Quotient Rational finctiori Recoristruction

4 Polynomial GCD Computation

4.1 Multivariate GCD Computation (Brown's Algorithm)
4.2 Application of RFR to Brown's Algorithm . 50

5 Summary 5 5

Bibliography 5 6

viii

List of Tables

. . . . 2.1 The classical and Karatsuba's multiplication algorithm timings (in ms) 11

. . . . 2.2 The number of multiplications and additions of steps of Algorith~ri 2.5 28

2.3 Timings (in ms) of the FEEA compared to the EEA 30

List of Figures

2.1 Steps of Karatsuba's multiplication algorithm 9

2.2 Timings (in ms) of Karatsuba's algorithm for different cutoff degrees 12

2.3 Memory requirements of Karatsuba's algorithm in our implementation 13

2.4 Timings (in ms) of the FEEA for different cutoff degree 29

List of Algorithms

Karatsuba's Algorithm for input polynomials of size n = 2k 8

Karatsuba's Algorithm for polynomials of different sizes 10

Classical Euclidean Algorithm (EA) . 16

Extended Euclidean Algorithm (EEA) . 16

Fast Extended Euclidean Algorithm (FEEA) 23

Wmg's Rational Function Reconstruction Algorithm 36

Modified FEEA to return the maximal quotient(MQFEEA) 40

Maximal Quotient Rational Function Reconstrnction (MQRFR) 43

Brown's multivariate reduction algorithm (PGCD) 49

Leading Coefficient Retrieval (LCR) . 51

Chapter 1

Introduction

Rational recoristruction has become an important tool with many applications in computer

algebra. It enables the algorithms to recover rational numbers from their images modulo a

large integer (a prime, a prime power or product of several primes) or to recover rational

functions from their images modulo a given polynomial.

Let F be a field. Given a rational fnnction 7~/d E F(2) and a poly11011ljal m E F[x]

where deg nz > 0 and gcd(m, d) = gcd(n, d) = 1, we can easily compute u E F[x] such that

u, = n,/d mod 7n. The rational function reconst.ruction algorithm presents a solution for

the reverse problem. That is, for given polvnomials m; u E F[x] where 0 < degu < deg nz it

output,s a rational function n/d E F(z) where n/d - u, mod ,m and gcd(d, n ~) = gcd(r~, d) =

1.

The rational function reconstruction problem does not necessarily have a unique solntion.

The Extended Euclidean Algorithm finds all solutions satisfying deg n + deg d < deg m.

However, it is not h a d to see that there is only one solution when degee bounds N > deg it

and D > deg d satisfying N + D < degm are given.

Example 1.1. Let F = Z 7 We are given

where f E Z7[z]. We w,mt to find a rational f~mction 7r/d E Z7(.r) such that

Using polynomial inte~polation we can easily compute u, = z2 +x + 3 satisfying ,n(a) = f (a),

CHAPTER 1. INTRODUCTION 2

and rewrite the above problem in the form of the following rational fnnction reconstruction

problem:

Given na, - 1 ~ E Z 7 [x] with rn = (x - 1) (x - 2) (x - 3) and u = x 2 + n: + 3 , find a rational

function n l d E Z 7 (x) such that

n l d = u mod m? gcd(m, cl) = 1.

Let N = 1 and D = I be respectively degree bounds for the numerator and the de-

norninator of the solution. Using the Extended Euclidean Algorithm we get t,he following

solutions

Among these 3 solutions only n z / d 2 satisfies the degree bound requirement, that is, deg n2 5
1 and degd2 5 1.

If degree bounds N , D are not available we can use either VCTang's algorithm (Algo-

rithm 3.1) or the maximal quotient rational reconstruction algorithm (Algorithm 3.3). Both

of these algorithms assume an external mechanism exists which enables us to check whether

or not the output of the algorith~n is t,he one we were expecting. In this example we assume

that this mechmism gives us u(ai) with ai E Z7 a. new evaluation point.

The output of Wang's algorit,hm with inputs . r r ~ - (2: - 1) (~ - 2) (2 - 3) , u = x 2 + x + 3

would be (6 2 + 6) / s . Assuming u (4) = 5 we have m = (x - l) (x - 2) (2 - 3) (x - 4) and

= 4x3 + 5x2 + 32. This time Wmg's algorithm returns (z2 + 2)/(.c + 1) . Adding another

point (5 , l) or u (5) = 1 and calling Wang's algorithm with inputs 172 = (x - 1) (x - 2) (x -

3) (x - 4) (x - 5) a id u = 4z4 + 6x3 + 5 z 2 + 63. + 5 we get t.he sanic solution. At this point

we require an external mechanism to check whether (x 2 + 1) / (x + 1) is the correct solution.

Background

In 1981, VITang [20] presented a new algorithm for the partial fraction decomposition of

rational fhnctions in Q(:I:). To get, a more efficient algoritllrn he suggested that one first

solve the problem modulo a suitably selected prime and then lift the problem p-adically

to get the desired solution over Q (z) . When devising bhis algorithm he encountered the

rabiond number reconstruct.ion problem and developed an algorithm t,hat. enabled him to

reconstruct rational coefficients of a polyno~nial in Q[.c] from their images modulo m = p k ,

a prime power. The algorit,hm get.s m, u E Z as input and outputs a rational number n l d

satisfying said = u mod nz if a solution exisbs.

CHAPTER 1. INTRODUCTION 3

Wang showed, by adcling t,lie requirement 0 5 In.1, ci < @, or equivalently m, >
2(max(lnl, d))2, that the algorithm uniquely determines t.he solution if it exists. In fact?

Wit~ig's algorithm is the Extended Euclidean Algorithm equipped with a different stopping

condition. Wang did not provide any proof as to the correc,tness of his algorithm in the

origirial paper, however in [19] Wang, Guy and Davenport proved that if there is a solutiori,

it will be found by his algorithm.

Sirice t,hen, Wmg's algoritlim has bceri used in many contexts i~icludirig polynomial

factoriza,tion (see [21] and [4]), Grobner basis computations over Q (see [16] and [l4]),

polynoniial iriterpolation (see [7]), solvirig liriear systems over Q (see [13]) a.nd polynomial

GCD comput,ation (see 151 and [17]).

Moriagan in [ll] presented a more efficient solution for the ratio11a.l recoristructio~i prob-

lem, which he called Maximal Qvotient Rational Reconstruction. His algorithm also runs

the Extended Euclideari algorit,hm on iriput,s m, u m d outputs the rational nurribcr ri/ti

where i represents the index of the maximal quotient qi appearing in the Euclidean algo-

rithm. He introduced input T to the algorithm arid claimed that if we determine a good

val~le for T such that nz > InldT then with high probability the algorit,hnl output,s n ld for

q tlic maximal quotie~it. He also stated t.hat his algorithm ca.n be applied to the rational

furiction reconstruction problem over a finite field with p elements.

Warig's algorithm ca.n be ea.sily modified to solve tlie problern of ra.tionad function re-

construction as well. Von zllr Gathen and Gerhard in [18, sec. 5.71 show how to use the

Extended Euclidean Algorithm to solve the rational function reconstruction problem. The

algorithm in addition to polynomials m and ,u, gets a third input k E (0 , . . . , deg m,) and

outputs n, d such that deg n < k and deg d 5 degm - k. The problem with this algorithm is

that it needs the degree bound k for the nnme~ator and hence, deg m- k for the deriorninator

which is not always available in advance.

In this thesis we present a fast algorithm for the rational function recoristructio~i problerri

which is based on Monagan's maximal quotient algorithm. We show that if deg ,m > cleg n +
degd + 1, the11 with high probability the algorithm outputs n,/d. The adva~it~age of this

algorithm is that it requires no degree bounds a.s in [18] and it requires approximat,ely one

more point than the rnininium necessary, i.e., deg n + deg d + 1 point,s in tot,al, to reconstruct

nld.

Let m,j = niZl (3: - ai) where ai E F and deg m,j = deg n + deg d + 1. To interpolate

n./d we need at. least j points, hence, mj is t.he smallest polynomial in ternis of degree for

CHAPTER I . INTRODUCTION 4

which the rational function reconstructio~i can succeed in recovering nld. Our algorithm

has the following properties:

0 for rnr, w-ith k > j our algorithm outputs n/d with high probability. such that we need

approximately one more evaluation point than the minimum necessary,

0 if deg 7174 > 2(deg n + deg d) then our algorithm 0utput.s n/d with probability 1, a,nd

0 if k 5 j the algorithm fails with high probability.

Similar to any rational reconstruction algorithm, our algorit,hm is based on the Extended

Euclidean Algorithm. In order to be more efficient it uses the Fast Extended Euclidean

Algorithm which has time complexity O(M(n) log n), where M(n) denotes the number of field

operations required to multiply two polynomials of degree less than ,72. For fast polynomial

multiplication, we have implemented Karatsuba's algorithm which runs in 0 (7 r l o g 2 3).

'Ib show one of the applications of our algorithm we have implemented an algorithm for

computing the GCD of two multivariate polynomia.1~. We have modified Brown's modular

GCD algorithm to use the maximal quotie~it algorithm. Tliis not only solves the leading

coefficient problem in this algorithm but also reduces t,he number of trial division attempts

to 1 with high probability. Moreover, the number of evaluabion points required to recover

the coefficie11t.s of the GCD is reduced.

Outline

In Chapter 2 w e will explain three fast polynomial arithmetic operations. naniely fast poly-

nomial multiplication. the Fast Extended Euclidean Algorithm (FEEA) and fast polynomial

interpolation. 111 order for thc FEEA to be fast. one must irnplemcnt thc fast multiplication

algorithm carefully. In Section 2.1 we discuss Karatsuba's nlultiplication algorithm and how

it can be implemented so that it only uses a linear amount of memory with respect to the

size of input polynomials. In Sectiori 2.2 we explain the Extended Euclidean Algorithm and

a fast version of it which is going to be the main part of the Rational Function Reconstruc-

tion algorithm. "Modern Computer Algebra'' by von am Gathen rtnd Gerhard [18] is the

main reference for the material discussed in this chapter.

In Chapter 3 we will explore the rational function reconstruction problem. First we

describe the problem and then we present VCTang's algorithm. Next our algorithm is in-

troducetl. For a fast solution, we show how to modify the FEEA to do nxuri~nal quotient

CHAPTER. 1. INTRODUCTION

rational reco~lst~ruction.

Brown's modular algorithm for multivariate GCD computation is described in Chapter 4.

We show how we can use rational function 1.econstruction presented in Chapter 3 to make

Brown's algorithm work more efficiently. We show this modification reduces the number of

evaluation points nceded by the dgorithrn.

In the last chapter, we give a sLmlma,r;y of what we have done in this thesis.

Chapter 2

Fast Polynomial Arithmetic

In this chapter we will mainly explore Schijnhage's Fast Extended E,uclidean Algorithm.

We refer to a polynomial's degree plus one as the size of the polynomial. For univaria.te

polynomials of size at most n over a field, this algorithm finds all of the quotients and

a single remainder r (which is the GCD) together with corresponding values of s and t:

satisfying as + bt = r : using O(M(n) log n) field operations. M(n) denotes the munber of

field operations required to multiply two univariate polynomials of size 12.

In the first section of this chapter we will introduce Karatsuba's algorit,hm as a fast

multiplication algorithm. In the second section we will present the Fast Extended Euclidean

Algorithm and apply it to solve the polynomial interpolation problem fast,.

2.1 Fast Polynomial Multiplication

The polynomial mult,iplication algorithms which are asympt,otically faster than the cla,ssical

0(n2) method are considered to be fast polynomial mult~iplication algorithms. There are

two u~ell-known fast multiplication algorithms, namely Karatsuba's [8] algorithm and an

FFT*-based multiplication algorithm. In the case of univariate polynorriials of size n, t3he

classical method uses 0 (n2) steps to compute the product, while Karatsuba's dgorithm has

a time comp1exit:y of ~ (n ' . ~ ~) and the FFT-based algorithm costs O(nlog.71). The FFT-

based algorithm is asymptotically the fastest known algorithm for multiplication but it is

more complicated to implement. Also Karatsuh's algorithm is faster than the FFT up to a

'Fast Fourier Tra.nsforrn

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 7

certain size, e.g., in MAGMA, Karatsuba's algorithm for integer multiplication is faster than

the FFT for integers of size up to 50,000 bits.

2.1.1 Karatsuba's Multiplication Algorithm

Let R bc a ring and a. b E Rjx] of size n . The classical multiplication method uses n2

multiplications and (n - 112 additions in R to compute ab. Yet, we can compute the

product faster if we use Karatsuba's multiplication algorithm.

For simplicity aswinie tliat n = 2' for some k E N. Split a and b into two polynorriials

of size n / 2 :

Then the product ab can be written a,s

Relation (2.3) can be uscd for computing albl, a2b2 and (a1 + a2)(bl + b2) recursively. This

results in Algorithm 2.1.

Figure 2.1 illustrates Karatsuba's algoril hm step by step. As shown in this figure,

computing the product ab requires three multiplications and two additions on polynomials

of size r1/2, two subtractions on polynomials of size r~ - 1 and one addition of sizc n - 2.

Remark 2.1. Note tliat there is a "gap" between cl and csxn

Let T(n) denote the cost of m~~ltiplying two polynomials of size n . The following table

shows the cost of each step of Algorithm 2.1 :ts illustrated in Figure 2.1

I Cost I - I - 1 3 T (n / 2) + n 1 2 (n - 1) 1 n - 2 1
step 1) 2 3 4 5

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 8

ALGOKITI~M 2.1: Karatsuba's Algorithin for input polynomials of size n = 2!"

Input: Poly~io~nials a. b E R[z] of size n = 2'' whcrc R is a ring aiid deg a = deg b =

n - 1.
Output: Polyno~nial c = ab E R[z] .

2. let a = a 2 ~ " / ~ + a1 and b = b 2 d 2 + bl where al : an, bl, b2 E R [z] are of size n/2

3. compute cl = albl, c' = (a1 + a2)(bl + b2) and cg = a2b2 by recursively a.pplying
the algorithm

4. compute c2 = c' - cl - cy

5. return c = c3xn + C J ~ ' ~ / ~ + CI

Assuming T (l) = 1 we have the following recurrerlce relation:

Hence

CHAPTER 2. FAST POLYNO,MIAL ARITHMETIC

Step Operation Cost

2) a = a2xn/' + al

Figure 2.1: Steps of Karatsuba's multiplication algorithm

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 10

In case n is not a power of 2 but a and b are still of equal size, we can assume that they

are both of size 2rlo"'71 with some top coefficients equal to zero. However, this may not be

efficient if n is only slightly larger than a power of 2. Alternately, a and b can be divided

into sub-polynomials of size n1 = b/21 and n2 = Ln/2]. It is obvious that if n is even then

n~ = 12.2 = n/2 and otherwise 1x1 = n2 + 1. Assuning we split the polyno~nials in a way that

the lower half is of size n l and the upper half is of size n2. we will have

and

ab = a2b2.r"' + (alb2 + a2bl).rn1 + albl

= + ((a1 + ae)(bl + bn) - albl - a2b2)xrL1 + albl. (2.4)

Algorithm 2.1 can easily be modified t,o con~pute the product of two input polynomials of

the same size, not necessarily a power of 2, witlmut affecting the asymptot,ic complexity.

We next, consider the case where input polynomials are not of the same size. Algo-

rithm 2.2 describes Karatsuba's multiplication algorithm in this case.

ALGORITHM 2.2: Karatsuba's Algorithm for polynomials of different sizes

Inpnt: Polynomials a , b E R [z] where R is a ring, m, = deg b + 1,
n = d e g a + l = q m $ r . (r < m) a n d n > m

Output: Polynomial c = a,b E R[s] .

1. let. a = aq:cm" +aq-lxm(q-') + . . . + alxm + a0, where all a,'s are in R[x] and of
size m except oIq which is of size r

2. compute c, = a,b for 0 < i < q using Algorithm 2.1 (after a small modification),
and cq = uqb by recursively calling Algorithm 2.2.

Let a and b be two polpnomials of size n and nz respectively. VCiithout loss of generality

assume n > 711. Let q and r be respectively the quotient and the remainder of dividing n by

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 11

711, i.e. 71 = qm + r (T < 7n). In the first step of Algorithm 2.2 polynomial a is divided int,o

chunks of size at most m namely ais as follosvs

Thus

ab = (a q b) P q $ (~ , - l b) . r ~ (" ~) + . . . + (nlb)zIn + (sob).

Polynomial b and all aLis except a, are of size m. Thus. Algorithm 2.1 can be applied for

computing c, = a,b (0 < i < q). But a, and b are of different sizes so to cornpute cq = nqh

we recursively use Algorithm 2.2 with b and a, as inputs. In the last step of Algorithm 2.2

we perform q additions and obtain the product

I11 pract'ice for small input polynomials the classical method performs better than Karat-

suba's algorit,hm. Therefore, a hybrid implementation which makes use of both algorithms

is t,he best choice. We find a cutoff degree above which we use Karatsuba's algorithm and

below that the classical method is applied. The cutoff degree ca.n be computed by running

both algorithms on random input polyrlomials of increasing size. We can easily incorporate

t,his change in Algorithms 2.1 and 2.2.

Figure 2.2 shows the timings of Karatsuba's algorithm (hybrid inlplement.at.ion) on two

random polynomials of degree 1500 with the cutoff degree changing from 10 to 100. As

illustrat.ed, the best cutoff degree is 55.

Table 2.1: The classical and Karatsuba's tnultiplication algorithm timings (in ms)

n
128
256
512

1024
2048
4090:
8192

The da.ta in Table 2.1 includes the timings, in milliseconds, we gathered for our Java

iniplementation of Karatsuba's algorithm and the classical ~nultiplication method over Zp[z]'

Karatsuba
0.34
0.98
2.93
8.93

26.48
79.78

245.04

Classical
0.38
1.40
5.40

21.62
84.43

345.67
1375.42

CHAPTER 2. FAST POLYNO,MIAL ARITHMETIC

f 7 5 4 4
0 20 40 60 80 1 O\

Degree

Figure 2.2: 'I'imings (in ms) of Karatsuba's algorit,hm for different cutoff degrees

where n, denotes the polynomial degree and p is a 1.5 bit prime. The timings for Karatsuba's

algorithm increase by a factor close to 3 as the degree doubles which confirms that our

irnplcmcntation of Karatsuha's algorithm is of' time complexity 0 (d 0 g - ' 3) .

2.1.2 Memory Requirements of Karatsuba's Algorithm

A naive implementation of Karatsuba's algorithm makes use of some extra storage in each

recursive call to the algorith~n. Let M(7r) denote the total a~nount of memory required

to multiply polynomials a and bof size 7% using Karakuba's algorithm, where n = 2k for

some k E N. The following table displays the amount of memory used in each step of

Algorithm 2.1.

Note that M(7z) does not include the memory required to store a and b which is itself 2n

(step 2). Assuming M(1) = 1 we will have

CHAPTER 2. FAST POLYNOMIAL A RITHMETIC

n2 nl - n2 nl -
a : -7 Split a and b into subpolynomials of

(1) b : I b2 1 bl I size nl = rn/21 and n2 = Ln/2].

2nl - 1 nl nl
4 -- A - - e

(3) j
Compute a' = a1 + a2 and 6' = bl + 62.

I
I a' b' .------------ * (b' I a' I Compute a'b' recursively.

Wn1)
2nl - 1 - Move a'b' to the end of the allocated

Figure 2.3: Menlory requirements of Karatsuba's algorithm in our implementation

(4)] a'b'

(6) 1 c

Therefore, the total amount of memory required to compute ab using Karatsuba's algorithm

is of order 0 (n " p 2 ~) . In 1993 Maeder in [9] suggested an "in place" i~rlple~r~eritatio~i for

Karatsuba's integer mult,iplication algorithm. He gave upper and lower bounds for the

I 101 albl I Compute c = a'b' - albl - a2b2

a~rlount of auxiliary storage required.

We used the same method in our implementation of Karatsuba's algorithm for poly-

nornia,l multiplicatiori. In our Java irnplernenta.tion the total amount of mernory required

for multiplying the input polynomials---taking into account t,he memory required for per-

forming intermediate ca.lcula~tions-is computed and allocated in advance, and passed as a

parameter to the method implementing the ~nultiplication algorithm.

Let a, and b be two polynomials of the same size which is not necessarily a power of 2.

Figure 2.3 illustrat,es the order in wliidl the computations Inust be done so that the nlmlber

I I 1 a161 memory and then compute albl
4 - - - - - - - - - - - - *

M(n1)
recursively.

2n2 - 1
F

(5) 1 arb' 1 ad2 (01 a161 Compute a2b2 recursively.
4-" ----------- *

2nl - 1 M(n2) 2nl

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 14

of necessary copies is minimized and the results are put in their final location. We show

below that by implementing the algorithm '511 place" only 4 n words of memory are required

which is lineax in the size of the input polynomials.

In Figure 2.3 the total amount of memory required for any multiplication is marked by

dashed lines and arrou7s, while tlie required amount of memory to keep thc result only, is

marked by solid lines. Row (5) shows that it is sufficient to allocate totally 2nl + M(112) +
2n1 - 1 memory cells for computing ub, in other words

We claim 491 is an upper bound for M(n) and prove our claim by strong itiductio~i. So

we must show that the following inequality holds for all integer values of 71:

The basis is to verify that M (1) = 1 < 4 and M (2) = 3 < 8. NOW we must prove that if

(2.6) holds for all k 5 71 - 1, it also holds for k = n,

2.2 The Euclidean Algorithm

The Euclidean dgorithm finds the greatest coIrurioIi divisor of two integers or two polyno-

mials. However, it has a number of nice properties and applications which go far beyond

that of just coniputing greatest common divisors.

In Section 2.2.1 we describe how the Classical and the Extended Euclidean Algorithms

work and investigate some properties of t'he latter algorit,hm. Then in Section 2.2.2 we will

explore tlie Fast Ext,ended Euclideari Algorithm, also called Half-GCD. Given two polynomi-

als of size n with coefficients from a field F ; the Extended Euclidean Algorithm uses 0(n2)

field operations to compute their greatest corrlnion divisor. However, tlie fast Euclidean

algorithm computes the same GCD in O (M (n) log n) field operations, where M(n) denotes

the nu~nber of field operations required to multiply two univariat'e polynomials of size n.

Hence using Karatsuba's multiplication the CiCD can be computed using O(nlO& log n)

field operat,io~is.

CHAPTER 2. FAST POLYArOMIA L ARITHMETIC

2.2.1 The Extended Euclidean Algorithm

In Chapt,er 3 we will introduce an algorithm for reconstrncting a rational function from

its image niodulo a univariate polynomial, the basic component of which is the Extended

Euclidean Algorithm. The Euclidean Algorithm is an effective algorithm for computing the

GCD in any Euclidean domain.

Definition 2.2. An integral domaint R with a valuat,ion f~mction v : R \ (0) -+ W U (0) is

a. Euclidean domain if

1. for all a , b E R\{O) we have v(ab) > e i (a) ,

2. for all a , b E R with b # 0: we can divide a by b to obtain elements q, r E R such that

a = bq + r where either r -- 0 or u(r) < n(b).

Polyno~~iials q arid r. are called the quotient and the remainder, respectivel3;. and t,he

valua.tion function v is a Euclidean. norm .function on R. For example, if F is a field then

F [z] , the ring of unimriate polynomials over F, is a Euclidean do~riain with c(a) = deg a.

Definition 2.3. Let R be a ring and a: b, g r R. g is a greutest common divisor or a GCD

of a and b if

(i) gln and glb.

(ii) if cla and c(b t.hen c(g, for all C E R.

111 gerlcral thc GCD of u and b is not unique, but all their GCDs arc associatest. Al-

gorithm 2.3 describes how the classical Euclidean algorithm computes the GCD of two

elcnlcnts in a Euclidean domain. It car1 e a d y be provcd that the output of this algorithm

is a GCD of the inputs. Thus, the GCD is simply the last nonzero element of the remainder

sequence generated by Algorithm 2.3.

TAn Integral Domain is a cornmu1,ative ring which satisfies the Cancelation Law.

ca he elements a and b are associate if a = ub for .u 6 R and n has a multiplicative inverse in R.

CHAPTER 2. FAST POLYNOMIAL ARITHiMETIC

ALGORITHM 2.3: Classical Euclidean Algorithm (EA)

Input: a: b E R: where R is a Euclidean domain.
Output: Grea.test common divisor of a and b.

2. i = l
while ri f 0 do

q,i = ri-1 quo ri /* qi is the quotient of dividing ri-1 by r i . */
Ti+l = '7'-1 - T&

i = i + l

3. return ri-1.

The classical Euclidean algorithm can be readily extrended so that it computes not only

g = gcd(a, b), but also the elements s and t satisfying sa + t b = g. Algorith~n 2.4, also called

the monic Extended Euclidean Algorithm, presents the Extended Euclidean Algorithm for

the Euclidean domain F [z] , with F a field. This algorith~n makes all remainders in the

renlainder sequence monic, that is, to have 1 as the leading coefficient. This results in

outputting a monic form of the GCD whidi is unique.

ALGORITHM 2.4: Extended Euclidean Algorithm (EEA)

Input: f , g E F [TI, where F is a field and deg f 2 deg g .
Output: 1 E I V , r i , ~ , , t ~ E F[.E], pi E F , for 0 5 i 5 1 + I , andqi E F [z] for 15 i _< 1.

2 . i = l
while ri f 0 do

CHAPTER 2. FAST POLYN0,MIAL ARITHMETIC 17

The elements ri, si and ti, with 0 5 i < 1 + 1, are called the ith row of the E,xtended

E,uclidean Algorithm. For a better understanding of the algorithm consider the matrices

in F [X] * ~ ~ and Ri = Q i . . . Q I R o for 1 < i 5 1. From the algorithm we have

for 1 < i < 1. The following lemma presents some known properties of the Extended

Euclidean Algorithm which are in the scope of this thesis.

Lemma 2.4. Let ni = degri i11 the E,EA for inputs f and g. We let ro = f / lc(f), 7.1 =

g/lc(g) and rl+l = 0. Then for 0 5 i 5 1 we have

(i) ni > n,i+l where i # 0,

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC

(vi) s i f + tig = ri; in particular, sl f + tlg = gcd(f , g),

(vii) gcd(si, ti) = 1,

(viii) gcd(ri, ti) = gcd(f , ti):

(ix) degsi+l = nl - ni, degti+1 = no - ni where 1: # 0.

Proof. (i) and (ii) are easy to show. (iii): (iv) and (v) are easily proved by induction on 1:.

(vi) follows from (iii) and (iv). (vii) follows directly fro111 (v).

To prove (viii), we let gl = gcd(f, ti). Thus gll (si f + tig = ri) or gl 1 gcd(ri, ti). On the

otlier lmnd, if we let g2 = gcd(.ri, ti), t,hen gz(ri - tig = s i f . But according to (vii) we have

gcd(si: ti) = 1 and thus gz 1 f or gz 1 gcd(f , ti). This proves (viii).

By induction we can ea,sily show that clegsi > deg si-1 for 1; > 1, which irriplies that,

The proof is the same for deg ti+l. 0

Cost Analysis of the EEA

Let f , g E F[x], with F a field and degf = 7% > degg = 77% > 0. We let ni = degri for

0 5 i 5 1 + 1, with rl+l = 0, where ri's are monic remainders generated by Algorithm 2.4

for inputs f and g.

To co~npute the quotient and the remainder of a manic polynomial of degree n - 1 divided

by another monic polynomial of degree ni < ni-1, we use a.t most ni(ni-l - ni) multipli-

cations and ni(niPl - ni + 1) subtractions in F. Then to obtain a rnonic remainder we

compute one inverse plus ni+l mult.iplications in F. So the cost of computing all quotients

and nlonic remainders in the EEA is

subtractioris and multiplications plus 1 - 1 irlversions in F. It is obvious that the number of

division steps 1 is bounded by m + 1. To evaluate (2.7), we consider the worst case where

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 19

the degree drops by 1 at each step, so that n,i = m - i + 1 for 1 < i 5 1 = m + 1. This

simplifies (2.7) to

It remains to analyzc the cost for computing s,+l and ti+l. We can ~nultiply the monic

polynomial qi by t, using o d y 2 deg ti . deg q, + deg q,: operations in F. Subtract.ing the

product f ro~n ti-1 and nlultiplyi~ig the result by ,oZl ttakes another 2(deg ti+' + 1) additions

and multiplications. Thus the total number of additions and multiplications for computing

which simplifies to

Using a similar argument as t.he one used for ti the cost of computing all si's is obtai~ied

to be 2m2 + 27n + n + 2. Normalizing f and g in step 1 of Algorithm 2.4 also requires two

inverses and n +,rr), rrlultiplications. Thus the total cost of the EEA is at most rn + 2 inverses

a,nd 6mn + O(n) additions and multiplications in F.

2.2.2 The Fast Extended Euclidean Algorithm

In 1971 Schonhage in [15] presented a fast integer GCD algorith~n with time co~nplexity

0 (n 102 n log log n). Assuming a multiplication algorithm of time complexity O(n loga n)

is available for polynomials in F[x], hloenck in [lo] adapted Shoiihage's algorithm into an

0(n loga+' n) algorit.hm for polynomial GCD computation in F[z]. However, its correctness

was restricted to input polynomials of the form "normal remainder sequences". In 1992

Montgomery in his PhD thesis 1121 presented a, fast extended Euclidean algorithm for poly-

nomials in Z,[.T] which is of O(M (n) log n). Maple v. 10, Mathematica v. 4.0 and Magma

v. 2.10 have fast integer ~nultiplication and division. Only Magma has fast integer GCD.

As a part of this thesis, we have implemented the Fast Extended Euclidean Algorithm

presented in [la, Ch. 111 for polynomials in F[x] = Z,[x], with p a prime. However, the

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 20

algorithm presented in the book needs some corrections. We have made some ~nodificatior~s

to this algorithm by removing some unnecessary outputs (Algorithm 2.5) and adding some

parts for computing the quotient with maximal degree (Algorithm 3.2).

Let f = fnxn + fn-lxn-' + .. . + fo E F[x] and f n # 0. Following [18]. we define t,he

truncated polynomial

for k E Z. We set fi = 0 if i < 0 and f 1 k = 0 if k < 0. The polynomial f 1 k is of degree

k for k 2 0 and its coefficient,^ a.re the k + 1 highest coefficients of f .

Definition 2.5. The pairs (f, g) and (f *, g*) coincide ,up to k if

f 1 k = f * I. k,

g 1 (k - (deg f - degg)) = g* 1 (k - (deg f * - degg*), (2.8)

where f , g, f *, g* E F[z]\{O), deg f > degg, deg f' > degg* and k E Z. If k > deg f -degg,

then deg f - degg = deg f * - degg*.

Example 2.6. Consider f = 2x8 + z7 + 42% 3z2 + 1, g = x7 + 5x5 + 3x4 + 2 2 + 6 and

f * = 2z7 + z6 + 4:r4 + 35. + 5, g" = z6 + 52' + 3x3 + 2. Then (f, g) (f *, g*) coincide up

to 6 beca,use

Lemma 2.7. [la; Lemma 11.11 Let k E Z, f ,g , f*,g* E F[.x]\{O}. If (f,g) and (f*,g*)

coincide up to 2k and k 2 deg f - deg g then

1. q = q * and

2. if r # 0 and k-deg q > deg g -deg r then (g , r) and (g*, r*) coincide up to 2(k -deg q),

where q. r. q*, r* E F[z] are defined by

f = qg + r: (deg r < deg g) ,

f * = Q'S* + r*, (deg r* < degg*).

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 2 1

Lemma 2.7 gives the requirements necessary for the quotients to be equal. Let n, = deg r ,

for 0 i. i < 1 + 1 and rl+l = 0 , where Q , rg, rl+l are monic polynomials in the remainder

sequence generated by the Euclidean Algorithm for manic polynomials ro and r l . We let

m, = deg q, = n,-1 -n, for 1 5 i < 1 , where q, is the ith quotient in the Euclidean Algorithm.

Then we have

For any k E W and f , g E F [z], define the positlive integer number 7lf , g (k) by

The following inequality is derived from (2.9) and (2.10):

Lemma 2.8. [18, Lemma 11.31 Let k E W, h = ~ r o ~ r l (k) and h* = (k) , with ro, r l ? r;, r i

monic polynomials in F [z] . If (ro, r l) and (r; , r ;) coincide up t,o 2k and k 2 deg ro - deg r l ,

then

2. qi = qf for 1 < i 5 h ,

3. pi =pT for 2 < i 5 h ,

where qi, q5 E F[z] and pi, p5 E F asre defined by

Remark 2.9. Note that t,he original lemma in [18] states tha,t pph+l = pi+l which is not

correct and we have excluded 1~ + 1 i11 Lemma 2.5.

The proof for Lemma 2.8 fbllows directly fi-om Lemma 2.7. Refer to [l a , Lemma 11.31 for

a detailed proof of this lemma. To improve t,he efficiency of the EEA, a divide-and-conquer

algorithm is designed based on Lemma 2.8. This algorithm is called the Fast Extended

Euclidean Algorithm and is presented as Algorithm 2.5.

CHAPTER 2. FAST POLYNOMIAL ARITHiME TIC 22

Algorithm 2.5 works by dividing the sequence of the quotients into two parts such that

the sum of the degrees in both parts is almost the same. Let 1 be the number of division

steps in the Euclidean algorithm. Then in the case of a normal degree sequence, in which the

quotient degree drops exactly by 1 at each step, the problem is divided into two subproblems

of size 112.

To obtain the quotient of the division of a large monic polynomial ro by another large

rnonic polyno~nial r l , one can divide two smallcr polynomials r; and T ; , providcd that

(ro. r l) and (r i . r ;) coincide up to 2k, where k > deg ro - deg r l . This can even be extended

to applying the Euclidean Algorithm on r:, r ; instead of ro, r'l to obtain the sanic first

qTO,,, (k) quotients; and the same first qrO,,., (k) - 1 leading coefficients of the remainders. by

Lemrna 2.8.

Algorithm 2.5 gets two momc polynomials ro, r l and a positive integer k as input, with

no /2 < k 5 110. Input k helps us divide the problem into two subproblems of ahnost the

same size (k / 2) . The FEEA is then recursively applied to solve each problem. The sun1

of degrees of the quotients computed in each call to the FEEA is lcss than or equal to k .

That is, if we let rn, = degq, then it should return whenever ne, > k. According to

(2.10) h = rlro,rl (k) . If the algorithm is called with a value of k which satisfies the condition

no /2 5 k < no, then in any further call to the FEEA we will have k = no/2 . We will explore

the special cases where 0 < k < no/2, or inputs ro and rl are not nionic or deg ro = deg rl

later.

The following four items describe the four outputs of Algorithm 2.5:

0 h = qTO,,., (k) specifies the total number of steps of the Extended Euclidean Algorithm

performed in one call to Algorithm 2.5. Note that the FEEA computes all the elements

of the EEA except the remainders.

0 ph+l is the leading coefficient of the (h + 1)th remainder in the Extended Euclidean

Algorithm, that is pj,+lrj,+l = rh-1 - rhql, where rh-l,rh and rh+l are all rnonic

polynomials.

Rh = (' th) is a matrix that helps us co~npute the ~nonic re~nainders rh and
5h+l th+l

rh+l frorn ro and r l . in addition to holding the values of sh, th. sh+l. th+l.

(r:ll) = Rh (~ y) is a vector containi~ig the hth and the (h+ 11th monic remainders

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 23

ALGORITHM 2.5: Fast Ext,ended Euclidean Algorithm (FEEA)

Input: ro, r~ two monic polyno~nials in FIX] wit,h no = degro > nl = degrl 2 0 and . .

k E N with n0/2 < k 5 n c /* 1x0 is strictly greater than nl. */

Output: h = rlTo.rl (k) E N; ph+l E F , Rh = (" h and (r h) = R h (::I.
Sh+l h+l Th+l

1 0
return 0, 1, (,

and (::)
else if no < cutoff the11 /* c,u.toff degree of the FEEA */

return EEA(ro, rl, k)

3. r,* = ro 2k1, rT = rl (2kI - (no - 1 2 ~))

call the dgorithm recursively by writing FEEA(r,*, rT,kl), to obtain
1

j - 1 = qr.; ,r; (kl), p;, R;-, = Q;-1Qi-2 . . . Q1 where Q5-1 =

a,nd ci l) = R;-l (z)
4. /* in this step we want to determine p,, rj-1, r j and Rj-1. */

0

5. (n;;1) = (den -1)
deg rj

if r, = 0 or k < no - n, then

return j - 1, p,, RJ-l,

6. qj = rj -1 quo r,?
pj+l = l c (~ j - ~ - qjrj) /* for consistency we let lc(0) = 1. */
r j + ~ = (rj-1 - qjrj)/pj+l

CHAPTER 2. FAST POLYNOIVIAL ARITHMETIC

7. kz = k - (no - 7hj) /* up to now we have computed j quot,ients. */

8. r j = r j t 2 k 2 , ~ j + ~ = r j + l t (2 k 2 - - (n j - ~ z . j + l))
call the algorithm recursively by writing FEEA(rJ,*, rT+l, k 2) , t.o obtain

and (zi) = 5. ('J,*)
rh+l r? 3+1

10. return h, ph+l, SRj,
(r::1)

in the Ext,ended Euclidean Algorithm. If h is equal to the total number of steps of the

Extended Euclidean Algorithm on TO and 7-1 i.e. 1, then rh = gcd(ro, T I) and ,rh+l = 0.

In step 3 of Algorithm 2.5, a recursive call is made with k l = [k / 2] as the integer input, so

that when completed v,.;;,~; (k l) = j - 1 quotients have been computed. This is almost half of

the quotients in t,he case of a norrnal degree sequence. The pairs (ro , r l) and (r;; T T) coincide

up to 2kl m d no - nl < k , thus according to Lemma 2.8 T]To,l.l(kl) = ~ ~ ; , ~ ; (k ~) = j - 1;

qi = qT for 1 < i 5 j - 1 and pa = p: for 2 5 i 5 j - 1. Note that pj is not necessarily

equal to p; In step 6 we compute the next quotient q j ; and then in step 8 another recursive

call is made with k2 = k - (no - 1 1 ~) = k - C i = l degqi. This will perform the rest of the

divisions a.nd when completed all the expected quotients have been computed.

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC

In step 4 we obtain the values of pj, rj-1, rj and RJ-1. We have

hence

As stated before 71r0,r1(kl) = j - 1, t,hm a.ccording to (2.11) we have

If now k < no - 71j in S ~ C P 5 , then vro,rl (k) -- j - 1 a.nd the dgorithm returns the correct

result; otherwise, qro,rl (k) 2 j and the next quotient qj is computed in step 6.

111 step 8 after the recursive call

we obtain

we have 3 = QiQI,-l . . . Qj+1, and by Lemma 2.4 (iv)

Let i h + l = &rh+l. By analogous reasoning as for step 4 we get
~ ; t + l

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 26

As stated before, the inputs of the FELA are expected to be two nlonic polynomials

ro, rl and a positive integer k, where deg ro > deg rl and no/2 < k < no. Let f , g E F [z] be

two arbitrary polynomials and k E N. We now explain how to handle the special cases that,

might occur.

1. f and g are monic, but deg f = degg:

Let p.2 = 1c(f - g). If f = g then we let pz = lc(0) = 1. We can call t,he FEEA with

7.0 = 9: 7'1 = (f - g)/p2 and then inst'ea.d of Rh = (th) return t,he following
Sh+l th+l

matrix

The subtraction, normalization and the corresponding correct~ions of Rf, cost only 0 (n)

field operations a,nd hence do not affect the asymptotic running time of the algorithm.

2. deg f > degg, but f and g are not ~nonic.:

We run the algorithm on ro = f / lc(f), r l = g/ lc(g) and divide the first and the

second column of the result Rh by Ic(f) and Ic(g), respectively. This takes only 0 (n)

additional field operations.

3. 0 < k < no/2:

It suffices to call the algorithm with input ro 1 2k, .r1 r (2k - (degro - degrl)) and

k , and make the same corrections on ph+l, rh+l and Rh as we did in step 4 of the

algorithm.

Now one question is, what value should we choose for input k when we want to compute

gcd(ro, r l) using the FEEA? The output h = ~ ~ ~ ; , . ~ (k) denotes the number of steps of the

EEA performed, or equivalently, the number of q~~otients computed in the FEEA with inputs

ro, rl and k. Let 1 den0t.e the total number of steps of the EEA. We have

If we set k = deg ro, t.hen J L = vro,rl (deg ro) = 1! which results in coniputing all the quotients

and gcd(ro, r l) as well.

C H A P T E R 2. F A S T P O L Y N O M I A L A R I T H M E T I C

Cost Analysis of the FEEA

Let T (k) clenote the number of additions ancl multipli~at~ions that Algorithm 2.5 performs in

F with input k . Step 3 of the algorithm per-forms ?'(kl) = T (L k / 2]) operations for solving

a subproblem of the same kincl. Definition of k2 ancl inequality (2.11) imply that

k2 = k - (no - n j) < k - k1 = rli/21

or k2 5 Lk-121. Thus step 8 takes T (k 2) or at most T (L k / 2]) operations in F.

To make the algorithm work more efficiently, in step 4 insteacl of multiplying R;-l by

(r o , r l) T whose ent,ries are at most of degree 2 k , we multiply it by a vector with entries of

degree at rnost n,o - 2k1 - 1 < k as follows

" j - 1 t j - 1
The entries of R;-l = are of degrees nl -nj -s , no -n,i-2, nl - nj-1 and

PjIPj'sj P j I P j ' t j

710 -nj-1, by (2.12) and Lem~na 2.4 (ix). All four values are at most no - n - 1 < kl = Lk/2].

Thus we have four multiplications of polynoniials of clegree at most Lk/2] by polynomials of

degree less than or eqlial to k , plus some multiplications by constants ancl some aclditions.

Thus the cost for step 4 is 4 M (k) + O (k) .

In step 9 instead of multiplying 3 by (r j , r j + ~) ~ we do the same computations as we

did in step 4 to get the result more efficiently. The entries of s are of degrees nj+l - nh-1,

n 3 . - nh-1, n,j+l - n,h and n j - n,,, which are at rnost nj - n.h < k2 < Lk/2]. The polynomials

in the vector to which 3 is applied are of degree nj - 2k2 - 1 = no - k - k2 - 1 < k. Thus

as step 4 , the cost for step 9 is bounded by 4 M (k) + O (k) .

In step 6 we divide rj-1 by rj and comput,e the quotient qj and the remainder rj+l of this

division. Polynomial r j is of degree n j < n o < 2k and the quotient q~j is of degree nj-I -nj <
no - (no - k) = k . Fast division as explained in [18, Algorithm 9.51 takes 4 M (k) + O (k)

operations in F for computing the quotient and at most 2 M (k) + O (k) operations in F for

computing the remainder on inputs .rj-1 and r j . So the cost of performing the division

would be 6M (k) + O (k) .

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC 28

Remark 2.10. We did not implement Fast Division in our implementation of the FEEA.

The Fast Division Algorithm is needed when the degree of the quotient is not small, but in

the normal case where the degree drops by a small amount at each step of the FEEA there

is no need to use this algorithm.

Another computation performed in step 6 is to compute Rj; the first row of which

is exactly the same as the second row of R,,-l. Thus, we only want t,o compute sJ+l =

(~ j - 1 - ~ j ~ j) / p j + l and tj+1 = (tj-1 - tjqj)/pj+l as the elements of the second row of Rj.

As stated before sj and t j are at h no st of degree jk/2] and qj is at most of degree k ,

which implies computing the elements of the second row of Rj takes at most 2M(k) + O(k)

operations in F.

The entries in the first row of R,, = are of degree jk/2] and the entries

in the second row are at most of degree n,o - T L ~ < k. Also as shown before, the degrees

of the entries of S are at most jk/2]. Thus computation of S.Rj in step 10, takes at most

GM (k) + O(k) operations in F.

The only inversions that take place in Algorithm 2.5 are 1/ lc(Fj), l/pj+1 and 1/ 1c(Fh+l).

They all can be computed only once. Therefore the total number of inversions during the

recursive process is at most 31;. The following table i 1 lu~ t r~ t . e~ the cost of each step of the

FEEA.

I Step I Cost I

I Total / 2 ~ (/ k / 2 1) + ' 2 2 ~ (k .) + 0 (k) I

Table 2.2: The nu~nber of niult,iplications and additions of steps of Algorithm 2.5

T satisfies the following recursive inequalities

for some const,ant c E W.

CHAPTER 2. FAST POLYNOMIAL ARITHMETIC

Hence

T(k) 5 (22M(k) + O(k)) log k E O(M(k) log k).

We used Karatsuba's multiplication algorithm in our implementation of the Fast Ex-

tended Euclidean Algorithm. In this case M(k) E O(kloQ ') and thus the implemented

FEEA is of time complexity O(klo" d3 log k). The EEA performs better than the FEEA

for polynomials of low degrees. Thus we have computed a cutoff degree for the dividend

ro below which we use the EEA in Algorithm 2.5. Our Java implementation of the EEA

accepts 3 inputs and returns the same rmml>cr of outputs as the FEEA, so that it can be

used in step 1 of the FEEA.

50 i00 150 200 250 3m 350 400
Cutoff Deoree

Figure 2.4: Timings (in ms) of the FEEA for different cutoff degree

Figure 2.4 illustrates the timings (in ms) of the FEEA on two random polynomials of

degree 10000. We can choose 150 as the cutoff degree, but it seems that any value in the

range 100 to 300 can be chosen as the cutoff degree.

Table 2.3 illustrates some timings for the EEA and the FEEA using cutoff degree 150.

The first column (n) specifies the degree of the two randomly chosen polynomials. The

second and the third colurnns show the time it. takes to run the EEA and the FEEA,

respectively, on input polynoniinls of degree n. We have divided the timings presented in

the third column by n10g23 logn for each value of n and obt.ained a constant factor in the

fourth column, which confir~ns that our i~~~plen~er~ ta t ion of the FEEA is of O(nlo" log n,).

CHAPTER 2. FAST POLYNOMIAL ARI'T'HMETIC

Table 2.3: Timings (in rns) of the FEEA compared to the EEA

FEEA/(~"" ' log n)
0.00052
0.00050
0.00049
0.00048
0.00049
0.00048

All our computations were performed modulo a 15 bit prime.

EEA/FEEA
1.26
1.51
1.88
2.33
2.84
3.54

2.2.3 Fast Polynomial Interpolation (Application)

To complete this chapter we show how the FEEA can be applied to solve the polynomial

interpolation problem fast by using a more or less obvious divide and conquer algorithm.

Let F be a field and al, . . . ,a,, E F be pairwise distinct. Given arbitrary Dl:. . . , Pn E F.

we want to find f E F [z] of degree less than n such that f (ai) = ,Bi for 1: = 1 . . . n. It is well

known that if a i ls are distinct a solution exists a,nd is unique. The solution can be found by

solving a system of linear equations. Let f (z) = an-lzYL-l + . . . + a l z + ao. Then we have

The system can be solved in 0(72') operations in F. It is also well known that the problem

can be solved in 0 (n2) operations in F using either Lagl-ange or Newton Interpolation.

Here we show how to use the FEEA to generate a divide-and-conquer algorithm for fast

polynomial int,erpolation. Description of the algorithm follows:

1. Find ,fl the polynomial interpolating oq, . . . , by recursively calling the algorithm.

Let m1 (T) = nrl:(.z - QJ. Then fl (.c) and ml (z) satisfy f (c) = fl (z) rnod ml(s).

2. Find f2 the polynomial interpolating trn,2+l, . . . , on by recursively calling the al-

gorithm. Let m2(x) = n~l=,r2+1(x - a,). Then f2(z) and rn2(x) satisfy f (z) =
f2(z) mod nz2(x).

3. Find f using the Chinese Re~nainder Algorith~n. Let

CHAPTER 2. FAST POLYNOMIAL AHl'HiZIETIC

where 0 5 deg vi < deg mi. Thus we have

If we choose v l (x) = f l (x) , then we can compute

by solving sm1 + tm2 = 1 for s, to find t,he inverse of m l (x) mod m 2 (x) , using the

FEEA.

All f i f.2, ml and nL2 are at most of degree n/2 , thus computing v.2 needs one application

of the FEEA to compute l / m l (x) mod m 2 (x) which takes O(M(n/2) log(n/Z)) field oper-

atioris and one multiplication of O(M(n/Z)) field operations. Let T (n) denote the cost of

computing f (x) ; the polynomial interpolating n distinct points using the fast interpolation

algorithm explained above. Then we have

Hence

T (n) E O(M (n) log2 12).

Remark 2.11. Fast Polynomial Interpolation can be even done in O(M(n) log n) using the

algorithm described in [18, Sec. 10.21.

In the followirig chapter we will describe the applica.tion of polynomial iriterpolation in

Rational Function Reconstruction.

Chapter 3

Rational Function Reconstruction

The general problem of rational recor~.struction consists of rational number reconstruction

and rational function reconstruction problems. The former problem reconstructs a rational

mlmber (in Q) which is congruent to some integer modulo another integer, while the lat-

ter reconstruct.^ a rational ftinction that is congruent to some polynomial modulo another

polyno~nial. We will address tlie second problem in this chapter.

In Section 3.1 we describe the rational function interpolation problem and in Section 3.2

we introduce two solutions for tlie rational function reconstructiorl problem: Wang's algo-

rithm and a fast maximal quotient algorithm.

3.1 Rational Function Interpolation (Cauchy Interpolation)

Rational Furiction Interpolation, also called Cauchy Interpolation: is the most general form

of polynomial interpolation. Let F be a field a,nd al , . . . , a,, E F be pairwise distinct.

Given arbitrary PI: . . . , 15, E F , we are looking for a ratiorial function f = ,n/d E F(x) ,

with n? d E F[x]! such that

We want the ratio11a.l function f to be in canonical form, t1ia.t is, d to be nionic and

gcd(n: d) = 1. Yet, f is not unique since 71 and d should only satisfy deg n + deg d < m.

Solving a system of equa.tions and n'a~lg's algorithm are the two solutioris we describe in

this section for the Rational Function Interpolation problem.

CHAPTER 3. RATIONAL FUNCTION RECONSTRUCTION

The System of Equations

Let ai and be defined as above and f = n/d be the rat<ional function we want to find. To

have a unique solutiori for f we let the denominator to be of the given degree 0 .< k < m .

Then the numerator would be at most of degree m - k - 1. Thus we let

The mtional function f = n/d is obt.ained by solving the following syst,eni of equations

n(ai) = d(ai)Pi d(ai) # O i = 1 . . . m ,

for the coefficients of n and d. Using Gaussian elimination it t,akes O (m 9 operations in F.

Using Wang's Algorithm

In the second solution, we first find the uniquc interpolating polyno~nial g E F [x] of degree

less t,han rn such that g(ai) = pi for i = 1 . . . m. Thus we will have

n'(x) = g (z) mod (s - a i) , d (a i) # 0 for i = 1 . . . m . . f (x) = qq -
Let M (x) = nyLl (x - a d) . Then (3.1) is equivalent to

71 (x)
f (x) = - - g (x) mod Ai(z) : gcd(Ad; d) = 1.

d (x)

Now the problem is, given polynoniial M (x) of degree m and polynomial g of degree less

than r r ~ , find the rational function f = n / d satisfying (3.2). This problem is called the

rational function reconstruction problem. VCTe describe the solutions to this problem in

Scction 3.2. Cornputing g using Newton interpolation takes 0 (m 2) operations in F . The

cost of computing Ad is O(M(nz) logm). If we use Wang's algorithm to reconstruct the

rational function f = n/d which uses the Extended Euclidean Algorithm, then the cost of

computing f would be of 0 (m 2) operations in F. Thus the total cost would be of 0 (m 2)

operations in F.

Remark 3.1. In Section 3.2.1 we briefly describe how the FEEA can be nioclifietl so that

it can be used by Wang's algorithm for recovering a rational function. Also we can use t,he

fast polynomial interpolation algorithm described in [18] t.o corripute g. This will result in

an algorithm taking O(M (m) log nz) operations in F.

CHAPTER 3. R.ATIONAL FUNCTION RECONSTRUCTION

3.2 Rational Function Reconstruct ion (RFR)

Let F = Zll. UTe want to compute a rational function nld E F(x) where n ld - g mod f ,

with f = nT=l (T - i) and g = x6 + 3x5 + 8.-c4 + 4x3 + 6x2 + x + 9. If we run the Extended

Euclidean Algorithm with input f and g , then according to Lemma 2.4 (vi) we have ,f s, +
gt, = r, or, equivalently, r, SE gt, rnod f . Now if gcd(f. t,) = 1 then we have r,/t, =
,9 mod f . This implies that (n,d) can be equal to any pair of (r,, t,). generated by the

EEA. provided that gcd(f , t,) = 1. The followirlg table illustrates the values of r,, t, and

q, in each iteration of the Extended Euclidean Algorithm for given inputs f and g defined

above.

From row 1, 2 and 3 we get the following solutions

We seek a way to choose one rational funct.ion among all possible solutions. It is not

hard to see that if we want to recover a rational function with degn < N and degd 5 D,

then we must have IV + D < deg f .

Let fJf = deg f . V17ang in [20] gave a solut,ion to the mtional number reconstruction

problem. His algorithm can be readily extended for the rational functions as well: by setting

N = LM/2J and D = Al - N - 1. We will describe V17ang's for rational functions

in Section 3.2.1. Thus if we use Wang's algorithm t,he solut,ion to the above example would

be r2/t2 = (10x3 + 9) / (: ~ + 2). In Section 3.2.2 we introduce a fast algorithm for solving

the rational function reconstruction problem. This algorithm outputs the ratioml function

with t,he srnallest total degree (deg 7~ + deg d) provided that deg n + deg d < deg f - 1. Thus

the output of this algorit,hm for the example presented a.bove is the same a.s Miang's output.

The following lerrinla gives us some hint on the general solutions to the RFR. problem.

CHAPTER 3. RATIONAL FUNCTION RECONSTRUCTION 35

Lemma 3.2. (Uniqueness of the EEA entries) [18, Lemma 5.151 Let F be a field, f , g, r, s, t E

F[x] with r = sf + tg , t # 0, deg f > 0, and

degr + degt < deg f . (3.3)

Moreover, let r,, s,, tz for 0 5 i < I + 1 be the elements of the ith row in the Extended

Euclidean Algorithm for f and g. There exists a nonzero element a E F[x] such that

where deg rj 5 deg r < deg rj- 1.

Proof. By (3.3) we have deg r < deg f = deg ro, so there exists a row namely j in the

Extendcd Euclidean Algorithm for inputs f and g, where deg r, 5 deg r < deg r,-1. \Ve

have r, = S, f + t,g by Lemma 2.4 (vi), thus we obtain

Assume tsj # tjs then the degree of the right hand side of (3.4) is at least deg f , while

deg(trJ - tJ r) < max{deg t + deg rJ , deg t, + deg r)

5 max{deg t + deg r, deg f - deg 7; -1 + deg r)

< deg f ,

hence we have a contradiction which implies that ts j = t js or s j Is, by Lemma 2.4 (vii). We

write s = asj where a E F[x]\{O), t,hen t = a t j and r = sf + tg = a r j . 0

The above lemma irrlplies that any l i ~ i e a ~ combinatioil r = sf + tg of f a ~ i d g! with r

and t having small degrees, is a multiple of a row in the Extended Euclidean Algorithm

for inputs f an g. In the RFR problem, we are looking for a rational function n/d where

n/d = g mod f and deg n + deg d < deg f . Thus according to Lenlnla 3.2 any solution for

n and d is a multiple of some row in the EEA for inputs f and g.

3.2.1 Wang's Algorithm

Let F be a field, in the rational reconstmction problem we are lookirig for a rational function

n/d E F[x] where n/d 3 g mod f , wit,h f , g E F[x] and deg f > deg g 2 0. A solut,ion to

the rat.iona1 number reconstruction problem was first introduced by Wang in [20], however he

CHAPTER 3. RATIONAL FUNCTION RECONSTRUCTION 36

gave no proof for his algorithm. Afterwards in [19], Wang. Guy & Davenport showed that if

a solution exists to the rational reconstruction problem. this solution is produced by Wang's

algorithm. Moreover, they claimed that if the pair 7 ~ . d is output by the algorithm then n / d is

the espected solution. While there were some cases with no solution but Wang's Algorithm

did not FAIL on them. This problem occurred because of not chccking whether the condition

gcd(d, f) = 1 is met or not. Wang rectified this problem later in [21]. Algorithm 3.1 is an

extension of Wang's algorithm for F[x].

ALGORITHM 3.1: Wang's Rational Function Reconstruction Algorithm

Input: f , g E F[x] with F a field and Ib.1= deg f > degg > 0.
Output: Either n, d E F [x] with deg 71 + dcg d < deg f , lc(d) = 1. gcd(n. d) = 1,

gcd(f, d) = 1 and n/d = g mod f , or FAIL implying no such n/d exists.

3. if gcd(rl, t l) # I t,hen return FAIL. /* gcd(rl, t l) = gcd(f, t l) */
ret,urn (r l / lc(tl), t l / lc(t1)) /* degtl = 1Lif - degro < iM- AT = D +1 */

Wang's algorithm outputs the rational function n/d if deg n 5 jdeg f / a] and degd 5

[deg f 121 - 1, i.e. deg f > 2 mas(deg n, deg d). In step 3 of Algorithm 3.1 we have

and degtl = deg f - deg.ro < M - iV = D + 1 or degtl 5 D. Thus if gcd(f,tl) = 1

then (r l / lc(tl))/(tl/ lc(tl)) is a canonical form solution t,o the RFR problem. Collins and

Encmlaci6n in [3] point out that it is more efficient to make the test gcd(n, d) = 1 instead of

gcd(f, d) = 1. By Lemma 2.4 (viii) we have gcd(n, d) = gcd(d, f) , thus instead of checking

the invertibility of the denominator, we can check the coprimality of the numerator and the

CHAPTER 3. RATIONAL FLTNCTION R ECOXSTRUCTION

denomi~iator. This costs less since the size of n is strictly smaller than the size of f

Cost Analysis of Wang's Algorithm

In Section 2.2.1 we showed that the cost of the EEA on inputs of size n is ~ (n " . Therefore.

step 2 of Algorithm 3.1 costs 0 (M2) . In step 3 we have one inversion and O(h1) mdtipli-

cations in F. Computing gcd(rl,tl) takes another 0 (M2) . thus the total cost of Wang's

Algorith~n is 0(hl2).

Remark 3.3. Given degree bound N. the FEEA can be used for returning rl. a remainder

in the remainder sequencc of the EEA for rrioriic inputs r.0 arid r l , satisfying deg1; < N <
deg rJ-l. Let h = qro,rl (k), then in the FEEA with inputs ro , rl and k we have

according to (2. ll), or equivalently,

deg rrl+l < deg r o - k - 1 < deg rh.

Therefore rl is returned if we call the FEEA with inputs ro, r l and (degro - N - 1).

Thus if we use the FEEA in steps 2 and 3 of Algorithm 3.1 then the total cost of Wang's

algorithm would be of O(M(h1) log Ad) operations in F.

3.2.2 Maximal Quotient Rational Function Reconstruction

Wang's algorithm works well when the minlerator and the denominator are both of almost.

the same degree, but in pract,ice the degrees of the numerator and the denominator of

the rational functions are not necessarily the same. For example if we want to recover

the rational funct,ion x/(x5 + I), Wang's algorithm needs the modulus f t'o be at least

of degree 11> however the minirnunl nllmber of points necessary for recovering the same

rational function is 7. Since the degrees of the numerator and the denominator of the

rational function are not always known, we do riot know the best choice for and D in

advance. One approach could be to choose the rational f~lnction with the minimum total

degree (numerator degree plus denorninstor degree).

12 Example 3.4. Let F = Z17, f = & l (: ~ - i) . g = 6.z" + 1 3 : ~ ' ~ + 7x9 + 11r8 + z7 + lor6 +
15%' + z4 + 13x3 + 6z' + 3 . The Extended Euclidean Algorithm for f and g yields the

following table.

CHAPTER 3. RATI0,VAL FUNCTION RECOASTRUCTIOIV

As illustrated in the table, rz/tz has minimal total degree of 8. Note that rz/tz also corre-

sponds to the quotient of maximal degree 92. The reason for this is easily explained by the

following lemma.

i

2

3

4

5

6

7

8

Lemma 3.5. Let F be a field and f , g E F[;r]. In the EEA for f and y we have

deg ri + deg ti + deg qi = deg f

degqi

1 1

4

1

1

1

1

1

1

for 1 5 i 5 1 (1 is the total number of st,eps of the EEA).

degr,

11

7

G

5

4

3

2

1

Proof. According to Lem~na 2.4 (vii) we have degti = deg f - degri-l? thus

In [ll], Monagan suggests a new method called h.iruzirnd Quotimt Rutioriml Re~on~struc-

tion for reconstructing a rational number from its integer image modulo another integer

nu~nber. Our algorithm for recovering ratiord functions is based on his method and is

called Maximal Quotient Rationd Function Reconstruction (MQRFR).

Let F be a, field, f , g E F[z] with deg f > deg y > 0. NJe want to find a, rational function

nld E F(x), where

nld r g mod f , gcd(f, d) = 1, gcd(n, d) = 1; lc(d) = 1

Let 1 denote the total number of steps of the EEA for f and g. The maximal quotient

a.lgorithm outputs a ra.tiona1 function n / d = ri/ti with degri + deg ti minirnal for i = 1 . . . l .

CHAPTER 3. RATIONAL FUNCTION RECOl\iSTRUCTION 39

'To speed up the algorithm we prefer to use the FFEA instead of t:he EEA. Brit as explained

in the previous chapter, the FEEA does not conlpute t,he intermediate remainders (ri's).

Thus we can not determine which pair of (ri, ti) we should choose. Lemma 3.5 resolves this

problem.

Although the FEEA does not compute the intermediate remainders, it does compute

all qi's!! Also si and ti are available a,s the entries of the first row of Ri. So according

to Le~rinia 3.5 instead of finding the minimal degri + deg ti we can find qi, the quotient

with maximal degree, using the FEEA. ri is then obtained from si and ti using two long

mu1t.iplications (ri = si f + tig).

The modified FEEA is called hfQFEEA and is presented by Algorithm 3.2. In addi-

tion to the outputs returned by Algorithm 2.5, t.his algorithm returns three other values

qmax, sma, tmax The value of qm, is the quotient with ma,ximal degree and s,,, t,,

represent the corresponding values of s and t t h t are in the same row with q,,.

In step 3, after returning from the recursive call, q,, holds the quotient with maximal

degree, betwcen the first j - 1 computed quotients. We have

thus in step 6, if deg q j > deg q,,,, we can easily update s,,,, aaid

first row of R,i. In step 8 q,, is updated by q;,, if deg q;,, >
the index of in the EEA for ro .and r l . We need to compute

t,,,, by the entries of the

deg q,,. Let 1 represent

sl and tl. We have

where M21, M z z E F [z] , hence

So to update the values of s,,,, and t,,, by $1, respectively, and tl, we mult,iply the vector

Remark 3.6. In Algorithm 3.2, we are just using the degree of the nlaxirnal quotient, thus

instead of returning q,, we could return deg q,,.

CHAPTER 3. RATIO ,VAL FUNCTION RECONSTR LTCTION 40

ALGORITHM 3.2: Modified FEEA to return the maxirnal quotient(hlQFEEA)

/* underlined parts illustrate modifications rnade to Algorithm 2.5 (FEEA). */
Input: 7-0. rl two n~~onic polyrio~nials iri F[x] with no == dcgro > nl = degr.1 2 0 arid

k E N with n0/2 5 k 5 no. /* no is strictly greater t,ha,n nl . */
Output: h = q,,,,,(k) E N, ph+l E F . Rh =

"-h+ 1

1 0
,wnO,l; (, ,), (..I, l , l , O

"-1

else if no < cuto,fl then /* cutoff degree of the FEEA */
return EEA(ro, 7.1: k) /* EEA is modified to return q,,,, s,,,,,, t,,, */

call t,he algorithm recursively by writing MQFEEA(r8. r;,kl), to obtain
/ o 1 \

j - 1 = qro+,r;(kl): p;, R;-, = Q;-1Q3-2.. .Q1 where Q3-1 = (; 7)

4. /* in this step we want to dctermine p, , r3-1, rj and R3 -1. */

5 . (n;;1.) = (deg "-,-I)
deg rj

if r:, = 0 or k < no - nj then

CHAPTER 3. RATIONAL FUNCTION RECONSTRUCTION

6. ~ l , = rj-1 ~ U O rj
pj+l = 1c(rjpl - qjrj) /* for corlsist~ency we let lc(0) = 1. */
r,j+l = (rj-i - qjrj)/pj+1
nj+l = degrj+l

8. r,' = rj r 252, T,'+~ = rj+l (2k2 - (nj - nj+l))
call the algorithm recursively by writing MQFEEA(r,', rTcl, k2), to obtain

/ 0 1 \

if deg q;,, > deg q,, then

10. return h, ph+l. SRj, , Smax, tmax.

CHAPTER 3. RATIOLVAL FUNCTION RECONSTRLTCTION 42

Let F = Z,, p a prime, f , g E F [z] and deg f > deg g > 0. We want to recover n/d E F[x]

using the maximal quotient algorithm where n/d .= g mod f , gcd(n, d) = 1 and gcd(f, d) =

1. According t,o Lemma 3.2 the solution to this problem is the pair (rj, t j) , where ,rj and t j

are the elements of the j th row in the EEA for inputs f and g. If deg f > 2(degn + degd),

t,hen we have deg qJ > deg f /2 and t:hus qj is the un iq~~e maxi~nal quotient. This implies

that by imposing deg f > 2(deg n + degd), tihe expected rational function is returned with

probability 1.

The following conjecture implies that if we impose deg f > deg n + deg d + 1 or, equiv-

alentlh we require deg qj > 1, the11 the probability of getting a correct result is still high,

provided that p is not small compared to deg f .

Conjecture 3.7. Let F = Zp, where p is prime. Let f , g E F[x] where f = ny=l(x - ai)

and n = deg f > degg > 0. Let q be a. quotient, i11 the EEA for inputs f , g and k E N\{l).

If ai E F is chosen uniformally at random and -9 is a rmdom polynomial, then

We run the EEA with inputs f and a randomly chosen polynomial g. Our conject~re is

that the n~mber of polyno~nials g for which there is a quotient of degree at lcast k in the

EEA is bounded by (n - k + l)pn-ICS1. The total number of possible choices for g is pn - 1.

Thus

The maximal quotient algorithm is presented by Algorithm 3.3. It is supposed to return

t.he ra.tiona1 function 'n/d = ri/ti where qi is the quot,ient, with the rn,aximal degree. Let r, t

and q,,, be the elements of the same row of the EEA with f a,nd g as input. In step 3 we

-
lc (g)

and thus gcd(r, t) = gcd(F? E). Therefore if gcd(F: E) # 1, then in st,ep 4 n = lc(g)/ lc(@ and

d = f / 1c(t) is returned as t,he canonical soh~tion.

CHAPTER 3. RATIONAL FbTNCTION R.ECONSTR UCTION

ALGOR.ITHM 3.3: Maxi~nal Quotient Ratio~ial Functio~i Reconstructio~i (MQRFR)

Input: f , g E Zp[x], where p is prime and nz = deg f > degg 2 0.
Output: Either n. d E Zp[x] satisfying deg ,IL + deg d + 1 < deg f n/d - g 111od f ,

gcd(n, d) = gcd(f, d) = l,lc(d) = 1 or FAIL implying there is no such solution.

if deg q,,, < 1 then
return FAIL

3. F = Sro + frl
if gcd(F, i) # 1 then

return FAIL

4. n = lc(g)/ lc(Q . ,r
d = E/ lc(i)
returu (n, d).

Cost Analysis of the MQRFR

As mentioned before! Algorithm 3.2 is a modification of Algorithm 2.5. Among all the

111odific~tiorls made only the rnultiplicatio~i in step 8 ~nigllt affect the asymptotic cost of

the algorithm which originally mas O(M(k) log k) for input k . The entries of matrix Rj are

at most of degree no - nj < k , moreover by Lemma. 2.4 (ix), deg~;~, < nj+l < 2k and

degt;, < nj < 2k . Thus multiplying skaK tT&X by Rj a.t most ta,lres 8M(k) + O(k) (1
operations in F and does not change the asy~npt~otic cost. of the algorithm.

Step 1 of Algorithm 3.3 consists of two inversions in Zp and two multiplications of O(m)

i11 Zp. Step 2 costs O(M(m) logm). We have degs < dcgg < rn and degt < deg f = nz.

Thus to compute r in step 3, we perform two multiplications on polynomials of size at most nL

and one addition that costs O(2m). The total cost for computing r is thus 2M(m) + O(nz).

r is a remaiuder in the remainder sequence generated by the Euclidean Algorithm for f

and g, thus we have degr < deg f = m. Checking the coprimalitp of r and t . using the

CHAPTER 3. RATIONAL FUNCTION RECONSTRUCTION 34

FEEA, takes O(M(7rr) log m) operations in F. In step 4 ~~e have one inversion and at

most 2m nlultiplications in Z p that costs O(m). Thus the total cost of Algorithm 3.3 is

O(M(m) logm) operations in Zp.

Chapter 4

Polynomial GCD Computation

In this chapter we will explain the application of Rational Function R.econstruction in corn-

puting the GCD of multiwriate polynomial:;. VCTe have modified Brown's algorithm [I] to

use the maxirnal quotient algorithm. Our ni~dificat~ion reduces the number of evaluation

points needed by the algorithm.

4.1 Multivariate GCD Computation (Brown's Algorithm)

Definition 4.1. Let R1 and R2 be two rings. The rriapping (!, : R1 -+ R2 is a ring morph,ism,

or a homomorph,ism if

(i) $(a + b) = $(a) + d(b) for all a, b E R1,

(ii) d(ab) = Q(a)$(b) for a,ll a , b E R1,

(iii) b(1) = 1.

Brown's algorithm applies the following homomorphisms:

0 The m,odular h~~m~orn~orphis~n 4 , : Z[.zl, . . . , zk] -+ Z,,[zl, . . . , zk] that replaces all the

integer coefficients of a polynomial f E Z[zl,. . . : xk] by their modulo nz representation.

0 The evaluation homomorphism : D[zl , . . . , z k] -+ D [q , . . . : xi-I, Zi+l,. . . ! ~ k]

that substitutes the value of CY E D for the indeterruinate x, in the polyrlomial f E

D[xi , . . . ,xk].

CHAPTER 4. POLYNOMLAL GCD COhIPUT4TION 46

Let f E Z[xl,. . . , xk]. For each term in f , we define a vector of size k whose ith element

is the powey of xi in that term. Degree of f with respect to XI , . . . , xk (or simply degree of

f): which is denoted by deg[,l.,,,,,kl f , is defined to be the ~naxinium of these vectors when

compared lexicographically.

The lmding coefficient of a multivariate polyriornial f E Z[z l , . . . , xk] with respect to

X I , . . . , xi (i 5 k) denoted by lc[1 (f) is defined to be the coefficient of the term with

the highest degree with respect to xl, . . . ,xi.

Definition 4.2. Let, f , g E Z[.x17.. . , z ~] , h = gcd(f, g) and p be a prime.

If lc[,, ,,,,, ,,I (h) = 0 mod p then we call p a bad prime.

Let f, = f mod p, gp = g mod p and hp be the output of the Euclidean Algorithm

mod p on fp and gp. If

d%[z ,,..., z,] h,, > k [z , ; ,,I 1%:

then p is called an unlucky prime.

Example 4.3. Let f = (x + 7y)(5xy + 1) and g = x(5sy + 1). Then 11 = 5xy + 1,

gcd(L5. gs) = 1 and gcd(f7, g7) = 5x2y + I, and thus p -- 5 is a bad primc and p == 7 is an

unlucky prime.

Definition 4.4. Let f. g E Zp[zl,. . . ?.zk], h, = gcd(f:g) mod p and cu E .Zp, where p is a

prime.

If lci ,,,,,,!,k,-l 1 (h) = 0 mod (zk - cu), then we call a a bad evaluation point.

Let fx,-, = f mod (xk - a). g ,,-, = g mod (xk - a) and h ,,-, be the output of

the Euclidean Algorith~n mod p on fx,-, and gx,-,. If

then u is called an unlucky eva2uation point.

Example 4.5. Let f = ((y - l) z + l) (x - 2) and g = ((y - 1)z + l) (z - 9). Then

h = (Y - l)a: + 1, gcd(,fv-1, gy-1) = 1 and gcd(.f?)-2: g1)-2) = (LT + 1)(x - 2). and thus y = 1

is a bad evaluation point and y = 2 is an unlucky eva.luation point.

CHAPTER 4. POLYNOlVIAL GCD COMPUTATION 47

Assume f and g are two rmltivariate polynomials as defined above and h = gcd(f,g).

Let 4 be a modular or an evaluation homomorphism. It is obvious that lc(h)(lc(f) and

lc(h) (lc(g), which i~nplies that lc(h,) 1 gcd(lc(f) , lc(g)) . Thus

Relation (4.1) can be useful for avoiding bad primes and bad evaluation point,s when com-

puting the GCD of t,wo multivariate polynomials. The following lemma helps us t:o detect

and discard unlucky primes and evaluation points.

Lemma 4.6. Let 4 : R i R' bc a homo~norphism of rings, f , g E R[zl. . . . , zk] and

h = gcd(f,g). Let f = f h and g = glz. Assume d(lc(h)) # 0 and at least one of d(f) and

$(g) is nonzero. Then

degsd($ (f) , &I)) 2 deggcd(f, g).

Proof. By Definition 4.1 (ii) we have

and thus we obtain

Example 4.7. Let f and g be defined as in Example 4.5. We have h = gcd(f, g) =

(y - 1)x + 1. If y = 2 is chosen to be an evaluation point then we have h,-2 = x + 1 and

g~t l (f , -~ , yz,-2) = (3: + 1)(z - 2), that is, deg g ~ d (f , - ~ , g,-2) > deg hy-2 Thus y = 2 is an

unlucky evaluation point and should be discarded.

Assume for lionio~norphism 4 we have gcd(q5(f), d(g)) = 1 and d(lc(gcd(f,g))) # 0.

Then according to Lenima 4.6 we have

which implies that f , g are relatively prime. Thus another use of Lemma 4.6 is to help us

detect the copri~nality of input polyno~~iials.

CHAPTER 4. POLYNOMIAL GCD COILPUTATION 43

Originally Collins in [2] developed an algorit,hm for computing the GCD of univariate

polynomials using the modular homomorphism. Then Brown in [l] extended the algorithm

to compute the GCD in the nlultivariate case using the evaluation homomorphism. Brown's

original algorithm did not use trial divisions. However, in [6] the algorithm was modified

to use trial division and less evaluation points. In this thesis whenever we refer to Brown's

algorithm we refer to the modified one. Brown's algorithm is a composition of modular

horriornorphisms (MGCD algorithm) arid evaluation homomorphisms (PGCD algorithm).

To avoid the problem of coefficient groxth, MGCD gets t,wo multivariate polynomials

f , g 6 Z[zl? . . . , x k] arid applies the modular homomorphism q5p : Z z Zp on the cocfficients

of f and g, with p a machine prime, e.g. a 32 bit prime on a 32 bit machine. At the end of

the algorithm the modular liomomorphisrn is inverted by applying the Chinese Remainder

Algorithm on homomorphic ima,ges.

The PGCD algorithm, presented by Algorithm 4.1, get,s polynomials f , y 6 Zp[zl, . . . , zk]

and outputs h = gcd(f, g) E Zp[51,. . . , xk]. It recursively makes use of evaluation homomor-

phism 4 ,,-, : Zp[xl,. . . , zk] -+ Zp[zl , . . . ,:);.I;-~] to ultimately get to the Euclidean do~nain

ZI,[xl] where the ordinary Euclidem algorithm can be used. In order to be a,ble to recover

the solution in the original domain we need inore than one projection. The evaluation ho-

mo~norphisnl is inverted by interpolating homomorphic ima,ges. Since MGCD and PGCD

algorithms are very sirni1a.r: and since in the next section we are going t,o modify PGCD so

that it uses Rational Function R.econstruction, we have chosen to present only the PGCD

algorithm.

As presented in Algorithm 4.1, to compute gcd(f,g) PGCD computes the contents* and

the primitive partst of f and g, and then computes the GCD using

PGCD always returns a monic GCD, thus u,,-, is always monic, although gcd(f, g) is not.

necessarily monic. To recover the correct GCD: in Algorithm 4.1, v,,-, is mrlt.iplied by

y (a) (leading coefficient correction).

'The content o f a riomero polynorriial is the unit normal GCD of its coefficients.

 h he primitive part pp(f) o f f is defined by f = cont(f) . p p (f) .

CHAPTER 4. POLYNOMIAL GCD COMPUTATION 49

ALGORITHM 4.1: Brown's multivariate reduction algorit,hm (PGCD)

Input: f 7 g EZp[x1. . . .7xk]
Output: gcd(f, g) E ZP[z17. . . , xk]

1. if k = 1 then ret;urn gcd(f , g). /* use FEEA to compute gcd(f , g) E ZP[n:l] */

3. ch = gcd(cf: cg) /a ch E Z p [~ k] and holds the conterit of the output */
r = g.~d(lf , 19) /* r E Z&kI */
n = min(df, dg) /* n is a vector holding the rnininlum of df and dg */
(nz, u) = (1 , l)

4. while true do

d = deg[,l I ux,-, /* d is a vector degrec */
if d > n then /a skip this (unlucky) evaluation point */
else if d < n then /* previous points were unlucky */

('f?2> U) = (xk - a, UX,-,)
n = d

else
(m, u) = ((xk - a)m, Interp(m, u, a,ux,-,)) /* u, E %&I,. . . , xk] */

(ii)
(iii)

(i.1

CHAPTER 4. POLYhTOMIAL GCD COWUTATION 50

One way of determining when we shonld stop constrixting images is to test whether

h = pp(u) divides f and g or not. But these divisions areexpensive and it is better to

avoid them as much as possible. One simple way to avoid attempting t.he divisio~is is to

check whether lc(u) is equal to 7 or not and if it is then do the divisions. A better solution

is to divide h into f a,nd g only when the result of interpola.t,ion does not cha.rlge in two

consecutive iterations.

The following example shows how the GCD of two bivariate polynomials is computed

using the PGCD algorithm.

Example 4.8. Let f = (yx2 + yx + 1)((y2 + 1)x + 1); g = (p 2 + yyz + l)((y2 + l) z + 2))

and p = 7 Wc have 7 = y" y. Let us assume Q is initialized by 1 and is increased by 1 in

each iteration. The following table shows the value of u,,-, and u in each iteration.

At the end of the fourth iteration 1cy(.u) = 7. Thus h = pp(u) = gz2 + yz + 1 is returned

after making sure that it divides both f and g.

4.2 Application of RFR to Brown's Algorithm

As mentioned earlier, to solve the leading coefficient problem in Brown's PGCD algorithm,

the homomorphic images are multiplied by the image of the GCD of the leading coefficients

of input polynomials. Another solution to the leading coefficient problem is to use the Ra-

tional Function Reconstruction. Originally Encarnaci6n in [5] used Wang's rational number

reconstruction algorithm for computing the C:CD of univariate polynomials over algebraic

number fields.

We have marked two rows of PGCD which should be niodified for this purpose. Row (i)

should be deleted, ?;,,-, should be replaced by u,,-, and rows (ii). (iii) and (iv) should be

replaced by the following code

CHAPTER 4. POLYNOlMIAL GCD COWUTATION

fL = LCR(n2, u)

if fL # FAIL then

let h represent the result of clearing denominators of &
if hl f and hlg then return chh

Algorithm 4.2 displays the body of LCR. This algorithm gets a univariate polynomial m

in Zp[xk] and a ~~iultivariate poly~iomial u in Zp[.z1. . . . , zn] as input, and for each coefficient

of u in Zp[xk] attempts to reconstruct a rational f~mction in Zp(xk). resulting a polynomial

i11 Zp(zk) [q, . . . , zk-11.

ALGORITHM 4.2: Leading Coefficient Ret,rieval (LCR)

Input: 1n, E Zp[zk], U, E Zp[:~:l, . . . : xk],
Output,: h E Zp[xl, . . . , zk] where h = u mod nz.

1. if deg 7n = 1 then return FAIL /* degq < 2 a,nd thus hlQRFR must fail */

2. while there are more coefficients to reconstruct do
r = MQRFR(m. nextcoeff(u) E ZP[zk])
if r = FAIL then return FAIL
else /* r is a rational function in Zp(xk) +/
replace cnrrent coefficient of u by r

3. return u..

Example 4.9. Let f , g and p be defined as in Example 4.8. If we use LCR. in the PGCD

algorithm then we will have

0

1

II
FAIL

~ x k - o l

z 2 + x + 1

7L

x 2 + . x + 1

CHAPTER 4. POLYNOMIAL GCD COMPUTATIOAT 52

u

As illustrated in the above table, we need only 3 points, while in Exaniple 4.8, 4 points were

required. After clearing the denominators we get h = yx2 + y r + 1 which is the same result

as what we had obtained before.

In practice if MQRFR does not fail on one coeffic,ient of u in one call, with high proba-

bility it will not fail on the same coefficient in subsequent calls either. Thus we can reduce

the t:otal nuniber of times MQRFR is called by using a. global variable to keep track of the

index of the last coefficient of u on which MQRFR failed.

Example 4.10. Let u = x%(y+l)x2+(4y~2y+6)x+(2y3+y+6), n.2 = y(y+l)(y+2)(y+3)

and p = 7. The following t,able illustrates the intermediate values of u when LCR is called

wit.h m, u as inputs. ,4t the end of the fourth iteration denoniinators of u are cleared and

u = (y + 6)x3 + (y2 + 6)x2 + (y + 1)x + 1 is returned.

Now w,mt to obtain an upper bound for t,he number of eva.lua,tion point,s requircd for

computing the primitive GCD of two multivariate polynomids using the modified PGCD

algorithm. Let f, y, H E Z,[zl, . . . , xk], where H is the primitive GCD of f a ~ i d g i11 xk. H

can be expressed in the following form

where x = rl, . . . , xk-1, ci(xk) is a univariate polynomial in Zp[xk] and ti(x) is a monomial

in indeterminants XI,. . . xk-1. We assume lc[,,,.,,,z,-, l(H) = cn(xk). Let d represent the

minimu~n number of points required for recovering H using polynomial interpolat,ion for z k ,

that is

d = deg,, H + 1 = niax {deg c, (.ck)) + 1.
O<i<n

Before the last trial divisio~i in modified PGCD, whidi results in outputtirig the GCD,

LCR is called on u and m where u is a monk multimriate polynomial in Z,[xl; . . . , xk] and

CHAPTER 4. POLYN0,MIAL GCD COMPUTATION 53

112 = (x k - c q) . . . (x k - c q) is a nnivariate polynomial in Z p [x k] . Thus the last value of

1̂ 1 =LCR(m, u) before returning H is

where

have

ai (x k) 1 ci (z k) , deg ci (zk) < d a deg ai (q) < d ,

b,i(zk)lcn(xk), deg c,(rk) < d a deg bi (xk) < d.

for 0 5 i < n - 1. As shown before, if

deg nz > 2(nlax {deg ai (x k) + deg bi (xk) }) ,
Oji jn-1

then with probability 1, the modified PGCD algorithm returns chH. Thus in the worst ca,se

4d evduation points are required. But even if we have

deg m > max {deg a,i (sk) + deg b i (z k)) + 2,
OSi<r~-l

then with high probability chH is resulted. Therefore in the normal case 2d evalnation

points are required.

On the other hand, in Algorithm 4.1 we first compute and then take the primitive

part by removing the common factor. Therefore t,he total number of evaluation pointas

required to obtain H in Algorithm 4.1 is at least (deg y(.zk) - deg c, (xk) + d). This number

may be niuch greater t,han d when ?(xk) is of a large degree and deg c7,(xk) = 1.

In the square-free factorizat,ion algorithm for a. polyno~nial f we need to compute h =

gcd(f, f'). The following example shows the difference between the minimum number of

evaluation points required in the original arid modified PGCD algorithm when computing

h, .

Example 4.11. Let, f = (~ ~ + l) ' (~ ~ ~) ~ x + 1) and g = fk = (xY+ 1) (3 z y ' ~ ~ + y"+t)y. Then

H , the primitive gcd(f , g) in y: is :ry + 1. In this example rl = degy H + 1 = 2, deg y = 102

and deg,, lc,(H) = 1. Thus the original PGCD algorithm requires at least, 103 evalua.tion

points while the modified one requires only 3 evaluation points to cornpute gcd(f, f ') .

CHAPTER 4. POLYNOMIAL GCD COMPUTATION 54

As stated before we also try to ~rlinimize the number of times the trial divisions are

at'tempted. Rational F'unction Reconstruction not only solves the leading coefficient prob-

leni but also helps us with reducing the number of t,rial division tests, so that with high

probability t,he divisions are performed only on the true GCD. The point is that when LCR

fails on a coefficient, it returns t,o PGCD a.nd PGCD goes back to the beginning of t,he while

loop without performing a division.

Let r1 be the number of coefficients of u with respect to [zl, . . . ? z ~ - ~] and 1 be the

number of evaluation point,s required for computing t,lle GCD. Then the expected number

of times MQRFR is called is of O(1 + n). Note that as soon as n2 get's large enough MQRFR

will not fadl on any coefficient and exactly n more ca.lls to MQRFR are made.

Chapter 5

Summary

We have designed and implenlented a Fast Rational F~mction Reconstruction algorithm

based on Monagan's Maximal Quotient Rational Number Rec~nst~ruction algorithm [Ill.

In contrast to Waang's algorit:hrn, the nlaxiinal quotient algorithm does not require any

deg~ee bounds for the numerator and the denominator. Moreover, with high probability

it requires only one more point than the nzinirnunl necessary to reconstruct the expected

rational function.

The nmxi~nal quotient rational function reconstruction algorithm is based on the Ex-

tended Euclidean Algorithm. We have implemented the maximal quotient algorithm in

Java for polynomials in Z p [z] where p is a mixhi~le pri~ne. To speed np the reconstruction

algorithm we have implemented Karatsuba's algorithm for polynomial multiplication over

Z p [z] and SchGnhage's Fast Extended Euclidean Algorithm (FEEA) for Zp[:c]. We followed

the presentation of Schonhage's algorithm in [18]. The most difficult and time consuming

pa.rt of the thesis was understanding the details of the FEEA.

To show one of the applications of this algorithm, we have modified Brown's modular

GCD algorithm to use the ~naxinial quotier~t algorithm. The modifica.tio11 reduces t,he

number of evaluation points required by the algorithm. Also it reduces the number of times

the trial divisions a.re attempted. Rational function recorlst:ruction also solves the leading

coefficient problem when computing the GCD of two multivariate polynomia,ls using Brown's

algorithm.

Bibliography

[l] W. S. Brown. On Euclid's algorithm and the computation of polyno~nial greatest
common divisors. J. ACW, 18(4):478-504, 1971.

[2] George E. Collins. Subresultants and reduced polynomial remainder sequences. J .
ACM, 14(1):128-142, 1967.

[3] George E. Collins and Mark J. Encarnacidn. Efficient rational ~mmbcr reconstruction.
.Journal of Symbolzc Computation. 20(3):287-297. 1995.

[4] George E. Collins and Mark J . Encarnacidn. Improved techniques for factoring uni-
variate polynonlials. J. Symb. Comput., 21(3):313-327, 1996.

[5] Mark J . Encarnacidn. On a modular algorithm for computing gcds of polynomials over
algebraic number fields. In ISS-4C '94: Proceedings of the Internationul Symposium on
Symbolic and Al.yebruic Computation, pages 58-65. ACM Press: New York, NY, 1994.

[6] Keith 0 . Geddes, Stephen R. Czapor, and George Labahn. Algorithms ,for Computer
Algebra. Kluwer Academic Publishers: Bosto1l/Dordrec:l-it/Lo11clo1i~ 2002.

[7] E. Kaltofen, Y. N. Lakshman, and J.-M. Wiley. Modular rational sparse multivariate
polynomial inlterpolation. In ISSAC '90: Proceedings of th.e Jnternational Symposium
on Symbolic and Algebraic Computation, pages 135-139. ACM Press: New York, BY,
1990.

[8] A. Karatsuba and Yu. Ofman. Multiplication of multidigit numbers on automata.
Soviet Physics ----Doklady, 7(7):595-596. January 1963.

[9] Roman E. Maeder. Storage dlocat,ion for the Karatsuba integer multiplication algo-
rithm. In Proceedings of the International Symposium on Design and Implementation
of Symbolic Computation Systems, DISCO'9.3 (Gmunden,. Austria. September 1995'),
volume 722 of LNCS, pages 59-65. Springer-hTerla.g, 1993.

[lo] R. T. Moenck. Fast computation of gcds. In STOC '72: Proceedings of the fifth unnual
ACM Symposium on Theory of Com,puting, pages 142-151. ACM Press: Ncw York,
NY, 1973.

BIBLIOGRAPHY 57

[11] Michael Monagan. Maximal quotient rational reconstruction: An almost optimal al-
gorithm for rational reconstruction. In Proceedings of the 1nternation.al Symposium
0.n Symbolic and Algebraic Computation, pages 243-249. ACM Press: New York, NY,
2004.

[12] Peter Lawrence Montgomery. An FFT extension of the elliptic cume method of factor-
ization. PllD thesis, Los Angeles, CA, USA, 1992.

[13] Victor Y. Pan and Xinmao Wang. Acceleration of Euclidean algorithm and extensions.
In Proceedings of the International Conf~rence 071 Synrbolic and Algebraic Computation,
pages 207-213. ACM Press: New York, NY, 2002.

[14] T. Sasaki and T. Takeshima. A modular method for Grobner-basis construction over
Q and solving system of algebraic cquations. J. Inf. Process., 12(4):371-379, 1989.

[15] A. Schonhage. Schnelle Berechnung von I<ett~enbruchentwicklungen. Acta Informatics,
1:139-144, 1971.

[16] Carlo Traverso. Grobner trace algorithms. In ISAAC '88: Proceeding,s. of the Interna-
tional Symposium ISSAC'88 on Symbolic and Algebraic Computatio.n, pages 125-138,
London, UK, 1988. Springer-Vcrlag.

[I71 Mark van Hoeij and Michael Monagan. Algorithms for polynomial gcd comput,ation ovcr
algebraic function fields. In Proceedings of the International Sy,mposium on Symbolic
and Algebraic Computation, pages 297-304. ACM Press: New York, NY, 2004.

[18] Joachim von zur Gathen and Jiirgen Gerhard. Modern Computer Algebra. Ca,mbridge
University Press: Cambridge, New York, Port Melbourne, Madrid, Cape .lbwn: second
edition, 2003.

[19] P. S. Wang. M. J . T . Guy. and J. H. Davenport. p-adic reconstruction of rational
numbers. SIGSAM Bdletin, 16(2), 1982.

[20] Paul S. W a q . A p-adic Algorithm for Univariate Partial Fractions. In Proceedings of
the fourth ACM Symposiu,m on Sgmbolic and Algebra,ic Cornpu,tation, pages 212-217.
ACM Press: New York, NY, 1981.

[21] Paul S. VCTang. Earlv detection of t,rue factors in univariate polynomia,l factorization. In
E LJROCA L '83: Proceedings of the European Computer Alge brn Confe,rence on Com-
puter Algebra, pages 225-235, London, UK, 1983. Springer-Verlag.

