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Abstract 

RNA is central in several stages of protein synthesis, and also has structural and func- 

tional roles in the cell. The shape of organic molecules such as RNA largely determines 

their function within an organic system. Current physical methods for structure determi- 

nation are time consuming and expensive, thus methods for the computational prediction 

of structure are sought after. Various algorithms that have been used for RNA structure 

prediction include dynamic programming and comparative methods. This thesis intro- 

duces P-hapredict, a fully parallel coarse-grained distributed genetic algorithm (GA) for 

RNA secondary structure prediction. The impact of three pseudorandom number gen- 

erators (PRNGs) on P-RnaPredict's performance is evaluated. The parallel speedup of 

P-RnaPredict is analyzed. Finally, the prediction accuracy of P-RnaPredict is evaluated 

through comparison to ten known structures, and compared to structures predicted by a 

Nussinov DPA implementation and the mfold DPA. P-RnaPredict offers similar performance 

to mfold, and outperforms the Nussinov DPA. 



To m y  folks for their ceaseless support of m y  foolhardy exploits. 



"Don't think; feel! It is like a finger pointing away to the moon. Don't concentrate on the 

finger or you will miss all that heavenly glory. " 

- Enter the Dragon, BRUCE LEE, 1974 
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Chapter 1 

Introduction 

1 .  The Importance of RNA 

The central dogma of molecular biology states that during protein synthesis information 

"flows" from DNA to RNA to proteins. This occurs first through transcription of DNA into 

RNA and then translation of RNA into proteins. There are several different types of RNA 

involved in this process: Heterogeneous nuclear RNA (hnRNA) acts as the transcriber of 

DNA in eukaryotes. Messenger RNA (mRNA) carries the coded message to the ribosomes 

for synthesis. Ribosomal RNA (rRNA) is a component of ribosomes. Finally, transfer RNA 

(tRNA) combines the amino acids. Each of these types of RNA is synthesized by RNA 

polymerase [46]. 

However, recent research indicates that RNA has much more of a role than a mere 

carrier of information. Interesting examples of RNA's importance include retroviruses such 

as HIV which challenge the central dogma, employing the enzyme reverse transcriptase to 

transcribe their RNA into DNA and integrate it into the host genome [70]. Another example 

is that a new class of RNA molecules called small RNAs was discovered to operate many 

controls within the cell; Science named this "Breakthrough of the Year" in their December 

2002 issue [8]. 

1.2 RNA Defined 

RNA [93], or ribonucleic acid, is a biopolymer which is chemically similar to DNA, or 

deoxyribonucleic acid. It has three components: a pentose sugar known as ribose, phosphoric 
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acid, and the nitrogenous bases adenine, guanine, cytosine, and uracil. 

RNA differs from DNA in three ways. First, the sugar in RNA is ribose rather than the 

deoxyribose in DNA. Second, the uracil in RNA is replaced by thymine in DNA. Finally, 

RNA is typically single-stranded as opposed to DNA which is usually doublcstranded. 

The primary building block of RNA is the nucleotide. A nucleotide is formed by making 

a phosphoester bond between the phosphoric acid and the sugar, and a glycosidic bond 

between the sugar and the nitrogenous base. Figure 1.1 illustrates the three elements of a 

# - * - - - - - - - - " - - - - " - - - " - - -  

phosphate 

adenine (nitrogenous base) 
----------------------------.---------------- 

I - - - . - - . . - - - - - - - - . - - . - - - - - #  

ribose sugar 

Figure 1.1: The elements of a nucleotide. 

Individual nucleotides are polymerized through a phosphodiester linkage between the 3' 

carbon of the ribose and an oxygen atom of the phosphate, forming a backbone of alternating 

sugars and phosphates. The resulting polynucleotide chain makes up a single strand of RNA, 

and is illustrated in Figure 1.2. Since the bases are independent of the nucleotide linkage, 

any combination of bases is possible. The phosphodiester linkages have a specific direction 

or polarity, which is conventionally read from 5' to 3', from left to right. The order of bases 
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in a chain are referred to as a sequence, and when written the bases are abbreviated to their 

first letter: adenine as A, guanine as G, cytosine as C, and uracil as U. An RNA sequence 

can then be written as GUCAAGU, or 5'-GUCAAGU-3'. 

phosphodiester bond 

phosphoester bond .' 3. 

\- I ",' 

-v.- 
sugar-phosphate backbcne 

Figure 1.2: Polymerization of nucleotides into ribonucleic acid. 

1.3 RNA Structure 

The shape of organic molecules such as RNA largely determines their function within an or- 

ganic system. The final three-dimensional structure forms when the sequence of nucleotides 

folds back onto itself. Structure is described hierarchically in biochemistry as primary, 

secondary, tertiary, and quaternary. 

Primary structure refers to the linear sequence of bases which make up a biomolecule. As 
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mentioned in section 1.2, in RNA these are the nucleotide bases adenine, guanine, cytosine 

and uracil (A, G, C, and U). 

Under the right thermodynamic conditions these four bases will form chemical bonds 

with each other and make base pairs. In typical RNAs over half of these are the Watson- 

Crick base pairs, AU and GC, and their mirrors. However, non-Watson-Crick base pairings 

also occur; the common ones are the sheared GA, GA imino, AU reverse Hoogsteen, and 

the GU and AC wobble pairs [65, 471; the most common non-Watson-Crick base pair is the 

GU wobble pair. 

Secondary structure refers to the structural elements which manifest as a result of these 

base pairings. Different structural elements will manifest themselves in the resulting sec- 

ondary structure depending on which base pairs form bonds. These elements include hairpin 

loops which contain one base pair, internal loops which contain two base pairs, and bulges 

which contain 2 base pairs with 1 base from each of its pairs adjacent in the backbone of 

the molecule. There are also multi-branched loops, which contain more than two base pairs, 

and external bases which are not contained in any loop. Figure 1.3 illustrates examples of 

secondary structure elements. 

Internal Loop External Base 

Figure 1.3: The elements of RNA secondary structure. 

Stacked pairs, which form helices, provide stability in the secondary structure. A set 
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of stacked pairs is formed by two or more base pairs, such that the ends of the pairs are 

adjacent, forming a ladder type structure. These elements make up the secondary structure, 

which is typically thought of as two-dimensional. 

The tertiary structure is the overall three-dimensional shape, and forms from the interac- 

tions between secondary structure elements. These tertiary interactions are formed through 

non-canonical base pairs, triple-stranded interactions such as base triples, and interactions 

between unpaired bases and the phosphodiester backbone of the RNA molecule [go]. Finally, 

quaternary structure refers to interactions between two or more RNA molecules. 

When an RNA molecule folds, its overall free energy is reduced as bonds are formed 

between base pairs; this in turn increases the overall stability of the molecule. It should 

be noted that the energies involved through formation of secondary structure elements are 

significantly greater than those of tertiary elements; the set of secondary structure elements 

is also smaller [87]. 

One important RNA secondary structure element is the pseudoknot. A pseudoknot 

occurs when the nucleotides within a hairpin loop form base pairs with part of the RNA 

sequence outside of the loop. Figure 1.4 illustrates an example of a pseudoknot. 

Figure 1.4: A secondary structure pseudoknot. Double lines and dotted lines indicate base 
pair bonds, solid lines indicate primary structure bonds. 
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1.3.1 Methods for RNA Structure Determination 

There are two primary physical methods for determining RNA structure, X-ray crystal- 

lography [39] and Nuclear Magnetic Resonance [91]. In X-ray crystallography, structure 

is determined by crystallizing the molecule; analysis involves four steps [38]. First, an ex- 

tremely pure, homogeneous sample of the RNA must be prepared. The RNA sample must 

then be crystallized through vapour diffusion combined with sparse matrix screening tech- 

niques. Next, the crystal is X-rayed, and data is collected on the resulting X-ray diffraction. 

Finally, a model of the electron density of the molecule is progressively built and refined 

against the data until the structure solution is resolved. Although molecules of practically 

any size may be analyzed using this method, it is effectively restricted to analyzing their 

crystalline form. This may not reflect the natural conformation of the RNA structure in its 

native environment. 

Nuclear Magnetic Resonance employs a spectroscopic method in which the spin states of 

various atomic nuclei are probed via an electromagnetic field [69]. A minute sample of RNA 

must be purified, irradiated, and the resulting spectra analyzed by specialists. Unlike X-ray 

crystallography, the RNA structure can be analyzed in its native thermodynamic environ- 

ment. However, the length of the sequences analyzed by NMR is limited to approximately 

60 nucleotides. 

Although promising, both methods of RNA structure determination are too time con- 

suming and expensive to be effective. Thus, there is a keen interest in methods for predicting 

RNA structure computationally. 

1.3.2 RNA Structure Prediction 

With RNA it is possible to separate the process of folding from the primary structure 

to the tertiary structure into two hierarchical steps. First, the RNA sequence folds into 

its secondary structure through the formation of base pairs. Next, the three-dimensional 

tertiary structure forms from the secondary structure. 

This claim can be substantiated with the knowledge that the energy involved in stabiliz- 

ing secondary structure, base pairing, and base pair stacking is far greater than the energy 

involved in the interaction of secondary structure elements to form the tertiary structure. 

Thus, the secondary structure is much more stable than the tertiary structure, and tertiary 
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structure formation almost always follows secondary structure [87]. Evidence of the dom- 

inance of RNA secondary structures can also be found in nature, as secondary structure 

elements are conserved in evolution [29]. Thus, approaches to RNA structure prediction 

generally focus on secondary structure, which greatly simplifies the problem. 

1.3.3 Methods for RNA Secondary Structure Prediction 

The two most popular computational methods for RNA secondary structure prediction are 

comparative methods [23] and dynamic programming (DP) [57]. 

The basic principle on which comparative methods rely is that structure is conserved in 

RNA far more frequently than sequence. In other words, different RNA sequences can fold 

to form identical secondary and tertiary structures. Since function follows from structure, 

it can be seen that a biomolecule cannot undergo a total change in structure and retain 

what is likely an important function. If a mutation of a base occurs in the RNA during the 

course of evolution, a compensating mutation will often occur to maintain the original base 

pair position and the secondary structure of which it is a part. Otherwise, the RNA would 

suffer a loss of these secondary structure elements and likely the functionality they provide 

as well. 

Comparative sequence analysis [74, 1011 is performed on a set of homologous, phyloge- 

netically related RNA sequences. First, multiple sequence alignment is performed on the 

set of sequences. Next, positions are found in the alignment that vary in a coordinated 

fashion, or covary, in order to maintain base pairing inside a potential secondary structure 

helix. This covariation analysis deduces base pair positions by locating identical or similar 

patterns of strong covariation in the multiple sequence alignment. There are two variants 

of comparative sequence analysis. The first is the Sankoff algorithm [74], which combines 

sequence alignment with a Nussinov [66] folding algorithm. The second is applied in the 

case where sequence conservation is very weak. Instead of performing sequence alignment, 

structures are predicted for each sequence and alignment is performed on the predicted 

structures. Current applications employing the basic comparative methods algorithm in- 

clude RNAalifold [37], Pfold [43], and ILM [72]. Applications employing a restricted version 

of the Sankoff algorithm include Foldalign [26, 271, Dgnalign [56], and PMcomp 1361. Finally, 

applications employing structure alignment include RNA forester [34] and MARNA [79]. A 

comprehensive comparison of comparative RNA structure prediction approaches is offered 

in [23]. One major limitation of comparative methods is that they require a set of RNA 
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sequences with minimal sequence diversity. If there is only one sequence available, or a set 

of RNAs with little diversity, comparative methods cannot be applied. 

The DP approach to structure prediction proceeds with an ab initio method, where 

only the primary structure of the RNA molecule in question is known. DP is a technique 

typically applied to optimization problems which possess two properties [7]. The first is 

optimal substructure, where the optimal solution to the problem has optimal solutions to its 

subproblems. The second property is overlapping subproblems, in that a recursive algorithm 

for the problem solves the same subproblems repeatedly. The first application of DP to 

structure prediction was developed by Nussinov [66], and functioned by maximizing the 

number of base pairs in a predicted structure. In this case it was assumed that the formation 

of a given base pair was independent of all other base pairs. Thus, the prediction problem 

can be divided into subproblems, the subproblems solved and their solution tabulated, and 

the final structure computed from the tabulated subproblem solutions. The main problems 

with this first DP algorithm were as follows: First, there were no constraints on hairpin 

loop length, whereas actual RNA requires a minimum of about 3 nucleotides. Second, there 

were no size constraints on bulges and internal loops; this resulted in helices with shorter 

lengths than what would occur in actual RNA. 

Later, Zuker [113, 107, 108, 112, 109, 1101 developed an alternate approach which em- 

ployed thermodynamic models to minimize the free energy of the predicted structure. Free 

energy can be thought of as a measure of stability in RNA secondary structures, and is 

discussed in greater detail in Section 2.1. Instead of assuming base pairs were completely 

independent as per Nussinov, the free energy of helices was based on the stacking contribu- 

tion from the interaction between base pairs. The destabilizing energy contribution of loops 

is also considered. Thus, the free energy of a predicted structure is roughly the sum of the 

free energies of secondary structure elements such as hairpin loops, bulges, internal loops, 

and multi-branched loops. Recurrence relations capture the detail of each loop length and 

type, and the predicted structure with the global minimum free energy is returned. 

A key problem with predicting structures based on minimum free energy is that the 

natural fold is frequently found to be in a suboptimal energy state [89]. In general, structures 

with 92% of their base pairs determined through phylogenetic analysis are found within 2% 

of the minimum free energy 1531. This problem was addressed through the modification of 

the DP algorithm to allow it to determine suboptimal RNA secondary structures within a 

specified range of the minimum free energy [107]. 
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Current DP implementations include mfold [I101 for UNIX, a Windows-based version 

of mfold, RNAStrmcture [54] developed by Mathews, and Vienna [35] developed by Ho- 

facker. Vienna is a C code library and several applications for RNA structure prediction 

and comparison. The three DP structure prediction applications are a basic minimum free 

energy algorithm which generates a single optimal structure [113], a partition function al- 

gorithm [60, 151 which computes base pair probabilities, and an algorithm to generate all 

suboptimal structures within a specified range of the minimum free energy [103, 1041. 

1.4 Genetic Algorithms 

Evolutionary computing [I] refers to methods by which evolution is simulated on a com- 

puting platform. The algorithms reliant on these methods are known as evolutionary al- 

gorithms, and include evolution strategies [71, 751, evolutionary programming [18], genetic 

programming [44], and genetic algorithms [40]. 

Genetic algorithms (GAS) are widely applicable search and optimization techniques. In 

general, they have five basic components [64]: 

1. A genetic representation of solutions to the problem 

2. A way to create an initial population of candidate solutions 

3. An evaluation function rating solutions in terms of their fitness 

4. Genetic operators that alter the genetic composition of children during reproduction 

5. Values for the parameters of GAS 

The GA maintains a population of individuals, usually bitstrings, in which each indi- 

vidual represents a potential solution to the given problem. For each cycle or "generation" 

each individual is evaluated to determine its relative fitness. Those individuals representing 

the current best solution to the problem are maintained. Two fundamental operators, mu- 

tation and crossover, may be applied to this population. Mutation creates new individuals 

by randomly altering individuals, while crossover combines elements from two separate in- 

dividuals to make new individuals. These new individuals replace the least fit individuals in 

the population. This completes one generation, and the cycle repeats itself, now evaluating 

the new individuals or offspring. After a varying number of generations, the algorithm will 
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converge to the best individual, which represents a suboptimal or optimal solution to the 

given problem. 

Two key considerations of the search strategies are exploitation of good solutions and 

exploration of the search space. GAS execute an essentially blind search in complex fitness 

landscapes; selection operators should direct the search towards the most favourable areas 

of the landscape. GAS must strike a balance between exploitation and exploration to be 

successful. [24] 

1.5 GAS in RNA Structure Prediction 

In the case of DP and GAS, structure prediction can be formulated as an energy minimization 

problem using thermodynamic models. While DP has been shown to accurately predict a 

structure with minimum energy [57], the natural fold has been shown to vary greatly from 

the predicted one [30]. However, van Batenburg et al. [89] implemented a simple binary 

GA which outperformed the DP algorithm when considering true-positive canonical base 

pairs in the structure. As the base pairs ultimately make up the secondary structure, this 

development is quite significant. Van Batenburg et al. attribute this result to how the GA 

emulates the natural folding pathway by adding and removing the helices which make up 

the secondary structure. This suggests that GAS may perform well in this domain. Other 

GA designs have been applied to the RNA structure prediction problem. These include 

massively parallel GAS [78], and serial GAS 188, 891. 

1.6 Research Question 

The underlying research question for this thesis is whether a coarse-grained distributed 

GA, P-RnaPredict, can successfully perform RNA secondary structure prediction. Facets 

of this thesis include an investigation into the effects of pseudorandom number generator 

quality, an analysis of the parallel speedup, and a brief overview of parameter optimization as 

applied to the parallel algorithm. The viability of this approach is demonstrated through the 

comparison of the structures predicted by P-RnaPredict to known structures, and against 

structures predicted by the Nussinov and mfold dynamic programming algorithms (DPAs). 

My specific contributions in this thesis are as follows: 
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0 modification of an existing single-population canonical GA into a coarse-grained dis- 

tributed GA 

0 development of a serial simulation of the distributed GA to determine if parallelization 

was worthwhile 

0 modification of the serial simulation into a fully parallel coarse-grained distributed GA 

0 evaluation of the influence of parallel PRNGs on the quality of output of the distributed 

GA 

0 evaluation of the performance of the GA in terms of prediction accuracy through 

comparison to known structures, and the Nussinov [66] and mfold [I101 DP algorithms 

1.7 Thesis Overview 

Free energy minimization and thermodynamic models as applied within P-RnaPredict are 

discussed in detail in Chapter 2. The representation of RNA structures in P-RnaPredict are 

reviewed in Chapter 3. In Chapter 4, the methods whereby the serial GA was modified to 

become a serial simulation of a distributed GA are presented. The impact of pseudorandom 

number generation on P-RnaPredict is investigated in Chapter 5. Chapter 6 presents the 

results of the parallel speedup testing. A comparison of the structures predicted by P- 

RnaPredict to known structures is offered in Chapter 7. Chapter 8 reviews a comparison 

of the Nussinov DPA and P-RnaPredict. A comparison between the mfold DPA and P- 

RnaPredict is presented in Chapter 9. Finally, conclusions and future work are offered in 

Chapter 10. 

1.8 Summary 

This chapter presented an overview of RNA secondary structure prediction and its im- 

portance. The biochemistry behind RNA and its structure were reviewed. A synopsis of 

the methods for secondary structure prediction, including GAS, was offered. Finally, the 

research question and an overview of the thesis were presented. 



Chapter 2 

Free Energy Minimization 

As mentioned in Section 1.4, a GA requires a fitness function to evaluate candidate solutions. 

The fitness function employed to guide this structure prediction algorithm is free energy, 

and is discussed in detail below. The four thermodynamic models employed in P-RnaPredict 

are reviewed, and a general critique of free energy minimization is presented. 

2.1 Free Energy 

Gibbs free energy is a measure of the energy available in a system to do work under conditions 

of standard temperature and pressure. It can be expressed by the following equation, 

AG = A H  - T A S  (2.1) 

where AG is the change in free energy, A H  is the change in enthalpy, a measure of the heat 

content of a chemical system, T is the temperature in degree Kelvin, and A S  is the change 

in entropy, a measure of the disorder in a chemical system. In a chemical reaction, bonds 

between atoms are broken and replaced by other bonds, and a transfer of energy occurs. 

This transfer of energy also happens in RNA folding when base pairs form through chemical 

(hydrogen) bonds. 

In a chemical reaction, or a change in configuration of RhTA structure, AG quantifies 

the spontaneity of the reaction. If the AG of a given process is negative, the products of 

that process are favoured, and the process can proceed spontaneously. On the other hand, 

a positive AG favours the reactants, and the process cannot proceed spontaneously. When 
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equilibrium is reached, AG = 0 and no further change in free energy occurs. As suggested 

by Equation 2.1, the free energy lost as equilibrium is reached is transformed into either 

heat or increases the amount of entropy. 

In the case of RNA secondary structure prediction, AG is used to quantify the spontane- 

ity of a RNA molecule in folding into specific secondary structure configurations. The details 

of how RNA structural configurations are related to a specific value of AG are captured 

within thermodynamic models, and are explained in the next section. 

2.2 Thermodynamic Models 

In our model, RNA secondary structure forms as a consequence of chemical (hydrogen) 

bonds that form between specific pairs of nucleotides. These are GC, AU, and GU, and 

their mirrors which are collectively known as the canonical base pairs. Searching a sequence 

of nucleotides for all possible base pairs is rapid and straightforward; the challenge comes 

from attempting to predict which specific canonical base pairs will form bonds in the real 

structure. 

The change in free energy associated with RNA structural configurations is captured 

within the four thermodynamic models implemented within P-RnaPredict. These models 

can be divided into two main groups. The first are the hydrogen bond models proposed 

by Major [96] and Mathews et al. [55]. The second group are the stacking-energy ther- 

modynamic models Individual Nearest Neighbour (INN) [3, 21, 761 and Individual Nearest 

Neighbour-Hydrogen Bond (INN-HB) [105]. 

2.3 Review of Base Pairing Models 

Base pairing or hydrogen bond thermodynamic models are based on the idea that each base 

pair contributes individually to the free energy change of the entire structure, and there is 

no interaction between base pairs. 

2.3.1 The Major Model 

The main premise behind the Major thermodynamic model is that each base pair contributes 

to the free energy of a RNA secondary structure based on the relative strength of its chemical 

bonds. The bond strengths are in turn based on the following facts: GC base pairs have 
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three hydrogen bonds, the AU pair has two, and the wobble pair GU has much weaker 

bonding than the AU pair [97]. Thus, each pair makes the free energy contribution 1961 

shown in Table 2.1. 

Table 2.1: Major Thermodynamic Model, all values at 37OC 

-3 kcal/mol 
-2 kcal/mol 

GU -1 kcal/mol 

Each base pair forms completely independently of all other base pairs in a given RNA 

secondary structure, and the total free energy of a given RNA structure is computed via 

Equation 2.2 [97]. 

Here, e(r i ,  r j )  denotes the free energy AG contribution between the ith and jth nucleotide 

from the formation of a base pair. 

2.3.2 The Mathews Model 

The Mathews model is quite similar to the Major model discussed above. The difference 

is that instead of a proportional strength rating, the free energy contribution of the base 

pairs is based solely on the number of hydrogen bonds they form: GC with three hydrogen 

bonds, AU with two, and the GU also with two. Thus, each pair makes the free energy 

contribution shown in Table 2.2. 

Table 2.2: Mathews Thermodynamic Model, all values at 37OC 

Again, the free energy contributions of the base pairs are summed to compute the free 

Base Pair 
GC 

AL: (kcal/mol) 
-3 kcal/mol 
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energy of a given structure [55] as per Equation 2.2. 

2.4 Review of Stacking Energy Models 

The essential idea of stacking-energy models is that the stabilizing contribution each base 

pair makes to its helix depends on that base pair's nearest neighbours. For example, the 

free energy contribution of a GC base pair would vary depending on whether the adjacent 

base pair in the helix is an AU base pair, or its mirror a UA base pair. This differs from 

the simple base pairing models reviewed in Section 2.3 which only consider the individual 

base pair and disregard both its orientation and its neighbours. 

2.4.1 Individual Nearest-Neighbour Model (INN) 

There are two distinct components to computing the free energy of a helix using INN. 

The first is initiation, or the formation of the first base pair. Initiation brings the two 

strands together and entails hydrogen bonding. The second component is propagation, or 

the continued formation of subsequent base pairs. Propagation involves nearest-neighbour 

or stacking interactions as well as hydrogen bonding. The nearest-neighbour thermodynamic 

parameters used in the INN model were initially measured at 25OC [3], but were later re- 

measured and extended at 37OC [20, 21, 22, 31, 84, 102, 1061. 

The following example, taken from [76], is of a predicted free-energy change of helix 
5'GGAUCC3' 

formation of the symmetric duplex 
3'CCUAGG5' 

Here the set of nearest neighbour terms is formed by working through each base pair 

from left to right through the duplex and grouping it with the base pair on the right. The 

AGi7 init term is a constant which accounts for the entropy loss when initiation occurs and 

the first base pair is formed. AGiTsym is a symmetry correction term for duplexes with 

complementary strands. 
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This next example, also taken from [76], illustrates how INN accounts for 3' unpaired 

nucleotides in the duplex 
5' GGAUCCA3' 

3'ACCUAGG 5' 

CA 
AGz7 = AGz7(Core duplex) + 2AGz7 

In the above equation, the term 
CA G 

is considered to be the same as , except that 
G AC 

it has been rotated by 180'. 

A similar case occurs with the 5' unpaired nucleotides in the duplex 
5'AGGAUCC 3' 

3' CCUAGGA5' 

AGg7 = AGg7(Core duplex) + 2AGz7 
AG 

C 
(2.5) 

Terminal mismatches, such as those in the duplex 
5'AGGAUCCA3' 

are accounted for 
3'ACCUAGGA5' 

using specific mismatch terms as shown below: 

CA 
AGz7 = AGz7(Core duplex) + 2AGg7 _ 

A thorough review of the INN model complete with thermodynamic parameters can be 

found in [76]. 

2.4.2 Individual Nearest-Neighbour Hydrogen Bond Model (INN-HB) 

Later experimentation determined that duplexes with identical nearest neighbours but vary- 

ing terminal ends also differed in their stabilities. Specifically, a duplex with one additional 

terminal GC pair and one or less terminal AU pairs is always more stable [105]. 

This difference is accounted for by a modification of the INN model, described via the 

following equation: 

Each AG;(NN) term accounts for the free energy contribution of the j t h  nearest neigh- 

bour with nj occurrences in the sequence. The m t e r m - ~ u  term is the number of terminal 
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AU pairs, and the AGierm-AU term is the free energy contribution of a terminal AU pair. 

The only difference from the INN model is the inclusion of the mterm-AUAG~erm-AU term 

to account for the free energy penalty attributed to terminal AU pairs. With the thermody- 

namic tables from [22], the computation of the stability of a given helix is straightforward. 

The following examples are taken from [105]. The first example is the stability of a 

non-self-complementary duplex with one terminal AU pair, 
S'ACGAGC3' 

3'UGCUCGS' 

AGO (duplex) = AGg7 init + AGg7 
AC + 
UG 

The 1 x AGz7 
5' A 

term accounts for the destabilizing effect of the terminal AU base 
3'U 

pair. 

The second example illustrates the stability computation for a self-complementary du- 

plex with two terminal AU base pairs, 
S'UGGCCA3' 

3'ACCGGUS' 

AGO (duplex) = AGg7 init + 2 x AG& 
CA + 
GU 

A 
Note that the AGz7 term is doubled to account for both terminal AU pairs. 

u 
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Although the INN-HB model only specifies a penalty for terminal AU pairs, terminal 

GU pairs are given the same penalty as suggested by Mathews et al. in [55]. 

The INN-HB model as presented here is unable to account for higher-order structures 

such as loops, junctions, bulges, and pseudoknots. In fact, Zuker et al. [I121 state that the 

energy rules break down when pseudoknots are included. 

2.5 Critique of the Minimum Free Energy Thermodynamic 

Model 

There are several important instances where the free energy model is inadequate in deter- 

mining RNA structure [23]. Aside from the primary RNA structure, other cellular com- 

ponents such as chaperones, base modification~, and transcription itself have an impact 

on RNA folding. Chaperones are proteins which assist other biomolecules in proper fold- 

ing. Base modification is the post-transcription alteration of RNA bases; one example of 

this is pseudouridine in tRNA [93]. Another important class of RNA structures is the ri- 

boswitch 1501, which regulates gene expression. Riboswitches are RNA sequences which 

possess two or more functional structures. Finally, the prediction of pseudoknots (defined 

in Section 1.3) is not adequately handled due to their relative scarcity in RNA structures, 

and the computational complexity involved in detecting them. Other drawbacks to the 

minimum free energy model are that it is based on physical measurement, which potentially 

suffers from error through noisy data. There is also a lack of modeling of global interactions 

between secondary structure elements. 

With a GA evaluation function for RNA structure prediction defined, the next consid- 

eration is a genetic representation of potential solutions. 

2.6 Summary 

An overview of the free energy minimization fitness metric has been offered in this chapter. 

A definition of Gibbs free energy was presented, and the four thermodynamic models im- 

plemented in P-RnaPmdict were reviewed. Finally, a critique of the minimum free energy 

method was presented. 



Chapter 3 

RNA Representation in the GA 

Representations of secondary structures present unique challenges in the implementation of 

GAS. Most implementations employ the pre-calculation of all secondary structure elements 

such as stems and loops which are possible within the given RnTA sequence. The repre 

sentation of the solution in this case is then a selection of the available elements from the 

precalculated set. However, it must be noted that certain helices in the set are likely to be 

mutually incompatible. 

3.1 Helix Generation Algorithm 

In our model, a helix is specified by three constraints. First, each helix must have at least 

three stacked canonical base pairs. Second, the sequence or loop connecting the two strands 

must be at least 3 nucleotides long. Third, each helix must not share bases with another. 

With this in mind, the pseudocode of the helix generation algorithm is shown in Figure 3.1. 

A walkthrough of the helix generation pseudocode follows. Start with a pair (Ti, r j)  from 

the pre-generated set of base pairs. The first action is to determine if this base pair is already 

part of another helix. This is done by checking if the base pair (ri-1, rj+l) is a canonical 

base pair. If it is, it is assumed that this base pair is already part of a previously generated 

helix and it is discarded. If not, the next step is to attempt "growing" the potential helix h 

by stacking base pairs on top of it. The indices i and j are incremented and decremented 

respectively, and each successive pair is checked to determine if is it a canonical base pair. 

Thus, the base pairs {(ri+l, rj-l), (ri+2, rj-2), (ri+3, rjp3), ...) are added to h until the 

first non-canonical pair is encountered. At this stage, two criteria are applied. If h has a 
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while (helix h i s  valid) and (helix h i s  incomplete) do 
if ((Ti, r j )  i s  a canonical base pair) and ((ri, r j )  is  not  part of an  existing 

Generate set of possible base pairs (r i ,  r j )  from given sequence; 
initialize helix h; for each pair (Ti, r j )  do 

end 

Figure 3.1: Helix generation pseudocode 

helix) then 
add base pair (T i ,  r j )  to helix h ;  
increment index i; 
decrement index j ;  

else 
if helix h contains less than 3 base pairs then 

I helix h is invalid; 
else if helix h has less than 3 bases in between the last base pair then 

I helix h is invalid; 
else 

I helix h is complete; 
end 

end 
end 
if (helix h is  valid) then 

I insert helix h into set of all helices H; 
end 
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minimum of three stacked base pairs, and at least three unpaired bases between the last 

base pair, it is considered valid and added to the set of all helices H. Otherwise, helix h is 

discarded and the process continues with the next base pair. 

With this formulation for structure generation, the structure prediction problem becomes 

a combinatorial optimization problem; the final solution is a subset of the set H of all possible 

helices that contains only the helices which make up the final structure. The constraint 

that no helix share bases with another ensures that only chemically feasible structures are 

predicted. Since the helices determined by this model are always a contiguous set of base 

pairs, the conflict data is computed by looking for overlap between the 3' and 5' indices 

of the base pairs at the top and bottom of each helix. This conflict data is then captured 

within a lookup table for swift retrieval. 

3.2 Size of Search Space 

A general comment on the size of the search space resulting from the helix generation 

algorithm should be made. If we consider that each helix found in the structure can either 

be present or absent, then the total number of structures which can be generated from a 

given sequence is 2IHI, where H is the set of all helices. 

For example, the 1493 nt S.acidocaldarius sequence results in a set of 32274 helices, and 

a search space of 232274 possible structures, an extremely large search space. 

Table 3.1: Total helices found by sequence. Details for each sequence can be found in the 
table associated with its name. 

Total Helices Found 
175 
198 

2324 
3933 
3637 
6074 
8491 
8233 
8481 

32274 

Organism Name 
S. cerevisiae (Table 4.5) 

H.marismortui (Table 4.4) 
A. lagunensis (Table A. 17) 

H.rubra (Table 4.3) 
A.grifini (Table 4.2) 
C. elegans (Table 4.1) 
D. virilis (Table 7.6) 
X. laevis (Table 7.2) 

H.sapiens (Table A.6) 
S. acidocaldarius (Table A.23) 

Sequence Length (nt) 
118 
122 
468 
543 
556 
697 
784 
945 
954 
1493 
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3.3 RNA Structure Representation 

When a GA randomly assembles stems from the common set into individuals to populate 

the first generation, it may assemble an infeasible individual with incompatible stems. The 

stochastic operation of the mutation and crossover operators could also easily produce infea- 

sible individuals; this was resolved by repairing individuals containing incompatible helices. 

Other improvements to this initial design were accomplished by adding a finer-grained fit- 

ness function, and favouring additions to removals of stems in the mutation operator as 

suggested by [89]. 

The existing serial GA incorporates two separate representations: binary-based and 

permutation-based. In the binary-based representation, each helix in H was represented by 

one bit in a bitstring; a set bit indicated the presence of a helix, and an unset bit indicated 

its absence. For example, consider a set of helices H, containing five helices. A candidate 

structure h might contain, assuming there are no conflicts, the second, fourth, and fifth 

helices from H. The binary representation of that would be the bitstring {01011). As noted 

above, repair of each individual is necessary due to the potential for helix conflicts. The 

bitstring is iterated through from left to right. If a bit is set, the helix represented at that 

bit is checked for conflicts with helices to the left of it. If a conflict is found, that bit is 

unset . 
In the permutation-based representation [95, 961, each helix in H is numbered by an inte- 

ger ranging from 0 to n - 1, n being the total number of generated helices. A given structure 

is represented by a permutation of that set of integers. Permutation-based individuals are 

not repaired; the task of producing only feasible solutions is left to the decoder. This is 

accomplished by iterating through the permutation from left to right. The helix specified 

by each integer is checked for conflicts with helices to its left. If no conflicts are found, the 

helix is retained; otherwise it is discarded. In the permutation-based representation, there 

are multiple possible encodings. For example, consider again the set H above. Since the 

decoding process proceeds from left to right and only removes helices if there is a conflict, 

it is assumed that the first helix conflicts with the fifth helix, and the third helix conflicts 

with the second and fourth helices. Starting the permutation numbering from zero, one 

possible encoding for a structure is {1,3,4,0,2); another is {4,0,1,3,2}. It should be noted 

that both repair and decoding add substantially to the computational complexity of the 

fitness evaluation for the GA. 
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This defines the binary-based and permutation-based methods for creating a genetic 

representation of potential solutions. Crossover and mutation operators for these represen- 

tations are well established; the specific types used in the GA are discussed in Section 3.4.1. 

At this point, all the necessary components for a canonical GA for RNA secondary structure 

prediction have been introduced. The next section focuses on the design of RnaPredict, the 

GA which is the foundation for the parallel GA, P-RnaPredict. 

3.4 RnaPredict-a GA for RNA Folding 

The foundation for P-RnaPredict is a serial GA for RNA secondary structure prediction 

developed initially by Wiese and Glen [97]. This GA employed permutations to encode 

RNA secondary structures, and was named RnaPredict. Deschgnes and Wiese [ll] extended 

RnaPredict by implementing the stacking-energy based thermodynamic models INN and 

INN-HB. These extensions were found to predict certain RNA secondary structures with 

very high accuracy and also outperform a DP algorithm [13]. 

The next section provides a brief overview of RnaPredict's design. 

3.4.1 Serial GA Design 

The operators and parameters necessary to configure RnaPredict [ll] are as follows: 

Generations 

Population Size 

a Crossover Probability (PC) 

a Mutation Probability (P,) 

a Crossover Operator 

Selection Strategy (KBR or STDS) 

a Elitism (On / Off) 

Thermodynamic Model (Major, Mathews, INN, or INN-HB) 

a Pseudoknots (On / Off) 



CHAPTER 3. RNA REPRESENTATION IN THE GA 

Random Seed 

"Generations" is the number of generations for which the GA will execute. "Population 

Size" is the total number of individuals in a single population. PC is the probability of 

crossover occurring on a pair of parents. Pm is the probability of mutation occurring on 

a given child. For the binary-based representation, mutation is simply flipping a random 

bit to its alternate value. For the permutation-based representation, mutation is simply 

swapping the integers at two random indices. 

"Crossover" is the type of crossover employed. Since RnaPredict supported both binary- 

based and permutation-based structure representation, crossovers of both types are sup- 

ported. They include the binary crossovers 1-Point, N-Point and Uniform, and the permu- 

tation crossovers Cycle Crossover (CX) [67], Order Crossover (OX) [9], Order #2 Crossover 

(0x2)  [85], Edge Recombination Crossover (SYMERC) [94], Partially Matched Crossover 

(PMX) [25], and Asymmetric Edge Recombination Crossover (ASERC) [98]. 

The "Selection Strategy" parameter offers two types of strategies to manage the out- 

put of crossover. Standard Selection (STDS) simply passes the two children of crossover 

directly through to the next generation, regardless of their fitness. Keep-Best Reproduction 

(KBR) selects the most fit parent and the most fit child and passes them on to the next 

generation. "Elitism," if applied, retains the best individual from the previous generation 

to the next generation. The "Thermodynamic Model" parameter determines which of the 

four models described above (Major, Mathews, INN, or INN-HB) is used in the GA. "Allow 

Pseudoknots" determines whether pseudoknots are permitted in the predicted structure. 

Finally, the "Random Seed" parameter lets the user choose a random seed to initialize ran- 

dom number generation for the GA. Pseudocode for the RnaPredict algorithm is shown in 

Figure 3.2. 

Earlier research with RnaPredict determined that there were certain optimal combina- 

tions of parameters [lo, 11, 12, 131. These settings, based on the use of 1-Elitism, were a 

permutation-based representation, 700 generations, a population size of 700, a PC of 0.7, a 

Pm of 0.8, the OX2 and CX crossovers, a selection strategy of STDS, the INN and INN-HB 

thermodynamic models, and the disallowing of pseudoknot prediction. RnaPredict is able 

to disable pseudoknots due to the conflict table generated by the helix generation algorithm. 

At this stage it was suggested that RnaPredict should be parallelized to improve per- 

formance. Since there were a number of techniques applicable, further investigation was 
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Generate set of possible base pairs from sequence; 
Generate set of possible helices using set of base pairs; 
Generate initial random population; 
for all generations do 

end 

for population size / 2 do 
Select two parents; 

end 

if random value < PC then 
( crossover parents to create two children; 

else 
I pass parents through as children; 

end 
for each child do 

if random value < P, then 
( randomly mutate this child; 1 end 

end 
if selection strategy i s  K B R  then 

I retain best parent and best child based on fitness; 
else if selection strategy i s  STDS then 

1 always retain children; 
end 
insert retained individuals into new population; 
apply 1-Elitism and retain the best individual from the previous generation; 

output best structure; 

Figure 3.2: RnaPredict pseudocode 
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necessary to determine how to proceed. Chapter 4 discusses this process. 

3.5 Summary 

This chapter has presented the method whereby RNA secondary structure is represented 

in P-RnaPredict. The helix generation algorithm was reviewed in depth, complete with 

pseudocode. Commentary was made on the substantial size of the structure prediction 

search space. The method of RNA structure representation was detailed, including the 

differences between binary-based and permu.tation-based representations. Finally, the pre- 

decessor to P-RnaPredict, RnaPredict, was briefly discussed. 



Chapter 4 

P-RnaPredict - a Parallel GA for 

RNA Folding 

This chapter reviews the process whereby the serial GA RnaPredict was parallelized to 

produce P-RnaPredict, a fully parallel distributed GA. There are two distinct stages in this 

process. The first was the creation of a seria,l simulation of the distributed GA, covered in 

Section 4.1. This section discusses the benefits of the various approaches for parallelization, 

ultimately making the case for a multi-population GA. The second was the parallelization 

of the serial simulation, covered in Sections 4.2 and 4.3. These two sections cover the 

justification for parallelization and the implementation details, respectively. 

4.1 Parallelization of RnaPredict 

4.1.1 A Classification of Parallel GAS 

CantG-Paz [5] identifies four major types of parallel GAS: single-population master-slave, 

multiple-population GAS, fine-grained GAS, and hierarchical hybrids. 

Single-population master-slave GAS, as the name suggests, have a single population. 

The fitness evaluation is distributed among a set of slave processors, while the master node 

performs selection, crossover, and mutation. Here, the entire GA population is included in 

selection and crossover, thus this type is also known as a "global" parallel GA. Figure 4.1 

illustrates a single-population master-slave GA. 
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Figure 4.1: Illustration of a single-population master-slave GA with four nodes. 

Multiple-population GAS, also known as multiple-deme GAS, consist of several subpop- 

ulations which occasionally exchange individuals through "migration. ' Migration is con- 

trolled by several parameters: interval, rate, policy, and topology. The migration interval 

determines when migration occurs. The migration rate determines how many individuals 

migrate. Migration policy determilies which migrants are selected in the source dcme and 

which individuals are replaccd in the destination deme by them. Finally, the migration 

topology determines the source and destination demes of migrant individuals. 

There is a variety of terminology for mull iple-population GAS. When implemented on 

distributed-memory Multiple-Instruction Stream Multiple-Data (MIMD) computers. multiple- 

population GAS are known as distributed GAS. Since distributed GAS have a high ratio of 

computation to communication they are also referred to as coarse-grained. Coarse-grained 

distributed GAS fall into two classes: an island-model if demes are fully connected, or 

a stepping-stone model if migration is restricted between neighbouring populatiol~s. Fig- 

ure 4.2 illustrates a distributed GA. 

Fine-grained GAS typically distribute their population across a two-dimensional grid 

with one individual per grid point. Preferably one processor is allocated to cach individual, 

which permits fitness evaluations to be perfoirned simultaiieously. Selcction and crossover 

are constrained to the immediate neighbours surrounding an individual. They are also 
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Figure 4.2: Illustration of a multiple-population GA with five nodes. The five nodes are 
connected in a stepping-stone model, in this case a bi-directional ring topology. 

known as diffusion-model GAS and cellular GAS. One example inclucles the massively par- 

allel GA for RNA secondary structure prediction developed by Shapiro et al. [77]. Figure 4.3 

illustrates a fine-grained GA. 

Finally, it is possible to combine GAS with multiple demes and master-slave or fine- 

grained GAS. Cant6-Paz [5] classifies this variety as hierarchicnl because they arc multiple- 

deme algorithms at a high level with single-population parallel GAS at a low level. The 

notion is that hierarchical GAS combine the advantages of t,heir components to produce 

potentially better performance than the individual components could produce separately. 

4.1.2 Coarse-Grained Distributed GA 

Coarse-grained distributed GAS [5] offer a number of advant,a,ges beyond the benefits of 

parallelization. These include the preventmior. of premature convergence by maintaining 

diversity, an increase of the selection pressure within the entire population, and also a 

reduction of the t,ime to convergence. Another benefit of distributed GAS is that unlike 

single-population master-slave GAS, they need only conlmunicate during migration. Thus, 

it was decided to investigate the multiple-deme or coarse-grained clistributed GA. This 

development proceeded in two distinct steps. The first was to implement a serial simulation 
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Figure 4.3: Illustration of a fine-grained GA with 16 nodes. The 16 nodes are connected in 
a mesh topology. 

of the distributed GA [32, 331. This was done to validate the potential benefits of the coarse- 

grained distributed GA in this problem domain without the overhead of implementing the 

potentially complex parallel communication code. Once the serial simulation was complete, 

the final stage was to implement a fully para,llel version. 

4.1.3 Distributed GA Configuration 

The additional parameters necessary to configure the distributed GA are as follows: 

0 Deme Count 

0 Deme Size 

Migration Interval 

0 Migration Rate 

0 Migration Topology 

0 Migration Policy 
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"Deme Size" is the total number of individuals per deme. "Deme Count" is the total 

number of demes. "Migration Interval" is the number of generations between migration. 

"Migration Rate" is the percentage of a deme population selected for migration. "Migration 

Topology" determines the source and destination demes of migrant individuals; a typical 

topology is a fully connected set of demes. Finally, "Migration Policy" determines which 

individuals migrate from the source deme, and which are replaced in the destination deme. 

With the parameter definitions established, we next review the pseudocode for the dis- 

tributed GA in Figure 4.4. There are two significant differences between the P-RnaPredict 

pseudocode and the RnaPredict pseudocode in Figure 3.2. The first is the separation of the 

global population into individual demes. The second is in the additional logic to support 

migration at the end of the generational loop. 

Through previous studies 133, 321 it was determined that overall the serial simulation 

of the distributed GA achieved comparable performance to the serial GA in terms of con- 

vergence behaviour and minimum free energy. With the viability of the serial simulation 

established, a fully parallel version was the next step. 

4.2 The Case for Parallelization 

At this stage, the viability of the coarse-grained distributed GA had been established 

through the serial simulation. Prior to parallelizing the serial simulation, it was neces- 

sary to determine whether a worthwhile speedup could be expected. In this section, the 

theoretical viability of the speedup is established, and important considerations such as 

available hardware and the software changes necessary to support parallelization are spelled 

out. 

In simple terms, parallel computing is about simultaneously executing the same problem 

on multiple processors so that results may be obtained faster. This necessitates dividing up 

the original serial task and adapting it to execute concurrently on more than one processor. 

Assuming it were possible to perfectly divide the serial task requiring N  time among p  

processors with no overhead for communication or preprocessing, the best time we could 

hope to obtain would be N / p .  

Pancake [68] states that in considering whether to parallelize a given application one 

should consider three criteria: frequency of use, execution time, and resolution needs. 

Frequency of use refers to how often the application is to be used before modifications are 
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Generate set of possible base pairs from sequence; 
Generate set of possible helices using set of base pairs; 
for each Deme do 

I Initialize Random Population; 
end 
for all generations do 

I )r each Deme do 
for deme size / 2 do 

Select two parents; 
if random value < PC then 

I crossover parents to create two children; 
end 
for each child do 

if random value < P, then 
I randomly mutate this child; 1 end 

end 
if selection strategy i s  KBR then 

I retain best parent and best child based on fitness; 
else if selection strategy i s  S T D S  then 

( always retain children; 
end 
insert retained individuals into new population; 
apply 1-Elitism and retain the best individual from the previous 
generation; 

end 
end 
if generation falls o n  a migration interval then 

for each Deme do 
select fraction (migration rate) of individuals based on policy; 
send selected individuals to other demes based on topology; 
replace individuals with incoming migrants based on policy; 

end 
end 

end 
output single best structure from demes; 

Figure 4.4: Distributed GA pseudocode 
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required. As this application is designed for research, it is likely that it will undergo substan- 

tial changes in the near future. However, coarse-grained distributed GAS are what is known 

colloquially as nearly "embarrassingly parallel" [loo]. In this case, future modifications to 

the application will largely be independent of areas impacted by parallelization. 

Execution time is simply the amount of time required to attain results. In the case of 

P-RnaPredict, this is directly related to the selected parameters and the length of RNA 

sequence considered. 

Experiments were conducted with a serial simulation of the distributed GA on Nebula, 

the SFU Surrey 128 node Beowulf cluster. Each node's CPU is a 3 GHz Intel Pentium 4, 

and the nodes are interconnected with a Gigabit Ethernet network. The sequences tested 

were Caenorhabditis elegans, Acanthamoeba grifini, Hildenbrandia rubra, Haloarcula maris- 

mortui, and Saccharomyces cerevisiae; they are taken from the Comparative RNA Web 

Site [4], and their details are summarized in Tables 4.1, 4.2, 4.3, 4.4, and 4.5 respectively. 

The parameters for these runs are shown in Table 4.6. Table 4.7 shows runtimes from five 

sequences using identical parameters; each runtime is averaged over 30 randomly-seeded 

runs. 

Table 4.1: Caenorhabditis elegans details, taken from the Comparative RNA Web Site [4] 
( Filename d.16.m.C.elegans.bpseq 

Organism Caenorhabditis elegans 
Accession Number X54252 
Class 16s rRNA 
Length 697 nucleotides 
# of BPS in known structure 189 
# of non-canonical base pairs 23 

Immediately it can be seen that the runtime tends to increases rapidly with the length of 

sequence under consideration. While it is inevitable that we wish to review longer sequences 

as research progresses, another important consideration is population size. Ideally, the 

population needs to be large enough to explore the solution space while small enough to 

avoid unnecessary computation. The solution space for P-RnaPredict's structure prediction 

model is 2IHI, where lHI is the cardinality of the set of all possible helices. For example, the 

Sulfolobus acidocaldarius (Table A.23) sequence has a length of 1494 nucleotides. Referring 

to Section 3.1, the helix generation algorithm finds 32274 possible helices resulting in a 
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Table 4.2: Acanthamoeba grif ini  details, taken from the Comparative RNA Web Site [4] 
Filename b.Il.e.A.griffini.l.Cl.SSU.516.bpseq 
Organism Acanthamoeba grifinz 
Accession Number U02540 
Class Group I intron, 16s rRNA 
Length 556 nucleotides 
# of BPS in known structure 131 

1 # of non-canonical base pairs 1 I 

Table 4.3: Hildenbrandia rubra details, taken from the Comparative RNA Web Site [4] 
( Filename h.1l.e.~.rubra.l.~1.~~~.1506.b~se~~ 

Organism Hzldenbrandia rubra 
Accession Number L19345 
Class Group I intron, 16s rRNA 
Length 543 nucleotides 
# of BPS in known structure 138 
# of non-canonical base   airs 1 

Table 4.4: Haloarcula marismortui details, taken from the Comparative RNA Web Site [4] 
Filename d.5.a.H.marismortui. bpseq 
Organism Haloarcula marismortui 
Accession Number AF034620 
Class 5s  rRNA 
Length 122 nucleotides 
# of BPS in known structure 38 
# of non-canonical base pairs 4 
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Table 4.5: Saccharomuces cerevisiae details, taken from the Comparative RNA Web Site [4] 

1 Filename d.5.e.S.cerevisiae.bpseq 
Organism Saccharomyces cerevisiae 
Accession Number X67579 
Class 5s rRNA 
Length 118 nucleotides 
# of BPS in known structure 37 
# of non-canonical base pairs 2 

Table 4.6: Serial simulation ~arameter settinas from runtime ex~eriments 

1 Crossover Probabilitv (P,.) 1 
I 

0.7 

" 
Test Parameters Values 

" \ -, 
Mutation Probability (P,) 

Selection Strategy 
Crossover Type 

Number of Generations I 700 

0.8 
(Standard Roulette Wheel) STDS 

Cycle Crossover (CX) " - 
Elitism 

Thermodynamic Model 
Deme Size 

Deme Count 

~, 

1 
Individual Nearest Neighbour - Hydrogen Bond (INN-HB) 

70 
10 

Migration Interval 
Migration Rate 

Migration Topology 
Migration Policy 

20 generations 
10% 

Fully Connected, Island (FULL) 
Best Replace Worst 

Table 4.7: Runtimes from serial simulation of distributed GA, averaged over 30 randomly- 
seeded runs 

Organism 
C. elegans 
A. grifini 
H. rubra 

H. marismortui 
S. cerevisiae 

Sequence Length 
697 
556 
543 
122 
118 

Serial Runtime ( s )  
1264.4 
754.0 
871.9 
32.1 
27.5 



CHAPTER 4. P-RNAPREDICT - A PARALLEL GA FOR RNA FOLDING 36 

search space of 23227"o~~ible structures. Thus, increasing the sequence lengths requires a 

corresponding increase in population size to properly explore the structure solution space, 

bringing with it a substantial increase in execution time. Aside from time complexity, 

another important issue is size complexity. Assuming that a permutation representation is 

employed with a population size of 500, the memory required to contain the individuals in 

the above example is: 

32274 int (helices) x 4 bytes per int x 500 individuals = 64548000 bytes = 61.6 MB 

As population size and representation length increase, parallelization becomes one method 

of reducing the size complexity of the population. 

The final criterion is resolution needs. For P-RnaPredict, this refers to the quality of 

the predictions that the GA is able to make. The results from all thermodynamic models, 

including INN and INN-HB [lo, 111, indicate that there is no perfect correlation between 

matching true-positive base pairs in the known structure and minimum free energy. Two 

factors negatively impacting the accuracy of predicted structures include the fact that P- 

RnaPredict's current thermodynamic models do not account for non-canonical base pairs, 

and are unable to account for pseudoknots. To improve the resolution of structure prediction 

will require a more advanced helix generation model and more detailed thermodynamic 

models, which in turn will increase the computational complexity. 

Based on Pancake's criteria it appears that P-RnaPwdict is a viable candidate for par- 

allelizat ion. 

4.2.1 Potential Speedup 

The potential for increased computational speed can be expressed by a measure known as the 

Speedup factor [99]. Speedup factor, S(n), is a relative measure between the performance 

of a multiprocessor system and a single processor system: 

where t, is the execution time on a single processor and tp is the execution time on the 

multiprocessor. The absolute maximum speedup would be n with n processors, or linear 

speedup. This would be achieved by dividing the computation into processes running an 

identical duration of time, with no overhead and one process per processor: 
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If S(n) were to be greater than n, this would be what is known as superlinear speedup. It 

is known to occur occasionally, and can be attributed to employing a suboptimal sequential 

algorithm, or to having greater memory available to the processors. Although superlinear 

speedup is impossible for deterministic algorithms, it can occur for stochastic algorithms 

like parallel GAS. However, this is still controversial; one issue is that speedup and solution 

quality are considered separately in the literature. The important idea is that while migra- 

tion in the distributed GA may lead to higher selection pressure and faster convergence, the 

GA must arrive at a comparable solution quality to a serial GA [5, 861. 

In a theoretical analysis, the speedup factor could also be considered in terms of com- 

putational steps. It should be noted that this is intended to be a practical analysis; no 

GA-specific method for evaluating computational complexity independently of a represen- 

tation has yet been developed 1731. If we simplify the computation by considering the time 

complexity of communications as 1 time unit per value sent, we can get a rough picture of 

the potential speedup: 

d, - deme count 

d, - deme size 

G - total generations 

lrep - representation length 

tfit(lrep) - fitness computation (dependent on representation length) 

t,,l - selection time complexity (dependent on fitness computational complexity) 

t,,,,(lrep) - crossover time complexity (dependent on representation length) 

tmut(lrep) - mutation time complexity (dependent on representation length) 

i, - migration interval 

r ,  - migration rate 

n - total number of processors 

Reviewing the time complexity of the various phases of the GA: 

tpopinit = (dc) (d,) (t fit (lrep)) : covers the time complexity of population initialization. 

Since each individual created automatically computes its own fitness, tfit(lrep) accounts for 

the fact that the fitness computation's time complexity is both dominant and dependent on 

the representation length lrep. 
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tgenjoW = (G) (dc )  (d,) (tsel +tcross ( I T e p )  +tmut (ITep)):  covers the main GA generation loop. 

Selection, crossover, and mutation are executed once for each individual in the population, 

multiplied by the number of generations. Crossover and mutation are both dependent on 

the length of the representation lTep. 

tcomm-overhead =g (dc)  (tstartup + (rm) ( d s )  ( h e p )  (tdata)): Covers the cost of communication 

overhead. tstaTtup is the startup time, or message latency; it is the cost of sending an 

empty message. tdata is the cost to send one data element, in this case one integer in the 
G representation. Thus we have rm - d ,  . lTep data elements transmitted to dc processors - 
Zm 

times over one GA run. 

With these parameters established, it is possible to begin further analysis. Since the 

deme count (d,) will be identical to the number of processors ( n ) ,  those values will cancel 

in the parallel time complexity. Also, MPI's broadcast feature will be used instead of 

sending migrants serially to one deme process at a time. This reduces the time complexity 

of communications substantially. 

- - tpop-init + tgen-loop 
( d s )  ( t f i t  ( I r e p ) )  + (G)  ( d s )  ( t se l  + &TOSS ( I r ep )  + tcross ( I r e p ) )  + tcornrn-overhead 

(4.4) 

The basic idea here is that for the parallelization of the distributed GA to be worthwhile 

certain conditions must be met. Specifically, the time consumed by migration through 

communication (tcomm-cuveThead) must be substantially less than the processing time saved 

by subdividing the tasks of tpopinit and tgen-loop by dc nodes. As typical migration rates used 

in P-RnaPredict are between 5 and 10 percent [32], the tcomm-oveThead should be relatively 

small. Also, migration only occurs at comparatively rare intervals (e). This is a concrete 

example of why this type of GA is referred to as coarse-grained, with its high ratio of 

computation to communication. 
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Having established that parallelization of the distributed GA will theoretically provide 

a worthwhile speedup, the next issue is ensuring the computational resources are available 

to support P-RnaPredict's parallel implementation. 

4.2.2 Target Platform 

Before a strategy for parallelization of the distributed GA can proceed, a major consideration 

is the hardware available on which the parallelized GA will be executed. Flynn 1171 clas- 

sifies computer hardware via four categories: single instruction stream-single data (SISD), 

multiple instruction stream-multiple data (MIMD), single instruction stream-multiple data 

(SIMD) and multiple instruction stream-single data (MISD). SISD refers to a single proces- 

sor computer. MIMD refers to a multiprocessor system in which each processor executes 

a separate program and operates on different data. SIMD refers to hardware executing 

a single program upon multiple streams of data; the idea is to rapidly execute the same 

program on large arrays of data such as molecular simulations or image processing. Strictly 

speaking, MISD computers do not exist unless pipelined architectures are considered. 

Given the available resources at SFU Surrey, the most likely candidate for an available 

platform is Nebula, a 128 node Beowulf Cluster with a Gigabit Ethernet network. This 

falls under the MIMD classification, with each separate workstation in the cluster having 

its own processor and own data. Within MIMD architectures it is possible to conceive of 

two different styles of programming structure: multiple program-multiple data (MPMD) and 

single program-multiple data (SPMD). Since the intent is to allocate one deme per processor, 

and each deme behaves as a serial GA between migrations, the implementation will be an 

identical deme program (single program) executing on a unique population (multiple data). 

Thus, the SPMD model was employed. 

With the target platform and a parallel programming model established, the next con- 

sideration is the communications paradigm. 

4.2.3 Message Passing 

The current implementation of the serial simulation of the distributed GA has a 19,000 

line GA C++ code base within more than 30 classes. This code in turn was based on a 

serial GA implemented by members of Dr. Kay Wiese's Bioinformatics lab; proper credit for 

this is detailed in section 4.4.2. A subset of these classes will be extended to construct the 
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parallelized prototype. The next major consideration is the message-passing standard to be 

employed; the choices are Parallel Virtual Machine (PVM) and Message-Passing Interface 

(MPI) . 
In PVM the problem is decomposed into separate programs written in C or Fortran and 

compiled for specific types of computers in the network. The set of computers to be utilized 

for a specific problem is defined in advance? forming the parallel machine. PVM permits 

any number of processes regardless of the number of processors available. Processes may be 

started dynamically from another process, and the standard message passing routines (send, 

receive, broadcast, scatter, gather, and reduce) are available and operate on predefined 

groups [99]. 

MPI offers routines for message passing similarly to PVM. Unlike PVM, there is no 

method of dynamically creating processes; they must be defined prior to execution and 

started together [99]. MPI applies the SPMD model; one program is written and executed 

by multiple processors. A key feature of MPI is its intent to provide a safe communications 

environment. To that end, MPI offers variations of basic send and receive, differentiated 

by whether they are locally or globally complete. Locally complete refers to whether the 

routine has completed its part of the communication operation; globally complete means 

that all routines must be locally complete. Also available are blocking send and receive 

routines, which return when they locally complete, and non-blocking routines, which return 

immediately. 

MPI has four communication modes: standard, buffered, synchronous, and ready. In 

standard mode, the send routine does not assume that the corresponding receive routine has 

started. Buffered mode allows the send routine to start and return before the corresponding 

receive routine is reached. Synchronous mode requires that send and receive routines can 

only complete together. Finally, ready mode states that a send may only begin if the 

matching receive has already been reached. 

Given that the demes of the distributed GA will start and remain in existence over the 

course of the GA execution, and the intent is to employ the SPMD parallel programming 

model, MPI is a logical standard to adopt. It is worth noting that MPICH [28] is a widely 

available implementation of the MPI standard. This is the implementation which will be 

used for the distributed GA. 

With the message-passing technology established, we can focus on the anticipated im- 

plementation details in Section 4.3. 
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4.3 Implementation 

Reviewing the pseudocode for the distributed GA, certain components may be immediately 

established under the SPMD model. First, each deme process must generate its own unique 

population. This presents an interesting challenge as the distributed GA will only have one 

random seed to initiate its pseudorandom number generator (PRNG). To succeed in creating 

a unique random population in each deme, a parallel PRNG method must be found and 

introduced to replace the original serial GA's PRNG. This is the first major modification. 

After the initial deme population is created, the deme process will behave like an is@ 

lated serial GA, performing repeated iterations of selection, crossover, mutation, and re- 

placement. The next area requiring redesign is the migration operator, which requires two 

major modifications to the current design. First, new control logic must be added to support 

migration within the SPMD model. Finally, a method must be developed to serialize the 

data contained in the migrants. This is necessary in order to utilize the MPI communication 

primitives for migration. The proposed modifications are described in detail below. 

4.3.1 Random Number Generation 

PRNGs are integral to the nature of GAS. In the original serial simulation implementation, 

a single random number generator could be used for every deme, since each deme was 

processed in succession on the same processor. However, this was no longer possible in the 

parallel implementation, whereby each unique processor required a unique stream of random 

numbers to process its deme and ensure statistical independence of the results. 

Although originally thought to be a straightforward topic, there is a great deal of com- 

plexity in random number generation, especially for parallel applications. Thus, Chapter 5 

in this thesis is devoted to parallel pseudorandom number generation and its impact on 

P-RnaPredict. 

4.4 Control Logic 

The first major modification is to rework the existing control logic to permit the separate 

demes to operate as individually as possible. The existing implementation already possesses 

CDeme, an object which contains all serial GA operations required in operating a single 
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deme. The first step in the serial GA implementation is to preprocess the given RNA se- 

quence to determine all possible secondary structure elements (helices) which could form in 

feasible secondary structures. Since the Nebula Beowulf cluster permits concurrent access 

to data files stored on the master from the slaves, it is best to allow each deme to perform 

their own preprocessing as the helix generation is a deterministic algorithm. This is superior 

to making the slave nodes wait for the master to complete preprocessing and then transmit 

a comparatively large amount of data describing the helices and their conflicts. With ini- 

tialization resolved, the next consideration is the migration logic. The pseudocode for this 

section is shown in Figure 4.5. 

if this generation is a migration interval then 
if this node is the master node then 

generate a randomized list of all node IDS indicating the migration order; 
broadcast migration order to all slaves; 

else 
I wait for migration order from master node; 

end 
Ir all nodes in migration node list do 

if current node in migration orderlist is this node then 
( broadcast migrants to other nodes 

else 
receive migrants from the current node ID; 
insert new migrants into the population; 

end 
I end 

end 

Figure 4.5: Control logic pseudocode 

A walkthrough of the control logic pseudocode follows. Consider a P-RnaPredict run 

with 5 nodes, 4 slaves, and a master. Since each node keeps track of the current generation, 

all nodes are aware when a migration interval is about to occur. Slave nodes will halt on the 

migration generation, and wait for transmission of a randomized migration order from the 

master, node ID 0. The master node also halts on the migration generation, and creates a 

random permutation of the node IDS for all nodes; one example might be {4,0, 3,1,2). The 

list is randomized to ensure that certain demes are not given preference in migration simply 

due to numerical ordering of nodes. This permutation is then broadcast to all other nodes. 

Next all nodes, including the master, begin iterating through the list of node IDS. If the 
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node ID of a given node matches the current ID taken from the migration order, that node 

broadcasts its migrants to the other nodes. If the node ID of a given node does not match 

the current ID, it waits for the migration broadcast from the node matching the current ID. 

For example, given the list of (4, 0, 3, 1, 2), the first node to broadcast its migrants would 

be node 4; all others would wait to receive node 4's migrants. The next node to broadcast 

is node 0, the master, and so on. This proceeds until all nodes have completed migration, 

whereupon normal generations are resumed. 

Since the distributed GA is synchronous, it is necessary to exchange data in the form of 

migrants at the predetermined migration intervals. This necessitates the use of a barrier [99] 

to prevent the processes from proceeding until all migration is complete. In this case, rather 

than use an MPI barrier routine, the generation count can be used to determine when to 

halt each deme process for migration. Once migration is initiated, each process is able to act 

autonomously and is told when to broadcast or receive migrants based on the randomized 

node ID list broadcast by the master. This control structure permits the processors to act 

relatively independently and reduces the communication time required for migration. As 

soon as migration is complete, each deme process returns to individually computing the 

next generation for its deme. 

4.4.1 Data Exchange for Migration 

Once the control scheme was worked out for migration, another challenge was the exchange 

of the migrants themselves. In the original implementation, an object named Individual 

maintained all information about a given individual contained within the deme object. For- 

tunately, the actual "genetic" information stored within an Individual object is actually 

either a permutation of integer values or a string of bits. To make the exchange possible, a 

given processor which wishes to broadcast its migrants extracts the data from each Individ- 

ual and packs it into a contiguous array of MPIlNT values for transmission. The receiving 

processor then unpacks the individuals, instantiates new Individual objects from each per- 

mutation, and inserts the new migrants into its population. The process of converting the 

object data to a data stream for transmission is referred as data serialization. 
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4.4.2 Development Process 

The development of P-RnaPredzct follows a steady evolution from the original research 

code base. As mentioned in Section 3.4, the initial implementation of RnaPredict included 

a serial simulation of the coarsegrained distributed GA. Work began on the foundation 

code, originally developed by Dr. Wiese and several research assistants. Several sets of 

C and C++ code captured the initial binary-based and permutation-based representation 

GAS; the code totalled roughly 4700 lines of code including comments. 

It became clear that a unified development effort was necessary to ensure that the 

new code would meet the growing needs of the Bioinformatics research group. The three 

stakeholders involved in this effort were Alain Deschenes, Edward Glen, and myself. A new 

purely object-oriented design was laid out, emphasizing reusable components such as the 

C++ Standard Template Library (STL). The target platform was the Linux OS, and the 

development platform was the GNU development environment. 

Of the roughly 18000 lines in the RnaPredict code-base, Alain DeschEnes produced ap- 

proximately 9500, Edward Glen added 3800, and I contributed 5039 lines of code. My main 

contributions were the container classes for the demes, the class which captured the RNA 

domain including sequence parsing, the helix generation algorithm, fitness computation, 

classes capturing the individual elements including base pairs and helices, and miscella- 

neous helper classes. 

Once the serial simulation of the distributed GA had proven itself, the next stage was 

the final version of P-RnaPredict, the parallelization of the GA. This required a substan- 

tial revamp of the design, reusing some classes and combining the functionality of others 

to support the SPMD parallel paradigm. Aside from supporting parallel communication 

through MPI, an additional class to support the PRNG was also necessary. The end result 

was approximately 1000 lines of additional code to complete the implementation. Without 

the object-oriented design this would have required a great deal of time in rewriting code. 

The source code was managed through the Concurrent Version System (CVS). This 

greatly facilitated the development process by ensuring developers could not accidently 

overwrite each other's code. The modular code supported easy testing for correctness, and 

also permitted profiling of modules to optimize the codebase. 

In the initial stages of development, we made use of idle computing lab time during 

evenings and weekends on the SFU Surrey campus by converting the free machines into a 
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cluster. The tool we employed for this was the open source version of MOSIX [2], named 

OpenMosix. This was used to perform serial simulation runs on Nebula. Once the serial 

simulation gave way to the fully MPI-compliant implementation, I was fortunate to have 

the 128-node Nebula Beowulf cluster available; all P-RnaPredict runs were performed on it. 

An important point is the series of shell scripts developed to manage, collate, and ma- 

nipulate the large quantities of data generated by the experiments. The vast portion of 

development on these scripts was conducted by Alain DeschGnes and Edward Glen, with 

minor modifications by myself to support the new parallel code-base. 

4.5 Summary 

This chapter has detailed the design and development of P-RnaPredict, a fully parallel 

coarse-grained distributed GA for RNA secondary structure prediction. An overview of 

parallel GA approaches has been provided, with the coarse-grained distributed approach 

selected as the most viable. A serial simulation of the distributed GA was developed, and 

runtime tests made the case for parallelization. Pancake's parallelization criteria were pre- 

sented, and the distributed GA met all three criteria. A practical analysis of the expected 

parallel speedup was presented, and the target platform of the Nebula Beowulf cluster and 

MPI standard were established. The three primary implementation challenges of control 

logic, data serialization, and random number generation were summarized. Finally, the de- 

velopment process itself and the evolution from RnaPredict to P-RnaPredict were presented. 



Chapter 5 

Parallel Pseudorandom Number 

Generat ion 

Random numbers are useful in many applications, and they are relied on extensively in 

P-RnaPredict. They can be used in simulations, sampling, numerical analysis, and decision 

making. In P-RnaPredict, random numbers are used to make coarse-grained decisions in 

population initialization, crossover, selection, mutation, and migration. This chapter covers 

a brief overview of PRNGs and their impact on GAS, methods of PRNG parallelization, 

P-RnaPredict's requirements, and the results of a P-RnaPredict PRNG study. 

5.1 PRNGs and Serial GAS 

Although there appears to be very little in the literature regarding parallel GAS and PRNGs, 

several studies have been done on how serial GA performance is impacted by PRNGs. These 

are discussed below. 

In 1997 [61], Meysenberg performed a thorough empirical study on the effect that twelve 

PRNGs of varying quality had on a simple GA using an eleven function real-value test 

suite. He found that PRNGs did not significantly impact this GA performance. In a 

later study [62], Meysenberg and Foster discovered isolated cases where poor PRVG quality 

resulted in slightly improved GA performance. Again, better PRNG quality failed to provide 

better GA performance. 

In 1999, Meysenberg and Foster pursued what they referred to as their granularity 
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hypothesis [63]. In essence, a simple GA merely requires a PRNG to make choices between 

several options; this requires only that the PRNG produce a uniform distribution. Since 

even a poor quality PRNG can accomplish this, their theory was that its quality should not 

significantly impact GA performance. Their conclusions were that PRNG quality had no 

statistically significant effect on GA performance. However, this study was conducted on a 

generation by generation basis, and it revealed that GA performance could vary depending 

on the PRNG and test function chosen. The end result was that good PRNGs could 

actually result in poorer GA performance, and poor PRNGs could result in slightly better 

GA performance in isolated cases. 

In 2002, Cantli-Paz performed an "ablation" study [6] where the individual GA com- 

ponents of initialization, selection, crossover, and mutation were separately tested. Both 

PRNGs and true random sources were tested. The results indicated that the PRNG used 

to initialize the random population is critical, whilst the other components were relatively 

unaffected. His conclusions were that the best PRNG available should be used to avoid 

misinterpretation of the results due to fortunate accidents. 

With a basic notion of how PRNGS could impact GAS, the next step was determining 

the appropriate method for parallelizing the PRNG for the distributed GA. 

5.2 Methods for Parallelization of PRNGs 

Common methods of designing parallel random number generators include central server, 

cycle division, and parameterization. 

The central server method establishes one process as a central random number server 

for all other processes in the parallel application. The immediate problem is the tremendous 

inter-process communications overhead, as each process must have exclusive access during 

its request to avoid conflicts. Another problem is that reproducibility becomes impossible 

to assure, as processes may make requests in different orders due to network traffic and the 

application implementation. 

In cycle division, the period of a serial PRNG is subdivided amongst processors in one 

of three basic ways: naive seed selection, cycle splitting, and "leap frog". In naive seed 

selection, the user randomly chooses a different seed for each processor. The naive hope 

here is that the portions of the PRNG period that each processor consumes are widely 

separated and do not overlap. 
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Another method, cycle splitting, involves the user carefully selecting the seeds to ensure 

they are widely separated. In this way, a contiguous block of random numbers from the 

serial PRNG can be assigned to each processor. However, if the processors consume too 

many random numbers, the period portions could again overlap. 

Finally, there is the leap frog method. When given N processors, each processor gets 

numbers from the serial PRNG period which are N numbers apart. Here, the hazard is that 

long-range correlations in the serial PRNG become short-range correlations within each 

stream. 

The problem with all these methods is t,hat the resulting PRNG is non-scalable; each 

additional processor takes an equal share of the finite period of the original serial PRNG. 

Also, reproducibility becomes an issue as each additional processor results in a different 

serial PRNG period partition for all processors. Several studies have been done on serial 

PRNGs parallelized using cycle division [14, 51, 81, 821 which experimentally bear out these 

defects, especially for PRNGs such as linear congruential generators (LCGs) [45]. 

The parameterization method by contrast promises to provide independent and un- 

correlated random number streams for each processor. There are two basic methods of 

parameterization [52]: seed parameterization and iterative function parameterization. Seed 

parameterization works on specific PRNGs for which each initial random seed automati- 

cally selects a smaller, separate, and independent period. A unique seed is assigned to each 

processor, ensuring each processor gets a unique period. The second method, iterative func- 

tion parameterization, creates multiple independent random number streams by generating 

a different PRNG iteration function for each processor. The idea is that given a number i, 

the PRNG would generate a unique ith iteration function. 

At the time of this writing, the best parallel PRNG available appears to be the parallel 

Mersenne Twister (MT), named "Dynamic Creation" (DC) 1581. DC implements iterative 

function parameterization, accepting a number of parameters including word size, period, 

working memory, and ID number. A small MT is then produced based on the submitted 

parameters. The key idea here is that the characteristic polynomial of the MT's linear 

recurrence encodes the specified ID number, ensuring a unique and highly independent 

PRNG for each ID. 
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5.3 PRNG Requirements of P- RnaPredict 

As noted in Section 5.1, to date there appears to be little discussion in the literature on 

parallel GAS with regards to PRNGs. In this research, PRNGs became significant for a 

number of reasons. First, to gain an unbiased idea of the performance of P-RnaPredict, 

the results are averaged over 30 randomly-seeded runs. This implicitly assumes that the 

random numbers generated for each run are independent of each other. Second, the GA's 

consumption of random numbers has been rapidly increasing as structure prediction is 

performed on larger RNA sequences. This has reached a point where the periods of the 

PRNGs available in the standard C library are no longer adequate. Third, the parallelization 

of the initial serial simulation required a corresponding parallelization of whatever PRNG 

is used. 

Cant6-Paz's ablation study underscores the importance of independent PRNGs during 

population initialization. An especially hazardous scenario occurs when parallel PRNG 

methods such as na'ive seed selection or cycle splitting are used in a distributed GA. Consider 

an example of a distributed GA with two demes where the initial subpopulations are being 

generated. If each random chromosome in the initial population requires n random numbers, 

then the total amount of random numbers required to initialize each subpopulation is nm, 

where m is the population size. With a PRNG having a period of length p, each deme 

requires an independent section of that period of length nm to generate its initial population. 

The worst case scenario is if these sections overlap such that one section is offset to another 

by a multiple of the chromosome length n. Should this occur, identical chromosomes will be 

generated in the demes, greatly reducing the diversity within the parallel GA and possibly 

leading to diminished performance. This problem worsens with an increase in the number 

of demes. An example of this is shown in Figure 5.1. A segment of a PRNG period is shown 

with the initialization of four demes (A, B, C, and D). Note that the PRNG period sections 

of demes A and D overlap, and A is offset to D by a multiple of the chromosome length n. 

As a result, the last four individuals in deme D and the first four individuals in deme A are 

duplicates. 

Based on these observations, two parallel PRNGs were selected for evaluation in the 

parallel GA implementation. The first was the DC PRNG described above. The second 

was a parallelized version of a MCG [45]; its parameters were m = 231 - 1, c = 0, and 

a = 6208991 as suggested by [16]. This MCG was parallelized by the leap-frog method 
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I ... PORTION OF PSEUDORANDOM NUMBER GENERATOR PERIOD ... I 

Figure 5.1: Example of demes generating duplicate individuals during initialization. Each 
box represents one individual, requiring n random numbers to initialize. Dashed boxes 
indicate duplicate individuals. 

described in 1191, and was deliberately chosen to have a lower quality and shorter period 

than the DC. Aside from the parallel PRNGs, it was also decided to check P-RnaPredict's 

results against the original serial simulation of the distributed GA, which used the standard 

C library PRNG RAND [48]. 

5.4 PRNG GA Experiments 

The purpose of these experiments was to determine the best PRNG to implement within 

P-RnaPredict. The evaluation criteria was the prediction accuracy of the final solutions 

both in terms of averaged performance over multiple randomly-seeded runs and the best 

results of individual runs. Given the enormous number of possible parameter combinations, 

the selection of parameter sets for these experiments was based on previous research [33, 951. 

The global population was set to 700, with the crossover probability (PC) set to 0.7. The 

mutation probability (P,) varied as either 0.25 or 0.8. The selection strategy was set 

to STDS, and 1-Elitism [42] was also applied in all experiments. Finally, the INN-HB 

thermodynamic model and the CX [67] crossover were selected. 

The parameters specifically relating to the distributed GA were chosen based on those 

which produced the best set of results in [33], and were set as follows: the global population 

was split into two separate sets of deme sizes and deme counts: 50 and 14, and 70 and 10 

respectively. The migration interval and the migration rate were fixed at 20 generations 
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and 10 percent, respectively. Finally, the topology was fully connected, and the migration 

policy was set to "best replace worst." The parameter set for each experiment was repeated 

with 30 random seeds and the results averaged. 

I Crossover Probability (PC) 1 
I 

0.7 

Table 5.1: Parameter settings for PRNG testing 
Test Parameters 

Four RNA sequences were taken as test data from the Comparative RNA Web Site [4]; 

they were chosen to provide a good variety of sequence lengths and organisms. The se- 

quences tested were Acanthamoeba grifini, Hildenbrandia rubra, Haloarcula m,arismortui, 

and Saccharomyces cerevisiae; their details are summarized in Tables 4.2, 4.3, 4.4, and 4.5 

respectively. 

Each set of parameters was tested with each of the three PRNGs. The first two were 

the DC and MCG generators detailed above. The third test was performed using the serial 

implementation of the distributed GA, which employed the GNU C standard library PRNG 

RAND. All runs were performed on the Nebula Beowulf cluster discussed in Section 4.2.2. 

Values 

" , -, 

Mutation Probability (P,) 
Selection Strategy 

Crossover Type 
Elit ism 

Thermodynamic Model 
Deme Count 
Deme Size 

Migration Interval 
Migration Rate 

Migration Topology 
Migration Policy 

5.5 PRNG Experiment Results 

Number of Generations I 700 

0.25, 0.8 
(Standard Roulette Wheel) STDS 

Cycle Crossover (CX) 
1 

Individual Nearest Neighbour - Hydrogen Bond (INN-HB) 
10, 14 
70, 50 

20 generations 
10% 

Fully Connected, Island (FULL) 
Best Replace Worst 

The following sections present a summary of results for each RNA sequence. Parameters 

which do not vary between test runs have been omitted for brevity. "Deme Size" indicates 

the population of an individual deme. "P," indicates the probability of mutation. "Deme 

Count" indicates the number of demes used. "PRNG" indicates the type of PRNG used. 

"Avg. AG" is the free energy measured in kcal/mol, averaged over 30 randomly-seeded 
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runs. "Avg. Base Pair %" is the percent of base pairs which match the predicted structure, 

averaged over 30 randomly-seeded runs. Finally, "Best Base Pair %" is the percentage 

of matching base pairs from the run with the highest percentage out of the 30 randomly- 

seeded runs for that specified parameter set. Each table is sorted by Deme Size, Pm, and 

Avg. AG in order to group the results by parameter set. This is done to clearly delineate 

the performance differences between the three PRNGs in terms of the average final free 

energy reached. Rows containing best results are bolded. 

5.5.1 Acanthamoeba griflni - 556 nt 

Table 5.2 indicates that the MCG PRNG performed best in two of the parameter sets based 

on average free energy, with the DC and RAND PRNGs performing best in one parameter 

set each. Overall, the MCG PRNG reached the best average free energy at -190.79 kcal/mol 

with the following parameters: a Deme Size of 70, a Deme Count of 10, and a Pm of 0.8. 

The DC PRNG found the highest average percentage of base pairs matching the known 

structure at 32.34% with the following parameters: a Deme Size of 50, a Deme Count of 14, 

and a Pm of 0.25. The best overall structure was found with 64.88% matching base pairs 

with the following parameters: a MCG PRNG, a Deme Size of 70, a Deme Count of 10, and 

a Pm of 0.8. 

5.5.2 Hildenbrandia rubra - 543 nt 

In Table 5.3 we see that based on average free energy the DC PRNG performed best in two 

of the parameter sets, with the MCG and RAND PRNGs performing best in one parameter 

set each. Overall, the MCG PRNG reached the best average free energy at -207.08 kcal/mol 

with the following parameters: a Deme Size of 50, a Deme Count of 14, and a Pm of 0.8. The 

overall best structures matched 48.55% of the base pairs in the known structure, and were 

found in single runs from the following two parameter sets: the first was a MCG PRNG, 

Deme Size of 50, Deme Count of 14, and Pm of 0.8. The second was a RAND PRNG, with 

a Deme Size of 70, a Deme Count of 10, and a Pm of 0.25. Finally, the highest percentage 

of matching base pairs averaged over the 30 runs was 29.66%, and it occurred in a run set 

with the following parameters: a MCG PRNG, a Deme Size of 70, a Deme Count of 10, and 

a Pm of 0.8. 
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Table 5.2: Parallel GA results using three different PRNGs on the A. grifini sequence 

Deme 
Size 
70 
70 

I 

70 

50 

Table 5.3: Parallel GA results usin1 

P, 
0.25 
0.25 

10 

10 
10 

70 

70 
70 

L 

50 
50 

50 
50 
50 

three different PRNGs on the H. rubra sequence 

PRNG 

0.25 

0.8 
0.8 
0.8 

0.25 

Deme 
Count 

10 
10 

RAND 

MCG 
DC 

10 

14 , 

70 
70 

70 
70 
70 

50 
50 

PRNG 
DC 

MCG 
-186.35 

-190.79 
-189.35 

DC 
MCG 
MCG 
DC 

RAND 

0.25 
0.25 

0.8 
0.8 
0.8 

50 

50 
50 

RAND 

RAND 
14 
14 

14 
14 
14 

0.25 
0.25 

0.8 
0.8 
0.8 

0.25 
0.25 

Avg. 
AG 

-187.58 
-187.29 

27.04 

29.79 
29.26 

-184.74 
-184.43 

-188.85 
-188.29 
-185.27 

0.25 

0.8 
0.8 

46.56 

64.88 
60.30 

-187.80 

-186.51 

10 
10 

10 
10 
10 

14 
14 

Avg. 
Base 
Pair 

% 
28.39 
30.35 

32.34 
28.04 

31.67 
26.92 
27.17 

14 

14 
14 

Best 
Base 
Pair 

% 
58.77 
56.48 

28.39 

26.89 
58.01 
48.09 

54.96 
48.85 
47.32 

RAND 
MCG 

DC 
RAND 
MCG 
RAND 

DC 

60.30 

52.67 

MCG 
MCG 
RAND 

-199.65 
-198.76 

-204.17 
-203.66 
-203.14 

-200.64 
-199.05 

L I 

24.32 
24.44 

26.28 
27.58 
29.66 

27.19 
24.42 

-198.83 

-207.08 
-202.93 

48.55 
40.57 

47.82 
46.37 
44.92 

44.20 
41.30 

26.81 

27.75 
26.64 

41.30 

48.55 
45.65 
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5.5.3 Haloarcula marismortui - 122 nt 

In Table 5.4 we can see that based on average free energy the DC and RAND PRNG tied for 

best performance in three out of the four parameter sets, with the RAND PRNG performing 

best in the fourth parameter set. Overall, the DC and RAND PRNGs both reached the 

best average free energy at -54.94 kcal/mol with the following identical parameters: a Deme 

Size of 70, a Deme Count of 10, and a Pm of 0.8. However, the DC PRNG edged out the 

RAND with the best averaged base pair percentage of 42.10%. For this sequence, the overall 

best structure was found matching 71.05% of base pairs in the known structure with the 

following parameter set: a MCG PRNG, a Deme Size of 70, a Deme Count of 10, and a Pm 

of 0.25. 

Table 5.4: Parallel GA results using three different PRNGs on the H. marismortui sequence 

I 1 I I I I 1 50 1 0.25 1 14 1 MCG 1 -54.91 1 35.08 1 42.10 1 

70 
70 
70 

50 
50 

I I 

1 50 1 0.8 1 14 1 RAND 1 -54.93 1 40.35 1 42.10 1 
I I I I I I 1 50 1 0.8 1 14 1 MCG 1 -54.92 1 35.96 1 42.10 1 

0.25 
0.25 

5.5.4 Saccharomyces cerevisiae - 118 nt 

0.8 
0.8 
0.8 

All runs for the Saccharomyces cerevisiae RNA sequence converged to identical free energy 

values and secondary structures, regardless of parameter settings or the chosen PRNG 

(Table 5.5). The overall results were as follows: The average fitness was -57.52 kcal/mol; 

41.22 
42.10 
39.47 

14 
14 

10 
10 
10 

42.10 
42.10 
42.10 

RAND 
DC 

RAND 
DC 

MCG 

-54.94 
-54.94 
-54.93 

-54.92 
-54.92 

37.71 
36.84 

42.10 
42.10 
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Table 5.5: Parallel GA results using three different PRN 

P 
Deme Deme Avg. I Size / P ,  / Count I PRNG I AG 
ALL 1 ALL I ALL I ALL 1-57.52 

:s on the S. ( revisiae sequence 

the best average matching base pair and the best overall matching base pair percentages 

were 89.18%. The prediction accuracy for this sequence was very high. 

5.6 Summary 

After reviewing the results from the four sequences, it appears that the parallel imple- 

mentation of the distributed GA (P-RnaPredict) performs comparably to the original se- 

rial simulation of the distributed GA (RnaPredict). Considering the PRNG studies re- 

viewed [16, 59, 801, the PRNG quality of the generators tested, based on period size and 

spectral tests, should rank in order of DC, MCG, and RAND from best to worst respectively. 

Of note is that the MCG PRNG produced the highest percentage of matching base pairs in 

2 out of the 4 sequences, also tying for the highest in 2 other sequences. It is interesting that 

the differences in performance between the two parallel PRNGs and the original serial GA 

PRNG do not appear to be significant. This reinforces the findings of the previous serial 

GA studies discussed in Section 5.1. However, the serial version of RAND cannot easily be 

parallelized. 

Clearly, care needs to be taken when parallelizing PRNGs, especially in the case detailed 

in Section 5.3 where the period of the PRNG is insufficiently large. Based on these results 

and the PRNG literature review, it appears best to implement the best PRNG available at 

this time, the DC. Hence, all results presented in this thesis after this point use DC. 



Chapter 6 

Parallel Speedup Validation 

Along with testing the PRNG performance, another series of experiments was performed to 

investigate speedup. In the following chapter the results of these experiments are presented. 

6.1 Speedup Experiment Design 

Two separate sets of experiments were performed. The first is a high-level time study 

comparing total runtimes with five different sequences. The second is a detailed analysis 

with the computation and communication times from one sequence. 

Table 6.1 presents the parameters which were fixed for both experiment sets. These were 

determined experimentally to be among the best performing runs in the serial simulation of 

the distributed GA [33, 951. 

6.2 High-Level Runtime Test Results 

Five sequences of varying lengths were tested to verify speedup: Caenorhabditis elegans, 

Acanthamoeba grifini, Hildenbrandia rubra, Haloarcula marismortui, and Saccharomyces 

cerevisiae; they are taken from the Comparative RNA Web Site [4], and their details are 

summarized in Tables 4.1, 4.2, 4.3, 4.4, and 4.5 respectively. 

The deme size and deme count were varied between two sets of values: (50, 14) and (70, 

10). Each experiment was performed with 30 randomly-seeded runs. Table 6.2 compiles the 

results of the speedup test runs; its column descriptions are as follows: 
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Table 6.1: Fixed parameter settings in both sets of parallel speedup tests. 
Test Fixed Parameters 

Number of Generations 
Global Population Size 

Crossover Probabilitv (PC) 
. 2 , ,  

Mutation Probability (Pm) 
Selection Strategy 

Crossover Type 

"Organism" is the name of the organism from which the sequence is taken. "Sequence 

Length" is the length of the specific sequence in nucleotides (nt). "Deme count'' is the total 

number of demes in the GA; note that each deme is assigned to a single processor. "Serial 

Runtime (s)" is the total runtime of the serial simulation of the distributed GA in seconds, 

averaged over 30 randomly-seeded runs. "Parallel Runtime (s)" is the total runtime of the 

fully parallel distributed GA in seconds, averaged over 30 randomly-seeded runs. "Speedup 

S(n)" is the speedup factor S(n), defined in Equation 4.1. 

Finally, "Efficiency" is the system efficiency, defined as: E = execution time using one 

processor divided by (execution time using a multiprocessor x number of processors) [99]: 

Values 
700 
700 
0.7 
0.8 

(Standard Roulette Wheel) STDS 
Cycle Crossover (CX) - A 

Elitism 
Thermodynamic Model 

Migration Interval 
Migration Rate 

Migration Topology 
Migration Policy 

6.2.1 High-Level Time Test Discussion 

~, 

1 
Individual Nearest Neighbour - Hydrogen Bond (INN-HB) 

20 generations 
10% 

Fully Connected, Island (FULL) 
Best Replace Worst 

The results in 6.2 are split between the deme counts of 10 and 14 for clarity, and sorted by 

sequence length. A clear improvement can be seen in Speedup and Efficiency as the sequence 

lengths increase. Note that the differing deme counts result in differing relationships with 

the Efficiency. For example, the C.elegans entry with 10 demes and a Speedup of 6.3 results 

in an Efficiency of 62.5%, while the corresponding 14 deme entry has a Speedup of 7.6 but 

results in an Efficiency of 54.4%. 

The H.rubra sequence runtimes are notable; their deviation can be accounted for by 
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Table 6.2: Results from multiple sequence parallel speedup test runs 
Organism 

C. elegans 
A.grifini 
H.rubra 

H.marismortui 
S. cerevisiae I 118 1 10 

C.eleoans I 697 1 14 

reviewing Table 3.1. Although H.rubra is a shorter sequence than A.grifini, the H.rubra 

" 

A.grifini 
H. rubra 

H. marismortui 
S. cerevisiae 

sequence generates more helices under P-RnaPredict's model, and thus has a longer repre- 

Sequence 
Length 

697 
556 
543 
122 

27.5 

1255.8 

sentation. Based on the approximate time complexity analysis in section 4.2.1, we can see 

556 
543 
122 
118 

that it is the representation length which is influencing the runtime. 

Deme 
Count 

10 
10 
10 
10 

10.9 

165.0 

It is also possible to see that there is not a linear relationship between representation 

14 
14 
14 
14 

length and runtime. For shorter sequences, the Speedup and Efficiency appears low com- 

pared to the number of processors available (10 or 14). This is occurring because the time 

Serial 
Runtime 

( s )  
1264.4 
754.0 
871.9 
32.1 

2.5 

7.6 

required to process one generation for these shorter sequences is significantly shorter than 

25.2% 

54.4% 
759.3 
870.9 
31.6 
27.2 

the time consumed through communication-related activities such as migration. As the 

Parallel 
Runtime 

( s )  
202.4 
127.8 
145.0 
11.5 

sequences increase in length, there is a corresponding increase in the representation length. 

106.8 
203.1 
11.3 
10.9 

Thus, the amount of time spent in computation in an individual deme considerably ex- 

Speedup 
(S (n ) )  

6.3 
5.9 
6.0 
2.8 

ceeds the time spent in communication, and the Speedup factor and Efficiency improve 

dramatically. 

Efficiency 
(%) 

62.5% 
59.0% 
60.1% 
27.9% 

7.1 
4.3 
2.8 
2.5 

6.3 Detailed Runtime Results 

50.8% 
30.6% 
20.0% 
17.8% 

The parameter sets tested here were selected to illustrate reasonable usage of the distributed 

GA. The Hildenbrandia rubra sequence was chosen for testing. It was necessary to select 

deme counts which divided evenly into the global population of 700. Even-size deme popula- 

tions were necessary as crossover in the GA works on a pairwise basis. A lower bound on the 



CHAPTER 6. PARALLEL SPEEDUP VALIDATION 59 

deme population size of 50 was selected based on previous empirical results which indicated 

lower deme population sizes performed poorly. Although subdividing the global population 

is useful in illustrating the parallel speedup, it is important to note that a distributed GA 

is a different algorithm than a serial GA, and may require a total population larger than 

the original serial GA to be effective [5]. 

The parameters which varied were deme size and deme count, and were set to the values 

shown in Table 6.3. 

Each parameter set was tested with 5 random seeds, and the results averaged over the 

runs. Table 6.4 compiles the results of the speedup test runs; its field descriptions are as 

follows: 

"Deme Count" is the total number of demes in the GA. "Averaged Communication Time 

(seconds)" is the total time spent in communications in the parallel implementation of the 

GA, averaged over 5 randomly-seeded runs. "Averaged Parallel Time (seconds)" is the total 

runtime of the parallel implementation of the GA, averaged over 5 randomly-seeded runs. 

"Averaged Serial Time (seconds)" is the total runtime of the serial implementation of the 

GA, averaged over 5 randomly-seeded runs. "Percent Communication" is the percentage 

of the parallel implementation runtime spent in communications. "Speedup S(n)" is the 

speedup factor S(n), defined in Equation 4.1. Finally, "Efficiency" is the system efficiency, 

defined in Equation 6.1. 

Table 6.3: List of deme size and deme count settings in Parallel Speedup Test Runs 

6.3.1 Detailed Time Analysis 

Deme Count 
2 
5 
7 
10 
14 

Figure 6.1 plots serial versus the parallel runtime. Interestingly, there is a drop in the serial 

implementation's runtime as more demes are added. One possible reason for this speedup 

is the faster convergence speed resulting from the increasingly smaller deme populations. 

When crossover operators such as Cycle Crossover (CX) operate on parents with the same 

Deme Size 
350 
140 
100 
70 
50 
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Table 6.4: Results from deme size and deme count parallel speedup test runs 
Deme 1 Averaged I Averaged I Averaged I Percent 1 Speedup 1 Efficiency ( 

chromosomes, they return children identical to the parents and their execution ends almost, 

immediately. This means the runtime for each generat,ion drops dramatically as the popula- 

tion converges to one chromosome, and this convergence acceleration is directly proportiorla1 

Count 

2 
5 
7 
10 
14 

to the number of demes. 

2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

Deme Count 

Commu- 
nication 
Time ( s )  
30.5 
38.1 
38.1 
40.1 
40.6 

Figure 6.1: Plot of average runtimes of the serial simulation and parallel implenlentation of 
di~t~ributed GA against deme count. 

P-RnaPrerlict's runtimes indicates the "pleasingly" or nearly embarrassingly parallel 

nature of a distributed GA. Each time the dcme count is increased, the global population 

of 700 is subdivided into smaller populations which may be processcd in parallel. The 

immediate impression is that parallelization greatly reduces the execution time. 

Parallel 
Time ( s )  

649.4 
252.0 
182.2 
149.2 
118.8 

Serial 
Time ( s )  

1258.8 
1060.6 
1013.8 
983.6 
1008.6 

Commu- 
nication 

4.7% 
15.1% 
20.9% 
26.9% 
34.2% 

S(n,) 

1.9 
4.2 
5.6 
6.6 
8.5 

96.9% 
84.2% 
79.5% 
65.9% 
60.6% 
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Nevertheless, it is still necessary to both exchange migrants on each migration interval 

and send statistics to the master node after each generat,ion. Consequently, a less than 

71.-fold speedup is possible. This can clearly be seen in Figure 6.2, which plots the speedup 

factor, defined in Equation 4.1. 

' i i ~ . ~  0 

2 3 4 5 6 7 8 9 10 11 12 13 14 

Derne Count 

Figure 6.2: Plot of speedup factor S(n) against delne count. 

Figure 6.2 also shows the ine~it~able decline in speedup which results from the increased 

communications expense involving additional demes. This can be seen in even better detail 

in Figure 6.3, which plots the parallel runtime against the communication time. Commu- 

nication is necessary for both migration and statistics reporting. Migration requires that, 

for every migration interval, the chromosolnes of the migrants from each deme are packed 

into a contiguous array and broadcast to every other deme. The statistics collected at this 

time are the global population's minimum and maximum free energy, and the mean and 

standard deviation. Since all individual fitness values are required for these statistics, all 

fitness values from each deme must be sent to the master evcry generation. 

It  is interesting to note that the communications overhead does not appear to be in- 

creasing significantsly with the increase in deme count. One possible reason for this is the 

extensive use of NIPI's broadcast functionality, which when used with non-blocking functioils 

greatly reduces con~munications overhead. However, the Speedup and Efficiency continue to 

diminish with each additional node. This occl rs because the communication time steadily 
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I Derne Count 

Figure 6.3: Plot of computational time anc communications time versus derne count. 

consumes a greater portion of the total parallel time with each node added, diminishing the 

overall returlw. 

One final point of interest was found when investigating the communication time on a. 

node-by-node and function-by-function basis. There was a dramatic disparity betmureen the 

master node and the other nodes in the distrisuted GA. Table 6.5 breaks down the various 

cornrnunications costs for the timing run with a deme count of 14; similar time ratios were 

noted for other deme counts. Table 6.5 field descriptions are as follows: 

"Total St,at,istics Time(s)" is the total time in seconds for the node to either send or 

receive the statistics data. "Migration Order (s)" is the t o h l  time in seconds for the node 

to either send or receive the migration order. "h/Iigrant Broadcast (s)" is the total time in 

seconds for the node to either send or receive the migrants during migration. "Total Migra- 

tion Time (s)" is the total time required in seconds for the node to send or receive all data 

required for migration, and is the sum of the Migration Order and Migrant Broadcast times. 

"Total Communication Time (s)" is the total time required by a node for comnlunications, 

and is the sum of the Total Statistics and Total Migration times. 

Examining the Total Statistics Communication time, we see the master node requires 

much more time to receive the statistics data than the other nodes required to send it. One 

possible explanation for this is that the rnaster node must perform multiple individual MPI 

receive calls to gather the fitness values from sach of the nodes, while each node only needs 
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Table 6.5: Breakdown of averaged communication times by function and node type for a 
leme count of 

Master 
Node Av- 
erage Time 
(s) 
Other 
Nodes Av- 
erage Time 
(s) 

4. 
Total 
Statistics 
Time (s) 
4.624 

Migration 
Order (s) 

0.164 

Migrant Total Total 
Broadcast Migration Comm. 

to send its data once with a non-blocking send and can immediately begin its next iteration. 

Thus, the master node could be stuck in a wait state, as each array of fitness values must 

be received from the node in order. 

The second area for concern is migration. Specifically, the master node must randomize 

the node order for each migration, and broadcast that order to all other nodes. The block 

of data required for migration order is only an array of integers whose length is equal to 

the number of demes/nodes in the GA, in this case 14 integers. This seems dramatically 

out of proportion to the time required for statistical communication, which is significantly 

larger due to a greater volume of data transmitted. If MPI's broadcast functionality is 

non-blocking, why is the time required for the slave nodes to receive the migration order 

over an order of magnitude greater than the time required for the master to send it? The 

answer could be related to MPI caching behaviour, but more analysis is required before a 

definitive answer can be given. 

6.4 Summary 

In conclusion, the timing data suggests that at the very least that the parallelization is a 

viable method of drastically reducing the overall execution time for the distributed GA. 

The distributed GA is unique in that a single problem is not subdivided among a set of 

processors but rather each processor contributes one deme to the GA as a whole. Conse- 

quently, more work must be done to determine deme sizes and counts which contribute to 
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the highest solution quality. Especially interesting is the communication overhead disparity 

found between the master and the slave nodes. The high cost of transmitting the migration 

order from the master to the slaves is excessive and should be eliminated if possible. 



Chapter 7 

Comparison to Known Structures 

This chapter presents a qualitative measure of P-RnaPredict7s performance through a com- 

parison between the structures predicted by P-RnaPredict and known structures. The 

known structures are determined via comparative methods, and are taken from the Com- 

parative RNA Web Site [4]. The primary criteria for comparison is true-positive matching 

base pairs; a higher matching base pair count indicates a higher solution quality. Out of 

the ten structures evaluated, five structure comparisons are reviewed in depth here; the 

remainder may be examined in the Appendix A. 

The parameters for these experiments (see Table 7.1) were chosen based on prior re- 

search [33, 951 and were set as follows: The GA was iterated for 700 generations. The 

crossover probability (PC) was fixed at 0.7, and the mutation probability (P,) was fixed 

at 0.8. Prior experiments using 1-Elitism indicated the standard roulette wheel selection 

(STDS) worked best in this domain compared to KBR, so all runs presented here use STDS. 

The INN and INN-HB thermodynamic models, and the OX2 1831 and CX [67] crossovers 

were selected. Three separate sets of deme sizes and deme counts were employed: (50, 14), 

(70, lo), and (100, 10) respectively. For the final case, the total population of all demes 

ends up as 1000 individuals; this was employed to determine if premature convergence was 

a factor. If the GA found consistently better solutions with a larger population size, it 

would suggest that smaller deme sizes were converging too quickly. The migration interval 

and the migration rate were fixed at 20 generations and 10 percent, respectively. Finally, 

the topology was fully connected, and the migration policy was set to "best replace worst." 

The parameter set for each experiment was repeated with 30 random seeds and the results 

averaged. 
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Crossover Type CX, OX2 

Table 7.1: Parameter settings for PRNG testing 
Test Parameters Values 

- 
Elitism 

Thermodvnamic Model 

7.1 Convergence Behaviour of P-RnaPredict 

1 
INN. INN-HB 

Deme Count 
Deme Size 

Migration Interval 
Migration Rate 

Migration Topology 
Migration Policy 

Figure 7.1 plots the free energy from a typical P-RnaPredict run for the Hildenbrandia rubra 

sequence. These results are from the entire population, averaged over 30 randomly-seeded 

runs. The parameters used were a deme size of 100, a deme count of 10, OX2 crossover, and 

the INN-HB thermodynamic model. The graph indicates the maximum and minimum free 

energies present as the lighter outer envelope, and the mean free energy of the population 

with standard deviation is shown as the darker, inner envelope. 

The best free energy value reached after 700 generations was -217.03 kcal/mol. Note the 

rapid initial drop in minimum free energy up until approximately generation 120, where the 

minimum free energy begins to plateau. There is also the cyclic behaviour visible every 20 

generations, where the maximum (worst) free energy drops dramatically. This was clearly 

reflected across the population, as the hump in the standard deviation indicates. These 

migration triggered fitness bumps are visible through all distributed GA runs employing the 

STDS selection strategy. The broad standard deviation indicates diversity was preserved 

through all generations, likely due to the high mutation rate and low selection pressure of 

STDS. 

10, 10, 14 
100, 70, 50 

20 generations 
10% 

Fully Connected, Island (FULL) 
Best Replace Worst 
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Table 7.2: Xenopus laevis details, taken from the Comparative RNA Web Site [4] 
Filename d. 16.m.X.laevis.bpseq 
Organism Xenopus laevis 
Accession Number M27605 
Class 16s rRNA 
Length 945 nucleotides 
# of BPS in known structure 251 
# of non-canonical base pairs 22 

Table 7.3: Comparison of average lowest AG P-RnaPredict structures with the known 
Xenopus laevis structure. Each row represents an experiment consisting of 30 averaged 
runs. Results are grouped by thermodynamic model. The known Xenopus laevis structure 
contains 251 base pairs. 
AG Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) (%I 
-274.25 241.0 65.7 26.2 OX2 100 10 INNHB 
-268.06 238.1 59.3 23.6 CX 100 10 INNHB 
-267.26 237.4 56.5 22.5 OX2 70 10 INNHB 
-263.45 236.2 53.7 21.4 OX2 50 14 INNHB 
-259.23 236.0 47.4 18.9 CX 70 10 INNHB 
-255.23 233.5 48.2 19.2 CX 50 14 INNHB 
-268.4 243.0 61.9 24.7 OX2 100 10 INN 
-258.7 240.6 52.9 21.1 OX2 70 10 INN 
-254.9 238.2 54.6 21.8 OX2 50 14 INN 
-254.1 236.1 51.3 20.4 CX 100 10 INN 
-250.2 238.1 50.0 19.9 CX 70 10 INN 
-248.5 236.9 49.2 19.6 CX 50 14 INN 
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Figure 7.1: Hildenbrandza rubra, P, = 0.8, PC = 0.7, deme size = 100, deme count = 10, 
0x2, STDS, 1-elitism, and the INN-HB thermodynamic model. This plots t,he free energy of 
the entire population, averaged over 30 randomly-seeded runs. This parameter set predicted 
158.0 base pairs, where 31.7% of the known structure was correctly predicted. 

7.2 Xenopus laevis - 945 nt 

Table 7.3 presents a conlparison of the lowest average AG P-RnnPredict structures from ea.ch 

experiment with the known Xenopus lnevis structure. Each experiment is conducted with 

30 random seeds, and all results are averaged over these 30 runs. Table column headings 

are defined as follows: "AG (kcal / mol)" is the free energy of the average lowest energy 

structure for a given experiment. "Pred. BPS" is the average number of predicted base 

pairs. "Corr. BPS" is the average number of base pairs matching the known structure. 

"Corr. BPS (%)" is the average percentage of base pairs mat,ching t,he known stmcture. 

"Cross." is the specific crossover operator used in the experiinent. "Deme Size" is the t,otal 

number of individuals per denie in the experiment,. "Deme Count" is the t,otal number of 
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demes in the experiment. Finally, "Model" is the thermodynamic model employed in the 

experiment. 

Each experiment is organized by its parameters: crossover, deme size, deme count, and 

thermodynamic model. Parameters which do not vary between runs have been removed for 

clarity. Results are sorted by averaged AG value; since AG values are incompatible between 

INN and INN-HB, the results are split by thermodynamic model. The best values for "Corr. 

BPS" and "Corr. BPS (%)" are bolded. With 12 experiments, and 30 randomly-seeded runs 

per experiment, results are presented from 360 runs. 

Table 7.3 indicates that for both INN and INN-HB the lowest AG structures were 

reached with the following parameter set: an OX2 crossover, a deme size of 100 and a deme 

count of 10. The best INN-HB experiment found structures with an average AG of -274.25 

kcal/mol, 241.0 total base pairs, and matching 26.2% of base pairs in the known structure. 

The best INN experiment found structures with an average AG of -268.4 kcal/mol, 243.0 

total base pairs, and matching 24.7% of base pairs in the known structure. 

Overall, the INN-HB thermodynamic model performed best in terms of true-positive 

matching base pairs when considering the averaged results of the minimum free energy 

experiment. The larger deme sizes, such as 100, also performed significantly better than 

smaller ones. 

Table 7.4 presents a comparison of the single lowest AG P-RnaPredict structure from 

each experiment with the known Xenopus laevis structure. Should multiple runs tie for 

lowest AG in a given experiment, the results for that experiment are averaged. 

Table column headings are identical to those in Table 7.3, with two additions: "Freq." 

is the number of runs this AG value appears in a given experiment. "Gens" is the number 

of generations that the GA run required to reach the lowest AG value. Again, all data is 

split by thermodynamic model and sorted by AG. 

Table 7.4 indicates that the best INN-HB run in terms of minimum AG reached a AG 

of -295.98 kcal/mol, 248 total base pairs, and matching 27.9% of base pairs in the known 

structure. The INN-HB run's parameters were a CX crossover, a deme size of 70, and a deme 

count of 10. However, the best INN-HB structure in term of correct base pairs matched 

36.7% of base pairs in the known structure, with a AG of -293.97 kcal/mol and 243 total 

base pairs. This run employed an OX2 crossover, a deme size of 100, and a deme count 

of 10. For INN, the best run reached a AG of -290.7 kcal/mol, 100 total base pairs, and 

matching 39.8% of base pairs in the known structure. The run's parameters were an OX2 
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Table 7.4: Comparison of the best single run's lowest AG P-RnaPredict structure with 
the known Xenopus laevis structure. Results are grouped by thermodynamic model. The 
known Xenopus laevis structure contains 251 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
/ (%I 
mol) 
-295.98 1 595 248 70 27.9 CX 70 10 INNHB 
-293.97 1 562 243 92 36.7 OX2 100 10 INNHB 
-289.02 1 590 238 76 30.3 OX2 50 14 INNHB 
-286.23 1 590 239 65 25.9 OX2 70 10 INNHB 
-282.86 1 630 240 70 27.9 CX 100 10 INNHB 
-278.18 1 559 247 60 23.9 CX 50 14 INNHB 
-290.7 1 6 70 258 100 39.8 OX2 100 10 INN 
-279.7 1 669 248 75 29.9 CX 50 14 INN 
-275.5 1 392 243 70 27.9 OX2 70 10 INN 
-272.7 1 683 250 94 37.5 CX 100 10 INN 
-270.0 1 662 24 1 80 31.9 CX 70 10 INN 
-267.8 1 647 240 82 32.7 OX2 50 14 INN 
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crossover, a deme size of 100, and a deme count of 10; this was also the best INN structure 

in terms of base pair overlap. 

In general, the INN thermodynamic model performed best in terms of true-positive 

matching base pairs when considering the minimum free energy of single runs. Again, 

larger deme sizes also performed significantly better than smaller ones. 

Table 7.5 presents the best single structure in terms of correctly predicted base pairs 

from an experiment regardless of its AG value. Table column headings are identical to those 

in Table 7.4. Should multiple single runs reach an identical value for total correct base pairs, 

the values for that experiment are averaged. 

Table 7.5: Single run with the highest number of correctly predicted base pairs of Xenopus 
laevis, regardless of free energy. Results are grouped by thermodynamic model. The known 
structure contains 251 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
/ 
mol) 
-269.65 1 658 238 94 37.5 OX2 70 10 INNHB 
-268.60 2 500.5 247.5 94 37.5 OX2 100 10 INNHB 
-282.18 1 667 235 87 34.7 OX2 50 10 INNHB 
-268.96 1 690 239 86 34.3 CX 100 10 INNHB 
-255.18 1 68 1 233 78 31.1 CX 50 14 INNHB 
-295.98 1 595 248 70 27.9 CX 70 10 INNHB 
-290.7 1 670 258 100 39.8 OX2 100 10 INN 
-272.7 1 683 250 94 37.5 CX 100 10 INN 
-267.8 1 647 240 82 32.7 OX2 50 14 INN 
-262.8 1 691 246 82 32.7 OX2 70 10 INN 
-273.4 2 514.5 233.0 80 31.9 CX 50 14 INN 
-270.0 1 662 241 80 31.9 CX 70 10 INN 

The best overall structure as indicated by Table 7.5 was found in a single INN run, with 

39.8% correct matching base pairs. This single run reached a AG of -290.7 kcal/mol, and 

had 258 total base pairs. The run's parameters were an OX2 crossover, a deme size of 100, 

and a deme count of 10. By comparison, two separate INN-HB experiments reached 37.5% 

matching base pairs. The first experiment run's structure had a AG of -269.65 kcal/mol 

and 238 total base pairs. Its parameters were an OX2 crossover, a deme size of 70, and a 
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deme count of 10. 

For the second INN-HB experiment, two separate runs reached an identical matching 

base pair percentage of 37.5%. These two runs had an average AG of -268.60 kcal/mol, 

and averaged 247.5 total base pairs. The experiment parameters for these two runs were an 

OX2 crossover, a deme size of 100, and a deme count of 10. 

When considering the best structure in terms of matching known base pairs regardless 

of minimum free energy, the INN thermodynamic model performed best when reviewing 

single runs. Here also, larger deme sizes also performed significantly better than smaller 

ones. 

The results in Table 7.3 show that for the Xenopus laevis there was a consistent cor- 

relation between a lower AG and a higher matching base pair count. Also noteworthy is 

that the higher deme sizes produce consistently better results in terms of lowest AG. Fi- 

nally, P-RnaPredict succeeded in predicting up to 39.8% of the known base pairs in the 

best instance. This suggests that P-RnaPredict is performing effectively in exploring the 

structure space given the constraints of its helix generation algorithm and thermodynamic 

models. One possible explanation for P-RnaPredict not determining a greater part of the 

Xenopus laevis structure is that the known structure contains 22 non-canonical base pairs 

which cannot be predicted by P-RnaPredict. 

7.3 Drosophila virilis - 784 nt 

Table 7.6: Drosophila virilis details, taken from the Comparative RNA Web Site [4] 
I Filename d.16.m.D.virilis.bpseq 

Organism Drosophila virilis 
Accession Number X05914 
Class 16s rRNA 
Length 784 nucleotides 
# of BPS in known structure 233 
# of non-canonical base pairs 11 

Table 7.7 indicates that for both INN and INN-HB the lowest AG structures were 

reached with the following parameter set: an OX2 crossover, a deme size of 100 and a deme 

count of 10. The best INN-HB experiment found structures with an average AG of -181.14 
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Table 7.7: Comparison of average lowest AG P-RnaPwdict structures with the known 
Drosophila virilis structure. Results are grouped by thermodynamic model. Each row 
represents an experiment consisting of 30 averaged runs. The known structure contains 233 
base pairs. 
AG Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) (%) 
-181.14 239.4 29.6 12.7 OX2 100 10 INNHB 
-175.35 239.2 28.6 12.3 OX2 70 10 INNHB 
-172.02 236.3 28.1 12.1 OX2 50 14 INNHB 
-171.67 236.1 26.9 11.5 CX 100 10 INNHB 
-169.35 235.6 29.0 12.4 CX 70 10 INNHB 
-163.99 233.0 27.1 11.6 CX 50 14 INNHB 
-159.2 238.1 40.6 17.4 OX2 100 10 INN 
-155.7 237.3 41.3 17.7 CX 100 10 INN 
-154.1 238.7 34.8 14.9 OX2 70 10 INN 
-153.2 238.6 35.3 15.2 OX2 50 14 INN 
-147.1 234.0 33.0 14.1 CX 70 10 INN 
-143.1 232.2 29.7 12.7 CX 50 14 INN 

kcal/mol, 239.4 total base pairs, and matching 12.7% of base pairs in the known structure. 

The best INN experiment found structures with an average AG of -159.2 kcal/mol, 

238.1 total base pairs, and matching 17.4% of base pairs in the known structure. An INN 

experiment employing the CX crossover performed slightly better in terms of correct base 

pairs, finding 17.7% matching base pairs in the known structure, 237.3 total base pairs, but 

a slightly higher AG of -155.7 kcal/mol. 

In general INN performed dramatically better than INN-HB, in terms of true-positive 

matching base pairs, when considering the averaged results of the minimum free energy 

experiment. Here again larger deme sizes, such as 100, performed significantly better than 

smaller ones. 

Table 7.8 shows that for INN-HB, the best experiment reached a AG of -200.67 kcal/mol 

in a single run after 623 generations. This structure contained 252 base pairs, matched 

21.3% of known base pairs, and was the best structure found by INN-HB. For INN, the 

best experiment reached a structure with a AG of -174.5 kcal/mol in a single run after 521 

generations; it contained 248 base pairs. However, the best overall structure found with 

INN matched 22.7% of known base pairs and had a AG of -166.9 kcal/mol. INN performed 

best overall in terms of matching known base pairs when considering the minimum free 
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Table 7.8: Comparison of the best single run's lowest AG P-RnaPredict structure with the 
known Drosophila virilis structure. Results are grouped by thermodynamic model. The 
known structure contains 233 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
/ 
mol) 
-200.67 1 623 252 49 21.3 OX2 100 10 INNHB 
-191.97 1 476 250 4 1 17.6 OX2 70 10 INNHB 
-187.46 1 397 246 32 13.7 CX 100 10 INNHB 
-186.02 1 486 237 30 12.9 CX 70 10 INNHB 
-185.51 1 178 241 3 1 13.3 OX2 50 14 INNHB 
-182.27 1 420 240 27 11.6 CX 50 14 INNHB 
-174.5 1 521 248 21 9.0 OX2 100 10 INN 
-168.2 1 436 242 45 19.3 OX2 50 14 INN 
-166.9 1 447 245 53 22.7 OX2 70 10 INN 
-166.0 1 429 239 41 17.6 CX 100 10 INN 
-160.9 1 646 245 37 15.9 CX 50 14 INN 
-160.3 1 602 248 39 16.7 CX 70 10 INN 
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energy of single runs; however, here the best structure does not coincide with the minimum 

free energy. Here again runs with larger deme sizes appear to result in significantly better 

results, both in terms of minimum free energy and matching known base pairs, than their 

smaller-sized counterparts. 

Table 7.9: Single run with the highest number of correctly predicted base pairs of Drosophila 
virilzs, regardless of free energy. Results are grouped by thermodynamic model. The known 
structure contains 233 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
/ (%) 
mol) 
-172.75 1 530 245 63 27.0 OX2 70 10 INNHB 
-175.65 1 588 238 57 24.5 CX 100 10 INNHB 
-163.06 1 558 226 55 23.6 CX 50 14 INNHB 
-168.37 1 46 1 225 50 21.5 OX2 50 14 INNHB 
-162.96 1 404 237 49 21.0 CX 70 10 INNHB 
-200.67 1 623 252 49 21.0 OX2 100 10 INNHB 
-152.5 1 554 234 66 28.3 CX 100 10 INN 
-170.9 2 406.5 239.5 65 27.9 OX2 100 10 INN 
-158.2 1 50 1 243 56 24.0 OX2 50 14 INN 
-156.1 1 523 223 54 23.2 CX 70 10 INN 
-166.9 2 382.0 243.0 53 22.7 OX2 70 10 INN 
-141.5 1 698 23 1 49 21.0 CX 50 14 INN 

The best overall structure as indicated by Table 7.9 was found in a single INN run, 

with 28.3% correct matching base pairs. This single run reached a AG of -152.5 kcal/mol, 

and had 234 total base pairs. By comparison, the best INN-HB run reached 27.0% correct 

matching base pairs, with a AG of -172.75 kcal/mol, and a total of 245 base pairs. 

Here as with the previous sequence, the INN thermodynamic model produced the overall 

best structure in terms of matching known base pairs. Also, larger deme sizes again produced 

significantly superior results in terms of matching base pairs and minimum free energy. 

In summary, for the Drosophila virilis structure, P-RnaPredict was able to predict 21.3% 

of the known structure with its single lowest free energy run. When considering the best 

matching structure independent of minimum free energy, 28.3% of the known structure 

was successfully predicted. Notably, there are 11 non-canonical base pairs in the Drosophila 



CHAPTER 7. COMPARISON TO KNOWN STRUCTURES 76 

virilis structure; these cannot be predicted by P-RnaPredict and contribute to the difficulties 

in determining its structure. 

7.4 Hildenbrandia rubra - 543 nt 

Table 7.10: Comparison of average lowest AG P-RnaPredict structures with the known 
Hildenbrandia rubra structure. Results are grouped by thermodynamic model. Each row 
represents an experiment consisting of 30 averaged runs. The known structure contains 138 
base pairs. 
AG Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) (W 
-217.03 161.4 43.7 31.7 OX2 100 10 INNHB 
-211.09 158.0 39.3 28.5 OX2 50 14 INNHB 
-209.86 159.2 36.4 26.4 OX2 70 10 INNHB 
-206.74 157.2 37.0 26.8 CX 100 10 INNHB 
-204.17 155.7 36.3 26.3 CX 70 10 INNHB 
-199.23 154.7 31.6 22.9 CX 50 14 INNHB 
-198.2 161.7 37.9 27.5 OX2 100 10 INN 
-193.6 159.0 38.0 27.5 OX2 70 10 INN 
-190.4 158.3 32.8 23.8 OX2 50 14 INN 
-188.3 157.6 39.6 28.7 CX 100 10 INN 
-187.0 156.0 32.6 23.6 CX 50 14 INN 
-186.6 157.2 37.5 27.2 CX 70 10 INN 

Table 7.10 indicates that for both INN and INN-HB the lowest AG structures were 

reached with the following parameter set: an OX2 crossover, a deme size of 100 and a deme 

count of 10. The best INN-HB experiment found structures with an average AG of -217.03 

kcal/mol, 161.4 total base pairs, and matching 31.7% of base pairs in the known structure. 

The best INN experiment found structures with an average AG of -198.2 kcal/mol, 161.7 

total base pairs, and matching 27.5% of base pairs in the known structure. However, an INN 

experiment employing the CX crossover performed slightly better, finding 28.7% matching 

base pairs in the known structure and 157.6 total base pairs, but a slightly higher AG of 

-188.3 kcal/mol. 

For Hildenbrandia mbra, INN performed best in terms of true-positive matching base 

pairs when considering the averaged results of the minimum free energy experiment. How- 

ever, neither thermodynamic model's best structure coincided with the lowest free energy. 
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Here as well, the experiments with larger deme sizes produced lower free energies and greater 

known structure agreement than smaller ones. 

Table 7.11: Comparison of the best single run's lowest AG P-RnaPredict structure with the 
known Hildenbrandia rubra structure. Results are grouped by thermodynamic model. The 
known structure contains 138 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) (%) 
-225.43 1 417 166 53 38.4 CX 100 10 INNHB 
-224.97 1 369 162 43 31.2 OX2 100 10 INNHB 
-224.53 1 513 171 4 1 29.7 OX2 50 14 INNHB 
-224.19 1 524 158 64 46.4 CX 70 10 INNHB 
-220.36 1 418 154 53 38.4 OX2 70 10 INNHB 
-212.77 1 532 164 33 23.9 CX 50 14 INNHB 
-211.9 1 350 156 49 35.5 OX2 100 10 INN 
-210.9 1 384 158 49 35.5 OX2 70 10 INN 
-206.6 1 141 165 55 39.9 CX 70 10 INN 
-203.4 1 24 1 164 39 28.3 CX 100 10 INN 
-200.4 1 630 165 39 28.3 CX 50 14 INN 
-199.4 1 628 161 26 18.8 OX2 50 14 INN 

Table 7.11 indicates that for INN-HB the best experiment reached a AG of -225.43 

kcal/mol in a single run after 417 generations. This structure contained 166 base pairs and 

matched 38.4% of known base pairs. However, the best overall INN-HB structure matched 

46.4% of known base pairs and had a AG of -224.19 kcal/mol. 

For INN, the best experiment reached a structure with a AG of -21 1.9 kcal/mol in a single 

run after 350 generations; it contained 156 base pairs. However, the best overall structure 

found with INN matched 39.9% known base pairs and had a AG of -206.6 kcal/mol. 

In general, INN-HB performed best in terms of true-positive matching base pairs when 

considering the minimum free energy of single runs. Nevertheless, neither thermodynamic 

model's best structure coincided with the lowest free energy. As with previous experiments, 

larger deme sizes resulted in lower free energies and greater known structure agreement. 

The best overall structure as indicated by Table 7.12 was found in a single INN-HB run, 

with 51.4% correct matching base pairs. This single run reached a AG of -215.72 kcal/mol, 

and had 159 total base pairs. By comparison, the best INN run reached 50.0% matching 
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Table 7.12: Single run with the highest number of correctly predicted base pairs of Hilden- 
brandia m b r a ,  regardless of free energy. Results are grouped by thermodynamic model. The 
known structure contains 138 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
1 (%I 
mol) 
-215.72 1 668 159 71 51.4 OX2 100 10 INNHB 
-211.46 1 533 166 67 48.6 OX2 50 14 INNHB 
-204.86 1 229 159 66 47.8 CX 70 10 INNHB 
-225.15 1 143 166 66 47.8 CX 100 10 INNHB 
-214.18 1 538 164 59 42.8 OX2 70 10 INNHB 
-212.04 1 679 160 53 38.4 CX 50 14 INNHB 
-203.3 1 268 168 69 50.0 CX 100 10 INN 
-201.5 1 292 166 68 .49.3 OX2 100 10 INN 
-199.1 1 433 164 64 46.4 CX 70 10 INN 
-196.3 1 314 159 59 42.8 OX2 70 10 INN 
-199.9 1 618 156 53 38.4 CX 50 14 INN 
-197.8 1 476 161 48 34.8 OX2 50 14 INN 
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base pairs, with a AG of -203.3 kcal/mol, and 168 total base pairs. 

When considering the highest number of known base pairs independent of minimum free 

energy, INN-HB performed best overall. Here again, larger deme sizes produce significantly 

better results in terms of minimum free energy and greater known structure agreement. 

In summary, P-RnaPredict was able to predict 38.4% of the known structure with its 

single lowest free energy run. When considering the best matching structure independent of 

minimum free energy, 51.4% of the known structure was successfully predicted. There is only 

1 non-canonical base pair in the known Hildenbrandia rubra structure; this makes structure 

prediction more straightforward and may partially account for the increased accuracy, along 

with the shorter sequence length. 

7.5 Haloarcula marismortui - 122 nt 

Table 7.13: Comparison of average lowest AG P-RnaPredict structures with the known 
Haloarcula marismortui structure. Results are grouped by thermodynamic model. Each 
row represents an experiment consisting of 30 averaged runs. The known structure contains 
38 base pairs. 
AG Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) (%) 
-54.94 33 16 42.1 OX2 50 14 INNHB 
-54.94 33 16 42.1 CX 100 10 INNHB 
-54.94 33 16 42.1 OX2 70 10 INNHB 
-54.94 33 16 42.1 OX2 100 10 INNHB 
-54.94 33 16 42.1 CX 70 10 INNHB 
-54.92 33.3 14.3 37.7 CX 50 14 INNHB 
-52.8 30 16 42.1 OX2 100 10 INN 
-52.8 30 16 42.1 CX 50 14 INN 
-52.8 30 16 42.1 OX2 70 10 INN 
-52.8 30 16 42.1 OX2 50 14 INN 
-52.8 30 16 42.1 CX 100 10 INN 
-52.8 30.1 15.9 41.8 CX 70 10 INN 

Table 7.13 indicates that nearly all experiments with this sequence converged to identical 

average AG values, depending on the thermodynamic model selected. With INN-HB, the 

AG reached was -54.94 kcal/mol, with a total of 33 base pairs predicted; it matched 42.1% 

of known base pairs. The one exception in INN-HB is an experiment which reached a AG 
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of -54.92 kcal/mol, with 33.3 total base pairs predicted; matching only 37.7% of known base 

pairs. Its parameters were a CX crossover, a deme size of 50, and a deme count of 14. 

The INN experiments reached a AG of -52.8 kcal/mol, with 30 base pairs predicted, 

and 42.1% of known base pairs matched. Here, the one exception is an experiment with 

the same AG of -52.8 kcal/mol, but with 30.1 total base pairs predicted, and just 41.8% of 

known base pairs matched. 

Table 7.14: Comparison of the best single run's lowest AG P-RnaPredict structure with the 
known Haloarcula marismortui structure. Results are grouped by thermodynamic model. 
The known structure contains 38 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
/ 
mol) 
-54.94 30 17.3 33.0 16.0 42.1 CX 100 10 INNHB 
-54.94 30 18.4 33.0 16.0 42.1 OX2 100 10 INNHB 
-54.94 30 40.5 33.0 16.0 42.1 OX2 70 10 INNHB 
-54.94 30 40.5 33.0 16.0 42.1 OX2 50 14 INNHB 
-54.94 30 49.7 33.0 16.0 42.1 CX 70 10 INNHB 
-54.94 25 59.7 33.0 16.0 42.1 CX 50 14 INNHB 
-52.8 30 24.0 30.0 16.0 42.1 OX2 100 10 INN 
-52.8 29 25.7 30.0 16.0 42.1 CX 70 10 INN 
-52.8 30 26.2 30.0 16.0 42.1 OX2 50 14 INN 
-52.8 30 29.8 30.0 16.0 42.1 CX 100 10 INN 
-52.8 30 30.6 30.0 16.0 42.1 OX2 70 10 INN 
-52.8 30 51.1 30.0 16.0 42.1 CX 50 14 INN 

Table 7.14 indicates that in each experiment nearly all of the 30 randomly-seeded runs 

converged to identical structures depending on thermodynamic model. Thus, the Gens. 

column values are decimals because they are averaged over those 30 runs. 

With INN-HB the AG reached was -54.94 kcal/mol, with 33.0 total base pairs predicted, 

and matching 42.1% of known base pairs. The one INN-HB exception is an experiment which 

only reached the final structure in 25 out of its 30 runs; its parameters were a CX crossover, 

a deme size of 50, and a deme count of 14. 

Similar behaviour occurred with the INN model, which reached a AG of -52.8 kcal/mol, 

with 30.0 base pairs predicted, and matching 42.1% of known base pairs. The one INN-HB 
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exception is an experiment which reached the final structure in 29 out of its 30 runs; its 

parameters were a CX crossover, a deme size of 70, and a deme count of 10. 

Although all experiments converged to structures with identical percentages of known 

base pairs, the INN model performed best, predicting significantly fewer false-positive base 

pairs than INN-HB. If we sort the experiment results by the Gens. column in increasing 

order, it can be seen that on average the larger deme sizes result in faster convergence. Also, 

the two experiments which did not have all 30 runs converge to the same structure occurred 

in experiments with smaller deme sizes. 

Table 7.15: Single run with the highest number of correctly predicted base pairs of Haloar- 
cula marismortui, regardless of free energy. Results are grouped by thermodynamic model. 
The known structure contains 38 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
1 (%) 
mol) 
-54.94 30 17.3 33.0 16 42.1 CX 100 10 INNHB 
-54.94 30 18.4 33.0 16 42.1 OX2 100 10 INNHB 
-54.94 30 40.5 33.0 16 42.1 OX2 70 10 INNHB 
-54.94 30 40.5 33.0 16 42.1 OX2 50 14 INNHB 
-54.94 30 49.7 33.0 16 42.1 CX 70 10 INNHB 
-54.94 25 59.7 33.0 16 42.1 CX 50 14 INNHB 
-52.8 30 24.0 30.0 16 42.1 OX2 100 10 INN 
-52.8 29 25.7 30.0 16 42.1 CX 70 10 INN 
-52.8 30 26.2 30.0 16 42.1 OX2 50 14 INN 
-52.8 30 29.8 30.0 16 42.1 CX 100 10 INN 
-52.8 30 30.6 30.0 16 42.1 OX2 70 10 INN 
-52.8 30 51.1 30.0 16 42.1 CX 50 14 INN 

Noting that the results from Table 7.14 and Table 7.15 are in fact identical, it appears 

that P-RnaPredict has reached the best possible structures it could find given the current 

thermodynamic models. 
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Table 7.16: Comparison of average lowest AG P-RnaPredict structures with the known 
Saccharomyces cerevisiae structure. Results are grouped by thermodynamic model. Each 
row represents an experiment consisting of 30 averaged runs. The known structure contains 
37 base pairs. 
AG Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) 
-57.52 39 33 89.2 OX2 50 14 INNHB 
-57.52 39 33 89.2 CX 100 10 INNHB 
-57.52 39 33 89.2 OX2 70 10 INNHB 
-57.52 39 33 89.2 OX2 100 10 INNHB 
-57.52 39 33 89.2 CX 70 10 INNHB 
-57.52 39 33 89.2 CX 50 14 INNHB 
-52.9 40 28 75.7 OX2 100 10 INN 
-52.9 40 28 75.7 CX 50 14 INN 
-52.9 40 28 75.7 OX2 70 10 INN 
-52.9 40 28 75.7 CX 70 10 INN 
-52.9 40 28 75.7 OX2 50 14 INN 
-52.9 40 28 75.7 CX 100 10 INN 

7.6 Saccharomyces cerevisiae - 118 nt 

Table 7.16 indicates that all experiments with this sequence converged to identical average 

AG values, depending on the thermodynamic model selected. With INN-HB, the AG 

reached was -57.52 kcal/mol, with 39 base pairs predicted; matching 89.2% of known base 

pairs. The INN experiments reached a AG of -52.9 kcal/mol, with 40 base pairs predicted, 

and 75.7% of known base pairs matched. 

With this particular sequence, Table 7.17 indicates that every one of the 30 randomly- 

seeded runs converged to identical structures depending on thermodynamic model. Thus, 

the Gens. column values are decimals because they are averaged over those 30 runs. Also, 

the minimum AG value was reached by all runs within an average of 10 generations. As 

above, with INN-HB the AG reached was -57.52 kcal/mol, with 39.0 base pairs predicted, 

and matching 89.2% of known base pairs. Again, with INN the AG reached was -52.9 

kcal/mol, with 39.0 base pairs predicted, and matching 75.7% of known base pairs. 

One final point of interest is that sorting the experiment results by the Gens. column in 

increasing order indicates that on average the larger deme sizes result in faster convergence. 

However, all values are within a few generations of each other. 
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Table 7.17: Comparison of the best single run's lowest AG P-RnaPredict structure with the 
known Saccharomyces cerevisiae structure. Results are grouped by thermodynamic model. 
The known structure contains 37 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcall BPS BPS BPS Size Count 
mol) (%) 
-57.52 30 5.96 39.0 33.0 89.2 CX 100 10 INNHB 
-57.52 30 6.43 39.0 33.0 89.2 OX2 100 10 INNHB 
-57.52 30 7.06 39.0 33.0 89.2 OX2 70 10 INNHB 
-57.52 30 7.80 39.0 33.0 89.2 CX 70 10 INNHB 
-57.52 30 7.96 39.0 33.0 89.2 OX2 50 14 INNHB 
-57.52 30 9.53 39.0 33.0 89.2 CX 50 14 INNHB 
-52.9 30 5.90 40.0 28.0 75.7 CX 100 10 INN 
-52.9 30 6.30 40.0 28.0 75.7 OX2 100 10 INN 
-52.9 30 7.36 40.0 28.0 75.7 CX 70 10 INN 
-52.9 30 8.10 40.0 28.0 75.7 OX2 70 10 INN 
-52.9 30 8.50 40.0 28.0 75.7 OX2 50 14 INN 
-52.9 30 9.20 40.0 28.0 75.7 CX 50 14 INN 

Table 7.18: Single run with the highest number of correctly predicted base pairs of Saccha- 
romyces cerevisiae, regardless of free energy. Results are grouped by thermodynamic model. 
The known structure contains 37 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcall BPS BPS BPS Size Count 
mol) (%) 
-57.52 30 5.96 39.0 33 89.2 CX 100 10 INNHB 
-57.52 30 6.43 39.0 33 89.2 OX2 100 10 INNHB 
-57.52 30 7.06 39.0 33 89.2 OX2 70 10 INNHB 
-57.52 30 7.80 39.0 33 89.2 CX 70 10 INNHB 
-57.52 30 7.96 39.0 33 89.2 OX2 50 14 INNHB 
-57.52 30 9.53 39.0 33 89.2 CX 50 14 INNHB 
-52.9 30 5.90 40.0 28 75.7 CX 100 10 INN 
-52.9 30 6.30 40.0 28 75.7 OX2 100 10 INN 
-52.9 30 7.36 40.0 28 75.7 CX 70 10 INN 
-52.9 30 8.10 40.0 28 75.7 OX2 70 10 INN 
-52.9 30 8.50 40.0 28 75.7 OX2 50 14 INN 
-52.9 30 9.20 40.0 28 75.7 CX 50 14 INN 
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For the Saccharomyces cerevisiae structure, all P-RnaPredict experiments converged to 

structures with identical percentages of known base pairs, depending on thermodynamic 

model. Here the INN-HB model clearly performed best predicting a greater percentage of 

known base pairs and significantly fewer false-positive base pairs than INN. 

Noting that the results from Table 7.18 and Table 7.17 are in fact identical, it is clear 

that P-RnaPredict has reached the best possible structures it could find given the current 

thermodynamic models. 

7.6.1 Secondary Structure Comparison 

Figure 7.2 shows the known secondary structure for the Saccharomyces cerevisiae RNA 

sequence. There are a total of 37 base pairs. 

Figure 7.2: This plot shows the known secondary structure for the Saccharomyces cerevisiae 
RNA sequence. Black lines indicate base pairs in the known structure. 

For the S. cerevisiae sequence, the highest number of correctly predicted base pairs 

P-RnaPredict found was 33 out of 37, or 89.2%. Figure 7.3 shows a comparison between the 
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known secondary structure for the Saccharomyces cerevisiae sequence, and the secondary 

structure predicted by P-RnaPredict. Light grey bonds indicate base pairs in the known 

structure not predicted by the GA. Dark grey bonds indicate base pairs predicted by the 

GA but not present in the known structure. Black bonds indicate base pairs present both 

in the known and predicted structure. 
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Figure 7.3: This plot shows a comparison between the known and predicted secondary struc- 
tures for the Saccharomyces cerevisiae RNA sequence. Dark grey lines indicate predicted 
base pairs, light grey lines indicate base pairs in the known structure, and the black lines 
indicate the overlap between predicted and known base pairs. In this case, P-RnaPredict 
was able to predict 89.2% of the known base pairs. 

It is interesting to note that P-RnaPredict's current thermodynamic models do not ac- 

count for non-canonical base pairs. However, they do exist in naturally occurring structures 

including S. cerevisiae. Note the two CU pairs in the structure in Figure 7.3, which could 

not have been predicted with the current thermodynamic models. This is why P-RnaPredict 

has predicted a different helix than what occurs naturally; this can be seen in the slight shift 

of the helix on the left of the figure. Within the limits of the underlying model, P-RnaPredict 

has found all correct base pairs it could possibly find. H.marismortui has a similar length to 
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S. cerevisiae; however, it contains many more non-canonical base pairs. This explains why 

the prediction accuracy is much lower for H.marismortui than for S.cerevisiae. 

7.7 Summary 

The results reviewed in this chapter indicate that P-RnaPredict demonstrates a noteworthy 

competency in determining low AG structures in a reasonable number of iterations. There 

is a clear correlation between a lower AG and the percentage of matching base pairs in the 

known structure. 

In terms of overall results from these sequences, larger deme sizes had a significant 

impact on the results. In all cases, runs with a deme size of 100 and deme count of 10 either 

produced the best results overall or tied for best result. This suggests that P-RnaPredict can 

employ a larger overall population size to improve the quality of results while still retaining 

the benefits of parallel speedup. 

P-RnaPredict successfully improved upon the initial randomly generated population, 

converging the population to a lower AG and increasing the percentage of matching known 

base pairs. However, non-canonical base pairs in naturally occurring structures cannot be 

modeled with current thermodynamic models. With the Saccharomyces cerevisiae sequence, 

P-RnaPredict successfully predicted 89.2% of the known base pairs. Overall, the prediction 

accuracy of P-RnaPredict is good, particularly so for shorter sequences. 



Chapter 8 

Comparison to Nussinov DPA 

As mentioned in Section 1.3.3, the first application of DP to structure prediction was de- 

veloped by Nussinov [66], and functioned by maximizing the number of base pairs in a 

predicted structure. The purpose behind running a comparison between P-RnaPredict and 

the Nussinov DPA is to provide a baseline by which the performance of P-RnaPredict may 

be judged. Specifically, this is to validate the correctness of the minimum free energy ap- 

proach and thermodynamic models employed by P-RnaPredict against the pure base pair 

maximization approach utilized by the Nussinov DPA. 

Originally, the Nussinov DPA applied equal scores of 1:l:l to each GC:AU:GU base pair 

bond. In these experiments a basic implementation developed by Vingron [92] was modified 

to factor in the free energy of each type of base pair. Two variations of base pair scoring 

were included. The first set of scores were based on the relative free energy of the base pairs, 

and were designed to emulate the Major thermodynamic model outlined in Section 2.3.1. 

The selected free energy values were -3, -2, and -1 kcal/mol at 37'C for GC, AU, and 

GU base pairs respectively. Thus, the default Nussinov DPA GC:AU:GU scores of 1:l:l are 

replaced by 3:2:1. 

The second set of scores are 3:2:2, and are based on the relative number of hydrogen 

bonds in GC:AU:GU per base pair as per the Mathews model discussed in Section 2.3.2. 

The corresponding free energy values were -3, -2, and -2 kcal/mol at 37OC for GC, AU, 

and GU base pairs respectively. It is important to note that none of these base pair scores 

account for the destabilizing effect of loops or the stabilizing effect of stacked pairs. Thus, 

there are no constraints on the upper bounds of loop and helix length. 

This chapter presents a comparison of the structures predicted by the Nussinov DPA 
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using these three weightings with those predicted by P-RnaPredict. 

8.1 Xenopus laevis - 945 nt 

The results from applying the Nussinov DPA to the Xenopus laevis sequence are shown 

in Table 8.1. Of the three weightings, 1:l:l will always produce the maximum number of 

possible base pairs; in this case, it was 341. The 1:l:l structure contained 12.0% of the 

known base pairs. A GC:AU:GU weighting of 3:2:2 produced a structure with 339 base 

pairs and 15.6% matching base pairs in the known structure. Finally, a weighting of 3:2:1 

produced 333 base pairs, and correctly predicted 18.7% of the known structure. 

Table 8.1: Xenopus laevis, Nussinov results. Number of known base pairs is 251. 

DPA Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%I 
1:l:l 34 1 30 12.0 
3:2:2 339 39 15.6 
3:2:1 333 47 18.7 

Table 8.2: Comparison of P-RnaPredict and Nussinov DPA on Xenopus laevis sequence. 

Source Predicted BP Correctly Correctly 
Predicted BP Predicted (%) 

Nussinov Best BP 333 47 18.7 
GA Average AG 241.0 65.7 26.2 
GA Best AG 258 100 39.8 
GA Best BP Overlap 258 100 39.8 

Table 8.2 provides a direct comparison between the best Nussinov structure from Ta- 

ble 8.1 and the best P-RnaPredict structures from Tables 7.3, 7.4, and 7.5. "Source" indi- 

cates the origin of the structures, and includes the following four sources: "Nussinov Best 

BP" is the Nussinov structure with the highest percentage of correctly matching base pairs. 

"GA Average AG" is the averaged result from the lowest AG P-RnaPredzct experiment. 

"GA Best AG" is the P-RnaPredict structure from the single GA run with the lowest AG. 
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"GA Best BP Overlap" is the P-RnaPredict structure from the single GA run with the 

highest percentage of correctly matching base pairs, regardless of AG. 

"Predicted BP" is the total number of predicted base pairs. "Correctly Predicted BP" 

is the total number of correctly predicted base pairs. Finally, "Correctly Predicted %" is 

the percentage of correctly predicted base pairs. 

Considering matching known base pairs for this sequence, Table 8.2 indicates that P- 

RnaPredict is a dramatic improvement over the Nussinov algorithm. For example, the 

P-RnaPredict average AG result finds 26.2% of the known structure, compared to 18.7% 

for the best Nussinov structure. Notably, the best P-RnaPredict prediction contains 39.8% 

of the known structure. When reviewing false-positive base pairs, the best Nussinov DPA 

structure contains 333 total base pairs, far more than the 258 predicted by P-RnaPredzct. 

Thus, all P-RnaPredict results are far superior to the best Nussinov structure for this 

sequence. 

8.2 Drosophila virilis - 784 nt 

Table 8.3 shows the results when using the Nussinov DPA. First, the maximum number of 

possible base pairs is 320, given a corresponding GC:AU:GU weighting of 1:l:l .  The number 

of base pairs in the known structure is 233, and 12.4% are correctly predicted base pairs. 

A change in weights to 3:2:2 results in a structure with 319 base pairs, with 9.9% correctly 

predicted base pairs. Finally, a weight of 3:2:1 results in a structure with 309 base pairs, of 

which 9.0% are correctly predicted base pairs. 

Table 8.3: Drosophila virilis, Nussinov results. Number of known base pairs is 233. 

DPA Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%) 
1:l: l  320 29 12.4 
3:2:2 319 23 9.9 
3:2:1 309 2 1 9.0 

The best results from Tables 7.7, 7.8, and 7.9 are combined with the best Nussinov 

structure from Table 8.3. The best Nussinov structure contains a total of 320 base pairs, 

and matches 12.4% of the known structure. By contrast, the P-RnaPredict average AG 
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Table 8.4: Comparison of P-RnaPredict and Nussinov DPA on Drosophila virilis sequence. 

Source Predicted BP Correctly Correctly 
Predicted BP Predicted (%) 

Nussinov Best BP 320 29 12.4 
GA Average AG 238.1 40.6 17.4 
GA Best AG 252 49 21.3 
GA Best BP Overlap 234 66 28.3 

prediction contains 238.1 total base pairs, and matches 17.4% of the known structure. The 

best AG result from P-RnaPredict contains 252 base pairs, and correctly predicts 21.3% 

of the known structure. Finally, the best overall P-RnaPredict structure contains 234 base 

pairs, 28.3% of which match the known structure. Again, all three P-RnaPredict results are 

dramatically better than the Nussinov DPA both in terms of matching known base pairs 

and fewer false-positives. 

8.3 Hildenbrandia rubra - 543 nt 

The Nussinov results are shown in Table 8.5. By simply maximizing the number of possible 

base pairs, the generated structure contains 213 base pairs, while the known structure 

contains 138 base pairs. The generated structure correctly predicts 5.0% of the base pairs 

existing in the known structure. A GC:AU:GU weight modification to 3:2:2, results in 211 

predicted base pairs, of which 22.5% of the known structure is found. Finally, a weight 

modification to 3:2:1 reduced the number of predicted base pairs to 205, but this structure 

still correctly predicts 22.5% of the base pairs existing in the known structure and has fewer 

false-positives. 

Table 8.6 summarizes the best P-RnaPredict results from Tables 7.10, 7.11, and 7.12, and 

compares them to the best Nussinov structure from Table 8.5. The P-RnaPredict average 

AG result contains 161.4 total base pairs, and matches 31.7% of the known structure. In 

comparison, the best Nussinov structure contains 205 total base pairs, and only matches 

22.5% of the known structure. The lowest AG and best matching base pair P-RnaPredict 

structures are also significantly better at 38.4% and 51.4% matching base pairs, respectively. 

Again, in terms of a higher percentage of matching base pairs and less false-positive base 

pairs, P-RnaPredict has considerably outperformed the Nussinov DPA. 
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Table 8.5: Hildenbrandia rubra Nussinov results. Number of known base pairs is 138. 

DPA Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%) 

Table 8.6: Comparison of P-RnaPredict and Nussinov DPA on Hildenbrandia rubra se- 
quence. 

Source Predicted BP Correctly Correctly 
Predicted BP Predicted (%) 

Nussinov Best BP 205 3 1 22.5 
GA Average AG 161.4 43.7 31.7 
GA Best AG 166 5 3 38.4 
GA Best BP Overlap 159 71 51.4 
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8.4 Haloarcula marismortui - 122 nt 

Table 8.7 shows the Nussinov DPA Haloarcula marismortui results. Maximizing the number 

of base pairs with a 1:l:l weighting results in 45 base pairs, matching 21.1% of the known 

base pairs. Changing the GC:AU:GU weights to 3:2:2 produced a structure containing 44 

base pairs with 10.5% correctly predicted base pairs. Finally, a 3:2:1 weighting produced 

identical results to the 3:2:2 weighting. 

Table 8.7: Haloarcula marismortui, Nussinov results. Number of known base pairs is 38. 

DPA Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (a) 
1:l:l 45 8 21.1 
3:2:2 44 4 10.5 
3:2:1 44 4 10.5 

Table 8.8: Comparison of P-RnaPredict a.nd Nussinov DPA on Haloarcula marismortui 
sequence. 

Source Predicted BP Correctly Correctly 
Predicted BP Predicted (%) 

Nussinov Best BP 45 8 21.1 
GA Average AG 33.0 16.0 42.1 
GA Best AG 33 16 42.1 
GA Best BP Overlap 33 16 42.1 

Table 8.8 reviews the best P-RnaPredict results from Tables 7.13, 7.14, and 7.15, and 

the best Nussinov structure from Table 8.7. Considering matching known base pairs for 

this sequence, Table 8.8 indicates that P-RnaPredict is a considerable improvement over 

the Nussinov algorithm. All P-RnaPredict results converged to identical structures with 33 

total base pairs, 42.1% of which were correctly predicted. By contrast, the best Nussinov 

structure contains 45 base pairs, and matches 21.1% of known base pairs. Again, all P- 

RnaPredict results are a significant improvement over the best Nussinov structure for this 

sequence. 
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8.5 Saccharomyces cerevisiae - 118 nt 

Results from the Nussinov DPA are shown in Table 8.9. Using a weighting of 1:1:1, the 

maximal number of base pairs predicted is 45, with 75.7% correctly predicted. With the 

weighting changed to 3:2:2, the algorithm predicts a different structure also containing 45 

base pairs, resulting in 75.7% correctly predicted base pairs in the known structure. Finally, 

using a 3:2:1 weighting, the algorithm predicts 44 total base pairs, of which 24.3% are base 

pairs in the known structure. 

Table 8.9: Saccharomyces cerevisiae Nussinov results. Number of known base pairs is 37. 

DPA Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%) 

1:l:l 45 28 75.7 

Table 8.10: Comparison of P-RnaPredict and Nussinov DPA on Saccharomyces cerevisiae 
sequence. 

Source Predicted BP Correctly Correctly 
Predicted BP Predicted (%) 

Nussinov Best BP 35 28 75.7 
GA Average AG 39.0 33.0 89.2 
GA Best AG 39 33 89.2 
GA Best BP over la^ 39 33 89.2 

The best Nussinov structure from Table 8.9 and the best P-RnaPredict results from 

Tables 7.16, 7.17, and 7.18 are reviewed in Table 8.10. As with Haloawula marismortui, all 

P-RnaPredict results converged to identical structures with 39 total base pairs, matching 

89.2% of the known structure. By comparison, the best Nussinov structure contained 35, 

and matched 75.7% of the known structure. Here also, P-RnaPredict has considerably 

outperformed the Nussinov DPA in terms of a higher percentage of matching base pairs and 

less false-positive base pairs. 
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8.5.1 Secondary Structure Comparison 

Figure 8.1 shows a comparison between the known secondary structure for the Saccha- 

romyces cerevisiae sequence, and the best secondary structure predicted by the Nussinov 

DPA. Light grey bonds indicate predicted base pairs which are not present in the known 

structure. Black bonds indicate base pairs present both in the known and predicted struc- 

ture. Bonds present only in the known structure are omitted for clarity. 

Figure 8.1: This plot shows a comparison between the known and predicted secondary struc- 
tures for the Saccharomyces cerevisiae RNA sequence. Light grey lines indicate predicted 
base pairs, and black lines indicate the overlap between predicted and known base pairs. In 
this case, the best Nussinov DPA result was able to predict 75.7% of the known base pairs. 

Although the percentage of correct base pairs, 75.7%, appears quite high in the Nussinov 

structure, there are striking differences between it and the known structure. The presence 

of two isolated base pairs dramatically skews the internal loops in the structure. Also, the 
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Nussinov algorithm predicts three hairpin loops on the left of the structure where only one 

should exist. Reviewing the known structure in Figure 7.2 and the structure predicted by 

P-RnaPredict in Figure 7.3, it can be seen that P-RnaPredict is able to predict a more 

accurate structure than the Nussinov DPA. 

8.6 False-Positives: Over-prediction of base pairs 

Table 8.11 presents a comparison of the total false-positive base pairs predicted by P- 

RnaPredict and the Nussinov DPA. Each P-RnaPredict entry was taken from the best 

experiment averaged over its 30 runs, and the Nussinov entries were taken from the best 

overall Nussinov run. A breakdown of the table column names follows. 

"Sequence" is the name of the organism the sequence was taken from. "DPA Weights" 

are the base pair weights (GC:AU:GU) assigned to the Nussinov algorithm. "DPA over- 

pred." is the number of false-positive base pairs predicted by the Nussinov DPA. "GA 

over-pred." is the number of false-positive base pairs predicted by P-RnaPredict. "DPA 

Corr. BPS" is the number of true-positive base pairs predicted by the Nussinov DPA. 

"GA Corr. BPS" is the number of true-positive base pairs predicted by P-RnaPredict. 

Finally, "Cross.-Deme Size-Deme Count-Model" describes the parameters for the specific 

P-RnaPredict experiment, separated by dashes; these are the crossover, deme size, deme 

count, and thermodynamic model. An entry with "ALL" indicates that all settings for that 

parameter produced identical results. 

For all sequences tested, P-RnaPredict correctly predicted more true-positive base pairs 

and less false-positives than the Nussinov DPA. The results demonstrate that with the 

sequences tested, P-RnaPredict performs better at predicting RNA secondary structures 

than the Nussinov DPA. 

The results in Table 8.11 reviewed the average performance of P-RnaPredict. Next, 

we will discuss the best single runs of P-RnaPredict. A comparison between the structures 

determined by the individual P-RnaPredict experiment runs with the lowest free energy and 

those predicted by the best overall Nussinov run is shown in Table 8.12. In all cases, the 

results for these sequences indicate the superior performance of P-RnaPredict to Nussinov. 

Table 8.13 presents a comparison between the structures predicted by P-RnaPredict 

containing the highest count of true-positive base pairs and the structures from the best 

overall Nussinov runs. In each case, P-RnaPredict is able to dramatically outperform the 
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Table 8.11: Comparison of false-positive totals between the best results, in terms of matching 
known base pairs, from the Nussinov DPA, and the best experiment in terms of minimum 
free energy from P-RnaPredict. 
Sequence DPA DPA GA over- DPA GA Corr. Cross.- 

Weights over- pred. Corr. BPS Deme 
pred. BPS Size- 

Deme 
Count- 
Model 

X. laevis 3:2:1 286 175.3 47 65.7 0 x 2 -  100- 
10-INNHB 

D. virilis 1:l:l 29 1 197.5 29 40.6 OX2-100- 
10-INN 

H. rubra 3:2:1 1 74 117.7 31 43.7 0 x 2 -  100- 
10-INNHB 

H. maris- 1:l:l  37 17 8 16 ALL-ALL- 
mortui ALL-ALL 
S. cere- 1:l:l 17 6 28 33 ALL- 
visiae ALL-ALL- 

INNHB 
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Table 8.12: Comparison of false-positive totals between the best results, in terms of match- 
ing known base pairs, from the Nussinov DPA and the single lowest energy runs with 
P-RnaPredict 
Sequence DPA DPA GA over- DPA GA Corr. Cross.- 

Weights over- pred. Corr. BPS Deme 
pred. BPS Size- 

Deme 
Count- 
Model 

X .  laevis 3:2:1 286 158 47 100 OX2-100- 
10-INN 

D. virilis 1:l:l 291 203 29 49 OX2-100- 
10-INNHB 

H. rubra 3:2:1 174 113 3 1 53 CX-100- 
10-INNHB 

H. maris- 1:l:l  37 17 8 16 ALL-ALL- 
mortui ALL-ALL 
S. cere- 1:l:l  17 6 28 33 ALL- 
visiae ALL-ALL- 

INNHB 
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Nussinov DPA. Especially notable are the Hildenbrandia rubra and Haloarcula marismortui 

results. 

Table 8.13: Comparison of false-positive totals between the best results, in terms of matching 
known base pairs, from the Nussinov DPA and the runs predicting the highest number of 
known base pairs with P-RnaPredict 
Sequence DPA DPA GA over- DPA GA Corr. Cross.- 

Weights over- pred. Corr. BPS Deme 
pred. BPS Size- 

Deme 
Count- 
Model 

X. laevis 3:2:1 286 158 47 100 OX2-100- 
10-INN 

D. virilis 1:l:l 29 1 168 29 66 CX-100- 
10-INN 

H. rubra 3:2:1 1 74 88 31 7 1 OX2-100- 
10-INNHB 

H. maris- 1:l:l 3 7 17 8 16 ALL-ALL- 
mortui ALL-ALL 
S. cere- 1:l:l 17 6 28 33 ALL- 
visiae ALL-ALL- 

INNHB 

Overall, the results indicate that in terms of false-positive base pairs for the five se- 

quences presented P-RnaPredict consistently predicts considerably fewer false-positives than 

the Nussinov DPA. It is especially notable that even the average P-RnaPredict result has 

significantly less false-positives than the best Nussinov structure. Overprediction data for 

other sequences can be found in Appendix A. 

8.7 Summary 

On the five sequences studied here, P-RnaPredict was able to drastically outperform the 

Nussinov DPA in all cases; both on average and single best runs. Considering true-positive 

base pairs, all P-RnaPwdict results for the sequences presented are dramatically better than 

the best Nussinov result, even when considering average P-RnaPredict performance. This 

is also true when taking into account false-positive base pairs. All P-RnaPredict results 
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produced significantly less false-positives than the best Nussinov structure. 

Data for five additional sequences may be found in Appendix A; a brief summary of 

these results follows. When considering the average performance of P-RnaPredict against 

the best Nussinov results in terms of matching base pair percentage, P-RnaPredict produced 

dramatically better structures for 3 sequences; Nussinov tied for one structure and outper- 

formed P-RnaPredict for the fifth. Reviewing over-prediction, in all cases P-RnaPredict had 

dramatically less false-positive base pairs. Examining the best minimum free energy struc- 

tures in terms of matching base pair percentage, P-RnaPredict significantly outperformed 

Nussinov in four out of the five structures. Also, in all cases P-RnaPredict again had no- 

ticeably less false-positive base pairs. Finally, when reviewing the best overall structures, 

P-RnaPredict again predicted a considerably higher proportion of known base pairs for four 

out of the five sequences. Once again, P-RnaPredict had dramatically fewer false-positives. 

One specific sequence, S. acidocaldarius, was particularly challenging for P-RnaPredict as 

compared to the Nussinov DPA. As yet, the reasons for this are unclear. 

In conclusion, even when the Nussinov DPA is modified to support multiple base pair 

weightings, there is still a drastic performance difference between P-RnaPredict and the 

Nussinov algorithm. This is an important milestone which clearly demonstrates the benefits 

of the methods employed by P-RnaPredict against the pure base pair maximization approach 

utilized by the Nussinov DPA. 



Chapter 9 

Comparison to mfold DPA 

As mentioned in Section 1.3.3, Zuker [I 13, 108, 110, 112, 107, 1091 developed a DP approach 

to RNA secondary structure prediction which used thermodynamic models to minimize the 

free energy of the predicted structure. Unlike the Nussinov DPA, the free energy of helices 

is based on the stacking contribution from the interaction between base pairs. The DPA has 

also been modified to determine suboptimal RNA secondary structures within a specified 

range of the minimum free energy [41, 111, 531. 

The mfold algorithm employs both the INN-HB thermodynamic model [I051 and mod- 

eling of common RNA secondary structure element energy parameters. These elements 

include stacking energies, hairpin loop energies, interior loop energies, bulge loop energies, 

multi-branched loop energies, free base energies, 1 x 2 interior loop energies, tandem mis- 

match energies, loop destabilizing energies, tetra-loops, and other miscellaneous energies. 

Once mfold has predicted its structures, a helper application efn2 with a more rigorous and 

computationally complex thermodynamic model re-evaluates the mfold structures. 

This chapter presents a comparison of the structures predicted by P-RnaPredict with 

those predicted by mfold. The mfold results presented here were generated using mfold web 

server version 3.1 with default settings. One important setting was the "percent subopti- 

mality number". This setting causes mfold to return a set of suboptimal structures whose 

free energy lies within the requested percentage of the minimum free energy. The setting 

in this case was 5%, which returns approximately 20 suboptimal structures on a 1000 nt 

sequence. 
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9.1 Xenopus laevis - 945 nt 

The mfold results for Xenopus laevis are presented in Table 9.1. The table column headings 

are defined as follows: "mfold AG (kcal/mol)" is the AG of the predicted structure as 

optimized by mfold. "efn2 AG (kcal/mol)" is the AG of the structure after re-evaluation 

with efn2. "Predicted BP" is the total number of base pairs in the predicted structure. 

"Correctly Predicted BP" is the total number of base pairs in the known structure. Finally, 

"% Correctly Predicted" is the percentage of correctly predicted base pairs in the predicted 

structure. 

Table 9.1: Xenopus laevis, mfold results. Number of known base pairs is 251. 

mfold AG e$n2 AG Predicted BP Correctly % Correctly 
(kcal/mol) (kcal/mol) Predicted BP Predicted 
-250.6 -222.85 249 92 36.7 

Table 9.1 indicates that the lowest AG structure found with mfold has a free energy 

of -250.6 kcal/mol and 249 total base pairs, 36.7% of which were present in the known 

structure. By contrast, efn2 found a lowest energy structure with a AG of -223.49 kcal/mol 
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and 246 total base pairs, with 34.3% correctly predicted. Surprisingly, the efn2 structure is 

less accurate than the mfold structure in terms of matching known base pairs. 

Upon reviewing all results for the highest accuracy structure, one structure is found 

with 45.0% correctly predicted. mfold ranks this as fifth out of the 22 predicted structures. 

However, without comparison to the known structure there would have been no method of 

determining this structure's accuracy, and thus it would not have been found. 

Table 9.2: Comparison of P-RnaPredict and mfold DPA on Xenopus laevis sequence. 

I mfold GA Avg. I mfold efn2 GA Best I mfold GA Best I 

Table 9.2 provides a direct comparison between the best mfold structures from Table 9.1 

and the best P-RnaPredict structures from Tables 7.3, 7.4, and 7.5. Each result is identified 

by the following column headings: "mfold Avg." is the average over all mfold predicted 

structures. "GA Avg. AG" presents the best result from Table 7.3. "mfold Best AG" 

presents the best mfold structure as ranked by the mfold thermodynamic model. "efn2 

Best A G  presents the best mfold structure as ranked by the efn2 thermodynamic model. 

"GA Best AG" presents the best result from Table 7.4. "mfold Best BP %" presents the 

best mfold structure in terms of percentage of matching known base pairs. Finally, "GA 

Best BP %" presents the best result from Table 7.5. 

Each entry in the table is ranked by two criteria, identified by the following row headings: 

"Correct BP%" is the percentage of correctly predicted base pairs. "Over-prediction" is the 

number of false-positive base pairs predicted. Each set of related table entries are grouped 

for comparison, and the best results in the group are bolded for easy identification. 

When considering average performance, Table 9.2 indicates that mfold produced a 

greater percentage of known base pairs, 33.6%, and a lower number of false-positives, 160.4, 

than P-RnaPredict. By contrast, the results ranked by minimum free energy show that 

the best P-RnaPredict structure matched 39.8% of the known structure, significantly better 

than both structures ranked by mfold and efn2. P-RnaPredict was also quite close with 

Correct 
BP% 
Over- 
prediction 

Avg. AG 

33.6 26.2 

160.4 175.3 

Best AG Best AG AG 

36.7 34.3 39.8 

157 160 158 

Best BP BP % 
% 
45.0 39.8 

132 158 
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respect to false-positives, narrowly outperformed by the best mfold structure. Finally, we 

review the best structures in terms of highest percentage of known base pairs regardless 

of their free energy. The best mfold structure has 45.0% matching base pairs, and 132 

false-positive base pairs, significantly better than the best P-RnaPredict structure. 

An important point should be kept in mind when regarding the comparison of highest 

matching base pair count structures. Since there is no perfect correlation between the 

lowest free energy and the highest matching base pair count, it is impossible to determine 

the structure with the best base pair overlap without having a known structure in advance. 

This is a general limitation from which all structure prediction algorithms based on free 

energy models suffer. 

Overall for the Xenopus laevis structure, P-RnaPredict has a comparable performance 

to mfold. When considering minimum free energy, P-RnaPredict is able to predict a signifi- 

cantly higher percentage of matching base pairs than mfold, and a nearly identical number 

of false-positives. 

9.2 Drosophila virilis - 784 nt 

The mfold results for Drosophila virilis are shown in Table 9.3. The lowest free energy 

structure predicted by mfold contained 236 total base pairs, 15.9% of which were correctly 

predicted. The structure predicted by efn2 had a free energy of -131.55 kcal/mol, and con- 

tained 254 base pairs, 14.2% of which were correctly predicted. Notably, the efn2 predicted 

structure is less accurate in terms of correct base pairs than the lowest free energy mfold 

result. 

Considering structures in terms of correct base pairs, there are two results which tie, con- 

taining 35.2% of the known base pairs. Since only free energy can realistically be considered 

as a ranking criteria, these structures could not have been found. 

Table 9.4 summarizes the best mfold structures from Table 9.3 and the best P-RnaPredict 

structures from Tables 7.7, 7.8, and 7.9. Comparing the average results from the two algo- 

rithms, the performance of P-RnaPredict is quite close to that of mfold, with P-RnaPredict 

producing a nearly identical number of known base pairs and significantly less false-positives. 

Contrasting the minimum free energy results of P-RnaPredict and mfold, P-RnaPredict 

determined a substantially higher fraction of the known structure than mfold, and only 
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Table 9.3: Drosophila virilis, mfold results. Number of known base pairs is 233. 

mfold AG efn2 AG Predicted BP Correctly % Correctly 
(kcal/mol) (kcal/mol) Predicted BP  Predicted 
-146.3 -124.43 236 37 15.9 
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Table 9.4: Comparison of P-RnaPredict and mfold DPA on Drosophila virilis sequence. 

slightly more false-positives than mfold's best result. Finally, when examining the best re- 

sults regardless of minimum free energy from Table 9.4, mfold is significantly better than 

P-RnaPredict in matching the known structure, while P-RnaPredict produced slightly less 

false-positives. 

For the Drosophila virilis sequence, both algorithms appear to demonstrate a much 

weaker correlation between lowest free energy and structure accuracy than with the longer 

Xenopus laevis sequence. However, when considering average performance and minimum 

free energy structures, P-RnaPredict either performed comparably to or significantly out- 

performed mfold, especially in terms of matching known base pairs. 

Correct 
BP% 
Over- 
~redict  ion 

9.3 Hildenbrandia rubra - 543 nt 

Table 9.5 indicates that the lowest AG structure found with mfold has a free energy of 

-204.9 kcal/mol and 176 total base pairs, 35.5% of which were present in the known struc- 

ture. By contrast, efn2 found a lowest energy structure with a AG of -199.63 kcal/mol 

and 171 total base pairs, with 27.5% correctly predicted. Interestingly, the efn2 structure is 

less accurate than the mfold structure in terms of matching known base pairs. An alternate 

structure predicted by mfold contained 167 base pairs, 60.1% of which are present in the 

known structure. While this was a dramatic improvement, it also had a significantly higher 

free energy. 

Table 9.6 gathers the best mfold structures from Table 9.5 and the best P-RnaPredict 

structures from Tables 7.10, 7.11, and 7.12. Reviewing the results from Table 9.6 in terms 

of average performance and best base pair overlap, it can be seen that mfold produced 

significantly better structures than P-RnaPredict. However, the minimum free energy results 

mfold GA Best 
Best BP BP % 
% 
35.2 28.3 

170 168 

mfold GA Avg. 
Avg. AG 

17.9 17.4 

206.1 197.5 

mfold efn2 GA Best 
Best AG Best AG AG 

15.9 14.2 21.3 

199 221 203 
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Table 9.5: Hzldenbrandia rubra, mfold results. Number of known base pairs is 138. 

mfold AG efn2 AG Predicted BP Correctly % Correctly 
(kcal/moll (kcal/moll Predicted BP Predicted 
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Table 9.6: Comparison of P-RnaPredict and mfold DPA on Hildenbrandia mbra sequence. 

indicate that P-RnaPredict outperformed the best mfold structure both in terms of a higher 

matching base pair count and a lower number of false-positives. 

Overall, P-RnaPredict performed comparably to mfold on the Hildenbrandia mbra se- 

quence, and outperformed mfold when considering minimum free energy results. 

Correct 
BP% 
Over- 
predict ion 

9.4 Haloarcula marismortui - 122 nt 

The single mfold result for Haloarcula marismortui is presented in Table 9.7. Note that this 

table contains dramatically fewer results. This is due to the short length of the Haloarcula 

marismortui sequence, and the corresponding reduction of the search space in terms of 

structures having free energies within 5% of the lowest energy structure. The one structure 

found by mfold contained 34 base pairs, 76.3% were correctly predicted. 

mfold GA Avg. 
Avg. AG 

39.6 31.7 

113.9 117.7 

Table 9.7: Haloarcula marismortui, mfold results. Number of known base pairs is 38. 

mfold AG efn2 AG Predicted BP Correctly % Correctly 

mfold efn2 GA Best 
Best AG Best AG AG 

35.5 27.5 38.4 

127 133.0 113 

(kcal/mol) (kcal/mol) Predicted BP Predicted 
-59.5 -56.44 34 29 76.3 

mfold GA Best 
Best BP BP % 
% 
60.1 51.4 

84 88 

Table 9.8 gathers the best mfold structure from Table 9.7 and the best P-RnaPredict 

structures from Tables 7.13, 7.14, and 7.15. Table 9.8 indicates that for all categories 

P-RnaPredict converged to identical structures. Overall, even considering individual exper- 

iment runs P-RnaPredict was significantly outperformed by mfold, especially in terms of 

matching the known structure. 
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Table 9.8: Comparison of P-RnaPredict and mfold DPA on Haloarcula marismortui se- 
quence. 

mfold GA Avg. 
Avg. AG 

Correct 

9.5 Saccharomyces cerevisiae - 118 nt 

mfold efn2 GA Best 
Best AG Best AG AG 

BP% 
Over- 
prediction 

Table 9.9 presents the two mfold results for the Saccharomyces cerevisiae sequence. Here 

again only a few structures were predicted, due to the small search space. The lowest 

free energy structure predicted by mfold contained 41 total base pairs, 89.2% of which were 

correctly predicted. By contrast, efn2 determined a structure containing 42 total base pairs, 

with 75.7% correctly predicted. 

mfold GA Best 
Best BP BP % 

76.3 42.1 

Table 9.9: Saccharomyces cerevisiae, mfold results. Number of known base pairs is 37 

5.0 17 

mfold AG efn2 AG Predicted BP Correctly % Correctly 

76.3 76.3 42.1 

(kcal/mol) (kcal/mol) Predicted BP Predicted 
-53.5 -50.70 4 1 33 89.2 

% 
76.3 42.1 

5 5 17 

Table 9.10 gathers the best mfold structures from Table 9.9 and the best P-RnaPredict 

structures from Tables 7.16, 7.17, and 7.18. Table 9.10 indicates that for all categories, as 

with Haloarcula marismortui, P-RnaPredict converged to identical structures. Interestingly, 

mfold's more advanced efn2 thermodynamic model produced a substantially inferior struc- 

ture to all other results, both having a smaller known structure percentage and a larger 

number of false-positives. Overall, P-RnaPredict tied or surpassed the best mfold structure 

in average performance, minimum free energy, and best matching structure. 

5 17 
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Table 9.10: Comparison of P-RnaPredict and mfold DPA on Saccharomyces cerevisiae se- 
quence. 

I mfold GA Avg. I mfold efn2 GA Best I mfold GA Best I 
Best AG Best AG AG Best BP BP % I % I 

9.5.1 Secondary Structure Comparison 

Correct 
BP% 
Over- 
predict ion 

Figure 9.1 shows a comparison between the known secondary structure for the Saccha- 

romyces cerevisiae sequence, and the best secondary structure predicted by the mfold DPA. 

Light grey bonds indicate predicted base pairs which are not present in the known structure. 

Black bonds indicate base pairs present both in the known and predicted structure. Base 

pairs only present in the known structure were omitted for clarity. 

A comparison with Figure 7.2 and the structure predicted by P-RnaPredict in Figure 7.3 

indicates that both mfold and P-RnaPredict were able to predict structures with 89.2% of 

the known base pairs. However, two additional false-positive base pairs were predicted by 

the mfold DPA. 

Finally, mfold also predicted a 2 base pair long helix, visible on the top left of the 

plot, not present in the known structure. P-RnaPredict would not have predicted it as the 

minimum helix length required by its helix generation algorithm is three base pairs. 

9.6 False-Positives: Over-prediction of base pairs 

82.4 89.2 

11.0 6 

Table 9.11 presents a comparison of the total false-positive base pairs predicted by P- 

RnaPredict and the mfold DPA. Each P-RnaPredict entry was taken from the overall lowest 

energy structure, and the mfold entries were taken from the best overall mfold run in terms 

of lowest free energy. A breakdown of the table column names follows. 

"Sequence" is the name of the organism the sequence was taken from. "DPA over-pred." 

is the number of false-positive base pairs predicted by the mfold DPA. "GA over-pred." is 

the number of false-positive base pairs predicted by P-RnaPredict. "DPA Corr. BPS" is 

89.2 75.7 89.2 

8 14 6 

89.2 89.2 

8 6 
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Figure 9.1: This plot shows a comparison between the known structure and the structure 
predicted by mfold for the Saccharomyces cerevisiae RNA sequence. Light grey lines indicate 
predicted base pairs, and black lines indicate the overlap between predicted and known base 
pairs. In this case, the mfold DPA was able to predict 89.2% of the known base pairs. 

the number of true-positive base pairs predicted by the mfold DPA. "GA Corr. BPS" is the 

number of true-positive base pairs predicted by P-RnaPredict. Finally, "Cross.-Deme Size- 

Deme Count-Model" describes the parameters for the specific P-RnaPredict experiment, 

separated by dashes; these are the crossover, deme size, deme count, and thermodynamic 

model. An entry with "ALL" indicates that every setting for that parameter produced 

identical results. 

The results indicate that P-RnaPredict was able to predict more true-positive base pairs 

than the mfold DPA for three sequences: Xenopus laeuis, Drosophila virilis and Hilden- 

bmndia rubra; P-RnaPredict tied for true-positive base pairs on Saccharomyces cerevisiae. 

Also, P-RnaPredict predicted less false-positive base pairs with two sequences, Hildenbran- 

dia rubra and Saccharomyces cereuisiae. 

Table 9.12 presents a comparison based on the overall highest number of correct base 

pairs predicted by both mfold and P-RnaPredict, regardless of energy. The column headings 

for Table 9.12 and Table 9.11 are identical. Table 9.12 indicates that P-RnaPredict pre- 

dicted structures with less false-positive base pairs in two sequences (Drosophila virilis and 
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Table 9.11: Comparison of false-positive totals between the lowest mfold AG structure 
found with the mfold DPA and the overall lowest AG P-RnaPredict experiment 
Sequence DPA over- GA over- DPA Corr. GA Corr. Cross.- 

pred. pred. BPS BPS Deme 
Size-Deme 
Count- 
Model 

X. laevis 157 158 92 100 OX2-100-10- 
INN 

D. virilis 199 203 37 49 OX2-100-10- 
INNHB 

H. rubra 127 113 49 53 CX-100-10- 
INNHB 

H. maris- 5 17 29 16 ALL-ALL- 
mortui ALL-ALL 
S. cerevisiae 8 6 33 33 ALL-ALL- 

ALL-INNHB 

Saccharomyces cerevisiae). However, mfold was able to predict more true-positive base pairs 

in four sequences (Xenopus laevis, Drosophila virilis, Hildenbrandia rubra, and Haloarcula 

marismortui). 

Overprediction data for other sequences can be found in Appendix A. 

9.7 Summary 

The mfold algorithm employs a DP approach to predict the secondary structure of RNA. It  

uses a complex thermodynamic model which includes all common RNA secondary structure 

elements to minimize the free energy of the predicted structure; this model is much more 

advanced than the Nussinov DPA discussed in Chapter 8. By contrast, P-RnaPredict's 

thermodynamic model simply focuses on the free energy of nearest neighbour stacked base 

pairs in helices. mfold also possesses a much more mature implementation, compared with 

P-RnaPredict's relatively short development lifespan. 

Despite this, when comparing lowest energy structures P-RnaPredict was able to predict 

a higher percentage of known base pairs than mfold on the Xenopus laevis, Drosophila virilis, 

and Hildenbrandia rubra sequences. P-RnaPredict was also able t o  tie the percentage of 
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Table 9.12: Comparison of false-positive totals between the best structure with the mfold 
DPA and the overall best single structure found withP-RnaPredict 
Sequence DPA over- GA over- DPA Corr. GA Corr. Cross.- 

pred. pred. BPS BPS Deme 
Size-Deme 
Count- 
Model 

X.  laevis 132 158 113 100 OX2-100-10- 
INN 

D. virilis 170 168 82 66 CX-100-10- 
INN 

H. rubra 84 88 83 71 OX2-100-10- 
INNHB 

H. maris- 5 17 29 16 ALL-ALL- 
mortui ALL-ALL 
S. cerevisiae 8 6 33 33 ALL-ALL- 

ALL-INNHB 

known base pairs with mfold on the Sacchammyces cerevisiae sequence. P-RnaPredict also 

predicted fewer false-positive base pairs on the Hildenbrandia rubra and Saccharomyces 

cerevisiae sequences, performing comparably to mfold on the other three. 

For longer sequences, the prediction accuracy of P-RnaPredict drops; mfold also suffers 

from this problem. This can be attributed largely to limitations of the thermodynamic 

model regarding its ability to model global interactions as the structures grow larger, and 

is an issue from which all minimum free energy prediction algorithms suffer. 

Data for five additional sequences may be found in Appendix A; a thorough comparison 

of mfold and P-RnaPredict performance in terms of known base pair agreement and false- 

positives for these sequences is provided there. A summary of the best overall mfold and 

P-RnaPredict structures in terms of known base pair agreement follows. For the A. grifini 

sequence, P-RnaPredict predicted 60.3% of the known structure, while mfold found 72.5%. 

The H. sapiens structure predicted by P-RnaPredict contained 34.6% correct base pairs; the 

mfold structure had 35.7%. The structure P-RnaPredict determined for C. elegans correctly 

predicted 29.6% of the known structure, whereas the mfold structure correctly predicted 

21.2%. 64.6% of base pairs in the A. lagunensis structure determined by P-RnaPredict were 

present in the known structure; 65.5% of the mfold structure's base pairs were correctly 
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predicted. Finally, the S. acidocaldarius structure predicted by P-RnaPredict correctly 

predicted 34.0% of the known structure, while the mfold structure correctly predicted 57.9%. 

It should be noted that one particular structure from the S. acidocaldarius sequence 

was particularly challenging for P-RnaPredict to predict; this was also the single structure 

on which the Nussinov DPA outperformed P-RnaPredict. The reasons for this as yet are 

unclear. 

Given the extensive time and resources devoted to polishing mfold's performance versus 

the relatively new P-RnaPredict implementation, the results are quite promising. 



Chapter 10 

Conclusion 

In the course of this thesis I have presented the research conducted during the development 

of P-RnaPredict. P-RnaPredict is a complete object-oriented redesign and redevelopment of 

the original serial GA implementation developed in Dr. Wiese's lab. The primary objective 

here was the design and implementation of a fully parallel coarse-grained GA for RNA 

secondary structure prediction to run on a 128 node Beowulf cluster. 

Several important milestones were reached while conducting this research. A series 

of potential parallel models were researched, and the coarscgrained distributed GA was 

selected as the model best suited for adoption. A serial simulation of the distributed GA 

was successfully developed to evaluate its benefits within the RNA structure prediction 

problem domain. Both a practical analysis and several runtime tests were conducted to 

substantiate the case for parallelization, and the results established the potential for a 

worthwhile speedup. The target platforms of the Nebula Beowulf cluster and MPI were 

established, and the three implementation challenges of control logic, data serialization, 

and random number generation were resolved. The importance of PRNGs in parallel GAS 

was established, and the impact of two distinct parallel PRNGs on the performance of P- 

RnaPredict were investigated. The DC, a parallelized MT, was consequently adopted for 

use in P-RnaPredict. The parallel speedup was investigated through empirical testing, and 

an analysis was performed on the communication timing. This confirmed that a worthwhile 

speedup had been produced through the parallelization of P-RnaPredict. 

A comparison between 10 known structures and those predicted by P-RnaPredict was 

conducted with the following sequences: Sulfolobus acidocaldarius (1494 nt, Table A.23), 

Homo sapiens (954 nt, Table A.6), Xenopus laevis (945 nt, Table 7.2), Drosophila virilis 
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(784 nt, Table 7.6), Caenorhabditis elegans (697 nt, Table 4.1), Acanthamoeba grifini (556 

nt, Table 4.2), Hildenbrandia rubra (543 nt, Table 4.3), Aureoumbra lagunensis (468 nt, 

Table A. l7), Haloarcula marismortui (122 nt, Table 4.4), and Saccharomyces cerevisiae 

(118 nt, Table 4.5). The five sequences analyzed and discussed in detail were Xenopus 

laevis, Drosophila virilis, Hildenbrandia rubra, Haloarcula marismortui, and Saccharomyces 

cerevisiae. Data for the other five sequences can be found in Appendix A. 

The results demonstrate that P-RnaPredict has a noteworthy competency in determining 

low AG structures. A clear correlation exists between a lower AG and the percentage of 

matching base pairs in the known structure. It was also determined that larger deme sizes 

had a significant impact on the results. This implies that P-RnaPredict can employ a larger 

overall population size to improve prediction quality and still retain a notable speedup. 

Lastly, non-canonical base pairs in naturally occurring structures cannot be modeled with 

current thermodynamic models. Overall, the prediction accuracy of P-RnaPredict is good, 

particularly so for shorter sequences. 

A series of comparisons were performed with the Nussinov DPA. The best Nussinov 

structures were compared against the averaged, best minimum free energy, and best overall 

P-RnaPredict structures. When considering the percentage of matching base pairs in the 

known structure, the average P-RnaPredict performance was dramatically better on 8 of the 

10 sequences. For both best minimum free energy and best overall structures, P-RnaPredict 

found a substantially higher percentage of matching base pairs than the Nussinov DPA on 

9 of the 10 sequences. When considering over-prediction, in all cases P-RnaPredict found a 

lower amount of false-positive base pairs than Nussinov. Thus, even though the Nussinov 

DPA was modified to support multiple base pair weightings, P-RnaPredict dramatically 

outperformed it. This important milestone clearly establishes the benefits of the free energy 

minimization method employed by P-RnaPredict against the Nussinov base pair maximiza- 

tion approach. 

When a similar comparison was performed with the mfold DPA, P-RnaPredict was found 

to perform comparably despite mfold's much more sophisticated thermodynamic models and 

comparatively greater developmental maturity. When comparing lowest energy structures 

on the five sequences reviewed in depth, P-RnaPredict was able to predict a higher percent- 

age of known base pairs than mfold on the Xenopus laevis, Drosophila virilis, and Hilden- 

brandia rubra sequences. P-RnaPredict tied the percentage of known base pairs with mfold 

on the Saccharomyces cerevisiae sequence. P-RnaPredict also predicted fewer false-positive 



CHAPTER 10. CONCLUSION 116 

base pairs on the Hildenbrandia rubra and Saccharomyces cerevisiae sequences, performing 

comparably to mfold on the other three. Comparable performance was also seen on the 

five sequences reviewed in Appendix A. For longer sequences, the prediction accuracy of 

P-RnaPredict drops; mfold also suffers from this problem. This can be attributed largely to 

limitations of the thermodynamic model regarding its ability to model global interactions 

as the structures grow larger, and is an issue from which all minimum free energy prediction 

algorithms suffer. Given the extensive prior development time and refinement of mfold's 

thermodynamic model, P-RnaPredict was still able to offer a comparable performance in 

terms of solution quality despite its relative novelty. 

Overall, the prediction accuracy of P-RnaPredict is good, particularly so for shorter 

sequences. With the 118 nt Saccharomyces cerevisiae sequence, P-RnaPredict was able 

to predict up to 89.2% of the known base pairs. Given the rigid constraints of its helix 

generation algorithm and thermodynamic models, significant achievements were made in 

comparison to other established RNA structure prediction algorithms. 

10.1 Future Work 

Future work may involve four important subproblems as suggested by my prior research. 

They are as follows: 

First, P-RnaPredict's method of helix generation results in predicted structures with 

reduced accuracy when compared with known structures determined by comparative meth- 

ods. The GA employs a nearest-neighbour thermodynamic model in its fitness function, 

INN-HB [I051 which accounts for varying terminal base-pairs in a given helix. Currently, 

P-RnaPredict will always generate a helix which includes all possible stacked complemen- 

tary base pairs. However, the helices in known structures examined to date do not always 

include all complementary base pairs. Modifying the helix generation algorithm to produce 

partially complete helices would enable the fitness function to discriminate between par- 

tially complete helices and thus would greatly improve the GA's accuracy. One caveat is 

that generating every single possible partially complete helix would make the search space 

far too large; a reasonable threshold must be found. 

Another problem lies in the thermodynamic models themselves. As mentioned, the 

nearest-neighbour models the GA employs result in a much higher matching base-pair ac- 

curacy than the original simple hydrogen bond weighting which was first used. However, 
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when the correlation between the free energy of a given structure and the matching base- 

pair percentage is examined, it varies considerably depending on the tested RNA sequence. 

Also, quite often a given sequence may produce many structures possessing dissimilar base 

pairs but identical free energy values. One strategy to employ to resolve this issue is to use 

more detailed thermodynamic models to differentiate these structures in the fitness func- 

tion. To reduce computational complexity these advanced models can be employed on a 

subset of the population, only when the free energy of the GA population has converged to 

a prespecified degree. A similar technique is employed in the DP application mfold [55], 

whereby predicted structures are reevaluated with a more complex thermodynamic model 

( efn2 ). 
A significant challenge is the modeling of non-canonical base pairs. These are an im- 

portant part of many RNA structures, and incorporating them into the helix generation 

algorithm would improve P-RnaPredict's results by a large margin. An important caveat 

is that this would also dramatically increase the size of the search space generated by P- 

RnaPredict. 

The last problem I will examine is that of predicting pseudoknots. Pseudoknots are a 

type of RNA substructure which occurs when bases inside a hairpin loop pair with bases 

outside the loop, and they are important for a number of RNA functions. Although the 

GA has the ability to predict pseudoknots, it currently overpredicts them by a wide margin 

because there is no thermodynamic penalty in the fitness function for scoring them. I intend 

to analyze data on known pseudoknotted structures in order to explicitly model them [49] 

and thus to incorporate their prediction into the GA. 
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Data for other sequences 

A. l  Acantharnoeba grimni - 556 nt 

Details for this sequence may be found in Table 4.2. 

Table A.l: Comparison of average lowest AG P-RnaPredict structures with the known 
Acanthamoeba g ~ f i n i  structure. Results are grouped by thermodynamic model. Each row 
represents an experiment consisting of 30 averaged runs. The known structure contains 131 
base pairs. 
AG Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) (%) 
-200.24 164.3 48.0 36.6 OX2 100 10 INNHB 
-194.21 161.6 40.5 30.9 CX 100 10 INNHB 
-193.77 159.9 40.6 31.0 OX2 70 10 INNHB 
-192.99 159.9 41.6 31.7 OX2 50 14 INNHB 
-189.35 158.6 38.3 29.3 CX 70 10 INNHB 
-188.29 157.6 35.3 26.9 CX 50 14 INNHB 
-182.2 164.2 38.7 29.5 OX2 100 10 INN 
-179.5 162.4 36.8 28.1 OX2 70 10 INN 
-177.4 161.0 42.2 32.2 CX 100 10 INN 
-177.4 163.7 38.7 29.5 OX2 50 14 INN 
-173.2 161.3 32.6 24.9 CX 50 14 INN 
-172.8 160.2 36.4 27.8 CX 70 10 INN 
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Table A.2: Comparison of the best single run's lowest AG P-RnaPredict structure with 
the known Acanthamoeba grifini structure. Results are grouped by thermodynamic model. 
The known structure contains 131 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) 
-208.36 1 677 167 54 41.2 OX2 100 10 INNHB 
-204.54 1 671 167 46 35.1 CX 100 10 INNHB 
-204.39 1 677 173 50 38.2 CX 50 14 INNHB 
-202.41 1 392 165 60 45.8 OX2 70 10 INNHB 
-202.64 1 377 158 34 26.0 OX2 50 14 INNHB 
-199.84 1 452 161 37 28.2 CX 70 10 INNHB 
-193.5 1 29 1 173 58 44.3 OX2 100 10 INN 
-191.5 1 632 163 42 32.1 CX 100 10 INN 
-190.5 1 64 1 169 30 22.9 OX2 70 10 INN 
-190.7 1 562 172 76 58.0 OX2 50 14 INN 
-189.3 1 481 169 45 34.4 CX 50 14 INN 
-187.4 1 396 166 50 38.2 CX 70 10 INN 

Table A.3: Single run with the highest number of correctly predicted base pairs of Acan- 
thamoeba grifini, regardless of free energy. Results are grouped by thermodynamic model. 
The known structure contains 131 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
/ 
mol) 
-202.41 2 506.5 166.5 60 45.8 OX2 70 10 INNHB 
-202.20 1 357 176 76 58.0 CX 100 10 INNHB 
-198.18 1 555 164 79 60.3 OX2 100 10 INNHB 
-194.05 1 659 157 64 48.9 CX 50 14 INNHB 
-192.77 1 459 157 79 60.3 CX 70 10 INNHB 
-192.99 1 673 167 6 1 46.6 OX2 50 14 INNHB 
-187.8 1 557 170 78 59.5 OX2 50 14 INN 
-183.9 1 405 164 65 49.6 OX2 100 10 INN 
-181.5 1 689 169 53 40.5 CX 50 14 INN 
-181.2 1 477 162 5 1 38.9 OX2 70 10 INN 
-179.1 1 355 169 66 50.4 CX 70 10 INN 
-176.3 1 528 160 64 48.9 CX 100 10 INN 
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Table A.4: Acanthamoeba grifini, Nussinov results. Number of known base pairs is 131. 

DPA Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%) 
1:l:l 215 40 30.5 
3:2:1 208 37 28.2 
3:2:2 214 48 36.6 

Table A.5: Acanthamoeba grifini, mfold results. Number of known base pairs is 131. 

mfold AG efn2 AG Predicted BP Correctly % Correctly 
(kcal / mol) (kcal / mol) Predicted BP Predicted 
-193.0 -179.03 172 67 51.1 
-192.7 -182.60 173 62 47.3 
-191.8 -177.46 175 56 42.7 
-190.3 -177.40 172 56 42.7 
-190.3 -171.34 1 70 59 45.0 
-189.9 -181.63 175 63 48.1 
-189.6 -178.83 172 69 52.7 
-188.7 -182.67 171 64 48.9 
-188.3 -174.90 1 74 9 5 72.5 
-188.2 -174.92 173 53 40.5 
-187.8 -181.91 177 63 48.1 
-187.4 -170.18 168 52 39.7 
-187.2 -180.14 173 90 68.7 
-187.0 -173.47 169 89 67.9 
-186.6 -170.97 173 67 51.1 
-186.3 -167.52 165 44 33.6 
-184.1 -173.14 177 63 48.1 
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A.2 Homo sapiens - 954 nt 

Table A.6: Homo sapiens details, taken from the Comparative RNA Web Site [4] 
1 Filename d. 16.m.H.sapiens.bpseq 

2 

Organism Homo sapiens 
Accession Number 501415 
Class 16s rRNA 
Length 954 nucleotides 
# of BPS in known structure 266 
& of non-canonical base   airs 30 

Table A.7: Comparison of average lowest AG P-RnaPredict structures with the known Homo 
sapiens structure. Results are grouped by thermodynamic model. Each row represents an 
experiment consisting of 30 averaged runs. The known structure contains 266 base pairs. 
AG Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) (%) 
-275.72 239.3 48.9 18.4 OX2 100 10 INNHB ' 
-269.40 237.5 44.5 16.7 OX2 70 10 INNHB 
-267.95 237.5 42.8 16.1 OX2 50 14 INNHB 
-264.82 234.3 39.9 15.0 CX 100 10 INNHB 
-258.78 232.1 39.4 14.8 CX 70 10 INNHB 
-254.71 230.5 32.7 12.3 CX 50 14 INNHB 
-265.9 243.7 40.4 15.2 OX2 100 10 INN 
-259.4 240.5 40.7 15.3 CX 100 10 INN 
-258.4 238.8 42.5 16.0 OX2 70 10 INN 
-256.5 238.4 40.0 15.0 OX2 50 14 INN 
-251.4 237.7 34.4 12.9 CX 70 10 INN 
-249.8 236.3 36.0 13.5 CX 50 14 INN 
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Table A.8: Comparison of the best single run's lowest AG P-RnaPredict structure with the 
known Homo sapiens structure. Results are grouped by thermodynamic model. The known 
structure contains 266 base pairs. 
AG F'req. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) 
-293.56 1 649 253 66 24.8 OX2 100 10 INNHB 
-293.37 1 699 240 4 1 15.4 OX2 70 10 INNHB 
-287.73 1 519 24 1 79 29.7 OX2 50 14 INNHB 
-284.21 1 617 248 32 12.0 CX 50 14 INNHB 
-278.41 1 66 1 240 18 6.8 CX 70 10 INNHB 
-276.85 1 680 235 43 16.2 CX 100 10 INNHB 
-282.8 1 683 25 1 52 19.5 OX2 100 10 INN 
-277.5 1 689 246 46 17.3 OX2 50 14 INN 
-276.4 1 687 244 69 25.9 OX2 70 10 INN 
-274.9 2 457.0 240.5 46.5 17.5 CX 100 10 INN 
-271.8 1 526 248 31 11.7 CX 70 10 INN 
-270.5 1 671 244 44 16.5 CX 50 14 INN 

Table A.9: Single run with the highest number of correctly predicted base pairs of Homo 
sapiens, regardless of free energy. Results are grouped by thermodynamic model. The 
known structure contains 266 base pairs. 
AG F'req. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) 
-287.73 1 519 24 1 79 29.7 OX2 50 14 INNHB 
-278.01 1 65 1 239 71 26.7 OX2 100 10 INNHB 
-273.36 1 607 227 92 34.6 OX2 70 10 INNHB 
-270.91 1 423 240 72 27.1 CX 100 10 INNHB 
-267.19 1 698 241 72 27.1 CX 70 10 INNHB 
-251.05 1 440 228 53 19.9 CX 50 14 INNHB 
-271.7 1 668 25 1 59 22.2 OX2 100 10 INN 
-270.7 1 664 244 73 27.4 OX2 50 14 INN 
-269.5 1 670 238 73 27.4 CX 70 10 INN 
-268.0 1 546 242 65 24.4 CX 100 10 INN 
-264.8 1 508 243 71 26.7 OX2 70 10 INN 
-246.8 1 690 238 67 25.2 CX 50 14 INN 
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Table A.lO: Homo sapiens, Nussinov results. Number of known base pairs is 266. 

DPA Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%) 
1:l: l  342 33 12.4 
3:2:1 333 22 8.2 
3:2:2 339 32 12.0 

Table A . l l :  Homo sapiens, mfold results. Number of known base pairs is 266. 

mfold AG efn.2 AG Predicted BP Correctly % Correctly 
(kcal / mol) (kcal / mol) Predicted BP Predicted 
-250.9 -217.20 258 95 35.7 
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A.3 Caenorhabditis elegans - 697 nt 

Details for this sequence may be found in Table 4.1. 

Table A.12: Comparison of average lowest AG P-RnaPredict structures with the known 
Caenorhabditis elegans structure. Results are grouped by thermodynamic model. Each row 
represents an experiment consisting of 30 averaged runs. The known structure contains 189 
base pairs. 
AG Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) ('m 
-167.38 208.4 25.4 13.5 OX2 100 10 INNHB 
-161.50 205.6 26.8 14.2 OX2 70 10 INNHB 
-160.24 203.3 25.0 13.2 CX 100 10 INNHB 
-159.65 203.4 22.4 11.9 OX2 50 14 INNHB 
-156.37 202.1 25.6 13.6 CX 50 14 INNHB 
-153.21 199.4 22.3 11.8 CX 70 10 INNHB 
-149.4 203.4 30.5 16.1 OX2 100 10 INN 
-145.5 203.9 30.7 16.3 OX2 70 10 INN 
-143.7 199.1 26.8 14.2 CX 100 10 INN 
-141.4 202.1 26.5 14.0 OX2 50 14 INN 
-140.1 199.2 25.2 13.4 CX 70 10 INN 
-137.9 197.9 28.8 15.2 CX 50 14 INN 
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Table A.13: Comparison of the best single run's lowest AG P-RnaPredict structure with 
the known Caenorhabditis elegans structure. Results are grouped by thermodynamic model. 
The known structure contains 189 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
1 (%) 
mol) 
-176.96 1 442 208 35 18.5 OX2 100 10 INNHB 
-176.9 1 488 204 30 15.9 OX2 70 10 INNHB 
-173.32 1 307 212 27 14.3 CX 100 10 INNHB 
-172.35 1 593 204 28 14.8 CX 50 14 INNHB 
-170.67 1 347 203 38 20.1 OX2 50 14 INNHB 
-169.94 1 661 197 36 19.0 CX 70 10 INNHB 
-161.0 1 457 211 35 18.5 OX2 70 10 INN 
-160.2 1 680 208 34 18.0 OX2 100 10 INN 
-156.7 1 666 192 29 15.3 CX 100 10 INN 
-154.2 1 459 206 24 12.7 OX2 50 14 INN 
-150.7 1 610 206 54 28.6 CX 50 14 INN 
-150.1 1 495 20 1 35 18.5 CX 70 10 INN 
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Table A.14: Single run with the highest number of correctly predicted base pairs of 
Caenorhabditis ekgans,  regardless of free energy. Results are grouped by thermodynamic 
model. The known structure contains 189 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
1 
mol) 
-171.50 1 201 211 44 23.3 OX2 100 10 INNHB 
-168.29 1 65 1 208 38 20.1 OX2 70 10 INNHB 
-164.05 1 336 205 46 24.3 CX 50 14 INNHB 
-163.42 1 513 204 4 1 21.7 CX 100 10 INNHB 
-163.14 1 390 203 40 21.2 OX2 50 14 INNHB 
-152.03 2 419.00 203.50 38 20.1 CX 70 10 INNHB 
-157.7 1 632 207 46 24.3 OX2 100 10 INN 
-150.7 1 610 206 54 28.6 CX 50 14 INN 
-141.4 1 542 204 38 20.1 OX2 50 14 INN 
-138.9 2 313.0 191.5 40 21.2 CX 100 10 INN 
-137.9 1 484 193 36 19.0 CX 70 10 INN 
-134.1 1 507 202 56 29.6 OX2 70 10 INN 

Table A.15: Caenorhabditis elegans, Nussinov results. Number of known base pairs is 189. 

DPA Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP 
1:l:l 284 10 5.2 
3:2:1 275 20 10.5 
3:2:2 281 26 13.7 
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Table A.16: Caenorhabdztis elegans, mfold results. Number of known base pairs is 189. 

mfold AG efn2 AG Predicted BP Correctly % Correctly 
(kcal / mol) (kcal / mol) Predicted BP Predicted 
-142.1 -125.22 217 40 21.2 
-141.3 -123.20 219 32 16.9 
-141.2 -124.04 216 40 21.2 
-140.6 -124.20 211 40 21.2 
-137.9 -126.18 221 25 13.2 
-137.6 -121.46 219 25 13.2 
-137.5 -123.11 216 40 21.2 
-137.3 -121.59 213 40 21.2 
-137.0 -122.10 211 20 10.6 
-136.8 -123.68 212 37 19.6 
-136.4 -118.90 211 27 14.3 
-136.2 -126.56 221 25 13.2 
-136.2 -128.97 216 20 10.6 
-136.1 -115.94 200 27 14.3 
-135.9 -117.46 206 32 16.9 
-135.7 -120.06 208 35 18.5 
-135.5 -118.87 206 27 14.3 
-135.5 -120.81 216 37 19.6 
-135.4 -122.56 218 35 18.5 
-135.1 -125.99 213 20 10.6 
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A.4 Aureoumbra lagunensis - 468 nt 

Table A.17: Aureoumbra lagunensis details, taken from the Comparative RNA Web Site 141 
I Filename b.I1.e.A.lagunensis.C1.SSU.516.bpseq 

Organism Aureoumbra lagunensis 
Accession Number U40258 
Class Group I intron, 16s rRNA 
Length 468 nucleotides 
# of BPS in known structure 113 
# of non-canonical base pairs 4 

Table A.18: Comparison of average lowest AG P-RnaPredict structures with the known 
Aureoumbra lagunensis structure. Results are grouped by thermodynamic model. Each 

- - 

row represents an experiment consisting of 30 averaged runs. The known structure contains 
113 base pairs. 
AG Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal / BPS BPS BPS Size Count 
mol) (%I 
-175.35 129.8 47.6 42.2 OX2 100 10 INNHB 
-173.36 128.3 43.7 38.6 OX2 70 10 INNHB 
-171.66 129.6 44.5 39.4 CX 100 10 INNHB 
-170.36 127.1 42.0 37.2 OX2 50 14 INNHB 
-166.29 127.5 40.1 35.5 CX 50 14 INNHB 
-165.80 126.9 38.3 33.9 CX 70 10 INNHB 
-170.0 129.9 42.5 37.6 OX2 100 10 INN 
-167.1 128.4 40.5 35.8 OX2 70 10 INN 
-165.8 129.2 39.3 34.7 CX 100 10 INN 
-165.5 127.3 37.5 33.2 OX2 50 14 INN 
-162.7 127.4 38.4 34.0 CX 50 14 INN 
-161.3 125.7 34.2 30.3 CX 70 10 INN 
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Table A.19: Comparison of the best single run's lowest AG P-RnaPredict structure with the 
known Aureoumbra lagunensis structure. Results are grouped by thermodynamic model. 
The known structure contains 113 base pairs. 
AG F'req. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
/ 
mol) 
-182.06 1 348 137 51 45.1 CX 100 10 INNHB 
-182.06 1 145 137 51 45.1 OX2 70 10 INNHB 
-182.06 4 367.8 137.0 51.0 45.1 OX2 100 10 INNHB 
-182.06 1 509 137 51 45.1 CX 70 10 INNHB 
-181.81 1 141 141 5 1 45.1 CX 50 14 INNHB 
-181.40 1 578 132 5 7 50.4 OX2 50 14 INNHB 
-179.4 1 528 134 53 46.9 OX2 70 10 INN 
-179.4 2 560.0 134.0 53.0 46.9 OX2 100 10 INN 
-179.4 2 408.0 134.0 53.0 46.9 CX 100 10 INN 
-177.8 1 387 138 56 49.6 CX 50 14 INN 
-177.6 1 122 135 47 41.6 OX2 50 14 INN 
-177.6 1 26 1 135 47 41.6 CX 70 10 INN 
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Table A.20: Single run with the highest number of correctly predicted base pairs of Aure- 
oumbra lagunensis, regardless of free energy. Results are grouped by thermodynamic model. 
The known structure contains 113 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
/ 
mol) 
-180.47 1 103 127 64 56.6 OX2 70 10 INNHB 
-177.10 1 699 131 72 63.7 OX2 100 10 INNHB 
-177.06 1 618 131 70 61.9 CX 100 10 INNHB 
-176.83 1 650 132 73 64.6 CX 70 10 INNHB 
-175.82 1 632 130 68 60.2 OX2 50 14 INNHB 
-169.24 1 698 121 70 61.9 CX 50 14 INNHB 
-177.1 1 419 133 7 1 62.8 OX2 70 10 INN 
-174.4 1 299 134 62 54.9 CX 100 10 INN 
-172.0 1 371 131 66 58.4 CX 70 10 INN 
-169.2 1 606 130 71 62.8 OX2 100 10 INN 
-168.7 1 34 1 123 58 51.3 OX2 50 14 INN 
-163.4 1 377 126 71 62.8 CX 50 14 INN 

Table A.21: Aureoumbm lagunensis, Nussinov results. Number of known base pairs is 113. 

DPA Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP 
1:l:l 173 27 23.8 
3:2:1 168 9 7.9 
3:2:2 172 30 26.5 
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Table A.22: Aureoumbra lagunensis, mfold results. Number of known base pairs is 113. 

mfold AG efn2 AG Predicted BP Correctly % Correctly 
(kcal / mol) (kcal / mol) Predicted BP Predicted 
-160.1 -142.35 128 60 53.1 
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A.5 Sulfolobus acidocaldarius - 1494 nt 

Table A.23: Sul fo lobu~ acidocaldarius details, taken from the Comparative RNA Web Site [4] 
Filename d.16.a.S.acidocaldarius.bpseq 
Organism Sulfolobus acidocaldarius 
Accession Number Dl4876 
Class 16s rRNA 
Length 1494 nucleotides 
# of BPS in known structure 468 
# of non-canonical base pairs 22 

Table A.24: Comparison of average lowest AG P-RnaPredict structures with the known 
Sulfolobus acidocaldarius structure. Results are grouped by thermodynamic model. Each 
row represents an experiment consisting of 30 averaged runs. The known structure contains 
468 base pairs. 
AG Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
mol) (%I 
-663.15 426.9 98.5 21.0 OX2 100 10 INNHB 
-639.60 423.8 83.2 17.8 OX2 70 10 INNHB 
-631.53 417.5 83.1 17.7 CX 100 10 INNHB 
-626.80 416.0 74.8 16.0 OX2 50 14 INNHB 
-602.46 409.0 66.5 14.2 CX 70 10 INNHB 
-593.32 408.5 56.2 12.0 CX 50 14 INNHB 
-621.6 431.2 91.5 19.6 OX2 100 10 INN 
-602.8 421.5 76.9 16.4 OX2 70 10 INN 
-591.9 417.9 73.7 15.8 OX2 50 14 INN 
-587.1 417.2 76.8 16.4 CX 100 10 INN 
-569.5 410.0 67.0 14.3 CX 70 10 INN 
-554.5 404.9 58.9 12.6 CX 50 14 INN 
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Table A.25: Comparison of the best single run's lowest AG P-RnaPredict structure with the 
known Sulfolobvs acidocaldarivs structure. Results are grouped by thermodynamic model. 
The known structure contains 468 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 

/ (%) 
mol) 
-720.52 1 684 447 159 33.9 OX2 100 10 INNHB 
-691.91 1 643 433 114 24.4 CX 100 10 INNHB 
-691.64 1 684 439 130 27.8 OX2 70 10 INNHB 
-678.59 1 681 434 75 16.0 OX2 50 14 INNHB 
-645.60 1 677 419 91 19.4 CX 70 10 INNHB 
-640.60 1 684 436 96 20.5 CX 50 14 INNHB 
-666.7 1 636 442 90 19.2 OX2 100 10 INN 
-648.6 1 681 435 136 29.1 OX2 50 14 INN 
-641.7 1 682 419 94 20.1 CX 100 10 INN 
-637.3 1 581 434 119 25.4 OX2 70 10 INN 
-613.6 1 626 435 96 20.5 CX 70 10 INN 
-595.0 1 697 419 9 5 20.3 CX 50 14 INN 
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Table A.26: Single run with the highest number of correctly predicted base pairs of Sulfolobus 
acidocaldarius, regardless of free energy. Results are grouped by thermodynamic model. The 
known structure contains 468 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Deme Deme Model 
(kcal BPS BPS BPS Size Count 
/ (%) 
mol) 
-720.52 1 684 447 159 34.0 OX2 100 10 INNHB 
-691.91 1 643 433 114 24.4 CX 100 10 INNHB 
-691.64 1 684 439 130 27.8 OX2 70 10 INNHB 
-675.10 1 695 430 111 23.7 OX2 50 14 INNHB 
-644.97 1 688 417 115 24.6 CX 70 10 INNHB 
-640.60 1 684 436 96 20.5 CX 50 14 INNHB 
-648.6 1 681 435 136 29.1 OX2 50 14 INN 
-647.6 1 681 432 124 26.5 OX2 100 10 INN 
-637.3 1 581 434 119 25.4 OX2 70 10 INN 
-636.7 1 689 445 134 28.6 CX 100 10 INN 
-602.5 1 664 412 108 23.1 CX 70 10 INN 
-581.7 1 671 418 104 22.2 CX 50 14 INN 

Table A.27: Sulfolobus acidocaldarius, Nussinov results. Number of known base pairs is 468. 

DPA Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%) 
1:l:l 584 187 39.9 
3:2:1 570 143 30.5 
3:2:2 582 187 39.9 
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Table A.28: Sulfolobus acidocaldarius, mfold results. Number of known base pairs is 468. 

mfold AG efn2 AG Predicted BP Correctly % Correctly 
(kcal / mol) (kcal / mol) Predicted BP Predicted 
-822.9 -781.20 494 261 55.8 
-821.8 -773.67 493 24 3 51.9 
-821.3 -787.66 496 266 56.8 
-820.6 -777.39 496 2 71 57.9 
-817.5 -766.00 493 240 51.3 
-816.7 -779.52 487 270 57.7 
-816.6 -766.23 495 285 60.9 
-816.1 -774.22 485 247 52.8 
-815.7 -779.32 494 243 51.9 
-815.6 -779.82 492 237 50.6 
-815.2 -776.33 489 249 53.2 
-814.8 -761.41 491 230 49.1 
-814.5 -768.46 495 243 51.9 
-813.9 -762.55 491 229 48.9 
-813.5 -772.38 490 254 54.3 
-813.0 -783.78 489 24 1 51.5 
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A.6 Over-prediction of base pairs 

This section will compare structures predicted by P-RnaPredict, Nussinov, and mfold for 

all sequences in terms of total false-positive base pairs. 

Table A.29: Comparison between the number of false predictions between best results, in 
terms of correctly predicted base pairs, from the Nussinov DPA and the best experiments, 
in terms of minimum free energy, from P-RnaPredict 
Sequence DPA DPA GA over- DPA GA Corr. Cross.- 

A. la- 
gunensis 
C. elegans 

D. virilis 

H. maris- 
mortui  
H. rubra 

H. sapiens 

S. cere- 
visiae 

S. acido- 
caldarius 
X.  laevis 

Weights over- pred. 
pred. 

Corr. 
BPS 

Deme 
Size- 
Deme 
Count- 
Model 
ox2-100- 
10-INNHB 
ox2-100- 
10-INNHB 
ox2-100- 
10-INN 
0 x 2 -  100- 
10-INN 
ALL-ALL- 
ALL-ALL 
0 x 2 -  100- 
10-INNHB 
ox2-100- 
10-INNHB 
ALL- 
ALL-ALL- 
INNHB 
ox2-100- 
10-INNHB 
OX2-100- 
10-INNHB 
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Table A.30: Comparison between the number of false predictions between best results, in 
terms of correctly predicted base pairs, from the Nussinov DPA and the single lowest energy 
runs with P-RnaPredzct 
Sequence DPA DPA GA over- DPA GA Corr. Cross.- 

Weights over- pred. Corr. BPS Deme 
pred. BPS Size- 

Deme 
Count- 
Model 

A. grifinz 3:2:2 166 115 48 58 OX2-100- 
10-INN 

A. la- 3:2:2 142 8 1 30 53 OX2-70- 
gunensis 10-INN 
C. elegans 3:2:2 281 173 26 35 OX2-100- 

10-INNHB 
D.virilzs 1:l:l 291 203 29 49 OX2-100- 

10-INNHB 
H. maris- 1:l:l 37 17 8 16 ALL-ALL- 
mortui ALL-ALL 
H. rubra 3:2:1 1 74 113 31 53 CX-100- 

10-INNHB 
H. sapiens 1:l:l  309 187 33 66 OX2-100- 

10-INNHB 
S. cere- 1:l:l 17 6 28 33 ALL- 
visiae ALL-ALL- 

INNHB 
S. acido- 3:2:2 395 288 187 159 OX2-100- 
caldarzus 10-INNHB 
X. laevis 3:2:1 286 158 47 100 OX2-100- 

10-INN 
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Table A.31: Comparison between the number of false predictions between best results, in 
terms of correctly predicted base pairs, from the Nussinov DPA and the runs predicting the 
highest number of known base pairs with P-RnaPredict 
Sequence DPA DPA GA over- DPA GA Corr. Cross.- 

Weights 

A. la- 3:2:2 
gunensis 
C. elegans 3:2:2 

H. maris- 1:l:l 
mortui  
H. rubra 3:2:1 

H. sapiens 1:l:l 

S. cere- 1:l:l 
visiae 

S. acido- 3:2:2 
caldarius 
X.  laevis 3:2:1 

over- 
pred. 

pred. Corr. 
BPS 

Deme 
Size- 
Deme 
Count- 
Model 
CX-70- 10- 
INNHB 
CX-70-10- 
INNHB 
OX2-70- 
10-INN 
CX-100- 
10-INN 
ALL-ALL- 
ALL-ALL 
0 x 2 -  100- 
10-INNHB 
OX2-70- 
10-INNHB 
ALL- 
ALL-ALL- 
INNHB 
ox2-100- 
10-INNHB 
OX2-100- 
10-INN 
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Table A.32: Comparison between the number of false predictions between lowest energy 
structure found with the mfold DPA and the overall lowest energy single P-RnaPredict runs 
Sequence DPA over- GA over- DPA Corr. GA Corr. Cross.- 

pred. pred. BPS BPS Deme 
Size-Deme 
Count- 
Model 

A. grifini 105 115 6 7 58 OX2-100-10- 
INN 

A. lagunen- 68 81 60 53 OX2-70-10- 
sis INN 
C. elegans 177 173 40 35 OX2-100-10- 

INNHB 
D. virilis 199 203 37 49 OX2-100-10- 

INNHB 
H. maris- 5 17 29 16 ALL-ALL- 
mortui ALL-ALL 
H. rubra 127 113 49 53 CX-100-10- 

INNHB 
H. sapiens 163 187 95 66 OX2-100-10- 

INNHB 
S. acidocal- 233 288 26 1 159 0X2-100-10- 
darius INNHB 
S. cerevisiae 8 6 33 33 ALL-ALL- 

ALL-INNHB 
X. laevis 157 158 92 100 OX2-100-10- 

INN 
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Table A.33: Comparison between the number of false predictions between best structure 
with the mfold DPA and the overall best single structure found with P-RnaPredict 
Sequence DPA over- GA over- DPA Corr. GA Corr. Cross.- 

pred. pred. BPS BPS Deme 
Size-Deme 
Count- 
Model 

A. grifini 79 78 95 79 CX-70-10- 
INNHB 

A. lagunen- 59 59 74 73 CX-70-10- 
sis INNHB 
C. elegans 177 146 40 56 OX2-70-10- 

INN 
D. virilis 170 168 82 66 CX-100-10- 

INN 
H. maris- 5 17 29 16 ALL-ALL- 
mortui ALL-ALL 
H. mbra 84 88 83 71 OX2-100-10- 

INNHB 
H. sapiens 163 135 95 92 0x2-70- 10- 

INNHB 
S. acidocal- 225 288 271 159 OX2-100-10- 
darius INNHB 
S. cerevisiae 8 6.00 33 33 ALL-ALL- 

ALL-INNHB 
X. laevis 132 158 113 100 OX2-100-10- 

INN 
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