
ONLINE OUTLIER DETECTION OVER DATA STREAMS

Hongyin Cui
B.Sc., Simon Fraser University, 2002

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the School
0 f

Computing Science

OHongyin Cui 2005

SIMON FRASER UNIVERSITY

Fall 2005

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of Thesis:

Hongyin Cui

Master of Science

Online Outlier Detection Over Data Streams

Examining Committee:

Chair: Qianping Gu
Professor of School of Computing Science

Dr. Martin Ester
Senior Supervisor
Associate Professor of School of Computing Science

Dr. Jian Pei
Supervisor
Assistant Professor of School of Computing Science

Dr. Jiangchuan Liu
Examiner
Assistant Professor of School of Computing Science

Date DefendedIApproved: k- 112005

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesislproject or extended essays, if technically possible,
to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

ABSTRACT

Outlier detection is an important data mining task. Recently, online discovering

outlier under data stream model has attracted attention for many emerging applications,

such as network intrusion detection. Because the algorithms on data streams are

restricted to fulfil their works with only one pass over data sets and limited resources, it is

a very challenging problem to detect outliers over streams.

In this paper, we present an unsupervised outlier detection approach to online

network intrusion detection over data streams. Our method continuously maintains

online summary and obtains a set of clusters, and those small clusters far away from big

clusters are regarded as outlier clusters. We also propose a novel definition of outlier

degree to measure the outlying degree of each cluster. When a new data arrives, it is

considered as an outlier if it lies in the top-k outlier clusters.

Experiment results demonstrate the effectiveness of our method.

Keyword

Outlier detection, network intrusion detection, data mining, data stream

DEDICATION

To Andy

ACKNOWLEDGEMENTS

I would like to thank my senior supervisor, Dr. Martin Ester. He has provided me

with ideas, guidance and encouragement as a supervisor. He has also given me strength

and support in my most difficult time as a friend. I feel exceedingly appreciated to have

had his guidance and I owe him a great many heartfelt thanks.

I would also like to thank my supervisor, Dr. Jian Pei. His suggestions and input

are very helpful. Thank Dr. Jiangchuan Liu for being my examiner of this thesis.

My appreciation also goes to Heather Muckart for the administration procedure.

My deepest gratitude and appreciation is reserved for my parents, my wife and

other family members. To My beloved wife Ping Wang, thank you for your love and

unlimited support both on the study and on the daily life. You are my biggest treasure.

To my parents, thank you for your endless love, your help, your support and your

patience. Thank you for talung care of Andy in the period of my studying. To my

brother and sister in law, thank you for giving us both spiritual and financial support.

You make us feel that we are not alone here.

TABLE OF CONTENTS

. .
Approval ... 11

... ... Abstract 111

Dedication ... iv

Acknowledgements .. v

... Table of Contents vi
... List of Figures ... vlll

List of Tables .. ix

Glossary .. x

.. Chapter 1: Introduction 1
1.1 Background Information and Motivation .. 1

... 1.2 Contribution 5
... 1.3 Thesis Organization 5

Chapter 2: Related Work .. 7
2.1 Related Work on Mining Data Streams ... 7

.. 2.1.1 CluStream 7
.. 2.1.2 Grid-based Clustering 10

... 2.2 Related Work on Outlier Detection 12
... 2.2.1 Distance-based approach 12

.. 2.2.2 Local outlier (LOF) 14
.. 2.2.3 Cluster-based approach 17

2.3 A survey of network intrusion detection ... 18
.. 2.4 Summary 20

Chapter 3: Our Approach ... 21
3.1 Problem definition and basic idea ... 21

.. 3.2 Grid-based clustering algorithm 22
3.3 Outlier definition and outlier degree ... 24
3.4 Online outliers detection over data streams ... 29

Chapter 4: Evaluation ... 35
4.1 Data Set ... 35
4.2 Experiment design ... 37

... 4.3 Results 42
.. 4.4 Discussion 47

Chapter 5: Conclusion and Future Work .. 49
5.1 Summary of the Thesis .. 49
5.2 Future Work ... 50

Reference List ... 52

vii

LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3

Figure 2.4
Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6
Figure 3.7
Figure 3.8

Figure 4.1

Figure 4.2

Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

Figure 4.8

Figure 4.9
Figure 4.10

Figure 4.1 1
Figure 4.12
Figure 4.13
Figure 4.14

Partitioning Example .. 11
Pruning Example .. 11

.. Pseudo-Code for NL algorithm 13

reach.dist(pl. o) and reach.dist(pz. 0). for k = 4 .. 16
... An example in 2-D space 24

.. Boundary not exists 26
... Top-k outlier clusters 27

... An example of OD = 0 28

... An example of OD = 1 29

An example of data structures without merging .. 30
An example of data structures after merging ... 31

... The CBOD algorithm 32

Comparison of different a (Alpha) values ... 39

Comparison of different (3 (Beta) values .. 39
.. Comparison of different K values 40

Comparision of different X values ... 40

Comparison of Detection Rate (MM = 60) .. 42
Comparison of False Positive Rate (MM = 60) ... 43

Comparison of Detection Rate (MM = 100) .. 43

Comparison of False Positive Rate (MM= 100) .. 44

Comparison of Detection Rate (MM = 150) .. 44
Comparison of False Positive Rate (MM = 150) ... 45

Comparison of Detection Rate (MM = 200) .. 45
Comparison of False Positive Rate (MM = 200) ... 46
Comparison of Detection Rate (MM = all) .. 46
Com~arison of False Positive Rate (MM = all) ... 47

...
V l l l

LIST OF TABLES

... Table 4.1 Data distribution 36
... Table 4.2 Confusion Matrix 37

Table 4.3 Values of parameters in our algorithm ... 38
.. Table 4.4 Result Matrix 42

CHAPTER 1:INTRODUCTION

1.1 Background Information and Motivation

An outlier in a dataset is defined informally as an observation that is considerably

different from the remainder as if it is generated by a different mechanism. Outlier

detection is an important data mining research direction with numerous applications,

including credit card fraud detection, discovery of criminal activities in electronic

commerce, weather prediction, marketing and customer segmentation.

Recently, online discovering outliers under data stream model have attracted

attention for many emerging applications, such as network intrusion detection. With the

increased usage of computer networks, security becomes a critical issue. A network

intrusion can cause severe disruption to networks. Therefore the development of a robust

and reliable network intrusion detection system is increasingly important.

Traditional methods for intrusion detection employ signature-based detection.

These methods extract features from data streams, and detect intrusions by comparing the

feature values to a set of attack signatures provided by human experts. Such methods can

only detect previously known intrusions since these intrusions have a corresponding

signature. The signature database has to be manually revised for each new type of attack

that is discovered and until this revision, systems are vulnerable to these attacks.

Because of this, applying data mining techniques is a promising approach. In data

mining community, intrusion detection can be solved by outlier detection over data

streams.

A data stream is a massive unbounded sequence of data elements continuously

generated at a rapid rate. For many recent applications, the concept of data stream is

more appropriate than a dataset. By nature, a stored static dataset is an appropriate model

when significant portions of the data are queried again and again, and updates are

relatively infrequent. In contrast, a data stream is an appropriate model when a large

volume of data arriving continuously and it is either unnecessary or impractical to store

the data in some form of memory. Data streams are also appropriate as a model of access

to large datasets stored in secondary memory where performance requirements

necessitate linear scans [15].

Outlier detection has been widely studied in static data sets. Distance-based

outlier is first presented by Knorr and Ng [6]. A distance-based outlier in a dataset D is a

data object with at lease p% of the objects in D having a distance of more than d,, away

from it. It is further extended in [7] based on the distance of a point from its kth nearest

neighbour. All the data objects are ranked by the distance to their kt" nearest neighbour,

and the top-k data objects are identified as outliers. Alternatively, in the algorithm

proposed by Angiuli and Pizzuti [9], each data point is ranked by the sum of distances

from its k nearest neighbours. Distance-based outliers are meaningful and adequate

under certain conditions, but not satisfactory for the general case when clusters of

different densities exist.

To avoid the shortcomings in distance-based outlier definition, Breunig [8]

introduced the concept of "local outliers", which are the objects outlying relative to their

local neighbourhoods, particularly with respect to the densities of the neighbourhoods.

The outlier rank of a data object is determined by "local outlier factor (LOF)". Although

the concept of local outliers is a useful one, the computation of LOF value for every data

object requires a large number of k-nearest neighbours searches and can be

computationally expensive.

Agganval and Yu [lo] discussed a technique for outlier detection, which finds

outliers by observing the density distribution of projections from the data. That is, their

definition considers a point to be an outlier, if in some lower dimensional projection it is

present in a local region of abnormally low density. It also has an expensive

computation.

Clustering-based outlier detection techniques regard small clusters as outliers

[14]. It first performs fixed-width clustering over the points with a radius of w, and then

sort the clusters based on the size. The points in the small clusters are labelled as

outliers. This algorithm requires only one pass through the dataset.

Although outlier detection has been widely studied, however, there has not been

much research work conducted on detecting outliers in dynamic data streams, and most

existing methods are not appropriate in data stream environment.

In data mining community there has been some work addressing data streams, but

these proposals mainly solve the problems of clustering [I, 21, mining frequent patterns

[3, 41, data analysis and query processing [5] , and do not address the problem of online

outlier detection over data stream.

In the data stream model, data points can only be accessed in the order of their

arrivals and random access is disallowed. The space available to store information is

supposed to be small comparing to the huge size of the unbounded data streams. Thus,

the data mining algorithms on data streams are restricted to be able to fulfil their works

with only one pass over data sets and limited resources. In addition, outliers may be the

seeds of a new cluster and clusters may also become outliers in the course of the time.

The data distribution is dynamically changed over data streams. So it is a very

challenging problem to detect outliers in stream environment.

In this paper, we present an unsupervised outlier detection approach for online

network intrusion detection over the data streams. Our method continuously keeps online

summary and obtains a set of clusters over the data stream, and those small clusters far

away from big clusters are regarded as outlier clusters. We also propose a novel

definition of outlier degree to measure the outlying degree of each cluster. When a new

data arrives, it is considered as an outlier if it lies in the top-k outlier clusters.

For this application, we make the following assumptions:

Assumption 1 The majority of data in the stream are normal. Only a small

number of data are outliers [12].

Assumption 2 The outliers are statistically different from normal data [13].

These two assumptions are two different issues and both are important. If we

only have Assumption 1, outliers may have the similar or same behaviour of normal data.

With Assumption 2, we ensure that the outliers as a group must have a quite different

behaviour from normal data.

Since our approach aggregates the online summary of clusters in the data stream,

temporal decaying is not considered. Moreover, sparse data points between bursts that lie

in the same spatial cluster are not likely to be network attacks. Thus we won't consider

the time dimension in this thesis.

1.2 Contribution

This thesis makes the following contributions:

Propose a novel method for online outlier detection over data stream. Our

approach can immediately predict if a data object is an outlier, when it arrives.

Propose a novel definition for outlier: cluster-based outlier, which is natural

for data stream and has numerous applications, and introduce a corresponding

outlier degree measurement.

Present an efficient and effective grid-based online summarization algorithm

that successfully satisfies the requirement in run time complexity and memory

consumption for data stream.

Besides a binary detecting answer, provide more information or description

about outliers, such as the outlier degree, the means of outlier clusters, etc.

We evaluate our method using the 1999 KDD Cup data set, which is a very

popular and widely used intrusion attacks data set. Our result shows the very good

accuracy and recall.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

In Chapter 2, we provide an overview of related work systematically.

Chapter 3 defines the problem, and then presents our approach.

Chapter 4 describes the data set and discuss the experiment results.

In Chapter 5, we finally summarize our work and discuss future work.

CHAPTER 2:RELATED WORK

In this Chapter, we review several previous studies that are related to our work

technically. Section 2.1 presents some related work on mining data stream. Section 2.2

discusses several previous researches on outlier detection. Section 2.3 provides a survey

of network intrusion detection and existing solutions in network research area.

2.1 Related Work on Mining Data Streams

2.1.1 CluStream

This algorithm was introduced by Cham Agarwal, Jiawei Han and Philip Yu [I]

for clustering evolving data, which evolves considerably over time. The idea is divide

the clustering process into an online component that periodically stores detailed summary

statistics and an offline component that uses only this summary statistics.

We first begin by defining the concept of micro-clusters.

Definition 1 A micro-cluster for a set of d-dimensional points Xi, ... Xi, with

time stamps Til ... Tin is defined as the (2d + 3) tuple (CF2', CFIX, CF~ ' , CF~ ' , n),

where in CF2" and CFlx each correspond to a vector of d entries. The definition

of each of these entries is as follows:

For each dimension, the sum of the squares of the data values is

maintained in CF2". Thus, CF2' contains d values. The p-th entry of CF2"

is equal to zn (x:)~
1=1 J

For each dimension, the sum of the data values is maintained in CFlX.

Thus, CFIX contains d values. The p-th entry of CFlx is equal to xn xf .
1=1 J

The sum of the squares of the time stamps Til ... Tin is maintained in CFZ~.

The sum of the time stamps TL1 . . . Tin is maintained in C F ~ ~

The number of data points is maintained in n.

We note that the above definition is actually a cluster feature vector. The

summary information in it can be expressed in an additive way over the data points. In

another words, as a new data point come and is added into a micro-cluster, the feature

vector of the micro-cluster can be updated in an additive way.

Based on this definition, clustream algorithm assumes that a total of q micro-

clusters are maintained at any moment by the algorithm. The value of q is determined by

the amount of main memory available in order to store the micro-clusters. Typically, the

value of q is significantly greater than the number of clusters and smaller than the number

of data points in a massive data stream. The following is the basic steps of the algorithm.

First, store InitNumber data points at very beginning of the data stream and offline

create the initial q micro-clusters using k-means clustering algorithm.

When a new data point arrives, the micro-clusters are updated in order to reflect

the change. It either needs to be absorbed by a closest existing micro-cluster, or it needs

to be put in a cluster of its own if this data point does not lie within the maximum

boundary of the nearest micro-cluster. In the later case, a new micro-cluster must be

created, and two of the old micro-clusters are merged together to limit the memory

consumption.

The micro-clusters are stored at particular moments in the stream, which are

referred as snapshots. Given the time-horizon h and the number of clusters k by the user,

we can obtain a set of micro-clusters by S(t,) - S(tc- h'), where S(tc) is the snapshot at a

current clock time &, S(tc-h') is the snapshot just before the time t, - h, and h' is within a

pre-specified tolerance.

At last, k clusters are determined by using a modification of a k-means algorithm.

This algorithm gives the user the flexibility to explore stream clusters over

different time horizons. However, it also has the following shortages:

Each new data is either absorbed in an existing micro-cluster or put into a

new cluster of its own. After this, it will belong to this micro-cluster

forever and won't be reassigned to other micro-cluster, even though the

data distribution and micro-clusters' shape may change later.

Although this clustering algorithm can be modified to discovering outlier

clusters with the same definition and outlier degree measurement in our

approach, but its original task is to find clusters, the outliers are typically

ignored or tolerated in the clustering process for producing meaningful

clusters, which prevents giving good results on outlier detection. E.g.

outliers may be assigned to big clusters because of the above first

shortage, merging clusters and k-means clustering in the initial phase.

It is a two-phase algorithm. The statistical summary are collected and

stored in hard disk in first phase. Then it will do offline clustering and

evolution analysis. From this point, it is not a real-time online algorithm.

2.1.2 Grid-based Clustering

Park and Lee [2] proposed a statistical grid-based approach to cluster data

elements of a data stream. Initially, the data space is partitioned into a set of mutually

exclusive equal-size initial cells. When the support of a cell becomes greater or equal to

a predefined split support Ssplt, one dimension of the data space is chosen based on its

distribution statistics and the cell is dynamically divided into two mutually exclusive

intermediate cells, with respect to the selected dividing dimension. The distribution

statistics of each divided cell are estimated. Similarly, when an intermediate cell itself

becomes dense, it is partitioned by the same way. Eventually, a dense region of each

initial cell is recursively partitioned until it becomes the smallest cell called a unit cell. A

cluster in a data stream is a group of adjacent dense unit cells. Three partition methods

are proposed: p-partition (based on the average value), &partition (based on the standard

deviation) and hybrid-partition (select the more effective one).

During the partition, it only maintains two-level hierarchical structure. When

partitioning an initial cell g into gl and g2, gl and g2 are naturally the children of g. But

when an intermediate cell gl is divided into g3 and g4, gl is replaced by g3 and g4. Figure

2.1 shows this example with SVlt= 10.

Figure 2.1 Partitioning Example

rzq rnl

In this structure, it is very easy to prune an intermediate or unit cells whose

support is less than a predefined pruning support Spm. The cell is removed from the

second level and its distribution statistics are returned back to its parent initial cell. The

statistics of the parent cell is updated accordingly. Figure 2.2 shows a simple pruning

example based on Figure 2.1 with SP,= 3.

Figure 2.2 Pruning Example .

This approach can also adaptively adjust the memory usage by resizing the size h

of a unit cell dynamically. Given the value of A, if the confined memory space is full, all

unit cells are pruned and their distribution statistics are added to their parent initial cells

respectively. Similarly, those intermediate cells whose interval size in at least one

dimension is less than 2h are pruned by the same way. Subsequently, the value of h is

doubled and the normal operations of the proposed algorithm are resumed. Since the

value of h is doubled, the memory requirement of the proposed method is reduced while

its clustering accuracy is degraded.

This clustering algorithm can also be applied to discovering outlier clusters with

the same outlier definition and outlier degree measurement in our approach, but its top-

down partition property prevent giving a good results on outlier detection. In top-down

partition, the statistic summary can only be estimated. In addition, the distance between

two clusters can only be estimated too, since sparse outlier clusters may lie in a very big

rectangle.

2.2 Related Work on Outlier Detection

2.2.1 Distance-based approach

Knorr and Ng [6] proposed a distance-based approach to detect outliers in large

static datasets. A distance-based outlier in a dataset T is a data object with at lease p% of

the objects in T having a distance of more than D away from it. This definition is

formally defined as follows [6]:

An object 0 in a dataset T is a DB(p, D)-outlier if at least fraction p of the objects

in T lies greater than distance D from 0.

This definition is suitable for situations where the observed distribution does not

fit any standard distribution and relies on the computation of distance values.

For any dimensionality k>2, Knorr also presented a Nested-Loop (NL) algorithm

for finding all outliers. The algorithm is shown in Figure 2.3. Assuming a total buffer

size of B% of the dataset size, the algorithm divides the entire buffer space into two parts

called the first and second array. It reads the data into the arrays, and directly computes

pair-wised distances. For each object t in the first array, a count of its D-neighbours is

maintained. Counting stops for a particular tuple whenever the number of D-neighbours

exceeds M. The run time complexity is 0(kN2), where k and N are the dimensionality

and size of the dataset.

Figure 2.3 Pseudo-Code for NL algorithm

3 Vlrhilo bluclcs remain to be compared to the first array, do:

a. Fill the second array with an~ the r block [b u ~ $&vz/e a
block which lras never sea.& ns tkr first array, far
art).

b , For rm3-i unmarked tuple t , in ths first array do:

Fbr each tuple t2 in thc wcond s m q , if diwqt,,
$,I 5 0:

5. 1% t t ~ c second array h.w wrrcd its ahe fimr array anyelme
bcfurc, stop, otherwise, s w ~ p the names of the first aad
w o a d army and

This outlier definition is further extended in [7] based on the distance of a point

from its kch nearest neighbour. All the data objects are ranked by the distance to their kth

nearest neighbour, and the top-k data objects are identified as outliers. Alternatively, in

the algorithm proposed by Angiuli and Pizzuti [9], each data point is ranked by the sum

of distances from its k nearest neighbours.

However, for each data object, all these algorithms need a search for its

neighbours, which is infeasible in stream environment. Even though some clustering

algorithm over data streams can be used to approximate the neighbour search and

computation, the neighbours of each data point may change over time and some data

point not in the set of top-k outliers may become one of them later, but it has been thrown

away since the memory can not keep all the data points.

Moreover, the above outlier definition captures only certain kinds of outliers.

Because the definition takes a global view of the dataset, these outliers can be viewed as

"global" outliers [8]. However, for many real-world datasets, such as data streams,

which exhibit a more complex structure. Distance-based outliers are meaningful and

adequate under certain conditions, but not satisfactory for the general case when clusters

of different densities exist. This shortcoming is illustrated in details in [8].

2.2.2 Local outlier (LOF)

To avoid the shortcomings in distance-based outlier definition, Breunig [8]

introduced the concept of "local outliers", which are the objects outlying relative to their

local neighbourhoods, particularly with respect to the densities of the neighbourhoods.

The outlier rank of a data object is determined by "local outlier factor (LOF)". Before

introduce LOF, some notations are defined as follows.

k-distance of an object p [8]: For any positive integer k, the k-distance of object

p, denoted as k-distance(p), is defined as the distance d(p,o) between p and an

object o E D such that:

(i) for at least k objects O'E D \ {p) it holds that d(p,o') l d(p,o), and

(ii) for at most k-1 objects o' E D \ {p) it holds that d(p,oY) < d(p,o).

k-distance neighbourhood of an object p [8]: Given the k-distance of p, the k-

distance neighbourhood of p contains every object whose distance from p is not

greater than the k-distance, i.e. Nk-distance(p)(~) = { q E D\{p) I d(p, q) 5 k-

distance(p)) . These objects q are called the k-nearest neighbors of p.

reachability distance of an object p w.r.t. object o [8]: Let k be a natural

number. The reachability distance of object p with respect to object o is defined as

reach-distk(p, o) = max { k-distance(o), d(p, o)).

local reachability density of an object p [8]: The local reachability density of p

is defined as

where MinPts is the minimum number of objects.

Figure 2.4 illustrates the idea of reachability distance with k=4. Intuitively, the

local reachability density of an object p is the inverse of the average reachability distance

based on the MinPts-nearest neighbours of p.

Figure 2.4 reach-dist(pl, o) and reach-dist(p2, o), fork = 4

Based on above definitions, Local Outlier Factor (LOF) [8] of an object p is

defined as

The outlier factor of object p captures the degree to which we call p an outlier. It

is the average of the ratio of the local reachability density of p and those of p's MinPts-

nearest neighbours. It is easy to see that the lower p's local reachability density is, and the

higher the local reachability densities of p's MinPts-nearest neighbours are, the higher is

the LOF value of p.

Although the concept of local outliers is a useful one, the computation of LOF

values for every data objects requires a large number of k-nearest neighbours searches

and can be computationally expensive. This problem makes it infeasible in data stream

environment.

2.2.3 Cluster-based approach

To satisfy the requirements in the application of intrusion detection, Eskin, et al.

[14] investigated the effectiveness of a cluster-based algorithm to detect outliers in

feature spaces.

The goal of this approach is to compute how many points are "near" each point in

the feature space. For any pair of points xl and x2, they are considered "near" each other

if their distance is less than or equal to a fixed width w. Thus the number of points that

are within w of a point x is defined as follows:

The nalve computation of N(x) for all the points has a complexity of 0(n2) where

n is the size of the dataset. However, since the task is to identify the outliers, this

computation can be approximated. This approximation is implemented as follows.

It first performs fixed-width clustering over the points with a radius of w. The

first point is the center of the first cluster. Given a fixed width w, for every subsequent

point, if it is within w of a cluster center, it is added to that cluster. Otherwise it is the

center of a new cluster.

Let N(c) be the number of points in a cluster c. For each point x, we approximate

N(x) by N(c), where c is the cluster that contains x. For points in very dense areas where

there is a lot of overlap between clusters, this approximation is an inaccurate estimate.

However, for the outliers that lie in sparse regions, N(c) is an accurate approximation of

N(x). Since we are only interested in outliers, the points in the dense regions will be

higher than the density threshold anyway. Thus the approximation is reasonable.

After clustering the data points, the clusters are sorted by the size. The points in

the small clusters are labelled as outliers.

This efficient approximation algorithm is able to process significantly large

datasets, because it needs not to perform a pair-wise comparison of points and requires

only one pass through the data. This property makes it appropriate and practical in

stream environment.

However, this algorithm ranks the clusters only by their size. This simple outlier

degree measurement may result in mislabelling lots of normal data points as outliers. For

example, if the normal data points lie in the edge of a big cluster that has a dense center

and sparse edge, they are outside of w and in a sparse area. Thus they may be incorrectly

regarded as outliers.

2.3 A survey of network intrusion detection

Intrusion detection systems (IDS) automate the detection of security violations

through computer processing of system audit information. The approaches are usually

classified into two categories: Rule-Based Intrusion Detection (RBID) and Statistical-

Based Intrusion Detection (SBID). The nature of training data sets of each category is

different, but expensive to produce in either case.

Rule-Based Intrusion Detection (RBID) seeks to identify intrusion attempts by

matching audit data with known patterns of intrusive behaviour. It compares data to

known intrusive behaviour learned from training data. If the data matches the pattern of

some known intrusion data, the observed data is considered intrusive. RBID systems rely

on codified rules obtained by training on a large set of data in which the attacks have

been manually labelled [16]. This data is very expensive to produce because each piece

of data must be labelled as either normal or some particular attack. Intrusions not

represented in an RBID rule base will go undetected by these systems.

To help overcome this limitation, statistical methods have been employed to

identify audit data that may potentially indicate intrusive or abusive behaviour. Known

as Statistical-based Intrusion Detection (SBID) systems, these systems compare data to

normal patterns learned from the training data. If the data deviates from normal

behaviour, it is considered intrusive. These systems are popular because they are seen as

a possible approach to detecting unknown or new attacks [17, 18, 19, 201. Most of these

systems require that the data used for training is purely normal and does not contain any

attacks. This data can also be very expensive because the systems still require a very

large amount of normal data.

In 1996, Forrest [17] introduced a novel and simple intrusion detection method

based on learning the patterns of UNIX processes. This is a classic example of SBID

systems. In this method, each UNIX process is represented by its trace - the ordered list

of system calls used by that process from the beginning of its execution to the end. They

gathered the normal traces and analyzed the "local (short) range ordering of system

calls". They discovered that these local orderings "appears to be remarkably consistent,

and this suggests a simple definition of normal behaviour".

The key idea is to build a "normal" database that contains all possible short

sequences (e.g., of length 11) of system calls. The normal database is then used to

examine the behaviour of a running program. If the total number or percentage of

abnormal sequences, which are those that can not be found in the normal database, is

above a threshold value, then the current run is labelled as an outlier or intrusion.

2.4 Summary

Continue with Section 2.1 and Section 2.2, all proposed work on mining outliers

is not appropriate for data stream model. Furthermore, existing proposals on mining data

streams do not address the problem of outlier detection.

From Section 2.3, current Intrusion Detection Systems trained on data gathered

from one environment may not perform well in some other environment. At the same

time, the cost of generating data sets can be very expensive.

To address these issues, in this thesis, we propose an intrusion detection method

that performs unsupervised online outliers detection over data streams.

CHAPTER 3:OUR APPROACH

This chapter provides an in-depth discussion of our approach for online outlier

detection over data streams. In Section 3.1, a problem definition and the basic idea are

given. Section 3.2 presents the grid-based clustering algorithm, and then Section 3.3

provides a new cluster-based outlier definition and a novel outlier degree measurement.

Finally, Section 3.4 discusses the memory management strategies over stream

environment and presents an efficient implementation.

3.1 Problem definition and basic idea

In this section, we formally define the problem of online outlier detection over

data streams, and introduce our basic idea.

Problem Definition Given a data space in multiple dimensions A1, . . . , Am with

domains Dl,. . ., Dm respectively, let the data stream D be a sequence of data objects,

where each data object t E D1x.. .xD,. Our task is to online detect if a new coming data

is an outlier.

The basic idea in our approach is as follows. It first perfoms an online clustering

over the data stream, and then sort the clusters based on the outlier degree that measure

how outlying a cluster is. We propose: the smaller a cluster is, the more outlying it is; the

further a cluster is from the closest data cluster, the more outlying it is. For each new

coming data, if it lies in the top-k outlying clusters, it is regarded as an outlier.

Here, the clustering algorithm can be chosen freely, as long as it can satisfy the

following requirements:

Appropriate for stream environment.

Provide online statistic summary of each cluster.

0 Produce good clustering results, e.g. not ignore small clusters

3.2 Grid-based clustering algorithm

In our approach, a grid-based clustering algorithm is used. To find clusters of

similar data objects over a data stream, the distribution statistics of data objects in the

data space of a data stream are carefully maintained. By keeping only the distribution

statistics of data elements in a pre-partitioned grid-cell, the clusters of a data stream can

be effectively found without maintaining the individual data elements physically. The

maintaining of the statistics is very efficient and easy, but the partitions can not be

dynamically changed.

To illustrate this clustering method, we begin with an example in a 2-dimension

space. In Figure 3.1, the data space is partitioned into small cells according to users

input. Here we simply use X, the width of the grid in each dimension, as the partition

rule. Whenever a new data object arrives, it lies in a cell according to the values of its

features. Then a cluster is formally defined as following:

Definition 1 Each non-empty cell is defined as a cluster.

The advantage of defining each non-empty cell as a cluster is that it does not lose

any small or sparse clusters. Most clustering algorithms only concentrate on providing

meaningful clustering results and often ignore small clusters. However, in the problem of

outlier detection, the small clusters have more value than large ones, since most outliers

lie in these small clusters. On the other side, outliers are not likely to lie in large data

clusters. Thus to save memory, a group of adjacent large data clusters can be merged into

one big cluster. We will discuss it in details later.

For each cluster, we maintain a statistic summary S, which is defined as follows:

Definition 2 The statistic summary S of a cluster is defined as a tuple a, n,

M>, where:

R is the set of cell rectangles included in this cluster

n is the support of this cluster.

M is the set of means in all dimensions for the data objects in this cluster.

When a new data object arrives, it either needs to be absorbed by an existing

cluster or needs to be put in a new cluster if it lies in an empty cell. The statistic

summary S of the cluster is updated. Thus at any moment, a set of clusters can be

constructed.

Figure 3.1 presents an example in 2-d~mensions with 6 clusters (C1, C2, C3, C4,

C5, Cb) at some particular moment. C1, C2 and C3 are constructed from several dense

clusters. C4, C5 and C6 are sparse clusters.

With this grid-based clustering algorithm we can easily find and merge the

adjacent dense clusters by simply searching its neighbour cells in each dimension.

However, the vector-based clustering algorithms must calculate pair-wise distance

between clusters and find the closest clusters to merge. The distance computation is

expensive and may result in errors. Thus the grid-based clustering algorithm provides

more accurate online summarization. But as the dimensions increase, the number of cells

increases dramatically and the number of cluster may also increase. The space

complexity of cells is O(xm), where x is the number of intervals in each dimension and m

is the dimensionality; the space complexity of clusters is O(n), where n is the number of

data objects in the data stream.

Figure 3.1 An example in 2-D space

3.3 Outlier definition and outlier degree

In this section, we propose a new cluster-based definition for outliers and a novel

measure for outlier degree. We begin with the same example in Figure 3.1. It is very

obvious that data objects in C4, C5 and C6 are outliers. Intuitively we call data objects in

C4, C5 and Cb outliers because they are in small clusters and deviated from most data.

Thus we will define outliers from the point of view of clusters and define the data objects

that don't lie in large data clusters as outliers.

Definition 3 Let C = {C1, C2, . . ., Ch) is the set of clusters in the ordering of

IC112IC2l2 . . .2 IChl. Given two pre-specified parameters a and P, we find the

minimal d as the boundary such that it can first satisfy condition (I) and then also

satisfy condition (2):

Then the set of large Date Cluster (DC) := {C1, C2, . . ., Cd), and the set of small

Outlier Cluster (00 = { Cd+l, . . . , Ch). Thus all the data objects in OC are

outliers.

The above definition considers two heuristics:

Outliers are just a small number of data objects, and most data objects are

not outliers. It is our Assumption 1 and is represented by formula (1).

E.g. a = 95%, then at least 95% of data objects are not outliers.

The average size of clusters in DC should also be much bigger than that of

clusters in OC. E.g. P = 6 then the average size of clusters in DC is at

least 6 times of the average size of clusters in OC.

In Figure 3-1, according to Definition 3, :DC = {C1, C2, Cg) and OC = {C4, C5,

CG). However, sometimes only condition (I) can be satisfied. Condition (2) is not

satisfied since clusters have very similar support, and the boundary d can not be found by

Definition 3. In this case, data points are evenly distributed in the data space, so it is

intuitively reasonable to claim that there are no outlier clusters and all clusters are data

clusters, thus no outliers exist. Figure 3-2 illustrates the situation.

Figure 3.2 Boundary not exists

To describe an outlier cluster, it is desirable to have an outlier degree to measure

how outlying it is from normal data clusters. Moreover, some outlier clusters in OC may

be very close to big data clusters and only contain normal data objects. If all the data

objects in OC are regarded as outliers, those normal data objects will be incorrectly

labelled as outliers. To avoid this, we can simply only predict those data objects in the

top-k outlier clusters as outliers, if an outlier degree measurement is defined.

Figure 3.3 illustrates this situation. There are 8 clusters (C1, to C8) at some

particular moment. According to Definition 2, OC = {C4, C5, C6, C7, C8} and DC = {C1,

C2, C3). However, all the data objects in C6, C7 and C8 are normal data, and only C4 and

C5 are real outlier clusters. So if we have an outlier degree measurement and let k be 2,

then C4, C5 can be identified as the top-2 outlier clusters and the detection is more

accurate.

From the example in Figure 3.3, we observe that C5 is more outlying than C4,

since it is smaller and further from normal data clusters. According to Assumption 2,

outliers are statistically different from normal data, the further from the closest data

cluster, the more outlying they are. Thus the outlier degree of an outlier cluster should be

determined by the size of its own cluster and the distance between itself and the closest

data cluster. For any pair of clusters Ci and Cj, the distance between them can be

approximate by the distance of two closest cells that belongs to Ci and Ci respectively.

Figure 3.3 Top-k outlier clusters

Definition 4 For any two clusters Ci and Cj, the distance (Ci, Cj) is defined as:

distance (Ci, Cj) = rnin { distance(r,, rt)),

where r, is a cell in Ci and rt is a cell in Cj.

Based on above observation and definitions, the Outlier Degree of an outlier

cluster is defined as follows:

Definition 5 Given the set of clusters C = {Cl, C2, . . ., Ck) in the ordering of

IC1121C2(2 . . . 2 ICkl, and a: fi d, DC and OC based on Definition 2. For each

cluster Ci€ OC, the Outlier Degree (OD) of Ci is defined as following:

min{distance(Ci,Cj))
OD(Ci) = (4), where Cj€DC.

ICi I

From Definition 5, the smaller a cluster is, the more outlying it is; the further a

cluster is from the closest large cluster, the more outlying it is. We can normalize the

distance between any pair of two clusters, then numerator of formula (4) is in [0, 11, and

the denominator is in [I, m], consequently the OD value is in [0, 11.

Figure 3.4 shows an example when a new data t lies in a large data cluster and its

OD value equals to 0. Figure 3.5 presents an example when a new data t is very far from

the closest large data cluster and its OD value equals to 1.

Figure 3.4 An example of OD = 0

Figure 3.5 An example of OD = 1

Online outliers detection over data streams

Given the outlier definition and outlier degree measurement, this section presents

how to implement an efficient algorithm to online detect outliers in stream environment.

Since our approach is cluster-based online outlier detection, we denote it as CBOD in our

later discussion.

The idea of CBOD is to immediately identify an outlier in the real time by

online building summaries of grid-based clusters and check if it is in the top-k outlier

clusters.

The challenge is how to control the memory consumption, and what should be

done if the memory is full. Because the data stream is infinite, there may be so many

clusters that data structure for clusters' summary will eventually overload the memory.

When memory is full, we can use the following two strategies:

First, we can merge adjacent data clusters into one big data clusters.

Since out task is to identify outliers that usually lie in outlier clusters,

merging adjacent dense data clusters won't affect the detecting accuracy.

Second, we can prune all the outlier clusters in OC or write them to hard

disk for users' offline analysis in the future. The sacrifice of this strategy

is that some initial normal data objects in new data clusters probably be

regarded as outliers in a short of period after pruning, but it won't miss

any real outliers.

Figure 3.6 An example of data structures without merging

Outlier clusters index HashMap

To implement the grid, keep the online summary, we used a data structure called

HashMap provided by Java Development &t. HashMap is roughly equivalent to a hash

table. It provides random access with a constant time by mapping a key object to a value

object. In our algorithm, we use the grid coordinates as the key and the summary S of the

cluster as value object. With this structure, we only keep summaries for non-empty cells

or clusters, and for each new coming data, we can directly find the owner cluster's

summary or create a new one with the key. To keep track of all the outlier-clusters, we

use an index of the keys sorted by their corresponding OD values. Figure 3.6 shows an

example of the data structures for a 2-D data set.

To find and merge the adjacent data clusters, we can simply search its neighbour

cells in each dimension. In the above example, (2, 2) is a data cluster, we check its 4

neighbours with 1-2, 3-2, 2-1, 2-3 as keys respectively and find that (2, 1) is an adjacent

data cluster, then we merge them into one cluster. To prune all the outlier clusters, we

can find their keys from the outlier clusters index and delete them in HashMap directly

with those keys. The time complexity for merging and pruning is O(n), where n is the

number of clusters, which in the worst case is the number of data objects. Figure 3.7

shows the data structures after the merging.

Figure 3.7 An example of data structures after merging

Outlier clusters index HashMap

Figure 3.8 gives the pseudo code of CBOD. The input are the data stream D, the

minimum percentage (a) of data objects in D that are normal, the minimum ratio (P) of

data clusters' average size and outlier clusters' average size, the number (K) of most

outlying clusters that users want to check during detection, and the rule to grid the data

space, the width (X) of the grid in each dimension when partitioning data space.

Figure 3.8 The CBOD algorithm

Input: data stream D, a, P, K, and X

Met hods:

1. Initialize Top-K-Outlier-Clusters[] = 0.

2. For each new coming data object t,

3. If memory full, then merging adjacent data clusters and
pruning all outlier clusters.

4. Discretize t according to input parameter X.

5. If t lies in an existing cluster, then assign t to this cluster.

6. else create a new cluster of its own.

7. update the summary S = <R, n, M> for that cluster

8. determine DC (D, a, p) and OC(D, a, p) according to
Definition-3.

9. compute OD(Ci) for each Ci€OC according to Definition-5.

10. update Top-K-Outlier-Clusters[1.
11. if(t~Top-K-Outlier-Clusters[]), then predict t as an outlier.

12. else predict t as normal data.

The method starts with initialize Top-K-Outlier-Clusters to empty in Line 1.

Then it repeats Line 3 to Line 12 for each new coming data object. When a new data

object arrives, if the memory is already full it merges all adjacent dense data clusters and

prune all the outlier clusters. First, the new data is hscretized according to input

parameter X and its owner grid is determined. If it lies in an existing cluster, it is

assigned to this cluster in Line 5, otherwise create a new cluster of its own in Line 6.

Then update the summary for the cluster and determine DC and OC according to the

input parameters (D, G ,@ and the outlier definition in Line 7, 8. Continuously calculate

the outlier degree OD for each outlier cluster in OC and put the top-k outlier clusters in

Top-K-Outlier-Clusters in Line 9, 10. Finally, if the cluster containing the new data

object is in Top-K-Outlier-Clusters, it is regarded as an outlier in Line 11, otherwise it is

regarded as a normal data in Line 12.

As we discussed above, the following are the time complexity of the main

operations.

Assign a new data to the corresponding cluster or create a new cluster: O(1)

Merging data clusters and pruning outlier clusters (optional): O(n)

Sorting clusters by size when determining DC and OC: O(l), because only the

rank of this owner cluster of the new data and its neighbours in the sorted

cluster list can change.

Thus the total run time complexity of CBOD is O(n), where n is the number of clusters

and equals to the number of data objects in the worst case. However, when the worst

case occurs, it also means that no outliers exist and most clusters can be merged as data

clusters. Thus in average case n is much smaller than the number of data points and is

usually at hundred or thousand level. In addition, the merging and pruning are required

only when memory is full, which is very infrequent. Thus, in most cases the run time

complexity is basically constant, which can definitely satisfy the online requirement.

CHAPTER 4:EVALUATION

To evaluate the effectiveness of our algorithm, we conduct extensive experiments.

In this Chapter, we present data set, experiment design, results and discussion.

4.1 Data Set

The data used for testing is the KDD Cup 1999 data mining competition data set

(KDD 1999). It originated from the 1998 DARPA Intrusion Detection Evaluation

Program managed by MIT Lincoln Labs. Lincoln Labs simulated a military LAN and

peppered it with multiple attacks over a nine-week period.

The raw training data is from the first seven weeks of network traffic, but it

contains some noise data and some of them have no or wrong class labels. In addition,

since CBOD is unsupervised and there is no training phase, it is not necessary to use this

training data set. The testing data consists of the last two weeks of traffic with around

300,000 connections, and every record has a corrected class label. Each record consisted

of 41 features, and a class label that is either "normal" or one of the 37 attack types.

These 37 attack types fall into four main categories:

DOS: denial-of-service

R2L: unauthorized access from a remote machine

0 U2R: unauthorized access to local super-user (root) privileges

Probing: surveillance and other probing

This data set is popularly used in data stream domain. In our experiment, we did

not use all the data from the 1999 KDD Cup testing data set. Since it was generated for a

supervised learning competition, the data set contains a high percentage of attack traffic

(91%). We need to filter out most of the attacks however to fit Assumption 1. This is

achieved by randomly sampling some attacks. As a result, the testing data set only

contains a very small number of attacks belonging to 4 main categories respectively.

Totally it contains around 61125 records, including 60269 normal connections and 856

attacks. The data distribution is given in Table 4.1.

Table 4.1 Data distribution

I Data 1 Number / Percentage

I Normal 1 60269 1 98%

/ Dos 1 47 I

The data set has 41 features. In our experiment, we use 4 features:

connection duration

number of data bytes from source to destination

Probing

U2R

percentage of connections to the same destination that have 'REJ' error

percentage of connections to the same destination with the same service

that have 'REJ' error

118

79
2%

Another unsupervised network intrusion detection approach [14] uses the same

data set, obtains a similar distribution after filtering many attacks, and also uses 4

features.

4.2 Experiment design

To evaluate our approach, we use detection rate and false positive rate as the

performance measurement. They are defined based on a confusion matrix as shown in

Table 4.2.

Table 4.2 Confusion Matrix

I (Actual positive (Actual negative

I Positive (Outlier) I (true positive) I (false positive)

Predict as

I Predict as I I T N I Negative (Normal) I (false negative) I (true negative)

(outliers)
TP

11
Detection Rate =

TP + FN

(normal)
FP

1 1

False Positive Rate =
TN + FP

Detection Rate and False Positive Rate are good indicators of performance [14],

since they measure what percentage of intrusions the method is able to detect and how

many incorrect classifications it makes in the process. We calculate these values over the

labelled data to measure the performance.

To determine the parameter values used by CBOD, we conduct extensive

experiments based on different values and combinations of a, P, K, X. Figure 4.1 to

Figure 4.4 show the impact of these parameters. We choose one group of values having

the best result. The parameter values finally used by our algorithm are shown in Table

4.3.

To simulate the memory full situation in our experiments, we assume the memory

can only contains summary for 60, 100, 150, 200 and all clusters respectively. Thus we

can evaluate the performance of CBOD in different memory size. If the number of

clusters exceeds the limit, the memory is considered as full and merging and pruning

strategies will be performed.

Table 4.3 Values of parameters in our algorithm

Parameter Value v
250 - for all integer dimensions

0.1 - for all real number dimensions

Figure 4.1 Comparison of different a (Alpha) values

Q)
C
(TI
a
Q) > .-
C .-
fn
0
n
Q)
fn -
(TI
L
\

Q)
C
(TI
a
C
0 .-
C
0
Q)
C
Q)
P

Detection Rate (Alpha = 98%) False Positive Rate (Alpha=98%)

Detection Rate (Alpha=96%) False Positive Rate (Alpha=95%)

-Detection Rate (Alpha=99%) - z- False Positive Rate (Alpha=99%)

Figure 4.2 Comparison of different P (Beta) values

Q)
C

2
Q) > .-
C .-
fn
0
n
Q)
fn -
(TI
L
\

Q)
C
(TI
a
s
0 .-
C
0
Q)
C
Q)
0

- Detetion Rate (Beta = 5) ---False Positive Rate (Beta=5)
- -- Detection Rate (Beta=l 0) - False Positive Rate (Beta=l 0)

- Detection Rate (Beta=2) - False Positive Rate (Beta=2)

Figure 4.3 Comparison of different K values

- Detection Rate (K=60) -w False Positive Rate (K=60)

1 ------Detection Rate (K=30) -False Positive Rate (K=30) /

Figure 4.4 Comparision of different X values

- Detection Rate X=<250, 0.1 > - False Positive Rate X=<250, 0.1 >
- Detection Rate X=<250,0.2> - False Positive Rate X=<250, 0.2>
- Detection Rate X=<500, 0.1 > - False Positive Rate X=<500, 0.1 >
- Detection Rate X=<100, 0.1 > False Positive Rate X=<500, 0.1 >

To further evaluate the performance of CBOD, we also conduct extensive

experiments on two other approaches for comparison.

One comparison partner is Clustream [I], which is a very popular and import

clustering algorithm over the data stream. Instead of our own clustering method, we use

this algorithm to provides online summary of clusters in data stream, and then still apply

our outlier definition and detection algorithm on the top. It is a natural and good way to

evaluate the performance of our own clustering algorithm. Clustream needs to perform a

k-means clustering for the first ZnitNumber data objects in the initial phase. Since the

value of k is determined by the size of main memory and it should be as large as possible,

k is naturally set to 60, 100, 150, 200 and 250 respectively. Thus we can compare it with

CBOD in different memory size. We set InitNumber equals to 5000 in our experiments.

The second partner is "Unsupervised Anomaly Detection" [14] for detecting

network intrusion. We denote it as UAD in our later discussion. This algorithm has

some similarity with CBOD. It is also an unsupervised cluster-based outlier detection

method, its experiment uses the same dataset and it is for the same network intrusion

detection problem. Thus comparison with this method is another good indicator. UAD

need a fixed width w as input parameter. Since we can compute the radius of cells in

CBOD, we try some different values around this radius value and use the one having the

best result for comparison.

To verify the performance of detecting outliers only based on top-k outlier

clusters, for CBOD and Clustream, we also conduct the experiments to detect outliers

based on all the outlier clusters as a comparison.

4.3 Results

We calculate and gather Detection Rate and False Positive Rate periodically over

the data stream. Figure 4.5 to Figure 4.14 show the experiment results. The content in

each figure is shown in Table 4.4

Comparison of
Detection Rate,

Comparison of
False Positive Rate

Table 4.4 Result Matrix

Memory Size (max. number of clusters it can keep)

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.1 1

Figure 4.12

Figure 4.5 Comparison of Detection Rate (MM = 60)

Detection Rate
(MM = 60)

_ . _ , I , . , _ _ _ " " ^ " " , " " " ^ . ^ - - -
, - - - -

/
I , * -

/
i

C !
I -,-,* P - ".- -..

;-- -
.- /-- '- [
C , . 40% - I

I
C

h.. . -' 1
$ 20%

... -. CBOD: based on Top-k outlier clusters

CBOD: based on all outher clusters

Clustream: based on Top-k outlier cluster:
-. . -. Clustream: based on all outlier clusters

Anomaly Detection (UAD)

ALL

Figure 4.13

Figure 4.14

Figure 4.6 Comparison of False Positive Rate (MM = 60)

False Positive Rate
(MM = 60)

-..... CBOD: based on Top-k outlier clusters

. . . CBOD: based on all the outlier clusters

Clustrearn: based on Top-k outlier clusters
-. . - . Clustrearn: based on all the outher clusters

- Unsupeised Anornly Detection (UAD)

Figure 4.7 Comparison of Detection Rate (MM = 100)

Detection Rate
(MM = 100)

. - , CBOD: based on Top-k outlier clusters

, - - CBOD: based on all outlier clusters

Clustream: based on Top-k outlier clusters

Clustream: based on all outlier clusters

- Unsupenked Anomaly Detection (UAD)

Figure 4.8 Comparison of False Positive Rate (MM= 100)

False Positive Rate
(MM = 100)

...... "CBOD: based on Top-k outlier clusters

- - - CBOD: based on all the outlier clusters
- Clustrearn: based on Top-k outlier clusters

Clustream: based on all the outlier clusters

Unsupemsed Anomaly Detection (UAD)
-. -- - I

Figure 4.9 Comparison of Detection Rate (MM = 150)

Detection Rate
(MM = 150)

. CBOD: based on Top-k outlier clusters

CBOD: based on all the outlier clusters
-- - Clustrearn: based on Top-k outlier clusters

Clustream: based on all the clusters

Unsupervised Anomaly Detection (UAD)

Figure 4.10 Comparison of False Positive Rate (MM = 150)

False Positive Rate
(MM = 150)

ID1

.. ... CBOD: based on Top-k outlier clusters

CBOD: based on all the outlier clusters

Clustrearn: based on Top-k outlier clusters

-. . -. Clustream: based on all the outlier clusters

Unsupemsed Anomaly Detection (UAD)

Figure 4.11 Comparison of Detection Rate (MM = 200)

Detection Rate
(MM = 200)

.-.-.. CBOD: based on Top-k outlier clusters

CBOD: based on all the outlier clusters

Clustrearn: based on Top-k outlier clusters
- - . -. Clustrearn: based on all the outlier clusters

- Unsupenked Anomaly Detection (UAD)

Figure 4.12 Comparison of False Positive Rate (MM = 200)

False Positive Rate
(MM = 200)

...... CBOD: based on Top-k outlier clusters

CBOD: based on all the outlier clusters

Clustrearn: based on Top-k outlier clusters

Clustream: based on all the outlier clusters

Figure 4.13 Comparison of Detection Rate (MM = all)

Detection Rate
(MM = all)

. CBOD: based on Top-k outlier clusters

CBOD: based on all the outlier clusters

Clustream: based on Top-k outlier clusters

Clustrearn: based on all the outlier clusters

Unsupervised Anomaly Detection (UAD)

Figure 4.14 Comparison of False Positive Rate (MM = all)

False Positive Rate
(MM = all)

- - CBOD: based on Top-k outher clusters

CBOD: based on all the outlier clusters
- Clustream: based on Top-k outher clusters

Clustream: based on all the outlier clusters

Unsupeiised Anomaly Detection (UAD)

4.4 Discussion

The experiment results show that our algorithm has a better detection rate than

Clustream and UAD at different memory sizes. At the beginning the detection rate of

CBOD is zero, since no clusters information exists at the beginning, but it is increased

very quickly. At the end of the data stream, detection rate reaches 95%.

The detection rate of UAD is lower than that of our method because it uses a

simple clustering algorithm and its outlier degree measurement only consider the size of

clusters. Clustream has a worse detection rate, because it focuses on producing

meaningful clusters and ignores some small clusters.

At the same time, CBOD also has a lower false positive rate than Clustream and

UAD at different memory sizes. The number of rnisclassification is only about 4% of the

normal data objects. This is acceptable in the real application. However, Clustream and

UAD have a much higher false positive rate, because of the similar reasons as above.

The figures also present that the detection rate based on top-k outlier clusters is

very close to the detection rate based on all outlier clusters. However, the false positive

rate using top-k outlier clusters is lower than that based on all outlier clusters. This

demonstrates the correctness of our novel outlier degree measurement. In data stream

environment, it requires a fast processing in the real time. If the algorithm is based on all

the clusters, the computation cost is very expensive. Thus the method of detection only

based on top-k outlier clusters will be much more efficient than detection using all the

outlier clusters, and it also verify the effectiveness of our efficient algorithm.

The experiment results at different memory sizes also demonstrate the

effectiveness of the pruning strategies in CBOD. As memory size decreases, the

detection rate does not change much. However, as memory size decreases, the false

positive rate increases, but is still at an acceptable level. For example, when the memory

size is only 60, CBOD can still achieve 93% detection rate with only 6% false positive

rate.

Thus, the experiment results demonstrate that our algorithm works well in the

data stream environment and outperforms other approaches.

CHAPTER 5:CONCLUSION AND FUTURE WORK

In this Chapter, we first summarize the thesis, and then discuss some interesting

directions for future research.

5.1 Summary of the Thesis

Outlier detection is an important task in data mining research with numerous

applications, including credit card fraud detection, discovery of criminal activities in

electronic commerce, video surveillance, pharmaceutical research, and weather

prediction. Recently, discovering outliers under data stream model have attracted

attention for many emerging applications, such as network intrusion detection, sensor

networks, earth observation, and stock analysis.

A data stream is an ordered sequence of objects that arrive continuously and must

be processed online. And the space available to store information is supposed to be small

relatively to the huge size of unbounded streaming data objects. Thus, the data mining

algorithms on data streams are restricted to be able to fulfill their works with only one

pass over data sets and limited resources. This is very challenging. Most previous

studies on outlier detection can not satisfy the requirements in stream environment.

In this thesis, we propose a cluster-based online outlier detection algorithm

(CBOD) to detect network intrusions. We use a grid-based clustering method to

discover clusters and keep online summary over the data stream, and those small clusters

far away from large data clusters are regarded as outlier clusters. We also proposed a

novel definition of outlier degree to measure how outlying each cluster is. When a new

data arrives, it is considered as an outlier and intrusion if it lies in the top-k outlier

clusters.

The following are the contributions of our approach.

Propose a novel method for online outlier detection over data stream. Our

approach can immediately predict if a data object is an outlier, when it arrives.

Propose a novel definition for outlier: cluster-based outlier, which has great

new intuition and numerous applications.

Introduce a quantitative outlier degree measurement.

Present an efficient and effective grid-based online summarization and

clustering algorithm that successfully satisfies the requirement of run time

complexity and memory consumption for data stream.

Besides a binary detecting answer, provide more information or description

about outliers, such as the outlier degree, the means of outlier clusters, etc.

The extensive experiments based on the KDD Cup 1999 data mining competition

data set demonstrate the effectiveness of our approach.

5.2 Future Work

With the success of this method, it is interesting to re-examine and explore many

related problems, extensions and applications. Some of them are listed here:

Discover bursts and outliers between bursts over data streams. This is a

different way to define outliers, which includes time dimension and

considers sparse data points between bursts as outliers. Our approach is

for detecting network intrusion and does not include time dimension in

this application. So discovering bursts and outliers between bursts in other

applications worth some research.

Outlier detection based on subspace clustering over data stream. How to

work with high dimensionality is very important, because an outlier may

be outlying only on some, but not on all, dimensions. This information

can describe or explain why the identified outliers are exceptional. This is

an interesting and quite challenging topic.

REFERENCE LIST

Cham C. Aggarwal, Jiawei Han and Philip S. Yu, "A Framework for Clustering
Evolving Data Streams", VLDB, 2003.

Nam Hun Park and Won Suk Lee, "Statistical Grid-based Clustering over data
streams", SIGMOD Record, 2004.

Gurmeet Singh Manku and Rajeev Motwani, "Approximate Frequent Counts
over Data Streams", VLDB, 2002.

Jeffrey Xu Yu, Zhihong Cheng, Hongjun Lu and Aoying Zhou, "False Positive
or False Negative: Mining Frequent Itemsets from High Speed Transactional Data
Streams", VLDB, 2004.

Nitin Thaper and Sudipto Guha, "Dynamic Multidimensional Histograms",
SIGMOD 2002.

E. M. Knorr and R. T. Ng, "Algorithms for mining distance-based outliers in
large datasets", VLDB, 1998.

S. Ramaswamy, R. Rastogi, and S. Kyuseok, "Efficient Algorithms for Mining
Outliers from Large Data Sets", SIGMOD, 2000.

M. M. Breunig, H. P. Kriegel, R. T. Ng and J. Sander, "LOF: identifying density-
based local outliers", SIGMOD, 1998.

F. Angiulli and C. Pizzuti, "Fast outlier detection in high dimensional spaces",
Proc of PKDD702, 2002

C. Aggarwal and P. Yu, "Outlier detection for high dimensional data", SIGMOD,
200 1.

D. Hawkins, Identification of outliers. Chapman and Hall, Reading, London,
1980.

Portnoy, L., Eskin, E and Stolfo, S., "Intrusion detection with unlabeled data
using clustering", DMSA-2001.

Javitz, H. S. and Vadles, A., "The NIDES statistical component: Description and
justification", Technical report, SRI International, 1993.

Eleazar Eskin, A., M., L. and S., "A Geometric Framework for Unsupervised
Anomaly Detection: Detecting Intrusions in Unlabeled Data", In Applications of
Data Mining of Computer Security, 2002.

L. 0. Chalaghan, N. Mishra, A. Meyerson and S. Guha. "Streaming-data
algorithms for high-aualitv clustering". In: Proc of ICDE. 2002.

[16] W. Lee, S. J. Stolfo and K. Mok. Data mining in work flow environments:
Experiences in intrusion detection. In Proc of KDD, 1999.

[17] Stephanie Forrest, S.A. Hofmeyr, A. Somayaji and T.A. Longstaff. A sense of
self for unix processes. In Proc of the IEEE Symposium on Security and Privacy,
1996.

[18] Wenke Lee and Salvatore J. Stolfo. Data mining approaches for intrusion
detection. In Proc of the USENIX Security Symposium, 1998.

[19] Anup Ghosh and Aaron Schwartzbard. A study in using neural networks for
anomaly and misuse detection. In Proc of the Eighth USENIX Security
Symposium, 1999.

[20] Christa Warrender, Stepanie Forrest, and Barak Pearlmutter. Detecting
intrusions using system calls: alternative data models. In Proc of the IEEE
Symposium on Security and Privacy, 1999.

