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Abstract 

Some evolution equations can be interpreted as gradient flows. Mathematically this is 

subtle as the flow depends on the choice of a functional and an inner product (differ- 

ent functionals or inner products give rise to different dynamics). The Cahn-Hilliard 

equation is a simple model for the process of phase separation of a binary alloy at  

a fixed temperature. This equation was first derived using physical principles but 

can also be obtained as a specific gradient flow of a free energy. Having these two 

viewpoints is quite common in physics and often one prefers to work with the varia- 

tional formulation. For example, a variational formulation allows one to  obtain many 

possible evolutionary models for the system. 

For a gradient flow, the basic idea is to start with an energy functional (F) de- 

fined on a Hilbert space. One then writes out the gradient flow associated with the 

functional and the Hilbert space: 

The above becomes an evolution equation which will be dependent on the Hilbert 

space. Whether it is a good model for the dynamics of the system is another question 

as it is not based upon any dynamic physical law (eg. a force balance law). 

In this thesis we will examine the above ideas focusing on the Cahn-Hilliard equa- 

tion. We will develop the necessary tools from functional analysis and PDE theory. 
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Chapter 1 

Introduction 

Typically evolution equations which model physical processes are derived using the 

physics related to the problem. Another 'way is to use a variational approach which 

lets the process evolve such that a certain energy functional decreases in time. This 

variational approach is what we will investigate in this thesis. To showcase this method 

we will concentrate on the Cahn-Hilliard equation which can be derived using standard 

physics and chemistry, but can also be derived using this variational approach. Let's 

look at the following example of the heat equation to illustrate these two methods. 

Example 1.0.1. (Linear Heat) Suppose we are given a region R of Rn where the 

boundary of R i s  held at the fixed temperature zero and with an  initial temperature 

distribution 4(x). If u ( x ,  t )  denotes the temperature at x and t ime t ,  we can show that 

u should evolve according to: 

ut = Au R x (0, oo) 

u = 0 aRx[O,oo)  (1.1) 

u = 4 .  R x { t = O ) .  

Typically one uses ideas of j h x  and conservation of energy t o  arrive at (1.1). 

W e  will now switch to a variational viewpoint. Let F denote the following energy 

functional: 

{ iJn 1 Vir12dx u F H i  (0) 
F(u)  := 

otherwise.  
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Now suppose we knew that u should evolve in such a way as to  have F decrease i n  

t ime (Th i s  could be rnot;vated by a least action principle from physics.) One obvious 

way to  do this would be t o  let u evolve i n  the opposite direction to the gradient of 

F at u. To  calculate the gradient we will have to  indicate what Hilbert space we are 

working on. If we use the Hilbert space L 2 ( R ) ,  then we can show that 

gradLz F ( u )  = - A u .  (gradient of F at u over L 2 ( R ) )  

So we arrive at (1.1) if we let u evolve according t o  the following gradient flow: 

W e  can also arrive at (1.1) if we interchange Fo for F and H-' ( R )  for L 2 ( R ) ,  where 

H-' ( R )  denotes the dual of HA ( R )  and E;b is defined as follows: 

u%x u E L 2 ( R )  

otherwise.  

Cahn-Hilliard Basics 

The Cahn-Hilliard equation was originally proposed as a simple model for the process 

of phase separation of a binary alloy at a fixed temperature, by Cahn and Hilliard. 

If one is interested in the history related to the Cahn-Hilliard equation one should 

consult [Fife] and the references within. 

If we let u ( x ,  t )  denote the concentration of one of the two metallic components 

of the alloy, and if we assume the total density is constant, then the composition of 

the mixture may be adequately expressed by the single function u .  If we let R C Rn 

denote the vessel containing the alloy and if we assume that there is no alloy entering 

or leaving the vessel, then we will have conservation of mass. ie. u ( x ,  t ) d x  = 

constant. Let PI/' : R -+ R denote a non-negative double well potential with equal 

minima at u = ul and u2 where ul and us  are preferred states of u. If we define the 
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"free energy" functional Fo by 

then one could try and model the evolution of u by let,ting u evolve such that Fo 

decreases in time while conserving mass. One objection to this approach is that u 

could oscillate wildly in the spatial sense between ul and u2 but not raise the energy. 

We expect the energy to penalize this transition in phase. One way of doing this is 

to add a term which penalizes spatial oscillation. The most obvious way to do this 

is to add a small gradient term. So for c > 0 but small, let F, denote the "gradient- 

corrected free energy" which is defined as follows: 

Now we want u to evolve such that F, decreases in time. As mentioned earlier, a 

standard way of doing this is to let u evolve in the direction opposite to the gradient 

of F,(u), where the gradient is calculated over some Hilbert space. So we see it is 

natural to seek a law of evolution of the form 

while imposing the conservation of mass constraint, where K > 0. To simplify the 

problem let's suppose we knew that U(Z,  0)dx = 0, hence by conservation of mass 

we will want J, u(x, t)dx = 0 for all t > 0. (This zero mass constraint can be obtained 

by using the shifted density 6 := u - (u), where (u), denotes the average of u over 

R.) 

Let's try and write the gradient flow of F, over L2(R). One way to impose the 

mass constraint is to instead write the gradient flow over L ~ ( R ) ,  which is the zero- 

average subspace of L2(R). If one does the calculations one will arrive at  the following 

evolution equation: 
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Typically (1.4) is rejected as a good model on the grounds that ( W ' ( U ) ) ~  is an integral 

operator, hence is not local in nature. If one tries to  write the gradient flow over Hk(R)  

for k 2 0 there will again be objections to t,he evolution equation t,hat is arrived at. 

We can use the physics of the problem to impose certain boundary conditions on 

u but we will not take this approach. We will show that if we minimize F, over the 

zero-average subspace of H1 (R)* (denoted by Ht1), then we will see that a minimizer 

u is in fact smooth and satisfies &u = 0 = &AU on dR. (It is understood that if 

u $ H' (R) or W(u) $ L1 (0) then F,(u) = co). This will serve as our motivation for 

the imposed boundary conditions. 

We will see that if we use Hcl with an appropriate inner product, as our Hilbert 

space, then we will arrive at 

which is local in nature, therefore more realistic. If we let u denote a solution to the 

above evolution equation with the imposed boundary conditions then, without em- 

ploying some uniqueness, it is not entirely obvious that u will conserve mass. In other 

words if u(t) evolves in Hi1 then clearly we have conservation of mass, but if u(x, t )  

solves the above evolution equation it is not entirely obvious we have conservation of 

mass. But to  see this is the case note: 

where we have used the boundary conditions to get the surface integral equal to zero. 

So we see with these boundary conditions we arrive at  t,he Cahn-Hilliard equation: 

ut = -c2A2u + A f (u) R x (0, co) 

aUu = a,nu = o an x LO, co) 
(1.5) 
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where f (u) := W'(u). As noted earlier, the Cahn-Hilliard equation was not originally 

derived using the gradient flow approach but by using sound physical arguments. 

Thesis Layout 

In Chapter 2 will examine various elements of functional analysis that we will need 

if we hope to write the Cahn-Hilliard equation as a gradient flow. This will include 

distributions, Hilbert spaces and Sobolev spaces. 

In Chapter 3 we will look at the duals of various Sobolev spaces. In particular we 

will examine H-' and (H1)*. We will introduce the non-standard Hilbert space H r l  

(zero average of (H1)*), which we will use to write the Cahn-Hilliard equation as a 

gradient flow over. 

In Chapter 4 we will examine the standard notions of a gradient, namely, classical 

gradients (Giiteaux), subdifferentials-subgradients and constrained gradients. The 

constrained gradient is the one that we will use. We will develop some very elementary 

properties of this constrained gradient. This will be sufficient to allow us to write the 

Cahn-Hilliard equation as a gradient flow. We will also look at examples of constrained 

gradients of various functionals over various Hilbert spaces. ktTe will also look at a 

simple non-linear evolution equation and will obtain a global solution using both the 

semigroup method and the subdifferential method. This example is to showcase the 

two methods. 

In Chapter 5 we will write the Cahn-Hilliard equation as a gradient flow over the 

specific Hilbert space that we defined in Chapter 3. We will argue why this Hilbert 

space is a physically reasonable one to use. We will also examine certain properties 

of the functional F. In particular we will show that the minimizers of F. which 

correspond to steady states of the Cahn-Hilliard equation, are smooth and satisfy 

certain boundary conditions. We will obtain a local solution to the Cahn-Hilliard 

equation when T/t7'(u) = u3 - u and when R is an open, bounded and connected 

subset of R3 with a smooth boundary. 



Chapter 2 

Mat hemat ical Tools 

2.1 Distributions 

Distribution theory allows one to put objects like the "Dirac 6 function" on rigorous 

footing and also allows one to develop properties of certain function spaces in a sys- 

tematic way. Here we will essentially just define what a distribution is and also define 

what we mean by a partial derivative of a distribution. 

Take R Rn to be an open set. We define the space of test functions by D ( R )  := 

C,"(R), where C,"(R) is the set of C" functions with compact support in R. 

We say 4, -+ 4 in D (0) if there exists a compact K c R with supp(4,) 2 K 

and d"4, -t dQ4 uniformly on K for all multi-indices a. It is possible to  describe 

this topology but for our purposes the above characterization of convergent sequences 

will be enough. 

D' ( R )  will denote the set of real continuous linear functionals on 2) ( R )  which we 

call the space of distributions on R. We will denote the D 1 ( R ) .  D (0) pairing by 

( . 7  .>Vf.V. 

To define a partial derivative for a distribution u we will use int'egration by parts 

as motivation. 
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Definition 2.1.1. For u E D' ( R )  and for any multi-index a we define 8% by 

It is easily seen that 8% E D' ( R ) ,  which is the real power behind distribution 

theory. Even when one requires some classical smoothness it is often easier to  work 

with the given functions as distributions and later show that the distributions have 

the required classical smoothness. 

We will keep with the standard practice of identifying f E LL,(R) and the dis- 

tribution 4 H h f4. The set of compact:ly supported distributions in R is defined 

by 

&'(R) := { u  E D' ( R )  : supp(u) c R )  . (2.2) 

In order to make sense of (2.2) we must define what we mean by the support of 

a distribution. Given u E Dr(R) ,  we say u = 0 on an open set V C R if for all 

4 E C r ( V )  we have ( u ,  $),,,, = 0. Let V denote the maximal open subset of R with 

u = 0 on V .  Then we define supp(u) to be the complement of V in R. Now for some 

notation that we will use later. 

where m is a non-negative integer and %here 1 1  . llHm is defined in Section (2.3). See 

[Folland] for more details on distribution theory. 

2.2 Banach Spaces, Hilbert Spaces and Complete 

Metric Spaces. 

In this section we will summarize various results from functional analysis that we will 

need lat'er. All vect'or spaces will be over t,he scalar field R. 
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Given 1 5 p ,  q 5 oc we call p and q conjugate if l / p  + l / q  = 1 where 1/0 = oa 

and l / m  = 0. 

,!Y' inequalities. 

Cauchy's inequality with E .  

1 
l l f g l l ~ l  5 tllf 1122 + z1191122 

for all E > 0. 

Holder's inequality. 

IlfgllL1 -< Ilf ~ ~ L ~ I I ~ I I L ~  
where p and q are conjugate. 

Young's inequality with E .  

1 1  
l l f g l l ~ l  5 4 f  IIL + o,,,; IIdlL 

for all E. > 0 where p and q are conjugate. 

Banach Spaces 

Given a metric space (X, d) and a mapping A : X -3 X ,  we say A is a contraction 

mapping if there exists some y < 1 such that for all x ,  y E X we have 

Theorem 2.2 .l. (Banach's Fixed Point Theorem) Given (X, d) a complete metric 

space with A : X -, X a contraction mapping, there exists a unique x E X with 

Proof. See [Thomson] page 399. 0 
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Definition 2.2.1. Given a linear space X and two norms on X say 1 1  . ) I 1  and ) I  . [I2, 

we say that the norms are equivalent on  X if there exist a ,  b > 0 such that 

Theorem 2.2.2. (Open Mapping Theorem) Assume X is a linear space which is 

complete w.r.t. the two norms I /  . I l l ,  11 . \I2. If there exists some a > O such that 

then 1 )  . ( 1  and 1 1  . are equivalent on  X .  

Proof. See [Thomson] page 563. 

Definition 2.2.2. (Dual Spaces) Given a normed linear space (X, ( 1  . I/), we define 

X *  to  be the set of continuous linear functionals on  X .  X *  will be endowed with the 

operator norm 1 1  . I l x *  , which is defined by 

Ilx*llx* := sup (x*, x) . 
Ilxll51 

Definition 2.2.3. (Locally Lipschitz) Let X ,  Y be normed linear spaces with norms 

1 1  . ( I x ,  1 1  . / I y .  Given f : X t Y, we say f is locally Lipschitz from X to Y, written 

f E Lipzoc(X, Y), if for all R >  0 there exists some L(R) > 0 such that 

2.2.1 Hilbert Spaces 

H will denote a Hilbert space wit'h inner product and norm given by (., .)H and ) I  . / I H  
respectively. H* will denote the dual of H and will be a Hilbert space with inner 

product (., .),,, which be defined in a moment. The H*,H pairing will be given by 

( ' 1  0)w.H. 
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Theorem 2.2.3. (Riesz Representation Theorem) Given u* E H* there exists a 

unique u E H such that 

In particular, we have IIu*IIH* = llullH. 

Proof. See [Thomson] page 621. 

Definition 2.2.4. Given u* and u as above, we will call u the associate of u*. 

Define @ : H* -+ H by @(u*) := u where u* and u are defined as above. Define 

Q := @-I. 

We will use @ to induce a inner product, on H* and this inner product will induce 

the operator norm. So towards this let u*, v* E H* and let u = @(u*), v = @ ( t i * ) .  

Then we define 

(u*, v*)H* := (u, v ) ~ .  

So we see that, by construction, @ and Q are unitary maps. 

Theorem 2.2.4. (Element of Least Norm) Given a Hilbert space H and a non-empty 

closed convex set C 2 H ,  there exists a unique x E C such that 

Proof. See [Thomson] page 620. 0 

Definition 2.2.5. (Orthogonal Complement) Given a set X C H ,  where H is a 

Hilbert space, we define the orthogonal complement of A' in H b y  

Theorem 2.2.5. (Decomposition) Given a closed subspace X of H ,  we have the 

decomposition 

H = x @ x ' ,  

in the sense that for all z E H there exist unique x E X ,  y E X' such that z = x + y. 

Moreover we have 11211; = IlxII& + Ilyll&. 
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Proof. See [Thomson] page 621. 0 

Definition 2.2.6. (Weak Sequential Con-vergence) Given un E H ,  we will say un 

convergences weakly to u in H ,  written 

if (un7 v ) ~  -+ (u, v ) ~  for all v E H .  

In a finite dimensional Hilbert space we will quite frequently use the fact that a 

closed, bounded set is compact. In an infinite dimensional Hilbert space we do not 

have this compactness result, but we do have the following which will turn out to be 

extremely useful. 

Theorem 2.2.6. (Weak Sequential Compactness) 

(i) Given un bounded in H ,  there exists a subsequence u,, (which generally won't 

be renamed) and u E H such that 

(ii) If un u in H then 

Proof. For (i) see [Thomson] page 631. 

(ii) Let un A u. Then 

(un: U)H 5 I/u~IIH~~uIIH. 

Now take a liminf of both sides to get 

Theorem 2.2.7. (Mazur7s Theorem) Assume C is convex and closed in H .  Then C 

is weakly closed in H .  
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Proof. See [Evans] page 639. 

Definition 2.2.7. (Lower Semicontinuous) Given F : H -+ (-a, a], we say: 

(i) F is lower semicontinuous on H if 

un -+ u i n  H implies F(u)  5 lim inf F(u,). 
n 

(ii) F is  weakly lower semicontinuous on H if 

u, u i n  H implies F(u)  < lim inf F(un).  
n 

Quite often one will be interested in minimizing some function F : H --+ (-m, m]  

over some A 2 H. The above ideas will be extremely useful for accomplishing this. 

2.3 Sobolev Spaces 

I will define various Sobolev spaces and list various theorems that we will need later. 

Most of the theorems we will be using can be found in [Evans]. Note that the theorems 

quoted are typically not the most general. If one requires these one should consult 

[Adams] . 

Definition 2.3.1. For rn a non-negative integer and p E [l, a), we define 

whenever the right hand side makes sense and where the derivatives are taken i n  the 

sense of D' (R) . 

Now let's define various function spaces: 

W ~ ' P ( R )  := {u E Lp(fl) : 3% E LP(R) for all /a  1 5 m)  

Then Wm)P(R) is a Banach space with the above defined norm. 

Wr)P(R) := closure of C,"(R) in M-7m1P(R). 
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We will typically denote Wm?2 (R) , (UT?'~ (a)) by Hm (a), (Hr (a)) respectively, 

since it will be seen that they are Hilbert spaces. 

We define a inner product on Hm(R) by 

and this inner product induces the above norm. 

Define the semi-inner product and semi-norm on H1 (0) by 

(u, u),; := (Qu, Q U ) , ~  and IluJJH; := llV~11~2. 

This semi-norm will turn out to be a norm on H,' (0) and &(a) under suitable 

conditions, where the "dot" denotes the zero-average subspace. 

Definition 2.3.2. (First Eigenvalue) 

Later we will show that if if c LLQR) with info c > -A1, then 

(u, u) := Jo {Qu . Vu + CUU) dx 

and (., are equivalent inner products on Hd (0). In particular, if ifl > 0, then 

/ I  . IIH1 and 1 1  . [ I H ;  are equivalent on Hh. To have X I  > 0 it is suficient that R be 

bounded. Generally X1 is the first eigenvalue of -A on Hh ( a ) .  

When X1 > 0, it is understood that Hi (R) has inner product and norm given by 

above with c = 0, unless otherwise mentioned. 

To see that we do require some sort of restriction on R for X1 to be positive, 

examine the following. 

Example 2.3.1. ' ~ a k e  n = I 

Then easily seen that 

and let q5 E Cr(R) with q5 # 0. Define q5,(x) := q5 (g) . 

Hence XI = 0. 
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Let's now state various Sobolev space theorems that we will continuously use. In 

what follows R will always be a subset of Rn. 

Theorem 2.3.1. (Global Approximation by Smooth Functions) 

Let R be a n  open and bounded set with a C' boundary. Then  

~ " ( n )  i s d e n s e i n  W ~ > ~ ( R )  

provided 1 <_ p < m .  

Proof. See [Evans] page 252. 0 

Definition 2.3.3. (Holder spaces) Let R be a n  open and bounded subset of Rn. Let 

0 < y 5 1.  For u E C(n), we define the yth-Holder seminorm of u by 

The  yth-Holder n o r m  o f  u i s  defined by 

lIullco.l(n) := IIullc(n) + 14c07Tca)- 

The  Holder space ck>?(n) consists of all u E ck(n) for which the n o r m  

is  finite. 

Theorem 2.3.2. (Estimates for W1?P,n < p < m) Let R be a n  open and bounded 

subset of Rn with a C1 boundary. T h e n  for u E WIJ'(R), we have u E C ' > Y ( ~ )  and 

where C = C(p ,n ,  0) and y := 1 - ;. Note that we are identifying functions that 

agree a. e. 

Proof. See [Evans] page 269. 
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Theorem 2.3.3. (Poincark's Inequality) 

Let 0 be open, bounded and connected with a C1 boundary. Take 1 5 p 5 co. 
T h e n  

for all u E WIJ'(0), where C = C(p, n, 0 ) .  Here ( u ) ~  denotes the average of u over 

0. 

Proof. See [Evans] page 275. 0 

The space in the following definition will take a pivotal role when we define H i 1 .  

Definition 2.3.4. (Hi) Let 0 be as in Poincare"~ Inequality. Define 

Using Poincare"~ inequality we see that  Hi i s  a Hilbert space and the norms 1 1  - l l H 1 ,  

11 . 11,: are equivalent o n  H' (0) .  

Theorem 2.3.4. (Rellich-Kondrachov Compactness Theorem) Assume that  0 is a 

bounded open set with a C1 boundary. T h e n  

where 1 5 p 5 co and - denotes a compact imbedding. Note that for w$' case we 

can d r i p  assumption o n  smoothness o f  the boundary. Also we have for 1 5 p < n that  

nP I,t"lp(0) - Lq(0)  for  1 5 q < p* := - 
n - P  

and a continuous imbedding when q = p*. 

For k p  > n we have 

~ " " ( 0 )  -+ C(2), 

where + denotes a continuous imbedding. 
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Since we will typically be working with S2 5 R3, it will be helpful to  remember the 

following imbeddings. 

Let S2 R3 be open, bounded and with smooth boundary. Then we have the 

following continuous imbeddings: 

Proof. See [Evans] page 272. 0 

Theorem 2.3.5. (General Sobolev inequalities) Let 0 be a bounded open subset of Rn, 

with a C1 boundary and also assume k > ;. Then we have the following continuous 

imbedding: 

wkJ'(S2) + C k- -l,Y - 
(fl) 

where y := + 1 - E if 2 is not an  integer. If ; an  integer than y can be any 
P P  

number in (0 , l ) .  Here 1.1 denotes the floor function. I n  addition the imbedding is 

continuous and the constant depends only on k ,  p, n,  y and S2. 

In  particular for n = 3 , p  = 2 and k 2 2 we have for u E Wk12(S2) that 

Proof. See [Evans] 

Definition 2.3.5. 

space of functions 

page 270. 

(Banach Algebra under pointwise multiplication) Given a Sobolev 

X on  S2 with X C L1(S2), we say X a Banach Algebra under 

pointwise multiplication if 

u, v E X impl ies  uv E X ,  

where (uv) (x) := u(x)v(x) . 
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Theorem 2.3.6. (WkJ'(R) as a Banach Algebra) Let R be an open and bounded set 

in Rn with a suficiently smooth boundary. Then if kp > n we have that Wk?p(R) is a 

Banach algebra, under pointwise multiplication. 

Proof. See [Adams] page 115. 0 

We will need a way to assign boundary values to elements of various Sobolev 

spaces. Since Sobolev functions are only defined up to sets of measure zero and 

"nice" open sets will typically have boundaries with n-dimensional Lebesgue measure 

equal to zero, we see there is no obvious way to define what one means by u = 0 .or 

d,u = 0 on d a .  One way around this apparent problem is to use what is called a 

trace operator. 

A comment on notation. Given R 5; Rn, IRI will denot'e the n-dimensional 

Lebesgue measure of R and ldRl will typically denote the (n.- 1)-dimensional Lebesgue 

measure of dR. 

Theorem 2.3.7. (Trace Theorem) Assume R is an open and bounded subset of Rn 

with a C1 boundary. Then there exists 

To E L(W'>P (Q), Lp(8R)) 

such that To(.) = ulan if  u E W',P(R) fl ~ ( a ) .  

Proof. See [Evans] page 258. 0 

We call To the trace operator. 

Theorem 2.3.8. (Trace-zero functions in WIJ') Assuming the same hypotheses as 

Theorem 2.3.7, we have for u E IVIJ'(R) that 

where To (u) = 0 on dR means that To (u)  = 0 in Lp(dR). 

Proof. See [Evans] page 259. 
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To talk about the normal derivative of u on dR we can also use the idea of a trace 

operator. We will not give this operator its own notation but let's just say that to 

make sense of duu on dR we will require u E W2$p(R). 

Theorem 2.3.9. (Green's formulas) For u E H2(R), v E H1 (R) and dR suficiently 

smooth, we have 

where we have used the trace operator to interpret the boundary terms.  

Proof. Use classical Green's and then use a density / continuity argument. 

For the remainder of this thesis we will use the following convention. 

Convention 2.3.1. (Domains) A Domain in Rn will denote a bounded open set in 

Rn with a C" boundary. 

From here on we will always take the "best constant" when using various Sobolev 

inequalities. For the remainder of this thesis we will a'ssume that XI > 0. 



Chapter 

Duals of -1 Sobolev Spaces and Ho 

In this chapter we will examine the duals of various Sobolev spaces and in particular 

the duals of H1 (R), Hi (R) denoted by (H1 (a))*, H-'(a). More specifically we will 

look at the associates related to the spaces (H1 (R))*, HU1(R) and the related elliptic 

boundary value problems. We will quote a standard representation theorem for H-', 

which is more compatible with distribution theory than t.he Riesz Representat'ion 

Theorem. We will obtain weak solutions to  these elliptic boundary value problems 

using the Riesz Representation Theorem, (no need for Lax-Milgram), and also using a 

variational approach. Standard regularity theorems will also be presented. Eventually 

we will introduce the Hilbert space (H;') over which we will write the Cahn-Hilliard 

equation as a gradient flow. 

3.0.1 The dual of HF(R) 

Definition 3.0.6. For m a non-negative integer we define H-"(R) := H,"-(a)*. 

In this section we will show that H - ~ ( R )  can be ident'ified in a natural way with 

a subspace of D' (R). We will also introduce a standard representation of H-l(R). 

Let's now look at the identification mentioned above. 

DI_,(a) (see (2.3)) can naturally be identified with H-m(R) in the following sense: 

(i) Given u E H-m(R) we have ~ l ~ ( ~ )  E D'_,(R). 
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(ii) Given u E DLm(R), u can be extended uniquely to some ii E H-m(R). 

(i) follows directly from the definition of' DLm(R) and the definition of the operator 

norm. 

To see (ii) we will use following fact: 

Given X ,  Y metric spaces with Y complete and A : S c X -+ Y uniformly 

continuous with S dense, then A posesses a unique continuous extension to all of X 

and this extension is uniformly continuous. 

So take S := D (R) which is dense in H,"(R) and apply the above result. It is 

easily seen the extension is linear. 

So from the above what we see is that when working in H-m(R) there is no loss 

of information if we take the distributional viewpoint. Lat,er we will see this is not 

the case in general for the dual of Hm(R).  

The most obvious way to examine HP1(R) is to  use the Riesz Representation 

Theorem. If we do this then we see that we will identify 

f E Hi (Q) and Tf 

where (Tf , v) := ( f ,  v) H;, but we typically do not use the above identification since it 

does not agree with the convention that we already set forth in distribution theory. 

So we identify sufficiently regular functions f (see next page), and Tf E H-'(R) 

where Tf is given by 

(Tf, v) ::= fv. 

So if we identify using the L2 pairing then we see that Hi (R) 2 L2(R) c H-'(R). 

Let's now look at  a characterization of HP1(R) where we are identifying using the 

L2 pairing. 

Theorem 3.0.10. Given f E H-I (0) we have 
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where E ( f )  is the set of ( f O ,  f l ,  ..., f n )  E II~=,L2 such that 

Proof. Let f E H-I ( a ) .  By the Riesz Representation Theorem we know there exists 

a unique u  E H i  (a)  such that. 

(Note we are using the H 1  (0) inner product.) 

From this we see ( u ,  d lu ,  ..., dnu) E E ( F ) .  For the rest of t,he proof see [Evans] 

page 283. 

0 

A basic but useful fact to keep in mind is that if H 1  (0) -+ U(a)  then we have 

~ ' ( a )  + H 1  (0)': where -+ denotes either a continuous or compact imbedding and 

where p' denotes the conjugate of p. 

Here we are identifying f E LP' with the linear functional ( f ,  v )  = J, fv .  To see 

this functional is continuous on H1 note that we have 

From this we see 1 1  f l l ( H ~ l .  5 Cll f 11 LPl which gives us the continuous imbedding. To 

see the compact version we need a slightly more advanced argument. 

With above facts, we are now in a position to see what, constitutes a "sufficiently 

regular function" f ,  from the previous page. 

Recall: p* := for n > p. Take n >. 3 and examine (3.1). Since H i  -t L2* we 
n-P 

have 

So "sufficient~ly regular" is at  least LS. I suspect "sufficiently regular" is at  most. 

LS since if it was bigger than we could extend the Sobolev Imbedding H 1  -+ Lq to  

q values bigger than 2*. 



CHAPTER 3. DUALS OF SOBOLEV SPACES AND H;' 

3.0.2 Dirichlet's Problem and Ht (0) , H - ' ( 0 )  associates. 

In this section we will examine the H,' (R), H-'(R) associates and the related elliptic 

boundary value problem. Standard methods of obtaining solutions to these boundary 

value problems will be examined and we will quote a regularity result. 

Let's introduce what we mean by a weak solution to the following elliptic problem: 

-nu = f in R { u = o  on dR 

where f E H-'(a). 

Definition 3.0.7. (Weak solution to Dirichlet) We will say u E H,' (R) is a weak 

solution to (3.2) if 

Using our associate notation we see @ ( f )  = u and Q(u) = f .  

Using Green's formulas we see that a weak solution of (3.2) is compatible with a 

classical solution of (3.2). 

We can obtain a unique weak solution to (3.2) directly by the Riesz Representation 

Theorem. 

A Variational Formulation of (3 2)  

Let's examine a variational method of obtaining a solution to (3.2). Define 

hence J is bounded from below. If we let w, denote a minimizing sequence for J then 

clearly w, is bounded in H,' (R). By passing to a suitable subsequence we can assume 
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that wm - u in H i  ( R )  for some u.  Now using the fact that a norm is sequentially 

weakly 1.s.c. on a Hilbert space, we see thak 

J ( u )  5 lim J(w,) therefore inf J ( w )  = J ( u ) .  
m HA 

Now fix 4 E H i  ( R )  and define g on R by 

Since g obtains its minimum at t = 0 we have gl(0) = 0 ,  hence 

Therefore u is a weak solution to (3.2). 

For a linear problem like above we will typically not use this variational method 

of obtaining a solution, but we will use this method when confronted with certain 

nonlinear elliptic B.V. problems. 

Let's now examine Dirichlets problem but with non-zero boundary conditions. 

where f E H-' ( R )  and g = To(wO) for some wo E H 1  ( R ) .  

We say u E H 1  ( R )  a solution to (3.3) if 

(i) u E A := wo + H i  ( R )  

(4 (%v)H; = (f , v ) ~ - l , H ;  for all v E H: ( R ) .  

We can solve (3.3) by using (3.2) along with a change of dependent variables. To 

see this let f := f + Awo E H - l ( R )  (where Awe is viewed as an element of H - l ( R ) ) ,  

and let ii E H i  ( R )  solve (3.2) with f replaced with f .  Then we take u := ii + wo E A 
and we see that u solves (3.3). 

We can use the variational method to solve (3.3) just as we did for (3.2). 

Let's first examine (3.3) when f E L 2 ( R ) .  Take wo and A as above. Define 

J : A + R b y  
1 

J ( W ) : = ~ ~ ~ V ~ ~ ~ ~ ~ -  I f a d x .  
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It is easily seen that J is bounded below on A. Let w, E A be such t,hat 

J(wm) -+ inf A J. 

Since J(w,) bounded we get an inequality of the form 

where w, = wo +urn and urn E H,' ( R ) .  This shows I I V U ~ ~ ( ~ ~  bounded. After using 

a Poincark type inequality and passing to  a suitable subsequence, we have 

w, - w in H 1  ( R ) .  

Since A is weakly closed in H 1  ( R )  we have w E A. It is possible to show that 

J ( w )  = infA J.  

Now let 4 E H,' ( R ) .  So w+t4 E A for all t E R. Define g on R by g ( t )  := J(w+t4). 

Since g'(0) = 0 we get 

~ V W - V q b d x = ~  f 4 d x .  

From this we see w solves (3.3). 

Let's now try and solve (3.3) when f E H-I ( 0 ) .  One obvious problem is that f 

is not defined on all of A and so the above approach that worked for f E L2(R) ,  will 

have to be modified. 

Without loss of generality we can take wo E A n H,' (R)' (here H,' (0)' is w.r.t. 

H1 ( R ) ) .  To see this take wo E A such that 

Now define J : A + R by 

where P : H 1  ( R )  + H i  ( R )  is the projection operator. Now the proof goes as in the 

case f E L2(R) .  

Let's now quote a standard regularity result. 
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Theorem 3.0.11. (Dirichlet Regularity) Let R be a domain in  Rn and f E Hm(R). 

If u E H;(R) is a weak solution to 

then we have u E Hmf 2(R).  

Proof. See [Barbu] page 148. 

3.0.3 Neumann's Problem with L2 data. 

In this section we will be interested in solving the following: 

where f E L2(R), g E L2(aR) and where R is a domain in Rn. We will introduce 

the notion of a weak solution to (3.5) and we will obtain a weak solution using two 

different methods (as we did in the last section). Again a standard regularity result 

will be quoted. 

Definition 3.0.8. (Weak solution to Neumann.) W e  say u E H1 (R) is a weak 

solution to (3.5) 2f 

Use Green's formula to see this notion of a weak solution is compatible with a 

classical solution. 

One thing to notice is we have a compatibility constraint imposed on us. Taking 

v = 1 we see that we need f + Jan gdS := 0. 

Let's now obtain a solution to (3.5) when f E L2(R) and g E L2(aR) and where 

the compatibility constraint is satisfied. We will also need to assume R connected. 
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Define F : Hip) -+ P by (F, v) := J, fv + h, gvdS. 
Clearly F E H1(R)* where H1(q has the H1 norm. But by Poincark's inequality 

we know that I/.II ,; and 1 1  . 1 1  are equivalent on kl(R). So by an applicat'ion of the 

Riesz Representation Theorem applied to  H1(R) with the HJ (R) inner product., we 

see there exists a unique u E H1(R) such that 

Now let v E H1 (R) and define C := v - (v), E H' (a). Then we see 

So we have a solution to (3.5) and we see this solution is unique if we restrict ourselves 

to functions with zero-average. 

We can also obtain a solution to  (3.5) using the variat,ional method. To do this 

define J : H' (R) -+ IR by 

So we see that 

where C is obtained from the trace operator. Now using Poincark's inequality we see 

that J is boundedbelow on kl. Using arguments similar to  the previous sections, we 

see that J obtains a minimum over H' at say u, and u satisfies 
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If we assume f and g sat,isfy the compatibility constraint then we can as usual ext.end 

above integral equality to hold for all v E H1 and we are done. One thing to notice is 

that the Neumann boundary condition is worked into the functional to be minimized 

but the Dirichlet boundary condition is worked into the space we minimize over. 

Let's now quote a standard regularity result. 

Theorem 3.0.12. (Neumann Regularity) Let S2 be a domain in Rn. Take c to be the 

constant 0 or  1 and let f E Hm(S2). If u E H1 (0) i s  a weak solution t o  

then we have u E Hm+2(S2). 

Proof. See [Barbu] page 152. 

3.0.4 H1(R)*, H1(R) associates 

Let u* E H1 (S2)* and let u E H1 (S2) denot,e the associate of u*. Then by definition 

we know 
r 

J', {Ve . Vv + uv) = (u*, 21) (X1) . ,H1  'dv E H~ (0) . 

Kow suppose u* was of the form 

for f E L2(S2) and g E L2(dS2). (Clearly right hand side is an element of H1 (S2)*.) 

Then we see that u E H1 (0) would be a weak solution to 

- A u + u  = f in R 

duu = g on. dS2 

where we are using a slight variation of Definition 3.0.8 to  interpret above. Not'e also 

that f and g need not satisfy the compatibility condition. 

Let's now weaken slightly the regularity of the data. 
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Take u* E EL1 (0) + L2(R)  C H 1  (R)* ,  and let u t H 1  (0) denote its associate (see 

(2.4) for definition of EL1(R)).  Then we see that u should be a weak solution to  

- A u + u  = U* in R 

&u = 0 on d R  

and this turns out to be a suitable interpretation.  h he only potential problem is when 

u* is too singular near d R  and it "grabs boundary values". An example of this is any 

u* of form v H An gv. If u* was of the same form but over 0' cc R then we would 

not run into above problem. Note that for arbitrary u* E H 1  (R)* we have 

-Au  + u = u* in H-l (0) or in D' ( R )  (3.7) 

where we are taking suitable restrictions. 

We define the Dirac delta function, denoted 6, on D (0) by 

If X is a Sobolev space of functions defined on R with D (0) X, then a natural 

question to ask is if 6 can be extended to some E X*.  

To see this is even plausible note that given Wk1p(R), we can smooth the space 

out and increase the norm, therefore enlarge the dual in two obvious ways: 

1) Increase k. 

2) Or smooth it out in the LP sense. ie. increase p. 

Theorem 3.1.1. If 0 t R where R is a domain in Rn and if k > > then 

- 6 E W".P(R)* 

Proof. By theorem 2.3.5 we have 

W"P(R) t Cm'Y @I is a continuous embedding 
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where y is given by theorem 2.3.5 and rn : =  k - - 1. 

Let 4 E D ( a ) .  Then we have 

Since D ( R )  is dense in w ~ ~ ~ ( R )  we see t'hat 6 can be uniquely extended to a E 

w t S ( R ) * .  If we want to  extend 6 to  some 6 E Wkp(R)* where D ( R )  not dense in 

W"p(R) then we will have to  use Hahn-Banach to non-uniquely extend 6. 

0 

Now note the above proof won't work for k = 1 if p = n ,  but we really don't need 

the full power of theorem 2.3.5. Let's try a borderline case : k = 1, p = n = 2 and 

see what happens. 

By using extension methods we see if 6 $ (W132(R2))* then 6 $ W112(R)*. NOW 

let's switch to Fourier transform methods. (See [Folland] for details of this method.) 

Let 8 denote the Fourier transform of 6. It can be shown that 8 = 1 and 

where a(S1)  is the surface measure of the unit sphere in R2 and where 1 )  . 1 1 ( - 1 )  
denotes. the H-I ( R 2 )  norm using the Fourier Transform method. 

Hence we see 6 $ W1l'(R)*. So when k = 1 and p = n = 2 we see that 6 cannot 

be extended to some 6 E W71,2(R)*. 

Let's examine the case k = 1 and p = 2. From above we see that 6 can be extended 

to an element of H-I ( R )  iff n = 1. 
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3.2 Hilbert Space related to Cahn-Hilliard Equa- 

tion 

In this section we will define the non-standard Hilbert space ( H;~ ) that we will 

eventually use to  write the Cahn-Hilliard equation as a gradient flow over. Throughout, 

this section take S2 to be a connected domain in Rn. The notation we will use might 

cause some confusion with the dual of HA, which is denoted by H-l, but I believe 

this is somewhat standard notation for this space. 

So let H;~ denote u* E H1 (0). : (u*, l ) (H1)- ,Hl  { = 0). Since R is bounded we 

know 1  E H1 (R), hence Hi1 is well defined. 

Before we define a norm and inner product on we need to define a few spaces. 

Recall Definition 2.3.4 where we defined the Hilbert space Hi. 

Let (Hi)* denote the dual of Hi. We will use (Hi)* to  induce an inner product. 

on Hi1 and so let's examine this space a bit. 

Given u*, v* E (Hi)* with associates u, v E Hi , we have by definition 

Let's now define a norm / inner product on Hcl and then later we can verify that 

everything is valid. 

Definition 3.2.1. ( norm / inner product) 

where u*, v* E H;' and where u, v E Hi are the associates of u*IHA, v * ( H i  E (Hi)*. 

So we have 
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Since (u*, l ) ( H 1 ) * , H l  = 0 we easily see that (3.8) extends t o  all 4 E H 1  ( Q ) .  

Now suppose u* E H;' f l  {ELl(Q)  + L 2 ( Q ) ) >  then u E H i  is the unique weak 

solution to 

with zero-average. 

Remark 3.2.1. A t  this  point it is not  entirely obvious that  given u* E H;', that we 

have u * ( H i  E ( H i ) * .  W e  will see this i s  the case though. 

Theorem 3.2.1. H;' i s  closed in H 1  (R)*. 

Proof. Let f ,  E H o 1  and fn -+ f  in H 1  (Q)* .  There exists a 6  = 6(Q)  > 0 such that 

for all c E R with lcl 5 6  we have llcllHl < 1. (Take 6(Q)  := 1 / m ) .  So 

Now we have used ( H i ) *  to define our norm and inner product for H;'. In 

particular we defined the inner product / norm on H o 1  such that ( H i ) *  and H;' 
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are essentially the same spaces, as far as Hilbert spaces are concerned (there will be 

a unitary map between the two). Even though these spaces are "the same", we will 

give them their own notation to avoid any confusion on which domains the linear 

funct ionals are defined. 

We already have H;' a Hilbert space w.r.t. the ( H 1 ) *  norm and so if we can show 

that I /  . IIHi1 and 1 )  . 1 1  ( H 1 ) .  are equivalent on H;' then we'd have H i 1  a Hilbert space 

w.r.t. 1 1  . 1IHr1. 

Theorem 3.2.2. 1 1 ,  1 ( 1  are equivalent on H;'. 

Proof. Let C denote one of the constants from the fact that t,he H i ,  H 1  norms are 

equivalent on H i .  Let u* E H ; ~  and v E H i .  Then 

Hence u * / H i  E ( H i ) *  and / l ~ * ( / ~ ~ l  < C l l ~ * ( ( ( ~ l ) * .  

Now let u* E H i 1  and v E H 1  with llvllHl 5 1. SO v - ( u ) ~  E H i  and 
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Definition 3.2.2. So as to not keep saying associate, let's define a couple of map- 

pings. From here on  @, Q will be defined in following way: Given u* E Hi1 with 

u E HA as described in Definition (3.2.1), define 

@ : Hol --+ Hi  by @(u*) := u. 

Define Q := @-I. Both @, Q are unitary. 

One might ask d o  we really need to consider "singular7' elements of H1 (R) * when 

we define H,-' or can we just use the subspace M := L ~ ( R )  H;', ie. 

where M has the H1 (R)' norm. If we hope to use Hilbert space theory then the 

answer is YES we need to consider the "singular" elements. To see this let's show 

that M, as defined above, is not complete w.r.t. the H' (R)* norm. 

Theorem 3.2.3. Ad is not complete w.r.t. the H1 (a)* norm. 

Proof. Let f E M, v E H1 (R) with llvllHl 5 1. Then we have 

Hence for all f E M we have 1 1  f J((H1)* 5 1 1  f (jL2. 

Now suppose we have hf complete w.r.t. the H1 (a)* norm. Then by theorem 

2.2.2 (Open Mapping Theorem) we know there exists a C > 0 such that 

Now let's try and show no such C can exist. 

Let {en ) ,  c M denote an orthonormal system in L2(R) and a orthogonal system 

in Hi (R) (here by orthonormal / orthogonal system we do not mean a basis). Then 

by standard Hilbert space theory we know 
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Fix n and let { v z } ,  H1 be such that llvzllH1 -< 1 and 

(en ,  ~ F ) ( H ~ ) * , H '  + 1 1 %  ll(H1)*. 

By theorem 2.2.6 (Weak Sequential Convergence) along with theorem 2.3.4 (H1 - 
L2) and after passing to a suitable subsequence (without renaming), there exists a 

llvnllH1 -< 1 such that, 

v;+vn in L ~ .  

Hence we have 

I lenll(~1)= = ( e n , ~ n ) ( ~ l ) * , ~ l  = (en,vn),?.  

Again by theorem 2.2.6 (Weak Sequential Convergence) along with theorem 2.3.4 

(H1 - L2) and after passing to a suitable subsequence (without renaming), there 

exists llvllHl 5 1 such that 

From this we see 

since vn -+ v in L2 and en - 0 in L2. 

But this contradicts (3.10). Hence by contradiction we have proven the theorem. 

0 

Remark 3.2.2. W e  could have eliminated a few steps from the above proof if we had 

used the fact that every continuous linear functional o n  a reflexive Banach space is 

n o r m  obtaining o n  the closed uni t  ball. 
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Gradients and Gradient Flows 

In t,he next few sections we will introduce various notions of a gradient on a Hilbert 

space. These will include the classical gradient, sub-differential (sub-gradient) and 

the const'rained gradient'. 

Take H to be a real Hilbert space with norm / I  1 1  and inner product (., .). Let 

(-, a )  denote the H*, H pairing. 

4.1 Classical Gradients 

Given F : H -t R and u E H we say F is G-differentiable, in honor of Giiteaux, at 

u E H with derivative F1(u) E H* if 

If this limit converges uniformly for llull =: 1 t,hen we say F is Frkchet different'iable 

at u. 

So if F is G-differentiable a u E H theri by the Riesz Representation Theorem we 

know there exists a unique w E H such that 
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We will denote w  by gradF(u). This is what we will call the classical gradient of F  

at  u.  Note that this agrees with our usual. notion of a gradient of F  when H  = Rn. 

Let us now move on to the notion of a gradient that is, perhaps, the most widely used 

when F  is convex. 

4.2 Subgradients and Su.bdifferentials 

Take F  : H t (-m, oo] to  be convex and define 

D ( F )  := { u  E H :  F ( u )  E R )  

d F ( u )  := {v E H : F ( w )  2 F ( u )  + (v, w - u) ,'dw E H )  

D ( d F )  := { u  E H  : d F ( u )  :# 0). 

d F ( u )  is what we call the subdifferential of F  at  u.  Note that d F ( u )  is set valued. 

We call v E d F ( u )  a subgradient of F  at u. The geometric interpretation of d F ( u )  is 

that v E d F ( u )  ifv is the "slope" of a affine functional touching the graph of F  from 

below at  u .  We will say F  is proper if it is not identically oo. 

Let's look at  a simple example of a subgradient. 

Example 4.2.1. F ( x )  := 1x1 where H  := R. Then we have 

The following theorem shows that the notion of a subdifferential is a suitable 

generalization of a gradient. 

Theorem 4.2.1. F  : H  t R  convex and G-d2fferentiable at u  E H .  Then 

d F ( u )  = {gradF(u) )  . 

Proof. Let w  E H, t  E ( 0 , l )  and define 
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F ( u  + t ( w  - u ) )  - F ( u )  - - F( tw + (1  - t ) u )  - F(u )  
L ( t )  := 

t t 

where the inequality follows from c0nvexit.y of F .  But L ( t )  -+ (gradF(u) ,  w - u )  as 

t -+ O+. Hence we get 

F ( w )  - F ( u )  2 (gradF(u) ,  w - u )  

and so gradF(u) E d F ( u ) .  

Now let v E d F ( u )  and let g E H be such that v = gradF(u) + g .  Hence for all 

t > 0 we have 

After some rearrangement we get 

F ( u  + t g )  - F ( u )  
t 2 ( g r a d F ( 4 ,  g )  + 1/9112. 

Now letting t -+ O+ we get 

So the subgradient of F at u allows us to make some sense of gradF(u) even if 

gradF(u) does not exist in the G sense. 
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Theorem 4.2.2. (Basic Properties of  Subdifferentials) Take F : H -t (-co, co] to 

be convex, proper and lower semicontinuozr,~. Then 

( 2 )  D ( d F ) L D ( F )  

(ii) For all w E H and X > 0 the problem 

u + XdF(u) 3 w 

has a unique solution u E D ( d F ) .  

Assertion (ii) means that there exists u E D ( d F )  and v E d F ( u )  such that 

Proof. See [Evans] page 524. 17 

Let's now move on to  the generalization o f  a gradient which we will use almost 

exclusively. 

4.3 Constrained Gradient 

The idea of  a constrained gradient is t o  limit the directions v in (4.1). Let's look at 

an example to  see why this might help. 

Example 4.3.1. Define F : L2(L?) --t (-a), co] by  

{ LJn 1V.d~ u E H 1  (0) 
F ( u )  := 

otherwise. 

Fix u E H2(L?). Since F = oo on a dense set of L2(L?), we see that there is no 

chance of gradF(u) existing in the classical sense. Now let v E CF (a). Then we 

have 

F ( u  + t v )  - F ( u )  t 
= ( V u ,  V Z I ) ~ ?  + 21vv11;z 

t 
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as t --t 0. Now using Green's forrnula we get 

Hence, if we limit the directions v to C,00(0), where H = L2(R), in (4.1) then we see 

that gradF(u) should be -Au. 

Let's use the above example as motivation to  try and generalize this idea of a 

constrained gradient. 

Again take F : H --t (-m, CQ] and let X C H denote a subspace. Take u E H 

with F ( u )  E R. 

Definition 4.3.1. 

F (u t- tv) - F ( u )  
G(F,  X ,  u) := : lim - 

t i 0  t = ( f ,v)  vv E x}. 
So note X is limiting the directions v and G(F,  X ,  u )  is a set of good candidates to be 

called gradF(u).  

Now note that if F was G-differentiable a t  u then G(F,  X ,  u )  = gradF(u) + XL 

Now we some how want to define our constrained gradient using G(F, X ,  u). Let's, 

for the time being, assume we know that G(F,  X ,  u)  is closed, convex and non-empty. 

Then by theorem 2.2.4 (Element of Least Norm), G(F, X ,  u) has a unique element of 

least norm. So this is how we will define our constrained gradient. 

Definition 4.3.2. ( X  Constrained Gradient of F at  u)  

Assuming G(F,  X ,  u )  is closed, convex and non-empty then define 

gradXF(u) to be the unique element of G(F, X ,  u) of least norm. 

When necessary to indicate the Hilbert space H we will write it as gradgF(u) .  

Let's borrow some notation from convex analysis. 

Definition 4.3.3. Take F : H --t [-m, oo]. (Note that we are not restricting 

F to be convex). Take X a subspace of H. Now define 

~ ( ~ r a d ; ~ )  := {u E H : G(F, X ,  u) # 8) . (domain of X constrained gradient of F) 
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Lemma 4.3.1. G(F ,  X ,  u )  is closed and convex. 

Proof. This almost follows by definition of G(F,  X ,  u )  . 

The next Theorem will generally allow us not to worry about taking the element 

of G ( F ,  X, u )  with least norm. 

Theorem 4.3.1. If X is a  dense subspace of H then G ( F ,  X ,  u )  is empty or a  sin- 

gleton. 

Proof. Take G(F ,  X ,  u )  non-empty and let f 1 ,  f 2  E G ( F ,  X ,  u ) .  Hence we have ( f l ,  v )  = 

( f 2 , v )  for a11 v E X .  SO we see f l  - f 2  E X I  but X dense hence X I  = ( 0 )  so f l  = f2. 

0 

This idea of a constrained gradient will allow us to handle certain functionals that 

a subgradient will not and will be the generalization of a gradient we will use when 

looking at  the Cahn-Hilliard equation. 

4.4 Examples of Gradients 

Let's examine some typical functionals and see what their gradients are over various 

spaces. Take R a domain in Rn. 

Define 

1 
Fo(u) := l l ~ u 1 ~ d x  Fl ( u )  := l W ( u ( r ) ) d ~  

where W E C m ( R ,  R ) .  Then we have for X := CF (0) and u E C,O" ( R )  that 

g r a d f 2 ~ o ( u )  = - A u  (4.3) 

grad$;~o(u)  = u (4.4) 

gradf2 ~ ~ ( u )  = W 1 ( u )  (4.5) 

g r ~ d $ - ~ ~ ~ ( u )  = A2u (4.6) 

grad$-, F~ ( u )  = - A W 1 ( u )  if IV'(0) = 0. (4.7) 
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We will justify the above claims in a moment. 

We will use the following convention since we will be looking at the above two 

functionals over various Hilbert spaces. 

Remark  4.4.1. (Notational Convention) If a functional F o n  a Hilbert space 

H is given by a formula then, unless otherwise mentioned, the domain of F will be 

understood t o  be the biggest subset of H where the  o or mu la" i s  well defined and finite. 

To clarify this let Fo be given as above and H := L2(R). T h e n  it is  understood that 

Fo i s  in fact given by 

{ LJo lVu12dx u E H 1  (0) 
Fo (u) := 

otherwise, 

where as o n  occasion we might use the functional 

so I V U ~ ~ ~ X  u E Hh (0) F(u )  := { 
00 otherwise. 

Lemma 4.4.1. For u, v E C," (0) we have 

Proof. Trivial. 

Now let's check above claims of gradients. 

(4.3) Since 

VU VV = (-Au, v ) ~ Z  

for all v E X we are done. 

(4.4) Follows since 

VU. Vv = (u,v) 
H,' 

for all v E X. 

(4.5) This follows directly from Lemma, 4.4.1. 
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For the next two examples we will switch to * notation to agree with previous sec- 

tions on associates for H- l (R ) ,  HA(R). Starred elements will be viewed as belonging 

to H-' (0)  and non-starred elements will be viewed as belonging to H i  (0). 

(4.6) Let u* E C r  (0) and u* E X. Define u- := -Au* E X C H i .  Let 

w* E H-I (0) ,  v E H; (0) denote the associates of w and v* respectively. By elliptic 

regularity we have v E H; (0) n ~ " ( a ) .  Then we have 

= v*(-AZL*) 

= L V v * .  V u *  

Since this holds all v* E X we see grad$-,Fo(u*) = w* = -Aw = A2u*. 

(4.7) Let u* E C," (0) , u* E X and define w* := -Aw7'(u*) E Cm(D) .  Let 

v ,  u1 E Hi  (0) denote the associates of v*,  w* respectively. By elliptic regularity we 

have v, w E HA (0)  n cm(Q). So we have 

= S, v * ' * )  since W(0) = 0. 
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So we see that . 

grad5-,F1 (u*) = w* = -AW1(u*) .  

Let's examine what happens when W 1 ( 0 )  # 0. Let u* E C,"(R) and u* E X. So 

as before we have 

Fl (u* + tu*) - F:, (u*) 
lim - = Sn WI(U*)U*.  
t+O t 

If we assume w* = grad5-lFl (u*) E H-l exists and w ,  u E Hi  denote the associates 

of w*, u* then as usual we have 

== wu* 

Since this holds for all u* E X := C,"(R) then we see that W1(u*) = w E H i .  But 

since W 1 ( u * )  = W 1 ( 0 )  # 0 in a neighborhood of 6 9  we see W1(u*) $ H i ,  hence by 

contradiction we see that grad5-, Fl (u*) does not exist. 

We would hope that if we shrink the subspace of directions ( X )  to  say (Y ) ,  then 

grad~'',Fl(u*) might exist. Towards this take u* E C,OO(R) and we will use the 

subspace of directions given by Y := c,OO(R). Take w := W1(u*) - W 1 ( 0 )  E H,' and 

let w* denote the associate in H-l.  So w* = -AW1(u*) and we have 
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for all v* E Y. Hence we see that w* E G(Fl  Y, u*)  # 8 and so g r a d ~ - l ~ l ( u * )  exists. 

We are NOT claiming that w* = grad&, F-,(u*) since we will have to take the element 

of least norm in G(F,  Y, u*) .  

Let's examine yet one more example. 

Example 4.4.1. Take Fo(u) := $ (VuI2 and we will use H i  as our Hzlbert space but 

we will use a different inner product. Before we do this let's pick our inner product. 

Lemma 4.4.2. Let p E L" but with p - := infnp > -A1 where X 1  is defined in 

Definition (2.3.2). Now define 

(21, a) ,  := J, { V u  - v v  + puu} . 

Let's show this an equivalent ,inner product on H i .  

Proof. Suppose we could show for c E R with c > -A1 that (., -), was an equivalent 

inner product on H i  then since 

Ilulla 5 II4 5 I I ~ I I F  
we'd have desired result where p := supnp.. Now let c E R be as above. Then 
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where C is obtained from Theorem 2.3.3 (Poincark's inequality). 

To finish the proof of equivalence we need to show there exists some a > 0 such 

that 
2 

a II4x; 5 l l ~ l l f  h (12). (4.8) 

If c 2 0 then (4.8) holds trivially with a = 1. Take -A1 < c < 0 and suppose no 

a > 0 exists as in (4.8). 

Then for all positive integers m there exists a urn E H t  (0) such that 

After L2 normalizing we obtain 

for some urn E H; (0) with IIum ( l L 2  = 1. Since -c < X1 we see by taking m sufficiently 

large that there exists some u, E HA (R) with IlurnllL2 = 1 and I V U ~ ~ ~  < X I ,  but 

this contradicts the definition of X I .  

Now for gradient calculation. Let u, v E X := C,"O (0 ) .  As before we have 

Now we know {q5 u V u  Vq5) E H-l (0) SO by Theorem 2.2.3 (Riesz Repre- 

sentation Theorem), applied to  HA (R) but with t,he ( a ,  .), inner product, call this 

space H&,, we know there exists a unique w E HA with 

all v E X. Hence we have gradj$pFo(u) = u:. Also clearly E H,' is a weak solution 
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4.5 Gradient Flows and Abstract ODE'S 

A gradient flow is a special abstract ODE over a Hilbert space. An example of a 

abstract ODE would be the following: 

where X is a Banach space, uo E X, u : [0, co) -+ X, and A : X -+ X is an 

operator. One must define what one means by (4.10). The most obvious way is to 

define ut(t) to be the limit of 

as h -+ 0, where convergence is taken in 'the strong or weak sense in X. There are 

other interpretations which utilize distribution theory but we will not examine any of 

these. 

Typically X is some function space and A is some partial differential operat,or so 

an abstract ODE typically becomes a PDE. 

Definition 4.5.1. (Gradient Flow) W e  will think of a gradient flow as the. following 

abstract ODE over a Hilbert space: 

where F : H -+ R i s  some functional and .K > 0. 

(There are more general notions of a gradient flow but. this will suffice for our 

purposes.) 

Gradient Flows Decrease the Energy Functional Along Solutions. 

As mentioned in the introduction, a standard way of letting u evolve such that a 

certain energy (F) decreases in time, is to let u evolve in the direction opposite to 
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g r a d F ( u ) .  To see this let u denote a solut'ion (in some sense) to (4.11) with K = 1. 

Then, assuming some regularity in both F and u, we have 

So we see F will decrease in time along a, solution. This property makes gradient 

flows fairly attractive for modeling physical processes since typically we will have 

some energy that, according to the physics, should decrease in time. 

PDE's Induced from a Gradient Flow 

Let's now return to the section "Examples of Gradient" and see what PDE's the 

gradient flows induce. 

Define F (u )  := Jn ;/Vul2 + W(u(x)) d x  where W ( 0 )  = 0. If we take X := CF (R) 

we see the induced PDE's from (4.11) are 

ut = Au - W1(u) when H = L ~ ( R )  

and 

ut = -A2u + AW1(u) when H = H - ~ ( R )  

where we have taken K = 1. 

Note 4.5.1. For the calculations we assumed u(t) E C,C"(R) for all t > 0, which we 

expect not  to be the case in general for parabolic equations, but the above examples 

were t o  show how the resulting evolution equation depends o n  the choice of the Hilbert 

space. 

4.6 A Simple Evolution Equation 

In this section we will obtain a global solution to a nonlinear parabolic equation 

which is much simpler than the Cahn-Hilliard equation, therefore it will give us a 
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gentle introduction to the various methods involved. The equat,ion we will look at 

will be a nonlinear heat equation given by the following: 

Ut - a u  = -u3 =: f (u )  fl x ( 0 , m )  

u(x, t )  = 0 dR x [0, m) 

U(X, 0) = 4 R x {t = O), 

where R is a domain in R3 and C#I denotes some function on R. 

The first method will be a semigroup approach which utilizes Banach's Fixed Point 

Theorem to obtain a local solution and then we will apply a blow-up alternative along 

with some a priori bounds to extend this local solution to a global solution. This 

will be the method we will use later to obtain a local solution to the Cahn-Hilliard 

equation. 

The second method we will use will be a sub-differential method which will give us 

a global solution directly. We cannot apply this method directly to the Cahn-Hilliard 

equation since we will lack convexity. (There may be more advanced methods which 

can handle the lack of convexity.) 

We will not start from basics with either of these methods. For the second method 

we will choose the "correct" functional F and the "correct" Hilbert space H and then 

apply standard theory. The details can be found in [Evans]. 

For the first method we will go into more details. We will assume the reader is 

familiar with linear semigroups, Banach valued integrals and the spaces LP(0, T; X ) ,  

where X is a Banach space. We will start from a variation of parameters type formula 

(Duhamel's Formula) and then use fixed point theory on an appropriate space to 

obtain a local solution. When we obtain a local solution to Cahn-Hilliard we will not 

see a fixed point theorem, but be assured that it is hidden in a local existence theorem 

we will apply. 

For more details on either of these methods one should consult [Evans]. 

4.6.1 Semigroup Approach 

Define the operator B on L2(R) by 
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D ( B )  := { U  E H,' (0) : AU E L ~ ( o ) }  (domain of B)  

Bu := AIL for U E L ) ( B ) .  

Note 4.6.1. Since we have 6'0 suficiently smooth then by  Elliptic Regularity we know 

that D(B)  = Hi n Hz. 

Let {S(t)},,, denote the semigroup generated by B in L2(0) .  It can be shown 

that if 4 E L2(0) and u(t)  := S(t)4 ,  then u is the unique solution of the following 

problem (linear heat): 

ul(t)  = Au(t) vt > 0 

u(0) = 4. 

In addition we have the following decay estimates : 

If we assume 4 has more regularity, then u, will also have more regularity. If 4 E Hi 

then we also have u E C( [0, oo); Hi) and 

See [Cazenave] for details of above estimates. 

We will obtain a local solution to  (4.12) in a weak sense, which we will call a mild 

solution. Before we introduce what a mild solution is, let's examine the nonlinear 

term. 
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Define F (u )  (x) :=. f (u(x)) := ( ~ ( x ) ) ' .  Then using the fact that H1 is continuously 

imbedded in L6 (theorem 2.3.4), we see 

~IF(~)/ /L'  = l l413L6 5 ~ 0 I I ~ I l L ~ .  

Lemma 4.6.1. F E ~ i p " ~ ( ~ l  (a) , L2(a) ) .  

Proof. Let u, 21 E H1 (a). Then we have 

where p and q are conjugate. Take p = 3, q = 312 and apply theorem 2.3.4 to get 

Define Lo on 10, m) by 

Lo(R) := sup {u2 + uu + u2)' dx : u/ lH: ,  u l \ H ~  5 R) . {i 
Using Holder's inequality along with theorem 2.3.4 we easily see that Lo is increasing 

and real valued. Combining the above results we see t.hat 

So we see that F E Lipzoc(H1, L2), hence F E Lipl""(H~, L2). 

From here on let L(R) be defined as follows: 

L(R) := sup - llull~;, I I u I I H ;  5 R , u  # 21 . 1 
Let"s now introduce what we will call a mild solution to (4.12). 
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Definition 4.6.1. Local Mild Solution to  (4.12). 

Given 0 < T < oo and u E C([O, TI; H i  (a)), we will call u a mild solution to 

(4.12) if we have 

where equality holds in H i  (St) and where .MT(u) is defined as follows: 

MT (u) (t) := S( t )+  + lo S ( t  - s) F(u(s))ds.  (Banach valued integral) 

Using the fact that u E C([O, TI; HA) we see we are lookingforu such that u = MT(u), 

where equality holds in C([O, TI; Hi). 

We will call u E C([O, oo); H;(St)) a global mild solution to (4.12) if u satisfies 

(4.17) for all 0 < T < oo. 
Let's now show that (4.12) has a unique local mild solution. Before we do this 

let's introduce some notation and carry out a few calculations. 

To ease notation define XT := C([O, TI; Hi) and let BR denote the closed ball of 

radius R centered at the origin in XT. We will show that by picking R sufficiently 

large and T sufficiently small that MT will be a contraction mapping on BR, hence 

we can apply Banach's Fixed Point theorem to BR to obtain a unique u E BR which 

satisfies (4.17). 

We will not show that hlT maps XT into itself. One can avoid this by working in 

LM(O, T; Hd) ,  but then one loses some apparent temporal regularity. 

Let's now do some calculations. We will use the standard convention of letting C 

denote a changing constant that does not depend on u or v. 

Let 4 E Hi (St), u,  v E BR and T > 0. Then we have 
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Also we have 

for all 0 5 t 5 T. 

From the above estimates we see that for T > 0 and u, v E BR we have 
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Theorem 4.6.1. (Local Mild Solution) Assume 4 E H,'(Q). Then (4.12) has a 

unique local solution. 

Proof. Let 4 E H,' (Q) and define R := 2 1 1  $ 1 1  Define T by 

T  = T(4) := min 
1 }>O.  

{ I  + ( 2 ~ m  1 + (2CR2)' 
(4.20) 

Then we see, using (4.18) and (4.19), that MT maps BR into itself and 11MT(u) - 

MT(v) l l x ,  5 $ llu - vllxT for u,  v E BR. SO by Banach's Fixed Point Theorem 

(Theorem 2.2.1), applied to BR, there exists a unique u E BR with MT(u) = U. 

From this we see that (4.12) has a unique local mild solution that stays within BR. 

Note this does not give us the uniqueness -we desire. Let's now obtain uniqueness. 

Now let u, v E C([O, TI; Hi) denote mild solutions to (4.12) with 4 E HA(R). 

Define 

to := sup{O < t 5 T :  u(s) = v(s) , V s E [O,t]}. 

If to = T then we are done. Suppose to < T. For 6 > 0 define hif6 : C([O, 61; HA) + 

C( D61; HA) by 

Fix R > Ilu(to) 1 1  ,;. Let B; denote the closed ball in C([0,6]; HA) centered at 0 with 

radius R. Now pick 6 > 0 (small) such that 

i) 6 < T - t o  ( - 

(ii) /Iu(to + t)//,;, llu(to + t) 11,; 5 R for all 0 _< t < 6 

(iii) M~ maps B; into itself 

(iv) M6 is a contraction mapping on B;. 

By continuity of u and v we see (ii) will not pose a problem. For (iii) and (iv) we 

will use estimates of the form (4.18) and (4.19) to pick the required 6. Now by Banach's 

Fixed Point Theorem we know there exists a unique w E B; with M6(w) = w. 

Let's now show that t H u(tO + t) and t I-+ v(to + t) are fixed points of hf" By 

(ii) we have that both are elements of B;. To see they are fixed points note that 
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and similarly for v. 

So from uniqueness we have u(to+t)  = v(to+t)  for all 0 5 t 5 6, contradicting the 

definition of to. Hence by contradiction we have uniqueness of local mild solutions. 

0 

From Local to Global Mild Solution 

By examining the function T : Ht -t (0, oo), one is naturally led to what is called 

a blow-up alternat'ive. 

Theorem 4.6.2. (Blow-up Alt'ernative) For 4 E H i  (0) we have the following: 

Either (4.12) has a global mild solution 

or 

There exists a T,,, E (0, oo) and. u E C([O, T,,,); HA), whzch satisfies (4.1 7) for 

all 0 < T < T,,, and limt-TGal IIu(t) = oo. 

Proof. See [Cazenave] page 70. 

Let's now argue that (4.17) has a global solution. Inst'ead of dealing directly with 

the mild solution (4.17) we will use (4.12) to argue for a global solut,ion. This is not' 

a problem since it can be shown that these solutions are equivalent under suit.able 

conditions. 

Theorem 4.6.3. (4.12) admits a global solution. 
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Proof. Let u denote a solution to (4.12) on [0, TI, where T < ca. Multiply (4.12) by 

- Au and integrate over R to get 

Integrate over time up to t < T to get 

From this we see that 

u uniformly bounded in L 2 ( 0 ,  T ;  H ~ )  

u uniformly bounded in Lm(O, T; H i )  

u1 V u I .  uniformly bounded in L2 ( 0 ,  T; L 2 ) .  

Here u uniformly bounded in L 2 ( 0 ,  T; H 2 )  is taken to mea,n the following: there 

exists an M > O such that 

< hrl J I ~ L ~ ( O , ~ ~ H ~ )  - 

for all 0 < t < T .  

In particular we see that, 

limsup Ilu(t)llH; < ca. 
t-T- 

So we get desired result from the blow-up alternative. 

4.6.2 Gradient Flow approach using Subdifferentials 

In this section we will attempt to  get a global solution to  (4.12) using the following 

theorem. 
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Theorem 4.6.4. (Solution of gradient flow) Take F : H -+ (-m, m] to be convex, 

proper and lower semicontinuous. Then for 4 E D(dF)  there exists a unique 

such that 

(4 4 0 )  = 4 
(ii) u(t) E D ( d F )  Vt > 0 

(iii) ul(t) E -dF(u(t))  a.e. t > 0. 

Proof. See [Evans] page 529. 

Let's re-arrange (4.12) slightly to get ut = - {-nu + u3). 

So if we can find a functional F defined on a Hilbert space H with - n u  + u3 E 

dF (u )  for u E D ( d F )  (or more preferably dF (u )  = {-Au + u3) for u E D(dF) ) ,  

then we could try and apply theorem (4.6.4) to obtain a .global solution to (4.12). 

The u3 term suggests a functional of the form u4 dx and t,he Hilbert space 

L2(R). The -Au term suggests the Hilbert space L2(R) and a functional of the 

form Jfi IVu 1 dx,  or more precisely 

F (u )  := 
otherwise. 

To satisfy our boundary conditions we will want u(t) E Hi  (R) for all t > 0 but the 

above F gives no incentive for the flow to stay in H i  (R).  To fix this we will modify 

F slightly (see Fo below for modifications). 

Let's now define the functional F and the space H. 

Take H = L2(R) and take F as defined below. 
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Define 

i;(u) := { L J  2 R IVuI2dx U E H ~ ( R )  

00 otherwise 

a u4dx u E L 4 ( R )  Fl (u)  := 
.otherwise 

Note carefully that Fo(u)  = 00 for u E H 1  ( R )  \HA ( R )  (This is t,he slight modification 

mentioned above). 

It is easily seen that F, Fo, Fl are all convex, proper and lower semicontinuous on 

L2 ( R )  . 

Theorem 4.6.5. D ( d F )  = H i  n H 2  and for u E H; n H 2  we have 

Before we prove theorem 4.6.5 we will :need a few results. 

Lemma 4.6.2. For u  E L 6 ( R )  we have 

u3 E dFl (u)  . 

Proof. To see that u3 E d F l ( u )  we will need to show 

If w @ L 4 ( R )  then we are done trivially. Take w E L 4 ( R ) ,  then using Young's E 

inequality we get 

where we have taken q = 4 , p  = 413, E = 3/4. Re-arranging this we see t'hat u3 E 

aFl(.) . 
0 
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Lemma 4.6.3. D(dFo) = H 2 ( R )  n H;(R)  and for u  E D(dFo) we have 

dFo (u)  = { -Au) . 

Proof. See [Evans] page 534. 

Proof of Theorem 4.6.5 

Define 

Let u  E D ( A ) .  Using theorem 2.3.4 along with lemma 4.6.2 and lemma 4.6.3 we 

have 

-Au  E dFo(u) and u3 E dFl ( u ) .  

But it is easily seen, using the definition, that 

dFo (u)  + dF1 ( u )  2 d F ( u )  . 

So we have 

A u : = - A u + u 3 ~ E F ( u )  and D ( A )  & D(dF) .  

Let's now prove the other direction. To do this we will first show that Range(I + 
A )  = L2. 

Let f E L2 (R)  and define J on L2(R)  by 

is bounded below on L2. Hence we see that J is bounded below on Ht .  From standard 

lower semicontinuity arguments we see t,here exists a u  E H; such that 
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Let 4 E Ht and define g on IR by 

Since g has minimum at t = 0 we easily see that 

0 = g'(0) = {Vu . Vq5 + u3q5 + uq5 - f 4) dx 1, 

for all q5 E Hi .  Hence u E H i  is a weak solution to 

But since u E Hi  we can use theorem 2.3.4 to see f - u3 - u E L2, hence by theorem 

3.0.11 (elliptic regularity), we see that u E H2 f l  Hi  =: D(A). SO u + AU = f .  SO we 

see that Range(I + A) = L2. 

Now let ii E D(dF) ,  S E dF(ii).  So 

But Range(I + A) = L2, hence there exists a u E D(A) such that 

But D(A) D(dF)  and Au E dF(u)  so ii + S E u + dF(u) .  

Noting that we already have ii + S E ii + dF(ii) and then using uniqueness from 

theorem 4.2.2 we see that 

ii = u E D(A) and 'G = Au 

Combining with previous result we see that D(A) = D(dF)  and for u E D(A) we 

have 

dF(u)  = {Au) , 
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which completes the proof of theorem 4.6.5. 

To use theorem 4.6.4 with H = L 2 ( f l ) ,  we see that we will have to add some 

regularity to  4. We will require q5 E H 2  n Hi as opposed t,o just q!~ E H i .  

Now applying theorem 4.6.4 we see there exists a unique u E C([O, m); L2)  with 

u1 E Lm(O, m; L 2 )  such that 

( 2 )  4 0 )  = dJ 
(ii) u( t)  E D ( d F )  = H 2  n H i  'dt > 0 

(iii) u l ( t )  E - d F ( u ( t ) )  = { A u ( t )  - ~ ( t ) ~ )  a.e. t > 0. 

So in particular we have ul(t) = A u ( t )  - ~ ( t ) ~  for a.e. t > 0 where equality holds in 

L2 (a). 



Chapter 5 

The Cahn-Hilliard Equation 

The Cahn-Hilliard equation is the following evolution equation: 

with some initial condition. As noted in the introduction, a solution u  will conserve 

mass. We will show that the Cahn-Hilliard equation can be written as a gradient flow, 

using the Hilbert space H i 1  (see definition (3.2. I)) ,  and the Cahn-Hilliard Energy 

Functional F ,  as defined below. 

Definition 5.0.2. Define the Cahn-Hilliard Energy Functional F on Hc l  by 

where W  : R -+ R is some non-negative smooth double well potential and where it is 

understood that F ( u )  = oo if u  pf H' (0) or if W ( u )  pf L1 (0).  

5.1 Minimizing the Cahn-Hilliard Energy Functional. 

In this sect,ion we will minimize the Cahn-Hilliard Energy Functional over H;' with 

a st,andard double well potential W given by W ( u )  := i ( u 2  - 1)2  and where R  is a 

connected domain in R3. We will show that minimizers will be smooth (cm(G)) and 
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satisfy d,u = d,Au = 0 on d R .  This will serve as our motivat'ion for imposing the 

two boundary conditions in t'he Cahn-Hilliard equation. 

Before we at't'empt to minimize the Cahn-Hilliard Energy Functional over H o l  

let's examine t'he double well term. Using theorem 2.3.4 we have H 1  ( R )  continuously 

imbedded in P ( R )  for 1 5 p 5 6, hence we have 

where we have taken E = 1 in definition of F for simplicity. From here on we will just 

work with F over H' (0) since if F has a minimizer u over H;' then u E k1 (a) .  

Remark 5.1.1. (Size of E )  Taking E = 1 will be immaterial to showing existence 

and regularity of minimizers of F i n  this section and i n  the next, where we consider 

higher power nonlinearities. But  we want to  take E suficiently small such that we 

have a non-trivial case. So towards this let 0 < E < C where C is  from Poincari's 

inequality with p = 2. Then we have 

If we let u E ~ ' ( 0 )  witness the fact that E < C then we have 

Let's now examine F ( r u )  for r > 0. 

B y  taking r suficiently small we see that 

and so we have nontrivial minimizers. 

Theorem 5.1 .l. F has a min imum over H 1 ( n ) .  



CHAPTER 5. THE CAHN-BILLIARD EQUATION 

Proof. Let urn E (0) be such that 

lim m F(um)  = inf { ~ ( u )  : u E H1(R)) 2 0. 

Since W 2 0 and after passing to a suitable subsequence (not relabeled), we have 

for some u E H1 (0 ) .  

By a standard weakly 1.s.c. argument we have 

or put another way, the Hh (9) norm is weakly 1.s.c. on H i p ) ,  which follows directly 

from theorem 2.2.6. 

Also we have Jo uk  i S, u2 since urn -+ u in L2. Since urn -+ u a.e. we have by 

Fatou's Lemma that 

Combining all the above and using properties of lim inf we see that 

F ( u )  _< lim inf F'(u,) = inf F(v) .  
m HI 

0 

Theorem 5.1.2. Assume u a local minimizer of F over H ~ ( R ) .  Then u E ~"(2) 
and dvu = dvAu = 0 on dR. (Here local is w.r.t. the strong H 1  (0) t'opology.) 

Proof. Before we prove Theorem 5.1.2 we will need a few results. 

0 
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Then next lemma will essentially be a particular case of t,heorem 2.3.6 along with 

a particular imbedding. We are putting it in lemma form so as to simplify the proof 

of theorem 5.1.2. 

Lemma 5.1.1. (An Algebra type result.) 

Proof. (5.2) follows directly from the fact H1 (R) is continuously imbedded in L6(R). 

(5.3) follows from the fact WkJ'(R) is a Banach Algebra for k p  > n (see theorem 

2.3.6). 

Proof of Theorem 5.1.2 

Let u E H'(R) denote a local minimizer of F over H' (R) .  Fix v E ~ ' ( 0 )  and 

define g on IR by 

g(t) := F ( u  + tv). 

Since g has a local minimum at, t = 0 we have gl(0) = 0. From this we obtain 

Now define f := u-u3. By lemma (5.1.1) we have f E L2(R), hence fo := f - (f), E 

L~ (a). 
Let v E H'(R). Then we have 

/ j u . ~ v = S , f v = J i . f ~ v .  

Now let v E H1(R). Then v - (v), E H'(R) and 
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So we see u E H 1 ( Q )  is a weak solution to  

Now by theorem (3.0.12) we have u E H 2 ( ~ ) .  Now apply lemma 5.1.1 to  get 

fo  E H2.  Then by theorem 3.0.12 we have u E H4.  Keep bootstrapping to see 

u E H m ( q  for all m 2 1. From this we can conclude that u E ~ " ( n ) .  
Since u solves a Neumann problem and has enough regularity to check the first 

boundary condition, we know that d,u = 0 on dQ in the sense of trace. 

Let's now check the second boundary condition. We have enough regularity to  use 

classical derivatives. So we have 

-V(Au) = V fo(u)  = fL(u)Vu where equality holds in c(G; IR3) 

Now use continuity to extend this to the boundary and dot this with the normal 

vector v. We then arrive at 

4 , A u  = f;(u)d,u = 0 on dQ, 

which completes the proof of theorem ij.1.2. 
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5.1.1 Minimizing the Cahn-Hilliard Energy Functional with 

Higher Power Non-linearities 

This section is more of a curiosity than anything else since we will not attempt at 

getting a local or global solution to the modified Cahn-Hilliard equation where the 

double well potential involves higher powers than seen in the last section. 

Again take 52 to be a connected domain in R3, but now take the double-well 

potential to be 

Define F : H' ( R )  + R by 

In this section we will show that F has minimizers over H 1 ( R )  and if u a minimizer 

then u E Cm(n) with &,u = dVAu = 0 on 8 0 ,  which is the same conclusion as when 

W was the standard double-well potential as in the last section. 

As before it is easily seen that F will be minimum obtaining over H ~ R )  at say u.  

Let 1: E H ~ R )  and define g ( t )  := F ( u  + t v ) .  Using the fact that g'(0) = 0: we see 

Now define f := u - u5 - ( u  - 2 ~ ~ ) ~ ;  Then we see 

so u is a weak solution to 

Using the fact that H1 (0) L6 we see that f E L ~ / ~ ~  hence by elliptic LP regularity 

theory we have 

u E W2(q n w2>%(n). 
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This is not enough regularity to  allow us to bootstrap as we did before. I suspect if 

one knew more L p  regularity than I, then one could proceed from here. So we will 

proceed with a different approach, which will not be fully justified (a priori, we don't 

have enough regularity to justify the following comput,ations.) Take a gradient of 

both sides of the above PDE to obtain 

and then dot both sides with Vu to find 

Now integrate over R and use Green's forimula to obtain 

Re-arranging we arrive at  

hence we see that Au, u21Vul E L2(R). Using t,he fact that Au E L2 and d,u = 0 

on dR we see u E H2(R)  = W2>2(R) (use elliptic regularity). Since n = 3 we have 

H%n algebra for k 2 2 and so we can proceed as in last section. So after some 

bootstrapping we will obtain 

hence 

u E ~'~(2). 

As before we can argue that d,Au = 0 on d o .  
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5.2 Motivation for the Choice of H{' 

The most obvious (and easiest) Hilbert space to t,ry and write the gradient flow of 

the Cahn-Hilliard Energy Functional over would be H v o r  k > 0. There are some 

physical objections to this. Let's write it over L2(R) to see what we get,. Using (4.3) 

and (4.6) we see that we arrive at  the following evolution equat,ion: 

From this and from the imposed boundary conditions we get 

So it appears we won't have conservation of mass in general. We can impose the 

conservation of mass constraint by using L 2 p )  instead of L2(R) as our Hilbert space. 

Let X := CF(R). Later we will show X dense in L2(n) (see lemma (5.3.1). Now 

let's write the gradient flow 

u, := -gradf2F'(u). 

It is easily seen that gradt2F0(u) = -Au for u E k2 (R) .  Similarly we find that for 

u E k 2 ( t )  we have 

gradf2 f i  (u) = WT1(u) - (UI I (U))~  . 

So the evolution equation we arrive at over L 2 p )  is 

Now u will conserve mass but we have this extra average term. Typically this average 

term will be non-local. We reject this evolution equation as a good model for the 
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physical process because of its non-local nature (ie. no action at a distance). Let's 

look at  an example to  see what we mean by non-local. Typically W1(u) := u3 - u. So 

we see 

This integral operator is non-local. 

There are various other Hilbert spaces we could choose from to write our gradient 

flow, ut = -gradHF(u), over and obtain a local evolution equation with the correct 

boundary conditions, but Hcl will be t.he simplest. 

Cahn-Hilliard gradient calculations 

Take R to be a connected domain in Rn and on occasion we will add the restriction 

that n = 3. 

Before we calculate the X constrained gradient of the Cahn-Hilliard Energy Func- 

tional (F) over H;', let's try and pick a suitable subspace X .  We would prefer if X 

was dense in Hcl since then we wouldn't have to worry about picking the element of 

least norm in G(F,  X, u). 

In this direction let's show X := c,"(,c~) is dense in Hc1. 

Remark 5.3.1. X will denote c,"(R) for the remainder of this thesis. 

Lemma 5.3.1. X is dense in L2(R). 

Proof. Let u E L ~ ( R )  and let 4, E CF (a) be such that 4, + u in L2. By Holder's 

inequality we have Jfi 4, + 0. Now fix 0 5 4 E C,OO (0) such that 0 = 1. Let 

t, E R be such that 2tm - 1 = - Jfi 4,. So t, + 112. Now define 

$lm := (2tm - I)$ + 4, E X.  

It is easily seen that +, + u in L2, hence X dense in L2(o) .  
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Theorem 5.3.1. X dense in Hi1 

Proof. We will first show L2 is dense in H;'. Towards this define 

E := {u E H2 fl Hi : &u = 0 on dR} and let's show that @(L2) = E. Before we 

do this let's recap the definition of @ : H;' -t HA and XP := @-I. 

I f f  E Hi1 and u := @(f) ,  then we have 

Recall that when f is sufficiently regular, ( L ~  will suffice), we have an elliptic formu- 

lation relating f and u given by 

Now let f E L2 and let u := @( f )  E H i .  So u and f satisfy (5.4) and by elliptic 

regularity we have u E E. 

Now take u E E and define f := B(u) E H;'. Let f := - nu .  Use Green's 

formula to see f E L2. Then we have 

for all 4 E H1 (0). So we have f = f in H1 (R)* , but f E L2, hence we are done. So 

we have @(L2) = E. 

Now X C E and X is clearly dense in HA, so E dense in HA and since @ is an 

isometry we see L2 is dense in H;'. 

Now let u* E H;~ and e > 0. There exists a w* E i2 such that, 
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ju* - w*llH,-l < c. 

By lemma (5.3.1) there exists w& E X with w& t w* in L2. Hence we get 

where C is obtained from the fact that the H i 1  and H 1  (R)' norms are equivalent 

on H i 1  (See Theorem 3.2.2). The last inequality follows from the fact that the L2 

norm is bigger than the ( H 1  ( R ) ) *  norm o:n L2. By taking m sufficient,ly large we see 

5.3.1 . Formal Gradient Calculations of the Cahn-Hilliard En- 

ergy Functional 

In this section we will formally obtain the Cahn-Hilliard equation as a gradient flow 

of the Cahn-Hilliard Energy Functional over H,'. In t,he next section we will carry 

out the calculations with more rigour. 

Let F denote the Cahn-Hilliard Energy Functional and X be defined as before. 

Let u* be sufficiently smooth and satisfy d,u* = 0 = d,Au* on dR. Let v* E X. Then 

we have 

F(u* + t v* )  - F ( u * )  c2 W(u* + tv*)  - W ( u * )  
= ,! {€WU* v v *  + - t jvv*j2+ 

t 2 t 

So we see 
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F(u* + tv*)  - F(u*)  
lim 
t+o t  =S, { r2vu*  - V v *  + W1(u*)v* )  dx. 

So if w* = gradX ,F(u*)  then we need 
H ,  

I* { r2vu*  . V v *  + W ~ ( U * ) V * }  dx = (w*,  ~ * ) ~ ; i  

for all v* E X. Let u ,  v ,  w E H i  denote the associates of u*, v*, w* respectively. So w 

sa'tisfies 

and similarly for u ,  v. Now if we identify I Y i  with the dual of H,' then we have 

since v* and w are sufficiently smooth. Combining this with (5.5) we see that 

for all v* E X. If we let C := (UJ - W I ( U * ) ) ~  then we have 

for all v* E C,03 (0). So in particular we have 

or 

w = W 1 ( u * )  + C -- r2au* in R. 

Now noting that w* satisfies (5.6) we see 

SO gradX , F(u*)  = r2A2u* - AW1(u*) .  
H ,  

From this we see if we write ut = -gradx , F ( u )  then we get the Cahn-Hilliard 
H i  

equation. 



CHAPTER 5.  THE CAHN-HILLIARD EQUATION 

5.3.2 Gradient Calculations of the Cahn-Hilliard Energy F'unc- 

t ional 

In this section we will carry out the ca,lculations from the previous section with 

more rigour. In particular, in the last section, we assumed the existence of w* = 

gradH;lF(U*) along with a few other unjustified calculations. 

For this section we will assume W E Cco(R,  R )  and we will again take X := c,"(R). 

Now let's calculate the constrained gradients. To do this let's break F into two pieces. 

Define 

W ( u * )  E L 1 ( R )  
Fl(u*) := 

otherwise 

Now for gradient calculations. Starred elements will be viewed as elemenh of Hi1 

and non-starred as elements of HA. Let's first calculate gradHil FO(u*). 

Theorem 5.3.2. For u* E H 4 ( R )  we have gradX lFo(u*) given by  the following 
H i  

Proof. Fix u* E J j4 (R)  and let u* E X. As usual we have 

d .  
-F,(u* + tu*) / = VU* Vu*.  
dt t=:o 

Define 
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and w* := @ ( w )  E H;', v := @(v*) E Hi. Then we have 

= LVU* - V v *  since v* E X 

and so we see w* = gradX ,Fo(u*). Now let's find w* 
Hi 

Let v E H1 (a)  and w* be as above, with w E H i  the associate of w*. Then we 

have 

and so w* E Hgl  is given by the following functional 

It is easily seen that the integral formulation of w* has the required continuity and 

by an application of Green's formula we easily see that it has zero average. 

0 

From above we see that H4( f l )  C D(grndX ,Fo). 
Hi 

Let's now move on to calculating gradX ,Fl(u*) .  We will now take S2 to  be a 
Hi 

connected domain in R3. 
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We will need a few technical details to ensure that we have the expected 

d -4 (u* + tv*) i = wf(u*)V*.  
dt tZ.0 

So we have by theorem 2.3.4 that H4(52) is continuously imbedded in ~ ( n ) .  
Lemma 5.3.2. For u* E H ~ ( R ) ,  v* E X we have 

Fl (u* + tv*) - FI (u*)  
- + Wf(u*)v*  

t 

Proof. It is easily seen that 

Also it is easily seen that for V 0 < (tl < 1 we have 

for a.e. x E R. Hence by the dominated convergence theorem we get the desired 

result. 

Recall that theorem 2.3.4 gives us the following continuous imbedding 

Lemma 5.3.3. Assume F E C W ( R ,  R )  and u E H4(R) .  Then if we define z1 := F(u) ,  

we have v E H4(R).  Also note that v E LCO(R). 

Proof. For ( a (  5 4 write out 8% and check that the above imbedding is enough to  

give us the desired result. After we have w E H Y R )  then v E LCO(R) by theorem 

2.3.4. 

0 
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Theorem 5.3.3. For u* E H4((n we haw gradX F1(uf) given b y  the following 
H,- 

functional: 
r r 

Proof. Fix u* E H4(0) and let v* E X. Define 

and w* := Q(w) E H c l .  Then we have 

SO we see gradX , Fl (u*) = w* . 
ff 0- 

Now let v E H1 (0) .  Then we have 

and so we see that we have desired result. Again easily seen that int,egral formulation 

of w* has the desired continuity and has zero average. 

Let's now impose the two boundary conditions and see what the gradients are. 

Let u* E H 4 ( 0 )  and denote the boundary conditions by 

(i) d,u = 0 

(ii) 8, Au = 0 

on 8 0 .  
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Boundary condition (i) will allow us to identify gradX , Fl(u*) with -AW1(u*)  E 
H,- 

H 2 ( R )  H i 1  and boundary condition (ii) will allow us to identify gradX , Fo(u*) 
% 

with A2u* E ~ ~ ( 0 )  L H;'. 
So for u* E H4( f l )  and with the two boundary conditions satisfied we have 

As one might note we have not even tried to calculate ~ ( ~ r a d ~  ,Fi) for i = 
H,- 

0 , l  but we did show H ~ ( R )  was contained in both. This apparent laziness can be 

somewhat justified later when we see that for W ( u )  := i ( u 2  - 1)2 and n = 3, that 

a solution u (in some sense) to the Cahn-Hilliard equation will have u ( t )  E H;(R) 

for a.e. t  > 0 provided the initial condition is sufficiently regular, where H j ( R )  := 

{ v  E k4(52) : a,,t~ = o = avnv on a ~ }  . 

5.4 Local Existence for the Cahn-Hilliard Equa- 

tion 

In this section we will obtain a local solution to the Cahn-Hilliard equation 

ut + A2u = A {u3 -- u )  R x (0, T ]  

duu = duAu == 0 dR x [0, TI (5.7) 

40) = 4 R x { t  = 0 )  

where R is a connected domain in R3 and 4 E H 2 ( R )  with aUq5 = 0 on 8R. Note that' 

we have taken W 1 ( u )  := u3 - U .  

To do this we will use the the following framework which is from [Zheng]. 

Take V, H to be separable Hilbert spaces such that V is dense in H and where V 

is compactly imbedded in H. So we have 

V v  H - H *  v V * .  
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Observe that H and its dual are identified but V and its dual are not. (Similar to 

when we didn't identify H,' and H-I.) 

Let A E C(V, V*), ie. A is a continuous linear mapping from V to  V*, and define 

b : V x V + R b y  

b(u, v) := (Au, v) where (., -) denotes the V*, V pairing. 

We will say b is coervice if there exists a cr > 0 such that allull$ 5 b(u, u)  for all 

u E V. 

Define the domain of A by D(A) := {u E V : Au E H). 

We will investigate the following abstract ODE. 

Theorem 5.4.1. (Local Existence) If given A E C(V, V*) with b as defined above and 

b coercive along with g E Lzpzoc(V, H) ,  then. (5.8) admits a local solution with 

(It is understood that D(A) is equipped with the graph norm. 

ie- I I x I I D ( A )  := l l x l l~  + IIAEIIH for x E D(A).) 

Proof. See [Zheng] page 21. 0 

We'will want to try and use theorem 5.4.1.to get a local solution to (5.7). To do 

this we will need to pick the appropriate spaces and mappings. Toward this define 

where H has the L2 norm and V has the H2 norm. Let ( 1  - ( 1  denote the H norm. 
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Now define b : V x V -+ R by b(u, v) :== (A(u), v). 

Let's now check that with these choices, the hypothesis of theorem 5.4.1 are sat,- 

isfied. 

Using theorem 2.3.4 we obtain the desired compact imbedding of V into H. To 

see that V is dense in H note that C?(R) is dense in L ~ ( R )  by lemma 5.3.1, and then 

use the fact that @(R) C V. 

Lemma 5.4.1. A E C(V, V*). 

Proof. Let u, v E V. Then we have 

From this we see that A E C(V, V*) and 

Lemma 5.4.2. b is coercive. 

Proof. If v E H1 (R) is a weak solution to 

- A v + v =  f i n R  

3,v = 0 on dR 

where f E L ~ ( R ) ,  then we know by elliptic regularity that, v E H2(C!) and we also 

have the estimate 

l l v l l ~ ~  < Cllf 

where C is independent of f .  (See [Jost] for details of t,he estimat,e.) 

NOW let u E H1 (R) denote a weak solution to 
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-Au = f in R 

duu = 0 on dR. 

Then clearly we don't have the above estimate (if u  is a weak solution then u  + c is 

also a weak solution for any constant c), but if we also know that u  has zero-average 

then we do have the est,imate. To see this note that we have 

and 

Combining these and using Poincark's inequality we see that 

where Co independent of f .  

Now that we have this estimate we see immediately that b is coercive on V. 

0 

Since we defined A as an operator it is not entirely obvious what, D ( A )  is. 

Theorem 5.4.2. D ( A )  = { u  E H4(R)  n V : duAu = 0 on d R )  and Au = A2u o n  

D ( A ) .  

Proof Given u E H4(R)  and v E H2 ( R )  we arrive at 

(5.9) 

after two applications of Green's formula. 

Define E := { u  E H4 n V : dUAu = 0 on dR).  Let u  E E and v E V. Then we 

see 

and so Au E L2(R) .  But & A2u = duAu = 0 and so Au E i 2 ( a )  =: H.  From 

this we see E C D ( A )  and for u  E E we have Au = A2u. 
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Let's now prove the opposite inclusion. 

Let u E D ( A )  2 V. So there exists some h E L 2 p )  such that 

~ A u A ~ = ~ ~ u  VVEV.  

Using (5.9) as motivation we see that u should be a weak solution to 

and 

A 2 u  = h in R 

d,u = 0 on d o  

d,Au = 0 on d R .  

Let's obtain a solution to (5.10). Examine the following system: 

Aii = w in R 

d,ii = 0 on d R .  

Since h E L 2 ( R ) ,  there exists a unique w E H 2 ( f l )  which solves (5.1 1) .  Since 

w E H 2 ( R ) ,  there exist,s a unique 21 E H 4 ( 0 )  that solves (5.12). So we see ii a 

"strong" solution t'o (5.10) in the sense that A 2 i i  = h in L 2 ( R )  and t,he boundary 

conditions hold in the sense of trace. 

Let v E V. Since ii E H 4 ( R )  we have enough smoothness to use (5.9) with u 

replaced with ii, and when we do this we obtain 

after taking into account the boundary properties of both ii and v .  So we see 

A ( u ) = A ( i i )  in V*. 

Since b is coercive we easily see that A : V -+ V* is injective, hence u = 2 in V, but' 

ii E E, so we are done. 

0 
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To apply theorem 5.4.1 we need only check that { u  H A f ( u ) )  E ~ i p ' ~ " ( ~ ,  H ) ,  

where f (u)  := u3 - u. Toward this define 

The next two lemmas will make use of theorem (2.3.4) extensively without making 

mention to it. 

Lemma 5.4.3. gl E LipLoc(V, H )  

Proof. Let u,v  E V .  Then we have 

Now use Holder's inequality to get 

Combining the above and using theorem 2.3.4 we see gl E Lipzoc(V, H ) .  
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Lemma 5.4.4. 92 E L Z ~ " ~ ( V ,  H) .  

Proof. Let u, v E V .  Then we have 

But 

Also we have 

Now combining II and I2 and using theorem 2.3.4 we see 9 2  E LipLoc(v, H) .  0 

Combining the two previous lemmas we see g E L Z ~ ~ ~ ~ ( V ,  H) .  

Using theorem 5.4.1 we see that if 4 E V then there exists a T > 0 and u E 

C([O, TI; V )  n L2(0, T ;  D(A)) ,  ut E L2(0, T ;  H )  such that u is a solution to (5.8). Let's 

now translate this abstract solution into a form that is more readable. After some 

interpretation of spaces we see 

u(t)  E H2(R) and d,u(t) = 0 on dR for all 0 5 t 5 T 

u( t )  E H4(R),  Au(t) = A2u(t) and d,Au(t) -= 0 on dR for a.e. 0 5 t < T 

ut = -A2u + A {u3 - U )  holds in L2(0, T ;  L2) and so 

ut = -A2u + A {u3 - U )  holds in L2(R) for a.e. 0 < t < T .  

The Cahn-Hilliard equation does possess a global solution. The interested reader 

is encouraged t,o see [Sell] for details. 
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Conclusion 

In this thesis we have obtained the Cahn-Hilliard equation as a gradient flow over 

H i 1 ,  and in doing so we needed to examine the idea of a constrained gradient. In the 

end we obtained only a local solution to the Cahn-Hilliard equation and hence we did 

not examine any long term dynamics related to the Cahn-Hilliard equation. If one is 

interested in more modern aspects of the Cahn-Hilliard equation, one should consult 

[Fife] (www.math.utah.edu/-fife/), and the references within. 
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