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ABSTRACT 

As integrated-circuits (IC) technology advances into the deep-submicron 

(DSM) regime, more functionality can be combined onto a single chip. One 

major challenge in designing such a complex device is to keep the power 

consumption in check while capitalizing on the highest performance that DSM 

technology can offer. 

In this thesis we describe a novel gate-level dual-threshold static power 

optimization methodology (GDSPOM), which is based on the static timing 

analysis technique for designing high-speed low-power SOC applications using 

90nm MTCMOS technology. The cell libraries come in fixed threshold - high Vt 

for good standby power and low Vt for high-speed. Based on this optimization 

technique using two cell libraries with different threshold voltages, a 16-bit 

multiplier using the dual-threshold cells meeting the speed requirement has been 

designed to have a 50% less leakage power consumption when compared to the 

one using only the low-threshold cell library. 
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CHAPTER I : INTRODUCTION 

1 .I CMOS VLSl Trends 

CMOS technology has evolved into sub-micron regime [I]. The 

mainstream process is 90nm, and 65nm is coming in the near future. Table 1.1 

summarizes the VLSl trends and the numbers are from International Technology 

Roadmap for Semiconductors (ITRS) 2004 update [2]. 

Table 1.1 : Technology Roadmap for Semiconductors 

Year of Production p c q  
Technology Node (nm) 130 90 65 45 32 22 
Vdd (V) 1.1-1.2 0.9-1.2 0.8-1.1 0.7-1.0 0.6-0.9 0.5-0.8 
On-chip Local Clock 1684 4171 9285 15079 22980 39683 
(MHz) 
Functions per Chip I 276 533 1106 2212 4424 8848 
(million transistors) 
DRAM Capacitance per 0.54 1.07 2.1 5 4.29 8.59 34.36 
Chip (Gbits) 
Allowabte Maximum 130 158 189 198 198 198 
Power with Heatsink (W). 
Source: ITRS, http://www.itrs.netlCommon/2004Update/2004,~OOOOORTC.pdf 

Following the trends on transistor size scaling down, Gordon Moore's 

prediction that transistor counts will double every two years (Moore's Law) [3] is 

still valid for the next decade. However, chip power density is approaching the 

physical barrier and will limit chip growth if there are no breakthroughs in power 

reduction [4]. Figure 1.1 illustrates that it is not possible to continue the chip 

growth trend if power problem is not solved. 



Figure 1 .I : Power Extrapolation 
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Source: Pat Gelsinger's Slide from ISSCC 2001. 
ftp://download.intel.com/technology/silicon/TeraHertzshort.pdf 

Other advantages of low power designs are as follows: more reliable 

device operation, cheaper and lighter power supplies, and less expensive cooling 

system. Low power designs also enable portable products like laptops or mobile 

telephones to have longer battery life, lighter weight, and smaller size. 

Therefore, implementing low power structures has become a required 

feature in developing a chip, and discovering low power strategies is one of the 

most active research fields. 

1.2 Components of Power Dissipation 

A circuit dissipates two kinds of powers: dynamic power and static power 

[5]. Figure 1.2 shows typical current flow in an active inverter circuit. 



Figure 1.2: Current Flow in a CMOS Inverter 

OUT 

Source: Power Compiler User Guide, v2004.12 [5] 

Dynamic power is the power dissipated when a cell's input value changes. 

It contains cell internal power and net switching power. Cell internal power is the 

power dissipated by the momentary short circuit between power source and 

ground when a circuit switches, as well as by charging and discharging the 

internal cell capacitances. Short-circuit current, I,, in Figure 1.2, is the source of 

cell internal power. Cell internal power is below 10-15% of the total power [6] 

and can be calculated with the formula: 

Net switching power is the power dissipated due to charging and 

discharging of the capacitive load at cell's outputs. This is the dominant 

component of dynamic power. As shown in Figure 1.2, switching current, I,,, 

generates net switching power. The value of net switching power is proportional 

to the logic transition rate of the circuit. Clock frequency, fclk, and output 



switching factor, a, in the circuit define logic transition rate. Net switching power 

can be represented as: 

Static power is the power dissipated all the time, even when a circuit is 

held in a steady state [7]. Leakage current, Ilk in Figure 1.2, exists because, in 

reality, a transistor is not an ideal switch. Figure 1.3 shows sources of leakage of 

currents. Leakage power formula is: 

Figure 1.3: Leakage Power Sources 
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Source: Leakage Mechanisms and Leakage Control for Nano-Scale CMOS Circuits [7] 

The main component of static power comes from a sub-threshold leakage 

current. This current runs from source to drain on a transistor even when the 

transistor is turned off. The amount of sub-threshold leakage current is a 

function of the threshold voltage: high threshold voltage device has smaller sub- 

threshold leakage current than low threshold voltage device does [8]. The sub- 

threshold current of a MOS transistor is approximated as 191: 



where 
g = gate terminal 
s = source terminal 
d = drain terminal 

v, = threshold voltage 

= thermal voltage 

= technology dependent constants 

Total circuit power can be represent as: 

As technology entered the deep sub-micron (DSM) regime, static power 

became a significant component of the total circuit power. Static power can be 

larger than dynamic power as shown in Figure 1.4; therefore, static power 

optimization technique is important in the DSM devices. This is the motivation 

behind this research work. 

Figure 1.4: Dynamic Power Vs. Leakage Power in Various Technologies 
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Source: Power Modelling and Leakage Reduction, 
http://eda.ee.ucla.edu/EE201A-04Spring/leakage~pres.ppt 



I .3 Research Goal 

The current IC industry is very competitive. A product's cost and time-to- 

market schedule are usually the most important factors to be successful in this 

market [lo]. Under limited project timeline and budget, it is a challenge to 

efficiently develop a low power chip without sacrificing its performance. The 

research goal is to define a practical VLSl design flow for leakage power 

reduction. 

This design flow will need to meet the following objectives: 

1. It is easy to use and its runtime is reasonable. 

2. It can handle VLSl and system-on-chip (SOC) designs. 

3. It is back compatible. In other words, it can be used to optimize the 

existing designs. 

Because of these usage features, the research is focused on applying 

available process technologies and computer aided design (CAD) tools with 

minor program implementations. 

The research process contains the following stages: 

1. Build a 16-bit multiplier following the existing design flow. Measure 

the multiplier's speed and leakage power with a simulation based 

power estimation tool. 

2. Identify potential low power techniques and commercially available 

CAD tools to use. 

3. Implement low leakage power design flow. 



4. Build another 16-bit multiplier following the new flow. Estimate its 

speed and leakage power with simulation-based approach. 

5. Compare both multipliers' speed and power performances. 

Analyze the comparison data and further improve the leakage 

power reduction design flow. 

The final research result is a gate-level dual-threshold static power 

optimization methodology (GDSPOM). GDSPOM borrows the multiple threshold 

CMOS (MTCMOS) concept and applies the static timing analysis (STA) 

approach to minimize leakage power in VLSl designs. 

1.4 Organization of the Thesis 

Chapter 2 gives an overview of prior work on MTCMOS leakage power 

reduction techniques. It first explains the basic MTCMOS principle as a 

background. Then, it describes the proposed algorithms and experiment results. 

It also points out the limitations of these MTCMOS strategies. 

Chapter 3 presents GDSPOM. First, it describes the characteristics of 

applied cell libraries and models. Second, it presents GDSPOM with detailed 

descriptions of STA approach in the flow. Then, it compares two 16-bit 

multipliers created from non-GDSPOM and GDSPOM flows. Finally, it 

summarizes GDSPOM power reduction results from designing 16-bit multipliers 

in different required operating frequencies. 

Chapter 4 is the conclusion of this thesis. It also provides directions for 

future research. 



CHAPTER 2: PRIOR WORK ON MTCMOS 
OPTIMIZATION ALGORITHMS 

This chapter presents three published papers of leakage power reduction 

algorithms using the concept of MTCMOS technology. The idea of using 

MTCMOS to save power is described first. Then, three papers with different 

approaches are presented. Limitations of these methods are analysed at the end 

of this chapter. 

2.1 MTCMOS Principle 

Threshold voltage (Vt) controls current and signal propagation delay of a 

MOS device. A transistor with high threshold voltage has low leakage current 

and long signal propagation delay; a transistor with low threshold voltage has 

high leakage current and short propagation delay [8]. 

The basic idea of designing a low leakage power circuit with MTCOMS is 

as the follows: 

1. place low Vt transistors in timing critical paths to satisfy the circuit 

operating performance requirements, 

2. place high Vt transistors off timing critical paths to minimize the 

circuit leakage current. 



It is a challenge to efficiently distribute different Vt cells. Different 

MTCMOS Vt assignment algorithms have been proposed in prior work and will 

be presented in the remaining sections. 

2.2 Low Vt to High Vt Algorithms 

Wei et a/. proposed two algorithms to replace low Vt cells with high Vt 

ones: breadth-first search [ I  I ]  and levelized search [12]. The starting circuit 

contains all low Vt transistors. A higher Vt transistor with predetermined Vt value 

is used to replace as many low Vt transistors as possible. 

Both algorithms use the same STA tool. In the timing initialization step, 

each cell's signal arrival time and required time are calculated. The time 

difference between the arrival time and the required time is defined as "slack". 

Positive slack indicates the amount of time during which a gate may be slowed 

down without affecting the circuit speed performance. The path with the longest 

propagating delay is called a critical path. Cells on critical path have zero 0 slack 

value. 

See// = cell slack 



Figure 2.1 shows a critical path from B to Y and calculated timing values 

of each cell after'the initial STA step. As timing analysis is done in cell bases, it 

is known as a cell based STA approach [13]. 

Figure 2.1: Cell Timing Values after STA 

Sorce: VlSlO Drawing 

2.2.1 Breadth-first Search 

In breadth-first search algorithm, cells are traced backwards starting from 

one primary output. If a cell's slack value is positive, check if its slack value is 

still positive after changing its type from low Vt to high Vt. If the new slack value 

is positive, allow the cell type change, otherwise, keep the original low Vt cell 

type. When search nodes reach primary inputs, a new search starts again from 

another primary output. The search stops after all cells are checked. Algorithm 

2.1 presents the breadth-first search procedure. Figure 2.2 illustrates how the 

breadth-first search algorithm works. 



Algorithm 2.1: Breadth-first Search 

Procedure breadthFirstSearch ($inputNetlist, $highVt) { 
@poArray = all primary outputs in $inputNetlist 

foreach $po (@poArray) { 
foreach $cell on paths to $po { 

$type = $cell type 
$slack = $cell slack 
$visited = $cell checked 

if ($type == lowVt && $slack > 0 && $visited == false) { 
$slackHvt = $highVt slack 

if ($slackHvt > 0) { 
replace $cell to high vt one 

) else { 
keep $cell 
$visited = true 

1 
1 

1 
1 

1 

Source: Design and Optimization of Low Voltage High Performance Dual Threshold CMOS 
Circuits [I 11 



Figure 2.2: Breadth-first Search Example 

Source: Design and Optimization of Low Voltage High Performance Dual Threshold CMOS 
Circuits [11] 

2.2.2 Levelized Search 

In levelized search, all cells are assigned a level number. Primary outputs 

have level number 0; cells connect directly to primary outputs have level number 

1; cells close to primary inputs have higher-level numbers. The search loop 

checks cells from maximum level and stops when it reaches level 0. Levelized 

search is more efficient than breadth-first search and the search procedure is 

outlined in Algorithm 2.2. Figure 2.3 shows a levelized search example. 



Algorithm 2.2: Levelized Search 

Procedure levelizedsearch ($inputNetlist, $highVt) { 
$currentLevel = maximum level 

while ($currentLevel > 0) { 
foreach $cell on $currentLevel ( 

$type = $cell type 
$slack = $cell slack 

if ($type == lowVt && $slack > 0) { 
$slackHvt = $highVt slack 

if ($slackHvt > 0) { 
replace $cell to high vt one 

) else { 
keep $cell 

} 
1 

1 
1 

Source: Design and Optimization of Dual-threshold Circuits for Low-voltage Low-power 
Applications [I 21 



Figure 2.3: Levelized Search Example 

Level 3 Level 2 Level 1 

Source: Design and Optimization of Dual-threshold Circuits for Low-voltage Low-power 
Applications [I 21 

A slightly higher than initial Vt value cell reduces small amount of leakage 

current and introduces short signal delay. Therefore, more cells in a pure low Vt 

design can be assigned to this type. A much higher than initial Vt value cell 

reduces leakage current more efficiently. However, because it also increases a 

significant amount of delay time, only few cells can be assigned to this type. As 

shown in Figure 2.4, the higher the replacing Vt value is, the fewer cells can be 

replaced. 



Figure 2.4: High Vt Assignment Results Using Different High Vt Values 
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Source: Design and Optimization of Dual-threshold Circuits for Low-voltage Low-power 
Applications [I 21 

Because different replacing high Vt values result in different amount of 

leakage current savings, Wei et a/. provides an additional algorithm to find the 

optimal high Vt value for cell replacing. Algorithm 2.3 is the optimal high Vt value 

search procedure. This procedure loops the levelized search process by trying 

different replacing high Vt values. Then, resulting leakage power values are 

stored and compared. Finally, the optimal high Vt value, which produces the 

circuit with the least leakage power is reported. 



Algorithm 2.3: Optimal High V, Search 

Procedure optimalHighVtSearch ($inputNetlist, @highVtArray) { 
$minLeakagePower = measuer $inputNetlist leakage power 
$optimalVt = "" 

foreach $highVt (QhighVtArray) { 
&levelizedSearch($inputNetlist, $highVt) 
$leakagepower = measure result netlist's leakage power 

1 
Source: Design and Optimization of Dual-threshold Circuits for Low-voltage Low-power 
Applications [I 21 

During optimal high Vt search process, leakage powers of resulting circuits 

using different replacing Vt values are measured. The power measurement 

results shown in Figure 2.5 indicate that 0.4 V threshold voltage is the best pick 

for this particular experiment circuit. 

Figure 2.5: Leakage Powers Vs. Replacing V, values 

0.6 1 
0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Replacing High V, Value (V) 

Source: Design and Optimization of Dual-threshold Circuits for Low-voltage Low-power 
Applications [I 21 



2.3 High Vt to Low Vt Algorithm 

Samanta and Pal modified Wei et a1.k breadth-first search algorithm in 

Chapter 2.2.1 to replace high Vt cells to low Vt ones to satisfy the signal timing 

constraints [14]. In the search loop, recalculation of cell timing values is 

performed after tracing through each critical path. Existing critical paths change 

dynamically due to cell type swapping function in the search process. 

Performing STA periodically addresses dynamic critical path changing issues. 

The detailed procedure is shown in Algorithm 2.4 and an example is shown in 

Figure 2.6. 

Algorithm 2.4: High Vt to Low Vt Breadth-first Search 

Procedure IowVtSearch ($inputNetlist) { 
repeat { 

QtoChangeArray = all nodes on critical path 
change @toChangeArray to low Vt 
perform STA 

) until circuits meets timing requirements 

Source: Optimal Dual-VT Assignment for Low-voltage Energy-Constrained CMOS Circuits [14] 



Figure 2.6: High Vt to Low Vt Breadth-first Search Example 

Source: 
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Optimal Dual-VT Assignment for Low-voltage Energy-Constrained CMOS Circuits 

2.4 Fine-Grained Vt Assignment Algorithms 

Wang and Vrudhula proposed three fine-grained Vt assignment 

algorithms: Min-Cut, Max-Cut I, and Max-Cut 11 [15]. Min-Cut and Max-Cut II 

replace high Vt transistors to low Vt ones while Max-Cut I exchanges low Vt 

transistors to high Vt ones. In Chapter 2.2 and 2.3, Wei and Samanta's 

algorithms assign same Vt transistors to each individual logic block. In fine- 

grained Vt assignment approach, transistors inside the same logic cell may have 

different Vt values. For example, gate Z may have high Vt transistors whose 

input values are driven by the output of gate A and low Vt transistors whose input 

values are driven by gate B. 



2.4.1 Minimum Cut 

Min-Cut algorithm starts with a circuit, which contains all high Vt transistors 

and has timing violations. Use a circuit graph to represent an input circuit, a 

node is a logic cell partition, an edge is a connection between two nodes. When 

an edge does not meet timing constraints and one end connects to a high Vt cell, 

this edge's weight is assigned with the following formula: 

where 

wedge 
= edge weight 

AP = power increase after replacing one node to low Vt 
MT = arrival time reduction after replacing one node to low Vt 
a = scalar factor to balance AP and MT 

In all other cases, edges have infinity cx, value. A minimum cut through 

this circuit graph reveals a set of edges, which, after lowering threshold voltage in 

one end, causes the minimum leakage power increase and provides the 

maximum signal speed improvements. Algorithm 2.5 states the minimum cut 

search procedure. Figure 2.7 demonstrates a simple minimum cut search 

example. 



Algorithm 2.5: Minimum Cut Search 

Procedure minCut ($inputNetlist) { 
perform static timing anlysis 
compute weights 
$stop = false 

while ($stop == false) { 
$cutset = minimum weight cut of $inputNetlist 
@candidates = all edges in $cutset 

if (@candidates = NULL) { 
$stop = true 

) else { 
change all edges in @candidates to low Vt 
perform static timing analysis 
compute weights 

1 
1 

1 
Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-Vt CMOS 
Circuits [15] 

Figure Minimum Cut Search Example 
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Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-Vt CMOS 
Circuits [I 51 



2.4.2 Maximum Cut I 

Max-Cut I algorithm starts with a circuit, which contains all low Vt 

transistors and does not have timing violations. When one end of the edge can 

be switched to high Vt node without causing a timing violation, its edge weight is 

assigned using this formula: 

wedge = 
where 

Wedge 
= edge weight 

At' = leakage power reduction after replacing one node to high Vt 

In all other cases, edges have zero 0 value. A maximum cut through this 

circuit graph reveals a set of edges, which, after raising threshold voltage in one 

end, causes maximum leakage power reduction without affecting the circuit 

performance. To address the situation when a node's Vt value changing affects 

its leaf nodes' timing, cut is only allowed in the level bases. This level restriction 

is driven from the fact that there is no timing dependency between edges in the 

same level. 

Figure 2.8 illustrates an example of level cut procedure. First, initial 

circuit's edge weights are calculated. The level 1 has the maximum total edge 

weight of 8 and, therefore, level 1 cut is chosen for high Vt replacement. After 

the cell type change, new edge weights are calculated again with new values 

shown in the second part of the figure. 



Figure 2.8: Maximum Cut I Search Example 

Level 1 Level 2 Level 3 

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-Vt CMOS 
Circuits [I 51 

The detailed max cut I procedure is stated in Algorithm 2.6. 



Algorithm 2.6: Maximum Cut I Search 

Procedure maxCutl ($inputNetlist) { 
perform static timing anlysis 
compute weights 
$stop = false 

while ($stop == false) { 
compute weights 
$maxCut = 0 
$maxWeight = 0 

foreach $levelcut { 
$levelweight = total weight of $levelcut 

if ($maxCut != 0) { 
change all edges in $maxCut to high Vt 
perform static timing analysis 
compute weights 

) else { 
$stop = true 

1 
1 

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-Vt CMOS 
Circuits [I 51 

Furthermore, to avoid a locally optimal solution due to level based 

approach, an additional swap testing procedure is performed after max cut I 

search. The swap testing procedure takes the product circuit from max cut I as 

an input. After returning one high Vt node back to low Vt, if more beneficial Vt 

swapping can be found in other nodes, the high Vt node relocation process is 

performed. Otherwise, original configurations are restored. Algorithm 2.7 states 

the swap testing procedure. Following Figure 2.8 example, the swap testing 

process is illustrated in Figure 2.9. 



Algorithm 2.7: Swap Test 

Procedure swapTest ($inputNetlist) { 
QhighVtEdges = high Vt edges in $inputNetlist 

foreach $edge (QhighVtEdges) { 
change $edge to low Vt 
perform static timing analysis 
compute weights 

$cost = $edge weight 
$gain = maximum weight sum of level cut 

if ($gain > $cost) { 
$inputNetlist = changed $inputNetlist 

) else { 
restore $inputNetlist 

1 
} 

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-Vt CMOS 
Circuits [I 51 

Figure 2.9: Swap Test Example 

Level 1 Level 2 Level 3 

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-Vt CMOS 
Circuits [15] 



2.4.3 Maximum Cut I I  

Max-Cut II algorithm starts with a circuit containing only high Vt transistors. 

It identifies critical areas and converts all transistors inside the critical areas to 

low Vt type. Then, Max-Cut I is performed to these critical areas to recover some 

transistors back to high Vt. Figure 2.10 is the flow chart and Algorithm 2.8 is the 

procedure of maximum cut II. 

Figure 2.10: Maximum Cut II Flow 

r 

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-V, CMOS 
Circuits [15] 

Algorithm 2.8: Maximum Cut II 

Procedure maxCutll ($inputNetlist) { 
@subcircuitArray = critical subcircuits in $inputNetlist 

foreach $subcircuit (@subcircuitArray) { 
replace each edge of $subcircuit to low Vt 
perform maxCutl($subcircuit) 

1 

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-V, CMOS 
Circuits [I 51 

The experiment shows that Max-Cut II is the best algorithm among the 

three. Its runtime is faster than the runtime of others because only subcircuits 

will go through dual-Vt optimization process. Min-Cut has the worst leakage 

power reduction performance due to the fact that its edge weight formula 



contains scalar factor and infinite value. The inaccurate weight values may leads 

to sub-optimal minimum cut solution. 

2.5 Limitations 

All of these published work achieved leakage power reduction results. 

However, all of them focus on how to assign dual Vt cells on pure combinational 

logic circuits and assume there exists only one clock source. There is no 

strategy of assigning different Vt values to sequential elements as well as 

calculating cell timing values on multiple clock domains. Although optimal high Vt 

value can be identified with Algorithm 2.3, availability of specific Vt cell libraries is 

limited [16]. Moreover, there is no commercial STA tool to support custom 

defined timing analysis approaches. Therefore, these algorithms are limited to 

be applied in simple combinational circuits with custom cell libraries and custom 

STA engines. 



CHAPTER 3: GATE-LEVEL DUAL-THRESHOLD STATIC 
POWER OPTIMIZATION METHODOLOGY 
(GDSPOM) 

In this chapter, a gate-level dual-threshold static power optimization 

methodology (GDSPOM) using static timing analysis (STA) is described. It will 

be shown that via two cell libraries with different threshold voltages, the design of 

a 16-bit multiplier circuit has been optimized based on GDSPOM, which has a 

50% less leakage power consumption in comparison with the all-low threshold 

voltage one at the operating frequency of 5OOMHz. In the following sections, 

characters of cell libraries and usages of timing and power models are introduced 

first, the principle of GDSPOM is presented next, followed by the performance of 

the test multiplier circuits, discussion and conclusion. 

3.1 Cell Libraries and Models 

Two cell libraries are used in GDSPOM: one library contains all logic gates 

built with high threshold voltage transistors; the other library has all logics 

constructed with low threshold voltage transistors. Gate timing models are used 

for static timing analysis. Gate power models are used for dynamic and static 

power estimation. This section introduces cell libraries and models used in 

GDSPOM. 



3.1 .I Cell Libraries 

A high threshold voltage cell library and a low threshold voltage cell library 

are required in this dual MTCMOS design flow. A cell is a fundamental logic 

block and it is the basic element in a gate-level netlist. A cell built with all high 

threshold voltage transistors has longer signal propagation delay and blocks 

more unwanted leakage current; a cell built with all low threshold voltage 

transistors has faster signal transition time but suffers from generating large 

amount of sub-threshold leakage current [I 71 [I 81. 

In the GDSPOM experiment, Artisan 90nm high threshold voltage (HVT) 

cell library and standard threshold voltage (SVT) cell library are applied. The 

transistor characteristics are summarized in Table 3.1 and cell characteristics are 

summarized in Table 3.2. 

Table 3.1 : Typical 90nm Transistors 
- -  

m n m  Transistors 

Source: artsc90g and artsc9Og-hvt Spice Models 

Table 3.2: 90nm Unity Gate 

Source: Spice Simulation Results and Average Cell Data on T'SMC 90nm Standard Cell Library 
Databook [I 71 [I 81 



3.1.2 Timing Models 

Static timing analysis tool uses timing models to estimate signal 

propagation duration through a timing path [19]. The start point of a timing path 

is either a primary input (PI) port or a sequential element where the signal is 

launched from; the end point is either a primary output (PO) port or a sequential 

element where the signal is captured. Figure 3.1 illustrates four basic types of 

timing paths: 

Figure 3.1 : Type of Timing Paths 

Path 1 Path 2 Path 3 

Source: PrimeTime User Guide [I91 

As shown in Figure 3.1, Path 1 starts at a PI and finishes at a flop; Path 2 

starts from a flop and arrived at another flop; Path 3 begins with a flop and ends 

with a PO; Path 4 starts from a PI, passes through combinational logics, and 

arrives at a PO. In typical VLSl design, majority STA checks are performed on 

the flop-to-flop paths. 

It is possible to have different path routes between the same start and end 

points. Figure 3.2 illustrates one short and one long path routes, which start and 

finish at the same points. 



Figure 3.2: Routes of Timing Paths 

Long Path 

Short Path 
Source: PrimeTime User Guide [I 91 

Moreover, a cell may have multiple timing arcs. A timing arc defines a 

timing relationship between one input pin and one output pin of a cell. Different 

timing arcs have different cell propagation delay. As shown in Figure 3.3 (a), a 

two-input XOR gate has four arcs: A to Z when B is 0, A to Z when B is 1, B to Z 

when A is 0, and B to Z when A is 0. By default, STA tool will analyze all 

possible arcs. In the case when a pin is assigned a constant value, STA tool will 

automatically detect available arcs. Using the same example in Figure 3.3 (b), 

when input A is assigned a constant value of 0, there is only one arc between 

input B to output Z available for analysis. 

Figure 3.3: Cell Timing Arcs 

(a) 

Source: PrimeTime User Guide [I 91 



Arc delay calculation formula is a function of input transition time and 

output load capacitance. Timing lookup table like the one shown in Figure 3.4 is 

recorded in the cell technology library. Using the example in Figure 3.4, a cell 

delay time from input B to output Z is 8.8 ns when input transition time is 100 ps 

and output load capacitance is 0.4 fF. When values of input transition time and 

output load capacitance are between the table points or outside the table range, 

STA tool will use interpolation or extrapolation approach to estimate the delay. 

Figure 3.4: Arc Timing Lookup Table 

Transit ion 4.5 7.5 
5.0 7.7 8.8 9.9 

Source: PrimeTime User Guide [ I  91 

Arc delay is cell internal signal propagatiori time. Net delay is the total 

time for a signal to travel between two cells. Before the layout phase, absolute 

cell location and wire length are unknown. To bypass this issue, STA tool uses 

wire load model to predict the net delay. The wire load model estimates net 

capacitance and resistance based on the number of fanout pins on this net. As 

shown in Figure 3.5, the delay time of the circled net will be calculated with net 

capacitance Cout, Cwire, and C1 along with net resistance Rdriver and Rwire. 



Figure 3.5: RC Tree Network 
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I 
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Source: PrimeTime User Guide [19] 

Knowing cell and net delays as well as input latency, path arrival time can 

be calculated as following: 

A TP", = Ddk + Ddk -,a + z D,, + z %I 

where 

AT,,, = path arrival time 

Dr, = clock source latency 

= clock network latency 

= cell delay 

= net delay 

Assuming that source clock latency is 2 ns, clock network latency is 3 ns, 

sequential and combinational cell delay are 3 ns, and net delay is 2 ns, the path 

shown in Figure 3.6 has arrival time of 20 ns. 



Figure 3.6: Path Arrival Time Calculation 

CLK 

Source: http://www.chipl23.com 

Furthermore, required setup time of a path can be calculated using the 

following formula: 

Clk - tmcertn int y 

= clock source latency 

= clock network latency 

= clock uncertainty 

= capture flop setup time 

Assuming clock period is 16 ns, source clock latency is 2 ns, clock 

network latency is 3 ns, clock uncertainty is 1 ns, and flop's setup time is 1 ns, 

the path required setup time is 19 ns. 

Figure 3.7 illustrates how path required setup time is calculated. 



Figure 3.7: Path Required Setup Time Calculation 

capture clock (ideal) 

I capture clock (source) 

! 18 

capture clock (source + network) 

capture clock (source + network + uncertainty) 

capture clock (source + network + uncertainty - setup) 
I 

I 19 
Source: http://www.chipl23.com 

When a path's arrival time is shorter or equal to its required time, this path 

meets the setup timing constraint. On the other hand, when a path's arrival time 

is longer than its required time, this path does not satisfy its timing constraint and 

has setup timing violation. The difference between path arrival and required time 

is called path slack and can be calculated with the formula: 

- 
'Po//l  - - ''pod1 _sellrp - A Tpl/11 

where 
= path setup slack 

Sporlr - serrrp 

R T p o d 1  - scmp 
= path setup required time 

AT,,* = path arrival time 

Positive slack indicates that the path meets timing and negative slack tells 

that the path has a timing violation. Considering path in Figure 3.6 has arrival 

time of 20 ns and its clock path in Figure 3.7 has required time of 19 ns, this 



path's setup slack is -1 ns, which means that a timing violation exists on this 

path. 

Because all timing checks are done per path bases, this type of STA is 

characterized as path based STA approach. The STA approach presented in 

Chapter 2.2.1 is block based because timing checks are done per cell bases. 

GDSPOM uses path based STA. 

3.1.3 Power Models 

As mentioned in Chapter 1.2, a cell dissipates internal power, switching 

power, and leakage power. Therefore, a cell power model provides three 

different power attributes for the power analysis tool to do power estimation [5]. 

Cell internal power calculation formula is a function of input transition time 

and output load capacitance. Internal power lookup table similar to the one 

shown in Figure 3.4 is included in the cell technology library. Like arc delay 

calculation described in Chapter 3.1.2, a power analysis tool will use the 

interpolation or extrapolation method to predict the power when values of input 

transition time and output load capacitance are between the table points or 

outside the table range. 

Switching power calculation formula is a function of net capacitive load 

and net switching rate. The net capacitive load can be obtained from the cell 

technology library and the wire load model, which has been introduced in 

Chapter 3.1.2. The value of the net switching rate can be calculated by 

monitoring net toggle activities while running functional simulation. For example, 



if a net value toggles 25 times in average per 100 clock cycles, its net switching 

rate is 0.25. 

Leakage power is cell state dependent. As shown in Table 3.3, cell 

leakage current can vary in more than 5 orders of magnitude. Leakage current 

varies because transistors inside a cell have different on and off combinations in 

different state. As a result, the drain source voltages VDs of each transistor vary. 

In VLSl design, the impact of different cell states on the total leakage current is 

ignorable. Therefore, average leakage value is recorded in the technology 

library. 

I -  - 
Source: Spice Simulation Results 

Table 3.3: NAND2 Leakage Current - 
Q0nm NAND2 Leakage Current (nA) 
Input Value 

3.2 GDSPOM Flow 

Figure 3.8 shows the flow chart of GDSPOM used for designing high- 

speed low-power SOC applications using MTCMOS technology. 

A B HVT 
o a 1.49 
0 1 2.56 
1 0 3.57 . 4.61 

SVT 
3.72 
14.93 
18.95 
21.77 



Figure 3.8: Flow Chart of GDSPOM 
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Source: VlSlO Drawing 

As shown in the figure, a Register Transfer Language (RTL) design is 

synthesized into gate-level netlist of cells using CMOS devices with a high- 

threshold voltage (HVT). Then, static timing analysis (STA) is performed to 

report a list of cells that are required to swap from HVT type to the low-threshold 

voltage (SVT) type to meet timing constraints. Finally, cell-swapping script is 

executed to create the netlist built with dual-threshold HVTISVT cells. 

In the synthesis step, 25% slower operation speed is applied. In the 

example of 5OOMHz 16-bit multiplier, 400MHz frequency is targeted when 

converting the multiplier's RTL design to HVT gate-level netlist. The additional 

100MHz speed will be caught up in the cell swapping step, which replaces slow 

HVT cells with fast SVT ones. Comparing speeds of HVT and SVT cells in the 

90nm technology library, SVT ones are about 30% faster than HVT ones. This is 



the reason why 25% slower speed is chosen to create the initial HVT gate-level 

netlist and why it is possible to achieve the final speed target by changing cell 

types without altering design architecture and increasing area overhead. 

STA is the key component in GDSPOM flow. STA breaks a design into a 

group of timing paths and calculates the signal propagation delay of each path 

individually. The concept of path based STA has been introduced in Chapter 

3.1.2. When a path's delay is greater than the specified timing constraint, this 

path has a timing violation. Figure 3.9 illustrates three timing violated paths 

found inside a 16-bit HVT multiplier's Wallace tree reduction architecture [20] and 

carry look ahead circuit [21]. 



Figure 3.9: Cell Timing Violating Cost 

I Carry Look Ahead Adder 

1 & 1 4  .......................... 
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Source: VlSlO Drawing 

As shown in Figure 3.9, three timing violated paths labelled blue, green, 

and red have been identified. The number of timing violating paths through one 

cell determined this cell's cost value. For instance, adders A-3-9 and A-8-1 

have the cost value of 1 ; A-2-1 1, A-2-1 6 and A-9-10 have the cost value of 2; 

A-10-14, A-12-12, and A-13-10 have the cost value of 3. The cells with the 

highest cost value such as A-10-14, A-12-12, and A-13-1 0 in this example will 

be targeted for cell type change. After changing ,these bottleneck cells to SVT 

type, STA is performed again to recalculate cell cost values. This STA process 

continues until all the timing paths meet the required timing constraints. 



Algorithm 3.1 explains how cost values are assigned to cells and Algorithm 3.2 

shows the STA iterating process. A simple example of GDSPOM procedure is 

illustrated in Figure 3.10. 

Algorithm 3.1 : Get Bottleneck Cells 

procedure getBottleneckCells ($inputNetlist, $requiredTime) { 
@pathArray = all paths in $inputNetlist 
%cellCostHash = all cells in $inputNetlist with initial cost value 0 

foreach $path (@pathArray) { 
$arrivalTime = calculated $path arrival time 

if ($arrivalTime > $requiredTime) { 
foreach $cell in $path { 

incr $celICostHash{$ceII) 
1 

I 

Source: PrimeTime lnput Tcl Script 

Algorithm 3.2: Get Swap Cell List 

procedure getSwapCellList ($originalNetlist, $requiredTime) { 
(@bottleneckCellArray, $inputNetlist) = 

&getBottleneckCells ($origianlNetlist, $requiredTime) 

while (@bottleneckCellArray != NULL) { 
@swapCellList = @swapCellList + @bottleneckCellArray 

I return @swapCellList 

Source: PrimeTime lnput Tcl Script 



Figure 0: GDSPOM Example 
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Source: VlSlO Drawing 

The bottleneck cell swapping approach is the main difference between 

GDSPOM and other methodologies mentioned in Chapter 2. Fixing a high cost 

cell means fixing multiple timing violated paths at once. Always targeting the 

highest cost cells in each STA loop procedure guarantees a highly efficient 

solution of solving design timing violation problem. In other words, GDSPOM 

replaces minimum amount of cells from HVT to SVT and results in the least 

leakage power increase while fixing all timing violations in a design. 

3.3 Performance 

In order to assess the effectiveness of GDSPOM for designing low-power 

high-speed SOC applications using 90nm MTCMOS technology, three 16-bit 

multipliers with Wallace tree reduction architecture [20] have been implemented. 



All of them are generated based on the same RTL source except that one 

multiplier uses all HVT cells, another has all SVT cells, and the third one contains 

both types of cells optimized via GDSPOM. Targeting operating frequency is set 

to be 5OOMHz and 90nm Artisan cell libraries are used in this experiment. A 16- 

bit multiplier has 7320 unity gates and it contains approximately 30000 

transistors. 

As shown in Figure 3.1 1, with 5OOMHz clock frequency constraint, 5000 

paths in the HVT multiplier fail the speed test. Mentioned in Chapter 3.1.2, the 

negative slack means the overtime for a signal to travel from one input to one 

output of a path. For instance, a path with -0.37 ns slack means a signal on this 

path arrives 0.37 ns later than when it is supposed to arrive. 

Figure 3.1 1: Path Slack Chart 

-0.419 -0.412 -0.405 -0.398 -0.392 -0.385 -0.378 -0.371 

Path Slack (ns) 

Source: PrimeTime Report Timing Results 

In this experiment, GDSPOM reassigned 352 out of total 1715 cells from 

HVT to SVT to satisfy the 5OOMHz speed constraint. Figure 3.12 shows the 

block diagram and Figure 3.13 shows the schematic view of the 16-bit dual-Vt 



multiplier design optimized by GDSPOM to have HVT (blue) and SVT (red) cells. 

Note that yellow paths in Figure 3.13 are originally timing violated paths. 

Figure 3.12: Block Diagram of a Dual-V, 16-bit Multiplier 
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Source: VlSlO Drawing 



Figure 3.13: Schematic View of a Dual-Vt 16-bit Multiplier 

Source: 3esign Vision Schematic View 

A path between input IN28 (the 8th multiplicand bit) and output P23 (the 

23rd product bit) is randomly selected to demonstrate how the swapping of the 

cell types has been used to resolve the timing violation. Figure 3.14 shows this 

path in the HVT multiplier, whose data arrival time is 2.21 ns, which does not 

meet the 5OOMHz operating frequency specification. The arrival time of each cell 

shown in the figure includes net delay time. 



Figure 3.14: A Timing Path in HW 16-bit Multiplier 

Source: PrimeTirne Report Timing Results 

Figure 3.15 shows the same path in the dual-Vt multiplier. After 

performing GDSPOM flow, seven cells have been swapped from HVT to SVT. 

The data arrival time of this path becomes 1.92 ns, which meets the operating 

frequency constraint. 

Figure 3.15: A timing Path in Dual-V, 16-bit Multiplier 

Source: PrimeTime Report Timing Results 



Among three multipliers using all-HVT, all-SVT, and dual-threshold 

HVTISVT cells, the all-HVT one has the least leakage power consumption of 51 

uW, but does not meet the speed requirement of 500MHz. All-SVT multiplier has 

the highest leakage power of 280 uW. Using the dual-threshold HVTISVT cells 

adopting the GDSPOM flow, the power consumption of dual-Vt multiplier is 139 

uW, .which is 50% less than the all-SVT one, and meets the operating frequency 

constraint. Table 3.4 summarizes these multipliers' leakage powers. 

Table 3.4: Multiplier Leakage Power Comparison 

S Dual-& 

I 
- 

280 1 139 1 
Source: Power Compiler Results 

To further assess the performance of this dual-threshold voltage design 

flow, multipliers meeting different operating frequencies are generated, and their 

static power dissipation is measured by the power estimation tool. Figure 3.16 

illustrates that the dual-Vt multiplier dissipates less static power in comparison 

with the all-SVT multiplier one. It also shows that slower dual-Vt multiplier 

requires fewer SVT cells, and dissipates less static power as a result. 



Figure 3.16: Static Power Chart of Different Speed of Multipliers 
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Source: Power Compiler Results 



CHAPTER 4: CONCLUSION AND FUTURE WORK 

In this thesis, a novel gate-level dual-threshold static power optimization 

methodology (GDSPOM), which is based on the static timing analysis technique 

for designing high-speed low-power SOC applications using 90nm MTCMOS 

technology has been reported. Based on this optimization technique, and with 

the use of two cell libraries of different threshold voltages, a 16-bit multiplier 

meeting the speed requirement has been designed to have a 50% less power 

consumption compared to the all low-threshold voltage one. 

Because GDSPOM flow uses commercially available design tools and cell 

libraries, adopting the flow to the current design environment is straightforward. 

GDSPOM can be applied in designing a new device as well as be used to 

improve the power saving in the existing single Vt products. For example, an 

existing SVT design can be replaced with all HVT cells and go through GDSPOM 

flow to produce a new dual-Vt device: it has the same performance but dissipates 

less power. 

GDSPOM is not limited to MTCMOS technology for power saving. It can 

be expanded to combine other types of cells to achieve optimal power reduction. 

For instance, an adiabatic cell library [22] [23] [24] with characterized timing 

models can be used in GDSPOM to output a design containing both standard 

and adiabatic cells. With the same idea, dual Vdd cells or other future cell type 



libraries can be combined through GDSPOM process for better power saving 

products. 

While optimizing the device leakage power, GDSPOM also reduces 

dynamic power of the design by reducing the number of low Vt cells. This positive 

side effect is from the fact that low Vt cells have higher short-circuit current during 

signal switching. More efficient dynamic power optimization strategies like clock 

gating [25] can be combined with GDSPOM to produce a complete power saving 

design flow: the flow optimizes both dynamic and static powers. 

Another potential research work is to assess the value of moving 

GDSPOM to post-layout design level. GDSPOM is performed in pre-layout 

design and values of net delay are estimated numbers based on wire load model. 

Post-layout design has accurate physical data. Therefore, performing GDSPOM 

at post-layout level achieves the most accurate results. The drawback of this, 

modification is that it is more difficult and complicated to change circuits at the 

end of the design cycle. 

To sum up, GDSPOM is an efficient method of reducing leakage power. 

GDSPOM is ready to use and easy to adopt in the traditional design flow 

GDSPOM can be applied in the future technology and is also back compatible. 
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