
GATE-LEVEL DUAL-THRESHOLD STATIC POWER
OPTIMIZATION METHODOLOGY (GDSPOM) FOR

DESIGNING HIGH-SPEED LOW-POWER SOC
APPLICATIONS USING 90NM MTCMOS TECHNOLOGY

Benjamin Chung
B.A.Sc., University of British Columbia, 2001

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

In the
School

of
Engineering Science

O Benjamin Chung 2005

SIMON FRASER UNIVERSITY

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of Thesis:

Benjamin Chung

Master of Applied Science

GATE-LEVEL DUAL-THRESHOLD STATIC POWER
OPTIMIZATION METHODOLOGY (GDSPOM) FOR
DESIGNING HIGH-SPEED LOW-POWER SOC
APPLICATIONS USING 90NM MTCMOS
TECHNOLOGY

Supervisory Committee:

Chair: Dr. John S. Bird
Professor of the School of Engineering Science

Dr. James B. Kuo
Senior Supervisor
Professor of the School of Engineering Science

Dr. Marek Syrzycki
Supervisor
Professor of the School of Engineering Science

Dr. Karim S. Karim
Internal Examiner
Assistant Professor of the School of Engineering
Science

Date DefendedIApproved: Thursday, December 1,2005

SIMON FRASER '
U N ~ ~ E R ~ ~ W ~ I brary

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesislproject or extended essays, if technically possible,
to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

ABSTRACT

As integrated-circuits (IC) technology advances into the deep-submicron

(DSM) regime, more functionality can be combined onto a single chip. One

major challenge in designing such a complex device is to keep the power

consumption in check while capitalizing on the highest performance that DSM

technology can offer.

In this thesis we describe a novel gate-level dual-threshold static power

optimization methodology (GDSPOM), which is based on the static timing

analysis technique for designing high-speed low-power SOC applications using

90nm MTCMOS technology. The cell libraries come in fixed threshold - high Vt

for good standby power and low Vt for high-speed. Based on this optimization

technique using two cell libraries with different threshold voltages, a 16-bit

multiplier using the dual-threshold cells meeting the speed requirement has been

designed to have a 50% less leakage power consumption when compared to the

one using only the low-threshold cell library.

DEDICATION

To my wife, Mila, for her love, support, and believing in me throughout our

years together.

ACKNOWLEDGEMENTS

I would like to thank my academic supervisor, Professor James Kuo, for

his guidance, motivation, and technical advice during the entire Masters program.

Following his guidance, I have learned how to conduct research and look at

issues from a broader point of view.

I would also like to thank PMC-Sierra for providing me with real industrial

experience. Special thanks to Karim Arabi, Ken Brough, Alan Nakamoto, and

Ken Wagner for supporting my graduate studies.

Finally, I would like to thank my family and all SFU and PMC friends for

making my life exciting and colourful.

TABLE OF CONTENTS

.. Approval .. 11
... .. Abstract III

Dedication ... iv

Acknowledgements .. v

Table of Contents ... vi
... List of Figures .. VIII

List of Tables .. ix

List of Algorithms ... x

List of Acronyms .. xi

Chapter 1 : Introduction ... I
1.1 CMOS VLSl Trends .. 1
1.2 Components of Power Dissipation .. 2
1.3 Research Goal .. 6

.. 1.4 Organization of the Thesis 7

Chapter 2: Prior Work on MTCMOS Optimization Algorithms 8
2.1 MTCMOS Principle ... 8

... 2.2 Low Vt to High Vt Algorithms 9
2.2.1 Breadth-first Search .. 10
2.2.2 Levelized Search .. 12

2.3 High Vt to Low Vt Algorithm ... 17
2.4 Fine-Grained Vt Assignment Algorithms ... 18

2.4.1 Minimum Cut ... 19
2.4.2 Maximum Cut I .. 21
2.4.3 Maximum Cut II ... 25

2.5 Limitations .. -26

Chapter 3: Gate-level Dual-threshold Static Power Optimization
Methodology (GDSPOM) .. 27

3.1 Cell Libraries and Models ... 27
3.1.1 Cell Libraries ... 28
3.1.2 Timing Models ... 29
3.1.3 Power Models ... 35

3.2 GDSPOM Flow ... 36
3.3 Performance .. -41

Chapter 4: Conclusion and Future Work .. 48

Reference List ... 50

LIST OF FIGURES

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:
Figure 2.1 :
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 2.1 0:
Figure 3.1 :
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 3.10:
Figure 3.1 1 :
Figure 3.12:
Figure 3.1 3:
Figure 3.14:
Figure 3.1 5:
Figure 3.1 6:

Power Extrapolation .. 2
Current Flow in a CMOS Inverter .. 3
Leakage Power Sources ... 4
Dynamic Power Vs . Leakage Power in Various Technologies 5
Cell Timing Values after STA .. 10
Breadth-first Search Example .. 12
Levelized Search Example .. 14
High Vt Assignment Results Using Different High Vt Values 15
Leakage Powers Vs . Replacing Vt values 16
High Vt to Low Vt Breadth-first Search Example 18
Minimum Cut Search Example .. 20
Maximum Cut I Search Example ... 22
Swap Test Example ... 24
Maximum Cut II Flow ... 25
Type of Timing Paths ... 29
Routes of Timing Paths ... 30
Cell Timing Arcs .. 30
Arc Timing Lookup Table ... 31
RC Tree Network ... 32
Path Arrival Time Calculation .. 33
Path Required Setup Time Calculation .. 34
Flow Chart of GDSPOM ... -37
Cell Timing Violating Cost ... 39

.. GDSPOM Example 41
Path Slack Chart .. 42
Block Diagram of a Dual-Vt 16-bit Multiplier 43
Schematic View of a Dual-Vt 16-bit Multiplier 44
A Timing Path in HVT 16-bit Multiplier ... 45
A timing Path in Dual-Vt 16-bit Multiplier .. 45
Static Power Chart of Different Speed of Multipliers 47

LIST OF TABLES

Table 1.1 : Technology Roadmap for Semiconductors 1
Table 3.1 : Typical 90nm Transistors .. 28
Table 3.2. 90nm Unity Gate .. 28
Table 3.3. NAND2 Leakage Current ... 36

.. Table 3.4. Multiplier Leakage Power Comparison 46

LIST OF ALGORITHMS

Algorithm 2.1 :
Algorithm 2.2:
Algorithm 2.3:
Algorithm 2.4:
Algorithm 2.5:
Algorithm 2.6:
Algorithm 2.7:
Algorithm 2.8:
Algorithm 3.1 :
Algorithm 3.2:

Breadth-first Search .. 11
Levelized Search .. 1 3
Optimal High Vt Search .. 16

.................................... High Vt to Low Vt Breadth-first Search 17
Minimum Cut Search .. 20
Maximum Cut I Search ... 23
Swap Test ... 24
Maximum Cut II .. 25
Get Bottleneck Cells ... 40
Get Swap Cell List .. 40

LIST OF ACRONYMS

CAD
CMOS
DSM
GDSPOM
HVT
IC
ITRS
MTCMOS
RTL
SOC
STA
SVT
TCL
VLSl

Computer Aided Design
Complementary Metal Oxide Semiconductor
Deep Sub-micron
Gate-level Dual-threshold Static Power Optimization Methodology
High Threshold Voltage
Integrated Circuits
International Technology Roadmap for Semiconductors
Multiple Threshold CMOS
Register Transfer Language
System on Chip
Static Timing Analysis
Standard Threshold Voltage
Tool Command Language
Very Large Scale Integration

CHAPTER I : INTRODUCTION

1 .I CMOS VLSl Trends

CMOS technology has evolved into sub-micron regime [I]. The

mainstream process is 90nm, and 65nm is coming in the near future. Table 1.1

summarizes the VLSl trends and the numbers are from International Technology

Roadmap for Semiconductors (ITRS) 2004 update [2].

Table 1.1 : Technology Roadmap for Semiconductors

Year of Production p c q
Technology Node (nm) 130 90 65 45 32 22
Vdd (V) 1.1-1.2 0.9-1.2 0.8-1.1 0.7-1.0 0.6-0.9 0.5-0.8
On-chip Local Clock 1684 4171 9285 15079 22980 39683
(MHz)
Functions per Chip I 276 533 1106 2212 4424 8848
(million transistors)
DRAM Capacitance per 0.54 1.07 2.1 5 4.29 8.59 34.36
Chip (Gbits)
Allowabte Maximum 130 158 189 198 198 198
Power with Heatsink (W).
Source: ITRS, http://www.itrs.netlCommon/2004Update/2004,~OOOOORTC.pdf

Following the trends on transistor size scaling down, Gordon Moore's

prediction that transistor counts will double every two years (Moore's Law) [3] is

still valid for the next decade. However, chip power density is approaching the

physical barrier and will limit chip growth if there are no breakthroughs in power

reduction [4]. Figure 1.1 illustrates that it is not possible to continue the chip

growth trend if power problem is not solved.

Figure 1 .I : Power Extrapolation

Pentium

2000

Year

Source: Pat Gelsinger's Slide from ISSCC 2001.
ftp://download.intel.com/technology/silicon/TeraHertzshort.pdf

Other advantages of low power designs are as follows: more reliable

device operation, cheaper and lighter power supplies, and less expensive cooling

system. Low power designs also enable portable products like laptops or mobile

telephones to have longer battery life, lighter weight, and smaller size.

Therefore, implementing low power structures has become a required

feature in developing a chip, and discovering low power strategies is one of the

most active research fields.

1.2 Components of Power Dissipation

A circuit dissipates two kinds of powers: dynamic power and static power

[5]. Figure 1.2 shows typical current flow in an active inverter circuit.

Figure 1.2: Current Flow in a CMOS Inverter

OUT

Source: Power Compiler User Guide, v2004.12 [5]

Dynamic power is the power dissipated when a cell's input value changes.

It contains cell internal power and net switching power. Cell internal power is the

power dissipated by the momentary short circuit between power source and

ground when a circuit switches, as well as by charging and discharging the

internal cell capacitances. Short-circuit current, I,, in Figure 1.2, is the source of

cell internal power. Cell internal power is below 10-15% of the total power [6]

and can be calculated with the formula:

Net switching power is the power dissipated due to charging and

discharging of the capacitive load at cell's outputs. This is the dominant

component of dynamic power. As shown in Figure 1.2, switching current, I,,,

generates net switching power. The value of net switching power is proportional

to the logic transition rate of the circuit. Clock frequency, fclk, and output

switching factor, a, in the circuit define logic transition rate. Net switching power

can be represented as:

Static power is the power dissipated all the time, even when a circuit is

held in a steady state [7]. Leakage current, Ilk in Figure 1.2, exists because, in

reality, a transistor is not an ideal switch. Figure 1.3 shows sources of leakage of

currents. Leakage power formula is:

Figure 1.3: Leakage Power Sources

Gate
Source . I Drain

Subthreshold
Leakage Current

I

Bulk
Source: Leakage Mechanisms and Leakage Control for Nano-Scale CMOS Circuits [7]

The main component of static power comes from a sub-threshold leakage

current. This current runs from source to drain on a transistor even when the

transistor is turned off. The amount of sub-threshold leakage current is a

function of the threshold voltage: high threshold voltage device has smaller sub-

threshold leakage current than low threshold voltage device does [8]. The sub-

threshold current of a MOS transistor is approximated as 191:

where
g = gate terminal
s = source terminal
d = drain terminal

v, = threshold voltage

= thermal voltage

= technology dependent constants

Total circuit power can be represent as:

As technology entered the deep sub-micron (DSM) regime, static power

became a significant component of the total circuit power. Static power can be

larger than dynamic power as shown in Figure 1.4; therefore, static power

optimization technique is important in the DSM devices. This is the motivation

behind this research work.

Figure 1.4: Dynamic Power Vs. Leakage Power in Various Technologies

L JU

Dynamic Power 200 -
rn Static Power

E I50 -
z
2 100 -
CL

I I I

Technology

Source: Power Modelling and Leakage Reduction,
http://eda.ee.ucla.edu/EE201A-04Spring/leakage~pres.ppt

I .3 Research Goal

The current IC industry is very competitive. A product's cost and time-to-

market schedule are usually the most important factors to be successful in this

market [lo]. Under limited project timeline and budget, it is a challenge to

efficiently develop a low power chip without sacrificing its performance. The

research goal is to define a practical VLSl design flow for leakage power

reduction.

This design flow will need to meet the following objectives:

1. It is easy to use and its runtime is reasonable.

2. It can handle VLSl and system-on-chip (SOC) designs.

3. It is back compatible. In other words, it can be used to optimize the

existing designs.

Because of these usage features, the research is focused on applying

available process technologies and computer aided design (CAD) tools with

minor program implementations.

The research process contains the following stages:

1. Build a 16-bit multiplier following the existing design flow. Measure

the multiplier's speed and leakage power with a simulation based

power estimation tool.

2. Identify potential low power techniques and commercially available

CAD tools to use.

3. Implement low leakage power design flow.

4. Build another 16-bit multiplier following the new flow. Estimate its

speed and leakage power with simulation-based approach.

5. Compare both multipliers' speed and power performances.

Analyze the comparison data and further improve the leakage

power reduction design flow.

The final research result is a gate-level dual-threshold static power

optimization methodology (GDSPOM). GDSPOM borrows the multiple threshold

CMOS (MTCMOS) concept and applies the static timing analysis (STA)

approach to minimize leakage power in VLSl designs.

1.4 Organization of the Thesis

Chapter 2 gives an overview of prior work on MTCMOS leakage power

reduction techniques. It first explains the basic MTCMOS principle as a

background. Then, it describes the proposed algorithms and experiment results.

It also points out the limitations of these MTCMOS strategies.

Chapter 3 presents GDSPOM. First, it describes the characteristics of

applied cell libraries and models. Second, it presents GDSPOM with detailed

descriptions of STA approach in the flow. Then, it compares two 16-bit

multipliers created from non-GDSPOM and GDSPOM flows. Finally, it

summarizes GDSPOM power reduction results from designing 16-bit multipliers

in different required operating frequencies.

Chapter 4 is the conclusion of this thesis. It also provides directions for

future research.

CHAPTER 2: PRIOR WORK ON MTCMOS
OPTIMIZATION ALGORITHMS

This chapter presents three published papers of leakage power reduction

algorithms using the concept of MTCMOS technology. The idea of using

MTCMOS to save power is described first. Then, three papers with different

approaches are presented. Limitations of these methods are analysed at the end

of this chapter.

2.1 MTCMOS Principle

Threshold voltage (Vt) controls current and signal propagation delay of a

MOS device. A transistor with high threshold voltage has low leakage current

and long signal propagation delay; a transistor with low threshold voltage has

high leakage current and short propagation delay [8].

The basic idea of designing a low leakage power circuit with MTCOMS is

as the follows:

1. place low Vt transistors in timing critical paths to satisfy the circuit

operating performance requirements,

2. place high Vt transistors off timing critical paths to minimize the

circuit leakage current.

It is a challenge to efficiently distribute different Vt cells. Different

MTCMOS Vt assignment algorithms have been proposed in prior work and will

be presented in the remaining sections.

2.2 Low Vt to High Vt Algorithms

Wei et a/. proposed two algorithms to replace low Vt cells with high Vt

ones: breadth-first search [I I] and levelized search [12]. The starting circuit

contains all low Vt transistors. A higher Vt transistor with predetermined Vt value

is used to replace as many low Vt transistors as possible.

Both algorithms use the same STA tool. In the timing initialization step,

each cell's signal arrival time and required time are calculated. The time

difference between the arrival time and the required time is defined as "slack".

Positive slack indicates the amount of time during which a gate may be slowed

down without affecting the circuit speed performance. The path with the longest

propagating delay is called a critical path. Cells on critical path have zero 0 slack

value.

See// = cell slack

Figure 2.1 shows a critical path from B to Y and calculated timing values

of each cell after'the initial STA step. As timing analysis is done in cell bases, it

is known as a cell based STA approach [13].

Figure 2.1: Cell Timing Values after STA

Sorce: VlSlO Drawing

2.2.1 Breadth-first Search

In breadth-first search algorithm, cells are traced backwards starting from

one primary output. If a cell's slack value is positive, check if its slack value is

still positive after changing its type from low Vt to high Vt. If the new slack value

is positive, allow the cell type change, otherwise, keep the original low Vt cell

type. When search nodes reach primary inputs, a new search starts again from

another primary output. The search stops after all cells are checked. Algorithm

2.1 presents the breadth-first search procedure. Figure 2.2 illustrates how the

breadth-first search algorithm works.

Algorithm 2.1: Breadth-first Search

Procedure breadthFirstSearch ($inputNetlist, $highVt) {
@poArray = all primary outputs in $inputNetlist

foreach $po (@poArray) {
foreach $cell on paths to $po {

$type = $cell type
$slack = $cell slack
$visited = $cell checked

if ($type == lowVt && $slack > 0 && $visited == false) {
$slackHvt = $highVt slack

if ($slackHvt > 0) {
replace $cell to high vt one

) else {
keep $cell
$visited = true

1
1

1
1

1

Source: Design and Optimization of Low Voltage High Performance Dual Threshold CMOS
Circuits [I 11

Figure 2.2: Breadth-first Search Example

Source: Design and Optimization of Low Voltage High Performance Dual Threshold CMOS
Circuits [11]

2.2.2 Levelized Search

In levelized search, all cells are assigned a level number. Primary outputs

have level number 0; cells connect directly to primary outputs have level number

1; cells close to primary inputs have higher-level numbers. The search loop

checks cells from maximum level and stops when it reaches level 0. Levelized

search is more efficient than breadth-first search and the search procedure is

outlined in Algorithm 2.2. Figure 2.3 shows a levelized search example.

Algorithm 2.2: Levelized Search

Procedure levelizedsearch ($inputNetlist, $highVt) {
$currentLevel = maximum level

while ($currentLevel > 0) {
foreach $cell on $currentLevel (

$type = $cell type
$slack = $cell slack

if ($type == lowVt && $slack > 0) {
$slackHvt = $highVt slack

if ($slackHvt > 0) {
replace $cell to high vt one

) else {
keep $cell

}
1

1
1

Source: Design and Optimization of Dual-threshold Circuits for Low-voltage Low-power
Applications [I 21

Figure 2.3: Levelized Search Example

Level 3 Level 2 Level 1

Source: Design and Optimization of Dual-threshold Circuits for Low-voltage Low-power
Applications [I 21

A slightly higher than initial Vt value cell reduces small amount of leakage

current and introduces short signal delay. Therefore, more cells in a pure low Vt

design can be assigned to this type. A much higher than initial Vt value cell

reduces leakage current more efficiently. However, because it also increases a

significant amount of delay time, only few cells can be assigned to this type. As

shown in Figure 2.4, the higher the replacing Vt value is, the fewer cells can be

replaced.

Figure 2.4: High Vt Assignment Results Using Different High Vt Values

0

-D
(a) Original Netlist

(b) High Vt = 0.2 Vdd

(c) High Vt = 0.4 Vdd

Source: Design and Optimization of Dual-threshold Circuits for Low-voltage Low-power
Applications [I 21

Because different replacing high Vt values result in different amount of

leakage current savings, Wei et a/. provides an additional algorithm to find the

optimal high Vt value for cell replacing. Algorithm 2.3 is the optimal high Vt value

search procedure. This procedure loops the levelized search process by trying

different replacing high Vt values. Then, resulting leakage power values are

stored and compared. Finally, the optimal high Vt value, which produces the

circuit with the least leakage power is reported.

Algorithm 2.3: Optimal High V, Search

Procedure optimalHighVtSearch ($inputNetlist, @highVtArray) {
$minLeakagePower = measuer $inputNetlist leakage power
$optimalVt = ""

foreach $highVt (QhighVtArray) {
&levelizedSearch($inputNetlist, $highVt)
$leakagepower = measure result netlist's leakage power

1
Source: Design and Optimization of Dual-threshold Circuits for Low-voltage Low-power
Applications [I 21

During optimal high Vt search process, leakage powers of resulting circuits

using different replacing Vt values are measured. The power measurement

results shown in Figure 2.5 indicate that 0.4 V threshold voltage is the best pick

for this particular experiment circuit.

Figure 2.5: Leakage Powers Vs. Replacing V, values

0.6 1
0.2 0.25 0.3 0.35 0.4 0.45 0.5

Replacing High V, Value (V)

Source: Design and Optimization of Dual-threshold Circuits for Low-voltage Low-power
Applications [I 21

2.3 High Vt to Low Vt Algorithm

Samanta and Pal modified Wei et a1.k breadth-first search algorithm in

Chapter 2.2.1 to replace high Vt cells to low Vt ones to satisfy the signal timing

constraints [14]. In the search loop, recalculation of cell timing values is

performed after tracing through each critical path. Existing critical paths change

dynamically due to cell type swapping function in the search process.

Performing STA periodically addresses dynamic critical path changing issues.

The detailed procedure is shown in Algorithm 2.4 and an example is shown in

Figure 2.6.

Algorithm 2.4: High Vt to Low Vt Breadth-first Search

Procedure IowVtSearch ($inputNetlist) {
repeat {

QtoChangeArray = all nodes on critical path
change @toChangeArray to low Vt
perform STA

) until circuits meets timing requirements

Source: Optimal Dual-VT Assignment for Low-voltage Energy-Constrained CMOS Circuits [14]

Figure 2.6: High Vt to Low Vt Breadth-first Search Example

Source:

AT=3 AT=7
RT=5 RT=8 S=2

A
AT=9
R T 4 0

B
BT=S
RT=6

RT=9

S = l S= I

Optimal Dual-VT Assignment for Low-voltage Energy-Constrained CMOS Circuits

2.4 Fine-Grained Vt Assignment Algorithms

Wang and Vrudhula proposed three fine-grained Vt assignment

algorithms: Min-Cut, Max-Cut I, and Max-Cut 11 [15]. Min-Cut and Max-Cut II

replace high Vt transistors to low Vt ones while Max-Cut I exchanges low Vt

transistors to high Vt ones. In Chapter 2.2 and 2.3, Wei and Samanta's

algorithms assign same Vt transistors to each individual logic block. In fine-

grained Vt assignment approach, transistors inside the same logic cell may have

different Vt values. For example, gate Z may have high Vt transistors whose

input values are driven by the output of gate A and low Vt transistors whose input

values are driven by gate B.

2.4.1 Minimum Cut

Min-Cut algorithm starts with a circuit, which contains all high Vt transistors

and has timing violations. Use a circuit graph to represent an input circuit, a

node is a logic cell partition, an edge is a connection between two nodes. When

an edge does not meet timing constraints and one end connects to a high Vt cell,

this edge's weight is assigned with the following formula:

where

wedge
= edge weight

AP = power increase after replacing one node to low Vt
MT = arrival time reduction after replacing one node to low Vt
a = scalar factor to balance AP and MT

In all other cases, edges have infinity cx, value. A minimum cut through

this circuit graph reveals a set of edges, which, after lowering threshold voltage in

one end, causes the minimum leakage power increase and provides the

maximum signal speed improvements. Algorithm 2.5 states the minimum cut

search procedure. Figure 2.7 demonstrates a simple minimum cut search

example.

Algorithm 2.5: Minimum Cut Search

Procedure minCut ($inputNetlist) {
perform static timing anlysis
compute weights
$stop = false

while ($stop == false) {
$cutset = minimum weight cut of $inputNetlist
@candidates = all edges in $cutset

if (@candidates = NULL) {
$stop = true

) else {
change all edges in @candidates to low Vt
perform static timing analysis
compute weights

1
1

1
Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-Vt CMOS
Circuits [15]

Figure Minimum Cut Search Example

AT=3

A
AT=11

Y --
B w= -

A T 4

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-Vt CMOS
Circuits [I 51

2.4.2 Maximum Cut I

Max-Cut I algorithm starts with a circuit, which contains all low Vt

transistors and does not have timing violations. When one end of the edge can

be switched to high Vt node without causing a timing violation, its edge weight is

assigned using this formula:

wedge =
where

Wedge
= edge weight

At' = leakage power reduction after replacing one node to high Vt

In all other cases, edges have zero 0 value. A maximum cut through this

circuit graph reveals a set of edges, which, after raising threshold voltage in one

end, causes maximum leakage power reduction without affecting the circuit

performance. To address the situation when a node's Vt value changing affects

its leaf nodes' timing, cut is only allowed in the level bases. This level restriction

is driven from the fact that there is no timing dependency between edges in the

same level.

Figure 2.8 illustrates an example of level cut procedure. First, initial

circuit's edge weights are calculated. The level 1 has the maximum total edge

weight of 8 and, therefore, level 1 cut is chosen for high Vt replacement. After

the cell type change, new edge weights are calculated again with new values

shown in the second part of the figure.

Figure 2.8: Maximum Cut I Search Example

Level 1 Level 2 Level 3

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-Vt CMOS
Circuits [I 51

The detailed max cut I procedure is stated in Algorithm 2.6.

Algorithm 2.6: Maximum Cut I Search

Procedure maxCutl ($inputNetlist) {
perform static timing anlysis
compute weights
$stop = false

while ($stop == false) {
compute weights
$maxCut = 0
$maxWeight = 0

foreach $levelcut {
$levelweight = total weight of $levelcut

if ($maxCut != 0) {
change all edges in $maxCut to high Vt
perform static timing analysis
compute weights

) else {
$stop = true

1
1

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-Vt CMOS
Circuits [I 51

Furthermore, to avoid a locally optimal solution due to level based

approach, an additional swap testing procedure is performed after max cut I

search. The swap testing procedure takes the product circuit from max cut I as

an input. After returning one high Vt node back to low Vt, if more beneficial Vt

swapping can be found in other nodes, the high Vt node relocation process is

performed. Otherwise, original configurations are restored. Algorithm 2.7 states

the swap testing procedure. Following Figure 2.8 example, the swap testing

process is illustrated in Figure 2.9.

Algorithm 2.7: Swap Test

Procedure swapTest ($inputNetlist) {
QhighVtEdges = high Vt edges in $inputNetlist

foreach $edge (QhighVtEdges) {
change $edge to low Vt
perform static timing analysis
compute weights

$cost = $edge weight
$gain = maximum weight sum of level cut

if ($gain > $cost) {
$inputNetlist = changed $inputNetlist

) else {
restore $inputNetlist

1
}

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-Vt CMOS
Circuits [I 51

Figure 2.9: Swap Test Example

Level 1 Level 2 Level 3

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-Vt CMOS
Circuits [15]

2.4.3 Maximum Cut I I

Max-Cut II algorithm starts with a circuit containing only high Vt transistors.

It identifies critical areas and converts all transistors inside the critical areas to

low Vt type. Then, Max-Cut I is performed to these critical areas to recover some

transistors back to high Vt. Figure 2.10 is the flow chart and Algorithm 2.8 is the

procedure of maximum cut II.

Figure 2.10: Maximum Cut II Flow

r

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-V, CMOS
Circuits [15]

Algorithm 2.8: Maximum Cut II

Procedure maxCutll ($inputNetlist) {
@subcircuitArray = critical subcircuits in $inputNetlist

foreach $subcircuit (@subcircuitArray) {
replace each edge of $subcircuit to low Vt
perform maxCutl($subcircuit)

1

Source: Algorithms for Minimizing Standby Power in Deep Submicrometer, Dual-V, CMOS
Circuits [I 51

The experiment shows that Max-Cut II is the best algorithm among the

three. Its runtime is faster than the runtime of others because only subcircuits

will go through dual-Vt optimization process. Min-Cut has the worst leakage

power reduction performance due to the fact that its edge weight formula

contains scalar factor and infinite value. The inaccurate weight values may leads

to sub-optimal minimum cut solution.

2.5 Limitations

All of these published work achieved leakage power reduction results.

However, all of them focus on how to assign dual Vt cells on pure combinational

logic circuits and assume there exists only one clock source. There is no

strategy of assigning different Vt values to sequential elements as well as

calculating cell timing values on multiple clock domains. Although optimal high Vt

value can be identified with Algorithm 2.3, availability of specific Vt cell libraries is

limited [16]. Moreover, there is no commercial STA tool to support custom

defined timing analysis approaches. Therefore, these algorithms are limited to

be applied in simple combinational circuits with custom cell libraries and custom

STA engines.

CHAPTER 3: GATE-LEVEL DUAL-THRESHOLD STATIC
POWER OPTIMIZATION METHODOLOGY
(GDSPOM)

In this chapter, a gate-level dual-threshold static power optimization

methodology (GDSPOM) using static timing analysis (STA) is described. It will

be shown that via two cell libraries with different threshold voltages, the design of

a 16-bit multiplier circuit has been optimized based on GDSPOM, which has a

50% less leakage power consumption in comparison with the all-low threshold

voltage one at the operating frequency of 5OOMHz. In the following sections,

characters of cell libraries and usages of timing and power models are introduced

first, the principle of GDSPOM is presented next, followed by the performance of

the test multiplier circuits, discussion and conclusion.

3.1 Cell Libraries and Models

Two cell libraries are used in GDSPOM: one library contains all logic gates

built with high threshold voltage transistors; the other library has all logics

constructed with low threshold voltage transistors. Gate timing models are used

for static timing analysis. Gate power models are used for dynamic and static

power estimation. This section introduces cell libraries and models used in

GDSPOM.

3.1 .I Cell Libraries

A high threshold voltage cell library and a low threshold voltage cell library

are required in this dual MTCMOS design flow. A cell is a fundamental logic

block and it is the basic element in a gate-level netlist. A cell built with all high

threshold voltage transistors has longer signal propagation delay and blocks

more unwanted leakage current; a cell built with all low threshold voltage

transistors has faster signal transition time but suffers from generating large

amount of sub-threshold leakage current [I 71 [I 81.

In the GDSPOM experiment, Artisan 90nm high threshold voltage (HVT)

cell library and standard threshold voltage (SVT) cell library are applied. The

transistor characteristics are summarized in Table 3.1 and cell characteristics are

summarized in Table 3.2.

Table 3.1 : Typical 90nm Transistors
- -

m n m Transistors

Source: artsc90g and artsc9Og-hvt Spice Models

Table 3.2: 90nm Unity Gate

Source: Spice Simulation Results and Average Cell Data on T'SMC 90nm Standard Cell Library
Databook [I 71 [I 81

3.1.2 Timing Models

Static timing analysis tool uses timing models to estimate signal

propagation duration through a timing path [19]. The start point of a timing path

is either a primary input (PI) port or a sequential element where the signal is

launched from; the end point is either a primary output (PO) port or a sequential

element where the signal is captured. Figure 3.1 illustrates four basic types of

timing paths:

Figure 3.1 : Type of Timing Paths

Path 1 Path 2 Path 3

Source: PrimeTime User Guide [I91

As shown in Figure 3.1, Path 1 starts at a PI and finishes at a flop; Path 2

starts from a flop and arrived at another flop; Path 3 begins with a flop and ends

with a PO; Path 4 starts from a PI, passes through combinational logics, and

arrives at a PO. In typical VLSl design, majority STA checks are performed on

the flop-to-flop paths.

It is possible to have different path routes between the same start and end

points. Figure 3.2 illustrates one short and one long path routes, which start and

finish at the same points.

Figure 3.2: Routes of Timing Paths

Long Path

Short Path
Source: PrimeTime User Guide [I 91

Moreover, a cell may have multiple timing arcs. A timing arc defines a

timing relationship between one input pin and one output pin of a cell. Different

timing arcs have different cell propagation delay. As shown in Figure 3.3 (a), a

two-input XOR gate has four arcs: A to Z when B is 0, A to Z when B is 1, B to Z

when A is 0, and B to Z when A is 0. By default, STA tool will analyze all

possible arcs. In the case when a pin is assigned a constant value, STA tool will

automatically detect available arcs. Using the same example in Figure 3.3 (b),

when input A is assigned a constant value of 0, there is only one arc between

input B to output Z available for analysis.

Figure 3.3: Cell Timing Arcs

(a)

Source: PrimeTime User Guide [I 91

Arc delay calculation formula is a function of input transition time and

output load capacitance. Timing lookup table like the one shown in Figure 3.4 is

recorded in the cell technology library. Using the example in Figure 3.4, a cell

delay time from input B to output Z is 8.8 ns when input transition time is 100 ps

and output load capacitance is 0.4 fF. When values of input transition time and

output load capacitance are between the table points or outside the table range,

STA tool will use interpolation or extrapolation approach to estimate the delay.

Figure 3.4: Arc Timing Lookup Table

Transit ion 4.5 7.5
5.0 7.7 8.8 9.9

Source: PrimeTime User Guide [I 91

Arc delay is cell internal signal propagatiori time. Net delay is the total

time for a signal to travel between two cells. Before the layout phase, absolute

cell location and wire length are unknown. To bypass this issue, STA tool uses

wire load model to predict the net delay. The wire load model estimates net

capacitance and resistance based on the number of fanout pins on this net. As

shown in Figure 3.5, the delay time of the circled net will be calculated with net

capacitance Cout, Cwire, and C1 along with net resistance Rdriver and Rwire.

Figure 3.5: RC Tree Network

I
I

/--

I Rdriver

VvV Cout,
I
--s-- T,

Source: PrimeTime User Guide [19]

Knowing cell and net delays as well as input latency, path arrival time can

be calculated as following:

A TP", = Ddk + Ddk -,a + z D,, + z %I

where

AT,,, = path arrival time

Dr, = clock source latency

= clock network latency

= cell delay

= net delay

Assuming that source clock latency is 2 ns, clock network latency is 3 ns,

sequential and combinational cell delay are 3 ns, and net delay is 2 ns, the path

shown in Figure 3.6 has arrival time of 20 ns.

Figure 3.6: Path Arrival Time Calculation

CLK

Source: http://www.chipl23.com

Furthermore, required setup time of a path can be calculated using the

following formula:

Clk - tmcertn int y

= clock source latency

= clock network latency

= clock uncertainty

= capture flop setup time

Assuming clock period is 16 ns, source clock latency is 2 ns, clock

network latency is 3 ns, clock uncertainty is 1 ns, and flop's setup time is 1 ns,

the path required setup time is 19 ns.

Figure 3.7 illustrates how path required setup time is calculated.

Figure 3.7: Path Required Setup Time Calculation

capture clock (ideal)

I capture clock (source)

! 18

capture clock (source + network)

capture clock (source + network + uncertainty)

capture clock (source + network + uncertainty - setup)
I

I 19
Source: http://www.chipl23.com

When a path's arrival time is shorter or equal to its required time, this path

meets the setup timing constraint. On the other hand, when a path's arrival time

is longer than its required time, this path does not satisfy its timing constraint and

has setup timing violation. The difference between path arrival and required time

is called path slack and can be calculated with the formula:

-
'Po//l - - ''pod1 _sellrp - A Tpl/11

where
= path setup slack

Sporlr - serrrp

R T p o d 1 - scmp
= path setup required time

AT,,* = path arrival time

Positive slack indicates that the path meets timing and negative slack tells

that the path has a timing violation. Considering path in Figure 3.6 has arrival

time of 20 ns and its clock path in Figure 3.7 has required time of 19 ns, this

path's setup slack is -1 ns, which means that a timing violation exists on this

path.

Because all timing checks are done per path bases, this type of STA is

characterized as path based STA approach. The STA approach presented in

Chapter 2.2.1 is block based because timing checks are done per cell bases.

GDSPOM uses path based STA.

3.1.3 Power Models

As mentioned in Chapter 1.2, a cell dissipates internal power, switching

power, and leakage power. Therefore, a cell power model provides three

different power attributes for the power analysis tool to do power estimation [5].

Cell internal power calculation formula is a function of input transition time

and output load capacitance. Internal power lookup table similar to the one

shown in Figure 3.4 is included in the cell technology library. Like arc delay

calculation described in Chapter 3.1.2, a power analysis tool will use the

interpolation or extrapolation method to predict the power when values of input

transition time and output load capacitance are between the table points or

outside the table range.

Switching power calculation formula is a function of net capacitive load

and net switching rate. The net capacitive load can be obtained from the cell

technology library and the wire load model, which has been introduced in

Chapter 3.1.2. The value of the net switching rate can be calculated by

monitoring net toggle activities while running functional simulation. For example,

if a net value toggles 25 times in average per 100 clock cycles, its net switching

rate is 0.25.

Leakage power is cell state dependent. As shown in Table 3.3, cell

leakage current can vary in more than 5 orders of magnitude. Leakage current

varies because transistors inside a cell have different on and off combinations in

different state. As a result, the drain source voltages VDs of each transistor vary.

In VLSl design, the impact of different cell states on the total leakage current is

ignorable. Therefore, average leakage value is recorded in the technology

library.

I - -
Source: Spice Simulation Results

Table 3.3: NAND2 Leakage Current -
Q0nm NAND2 Leakage Current (nA)
Input Value

3.2 GDSPOM Flow

Figure 3.8 shows the flow chart of GDSPOM used for designing high-

speed low-power SOC applications using MTCMOS technology.

A B HVT
o a 1.49
0 1 2.56
1 0 3.57 . 4.61

SVT
3.72
14.93
18.95
21.77

Figure 3.8: Flow Chart of GDSPOM

RTL Design

-+T List

Static Power
Optimized Netlist

Source: VlSlO Drawing

As shown in the figure, a Register Transfer Language (RTL) design is

synthesized into gate-level netlist of cells using CMOS devices with a high-

threshold voltage (HVT). Then, static timing analysis (STA) is performed to

report a list of cells that are required to swap from HVT type to the low-threshold

voltage (SVT) type to meet timing constraints. Finally, cell-swapping script is

executed to create the netlist built with dual-threshold HVTISVT cells.

In the synthesis step, 25% slower operation speed is applied. In the

example of 5OOMHz 16-bit multiplier, 400MHz frequency is targeted when

converting the multiplier's RTL design to HVT gate-level netlist. The additional

100MHz speed will be caught up in the cell swapping step, which replaces slow

HVT cells with fast SVT ones. Comparing speeds of HVT and SVT cells in the

90nm technology library, SVT ones are about 30% faster than HVT ones. This is

the reason why 25% slower speed is chosen to create the initial HVT gate-level

netlist and why it is possible to achieve the final speed target by changing cell

types without altering design architecture and increasing area overhead.

STA is the key component in GDSPOM flow. STA breaks a design into a

group of timing paths and calculates the signal propagation delay of each path

individually. The concept of path based STA has been introduced in Chapter

3.1.2. When a path's delay is greater than the specified timing constraint, this

path has a timing violation. Figure 3.9 illustrates three timing violated paths

found inside a 16-bit HVT multiplier's Wallace tree reduction architecture [20] and

carry look ahead circuit [21].

Figure 3.9: Cell Timing Violating Cost

I Carry Look Ahead Adder

1 & 1 4
'31 '30 P26 P2 P7 Po

Source: VlSlO Drawing

As shown in Figure 3.9, three timing violated paths labelled blue, green,

and red have been identified. The number of timing violating paths through one

cell determined this cell's cost value. For instance, adders A-3-9 and A-8-1

have the cost value of 1 ; A-2-1 1, A-2-1 6 and A-9-10 have the cost value of 2;

A-10-14, A-12-12, and A-13-10 have the cost value of 3. The cells with the

highest cost value such as A-10-14, A-12-12, and A-13-1 0 in this example will

be targeted for cell type change. After changing ,these bottleneck cells to SVT

type, STA is performed again to recalculate cell cost values. This STA process

continues until all the timing paths meet the required timing constraints.

Algorithm 3.1 explains how cost values are assigned to cells and Algorithm 3.2

shows the STA iterating process. A simple example of GDSPOM procedure is

illustrated in Figure 3.10.

Algorithm 3.1 : Get Bottleneck Cells

procedure getBottleneckCells ($inputNetlist, $requiredTime) {
@pathArray = all paths in $inputNetlist
%cellCostHash = all cells in $inputNetlist with initial cost value 0

foreach $path (@pathArray) {
$arrivalTime = calculated $path arrival time

if ($arrivalTime > $requiredTime) {
foreach $cell in $path {

incr $celICostHash{$ceII)
1

I

Source: PrimeTime lnput Tcl Script

Algorithm 3.2: Get Swap Cell List

procedure getSwapCellList ($originalNetlist, $requiredTime) {
(@bottleneckCellArray, $inputNetlist) =

&getBottleneckCells ($origianlNetlist, $requiredTime)

while (@bottleneckCellArray != NULL) {
@swapCellList = @swapCellList + @bottleneckCellArray

I return @swapCellList

Source: PrimeTime lnput Tcl Script

Figure 0: GDSPOM Example

A

Y

B

Source: VlSlO Drawing

The bottleneck cell swapping approach is the main difference between

GDSPOM and other methodologies mentioned in Chapter 2. Fixing a high cost

cell means fixing multiple timing violated paths at once. Always targeting the

highest cost cells in each STA loop procedure guarantees a highly efficient

solution of solving design timing violation problem. In other words, GDSPOM

replaces minimum amount of cells from HVT to SVT and results in the least

leakage power increase while fixing all timing violations in a design.

3.3 Performance

In order to assess the effectiveness of GDSPOM for designing low-power

high-speed SOC applications using 90nm MTCMOS technology, three 16-bit

multipliers with Wallace tree reduction architecture [20] have been implemented.

All of them are generated based on the same RTL source except that one

multiplier uses all HVT cells, another has all SVT cells, and the third one contains

both types of cells optimized via GDSPOM. Targeting operating frequency is set

to be 5OOMHz and 90nm Artisan cell libraries are used in this experiment. A 16-

bit multiplier has 7320 unity gates and it contains approximately 30000

transistors.

As shown in Figure 3.1 1, with 5OOMHz clock frequency constraint, 5000

paths in the HVT multiplier fail the speed test. Mentioned in Chapter 3.1.2, the

negative slack means the overtime for a signal to travel from one input to one

output of a path. For instance, a path with -0.37 ns slack means a signal on this

path arrives 0.37 ns later than when it is supposed to arrive.

Figure 3.1 1: Path Slack Chart

-0.419 -0.412 -0.405 -0.398 -0.392 -0.385 -0.378 -0.371

Path Slack (ns)

Source: PrimeTime Report Timing Results

In this experiment, GDSPOM reassigned 352 out of total 1715 cells from

HVT to SVT to satisfy the 5OOMHz speed constraint. Figure 3.12 shows the

block diagram and Figure 3.13 shows the schematic view of the 16-bit dual-Vt

multiplier design optimized by GDSPOM to have HVT (blue) and SVT (red) cells.

Note that yellow paths in Figure 3.13 are originally timing violated paths.

Figure 3.12: Block Diagram of a Dual-V, 16-bit Multiplier

'O z c : - a m - t- .. 0 9 Z . . E In P N - 0
0 z 9 0 a 0 0 ??
2 '" 2 2 '"2'" 2 s 2 s 2 2

m q m
2 2'" m m m m m m m m m m m

I I

LEVEL 4

Source: VlSlO Drawing

Figure 3.13: Schematic View of a Dual-Vt 16-bit Multiplier

Source: 3esign Vision Schematic View

A path between input IN28 (the 8th multiplicand bit) and output P23 (the

23rd product bit) is randomly selected to demonstrate how the swapping of the

cell types has been used to resolve the timing violation. Figure 3.14 shows this

path in the HVT multiplier, whose data arrival time is 2.21 ns, which does not

meet the 5OOMHz operating frequency specification. The arrival time of each cell

shown in the figure includes net delay time.

Figure 3.14: A Timing Path in HW 16-bit Multiplier

Source: PrimeTirne Report Timing Results

Figure 3.15 shows the same path in the dual-Vt multiplier. After

performing GDSPOM flow, seven cells have been swapped from HVT to SVT.

The data arrival time of this path becomes 1.92 ns, which meets the operating

frequency constraint.

Figure 3.15: A timing Path in Dual-V, 16-bit Multiplier

Source: PrimeTime Report Timing Results

Among three multipliers using all-HVT, all-SVT, and dual-threshold

HVTISVT cells, the all-HVT one has the least leakage power consumption of 51

uW, but does not meet the speed requirement of 500MHz. All-SVT multiplier has

the highest leakage power of 280 uW. Using the dual-threshold HVTISVT cells

adopting the GDSPOM flow, the power consumption of dual-Vt multiplier is 139

uW, .which is 50% less than the all-SVT one, and meets the operating frequency

constraint. Table 3.4 summarizes these multipliers' leakage powers.

Table 3.4: Multiplier Leakage Power Comparison

S Dual-&

I
-

280 1 139 1
Source: Power Compiler Results

To further assess the performance of this dual-threshold voltage design

flow, multipliers meeting different operating frequencies are generated, and their

static power dissipation is measured by the power estimation tool. Figure 3.16

illustrates that the dual-Vt multiplier dissipates less static power in comparison

with the all-SVT multiplier one. It also shows that slower dual-Vt multiplier

requires fewer SVT cells, and dissipates less static power as a result.

Figure 3.16: Static Power Chart of Different Speed of Multipliers

1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4

Operating Clock Cycle (ns)

Source: Power Compiler Results

CHAPTER 4: CONCLUSION AND FUTURE WORK

In this thesis, a novel gate-level dual-threshold static power optimization

methodology (GDSPOM), which is based on the static timing analysis technique

for designing high-speed low-power SOC applications using 90nm MTCMOS

technology has been reported. Based on this optimization technique, and with

the use of two cell libraries of different threshold voltages, a 16-bit multiplier

meeting the speed requirement has been designed to have a 50% less power

consumption compared to the all low-threshold voltage one.

Because GDSPOM flow uses commercially available design tools and cell

libraries, adopting the flow to the current design environment is straightforward.

GDSPOM can be applied in designing a new device as well as be used to

improve the power saving in the existing single Vt products. For example, an

existing SVT design can be replaced with all HVT cells and go through GDSPOM

flow to produce a new dual-Vt device: it has the same performance but dissipates

less power.

GDSPOM is not limited to MTCMOS technology for power saving. It can

be expanded to combine other types of cells to achieve optimal power reduction.

For instance, an adiabatic cell library [22] [23] [24] with characterized timing

models can be used in GDSPOM to output a design containing both standard

and adiabatic cells. With the same idea, dual Vdd cells or other future cell type

libraries can be combined through GDSPOM process for better power saving

products.

While optimizing the device leakage power, GDSPOM also reduces

dynamic power of the design by reducing the number of low Vt cells. This positive

side effect is from the fact that low Vt cells have higher short-circuit current during

signal switching. More efficient dynamic power optimization strategies like clock

gating [25] can be combined with GDSPOM to produce a complete power saving

design flow: the flow optimizes both dynamic and static powers.

Another potential research work is to assess the value of moving

GDSPOM to post-layout design level. GDSPOM is performed in pre-layout

design and values of net delay are estimated numbers based on wire load model.

Post-layout design has accurate physical data. Therefore, performing GDSPOM

at post-layout level achieves the most accurate results. The drawback of this,

modification is that it is more difficult and complicated to change circuits at the

end of the design cycle.

To sum up, GDSPOM is an efficient method of reducing leakage power.

GDSPOM is ready to use and easy to adopt in the traditional design flow

GDSPOM can be applied in the future technology and is also back compatible.

REFERENCE LIST

J.B. Kuo, J. Lou, "Low-Voltage CMOS VLSI Circuits," Wiley, New York,
1999.

ITRS, "ITRS 2004 Update Documents for Review,"
http://www.itrs.netlCommon/2004Update/2004Update.htm. Accessed on:
October 10,2005.

G .E. Moore, "Progress in Digital lntegrated Electronics," International
Electron Devices Meeting, Vol. 21, pp. 11-13, 1975.

P.P. Gelsinger, "Microprocessors for the new millennium: Challenges,
opportunities, and new frontiers," lnternational Solid-state Circuits
Conference, pp. 22-25, Feb. 2001.

Synopsys, "Power Compiler User Guide," ~2004.12.

H.J.M. Veendrick, "Short-circuit dissipation of static CMOS circuitry and its
impact on the design of buffer circuits," IEEE Journal of Solid-state
Circuits, Vol. 19, lssue 4, pp. 468-473, Aug 1984.

S. Mukhopadhyay, K. Roy, "Leakage Estimation and Leakage Control for
Nano-Scale CMOS Circuits," Design Automation Conference, 2004.

J.B. Kuo, "CMOS Digital IC," McGraw-Hill, Taiwan, 1996.

R.X. Gu, M.I. Elmasry, "Power dissipation analysis and optimization of
deep submicron CMOS digital circuits," IEEE Journal of Solid-state
Circuits, Vol. 31, lssue 5, pp. 707-71 3, May 1996.

Synopsys, "Diversifying Design Trends in North America,"
http:l/www.synopsys.comlnewslpu bs/compiler/artlead_designtren-
may05.html. Accessed on October 10, 2005.

L. Wei, Z. Chen, M. Johnson, K. Roy, V. De, "Design and optimization of
low voltage high performance dual threshold CMOS circuits," Design
Automation Conference, pp. 489-494, Jun 1998.

L. Wei, 2. Chen, K. Roy, M.C. Johnson, Y. Ye, V.K. De, "Design and
optimization of dual-threshold circuits for low-voltage low-power
applications," IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 7, lssue 1, pp. 16-24, March 1999.

N.P. Jouppi, "Timing Analysis and Performance Improvement of MOS
VLSI Designs," IEEE Transactions on Computer-Aided Design of
lntegrated Circuits and Systems, Vol. 6, lssue 4, pp. 650-665, July 1987.

D. Samanta, A. Pal, "Optimal Dual-VT Assignment for Low-voltage
Energy-Constrained CMOS Circuits," International Conference on VLSI
Design, pp. 193-198, Jan 2002.

Q. Wang, S. Vrudhula, "Algorithms for Minimizing Standby Power in Deep
Submicrometer, Dual-Vt CMOS Circuits," IEEE Trans. Computer-Aided
Design of IC and Systems, Vol. 21, No. 3, pp. 306-31 8, March 2002.

CMC Microsystems, http://www.cmc.ca/. Accessed on May 9,2005.

Artisan, "TSMC 90nm CLN9OG Process SAGE-X v3.0 Standard Cell
Library Databook."

Artisan, "TSMC 90nm CLN9OG HVt Process 1.0-Volt SAGE-X v3.0
Standard Cell Library Databook."

Synopsys, "PrimeTime User Guide," ~2004.12.

C. S. Wallace, "A suggestion for a fast multiplier", IEEE Trans. Computers,
Vol. EC-13, pp. 14-17, February 1964.

"Hardware algorithms for parallel multiplication,"
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html. Accessed on
May 15,2005.

C. C. Yeh, J. H. Lou, and J. 6. Kuo, "1.5V CMOS Full-Swing Energy
Efficient Logic (EEL) Circuit Suitable for Low-Voltage and Low-Power
VLSI Application," Elec. Lett., Vol. 33, No. 16, pp. 1375-1 376, 1997.

Y. Zhang, H. H. Chen, and J.B. Kuo, "0.8V CMOS Adiabatic Differential
Switch Logic Circuit Using Bootstrap Techniques for Low-Voltage Low-
Power VLSI," Electron. Lett., Vol. 38, No. 24, pp. 1497-1499, 2002.

H.P. Chen and J. 6. Kuo, "A 0.8V CMOS TSPC Adiabatic DCVS Logic
Circuit with the Bootstrap Technique for Low-Power VLSI," ICECS
Proceedings, pp. 175-1 78,2004.

Q. Wu; M. Pedram, X. Wu, "Clock-gating and its application to low power
design of sequential circuits", IEEE Transactions on Circuits and Systems,
Vol. 47, Issue 3, pp. 415-420, March 2000.

