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ABSTRACT 

This paper presents my work on building an FPGA emulation system for 

prototyping PMC-Sierra's PM8387 SXP 36x3G 36-Port SAS expander. The 

employment of the FPGA emulation system allows rapid prototyping of designs, 

concurrent hardware and firmware development, and early interoperability and 

performance testing. This will provide significantly higher design confidence and 

ultimately will reduce the number of revisions and the time to market. 

This paper starts by introducing the SAS and SATA technologies and describes 

the SAS expander's design specification. It then discusses the alternatives, benefits and 

the cost of an FPGA emulation system. Next it describes the emulation platform of SAS 

expander and outlines the entire process of implementing the emulation system, from 

HDL source code modification to the generation of the FPGA load. In the final sections, 

challenges, future developments and enhancements of the FPGA emulation platform are 

discussed. 



l o  my parents 

for their lbve andsupport. 



ACKNOWLEDGEMENTS 

I would like to thank the following people for their support on this project: 

Dr. Rick F. Hobson 

Sylvia Yu 

RayrnondLam 



TABLE OF CONTENTS 

. . Approval ............................................................................................................................ 11 

... Abstract ............................................................................................................................ 111 

......................................................................................................................... Dedication iv 

Acknowledgements ............................................................................................................ v 

............................................................................................................. Table of Contents vi 
... List of Figures ................................................................................................................. vm 

.................................................................................................................... List of Tables ix 

.............................................................................................................................. Glossary x 

................................................................................................................ 1 Introduction 1 

2 PM8387 SXP 36x3G SAS Expander Overview ........................................................ 3 
..................................................................................... 2.1 SAS and SATA Overview 3 

2.2 SAS Protocol ......................................................................................................... 4 
..................................................................................................... 2.3 SAS Bandwidth 6 

2.4 SAS Expander ....................................................................................................... 7 
.................................................................. 2.5 PM8387 SXP 36x3G SAS Expander 10 

.................................................................................................. 2.6 SAS Connection 13 

3 Alternatives to FPGA Emulation ............................................................................ 15 

4 FPGA Emulation Feasibility Considerations ......................................................... 18 
................................................................................... 4.1 FPGA Emulation Benefits 18 

................................................................................................... 4.1.1 Verification 19 
..................................... 4.1.2 Concurrent Hardware and Firmware Development 19 

............................ 4.1.3 Interoperability Testing and Marketing Competitiveness 20 
.................................................................. 4.1.4 Reduced Post-Silicon Test Time 21 

.......................................................... 4.2 FPGA Emulation Efforts and Limitations -22 
4.2.1 Cost ............................................................................................................... 22 

.......................................................................................... 4.2.2 Debug Difficulty 22 

5 FPGA Emulation Platform ...................................................................................... 24 
......................................................................................................... 5.1 SEAD-2TM 25 

......................................................................... 5.2 SAS Expander Emulation Board 26 
....................................................................... 5.2.1 Xilinx XC2V8000 Overview 27 

................................................................... 5.2.2 Xilinx XC2V8000 Architecture 28 



6 SAS Expander Emulation System ........................................................................... 30 
......................................................................... 6.1 HDL Source Code Modification 30 

6.1.1 Decreased the number of channelslports ...................................................... 31 
................................ 6.1.2 Re-generated RAMS and removed all RAM bist logic 32 

6.1.3 Replaced all the Designware components ................................................... 32 
.......................................................................... 6.1.4 Modified clock distribution 33 

............................................................................................................. 6.2 Synthesis -33 
6.2.1 Design Constraints ....................................................................................... 35 

.................................................................. 6.2.2 Device and Technology Options 37 
6.2.3 Synthesis Run .............................................................................................. -38 

............................................................................ 6.3 FPGA Design Implementation 41 
.................................................................................................... 6.3.1 NGDBuild 41 

6.3.2 MAP ............................................................................................................. 42 
............................................................................................ 6.3.3 Place and Route 43 

6.3.4 TRACE ......................................................................................................... 44 
6.3.5 BitGen .......................................................................................................... 44 

.................................................................................................... 6.3.6 PROMGen 45 

7 Project Contributions and Challenges .................................................................... 46 

8 Conclusions and Recommendations ....................................................................... 48 

Reference List ................................................................................................................... 50 

vii 



LIST OF FIGURES 

Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

Figure 10 

Figure 1 1 

..................................................................... Serial Attached SCSI Protocols 5 

.................................................................. Expander Device Block Diagram 8 

......................................................................... A Maximum SAS Domain -10 

......................................................... PM8387 SXP 36x3G Block Diagram 12 

........................................................ PM83 87 based SAS Expander System 13 

........................................................................... SAS Connection Sequence 14 

................................. Solution Fit for Different Verification Requirements 15 

.............................................................. SAS Expander Emulation Platform 24 

...................................................... SOC ASIC to SEAD-2 Board Mapping 25 

................................................................. Virtex-I1 Architecture Overview 28 

FPGA Synthesis Flow .................................................................................. 34 



LIST OF TABLES 

Table 1 Xilinx XC2V8000 Specification ................................................................. 27 

Table 2 Input and Output Files of FPGA Synthesis Process ..................................... 35 

................................................................. Table 3 Synthesis Performance Summary 38 



GLOSSARY 

ASIC 

ASSP 

ATA 

DRC 

Application-Spec@ Integrated Circuit. A semiconductor device 
targeted for a specific application. 

Application-SpeciJic Standard Product. An ASIC that is sold off 
the shelf as a general product. 

Advanced Technology Attachment. A disk drive interface 
standard for Integrated Drive Electronics (IDE). 

Design Rule Check. The process that verifies that the 
implemented design meets all physical design rule requirements 
(spacing, drive strength, etc). 

Formal Verification The process that verifies two designs (e.g. pre synthesized and 
post synthesized) are equivalent by converting both designs into 
mathematical representations. 

HBA Host Bus Adapter. An adapter that sits at the host and allows a 
computer bus to be attached to another bus or a channel device 
( e g  SATA). 

LOS Loss of Signal. 

MRP 

NCD 

OOB 

PAR 

Map Report File. A Xilinx proprietary file that contains mapping 
and component usage information. 

Native Circuit Description. A Xilinx proprietary file that 
contains the circuit information. 

Out OfBand. A way to describe signals that are not transferred 
through the main datapath but through a dedicated path. 

Place and Route. The process that places the components of a 
design and routes the connections between the components. 



PCF 

RPC 

SATA 

SAS 

SCSI 

SMP 

SOC 

SSP 

STP 

Synthesis 

TWI 

UART 

Physical Constraint File. A Xilinx proprietary file that contains 
physical constraint information of the design. 

Remote Procedure Call. A protocol that a program (client) can 
use to request a service fi-om a program located in another 
computer (server) in the network where the networking details 
are abstracted from the protocol. 

Serial ATA. An evolution of Parallel ATA that uses serial link to 
achieve higher speed. 

Serial Attached SCSI. An evolution of SCSI that uses serial link 
to achieve higher speed. 

Small Computer Serial Interface. A system of connecting a 
series of computer peripherals to a computer. 

Serial Management Protocol. A SAS management protocol 
which is used by SAS devices to communicate management 
information with other SAS devices. 

System On a Chip. A chip that integrates multiple individual 
components of a system together. 

Serial SCSIProtocol. A SAS protocol that defines the mapping 
of SCSI to support multiple initiators and targets. 

Serial ATA Tunnelled Protocol. A SAS protocol that defines the 
method by which a SAS host makes a connection to a serial ATA 
drive when a SAS expander is used. 

The process that converts logical hnctions (e.g. in the form of 
RTL description) into physical gates (e.g. in the form of a netlist). 

Two Wire Interface. An interface on a PC that is used by the host 
to communicate with low bandwidth devices such as sensors. 

Universal Asynchronous Receiver-Transmitter. A computer 
component that handles asynchronous serial communication. 



1 INTRODUCTION 

The complexity and density of today's state-of-the-art Application-Specific 

Integrated Circuits (ASICs) have made proper verification of ASICs increasingly 

difficult. Quite often, those ASICs have to be verified in a system environment with 

embedded firmware, which makes it almost impossible to create an error free product on 

time using traditional Hardware Description Language (HDL) simulation. A more 

hardware-oriented verification solution is required. 

PMC-Sierra's PM8387 SXP 36x3G SAS expander is a sophisticated and high 

density device where HDL simulation alone is not enough to provide confidence of the 

completeness of the verification effort. With the system level verification requirement, 

prototyping is the best solution. Over the past decade, the improvement of Field 

Programmable Gate Array (FPGA) device capacities has enabled the development of 

FPGA prototyping environments capable of implementing millions of logic gates, like the 

SXP 36x3G device. This FPGA emulation platform is the focus of this paper. 

Section 2 provides an overview of the Serial Attached SCSI (SAS) and Serial 

ATA (SATA) technologies and the features of the SXP 36x3G device. Section 3 

discusses alternatives to FPGA emulation. Section 4 discusses how FPGA emulation 

could benefit and enhance the development of sophisticated ASICs and the associated 

cost and efforts required to implement an FPGA emulation system. Section 5 describes 



the SXP 36x3G emulation platform, which includes an off-the-shelf SEAD-2TM 

development board and an in-house designed emulation board. Section 6 describes the 

process of implementing the SXP 36x3G emulation system, which includes HDL source 

code modification, synthesis, and place and route. Section 7 describes my project 

contributions and challenges and section 8 concludes the paper by providing suggestions 

to future development and enhancement of the SXP 36x3G FPGA emulation platform. 



2 PM8387 SXP 36X3G SAS EXPANDER OVERVIEW 

Today's storage solution is dominated by SCSI (for enterprise level systems) and 

ATA (for consumer level systems). Although some enterprise storage systems adopt 

both standards, the fimdamental differences between SCSI and ATA technologies require 

separate subsystems to be built. On the other hand, as disk storage density continues to 

increase with technological advancement, existing SCSI and ATA's parallel technology 

is limiting the throughput performance. Signal skew, crosstalk, signal termination and 

device addressability are all limiting factors to performance. 

Serial Attached SCSI (SAS) and Serial ATA (SATA) interfaces are introduced to 

overcome these barriers. They both use serial technology to deliver faster, more reliable, 

and more scalable devices [I]. 

2.1 SAS and SATA Overview 

SAS combines the proven hnctionality of SCSI with the performance of serial 

technology. In SAS- 1.1, the SCSI protocol is transported over a serial interface capable 

of full duplex operation with a transfer rate of 3.0 Gbls per direction. The next 

generation, SAS-2.0, is even faster with a transfer of 6.0 Gbls per direction. Narrow 

ports allow for a single serial link, while wide ports support multiple links, allowing the 

aggregation of multiple links to increase the total available bandwidth. Designed to 



leverage as much as possible from the existing SCSI effort, SAS provides faster device 

interconnect speeds, simpler point-to-point cabling that eliminates the shared bus 

bandwidth slowdowns, and improves system reliability. 

SATA applies the serial technology on top of the ATA technology that is the 

common disk interface technology in desktop computers, entry-level servers and 

networked storage systems. SATA I is defined to be half-duplex and has a transfer rate 

of 1.5 Gbls. The next generation, SATA 11, increases the transfer rate to 3.0 Gbls. SATA 

allows devices to be hot-plugged for easier replacement and it uses thinner cables to 

improve cooling in the box. Cyclical redundancy checking (CRC) is also used to 

enhance data reliability and the point-to-point cabling eliminates the confksing 

masterlslave configuration of parallel ATA. 

Both SAS and SATA are backward compatible with previous generation of SCSI 

and ATA software applications. In addition, SAS is developed to maximize 

compatibility with SATA by using a common physical and electrical connection interface 

with SATA. Therefore, it enables a single storage subsystem to accept either high 

performance, reliable enterprise-class SAS drives, or high capacity, cost-effective SATA 

drives. 

2.2 SAS Protocol 

The SAS protocol is divided into six layers: the physical layer, the phy layer, the 

link layer, the port layer, the transport layer, and the application layer [12]. The physical 

layer defines physical hardware such as cables and connectors and the SAS port consists 



of all the layers except the application layer. Applications used to access parallel SCSI 

ports could be used to access SAS ports with no modification if only legacy features are 

used. Figure 1 shows the SAS architecture layers and the relationships between them. 

I 

I / t It' 

;AS po 1 
I SSP transport layer I I STP transport layer ( ?z@ SMP , 

SAS port layer 

f 
SSP link layer SSP link layer 

- 
SAS link layer 

SAS phy laye- 

SSP link layer 

SAS physical layer 

Figure 1 Serial Attached SCSI Protocols ' 

' Based on Maxtor, Serial Attached SCSI Architecture: Part I -Introduction, the SAS Physical Layer and 
the SAS Phy Layer [4], page 3, figure 4 



To support the co-existence of SATA and SAS drives, SAS defines three 

transport protocols. Serial SCSI Protocol (SSP) defines the mapping of SCSI to support 

multiple initiators and targets in a SAS domain. Serial ATA Tunnelled Protocol (STP) 

defines the method by which a SAS host makes a connection to a serial ATA drive when 

a SAS expander in a SAS domain is used. Serial Management Protocol (SMP) is a 

management protocol which is used by SAS devices to communicate management 

information with other SAS devices in a SAS domain. 

Within a SAS domain, a SAS initiator port can function as a STP initiator port to 

communicate with SATA drives. The SAS port establishes a STP connection on behalf 

of the SATA drives so that SATA frames can pass through the connection from the 

initiator to the drive as if they were directly attached on a physical link. The SAS 

standard defines the process used during device discovery to determine the type of drive 

attached to any given port. 

2.3 SAS Bandwidth 

First-generation SAS link rate is 3 Gbls (300 MBIs). The full-duplex, point-to- 

point architecture of SAS features simultaneous active connections among multiple SAS 

initiators and targets. SAS drives can transfer data in both directions at once to 

effectively double the usable bandwidth of the link rate to 6 Gbls. For example, a device 

can simultaneously transfer data from a previously queued read operation while receiving 

data for a write operation. Narrow ports allow for a single serial link, while wide ports 

dramatically improve throughput by enabling several disks to communicate with a single 



port address at the same time. Grouping four or eight links together, which is typical, can 

generate bandwidth of 12 Gbls or 24 Gbls respectively. 

Currently, a 15,000-RPM disk drive will sustain data rates up to 75 MBIs [I]. At 

these sustained data rates, two disk drives will saturate a SATA 1.5 Gbls bus. The shared 

Ultra320 SCSI bus supports a total of 320 MBIs or the sustained data rates of four to five 

disk drives. By contrast, a 4-wide SAS port supports as many as 16 hard drives before 

becoming saturated. 

System architects normally optimize performance by removing bandwidth 

bottlenecks - an objective normally met by matching interleaving technologies with 

complementary efficiency and availability levels. Similar to SAS, PC1 Express supports 

scalable performance by combining multiple data links to create wide data paths. Each 

PC1 Express lane supports 2.5 Gbls with scalability up to a 32-wide lane configuration 

[I]. This common capability is the key to optimizing performance between SAS and PC1 

Express. By combing SAS with PC1 Express, the aggregate storage system performance 

can be maximized. For example, a 4-wide SAS port supports 1200 MBIs for up to 16 

hard disk drives. With the SAS initiator attached to an 8-lane PC1 Express slot, the entire 

data path through the system is optimized to support 2 GBIs. 

2.4 SAS Expander 

SAS ports that are physically a part of a SAS Host Bus Adapter (HBA) can 

directly address either SAS or SATA drives. The number of addressable drives would be 

restricted by the number of physical ports integrated into the HBA itself if there were no 



mechanism for expanding the topology. Integrating a large number of SAS ports into one 

device could be costly for systems not requiring all the ports, however not providing 

enough SAS ports would significantly limit the utility of the systems. In light of this 

limitation, the SAS standard also defines a type of intermediary device called an 

Expander, as shown in Figure 2 [13]. 

Expander port 1 STPlSATA bridge 

ports, or expander ports A SATA device port 0 
Figure 2 Expander Device Block Diagram 

Based on American National Standard, Information Technology - Serial Attached SCSI -1.1 [3] page 42 , 
figure 18 



The SAS Expander device can communicate with multiple SAS devices and it 

functions as a switch to simplify configuration of large systems that can be scaled with 

minimal latency while preserving bandwidth for increased workloads. It enables highly 

flexible storage topologies of up to 16,256 mixed SAS and SATA drives in a single SAS 

domain as shown in Figure 3 [4]. SAS edge expanders may connect up to a total of 128 

devices in one domain, including SAS initiators, SAS targets, SATA devices, another 

SAS edge expander, or a SAS fan-out expander. SAS fan-out expanders may connect up 

to a total of 128 SAS initiators, SAS targets, SATA devices, or SAS expander devices in 

one domain, although only one SAS fan-out expander device is allowed in a single SAS 

domain. SAS expanders can incrementally expand in-box and near-box storage 

capabilities in systems requiring greater bandwidth connections, as additional expanders 

provide redundancy and support a large number of devices. In order to establish a 

connection with a SASISATA device or another expander device, all SAS expanders 

support an addressing mechanism for routing requests to manage the connections 

between devices and the ability to broadcast primitives across all the expanded 

connections they support. 
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Figure 3 A Maximum SAS Domain 

2.5 PM8387 SXP 36x3G SAS Expander 

The PMC-Sierra's PM8387 SXP 36x3G device is implemented with 0.13-micron 

CMOS technology in a 27 mm x 27 mm 352-pin CSBGA package [9]. It is a SAS 

Expander device with integrated storage enclosure processor that conforms to the 

standard developed by the ANSI International Committee for Information Technology 

Standards (INCITS) T 10 Technical Committee [3]. 

Based on Maxtor, Serial Attached SCSI Architecture: Part 1-Introduction, the SAS Physical Layer and 
the SAS Phy Layer [12], page 2, figure 2 



Figure 4 shows the block diagram of the SXP 36x3G device. It contains 36 

independent external expander ports with integrated non-blocking crossbar switch that 

allows point-to-point connection with 1.5 Gbls and 3 Gbls data transfer rates. It features 

low latency connection arbitration and arbitrary SAS wide port and narrow port 

configurations. Different routing methods are supported, including table routing, direct 

routing, and subtractive routing. The STP bridge function allows SATA devices to be 

attached to any target ports concurrently. The integrated RISC processor supports SMP 

functions, and allows connection to external components such as fan sensors and 

temperature sensors to complete the SCSI Enclosure Services (SES) functions. Three 

configurable Two Wire Interfaces (TWI) are provided for device configuration and 

control of peripheral devices. An Universal Asynchronous Receiver-Transmitter 

(UART) interface is also implemented to support serial debugging and a serial GPIO 

(SGPIO) interface is implemented to provide expansion for up to 144 GPIOs. 



PM8387 
SXP 36x3G 

SClock 
SLoad 
SDout 
SDir 

TX 
RX 
RTS 
CTS 

local 9 
Figure 4 PM8387 SXP 36x3G Block Diagram 

PM8387 SXP 36x3G offers tiered storage systems increased system performance, 

higher capacity, and scalability with an embedded storage enclosure processor. It enables 

storage system architectures to extent to hundreds of SAS and SATA hard disk drives 

with low-latency and high performance connections. It provides a low cost solution to 

large and manageable tiered storage systems such as near-line backup, email archive, 

imaging and financial data retention. Figure 5 shows PM8387 3ased SAS Expander 

System in typical server storage application. 

Based on PMC-Sierra Inc., PM8387 SXP 36x3G 36-Port SAS Expander Short Form Data Sheet [9], page 
I ,  figure 1 
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Figure 5 PM8387 based SAS Expander System 

2.6 SAS Connection 

In SAS, each connection is a temporary association between an initiator phy 

(HBA) and a target phy (SAS drive). Figure 6 shows a typical SAS connection sequence. 

The source phy transmits an OPEN address frame, which contains a destination SAS 

address. When the expander receives the OPEN address frame, it looks up the 

destination SAS address in its routing tables and arbitrates for internal access to an 

outgoing expander port with a path to the destination SAS port. The expander transmits 

Arbitration In Progress (AIP) primitives to the initiator while it is performing arbitration. 

Once arbitration is completed, the expander routes the OPEN address frame to the 

Based on PMC-Sierra Inc., PM8387 SXP 36x3G 36-Port SAS Expander Short Form Data Sheet [9], page 
2, figure 2 



matching destination port. When the target device receives the OPEN address frame, it 

validates the frame and replies with an OPEN-ACCEPT primitive if it is able to accept 

the connection. The connection is established when the initiator receives the 

OPEN-ACCEPT primitive forwarded by the expander. There are three types of 

connections determined by the OPEN address frame, one for each type of protocol (SSP, 

STP, and SMP) supported by the port. Each of the connection types uses its own 

protocol for the SAS link layer once the connection is established. The connection is 

closed when both sides exchange CLOSE primitive. 

FSSPISTPISMP frames --I 

Figure 6 SAS Connection Sequence 

SAS DISK 



3 ALTERNATIVES TO FPGA EMULATION 

Many types of ASIC verification environment exist and they serve different 

purposes. Figure 7 shows the solutions fit for different verificrtion requirements [8]. 

TYPICAL PERFORMANCE RANGE (cycles per second) 

Figure 7 Solution Fit for Different Verification Requirements 

In HDL simulation, testbenches and testcases are created and a software simulator 

is used to exercise different features of the design. Both the design and the testbench are 

Based on Mitch Dale, The Value of Hardware Emulation [8], page 1, figure 1 



compiled into a proprietary database that the simulator understands. In recent years, 

testbench languages like Vera and Specman have become very popular because they 

simplify the creation of the testbench by providing features like random data generation 

and object inheritance. HDL simulation serves as the best way to verify a low level block 

of a design because a lot of low level comer cases cannot be easily tested at a higher 

level. 

In accelerated co-simulation, the design is compiled into a piece of hardware 

called the accelerator which allows simulations to run much faster. Some accelerators 

allow testbenches to be compiled into hardware to provide even faster acceleration. 

Accelerators have lost their appeal in recent years because they require separate 

compilation and the cost associated with the accelerated simulation cannot be justified all 

the time. 

Co-modelling involves simulating the system (device and its surrounding 

environment). Quite often, different pieces of the system are written as C models 

because they are easier to write and they simulate faster. Third party models are also 

available to allow designers to focus on the actual design. Co-modelling is also effective 

at the architecture phase where complex algorithms can be implemented in C models first 

to see how the different parameters of the design affect performance and interaction with 

the rest of the system. 

An In-Circuit Emulation (ICE) system typically consists of hundreds of FPGAs or 

processors inside a box to provide hardware acceleration and in-circuit emulation in a 



single system. For example, the Incisive Palladium I1 system by Cadence has a 

maximum capacity of 256 million gates and operates up to 1 SMHz [4]. Compared to an 

FPGA prototyping system, the main advantage of an ICE system is that it supports 

dynamic probes to allow interactive debug during run-time so that designers can get 

visibility into the design to root-cause issues faster than an FPGA system once the bug 

can be reproduced in the ICE system. However, the huge cost of an ICE system 

(typically a few million dollars) and the slower speed are the big disadvantages. 



4 FPGA EMULATION FEASIBILITY CONSIDERATIONS 

Although FPGA technology has improved dramatically since the last decade, it 

has not been used for emulation until recently. Many people see FPGA emulation as a 

complicated step that adds additional cost to tightly budgeted projects. However, with 

the advancement of the software used to program FPGAs, the availability of many 

common Intellectual Properties (IPS) and the large capacity of FPGAs, FPGA prototyping 

is becoming a very attractive option. In addition, a number of third party systems are 

available that allow designers to focus on the actual verification task by providing boards 

with FPGAs that are connected to an advanced software debugger and are capable of 

interacting with existing simulators and testcases [13]. 

In order to obtain the full benefit of FPGA emulation, planning needs to start at 

the beginning of a project and feasibility studies need to be performed on a project-by- 

project basis. The following sections discuss the factors to consider. 

4.1 FPGA Emulation Benefits 

In the semiconductor industry, success in the marketplace depends on the ability 

to produce novel, complex, and working designs faster than the competition. Employing 

a well planned FPGA emulation system can definitely contribute to higher quality design 

and verification cycles and reduce the time to market. 



4.1.1 Verification 

As the design gets more complicated, simulation effort increases exponentially in 

terms of resources required and simulation time. Quite often, random traffic testing is 

required to exercise the design extensively and simulation is simply too slow to provide 

enough cycles. Although some of the popular simulators allow simulation to be run on 

multiple parallel processors, significant effort and planning are required to partition the 

design and resolve the problem of linking and synchronizing separate simulations 

running on different processors. For example, Remote Procedure Call (RPC) can be used 

to handle the synchronization between different portions of the design in separate 

processors through ModelSimYs Foreign Language Interface (FLI) 161. The complexity 

of the synchronization and requirements to have balanced partitioning of the design 

prevent parallel computing to be leveraged in current simulation environment. As a 

result, simulation is still the bottleneck of most design cycles. Although emulation speed 

is not as fast as the real device, it provides a promising solution to cut down on the 

verification cycle. 

For the SXP 36x3G device, full random traffic is being passed in FPGA 

emulation, revealing a few bugs that otherwise will not be caught in simulation. 

4.1.2 Concurrent Hardware and Firmware Development 

Traditionally, because of the unavailability of the actual hardware device, 

firmware debugging can only begin after silicon arrival. This is acceptable when the 

device is hardware oriented and its firmware is relatively straightforward. However, as 



ASIC designs get more complicated and many of those are system-on-a-chip (SoC) 

solutions, many of the major processing tasks are off-loaded and handled by firmware. 

Consequently, the required firmware becomes more complicated and takes more time to 

verify. It is therefore preferable to start firmware development concurrently with the 

hardware development despite the difficulty to debug firmware in the absence of the 

actual hardware. There is also the possibility that while verifying the firmware, a design 

flaw is discovered in the hardware and changes need to be made. FPGA emulation 

provides an excellent and reliable environment for firmware engineers to start code 

development and testing before the final ASIC device is available. 

For the SXP 36x3G device, there is an integrated RISC processor to handle SMP 

functions. Because of the deployment to the FPGA emulation, several revisions of 

firmware are done prior to the silicon arrival. By the time silicon is available, firmware is 

already robust enough to support all the major features. 

4.1.3 Interoperability Testing and Marketing Competitiveness 

Most ASIC devices do not operate as standalone devices. Devices developed by 

different vendors within a system need to communicate with each other through a 

standardized protocol or specification. Despite efforts by different device vendors to 

implement the design according to specification, it is not uncommon for two devices 

implementing the same standard to be incompatible with each other due to a slightly 

different interpretation of the standard. Early interoperability testing using FPGA 

emulation reduces the risk of failure in interoperation with peer systems. FPGA 



emulation can also be used as a prototype for customers to start board development at an 

earlier time. Hence, FPGA emulation becomes an important strategic component for 

marketing to raise customers' confidence in the design and seek early commitment from 

customers. 

For the SXP 36x3G device, the emulation platform successfully demonstrated 

system interoperability with multiple SAS server, storage enclosure and controller 

vendors at the interoperability forum SAS Plugfest. Achieving this with multi-vendor 

SAS systems assures OEMs of an interoperable solution for next-generation SAS servers 

and server attached storage systems. 

4.1.4 Reduced Post-Silicon Test Time 

All new devices must be validated according to internal and customer 

requirements by performing a series of planned tests. Without any kind of pre-silicon 

prototyping, the tests themselves cannot be verified. FPGA emulation helps to pull-in the 

time required for the device validation process by providing a reliable environment to 

ramp up product validation engineers on the device and to debug software and firmware, 

prior to silicon arrival. Some low-risk features can also be validated using the emulation 

platform. 

For the SXP 36x3G device, the FPGA emulation system allowed the product 

validation engineers to finish validation of the device ahead of schedule. 



4.2 FPGA Emulation Efforts and Limitations 

Despite all the benefits, FPGA emulation does require significant effort and 

additional cost to build the hardware platform and has several limitations. 

4.2.1 Cost 

The cost of implementing an FPGA emulation system includes the actual cost of 

the FPGAs and the associated hardware components, software tools and licenses, and 

labour in driving the entire process. Using the SXP 36x3G project as an example, each 

emulation platform consists of two boards: a custom board with a Xilinx XC2V8000 

FPGA and an off-the shelf SEAD-2TM board. Each of those two boards costs about 

$20,000. The synthesis tool for FPGA emulation is different from the tool used for 

ASIC design and therefore additional finding needs to be allocated. The FPGA 

emulation lasts as long as the chip development and involves labour from different 

groups: product validation engineers to design the custom board, CAD engineers to 

support the tools and flows, and product development engineers to build the FPGA load, 

bring up the emulation platform, and run the tests. Nevertheless, the overall cost of 

building an FPGA emulation system should not be as costly as a chip revision when 

critical bugs are found that require re-spinning of the chip. 

4.2.2 Debug Difficulty 

Compared to simulation, FPGA emulation is relatively difficult to debug because 

of very limited visibility into the internal signals. Making internal signals observable 



requires changes to the source code and an additional place and route cycle for wiring the 

internal signals to the spare debug ports. In addition, because of the lack of accessibility 

to force the internal signals into certain states, it is hard to hit comer cases predictably 

using the FPGA emulation platform. Therefore, FPGA emulation is good for finding 

issues with the design, but not good for root cause investigation. It cannot replace 

conventional verification effort, which provides post simulation debugging and relatively 

easy reconstruction of different events by putting the device in a specific state. This is 

the exact use model of FPGA emulation for the SXP 36x3G project. 



5 FPGA EMULATION PLATFORM 

The SXP 36x3G emulation platform consists of two boards: off-the-shelf SEAD- 

2TM development board and in-house designed SAS Expander emulation board with 

Xilinx XC2V8000 FPGA. The two boards are connected by 32-bit wide Mictor cables as 

shown in Figure 8. 

SEAD-2 Board 

AHE - 

SAS Expander Emulation Board 

I 

QuadPHY 
i l  (serdes) 

LOS detected and 
transmit squelch 

QuadSMX 
+B) H 

Figure 8 SAS Expander Emulation Platform 



SEAD-2TM 

The SEAD-2TM board is developed by MIPS Technologies to provide a platform 

for integration of the user's hardware IP design with MIPS320 core. There are two 

FPGAs on the SEAD-2 TM board. One FPGA is preloaded with MIPS4KEm CPU from 

an unencrypted source, the other is a two-million gate Xilinx SCV2000E FPGA where 

the user's design is implemented. The SEAD-2 board also provides a USB interface, an 

UART interface, 4 MB of SRAM, 32 MB of flash memory, and 32 MB SDRAM 

modules. In addition, the SEAD-2 board features low-level debugging aids by supporting 

EJTAG debugger connectivity. Figure 9 shows how a SoC ASIC design can be mapped 

into the SEAD-2 TM board and communicates with different peripherals. 

SOC ASIC 

user lP 

Figure 9 SOC ASIC to SEAD-2 Board Mapping ' 

7 Based on MIPS Technologies, Sead-2 Board User's Manual, Revision 01.02, March 3 1,2004 [7], page 4, 
figure 1 



In the SXP 36x3G emulation platform, the Xilinx FPGA on the SEAD-2TM 

board implements the UART interface, the Local Bus interface, watchdog and general 

timers, ECIAHB Bridge, AHB Decoder, and AHBIAPB Bridge. 

5.2 SAS Expander Emulation Board 

The SAS Expander Emulation Board mainly consists of a Xilinx XC2V8000 

FPGA, PM8354 QuadPHY I1 device [lo], and PM8380 QuadSMX 3G device [ll]. 

Xilinx's XC2V8000 is an eight-million gate FPGA where most of the SXP 36x3G's 

functionality, including the SAS physical layer, link layer, and routing functions, are 

implemented. Because SXP 36x3G emulation platform requires 1.5 Gbls links and the 

Xilinx FPGA is not capable of these I/O rates, a SERDES device QuadPHY I1 is used as 

a serializer/deserializer. It serializes the 10-bit parallel data and transmits it differentially 

at 1.5 Gbls in the transmit direction and recovers the serial differential data and converts 

it back to 10-bit parallel data in the receive direction. To support Out-Of-Band (OOB) 

signalling, QuadSMX 3G is used on the serial-side of the QuadPHY 11. QuadSMX 3G 

supports loss of signal (LOS) detection and is capable of generating OOB squelch events 

to define the messages during OOB signalling period in the transmit stream. These 

signals are routed to the Xilinx FPGA so that SXP 36x3G can control OOB signalling 

events. Depending on the time between LOS conditions, SXP 36x3G can determine the 

OOB states of the hard drive or HBA that is transmitting to SXP 36x3G. Based on the 

incoming state, SXP 36x3G will generate outgoing OOB squelch events through the 

QuadSMX 3G. 



5.2.1 Xilinx XC2V8000 Overview 

Xilinx XC2V8000 is a member of the Virtex-I1 family developed for high- 

performance and high-density designs, especially those that have lots of IP cores and 

customized modules. Xilinx XC2V8000 uses 0.15pm CMOS technology with 8-layer of 

metal. It can implement eight million gates with clock speed running at up to 400MHz, 

and it supports I/O speed up to 840MbIs. The following table summarizes the 

specification of Xilinx XC2V8000 [17]. 

Table 1 Xilinx XC2V8000 Specification 

I Maximum clock speed 1 400 MHz I 
I 

I10 speed 1 840 Mbls 

I 

Number of multipliers ( 168 18x18 

Maximum number of User I/O pads 

Number of logic cells 

Number of SelectRAM blocks 

Total SelectRAM Memory 

Number of digital clock managers 

I 

CLB Array: Row x Column 1 112x 104 

1108 

104832 

168 

3,024 Kbits 

12 

1 Number of Slices 1 46,592 I 
I 

Number of LUTs ( 93,184 

I Number of Flip-Flops 1 93,184 

Xilinx, Virtex-I1 Platform FPGAs: Complete Data Sheet, DSO3 1 ("3.4) [17], October 14,2003 



5.2.2 Xilinx XC2VS000 Architecture 

Xilinx Virtex-I1 architecture is optimized for high-density and high performance 

logic designs. As shown in Figure 10, the programmable device is comprised of 

input/output blocks (IOBs) and internal configurable logic blocks. Programmable 110 

blocks provide the interface between package pins and the internal configurable logic. 

The internal configurable logic block includes the Configurabk Logic Blocks (CLBs), 

Block SelectRAM, Multiplier blocks, and Digital Clock Manager (DCM) blocks 

organized in a regular array [17]. 

CLB Block SelectRAM + Multiplier * 

~ l o b a l  Clock Mux 1 6  DCM 

Figure 10 Virtex-I1 Architecture Overview 

The CLBs provide functional elements for combinational and sequential logic, 

including basic storage element. The Block SelectRAM memory modules provide large 

18 Kbit storage elements of true dual-port RAM with two independently clocked and 

~ a s e d  on Xilinx Virtex-I1 Platform FPGAs: Complete Data Sheet [I71 page 3, figure 1 



controlled synchronous ports. Multiplier blocks are 18 by 18 bits which are optimized 

for high-speed operations and have low power consumption. The DCM blocks provide 

self-calibrating, fully digital solutions for clock distribution and delay compensation, 

clock multiplication and division, and coarse-grained and fine-grained clock phase 

shifting. 

The Xilinx Virtex-11 FPGA has 16 global clock buffers and supports 16 global 

clock domains. Eight clock buffers are in the middle of the top edge and eight are in the 

middle of the bottom edge. Each device is divided into four quadrants. Any of these 16 

global clock buffers can be used in any quadrant, up to a maximum of eight clocks per 

quadrant. 

The remaining sections of this paper are focused on the implementation of the 

FPGA load for the Xilinx Virtex-I1 FPGA on the SAS Expander Emulation Board. This 

includes most of the complex core functions of the ASIC. 



6 SAS EXPANDER EMULATION SYSTEM 

The process of developing an FPGA emulation system is similar to but simpler 

than the digital IC design flow and they are developed concurrently. Implementation of 

the SAS Expander emulation system involves HDL source code modifications to scale 

down the size of the logic to fit the FPGA, synthesis to convert HDL into a netlist, and 

physical design to place and route the netlist into the FPGA. 

6.1 HDL Source Code Modification 

The major reason of modifying HDL source code is to map the real HDL into the 

FPGA device, which has limited capacity and runs at a slower speed. However, HDL 

source code modification should be minimized such that there would be little difference 

between the design in the prototype and the design in the actual silicon. This is important 

because one of the goals of FPGA emulation is design verification and risk reduction for 

the silicon as mentioned in Section 4. If the HDL code differs significantly, the 

emulation effort would be verifying a different design compared to the actual silicon, and 

the benefits derived from emulation would be substantially reduced. Therefore, 

engineers designing the silicon should keep in mind that the design should not only be 

achievable using the target technology, but also be mappable into the desired FPGA. The 

engineers should realize that FPGA is register rich but is poor in complex function 

implementation and runs a lot slower than Application-Specific Standard Product (ASSP) 



gates. Although the FPGA tools can balance registers and move logic across clock 

boundaries, it is better for designers to put additional timing stages for complex logic to 

alleviate timing and routing problems if the latency hit is acceptable. In addition, 

adherence to the synchronous design philosophy allows a design to migrate from ASSP 

to FPGA easily. FPGA does not have good buffer or delay insertion tools available to 

control the delay between the latches and flip-flops to meet timing requirements for an 

asynchronous design. 

The following are the major areas that require HDL modifications for the SXP 

36x3G SAS expander emulation system. 

6.1.1 Decreased the number of channels/ports 

The SXP 36x3G is a 4.8-million gate device which is too big to be mapped 

entirely into an FPGA. Each channel operates independently and so reducing the number 

of channels is the best solution to the problem. However, the number of channels should 

be enough to support testing of different system configurations. 

The Xilinx FPGA is composed of four quadrants and each quadrant can fit one 

port of the design to allow up to four device ports to be available in the FPGA. The top- 

level HDL of SXP 36x3G is therefore stripped down to include only four ports. Having 

four ports is enough to enable emulating SXP 36x3G as a fan-out expander and edge 

expander by cascading two emulation platforms together. Both fan-out and edge 

functionalities can be tested in narrow-port and wide-port configurations. 



6.1.2 Re-generated RAMS and removed all RAM bist logic 

As the RAM models instantiated in the HDL source code are technology-specific, they 

cannot be used for FPGA emulation and must be replaced. Xilinx provides a graphical 

interactive design tool called CoreGen to create different memory models using Block 

SelectRAM or the basic storage element depending on requirements. For each memory 

model, CoreGen generates a command file (*.xco), a memory file (*.mif), and a vhdl file 

(*.vhd). The modules created with CoreGen can be instantiated in VerilogNHDL source 

code as "black boxes" for use with Synplify Pro. All the instantiations of RAM in the 

HDL source code need to be modified to instantiate those RAM models. 

Besides the RAM models, the RAM BIST components and logic, and DFT related 

wrappers need to be removed because they are not supported and are no longer needed. 

6.1.3 Replaced all the DesignWare components 

A DesignWare component is a verified, silicon proven, and synthesizable 

intellectual property. It can be implemented in a number of ways and is integrated into 

the Synopsys synthesis environment to provide more optimization flexibility in terms of 

performance and area. It is commonly used in designs with a large amount of high-speed 

datapaths to improve design reliability. However, the absence of DesignWare component 

in the FPGA library forces all usage of those components to be replaced by functionally 

equivalent logic. 

In the SXP 36x3G, the DesignWare component DWFqrienc is used in the 

design. This is a priority encoder that can be mapped into one of the high-performance 



components optimized for either timing or area. It is replaced by a regular priority 

encoder consisting of generic combinational logic. 

6.1.4 Modified clock distribution 

A Xilinx Virtex-I1 global clock buffer (BUFG) must be instantiated at the root 

location of each clock tree, although major synthesis tools can now automatically infer 

the BUFG when the corresponding input signal is used as a clock in the HDL source 

code. If the number of clock domains exceeds the number of global clock buffers 

available, the design must be partitioned carefully to divide individual domains into 

FPGA quadrants. Also, all internal clock dividers must be replaced by DCMs to 

guarantee reliable timing between the source clock and the divided-down clock. 

6.2 Synthesis 

For SXP 36x3G emulation system, Synplifl Pro (v 7.6.1) developed by 

Synplicity, Inc. is used to synthesize the HDL into logic gates. It is a high-performance, 

sophisticated logic synthesis engine that delivers fast and efficient FPGA designs. It 

compiles the HDL input, removes all redundant logic, and combines all common 

expressions to create a technology independent optimized netlist. Based on the timing 

constraints specified by the user, the compiled design is then optimized for a specified 

technology using functional blocks. Depending on the design priority, the design can be 

optimized for area in which the number of functional blocks is minimized. The design 

can also be optimized for speed in which the number of levels of logic in critical paths is 

reduced to maximize the speed the clock can be run. The optimized netlist is written out 



in EDIF format (*.edif). Figure 11 depicts the FPGA synthesis flow using Synplicity 

Synplifj Pro and Table 2 lists the required input files and the generated output files of the 

synthesis process. 

*.v Verilog ,'-/ Constraint 
File 

Compilatio 
n Options 
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Mapping 

*.prj 
Project File 

Mapping 
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*.edf EDlF 
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f ' k  Constraint 

Compile 
Output File 

I 

Figure 11 FPGA Synthesis Flow- 



Table 2 Input and Output Files of FPGA Synthesis Process 

*.edf 
EDIF (Electronic Design Interchange Format) synthesized netlist 
*.ncf 
Netlist Constraint File that is forward annotated to Xilinx Place and 
Route tool 

Input Files 

Output Files 

*.srm 
Mapping output files generated after mapping to represent the actual 
technology specific mapped design. It is used in the Technology 

*.v 
Verilog HDL Source Files 

*.sdc 
Timing constraint file on clock, inputloutput delays, timing exception 

*.prj 
Project file that lists all the commands executed in the synthesis 
vrocess 

View by Synplify Pro GUI 

* . srs 
Compile output files generated after compilation to represent the 
RTL-level of the design. It is used in the RTL View by Synplify Pro 
GUI 
*.log 
Synthesis log file for synthesis run, timing and area reports 

6.2.1 Design Constraints 

Synplify Pro supports user-defined design constraints that can be applied to 

clocks, registers, inputs, and outputs. In addition, it supports attributes which are 

instructions placed on symbols or nets to show their placement, implementation, and 

other characteristics. It is recommended to set the design constraints to match the design 

goal with about 10% margin. Design constraints and attributes are defined in a Synplify 

constraint file (*.sdc). Using user-specified optimization constraints, annotated 

constraints can be forwarded to Place and Route tool using a Synplify created constraint 

file (*.ncf). 



6.2.1.1 Clock Constraints 

Clock constraints specifl a frequency goal for a clock domain. All clocks in the 

same clock group are synchronous and so "real" paths exist between those clocks. Paths 

between clocks in different clock groups are "false". Only paths between clock domains 

in the same clock group are analyzed and optimized. Although the mapper in the 

Synplifl Pro tool can infer clocks by tracing the clock inputs of the registers, it is 

recommended to use the define-clock timing constraint to declare the clocks. 

6.2.1.2 InputIOutput Delay Constraints 

Input and Output delays outside the device are specified with define-input-delay 

and define-output-delay. Input delay refers to the delay before the signal arrives at the 

input pin and output delay refers to the delay of the logic outside the FPGA that is driven 

by the design outputs. Input/Output delays result in more accurate timing estimation in 

the Synplifl Pro tool as the timing analyzer considers these delays during optimization. 

6.2.1.3 Multicycle Path Constraints 

The define-multicycleqath timing constraint can be used to specifl multicycle 

paths. These paths are still analyzed and will be reported as timing violation if they 

cannot meet timing. 

6.2.1.4 False Path Constraints 

The define-falseqath timing constraint can be used to specifl paths that are not 

logically valid and timing of those paths are not analyzed. 



6.2.1.5 Fan-out Constraints 

Synplify Pro uses the fan-out constraint to optimize designs better. Depending on 

the value, Synplify Pro can perform replication and buffering. Properly setting this 

constraint can significantly improve the design performance and routability. In some 

cases where the global constraint value is not good for specific nets in the design, the 

syn - maxfan attribute can be used to override the global value and control the fan-out 

limit for those nets. 

6.2.1.6 Pad Type 

Xilinx provides a number of input and output pad types. The attribute xcqadtype 

is used to select the pad type to be used for a pin. Different pad types have different drive 

strength and slew value that can impact performance and board design. 

6.2.2 Device and Technology Options 

After defining the design constraints, the target technology and device options 

such as the part, package, speed grade, and fan-out limit need to be specified based on 

design goals. The Synplify Pro tool has unique mappers for each technology, and the 

mappers have knowledge of the technology specific architectural features. In addition, 

the compilation and mapping options such as I 0  insertion, retiming, pipelining need to be 

specified. 



6.2.3 Synthesis Run 

After the input source files, design constraints and attributes, and device options 

are specified, synthesis can be started. The area and speed results of the SynplifL Pro run 

are saved into a log file (*.log). The log file contains an estimate of the operating 

frequency of the design and an estimated number of device specific resources used. It 

also reports a list of the critical paths in the design. When the difference between the 

estimated area or speed and the original design goal is more than lo%, constraints need to 

be adjusted to improve timing. In some cases, the HDL source code needs to be modified 

to meet the area or timing requirements. 

The following output is copied from the synthesis log file which shows the result 

of synthesizing SXP 36x3G into the Xilinx FPGA. Although negative slacks are 

reported, the subsequent Xilinx Place and Route step could continue because the 

estimated delays of the violations are within 10% of the design goal. 

Table 3 Synthesis Performance Summary 

Starting 
Clock 

Requested 
Frequency 

Estimated 
Frequency 

Requested 
Period 

Estimated 
Period 

Slack Clock 
Type 

Clock 
Group 

150.0 MHz 155.4 MHz 

78.0 MHz 

declared 

declared 

default-clk 
group-3 

default-clk 
group-4 

hclk 15.0 MHz 

pm8387- 
core-inst. 
Miss-inst. 
Mi-m pif- 
rd b[0] 

5.0 MHz 287.7 MHz declared 



Starting Requested Estimated Requested Estimated Slack Clock Clock 
Clock I Frequency I Frequency (Period 1 Period I / Type 1 Group 

pm8387- 5.0 MHz 
core-inst. 
hiss-inst. 
hi-mpif- 
wrb[O] 

refclk-37mhz 37.5 MHz 

50.2 MHz 200.000 19.923 180.077 declared default-clk 
group-5 

39.9 MHz 26.667 25.080 1.586 declared default-clk 
group-8 

refclk-75mhz 1 75.0 MHz 1 89.9 MHz 1 13.333 1 11 .I20 1 2.213 / declared I default-clk 
group-9 

- - -  

rxclk-hl-i 150.0 MHz 138.1 MHz 6.667 7.241 -0.574 declared default-clk 
group3 

rxclk-h2-i 150.0 MHz 134.4 MHz 6.667 7.440 -0.773 declared default-clk 
group-0 

rxclk-tl-i 150.0 MHz 138.1 MHz 6.667 7.241 -0.574 declared default-clk 
group-1 

rxclk-t2_i 150.0 MHz 138.1 MHz 6.667 7.241 -0.574 declared default-clk 
group-7 

sxp36x3g- 1.0 MHz 472.2 MHz 1000.000 2.1 18 997.882 inferred Inferred-clk 
to p-refclk group-15 

System 1.0 MHz 80.6 MHz 1000.000 12.401 987.599 system default-clk 
Qro'JP 



Resource Usage Report for sxp36x3g-top 

Mapping to part: xc2v8000ff 1 152-5 
Cell usage: 
DCM 5 uses 
FD 9 uses 
FDC 12792 uses 
FDCE 18015 uses 
FDC-1 99 uses 
FDP 987 uses 
FDPE 1621 uses 
GND 164 uses 
LD 1376 uses 
MULT-AND 64 uses 
MUXCY 1 76 uses 
MUXCY-L 4284 uses 
MUXF5 5635 uses 
MUXF6 576 uses 
MUXF7 32 uses 
VCC 1 17 uses 
XORCY 2767 uses 
XORCY-L 20 uses 
spr32x89 1 use 
tpr-150x33 4 uses 
tpr-16x34 4 uses 
tpr-20x39 4 uses 
trflOx129 1 use 
trf-264x32 2 uses 

110 primitives: 247 
IBUF 105 uses 
IBUFG 6 uses 
IOBUF 6 uses 
OBUF 77 uses 
OBUFT 13 uses 
OBUF F-24 ~ O U S ~ S  
BUFG- 10 uses 

SRL primitives: 
SRL16 3 uses 

I10 Register bits: 146 
Register bits not including 110s: 33377 (35%) 

Global Clock Buffers: 10 of 16 (62%) 

Mapping Summary: 
Total LUTs: 71 198 (76%) 



6.3 FPGA Design Implementation 

FPGA Design Implementation is the process of translating, mapping, placing, 

routing, and generating a BIT file for the design. Xilinx ISE (v 6.2.031) is used for design 

implementation. 

6.3.1 NGDBuild 

NGDBuild performs all the steps necessary to read a netlist file and creates an 

NGD file describing the logical design. NGDBuild invokes a netlist reader program 

called EDIF2NGD which imports the EDIF netlist (*.edf) generated during the synthesis 

process. The program also needs the NCF file (*.ncf) which contains timing and layout 

constraints that are forward annotated from Synplify Pro, the EDN netlist (*.edn) 

reference memory model files generated by CoreGen, and the UCF User Constraint File 

(*.ucf) that contains the user defined constraints such as timing and the pin location. The 

output of EDIF2NGD is a Xilinx proprietary NGO file (*.ngo) which is a binary file 

containing a logical description of the design in terms of its original hierarchy and 

components. NGDBuild then reduces the logical components into Xilinx primitives by 

merging components fiom other files and identifying appropriate system library 

components and behavioural models. It then performs a Logical Design Rule Check 

(DRC) on the converted design and outputs an NGD database file (*.ngd) and a BLD 

report file (*.bld) that records all the warning and error messages during the build 

process. The NGD databse file contains both a logical description of the design that is 

reduced to lower level Xilinx Native Generic Database (NGD) primitives and a 



description of the original hierarchy defined in the input netlist. It can then be mapped to 

the desired device family. 

6.3.2 MAP 

Mapping is the second process in the FPGA implementation flow. In this process, 

the MAP command is used. MAP first selects the target Xilinx device, package, and 

speed and then performs a DRC check on the NGD file generated using the NGDBuild 

program to check the design integrity. After deleting all unused components and nets, it 

maps all basic logic elements into Xilinx components such as I 0  cells (IOBs) and Logic 

Block Cells (CLBs) in the target Xilinx FPGA. It then processes all location and ti.ming 

constraints, performs target device optimizations, and runs a DRC check on the resulting 

mapped netlist. Finally it outputs a NGM file (*.ngm) which contains logical information 

and physical information about how the design was mapped, a PCF file (*.pcf) which 

contains constraint information specified during the design entry phase, an NCD file 

(*.ncd) which describes the design in terms of Xilinx components such as CLBs and 

IOBs, and a MRP file (*.mrp) which contains all the warning and error messages, details 

about how the design was mapped and statistic about component usage in the design. 

The following is the output in the MRP file which shows how SXP 36x3G is 

mapped into the Xilinx FPGA: 



Design Summary: 
Number of errors: 0 
Number of warnings: 93 
Logic Utilization: 

Total Number Slice Registers: 
Number used as Flip Flops: 
Number used as Latches: 

Number of 4 input LUTs: 
Logic Distribution: 

Number of occupied Slices: 
Total Number 4 input LUTs: 

Number used as logic: 
Number used as a route-thru: 
Number used as Shift registers: 

Number of bonded IOBs: 
IOB Flip Flops: 

Number of Block RAMS: 
Number of GCLKs: 
Number of DCMs: 

Total equivalent gate count for design: 
Additional JTAG gate count for IOBs: 
Peak Memory Usage: 

34,601 out of 93,184 37% 
33,311 
1,290 
68,113 out of 93,184 73% 

40,079 out of 46,592 86% 
69,846 out of 93,184 74% 
68,l I 3  
1,730 
3 

235 out of 824 28% 
152 
24 out of 168 14% 
10 out of 16 62 % 
5 out of 12 41 % 

6.3.3 Place and Route 

Place and Route (PAR) is the third process in the Xilinx FPGA flow. It uses the 

output NCD file from the previous MAP process to place and route the design. During 

placement, PAR executes multiple phases of the placer and places components into sites 

based on factors such as constraints specified in the PCF file, the number of connections, 

and the available routing resources. After placement, PAR executes multiple phases of 

the router that looks for a converging solution based on the desired methodology that 

routes the design to completion and meets timing constraints. Once the design is fully 

routed, a placed and routed NCD file is generated to be used by the bitstream generation 

(BITGEN). An output PAR Report file is created to provide execution information that 

records the steps taken as the program converges on a placement and routing solution. 



For the SXP 36x3G emulation project, timing-driven PAR is used so that 

placement and routing are executed according to timing constraints specified in the UCF 

file at the beginning of the design process. It is set-up to run repeatedly until timing is 

met. 

The following is the device utilization summary copied from the PAR Report file: 

Device utilization summary: 

Number of External lOBs 235 out of 824 28% 
Number of LOCed External lOBs 235 out of 235 100% 

Number of RAMB16s 
Number of SLICES 

Number of BUFGMUXs 
Number of DCMs 

24 out of 168 14% 
40079 out of 46592 86% 

10 out of 16 62 % 
Soutof 12 41 % 

6.3.4 TRACE 

TRACE is run after the PAR process to provide static timing analysis of the 

design based on the timing constraint. It verifies that the design meets timing constraint 

and generates a formatted ASCII file to report statistics on the design. It provides a 

listing of timing compliance between the routed design and the timing constraint input, 

and optionally the detailed net and path delay reports. 

6.3.5 BitGen 

BitGen is the Xilinx bitstream generation program. It takes the l l l y  routed NCD 

file from the PAR process and creates a bit stream binary file (*.bit) for FPGA 

configuration. In addition to device-specific information fiom files associated with the 

target device, the bit stream file contains all of the configuration information that defines 



the internal logic and the interconnections of the FPGA. It is downloaded onto the FPGA 

via various interfaces or it can be used to create a PROM file as described in the next 

section. 

6.3.6 PROMGen 

For the SXP 36x3G emulation project, the FPGA is not configured directly using 

the BIT file generated from the BitGen process. Instead, the BIT file is converted into a 

PROM format file (*.exo) by PROMGen and downloaded over the USB interface. 

PROMGen formats a BitGen-generated configuration bitstream BIT file into a 

PROM format file. It contains configuration data for the FPGA device. PROMGen 

converts a BIT file into one of three PROM formats: MCS-86 (Intel), EXORMAX 

(Motorola), or TEKHEX (Tektronix) [15]. It can also generate a binary or hexadecimal 

file format. 



7 PROJECT CONTRIBUTIONS AND CHALLENGES 

The FPGA emulation system described in this paper takes 18 man-months (3 

people) to complete design, implementation, and testing. I was involved in the following 

tasks of the project: 

Modified the source HDL to map the real HDL into the FPGA. 

Synthesized and built the FPGA load. 

Modified the device testbench to run sanity simulations to verify the correctness 

of the FPGA RTL. 

Brought up the entire FPGA emulation platform. 

Performed inter-operability testing with different SAS and SATA drives and 

HBAs in different configurations. 

Performed point testing to verify new hardware blocks in the device. 

Supported firmware development. 

An FPGA emulation platform requires significant effort to develop and is 

particularly true for the SAS Expander device, which is the first device to be emulated 

using FPGAs at PMC-Sierra. 

Although the development flow was similar to a chip design flow, FPGA 

emulation used different software synthesis and place and route tools and it was 



challenging when there was no standard procedure to follow within the company. Each 

iteration of FPGA synthesis and place and route took 6 hours to complete so a trial and 

error approach was not acceptable. Each time the design failed to meet timing or route, 

careful analysis has to be performed to minimize the number of iterations required. It 

was even more challenging at the early phase of the project where RTL was not stable but 

we wanted to provide a working FPGA emulation system for firmware and hardware co- 

development. 

The emulation environment consisted of both sofONare and hardware components. 

Instead of integrating and enabling all the components at once and hoping everything 

would magically work, the hardware blocks were brought up and tested one-by one. This 

task required an understanding of the whole system and systematic debugging skills and 

creativity were essential to the success of the project because visibility into the FPGA 

was limited. 

The tests that we chose to perform with the FPGA system also needed to be 

carefully planned. Unlike simulation where we had many licenses, the FPGA emulation 

resource was limited so in order to fully justifl the additional cost, we were required to 

have a carehlly thought out test plan that was agreed upon by the design, firmware, and 

validation teams. By running firmware to perform numerous tests with real HBAs and 

SAS and SATA drives, we found about 20 hardware bugs. The major bug we found was 

about data words being swapped within a cache line, which would have required silicon 

re-spins. Overall, it was a challenging and rewarding experience for me. 



8 CONCLUSIONS AND RECOMMENDATIONS 

For the PM8387 SXP 36x3G device, the primary goal of FPGA emulation is to 

provide a platform for more robust and thorough pre-silicon verification that will result in 

a higher quality tape-out. It also provides a platform for pre-silicon validation and 

concurrent hardware and firmware development. 

In order to have successful FPGA emulation, it should be planned and integrated 

into the design and development cycle as early as possible. Code changes specific for 

FPGA emulation should be minimized. Replacement strategy for technology specific 

implementations should be planned and clock and reset distribution should be well 

thought out. 

Also, FPGA emulation is very effective as part of the verification strategy. 

Although FPGA emulation does not have the same flexibility and high-level 

controllability as simulation, it is over 50,000 times faster than simulation and is perfect 

for passing a lot of traffic and catching the comer cases that otherwise will not be 

possible with simulation [8]. Good coordination between simulation and emulation 

reduces redundant effort spent in the same area and provides more robust verification of 

the pre-tapeout design. The FPGA emulation of SAS 36x3G was very successful with all 

the major fimctions performing as planned. 



One additional thing that FPGA emulation should include is formal verification. 

Formal verification between the RTL source code and the final ASIC netlist has become 

an integral part of the ASIC design process to ensure the correctness of the design after 

synthesis, optimization, placement, and routing. However, the current process does not 

forrnally verify the relationship between the HDL source code and the final FPGA 

design. Although the possibility of having functionally different final FPGA design is 

small, it is a good engineering practice to perform forrnal verification on the FPGA 

design even though the design is not targeted for production. 

Another limitation of the current FPGA emulation is that even though it is much 

faster than simulation, it is still relatively slow compared to the actual chip. This causes 

data synchronization problems when the FPGA prototype is being tested in a real system. 

Problems like this prevent some features fkom being tested in the FPGA emulation 

platform. One solution is to have a slow clock mode in the device such that rate 

adaptation FIFOs are used to prevent data overrun and underrun problems and allow the 

whole system to be slowed down. Although this will require the chip architects to take 

FPGA emulation into account at the beginning of a project, the return on investment for 

FPGA emulation will increase significantly with a more comprehensive platform being 

provided. 
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