
SAS EXPANDER FPGA EMULATION

Ivy Chow
Bachelor of Applied Science in Computer Engineering

University of British Columbia 2000

Project submitted in partial fulfillment of
the requirements for the degree of

Master of Engineering

In the
School of Engineering Science

0 Ivy Chow 2005

SIMON FRASER UNIVERSITY

Fa11 2005

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of Project:

Examining Committee:

Chair:

Date DefendedApproved:

Ivy Chow

Master of Engineering

SAS Expander FPGA Emulation

Dr. Jim Cavers
Professor of the School of Engineering Science

Dr. Rick F. Hobson
Senior Supervisor
Professor of the School of Engineering Science

Sylvia Yu
supervisor
Leader, Product Development
PMC-Sierra Inc.

Raymond Lam
Supervisor
Senior Engineer, Product Development
PMC-Sierra Inc.

SIMON FRASER '
~ N I V E R S I ~ I bra ry

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesislproject or extended essays, if technically possible,
to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

ABSTRACT

This paper presents my work on building an FPGA emulation system for

prototyping PMC-Sierra's PM8387 SXP 36x3G 36-Port SAS expander. The

employment of the FPGA emulation system allows rapid prototyping of designs,

concurrent hardware and firmware development, and early interoperability and

performance testing. This will provide significantly higher design confidence and

ultimately will reduce the number of revisions and the time to market.

This paper starts by introducing the SAS and SATA technologies and describes

the SAS expander's design specification. It then discusses the alternatives, benefits and

the cost of an FPGA emulation system. Next it describes the emulation platform of SAS

expander and outlines the entire process of implementing the emulation system, from

HDL source code modification to the generation of the FPGA load. In the final sections,

challenges, future developments and enhancements of the FPGA emulation platform are

discussed.

l o my parents

for their lbve andsupport.

ACKNOWLEDGEMENTS

I would like to thank the following people for their support on this project:

Dr. Rick F. Hobson

Sylvia Yu

RayrnondLam

TABLE OF CONTENTS

. . Approval .. 11

... Abstract .. 111

... Dedication iv

Acknowledgements .. v

... Table of Contents vi
... List of Figures ... vm

.. List of Tables ix

.. Glossary x

.. 1 Introduction 1

2 PM8387 SXP 36x3G SAS Expander Overview .. 3
... 2.1 SAS and SATA Overview 3

2.2 SAS Protocol ... 4
... 2.3 SAS Bandwidth 6

2.4 SAS Expander ... 7
.. 2.5 PM8387 SXP 36x3G SAS Expander 10

.. 2.6 SAS Connection 13

3 Alternatives to FPGA Emulation .. 15

4 FPGA Emulation Feasibility Considerations ... 18
... 4.1 FPGA Emulation Benefits 18

... 4.1.1 Verification 19
..................................... 4.1.2 Concurrent Hardware and Firmware Development 19

............................ 4.1.3 Interoperability Testing and Marketing Competitiveness 20
.. 4.1.4 Reduced Post-Silicon Test Time 21

.. 4.2 FPGA Emulation Efforts and Limitations -22
4.2.1 Cost ... 22

.. 4.2.2 Debug Difficulty 22

5 FPGA Emulation Platform .. 24
... 5.1 SEAD-2TM 25

... 5.2 SAS Expander Emulation Board 26
... 5.2.1 Xilinx XC2V8000 Overview 27

... 5.2.2 Xilinx XC2V8000 Architecture 28

6 SAS Expander Emulation System ... 30
... 6.1 HDL Source Code Modification 30

6.1.1 Decreased the number of channelslports .. 31
................................ 6.1.2 Re-generated RAMS and removed all RAM bist logic 32

6.1.3 Replaced all the Designware components ... 32
.. 6.1.4 Modified clock distribution 33

... 6.2 Synthesis -33
6.2.1 Design Constraints ... 35

.. 6.2.2 Device and Technology Options 37
6.2.3 Synthesis Run .. -38

.. 6.3 FPGA Design Implementation 41
.. 6.3.1 NGDBuild 41

6.3.2 MAP ... 42
.. 6.3.3 Place and Route 43

6.3.4 TRACE ... 44
6.3.5 BitGen .. 44

.. 6.3.6 PROMGen 45

7 Project Contributions and Challenges .. 46

8 Conclusions and Recommendations ... 48

Reference List ... 50

vii

LIST OF FIGURES

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 1 1

... Serial Attached SCSI Protocols 5

.. Expander Device Block Diagram 8

... A Maximum SAS Domain -10

... PM8387 SXP 36x3G Block Diagram 12

.. PM83 87 based SAS Expander System 13

... SAS Connection Sequence 14

................................. Solution Fit for Different Verification Requirements 15

.. SAS Expander Emulation Platform 24

.. SOC ASIC to SEAD-2 Board Mapping 25

... Virtex-I1 Architecture Overview 28

FPGA Synthesis Flow .. 34

LIST OF TABLES

Table 1 Xilinx XC2V8000 Specification ... 27

Table 2 Input and Output Files of FPGA Synthesis Process 35

... Table 3 Synthesis Performance Summary 38

GLOSSARY

ASIC

ASSP

ATA

DRC

Application-Spec@ Integrated Circuit. A semiconductor device
targeted for a specific application.

Application-SpeciJic Standard Product. An ASIC that is sold off
the shelf as a general product.

Advanced Technology Attachment. A disk drive interface
standard for Integrated Drive Electronics (IDE).

Design Rule Check. The process that verifies that the
implemented design meets all physical design rule requirements
(spacing, drive strength, etc).

Formal Verification The process that verifies two designs (e.g. pre synthesized and
post synthesized) are equivalent by converting both designs into
mathematical representations.

HBA Host Bus Adapter. An adapter that sits at the host and allows a
computer bus to be attached to another bus or a channel device
(e g SATA).

LOS Loss of Signal.

MRP

NCD

OOB

PAR

Map Report File. A Xilinx proprietary file that contains mapping
and component usage information.

Native Circuit Description. A Xilinx proprietary file that
contains the circuit information.

Out OfBand. A way to describe signals that are not transferred
through the main datapath but through a dedicated path.

Place and Route. The process that places the components of a
design and routes the connections between the components.

PCF

RPC

SATA

SAS

SCSI

SMP

SOC

SSP

STP

Synthesis

TWI

UART

Physical Constraint File. A Xilinx proprietary file that contains
physical constraint information of the design.

Remote Procedure Call. A protocol that a program (client) can
use to request a service fi-om a program located in another
computer (server) in the network where the networking details
are abstracted from the protocol.

Serial ATA. An evolution of Parallel ATA that uses serial link to
achieve higher speed.

Serial Attached SCSI. An evolution of SCSI that uses serial link
to achieve higher speed.

Small Computer Serial Interface. A system of connecting a
series of computer peripherals to a computer.

Serial Management Protocol. A SAS management protocol
which is used by SAS devices to communicate management
information with other SAS devices.

System On a Chip. A chip that integrates multiple individual
components of a system together.

Serial SCSIProtocol. A SAS protocol that defines the mapping
of SCSI to support multiple initiators and targets.

Serial ATA Tunnelled Protocol. A SAS protocol that defines the
method by which a SAS host makes a connection to a serial ATA
drive when a SAS expander is used.

The process that converts logical hnctions (e.g. in the form of
RTL description) into physical gates (e.g. in the form of a netlist).

Two Wire Interface. An interface on a PC that is used by the host
to communicate with low bandwidth devices such as sensors.

Universal Asynchronous Receiver-Transmitter. A computer
component that handles asynchronous serial communication.

1 INTRODUCTION

The complexity and density of today's state-of-the-art Application-Specific

Integrated Circuits (ASICs) have made proper verification of ASICs increasingly

difficult. Quite often, those ASICs have to be verified in a system environment with

embedded firmware, which makes it almost impossible to create an error free product on

time using traditional Hardware Description Language (HDL) simulation. A more

hardware-oriented verification solution is required.

PMC-Sierra's PM8387 SXP 36x3G SAS expander is a sophisticated and high

density device where HDL simulation alone is not enough to provide confidence of the

completeness of the verification effort. With the system level verification requirement,

prototyping is the best solution. Over the past decade, the improvement of Field

Programmable Gate Array (FPGA) device capacities has enabled the development of

FPGA prototyping environments capable of implementing millions of logic gates, like the

SXP 36x3G device. This FPGA emulation platform is the focus of this paper.

Section 2 provides an overview of the Serial Attached SCSI (SAS) and Serial

ATA (SATA) technologies and the features of the SXP 36x3G device. Section 3

discusses alternatives to FPGA emulation. Section 4 discusses how FPGA emulation

could benefit and enhance the development of sophisticated ASICs and the associated

cost and efforts required to implement an FPGA emulation system. Section 5 describes

the SXP 36x3G emulation platform, which includes an off-the-shelf SEAD-2TM

development board and an in-house designed emulation board. Section 6 describes the

process of implementing the SXP 36x3G emulation system, which includes HDL source

code modification, synthesis, and place and route. Section 7 describes my project

contributions and challenges and section 8 concludes the paper by providing suggestions

to future development and enhancement of the SXP 36x3G FPGA emulation platform.

2 PM8387 SXP 36X3G SAS EXPANDER OVERVIEW

Today's storage solution is dominated by SCSI (for enterprise level systems) and

ATA (for consumer level systems). Although some enterprise storage systems adopt

both standards, the fimdamental differences between SCSI and ATA technologies require

separate subsystems to be built. On the other hand, as disk storage density continues to

increase with technological advancement, existing SCSI and ATA's parallel technology

is limiting the throughput performance. Signal skew, crosstalk, signal termination and

device addressability are all limiting factors to performance.

Serial Attached SCSI (SAS) and Serial ATA (SATA) interfaces are introduced to

overcome these barriers. They both use serial technology to deliver faster, more reliable,

and more scalable devices [I].

2.1 SAS and SATA Overview

SAS combines the proven hnctionality of SCSI with the performance of serial

technology. In SAS- 1.1, the SCSI protocol is transported over a serial interface capable

of full duplex operation with a transfer rate of 3.0 Gbls per direction. The next

generation, SAS-2.0, is even faster with a transfer of 6.0 Gbls per direction. Narrow

ports allow for a single serial link, while wide ports support multiple links, allowing the

aggregation of multiple links to increase the total available bandwidth. Designed to

leverage as much as possible from the existing SCSI effort, SAS provides faster device

interconnect speeds, simpler point-to-point cabling that eliminates the shared bus

bandwidth slowdowns, and improves system reliability.

SATA applies the serial technology on top of the ATA technology that is the

common disk interface technology in desktop computers, entry-level servers and

networked storage systems. SATA I is defined to be half-duplex and has a transfer rate

of 1.5 Gbls. The next generation, SATA 11, increases the transfer rate to 3.0 Gbls. SATA

allows devices to be hot-plugged for easier replacement and it uses thinner cables to

improve cooling in the box. Cyclical redundancy checking (CRC) is also used to

enhance data reliability and the point-to-point cabling eliminates the confksing

masterlslave configuration of parallel ATA.

Both SAS and SATA are backward compatible with previous generation of SCSI

and ATA software applications. In addition, SAS is developed to maximize

compatibility with SATA by using a common physical and electrical connection interface

with SATA. Therefore, it enables a single storage subsystem to accept either high

performance, reliable enterprise-class SAS drives, or high capacity, cost-effective SATA

drives.

2.2 SAS Protocol

The SAS protocol is divided into six layers: the physical layer, the phy layer, the

link layer, the port layer, the transport layer, and the application layer [12]. The physical

layer defines physical hardware such as cables and connectors and the SAS port consists

of all the layers except the application layer. Applications used to access parallel SCSI

ports could be used to access SAS ports with no modification if only legacy features are

used. Figure 1 shows the SAS architecture layers and the relationships between them.

I

I / t It'

;AS po 1
I SSP transport layer I I STP transport layer (?z@ SMP ,

SAS port layer

f
SSP link layer SSP link layer

-
SAS link layer

SAS phy laye-

SSP link layer

SAS physical layer

Figure 1 Serial Attached SCSI Protocols '

' Based on Maxtor, Serial Attached SCSI Architecture: Part I -Introduction, the SAS Physical Layer and
the SAS Phy Layer [4], page 3, figure 4

To support the co-existence of SATA and SAS drives, SAS defines three

transport protocols. Serial SCSI Protocol (SSP) defines the mapping of SCSI to support

multiple initiators and targets in a SAS domain. Serial ATA Tunnelled Protocol (STP)

defines the method by which a SAS host makes a connection to a serial ATA drive when

a SAS expander in a SAS domain is used. Serial Management Protocol (SMP) is a

management protocol which is used by SAS devices to communicate management

information with other SAS devices in a SAS domain.

Within a SAS domain, a SAS initiator port can function as a STP initiator port to

communicate with SATA drives. The SAS port establishes a STP connection on behalf

of the SATA drives so that SATA frames can pass through the connection from the

initiator to the drive as if they were directly attached on a physical link. The SAS

standard defines the process used during device discovery to determine the type of drive

attached to any given port.

2.3 SAS Bandwidth

First-generation SAS link rate is 3 Gbls (300 MBIs). The full-duplex, point-to-

point architecture of SAS features simultaneous active connections among multiple SAS

initiators and targets. SAS drives can transfer data in both directions at once to

effectively double the usable bandwidth of the link rate to 6 Gbls. For example, a device

can simultaneously transfer data from a previously queued read operation while receiving

data for a write operation. Narrow ports allow for a single serial link, while wide ports

dramatically improve throughput by enabling several disks to communicate with a single

port address at the same time. Grouping four or eight links together, which is typical, can

generate bandwidth of 12 Gbls or 24 Gbls respectively.

Currently, a 15,000-RPM disk drive will sustain data rates up to 75 MBIs [I]. At

these sustained data rates, two disk drives will saturate a SATA 1.5 Gbls bus. The shared

Ultra320 SCSI bus supports a total of 320 MBIs or the sustained data rates of four to five

disk drives. By contrast, a 4-wide SAS port supports as many as 16 hard drives before

becoming saturated.

System architects normally optimize performance by removing bandwidth

bottlenecks - an objective normally met by matching interleaving technologies with

complementary efficiency and availability levels. Similar to SAS, PC1 Express supports

scalable performance by combining multiple data links to create wide data paths. Each

PC1 Express lane supports 2.5 Gbls with scalability up to a 32-wide lane configuration

[I]. This common capability is the key to optimizing performance between SAS and PC1

Express. By combing SAS with PC1 Express, the aggregate storage system performance

can be maximized. For example, a 4-wide SAS port supports 1200 MBIs for up to 16

hard disk drives. With the SAS initiator attached to an 8-lane PC1 Express slot, the entire

data path through the system is optimized to support 2 GBIs.

2.4 SAS Expander

SAS ports that are physically a part of a SAS Host Bus Adapter (HBA) can

directly address either SAS or SATA drives. The number of addressable drives would be

restricted by the number of physical ports integrated into the HBA itself if there were no

mechanism for expanding the topology. Integrating a large number of SAS ports into one

device could be costly for systems not requiring all the ports, however not providing

enough SAS ports would significantly limit the utility of the systems. In light of this

limitation, the SAS standard also defines a type of intermediary device called an

Expander, as shown in Figure 2 [13].

Expander port 1 STPlSATA bridge

ports, or expander ports A SATA device port 0
Figure 2 Expander Device Block Diagram

Based on American National Standard, Information Technology - Serial Attached SCSI -1.1 [3] page 42 ,
figure 18

The SAS Expander device can communicate with multiple SAS devices and it

functions as a switch to simplify configuration of large systems that can be scaled with

minimal latency while preserving bandwidth for increased workloads. It enables highly

flexible storage topologies of up to 16,256 mixed SAS and SATA drives in a single SAS

domain as shown in Figure 3 [4]. SAS edge expanders may connect up to a total of 128

devices in one domain, including SAS initiators, SAS targets, SATA devices, another

SAS edge expander, or a SAS fan-out expander. SAS fan-out expanders may connect up

to a total of 128 SAS initiators, SAS targets, SATA devices, or SAS expander devices in

one domain, although only one SAS fan-out expander device is allowed in a single SAS

domain. SAS expanders can incrementally expand in-box and near-box storage

capabilities in systems requiring greater bandwidth connections, as additional expanders

provide redundancy and support a large number of devices. In order to establish a

connection with a SASISATA device or another expander device, all SAS expanders

support an addressing mechanism for routing requests to manage the connections

between devices and the ability to broadcast primitives across all the expanded

connections they support.

initiator initiator p----"",m
Y edge Y

9 d' target

0

0

S AS

0

,,/ expander h : 0

0 expander :

initiator device

a 2 wide port link narrow p port link

emander

expander

initiator

0

Figure 3 A Maximum SAS Domain

2.5 PM8387 SXP 36x3G SAS Expander

The PMC-Sierra's PM8387 SXP 36x3G device is implemented with 0.13-micron

CMOS technology in a 27 mm x 27 mm 352-pin CSBGA package [9]. It is a SAS

Expander device with integrated storage enclosure processor that conforms to the

standard developed by the ANSI International Committee for Information Technology

Standards (INCITS) T 10 Technical Committee [3].

Based on Maxtor, Serial Attached SCSI Architecture: Part 1-Introduction, the SAS Physical Layer and
the SAS Phy Layer [12], page 2, figure 2

Figure 4 shows the block diagram of the SXP 36x3G device. It contains 36

independent external expander ports with integrated non-blocking crossbar switch that

allows point-to-point connection with 1.5 Gbls and 3 Gbls data transfer rates. It features

low latency connection arbitration and arbitrary SAS wide port and narrow port

configurations. Different routing methods are supported, including table routing, direct

routing, and subtractive routing. The STP bridge function allows SATA devices to be

attached to any target ports concurrently. The integrated RISC processor supports SMP

functions, and allows connection to external components such as fan sensors and

temperature sensors to complete the SCSI Enclosure Services (SES) functions. Three

configurable Two Wire Interfaces (TWI) are provided for device configuration and

control of peripheral devices. An Universal Asynchronous Receiver-Transmitter

(UART) interface is also implemented to support serial debugging and a serial GPIO

(SGPIO) interface is implemented to provide expansion for up to 144 GPIOs.

PM8387
SXP 36x3G

SClock
SLoad
SDout
SDir

TX
RX
RTS
CTS

local 9
Figure 4 PM8387 SXP 36x3G Block Diagram

PM8387 SXP 36x3G offers tiered storage systems increased system performance,

higher capacity, and scalability with an embedded storage enclosure processor. It enables

storage system architectures to extent to hundreds of SAS and SATA hard disk drives

with low-latency and high performance connections. It provides a low cost solution to

large and manageable tiered storage systems such as near-line backup, email archive,

imaging and financial data retention. Figure 5 shows PM8387 3ased SAS Expander

System in typical server storage application.

Based on PMC-Sierra Inc., PM8387 SXP 36x3G 36-Port SAS Expander Short Form Data Sheet [9], page
I , figure 1

1 Disk Shelf

4x I (control card (A) / control card (6) c. wide link
4

additonal
disk racks

(4x wid3 link)

fan sensor & control

SAS 4x
wide link
__+

additonal
disk racks

(4 x d e link)

Figure 5 PM8387 based SAS Expander System

2.6 SAS Connection

In SAS, each connection is a temporary association between an initiator phy

(HBA) and a target phy (SAS drive). Figure 6 shows a typical SAS connection sequence.

The source phy transmits an OPEN address frame, which contains a destination SAS

address. When the expander receives the OPEN address frame, it looks up the

destination SAS address in its routing tables and arbitrates for internal access to an

outgoing expander port with a path to the destination SAS port. The expander transmits

Arbitration In Progress (AIP) primitives to the initiator while it is performing arbitration.

Once arbitration is completed, the expander routes the OPEN address frame to the

Based on PMC-Sierra Inc., PM8387 SXP 36x3G 36-Port SAS Expander Short Form Data Sheet [9], page
2, figure 2

matching destination port. When the target device receives the OPEN address frame, it

validates the frame and replies with an OPEN-ACCEPT primitive if it is able to accept

the connection. The connection is established when the initiator receives the

OPEN-ACCEPT primitive forwarded by the expander. There are three types of

connections determined by the OPEN address frame, one for each type of protocol (SSP,

STP, and SMP) supported by the port. Each of the connection types uses its own

protocol for the SAS link layer once the connection is established. The connection is

closed when both sides exchange CLOSE primitive.

FSSPISTPISMP frames --I

Figure 6 SAS Connection Sequence

SAS DISK

3 ALTERNATIVES TO FPGA EMULATION

Many types of ASIC verification environment exist and they serve different

purposes. Figure 7 shows the solutions fit for different verificrtion requirements [8].

TYPICAL PERFORMANCE RANGE (cycles per second)

Figure 7 Solution Fit for Different Verification Requirements

In HDL simulation, testbenches and testcases are created and a software simulator

is used to exercise different features of the design. Both the design and the testbench are

Based on Mitch Dale, The Value of Hardware Emulation [8], page 1, figure 1

compiled into a proprietary database that the simulator understands. In recent years,

testbench languages like Vera and Specman have become very popular because they

simplify the creation of the testbench by providing features like random data generation

and object inheritance. HDL simulation serves as the best way to verify a low level block

of a design because a lot of low level comer cases cannot be easily tested at a higher

level.

In accelerated co-simulation, the design is compiled into a piece of hardware

called the accelerator which allows simulations to run much faster. Some accelerators

allow testbenches to be compiled into hardware to provide even faster acceleration.

Accelerators have lost their appeal in recent years because they require separate

compilation and the cost associated with the accelerated simulation cannot be justified all

the time.

Co-modelling involves simulating the system (device and its surrounding

environment). Quite often, different pieces of the system are written as C models

because they are easier to write and they simulate faster. Third party models are also

available to allow designers to focus on the actual design. Co-modelling is also effective

at the architecture phase where complex algorithms can be implemented in C models first

to see how the different parameters of the design affect performance and interaction with

the rest of the system.

An In-Circuit Emulation (ICE) system typically consists of hundreds of FPGAs or

processors inside a box to provide hardware acceleration and in-circuit emulation in a

single system. For example, the Incisive Palladium I1 system by Cadence has a

maximum capacity of 256 million gates and operates up to 1 SMHz [4]. Compared to an

FPGA prototyping system, the main advantage of an ICE system is that it supports

dynamic probes to allow interactive debug during run-time so that designers can get

visibility into the design to root-cause issues faster than an FPGA system once the bug

can be reproduced in the ICE system. However, the huge cost of an ICE system

(typically a few million dollars) and the slower speed are the big disadvantages.

4 FPGA EMULATION FEASIBILITY CONSIDERATIONS

Although FPGA technology has improved dramatically since the last decade, it

has not been used for emulation until recently. Many people see FPGA emulation as a

complicated step that adds additional cost to tightly budgeted projects. However, with

the advancement of the software used to program FPGAs, the availability of many

common Intellectual Properties (IPS) and the large capacity of FPGAs, FPGA prototyping

is becoming a very attractive option. In addition, a number of third party systems are

available that allow designers to focus on the actual verification task by providing boards

with FPGAs that are connected to an advanced software debugger and are capable of

interacting with existing simulators and testcases [13].

In order to obtain the full benefit of FPGA emulation, planning needs to start at

the beginning of a project and feasibility studies need to be performed on a project-by-

project basis. The following sections discuss the factors to consider.

4.1 FPGA Emulation Benefits

In the semiconductor industry, success in the marketplace depends on the ability

to produce novel, complex, and working designs faster than the competition. Employing

a well planned FPGA emulation system can definitely contribute to higher quality design

and verification cycles and reduce the time to market.

4.1.1 Verification

As the design gets more complicated, simulation effort increases exponentially in

terms of resources required and simulation time. Quite often, random traffic testing is

required to exercise the design extensively and simulation is simply too slow to provide

enough cycles. Although some of the popular simulators allow simulation to be run on

multiple parallel processors, significant effort and planning are required to partition the

design and resolve the problem of linking and synchronizing separate simulations

running on different processors. For example, Remote Procedure Call (RPC) can be used

to handle the synchronization between different portions of the design in separate

processors through ModelSimYs Foreign Language Interface (FLI) 161. The complexity

of the synchronization and requirements to have balanced partitioning of the design

prevent parallel computing to be leveraged in current simulation environment. As a

result, simulation is still the bottleneck of most design cycles. Although emulation speed

is not as fast as the real device, it provides a promising solution to cut down on the

verification cycle.

For the SXP 36x3G device, full random traffic is being passed in FPGA

emulation, revealing a few bugs that otherwise will not be caught in simulation.

4.1.2 Concurrent Hardware and Firmware Development

Traditionally, because of the unavailability of the actual hardware device,

firmware debugging can only begin after silicon arrival. This is acceptable when the

device is hardware oriented and its firmware is relatively straightforward. However, as

ASIC designs get more complicated and many of those are system-on-a-chip (SoC)

solutions, many of the major processing tasks are off-loaded and handled by firmware.

Consequently, the required firmware becomes more complicated and takes more time to

verify. It is therefore preferable to start firmware development concurrently with the

hardware development despite the difficulty to debug firmware in the absence of the

actual hardware. There is also the possibility that while verifying the firmware, a design

flaw is discovered in the hardware and changes need to be made. FPGA emulation

provides an excellent and reliable environment for firmware engineers to start code

development and testing before the final ASIC device is available.

For the SXP 36x3G device, there is an integrated RISC processor to handle SMP

functions. Because of the deployment to the FPGA emulation, several revisions of

firmware are done prior to the silicon arrival. By the time silicon is available, firmware is

already robust enough to support all the major features.

4.1.3 Interoperability Testing and Marketing Competitiveness

Most ASIC devices do not operate as standalone devices. Devices developed by

different vendors within a system need to communicate with each other through a

standardized protocol or specification. Despite efforts by different device vendors to

implement the design according to specification, it is not uncommon for two devices

implementing the same standard to be incompatible with each other due to a slightly

different interpretation of the standard. Early interoperability testing using FPGA

emulation reduces the risk of failure in interoperation with peer systems. FPGA

emulation can also be used as a prototype for customers to start board development at an

earlier time. Hence, FPGA emulation becomes an important strategic component for

marketing to raise customers' confidence in the design and seek early commitment from

customers.

For the SXP 36x3G device, the emulation platform successfully demonstrated

system interoperability with multiple SAS server, storage enclosure and controller

vendors at the interoperability forum SAS Plugfest. Achieving this with multi-vendor

SAS systems assures OEMs of an interoperable solution for next-generation SAS servers

and server attached storage systems.

4.1.4 Reduced Post-Silicon Test Time

All new devices must be validated according to internal and customer

requirements by performing a series of planned tests. Without any kind of pre-silicon

prototyping, the tests themselves cannot be verified. FPGA emulation helps to pull-in the

time required for the device validation process by providing a reliable environment to

ramp up product validation engineers on the device and to debug software and firmware,

prior to silicon arrival. Some low-risk features can also be validated using the emulation

platform.

For the SXP 36x3G device, the FPGA emulation system allowed the product

validation engineers to finish validation of the device ahead of schedule.

4.2 FPGA Emulation Efforts and Limitations

Despite all the benefits, FPGA emulation does require significant effort and

additional cost to build the hardware platform and has several limitations.

4.2.1 Cost

The cost of implementing an FPGA emulation system includes the actual cost of

the FPGAs and the associated hardware components, software tools and licenses, and

labour in driving the entire process. Using the SXP 36x3G project as an example, each

emulation platform consists of two boards: a custom board with a Xilinx XC2V8000

FPGA and an off-the shelf SEAD-2TM board. Each of those two boards costs about

$20,000. The synthesis tool for FPGA emulation is different from the tool used for

ASIC design and therefore additional finding needs to be allocated. The FPGA

emulation lasts as long as the chip development and involves labour from different

groups: product validation engineers to design the custom board, CAD engineers to

support the tools and flows, and product development engineers to build the FPGA load,

bring up the emulation platform, and run the tests. Nevertheless, the overall cost of

building an FPGA emulation system should not be as costly as a chip revision when

critical bugs are found that require re-spinning of the chip.

4.2.2 Debug Difficulty

Compared to simulation, FPGA emulation is relatively difficult to debug because

of very limited visibility into the internal signals. Making internal signals observable

requires changes to the source code and an additional place and route cycle for wiring the

internal signals to the spare debug ports. In addition, because of the lack of accessibility

to force the internal signals into certain states, it is hard to hit comer cases predictably

using the FPGA emulation platform. Therefore, FPGA emulation is good for finding

issues with the design, but not good for root cause investigation. It cannot replace

conventional verification effort, which provides post simulation debugging and relatively

easy reconstruction of different events by putting the device in a specific state. This is

the exact use model of FPGA emulation for the SXP 36x3G project.

5 FPGA EMULATION PLATFORM

The SXP 36x3G emulation platform consists of two boards: off-the-shelf SEAD-

2TM development board and in-house designed SAS Expander emulation board with

Xilinx XC2V8000 FPGA. The two boards are connected by 32-bit wide Mictor cables as

shown in Figure 8.

SEAD-2 Board

AHE -

SAS Expander Emulation Board

I

QuadPHY
i l (serdes)

LOS detected and
transmit squelch

QuadSMX
+B) H

Figure 8 SAS Expander Emulation Platform

SEAD-2TM

The SEAD-2TM board is developed by MIPS Technologies to provide a platform

for integration of the user's hardware IP design with MIPS320 core. There are two

FPGAs on the SEAD-2 TM board. One FPGA is preloaded with MIPS4KEm CPU from

an unencrypted source, the other is a two-million gate Xilinx SCV2000E FPGA where

the user's design is implemented. The SEAD-2 board also provides a USB interface, an

UART interface, 4 MB of SRAM, 32 MB of flash memory, and 32 MB SDRAM

modules. In addition, the SEAD-2 board features low-level debugging aids by supporting

EJTAG debugger connectivity. Figure 9 shows how a SoC ASIC design can be mapped

into the SEAD-2 TM board and communicates with different peripherals.

SOC ASIC

user lP

Figure 9 SOC ASIC to SEAD-2 Board Mapping '

7 Based on MIPS Technologies, Sead-2 Board User's Manual, Revision 01.02, March 3 1,2004 [7], page 4,
figure 1

In the SXP 36x3G emulation platform, the Xilinx FPGA on the SEAD-2TM

board implements the UART interface, the Local Bus interface, watchdog and general

timers, ECIAHB Bridge, AHB Decoder, and AHBIAPB Bridge.

5.2 SAS Expander Emulation Board

The SAS Expander Emulation Board mainly consists of a Xilinx XC2V8000

FPGA, PM8354 QuadPHY I1 device [lo], and PM8380 QuadSMX 3G device [ll].

Xilinx's XC2V8000 is an eight-million gate FPGA where most of the SXP 36x3G's

functionality, including the SAS physical layer, link layer, and routing functions, are

implemented. Because SXP 36x3G emulation platform requires 1.5 Gbls links and the

Xilinx FPGA is not capable of these I/O rates, a SERDES device QuadPHY I1 is used as

a serializer/deserializer. It serializes the 10-bit parallel data and transmits it differentially

at 1.5 Gbls in the transmit direction and recovers the serial differential data and converts

it back to 10-bit parallel data in the receive direction. To support Out-Of-Band (OOB)

signalling, QuadSMX 3G is used on the serial-side of the QuadPHY 11. QuadSMX 3G

supports loss of signal (LOS) detection and is capable of generating OOB squelch events

to define the messages during OOB signalling period in the transmit stream. These

signals are routed to the Xilinx FPGA so that SXP 36x3G can control OOB signalling

events. Depending on the time between LOS conditions, SXP 36x3G can determine the

OOB states of the hard drive or HBA that is transmitting to SXP 36x3G. Based on the

incoming state, SXP 36x3G will generate outgoing OOB squelch events through the

QuadSMX 3G.

5.2.1 Xilinx XC2V8000 Overview

Xilinx XC2V8000 is a member of the Virtex-I1 family developed for high-

performance and high-density designs, especially those that have lots of IP cores and

customized modules. Xilinx XC2V8000 uses 0.15pm CMOS technology with 8-layer of

metal. It can implement eight million gates with clock speed running at up to 400MHz,

and it supports I/O speed up to 840MbIs. The following table summarizes the

specification of Xilinx XC2V8000 [17].

Table 1 Xilinx XC2V8000 Specification

I Maximum clock speed 1 400 MHz I
I

I10 speed 1 840 Mbls

I

Number of multipliers (168 18x18

Maximum number of User I/O pads

Number of logic cells

Number of SelectRAM blocks

Total SelectRAM Memory

Number of digital clock managers

I

CLB Array: Row x Column 1 112x 104

1108

104832

168

3,024 Kbits

12

1 Number of Slices 1 46,592 I
I

Number of LUTs (93,184

I Number of Flip-Flops 1 93,184

Xilinx, Virtex-I1 Platform FPGAs: Complete Data Sheet, DSO3 1 ("3.4) [17], October 14,2003

5.2.2 Xilinx XC2VS000 Architecture

Xilinx Virtex-I1 architecture is optimized for high-density and high performance

logic designs. As shown in Figure 10, the programmable device is comprised of

input/output blocks (IOBs) and internal configurable logic blocks. Programmable 110

blocks provide the interface between package pins and the internal configurable logic.

The internal configurable logic block includes the Configurabk Logic Blocks (CLBs),

Block SelectRAM, Multiplier blocks, and Digital Clock Manager (DCM) blocks

organized in a regular array [17].

CLB Block SelectRAM + Multiplier *

~ l o b a l Clock Mux 1 6 DCM

Figure 10 Virtex-I1 Architecture Overview

The CLBs provide functional elements for combinational and sequential logic,

including basic storage element. The Block SelectRAM memory modules provide large

18 Kbit storage elements of true dual-port RAM with two independently clocked and

~ a s e d on Xilinx Virtex-I1 Platform FPGAs: Complete Data Sheet [I71 page 3, figure 1

controlled synchronous ports. Multiplier blocks are 18 by 18 bits which are optimized

for high-speed operations and have low power consumption. The DCM blocks provide

self-calibrating, fully digital solutions for clock distribution and delay compensation,

clock multiplication and division, and coarse-grained and fine-grained clock phase

shifting.

The Xilinx Virtex-11 FPGA has 16 global clock buffers and supports 16 global

clock domains. Eight clock buffers are in the middle of the top edge and eight are in the

middle of the bottom edge. Each device is divided into four quadrants. Any of these 16

global clock buffers can be used in any quadrant, up to a maximum of eight clocks per

quadrant.

The remaining sections of this paper are focused on the implementation of the

FPGA load for the Xilinx Virtex-I1 FPGA on the SAS Expander Emulation Board. This

includes most of the complex core functions of the ASIC.

6 SAS EXPANDER EMULATION SYSTEM

The process of developing an FPGA emulation system is similar to but simpler

than the digital IC design flow and they are developed concurrently. Implementation of

the SAS Expander emulation system involves HDL source code modifications to scale

down the size of the logic to fit the FPGA, synthesis to convert HDL into a netlist, and

physical design to place and route the netlist into the FPGA.

6.1 HDL Source Code Modification

The major reason of modifying HDL source code is to map the real HDL into the

FPGA device, which has limited capacity and runs at a slower speed. However, HDL

source code modification should be minimized such that there would be little difference

between the design in the prototype and the design in the actual silicon. This is important

because one of the goals of FPGA emulation is design verification and risk reduction for

the silicon as mentioned in Section 4. If the HDL code differs significantly, the

emulation effort would be verifying a different design compared to the actual silicon, and

the benefits derived from emulation would be substantially reduced. Therefore,

engineers designing the silicon should keep in mind that the design should not only be

achievable using the target technology, but also be mappable into the desired FPGA. The

engineers should realize that FPGA is register rich but is poor in complex function

implementation and runs a lot slower than Application-Specific Standard Product (ASSP)

gates. Although the FPGA tools can balance registers and move logic across clock

boundaries, it is better for designers to put additional timing stages for complex logic to

alleviate timing and routing problems if the latency hit is acceptable. In addition,

adherence to the synchronous design philosophy allows a design to migrate from ASSP

to FPGA easily. FPGA does not have good buffer or delay insertion tools available to

control the delay between the latches and flip-flops to meet timing requirements for an

asynchronous design.

The following are the major areas that require HDL modifications for the SXP

36x3G SAS expander emulation system.

6.1.1 Decreased the number of channels/ports

The SXP 36x3G is a 4.8-million gate device which is too big to be mapped

entirely into an FPGA. Each channel operates independently and so reducing the number

of channels is the best solution to the problem. However, the number of channels should

be enough to support testing of different system configurations.

The Xilinx FPGA is composed of four quadrants and each quadrant can fit one

port of the design to allow up to four device ports to be available in the FPGA. The top-

level HDL of SXP 36x3G is therefore stripped down to include only four ports. Having

four ports is enough to enable emulating SXP 36x3G as a fan-out expander and edge

expander by cascading two emulation platforms together. Both fan-out and edge

functionalities can be tested in narrow-port and wide-port configurations.

6.1.2 Re-generated RAMS and removed all RAM bist logic

As the RAM models instantiated in the HDL source code are technology-specific, they

cannot be used for FPGA emulation and must be replaced. Xilinx provides a graphical

interactive design tool called CoreGen to create different memory models using Block

SelectRAM or the basic storage element depending on requirements. For each memory

model, CoreGen generates a command file (*.xco), a memory file (*.mif), and a vhdl file

(*.vhd). The modules created with CoreGen can be instantiated in VerilogNHDL source

code as "black boxes" for use with Synplify Pro. All the instantiations of RAM in the

HDL source code need to be modified to instantiate those RAM models.

Besides the RAM models, the RAM BIST components and logic, and DFT related

wrappers need to be removed because they are not supported and are no longer needed.

6.1.3 Replaced all the DesignWare components

A DesignWare component is a verified, silicon proven, and synthesizable

intellectual property. It can be implemented in a number of ways and is integrated into

the Synopsys synthesis environment to provide more optimization flexibility in terms of

performance and area. It is commonly used in designs with a large amount of high-speed

datapaths to improve design reliability. However, the absence of DesignWare component

in the FPGA library forces all usage of those components to be replaced by functionally

equivalent logic.

In the SXP 36x3G, the DesignWare component DWFqrienc is used in the

design. This is a priority encoder that can be mapped into one of the high-performance

components optimized for either timing or area. It is replaced by a regular priority

encoder consisting of generic combinational logic.

6.1.4 Modified clock distribution

A Xilinx Virtex-I1 global clock buffer (BUFG) must be instantiated at the root

location of each clock tree, although major synthesis tools can now automatically infer

the BUFG when the corresponding input signal is used as a clock in the HDL source

code. If the number of clock domains exceeds the number of global clock buffers

available, the design must be partitioned carefully to divide individual domains into

FPGA quadrants. Also, all internal clock dividers must be replaced by DCMs to

guarantee reliable timing between the source clock and the divided-down clock.

6.2 Synthesis

For SXP 36x3G emulation system, Synplifl Pro (v 7.6.1) developed by

Synplicity, Inc. is used to synthesize the HDL into logic gates. It is a high-performance,

sophisticated logic synthesis engine that delivers fast and efficient FPGA designs. It

compiles the HDL input, removes all redundant logic, and combines all common

expressions to create a technology independent optimized netlist. Based on the timing

constraints specified by the user, the compiled design is then optimized for a specified

technology using functional blocks. Depending on the design priority, the design can be

optimized for area in which the number of functional blocks is minimized. The design

can also be optimized for speed in which the number of levels of logic in critical paths is

reduced to maximize the speed the clock can be run. The optimized netlist is written out

in EDIF format (*.edif). Figure 11 depicts the FPGA synthesis flow using Synplicity

Synplifj Pro and Table 2 lists the required input files and the generated output files of the

synthesis process.

*.v Verilog ,'-/ Constraint
File

Compilatio
n Options

r
Mapping

*.prj
Project File

Mapping

I 1
*.edf EDlF
Netlist File

f ' k Constraint

Compile
Output File

I

Figure 11 FPGA Synthesis Flow-

Table 2 Input and Output Files of FPGA Synthesis Process

*.edf
EDIF (Electronic Design Interchange Format) synthesized netlist
*.ncf
Netlist Constraint File that is forward annotated to Xilinx Place and
Route tool

Input Files

Output Files

*.srm
Mapping output files generated after mapping to represent the actual
technology specific mapped design. It is used in the Technology

*.v
Verilog HDL Source Files

*.sdc
Timing constraint file on clock, inputloutput delays, timing exception

*.prj
Project file that lists all the commands executed in the synthesis
vrocess

View by Synplify Pro GUI

* . srs
Compile output files generated after compilation to represent the
RTL-level of the design. It is used in the RTL View by Synplify Pro
GUI
*.log
Synthesis log file for synthesis run, timing and area reports

6.2.1 Design Constraints

Synplify Pro supports user-defined design constraints that can be applied to

clocks, registers, inputs, and outputs. In addition, it supports attributes which are

instructions placed on symbols or nets to show their placement, implementation, and

other characteristics. It is recommended to set the design constraints to match the design

goal with about 10% margin. Design constraints and attributes are defined in a Synplify

constraint file (*.sdc). Using user-specified optimization constraints, annotated

constraints can be forwarded to Place and Route tool using a Synplify created constraint

file (*.ncf).

6.2.1.1 Clock Constraints

Clock constraints specifl a frequency goal for a clock domain. All clocks in the

same clock group are synchronous and so "real" paths exist between those clocks. Paths

between clocks in different clock groups are "false". Only paths between clock domains

in the same clock group are analyzed and optimized. Although the mapper in the

Synplifl Pro tool can infer clocks by tracing the clock inputs of the registers, it is

recommended to use the define-clock timing constraint to declare the clocks.

6.2.1.2 InputIOutput Delay Constraints

Input and Output delays outside the device are specified with define-input-delay

and define-output-delay. Input delay refers to the delay before the signal arrives at the

input pin and output delay refers to the delay of the logic outside the FPGA that is driven

by the design outputs. Input/Output delays result in more accurate timing estimation in

the Synplifl Pro tool as the timing analyzer considers these delays during optimization.

6.2.1.3 Multicycle Path Constraints

The define-multicycleqath timing constraint can be used to specifl multicycle

paths. These paths are still analyzed and will be reported as timing violation if they

cannot meet timing.

6.2.1.4 False Path Constraints

The define-falseqath timing constraint can be used to specifl paths that are not

logically valid and timing of those paths are not analyzed.

6.2.1.5 Fan-out Constraints

Synplify Pro uses the fan-out constraint to optimize designs better. Depending on

the value, Synplify Pro can perform replication and buffering. Properly setting this

constraint can significantly improve the design performance and routability. In some

cases where the global constraint value is not good for specific nets in the design, the

syn - maxfan attribute can be used to override the global value and control the fan-out

limit for those nets.

6.2.1.6 Pad Type

Xilinx provides a number of input and output pad types. The attribute xcqadtype

is used to select the pad type to be used for a pin. Different pad types have different drive

strength and slew value that can impact performance and board design.

6.2.2 Device and Technology Options

After defining the design constraints, the target technology and device options

such as the part, package, speed grade, and fan-out limit need to be specified based on

design goals. The Synplify Pro tool has unique mappers for each technology, and the

mappers have knowledge of the technology specific architectural features. In addition,

the compilation and mapping options such as I 0 insertion, retiming, pipelining need to be

specified.

6.2.3 Synthesis Run

After the input source files, design constraints and attributes, and device options

are specified, synthesis can be started. The area and speed results of the SynplifL Pro run

are saved into a log file (*.log). The log file contains an estimate of the operating

frequency of the design and an estimated number of device specific resources used. It

also reports a list of the critical paths in the design. When the difference between the

estimated area or speed and the original design goal is more than lo%, constraints need to

be adjusted to improve timing. In some cases, the HDL source code needs to be modified

to meet the area or timing requirements.

The following output is copied from the synthesis log file which shows the result

of synthesizing SXP 36x3G into the Xilinx FPGA. Although negative slacks are

reported, the subsequent Xilinx Place and Route step could continue because the

estimated delays of the violations are within 10% of the design goal.

Table 3 Synthesis Performance Summary

Starting
Clock

Requested
Frequency

Estimated
Frequency

Requested
Period

Estimated
Period

Slack Clock
Type

Clock
Group

150.0 MHz 155.4 MHz

78.0 MHz

declared

declared

default-clk
group-3

default-clk
group-4

hclk 15.0 MHz

pm8387-
core-inst.
Miss-inst.
Mi-m pif-
rd b[0]

5.0 MHz 287.7 MHz declared

Starting Requested Estimated Requested Estimated Slack Clock Clock
Clock I Frequency I Frequency (Period 1 Period I / Type 1 Group

pm8387- 5.0 MHz
core-inst.
hiss-inst.
hi-mpif-
wrb[O]

refclk-37mhz 37.5 MHz

50.2 MHz 200.000 19.923 180.077 declared default-clk
group-5

39.9 MHz 26.667 25.080 1.586 declared default-clk
group-8

refclk-75mhz 1 75.0 MHz 1 89.9 MHz 1 13.333 1 11 .I20 1 2.213 / declared I default-clk
group-9

- - -

rxclk-hl-i 150.0 MHz 138.1 MHz 6.667 7.241 -0.574 declared default-clk
group3

rxclk-h2-i 150.0 MHz 134.4 MHz 6.667 7.440 -0.773 declared default-clk
group-0

rxclk-tl-i 150.0 MHz 138.1 MHz 6.667 7.241 -0.574 declared default-clk
group-1

rxclk-t2_i 150.0 MHz 138.1 MHz 6.667 7.241 -0.574 declared default-clk
group-7

sxp36x3g- 1.0 MHz 472.2 MHz 1000.000 2.1 18 997.882 inferred Inferred-clk
to p-refclk group-15

System 1.0 MHz 80.6 MHz 1000.000 12.401 987.599 system default-clk
Qro'JP

Resource Usage Report for sxp36x3g-top

Mapping to part: xc2v8000ff 1 152-5
Cell usage:
DCM 5 uses
FD 9 uses
FDC 12792 uses
FDCE 18015 uses
FDC-1 99 uses
FDP 987 uses
FDPE 1621 uses
GND 164 uses
LD 1376 uses
MULT-AND 64 uses
MUXCY 1 76 uses
MUXCY-L 4284 uses
MUXF5 5635 uses
MUXF6 576 uses
MUXF7 32 uses
VCC 1 17 uses
XORCY 2767 uses
XORCY-L 20 uses
spr32x89 1 use
tpr-150x33 4 uses
tpr-16x34 4 uses
tpr-20x39 4 uses
trflOx129 1 use
trf-264x32 2 uses

110 primitives: 247
IBUF 105 uses
IBUFG 6 uses
IOBUF 6 uses
OBUF 77 uses
OBUFT 13 uses
OBUF F-24 ~ O U S ~ S
BUFG- 10 uses

SRL primitives:
SRL16 3 uses

I10 Register bits: 146
Register bits not including 110s: 33377 (35%)

Global Clock Buffers: 10 of 16 (62%)

Mapping Summary:
Total LUTs: 71 198 (76%)

6.3 FPGA Design Implementation

FPGA Design Implementation is the process of translating, mapping, placing,

routing, and generating a BIT file for the design. Xilinx ISE (v 6.2.031) is used for design

implementation.

6.3.1 NGDBuild

NGDBuild performs all the steps necessary to read a netlist file and creates an

NGD file describing the logical design. NGDBuild invokes a netlist reader program

called EDIF2NGD which imports the EDIF netlist (*.edf) generated during the synthesis

process. The program also needs the NCF file (*.ncf) which contains timing and layout

constraints that are forward annotated from Synplify Pro, the EDN netlist (*.edn)

reference memory model files generated by CoreGen, and the UCF User Constraint File

(*.ucf) that contains the user defined constraints such as timing and the pin location. The

output of EDIF2NGD is a Xilinx proprietary NGO file (*.ngo) which is a binary file

containing a logical description of the design in terms of its original hierarchy and

components. NGDBuild then reduces the logical components into Xilinx primitives by

merging components fiom other files and identifying appropriate system library

components and behavioural models. It then performs a Logical Design Rule Check

(DRC) on the converted design and outputs an NGD database file (*.ngd) and a BLD

report file (*.bld) that records all the warning and error messages during the build

process. The NGD databse file contains both a logical description of the design that is

reduced to lower level Xilinx Native Generic Database (NGD) primitives and a

description of the original hierarchy defined in the input netlist. It can then be mapped to

the desired device family.

6.3.2 MAP

Mapping is the second process in the FPGA implementation flow. In this process,

the MAP command is used. MAP first selects the target Xilinx device, package, and

speed and then performs a DRC check on the NGD file generated using the NGDBuild

program to check the design integrity. After deleting all unused components and nets, it

maps all basic logic elements into Xilinx components such as I 0 cells (IOBs) and Logic

Block Cells (CLBs) in the target Xilinx FPGA. It then processes all location and ti.ming

constraints, performs target device optimizations, and runs a DRC check on the resulting

mapped netlist. Finally it outputs a NGM file (*.ngm) which contains logical information

and physical information about how the design was mapped, a PCF file (*.pcf) which

contains constraint information specified during the design entry phase, an NCD file

(*.ncd) which describes the design in terms of Xilinx components such as CLBs and

IOBs, and a MRP file (*.mrp) which contains all the warning and error messages, details

about how the design was mapped and statistic about component usage in the design.

The following is the output in the MRP file which shows how SXP 36x3G is

mapped into the Xilinx FPGA:

Design Summary:
Number of errors: 0
Number of warnings: 93
Logic Utilization:

Total Number Slice Registers:
Number used as Flip Flops:
Number used as Latches:

Number of 4 input LUTs:
Logic Distribution:

Number of occupied Slices:
Total Number 4 input LUTs:

Number used as logic:
Number used as a route-thru:
Number used as Shift registers:

Number of bonded IOBs:
IOB Flip Flops:

Number of Block RAMS:
Number of GCLKs:
Number of DCMs:

Total equivalent gate count for design:
Additional JTAG gate count for IOBs:
Peak Memory Usage:

34,601 out of 93,184 37%
33,311
1,290
68,113 out of 93,184 73%

40,079 out of 46,592 86%
69,846 out of 93,184 74%
68,l I 3
1,730
3

235 out of 824 28%
152
24 out of 168 14%
10 out of 16 62 %
5 out of 12 41 %

6.3.3 Place and Route

Place and Route (PAR) is the third process in the Xilinx FPGA flow. It uses the

output NCD file from the previous MAP process to place and route the design. During

placement, PAR executes multiple phases of the placer and places components into sites

based on factors such as constraints specified in the PCF file, the number of connections,

and the available routing resources. After placement, PAR executes multiple phases of

the router that looks for a converging solution based on the desired methodology that

routes the design to completion and meets timing constraints. Once the design is fully

routed, a placed and routed NCD file is generated to be used by the bitstream generation

(BITGEN). An output PAR Report file is created to provide execution information that

records the steps taken as the program converges on a placement and routing solution.

For the SXP 36x3G emulation project, timing-driven PAR is used so that

placement and routing are executed according to timing constraints specified in the UCF

file at the beginning of the design process. It is set-up to run repeatedly until timing is

met.

The following is the device utilization summary copied from the PAR Report file:

Device utilization summary:

Number of External lOBs 235 out of 824 28%
Number of LOCed External lOBs 235 out of 235 100%

Number of RAMB16s
Number of SLICES

Number of BUFGMUXs
Number of DCMs

24 out of 168 14%
40079 out of 46592 86%

10 out of 16 62 %
Soutof 12 41 %

6.3.4 TRACE

TRACE is run after the PAR process to provide static timing analysis of the

design based on the timing constraint. It verifies that the design meets timing constraint

and generates a formatted ASCII file to report statistics on the design. It provides a

listing of timing compliance between the routed design and the timing constraint input,

and optionally the detailed net and path delay reports.

6.3.5 BitGen

BitGen is the Xilinx bitstream generation program. It takes the l l l y routed NCD

file from the PAR process and creates a bit stream binary file (*.bit) for FPGA

configuration. In addition to device-specific information fiom files associated with the

target device, the bit stream file contains all of the configuration information that defines

the internal logic and the interconnections of the FPGA. It is downloaded onto the FPGA

via various interfaces or it can be used to create a PROM file as described in the next

section.

6.3.6 PROMGen

For the SXP 36x3G emulation project, the FPGA is not configured directly using

the BIT file generated from the BitGen process. Instead, the BIT file is converted into a

PROM format file (*.exo) by PROMGen and downloaded over the USB interface.

PROMGen formats a BitGen-generated configuration bitstream BIT file into a

PROM format file. It contains configuration data for the FPGA device. PROMGen

converts a BIT file into one of three PROM formats: MCS-86 (Intel), EXORMAX

(Motorola), or TEKHEX (Tektronix) [15]. It can also generate a binary or hexadecimal

file format.

7 PROJECT CONTRIBUTIONS AND CHALLENGES

The FPGA emulation system described in this paper takes 18 man-months (3

people) to complete design, implementation, and testing. I was involved in the following

tasks of the project:

Modified the source HDL to map the real HDL into the FPGA.

Synthesized and built the FPGA load.

Modified the device testbench to run sanity simulations to verify the correctness

of the FPGA RTL.

Brought up the entire FPGA emulation platform.

Performed inter-operability testing with different SAS and SATA drives and

HBAs in different configurations.

Performed point testing to verify new hardware blocks in the device.

Supported firmware development.

An FPGA emulation platform requires significant effort to develop and is

particularly true for the SAS Expander device, which is the first device to be emulated

using FPGAs at PMC-Sierra.

Although the development flow was similar to a chip design flow, FPGA

emulation used different software synthesis and place and route tools and it was

challenging when there was no standard procedure to follow within the company. Each

iteration of FPGA synthesis and place and route took 6 hours to complete so a trial and

error approach was not acceptable. Each time the design failed to meet timing or route,

careful analysis has to be performed to minimize the number of iterations required. It

was even more challenging at the early phase of the project where RTL was not stable but

we wanted to provide a working FPGA emulation system for firmware and hardware co-

development.

The emulation environment consisted of both sofONare and hardware components.

Instead of integrating and enabling all the components at once and hoping everything

would magically work, the hardware blocks were brought up and tested one-by one. This

task required an understanding of the whole system and systematic debugging skills and

creativity were essential to the success of the project because visibility into the FPGA

was limited.

The tests that we chose to perform with the FPGA system also needed to be

carefully planned. Unlike simulation where we had many licenses, the FPGA emulation

resource was limited so in order to fully justifl the additional cost, we were required to

have a carehlly thought out test plan that was agreed upon by the design, firmware, and

validation teams. By running firmware to perform numerous tests with real HBAs and

SAS and SATA drives, we found about 20 hardware bugs. The major bug we found was

about data words being swapped within a cache line, which would have required silicon

re-spins. Overall, it was a challenging and rewarding experience for me.

8 CONCLUSIONS AND RECOMMENDATIONS

For the PM8387 SXP 36x3G device, the primary goal of FPGA emulation is to

provide a platform for more robust and thorough pre-silicon verification that will result in

a higher quality tape-out. It also provides a platform for pre-silicon validation and

concurrent hardware and firmware development.

In order to have successful FPGA emulation, it should be planned and integrated

into the design and development cycle as early as possible. Code changes specific for

FPGA emulation should be minimized. Replacement strategy for technology specific

implementations should be planned and clock and reset distribution should be well

thought out.

Also, FPGA emulation is very effective as part of the verification strategy.

Although FPGA emulation does not have the same flexibility and high-level

controllability as simulation, it is over 50,000 times faster than simulation and is perfect

for passing a lot of traffic and catching the comer cases that otherwise will not be

possible with simulation [8]. Good coordination between simulation and emulation

reduces redundant effort spent in the same area and provides more robust verification of

the pre-tapeout design. The FPGA emulation of SAS 36x3G was very successful with all

the major fimctions performing as planned.

One additional thing that FPGA emulation should include is formal verification.

Formal verification between the RTL source code and the final ASIC netlist has become

an integral part of the ASIC design process to ensure the correctness of the design after

synthesis, optimization, placement, and routing. However, the current process does not

forrnally verify the relationship between the HDL source code and the final FPGA

design. Although the possibility of having functionally different final FPGA design is

small, it is a good engineering practice to perform forrnal verification on the FPGA

design even though the design is not targeted for production.

Another limitation of the current FPGA emulation is that even though it is much

faster than simulation, it is still relatively slow compared to the actual chip. This causes

data synchronization problems when the FPGA prototype is being tested in a real system.

Problems like this prevent some features fkom being tested in the FPGA emulation

platform. One solution is to have a slow clock mode in the device such that rate

adaptation FIFOs are used to prevent data overrun and underrun problems and allow the

whole system to be slowed down. Although this will require the chip architects to take

FPGA emulation into account at the beginning of a project, the return on investment for

FPGA emulation will increase significantly with a more comprehensive platform being

provided.

REFERENCE LIST

Adaptec, Inc., Maximizing Server Storage Performance with PC1 ExpressTM and
Serial Attached SCSI, November, 2003, http://www.adaptec.com/worldwide/
product/markeditorial. html?sess=no&language=English+US&prodkey=infostar_s
as - article&type=White%2OPapers

Adaptec, Inc., Serial Attached SCSI: Meeting the Growing Needs of Enterprise
Storage, 2004, http://www .adaptec .co .uklworldwide/product/markeditorial. html?
prodkey=sas-storage-uk

American National Standard, Information Technology - Serial Attached SCSI -
1 .l (SAS-1 .I). Project T10/1601-D, Revision 7, November 19,2004

Cadence, Incisive Enterprise Palladium Series with Incisive XE Software
Datasheet, October, 2005, http://www.cadence.com/datasheets/incisive~
enterpriseqalladiurn.pdf

Maxtor, Serial Attached SCSI Architecture: Part 1 -Introduction, the SAS
Physical Layer and the SAS Phy Layer, December 2003

Mentor Graphics, ModelSim7s Industry-Leading VHDL Simulator Enables
Marconi to Develop 15-CPU, 272 ASIC, Distributed System Simulation
Environment, 200 1, http://www.model.com/news - events/pdf/gec~success.pdf

MIPS Technologies, Sead-2 TM Board User's Manual, Revision 01.02, March
3 1,2004, http://www.mips.com/content/Documentatio~IPSDocumentatiod
DevelopmentBoards/SEAD-2Boards/MD00064-2B-SEAD2-USM-O 1.02.pdR
agree=yes

Mitch Dale, The Value of Hardware Emulation, 2002

PMC-Sierra Inc., PM8387 SXP 36x3G 36-Port SAS Expander Short Form Data
Sheet, v3, May 25, 2005, http://www.pmc-sierra.com/products/details/pm8387/

PMC-Sierra Inc., PM8354 & PM8354A QuadPHYlG Data Sheet, Issue 5, May
2004, http://www.pmc-sierra.com/products/details/pm8354/

PMC-Sierra Inc., PM8380 QuadSMX 3G Data Sheet, Issue 3, 2004, http://www.
pmc-sierra.com/products/details/pm8350/

[12] Robert C. Elliott, Serial Attached SCSI, Revision 5, July 9,2003

[13] SimPOD, Enhanced FPGA Prototyping, 2003

[14] Synplicity, Synplicity-Xilinx High-Density Methodology, February 2000, http://
www.synplicity.com/literature/pdf/high~dense.pdf

[IS] Xilinx, Development System Reference Guide, 2005, http://toolbox.xilinx.coml
docsan~xilinx4/data/docs/dev/dev.html

[16] Xilinx, Virtex-I1 Platform FPGA User Guide, UG002 (v2.0), March 23,2005,
http://www.xilinx.com/bvdocs/userguides/ug002.pdf

[17] Xilinx, Virtex-I1 Platform FPGAs: Complete Data Sheet, DSO3 1 (v3.4), October
14,2003, http://www.xilinx.com/bvdocs/publications/ds03 1 .pdf

