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Abstract 

A number is normal to the base r if, in its expansion to that base, all possible digit strings 
of length t are equally frequent for each t .  While it is generally believed that many famil- 
iar irrational constants are normal, normality has only been proven for numbers expressly 
invented for the purpose of proving their normality. 

In this study we give an overview of the main results to date. 
We then define a new normality criterion, strong normality, to exclude certain normal 

but clearly non-random artificial numbers. We show that strongly normal numbers are 
normal but that Champernowne's number, the best-known example of a normal number, 
fails to be strongly normal. 

We also re-frame the question of normality as a question about the frequency of mod- 
, ular residue classes of a sequence of integers. This leads to the beginning of a detailed 

examination of the digits of square roots. 
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Chapter 1 

Introduction 

  mile Bore1 introduced normal numbers in a 1909 paper addressing the question of probabil- 
ity on a countably infinite sequence of trials [Ill. He defined normality, noted that rational 
numbers are not normal, and proved that almost all numbers are normal. 

A number is normal if, in its decimal expansion, all possible digit strings of length t are 
equally frequent for each t ;  below we give more precise and general definitons. 

While the question of normality has found a place in a number of elementary texts on 
number theory (see, for example, Hardy and Wright [21] or Niven [31]), there has been very 
little progress beyond Borel's original work. 

Progress has been limited to the discovery, or perhaps it would be better to say the 
invention, of new classes of normal numbers. The work of Champernowne [16], Stoneham 
[37] [38], and others is discussed below. 

But nothing is known about the normality of any algebraic irrational number nor of any 
well-known irrational constant. The only numbers known to be normal have been designed 
expressly for the purpose of proving their normality. 

Yet experimental evidence strongly suggests that many, if not all of the familiar irra- 
tionals are indeed normal (see for example, Berggren, Borwein and Borwein [7] or Borwein 
and Bailey [l3]). 



Chapter 2 

Normality 

2.1 Representation of a Real Number in an Integer Base 

Any non-negative real number Q may be written as a sum of digits expressed in terms of 
any integer base r, with r > 2: 

M 

We call this series the expansion or the representation of a to the base r7  or (more ar- 
chaically) in the base r, and for specified r and irrational cr it is unique. When Q is rational, 
then its representation in the base r may be given by a terminating or a repeating sequence 
of coefficients { a j ) .  If a has a terminating representation in the base r ,  then it also has a 
representation ending in a repeating sequence in which all digits are equal to r - 1; apart 
from this, the representation of a rational number is also unique in each base. 

To recover the familiar "decimal" representation of a from the above series, we write 

The term "decimal" properly refers to expansions to the base 10, but we will use the term 
loosely to refer to any base. In particular, we will call the point in this expansion the 
"decimal point" and not the "r-ary point." 

We will use the term string to denote a sequence { a j )  of digits. The string may be finite 
or infinite; we will call a finite string o f t  digits a t-string. 

A finite string of digits beginning in some specified position we will refer to as a block. 
An infinite string beginning in a specified position we will call a tail. 

Since we are interested in the asymptotic frequencies of digit strings, we will work in 
R/Z by discarding all digits to the left of the decimal point in the representation of a. If 
the real numbers a and p have the same fractional part, we write 

a - p (mod 1). 



Some of the difficulties in working in R/Z arise from the fact that the natural map taking a 
real number to its fractional part is not a ring homomorphism. In particular, multiplication 
is not preserved by the map. 

2.2 Normal Numbers 

The definitions given here are as given by Borel [ll] in 1909. 

Definition 1 A number a is  simply normal to the base r if every 1-string in its expansion 
to  the base r occurs wi th  a frequency approaching l/r. That  is, given the expansion {aj) of 
a to the base r ,  and letting mk(n) be the number of t imes that a j  = k for j 5 n, we have 

for each k E {O,l,. . . , r - 1). 

(It has no impact on the definition if we include the digits to the left of the decimal 
point, but following Borel they are understood to be excluded, that is, j, n > 0.) 

Many numbers are simply normal but have highly ordered digital representations. The 
simplest example is given by a = 1/3. In base 2, 

The strings 0 and 1 each occur with frequency 1/2. To exclude these simply normal rational 
numbers from consideration, Borel made a further definition: 

Definition 2 A number a i s  normal t o  the base r if the number r k a i s  simply normal t o  
the base r J ,  for every pair of integers j ,  k 1 1. 

It  is clear that no rational number is normal to any base. In any base r ,  the number will 
end in some repeating t-string, and the number will fail to be simply normal in the base r t .  

Before stating the first theorem, we give one more definition. 

Definition 3 A sequence of numbers { a j )  wi th  0 5 OL~ < 1 is  uniformly distributed in the 
uni t  interval i f  for every subinterval [c,  d ) ,  letting mIC ,d )  (n)  be the number of t imes aj falls 
i n  the interval [c,  d )  for j 5 n, we have 

lim m[c,d) (n)  = d - C .  
n+w n 

We extend this definition to say a sequence of real numbers {q) is uniformly distributed 
modulo 1 if the sequence of fractional parts of these numbers is uniformly distributed in the 
unit interval. 



Theorem 1 The following are equivalent: 

(1) The number a is normal to the base r. 

(2) Every t-string occurs with frequency l/rt in the representation o f a  to the base r .  

(3) The sequence {ria) is uniformly distributed modulo 1 for every integer j 2 0. 

Proof. The equivalence of (1) and (3) was proven by Wall in 1949 [39]. It is interesting 
to note that Wall had set out to show the equivalence of (1) and (2); but this was not proven 
until 1951 and 1953 in papers by Niven and Zuckerman 1321, and Cassels 1141. A number 
of authors apparently assumed the equivalence of (1) and (2) (including Hardy and Wright 
[21]; see Wall 1391) before the result had been established. The fact that (1) implies (2) is 
fairly trivial to show and was noted by Bore1 [ll] in his original discussion of normality; but 
the converse is anything but trivial. 

The proof that (2) implies (1) is elementary but involved, and may be found in Niven 

WI. 
In showing the equivalence of (2) and (3), we follow the proof given by Niven [31]. (Wall's 

original proof invokes the Weyl criterion, to be discussed below.) 
First, let the sequence {ria)  be uniformly distributed modulo I ,  and let ala:!. . . at be 

any t-string. From the definition of uniform distribution, the asymptotic frequency of {ria 
(mod 1)) in the interval (.ala2.. .a t ,  .ala2..  . a t  + l / r t )  is the length of the interval, r-t. 
But r J a  lies inside this interval (mod 1) if and only if the first t-block of the fractional 
part of ria is ala2. .  . a t ,  so the asymptotic frequency of this t-string is also r-t.  Thus, (3) 
implies (2). 

Conversely, suppose that (2) holds, so every t-string occurs with frequency l/rt in the 
base r representation of 0. We can divide the interval [O,1) into rm subintervals, each of 
length r-m. Each ria lies in the subinterval determined by its first t-block, which is the 
same as the j-th t-block of a; so by a reversal of the argument on the last paragraph, ria 
(mod 1) occurs in each subinterval with asymptotic frequency rPt .  Now consider an arbi- 
trary subinterval [b, c). We can approximate [b, c) from within by a set of the rm subintervals 
lying entirely inside [b, c), and from without by a set of subintervals completely containing 
[b, c). The asymptotic frequency of rja (mod 1) in each of the two sets of subintervals is 
equal to the sum of the lengths of the subintervals, and the frequency of the sequence in 
[b, c) is between its frequencies in the two sets. Since we can approximate the length of [b, c) 
as closely as we choose by taking m large enough, the asymptotic frequency on [b, c) is c - b. 
This shows that (2) implies (3). 

The equivalence of (1) and (2) is useful, since (2) gives a simpler criterion for deciding 
normality by examining the digits in the expansion of a number. However, Wall's proof 
that ( I )  and (3) are equivalent was the first, and perhaps to this date the only, major 
breakthrough in the study of normality of numbers. It allows us to decide questions of 
normality without examining the digits of an expansion at all. The progress made by Bailey 
and Crandall will be discussed below; but their progress depended on this fundamental 
result. 



The original concept of normality of numbers refers to the expansions of real numbers 
to some base, and looks at the asymptotic behaviour of the digits in the fractional parts 
of the numbers. Besicovitch [8] asked a similar question regarding the digits of integers. 
Obviously, since an integer has only finitely many digits to any given base, we can no 
longer speak of the asymptotic behaviour of the digits. But we can certainly ask questions 
about the relative frequencies of digits and strings of digits in the decimal representations 
of integers. Besicovitch made the following definitions for a natural number m written in 
the base T ,  

m = apap-1 . . . also, 

so the a j  are the digits of m in the base r : 

1. The number m is E-normal if the frequency of each digit O , 1 ,  . . . , r - 1 in the expansion 
of m differs from l / r  by less than E; and 

2. The number m is (k, &)-normal if the frequency of each k-string in the expansion of 
m differs from l / r k  by less than E .  

The concept of &-normality of integers, with respect to some base r ,  is precisely analogous 
to the concept of simple normality of real numbers, and (k, €)-normality is loosely analogous 
to simple normality with respect to the base rk.  Neither Besicovitch nor Hanson [20], who 
also worked with these ideas, took the next step, so for the sake of speculation we will take 
it here: 

Definition 4 A natural number m is (k, E)-normal up to N if it is (k, E ) -  normal for every 
positive integer k 5 N. 

We do not develop any properties of this definition here, but simply note that this is pre- 
sumably the closest one could come to an integer analogue of (non-simple) normality. 

Besicovitch proved that almost all integers are €-normal and (k, €)-normal for any choice 
of E and k, and further that almost all squares of integers are €-normal. This is analogous 
to Borel's result that almost all numbers are normal. 

Hanson made an interesting bridge between the concepts of normality and (k, 6)-normality. 
He proved the following: let {bj) be an increasing sequence of natural numbers, almost all 
of which are (k, E) normal to some base r ,  and let vj be the number of digits in the base r 

n 

representation of bj. Let S, = vj. Then the number 
j=1 

formed by concatenating the numbers in their sequence is normal to the base r if the number 
of digits in the base r representation of nvn is O(S,) as n -+ m. 

These results allow an easy new proof of the normality of Champernowne's constant; 
the proof will be given in the next chapter. 



2.3 The Measure of the Set of Normal Numbers 

In his 1909 paper, Bore1 [ll] proved that almost all real numbers are normal, in the sense 
that the set of non-normal numbers (mod 1) is of measure zero. 

Borel's proof is a simple application of the Central Limit Theorem. It is worth stating 
and proving Borel's result as he did, both for the beauty of the proof and to illustrate the 
probabilistic quality of Borel's approach. 

Theorem 2 Let the number a have the base 2 representation 

where each of the digits may  with equal probability 112 take o n  the the value 0 or 1. Then 
the probability that the ratio between the number of zeros and the number of ones i n  the 
first n digits approaches 1 as n approaches infinity is 1. Conversely, the probability that this 
ratio approaches some other limit or  diverges i s  zero. 

Proof. In the first 2n trials, or digits, the number of zeros is between n - X f i  and 
n + X f i  with approximate probability 

by an application of the Central Limit Theorem to a binomial distribution of 2n trials. This 
probability tends to 1 very rapidly as X increases. 

Now consider an unboundedly increasing sequence An such that 

. Xn lim - = 0. 
n-+CO f i  

An example of such a sequence would be An = log n. The probability that, in the first 2n 
digits, the number of zeros is between n - An+ and n + An+ is 

If we set qn = 1 - pn, then qn approaches 0 as n approaches oo. In fact, C qn is a 
convergent series, and therefore the probability that the number of zeros in the first 2n 
digits falls outside the interval (n - X n f i ,  n + X n f i )  infinitely many times is zero. 

This means that, with probability 1, after some n, the number of zeros is always between 
n - An fi and n + An fi. Then the ratio of zeros to ones is with probability 1, after this n,  
between 

n - X n f i  n + X n f i  and - 
n + X n f i  n - A n f i e  



That is, the ratio of zeros to ones is between 

1 - X n  I + %  X 

fi and -. 
I + &  1 - X n  

fi 6 

By our choice of A,, these ratios tend to 1. 

Bore1 proceeded from this to prove that almost all real numbers are normal to every 
base. Such a number normal to every integer base is called absolutely normal .  

The proofs of Hardy and Wright 1211 and Niven [31] were virtually identical, but fun- 
damentally different from Borel's proof. The theorem was equivalent to Borel's but the 
statement was different: 

Theorem 3 A l m o s t  every n u m b e r  i s  absolutely normal .  

Proof. Hardy and Wright proved first that almost every number is simply normal in 
any given base r. They made no appeal to the Central Limit Theorem; instead, they used 
an elementary but lengthy estimation argument. 

The set of numbers not normal to the base r is therefore of measure zero. Now the 
theorem follows from two applications of the fact that a countable union of sets of measure 
zero also has measure zero. (Borel's argument also makes use of this fact.) 

An entirely different proof was given by Riesz [33]: we follow the summary by Kuipers 
and Niederreiter [23]. The transformation 

is Lebesgue measure preserving (for a proof of this, see Dajani and Kraaikamp [18]), and 
therefore ergodic. Then, by the ergodic theorem, for any Lebesgue integrable function on 
[O, I ) ,  we have 

1 1 
lim - C f(rka) = 1 f (XPX 

n-oo n 
k=l 

for almost every real a .  If we take f to be the indicator function on the interval [a, b), this 
gives equidistribution of the sequence {rka) (mod I ) ,  and so almost every a isnormal. 

Wall [39] noted that the set of numbers not normal to any base is uncountably infinite, 
03 

although it is of measure zero. In particular, he gave the Liouville numbers a = C ajr-j! 
j=O 

(the a j  here can be taken from any finite set of integers, not necessarily (0, 1 , .  . . , r - 1) ) 
as an example of a set of numbers known to be uncountable and provably not normal. As 
an aside, he pointed out that this suffices to prove that the set of Liouville numbers is of 
measure zero. 

We offer a direct proof of this fact: 



Theorem 4 I n  any  base r ,  there are uncountably m a n y  non-normal numbers. 

Proof. Let S be any countably infinite set of numbers not normal in the base r .  Then 
S can be indexed by the integers, so S is a sequence aj with 

For simplicity, write crj with a tail of zeros where possible. 
Now construct the number ,O = .blb2b3.. . . by setting 

otherwise. (Here the notation cd denotes a 2-string, not a product.) 
The number ,O is not normal to the base r ,  since it contains no Zstrings other than 

00 and 01. However, our Cantor diagonalization guarantees that ,O is different from each 
element of S.  This shows that no countable set can contain all the numbers not normal to 
the base r ;  therefore the set of all such numbers is uncountable. 0 

There are a number of other results on the measure of sets of normal and non-normal 
numbers. We give only a few examples. 

In 1966, ~ a l i i t  [34] showed that the set of all simply normal numbers is of the first Baire 
category, and so is the set of all absolutely normal numbers. 

Cassels [15] proved that there are uncountably many numbers not normal to the base 
3 but normal in every base not a power of 3. Schmidt [35] generalized this result with the 
following theorem: 

Theorem 5 If the set of integers greater than 1 is  divided into two disjoint classes R and S 
such that, for each k ,  every power o f k  is  in the s a k e  class as k ,  then there exist uncountably 
m a n y  cr such that cr i s  non-normal to  every base in R but normal to  every base in S .  



Chapter 3 

Examples of Normality and 

3.1 Numbers Provably Not Normal 

As mentioned above, no rational number is normal in any base. 
The Liouville numbers of the class mentioned in the last chapter, of the form a = 

00 ~ ~ 

ajr-j!, are not normal in the base 7, for the simple reason that they contain too many 
j=O 
zeros to be normal. In fact, the limiting frequency of zeros in the base r representation of 
one of these numbers is 1. 

It is not hard to construct non-normal numbers. All one needs is a rule for writing down 
digits in a way that produces visibly too many or too few of some particular digit. As an 
example, consider the number 

This number is not normal, no matter what the base in which we choose to interpret the 
digits. 

However, suppose we read the above number in base 2. Now if we write the same number 
in any base not a power of 2, the normality of the number is an open question. 

As a converse to the state of affairs mentioned in the introduction, that no "naturally 
occurring" irrational number has been proven to be normal, it is also true that no "naturally 
occurring" irrational has been shown not to be normal. 

An amusing and beautiful construction of a class of abnormal numbers is given by Martin 

[281 

3.2 Numbers Provably Normal 

It was not until 1917, eight years after Borel's paper, that Sierpinski was able to produce 
the first example of a normal number [36]. (Lebesgue apparently constructed a normal 



number in 1909, but did not publish his work until 1917; the papers by Sierpiliski and 
Lebesgue appeared side by side in the same journal.) Sierpiliski's approach was to build a 
well-defined set of normal numbers, and then take the lower limit of that set; the lower limit 
was of necessity a normal number. Lebesgue's construction [24] was similarly intangible. 

However, Champernowne [16] produced a more tangible example of a normal number in 
1933. The Champernowne number is 

The number is written in the base 10, and its digits are obtained by concatenating the 
natural numbers written in the base 10. This number is probably the best-known example 
of a normal number. It is the only example given by Hardy and Wright [21], but without a 
proof of its normality. Niven [31] also uses this example and proves its normality, giving a 
proof more direct than Champernowne's. 

Borwein and Bailey [13] give a nice way of representing Champernowne's number: let 
f (n) = x [10g,~f, where [PI is the integer part of P. Then 

l<j<n . 

is Champernowne's number. 
We give a simple proof of the normality of Champernowne's number, based on the results 

of Besicovitch and Hanson mentioned in the last chapter. 

Theorem 6 Champernowne's number is nornal to the base 10. 

Proof. Champernownes's number is given in the base 10 by 

a = .blb2b3 . .  . ;  

where bj = j, so the digits of ai are the natural numbers concatenated in the order of their 
occurrence and written in the base 10. Then by Besicovitch's result, almost every bj is (k, E ) -  

normal for any k and E .  Since the {bj) form an increasing sequence, one of the conditions 
of Hanson's theorem is met. 

Now letting vj be the number of digits in the base 10 representation of j, we have 
vlOk-l = k. Letting S I O k - l  be the sum of the first lok - 1 values of vj, we have 

and the second condition of Hanson's theorem is met. 



There is an even easier ptoof of this result, mentioned below. 
The Champernowne number is transcendental; this is a corollary of a more general result 

of Mahler [28] which is given below. 
Champernowne made the conjecture that the number obtained by concatenating the 

primes, a = .2 3 5 7 11 13..  ., was normal in the base 10. Copeland and Erdos [17] proved 
this in 1946 , as a corollary of a more general result: 

Theorem 7 Let { a j )  be a n  increasing sequence of integers such that for any 8 < 1 we have, 
for N sufficiently large, that the number of aj  less than N is greater than No. Then if the 
{ a j )  are written in the base r ,  the number .alanas. .  . is normal i n  the base r .  

The proof of this theorem is based on Besicovitch's concept of (k, E) normality, as is our 
proof of Theorem 4. 

The corollary follows since the prime number theorem implies that for any c < 1, if 
x(N) is the number of primes not greater than N ,  T(N) > cN/ log N if N is large enough. 
Since cN/ log N > Ne for any 8 < 1, for sufficiently large N: the sequence of prime numbers 
satisfies the condition of the Copeland-Erdos theorem. 

The number formed by concatenating the primes is commonly called the Copeland-Erdos 
number. 

With the Copeland-Erdos theorem in hand, the normality of Champernowne's number 
follows as a trivial corollary. 

In their paper on the concatenated primes, Copeland and Erdos conjectured that, if p(x) 
is a polynomial in x taking positive integer values whenever x is a positive integer, then the 
number 

.P(l)P(2)~(3) - .  . 
formed by concatenating the base 10 values of the polynomial at x = 1,2,3:.  . . is normal 
in the base 10. This result was proven by Davenport and Erdos in 1952 [19]. This fully 
generalized Besicovitch's early result that the number a = .1 4 9 16 25.. ., formed by 
concatenating the squares of the positive integers, is normal in the base 10 [8]. 

In 1937 Mahler [28] showed that the decimal 

formed by concatenating the values of a non-constant polynomial p, if these values are 
themselves integers, is a transcendental number. The transcendence of Champernowne's 
number is an immediate consequence. 

In contrast to these examples of normality constructed by concatenation, Stoneham 
constructed a number of classes of normal numbers based on the extension of the concept of 
( j ,  &)-normality to rational fractions (see, for example, [37] or [38]). Korobov [25] constructed 
provably normal continued fractions. 

A Bailey-Borwein-Plouffe-type formula: or BBP-type formula, is an expression 



where p and q are polynomials. Such formulas arose as a method of calculating isolated 
digits of T, log 2, and other constants [4]. 

In 2003 Bailey and Crandall proved normality to the base r for a class of numbers with 
BBP-type formulas [6]. We give a simpler result of Borwein and Bailey [13]: 

Theorem 8 For r > 1 and c coprime to r, the generalized Stoneham number 

is normal in the base r .  

The proof of this theorem is much easier than the proof of the stronger result given by 
Bailey and Crandall; it relies on Roth's Theorem and the Hot Spot Lemma (see below). On 
the other hand, this theorem can be derived from Bailey and Crandall's result as an easy 
corollary. 

Another corollary of Bailey and Crandall's result is that the generalized Korobov number 

is normal in the base r when r, c, d > 1 and r, c are coprime. Several similar classes of 
numbers are shown to be normal as a corollary of the general result. 

3.3 Numbers Believed to be Normal 

The concept of normality as defined by Borel is explicitly related to randomness in the 
digits. In fact, Borel was thinking of numbers arising from a random sequence of digits: one 
builds such a number, say in the base 10, by drawing one of 10 balls numbered from 0 to 
9 out of a hat, recording the digit on the ball, replacing the ball, and continuing forever. 
Then with probability 1, such a random number will be normal to the base 10 [ l l ] .  

A number like Champernowne's number is obviously highly patterned, even though it 
is normal. 

On the other hand, to this time nobody has been able to discern any pattern in the 
expansions of naturally occurring irrational constants like T, e ,  a, and log 2 in any base. 
Statistical tests performed so far on the expansions have been consistent with random be- 
haviour. 

For example, Kanada [22] computed the first 200 million digits of .ir in the base 10, and 
found the relative frequency of each digit to be close to .l, with a X2 value of 4.13; a X 2  

value this low indicates that the observed frequencies are close to the frequencies expected 
in a number with randomly chosen digits. More recently Kanada computed the first trillion 
decimal and hexadecimal digits of T, and found relative frequencies of the single digits in 
keeping with the hypothesis that T is simply normal to the bases 10 and 16. (This result is 
quoted by Borwein and Bailey [13].) 



Bailey, Borwein, Crandall and Pomerance [3] showed, in 2003, that the asymptotic 
number of occurrences of the digit 1 in the first N digits of the binary expansion of any real 
algebraic irrational number a is at least C N ~ ,  where D is the degree of a and C is a constant 
depending on a.  While this result is remarkable, it is far short of the asymptotic number 
of occurrences N/2 to be expected if algebraic irrationals are indeed normal numbers. 

Beyer, Metropolis and Neergard [lo] applied three statistical tests to the digits of irra- 
tional square roots in various bases and found nothing inconsist,ent with the hypothesis of 
normality. 

There may be subtle or rare instances of non-normality which would be difficult to detect 
by statistical methods. On the other hand, an apparent lack of randomness in the digits of 
a number is not in itself proof of a lack of normality, since even truly random numbers will 
occasionally fail randomness tests: a 95% level of confidence should only be achieved 95% 
of the time. 



Chapter 4 

Strongly Normal Numbers 

4.1 Binomial Normality 

It is ironic that most, if not all, of the numbers known to be normal have highly patterned 
digital representations. For example, while Champernowne's number in the base 2, 

is normal to the base 2, there is an increasing excess of ones in the expansion. This does 
not prevent the asymptotic frequency of the digit 1 from approaching 1/2. However, the 
convergence to the asymptotic frequency is slower than one would expect to see in a typical 
binomial sequence of zeros and ones. 

On the other hand, the distribution of digits in naturally-occurring irrational numbers 
like .rr and fi is exactly what one would expect to see in a binomially random number. 

Borel's original definition of normality has the advantage of great simplicity. None of 
the current profusion of concatenated monsters were known at the time, so there was no 
need for a stronger definition. 

However, one would like a test or a set of tests to eliminate exactly those numbers that 
do not behave in the limit in every way as a binomially random number defined as follows. 

Definition 5 Let each of the  numbers  al ,az,  a3,. . . be chosen with equal probability from 
the set  of integers (0, 1, . . . , r - 1) , and let a = .alaza3.. . be the  number represented in 
the  base r by the concatenation of the digits a j ,  j = 1, 2 , 3 , .  . .. T h e n  a i s  a binomially 
random number in the base r .  

This leads to the following heuristic meta- definition. 

Definition 6 A number  i s  binomially normal t o  the base r zf it passes every asymptotic 
test  o n  the frequencies of the digits that  would be passed wi th  probability 1 by a binomially 
random number.  



Borel's test of normality is passed with probability 1 by a binomially random number, 
so it would certainly be passed by a binomially normal number as well. However, there are 
many tests that would be failed by some normal numbers, but passed with probability 1 by 
a binomially random number. 

It would be worthwhile to make this meta-definition concrete by finding an asymptotic 
test that was passed by all binomially normal numbers, and only by the binomially normal 
numbers. 

4.2 Strong Normality 

We were able to carry out part of the program suggested in the last section. 
In this section, we define strong normality, and in the following sections we prove that 

almost all numbers are strongly normal and that Champernowne's number is not strongly 
normal. 

The definition is motivated as follows: let a number cr be represented in the base r ,  and 
let mk(n) represent the number of occurrences of the kth 1-string in the first n digits. Then 
cr is simply normal to the base r if 

as n + w, for each k E (0, 1, . . . , r - 1). But if a number is binomially random, then the 
discrepancy mk(n) - n / r  should fluctuate, with an expected value of 6. 

The following definition makes this idea precise: 

Definition 7 For cr and mk(n) as above, cr i s  simply strongly normal t o  the  base r if 

and 

lim sup b k b )  - n/rI2 - = w  
n+m pnl-~ 

for any  E > 0. 

The constant ( r  - l ) / r 2  is derived from the variance of the binomial distribution, but its 
value is of no importance. It can be replaced by any arbitrary constant without changing 
the definition. 

Definition 8 A number is  strongly normal t o  the  base r if i t  i s  simply strongly normal  t o  
each of the bases r j ,  j = 1 ,2 ,3 , .  . .. 



4.3 Almost All Numbers are Strongly Normal 

The proof that almost all numbers are strongly normal is based on Borel's original proof 
[ll] that almost all numbers are normal (see the proof of Theorem 2 above). 

Theorem 9 Almost all numbers are simply strongly noma l  to any integer base r > 1. 

Proof. Let a be a binomially random number in the base r ,  so that the nth digit of 
the representation of a in the base r is, with equal probability, randomly chosen from the 
numbers 0, 1, 2, . . ., r - 1. Let mk(n)  be the number of occurrences of the 1-string k in the 
first n digits of a. 

Then mk(n) is a random variable of binomial distribution with mean n l r  and variance 
n ( r  - 1) 

. As n + co, the random variable approaches a normal distribution with the same 
r 2  

mean and variance. 

is the probability that 
n 1 mk (n) - ; I > B &&'I4, 

where B = J T l r ,  and this probability rapidly approaches zero as n -+ co. 
With probability 1, only finitely many mk(n)  satisfy the inequality, and so with proba- 

bilitv 1 

lim sup (mk(n) - nIr l2  < 
n +, y n l + ~ / 2  

We have 

lim sup = lim sup 
n+cc Fnl+~ n+cc 

The first factor in the right hand limit is less than 1 (with probability 1): and the second 
factor is zero in the limit. 

With probability one, this supremum limit is zero, and the first condition of strong 
normality is satisfied. 

The same argument, word for word: but replacing 1 + el2 with 1 - ~ / 2  and reversing 
the inequalities, establishes the second condition. 

As with the corresponding result for normality, this is easily extended. 

Corollary 10 Almost all numbers are strongly normal to any base r .  



Proof. By the theorem, the set of numbers in [O,1) which fail to be simply strongly 
normal to the base r j  is of measure zero, for each j .  The countable union of these sets of 
measure zero is also of measure zero. Therefore the set of numbers simply strongly normal 
to every base r j  is of measure 1. 

Corollary 11 Almost all numbers are strongly normal to every base. 

4.4 Champernowne's Number is Not Strongly Normal 

We begin by examining the digits of Champernowne's number in the base 2, 

When we concatenate the integers written in base 2: we see that there are 2n-1 integers of 
n digits. As we count from 2n to 2n+1 - 1, we note that every integer begins with the digit 
1, but that every possible selection of zeros and ones occurs exactly once in the other digits, 
so that apart from the excess of initial ones there are equally many zeros and ones in the 
non-initial digits. 

As we concatenate the integers from 1 to 2k - 1, we write the first 

digits of y. The excess of ones in the digits is 

The locally greatest excess of ones occurs at the first digit of 2k, since each power of 2 
is written as a 1 followed by zeros. At this point the number of digits is (k - 1 ) 2 ~  + 2 and 
the excess of ones is 2" That is, the actual number of ones in the first N = (k - l)21c + 2 
digits is 

ml(N)  = (k - 2)2"l + 1 + 2k. 

This gives 

and 

Thus, we have 

The limit of the right hand expression as k + oo is infinity for any sufficiently small positive 
E .  Since the left hand limit is the first supremum limit in our definition of strong normality, 
we have proven the following theorem: 



Theorem 12 Champernowne's number in the base 2 is not strongly normal to the base 2. 

4.5 Strongly Normal Numbers are Normal 

If any strongly normal number failed to be normal, then the definition of strong normality 
would be inappropriate. Fortunately, this does not happen. 

Theorem 13 If a number cu is simply strongly normal to the base r ,  then cu is simply normal 
to the base r .  

Proof. It will suffice to show that if a number is not simply normal, then it cannot be 
simply strongly normal. 

Let mk(n )  be the number of occurrences of the 1-string k in the first n digits of the 
expansion of cu to the base r ,  and suppose that cu is not simply normal to the base r .  This 
implies that for some k 

Then there is some Q > 1 and infinitely many ni such that either 

rmk(ni) > Qni 

If infinitely many ni satisfy the former condition, then for these ni, 

where P is a positive constant. 
Then for any R > 0 and small E ,  

n2 P2 
(mk(n)  - ? I 2  2 limsup R - p -  = m, limsup R nl+F 

71-03 71-03 

so cu is not simply strongly normal. 
On the other hand, if infinitely many ni satisfy the latter condition, then for these ni, 

and once again the constant P is positive and the rest of the argument follows. Cl 

The general result is an immediate corollary. 

Corollary 14 If a is strongly normal to the base r ,  then cu is normal to the base r 



4.6 No Rational Number is Simply Strongly Normal 

A rational number cannot be normal, but it will be simply normal to the base r if each 
1-string occurs the same number of times in the repeating string in the tail. However, such 
a number is not simply strongly normal. 

If cr is rational and simply normal to the base r ,  then if we restrict ourselves to the first 
n digits in the repeating tail of the expansion, the frequency of any 1-string k is exactly 
n l r .  The excess of occurences of k can never exceed the constant number of times k occurs 
in the repeating string. Therefore, with mk(n)  defined as before, 

n 2  
lim sup (mk(n) - --) = Q, 

n-co 

with Q a constant. 
But 

K 
lim sup -- = 0 

n-03 n l - - ~  

for any K if E is small, so cr does not satisfy the second criterion of strong normality. 

Simple strong normality is not enough to imply normality. As an illustration of this, 
consider the number 

cu = .01 0011 000111.. . ,  
a concatenation of binary strings of length 21 in each of which 1 zeros are followed by 1 ones. 
After the first I - 1 such strings, the zeros and ones are equal in number. and the number 
of digits is 

1-1 

C 2 k  = 21(1 - 1). 
k= 1 

After the next 1 digits there is a locally maximal excess of 112 zeros and the total nurnber of 
digits is 212 - 1. Thus, the greatest excess of zeros grows like the square root of the number 
of digits, and so does the greatest shortage of ones. It is not hard to verify that cu satisfies 
the definition of simple strong normality to the base 2. However, cr is not normal to the 
base 2. 

4.7 Further Questions 

We have not produced an example of a strongly normal number. Can such a number be 
constructed? 

It is natural to conjecture that such naturally occurring constants as the real algebraic 
irrational numbers, T ,  e: and log 2 are strongly normal. 

It is easy to construct normal concatenated numbers which, like Champernowne's num- 
ber, are not strongly normal. Do all the numbers 



where p is a polynonlial taking positive integer values at each integer, fail to be strongly 
normal? Does the Copeland-Erdos concaOenation of the primes fail to be strongly normal? 



Chapter 5 

Integer Conditions for Normality 

5.1 Modular Normality 

The question of normality of real algebraic irrationals can be re-framed as a question in the 
integers. This approach is based on a simple observation which we state as a lemma. 

Lemma 1 Let the fractional.part of a have the base r expansion 

( a )  = .alanag . . . . 

and [rma]  be the integer part of r m a .  Then  

a, = [rma]  (mod r ) .  

Proof. Multiplying a by rm has the effect of moving the decimal point r n  places to the 
right, so the last digit of [rma]  expressed in the base r is a,. The last digit of an integer 
written in the base r is its residue class modulo r .  

This has an immediate consequence of enough interest that we state it: too, as a lemma. 

Lemma 2 The number of occurrences of k i n  the first n digits, after the decimal point, of 
the number a written i n  the base r is equal to  the number of occurrences of the k t h  residue 
class (mod r )  i n  the first n terms of the integer sequence ( [ r j a ] ) .  

Now we are in a position to give modular equivalents to the original definitions of nor- 
mality. 

Theorem 15 (1) The real number a is simply normal to the base r if and only if the 
frequency of the k t h  residue class modulo r i n  the integer sequence { [ P a ] )  approaches l / r  
as n + m, for every I; E (0,. . . : r - 1 ) .  



The number a is noimal  t o  the base r if and only if the the frequency of the k t h  
class modulo r j  i n  the the sequence { [ r j n a ] )  approaches l l r j  as n -+ co, for every 
. . . , r J  - 1 )  and every j. 

(3) The number a is  absolutely normal if and only if the frequency of the k t h  residue class 
modulo r i n  the sequence { [ r n a ] )  approaches l / r  as n --+ co, for every k E ( 0 : .  . . , r - 1 )  
and every r .  

Proof. The theorem follows from the second lemma and the original definition of each 
of the three types of normality. 

5.2 Normal Sequences in an Integer Modulus 

The following definition, motivated by the foregoing, will be useful. 

Definition 9 Given a sequence of integers {D,) and a n  integer r > 1, let mk(n)  be the 
number of occurrences of the k t h  residue class modulo r i n  the first n elements of the se- 
quence. Then  {D,) is a simply normal sequence modulo r if the frequency mk(n)/n of  the 
k t h  residue class approaches l / r  as n approaches m. 

We also define normality of a sequence modulo r ,  and absolute normality of a sequence, 
in the appropriate ways. 

It should be noted that this definition of normality on a sequence of integers is funda- 
mentally different from the definition of ( j ,  &)-normality on a single integer. 

5.3 An Integer Criterion for Normality of Square Roots 

In this section we consider the irrational square roots 4, where c is a positive non-square 
integer . 

Theorem 16 For each positive .integer n, let A; be the greatest square integer less than 
rZnc. Then  4 is simply normal t o  the base r if and only if the sequence of integers A, is 
a simply normal sequence modulo r .  

Proof. For each n, A, = [ r n 4 .  The theorem is evident from the first part of Theorem 
15 and the definition of a simply normal sequence. . 

This suggests a new line of attack on the question of whether irrational square roots are 
normal. 

For a given base r and non-square integer c ,  we examine the behaviour of the squares 
nearest to  rZnc. For each n ,  let A, be the greatest integer such that A: < rZnc,  and let 
B, = A, + 1 , so Bi is the least square greater than r2,c. 



We now restrict ourselves to the case r = 2. If 

then A,+l = 2An + 1; otherwise, A,+l = 2An. 
2 Let s, = r2,c - A,, and t ,  = B: - r2,c. We have B: - A: = s, + t ,  = 2An + 1. 

As we pass from n to n + 1, there are two cases. First, suppose s, > t,, so B: is the 
best square approximation to r2,c. Then 

A,+i = 2An+ 1: 

Bn+l = 2Bn, 

tn+l = 4tn, 

and 

On the other hand, if A: is the closest square to r2,c, then s, < t,; note that s, < t ,  + 2, 
since s, cannot equal t ,  + 1. In this case, 

and 

A square root algorithm published on the Internet by Weisstein [41] is very similar to 
our algorithm and is likely to be based on the same principle. 

The map 

is invertible. The easiest way to generate the inverse map is to note that AnP1 = An/2 if 
A, is even, and otherwise An-1 = ( A ,  - 1 ) / 2 .  

The smaller of the two errors {s,, t,) grows exponentially by powers of 4, while the larger 
error grows exponentially by powers of 2. The closest square approximants will remain on 
the same side of (above or below) the sequence r2,c until the smaller error overtakes the 
larger one, at  which point the nearest square switches to the other side of r2,c. When the 
smaller error is very small, the larger error is close to 2An = 2r2,c and the closest square 
switches sides in at most n steps. 

Can questions about the behaviour of the sequence {A,) be framed precisely enough to 
give a useful approach to the question of normality? 



5.4 The Binary Digits of fi 
In this section we offer the simplest concrete example. Take r and c both to be 2, so A: is 
the greatest square less than 22nS1, and 

The equation 
22n+1 + t, = B; 

immediately implies that t, cannot be a square for n > 3. 
Now let us examine the equation 

A: + sn = 22n+1 (mod P), 

where p is any 'odd prime. If p divides s,, then 2 must be a quadratic residue modulo p. 
This implies that p = f 1 (mod 8). The same argument applies to t,; so all odd prime 
divisors of s, and t, are congruent to f 1 (mod 8). Since s, + t, grows exponentially, the 
values of these two error terms are constrained to an increasingly sparse set of integers. 

Beukers has shown [9] that if x, n, and D are integers, and x2 + D = 2,, then 

This implies that any value of t, or s, can only occur finitely many times. However, the 
lower bound on their values grows like 2,/1•‹, so the longest possible subsequences in which 
A, has the same parity are still approximately of length n. However, as n increases, the 
rising lower bound on values of t, and s, also has the effect of making the possible values 
for these errors an increasingly sparse set. 

According to Lemma 1, the residue class of A, modulo 2 gives the nth digit of the binary 
expansion of a. If the greatest square less than 22nS1 is even, the nth digit is 0; otherwise, 
it is 1. 

As an amusing aside, we present a way ofcalculating an isolated binary digit of a. To 
find the nth digit, we simply need to find the greatest square less than 22nS1. 

A crude way to find A, in log n/  log 2 steps is given here. Let Q be a starting estimate 
for A,, and for certainty set Q = 2, and P = 22n+1. Then 

is an estimate of k, the actual number of squares greater than Q and less than P. 
Replace Q with the new estimate Q + [k] and repeat. When ,k < 1, we are done. 



This is a variant of Newton's method. It is not fast, since each step involves a squaring 
and a division of large numbers when n is large. 

The same method can be used to calculate an isolated digit of any root in any base. If 
A, is expressed in the base T then the claim that we have calculated an isolated digit of the 
root is a hoax, since all the earlier digits have simply been shifted into the integer A,. But 
all we actually need to know is the residue class of A, modulo r ,  and we can find this in 
any base. If our working base for the calculation is not r ,  then we really have not explicitly 
calculated any of the earlier digits in the process of finding the nth digit. 

Once we have found A,, it is easy and fast to calculate a string of digits before or after 
the nth digit, using the map cp of the last section. 

5.5 Further Observations on the Map cp Generating the 
Binary Digits of fi 

In this section we look again at the map cp as discussed in Section 5.3. It will be clear that 
it suffices to consider cp as a map on the pairs (s,, t,), since the numbers A,, 22nS1, and B, 
can be generated from these. 

Given a positive non-square integer c, we set A. to be the greatest integer such that A: 
is less than c, and put Bo = A. + 1. Then so  = c - A. and to = Bo - c. Now we can use 
the map cp to generate the sequence of pairs (s,, t,) : 

As in the last section, if we consider 

A: + s, r 22nc (mod p )  

for each odd prime p not dividing c, we see that p can only be a factor of s, if c is a quadratic 
residue modulo p. 

The smaller of {s,, t,) grows at least twice as rapidly as the larger, until their relative 
sizes are reversed. It takes fewer than n steps for the smaller quantity to overtake the larger. 

One would like to  say something about the relative frequency of the odd and even values 
of s,, since when s, is even the nth digit of fi is also even. The discussion of the last 
section makes it clear that we can have runs of digits O(n) in length. In fact. if the digits 
have pseudorandom properties then we want to see occasional long runs of the same digit . 
so it is encouraging that we cannot preclude them. On the other hand, we want s, to have 
equally frequent and lengthy runs in each parity, and so far we have no inkling of a way to  
approach this. 

Each time s, changes parity, the modular history appears to be erased. There is an 
easily comprehensible pattern while s, is smaller and growing by a factor of 4 with each 
iteration, but the modular trajectory when s, is larger and odd is difficult to understand. 

It is the combination of modular behaviour and size comparison that makes the problem 
both interesting and intractable. 



The parity of sn changes when the relative magnitudes of s, and t, reverse. Each time 
this happens, there is an "overshoot," and the smaller of the two may start the next part 
of its trajectory much smaller or only slightly smaller than the larger. One would like to 
predict the average relative magnitude of the overshoot, because this is what tells us how 
long s, dwells in the same parity. 

It  is tempting to think that one could make a precise enough investigation of the tra- 
jectories of s, and t ,  to be able to say something about the behaviour of the map p. This 
avenue may be no more promising than any other, but perhaps the map has some intrinsic 
interest. 

By way of illustration, we give the first few iterations of s, and t, for c = 2. The table 
also shows odd prime factors, and a, is the nth binary digit of A. 

factors of s, factors of t, 



We also tabulate the first few iterations for c = 3; here a, is the nth binary digit of d. 

factors of s, 

3 
3 

23 
3, 13 

47 
4 7 

311 
359 
359 

3, 733 
13, 131 
13, 131 
13, 131 

3, 11, 1583 
11, 8677 

3, 23, 2243 
59, 2797 
59, 2797 

824183 
824183 

factors of t ,  

5.6 Normality Criteria for kth Roots 

The nth digit of in the base r is given by the residue class modulo r of A,, where A: is 
the largest integer lcth power less than rknc. 

This gives rise to normality criteria analogous to the criteria for square roots. 

5.7 A General Integer Criterion for the Normality of Real 
Algebraic Irrationals 

The approach we used for square and lcth roots can be generalized. 
Let cr be a real algebraic irrational number, and let crj be the conjugates of cr, so 



is the minimal polynomial of a ,  with a = ai for some i. Then for any integer b # 0, 

is the minimal polynomial of ba. 
In particular, we can fix a base r and define the sequence of polynomials 

Then for each n,  p, is the minimal polynomial of P a .  
If we write 

then it is clear that 

Now we assume, without loss of generality, that cr > 0, and let g be the number of real 
roots of p(z). We index.the real roots a l ,  . . ., ag of p(z) from least to greatest, noting that 
p(z) has no multiple root and that a = cri for some i. 

Let 6 be the least difference between two successive roots. Then for some N ,  rN6 > 1, 
and for every n 2 N there is at least one integer between every successive pair of roots of 
p,(z). In fact the number of integers between each such pair of roots grows like rn. 

For n 2 N, the real roots of p,(z) partition the integers into g + 1 disjoint sets. We let 
S,,l be the set of integers less than rncrl, S,,j be the set of integers between crj-1 and a2 
for 1 < j 5 g ,  and Sn,g+l be the set of integers greater than erg. 

Then we define A, to be the greatest element of the set S,,,, so A, is the greatest integer 
less than rncr. 

In light of the last statement, our definition of A, might seem needlessly cumbersome. It 
is m 0 t i ~ a t e d . b ~  the observation that the sign of p,(z) changes at each root, so the elements 
of each set Sn,j have the same sign. For sufficiently large n,  we note that A, is the last 
integer before the ith sign change in the values of p,(a) as a E Z increases. 

From the first lemma, it follows that the residue of A, mod r is the nth digit of a in the 
base r. 

Theorem 17 Let cr > 0 be a real algebraic irrational number, let the base r be fixed, and 
let p, and A, be defined as above for all n greater than some N. Then a is normal to the 
base r if and only if the sequence {A,) is normal mod r. 



Proof. The theorem follows from the first part of Theorem 15, the definition of a normal 
sequence modulo r ,  and the comment preceding the statement of the theorem. 

The sequence {A,} is uniquely dependent on the real irrational algebraic number a and 
the base r. The normality of the sequence {A,) modulo r is equivalent to the normality 
of a to the base r ,  and there is a long-standing hypothesis that every such a is normal to 
every base r. But these sequences {A,} suggest a more general hypothesis. 

Hypothesis 1 Given a real algebraic irrational number a ,  and an integer base r > 1, let 
the sequence of integers {A(a ,  r),) be the sequence {A,) as defined above. Then for every a 
and r,  the sequence {A(a ,  r),} is a normal sequence modulo b for every integer base b > 1. 

Some natural questions arise about the sequences {A(a ,  r),}. The residues of such a 
sequence modulo b can generate a number ,B written in the base b: we simply let the residue 
of A(a, T ) ~  modulo b be the j-th digit of ,B. By Hypothesis 1, we surmise that ,B is normal 
in the base b. But is ,B always an algebraic number? If not, what conditions are necessary 
for p to be algebraic? 

If any such ,B failed to be algebraic, then we would have a new class of transcendental 
numbers generated directly from the digits of algebraic numbers. 



Chapter 6 

Lines of Inquiry 

The great open question is the normality, or lack of normality, of all the well-known irrational 
constants. Bore1 has conjectured, for example, that all real algebraic irrational constants 
are normal to every base [12]. There is no reason to believe that numbers like ./r, e ,  and 
log 2 are not normal (see [13] or [5]. 

There are a number of results about normality which may prove useful in future inves- 
tigations. 

Since the question of normality of a in the base r turns on the equidistribution of the 
sequence {r'cu), we give Weyl's criterion for equidistribution: 

Theorem 18 The sequence {aj) is uniformly distributed m.odulo 1 if 

for every positive integer m as n --+ m. 

Weyl proved this in 1916 [40] and went on to obtain the classic result that the number 
cu is irrational if and only if the sequence {ja) is uniformly distributed modulo 1. 

Wall [39] showed that if cu is normal to the base r ,  then so are a + q and qcu for any 
rational q. 

Kuipers and Niederreiter [23] gave the following criterion for normality: 

Theorem 19 The number cu is normal to the base r zf there exists a constant C such that 
for any nonnegative continuous function f on  [O,l], 

where rjcu is interpreted modulo 1 



In particular, f (x) can be chosen arbitrarily close to the indicator function on a subin- 
terval [c, dl of [ O , l ] ,  and this yields what Borwein and Bailey [13] call the "hot spot lemma:" 

Corollary 20 The number a is  normal in the base r if and only if there exists a constant 
C such that for every subinterval [c, d] of [0, 11, 

where x is the indicator function o n  [c, dl, and r j a  is  interpreted modulo 1. 

The remarkable effect of this corollary is that, for the sequence { r j a } ,  bounded density 
modulo 1 implies uniform density modulo 1. 

Bailey and Rudolph and Bailey and Misiurewicz have posted "stronger" versions of the 
hot spot lemma, a s  yet unpublished. 

Bailey and Crandall [5] made the following hypothesis: 

Hypothesis 2 Let t j  = - where p and q are polynomials with integer coeficients, and 
4') ' 

degp < degq. Let r E Z and a0 = 1. Then the recursively-defined sequence 

OL~ = r q - ~ +  t j  (mod 1) 

either has a finite attractor or  is  uniformly distributed (mod 1) .  

Bailey and Crandall proved that this hypothesis, if true, would imply the normality of 
a wide variety of irrational constants with BBP expansions, including T ,  log 2, and C(3). in 
the base 2. 

One would like to prove that all real algebraic irrationals are normal; but this problem 
may be solved in stages, rather than all at once, for different classes of algebraic numbers. 
After examining the results to date, and wrestling with the properties of the sequence 
{ r j a } ,  one is led to the heuristic impression that abnormal numbers are somehow too close 
to rational numbers. From this point of view, it may be that an easier proof of normality 
can be found for badly approximable numbers, in the sense of Meyer [30]. A number is 
badly approximable if the sequence { a J }  in the continued fraction expansion 

is bounded. This is equivalent to the existence of some c > 0 such that for any integer q 2 1, 
the distance from qa  to the nearest integer is at least c/q. (See, for example, Lang [26]). 

According to hleyer, the only "naturally occurring" badly approximable real numbers 
are the quadratic irrationals. This suggests that it may be useful to look for a proof that the 
quadratic irrationals in particular, or the badly approximable reals in general, are normal. 

Ironically, though, the technical difficulty of the problem seems to arise because the 
sequence { r J a }  diverges rapidly from any sequence { r j a }  for a rational approximation a to 



irrational a. The sequence for a badly approximable number diverges most rapidly of all, 
so it becomes difficult to say much about the behaviour of the sequence after relatively few 
iterations of the map a H TQ. 

One also wonders whether a direct examination of the digits produced by some square 
root algorithm could lead to a proof of normality, However, it is hard to see how this 
approach could improve very much on the Bailey, Borwein, Crandall and Pomerance result 
on the density of zeros in the expansion [3]. 

Allouche and Zamboni [2] showed that if the sequence of binary digits of a positive real 
number a is a fixed point of a morphism (primitive or of fixed length 2 2) on the alphabet 
(0, I), then a is rational or transcendental. This is one approach to the heuristic hypothesis 
that the digits of algebraic real irrationals are unpredictable. Adamczewski, Bugeaud, and 
Luca showed, along the same lines, that a finite automaton cannot generate the digits of an 
algebraic irrational [I]. 

In 1909, Bore1 introduced the concept of normality of numbers [ l l ] .  In 1950 [12], 'he 
presented a parting challenge. He observed that a number of phenomena in the digits of 
fi were inconsistent with the hypothesis that fi should be binomially normal (as defined 
in this thesis). Unfortunately, he applied no statistical tests to his observations, and other 
results have been consistent.with the hypothesis of binomial normality [lo]. But Borel's 
challenge is fresh today: " . . . the problem of knowing whether or not the digits of a number 
like fi satisfy all the laws one could state for randomly chosen digits, still seems . . . to 
be one of the most outstanding questions facing mathematicians." 
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