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Abstract 

This dissertation proposes a two-risky-asset Artificial Stock Market Model and inves- 

tigates its applications in financial markets. In the first essay, this model is applied to 

the stock market. Simulation results show that within some range of the parameters, 

the model can replicate many stylized facts of real financial data and some financial 

anomalies. This essay also finds that the dynamics of the model and the simulated 

results can be explained well by two approximation equations: the bubble pricing 

equation and the mean difference equation of the market share. 

The second essay applies the noise trader version of this model to the foreign 

exchange market and aims at solving the equilibria selection dilemma in the context 

of Kareken and Wallace (1981). The simulation results show that if agents have full 

memory, the average portfolio fraction will converge and the initial equilibrium that 

it converges to is history dependent. However under the lasting evolutionary pressure 

brought by the noise trader, the asymptotical outcome will be history independent. 

The model will converge to the neighborhood of an equilibrium with agents equally 

putting their savings into two currencies. If the agents do not have full memory, the 

foreign exchange market will show periodic crises. Before and after a market crisis, 

the exchange rate will converge to different stationary equilibria. A mean difference 

equation of the average portfolio fraction is also given to describe the dynamics of the 



model. 

The third essay aims at revealing the role played by the self-referential process 

inside the artificial stock models, and studying how it is related to the model perfor- 

mance. Three potential dangers that can make a GA learning model degenerate to a 

pure numerical optimization process are identified. It is also found that although the 

strength of the self-referential process may not change the convergence property of a 

GA model, it may lead to  substantial differences in the model dynamics before the 

convergence is achieved. 
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Chapter 1 

Financial Market Bubbles: An 

Agent-based Learning Model 

A two-risky-asset artificial stock market model i s  proposed i n  this essay. Simulation 

results show that within some range of the parameters, the model can replicate many 

stylized facts of real financial data and some financial anomalies. This essay also 

finds that the dynamics of the model and the simulated results can be explained well 

by two approximation equations: the bubble pricing equation and the mean difference 

equation of the market share. 

1.1 Introduction 

The return distributions of financial assets have three typical features: fat tails, skew- 

ness and volatility clustering (Engle (1982) and Bollerslev (1986)). There also exist 

well known financial market anomalies such as short run cross-sectional return mo- 

mentum (Jegadeesh and Titman (1993))) abnormal return to contrarian strategies 



( Lakonishok et al. (1994)), and long-term return reversal (De Bondt and Thaler 

(1985)). In addition, in contrast to no trade theorem, we can observe large trading 

volumes in the financial market. How to explain these properties of financial markets 

is a challenge to academic researchers. 

Parke and Waters (2003) explained the source of ARCH effect in an evolutionary 

game framework. Scheinkman and Xiong (2003) used a heterogeneous belief model to 

interpret the relationship between trading volume, price volatility and pricing bubbles. 

Rational bubble models are used by Santos and Woodford (1997) and Blanchard and 

Watson (1982). Barberis et al. (1998), and Daniel et al. (1998) used behavioral 

approaches to explain the return momentum and reversal. Bansal and Yaron (2004) 

explained the predicting power of dividend price ratio and risk premium under the 

assumption that there is a persistent component in the growth rate of dividend and 

the dividend process itself follows the ARCH process. In general these models can 

only explain some aspects of financial market anomalies or stylized facts. 

Cochrane, Longstaff and Santa-Clara (2003) [CLS] proposed a model that can 

give a coherent explanation for almost all the stylized facts and financial anomalies 

mentioned above except that their model can not generate trading. CLS's model is 

based on the Lucas tree model with two risky assets and log utility. Starting from two 

geometric Brownian motion dividends, they show that the dividend share is a complex 

process with cubic drift and quadratic diffusion. Since asset returns are functions of 

the dividend share in the rational expectations equilibrium, the rich dynamics of the 

dividend share in their model lead to  the rich dynamics of asset returns. 

As a compliment to CLS' rational expectations approach, this paper demonstrates 

that adaptive learning together with heterogeneity can be an alternative source of the 

financial stylized facts and anomalies. Same as CLS' model, the context of this paper's 



approach is also the Lucas tree model with two risky assets and log utilities. However 

in this paper's approach, the expected dividend share is assumed to  be constant, 

so that in the rational expectations equilibrium, the market share and the expected 

returns of assets are all constants. The purpose of a setup like this is to provide 

an easy way to isolate the effect of the evolution of heterogeneous beliefs. Other 

alternative specifications of dividend processes are not denied by this paper, however, 

it may cause agents' beliefs to  interact in a complicated way with the dynamics of 

the dividend share, which may make the effect of the evolution of agents' beliefs 

unidentifiable. 

Besides providing a unified explanation for the financial stylized facts and anoma- 

lies, this paper's approach also provides a platform to  study the relationship between 

the trading volumes and the movement of asset prices. In particular, it can success- 

fully replicate the positive relationship between the trading volume and the return 

volatility. 

In this paper, the evolution of heterogeneous beliefs is simulated on the platform 

of an artificial stock market which is an extension of LeBaron (2001), extending the 

model with one risky asset to  the two-risky-asset model. The artificial stock market 

model is a type of agent based learning model. It was developed a t  the Santa Fe 

Institute (SFI) in the late 1980's and early 1990's. Its applications are recorded in 

Plamer et al. (1994), Arthur et al. (1997), LeBaron et al. (1999), Tay and Linn 

(2001), and LeBaron (2000,2001,2002) among others. These applications successfully 

replicate stylized facts of financial data including skewness, fat tails, and volatility 

clustering, but they do not explain how these facts are generated. This paper finds 

that the dynamics of the model and the simulated results can be explained well by 

two equations: the bubble pricing equation, and the mean difference equation of the 



market share. 

Summers (1986) pointed out that if there is a slow decaying component in the asset 

price, the long-horizon return will show reversal. Following the insight of Summers 

(1986), this paper gives the source of this slow decaying component, the evolution of 

the market mood. In addition, it is shown that Summers (1986)'s pricing equation is a 

special case of the bubble pricing equation proposed in this paper. On the one hand, as 

predicted by Summers (1986), the short run return shows little autocorrelation, while 

the long-horizon return shows large negative autocorrelation, i.e., return reversal. On 

the other hand, and in contrast to  Summers, this paper's approach can also generate 

positive autocorrelation in short run returns and negative cross sectional correlation, 

i.e, momentum. 

The organization of the paper is as follows: The artificial stock market model is 

given in Section 1.2; Section 1.3 illustrates the design of the simulation; Section 1.4 

summarizes the simulation results; Section 1.5 derives the bubble pricing equation and 

the mean difference equation of the market share, and then discusses the dynamics 

of the artificial stock market model and how the stylized facts are generated in the 

model. The sensitivity of the simulation results to  the experiment design is discussed 

as well; Section 1.6 relates the model output to the return momentum and reversal; 

Section 1.7 concludes. 



1.2 Model 

1.2.1 The Benchmark Lucas Tree Model 

The benchmark model is borrowed from Sargent (1987). The agent has log utility 

function, and tries to maximize her lifetime utility: 

subject to the intertemporal budget constraint 

where slTt, szjt are the agent's holding of risky asset 1 and asset 2 at  period t respec- 

tively, wt is the wealth of the agent at period t ,  dlpt and d2,t are dividend of asset 1 

and 2 respectively. The supplies of asset 1 and 2 are assumed to  be fixed at  one unit 

respectively. 

The Euler equation for the i th  stock is 

Denote the aggregate dividend as dtl which is equal to  dlvt + d2,t. Substitute the 

equilibrium consumption Q = dt and u(ct) = l n ( ~ )  into (1.2), we get 

In equilibrium, 

pi,t = 4i,tdt, i = 1 7  2 

Substituting (1.4) into (1.3) gives 



which implies 

Let us consider a special case of equation (1.6), where 

~ ~ ( d ' . " ' ) s ~ , ( e ~ + , ) = a ,  i = 1 , 2 , - - . , m  
dt +7 

Substitute it into equation (1.6) and (1.4), we get 

The gross returns of asset 1 and asset 2 are 

and 

respectively. 

In the rational expectations equilibrium, the market share, defined as the share of 

asset 1 in the total market value, is pl,t/(pl,t + P ~ , ~ )  = a .  It is constant over the time. 

In equilibrium, sltt = s ~ , ~  = 1, and the saving rate can be shown is equal to A,  

which is also a constant. This means that the agent's saving decision is separated 

from her portfolio decision. Therefore if we fix the saving rate at the optimal solution 

A,  then the expected logarithm of the next period portfolio return, 

should also be maximized at & = a, where Rl,t+l and Rl,t+l are given by equation 

(1.9) and (1.10), & is the fraction of asset 1 in the portfolio held by the agent. 



1.2.2 The Artificial Stock Market Model 

Instead of a representative agent, in the artificial stock market, there is a population 

of agents of size N ,  and each agent j, j = 1, .  - - , N ,  holds ~ l j , ~ ,  sz,j,t shares of risky 

asset 1 and asset 2 respectively at period t .  There are also a population of strategies 

of size N,. Each strategy a, defines what proportion of savings is going to be put in 

asset 1. Each rule is coded in a genetic string with length 20. The genetic string is a 

string which is composed of 0 or 1. a, is decoded as follows: a, = ~ 2 ,  a k 2 k - 1 / ~ ,  

where K = 2" - 1, a; is the value 0 or 1 taken at the kth position in the nth string. 

In each period, agents search for optimal strategies in the strategy population. The 

relation between strategies and agents is analogous to  that between investors and 

investor advisers or mutual fund managers. 

Agents do not know what the fundamental values of risky assets are and what 

the actions of other agents will be. They make their investment decisions based 

on observable realized returns. Each agent j has a memory length of Tj, so they can 

memorize the past Tj periods of the realized returns. In each period, agent j randomly 

selects a sample of realized returns with length L from her memory to evaluate the 

performances of strategies in the strategy population. Thus the performance measure 

of strategy a, is 

where 0 < an < 1, and 0 5 nn 5 Tj - L is the distance between the starting point 

of the sample and the earliest period that agent j remembers. If nn = 0, agent j 

uses T i , t -~ , ,  . . ,  r i , t - ~ j + ~ - l ,  i.e., the first L returns in her memory to  evaluate the 

strategies; if nn = T - L, agent j uses r i , t -~ ,  . . .  , ri,t-l, i.e. last L returns in her 

memory to  evaluate the strategies. 



This setup of the performance measure is to capture the fact that different agents 

use different information sets to form their decisions. And even for the agents having 

the same memory length, they may still put different weight to the data in making 

decisions. 

The supplies of asset 1 and 2 are still fixed at  one unit respectively, hence the 

market clearing condition is 

The saving rates of all agents are fixed at  A.  Agents only make investment deci- 

sions. Agent j 's investment decision is denoted as ajYt, which means agent j will put 

aj,tAwj,t in asset 1, and (1 - aj,t)Awj,t in asset 2, where wjtt -- (pllt + dl,t)~l,j,t-l + 
(p2,t + &,t)~2,j,t-l is the wealth of agent j at period t ,  A w ~ , ~  is the savings of agent j .  

So the demand of agent j for asset 1 is 

Summing the demands of all agents, and substituting into the market clear condition, 

we get 
N 

In the similar way, we can obtain the price for asset 2, 

Since wjYt is a function of pl,t and pz,,, the asset prices of period t have to be solved 

jointly from the above two equations. 

Suppose agents finally coordinate a t  the optimal portfolio implied in the rational 

expectations solutions, then agents will consume 1 - X of their wealth and put a of 



their savings in asset 1 and 1 - a in asset 2. Then the prices of two assets are the 

solutions to the following two equations 

P2,t = (1 - 4 X ( ~ l , t  + P2,t + 4 ) .  

It is trivial to check that the solutions are indeed equations ( 1 . 7 )  and ( 1 . 8 ) .  

Note that the condition xgl cj,+ = d l l  + d2,t is satisfied automatically no matter 

the market is in rational expectations equilibrium or not. For each agent, the following 

budget constraint must be binding, 

where si,j,t and s i j , t - l  are agent j 's holding of asset i,  i = 1,2,  in period t and 

t - 1. Summing the above equation across the agents, and using the market clearing 

condition, we get 
N 

C cj,t = dl , ,  + d2,t. 

The ex post net returns of asset 1 and 2 are calculated as 

The trading volumes are recorded as follows 

where Ii,t = 1 if si , j , t  - si , j , t- l  > 0, otherwise it equals zero. 

The Design of the Simulation 

The design of the GA experiment follows the approach used by LeBaron (2001). 



At the beginning of each period, half of the population of agents will be ran- 

domly selected to try new rules. They will evaluate the performance of each rule 

in the strategy population using equation (1.12) and randomly choose one rule from 

the candidate strategy set, which is a subset of the strategy population having best 

performance. The parameter 'candidate', which stands for the size of the candidate 

strategy set, is set at  the beginning of the program. For example, if the parameter 

'candidate' is set as 1, then it means agents always choose the rule with the best 

performance; setting the parameter 'candidate' to one half of the size of the strategy 

population means each agent will randomly choose one rule from the best half of the 

strategy population. If this rule has better performance than the one she currently 

uses, she replaces the old one with the new one, otherwise she still uses the old one. 

In each period, the timeline of the market is as follows: 

1. Dividends are revealed and paid. 

2. Each agent evaluates the performance of the strategies using her memory of ex 

post returns of assets, and chooses one rule as her current strategy. 

3. Each agent reports her decision to a 'market maker'. The market maker sets 

the prices to clear the market. 

4. The ex post returns and trading volumes of assets are calculated and stored. 

5. Rules evolve. 

6. Agents evolve. 

Evolution is divided into two parts: the evolution of strategy rules, and the evo- 

lution of agents. The evolution of strategy rules is simulated by genetic algorithm: 

A strategy can be selected as a member of the parent set if at  least one agent has 

used it over the last 10 periods. Strategies that have not been used for 10 periods are 

marked for replacement. This is a mimic of the real life where investment advisors 



with no customers will quit from the market. 

The sequence of genetic updating is as follows: First, form the set of strategies to 

be eliminated, then the algorithm chooses among three methods with equal probability 

to generate new strategies to  replace them: 

Crossover A pair of strings is selected randomly from the parent set, which are 

called parent strings. With probability of p,,,,, crossover will happen. If it happens, 

an integer Ic is selected from [1,20], again a t  random. Two offspring strings are formed 

by swapping the set of values to  the right of position Ic of the parent strings. If 

crossover does not happen, these two offsprings are the same as the parent strings. 

We use the offsprings to  replace the rules that have no customers. 

Mutation Choose one string from the parent set, and the value of each position 

within a string is altered with probability p,,,. If it is originally 0 then switch to 1, 

and vice versa. The mutation probability p,,, is the same across the population. 

New rule Randomly generates a new strategy, which is similar to the arrival of a 

new mutual fund manager. 

The evolution of agents is quite simple. In each period, one randomly selected 

agent is eliminated from the agent population. Its asset holdings are redistributed 

equally to  other agents. At the same time, a new agent is added into the population 

with the average asset holding transferred from other agents. The memory length 

is also randomly generated. In this way, the net impact on the total resources of 

the market is neutral. This process is designed to  represent random arrivals and 

departures in the stock market, and make the market participators more homogenous 

in wealth. Specifically the procedure of asset transfer is as follows: suppose agent 1 is 

chosen to  be eliminated, then its asset holdings will be redistributed equally to  other 

agents, a t  the same time each remaining agent contributes & of her assets to the 



new arrival, in this way after redistribution, the asset holding of the new arrival will 

be: 

where s^i,j,t is agent j's holding of asset i before the asset redistribution in period t. 

The asset holdings of the agents in the remaining pool are 

1.4 Simulation 

The exogenous aggregate dividend of assets is assumed to follow 

where vt - N (0.00, 0.07l/~), g = 0.0015. The value of g here is approximately equal 

dl,t to the average monthly growth rate of dividend in the US stock market. The et = - 
dt 

is generated from beta distribution so that 0 5 et 5 1. The density function of the 

dividend share is as follows 

where B(a,  b) is the beta function. In the simulation, a and b are set 100 respectively. 

The mean and variance of et are 0.5 and 0.0012437 respectively. The reason that we 

specify the parameters in such a way for the distributions of vt and et is trying to get 

two individual dividend processes with little correlation. The correlation between the 

two dividend sequences is computed numerically at about -0.017. Thus the implied 

rational expectations equilibrium market share is 0.5. The plot of the density function 

is shown in figure 1.1. 



Figure 1.1: The density function of the dividend share: a=b=100 

Following Lebaron (2001), the number of periods that is used to identify the 

strategies to be eliminated is 10. The probability of crossover and mutation is 0.6 

and 0.03 respectively. These are the common values used in the literature. The 

length of the genetic string of strategy is 20. The parameter 'candidate' is set at 75. 

The number of agents and strategy rules are 300 and 150 respectively. The range of 

investment strategies is set as (0.00001, 0.99999). This is a mechanism that prevent 

the model converge to the boundaries, although it may only happen for the simulation 

with extremely large A. In evaluating the performance of an investment strategy a,, 

if realized returns of (TI,,, r2,,) make a,(l + rl,,) + (1 - a,)(l + ra,,) < 0, its log value 

is set as -30, which will ensure this strategy will not be used by the agents. 

In period 1, strategy rules are generated randomly, agent holdings of asset 1 and 

asset 2 are equal across the population, and the strategy rule each agent uses is 

randomly drawn from the strategy population. 



Table 1.1: Summary statistics for the simulation with different A: full memory full 
sample case 

X = P M K T  std. Dev. U M K T  std.Dev p v o l l  std.Dev ~ L M ( ~ )  std.Dev 

*Each simulation has 1000 periods. For each set of parameters, experiments are run 10 times 
using different seeds. The statistics of simulation results are calculated using the sample from 
the last 500 periods, then the average of the statistics across these 10 runs are reported. Column 
3,5,7,9 are standard deviations of the last column's statistics over 10 runs respectively 

1.4.1 Benchmark 

In the benchmark simulation, agents all have full memory, which means agents re- 

member all past realized returns, and, in addition, they use the full sample to evaluate 

the performance of the strategies. The patience parameter As are set as 0.005, 0.02, 

0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.98, 0.995, respectively, and each simulation has 

1000 periods. For each set of parameters, experiments are run 10 times using dif- 

ferent seeds. The statistics of the simulation results are calculated using the sample 

from the last 500 periods, then the average of the statistics across these 10 runs are 

reported in Table 1.1. Under the setup of the experiments, in the rational expecta- 

tions equilibrium, the market share equals cu = E(Q)  = 0.5. Column 2 of Table 1.1 

shows the averages of the mean of the market share over the 10 runs. Column 3 shows 

the standard deviations of the mean of the market share over the 10 runs, column 4 

shows the averages of standard deviations of the market share over 10 runs, column 



5 reports its standard deviation over the 10 runs. Column 6 reports the averages of 

mean trading volume and column 8 reports the average of ARCH LM(4) statistics 

on the return of asset 1. The tests of ARCH are on the residual of the following 

regression: 

Although this specification may include too many lags, especially for the full memory 

case, its purpose is to make the statistics comparable with the short memory cases, 

in which it seems necessary to reduce the autocorrelation in the residual, so that to 

reduce the risk that a missing autocorrelation term in the mean equation leads to a 

false ARCH effect in the residual. We can see that the market share converges to the 

rational expectations solution very well for all As, the mean of the market share is very 

close to 0.5 and shows little fluctuation. As expected, the trading volumes are low 

and usually below 1.5%, and the ARCH LM statistics are low and insignificant. The 

intuition of these outcomes is straightforward. Converging to the rational expectations 

solution means that each agent uses the same strategy, and the strategy they use is 

the rational expectations equilibrium strategy, thus there is zero trading volume. Due 

to the stochastic nature of the algorithm, the above claims will not hold exactly, so 

we can still see some low level of trading activities. The rational expectations solution 

of asset prices is a linear transformation of the dividend process, thus if there is no 

ARCH effect in the dividend process, the rational expectations equilibrium return 

series will not have it either. 



1.4.2 Short Memory Case 

In these simulations, agents memory lengths are randomly generated from the uni- 

form distribution of [lo, 401, and agents randomly pick up a sample of realized returns 

with length 10 from their memory window to evaluate the performance of the strate- 

gies. The patience parameter Xs are set as 0.1, 0.4, 0.8, 0.9, 0.95, 0.96, 0.97, 0.98, 

0.99, respectively, and each simulation has 10000 periods. The statistical results are 

obtained using the results from period 9000 to 10000. For each set of parameters, 

experiments are run 10 times using different seeds, the average of the statistics across 

these 10 runs are reported in table 1.2. The ARCH LM test is calculated under the 

same specification as the long memory case. 

The features of the simulated data are as follows: 

1) The behavior of the return of asset 1 is very similar to that of asset 2. This is 

because under the setup of parameters, there is not much difference between asset 1 

and asset 2 in each aspect. Thus similar behavior of these two assets is expected, and 

we will concentrate on the behavior of the return of asset 1. 

2) There are strong upward trends in the measures of skewness and kurtosis as X 

increases. For the return of asset 1, the skewness and kurtosis increase from 0.455 to  

4.166, and 3.457 to 35.120, respectively, when X increases from 0.1 to 0.99. 

3) The first order autocorrelation coefficients of the return of asset 1 is moderate, 

generally below 0.15. However when X is bigger than 0.97, they become quite large. 

The model can generate both positive autocorrelation and negative autocorrelation. 

Whether the autocorrelation is positive or negative seems mainly to depend on the 

value of A. Different seeds seldom change the sign of the autocorrelation. For example, 

for X equal to 0.4,0.8, 0.9, we have 30 runs in total, but only one of them shows positive 

first order autocorrelation, while all others are negative. 



Table 1.2: Summary statistics for the simulation with different A: short memory cases 
0.1 0.4 0.8 0 .9  0.95 0.96 0.97 0.98 0.99 

statistics for T I  

X = 
Panel A: 

Skewness 

Kurtosis 

Pl 

ARCH 

LM(4) 

ARCH(1) 

GARCH(1) 

Mean of u l  

Panel B: 

Skewness 

Kurtosis 

Pl 

ARCH 

LM(4) 

ARCH(1) 

GARCH(1) 

Mean of uz 

Panel C: 

Correl(rl,r2) 

statistics for T Z  

(0,013) ~ , (0.021) (0.022) (0.036) (0.022) (0.032) (0.104) (0.091) 
*Each simulation has 10000 periods. The statistical results are obtained using the results from period 9000 to  10000. 
For each set of parameters, experiments are run 10 times using different seeds. The statistics of simulation results 
are calculated using the sample from the last 1000 periods, then the average of the statistics across these 10 runs 
are reported. Numbers in parenthesis are standard deviations using 10 runs. Numbers in brackets are the times that 
reject the null hypothesis in the 10 runs. u,, i = 1 , 2  are the trading volumes of asset 1 and 2. 



Table 1.3: Summary statistics for the stock returns of different industries 
X = Cnsmr Manuf Hitec Hlth Other 

Skewness 0.109 0.405 0.152 0.155 1.020 
Kurtosis 10.008 11.455 6.605 9.955 16.787 

ARCH 14.527 22.571 38.708 32.551 48.681 

(0.000) (0.000) (0.000) (0.324) (0.000) 

*Numbers in square brackets are the significant level. 
Data range from July 1926 to December 2003, average value weighted monthly return, sample size: 
2915. Data are provided by Fama and French, and can be found at Kenneth French's website, 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html. 

4) For the ARCH and GARCH effects, the results can be divided into three 

regimes: regime 1, X is 0.1 and 0.4; regime 2, X is 0.90, 0.95 and 0.96; regime 3, 

X is 0.98 and 0.99. In regime 1, there is almost no ARCH effect. Among 20 runs, only 

two of them marginally reject the null hypothesis of no ARCH effect. On average, the 

statistics of ARCH LM test are very small. In regime 2, the ARCH effect is strong, 

and is the GARCH effect. In regime 3, the ARCH LM test can only detect half of 

the runs having ARCH effect. However GARCH estimation show significant ARCH 

component and GARCH component in almost all runs. 

5) The trading volumes are much bigger than those of the full memory full sample 

cases. There are downward trends in the measure of trading volume with the increas- 

ing of X. The trading volumes of asset 1 decrease from 26.8 percent to 7 percent when 

X increases from 0.1 to 0.99. 

6) The correlation coefficients between the return of asset 1 and the return of asset 

2 all are negative with large absolute values. 

Comparing the statistics of the simulated return data with those of the returns 

of 5 portfolios organized by industries reported in table 1.3, we can see that the 



simulated data in regime 2 match the real data best: the skewness, kurtosis and pl 

are compatible, the GARCH component is bigger than the ARCH component, ARCH 

LM tests are significant etc.. The regime 1 data fail to replicate all other features of the 

real data except for pl .  Regime 3 data lose in three aspects: First, pl is bigger than the 

real data. Second, in its GARCH specification, the ARCH component is bigger than 

the GARCH component. Third, the sum of the ARCH component and the GARCH 

component is bigger than 1, which implies non-stationary process. Although regime 3 

data don't match these portfolio data very well, it doesn't necessary mean we can not 

observe the real return series having the same pattern. For example, Campbell and 

Hamao (1992) reported Japanese value-weighted index monthly returns from 1971 to 

1990 show pl nearly 0.22. Tatsuyoshi (2002) reports the daily returns of Sony company 

and 7-11 Japan have the GARCH 0.069, ARCH 2.007, GARCH 0.219, ARCH 1.781, 

respectively, sample period from January 1, 1998 to April 30, 2000. 

1.4.3 The Jump-diffusion Representation of Regime 3 Data 

The AR(4)-GARCH(1,l) specification can be expressed as 

where equation (1.18), (1.19) are the mean equation and variance equation respec- 

tively, yiTl and yi,2 are coefficients of ARCH and GARCH components respectively. 

The variance equation says that the conditional variance of E ~ , ~  at period t ,  equals the 



long run variance, wi, plus the lag of the squared residual from the mean equation, 

the ARCH term E$-,, which is news about volatility from the previous period, plus 

last period's forecast variance, the GARCH term a$-,. 

Let vi,t = E$ - a$, and after recursively substituting out the variance in the 

variance equation, we get 

For E:,~ to be stationary, the sum of coefficients of ARCH term, yi,l and GARCH term, 

yi,2, have to be less than 1. In regime 3, it is common that this sum is greater than 1. 

Thus it appears that the GARCH specification does not well describe the behavior of 

the return series in regime 3. 

One special feature of the return series of regime 3 is that they have a large measure 

of skewness. Although the condition distribution of the residual of ARCH or GARCH 

is normally distributed, its unconditional distribution has fat tails. Thus ARCH or 

GARCH model can handle some degree of the fat tails problem. However it is not 

so good in dealing with the distribution with big skewness. An alternative approach 

is the jump-diffusion model. In continuous time, the jump-diffusion process of stock 

price can be expressed as follows: 

dP, 
- = pdt + atdrt + Y,dNt, 
Pt 

where rt is a standard Wiener process (diffusion part), Nt is a standard Poisson 

process (jump part), which represents the total number of extreme shocks that occur 

until time t. For a wiener process, var(Art) = At, thus atArt  N(0,a;At). If 

there is no jump part, then as At goes to zero, the size of the change in the price 

will become smaller and smaller, and prices will become less and less volatile. For 

the Poisson process, let v denote the jump arrival intensity, and assume during an 



Period 

Figure 1.2: Return example in regime 2: X = 0.95 

infinitesimal time interval At, the increment in the Nt only has two possibilities, 0 or 

1. Then dNt = 1 with probability uAt, and dNt = 0 with probability 1 - uAt, so as 

At goes to zero, the probability of observing the occurrence of jump will go to zero, 

however, once a jump occurs, the size of change, yt, will be independent of At, which 

is the critical difference between the Poisson process and Wiener process. The Poisson 

process has the feature of discontinuity, which is used to capture extreme shocks to 

the stock price, such as an overnight big change in the stock price etc. 

To make a comparison, two typical return series from regime 2 and regime 3 are 

shown in Figure 1.2 and Figure 1.3. The return of run 3 in regime 3 shown in Figure 

1.3 displays severe spikes, which is different from the pattern shown in figure 1.2, 

suggesting that we should use different models to describe them. The jump-diffusion 

may be a good choice to capture the spikes. 
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Figure 1.3: Return example in regime 3: X = 0.98, run 3, LM(4)=2.06, ARCH=1.352, 
GARCH=0.163 

The jump-AR(4)-GARCH(1,l) model can be represented as 

where, ~ i , +  = O Q , ~  is the diffusion term, c:=~ ln(Y,,nt) is the jump term (here 

we assume that the jump size follows a lognormal distribution). This model can be 

estimated by MLE following the idea of Jorion (1988), with the likelihood function as 



Table 1.4: Summary statistics for the GARCH(1,l) model against the jump-GARCH(1,l) 
model 

71 7 2  V e 6 likehood ~ ~ t e s t x ;  

Run 3 

Run 2 

0.199 0.465 0.127 0.113 0.489 378.05 399.90 
(0.034) (0.053) (0.021) (0.060) (0.047) 

*Numbers in parenthesis are standard errors. LR = -(ln L, - In L,).The 5% 
critical value for X ;  is 7.81 

The log likelihood function (1.22) is a weighted sum of normal distributions, with the 

weight equal to  the occurring 0, 1, 2, 3, . , times of jump. In order to  optimize it 

numerically, the infinite sum has to  be truncated after some value of Nt. This paper 

choose Nt = 5 in its estimation. The reason is as follows: the contribution of ntth 
vnt 

jump to  the likelihood is weighted by *. Since the value of vi is typically very small, 

when it is powered by nt ,  it will make the contribution of the ntth jump become trivial 

for large nt. In our estimation, there is no much difference in the results between the 

case when Nt = 5 and those for even larger values. 

A series of nested model hypotheses can be tested by the LR test. Putting re- 

striction vi = Bi = bi = 0, jump-GARCH(1,l) model is reduced to  GARCH(1,l) 

model. Pure jump processes can be tested against the jump-GARCH model by re- 

stricting y i , ~  = y i , ~  = 0, etc.. Here we are interested in testing the jump-GARCH 

model against the GARCH(1,l) model. The estimation results use returns of asset 

1 in run 2, 3, with X = 0.98 are listed in Table 1.4. We can see, all coefficients of 



the GARCH(1,l) part and jump part are significant at usual significant levels. With 

the introducing of the jump part, the sum of coefficients of GARCH(1,l) become less 

than one, and the relative magnitude of coefficients shows the usual pattern with 

GARCH coefficient bigger than the ARCH coefficient. The LR test results are in 

favor of jump-GARCH(1,l) model. This suggests, for the return series in regime 3, it 

is possible to use the jump-GARCH model to describe the data. 

1.5 The Dynamics of the Market Share and the 

Stylized Facts 

In order to go further in analyzing the dynamics of the model and the stylized facts 

reported above, we simplify the model, while retaining the essential features. In partic- 

ular we assume that wealth is evenly distributed, thus ignoring the wealth distribution 

effect. 

1.5.1 The Rational Expectations Solution Benchmark 

The benchmark is the case when the market share converges to the rational expecta- 

tions solutions. It will happen when agents have full memory and use full sample. In 

this case, we know 

Substituting it into the definition of the gross return of asset 1, equation (1.15), we 



Taking logs of both sides, 

Substituting equation (1.17) into it, we get 

Expanding it around et = E(ct)  = a l ,  we get 

Since et and vt are independent to  each other across time, the conditional variance of 

is constant in this case. Therefore in the setup of our learning model, if the algorithm 

converges to  the rational expectations solution, there will be no ARCH effect. 

1.5.2 The Generalized Bubble Pricing Equation 

In general, the prices of the two assets are determined by 

N 

~ 2 . t  = X ( 1  - a j , t ) [ ( ~ l , t  + d~,t)sl,j,t-1 + ( ~ 2 , t  + d2,t)~2,j,t-l]. (1.26) 
j=1 

Based on the simplifying assumption that wealth is evenly distributed, sl j,t-l = 1/N 

and s ~ , j , ~ - ~  = 1 / N .  Then we get 

'See appendix 



Therefore, the market share is L i t ,  and 

Thus 

Following Campbell and Shiller (1988), equation (1.28) can be approximated by a first 

order Taylor series expansion along the deterministic rational expectations equilibrium 

path2, where ln(dt/dt-1) = ln(pl,t/pl,t-l) = g, ~t = E(et) = a, so that 

E t  
rl,t g - ln + (1 - A)  In(-) + vt + X(ln bt -In &-I) - (1 - X)(h(bt-l) -In a ) .  (1.29) 

a 

Equation (1.29) is the bubble pricing equation. Comparing equation (1.29) with 

equation (1.23), we can see the first four terms reflect the fundamental value of the 

asset. The fifth is the market mood term. If investors have an optimistic view of 

asset 1, they will increase their holdings of this asset, so that the market mood term, 

In bt - In GtPl > 0, has positive impact on the return of asset 1. For the same reason, 

if investors are pessimistic, then it will have negative impact. The sixth term is the 

level effect of asset holdings. If investors hold less of asset 1 than what's implied in 

the rational expectations equilibrium, the level effect term will be positive, and vice 

versa. The sum of the market mood term and the level effect term is the bubble in 

the asset prices. 

2See appendix 



1.5.3 The Mean Difference Equation of the Market Share 

The strategy updating procedure in each period can be divided into two stages: in 

the first stage, half of the agents will be randomly chosen to try new strategies; in the 

second stage, the selected agents randomly choose strategies from the candidate set 

and compare them with the strategies they currently use. If the new ones are better, 

they switch to new ones. Otherwise, they keep the old ones. 

Without loss of generality, let's assume, after stage 1, the index of agents are 

reassigned, so that, the first half agents try new strategies and the second half agents 

keep the old ones. Denote aj,t as the strategy used by agent j in period t ,  then 

where a;,, is the strategy used by agent j who keeps the old one. a;,, = aj,t-l and 

each strategy am,t-l, m = 1 . -  N has the same probability 5 to be selected. Thus 

Since each strategy am,t-l also has the same probability 5 to be selected to be up- 

dated, 

where Et-l(am,tIam,t-l) is the expected value of agent m's next period strategy, when 

agent m is selected to try new strategies. Thus 

At period t - 1, agent m evaluates the fitness of strategies by 

L-1 

C l n ( a ( l  + Tl.t-~m+nn+r-l) + (1 - a ) ( l  + ~ ~ . t - ~ ~ + n n + r - l ) ) .  (1.30) 
r=O 



Denote the optimal solution as a:,,. Let's first pick up one agent m who uses strategy 

in period t - 1, and see what the expected value of next period strategy will 

be conditional on am,t-l. There are two possible outcomes: first with probability 

~ ( a , , ~ - ~ ) ,  this strategy will be replaced by the new strategy. We do not know the 

explicit form of ~ ( a , , ~ - ~ ) ,  but when the genetic algorithm converges to  the rational 

expectations equilibrium, will shrink to  zero. The second outcome is that 

this strategy wins in the competition and will still be used in the next period, with 

probability 1 - ~ ( a , , ~ - ~ ) .  In the first case, the conditional expectation of the new 

strategy is Et-l (anew ICX,,~-~). In the second case the conditional expectation is am,t-l. 

Denote P(am,t-1) as fim,t 1 Et-1 ( a n e w  Iam,t-1) as bm,t. Then 

So for j < N / 2  + 1 

1 N where a; = , Ern=, a&,t. From the mean difference equation of the market share 

(1.31), we can see that the updating of the mean fit can be decomposed into three 

parts: the first is the gap between the average of a,' and which is the main 



determinant of the movement of the mean bt; the second term is the average of 

bmTt which is determined by the shape of the fitness function and the probability 

distribution of the strategy in the candidate set. It measures how close between 

the optimal portfolio and the mean of the admitted new strings, thus can be called 

admission noise; The third term is the average of a weighted average of am,t-l - b,,t, 

which embodies the contribution of wrong "pick up". The sum of the second term 

and the third term is a measurement of the irrationality of agents, since this sum will 

become zero if agents always pick the the strategy with best fitness measure. 

1.5.4 The Explanation for the Simulated Results 

The Dynamics of the Market Share 

The implication of the mean difference equation is that if b,* > cut-,, i.e., if agents on 

average are willing to  increase their holding of asset 1, the market share will have a 

tendency to  increase, and vice versa. The rational expectations equilibrium will be 

achieved if b,* = btPl = a for all t > i, where t is an arbitrary number. 

The story behind the dynamics of the market share is as follows: Suppose in period 

1, the realized returns have the relation of rlTl > r2,l. Then at the end of period 1, all 

agents will just use this one observation to evaluate the performance of the strategies, 

consequently the optimal strategies for all agents are also the same, which is to put all 

savings into asset 1. Since only half of the agents try the new strategies, and also due 

to the effect of admission noise and wrong picks, b2 will not reach 1, but on average it 

will increase, which will have a positive effect on the return of asset 1 and a negative 

effect on the return of asset 2, based on the bubble pricing equation (1.29). If the 

level effect is small and is dominated by the market mood term, on average it is more 



likely to see r l , 2  > If it is SO, then the optimal strategy still will be a,* = 1 for 

period 3, so that the upward movement of the market share will continue. 

However after the market share passes the rational expectations equilibrium level, 

as the market share becomes bigger and bigger, on the one hand, the increasing 

potential of the market share becomes smaller and smaller, on the other hand, the 

level effect which has negative effect on the return of asset 1 becomes bigger and 

bigger. So eventually we will see more realized returns with the relation of rlYt < r2,t. 

When the market reaches such a point that the accumulated effect of bigger returns 

of asset 2 leads to  &* < at-l, the reversal movement of the market share will be 

observed. When the market share is decreasing, as long as at is still bigger than the 

rational expectations equilibrium level a, the market mood term and the level term 

will work in the same direction, which will generate sequence of returns in favor of 

asset 2, so that the movement of market share will not stop at  the rational expectations 

equilibrium value, but go to somewhere below it, then the effect of the market mood 

and the level effect will diverge again, the downward movement slows down, and then 

reverses again. 

In the full memory full sample case, this overshooting procedure will continue 

forever due to the stochastic nature of the problem, but the size of the overshoot 

will settle down to a very small magnitude, and the market share will converge to 

the neighborhood of the rational expectations equilibrium level a .  There are two 

reasons for it. First, the market share cannot converge to other values. Suppose the 

market share converges to a value r l  which is bigger than a .  After the convergence, the 

market mood effect will disappear and the level effect will dominate. When 17 > a, the 

level effect has negative impact on the return of asset 1 and makes it lower than the 

fair return. Therefore the market share will move towards the rational expectations 



Period 

Figure 1.4: Movement of the market share: X = 0.95, run 10, full memory, 
periods 

equilibrium value a, and vice versa. Second, as the overshooting procedure goes on, 

the realized returns will become more and more balanced, and a,* will eventually settle 

down, and become more and more difficult to  be changed, which in turn reduces the 

fluctuation in f i t .  Therefore, the level effect will dominate asymptotically, and make 

the market share move to the equilibrium value. An example of the movement of the 

market share in the full memory full sample case is shown in Figure 1.4. 

In the non-full memory case, the story is different. Let's first assume all agents 

have identical long memory T, but not full, and do not use random sampling. If 

T is large enough, after the initial turbulence, the market share will settle down to 

the neighborhood of the rational expectations equilibrium market share value, just 

like the full memory full sample cases. However, when the market operates longer 

than T periods, agents will begin to  forget the realized returns in the initial periods. 

Suppose the initial realized returns are in favor of asset 1, then forgetting this part 



Table 1.5: The autocorrelation of the log market share 
X = 0.1 0.4 0.8 0.9 0.95 0.96 0.97 0.98 0.99 

plgrnkt 0.274 0.386 0.728 0.861 0.919 0.926 0.938 0.959 0.977 
(0.028) (0.031) (0.009) (0.011) (0.007) (0.007) (0.005) (0.013) (0.007) 

'The statistical results are obtained using the results from period 9000 to 10000. Means over 10 
runs are reported. Numbers in parentheses are standard errors over 10 runs. 

of the realized returns will destroy the balance of the realized return distribution, 

leading the remaining realized return distribution in favor of asset 2, so that we will 

see the market share has a trend to go down. When the number of periods exceeds the 

length of agents' memory, the movement of the market share will be approximately a 

replication of what happened in the initial periods but in an opposite direction. The 

periodic length is approximately the memory length of the agents. If the memory 

lengths of agents is sufficiently small, for example, in the short memory cases, we can 

not observe the market share settle down, and can only observe the periodic swing of 

the market share. 

In the simulations of the short memory cases, agents' memory lengthes are not 

identical and they use random sampling. However, it does not change the qualitative 

results of the above analysis. There are two reasons for it. First, although agents 

memory lengthes are not identical, they are all short and cluster in a small range; 

Second, the sampling size 10 is large relative to  the expected memory length 25. Both 

of these make the heterogeneity in agents' actions not as big as it seems to be. An 

example of the movement of the market share in the short memory case (A = 0.3, run 

3) is shown in figure 1.5. 

The driving forces of the movement of the market share are the market mood 

term and the level effect term. The market mood term is a self-sustaining force. The 

optimistic mood can self-validate itself by generating positive excess return so as to  



Period 

Figure 1.5: Movement of the market share: X = 0.3, run 2, short memory, periods: 
9800-10000 

make the optimistic view stand. On the contrary, the level effect term is an error 

adjusting term, whose direction is always making the market share move towards 

the rational expectations equilibrium value. Thus without the level effect term, the 

market share can deviate far from the rational expectations equilibrium value. The 

strength of the market mood term and the level effect term are weighted by X and 1 - A ,  

respectively. Thus if X is really small, the market mood term will be dominated by the 

level effect term, which leads to  two effects: First, the market share will fluctuate in 

a relatively smaller range around the rational expectations equilibrium value; second, 

the deviation will not be so persistent so that we will see periodic movement of the 

market share with higher frequency, which can be seen from the comparison of figures 

1.5 and 1.6. The first order autocorrelation of the log market share is reported in 

table 1.5. As the value of X increases, 



Period 

Figure 1.6: Movement of the market share: X = 0.96, run 2, short memory, periods: 
9800-10000 

1.5.5 The Sources of ARCH Effect, Skewness and Jump 

In section 1.4.2, we have shown that when X is small (in regime I),  there is almost no 

ARCH effect; however, when X is large (in regime 2), ARCH effect becomes strong; 

when X is extremely large (in regime 3), the data will not only exhibit ARCH effect, 

but also display the properties of jump process. From figures 1.5 and 1.6, we also 

notice that the main change in the dynamics of the model as X increases is that the 

market share show more and more persistent deviation from the equilibrium value. 

Therefore, the natural starting point to  study the sources of ARCH effect is to study 

how assets returns are related to the movement of the market share. Let's see how 

the ARCH effect is generated following this idea. 

In figure 1.6, after approaching point A, the local minimum, the market share 

begins to rise. The market mood effect in equation (1.29) can be approximately 



written as E. At point A, dt-1 is very small. A small increase in the market share 

will lead to very large positive capital gain for asset 1. For example, for a change in 

the market share of size A, at atPl = 0.1, its contribution to the return of asset 1 

will be as big as 10A, but at = 0.9, it only leads to l . lA.  Let us call this as the 

dilution effect. In addition, the level effect also has strongest positive effect on the 

return of asset 1 at point A. Therefore in the right neighborhood of point A, asset 1 

has biggest excess return over the fair return on average. Denote it as r:,,,. From 

point A to point B, the market share has an upwards trend, and the market mood 

effect has a positive effect on the return of asset 1. As long as the market share is 

below 0.5 which is the rational expectations equilibrium value, the level effect will 

also have positive effect on the return of asset 1, so that on average the return of 

asset 1 will show positive excess return over the fair return. When the market share 

moves past the value of 0.5, the market mood effect is still positive, but the level 

effect will become negative. With the market share approaching closer and closer to 

point B, the upward potential is eventually exhausted, hence the market mood effect 

will become smaller and smaller, but the level effect will become larger and larger. 

So that the realized return of asset 1 will eventually go from above the fair return to 

below the fair return. When the market share passes point B and goes from B to C, 

the opposite story will happen. Thus we see, along the periodic path of the market 

share, the excess return over the fair value will show periodic movement. It means 

volatility of the return, i.e., the square of excess return, will show the ARCH effect. 

The implication of the above analysis is that the more persistent the movement of 

the market share, the stronger the ARCH effect. 

When the movement of the market share becomes extremely persistent, the market 

share will approach close to the boundaries of 0 or 1, and each periodic movement will 



Figure 1.7: Movement of the market share: X = 0.98, run 3, short memory, 
9800- 10000 

I00 

periods: 

last for more periods. When the market share reverses its movement around zero, it 

is quite easy to generate extremely large value of the return of asset 1. Thus we have 

the two conditions of the jump-diffusion process: extreme big returns and infrequency. 

An example of the movement of the market share in regime 3 (A = 0.98, run 3) is 

shown in figure l.7,the first order autocorrelation is 0.982. 

We also notice that the smallest negative returns of asset 1 are generated in the 

right neighborhood of point B. Denote it as r&. Since in this area, is larger, 

due to the dilution effect, I r:,,, I>[  rCmin I on average. Therefore the realized 

distributions of assets will be skew to the right. Since the closer the market share 

approach the boundary 0 or 1, the stronger the dilution effect, the measurement of 

the skewness will increase as X increases. 



1.5.6 The ARCH Effect and Trading Volume 

Generally, the simulated trading volume has a positive relationship with the return 

volatility. Let us see why. The trading is caused by the heterogeneity in agents' beliefs. 

Obviously, if agents are homogeneous in the strategies they are using, there will be 

no trade. And the more discrepancy in the strategies that agents use, the bigger 

the trading volume. Intuitively, when the movement of the market share begins to 

reverse, the largest discrepancy will occur. This is because at  this time agents' beliefs 

conflict with each other most: some still want to follow the old track, but others have 

already decided to go in the opposite direction. We also know that the agents' beliefs 

are most homogeneous when the market share approaches close to local minima or 

maxima. The reason is that at these times, the upward or downward potential has 

almost been exhausted, therefore there is little room left for agents to diversify their 

beliefs. 

An example of the joint-movement of the market share and the trading volume 

is shown is figure 1.8. We can see when the market share pass the point A, local 

minimum, there is a spike of trading volume. Then as the market share moves from 

point A to point B, the trading volume decreases. After the market share passes point 

B, the trading volume sharply increases again. Since the trading volume shows the 

same pattern as that of the return volatility, it means that we can use the trading 

volume to  explain the ARCH effect. From table 1.6, we can see, after adding the trad- 

ing volume to the variance equation, the magnitude of the coefficients of the ARCH 

component and the GARCH component is greatly reduced, and most of them become 

insignificant. These results are consistent with the empirical findings of Lamoureux 

and Lastrapes (1990), Gallent et al. (1992), Jones et al. (1994), Miyakoshi (2002), 

etc.. We also notice that the regression coefficients of trading volume in regime 3 
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Figure 1.8: Movement of the market share and trading volume: X = 0.96, run 2, short 
memory, periods: 9800-10000 

are bigger than those in regime 2 by a substantial margin, this is because the more 

persistent the movement of the market share, the better match between the pattern 

of the trading volume and the market share. 

Since the more persistent the movement of the market share, the more homogenous 

agent's beliefs can become. Therefore as X increases, the average trading volume will 

decrease, which can be seen from table 1.2. 

1.5.7 Other Parameters that Can Affect the Dynamics of the 

Model 

F'rom the above analysis, we know that the stronger the market mood effect, the 

easier it is to generate the pricing bubbles. The market mood effect depends on the 

distance between &t and &t-l F'rom equation (1.31), we can see it is affected by 



Table 1.6: ARCH effect after adding the trading volume 
X = 0.95 0.96 0.97 0.98 0.99 

Panel A: without trading volume 

Panel B: with trading volume 

volume 0.155 0.184 0.283 0.263 0.272 
(0.057) (0.146) (0.113) (0.114) (0.071) 

*The statistical results are obtained using the results from period 9000 
to 10000. Means over 10 runs are reported. Numbers in parentheses 
are standard errors using 10 runs. 

three parameters: The first is how many agents choose to try new strategies. In the 

simulation, we fix this number as one half of the agent population. As this number 

increases, it is expected that the market mood effect will be strengthened. The second 

is how aggressively the agents change their strategies, which is measured by the size 

of the candidate set. If the size of the candidate set is small, the probability of a 

wrong pick will also be small, hence there will be relatively less agents keeping their 

old strategies. Thus the smaller the size of the candidate set, the more aggressive 

the agents are. The more aggressive the agents, the stronger the market mood term. 

The third is how agents utilize the realized returns to evaluate the performance of 

strategies. If all agents use most recently realized returns, instead of doing random 

sampling, it is expected that the market mood effect will be strengthened. 



1.6 Short Run Momentum and Long Run Reversal 

1.6.1 The Short Run Momentum: A Comparison with a 

Bubble Pricing Model 

One interesting observation of the simulated data is that the model can generate both 

positive and negative autocorrelation in returns, and whether the autocorrelation is 

positive or negative seems mainly depend on the value of A. Now let's see why this is 

the case. 

The rational expectations equilibrium return of equation (1.23) can be written as 

where rl = g - In X + (1 - X)E(ln 2)' et = vt + (1 - X)(ln 2 - E(ln 2 ) ) .  Thus, our 

model is the one in which assets have constant expected return, perhaps the most 

intensively used model in testing market efficiency hypothesis. 

In general, the price of asset 1, equation (1.27), can be written as 

where PlYt = 1nplTt , PT,t = l n ( 6 )  + In dt , ut = In %. Let's also represent the move- 

ment of ut in the simulation as an AR(1) process 

where Jt is a random shock. If we ignore the self-referential nature of our learning 

model, then equation (1.32), (1.33) and (1.34) will form a model which is exactly the 

bubble model that Summers (1986) proposed, although L.Summers didn't point out 

the economic interpretation of ut. Analogous to Summers (1986), the return of asset 



1, equation (1.29) can be written as 

In Summers (1986)'s model, there is no parameter X. His results correspond to the 

case where X = 1. Let a, = rl l t  - r1 denote the excess return of asset 1 over the fair 

return, then 

a: = a: + (1 + X2 - 2Xpu)a;, (1.36) 

The changes in the signs of p$ along with the change of parameters A-and pu are as 

follows: taking the first derivative of (1 + X2)pu - X - X p i  with respect to A,  we get 

2Xpu - 1 - p:, which is less than -(1 - p,)', thus the numerator of equation (1.37) is 

monotonously decreasing in A. Since when X = 0, the nominator is pka: > 0, when 

X = 1, the nominator is -&'(l - pu)2a2 < 0. Thus as X goes from 0 to 1, pi will 

go from positive to negative. Taking the first derivative of (1 + - X - Xp2 with 

respect to p,, we get 1 + X2 - 2pJ, which is bigger than (1 - A)', thus the numerator 

of equation (1.37) is monotonously increasing in p,. (1 + X2)pu - X - Xp2 is -A < 0 

when p, = 0, and it is (1 - A)' > 0 when pu = 1. Hence as p, goes from 0 to 1, p; 

will go from negative to positive. When p, = A,  (1 + - X - Xp: equals zero. 

Therefore, when pu > A, pi will be positive, and vice versa. Thereby, different from 

L.Summers (1986)'s model, which only allows negative autocorrelation, this paper's 

approach allows both positive and negative autocorrelation. 

The autocorrelation coefficients of the log market share are listed in table 1.5. 

When X equals to 0.1, p,, i.e., the autocorrelation of log market share, is bigger 

than A,  equation (1.37) predicts that returns should show positive autocorrelation. 

Since all pus are less than Xs when X is bigger than 0.1, equation (1.36) predicts that 



returns should all show negative autocorrelations. The simulation results shown in 

table 1.2 show that when X equals 0.1, the first order autocorrelations of returns of 

asset 1 and asset 2 are positive; when X is within the range [0.4, 0.901, they become 

negative; when X > 0.95, they become positive. Therefore, in the cases of X > 0.95, 

the simulation results are different from the prediction of the approximate equation 

(1.37). This may be due to the fact that when X > 0.95, AR(1) process is not a good 

representation of uts. Actually, significant positive autocorrelation in the residue Jt 

can be detected in these cases. Therefore although there is some discrepancy between 

the predictions of the approximation equation (1.37) and the simulated data, there 

is one thing confirmed: this paper's approach has the potential to generated positive 

autocorrelation in returns, i.e., the return momentum, both in simulations and in the 

approximate model. 

1.6.2 The Long Run Return Reversal 

Although the bubble pricing model composed of equations (1.32), (1.33) and (1.34) 

implies that it is possible for the returns to show little autocorrelations even if the 

stock prices deviate far from their fundamental values. It also implies the long-horizon 

return may show large negative autocorrelations. The kth order autocorrelation of 

n-~er iod return is 

Equation (1.38) has the same form as equation (1.37) except that p,, enters the equa- 

tion with power n. When n is sufficiently big, even though p,, is bigger than A ,  p; will 

be less than A. Thus we will observe negative autocorrelation for long-horizon returns. 

The simulation results are consistent with this prediction. pl of returns of 1 period, 

12 periods and 24 periods are listed in table 1.7, which shows long-horizon returns 



Table 1.7: Long-horizon return autocorrelation 
X = 0.1 0.4 0.8 0.9 0.95 0.96 0.97 0.98 0.99 

12 -0.622 -0.628 -0.551 -0.482 -0.395 -0.330 -0.277 -0.122 0.010 
(0.044) (0.025) (0.036) (0.027) (0.029) (0.029) (0.036) (0.056) (0.055) 

24 -0.143 -0.107 -0.185 -0.281 -0.588 -0.594 -0.623 -0.528 -0.352 
(0.119) (0.086) (0.070) (0.057) (0.043) (0.051) (0.080) (0.108) (0.136) 

*The statistical results are obtained using the results from period 8000 to 10000. Means over 10 
runs are reported. Numbers in parentheses are standard errors using 10 runs. 

usually have large negative autocorrelation. The statistics are calculated using the 

sample from period 8000 to  10000. The continuous compound n-period returns are 

calculated as rlYnpt = EL, rl,t-n+i, using non-overlapping samples. From Table 1.5, 

we can see that for large value of A, p, is also larger. Thus it will need more periods 

for return to reverse, which can be seen from the cases with X > 0.95. 

1.7 Conclusion 

The main results of this paper are divided into two categories: In the full memory 

full sample cases, there will be no bubbles in the asset prices, and the artificial stock 

market converges to the rational expectations equilibrium; However,when agents have 

short memories, it is possible for bubbles to be generated with the evolution of agent 

beliefs. 

This paper also shows that, if agents are sufficiently patient, the market mood 

effect can make the market share persistently deviate from the rational expectations 

equilibrium level. Along with the persistent movement of the market share comes 

the clustering of volatility of returns, and its positive relationship with the trading 

volume. When the movement of the market share becomes extremely persistent, the 



jump-diffusion process will appear. The persistent movement of the market share also 

adds a slow decaying component to the asset price, which make short run return show 

momentum and long horizon return show reversal. 

To capture the dynamics of the model, this paper proposes two approximating 

equations: the mean difference equation of the market share and the bubble pricing 

equation. They provide coherent explanations for almost all results. More generally, 

the methodology of mean difference equation analysis can be applied to a variety of 

genetic algorithm models with the selection operator. Bubble pricing equations can 

be applied to other models as well, as long as the movement of the market share is 

defined. 

This paper demonstrates that adaptive learning and heterogeneous beliefs can lead 

to the reproduction of stylized facts, and return momentum and reversal on its own 

even if the rational expectations equilibrium returns do not have these properties. 

On the other hand, Cochrane, Longstaff and Santa-Clara (2003) can also explain 

these facts by a rational expectations model under a different dividend structure. 

Therefore, theoretically, whether there are bubbles in the asset prices is till an open 

question, which calls for more empirical test. One of the possible ways to do it is to 

test whether technical trading can make excess returns conditional on the portfolios 

showing financial anomalies. Charters often claim that technical rules can capture 

the market trend or mood. So if financial anomalies are indeed caused by the market 

mood, technical rules should be able to  pick them up. But if financial anomalies is 

just a reflection of fundamental values, technical rules will not lead to excess returns. 

One advantage of this paper's approach is that it can generate continuous trading. 

Continuous trading is stemming from agents' heterogeneous beliefs. In the model, 

the evolution of heterogeneous is such a process: when the market begins to  reverse, 



agents' beliefs show greatest variety, then as the reversal becomes more and more 

confirmed, agents' beliefs become more and more homogenous. Thereby the trading 

volume in the model has such a pattern that when asset prices approach the local 

minima or maxima, the trading volumes will be the lowest; after asset prices pass 

the local minima or maxima, the trading volumes will be the highest. In the model, 

the ARCH effect can be explained by the trading volume which is consistent with 

many empirical studies. However the question of whether the real trading volume has 

the same pattern as predicted by the model or not calls for more detailed empirical 

studies, which can provide valuable information about how to modify the modelling 

of heterogeneous beliefs in the future. 

In the model, asset pricing bubbles are not significant when agents are extremely 

impatient. The implication of this is that the financial bubbles, if exist, are mainly 

caused by long-term investors instead of short-term investors. The usual argument 

that the speculation will cause bubbles is to some extent misleading in the sense that 

only long term speculation can cause bubbles. 

Since the pricing bubbles only show up when agents are sufficiently patient and 

have short memory, it suggests that the bubble pricing model should not be applied 

to all assets. 

The ARCH effect is not a reliable indicator for whether there are pricing bubbles, 

although the ARCH effect is created along with the pricing bubble in this paper's 

approach. The reason is that this paper doesn't deny the possibility that the rational 

expectations equilibrium returns can have ARCH effects. No ARCH effect assumption 

is made for the convenience of isolating the effect of adaptive learning. 



1.8 Appendix 

Lemma 1: if z = 1, then l n z  = z - 1. 

Proof: Expand lnx around 1 by first order Taylor series: 

lnx = ln(1) + 1 .  ( x -  1) = x -  1, 

Done. 

Result 1: In rational expectation rational expectations equilibrium so- 

lution, 
ct 

rl,t = g - In X + (1 - A) In - + vt. 
CY 

Proof: In rational expectation rational expectations equilibrium, 

Expand ln(1 + c t 2 )  around ct = 0, 

ln(1 + ct%) = ln(1 + y) + X(l + ct% - 1 - a%) 

= -lnX+(l-A)(:-1) (1.40) 

= - In X + (1 - A)  ln 2.  (use Lemma 1) 

Substitute equation (1.40) and lndt = lndt-l + g + vt into equation (1.39), we get 

ct 
rl,t = g - 1nX + (1 - A) In- + vt. 

CY 

Done. 

Result 2: On the off rational expectations equilibrium path, the ap- 

proximation of the return of asset 1 is: 



Proof: Based on the definition, 

where bt = pi,t/pi,t-1, at = d~,t/dl,t-1, and ht = d~, t - l /p l ,~-~ .  On the determinstic 

rational expectations equilibrium growth path where a0 = eg and et = a, we have 

P1,t-1 

where p:,, and p&-, are prices of asset 1 at period t and t - 1 on the determinstic 

rational expectations equilibrium path. Define 

and 

Expand equation (1.41) around hO, a0 and b0 by Taylor series, and denote I? = 

b0 + @Oh0, we get 

rt = In(& + Qtht) FZ l n r  + I?-'(& - 6') + r-lho(@t - a O )  + r- 'ao(ht - hO) 

= g - lnp  + p(e-gb - 1) + (1 - ~ ) ( e - ~ @ t  - 1) + (1 - p)(h/hO - 1) 

FZ g - lnp  + pln(e-gb) + (1 - ~) ( ln (e -~@t)  + ln(htlhO)) 

where k = - In p+ (1 - p) In &. Approximation formula (1.44) was actually proposed 

by Campbell and Shiller(1988). Substitute pl,t = *, p = X and dl,t = etdt into 

equation (l.44), we get 

= g - l n X + ( 1 - X ) l n ~ + ~ ~ + X ( l n ~ t - l n 6 ~ - ~ ) - ( 1 - X ) ( l n G ~ - ~ - l n a ) .  

Done. 
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Chapter 2 

The Behavior of the Exchange 

Rate in the Genetic Algorithm 

with Agents Having Long Memory 

This paper studies the behavior of exchange rate i n  Kareken and Wallace (1981)'s 

model under the genetic algorithm adaptation with agents having long memory. The 

simulation results show that if agents have full memory, the average portfolio fraction 

will converge, and the initial equilibrium that it converges to is  history dependent. 

Under the lasting evolutionary pressure of the noise trader, the market will eventu- 

ally drift from one equilibrium to another, and asymptotically i t  will converge to the 

neighborhood of an equilibrium with agents equally putting their savings into two cur- 

rencies. If the agents do not have full memory, the foreign exchange market will show 

periodic crisis. Before and after a market crisis, the average portfolio fraction will 

converge to different stationary equilibria. A mean difference equation of the average 

portfolio fraction is  also given to describe the dynamics of the model. 



2.1 Introduction 

In the perfect-foresight equilibria of Kareken and Wallace (1981)'s model, the no 

arbitrage condition requires that the rates of return on two currencies have to  be 

equal, and thus the exchange rate will be constant over time. The properties that 

make Kareken and Wallace (1981)'s model so interesting lie in the facts that it leaves 

exchange rate totally unrestricted, any number bigger than zero is consistent with the 

perfect-foresight equilibria. Since there are infinite number of equilibria consistent 

with the rational expectation, rational expectation itself cannot tell us much about 

which of them are more appropriate to  serve as equilibria. On the other hand, adaptive 

learning approach does not help us out of this difficulty so far as well. In Arifovic 

(1996), Arifovic and Gen~ay  (2000), and Lux and Schornstein (2004), it has been 

shown with the genetic algorithm (GA) that the exchange rate will fluctuate forever 

and never converge to  a stationary equilibrium, and any exchange rate level can be 

reached by the economy. Sargent (1993) shows that under stochastic approximation, 

the exchange rate will converge to  a constant. However, the solution is history- 

dependent because different initial conditions will lead to  different stationary exchange 

rates. The purpose of this paper is to  provide a GA framework that may solve the 

equilibria selection dilemma in Kareken and Wallace (1981)'s model. 

In Arifovic (1996), Arifovic and Gen~ay  (2000), and Lux and Schornstein (2004), 

a special assumption about the agents in the economy is that agents only have one 

period memory, and all realized returns older than one period is irrelevant in agents' 

decision-making procedure. It makes the equilibrium investment decision unrestricted 

in the sense that all investment decisions will yield the same return. Therefore even 

if the GA can converge to  a stationary equilibrium, it cannot prevent the invasion 

of strategies that only change the portfolio composition. The inequality in the rates 



of returns of two currencies caused by the invasion, no matter how small, will be 

sufficient to  change the optimal portfolio fraction to 0 or 1 and destroy the equilibrium. 

This is one of the main reasons why in their models, the foreign exchange market is 

persistently turbulent and cannot be settled down. 

The GA application used in this paper is based on the framework of LeBaron 

(2001) where agents have long memory. Long memory is an important ingredient in 

human beings' learning process, which makes it possible for human beings to draw 

lessons from their past experience and reduce the probability of making the same 

mistake again in the future. This paper is going to show that with long memory, 

agents can eventually realize that the fluctuation in the exchange rate unnecessarily 

adds the risk to  themselves and learn to coordinate around some desired exchange 

rates. When the memory is long, agents' portfolio decisions will be determined by a 

sequence of realized returns instead of just one period realized returns. Past failures in 

the coordination will make agents become conservative in changing their investment 

decisions, and make the coordination robust against small shocks in the market. 

Another property of this paper's GA design is that a noise trader is added into 

the agent population. She is allowed to freely choose her strategy without using the 

fitness based election. Fitness based election only allows strategies winning in the 

fitness competition to be used by agents, which makes agents' actions become more 

homogeneous and similar. However, in reality, besides the mainstream beliefs, it is 

common to see there exist some people who have different or completely opposite 

opinions even when they have the same information as other people. To capture this, 

two groups of investors are used to represent them. The dominating group is the "ra- 

tional" traders, who choose strategies based on the stated fitness measure. The other 

group of investors are noise traders, whose size is much smaller. Within its group, 



members's behavior is similar. But the rules guiding their behavior are unobservable. 

Thus the random draw is used to represent their decision-making procedure. The im- 

pact of noise traders on the market is determined by the ratio between the population 

sizes of the noise traders and the "rational" traders. For simplicity, the number of 

noise traders is normalized as one in the model. 

The simulation results show that if agents have full memory, the GA will converge, 

and the initial equilibrium that the average portfolio fraction converges to is different 

from one experiment to another, just like what happened in Sargent (1993), which 

is history dependent. Under the lasting evolutionary pressure generated by the noise 

trader, the market will eventually drift from one equilibrium to another, and asymp- 

totically it will converge to the neighborhood of an equilibrium with agents equally 

putting their savings into two currencies. If the agents do not have full memory, then 

the market will show periodic crisis. Before and after a market crisis, the average 

portfolio fraction will converge to different stationary equilibria. 

This paper is organized as follows: The description of the Kareken and Wallace 

(1981)'s model is given in Section 2.2. The design of the GA application is given 

in Section 2.3. The simulation results are given in Section 2.4. The mean difference 

equation of the average portfolio fraction and the role of the noise trader are discussed 

in Section 2.5. We will discuss the dynamics of the simulation in Section 2.6, and 

provide the sensitivity analysis in Section 2.7. Section 2.8 concludes. 

2.2 Kareken and Wallace (1981)'s Model 

The economy is a version of the two-country over-lapping generations (OLG) model 

with two currencies. In each period t,  there are N young people born. Their 



two periods' endowments are wl, w2 respectively. Agents's preference is given by 

ut [ct (t), ct (t + I)] = In ~ ( t )  + In ct (t + I ) ,  where ~ ( t )  and q ( t  + 1) are the consumption 

of generation t in period t and t + 1 respectively. 

Thus an agent of generation t solves the following maximization problem: 

subject to 

where ml (t) is the agent's nominal holdings of currency 1, 1 = 1 , 2  in period t ,  pl (t) is 

the nominal price of the good in terms of currency 1 in period t. 

The exchange rate e(t) between the two currencies is defined as e(t) = pl (t)/p2(t). 

The no arbitrage condition requires that in a stationary equilibrium, the rates of 

returns on both currencies should be equal, i.e., & = *, which implies e(t + 
1) = e(t) = e. The market clearing condition is, 

where Hl(t) is the nominal supply of currency 1 in period t. It states that the world 

real money demand [wl - w2*] should equal the world real money supply 3 + 
Hz(t)e 
~ l ( t )  ' 

The indeterminacy of the exchange rate in this model results from the fact that 

there is only one equation for the world real money demand (equation (2.1)). The 

individual real demands for each currency are therefore not well defined. The inde- 

terminacy of exchange rate proposition states that if there exists an exchange rate e 

which solves the agents maximization problem, then any other 6 E (0, co) can achieve 

identical values of savings in a monetary equilibrium with the exchange e. 



2.3 GA Application 

The design of the GA experiment follows the ideas introduced in chapter 1. The whole 

evolutionary process is divided into two parts: the evolution of the agents and the 

evolution of the strategies. Since in OLG model, in each period t ,  only the actions of 

generation t affect the market outcomes, therefore, in our GA application, the economy 

only consists of one agent population, the young population a t  period t ,  with size N .  

There also exist a population of strategies with size N, as an analogy to the investor 

advisor in the real foreign exchange market. Although each generation of agents only 

have two periods of life, the new-born agents can consult investor advisers to  get the 

information about the past information of the market. The strategy j, j = 1 . . N,, 

is composed of two parts: the first one is defined as the fraction of w1 being 

consumed in period t. The second one is aj,t, which is the portfolio fraction, defining 

the fraction of agent's savings that is put into currency 1 in period t. Each strategy is 

encoded in a genetic string with the length of 20. The first 10 bits of string j denotes 

The last 10 bits denotes aj,t. Both of them are decoded in the same way as in 

chapter 1. 

For the sake of convenience, the strategy that agent i chooses is referred as i. Thus 

the consumption of agent i in period t is 

The difference between w1 and ~ ( t )  gives the savings si(t) of agent i in period t. 

Agent i places the fraction ai,t of the savings into currency 1 and the fraction 1 - ai,t 

into currency 2. Thus the prices of the consumption goods in terms of currency 1 and 



currency 2 can be calculated as: 

The ex post return of investment in currency 1 from period t to period t+ 1 is calculated 

The portfolio return of agent i is 

And the second-period consumption of agent i of generation t is as follows: 

Suppose that the memory length of agents is T, then the potential performance 

measure for strategy j is as follows: 

The timing of the market is as follows: 

1. Rules are evolved. 

2. Agents choose their current strategies. 

3. Agents are evolved. 

4, Each agent reports her decision to a 'market maker'. The market maker will 

set the prices of assets to clear the market. 

5. The ex post returns of assets are calculated and stored. 



In step 1, the evolution of strategy rules is simulated in the same way by genetic 

algorithm as in chapter 1. First, form the set of strategies to be eliminated, then the 

algorithm chooses one method from crossover, mutation or new rule to generate new 

strategies to replace them. 

In step 2, each agent will evaluate the performance of every single rule in the 

strategy population and randomly choose one rule from the candidate set. If the 

selected rule has a higher performance than the one she currently uses, the current 

one will be replaced with the new one. Otherwise, she still uses the old one. 

The noise trader is generated in step 3. In step 2, all agents have already chosen 

their strategies, and all these strategies have been filtered by the fitness based election. 

However in step 3, one agent will be randomly chosen. The strategy that she will use 

will be replaced by a strategy randomly selected from the whole strategy population. 

2.4 Simulation Results 

The model parameters are set as follows: w 1  = 10, w2 = 4, H1 = H2 = 300. Thus 

the implied optimal consumption rate is 0.7. The sizes of the population of agents 

and strategies are set as N = 60, N, = 150, respectively. The parameter 'candidate' 

is set as 75, i.e. agents will randomly choose one rule from the best half of the 

strategy population. The probabilities of crossover and mutation are p,,,,, = 0.6, 

pmUt = 0.3, respectively. The range of the portfolio fraction is set as (0.0001, 0.9999). 

The initial strategy strings are generated randomly, and all agents randomly choose 

their strategies from the strategy population. 



Figure 2.1: Average portfolio fraction of currency 1: full memory. 

Benchmark Simulation: the Full Memory Case 

The benchmark simulation is conducted by setting the memory length of all agents 

at 8000, which is the same as the number of iterations in the experiment. Therefore 

agents have full memory. The simulation results are different from those of Sargent 

(1993) and also different from those of Arifovic (1996). Sargent (1993) shows that the 

exchange rate will converge to a constant value using the stochastic approximation 

algorithm. The value that the exchange rate converges towards depends on the initial 

conditions. Arifovic (1996) shows that the exchange rate will display large range 

fluctuation and never converge to a constant value. 

From figure 2.1 we can see that in the benchmark simulation the average portfolio 

fraction of currency 1 quickly settles down to  the neighborhood of 0.6, which however 

is different from one experiment to another however. Thus, to some extent, it is similar 

to the results of Sargent (1993), which is history dependent. After the market staying 



Figure 2.2: Log of exchange rate: full memory. 
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there for some periods, the average portfolio fraction drifts down a little bit. And 

after another while, the average portfolio fraction drifts down again. Although figure 

2.1 only shows downward drifts, upwards drifts are observed in other experiments as 

well if the initial value that the average portfolio fraction converges to is below 0.5. 

Actually, the equilibrium with average portfolio fraction of 0.5 is the attractor of all 

simulations. The reason will be discussed in the section 2.5. 

The dynamics of the log exchange rates is shown in figure 2.2. It can be seen that 

just like the behavior of the average fraction of the portfolio, for most of time the 

exchange rate is stable and some small deviations appear and disappear from time to 

time. Corresponding to the downward drift in average portfolio fraction, there is an 

upward drift in the exchange rate. 

Same as the results of Arifovic (1996), the consumption ratio converges to the 

optimal solution 0.7 very quickly, which is shown in figure 2.3. 
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Figure 2.3: Average first period consumption ratio: full memory. 

2.4.2 The Incomplete Memory Case 

Set the memory length of agents as 400 ' and do the simulation again. The behavior 

of the average portfolio fraction and the log exchange rate are shown in figure 2.4 

and 2.5. It can be observed that the market exhibits periodic movements. First, 

after initial turbulence, the average portfolio fraction will settle down to a relatively 

stable level, then the market will become turbulent again and gradually settle down 

to  another stable level. The cycle of the market is approximately 400 periods, which 

is the memory length of the agents. Of course, together with the movements of the 

average portfolio fraction are the corresponding change in the exchange rate, which is 

shown in figure 2.5 . Although there are violent fluctuations in the market, the first 

period consumption still remains stable after reaching the optimal consumption level, 

'The reason that we set the memory length to be at 400 is that we want to give GA enough time 
to settle down. However if this number is too big, huge number of iterations will be needed in order 
to show the whole picture of the dynamics. 



Figure 2.4: Average portfolio fraction: memory length=400 

which is shown in figure 2.6. 

Thus an important property of the incomplete memory case is that it can generate 

cyclical financial crisis in the foreign exchange market. The occurrence of the financial 

crises is not because of the change in fundamental variables, but purely because of 

the change in the agents' beliefs. Between financial crises, the exchange rates that the 

market converges to are not the same. In fact, it will drift from one to another. Due 

to the indeterminacy of the exchange rate, any fixed level of exchange rate can play 

the same transaction role as others. Thus it is natural to see that after one financial 

crisis, agents coordinate around another exchange rate level. 

2.4.3 Short Memory Case 

In addition, the behavior with agents having very short memory is shown in figures 

2.7 and 2.8. From figure 2.8, we can see that with memory length 10, the consumption 
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Figure 2.5: Log of exchange rate: memory length=400 

Figure 2.6: Average first period consumption ratio: memory length=400 



Figure 2.7: Average portfolio fraction of currency 1: memory length=lO. 

level can still converge to the neighborhood of the optimal level. However, the average 

market portfolio will have large oscillations, and show no trend of settling down to an 

equilibrium. 

2.5 Why the Average Portfolio Fraction 0.5 is the 

Only Equilibrium that is Stable under the Evo- 

lut ion? 

In the simulation, the consumption ratio always converges and stays near the optimal 

solution no matter what values the average portfolio fraction converges to. Thus 

once the optimal consumption ratio is reached, the evolution of the average portfolio 

fraction will be mainly determined by the isolated genetic change in the portfolio 

decision part instead of the consumption part. To study this, substitute the optimal 



Figure 2.8: Average first period consumption ratio: memory length=lO 

consumption ratio 0.7 into the performance measure equation (2.9), and ignore the 
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Let a,* be the optimal solution that maximizes the performance measure (2.10), sub- 
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ject to  the condition 0 < a < 1. And denote the average portfolio fraction as &. The 

question is to  find the equation that controls the movement of Gt. 

2.5.1 The Mean Difference Equation of the Average Portfolio 

Fraction 

Without loss of generality, let us assume the index of agents is assigned as such, so 

that, the first agent is the noise trader who randomly picks up the strategy from the 

strategy population, and all remaining agents are the ones who try new strategies 



from the candidate set. Denote q t ,  i = 1 , .  . , N as the investment strategy used by 

agent i in period t ,  then 

where Et-l(.) is the expectation conditional on the information set of period t - 1. 

To find Et-l(al , t) ,  let's assume the noise trader has the probability pl to pick up 

a strategy from the parent set, and probability 1 - pl from the non-parent set, then 

where at denotes the strategy from the parent set, and a Y  denotes the strategy from 

the non-parent set. 

For i > 2, the procedure to get ai,+ is as follows: At the end of period t - 1, agent i 

picks up a strategy from the candidate set, and compares the fitness of the strategies 

with that of ai,,_,, the one she currently uses. If the new one has higher fitness, she 

uses the new one. Otherwise she keeps the old one. Thus, there are two possible 

outcomes: The first outcome, with probability ~ ( a i , ~ _ ~ ) ,  is that the string ai,t-l will 

be replaced by a new string. The second one is that string wins in the election 

and enters the next generation, with probability 1 - ~ ( a ~ , ~ - ~ ) .  In the first case, the 

expectation of the new string is Et-l(anew(ai,t-l)), which is the mean of strategies in 

the candidate set whose fitness is bigger than that of q P l .  In the second case the 

expectation is ai,t-1. Denote p(ai,t-1) as pi,t, Et-l(anew(ai,t-1)) as bi,t. Then 



Substituting equation (2.12) and (2.13) into (2.11), and subtracting Gt-i from both 

sides, we get 

From equation (2.14), we can see that the updating of the mean Cit can be decomposed 

into four parts: the first is the noise trader term $((l - p l ) ( E t - l ( a ~ )  - Et-l(ai)) + 
Et-l(a;) - the second is the gap between a,* and &,  which is the main deter- 

minant of the movement of the average portfolio fraction &; the third term is the 

average of bi,t - a,*, which is determined by the shape of the fitness function and the 

probability distribution of the strategy in the candidate set. It measures how close 

the optimal portfolio fraction is to the mean of the admitted new string, thus can 

be called admission noise; The fourth term is the weighted average of ai,t-1 - bi,t, 

which embodies the contribution of wrong pickup. The sum of the third term and the 

fourth term is a measurement of the irrationality of agents. If agents always pick the 

strategy with best fitness measure, this sum will become zero, since Pi,t will be 1 and 

bi.t = at*. 

2.5.2 The Role of the Noise Trader 

In the full memory case, it has been claimed that the equilibrium with average port- 

folio fraction 0.5 is the attractor of all simulations. Now let us see why. 

Suppose the average portfolio fraction converges to a constant number &. To 

maintain this equilibrium, it requires: first, all agents use the same investment strategy 

& thereafter, so crt = crtPl = ai,t = &, and the left side of equation (2.14) is zero; 

second, a,* should be a uniquely determined constant a* thereafter; third, a* = 6, 



which implies that the second term of equation (2. Id), a* - tit-l, is also equal to  zero. 

Since all agents use the optimal strategy a*, the probability of the current strategy 

being replaced by a new one, will become zero. Substitute this into the third and 

fourth terms of equation (2.14) and simplify, it can be shown that the sum of these 

two terms is also zero. Therefore, if we ignore the first noise trader term, then both 

sides of equation (2.14) will become zero, and the average portfolio fraction can stay 

at & forever. However, when the first noise trader term is considered, the equilibrium 

with average portfolio fraction equal to  0.5 will be the only one that is stable under 

the evolution. 

To see this, suppose the average portfolio fraction converges to a value & which is 

bigger than 0.5. After the convergence, only the strategy with investment part equal 

to & will be used and can enter the parent set. Since all strategies in the parent set 

are 6, thus Et_l(a,") = &. In this case, the second noise trader term, (EtPla," - tit-1) 

will become zero. But the first term (1 - p1)(Et-1 (ay) - Et-l (a,")) will not, unless 

& = 0.5. The reason is as follows: For the strategies not in the parent set, the 

probabilities of being generated by crossover, new rule operator, and mutation are 

all i. Since all strategies in the parent set are &, the expectation of the strategies 

generated by crossover is also &. The expectation of the strategies generated by new 

rule operator is 0.5. It can be shown that the expectation of the strategies generated 

by mutation falls into the range [l - &, &I2 for a parent string & > 0.5. Therefore 

the expectation of the strategies generated by mutation is less than 6. Combining 

the results of these three cases, we can see if & > 0.5, then Et - l (ay)  is less than &. 

Therefore (1 - pl ) (Et-l (a:") - Et-l (a,")) will be a negative number. This means the 

2The expectation of the strategies generated by mutation from a parent string 6 is 6 ( 1  - p m u t )  + 
( 1  - 6 ) p m u t ,  where pmut is the probability of the mutation. If pmut = 0, no bit in the string will be 
changed. Therefore the mean of the new strings is 6 itself. If pmut = 1,  every bit in the string will 
be changed. Therefore the mean of the new strings is 1  - 6 .  



Figure 2.9: Average portfolio fraction of currency 1: full memory with noise trader 
eliminated at period of 1000. 

average portfolio fraction will have the tendency to decrease. 

To maintain the downward movement tendency, a,* must also show the same trend. 

Otherwise, any temporary downward drift caused by the noise trader will be offset by 

the followed actions of rational traders. Actually this is what happens. The down- 

ward movement tendency in the average portfolio fraction increases the probability 

of generating the return pairs with the relationship of Rl,t < R2,t, which makes the 

realized returns distributions become more in favor of currency 2. Therefore a,* will 

also show downward movement tendency. 

Similarly, if & < 0.5, then the average portfolio fraction has the tendency of 

becoming bigger. The only equilibrium that is asymptotically stable under GA is the 

one with 13 = 0.5. In the simulation, due to the stochastic nature of the noise trader, 

the average portfolio fraction will not converge to a constant number. Instead, there 

will always exist small fluctuations. 



Figure 2.9 shows the dynamics of the average portfolio fraction in the experiment 

with the noise trader shut down in the period of 1000. It is shown that after the noise 

trader is eliminated, the fluctuation in the average portfolio fraction will disappear 

and the drifting of the equilibria will also disappear. It confirms that it is the noise 

trader who changes the history dependent property and makes it history independent. 

This kind of behavior is similar to the findings of Young (1993) and Kandori et al. 

(1993). They found, in repeat games, the introduction of some random behavior can 

change the results from history dependent to history independent. 

We should also notice that the effect of the noise term is quite small. The bigger 

that N is, the smaller the effect of the noise term. Thus it will only show itself in the 

long run. 

2.6 The Model Dynamics 

2.6.1 The Full Memory Cases 

The dynamics of the average portfolio fraction is determined by the interaction be- 

tween the noise trader and the rational traders, whose strengthes are weighted by & 
and respectively. 

Suppose in period 1, realized returns have the relation of RlY1 > R2,1. Then at the 

end of period 1, all rational agents will just use this one observation to evaluate the 

performance of the strategies, consequently the optimal strategies, a;, for all agents 

are also the same, which is to put all savings into asset 1 as long as the consumption 

ratio is not 1.0. Due to the effect of admission noise and wrong picks, G2 will not 

reach 1, but on average it will increase, which will have a positive effect on the return 

of currency 1 and a negative effect on the return of currency 2 from equation (2.6). If 



a; - f i t - l  is big, this portfolio rebalancing effect of the rational agents will dominate 

the noise trader effect, it is more likely to see R l , ~  > R2,2. If it is so, then the optimal 

strategy still will be 6: = 1 for period 3, so that the upward movement of market 

share will continue. 

However as the average portfolio fraction becomes higher and higher, on the one 

hand, the upward potential of the portfolio fraction is eventually exhausted, on the 

other hand, the probability that the noise trader to pick up a strategy far below the 

current average portfolio fraction becomes bigger and bigger. Therefore, it becomes 

more often to see temporary decrease in the average portfolio fraction and relatively 

bigger realized returns of currency 2. When the market reaches such a point that 

the accumulated effect of bigger returns of asset 2 leads 5,' to become smaller than 

atPl, then rational agents will change their behavior and the reversal movement of 

the average portfolio will be observed. When a becomes small enough, the movement 

of the average portfolio fraction will reverse again. 

During this up and down cyclical movement of the average portfolio fraction, the 

realized returns of two currencies will become more and more balanced. If agents have 

full memory, a; will eventually settle down, and become more and more difficult to  

be changed, which in turn makes the average portfolio also settle down. The value 

that the average portfolio fraction settles down to  is determined by the distribution 

of the initial realized returns, which is specific to  each experiment. Thus it is history 

dependent. 

The dynamics of the average portfolio fraction have following properties: first, the 

stationary equilibria near the boundary values 0 and 1 are extremely unstable, which 

makes it almost impossible for agents to  coordinate around these levels. There are 

two reasons: first, when the average portfolio fraction is near 0 or 1, it is very easy 



for GA to generate big realized returns in currency 1 or 2, which may be big enough 

to destroy the equilibrium for a single shock. Second, even if a single return peak is 

not big enough to destroy the equilibrium, nevertheless, it is very easy for the GA to 

generate a sequence of shocks in short time to destroy the equilibrium. In either case, 

the GA can not stay around the extreme values for a long period. 

Second, the stationary equilibria around some intermediate values can be kept 

quite long once GA converges to it. The duration that GA spends on these equilibria is 

negatively correlated with the difference between the average market portfolio fraction 

of these equilibria and 0.5. It is also negatively correlated to the population size N. 

Third, the equilibrium of 0.5 is the attractor of all equilibria. GA cannot stay 

forever at  an equilibrium different from it. The noise trader effect will eventually take 

control and make the average portfolio move to it. 

2.6.2 The Incomplete Memory and Short Memory Cases 

In the less than full memory case, the story is quite different. Suppose agents have 

quite long memory T, but not full, and after the initial turbulence, the average port- 

folio fraction settles down to the neighborhood of an arbitrary number. When the 

market operates for longer than T periods, agents will begin to forget the realized re- 

turns in the initial periods. Suppose the initial realized returns are in favor of asset 1, 

then forgetting this part of the realized returns will destroy the balance of the realized 

return distribution, leading the remaining realized return distribution in favor of asset 

2, so that cu2; will begin to decrease, and we will see that the average portfolio fraction 

decreases as well. When the number of periods that the market operates exceeds the 

length of agents memory, the movement of the market share will be approximately 

a replication of what happened in the previous cycle but in an opposite direction. 



When the average portfolio settles down again, it typically will be another value since 

the process of the equilibrium destruction and establishment is stochastic. 

The periodic length is approximately the memory length of agents. If the memory 

length of agents is sufficient small, we may not observe the average portfolio to settle 

down, and can only observe the periodic swing of market share, which is shown in the 

short memory case. 

2.7 The Impaction of the Population Size and the 

Size of the Strategy Set 

As illustrated in the introduction, the size of the noise traders is normalized to 1 in 

the simulation. Therefore, the population size N reflects the relative size of the noise 

traders and the rational traders. The simulation results with different population 

sizes are shown in figures 2.10, 2.11, 2.12 and 2.13. It can be seen that when N = 

5, the effect of the noise trader is strong. The dynamics of the model shows two 

properties: first, the movement of the average portfolio fraction shows randomness and 

irregularity; second, the average portfolio fraction will not show momentum toward 

to boundary 0 or 1. As N increases, the movement of the average portfolio fraction 

becomes more regular, and it may also take longer for the average portfolio to  converge 

to 0.5. 

The pattern of going from randomness to  regularity with N increasing is similar 

to the findings of Lux and Schornstein (2004). They find that as N increases, the 

randomness will get lost and the dynamics of the average portfolio fraction appears 

to converge to  a regular cycle (like the figure 2.7) under the framework of Arifovic 

(1996). 
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Figure 2.10: Average portfolio fraction of currency 1: N = 5. 

Figure 2.11: Average portfolio fraction of currency 1: N = 10. 
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Figure 2.12: Average portfolio fraction of currency 1: N = 15. 

Figure 2.13: Average portfolio fraction of currency 1: N = 20. 
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Another question is whether the results are sensitive to the size of the strategy set. 

From the analysis of section 2.5.2, we know that the drifting of the average portfolio 

fraction in the full memory case is mainly determined by the difference between lit 

and the mean of strategies that are used to replace the dead strategies. As the 

size of the strategy set increases, the size of the dead strategies will also increase if 

we fix the ratio between the size of strategy set and the candidate set. This will 

make the mean difference equation approach more powerful due to the law of large 

number. To some extent, this is also similar to Lux and Schornstein (2004)'s large N 

phenomenon. When the size of strategy set is extreme small, the change of the average 

portfolio fraction will become disrupt, and it generally takes longer for the algorithm 

to converge. One experiment with strategy population size 4 and candidate size 2, is 

show in figure 2.14. We also can see that when the size of the strategy population is 

20, the behavior of the model is already very similar to our benchmark full memory 

simulation from figure 2.15. 

2.8 Conclusion 

Even though agents have long memory in our experiment, it does not imply that 

agents will remember the initial failure in coordination forever and never coordinate 

with each other again. On the contrary, simulation results show that agents can learn 

how to coordinate if they can draw lessons from past failures. However, when agents 

begin to forget the suffering in the past, the coordination will break down. Thus the 

reason why people can coordinate with each other is because they can 'remember', not 

because they will 'forget', past failures. The most destructive power on the exchange 

rate market is agents' "forgetting". 



Figure 2.14: Average portfolio fraction of currency 1: Ns = 4, candidate=2. 

Figure 2.15: Average portfolio fraction of currency 1: Ns = 20, candidate=lO. 



The role of the noise trader is not completely destructive. Comparing this chapter's 

model with chapter 1's model, we can see that the noise trader is actually playing 

the role of the level effect term in the equation (1.29). After agents establish the 

temporary coordination, the portfolio-rebalancing effect (or market mood effect) will 

become zero, and the activities of the noise trader will take the control. This lead 

agents asymptotically to coordinate around the equilibrium putting savings equally 

into currency 1 and 2, no matter what the initial conditions are. 

Arifovic (1996) can generate exchange rate series displaying properties remarkably 

similar to real data, which cannot be observed if all agents having long memory. How- 

ever when the memory length is short and the population size is small, the behavior 

of the exchange rate in our model becomes similar to Arifovic (1996). 
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Chapter 3 

Do Investors' Beliefs Really 

Matter? An Issue about the 

Interpretation of GA Models 

A s  a method of modelling the evolution of investors' beliefs, genetic algorithms ( G A )  

have been used extensively in simulating financial markets. Presumably G A  models 

should have self-referential processes as their kernels, where investors' past interaction 

should affect their future interaction. Otherwise, G A  models will degenerate to a pure 

numerical maximization method. The purpose of this paper is  to  point out that just 

putting a population of investors with different beliefs in to  a G A  does not  necessarily 

mean investors' beliefs will really matter. W e  will also show that whether the self- 

referential process exists or not,  and if exists how strong i t  is, i s  a key t o  understand 

the dynamics of the G A  model. 



3.1 Introduction 

If there is only one investor in a financial market, the investor's behavior rule will 

be quite simple. She just needs to maximize her welfare subject to the objective 

conditions. However, in reality, there are many investors in the market. To make 

decisions, an investor not only needs to form correct beliefs about the primary infor- 

mation (Richardson's (1959) phrase), such as the dividend processes, but also needs 

to take into consideration the secondary information, such as what other investors' 

projected activities will be. As in Keynes' (1936) phrase, investors need to take into 

account "what average opinion expects the average opinion to be". In such a context, 

any outcome is possible if investors' beliefs are free parameters. Therefore, in order 

to refine the solutions, the restriction of mutual consistent beliefs is usually used in 

asset pricing models, which means investors mutually know each others' beliefs, and 

these beliefs should also be consistent with the distributions of exogenous variables. 

This is, of course, the rational expectations approach. 

One of the main reasons why researchers want to  simulate a financial market with 

GAS is because they are not willing to  make this restriction. Typically in a GA 

model, there are almost no restrictions put on investor's beliefs, hence any investment 

behavior can be observed. The inconsistency between investors' beliefs is resolved by 

the market. Successful investment strategies are those that happen to  be supported by 

the market, and will have a higher probability of being followed by other investors, and 

thus survive; poor performing strategies have a lower probability of being followed, 

and thus eventually die. In this way, researchers can study where financial markets will 

go without assuming that investors have perfect foresight. There are many successful 

applications of GA models to the financial markets, see Lux and Schornstein (2004), 

LeBaron (2000,2001,2002), Tay and Linn (2001), LeBaron et al. (1999), Arthur et al. 



(1997), Lettau (1997), Arifovic (1996) and Plamer et al. (1994) among others. 

Obviously, what makes GA interesting is not that it is an optimization method, 

but because it offers a way of putting endogenous heterogenous beliefs into the op- 

timization process, and hence enables us to see what the dynamics of a model will 

be with the additional uncertainty of the interaction among investors. Therefore, 

presumably GA models should have self-referential processes as their kernels, where 

investors' past interaction should affect their future interaction. Otherwise, investor's 

beliefs will 'not matter', and the GA models will degenerate to a pure numerical 

maximization method. The purpose of this paper is to point out that just putting a 

population of investors with different beliefs into GA does not necessarily mean in- 

vestors' beliefs will really matter. We will also show that whether the self-referential 

process exist or not, and if exists how strong it is, is a key to understand the dynamics 

of the GA model. 

In GA models, since the survival and death of the strategies are determined by 

their performance, the question of whether investors' beliefs matter or not is equiva- 

lent to the question of whether investors' interaction is important in calculating the 

performance measure. In the easiest case, if the performance measures of strategies 

are solely determined by exogenous variables, it is apparent that the GA is purely 

playing the role of an optimizer. In the second case, when investors are modelled to 

make multiple decisions simultaneously, it is possible that investors' beliefs matter for 

some decisions, but do not matter for other decisions. We will show this by using a 

performance measure function which has a separation property. The third case is the 

most subtle one, in which although the self-referential process does exist, its strength 

depends on the parameters of the model. 

The GA applications that are used to  illustrate our points follow the framework 



of the artificial stock market proposed by LeBaron (2001). It has been introduced 

in chapter 1. The theoretical model and the GA design will be described in Section 

3.2. Four experiments are analyzed: In experiment 1, the number of risky assets is 

set to  1, and its return is exogenously given. This example is used to  illustrate the 

function of GA as an optimizer. In experiment 2, the model is an extended Lucas' 

tree model with one risky asset. We are going to see how investors' beliefs can become 

irrelevant in forming optimal consumption decisions, although the return of the risky 

asset is endogenous. This is further illustrated in experiment 3, where two risky assets 

are included in the model. In experiment 4, although the model is the same as that 

in experiment 3, our main focus moves from the optimal consumption decision to  

the optimal portfolio decision. It turns out while investors' beliefs will not change 

the convergence property of GA in the full memory cases, it will lead to  substantial 

differences in the cases where investors' memory length is bounded. 

3.2 The Model and the GA Design 

3.2.1 The model 

All theoretic models in this paper are taken from Sargent (1987). The basic model is 

as follows. The representative investor tries to  maximize her lifetime log utility: 

subject to  the intertemporal budget constraint, 

where wt is the wealth of the investor in period t ,  X is the patience parameter, Pt is the 

proportion of the wealth being consumed in each period, Rt is the gross return from 



period t to t + 1. With log utility, the optimal consumption ratio is always = 1 - A. 

Rt can be exogenous or endogenous. How Rt is generated will be introduced in each 

specific experiment. 

3.2.2 The GA Application 

Like the design of the GA experiments in chapter 1, there is a population of investors 

of size N in the economy. There is also a population of strategies with size N,. The 

strategy s ,  s = 1 . .  . N,, is composed of two parts: ,8,,t, defined as the fraction of wt 

being consumed in period t ,  and the fraction of investor's savings that is put 

into asset 1 in period t ,  if there are two risky assets in the economy. Each strategy 

is encoded in a genetic string with the length of clength + alength. The first clength 

bits of string s denotes &. The last alength bits denotes If clength = 0 and 

alength # 0, it means that investors only make portfolio decisions. If clength # 0 

and alength = 0, it means that investors only make consumption decisions. 

Assuming that the memory length of investor j is Tj, j = 1, .  , N ,  in experiment 

1, 2 and 3, investor j evaluates the performance of the rule s a t  period t using 

Rt-T3+7-2 is the gross return of investment from period t - Tj + r - 2 to  period 

t - Tj + r - 1. In experiment 4, a different performance measure will be used. It will 

be described in the related section. 

At the beginning of each period, half of the population of investors will be ran- 

domly selected to try new rules. They will evaluate the performance of each rule in 



the strategy population and randomly choose one rule from the candidate strategy 

set. If this rule has better performance than the one she currently uses, she replaces 

the old one with the new one, otherwise she still uses the old one. 

In each period, the timeline of the market is as follows: 

1) Each investor evaluates the performance of the strategies using her memory of 

ex post returns of assets, and chooses one rule as her current strategy. 

2) The realized returns are generated or determined. 

3) Rules evolve. 

4) Investors evolve. 

The evolutions of strategies and agents are same as those of chapter 1, except that 

the evolution of agents only occurs when the asset returns are endogenous. 

3.3 Experiment 1 

There is only one risky asset in the market. The return distribution of the as- 

set is exogenously given and assumed to follow a log normal distribution, log Rt - 
N(0.0015, 0.01i'322). clength and alength are set as 10, 0, respectively. This means 

that investors only make consumption decisions. The patience parameter X is set 

as 0.95. Therefore the optimal consumption ratio is 0.05. The period of simulation 

is 1000. The number of investors and strategy rules are 100 and 60 respectively. 

Investors have identical memory length of 600. For period 1, strategy rules are gener- 

ated randomly, and the strategy rule each investor uses is randomly drawn from the 

strategy population. There is no evolution of investors in experiment 1. 

To make comparisons, the simulations are done with two different sizes of can- 

didate set: The first one sets the parameter 'candidate' as 1, i.e., investors always 



Figure 3.1: Experiment 1: Consumption ratio: candidate=l and 30 

choose the rule with the best performance; the other one sets it as 30, i.e., half of the 

size of the strategy population. Figure 3.1 shows that, in both experiments, investors 

can find the optimal consumption rule quickly. In about 100 periods, the average 

consumption ratio used by the investors converges to optimal solution 0.05 for both 

experiments. 

In this experiment, the interpretation of GA is quite simple. Since the asset 

return is exogenously given, investors' actions have no impact on the realized returns. 

Therefore investors' interaction has no impact on the performance measure equation 

(3.3), which means that there is no self-referential process and GA is acting primarily 

as an optimization method. 

The convergence speed of the average consumption ratio is similar in both sim- 

ulations. However the distributions of final strategy populations are quite different. 

When the parameter 'candidate' is 30, the mean of the strategy population is around 

0.15, which is much smaller than that of the experiment with 'candidate' 1, 0.27. 
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Figure 3.2: Experiment 1: Mean of strategy population: candidate=l and 30 

The reason is as follows: After the average consumption ratio converges to the 

optimal level, all strategies in the parent set will be identical with value of 0.05. For 

the strategies not in the parent set, the probabilities of being generated by crossover, 

new rule operator, and mutation are all i. Since all strategies in the parent set 

are 0.05, the expectation of the strategies generated by crossover is also 0.05. The 

expectation of the strategies generated by new rule operator is 0.5. The expectation 

of the strategies generated by mutation is larger than 0.05. Thus the mean of the 

new strategies that are used to replace the dead ones is larger than 0.05. If investors 

always choose the best one, then, on average, in each period there are more dead 

strategies than the case when investors diversify their choice over a subset of the 

strategy population, thus its strategy population has a larger mean. The evolution of 

the means of the strategy populations is shown in figure 3.2. 



3.4 Experiment 2 

3.4.1 Model 

In this experiment, the Lucas tree model with one asset is used as the simulation 

base. The return of the asset is endogenous, and the budget constraint of equation 

(3.2) is changed to be 

wt = ptst + ct = (pt + dt)st-1, (3.5) 

where st is the investor's holding of risky asset in period t. The supply of asset 1 is 

fixed at one unit. In equilibrium, st = st-l = 1, and the consumption ratio is 1 - A. 

Substituting these into equation (3.5), gives 

In the artificial stock market, the saving rate of investor j is 1 - &. Thus investor 

j will put (1 - ,8j,t)wj,t into the risky asset, where wj,t = (pt + dt)sj,t-l, sj,t-l is the 

share of the asset held by investor j in period t - 1. Thereby the demand for the risky 

asset of investor j is 

Summing the demand of all investors, plugging this into the market clearing condition 

zEl ~ j , ~  = 1 and solving for pt, we get 

The ex post returns are calculated as 
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Figure 3.3: Experiment 2: Average consumption ratio: candidate=30 

3.4.2 Simulation 

The parameter values are the same as those in experiment 1, except that the return 

distribution is not exogenously given. The exogenous aggregate dividend of assets is 

assumed to follow 

lndt = lndt-l + g + v t ,  (3.6) 

where vt - N(O.00, 0.0017322), g = 0.0015. This corresponds roughly to the actual 

dividend properties of the U.S. stock markets (Campbell 2000). The initial asset 

holdings are assumed to be equal across the investor population. In contrast to 

experiment 1, the evolution of investors is added to the GA. 

From figure 3.3, we can see, the GA evolution does not show much difference from 

that of experiment 1. The GA still converges to the optimal solution very quickly. 

This is because, in this experiment, the role of the GA is still mainly as an optimizer. 

Although the asset returns are endogenous, they are still irrelevant in searching for 

the optimal consumption decision. This can be shown as follows: For simplicity, we 



assume investors have infinite memory length and the simulation has operated for a 

sufficient long period, then the performance of strategy t3,,t is 

We can see that the asset returns enter the performance measure by the third term 

in equation (3.7). Since term 3 has the same value across the performance measures 

of all strategy rules, the relative magnitude of performance measure is determined by 

the first two terms, which are independent of investors beliefs. Then the thing left is 

to let GA find the optimal P value to maximize the sum of term 1 and 2, 

It is easy to show that it is maximized at ,P = 1 - A, which is just the optimal solution 

to the original Lucas tree model. 

At first glance, it seems surprising that in such an economy where investors have 

endogenous heterogenous beliefs, investors, although naive, can still find a way to 

coordinate with each other and evolve to the optimal equilibrium. However, the real 

mechanism here is that heterogenous beliefs do not matter at all. There is in fact no 

fundamental difference between example 1 and 2. 

3.5 Experiment 3 

3.5.1 Model 

In this experiment, the model is extended to two risky assets case. The intertemporal 

budget constraint is expanded as, 

wt Pl,tsl,t + Pz,tsz,t + ct = (pl,t + dl , t )~l , t - l  + (p,,, + dz,t)sz,t-l, 



where s ~ , ~ , s ~ , ~  are the investor's holding of risky asset 1 and asset 2 respectively. This 

model has been discussed in details in chapter 1 .  Here we still use the special case 

of this model, where the expected dividend share is a constant. As we know, the 

equilibrium market share will be a constant as well under this assumption. 

In contrast to  the experiments in chapter 1 ,  we do not fix the consumption a t  the 

optimal level this time, and instead we let agents make both consumption decision 

and investment decision. 

Let the saving rate of investor j, j = 1 . .  N be 1 - ,Bjtt .  Thus investor j will 

put ajtt(l  - ,Bj,t)wj,t in asset 1 ,  and ( 1  - cq t ) ( l  - PjPt)wi,t in asset 2 ,  where wj,t = 

( P L ~  + d i , t ) s i  , j , t - i  + ( ~ 2 , t  + d 2 , t ) ~ Z , j , t - l  SO the demand for asset 1 is 

Summing the demand of all investors, and substitute them into the market clear 

N condition C j = l  S I , ~ , ~  = zEl S Z , ~ , ~  = 1 ,  we get 

In the same way, for asset 2 ,  we have. 

N 

pzYt = - aj,t)(l  - a, t )~ j . t .  (3.9) 
j=1 

Since wj,t is a function of plt t  and p ~ , ~ ,  the current prices have to be solved jointly 

from the above two equations. 

The ex post gross returns of asset 1 and 2 are calculated as 

P i ,  + i t ,  = 2 .  
&,t+l = 

Pi,t 



Figure 3.4: Experiment3: Consumption ratio 

3.5.2 Simulation 

The parameters are set as follows: alength = 10, clength = 10. Thereby investors 

make both consumption and investment decisions. The range of investment strategies 

is set as (0.0001, 0.9999). The initial memory lengths of investors are generated 

randomly from the uniform distribution of [6,250]. During the evolution of investors, 

d l$  the memory length of new arrivals is generated in the same way. et = - is generated 
dt 

from the same beta distribution as that in chapter 1. The mean and variance of E,  

are 0.5 and 0.0012437, respectively. Accordingly, the implied rational expectations 

equilibrium market share is 0.5. Other parameters are the same as in experiment 2. 

Let us first take a look at the pattern of the consumption ratio, which is shown 

in figure 3.4. In this relatively complex situation, the consumption ratio can still 

converge to  the neighborhood of the optimal solution 0.05. The fact that the GA 

successfully converges to the optimal saving ratio, however, does not mean it can 



Figure 3.5: Experiment 3: Market share 

successfully make the market share converge to the optimal solution. The behavior of 

the market share is shown in figure 3.5, from which we can see that the market share 

changes dramatically over time. 

What are the forces that lead the GA to converge in search of the optimal con- 

sumption ratio, but diverge in search of the optimal investment strategy? To answer 

this we still need to return to the performance measure function. In equation (3.7), we 

see that the performance function can be decomposed into three terms, in which the 

consumption decision p only affects terms 1 and 2, and the investment decision only 

affects term 3. In experiment 2, there is no investment decision, only the consumption 

decision, and all investors have the same memory length. Therefore the third term 

is the same for all strategies. The GA just need to pick the right one to maximize 

the first two terms. Here in experiment 3, each strategy contains two parts, the con- 

sumption strategy and the investment strategy. The investment strategy affects the 



return of the investment portfolio since R, = CY,,~R~, ,  + (1 - CY,,~)R~,,, which depends 

on a,,+. Accordingly, even if each investor has the same memory length T ,  the third 

term, c:=, AT-' log(ni l :  R,) is still different for different strategies. 

Does this mean investors' beliefs matter in search of the optimal consumption 

strategy? The answer is still 'no'. For a given memory length T ,  the strategies can 

be divided into groups classified by their investment strategies. The strategies having 

the same investment strategies values are put into the same group. Then among each 

group, the third term is the same for each member. In the long run, the strategies that 

can survive in each group have to  be the ones that maximize the sum of first two terms, 

which is the same across the groups. Although GA operators, especially the mutation 

operator and the new rule operator, will make the strategy population change all 

the time, it does not change the property that only the strategies maximizing the 

sum of the first 2 terms can survive. Hence we see the separation property of the 

performance function still makes investors' interaction not matter in search of the 

optimal consumption decision. 

However, when we turn to the optimal investment decision, the story is totally 

different. A building block of term 3 is log(Rt) = log(aRl,+ + (1 - a)R2,+), where Rl,+ 

and R2,+ are determined endogenously by investors' decision. The complexity lies in 

the fact that when investors optimize a based on the past realization of the assets' 

returns, they actually change the future behavior of the assets' returns themselves. 

The interaction between investors' decisions and the information set on which they 

make decisions forms the self-referential process. It is obvious that in a self-referential 

process, the investors' past beliefs matter. 

However it is premature to conclude that investors cannot find a way to coordinate 

with each other and converge to the rational expectation equilibrium in this two-risky 



assets artificial stock market. Taking another look a t  term 3, we can see that term 

3 is actually a weighted average of the past information. At period t ,  the weight for 
~ t - t + T ~ + l  ( l-At- i  

the period t's information is 1-x 
1. Thus the information at period t - Tj 

x(i-xTj) has the highest weight of l-X 
, and the weight of newer information will decrease 

exponentially as i goes to t - 1. For example, when X = 0.95, Tj = 100, the weight 

of period t - 1 information is only 0.951•‹0 = 0.00592, which means it needs extremely 

large returns in period t - 1 to match the role of a moderate return in period t - Tj 

playing in the performance measure function. 

Therefore the drawback of this performance measure function is that the effective 

memory length of investors in term of term 3 is quite short. With short memory 

length, the investors' behavior is more likely to be affected by the temporary return 

bubble, and less likely to  converge. In addition, investors' behavior will be governed 

by old information instead of recent information, which is in conflict with common 

sense. 

3.6 Experiment 4 

In experiment 4, we will concentrate our efforts on the searching of the optimal in- 

vestment strategy. We will use the following property of the model: That is if we fix 

the consumption ratio a t  the optimal level, 

max Et log[c~Rl,t+l f (1 - a)Rz,t+iI, (3.10) 
a 

will be maximized a t  the equilibrium portfolio fraction, given the equilibrium returns 

(RlYt+l, R2,t+l), where a is the proportion of asset 1 in the portfolio. Using the 

sample average to replace the expectation operator, we get the performance measure 



Figure 3.6: Experiment 4: Market share, full memory, X = 0.9 

as follows, 
T 

It should be noted that in contrast to  experiment 3, the same weight scheme is applied 

to  the past information in equation (3.11). And this performance measure function 

is also different from that in chapter 1, where agents will use random sampling. 

In the simulation, the parameters are set as follows: clength = 0, and alength = 

10. Thus investors only make investment decisions. The consumption decision is fixed 

a t  the optimal level of 0.1 (A = 0.9) and 0.9 ( X  = 0.1) respectively. 

Figures 3.6 and 3.7 show the dynamics of the market share when investors have full 

memory, i.e., investors remember all past realized returns. We can see in both simu- 

lations, the market shares quickly converge to the rational expectations equilibrium 

value 0.5, although small fluctuations will exist forever. 

On the other hand, when investors have long but not full memory, the dynamics 



0 200 400 eoo eoo iooo 1200 1400 1800 1800 2000 
Period 

Figure 3.7: Experiment 4: Market share, full memory, X = 0.1 

Figure 3.8: Experiment 4: Market share, memory length=600, X = 0.9 



Figure 3.9: Experiment 4: Market share, memory length=600, X = 0.1 

of the market shares will be quite different, which are shown in figures 3.8 and 3.9, 

where investors have identical memory length 600. Figure 3.8 shows that, when 

X = 0.9, the market share will display periodic movement. The periodic length is 

approximately the length of investors' memory. At the start of each cycle, the market 

share shows persistent deviation from the equilibrium value. When X = 0.1, although 

the market share displays fluctuations around the equilibrium level, it does not have 

regular pattern. The persistent deviation is not observed. 

3.6.1 An Analysis of the Dynamics in Experiment 4 

The dynamics of the model has been discussed in details in chapter 1. Here let's give a 

new interpretation of the bubble pricing equation (1.29) in terms of its self-referential 

implication. Recall that the bubble pricing equation is as follows, 

Et  
q t  = -In A +  (1 - A) In(-) +vt +X(lnfit -In&-1) - (1 - X)(ln(fit-1) - lna ) ,  (3.12) 

Q 



where E(Q)  = a. AS we know, the first four terms reflect the fundamental value of 

the asset. The fifth is the market mood term. If investors have an optimistic view of 

asset 1, they will increase their holdings of this asset, so that the market mood term, 

In dt - In > 0, has a positive effect on the return of asset 1. For the same reason, 

if investors are pessimistic, then it will have a negative effect. The sixth term is the 

level effect term. The market mood term and the level effect term are weighted by X 

and 1 - A ,  respectively. 

The question is what the information is conveyed by the simulations across dif- 

ferent values of A. From the point of view of agents' preferences, X is a parameter of 

patience. However in the bubble pricing equation, we'v already seen that it is also a 

parameter that determines the relative strength of market moods and the level effect. 

From this perspective, we can take it as a measure of market's capacity of amplifying 

investors' herd behavior. If X is very small, the market will be inertia in response to  

investors' activities, and assets' returns will be mainly determined by the fundamen- 

tals. In this case, we can hardly say there exist self-referential process in the model. 

Strong self-referential processes only appear when X is large, where investors' past 

interactions will substantially influence realized returns, and hence shape their future 

behavior. Therefore the magnitude of X can be taken the measure of how strong the 

self-referential process is in the model. 

In the large X cases, the self-reference process is strong. Therefore, the market 

mood can self-validate itself, and makes the market share persistently deviate from 

the equilibrium value. This will make the movement of the market share show clear 

pattern, and is easy to be identified, as we see in figure 3.8. However when X is really 

small, the assets' returns will be mainly determined by the fundamentals. This in 

turn makes investors' investment decisions can not deviate far from the equilibrium 



level. Thereby the movement of the market share will be governed by the random 

shocks of the fundamentals, and will not display regular pattern, just like what we 

see in the figure 3.9. 

The effect of the market mood term and the level effect term can also be taken 

as representing two group of investors: bubble followers and fundamentalists, respec- 

tively. Bubble followers follow the trend of the movement of price, while fundamen- 

talists always know the fair prices, they will take action against bubble followers and 

make the asset prices return to its fair value. If the market power of bubble followers 

is bigger than the fundamentalists, the momentum of prices will be sustained, vice 

versa. If we interpret the bubble pricing equation in this way, we can see that the 

simulations with different As are equivalent to simulations with different combination 

of bubble followers and fundamentalists. 

3.7 Conclusion 

This paper suggests that we should be very careful when interpreting the results of GA 

applications in the financial markets. Although GA is particularly suitable to serve 

as a platform to model the evolution of the investor's beliefs, it does not necessarily 

mean that a self-referential process can be formed between the market information 

and investor's actions. In addition, the strength of the self-referential process may also 

depend on the parameters of the model. In experiment 1, the strategy performance 

measure is solely determined by exogenously generated returns, so that investor's 

activities is irrelevant and GA purely functions as a numerical method to find the 

optimal solution. In experiment 2 and 3, although the assets' returns are endogenous, 

they are still irrelevant in searching of the optimal consumption strategy, due to the 



separation property of the performance measure function. 

Experiment 4 shows that if investors' put equal weight to the past information and 

have full memory, then the investors' investment decisions will converge to the rational 

expectations equilibrium level, even though the assets' returns are endogenous and 

relevant. 

However the dynamics of the model before the stationary equilibrium is reached 

is substantially different between the cases where investor's interactions matter and 

do not matter. Investors' mood effect can self-validating by generating subsequent 

returns to confirm their mood. Its strength is weighted by investors' patient parame- 

ter A. When X is large, the self-referential process is strong and the market share can 

persistently deviate from the equilibrium level. This implies that the model can gen- 

erate returns significantly different from the equilibrium returns during these period 

(see chapter 1). However, when X is small, the self-referential process will become 

very weak, investors' interaction become trivial. Therefore the market share cannot 

display persistent deviation and the implied realized returns will be similar to the 

equilibrium returns. 

Comparing experiment 3 and 4, we can see that the weight put on the past infor- 

mation in evaluating performance measure is quite important. Although it is not done 

in this paper, it is easy to  show that if investors put heavy weight to the recent in- 

formation, then investors will behave like short memory investors, and the stationary 

equilibrium will not be reached. 

As a conclusion, if we are interested in the behavior of the GA model before 

the stationary equilibrium is reached, it is crucial to study whether investors' beliefs 

matter or not. 



Reference 

Arifovic, J., 1996, The behavior of the exchange rate in the genetic algorithm and 

experimental economies, Journal of Political Economy 104, 510-541. 

Arthur, B. 1994, Inductive behavior and bounded rationality, American Economic 

Review 84, 406-41 1. 

Arthur, W. B., J .  Holland, B. LeBaron, R. G. Palmer and P. Tayler, 1997, Asset 

pricing under endogenous expectations in an artificial stock market, Economic Notes 

by Banca Monte dei Paschi di Siena SPA, 26, 297-330. 

Campbell, J.Y., 2000, Asset prices, consumption, and the business cycle, in J .  B. 

Taylor and M.Woodford, eds, 'Handbook of Macroeconomics', North Holland. 

Campbell, J .  Y. and R. J.Shiller, 1988, The dividend-price ratio and expectations of 

future dividends and discount factors, the Review of Financial Studies 1, 195-228. 

Keynes, J .  M. 1936, General Theory of Employment, Interest, and Money, Macmillan, 

London. 

LeBaron, B., 2000, Investor based computational finance: suggested readings and 

early research, Journal of Economic Dynamics & Control, 24, 679-702. 

LeBaron, B., 2001, Volatility magnification and persistence in an investor based fi- 

nancial market, working paper, International Business School Brandeis University. 

LeBaron, B., 2002, Building the Santa Fe artificial stock market, working paperJnternationa1 

Business School Brandeis University. 

LeBaron, B., W. B. Arthur and R. G. Palmer, 1999, Time series properties of an 



artificial stock market, Journal of Economic Dynamics & Control, 23, 1487-1516. 

Lettau, M. 1997, Explaining the facts with adaptive investors: The case of mutual 

fund flows, Journal of Economic Dynamics and Control 21, 1117-1147. 

Lux, T. and S. Schornstein, 2004, Genetic learning as an explanation of stylized facts 

of foreign exchange markets, forthcoming in Journal of Mathematical Economics. 

Palmer, R., Arthur, W.B., Holland, J.H., LeBaron, B., Tayler, P. 1994, Artificial 

economic life: A simple model of a stock market, Physica D 75, 264-274. 

Richardson, G. B. 1959, Equilibrium, Expectations and Information, The Economic 

Journal 69, 223-237. 

Sargent T. J., 1987, Dynamic Macroeconomic Theory, Cambridge Mass: Harvard 

University Press. 

Tay N. S. P. and S. C. Linn, 2001, Fuzzy inductive reasoning, expectation formation 

and the behavior of security prices, Journal of Economic Dynamics & Control 25, 

321-361 

Yiping Xu, 2004, Financial Market Bubbles: An Agent-based Learning Model, work- 

ing paper, Simon F'raser University. 


