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ABSTRACT 

To this day, lung cancer remains the leading cause of all cancer deaths for 

both sexes. Current treatment options lead to a cure in only about ten percent of 

diagnosed cases of lung cancer. One of the main reasons why this type of 

cancer has such poor prognosis is that it is very difficult to diagnose at the early 

stages. It is well known that the survival rates can be improved by the early 

detection of pre-invasive lesions, which are believed to be the possible 

precursors to malignant tumours. Although new diagnostic devices are allowing 

numerous lesions to be detected early, it is becoming clear that only a small 

percentage of these will actually progress to cancer. Therefore, the critical 

question is how to determine the factors that will define which of these lesions 

will become malignant. 

In this thesis, two computational models and a novel approach to 

represent biological knowledge for use in the early diagnosis of cancer are 

presented. In the first part, a stochastic model representing the early 

development of pre-invasive neoplastic bronchial epithelial lesions as contact 

processes is introduced. The results of the simulations run on this model gave us 

some insight on the probability of growth of specific lesions. 

Yet, it also shed light on the fact that for an effective diagnostic tool we 

would need to consider a lot more information about the patients and their 

condition beyond the structural behaviour of independent lesions. This led to the 

development of a new approach to multidisciplinary biological knowledge 

representation: the Probabilistic Property-Based Model (PPBM). Based on a 

cognitive model of knowledge construction, PPBM presents a heuristic approach 

to diagnosis by taking into account multiple-domain elements such as imaging, 

serum, sputum, cytological and genetic data as well as personal medical history 

and lifestyle factors. 
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CHAPTER 1 : INTRODUCTION 

Pathologists diagnosing lung cancer in a patient must consider the global 

architecture of the bronchial tissue as well as the local architecture of cell groups 

and the appearance of individual cells. In the case of lung cancer, in order to 

obtain more detailed information on the condition of the bronchial tissue, a 

bronchoscopy is performed on the patient and tissue samples of any detected 

lesion are obtained. These samples are extracted from a region of the tissue 

containing abnormal cells; it is from these sections that the diagnosis must be 

made. In addition to the architectural analysis, these samples are also analyzed 

in the laboratory to determine their physiological and molecular characteristics. 

Many times an abnormal cell will die naturally without forming a cancer; 

therefore the pathologists are concerned with identifying only the cases that will 

eventually develop into cancer. Since currently available cancer treatments are 

very aggressive and traumatic for the patient, pathologists want to be fairly 

certain that the abnormal cells present in the sample will in fact lead to cancer 

before recommending treatment. When the sample contains either large amounts 

of abnormal cells or none at all the diagnosis is straightforward. In many cases, 

however, there are just a few abnormal cells in the sample and diagnosis is 

difficult. 

The motivation for this thesis is based on the following observations: 



Observation I : Stochastic processes have been proven to be useful 

modelling tools to represent biological systems involving the behaviour of 

competing populations. 

Considering the fact that epithelial lesion development depends on the 

relative growth of normal vs. abnormal cells, we proposed the following theses to 

explore observation 1 : 

Thesis I : Pre-invasive bronchial epithelial lesions can be represented as 

a particle system where normal and abnormal cells represent competing 

populations. 

Thesis 2: There exists a mathematically tractable particle system that can 

model characteristic structural behaviour of pre-invasive bronchial epithelial 

lesions as stochastic processes. 

Thesis 3:  A likelihood probability of growth of pre-invasive bronchial 

epithelial lesions can be determined from the analysis of a large sample of 

simulation results. 

From the obtained results after the exploration of Theses 1,2 and 3, and 

after further observation of the behaviour, progression and actual diagnosis of 

the disease by physicians, it became clear that for any computational diagnostic 

system to give reliable diagnostic advice, it would require to consider, not only 

structural information on individual lesions, but also would need to consider 

multidisciplinary data that would encompass the patient's medical and family 

history, lifestyle, imaging (X-rays, etc.), serum (blood samples) and genetic 



information. Hence, I recognized the need to develop a formalism to represent 

and analyse this multidisciplinary data and their interactions. This new question 

led to the following observation: 

Observation 2: There are constraint-based cognitive formalisms capable 

to represent knowledge in separate ways --syntactic, semantic, pragmatic and 

other information of different kinds - while being able to process them 

simultaneously if needed. 

Based on this observation, we proposed the following theses: 

Thesis 4: There exists a formal characterization for the representation of 

multidisciplinary biological data concepts that would allow the interaction 

between concepts from different disciplines. 

Thesis 5: Biological concepts naturally group into related, although not 

necessarily independent, partitions, which can decompose the knowledge base 

and simplify its representation. 

Thesis 6: The relationships and interactions between multidisciplinary 

biological data concepts can be represented and analysed in terms of constraint 

systems. 

Thesis 7: The relationships and interactions between multidisciplinary 

biological data concepts will impact the likelihood probability of development of a 

disease. 



1 .I Document Organization 

Chapter 2 surveys the different approaches taken to develop software 

systems used for the analysis and diagnosis of lung cancer. Section 2.1 gives a 

brief biological overview of the lung cancer problem. Section 2.2 presents a 3-D 

computer model of bronchial epithelial lesions. Section 2.3 gives an overview of 

artificial intelligence research applied to the field of medicine. Section 2.4 briefly 

discusses current efforts on the development of standards for biological data 

representation. Section 2.5 presents an analysis of the different approaches to 

cancer diagnosis based on architectural or other type of analysis. 

Chapter 3 presents a stochastic model of the development of pre-invasive 

neoplastic bronchial epithelial lesions. This model represents the lesion cell 

development as contact processes and shows how a simple mathematically 

tractable model can represent some interesting behaviour of lesion growth. It 

then presents the analysis of the results obtained from the simulations done 

using this model and discusses why a model only representing structural analysis 

of independent lesions is insufficient for accurate cancer diagnosis. 

Chapter 4 introduces a novel approach for multidisciplinary biological 

knowledge representation: the Probabilistic Property-Based Model (PPBM). In 

this chapter, we discuss several knowledge representation methodologies and 

present the formalization of the PPBM. Also a prototype implementation as proof 

of concept shows how the PPBM can be used to develop a cancer diagnostic 

system. Finally, conclusions and future research directions can be found in 

chapter 5. 



CHAPTER 2: COMPUTER-AIDED DIAGNOSIS OF 
CANCER: A SURVEY 

2.1 Understanding Lung Cancer Development 

The use of the word "cancer" (from the Latin word for crab) today signifies 

a generic term for any type of tumour that is malignant. A "tumour" (also called a 

"neoplasm") is also a common term used to illustrate an abnormal growth that 

has no useful function to the host. More specifically, the neoplasm or tumour can 

be defined as a mass that persists in the absence of a stimulus [Willis. 19671. 

The growth of this mass is controlled by the cells inherent to the neoplasm and 

hence is coordinated differently from the surrounding tissues. Tumours are 

further classified as either benign or malignant. 

Benign tumours are slow growing and, depending on the site where they 

are located, they do not normally cause death. While these cells do not usually 

show mitosis (process of division of body cells), they are well organized and 

differentiated, in as much as they resemble cells from normal tissues. According 

to [Phoenix5. 2002a1, in cancer, differentiation is defined as: "How developed the 

cancer cells are in a tumour. Well differentiated tumour cells resemble normal 

cells and tend to grow and spread at a slower rate than undifferentiated or poorly 

differentiated tumour cells, which lack the structure and function of normal cells 

and grow un~ontrollably.'~ Benign tumours produce fewer molecules per cell (i.e., 

gene-specific products particular to cells of that type of tissue) than normal 



tissues. However, once the tumour has increased in size, it can synthesize large 

amounts of molecules, which can be harmful to the host organism. For example, 

a benign tumour in the Islets of Langerhans may secrete an excess of insulin that 

can lead to insulin overdose, which can result in hypoglycaemia and potential 

death. As the tumour grows in size it pushes the normal tissue ahead of it, 

causing the thin capillaries of the normal parenchyma (functional cells) to be 

compressed. This results in insufficient blood to nourish the tissues, ultimately 

leading to the death of the normal cells and atrophy (loss of size of the tissue or 

organ). Once the normal cells die, only the connective tissues (stroma) are left, 

encapsulating the tumour. Nonetheless, benign tumours, in general, cause little 

or no damage to the host. 

Malignant tumours, however, do have the ability to kill the host. Cells of 

these tumours are pleomorphic - they proliferate quickly and are quite different 

from benign tumour cells -. Malignant tumours show cells of normal and 

abnormal mitotic figures; they possess large vesicular nuclei with large nucleoli 

(these are the regions where ribosomes are made). Malignant cells are normally 

less differentiated and some cells are anaplastic, in other words, "when cells 

divide rapidly and bear little or no resemblance to normal cells in appearance or 

function" [PhoenixS. 2002bl. These anaplastic cells usually invade the 

surrounding tissues, destroying and substituting them with a mass of 

disorganized malignant cells. 

Small clumps of cells from malignant tumours can then detach from the 

original mass (primary tumour) and travel to distant organs where they can 



implant themselves as a secondary tumour, in a process called metastasis. The 

secondary tumour then develops stroma and causes the onset of new tumours, 

which in turn invade and metastasize. 

2.1.1 Nomenclature 

Tumours have their names derived from the tissue or organs from which 

they grow. Once this is done, in most cases, a suffix is added to the name to 

distinguish between benign or malignant. For example, a fibroma is a benign 

tumour because of the suffix -oma at the end of the name. Most malignant 

tumours on the other hand can be identified by three different suffixes: - 

carcinoma (tumour of epithelial origin), -sarcoma (tumour of connective tissues), 

and -blastoma (childhood tumours). As exceptions, some malignant tumours, 

which do not follow the standard nomenclature, include melanoma (pigmented 

skin cancer), hepatoma (liver cancer), and leukaemia (their suffixes imply benign 

though they are not). 

2.1.2 Lung Cancer 

The lung tissue can be seen as divided into three layers: the basal layer, 

where stem cells divide; an intermediate layer, which thickens as more abnormal 

cells are present; and the epithelial layer, which is the top layer where cells 

flatten and die. In a normal tissue, a stem cell divides and gives birth to two 

identical daughter cells. One of the new daughter cells stays in the basal layer 

and becomes a new stem cell, while the other daughter cell differentiates and will 

slowly move toward the epithelial layer where it will die. A clone is the set of cells 



that are descendants of the same stem cell. On occasion, abnormalities may 

occur in a cell. Most of the times, the body has mechanisms that will simply stop 

the life cycle of such cell, however, there are a few cases in which the abnormal 

cell will not die and instead it and its clone can multiply out of control. This leads 

to a tumour. 

2.1.3 Types of Lung Cancer 

There are two main groups of lung cancers with several different 

subtypes, each of which grows and spreads at different rates, responds 

differently to treatment, and has different survival rates [NCERx Inc. 20041, [BC 

Cancer Agency. 20051, [Canadian Cancer Society. 20051. A lung tumour is 

classified as primary or secondary. Primary disease originates in the lungs, while 

secondary disease has metastasised (i.e., originated in another organ and 

spread) to the lungs. Primary cases can be divided into two groups: non-small 

cell lung cancer (NSCLC) and small cell lung cancer (SCLC). 

2.1.3.1 Non-Small Cell Lung Cancer (NSCLC) Types 

NSCLC accounts for approximately 85 percent of all cases of lung cancer. 

All NSCLC types are spread relatively slow, and patients have higher survival 

rates than those with the more aggressive SCLC [NCERx Inc. 20041. 

Exposure to tobacco smoke (either directly or second-hand) and radon 

exposure are the leading causes of NSCLC. Surgical removal of the diseased 

tissue is the usual treatment option, although radiation therapy and 

chemotherapy may also be used, depending on tumour growth and degree of 



spread. This category includes squamous cell, adeno-carcinoma and large cell 

undifferentiated cancer. Their characteristics are as follow: [NCERx Inc. 20041, 

[BC Cancer Agency. 20051, [National Women's Health Resource Center Inc. 

2004al 

Squamous Cell Carcinoma (Epidermoid): Squamous cell carcinoma 

causes 30 to 35 percent of all cases. Slow-growing, squamous cell 

carcinoma usually arises in the larger lobar and segmental bronchi of 

the central part of the lung, and diseased nodules tend to be clumped 

together. The precancerous phase may last several years during which 

chest X-rays appear normal yet cancerous cells are found in the 

sputum. Common treatment is surgery and radiotherapy, as patients 

with this type of lung cancer tend to respond better than those with 

other types. 

Adenocarcinoma: Adenocarcinoma cases represent 40 percent of lung 

cancer cases (most frequently diagnosed type of lung cancer). It 

usually beginning in the mucous glands. Women are more likely to 

develop adenocarcinoma than any other lung-cancer type. It is also the 

type most frequently seen in non-smokers. Tumour cells form 

recognizable glandular structures and have a higher risk of lymphatic 

and blood spread. It is the most frequently diagnosed peripheral 

cancer. Often associated with scarring of the lungs, it may be seen as 

a subpleural mass that invades the overlying pleura. The prognosis is 

poorer than for squamous cell carcinoma, except for patients with early 



stage tumours. A subtype of adenocarcinoma called bronchioalveolar 

-or alveolar - cell lung cancer arises from the terminal bronchioles 

alveoli walls. This subtype is associated less frequently with smoking. 

Large Cell Carcinoma: The least common form of NSCLC, large cell 

carcinoma occurs in approximately five to fifteen percent of all cases. 

Tumours may develop in isolation, or in masses. They are 

characterised with large, abnormal-looking cells that tend to originate 

along the outer edges of the lungs. Their behaviour generally mimics 

adenocarcinomas, but with more aggressive spread. The prognosis is 

worse than for squamous carcinomas, and tumours tend to be large by 

the time of diagnosis. 

2.1.3.2 Small Cell Lung Cancer (SCLC) 

SCLC accounts for 20 to 25 percent of all diagnoses, and is most 

prevalent among smokers. SCLC is also called undifferentiated small cell or "oat 

cell" cancer, because malignant cells are generally oat-shaped, small and round, 

or oval. SCLC is the most aggressive of all lung cancers, and spreads quickly. In 

60 to 70 percent of cases, the disease has spread to other organs by the time of 

diagnosis, even if the primary tumour is small. Once metastasized, SCLC is not a 

candidate for surgery, but does respond to multidrug chemotherapy integrated 

with radiation therapy. Due to its tendency to spread rapidly, the one-year 

survival rate for SCLC is only five percent. Yet, if a tumour is localized to the 



chest, long-term cure is possible (20 percent). Prophylactic brain radiotherapy is 

usually employed in curative therapy. 

2.1.4 Staging and Prognosis 

Treatment options depend on both the type of tumour, and its staging 

classification. Staging is a way of determining the severity of the carcinoma, 

whether it has spread to other organs, and how it will respond to treatment. 

2.1.4.1 NSCLC TNM Staging 

The severity of NSCLC is determined using TNM staging. The disease is 

classified according to the extent of the primary tumour (T), the status of regional 

lymph nodes (N), and distant spread or metastases (M) 

The extent of the cancer in each of these important areas is then 

described by means of a simple code in which numbers designate the absence 

of tumour or increasing levels of disease. The codes are as follows: [BC Cancer 

Agency. 20051, [National Women's Health Resource Center Inc. 2004al 

Tumour (1-4): T I  is a tumour less than three centimetres; T2 is a tumour 

larger than three centimetres; T3 is a tumour of any size that passes into the 

chest cavity, and is operable; T4 is inoperable. 

Lymph Node (0-3): NO is no lymph node involvement; N1 involves the 

lymph nodes in the lungs; N2 involves the nodes in the chest, oesophagus or 

windpipe; N3 involves those nodes above the collarbone. 



Metastases (0 or 1): MO is no indication of metastases; in M1, disease has 

spread to other organs. 

NSCLC staging examples might read T2N3M1, or some other combination 

of the above stages. The TNM data gathered is then used to divide cancers into 

the following stages: [NCERx Inc. 20041, [BC Cancer Agency. 20051, [National 

Women's Health Resource Center Inc. 2004bl 

Occult stage: Cancer cells are found in sputum, but no tumour can be 

found on x-rays. 

Staqe 0: Cancer is only found in a local area and only in a few layers of 

cells. It has not grown through the top lining of the lung. Another term for this 

type of lung cancer is carcinoma in situ. 

Stane 1: Subdivided into 1A and 1 B. The tumour is small, contained, and 

surgically removable with no lymph node involvement. Survival rates range from 

57 to 67 percent. 

Stane 2: Subdivided into 2A and 2B. The tumour remains operable, but 

malignant cells have spread to lymph nodes around the lung or to the 

surrounding chest wall. Survival rates are between 38 and 55 percent. 

Stane 3: Subdivided into 3A (occasionally can be operated on) and 3B 

(usually cannot be operated on). The cancer has spread to the lymph nodes in 

the area that separates the two lungs (mediastinum); or to the lymph nodes on 

the other side of the chest or in the neck. The tumour has spread to the lung 

lining or into the chest cavity. Surgery may remain an option, with radiation 



therapy and chemotherapy as other possible alternatives. Survival rates are 

approximately 23 percent. 

Stase 4: Metastasis to other organs has occurred. Treatment options are 

confined to palliative care, and survival rates drop to 5 percent. 

Recurrent: Cancer has come back (recurred) after previous treatment. 

2.1 A.2 SCLC Staging 

SCLC staging differs from the NSCLC TNM staging. The three stages for 

SCLC are limited, extensive and recurrent: [NCERx Inc. 20041, [National 

Women's Health Resource Center Inc. 2004bl 

Limited stase: Cancer is found only in one lung and in nearby lymph 

nodes. Often limited SCLC is treated with the assumption that metastasis has 

occurred, just to be safe. 

Extensive staae: Cancer has spread outside of the lung where it began to 

other tissues in the chest or to other parts of the body. 

Recurrent stase: Recurrent disease means that the cancer has come back 

after it has been treated. It may come back in the lungs or in another part of the 

body. 

Lung cancer survival rates for both limited and extensive SCLC are grim. 

Limited disease averages a life expectancy of fourteen months with treatment. 

Survival expectancy for extensive disease is usually under a year. 



2.1.5 Lung Cancer Diagnosis 

Currently the diagnosis of lung cancer involves a number of tests. First, 

patients undergo a thorough physical examination and the physician may want to 

perform one or several of the following laboratory or imaging tests: 

Sputum sample test: The sputum sample is matter from the throat and 

lungs, which is spit out through the mouth. This sample is sent for 

testing to determine if it contains bacteria, other infectious organisms, 

or cancer cells; cancer cells may be present in the sputum in certain 

types of lung cancer. 

Chest radiograph (X-ray): Used to see whether there are enlarged 

lymph nodes in the chest or a localized mass in the lungs. 

Computed tomography (CT or "CAT1') scan: A computer-assisted 

technique that produces cross-sectional images of the body. 

Magnetic resonance imaging (MRI): A diagnostic method in which 

hydrogen ions within a patient's body are excited by exposure to a 

magnetic field. A computer processes the resulting signals to create an 

image of the chest to define the location and extent of lung 

involvement. 

Bronchoscopy: A visual examination of the windpipe and lung 

branches using a flexible scope performed by a pulmonologist. 

Bronchoscopy may involve washings of the respiratory tissues for cell 

analysis, brushings (using a small, brush-like device to gather cells 



from the tissue lining the respiratory system), or biopsy (removal and 

examination of small amounts of tissue). If the bronchoscopy is still 

unrevealing, or "negative," a needle biopsy may be performed. 

Needle biopsy: May be performed, with CT-guidance, on suspicious 

areas in the lungs or pleura. Fine needle aspiration (FNA) uses a slim, 

hollow needle that is attached to a syringe. The needle is inserted into 

the suspicious mass and it is pushed back and forth to free some cells, 

which are aspirated (drawn up) into the syringe and are smeared on a 

glass slide for analysis. Large needle, or core biopsy, uses a large- 

bore needle to obtain a tissue sample for analysis. 

Bone scan: May also be performed to rule out suspicions of metastasis 

to the bones. 

Once the physician diagnoses lung cancer, the next step is to determine if 

the patient is a candidate for surgery. The imaging studies (X-ray, CT scan, bone 

scan, etc.) are reviewed to rule out distant metastasis. If there is no evidence of 

metastasis, the patient may then undergo mediastinoscopy, a surgical inspection 

of the mediastinum (the tissues and organs of the middle chest, e.g., the heart 

and large vessels, windpipe, etc.). A small flexible device with a camera, called 

an endoscope, is inserted into the chest via an incision at the top of the sternum, 

and the chest cavity is then examined. The mediastinal lymph nodes usually are 

removed during this procedure. If the mediastinal lymph nodes are "negative" (do 

not contain any cancer cells), the patient may be a candidate for surgery. 

However, if mediastinal lymph nodes are "positive" (contain cancer cells) or are 



abnormally large on imaging studies (suggesting tumour involvement), the 

patient is not considered to be a surgical candidate. 

2.1.5.1 Cancer Markers 

A lot of the recent molecular biology and genetics research in cancer has 

been focusing in discovery of biological markers (or biomarkers) - that is, 

molecular elements that are associated with the presence of cancer - for risk 

prediction and early detection of this disease. For diagnosis, additional tests 

may be performed to look for lung cancer biomarkers. For example, lung 

cancer may be indicated by abnormalities in the following: 

PTH (parathyroid hormone): Blood levels of PTH or PTH-related 

protein may help to distinguish lung cancer from cancer of the 

pleura or other diseases. 

CEA (carcinogenic antigen): A cancer-specific immune system 

protein that is present in many adenocarcinomas, including lung 

adenocarcinoma. Increased preoperative levels of CEA usually 

suggest a poor prognosis. A CEA level greater than 50 may 

indicate advanced stage lung cancer and should discourage 

treatment by resection. 

CYFRA21-1 (cytokeratin fragment 19): A protein marker of lung 

cancer. 



2.1.5.2 Early Diagnosis 

Until recently, the only diagnostic tool available to localize pre-malignant 

cellular alterations and early bronchial cancer was conventional white light fiber- 

optic bronchoscopy (FOB). Since only the relatively thick or polyploid lesions are 

visualized by FOB, only 29 percent of the lesions were actually visible to an 

experienced endoscopist [Nagamoto et a/. 19931, [Woolner et al. 19841. In an 

effort to overcome these problems, the British Columbia Cancer Agency and 

Xillix Technologies Corporation (Richmond, British Columbia, Canada) 

developed the Lung Imaging Fluorescence Endoscopic Device (LIFE) which 

utilizes differences in tissue autofluorescence to detect precancerous and 

carcinoma in situ lesions at a much higher rate than FOB [Hung etal. 19911, 

[Lam et a/. 19931, [Lam et al. 20001. 

An epithelium biopsy obtained during a bronchoscopy contains a vertical 

cross-section of the lung tissue including cells from all three layers of the tissue. 

From this sample, biopsies of the lesion are obtained from which the pathologists 

must predict whether the lesion will evolve into a malignant tumour or if it will 

regress or, at least, not evolve towards cancer. 

LIFE has allowed easier detection of pre-invasive neoplastic bronchial 

lesions, which are believed to be the possible precursors of malignant tumours. 

The natural history of lung cancer development, from the initial genetic event 

through other multiple genetic changes, cell kinetics, cell-cell, and cell-host 

interactions, is not completely understood. New techniques (microdissection and 

polymerase chain reaction (PCR) amplification) and tools (quantitative cytology 



and quantitative histology) are elucidating the neoplastic development process. 

These techniques are generally dealing with snapshots (biopsies, bronchial 

fragments) of a continuously evolving epithelium. Current understanding 

suggests that as pre-invasive neoplastic epithelial tissue becomes more likely to 

develop into an invasive neoplasia, quantitative genetic changes and genetic 

heterogeneity in the tissue occur. It is possible to measure selected changes in 

the genetic makeup of individual cells in a biopsy or tissue section. However, at 

present it remains impossible to determine the genetic relationship of all the cells 

in a pre-invasive neoplastic lesion during the development into invasive cancer. 

This knowledge would be required to completely understand the evolution of 

normal epithelium into invasive neoplasia. In an attempt to uncover such 

understanding, models have been developed, which try to simulate the initial 

stages of the neoplastic process and, most importantly, to try to simulate the 

development pathway from normal tissue to abnormal lesion. This simulated 

development of an abnormal lesion requires a model that takes into account not 

only the individual cell, but also the whole architecture of the tissue (the 

interaction of all the cells that together conform the tissue). 

2.2 Modelling Bronchial Epithelial Lesions 

A graphical computer model of the 3-D architecture of bronchial epithelial 

lesions was developed by Dr. Carole Clem et a/., [Clem et a/. 1997a1, [Clem et a/. 

1997b1, [Clem and Rigaut. 19951 in order to refine hypotheses concerning the 

progressive spatial disorganization of the bronchial epithelium during the pre- 

invasive neoplastic process. 



There are two main parts in this model. First, there is a static model that 

simulates the physical arrangement of cells in normal and pre-invasive neoplastic 

tissue of the bronchial epithelium. Secondly, there is a dynamic component, 

which simulates the continuously interacting nature of living tissue using the 3-D 

representation obtained from the static model as a starting point. 

In the static part, the positions, sizes, shapes and orientations of the nuclei 

are used as a basis for the 3-D modelling of the architecture. The representation 

also takes into account the spatial arrangement of the nuclei, modelling several 

cell layers. The nuclei are modelled by tri-axial spheroids. The sizes of the major 

and minor axes of each nucleus are deduced from cytomorphometric analysis. A 

homogeneous 3-D Poisson point process is used to simulate the candidate- 

positions of nuclei. This point process is layered to take into account the different 

intensities on the different layers (basal, intermediate and epithelial). In addition, 

the model generates a random angle of orientation for each nuclear axis. Each 

newly-generated nucleus is then inscribed in a suitably oriented rectangular 

parallelepiped with faces parallel to the planes defined by the spheroid axes. If 

this parallelepiped has an intersection with a parallelepiped of any earlier 

generated nucleus, the newly generated candidate-position with its nucleus is 

deleted. 

In order to determine whether the model's behaviour has an acceptable 

range of accuracy for its intended purpose of simulating the physical 

arrangement of cells in the tissue, the system computes the values of 2-D 

parameters from several computer "sections1' through the simulated 3-D image. 



An iterative process is used, based on statistical comparison between the 2-D 

parameters computed and those used from real (2-D) histological sections. If the 

t-test shows a statistically significant difference between the obtained values and 

the expected ones, the corresponding values are modified and the process is 

repeated until no statistically significant differences are found. 

The dynamic part of the model can be seen as a tissue growth process 

applied to the 3-D representations obtained from the static model. Before 

applying this growth process, an initialization procedure is used in order to define 

the different cell types that can be found in the tissue (i.e., stem or differentiated 

cells). The simulated tissue can be considered as a closed volume where no cell, 

even if it is submitted to a force that pushes it out of the box, can leave except by 

passing into the epithelial layer. Each cell is defined by some internal states, 

which include its capacity of division, its position in the tissue, its age, its 

displacement capacity, its lifetime and its cell type. Under normal conditions, only 

the stem cells are able to divide and only the differentiated cells can migrate from 

basal to epithelial layer. At each time step, several events may occur: a stem cell 

can divide and a new cell can appear; the volume of a stem cell can increase; a 

differentiated cell can move towards the lumen; a collision between two cells can 

occur; a cell can die; or a nucleus can enter into pyknosis. All these events 

induce local and global modifications of the tissue architecture and require the 

model to check the structural stability of the tissue at each time step. 

Furthermore, all these processes, in order to occur, require an analysis of the 

local environment of the cell that is involved in one of these events. 



Simulations of different diffusion patterns of abnormal cells within the 

bronchial epithelium during the pre-invasive neoplastic process have been 

obtained as well. This model has proven useful in providing insight into the 

development and architecture of bronchial epithelial lesions, however it does not 

provide any further extensions that could be used for diagnostic purposes. 

2.3 Artificial Intelligence in Medicine 

Since the late 1 95O's, researchers in the field of artificial intelligence (Al) 

have been addressing problems in the field of medicine [Altman. 19991. One of 

the first areas that drew the attention of Al researchers was that of medical 

diagnosis, as it contains many common reasoning tasks. The seminal paper of 

Ledley and Lusted [Ledley and Lusted. 19591 explained that medical reasoning 

contains well-recognized inference strategies, such as Boolean logic, Bayesian 

probability and symbolic logic, and that diagnostic reasoning could be formulated 

using these techniques. These concepts have influenced a lot of research over 

the last 45 years. Many computer systems have been developed that address 

important medical diagnosis issues. Here are some characteristic examples: 

PROMIS [Tufo et a/. 19771 is amongst the first systems to implement a truly 

electronic medical record, which supported a problem-oriented medical 

information methodology; CASNET [Kulikowski and Weiss. 19821 used causal 

(i.e. physiological) models to explain symptoms and describe diagnostic 

possibilities; MYClN [Buchanan and Shortliffe. 19841 used production rules to 

make expert-level diagnosis of infectious diseases; the PIP system (Present 

Illness Program) [Szolovits and Pauker. 19761 modeled the cognitive processes 



of short- and long-term memory to develop programs that considered multiple 

diagnosis but quickly focused on the few most likely solutions. The 

INTERNISTIQMR [Miller et a/. 19821, [Miller et a/. 19861 is a knowledge base and 

inference program to diagnose any problem within internal medicine. Its 

knowledge base associated diseases with findings using a frequency of 

association and an evoking strength, which an algorithm then collected and 

computed the more likely diagnoses. A similar approached is followed by 

DXPLAIN [Barnett et a/. 19871 and ILIAD [Bouhaddou et a/. 19951. 

From the early days of expert systems, rules have been the prime 

formalism for expressing knowledge in a symbolic way. They offer simplicity, 

transparency, uniformity and ease of inference, which make them very attractive 

to represent medical knowledge obtained from a human expert (Figure 2.1) 

However, it quickly became evident that the knowledge acquisition is the most 

complex part of the development of expert systems. Rules obtained from a 

human expert risk capturing the biases of one single person, as rules will be the 

formulation of that particular expert's "rules of thumb1' on the subject. Even 

though they may appear as a coherent and modular set of knowledge, they may 

reveal inconsistencies, gaps and other problems. 



Figure 2.1 : Schema of an expert system of the early 80's 
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as a consequence of decision trees. The difficulty is that the sample data set 

must be complete enough for the domain in question (without significant gaps in 

the knowledge), otherwise the resulting rules will not provide adequate coverage 

andlor sufficient accuracy. 

Research in the last decade has been characterized by the efforts to 

bridge the gap between the large amounts of un-interpreted data and the 

understanding of such data. Thus, the research emphasis is now on data 

analysis. Data mining, knowledge discovery in databases [Frawley et a/. 19911, 

and intelligent data analysis, along with machine learning techniques, are the 

latest focus areas of medical computing research. 

The need for intelligent data analysis in medicine is evident in the 

following: (i) for instance, to support the analysis of individual patients' raw data 

of specific knowledge-based problem solving activities such diagnosis, 

prognosis, monitoring, treatment planning, etc. and (ii) the use of data mining in 

the discovery of new medical knowledge that can be extracted from collections of 

example cases. Figure 2.2 represents a possible schema of a recent decision 

support system. In this schema, large volumes of data have to be processed, 

e.g., patient records comprising images and textual data (possibly transferred 

through the Internet or an intranet), protocols, guidelines, etc. The solid arrows 

denote the normal flow of information and the dotted arrows show the flow of 

information in processes that involve loops and iterations between the different 

steps of the intelligent data analysis process. 



Figure 2.2: Schema of a decision support system of the late '90s 
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2.4 International Standards for Biological and Medical Data 
Representation 

According to E.H. Shortliffe in [Shortliffe. 19931, the successful integration 

of Al systems into patient care settings may be influenced by the following three 

factors: international standards, enhancement of training, and information 

infrastructure. Of these factors, the establishment of international standards is 

the one with the most impact to researchers working in the development of said 



systems. For example, during the panel discussion of the Artificial Intelligence in 

Medicine Europe conference (AIME 97) the following important issues that arise 

from the emerging globality of information and data were identified [Lavrac et a/. 

20001: 

The provision of standards in terminology, vocabularies and 
formats to support multilinguality and sharing of data, 

standards for the abstraction and visualization of data, 

standards for interfaces between different sources of data, 

integration of heterogeneous types of data, including images 
and signals; 

standards for electronic patient records, and 

reusability of data, knowledge and tools. 

Over the last few years, numerous efforts have been taken place to 

establish international standards for medical and biological data representation. 

2.4.1 UMLS 

The Unified Medical Language System (UMLS) project began in 1986 by 

the National Library of Medicine (NLM) [National Library of Medicine. 20041. The 

main objective of this long-term research and development project is to develop 

"knowledge sources" to make it easy for users to link disparate information 

systems, including computer-based patient records, bibliographic databases, 

factual databases, and expert systems, and to overcome the retrieval problems 

caused by differences in representation and the scattering of relevant information 

across many databases. 



UMLS comprises three knowledge sources: 

UMLS Metathesaurus: Provides a uniform, integrated distribution 

format from over 100 biomedical vocabularies and classifications 

(the majority in English and some in multiple languages), linking 

many different names for the same concepts. The Metathesaurus 

has been distributed since 1990. 

SPECIALIST Lexicon: Contains syntactic information for many 

terms, component words, and English words, including verbs, 

which do not appear in the Metathesaurus. 

UMLS Semantic Network: Contains information about the types or 

categories to which all Metathesaurus concepts have been 

assigned and the relationships allowed among these types. 

The NLM has also developed the iiMetamorphoSys" software, which is 

useful in producing customized versions of the Metathesaurus. This software 

facilitates the exclusion of any vocabulary considered inappropriate or irrelevant 

by the UMLS user. The NLM and many other institutions have developed several 

applications using the UMLS Knowledge Sources, such as patient data creation, 

curriculum analysis, natural language processing, and information retrieval. 

2.4.2 SBML 

Systems Biology Markup Language (SBML) [Hucka et a/. 20031 was 

developed by the Caltech unit of the ERATO Kitano Symbiotic Systems Project, 

with frequent input from the open-source community. SBML is a description 



language for simulations in systems biology. SBML is oriented towards 

representing biochemical networks common in research on a number of topics, 

including cell signalling pathways, metabolic pathways, biochemical reactions, 

gene regulation, and many others. It is mostly useful for exchange of models 

between different software. This representation, based on Extensible Markup 

Language (XML), consists of formalized statements about the different 

components of the model of a system of biochemical reactions. It can represent: 

(i) species of chemical substances taking part in a reaction, (ii) compartments in 

which the species are located, (iii) chemical reactions affecting the species, (iv) 

parameters representing numerical variables, (v) definitions of units on numerical 

quantities, (vi) definitions of mathematical functions used in formulas, (vi) discrete 

events presenting changes in the system's state, and (vii) additional 

mathematical constraints on the system. 

2.5 Software Tools to Assist Diagnosis 

2.5.1 Image analysis research 

Most of the work done on computer-assisted diagnosis (CAD) of lung 

cancer has mainly focused on image analysis technologies. Many computer- 

aided image analysis systems use artificial neural networks to identify nodules in 

chest radiographs, CT scans, etc. Artificial neural networks may be used for both 

supervised and unsupervised learning. For modelling medical data and CAD, the 

most frequently used neural network supervised learning paradigm is the feed- 

forward, multilayered neural network [Rumelhart and McClelland. 19861, [Fausett. 

19941. These computational structures consist of interconnected processing 



elements or nodes organized in a multilayered hierarchical architecture. Each 

node calculates the weighted sum of its inputs and produces its output by filtering 

this data through a sigmoid function. The outputs of the nodes from one layer 

serve as inputs for the nodes of the next layer and the weights that are 

associated with each node are determined from training instances. There are 

several learning algorithms but the most popular is backpropagation. This 

algorithm first sets the weights of the nodes to an arbitrary value, then 

considering one or more training instances at a time, adjusts the weights so that 

the difference between the expected values and those actually obtained at the 

output level is minimized. This is repeated until the overall classification error 

falls below some specified threshold. 

As examples of CAD systems, [Lin et a/. 19951 have developed a system 

based on a parameterized two-level, convolution artificial neural network, on a 

special multi-label output encoding procedure, which was used in the diagnosis 

of lung cancer nodules found on digitized chest radiographs. [Yoshida et a/. 

19971 developed a system that used snake wavelet transforms to isolate the 

nodules embedded in the background structures also on digitized chest 

radiographs. A measure that represents the goodness of this nodule identification 

process is then combined with some morphological features, in order to train an 

artificial neural network for effective distinction between nodules and false 

positives. [Hayashibe et a/. 19961 proposed an automatic method based on the 

subtraction between two serial mass chest radiographs, which was used in the 

detection of new lung nodules. [Penedo et a/. 19981 developed a system that 



employed two artificial neural networks in the detection of lung nodules found on 

digitized chest radiographs. The first artificial neural network was utilized to 

detect suspicious regions in a low-resolution image and then another one used to 

deal with the curvature peaks of the suspicious regions. [Chiou et a/. 19931 

designed an artificial neural network based hybrid lung cancer nodule detection 

system, which was used to improve the accuracy and the speed of diagnosis of 

lung cancer from pulmonary radiology. [Zhou et a/. 20021 proposed an automatic 

pathological diagnosis procedure that utilizes an artificial neural network 

ensemble to identify lung cancer cells in the images of the specimens of needle 

biopsies. The ensemble is built on a two-level ensemble architecture. The first- 

level ensemble is used to judge whether a cell is normal with high confidence, 

where each individual network has only two outputs respectively normal cell or 

cancer cell. The predictions of those individual networks are combined using a 

method that judges a cell to be normal only when all of the individual networks 

judge it is normal. The second-level ensemble analyses the cancer cell outputs 

from the first-level ensemble, where each individual network has five outputs 

respectively adenocarcinoma, squamous cell carcinoma, small cell carcinoma, 

large cell carcinoma, and normal. The predictions of those individual networks 

are combined by a prevailing method. [Kanazawa et a/. 19961 presented a 

system that extracted and analyzed features of the lung and pulmonary blood 

vessel regions from helical CT images and then utilized defined rules to perform 

diagnosis, which was used in the detection of tumour candidates. 



These systems provide valuable information about the patient's condition 

based on the structure of the lesion however, as we discussed previously, at the 

very early stages, the lesions are so small that structurally it is difficult to discern 

which ones are malignant and which are not. Therefore, it is important to 

consider other symptoms in addition to the lesion's morphological features to be 

able to provide a more accurate early diagnosis. 

2.5.2 Other approaches 

In [Fretz and Peterson. 19961 a multidisciplinary database to assess the 

risk of malignancy in a solitary pulmonary nodule is presented. The authors, 

based on the research findings in [Cummings et a/. 19861 and [Gurney. 19931, 

determined likelihood ratios for the incidence of various clinical and radiographic 

features of a lung nodule, where 

Likelihood Ratio = Probability in patients with disease / Prob. in subjects without 

disease 

= Sensitivity/(? - specificity). 

They then used Bayes' theorem, where 

Current Odds = Prior Odds x Likelihood Ratios; 

to determine the probability of malignancy in solitary pulmonary nodules. The 

main difference of this approach from others is that they considered the 

population incidence of malignancy, patient age, smoking history, haemoptysis 

(coughing up of blood from the respiratory tract), and previous history of 

malignancy; in addition to the structural information, such as: nodule size, nodule 



location, edge characteristics on chest x-ray, cavity wall thickness, and 

calcification pattern on CT scan. 

This approach is interesting with respect to the incorporation of other 

factors in addition the structural information, however, it is oversimplified and the 

data analysis is a very simple statistical analysis, which provides little additional 

insight to the physician making the diagnostic. As well, the system requires that 

all information requested be provided in order to make a diagnosis, which in 

some cases is not possible, as some tests may have not yet been performed. 

2.5.2.1 Use of Biomarkers in CAD 

The Early Detection Research Network [Early Detection Research 

Network. 20021, an international scientific consortium funded in 1999 and 

coordinated by the National Cancer Institute's Division of Cancer Prevention in 

the US, has developed the following detailed guidelines to ensure good practice 

in the design and analysis of nested, case-control studies of early detection 

biomarkers: [Baker et al. 20021 

1. "For the clearest interpretation, statistics should be based on 
false and true positive rates - not odds ratios or relative risks. 

2. To avoid overdiagnosis bias, cases should be diagnosed as a 
result of symptoms rather than on screening. 

3. To minimize selection bias, the spectrum of control conditions 
should be the same in study and target screening populations. 

4. To extract additional information, criteria for a positive test 
should be based on combinations of individual markers and 
changes in marker levels over time. 



5. To avoid overfitting, the criteria for a positive marker 
combination developed in a training sample should be evaluated 
in a random test sample from the same study and, if possible, a 
validation sample from another study. 

6. To identify biomarkers with true and false positive rates similar 
to mammography, the training, test, and validation samples 
should each include at least 110 randomly selected subjects 
without cancer and 70 subjects with cancer. " 

Only in very recent years has any work been done using computers to 

identify biomarkers. As an example of this, In [Markey et al. 20031 a decision tree 

classification of proteins identified by mass spectrometry of blood serum samples 

from people with and without lung cancer is presented. They use a classification 

and regression tree (CART) model that was trained to classify 41 clinical 

specimens as diseaselnon-disease based on 26 variables computed from the 

mass-to-charge ratio (m/z) and peak heights of proteins identified by mass 

spectroscopy. The CART model built on all of the specimens (no cross- 

validation) had an error rate of 1O0/0. This model suggested that mass spectra 

peaks in the 8000-1 0000,20000-30000,45000-60000, and >I25000 m/z ranges 

may be valuable in distinguishing between the disease and non-disease 

specimens. 

2.6 Summary 

Lung cancer is a very aggressive disease that is very hard to diagnose at 

its early stages even with all the new advances in molecular biology and imaging 

technology. Almost all the current research and development done on CAD 

systems has focused exclusively in one aspect of the diagnostic process, namely 



on image analysis. It has become clear to us, however, that a multidisciplinary 

approach is required in order to obtain a more accurate diagnosis at the early 

stages of the disease as image analysis results provide little information prior to 

the presence of tumours and, once tumours are present, the prognosis is not 

favourable. 

Another critical area that must be considered is that of data interactivity 

and the use of international standards. Large amounts of biological and medical 

data are becoming available and consequently it is important to adhere to 

standards so that this wealth of information can be usable, not only by one single 

application, but by many. 

In the upcoming chapters, we will show how first we developed a 

stochastic model to analyse the likelihood probability of growth of independent 

lesions. From the insights obtained from those results we will explain how we 

determined that it is necessary to consider multidisciplinary patient data to 

perform a more accurate diagnosis. Therefore, we will show how we incorporated 

the available patient information - health history records, imaging, genetic, 

serum and sputum cytology data - into a knowledge representation model, the 

Probabilistic Property-based Model (PPBM), that would consider all this 

information to estimate the likelihood of the patient to develop cancer. PPBM is 

able to calculate the probability even if only partial information is given and will 

recommend follow-up tests to be performed to improve the accuracy of the 

diagnosis. Also, PPBM is sufficiently flexible to allow the addition or modification 

of the knowledge base as new scientific and medical information becomes 



available, in particular in the area of cancer biomarkers, where a lot of the current 

biological research is focusing in. 



CHAPTER 3: STOCHASTIC MODEL OF THE 
DEVELOPMENT OF PRE-INVASIVE 
NEOPLASTIC BRONCHIAL EPITHELIAL 
LESIONS 

3.1 Introduction 

As we mentioned earlier, lung cancer accounts for 28% of all cancer 

deaths in North America. However current treatment options lead to a cure in 

only 10% of diagnosed cases. It is well known that the survival rates can be 

improved by the early detection of pre-invasive lesions, which are believed to be 

the possible precursors of malignant tumours. Although, as we showed, new 

technology is allowing numerous early lesions to be detected, it is becoming 

clear that only a small percentage of these will progress to cancer. As explained 

in section 2.1 5, one of the ways to obtain an early diagnosis of lung cancer is to 

perform a bronchoscopy and obtain a needle biopsy from identified lesions. A 

fundamental problem in the analysis of biopsies - longitudinal two-dimensional 

(2-D) sections of the central area of the lesions- is the quantification of tissue 

heterogeneity. One can distinguish abnormal cells from normal cells and analyse 

their spatial arrangement, but it is currently impossible in the case of pre-invasive 

lesions in the early stages, that is, when just a few abnormal cells are present in 

the biopsy, to tell if one observed pattern is more aggressive than another one. 

In this chapter a stochastic model for the growth of pre-invasive neoplastic 

bronchial epithelial cells is presented. The results are analysed to differentiate 



progressive lesions from regressive ones given a particular biopsy. The problem 

is initially simplified to taking a one-dimensional (I-D) cross-section from a 2-D 

process and estimating the maximum likeliiood rate of growth based on this 

limited information. We propose a number of extensions to eventually extend this 

approach to the higher dimension model by analysing 2-D sections and 

estimating their growth rates in a three-dimensional (3-D) process. 

3.2 The Biological Problem 

Pathologists diagnosing lung cancer in a patient must consider the global 

architecture of the bronchial tissue, as well as the local architecture of cells and 

the appearance of individual cells. In order to obtain more detailed information on 

the condition of the bronchial tissue, a bror~choscopy is performed on the patient 

and tissue samples of any detected lesion are obtained. The pathologist obtains 

2-D sections of the samples extracted from a region of the tissue containing 

abnormal cells (Figure 3.1) and from these sections the diagnosis must be made. 

Figure 3.1: 2-D section of a pre-invasive neopla:;tic epithelial lesion 

Source: Dr. Martial Guillaud, Cancer Imaging Laboratory, BCCRC, with permission 
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Many times an abnormal cell will die naturally without forming a cancer so 

the pathologists are concerned only with identifying the cells that will eventually 

develop into cancer. Since currently available cancer treatments are very 

aggressive and traumatic for the patient, pathologists want to be fairly certain that 

the abnormal cells present in the sample will lead to cancer before 

recommending treatment. When the sample contains large amounts of abnormal 

cells or none at all the diagnosis is simple; however, in many cases there are just 

a few abnormal cells in the sample and diagnosis is difficult. 

The lung tissue can be seen as divided into three layers: the basal layer, 

where stem cells divide; an intermediate layer, which thickens as more abnormal 

cells are present; and the epithelial layer, which is the top layer where cells 

flatten and die. The tissue is about 10 cells in thickness. In a normal tissue, a 

stem cell divides and gives birth to two identical daughter cells. One of the new 

daughter cells stays in the basal layer and will become a new stem cell, while the 

other daughter cell differentiates and will slowly move toward the epithelial layer 

where it will die. A clone is the set of cells that are descendants of the same stem 

cell. On occasion, abnormalities may occur in a cell. Most of the times, the body 

has mechanisms that will simply stop the life cycle of such cell, however, there 

are a few cases that the abnormal cell will not die and instead it and its clone will 

multiply out of control. This will lead to a tumour being produced. The epithelium 

biopsy obtained during the bronchoscopy will contain a vertical cross-section of 

the lung tissue including cells from all three layers of the tissue. From this 



sample, 2-D biopsies of the lesion are obtained from which the pathologists must 

predict whether the lesion would evolve into a malignant tumour or it would, if not 

regress, at least not evolve towards cancer. 

As part of the Pacific Institute of Mathematical Sciences Industrial Problem 

Solving (PIMSIPS) Workshop (Vancouver, BC, September 1997), Drs. Carole 

Clem and Martial Guillaud, two members of the Cancer Imaging Laboratory of 

the British Columbia Cancer Research Centre (BCCRC), presented the 

graphical computational model of pre-invasive bronchial epithelial lesions 

discussed in section 2.2. This model presupposes a large number of parameters 

designed to accurately reflect the biological process. [Clem et a/. 1997a1, [Clem 

et a/. 1997b1, [Clem and Rigaut. 19951 [Clem et al. 19921 Unfortunately, the 

complexity of the model renders it mathematical intractable and, therefore, does 

not allow for the required flexibility to be modified and used to develop a system 

that could aid in the early diagnosis of lung cancer. In the PlMSlPS Workshop, 

Drs. G u i h d  and Clem asked the following question: 

"Suppose a 2-D cross-section of tissue form the model is presented. What 

information can be determined about the original lesion? In particular, is it 

possible to predict the structure of the three-dimensional (3-D) lesion accurately 

enough to determine whether the lesion will progress towards cancer?" (Figure 

3.2) [Barranco-Mendoza et al. 19971 

The objective of our research was to develop a new model that maintains 

the principal characteristics of the biological process but that is sufficiently simple 



to allow the analysis of 2-D biopsies to determine the initial 3-D structure from 

which they were taken and try to predict the rate of growth of the lesion. 

Figure 3.2: Determine the initial 3-D structure from the 2-D section 

3D structure 4- 2D structure 

Source: Dr. Martial Guillaud, Cancer Imaging Laboratory, BCCRC, with permission 

3.3 Assumptions 

As with any tractable mathematical model, there were a number of 

assumptions that had to be made about the biopsy procedure and cell behaviour 

[Barranco-Mendoza et a/. 19971, [Barranco-Mendoza and Gupta. 19981, 

[Barranco-Mendoza et a/. 19991: 

1. The biopsy section consists of a vertical plane of the bronchial tissue 

comprising cells from the three layers: basal, intermediate and 

epithelial. 



2. Any given lesion starts with only one abnormal cell; it is reasonable to 

assume that the probability of more than one abnormal cell evading 

all natural check points at the same time and multiplying to form part 

of the same lesion is negligible. 

3. The biopsy section will contain the site where the lesion began with 

high probability. 

4. Normal cells are formed at the basal layer through cell division of 

stem cells. They then have a tendency to "drift" towards the epithelial 

layer. As a simplification to the problem, we will assume that the stem 

cells will always remain static at the basal layer and the new cells will 

be the ones moving upwards. This assumption is valid since mother 

and daughter cells are identical. 

5. When a cell reaches the epithelial layer it dies. 

3.4 The General Approach 

As explained in [Barranco-Mendoza et a/. 19971, there are a large number 

of parameters to consider in solving this problem. However, it is necessary to 

postulate a simpler model than Clem's if we wish to implement a mathematically 

tractable system. To gain a deeper understanding of the underlying mathematical 

model, we chose to begin by modelling a 2-D process. That is, we consider a 2-D 

lung in which lesions are formed. We can then study the problem of taking a I -D  

cross-section (a biopsy) and determining the expected structure of the 2-D 



process. As a first step, our initial model assumes that cells divide with a fixed 

probability and that cells cannot move once they are formed (that is, there is no 

lateral or upward movement). 

3.5 Static Two-Dimensional Model 

As shown in [Barranco-Mendoza et a/. 19971, [Barranco-Mendoza and 

Gupta. 19981, [Barranco-Mendoza et a/. 19991, we worked on a square lattice 

with non-negative coordinate points. Assume an initial abnormal cell at position 

(0,O). Given an abnormal cell at position (i,j), an abnormal cell will occur at 

position (i,j+l) with fixed probability p (O<p<l), and independently at position 

(i+l j )  with the same fixed probability p (O<p<l). 

Since the total height of a cross-section in the 3-D case is at most ten, we 

will only allow cells to occupy lattice positions (i,j) such that 

That is, we restrict to a height of 10 cells along the diagonal, i.e., the 

points (0,O) , (1 , I )  , . . . , (9,9).. We will assume that a lesion with height of more 

than 10 cells can be considered aggressive enough to require medical treatment 

without further analysis. Notice that since there are only a finite number of 

configurations of abnormal cells, it would be possible to enumerate all 

configurations and assign each a probability (as a function of p). 



By the definition of the model, it can be determined that the conditional 

probabilities of an abnormal cell occurring in location (m,n) in a configuration 

when only (m,n-1) or only (m-1 ,n) or both occur in the configuration are: 

Equation 3.1 : 

P[(m,n)l(m,n-I) n1(m-l,n)] = P[(m,n)l(m-1,n) ~~(m,n- l ) ]=p,  

P[(m, n) 1 (m, n- I) A (m- I, n)] = p2, Vm, n , 0 < m, n I r, 

where r is the maximum number of cells allowed in the cross-section. 

Also by the definition of the model, it can be determined that: 

Equation 3.2: 

P[(ml n)] = P[(n, m)], Vm, n , 0 < m, n I r 

where P[(m,n)] is the probability of a cell occurring in location (m,n) in a 

configuration. Hence, from the above, Vm, 0 I m I r, and Vn, 0 5 n I r: 

Equation 3.3: 

I pn, i f m = O ( o r p m ,  i f n = O ) ;  
2pP[(n,n - I ) ]  - p 2 ~ [ ( n , n  - 1)12, if m = n and n # 0; 

P[(m,n)l= 
p x {PC(m,n - 1)1+ PC(m - 1,n)l- p x PC(m,n - 1)1 x P[(m - l ,n)l),  

A cross-section of a configuration (the only information we assume is 

available) will be the line passing through the points (0,O) and (r,r). (Figure 3.3). 

Based on the assumption that a lesion with height of more than 10 cells 

can be considered aggressive enough by the pathologists to recommend 

treatment without further analysis, the total height of a cross-section specific to 





cross section by a r-tuple ( Xo,Xq, . . . ,Xr) where Xi=O if a normal cell is in position 

i on the cross section and Xi=l if an abnormal cell is in position i. 

3.6 Texture Models 

The problem in question can be viewed as a texture model. Texture can 

be defined in stochastic terms as the spatial distribution of intensities with a two- 

dimensional random field. This stochastic approach is described in [Faugeras 

and Pratt. 19801: 

"The stochastic formulation is based on a model in which a texture region 

is viewed as a sample of a two-dimensional stochastic process describable by its 

statistical parameters." 

and is also described by [Cross and Jain. 19831: 

"We consider a texture to be a stochastic, possibly periodic, two- 

dimensional image field." 

The literature distinguishes between stochastic and structural models of 

textures. In [Smith. 19981, the author divides stochastic texture models into three 

major groups: Probability Density Function (PDF) models, Gross Shape models 

and Partial models. 

The PDF methods model a texture as a random field. They fit a statistical 

PDF model to the spatial distribution of intensities in the texture. Typically, these 

methods measure the interactions of small numbers of pixels. PDF models are 

divided into two groups: those that use a parametric PDF model, and those that 

use a non-parametric PDF model. Examples of PDF models are the Gauss- 



Markov Random Field [Hao Chen and Chen. 20021, [Chellappa et a/. 19851, 

[Manjunath et a/. 19901 and Grey Level Co-occurrence methods [Clausi and 

Zhao. 20021, [Haralick et a/. 19731, [Gotlieb and Kreyszig. 1 9901. 

Gross shape methods model a texture as a surface. They measure 

features, which a viewer would consciously perceive, such as the presence of 

edges, lines, intensity extrema, waveforms and orientation. These methods 

measure the interactions of larger numbers of pixels over a larger area than is 

typical in PDF methods. Gross shape methods are divided into three groups: 

Harmonic methods, Primitive methods, and Blob and Mosaic methods. Harmonic 

methods measure periodicities in the texture. They look for perceptual features 

that recur at regular intervals, such as a waveform. Harmonic methods measure 

spatially dispersed features of the texture, e.g., auto-correlation methods 

[Faugeras and Pratt. 19801. Primitive and Blob and Mosaic methods measure 

spatially compact features of the texture. Primitive methods detect a set of 

spatially compact perceptual features, such as lines, edges and intensity 

extrema. The output of the feature extraction stage, the feature vector, is 

composed of the density of these perceptual features, in the texture, e.g., 

mathematical morphology methods [Haralick. 19791. 

Mathematical morphology methods generate transformed images by 

erosion and dilation with structural elements. These structural elements 

correspond to texture primitives. For example, consider a binary image with pixel 

values on and off. A new image can be formed, in which a pixel is on if the 

corresponding pixel, and all pixels within a certain radius, in the original image 



are on. This transformation will erode regions in which the pixels are on; in the 

terminology of mathematical morphology, this transformation is an erosion with a 

circular structural element. The number of on pixels in the transformed image will 

be a function of the texture of the original image and of the structural element. 

In contrast, Blob and Mosaic methods detect a single perceptual feature. 

The feature vector is composed of the properties measured from instances of this 

feature, such as the average elongation and orientation of blobs, e.g., [Voorhees 

and Poggio. 19881 and [Chen et a/. 19951 describe methods in which features are 

extracted from non-contiguous blobs. 

Partial methods focus on some specific aspect of texture properties at the 

expense of other aspects. This group includes Fractal methods and Line 

methods. Fractal methods explicitly measure the how a texture varies with the 

scale it is measured at, but do not measure the structure of a texture at any given 

scale, e.g. [Wu et a/. 19921. Line methods measure properties of a texture along 

one-dimensional contour in a texture, and do not fully capture the two- 

dimensional structure of the texture. 

Primitive methods are also related to structural texture methods; both 

methods model textures as being composed of primitives. However, structural 

models differ in two significant ways. Firstly, structural models tend to have one 

arbitrarily complex primitive, whereas primitive methods model texture as 

composed of many, simple primitives. Secondly, the relative placement of 

primitives is important in structural models, whereas it plays no role in primitive 

methods. The model here presented can be categorized as a primitive method. 



3.7 Experimental results 

The static model described above was developed and run through 

computer simulations for various values of p. Experimental results showed that at 

p = .64 there is a threshold effect - any smaller p results in mainly small 

configurations whereas any larger p results in most configurations having some 

cells that reach the last level. 

Using Monte Carlo simulation methods, generating a million 2-0 lattices 

for each value of p between .1 and .9, incrementing by .01, we were able to 

determine the probability of an abnormal cell being at a particular lattice point in 

the cross-section, for all points in the diagonal slice under consideration, that is, 

we were able to find the marginal distributions of the random variables 

Our strategy for estimating p was to choose as a test statistic the last grid 

point along the cross-section that was occupied (i.e., the position of the right- 

most 1 in a cross-sectional sequence, or max( i : Xi= 1) ). The rationale for 

choosing this value as a test statistic was that it was evident from running 

simulations that the last grid point was highly dependent on the true value of p 

and therefore, given this information, estimation of the parameter p could be 

relatively precise. Furthermore, this is a single (univariate) random variable, 

which can more easily be studied thoroughly using simulation. 



Again using Monte Carlo simulation based on one million trials, for values 

of p between 0.05 and 0.9, incrementing by 0.05 (Table 3.1) we obtained 

frequency histograms of the test statistic (last grid point along the cross-section) 

(Figure 3.4). 

Table 3.1: Values obtained from Monte Carlo simulations of pre-invasive bronchial 
epithelial lesion growth based on a rnillion trials. 

The last grid point along the cross-section was used as test statistic and the probability values of 
p were between 0.05 and 0.9, incrementing by 0.05. The histogram obtained from these 
simulations is found in Figure 3.4. 



Figure 3.4: Frequency histograms representing last grid point along the cross-section of 
a million simulations with probability values p between 0.05 and 0.9, from 
Table 3.1. 

Frequency Histograms 

' '  6 7 ,"9 
Last Grid Point 

Source: O Alma Barranco-Mendoza 2005 

Using these results, we can estimate the value of p used to obtain a given 

sample cross section. 

A natural method to use with this arrount of information is the method of 

maximum likelihood. For example, from the list of frequencies, for the lattice 

showed on Figure 3.3 we found the maximum likelihood estimate of p to be 0.6 

(that is, the probability function of the test statistic is maximized at p=0.6). 



3.8 Modelling Lesions as Contact Processes 

There are obvious limitations with the model proposed above, however, it 

does give us some insight in the behaviour of the process: 

It can be viewed as a discrete time Markov chain. In this section we 

develop a continuous time model for this process. Markov chains in continuous 

time are defined by the rates 

90,i) = p(i,j)Q 

at which jumps occur from state i to state j, where Q is a constant 

representing the total jump rate and p(i,j) the transition probability at each point of 

a Poisson process with rate Q. 

The finite dimensional distributions of the process at state s(t) at time 

t is described by the probabilities P(sl(t) = i l ,  ... sn(t) = in ), for each choice 

of a finite number of sites sl, ... , Sn and of possible states i l ,  ... , in. 

The total configuration at time t is described by giving the state of each 

site si. An initial distribution for the process that does not change in time is called 

a "stationary distribution" [Liggett. 19851. 

If there is a stationary distribution that concentrates on configurations that 

have infinitely many sites in each possible state then we say that coexistence 

occurs. In most cases in which coexistence occurs there will be a translation 

invariant stationary distribution where P( s(t) = i ) is a constant u[11 > 0 that we will 

call the density of type i [Liggett. 19851. 



Clustering occurs if for each s and r the probability of seeing one type of 

particle at s and a different type of particle at r converges to 0 as t tends to 

infinity. [Liggett. 19851 

The contact process model was first introduced by Harris in 1974 [Harris. 

19741. In this model, each site in the square lattice is either occupied (in state 1) 

or vacant (in state 0) and follows the conditions: 

i. An occupied site becomes vacant at a rate 6; and 

ii. a vacant site becomes occupied at a rate equal to the fraction of the 

four nearest neighbours that are occupied. 

Much research has been done on these types of models ( [Liggett. 19851, 

[Liggett. 19971, [Durrett. 19801, [Durrett and Griffeath. 19821 [Dickman et a/. 

20021, to name a few ), but perhaps the most important result on contact process 

is the Complete Convergence Theorem: 

When the contact process does not die out then it will converge to the 

stationary distribution that is the limit starting from all 1 's. [Durrett. 19921 

An immediate consequence of this is that the only stationary distributions 

for the process are [Durrett. 19921: 

i. the limit starting from all l ' s ,  

ii. the trivial stationary distribution, E, which assigns probability one to 

the all 0's configuration, and 

iii. {(p~i)+(l-p)}~ E 



An interesting modification to this model was presented by Durrett and 

Levin in 1994 when they proposed that the behaviour of stochastic spatial 

models could be determined from the properties of the mean field ODE [Durrett 

and Levin. 19941. 

Going back to our model, we wish to rephrase it in terms of a modification 

to the contact process model. Define the lattice to be at most 10 cells in the 

diagonal since this was assumed to be a characteristic of the lung tissue. Each 

site in the lattice is either occupied by an abnormal cell (in state 1) or vacant (in 

state 0) and follows the conditions: [Barranco-Mendoza et a/. 19991 

i. a vacant site becomes occupied at a rate equal to h times the fraction 

of the four nearest neighbours that are occupied, and 

ii. an occupied site becomes vacant at a rate equal to 6 times the fraction 

of the four nearest neighbours that are vacant, 

where h, 6 I h < 1, is the rate at which abnormal cells split and 6, 0 

16 < 1, is the small probability of an abnormal cell being displaced from the site 

by a healthy cell. These constraints allow us to model the situation in which both 

normal and abnormal cells coexist (at least in the early stages). It is easy to see 

that if 6 2 1 the process would die out, i.e., there would be total recovery; and if 

h 2 1 then the abnormal cells would take over the entire tissue. 

In practice, the vacant sites are not actually vacant but occupied by 

healthy cells that can be displaced by abnormal ones. However, since we are 



currently only concerned about the growth of abnormal cells, considering the 

healthy sites vacant simplifies the problem considerably. 

Condition (ii) is necessary since there is a very small probability that a 

healthy cell may displace an abnormal cell. When this occurs, since we are not 

allowing cells to drift in any direction on the plane, the new cell will be pushed out 

of the 2-D plane. Hence, for this simple 2-D model, this situation is resolved by 

setting 6 = 0, i.e., once a site is occupied by an abnormal cell, it will never 

become vacant. However, the condition 6 > 0 must be considered when 

introducing drift as well as in the 3-D model. 

Let S = {finite subsets of z2}. If A E S is the initial set of abnormal cells, 

then, let kA(t) be the set of sites occupied by abnormal cells at time t. 

We can rewrite the above as Markov processes ( 5A(f))t with jump rates 

given by: [Barranco-Mendoza et a/. 19991 

5A(t) + 5 A  - { }(t+l) (where s E 5A(t)) at rate 6 1 {r P 5~(t):lI r - s 1 1  = 1 }I,  

where llsll is the distance from s to 0, i.e., the rate at which a site becomes 

occupied by an abnormal cell is dependent on the cardinality of the set of sites 

occupied by abnormal cells adjacent to the current site. 



Note that if 6 = 0 and h = 1, then our model is a finite version of 

Richardson's growth model presented in [Richardson. 19731. There Richardson 

showed that if B(t) is the set of sites occupied at time t, then B(t)lt clusters to a 

limiting shape, which is roughly but not exactly circular. 

Since we assumed that the process started with a single abnormal cell at 

the origin, then we are only interested in the process t0(t). 

3.9 Extensions 

In [Williams and Bjerknes. 19721 Williams and Bjerknes presented a model 

of skin cancer, improved later by Bramson and Griffeath in [Bramson and 

Griffeath. 19801 and [Bramson and Griffeath. 19811, that follows a similar 

approach to ours. The main difference is that, by the nature of the problem, skin 

cancer growth was modelled only as sidewise splitting on the basal layer in such 

a way that the surface folded onto a torus. On the other hand, recall that our 

model is just a 2-D simplification of a model of very small pre-cancerous 

epithelial lesions that have not gone yet into metastasis. It is very constrained 

since we are modelling the three layers only as cross-sections of the bronchial 

epithelium, which forces the model to be restricted to a finite height along the 

diagonal. Based on this approach, we can represent our model using a partial 

differential equation (PDE) to describe the stochastic process: [Barranco- 

Mendoza et a/. 19991 



Equation 3.5: 

where n represents the number of abnormal cells in the region of interest. 

Summarizing the various parts of the equation, the term: 

represents the diffusion equation, and models the random movement of 

the abnormal cells in the tissue over time, where o is the diffusion constant. 

The birth rate of the abnormal cells, n, is controlled by the parameter h. 

Clearly this term allows the number of abnormal cells spawned at any given time 

to grow linearly with the current number of abnormal cells. 

Since there is a natural upwards drift of the cells in the tissue, we use the 

term: 

to model this phenomena. Notice that this term depends on the distribution 

of the cells in the vertical direction. Since we can expect more cells to drift 

upwards if there are more cells clustered near the basal layer of the tissue than 

elsewhere. 



To model other aspects of the biological processes occurring in the 

diseased tissue, addi.tional terms are required. For example, the term: 

can be added to model the lateral drift of the cells; the rate can be 

controlled through the parameter px. 

Finally, we need to set suitable boundary conditions. Setting the Dirichlet 

conditions: 

at the bottom and top, respectively, of the cell layer. This makes sense 

physically since in this simple model we only allow one abnormal cell at the basal 

layer, and assume that once cells reach the top layer they die. The boundary 

conditions to model the sides of the region are more complicated. A possible 

solution would be to use moving boundary conditions at these edges, so that as 

the lesion expands the boundaries would also expand. 

There is a natural extension to using a 3-D lattice for the discrete model. 

In the proposed partial differential equation model a complete analysis of the 

system needs to be done to compare the results with those obtained from the 

presented stochastic model. To analyse the 3-D model, we will require another 

parameter to handle movement of cells in this third axis. Hence, if px and pz are 

the rates of lateral drift at which cells move along the x- and z-axis, respectively, 

then: [Barranco-Mendoza et a/. 19991 



Equation 3.6: 

3.1 0 Conclusions and Limitations 

The behaviour of cancer cells growth and development involves many 

different factors and modelling it requires a very complex system such as the one 

developed by Clem et a/. in [Clem et a/. 1997al. However, this model is so 

complex that it cannot be used to do any mathematical analysis of the growth 

process nor be used for diagnostic purposes. To gain some insight to effectively 

understand the process, simplified models of the growth process are very useful 

tools. In this chapter, two models --one discrete stochastic model and one PDE 

model- were proposed to solve a 2-D simplification of the original problem 

posed by Clem and Giraud in [Barranco-Mendoza et a/. 19971. Using Monte 

Carlo simulations, we observed from the experimental results that at p = .64 

there is a threshold effect. Any smaller values of p result in mainly small 

configurations, i.e., the abnormal cell division stops or dies out, whereas any 

larger p results in most configurations having some cells that reach the last level, 

which can be interpreted that the abnormal cells have a sufficiently aggressive 

growth that would warrant medical treatment. We also showed that by modelling 

the cell growth as Markov or contact processes we can expect that if the cell 

growth B(t) is the set of sites occupied at time t, then B(t)lt clusters to a limiting 

shape, which is roughly but not exactly circular. This behaviour is observed both 

in Clem's model --which is considerably more complex than ours and against 



which data our results were compared to-- and in real-life tumour growth hence 

confirming that our model exhibits behaviour comparable to that of the real-life 

system. 

These simplified mathematically tractable systems can provide a lot of 

insight into the fundamental processes involved and can eventually be used as 

part of the development of a system that could aid in the early detection of lung 

cancer. However, the main limitation of this model is that it only addresses the 

growth of one lesion at a time. It is very likely that one patient may have several 

lesions present; one lesion not developing cancer does not preclude others from 

developing it. Also, in order to determine the rate of growth, each lesion would 

have to be observed at regular intervals to quantify its growth, which would 

require regular bronchoscopies --an intrusive and costly procedure- for the 

patient. In actual medical diagnosis, whenever a lesion is identified in a 

bronchoscopy, many times the entire lesion is removed. Thus, this defeats the 

usefulness of the model, as that particular lesion will not longer continue its 

growth. 

As we explained in the previous chapter, there are many additional factors 

that impact whether a patient will develop cancer or not. Therefore, a model that 

only involves the structural analysis of a single lesion is not sufficient as an 

effective diagnostic tool. In the upcoming chapter we addressed this issue with 

the development of the PPBM, a multidisciplinary biological knowledge 

representation model, which establishes a framework to represent multiple types 

of patient information -such as cancer history, smoking history; imaging, serum, 



sputum, and genetic data- and their relationships in terms of constraints. We 

later present how PPBM can be used in the development of a prototype system 

for early cancer diagnosis. 



CHAPTER 4: PROBABILISTIC PROPERTY-BASED 
MODEL FOR MULTIDISCIPLINARY 
BIOLOGICAL KNOWLEDGE 
REPRESENTATION 

4.1 Introduction 

As mentioned in chapter 2, a lot of the CAD research is being done on the 

image analysis field [Gur et a/. 20041, however, at the early development stages 

of the lesion, the information that can be obtained from lung imaging analysis (X- 

ray, CAT scans, MRI, PET scans, etc.), is quite limited, as we explained. Even 

though some have been able to detect lesions smaller than 1 mm [Nagamoto et 

a/. 19931, [Brown et a/. 20031 the early diagnostic information offered is not 

determinant as the structural differences between lesions that would become 

malignant and those that would remain benign or will not develop further, as 

explained above, are minimal. To completely understand the evolution of normal 

epithelium into invasive neoplasia would require the understanding of the genetic 

relationship of the cells in a pre-invasive neoplastic lesion during the 

development into invasive cancer. In recent years, biological research has been 

done in the area of cancer genetics that has shown that cancer results from an 

accumulation of key mutations in expanding clones originating from tissue- 

specific stem cells [Marx. 20031. The recent availability of the human genome 

sequence, and the development of high throughput genomic technologies and 

methods for isolating selected cell populations have started to give us the 



opportunities for understanding how human cancers develop. This information 

will drastically improve cancer diagnosis and treatment through the discovery of 

disease-specific molecular targets. As well, recent research has been focusing 

on the detection of biomarkers obtained from serum and sputum proteomic 

analysis. [Gealy et a/. 19991 

4.1 .I Objective 

Bringing together all of this multidisciplinary information about the 

development of the disease at the early stages along with the patient's medical 

history and behavioural risk analysis, could give the medical professionals a 

more accurate diagnostic of the probability of the lesions advancing to cancer or 

not. However, up to now, there has been little research in terms of computational 

methods to assist in the integration and analysis of all the genetic and molecular 

information along with the radiological, serum and sputum data. As well, for a 

system to have a true impact in the medical field it should be able to provide 

some kind of diagnosis even if given incomplete patient information, as not all 

tests can or will be done on said patient at a given time. Also, it has to take into 

account the cost --monetary (e.g. prohibitively expensive), emotional (e.g. too 

stressful or traumatic), and physical (e.g., too many side effects) - of a particular 

medical procedure or test, and weight it against the actual benefit it would 

provide in terms of improving the accuracy of the diagnosis. Our research 

focused on addressing this with the development of the multidisciplinary 

property-based model for multidisciplinary biological knowledge representation or 

PPBM. The high-level architecture of the PPBM (Figure 4.1) consists of 4 main 



components: User Interface, Patient Data Concepts, Diagnostic Knowledge 

Store, and Diagnostic Engine. These components will be described in detail in 

the following sections. 

Figure 4.1 : PPBM High-Level Architecture Diagram 
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4.2 Methodology 

The key difficulty in the development of a multidisciplinary system is the 

very different characteristics that each element of data involved in the analysis 

presents. Very soon we came to the realization that we needed to address a 

complex knowledge representation problem before being able to develop a 

diagnostic system that could integrate all of this data. Given the very different 

nature of each data element we determined that it was necessary to use a high 

level of abstraction to be able to capture a generalized way of representing all the 

elements consistently in order to be able to express both their independent 

characteristics and the relationships between them. Therefore, the next step we 

decided to follow was to look into constructivist theories and knowledge 

representation models based on those, which would allow the flexibility required 

to address concepts so distinct amongst themselves. 

The main idea behind Constructivist Theory, introduced by Bruner in 1973, 

is that "learning is an active process in which learners construct new ideas or 

concepts based upon their currentlpast knowledge" [Kearsley. 2004al. During 

this process, "the learner selects and transforms information, constructs 

hypotheses, and makes decisions, relying on a cognitive structure to do so" 

[Kearsley. 2004bl. The formation of new concepts from known ones is also 

central to cognitive logic, and also to logic programming and its recent sub- 

paradigm, Constraint Handling Rules (CHR). [Fruhwirth. 19981. More recently, in 

[Dahl and Voll. 20041, the authors take advantage of these natural connections to 

develop a cognitive model of knowledge construction, Concept Formation Rules 



(CFR), that can be directly executed through a specialized system implemented 

using CHRs. Based on this model, we can propose a biological knowledge 

construction model and expand on it by incorporating the use of concept 

probabilities which would enable us to quantify likelihood impact probability 

based on individual concepts and the constraints between them. 

4.2.1 Concept Formation Rules 

CFR is a directly executable new cognitive model of knowledge 

construction inspired in constructivist theory as well as in recent natural language 

processing methodologies. 

In this model, problems, events, feelings etc. that are on focus (that 
is, in our consciousness at any given time) trigger a (partly or 
wholly) unconscious search in the knowledge store for those pieces 
of information that relate to the problem. Once found, these can be 
put together to draw new knowledge from them. A rule appropriate 
for modelling the formation of the new knowledge might look 
roughly as follows: 

c1, c2, ... ci + newc. 

where the ci's and newc are concepts expressed as logic atoms. 
We call these rules concept formation rules. [Dahl and Voll. 20041 

This system accommodates user definition of properties between 

concepts as well as user commands to relax their enforcement; accepts concept 

formation from concepts that violate principles that have been declared as 

relaxable, and produces a list of satisfied properties and a list of violated 

properties as a side effect of the normal operation of the rules. 

CFR bases its approach on a constraint-based formalism called Property 

Grammars (PG). [Bes and Blache. 19991, [Bes et a/. 19991, [Blache. 20001 



PG's main objective is to represent in separate ways syntactic, semantic, 

pragmatic, and other information of different kinds, while being able to process 

them simultaneously if needed. That is, PG rules can combine parsing elements 

of the same level of representation together, or if needed, elements of different 

levels of representation (e.g., syntactic elements plus pragmatic elements) in the 

same rule. In [Dahl and Blache. 20041, the authors explain that "[iln this 

approach, syntactic structure is not expressed in terms of hierarchy, but only by 

means of relations between categories. Such relations do not have any 

topological constraints; they can for example be crossed. Moreover, only 

relations between objects are used for describing a category. As a consequence, 

the notion of constituency is no longer relevant for the description process: a 

category is specified by a set of properties rather than by a set of constituents. In 

other words, the fact that several categories belong to a network of relations 

indicates that they characterize an upper-level category. A syntactic category is 

then described by a set of properties, which represent relations between other 

categories (lexical or syntactic)." The main goal of PG is to make explicit all the 

different relations that can exist. 

The following types of information obtained by this approach can be 

summarized by the following properties: [Blache. 20001 

Constituency (const): Defines the maximal set of categories 
constituting a syntactic unit. This property allows the 
determination of the non lexical categories that will appear in the 
characterization of a given input. 

Obligation (oblig): Specifies the set of compulsory, unique 
categories. Such categories correspond to the heads. 



Unicity (unic): Set of categories which cannot be repeated in a 
phrase 

Requirement (req): sub-categorization, which indicates the co- 
occurrency relations between categories or sets of categories. 

Exclusion (exclude): The impossibility of co-occurrency between 
categories. 

Linearity (prec): Linear precedence constraints. 

Dependency (dep): Dependency relations between categories. 

We have identified that these are the type of properties required to 

express the relations between the biological data involved in the diagnostic 

process. Here are some biological examples obtained from some lung cancer 

tumour marker characteristics [Wu and Nakamura. 19971: 

Constituency: Allows the determination of the categories that will appear in 

the characterization of a patient's personal data: 

const (Personal-data) ={Patientconsto=iPatientID,Age,RaceIDI AgeI RaceI Gender} 

The corresponding categories can be dominated in the hierarchy by 

Personal-data. 

Unicity: A patient's personal data cannot have repeated categories: 

unic(Persona1 - data)={Patient - ID,Age,Race,Gender} 

Linearity: In our medical domain, linearity is used most frequently to 

represent temporal precedence. E.g., the change in size and shape of 

tumour as detected by chest X-ray or CT scan can be represented this 

way. The tumour must progress to a certain size before detection by the 



methods stated above. In other words, the tumour will develop from a 

minute size to a size large enough to be detected: 

prec(Tumour-size-past, Tumor - size-current) 

which can then be used to determine if there has been tumour growth. 

Another example for linearity is the increase in concentration of a 

particular marker with time: 

prec  (Marker-concen t r a  t i ~ n ~ p a s  t ,  Marker-concen t r a  t i on -cur ren  t )  

which can be used to determine if there is an increase in concentration 

values from a session with the physician to the next session are usually 

indicative of tumour progression. 

Requirement: E.g., the presence of the following serum marker (neuron 

specific enolase, NES) at values greater than 22 ng/mL. Adults have a 

normal range of 1-22 ng/mL. Children have a normal range value of 1-12 

ng/mL. In cases with SCLC, 60-80% of patients have a mean value of 37 

ng/mL: 

req (NES-normal - rangeQ2) = {Age>l2) 

req (NES - normal-ran gel1 2) = {Agell 2) 

Exclusion: E.g., prostate specific antigen (PSA) is tissue specific i.e., it is 

the major protein found in seminal plasma. The high concentration of 

PSA-ACT in serum (4-10 ng/mL) would indicate prostate cancer and not 

that of lung cancer: 



e x c l u d e  ( 1  u n g - c a n c e r )  ={Serum-marker=PSA-ACT, C u r r e n  t -marker-range>4}  

Obligation: E.g., the major marker for SCLC is neuron specific enolase 

and can occur in the blood stream when the SCLC is lysed. Therefore 

lysis of the cells must occur: 

Dependency: E.g., the detection of NES in the blood stream is usually an 

indication of malignant disease state of SCLC i.e., metastasis. The 

prognosis of SCLC is enhanced with detection of thymidine kinase: 

Therefore, we used CFR as the basis to implement our model for cancer 

diagnosis. [Barranco-Mendoza et a/. 20041 

4.2.1.1 Advantages of CFR 

Given the multidisciplinary nature of our data, CFR offers a sufficiently 

high level of abstraction to represent this biological knowledge in terms of 

concepts. Each data element, or concept, will be conformed of its own unique 

properties and the properties between it and other concepts. As rules become 

unified, new concepts are added to the knowledge store. As most of the rules in 

the knowledge store will not be used at a given point in the analysis, the rule 

selection process is important. As explained in [Dahl and Blache. 20041, CFR 

"solve[s] this problem by using a system that constantly looks for information that 

matches any new information arriving (i.e., an initial problem's concepts, or the 



concepts formed while trying to solve it), and triggers those rules whose left hand 

side matches at least some of the new information." 

Another advantage to CFR is the flexibility it gives to relax constraints, 

allowing the completion of the analysis even with incomplete information. This 

addresses the issue raised in 4.1 .I of proving diagnosis even with incomplete 

patient information. The list of violated properties serves interesting purposes, 

such as providing a list of suggested follow-up tests to improve the accuracy in 

the diagnosis. The way this is accomplished is explained in [Dahl and Blache. 

[Rlather than inflexibly allowing for a concept to be formed if a test 
succeeds and disallowing its formation if that test fails, we single 
out those tests for which we want to allow flexibility as properties. 
Properties are like any other test, except that their failure does not 
result in the rule itself necessarily failing: the concept will still be 
formed, and two lists will be associated with it: a list of the 
properties that the concept satisfies (S) and a list of those which it 
violates (V) . 

This allows us to construct possibly incorrect or incomplete 
concepts, plus the information regarding in which way they are not 
totally warranted. The user then has all the information pertaining to 
the construction of a particular concept and can interpret these 
results in a much more informed, holistic way than if the degree of 
randomness or vagueness had been blindly computed from those 
assigned a priori to each individual piece of a reasoning puzzle. 

CFR transforms its knowledge store as a side effect of applying a concept 

formation rule. CFR can address the three types of knowledge store 

transformation: (a) new concept coexisting with the concepts that participated in 

its formation; (b) removal of redundant concepts; and (c) new concept replacing 

old concepts that led to it. 



Another interesting feature is the possibility of making hypotheses in the 

form of assumptions. Assumptions are atoms syntactically marked as such that 

are available for consumption during the computation. These assumptions give 

the opportunity of developing "what if ' scenarios, a useful feature when dealing 

with possible diagnostic scenarios, while still having certain unknowns. These 

assumptions are automatically backtracked upon if they lead to impasses or 

inconsistencies. 

4.2.1.2 Limitations of CFR 

CFR, even though it can be used to determine constraints between 

concepts, it does not deal with probabilistic analysis. Being able to provide the 

likelihood that the patient will or will not develop cancer as part of our diagnosis is 

the main objective, therefore CFR will be expanded to handle this probabilistic 

analysis. 

Another issue to address is that a medical condition such as cancer does 

not remain static throughout time. In fact, diagnostic and treatment are highly 

dependent on the changes of the patient's condition throughout time. Hence, a 

module to handle temporal reasoning must be included. 

4.2.2 Temporal Reasoning in Diagnostic Systems 

Most clinical tasks require measurement and capture of numerous patient 

data. Physicians who have to make diagnostic or therapeutic decisions based on 

these data may be overwhelmed by the number of data if the physicians' ability 



to analyse and reason about the data does not scale up to the data-storage 

capabilities. Most stored data include a time stamp in which the particular datum 

was valid; an emerging pattern over a stretch of time has much more significance 

than an isolated finding or even a set of findings. Experienced physicians are 

able to combine several significant contemporaneous findings, to abstract such 

findings into clinically meaningful higher-level concepts in a context-sensitive 

manner, and to detect significant trends in both low-level data and abstract 

concepts. Thus, it is desirable to provide short, informative, context-sensitive 

summaries of time-oriented clinical data stored, and to be able to answer queries 

about abstract concepts that summarize the data. Providing these abilities would 

benefit both a human physician and an automated decision-support tool that 

recommends diagnostic measures based on the patient's clinical history up to the 

present. 

Such concise, meaningful summaries, apart from their immediate value to 

a physician, could, in the future, support the automated system's further 

recommendations for diagnostic or therapeutic interventions, provide a 

justification for the system's or for the human user's actions, and monitor plans 

suggested by the physician or by the decision-support system. To achieve this, a 

meaningful summary cannot use only time points, such as dates when data were 

collected; it must be able to characterize significant features over periods of time, 

such as "2 months of increasing lesion size." 

In [Combi and Shahar. 19971, the authors explain that: 



Temporal reasoning has been used in medical domains as part of a 
wide variety of generic tasks [...I, such as diagnosis (or, in general, 
abstraction and interpretation), monitoring, projection, forecasting, 
and planning. These tasks are often interdependent. Projection is 
the task of computing the likely consequences of a set of conditions 
or actions, usually given as a set of cause-effect relations. 
Projection is particularly relevant to the planning task [...I. 
Forecasting involves predicting particular future values for various 
parameters given a vector of time-stamped past and present 
measured values, [...I given the values up to and including the 
present. Planning consists of producing a sequence of actions for 
a care provider, given an initial state of the patient and a goal state, 
or set of states, such that that sequence achieves one of the goal 
patient states. Possible actions are usually operators with 
predefined certain or probabilistic effects on the environment. The 
actions might require a set of enabling preconditions to be possible 
or effective. Achieving the goal state, as well as achieving some of 
the preconditions, might depend on correct projection of the actions 
up to a point, to determine whether preconditions hold when 
required. interpretation involves abstraction of a set of time- 
oriented patient data, either to an intermediate level of meaningful 
temporal patterns, as is common in the temporal-abstraction task 
or in the monitoring task, or to the level of a definite diagnosis or 
set of diagnoses that explain a set of findings and symptoms, as is 
common in the diagnosis task. Interpretation, unlike forecasting 
and projection, involves reasoning about only past and present data 
and not about the future. 

When modelling time whether for reasoning about or management of time- 

oriented clinical data there are several decisions that need to be taken, based on 

the needs of the domain of our model. These decisions involve determining how 

time will be modelled to represent time points (instants, e.g. x-ray on May 12, 

2003) and time intervals (e.g. length of chemotherapy treatment); relative time 

(makes reference to its context, e.g. experiences coughing after smoking) and 

absolute time (an absolute position such as a calendaric time, e.g. biopsy on 

March 13, 2005); linear time (set of time points is completely ordered; e.g., most 

clinically-oriented databases); branching time (can happen in diagnosis, 



projection or forecasting) and circular time (when recurrent events happen, e.g. 

chemotherapy treatment every week.) [Cukierman and Delgrande. 20001, 

Allen's interval algebra [Allen. 19841, [Allen. 19831 has been widely used in 

medical informatics to model temporal relationships. [Combi et a/. 19951 

proposes some extensions to Allen's basic thirteen interval relationships [Allen. 

19831 (direct relations and their inverse: before, after; meets, met by; starts, 

started by; during, contains; overlaps, overlapped by; finishes, finished by; 

equals). 

There are two main types of temporal relationships: qualitative (e.g. 

bleeding after coughing) and quantitative (e.g. bleeding 5 minutes after 

coughing). [Combi et a/. 19951 

There are two main approaches to modelling temporal entities in medical 

informatics: (a) adding a temporal dimension to an existing object, and (b) 

creating task-specific, time-oriented entities. 

Adding a temporal dimension to existing an existing object is an approach 

that originated from database research. The main idea is to add a temporal 

dimension at the tuple or object level or at the attribute or method level. In [Das 

and Musen. 19941 the main focus is to model time-oriented clinical data to permit 

the DBMS to store and manage this type of data. In [Combi et a/. 19951 the 

concept of "temporal assertion" was introduced. The main idea is to model both 

instant- and interval-based information in a homogeneous way. 



The approach of creating task-specific, time-oriented entities originated 

mainly from artificial intelligence in medicine. Modelling different temporal 

features of complex, task-specific entities is the main idea of this approach. The 

needs of the relevant temporal-abstraction and, in general, temporal-reasoning 

tasks define the temporal entities. 

In [Kahn etal. 1991al the concept of a Temporal Network (TNET) was 

formally introduced and [Kahn etal. 1991 b] later extended it by the Extended 

TNET, or ETNET model. Here, a T-node (or an ET-node) models task-specific 

temporal data at different levels of abstraction. I[Keravnou and Washbrook. 19901 

introduces findings, features, and events to distinguish various types of 

instantaneous and interval-based information, which is patient-specific or 

general. 

4.2.2.1 PPBM Temporal Requirements 

Our specific model will require addressing temporal issues mostly dealing 

with change of symptoms/conditions from session to session for a specific 

patient. At the moment, the input does not involve analysis of medical records in 

natural language hence we only have to deal with absolute and not relative time. 

Our data will be represented in terms of CFR concepts, which can be viewed as 

database tuples. Therefore, we will follow the approach to modelling temporal 

entities by adding a temporal dimension to our existing data. To do this, we will 

use time stamps at the tuple level. We will also generate constraints that would 

incorporate Allen's interval algebra [Allen. 19841, [Allen. 19831 in our analysis. 

Our model's timeline, as it stands at the moment, is mostly linear and it is as 



such that we make that assumption in the initial formalization of PPBM. 

[Barranco-Mendoza et a/. 20051 Yet, we will be taking into consideration the 

possibility of branching and circular time in future research. 

As we expressed above, there are a vast number of temporal issues that 

should be addressed but were beyond the scope of the initial formalization of the 

PPBM, here presented. However, these issues will be addressed by the author 

and incorporated into the model in future research. 

4.2.3 Probabilistic Analysis of Medical Data 

When analysing medical data for purposes of diagnosis we require a way 

to quantify the impact the different symptoms and patient characteristics will have 

on the diagnostic of a particular disease. Considering each symptom to have the 

same weight in the occurrence of a disease is unrealistic as, for example, age 

may not be as determinant in a patient developing lung cancer as having a 

history of heavy smoking is. 

Typically, when building a CAD system, knowledge engineers rely on a 

variety of sources that include expert knowledge (interviews with pathologists, 

etc.), literature, available statistics, and databases of relevant cases. Very often, 

the structure of the model is elicited from experts and the numerical probabilities 

are learned either from available databases or literature results. A common 

approach to quantifying the data is done by using score systems due to their 

simple applicability [Ohmann et a/. 1995],[Franke et a/. 19991. Unfortunately, they 

are not very effective when we need to take into account interdependencies 



among the values, which are input to them when trying to decide an actual 

application case; a drawback that is overcome by the more powerful probabilistic 

systems. In the following sections we will explain how score systems work and 

discuss how a probabilistic approach to them can be followed. Then we will 

present how we will implement this approach in PPBM using Probabilistic CHR 

[Fruhwirth et a/. 20011. We will also discuss some important aspects to consider 

when engineering a knowledge base composed by data from multiple sources. 

4.2.3.1 Basic Considerations of Diagnostic Systems 

In [Schramm and Fronhofer. 20031, the authors identified some general 

elements that must be considered in the modelling of a diagnostic system. First 

of the relationships between diagnoses (diseases) and the attributes (symptoms) 

must be determined and represented explicitly. 

This means that we have a finite set of variables -symptom 
variables and, in addition, diagnosis variables- with each having a 
finite set of values. The symptom variables describe 
properties/symptoms/attributes relevant for the diagnosis task. [. . .] 
The values of the diagnostic variable define a classification of the 
possible diagnostic results [. . .] based on the values of the symptom 
variables. [...I This relation can be specified by a method of 
judgement. Depending on this method we may either get a 
'classical' relation or a somehow fuzzy one, i.e., we may have yes- 
no judgements on tuples [. . .] or a more fine-grained judgement, 
e.g. scores or probability measures. Ibid. 

We can denote the symptom variables - o r  symptom concepts in the 

context of P P B W  by Si (1 5 i r m) each of them associated with the set of their 

values Si = {sij I 1 I j I ki). 



In a similar way, we denote the diagnosis variable --or diagnosis 

concept- as D = {dl,  ..., d k ~ } .  

Hence, a diagnostic system should model a relation on the tuple space 

R = S, x -.. x S, x D ,  based on the above considerations. Ibid. 

For the purpose of our system, we would require a fine-grained method of 

judgment on the tuples (s,, ,s, ,,. . .,smjn,,dh) based on probability measures. 

However, given the nature of our domain, there may be times that a 

certain symptom may either not occur or may not be possible to observed. 

Therefore, our method of judgement should not be restricted to judging only 

individual tuples but we are interested in judgements on arbitrary subsets of R. 

Using probability theory terminology, we define R to be an event space 

with its power set as set of events or event algebra. 

So, if one considers the subset Si c Si (symptom concept) or the subset 

D c D (disease concept) one can denote (3,) = S, x x Si-, x 3, x Si+, x x S, x D 

and (D) = S, x...xS, x D. So, (Si ,...,Sin) with 3. 1 j  E S. l j  , which is the intersection of 

the sets (iij) 

Therefore, the expression (s,, ..., s,,dh), where si E Si and dh E D and which 

can also be written as (s7dh), is called an elementary symptom event in R, (we 

call (s,) a simple event) and all the general events are sets of elementary 



events. [Schramm and Fronhofer. 20031 Following Schramm's notation, we will 

represent a conditional event E'JE as E+E'. 

To determine the conditional judgement for our CAD system, we can 

assume that S is an event that represent the set of symptoms' values of a 

particular patient and we want to determine if this patient suffers from disease 

dh E D (dh = lung or oral cancer, in our case). Therefore, we want to determine 

the judgement of the event (S,dh) compared to the event (S,dg), which is other 

diseases (or, in our case d, = &, i.e., absence of lung or oral cancer) in view of 

the same symptoms' values 2. Hence, we are interested in the judgement of the 

conditional event S 4 ( i , d h )  (or 2 4 dh for simplicity) in comparison to the 

judgement $4 (S ,&) (or S+ 4 ). In medical terms this could be read as: "if I 

know that a patient is showing the symptom values s,  what can I say i n  view of 

this knowledge- about his risk of having the illness dh?" [Schramm and 

Fronhofer. 20031 

4.2.3.2 Score Systems 

Score Systems are based on a set of attributes, which each one of them 

has a value or set of values associated. When a score system is applied to a 

concrete case, the scores that correspond to the attribute values in case are 

added up. Once this is done, if the sum obtained falls in a particular score 

interval, then, the diagnostic decision associated with that particular interval is 

proposed. 



For example in [Ohmann et al. 19951 the authors explain their score 

system for diagnosing appendicitis: 

For instance, in the medical domain, there may be the 
symptom/attribute 'body temperatureJ with (discrete) values 'lowJ, 
'normalJ, 'highJ and 'very highJ. To each attribute value a numerical 
value - i t s  weight or score- is assigned (see Table [4.1]) 

Thus, for instance, a proposal for a medical treatment is 
established on the basis of symptoms found with a patient and 
which are represented by a list of attribute values. 

Table 4.1: "Ohmann Score" for the diagnosis of appendicitis 

In case of negative answers the scores are zero. Patients are diagnosed as 
having appendicitis if score sum 2 12, they are interned in case of 6 - 12, and 
are sent home in case of 5 6. (RLQ: right lower quadrant of abdomen (as seen 
from the patient).) 

Tenderness in RLQ 4.5 
Rebound tenderness 2.5 

I No micturition 2.0 I 
Continuous type of pain 2.0 
Number of leucocytes 2 10000 1.5 

I Aae > 50 vears 1.5 I 
L - 

Relocation of pain to RLQ 1 .O 
Rigidity 1 .O 

Source: based on Table 1 in [Ohmann et a/. 19951 

Score systems can formally be defined as follows: 

It consists of a set of variables (attributes) Si(i = I, ..., m). Each Si 
can be identified with its set of variable values {~i l ,  ..., ~ i k i )  (ki > I ) .  We 
denote by ? a tuple of values {sl, ..., s,} with si E S;. 

Moreover, for each variable Si exists a set W i  = {wil,...,wiki) of 
nonnegative weights or scores and a bijective score function w,: 
Si +Wi. We also have a (global) score function we defined as 



Finally, there are score intervals given by a set of border values 
bl < ... < b k ~ ,  a decision variable T with values {tl, ..., tkT} and a 
decision function t which maps a sum of scores ~ ( i )  to ti iff 
b,-, < w(i) 5 b, (with ba := -). [Schramm and Fronhofer. 20031 

In our case, a simple score system is not the best option as our data 

requires establishing constraints that involve more than one concept. However, in 

the section below we present a probabilistic approach to score systems that can 

meet our constraint requirements. 

4.2.3.3 Probabilistic Approach 

As mentioned before, Score Systems have the limitation that they are not 

very effective when we need to take into account interdependencies among the 

different attributes and their values. Probabilistic Diagnostic Systems (PDS) 

[Devore. 19911 help us overcome that limitation. 

PDS use a function, P, -which follows the laws of probability to assign 

probabilities to the events or symptoms- as the method of judgement. 

Let us define our event algebra by mapping every elementary event -a 

finite set in our c a s e  to a nonnegative real number such that the sum of 

functions values of P over all elementary events is equal to 1. This is called a P- 

measure. [Devore. 1991 ] 

Let us define, for every event E, where E is the unique union of 

elementary events el, ..., en: 



A set E together with a P-measure P is called a P-space. [Devore. 19911 

In [Schramm and Fronhofer. 20031 the authors showed how to transform 

score systems into slightly larger, yet simple, probabilistic systems derived from 

them. 

The main idea behind their approach is to derive a set of constraints to be 

satisfied by a respective P-measure. 

They accomplished this by: 

i. Extending the symptom spaceC= S, x...x S,  to R =  S, x...x S,  x D l  

where D = { d , d } .  [ I ]  

ii. Defining a set of P-measure on R based on the symptom values 3: 

as a judgement of s+ dl which leads to the constraint 

for all s E C, where I?,,, =max(w(?) I s  E C} and 

iii. For arbitrary events s ,  s' E C, w ( s )  > w ( s ' ) a C P ( s +  d)>'P(st+d). [4] 

In their paper, Schramm and Fronhofer showed that this P-measure is 

consistent. It also showed can handle incomplete symptom sets proving the 

theorem below in [Schramm and Fronhofer. 20031: 

[Alssume for each S,  = { s  ,,,. . . ,s , ,  }a  positive normalized weight 
k ,  

function yil i.e., yi(~,S > 0 and y,(s,) = 1. Next [. . .] extend wi to a 
j= 1 



function on the power set Si by defining for all subsets - 
Si = { s  ,,,..., ~ , ~ ) c S , ( n I k , )  

[Dlefine for a subset I = {i,,. . .,in) c {l ,  ..., m )  and for its complement 

f = {1, ..., m )  \ I  the partial symptom event = (S;, ,. . . ,Sin) (with 

3; c Si ). 

[Elxtend [the] global score function to w ( p J  = x w i ( S i )  + C w i ( s i )  
i €  1 i €  7 

and extend [the] translation by the following additional constraint 
Z w , ( S , ) +  Z w , ( S , )  

j €  I ,€ i 
' p ( j p d ) =  wmax PI 

For a s, E S i ,  [. . .] denote by 2, the set of all values of Si besides sijJ 

i.e., Si\{sij). [Dlefine a, =wi(s , ) -w, (S , )  and b, =wi(S , ) -wi(S i ) .  

Theorem: Given a P-measure P which satisfies the constraints 
[2],[3], and [5]. With the weight functions yi taken as the marginal 
distributions of the Si derived from PJ then holds that the Si are 
marginal independent if all ag > 0. 

In the medical domain, the above theorem corresponds to the scenario 

where the value of a particular symptom is neither known nor completely 

unknown but it could be confined to a subset of the particular symptom. 

4.2.3.4 Representing Probabilities in PPBM 

As mentioned above, PPBM is based on CFR, which is implemented 

using CHRs. Probabilistic CHRs (PCHR) [Fruhwirth et al. 2002a1, [Fruhwirth et al. 

20011 is an extension of CHRs. The main objective of PCHRs is to allow the 

probabilistic weighting of rules, that is, specifying the probability that a particular 

rule is applied. As defined by the authors, "PCHR is characterised by a 



probabilistic rule choice: Among the rules that are applicable, the committed 

choice of the rule is performed randomly by taking into account the relative 

probability associated with each rule." [Fruhwirth et a/. 2002al 

PCHR bases its implementation on source-to-source transformation (STS) 

[Fruhwirth et a/. 2002bl in which users write STS programs and, during 

compilation, these STS programs manipulate other programs. CHR rules get 

translated into relational normal form. This is done by introducing special CHR 

constraints for the components of a rule. These components are head, guard, 

body and compiler pragmas. These pragmas are the components that contain 

the probability or weight of each particular rule. 

PCHR's syntax and operational semantics are described as follows: 

[Fruhwirth et al. 2002al 

Syntactically, PCHR rules are the same as CHR rules but for the 
addition of  a weighting representing the relative probability of each 
rule: 
Definition [4.1] 
A probabilistic simplification CHR is of  the form H  G, G I B and a 
probabilistic propagation CHR is of the form H a ,  G I B where p is 
a nonnegative number. 
L . -1 



Definition [4.2] 
The transition relation H ,  for PCHR is indexed by the normalised 
probability p and is defined as follows: 
Simplify 
H'ADH, ,  ( H = H ' ) A G A B A D  
if ( H w p ,  G I B )  inPand CT I=V(D-+3Y(H = H ' A G ) ) .  

Propagate 
H ' A D H ~ ,  ( H = H ' ) A G A B A H ' A D  

if ( H  3 ,  G  I B )  in P and CT I= V ( D  -+ 3 3 H  = H ' A  G ) )  

where 

1 
- otherwise 

where the sum p, is over the probabilities of all rules rj which 
r~ 

are applicable to the current constraint in the current state and the 
number of applicable rules is n. 

4.2.3.5 Knowledge Engineering Using Data from Different Sources 

It is critical to take close consideration of the process of the development 

of the knowledge base when discussing CAD systems, as it is the data and its 

representation what drives the entire diagnostic process. 

In particular, when building probabilistic models, the most intimidating task 

in the knowledge engineering process is obtaining the numerical parameters. 

Many authors combine various sources of information such as textbooks, 

databases, statistical reports, expert advice, etc. to accomplish this task. In 

[Druzdzel and Diez. 20031, Druzdzel and Diez show how "the criteria 'do not 

combine knowledge from different sources' or 'use only data from the setting in 

which the model will be used' are neither necessary nor sufficient to guarantee 



the correctness of the model." Ibid. In their paper, they offered a method for 

determining when knowledge form different sources can be combined safely into 

the general population causal model, as well as explaining how to use available 

subpopulation data to "build a model specific to a certain subpopulation 

characterized by a known variable XI assuming the selection value X = x,." ibid. 

The initial step in their approach is to design a causal graph based on the 

literature and the knowledge elicited from the expert, with nodes representing the 

disease and its symptoms as well as any other variable that impacts the model, 

such as population biases, e.g., data obtained only from a hospital setting; and 

the directed vertices representing the causal links. This graph will be used as a 

guide for determining how to combine data from different sources. 

Theorem 14.11 Given a selection variable X, in a Bayesian network 
and a node (other than X,), such that is not and ancestor of X,, 
the conditional probability distribution of Xi given pa(Xs) is the same 
in the general population and in the subpopulation induced by value 
x,, i.e., Pr(xi[pa(xJ, x,)= Pr(xi[pa(xJ). [Druzdzel and Diez. 20031 

This theorem, proved in the paper, allows us to identify, from the 

conditional probabilities in a certain subpopulation, which have remained 

unaltered by the selection process and, hence, are unbiased. This allows us to 

introduce such parameters into the general-population model. 

To build a subpopulation model, the corresponding causal graph must 

meet the following criteria: 



This property can be phrased as follows: ifX, or and ancestor of Xs 
(say Xi) has two parents (4 and Xk), then one of the two must be a 
parent of the other. Obviously,if each ancestor of X, has only one 
parent, then the graph is linearly ordered for X,. 

Definition 14.41 A causal Bayesian network is linearly ordered for Xs 
if its graph is linearly ordered for X,. 

Theorem 14.21 Given a Bayesian network is linearly ordered for X,, 
for each configuration X R  of the variables XR = X\(Xs), it holds that 

Pr(x,  I x , )  = n .(xi I pa (x , ) ,  x , )  . [Druzdzel and Diez. 20031 
i # s  

This method can only be applied to linearly ordered graphs. 

However, it is always possible to make a graph linearly ordered for X, by 

following the algorithm proposed in [Druzdzel and Diez. 20031: 

1. make an ordered list o f  X such that 
vi, p 4 X i )  c { X , , . . . , X i }  
[which can be read as parents of Xi must be numbered 
before Xi.] 

2. A t X ,  
3. while A has parents 

a. B t last node in pa(A), according to the list created in 
step 1, 

b. For each node C in pa(A)\{B}, 
If link C + A is not in the graph, add it, 

c. A t B  
end while. 

Therefore, any implementation of the knowledge base for PPBM, must 

take into consideration the above requirements to prevent the introduction of 

source biases into the parameters of the data. 



4.3 Results 

As proof of concept, we implemented a prototype of the PPBM. As 

mentioned before, the high-level architecture of the PPBM (Figure 4.1 ) consists 

of 4 main components: 

User lnterface 

Patient Data Concepts 

Diagnostic Knowledge Store 

Diagnostic Engine 

4.3.1 User Interface 

We considered the patient's age, smoking history, malignancy history, 

radiological, serum and sputum data as part of the input concepts to our model 

(see Fig. 1). This component enables the user to enter the patient's available 

information in a simple way and generates a date-stamped session knowledge 

base (KB), which will be added to the Patient Data Concepts. 

The user interface was developed using mySQL1PHP. The reason we 

decided on this implementation was that it creates a more dynamic program. All 

required concepts and possible values are retrieved from the Knowledge Store 

and are used to populate the interface controls (e.g. Dropdown Lists, Radio 

Button Lists). This generates the HTML page dynamically, being driven by the 

database. Therefore, the user can create a concept group (e.g., Family History) 

and give it different web controls (e.g., a dropdown list of relationships, a 

dropdown list of types of cancer). Then a corresponding entry is entered into a 



table that keeps track of the values of each type of web control, where the user 

can specify the different types of relationships possible. (Figure 4.2) 



Figure 4.2: PPBM User Interface 
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4.3.2 Patient Data Concepts 

The Patient Data Concepts (PDC) is where the collection of data for a 

particular patient is stored. There are two main classes of concepts stored in the 

PDC: Patient-Specific Temporal Concepts (PSTC) and Patient-Specific 

Atemporal Concepts (PSAC) (Figure 4.3). In each of them, the patient's condition 

state is registered based on the available information at each particular session. 

The concepts associated to PSAC are those that do not change from session to 

session such as race, gender, birth date, etc. On the other hand, PSTCs may 

experience change from session to session, e.g., some laboratory tests may not 

be performed or the values may change as time passes or treatment occurs. 



Figure 4.3: Patient Data Concepts Hierarchy Diagram 

The diagram shows the hierarchical relationships of some sample concepts 
that may be present in the PDC at a given time. 
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To represent this knowledge, we have chosen to follow the CFR approach 

by defining each piece of diagnostic information as a concept. A concept, from an 

object-oriented approach, could be roughly considered as a class. All these 

PDCs follow a very similar general predicate syntax format: 

concept-name (Patient-ID, attribute,, attribute,, . . . , attribute,) (1) 

Patient-ID is the key attribute, which is unique to each patient. This 

addresses some critical personal privacy issues to which medical data is subject 

to and which would be violated if other private identifiable information such as 

patient's name were stored. For PSTCs, attribute0 = Session-Date is the date of 

the present session, which is stored in the format YYMMDD (two last digits for 



year, two digits for month and two digits for days). The rest of attributej, lsjsn, 

are the characteristics unique to a particular concept. For example, the concept 

serum-data(l232, 050112, CYFRA21-1, 0.5, true) (2) 

would represent, based on ( I )  the concept serum-data, where attribute, = 

Serum-marker-type, attribute* = Value, and attributes = In-range. Therefore, (2) 

can be interpreted as the lab results obtained from the blood sample of the 

patient with PatienLlD = 1232 on the Session-Date = January 12, 2005. The 

results show that Serum-marker-type = CYFRA21-1 had a level Value = 0.5, 

which makes In-range = true as it is within the abnormal marker range. 

4.3.3 Diagnostic Knowledge Store 

The Diagnostic Knowledge Store (DKS) is the part of the KB that includes 

the properties that should be evaluated for each input data element as well as 

the relations amongst them. The DKS includes four types of concept rules: 

Medical/Biological Concepts, Temporal Concepts, Medical/Biological Constraints 

and Temporal Constraints. (Figure 4.4) 



Figure 4.4: Diagnostic Knowledge Store Hierarchy Diagram 

The diagram shows the hierarchical relationships of some sample concepts 
that may be present in the DKS at a given time. 
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The diagnostic analysis --performed in the Diagnostic Engine- is given 

as a likelihood probability of cancer that is calculated, as explained above, as a 

function of the concepts and constraints used in the analysis. As well, the 

diagnosis will list those diagnostic properties that were satisfied and those that 

were not using the relax rules. For example: 

const(Prob), age(Patient-ID, Age, Prob), smoking~history(Patient~~~, -, 
Smoker-type, Frequency, Prob), serum-data(Patient-ID, 
Serum-marker-type, Value, In-range, Prob) <=> marker(Patient-ID, 
Marker-type, In-range, P I  B), acceptable(marker(Patient-ID, 
Marker-type, In-range, P), B), Probability(Patient-ID, P I  Prob, B), 
a c c e p t a b l e ( p r o b a b i l i t y ( P a t i e n t _ I D ,  PI Prob), B) I 
possible-lung-cancer(Patient-ID, true, Prob). 



This rule evaluates for a patient with ID PatienLlD if a specific biomarker, 

Marker-type, found in serum data is within a certain value range for a patient 

with an age of Age who is a Smoker-type smoker (depending on the number of 

cigarettes or cigars smoked daily). If true, then the diagnosis of possible lung 

cancer is going to be true with a probability increase of P (where P is a function 

of the patient's age, health history, and this particular biomarker presence). But if 

we relax the requirement of the presence of the biomarker, then the system can 

evaluate patient records that do not have this particular information and report in 

the diagnosis listing that this information was not included in the record, which 

could be valuable information as recommended follow-up tests for that particular 

patient. 

Several of the probabilities used in the prototype were based on the 

research findings in [Cummings etal. 19861 and [Gurney. 19931, which 

determined likelihood ratios for the incidence of various clinical and radiographic 

features of a lung nodule, where 

Likelihood Ratio = Probability in patients with disease I Prob. in subjects without disease 

= Sensitivityl(1 - specificity) (4) 

Then using Bayes' theorem, where 

Current Odds = Prior Odds x Likelihood Ratios; ( 5 )  

determined the probability of malignancy in solitary pulmonary nodules. 

4.3.4 Diagnostic Engine 

As mentioned earlier, Property Grammars rely exclusively on constraints. 

Therefore, for the implementation of the Diagnostic Engine (DE), we use a 



specific constraint programming language called Constraint Handling Rule 

Grammars (CHRG) described in [Christiansen. 20011 on top of CHR. Using 

CHRGs also gives the possibility of dealing with assumptions [Christiansen and 

Dahl. 20041, [Dahl and Tarau. 20041, - h e n c e  incorporating some hypothetical 

reasonin* since CHRGs include assumptions whereas CHR do not. CHRGs 

are implemented using SlCStus Prolog. 

The basic mechanism in constraint satisfaction problems is to find, for a 

given set of variables, an assignment that satisfies the constraint system. In the 

problem addressed here, the variables are taken from the set of categories. An 

assignment is given from an input (i.e. the PDCs to be parsed). Starting from the 

set of categories corresponding to the information available for a patient's 

particular session, all possible assignments (i.e. subsets of categories) are 

evaluated. When a DKS category is characterized, it is added to the set of 

categories to be evaluated. This approach is basically incremental in the sense 

that any subset of categories can be evaluated following a bottom-up approach. 

This means that adding other categories can complete an assignment A. When 

DKS categories are inferred after the first step of the process, it is then possible 

to complete the first assignments (made with PDC categories) with new DKS 

ones. 

The role of selection constraints is central to this approach. As shown 

before, they allow for the selection of the characterized category. This is due to 

the fact that such constraints are local to this category. Moreover, in some cases 

they have a global scope over the category: their satisfiability value (i.e. satisfied 



or violated) cannot change for a given category whatever the subset of 

constituents. As soon as the constraint can be evaluated, this value is 

permanent. For example, when a linearity or a dependency constraint is satisfied, 

adding new constituents to the category cannot change this fact. Other kinds of 

constraints have to be re-evaluated at each stage. For instance, when adding a 

new category, we need to verify that unicity and exclusion are still satisfied. 

These are also called filtering constraints. As opposed to selection constraints, 

the realization of a DKS category cannot be inferred from their evaluation. Their 

filtering role is in the sense that they rule out some construction. 

The principle consists in completing original assignments with new 

categories when they are inferred. As long as the evaluation of selection 

constraints (as soon as this evaluation can be performed) is valid through a 

complete assignment, whatever its constituents, it is not necessary to re- 

calculate it. In other words, when an assignment A is made by completing 

another assignment 6,  A inherits the set of selection constraints of 6. 

As mentioned above, with CHRG as the core component of our DE, we 

can perform the following operations inherent to the CHR engine: 

Information selection: a side effect of the engine's search over 

applicable rules. 

Transformation of information: when a rule triggers, it augments the 

knowledge store with the concept newly formed. 

Hypotheses: made through assumptions. 



CFR, another core component of the DE, provides a flexible cognitive 

structure through relaxable, directly executable properties between concepts 

called concept formation rules, whose guard may include any number of property 

calls for our defined properties. These properties must follow these defined 

characteristics: [Dahl and Blache. 20041 

a) A property must be named and defined through the binary 
predicate prop, whose first argument is the property's name and 
whose second argument is the list of arguments involved in 
checking, and in signaling the results of checking, the property. [. . .] 

b) Acceptability of a property that has thus been defined must be 
checked in the concerned rule through the binary system predicate 
acceptable, whose first argument is the prop atom with all its 
arguments and whose second argument will evaluate to either true, 
false, or a degree of acceptability, according to whether (or how 
much of) the property is satisfied. [...I 

c) In order to relax a property named N (i.e. to allow the derivation 
of concepts that require it but for which it is not satisfied), we simply 
write the following: 

Degrees of acceptability can be defined through a binary version of 
the relaxing primitive, where L is the p rop  atom with all its 
arguments and D is a measure of acceptability: 

A list of satisfied and violated properties, together with the degree 
of violation if appropriate, will be output for each property defined in 
a given CF program. 



The Temporal Reasoning component is an extension of CFR that 

establishes temporal conditions based on Allen's basic interval relations, defined 

:R properties, as follows (inverse not shown): 



CHAPTER 5: CONCLUSION 

In this document a model was presented to demonstrate how the growth 

of pre-invasive neoplastic bronchial epithelial lesions might proceed. The 

development of this model was based on cytological data obtained from [Clem et 

a/. 19921. By applying a stochastic and a PDE approach it was possible to 

represent the early development of pre-invasive neoplastic bronchial epithelial 

lesions as contact processes. Furthermore, it was shown that: 

i. Normal and abnormal cells could be represented as two different 

competing populations (see Thesis 1 in Chapter 1, shown in Section 

3.4) and, hence, 

ii. We were able to develop a particle system that modeled the structural 

behaviour of pre-invasive bronchial epithelial lesions (see Thesis 2, 

shown in Section 3.5). 

iii. This tractable system enabled us to determine the likelihood probability 

of growth from a 2-D section of the lesion (see Thesis 3, shown in 

Section 3.7). 

The results of said model showed that the sole structural analysis of 

independent pre-invasive bronchial epithelial lesions (even though it gives some 

insight on the lesion growth process, and, in fact, could be used to determine 

how likely that particular lesion is to develop abnormal growth upon regular 



observation) does not provide sufficient evidence to make an accurate diagnosis 

of the likelihood of a patient developing lung cancer. Only a small fraction of 

these lesions actually progress to a malignant tumour and this analysis focuses 

only on a single lesion analysis. While one lesion may not develop cancer, others 

could. For use in diagnosis, this approach would require regular bronchoscopies 

performed on the patients (to derive a time course analysis to obtain actual data 

as the legion progresses in size), which would be costly and highly stressful for 

them. Based on this insight, a new model had to be developed that would use the 

results of the first model plus results from other medical tests. As a result, the 

Probabilistic Property-based Model or PPBM, is proposed for representation and 

analysis of multi-disciplinary biological data, which could include not only 

cytological data, but imaging, serum, sputum, and genetic data, as well as it 

considers personal and lifestyle factors such as race, age, gender, family cancer 

history, and smoking history. In the PPBM approach, it was shown that: 

i. Medical and biological knowledge could be represented in terms of 

concepts and constraints, regardless of the diversity of their sources 

(see Theses 4 and 5, shown in Sections 4.2.1 and 4.2.3). 

ii. Relationships and interactions between multidisciplinary biological data 

have an impact on the likelihood probability of development of a disease 

(see Thesis 7, shown in Section 4.2.3.5), and 

iii. These interactions and relationships can be represented in a relatively 

simple way in the PPBM in terms of constraint systems (see Thesis 6, 

shown in Section 4.3). 



iv. As well, some basic temporal analysis was incorporated, as it is a critical 

component of the diagnostic process (shown in Section 4.2.2). 

A specific proof of concept prototype for assistance in the early diagnosis 

of cancer was presented. 

Except for the work by Clem et al. 1992, 1995, 1 997a, and Barranco et al. 

1997, 1998, 1999 there are no other reported studies on the development of 

computational models for the growth of pre-invasive neoplastic bronchial 

epithelial lesions in the scientific literature. This thesis provides new insight on 

mathematical modelling of these critical lesions and is a first in the development 

of a system that would provide a means of unifying the many different medical 

and biological data sets that are characteristics of bronchial epithelial lesions. It is 

the intention that these models would aid in the development of a software 

application that could aid doctors in the early diagnosis and management of lung 

and other types of cancer. 

5.1 Future Research Directions 

5.1.1 System for Early Diagnosis of Oral Cancer 

The next obvious step in this research is to develop the PPBM prototype 

into a system to test with real-life data. Dr. Miriam Rosin, primary investigator on 

an extensive Oral Health Study [BC Cancer Agency. 20041, taking place in British 

Columbia by the Cancer Control Research program of the BCCRC, has 

expressed interest in the incorporation of the PPBM to assist with the analysis of 

the data obtained in this study. The objective of this study is for dentists to screen 



patients who present oral lesions that are believed to be early precursors of oral 

cancer, similar to bronchial epithelial lesions are to lung cancer. Yet, they also 

need to take into account other medical and lifestyle factors -such as cancer 

history in the patient's family and smoking history- to make a more accurate 

diagnosis and not overburden the health system by referring to the oncologist 

patients that may not really require it. This requirements fit well with the design 

characteristics of the PPBM. In addition, for a CAD system to support this study, 

it must be able to allow diagnosis with an incomplete set of tests and refine the 

diagnosis throughout time as new tests are being performed (another 

characteristic of PPBM). More over, the system has to take into consideration the 

cost of tests and weight it against the possible gains in terms of diagnostic 

accuracy to determine if they should be recommended or not (a factor also taken 

into consideration in our model). 

The biological characteristics of oral cancer in many aspects are quite 

similar to those of lung cancer and many of the diagnostic tests and 

environmentalllifestyle factors are as well. Although not as common as lung 

cancer, the prognosis of oral cancer is also very bad as it is very hard to 

diagnose at the early stages as well. The design of the PPBM is generic enough 

to support different types of cancer and, in fact, different disease domains. The 

close similarities between oral and lung cancer will permit the reuse of some of 

the knowledge engineering already done in the prototype for lung cancer 

diagnosis. 



For the implementation of this system a more specialized constraints 

engine may be required. We based our prototype implementation in CHR due to 

its simplicity, ease and speed of implementation yet, in a production setting, it 

might not be able to meet the performance requirements of a real-life scenario. 

5.1.2 Temporal Reasoning 

As explained in section 4.2.2.1, the way the PPBM currently deals with 

temporal reasoning is solely based on a simple time interval algebra. Several 

temporal aspects critical to the medical domain such as recurrent or cyclic 

temporal concepts are not yet being modelled in PPBM. This is another natural 

area of expansion for this model. 

5.1.3 Other Medical Domains 

The implementation of the knowledge base for anothe r disea Ise other than 

lung and oral cancer will validate the PPBM paradigm as an effective and 

efficient model for multi-disciplinary biological data representation in different 

medical domains. We have begun the analysis for the implementation of the 

knowledge base for Type 2 Diabetes in PPBM. 

5.1.4 Data MininglMachine Learning Component 

Research in the field of Medical Bioinformatics in the last decade has 

been characterized by the efforts to bridge the gap between the large amounts of 

uninterpreted data and the understanding of such data. Thus, the research 

emphasis is now on data analysis. Data mining, knowledge discovery in 

databases, and intelligent data analysis, along with machine learning techniques, 



are the latest focus areas of medical computing research [Barranco-Mendoza. 

20041. 

The need for intelligent data analysis in medicine is evident in the 

following: (i) for instance, to support the analysis of individual patients' raw data 

of specific knowledge-based problem solving activities such diagnosis, 

prognosis, monitoring, treatment planning, etc. and (ii) the use of data mining in 

the discovery of new medical knowledge that can be extracted from collections of 

example cases. [Lavrac et a/. 20001 

Hence the design and development of a data mininglmachine learning 

component will automatically analyse the existing patient data and infer new 

rules or behaviour patterns that would help elucidate determinant factors that 

may not have been previously identified, or to determine that other factors 

previously identified as determinant as not as important in the development of 

lung or oral cancer as previously thought. An approach to do this would be to 

design a component to do regression and time series analysis from the data 

represented using PPBM. These two techniques have show to be the most 

effective analysing data which include probabilistic and time dependent 

elements. [Elmasri and Navathe. 20041 

5.1.5 Natural Language Interface 

As explained above, there are large amounts of uninterpreted medical 

data, in particular in the form of patient records. Developing a natural language 

interfacelparser to enter knowledge in the PPBM would allow the incorporation of 



data not initially predifined. This will prove particularly useful to infer new 

knowledge through a dataminingtmachine learning component. To do this, one 

must consider the use of available standard ontologies such as UMLS. Some of 

the component elements of PPBM, namely Property Grammars and CHR, have 

been used in the development of natural language parsers [Blanche. 20001, [Dahl 

and Blanche. 20041, which would ease the integration with our model. 



APPENDIX A: GLOSSARY OF BIOLOGICAL TERMS 

Anaplastic Cells: Cells that have been reversed to a more primitive or 
undifferentiated form. 

Biopsy: The removal and examination of tissue, cells, or fluids from the living 
body. 

Cytomorphometric Analysis: Analysis of measurement of external form of cells. 

Differentiation: How developed the cancer cells are in a tumour. Well- 
differentiated tumour cells resemble normal cells and tend to grow and 
spread at a slower rate than undifferentiated or poorly differentiated 
tumour cells, which lack the structure and function of normal cells and 
grow uncontrollably. 

Imaging Data: Data obtain from radiographs (X-rays), CT scans, MRI, etc. 

Mass Spectrometry: An instrumental method for identifying the chemical 
constitution of a substance by means of the separation of gaseous ions 
according to their differing mass and charge. 

Metastasis: a: transfer of a malignant tumour from the site of disease to another 
part of the body b: a secondary metastatic growth of a malignant tumour. 

Mitotic Cells: Cells in the process of cell division. 

Neoplasm: See Tumour 

Nodule: a small abnormal knobby bodily protuberance (as a tumorous growth). 

Pleomorphic Tumour Cells: tumour cells that proliferate quickly and are quite 
different from benign tumour cells. 

Pleura: The delicate serous membrane that lines each half of the thorax of 
mammals and is folded back over the surface of the lung of the same side. 

Protoplasm: The organized colloidal complex of organic and inorganic 
substances, as proteins and water, that constitutes the living nucleus, 
cytoplasm, plastids, and mitochondria of the cell. 

Protoplasmic Framework: See Protoplasm 

Radon: A heavy radioactive gaseous element formed by the decay of radium. 

Serum Data: Data obtained from analysis of blood samples. 

Stroma: the spongy protoplasmic framework of some cells. 

Tumour: Abnormal cell growth that has no useful function to the host. 



APPENDIX B: RELATIONSHIPS BETWEEN THE 
FORMALISMS USED IN PPBM 

Figure B.l shows the relationships between the different formalisms used 

within the PPBM, explained in Chapter 4. The "Use" relationship indicates that a 

formalism has utilized elements of another. The "Extend" relationship indicates 

that a formalism includes another one in its totality and have added extensions to 

it. Relationships are to be read top to bottom and left to right. 

Figure B.l :  Relationship Diagram of the Formalisms used within the PPBM 
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APPENDIX C: EXAMPLES OF CONCEPTS AND 
CONSTRAINTS FROM THE PPBM'S DIAGNOSTIC 
KNOWLEDGE STORE 

Examples of MedicallBiological Concepts 

These concepts calculate the likelihood probability score depending on the 

age of the patient. The concept birth - date is from the Patient-Specific 

Atemporal Concepts and The concept current - session is from the Patient- 

Specific Temporal Concepts in the Patient Data Concepts knowledge base. If the 

patient is older than 50 years old then there will be an increase in likelihood: 

birth date(Patient-ID,-, -, Birth - year), 
current-session (patient-ID,_, -, Current-year) <=> Age = 
Current - year - Birth-year: Age =< 50 1 age(Patient-ID, Age, 
0) * 
birth date(Patient-ID,-, -, Birth - year), 
current-session (patient-ID,_, -, Current year) <=> Age = 
Current-year - Birth-year: Age >= 50 1 age(~atient - ID, Age, 
0.1). 

This concept determines the likelihood probability score for the concept 

personal - data, which is the collection of Patient-Specific Atemporal Concepts 

for a particular patient. This is determined by calculating the average probability 

scores of age, race, and gender. 

age(Patient-ID, Age, Probl), race(Patient ID, Race, Prob2), 
gender ( Patient-ID, Gender, Prob3 ) <=> pro6 = 
(Probl+Prob2+Prob3)/3 I personal-data(Patient - ID, Age, 
Race, Gender, Prob) 



Example of MedicallBiological Constraints 

This constraint calculates the decrease in likelihood probability score 

based on the gender of the patient if she is female. This constraint will only be 

triggered if there was already at least one other constraint that set 

possible - lung - cancer to true (which is a greater than zero probability that 

the patient may have lung cancer, even if the value is very small) and there are 

no more constraints to be triggered (last constraint so the likelihood probability 

score only gets decreased once). The concept gender is from the Patient- 

Specific Atemporal Concepts: 

possible-lung-cancer(Patient ID, true, Prob), 
gender ( Patient-ID, Gender, ~ r o b l )  , no-more-constraints <=> 
Gender = IF' 1 possible - lung - cancer(Patient - ID, true, 
Prob*0.9). 

This constraint evaluates if a specific biomarker, Marker - type, found in 

serum data is within a certain value range for a patient with an age of Age. If 

true, then the diagnosis of possible lung cancer is going to be true with a 

probability increase of P. This is calculated within the marker constraint. 

age(Patient-ID, Age, Probl), serum-data(Patient-ID, Serum-marker-type, 
Value, In-range, Prob2) <=> marker(Patient-ID, Marker-type, In-range, 
P, B), acceptable(marker(Patient-ID, Marker-type, In-range, P), B)I 
possible~lung~cancer(Patient~~D, true, Prob+P). 

Notice that if we relax the requirement of the presence of the biomarker, then the 

system can evaluate patient records that do not have this particular information 

and report in the diagnosis listing that this information was not included in the 

record, which could be valuable information as recommended follow-up tests. 
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