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Abstract

The increasing availability of complex network data from social networks and other sources

provides new opportunities for exploration and analysis. In this thesis, we introduce the

reverse centrality query, a novel query for complex networks. For a query node q, the reverse

centrality query returns a locally maximal induced subgraph R, where q ∈ R, such that q

dominates R according to a centrality index C. Many centrality indices have been introduced

to describe the relationships between nodes in complex networks. We focus on degree,

graph, and closeness centrality indices and their respective reverse graph centrality queries.

The theoretical properties of these queries, together with heuristic variants, are explored.

Algorithms for solving these queries are given and experimental results are provided on

three real world datasets. The experiments demonstrate reverse centrality queries to be a

useful tool for social network analysis.
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Chapter 1

Introduction

Imagine that a detective has infiltrated a crime syndicate and collected information about

the web of connections between members of the syndicate. As an investigator, you want

to utilize this information to gain a deeper understanding of the relationships between

members. One natural question to ask is: for a targeted member, what is the relationship

between this member and those to whom he is connected? This thesis describes a novel

means for understanding the local relationships between an individual and his neighbours.

The advent of widespread data storage and information processing has led to an infor-

mation explosion. For instance, the Internet is predicted to double in size every 5.3 years

[53]. The increasing availability of information provides analysts with new opportunities

to evaluate data to generate new conclusions. One area of significant growth is in social

networks, where data is most naturally represented using a graph structure.

Graph data is a format where entities are stored as nodes and relationships between the

entities are represented by links in a graph. Many domains have natural datasets which

may be represented as graphs. Datasets as diverse as social networks, protein co-expression

data, co-authorship data from peer-reviewed journals, and bank transaction records may all

be viewed as graphs. The lack of a regular order and natural complexity of the structure of

these graphs leads to the common term complex networks.

Figure 1.1 shows a small complex network, illustrating co-appearances of characters in a

Victor Hugo novel. In this small example, we can see the complex network of relationships

between individuals. Within the context of this example, our interests lay in understanding

the role of the individual character within the larger context of the network in which he

appears. The Les Miserables network will be examined in more detail in Chapter 4.

1
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Figure 1.1: Example of a complex network: Co-appearances of characters in Les Miserables
by Victor Hugo. [32]

The field of social network analysis provides tools for the analyst’s arsenal for exploring

complex networks. Social network analysis is a relatively young field that was initially

pioneered by sociologists who had access to small hand-collected datasets. Amongst the

tools originally developed in the realm of sociology are centrality measures. Centrality

measures provide a quantitative tool for evaluating the importance of a node in a graph

relative to the other nodes in a graph. Centrality measures can be simple, such as degree

centrality, which is a measure of the number of links a node has within a graph, or more

complex, such as the average distance from a node to all other nodes which is known as

closeness centrality. Centrality measures form the basis for the queries described within this

thesis.

Imagine you are a member of a social network and you wonder: “In what group of

individuals are you the most popular member with respect to that group?” Popularity in

social networks is often defined by how many direct friendship links an individual has. By

this definition of popularity, you may want to determine a large group of connected people

where you are the most popular. This kind of query is also known as the reverse degree

centrality query and will be explored in further detail in the following chapters.

In another application, a biologist is investigating a particular protein X within a
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protein-protein interaction network, in particular, she is interested in understanding and

exploring the relationship of that protein with others in the network. One interesting query

may be to find the group of proteins that the protein X is most central to, where it has the

shortest average distance to all other proteins within the group. This group of proteins is

centered on the query protein X, and as such provides a more meaningful description of the

vicinity of X than the set of all neighbours of X or the set of all proteins within distance 2.

This type of query is answered by the reverse closeness centrality query, which is explored

in further depth within the thesis.

In this thesis, we are interested in determining a region of dominance for a query node,

where the query node q is not outranked by any other node according to a given centrality

measure. The node q is called locally dominant in the region. By exploring this problem,

we provide a new avenue for the exploration of complex networks.

Due to the exponential number of induced subgraphs in a graph, the search space for this

problem is massive, providing an efficient solution to the reverse centrality query problem

will not be trivial.

0

1

2

3

4

5

6

7
8

9

Figure 1.2: Example of a graph centrality query result: In the Krakhardt Kite dataset [33]
for query node 0 under closeness centrality. Grey nodes indicate inclusion in the result set.

We see a conceptual illustration in Figure 1.2 of what a query result looks like for a

reverse centrality query. We see that the reverse centrality query result indicates that node

0 dominates a relatively large region that actually includes three nodes of higher global

closeness centrality: nodes 3, 5, and 7. This demonstrates that in the context of a query

node, local dominance (behaviour in the induced subgraph) may differ significantly from

behaviour in the larger graph.
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1.1 Contributions

The main contribution of this thesis is the introduction of a new type of query for complex

networks: the reverse centrality query. In particular, three specific types of reverse centrality

queries are explored, based on degree centrality, closeness centrality, and graph centrality,

respectively. We present practical incremental algorithms for finding locally maximal regions

of dominance for these three types of the reverse centrality query. Following this, we give

experimental results on real-world datasets, showing the application and behaviour of the

implemented algorithms. Finally, we offer future directions for reverse centrality queries for

exploration and development.

Furthermore, we provide a detailed analysis of centrality measures and their relation-

ships to one another. We explore and describe the existing algorithms for global centrality

measure calculations. In addition, we provide an introduction to complex networks and

social network analysis for those unfamiliar with the field.

In more detail, the contributions of this thesis include the following aspects. We pro-

vide the general framework for reverse centrality queries: a framework that allows for the

definition of a reverse centrality query irrespective of the centrality measure used. We give

detailed formal problem definitions for reverse centrality queries based on three different

centrality measures: degree, graph and closeness centrality. We provide a detailed practical

incremental algorithm for each query type and discuss the expected characteristics of each

algorithm. For each query type, formal proofs of the behaviour of the query are given.

We describe and explore practical algorithmic solutions for these queries using real world

graphs and provide detailed analysis of the results. Applications of these novel query types

are given for several domains, including marketing, social network analysis, and computer

network analysis. In addition, we provide and analyze several heuristics to improve query

speed and result quality. Finally, we explore limitations of the methods given in this thesis

and provide suggestions for future work on reverse centrality queries.

1.2 Outline

A brief outline of the contents of the following chapters:

• Chapter 2 contains related work in social network analysis and definitions used for

the rest of the thesis. Following that, we give formal problem definitions for reverse
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centrality queries.

• Chapter 3 presents algorithms for implementing three types of reverse centrality

queries. In addition, we present several variations on the basic methods to improve

query time as well as query quality.

• Chapter 4 provides experimental results for three real world datasets showing the

query behaviour and applicability of the reverse centrality queries. The behaviour of

several algorithmic variants is also explored and analyzed.

• Chapter 5 gives the limitations of the work presented in this thesis, options for future

work and a summarization of the contents of the thesis.

• Appendix 1 describes related work in the all-pairs shortest path problem from graph

theory that is related to calculating reverse centrality queries.



Chapter 2

Problem Definitions and Related

Work

In this chapter, we introduce complex networks and several areas of research in social net-

work analysis related to this study. Furthermore, community detection and cluster finding

algorithms are explored and described. We describe several families of centrality indices,

based on degree, distance and paths, and give a brief description of related work.

We also introduce reverse centrality queries and then describe several constraints that

may be placed on queries. Formal problem definitions for the reverse centrality queries

are provided for three centrality indices: degree, graph and closeness centrality. We also

describe several applications for each of the introduced reverse centrality queries.

2.1 Preliminaries

In this section, we introduce some of the preliminary definitions that are required for for-

malizing the reverse graph centrality problem.

Definition 2.1.1. A graph, G = (V,E) is a mathematical structure consisting of a set V

of vertices and a set E of edges, where an edge connects a pair of vertices. These vertices

and edges are alternatively known as nodes and links. In an undirected graph, edges have

no direction, so the edge (a, b) indicates a link between a and b and visa versa.

Definition 2.1.2. Given a graph G = (V,E) and two vertices, s, t ∈ G, a geodesic path

is the shortest path in the graph from s to t, which is measured by the number of edges

6
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contained in the path. The network distance is defined as the length of a geodesic path

between two vertices. The notation used for the distance between vertices s and t is d(s, t).

Definition 2.1.3. Given a graph G = (V,E), the induced subgraph of S ⊆ V is defined by

the vertex set S and the set of edges E(S) where E(S) is defined to be ∀(u, v) ∈ E such

that u ∈ S ∧ v ∈ S ∧ (u, v) ∈ E(G). As a convention for brevity, we use the term region

synonymously with induced subgraph.

Definition 2.1.4. The degree of a vertex v in an undirected graph G is the number of edges

in E(G) that contain v.

Definition 2.1.5. The modularity [39] of a division of a graph into partitions is a commonly

used tool for determining the quality of a community finding algorithm. Modularity is

defined as

Q =
1

2m

∑
p∈P

∑
i,j∈p

(Aij −
didj
2m

) (2.1)

where P = {p1, p2, . . . , pk}, such that G(V ) = p1 ∪ p2 ∪ · · · ∪ pk, and ∀pi, pj ∈ P, pi ∩ pj = ∅,
that is, P is a partition of G into communities, m is the total number of edges in G, Aij is

the adjacency of i to j (1 if adjacent, 0 otherwise), and di is the degree of the node i. If

modularity is positive, the number of links between members of the same partition is higher

than is expected by chance.

Definition 2.1.6. Given a graph G = (V,E), we define a node scoring function S(v) as

some function that returns a constant score for each node v ∈ V .

Definition 2.1.7. The region of dominance of a node q is defined as an induced subgraph

R, where q ∈ R and ∀n ∈ V (R), SR(n) ≤ SR(q), where S(q) is some node scoring function.

Definition 2.1.8. The k-neighborhood of a node q in a graph G is the set of all nodes N in

V (G) such that ∀n ∈ N , d(q, n) < k. That is, it is the set of all nodes reachable from node

q within a distance of k.

Definition 2.1.9. A clique is a set of nodes C belonging to a graph G such that ∀u, v ∈
C, u ̸= v, (u, v) ∈ E(G). The resulting induced subgraph of a clique is a complete graph.
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2.2 Complex networks

In this section, we define and explore complex networks, and we give examples of real-world

complex networks. Finally, we provide a brief introduction into the properties of social

networks, a subset of complex networks.

2.2.1 Definition of a complex network

There are many variations on the definition of a complex network that have been used in

various studies [38]. The term complex network is used to refer more generally to graphs

which represent real-world networks that display complex topological features, and encom-

passes social networks as well as other types of networks. For this thesis, we will focus on

complex networks as defined in Definition 2.2.1.

Definition 2.2.1. A complex network is defined to be an undirected graph G with a set of

edges E and a set of vertices V . The vertices, also referred to as nodes, represent individuals

or entities in the network. The edges, also referred to as links, represent relationships between

nodes in the network.

Additional modifications can be made, allowing for directed links, weighted links, weighted

nodes, heterogeneous nodes, and other variations [38]. A directed network can be reduced

to an undirected network by ignoring directionality or by only including bidirectional links.

Throughout this thesis, definitions and algorithms could be easily extended to include

directed graphs, but in this thesis we will focus solely on undirected graphs.

As a convention, throughout the rest of this work, for a graph G = (V,E), we will use

the notation |V | = n and |E| = m for brevity.

2.2.2 Examples of complex networks in real life

Complex networks occur in many different contexts and disciplines. In bioinformatics,

examples of complex networks are the protein-protein interaction networks constructed with

nodes representing individual proteins and links representing direct chemical interactions

between proteins, such as the yeast protein interaction network [42]. Another example of

a complex network is a road network [20], where links are defined by roads and nodes are

intersections in the road network.
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The most familiar examples of complex networks for most people are social networks

found on the online social networking sites that have flourished in recent years. Examples

of this kind of network include Facebook1, MySpace2, and LinkedIn3. The proliferation of

digitized records of the underlying social network has opened the door for a new type of

data analysis. Previously, work to collect social network data in sociology was small-scale

and painstaking. The well-known social network derived from Zachary’s karate club study

[52], with links between 34 members of a university club, illustrates the scale that manual

data collection limits researchers to. Figure 2.1 illustrates the Zachary karate club network.

However, the scale of the largest social networking sites is staggering, with Facebook having

over 68 million unique visitors in January 20094.
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Figure 2.1: The Zachary karate club dataset is a classic example of a small social network.
[52]

Major tasks in social network analysis include identifying communities or clusters in the

networks, detecting fraud, understanding structural similarities between networks, identify-

ing leaders and understanding growth and change in social networks.

Social network analysis has implications in many fields. In commerce and advertising,

there is considerable interest in methods for monetizing social network data for use in

1http://www.facebook.com
2http://www.myspace.com
3http://www.linkedin.com
4http://news.cnet.com/8301-13577_3-10160850-36.html
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targeted advertising [51]. In criminology, criminal social networks are analyzed to reveal

leaders and gatekeepers [50]. In sociology, social network analysis provides a set of formalized

tools for exploring group dynamics [49].

The proliferation of large amounts of previously unavailable network data creates a need

for new analysis techniques and methods. Network data presents a unique challenge which

requires new ways of querying and exploring that data. This thesis presents a novel class

of queries that allow researchers and users to explore social networks by examining the

relationships between individual nodes and their surrounding regions from a new angle.

2.2.3 Structural properties of complex networks

Social network analysis has often focused on the structural properties that are unique to

social networks and not observed in random graphs [38]. The three structural properties

that are most commonly associated with social networks are scale-free, small world and a

high clustering coefficient [28].

Definition 2.2.2. A scale-free network is one where the vertex degree distribution follows a

power-law distribution. That is, the number of vertices with degree equal to d is proportional

to d−k for some fixed constant k.

Scale free networks exhibit robustness to node removal and can also be characterized

by the presence of hub nodes that have a very high degree relative to other nodes in the

network.

Definition 2.2.3. The average path length, L = 1
n∗(n−1)

∑
i,j d(i, j), in a network exhibiting

the small-world property scales logarithmically to the number of nodes, so that L ≈ log(n).

The small-world property means that communication is very effective in social networks.

This was most famously explored by Stanley Milgram whose experiments led to the phrase

“six-degrees of separation” being introduced into the public discourse.

Definition 2.2.4. The clustering coefficient, CC, is an expression of the probability given

links (a, b) and (b, c) that (a, c) is also a link in the network. The clustering coefficient is

also known as the transitivity of a graph. Formally for a graph G, CC(G) = 3∗ThreeCliques
ConnectedTriples

where ThreeCliques is the number of 3-cliques in G and ConnectedTriples is the number of

connected triples in G. A connect triple is any three vertices a, b, c ∈ V (G) where (a, b) ∈
E(G) and (b, c) ∈ E(G).
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These properties play an important role in the complex behaviour that is seen with

reverse centrality queries later in Chapter 4. In particular, the great variation in query

results results directly from the unique properties of these networks.

2.3 Queries in networks

In social network analysis, queries that allow exploration of individuals or regions in the

graph are powerful tools in understanding the graph structure. There are several different

types of queries, including graph-level, regional, and individual-level queries. Graph level

queries answer questions about the graph itself, potentially in relation to another graph,

such as querying the structural similarity between two graphs. Regional queries answer

questions about specific regions, either partitions or induced subgraphs, in a single graph,

such as identifying dense subgraphs within a graph. Individual queries answer questions

about individual nodes in a single graph, such as identifying the important neighbours of a

query node. In this thesis, we will focus on individual-level queries.

Queries that focus on the individual node often ask the question of a node’s relative

importance in relationship to the graph. These individual-level queries can be termed lead-

ership queries, where the query is meant to evaluate the role of the query node in relation to

all other nodes in the network. Simple individual-level queries include “Who are my most

important neighbours?” and “Which nodes are connected to many of my neighbors but are

not directed connected to me?”. These queries provide user-level details about the network.

This can be particularly useful in exploring large networks that are not easy to understand

as a whole or in networks that contain multiple communities.

Understanding the network at the group level is often accomplished using community

detection or clustering algorithms that either return a localized community containing a

node or provide a global partitioning of nodes into clusters or communities. Community

finding algorithms will be explored in more depth in the following section.

2.4 Clustering and community finding

A large body of work in social network analysis and graph mining focuses on either parti-

tioning the network into communities or finding dense regions called clusters.

On the side of communities, the work often focuses on the delineation of a boundary



CHAPTER 2. PROBLEM DEFINITIONS AND RELATED WORK 12

between one community and another, with or without regard to the internal link structure.

Newman [39] defines a community as a subset of nodes which have more internal links

amongst themselves than external links extending from one of the member nodes to an

external node. This definition of community can be neatly quantified using Newman’s mea-

sure of modularity. A formal definition of modularity is given in Definition 2.1.5. Using

the modularity score as the objective function for an agglomerative clustering method pro-

vides a parameter free method for discovering the intrinsic community structure within a

graph, and as a method, will produce a graph partition that breaks down the graph into

non-overlapping communities.

Flake et al [18] use a network-flow approach to extract a local community that surrounds

a seed query. By using artificial links, the community threshold can be changed to produce

communities of varying size and cohesiveness. This work focuses on the directed web graph

and includes several examples of communities found using the algorithm.

Other work, such as that by Backstrom et al. [2], focuses on analyzing explicit commu-

nity growth where users self-identify with a group, rather than a community as commonly

defined by other authors. In particular, Backstrom et al. [2] focuses on identifying struc-

tural characteristics that make it likely that a user will join a group as well as the growth

and change in group membership over time.

Gibson et al. [21] focus on the heuristic extraction of dense subgraphs of a very large

graph. This technique has applications, in particular, for web graph analysis. No strict

definition of a community or cluster is defined here; rather a loose definition of a dense

bipartite subgraph exists where most of the links of the corresponding bipartite clique exist.

This method finds regions of the graph that are densely intra-connected, however, it does

not partition the graph nor does it find a localized community.

Recent work by Mishra et al. [36] has approached the clustering problem in a manner

which allows for overlapping communities to be found. This method finds induced subgraphs

where the separation between internal density and external sparsity is sufficient to meet

a fixed parameter. Colibri by Tong et al. [47] is another method that provides cluster

detection via a low rank approximation of the adjacency matrix.

Van Dongen [48] presents the Markov Cluster Algorithm (MCA) that is based on sim-

ulated flow across the network. This is achieved by simulating random walks across the

networks through iterative application of mathematical operators to the Markov matrix

representing the graph. MCA is useful in providing a fast clustering method that works well
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on large datasets with a small set of explicit parameters and no notion of a seed set.

There are a wide variety of community finding algorithms, with no clear favorite. Each

method has strengths and drawbacks but all share a common focus on the graph at large

and in that sense, may be considered graph-level queries.

The social network analysis community has also tackled the problem of modeling and

understanding the underlying processes in community formation, growth, and evolution.

Backstrom et al. [2] provide a through experimental analysis of communities in the dynamic

DBLP and LiveJournal datasets. At the node level they analyze the properties that influence

a node’s probability of joining a community, and at the group level they analyze the merging

of communities and movement in community interest is explored.

The relationship between community finding and the reverse centrality query is that they

provide two different approaches for identifying regions within graphs. Community finding

finds regions defined by their boundaries and internal link density. Reverse centrality queries

find regions centered on a query node where all nodes are dominated by the query node.

2.4.1 Related work on node queries

Kempe et al.’s work [29] on maximizing the spread of influence through a social network

is somewhat related to the reverse centrality query. The goal is to identify the most in-

fluential individuals in a social network using a model network that has directed, weighted

edges representing the level of influence one individual has over another together with some

threshold associated with each node. The most influential members in a network may be

akin to the nodes found to have large region of dominance by the reverse centrality queries

introduced later in this chapter. However, the reverse centrality queries do not rely on

specifically weighted edges and can be directly applied to only a subgraph. In addition, the

focus of the reverse centrality query is for a given node, identify a region, whereas Kempe

et al. focus on, for a given graph, identifying a node or set of nodes.

In addition, there are standard individual queries that are used in exploring the region

surrounding a query node. The most prominent of these queries is the k-neighborhood

query that returns all nodes reachable within a distance of k of the query node. This query

provides no guarantees on relationship between the query node and the result region other

than this distance guarantee.
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2.5 Centrality indices

Various centrality indices have been introduced in the past half century to explain the

relative importance of individuals in social networks. Centrality measures attempt to quan-

titatively capture the relative importance of the individual in relation to the group. There

are many measures of centrality including: degree centrality [38], betweenness centrality

[19], closeness centrality [41], bridging centrality [25], and Eigenvector centrality [6].

Centrality indices can be categorized based on the information used to calculate their

scores. There are three broad categories including vertex-based, distance-based, and path-

based centralities.

Discussion here is limited to centrality indices for vertices, although many naturally

extend to centrality indices for edges as well.

2.5.1 Degree-based centrality indices

Centrality indices based on degree include both the simple concept of degree centrality as

well as more sophisticated indices like PageRank [9] and HITS [31].

Definition 2.5.1. Degree centrality for a node v is defined as the number of links connecting

that node to other nodes in the graph G. Degree centrality, also known as vertex centrality

[38], can be expressed as:

CD(v) =
degreeG(v)

n− 1
(2.2)

A node with the highest degree centrality in a graph has the maximal number of neighbors

in the graph.

The idea of degree centrality is closely related to the idea of popularity in social net-

works, which is often measured informally as the number of links, or direct connections, an

individual has within the network.

More sophisticated measures are possible when graphs are directed, with both in-degree

and out-degree being considered. For the extent of this work, only undirected networks are

considered, and so the most relevant centrality index is degree centrality.

A family of degree-based centrality measures is described by Bonacich [6], where a pa-

rameter β determines the weighting of local versus global structure and a scaling parameter

α normalizes the score. His centrality formula is given as C(α, β) = α(I − βA)−1(A ∗ 1),
where I is the identity matrix, A is the graph adjacency matrix, and 1 is a matrix of ones.
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Setting β to 0 is equivalent to degree centrality. The underlying idea is that the power or

centrality of an individual is related in turn to the power or centrality of the nodes that

the individual is connected to. Another related measure in Bonacich’s family of measures

is power or eigenvector centrality, where the centrality of a node is given by the eigenvalue

of that node in the adjacency matrix.

Many ranking algorithms used in determining website importance can be viewed as

degree-based centrality scores. PageRank [9] is a heuristic approximation of eigenvector

centrality [6] based on random walks. The Hubs and Authorities scores found in the HITS

algorithm [31] are centrality indices also based on calculating the eigenvector of slight vari-

ants of the adjacency matrix.

The concept of local centrality for degree-based centrality has been explored to by [43]

where local centrality is simply the degree of the node, or a local relative centrality that

compares the degree to the potential total degree in the network. However although it

mentions the concept of a node that is locally central, it does not formalize the problem of

identifying locally central nodes.

2.5.2 Distance-based centrality indices

Several centrality indices are based on quantifying the importance of a node using distances

from that node to other nodes in the network. Closeness centrality and graph centrality are

two indices that rely on distances.

Definition 2.5.2. Closeness centrality is defined for a node v in a graph G to be:

CC(v) =
1∑

t∈V (G) d(v, t)
(2.3)

A node with the highest closeness centrality in a graph has the shortest average distance

to all other nodes [41]. Closeness centrality can be thought of as a representation of the

average communication time of each node to all other nodes in the network.

Although we will focus on connected graphs, it is worthwhile to mention that there is

some flexibility in this definition to support disconnected graphs. In disconnected graphs,

the choice of distance for unconnected nodes has a large impact on the resulting closeness

centrality scores. One common choice is to set d(s, t) = n when s and t are disconnected,

where n = V (G) is the length of the longest possible simple path in G.
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Latora and Marchiori [34] present a measure termed efficiency that is based on the

mean distance between any two vertices in a network. The graph efficiency is very similar

to closeness centrality, as it is the inverse of closeness centrality, CC , divided by the number

of nodes in the graph. Closeness centrality and efficiency are most meaningful in connected

graphs.

Definition 2.5.3. Graph centrality is defined for a node v in a graph G to be:

CG(v) =
1

maxt∈V (G) d(v, t)
(2.4)

A node with the highest graph centrality in a graph has the shortest worst-case distance in

the graph [23].

Definition 2.5.4. The eccentricity Ev of a vertex v is defined as Ev = maxu∈G(dist(u, v)) .

A vertex v where Ev = minu∈G(Eu) is called a graph center for G. The minimum eccentricity

of a graph is called the radius of the graph.

Graph centrality is closely related to the graph theory concept of graph centers, which

are defined as the nodes in a graph with minimum eccentricity , where eccentricity is defined

as the longest shortest path to another node in the graph. The concepts of graph centers

and graph centrality itself are only meaningful in connected graphs, since in a disconnected

graph, all nodes would have the same graph centrality.

Distance-based centrality indices require calculation of all-pairs shortest paths (APSP)

to determine the distance matrix. The methods for APSP are explored in detail in Appendix

1.

Definition 2.5.5. Given a graph G = (V,E), the distance matrix D contains the pairwise

distances for all nodes in the graph, where each entry D[i, j] is equal to the distance between

nodes i, j ∈ G. The distance matrix is calculated by an APSP algorithm.

In distance matrix terms, the closeness centrality of a graph vertex is the inverse of the

sum of the row representing the vertex. The graph centrality is the inverse of the maximum

value in the row representing the vertex.

2.5.3 Path-based centrality indices

Path-based centrality indices are those measures that rely on calculating explicit shortest

path information about the graph. Unlike distance-based centrality indices, where the
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distance matrix is required for computation, path-based indices require explicit knowledge

of what nodes are involved in which shortest paths.

Definition 2.5.6. Betweenness centrality BCv for a node v is defined as

CCv =
∑

t̸=u̸=v∈G
(ηtu(v)/ηtu) (2.5)

Where ηtu(v) is the number of shortest paths between t and u that include v and ηtu is the

total number of shortest paths between t and u. Betweenness centrality is the fraction of

all shortest paths that pass through the node v [19].

Betweenness centrality is an expensive index to calculate for large graphs. Before Bran-

des [7] introduced an algorithm with O(nm) time complexity and O(n+m) space complexity,

the best known algorithm had cubic time complexity. In the näıve implementation, storage of

all shortest path representations could be within the order of O(n3). Various approximation

methods have been suggested for betweenness centrality, including variants on betweenness

that are easier to calculate [38]. Betweenness centrality is distinct from other centrality

indices discussed here because a node of high betweenness centrality does not necessarily

indicate that the node is an important node in the graph. A node of high betweenness

means that upon deletion, the shortest paths of the network are heavily affected.

Beyond betweenness centrality, other path-based centrality indices have been defined

including stress centrality [45], which is an absolute count of the number of shortest paths

that the node participates in.

Due to the complexity in calculating and maintaining all shortest paths in an incremental

fashion, we will not explore path-based centrality variants of reverse centrality queries in

this thesis.
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2.6 Problem definitions

In this section, we give a general problem definition for the reverse centrality query, the

novel query introduced by this thesis. More detailed problem definitions are provided for

individual reverse centrality query types that are described and explored further in this

thesis.

2.6.1 Reverse centrality queries

The novel class of queries called reverse centrality queries are leadership queries, where an

individual node is evaluated in terms of some centrality index, but where the result is in

terms of a region where the node dominates. This class of queries ties together the idea of

global centrality measures with that of local behavior of a query node.

The query result is a region, an induced subgraph, where the query point is a local

leader. There are potentially an exponential number of results if the query node q globally

dominates every subgraph which contains it. In order to reduce the size of the potential

answer, a single result is returned. The result is a locally optimal choice according to the

search algorithm.

2.6.2 Local centrality dominance

Reverse centrality queries seek to find an induced subgraph surrounding a query vertex that

is dominated by that query vertex.

Definition 2.6.1. A query vertex q ∈ G dominates the connected induced subgraph S ⊆ G

if and only if q ∈ S and ∀v ∈ S, centralityS(q) ≥ centralityS(v). That is, for some centrality

measure, centralityS , calculated over the induced subgraph S, the vertex q has maximal

centrality. We may also refer to q as locally dominant in S. A vertex q is called globally

dominant if it dominates G.

Notice that the dominance defined in Definition 2.6.1 is not strict. There may be other

nodes in the subgraph S that are equally dominant with q. This looser definition is used to

allow for the many real world cases of symmetry where two or more nodes will share similar

or identical local structure.

Definition 2.6.2. A maximally dominant induced subgraph is dominated by the query

node q, where for all induced subgraphs with V (A)∪V (S) where V (A) is some set of nodes
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in V (G)\V (S), q does not dominate. In other words, no larger induced subgraph containing

the nodes in V (S) is dominated by q.

Definition 2.6.3. A 1-maximally dominant induced subgraph S is dominated by the query

vertex q, but ∀u ∈ S, v /∈ S, (u, v) ∈ E(G), the induced subgraph v ∪ S is not dominated

by q. This means that no single node may be added to S such that we obtain a larger

connected induced subgraph where q dominates. These subgraphs may also be referred to

as locally optimal subgraphs.

To limit the size of the query answer, results are limited to those called maximally domi-

nant. In addition, it is only meaningful to explore the space of connected induced subgraphs,

as the centrality measures are most meaningful when applied to connected graphs.

The definition of maximally dominant induced subgraphs corresponds to the notion of

a local maximum. Where 1-maximally dominant regions correspond to a local maximum

where no single neighbour of the induced subgraph S not yet in S can be added to S while

keeping q as a dominant node.

Definition 2.6.4. A locally central node q is a node that dominates, according to a cen-

trality measure, an induced subgraph H of the graph G where q ∈ V (H).

Definition 2.6.5. A local centrality measure is a theoretical measure that would provide a

means of quantifying the behaviour of a node q according to some centrality measure C in

induced subgraphs containing q. A node with high local centrality would be locally central

to a relatively large region, whereas a node with low local centrality would remain peripheral

even in induced subgraphs.

In Chapter 4, we use the size of the query result of a reverse centrality query as a proxy

for the local centrality of each node.

2.6.3 Reverse degree centrality query

The reverse degree centrality problem returns an induced subgraph S where the query node

q has a degree equal to the maximum degree observed in the subgraph S.

Definition 2.6.6. The reverse degree centrality query on a query node q returns a connected

induced subgraph S that is dominated by q. In the induced subgraph S, q has maximal

degree. In addition, we restrict S to be maximally dominant.
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The degree centrality index itself is relatively simple, being given by the degree of the

vertex, yet is still non-trivial when applied to finding a dominated subset that satisfied the

reverse degree centrality query. Determining whether an induced subgraph is dominated

by the query vertex is non-trivial because the degree of a vertex v in an induced subgraph

depends on the number of neighbours of that are members of the induced subgraph, thus

the degree centrality of nodes will change as additional nodes are added to the region.

Degree centrality neighbourhood dominance query

This section provides a constrained version of the general reverse centrality query. This

definition may prove useful for exploring the physical distribution of vertex degree within

a graph. This query is not explored further here, but this query provides an example of

an extension that integrates well with the existing study of complex networks in terms of

degree distribution.

Definition 2.6.7. The degree centrality neighbourhood dominance query returns the dis-

tance, d, to the nearest node which dominates q with respect to the graph G. The (d− 1)−
neighbourhood contains all nodes closer than d to q and therefore the (d−1)−neighbourhood
must be dominated by q.

The neighbourhood dominance query is a special constraint on the general reverse de-

gree centrality query, where the returned set S must contain exactly the largest complete

neighbourhood graph of q where q dominates.

Applications of reverse degree centrality

Degree centrality identifies nodes with high degree as central, as a result the centrality

measure relies on an assumption that nodes with many connections are more important

than those on the periphery. Degree centrality defines prominent nodes to be nodes with

many connections [49].

The reverse degree centrality problem then provides a region over which the query node q

is prominent by this definition. In many social network contexts, popularity is equated with

the number of friends, or relationships, an individual has. The reverse degree centrality

query would allow a user to determine a group of people (which may be considered a

community or social group) in which they are the most popular (or tied for most popular)

individual, as determined by node degree.
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In the context of complex networks representing businesses as nodes and client relation-

ships between businesses as links, the reverse degree centrality query may also prove useful.

The query result for a queried business would result a group of businesses within which

the queried business has the most connections (or a tie for most) within that group. If the

extension for weighted edges is used and weight is used to represent sales volume, the query

result becomes a group of connected businesses where the queried business has the highest

sales volume.

2.6.4 Reverse closeness centrality query

The reverse closeness centrality query returns a locally maximal induced subgraph where

the query vertex q has the minimal average distance to the rest of the induced subgraph.

Definition 2.6.8. The reverse closeness centrality query on a query node q returns a con-

nected induced subgraph S that is dominated by q according to closeness centrality. In the

induced subgraph S, q has minimal mean distance to other nodes in the graph. In addition,

we restrict S to be maximally dominant.

The reverse closeness centrality query can be applied to communication networks. In

this application, the reverse closeness query calculates, with respect to a query node q, an

induced subgraph surrounding q where q has minimal mean distance to all other nodes. In

this context, q would be a good choice as a leader node over S in a communication protocol

that requires that messages be sent to a leader for redistribution.

The reverse closeness centrality query result is a connected induced subgraph centered

on q, where the center is defined by average distance to all other nodes. This corresponds

somewhat to the facility location problem using an optimizing function of average distance.

[8]

The definition of closeness centrality used here could be easily expanded to handle

weighted graphs, where edges have weights associated with them by modifying the dis-

tance used in the definition to be the sum of edge weights rather than the number of edges

in the shortest path.

Applications of reverse closeness centrality queries

The reverse closeness centrality query provides a practical network analysis tool in several

different contexts.
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In the context of communication networks, the returned region provides a subgraph over

which the query node q is a suitable candidate for a leader, where a leader should minimize

round-trip communication costs to all other nodes.

In the context of social networks, the returned region represents a group of individuals

where the query node q plays a central role: they are, the closest node, on average, to the

rest of the graph. The resulting region could be used to provide a meaningful cluster of

individuals centered on the query node. This result could provide an innovative interface

for individuals exploring their own social networks from a user’s perspective. Rather than

showing friends and friends of friends, this region may contain those connected at greater

distance, but still those who are well connected to the individual.

2.6.5 Reverse graph centrality query

Hage and Harary [23] originally defined the problem of graph centrality, a centrality measure

based on the graph theory notion of a graph center. The reverse graph centrality query seeks

induced subgraphs where the query vertex q has the best worst-case distance to any other

node. In other words, where q is a graph center.

Definition 2.6.9. The reverse graph centrality query on a query node q returns a connected

induced subgraph S that is dominated by q according to graph centrality. In the induced

subgraph S, q has minimal worst-case distance to other nodes in the graph. In addition, we

restrict S to be maximally dominant.

An induced subgraph where the query point q is a vertex center will be centered about

q. Using the graph centrality criterion, an induced subgraph S is dominated by the query

point q if and only if q is a graph center of S.

Applications of reverse graph centrality queries

In the application of social networks, the result of a reverse graph centrality query on a query

node q would return the induced subgraph S of individuals over which q is most central,

where a central individual has fewest maximum hops required to reach anyone else in S.

Graph center-based approaches for energy efficient communication protocols on wireless

sensor networks as described in [35] show the applicability of graph centers to a real world

problem.
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By enabling the extraction of the cluster that forms around a single vertex (the query

vertex), the user is able to explore the area of local dominance for the query vertex.

The reverse graph centrality region represents a centered region around the query node

where the query node is the graph center. This centered region will not include other nodes

that are more prominent than the query node and in that sense will focus on the area of

dominance for the query node.

This type of query would be useful for social network exploration, allowing individuals

to explore their social connections in a fashion the focuses on those they are most closely

connected to. Given the small world property of social networks, providing the neighborhood

(those who are perhaps 2, 3 or 4 links away from an individual) would prove to be an

increasingly unwieldy region. Rather than multiple neighbourhood queries, we return a

centered region using a parameter free method and that is guaranteed to be centered on the

node.

2.6.6 Constrained queries

Extensions to the problem definitions for reverse centrality queries can be made by placing

additional constraints on the desired answer. Constraints include inclusion and exclusion of

other nodes in the result, and constraints on the size of the desired induced subgraph.

Although these definitions are not explored further within this thesis, the formalization

of these variants may prove useful. We provide these definitions because they are the most

natural extensions to the reverse centrality queries defined above. Algorithmic modifications

to implement these constraints would be fairly simple, but the analysis of these constraints

is best left to a dataset-specific study.

Follower constraints

Follower constraints place additional constraints on the induced subgraph result for a reverse

centrality query by requiring either the inclusion or exclusion of nodes other than q from

the result S.

Definition 2.6.10. Let F be a set containing one or more nodes in G. For a reverse

centrality query with query node q and the resulting induced subgraph S, a follower inclusion

constraint requires that F ⊆ V (S), so S must contain the followers in F . Similarly, a follower

exclusion constraint requires that V (S) ∩ F = ∅, so S contains none of the followers in F .
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Follower constraints provide more opportunity for the user to modify the potential query

result and also help the user to intuitively explore the space of potential induced subgraph

results. These constraints also allow the user to answer queries of the form, “In what group,

as defined by an induced subgraph, is q the leader, but s the follower?”.

Neighbourhood constraints

In very large graphs, neighborhood constraints may improve speed by isolating the search

space to a smaller graph.

Definition 2.6.11. For a reverse centrality query with query node q and the resulting

induced subgraph S, a neighbourhood constraint requires that S only includes nodes within

a specified distance of q, or in other words, within the k-neighbourhood of q, where k is a

fixed parameter, k > 0.

Neighbourhood size constraints allow for quicker result calculation and may be used to

help the user gauge the importance of a node locally without potentially returning an in-

duced subgraph equal to the entire graph, which is possible if q were also globally dominant.



Chapter 3

Reverse Centrality Queries:

Algorithms

The algorithms presented in this chapter are methods for finding locally optimal solutions

to reverse centrality queries. We naturally approach these problems using a breadth first

search method to incrementally add nodes until a local maximum is reached. The query

results are locally optimal subgraphs, as defined in Definition 2.6.3, where no neighbor node

of the current subgraph could be added to produce a larger induced subgraph dominated

by the query point q.

One limitation of these algorithms is that they are all input dependent, they will possibly

produce different answers if the dataset is permuted. As defined now, they will produce one

locally maximal induced subgraph in response to a query. This could be expanded to allow

k randomized trials to potentially produce up to k different answers. From the randomized

trials, the largest result could be returned.

For any reverse centrality query, one trivial answer is always available. For the induced

subgraph defined by V (S) = {q} where q is the query node, it follows trivially that q is the

leader of the induced subgraph S. This means that in the most basic case, we will always

have a query result. Although, as we prove later in this chapter, we can guarantee that the

query result will be more than just q.

Detailed algorithms for the reverse closeness, graph and degree centrality queries are

presented. For each query type, proofs are given for basic properties of the algorithm. In

addition, heuristic optimizations for each of the algorithms presented are provided.

25
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Justification for returning a single region

The problem of finding all induced subgraphs in G where the query node q is a dominating

node is a very challenging problem due to the potentially exponential number of induced

subgraphs satisfying this condition. For a given induced subgraph, the method for deter-

mining whether the query node q is a dominating node is polynomial. However, the size of

the output for this problem is potentially exponential in terms of the size of the input.

It is possible that all induced subgraphs in the graph G containing q will have q as a

dominating node. We can clearly see this exponential behaviour in the star graph that

consists only of edges connecting the query node q to all other nodes in G, as illustrated in

Figure 3.1 with query node 0. In this example, for any induced subgraph containing q, q

will be a dominating vertex. In fact, it will be the only central vertex in connected induced

subgraphs of size k ≥ 3. Since the number of connected induced subgraphs containing q

is 2n−1, where n is the size of V , it follows that the size of the solution for this query

returning all induced subgraphs of G satisfying the condition that Q is a dominating node

is potentially exponential in the size of the input.
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Figure 3.1: The star graph example illustrated here demonstrates a worst case scenario
where the number of potential subgraphs where the query node 0 dominates is exponential
with respect to the size of the graph.

The algorithms presented in this chapter all return only a single region that is locally

maximal. By returning a single induced subgraph, the size of the resulting answer is poly-

nomial instead of potentially exponential. In addition, the single locally maximal region is

understandable from the user perspective.
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Optimality of Result

We are unable to guarantee a globally optimal query result due to the difficulty of the reverse

centrality query problem. A globally optimal result may be defined as the largest possible

region containing q that is dominated by q, where size is determined by the number of nodes

in the region.

In Chapter 2, the problem definitions given for the reverse centrality queries are based

on the idea of maximally dominant regions. While theoretically this would be a high quality

result to return, it would be prohibitively expensive to satisfy this definition algorithmically.

For practical purposes, we will provide algorithms that find a 1-maximally dominant

induced subgraph as the search space of ensuring that all supergraphs of S are not dominated

is potentially exponential. By this definition, no single node in the one-neighbourhood of S

can be successfully added to S while maintaining q as the dominant node.

3.1 Reverse degree centrality query

The reverse degree centrality query provides an induced subgraph, or region, where the

query node dominates according to degree centrality. In terms of a social network, this

means that the query returns a group of individuals within which the query individual has

the greatest number of relationships within that group compared to other members of the

group.

Degree centrality differs from the other centralities explored for reverse centrality queries

in that it is a degree-based centrality index that relies only on local information.

The static degree centrality algorithm is trivial, as the vertex degree of each node in the

global graph is either known (in graph representations where edges are stored with respect

to each vertex) or easy to calculate (in graph representations with separate edge lists). With

knowledge of the degree of each node, the ordered list that determines the ranking according

to degree centrality can be established in O(n logn) time.

As is explored in greater detail in the following sections, it is easy to construct a fast

incremental algorithm to produce a reverse degree centrality query answer for a given query

node.
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3.1.1 One-phase incremental algorithm

The incremental algorithm begins with the 1-neighbourhood of the query node q and expands

by adding neighbors to the result set until no more additions are possible. The resulting

induced subgraph is locally maximal, where no neighbor to the region can be added while

maintaining q’s dominance.

We begin by proving the validity of starting with the 1-neighbourhood.

Theorem 3.1.1 (1-neighborhood dominance). A node dominates its 1-neighborhood ac-

cording to degree centrality.

Proof. Given a graph G = (V,E) and a query vertex q, the 1-neighbourhood of q is defined

as S = q ∪N1(q), where N1(q) is the set of vertices with edges to q. The maximum degree

of a vertex in the induced subgraph is |N1(q)|, which is exactly equal to the degree of q, it

follows that no vertex in S can dominate, by having a strictly greater degree, q, and that q

therefore dominates its 1-neighbourhood.

The update step of adding one vertex v to a region requires incrementally updating the

degree values for each node in the induced subgraph which is also a neighbour of v. It is a

constant time O(1) operation to update each neighbour vertex and determine whether that

vertex now dominates the query vertex q. Adding v to the list of vertices in the induced

subgraph takes O(log(k)) time if a sorted list is used, where k is the current size of the

induced subgraph. The update operation takes O(r) amortized time where r is the average

number of links for a vertex in G. It follows that the total incremental cost is O(rk+k log(k))

for an induced subgraph of size k, assuming no back-tracking.

This algorithm is both cost effective as well as localized, where it can be performed with-

out restriction on massive graphs, since only local information is required to incrementally

update.

It is interesting to note that, for a given node, degree centrality is static once the one-

neighbourhood of the node is included. This means that once q loses dominance according

to degree centrality due to the expansion of the result set S, if S already contains the one

neighborhood of q, we are guaranteed that q will not again dominate a larger superset of S.

In other words, when S includes the one neighborhood of q, dominance according to degree

centrality is monotone.
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Algorithm 1: One-phase incremental algorithm for reverse degree centrality

Data: G = (V,E), q ∈ G

Result: Induced subgraph S where q dominates

V (S)← N1(q)1

CandidateQueue← N1(S) \ V (S)2

UnluckyCandidateQueue← ∅3

while CandidateQueue ̸= ∅ do4

currentCandidate← CandidateQueue.dequeue5

TS = currentCandidate ∪ V (S)6

result← true7

forall n ∈ N1(currentCandidate) ∩ V (S) \ q do8

if degreeTS(n) > degree(q) then9

UnluckyCandidateQueue.enqueue(currentCandidate)10

result← false11

break12

if result = true then13

V (S)← V (S) ∪ currentCandidate14

CandidateQueue.enqueueAll(UnluckyCandidateQueue)15

CandidateQueue.enqueueAll(N1(currentCandidate) \ V (S)16

In Algorithm 1, we consider all nodes that are in the one-neighbourhood of the result

set S, but that are not found in S, to be candidates. When a node is successfully added

to S, its neighbours that are not already in S are appended to the candidate list. In this

manner, we iteratively test all nodes found at a distance of one from the candidate set.

3.1.2 Two-phase incremental algorithm

A better two-step algorithm for reverse degree centrality queries can be devised by the

observation that there are some nodes which do not require any later observation to deter-

mine whether they will affect the dominance of q. The set of all vertices with degreeG <

degreeG(q) will always be dominated in an induced subgraph containingN1(G). Now, rather

than testing every vertex as it is added to the set, a two-pass process will be used. First,

all neighbour vertices of q with degreeG < degreeG(q) will be added to S, any neighbour
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vertices that do not meet this criterion will be added to the candidate list. The process will

continue recursively with the newly added vertices until the induced subgraph S contains

all vertices globally dominated by q with respect to G that are directly connected to q via

a path of other dominated vertices.

The second step is to go through the queue of candidate vertices that are not globally

dominated by q and to see which of these vertices can be added to S without challenging

the dominance of q, using the same testing procedures as the one-pass algorithm.

The neighbours of successfully added candidate vertices would be added to the back of

the queue if they are not already in S. The process would stop when no candidate can

be successfully added to S. This process is input-sensitive, in that a different ordering of

candidate nodes could produce a different set S when the algorithm finishes.

In Figure 3.2, an illustration of the result of a reverse degree centrality query using the

two-phase algorithm is shown.

Figure 3.2: The query result for reverse degree centrality for the character Cosette from
the Les Miserables dataset shown in Reingold-Tilford form, where each layer of the tree
represents distance from the root node, which is the query node Cosette.

3.1.3 Degree centrality neighbourhood dominance query

Definition 3.1.1. The degree centrality neighbourhood dominance query returns the dis-

tance, d, to the nearest node which dominates q with respect to the graph G. The (d− 1)-

neighbourhood is by definition guaranteed to be dominated by q.

Given an ordered list of vertices, sorted by degree with respect to G, and a precomputed

APSP matrix the neighborhood dominance can easily be calculated for a query point q.
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Starting from q, a breadth first search with a search criterion of degreeG(v) > degreeG(q)

will provide an answer to minimum distance, d, to a dominating node, since the first node

found is guaranteed to be as close as possible. The depth of the search at this point provides

the minimum distance to a dominating node. This search takes time O(r) where r is the

size of the d-neighbourhood of q. This is potentially expensive if q is the globally dominant

vertex, or dominates a large portion of the vertices in G.

Another approach is to look-up the distance of each vertex in the graph known to have a

higher degree than q. Assuming that all distances have been precomputed, this takes O(1)

time for each comparison, if it has not been precomputed, it will take one single-pair shortest

path (SPSP) calculation per node, or one single source shortest paths (SSSP) calculation

(whichever is more advantageous) to determine the distance between q and the vertex in

question. The node with a greater degree than q at minimum distance takes O(kp) where p

is the number of vertices in G with a greater degree and O(k) is the comparison time needed

to determine the distance from q to the vertex in question.

Experiments for this variant of the reverse degree centrality query are not provided in

Chapter 4, but are left for future experimentation.

3.2 Reverse closeness centrality query

The reverse closeness centrality query returns an induced subgraph (a region), where the

query node q has minimal average distance to all other nodes.

It is meaningful to explore the best available methods for closeness centrality in the

traditional whole graph. To implement an incremental algorithm for closeness centrality, we

will require a dynamic closeness centrality method that allows for the reuse of calculations

as the region grows.

For calculating closeness centrality in the static case, Brandes’ betweenness algorithm [7]

is immediately applicable to the closeness centrality measure as well. It provides a method

for calculating closeness centrality in O(n + m) space and O(nm) time where n is the

number of vertices and m is the number of edges. Brandes’ algorithm relies on a recursive

construction of shortest paths where explicit shortest paths are not stored. Unfortunately,

this means that it is not possible to modify Brandes’ algorithm to provide an incremental

algorithm that performs better than repeating the entire algorithm at each step.

Closeness centrality may also be calculated from the distance matrix of the graph G,
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which results from calculating all pairs shortest paths, various methods for which are ex-

plored in detail in Appendix 1.

Theorem 3.2.1 (Dominance is non-monotone). A region that is locally maximal according

to the reverse closeness centrality query may be a proper subgraph of a larger solution

subgraph. More formally, it is possible for induced subgraphs A ⊂ B ⊂ C ⊆ G where q ∈ A

that q dominates A and C but not B.

Figure 3.3: An example demonstrating non-monotonicity of both closeness and graph cen-
trality. In A, the query node q dominates. However, in B, the query node is dominated by
node 2. With the addition of node 6 in C, q once again dominates (in fact, in C all nodes
tie for dominance as all have identical topology.

Proof. Let dominance refer to local dominance according to graph centrality. Given a graph

G = (V,E) and a query vertex q, suppose in the induced subgraph A ⊂ G that q is dominant.

Suppose there exists a vertex u such that the induced subgraph B = A ∪ u has a shortest

path via u which reduces the average distance of some other vertex x ∈ B below that of q.

B no longer has q as a dominant vertex. Now, suppose we introduce another vertex v and

expand the induced subgraph to produce C = B∪v such that C has some new shortest path

via v that reduces the average distance of q below that of x, and once again q is dominant.

It follows that there is no guarantee of q being dominant or not in proper subsets of an

induced subgraph where q is dominant. An example showing this behaviour can be seen in

Figure 3.3.
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The non-monotonicity of dominance for closeness centrality tells us that the incremental

algorithm can only promise to provide locally optimal results. We are not guaranteed to

find the largest possible region by this search process. This also indicates that an optimal

greedy algorithm or dynamic programming solution is not possible. In addition, even if we

start with a globally dominant node, we cannot guarantee that we will return the entire

graph G as the result, as the result may be sub-optimal even in this case.

While the proof that dominance is non-monotone does not prove the case for strict

dominance, where the query node is strictly better than any other node in S according

to the centrality measure, larger example graphs demonstrating strict dominance may be

constructed. Such examples take the general form where the query node q is central to two

large, balanced portions of the graph. When only one portion of the graph is contained in

S, q does not dominate, the second portion must be added before q again dominates.

Theorem 3.2.2 (1-neighborhood dominance). A node dominates its 1-neighborhood ac-

cording to closeness centrality.

Proof. Given a graph G = (V,E) and a query vertex q, the 1-neighbourhood of q is defined

as S = q ∪N1(q), an induced subgraph, where N1(q) is the set of vertices with edges to q.

The best closeness centrality achievable is to have an average distance of 1 to other vertices.

By definition, q has a distance of 1 to all neighbours. It follows that in S, q has optimal

closeness centrality and therefore cannot be dominated by any other vertex in S. Therefore,

q dominates its 1-neighbourhood.

Because a node always dominates its 1-neighbourhood, we can start the incremental

algorithm beginning with the 1 neighbourhood of the query node q.

3.2.1 Incremental algorithm

When adding a new vertex v to an induced subgraph S (or graph), only new shortest paths

via v will lead to decreased distances. It is this critical observation that we will use when

determining updates to the distance matrix in our algorithm.

In order to dynamically update our closeness centrality scores, it is necessary to know

the distance from the new vertex v to all other vertices in the graph. We can calculate

these distances by determining the single-source shortest paths (SSSP). There are many

known algorithms for calculating SSSP including Dijkstra’s algorithm. However, because
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the current distance matrix has been stored for the region S, a full SSSP calculation is not

required to update the distance matrix for V (S) ∩ v. The distance to all neighbors of the

candidate node will be 1 and the distance of a node, v, that is not direct neighbour will be

defined by the minimum distance between a neighbour of the candidate node and v, since

all paths from the candidate node must pass through a neighbour of the candidate.

Once the shortest distances from v to all other vertices are known, this update algorithm,

in time O(k2) where k = |V (S)|, presented in Algorithm 3 can check whether any shortest

path via v is shorter than the existing path. This assumes that a shortest distance matrix is

being updated and stores explicitly all existing all-pairs distances in the graph. The average

distance for each vertex can be updated in O(1) time, for each change in a shortest path

that affects that vertex. The algorithm halts when no candidate vertices can be added to S

without losing q’s dominance.

In the pathological worst case, this algorithm can perform up to O(n2) candidate node

tests, with each test taking O(k2) time, leading to a worst case complexity of O(n4). This

only happens if the only possible successful candidate is always located at the end of the

candidate list and the returned region is equal to the entire graph. The space complexity in

all cases is O(k2) where k = |V (S)| due to the need to store the distance matrix. However,

in practice, average complexity is significantly better. Additionally, each distance matrix

update is independent, meaning that this portion of the operation could be multi-threaded

to greatly increase query speed in practice.

The algorithm is split into two blocks for formatting purposes due to the limitations

of typesetting algorithms. These two blocks together define the incremental algorithm for

reverse closeness centrality queries. The first block, given in Algorithm 2, contains the

initialization of all variables for S when S contains the 1-neighborhood of q. The second

block, given in Algorithm 3, defines the growth stage of the incremental algorithm.
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Algorithm 2: Incremental algorithm for reverse closeness centrality: Initialization

Data: G = (V,E), q ∈ G

Result: Induced subgraph S where q dominates

V (S)← N1(q)1

CC /* Inverse closeness centralities, initialized to 0 */2

for i ∈ V (S) do /* initialize the distance matrix */3

d[i, i]← 04

for j ∈ V (S), i < j do5

if i ∈ N1(j) then d[i, j]← 16

else d[i, j]← 27

CC[i]← CC[i] + d[i, j], CC[j]← CC[j] + d[i, j]8
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Algorithm 3: Incremental algorithm for reverse closeness centrality: Growth

CandidateQueue← N1(S) \ V (S)

UnluckyCandidateQueue← ∅
while CandidateQueue ̸= ∅ do

currentCandidate← CandidateQueue.dequeue

TS = currentCandidate ∪ V (S)

dCandidate[currentCandidate]← 0

forall v ∈ S do
dCandidate[v]←∞

forall v ∈ n1(currentCandidate) ∩ S do
dCandidate[v]← 1

forall w ∈ S do

if d[v, w] > 0 then /* Shortest path exists */

if d[v, w] + 1 < dCandidate[w] then dCandidate[w]← d[v, w] + 11

CCNew ← CC

forall v, w ∈ S, v < w do /* Calculate updated distances */

dUpdate[v, w]← 0 if dCandidate[v] + dCandidate[w] < d[v, w] then2

dUpdate[v, w]← d[v, w]− (dCandidate[v] + dCandidate[w])3

CCNew[v]← CCNew[v]− dUpdate[v, w]4

CCNew[w]← CCNew[w]− dUpdate[v, w]5

success← true6

forall CCV al ∈ CCNew do7

if CCV al < CCV al[q] then /* Value dominates q */8

UnluckyCandidateQueue.enqueue(currentCandidate)9

success← false10

break11

if success = true then12

V (S)← V (S) ∪ currentCandidate13

CandidateQueue.enqueueAll(UnluckyCandidateQueue)14

CandidateQueue.enqueueAll(N1(currentCandidate) \ V (S))15
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Figure 3.4: The query result for reverse closeness centrality for the character Cosette from
the Les Miserables dataset shown in Reingold-Tilford form, where each layer of the tree
represents distance from the root node, which is the query node Cosette.

For the character Cosette, the query node in the example given in Figure 3.4, a sizable

query result is returned. Nodes in blue belong to the induced subgraph S, nodes in green

belong to G\S. It is interesting to note the nature of the result, where nodes up to a distance

of 3 from Cosette are included. However, the neighbours of Valjean, the left-most node at

a distance of 1, are not included. If these nodes were included, Valjean would dominate

Cosette. This is an example where the query result contains a globally dominant node,

Valjean, the main character of the play, for a less central character, that of Cosette.

3.2.2 Heuristics

Several variants to the basic incremental algorithm may improve query speed or result size.

Two of these variants are described below, the first to potentially do both and the second

to only reduce query time. The effects of these heuristics are explored in Chapter 4.

Ordering by vertex degree

One simple heuristic to improve the speed of the algorithm may be to sort the queue of

candidates by increasing vertex degree. This is based on the heuristic assumption that

vertices that have high closeness centrality or strongly affect the connectivity of other vertices

will be, on average, of higher vertex degree. This method will not lower time complexity in

the worst case, but may improve performance in practice.

This modification would change the order of the CandidateQueue found in Algorithm
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2, in particular, instead of simply appending the new candidates (lines 14-15), we would

modify the method so that the new additions are inserted into the list in order based on

vertex degree.

This method will be explored in further detail in Chapter 4.

Counting chances

Each time a node is selected as a candidate from the candidate list, a counter for the node

is incremented. The node only is considered k times, where k is a maximum number of

chances that a node will be given to re-enter the candidate list. This decreases the number

of possible iterations from O(n2) to O(kn).

In particular, if there are nodes close to the query node that cannot be added at any step

of the incremental process, they will enter the candidate list early and will be repeatedly

tested until the entire candidate list fails in the unmodified algorithm. It makes sense that

a node that has failed a reasonable number of times is unlikely to ever succeed and that

time improvements may be seen by removing such nodes from consideration.

This modification would require the addition of a counter to be kept for each member

of the candidate list, initialized to 0 when candidates first enter the list (as neighbours of

the region). Each time a candidate is rejected (line 9 in Algorithm 2), the counter would be

incremented, and if the counter equals k, the node is permanently rejected, and not included

in the UnluckyCandidateQueue.

This heuristic means that the query result may not necessarily be a locally maximal

region, as we prematurely eliminate nodes from consideration.

3.3 Reverse graph centrality query

The reverse graph centrality query identifies a locally maximal region where the query node

is dominant according to graph centrality. That is, the query node has eccentricity equal to

the graph radius of the region.

Solutions for calculating eccentricity for graphs have been explored for many specific

classes of graphs including chordal [12], 3-cactus [30], and HDD-free [11] graphs. However,

the best available solution for general graphs is the all-pairs shortest path (APSP) algorithm.

Various solutions for all-pairs shortest path algorithms are explored in depth in Appendix

1.
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The method presented includes an incremental all-pairs shortest path algorithm imple-

mentation for determining the validity of each update (each potential candidate node). This

algorithm may be modified to use other incremental APSP methods.

The method halts when no neighbour (any node in the candidate list) of the current

dominated region can be successfully added to the region without eliminating the dominance

of the query node.

Theorem 3.3.1 (Dominance is non-monotone). A locally maximal region of dominance

found according to the reverse graph centrality query may be a proper subgraph of a larger

region of dominance for the query node.

Proof. Let dominance refer to local dominance according to graph centrality. Given a graph

G = (V,E) and a query vertex q, suppose in the induced subgraph A ⊂ G that q is dominant.

Suppose there exists a vertex u such that the induced subgraph B = A ∪ u has a shortest

path via u which reduces the eccentricity of some other vertex x ∈ B below that of q. B no

longer has q as a dominant vertex. Now, suppose we introduce another vertex v and expand

the induced subgraph to produce C = B ∪ v such that C has a new shortest path via v that

reduces the eccentricity of q below that of x, and once again q is dominant. It follows that

there is no guarantee of q being dominant or not in proper subsets of an induced subgraph

where q is dominant. An example showing this behaviour can be seen in Figure 3.3.

Because graph centrality dominance is non-monotonic, an incremental algorithm may

fail to find a globally optimal solution, so we are limited to guaranteeing a locally maximal

induced subgraph.

Theorem 3.3.2 (1-neighborhood dominance). A node dominates its 1-neighborhood ac-

cording to closeness centrality.

Proof. Given a graph G = (V,E) and a query vertex q, the 1-neighbourhood of q is defined

as S = q ∪ N1(q), where N1(q) is the set of vertices with edges to q. The eccentricity of

any node is at least 1 as it is 1 in a complete graph, so the minimum eccentricity in the

induced subgraph is 1, which is exactly equal to the eccentricity of q, since q by definition

has a distance of exactly 1 to all vertices in N1(q). It follows that q dominates N1(q).
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3.3.1 Incremental algorithm

The algorithm for reverse graph centrality queries is closely related to the algorithm pre-

sented in Section 3.2.1 for reverse closeness centrality queries. Starting with the one-

neighborhood of the query node, the query result is expanded incrementally by attempting

to add neighbours to the growing result. When no single node can be added to the growing

result, a locally optimal solution has been found and the algorithm will terminate.

The method for updating the distance matrix is shared with the reverse closeness cen-

trality algorithm explored in Section 3.2.1. As a result, this algorithm also has a worst case

time complexity of O(n4) and a space complexity of O(k2) where k = |V (S)|. Although

again, in practice, average time complexity is much better than this.

Again, due to typesetting restrictions, the algorithm has been broken into two blocks

that describe the same contiguous algorithm. The first block, found in Algorithm 4, consists

of the initialization steps required for setting up S as equal to the 1-neighbourhood of q.

The second block, in Algorithm 5, consists of the incremental growth algorithm.

Algorithm 4: Incremental algorithm for reverse graph centrality: Initialization

Data: G = (V,E), q ∈ G

Result: Induced subgraph S where q dominates

V (S)← N1(q)1

Ecc /* Eccentricity, initialized to 0 */2

for i ∈ V (S) do /* initialize the distance matrix */3

d[i, i]← 04

for j ∈ V (S), i < j do5

if i ∈ N1(j) then d[i, j]← 16

else d[i, j]← 27

if Ecc[i] < d[i, j] then Ecc[i]← d[i, j]8

if Ecc[j] < d[i, j] then Ecc[j]← d[i, j]9
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Algorithm 5: Incremental algorithm for reverse graph centrality: Growth

CandidateQueue← N1(S) \ V (S)

UnluckyCandidateQueue← ∅
while CandidateQueue ̸= ∅ do

currentCandidate← CandidateQueue.dequeue

TS = currentCandidate ∪ V (S)

dCandidate[currentCandidate]← 0

eccUpdated[currentCandidate]←∞
forall v ∈ TS do

dCandidate[v]← 0

eccUpdated[v]← 0

forall v ∈ n1(currentCandidate) ∩ S do
dCandidate[v]← 1

forall w ∈ S do

if d[v, w] > 0 then /* Shortest path exists */

if d[v, w] + 1 < dCandidate[w] then dCandidate[w]← d[v, w] + 11

forall v, w ∈ S, v < w do /* Calculate updated eccentricities */

dUpdate[v, w]← 02

if dCandidate[v] + dCandidate[w] < d[v, w] then3

dUpdate[v, w]← d[v, w]− (dCandidate[v] + dCandidate[w])4

if eccUpdated[v] < dUpdate[v, w] then5

eccUpdated[v]← dUpdate[v, w]6

success← true7

forall ecc ∈ eccUpdated do8

if ecc < eccUpdated[q] then /* Value dominates q */9

UnluckyCandidateQueue.enqueue(currentCandidate)10

success← false11

break12

if success = true then13

V (S)← V (S) ∪ currentCandidate14

CandidateQueue.enqueueAll(UnluckyCandidateQueue)15

CandidateQueue.enqueueAll(N1(currentCandidate) \ V (S))16
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Figure 3.5: The query result for reverse graph centrality for the character Cosette from
the Les Miserables dataset shown in Reingold-Tilford form, where each layer of the tree
represents distance from the root node, which is the query node Cosette.

In Figure 3.5, we can clearly see that for Cosette, the graph centrality result is exactly

equal to the 2-neighborhood of Cosette. This follows from the granularity of this particular

centrality index. As is noted in Chapter 4, this particular graph only exhibits a range of

three values for graph centrality. In this case, the graph centrality result indicates that

there is no node connected to all of Cosette’s neighbors and neighbors of neighbors, because

otherwise, Cosette would not dominate her 2-neighborhood.

3.3.2 Heuristics

The heuristics that will be experimented with for reverse graph centrality queries are count-

ing chances and vertex sorting. These were already been explained in detail in Section

3.2.2 and can be applied equally to reverse graph centrality queries as for reverse closeness

centrality queries.

Experimental results for these variants will be explored in Chapter 4.



Chapter 4

Experimental Results and

Discussion

4.1 Datasets

Zachary Karate Club dataset

The Zachary Karate Club dataset [52], introduced in Chapter 2, contains 34 nodes from a

karate club whose dynamics were studied in depth by W. W. Zachary. Links in this dataset

represent friendships or allegiances between members of the university karate club of an

unnamed American university. This network displays classical social network properties,

with a community clustering coefficient of 0.256, a power-law degree distribution as seen in

Figure 4.1a, and an average path length of 2.40. A visualization of this graph is provided

in Figure 2.1.

Les Miserables dataset

The Les Miserables dataset [32] includes 76 nodes representing characters in the eponymous

novel by Victor Hugo. Links in the dataset represent co-appearances in scenes in the novel.

This network displays classical social network properties, with a community clustering coef-

ficient of 0.499, a power-law degree distribution as seen in Figure 4.1b, and an average path

length of 2.64. A visualization of this graph is provided in Figure 1.1.

43
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Measures Karate Les Miserables Political Books

Number of nodes (n) 34 76 105
Number of links (m) 78 254 441
Average path length (L) 2.40 2.64 3.08
Clustering coefficient (CC) 0.256 0.499 0.348

Table 4.1: This table summarizes the graphs that are used in experiments in this chapter.
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Figure 4.1: Degree distribution of sample datasets: Prevalence is the ratio of all nodes in
the dataset with the given degree.

Political Books dataset

The Political Books dataset consists of 105 nodes representing books on U.S. politics pub-

lished near the time of the 2004 U.S. presidential elections. Links between books indicate

frequent co-purchasing of those books according to Amazon.com. The dataset was collected

by Valdis Krebs. The basic statistics about this graph include a community clustering coef-

ficient of 0.348, a power-law distribution as seen in Figure 4.1c, and an average path length

of 3.08.

4.2 Implementation

For data structures and basic graph algorithms, the igraph Library is used [13]. The imple-

mentation of the algorithms for experimentation uses the R scripting language. The strength

of R is in the ability to visualize and manipulate graph data easily and to produce statis-

tical graphs for analysis. The timing observed in test runs is impacted by the interpreted
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nature of R. If the algorithms were implemented in a compiled language, such as C++, the

expectation is that they would run with a much smaller time constant, resulting in quicker

queries and feasibility of running the algorithms on large datasets. R is a language and

programming environment [40], first developed by Ross Ihaka and Robert Gentleman with

continuing development by the R Development Core Team. Variants were implemented as

modifications to the original R algorithms.

4.3 Experimental results

The reverse centrality query results for closeness centrality and graph centrality were con-

ducted using the same testing framework. For each dataset, the reverse centrality query

result was calculated for all nodes in the graph and evaluated using a variety of measures,

including the size of the result, query time, and total number of tested candidate nodes.

Query time is the total process time required for the algorithm to execute for that specific

query node. Linear trends, where shown, are calculated using linear regression fitting to the

entire dataset.

The size of results versus query time shows the strong influence the result size has on the

running time. Transitivity (also known as clustering coefficient) versus size of results and

modularity versus size of results show the structure of the returned results. The behaviour

of the growth phase of the query algorithm is explored in graphs that demonstrate the

relationship between time and number of trials as well as number of successful candidates

versus the number of candidate trials. Finally, the relationship between the size of the result

and the global centrality ranking for the query node is shown.

4.3.1 Reverse degree centrality query results

No clear global relationship between query time and size of the returned result set can be

seen in Figure 4.2, but the overall speed of the query can be contrasted with the results

seen in Figures 4.4 and 4.15. If we look closer though, there are, in fact, two trends that

may be observed in Figure 4.2. Both of these trends come from the underlying two-phase

algorithm described in section 3.1.2 which was the algorithm implemented and tested. The

first trend, seen as the nodes found in the upper left corner, are the results that return very

quickly from the first phase of that algorithm, with very few nodes that actually require

testing. This trend slopes downward, as the smaller result sets will have required tests of
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Figure 4.2: Size of Results versus Time (seconds) with Degree Centrality
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Figure 4.3: Degree of Query node q in G versus Size of Results with Degree Centrality

all remaining nodes to ensure that they could not be added to the result. The second trend

observed is seen in the lower right corner as an upward trend, these are the query results

that have been dominated by the second phase of the algorithm, and require more testing

of candidate nodes and did not benefit significantly from the first phase expansion. These

two trends can be observed best in Figure 4.2c.

On the other hand, Figure 4.3 shows a strong, clear linear relationship between size of

the result set and the degree of the query node in the original graph. This follows from the

possible set of nodes that could be automatically returned as being globally dominated by

the query node q, which is directly proportional to the degree of q.
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Figure 4.4: Size of Results versus Time (seconds) with Closeness Centrality

4.3.2 Reverse closeness centrality query results

In Figure 4.4, the linear relationship between the size of the returned result and the time

to execute the query is clearly shown. Due to the candidate testing phase, the linear rela-

tionship between final result size and running time clearly follows. The figures demonstrate

that the method is scalable and behaves well on all nodes, whether peripheral or central.

Figure 4.5 clearly demonstrates the strong correlation between size of regional domi-

nation under the reverse closeness centrality query and global closeness centrality ranking.

One positive result can be noted is that the algorithm successfully returns a result equal to

the original graph for the dominant node in the original graph.

The number of tested candidate nodes versus time shown in Figure 4.6 shows a posi-

tive correlation between number of candidates tested and time, but the relationship is less

pronounced than that between size of result and query time, shown in Figure 4.4.

The total number of candidates tested shows a positive correlation in Figure 4.7a, Figure

4.7b, and Figure 4.7c. Of particular interest are the outliers seen in Figure 4.7c, there are

three node queries that result in 1200-1400 tests of individual candidates.

In the most extreme cases, due to the exhaustive search and the high number of possi-

ble candidates at the point of termination, O(|CandidateList|2) trials may be required to

terminate. This behaviour can clearly be seen in the far right of Figure 4.7c where nearly

1400 trials are conducted compared to less than 80 successful candidates.

The relationship between modularity and size of result shows no strong correlation as
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Figure 4.5: Closeness Centrality of Query Node q in G versus Size of Results with Closeness
Centrality
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Figure 4.6: Number of Candidates Tested versus Time with Closeness Centrality
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Figure 4.7: Number of Candidates Tested versus Number of Successful Candidates with
Closeness Centrality

observed in Figure 4.8. These results follow from the root of the algorithm which intends to

select a region around a query node q, irrespective of the relationship of the region to the

global graph G.

Transitivity, also known as the clustering coefficient, in Figure 4.9 shows a mild negative

correlation with the size of the result, although this may simply be a product that small

connected subgraphs of a social network are likely to have a high clustering coefficient.
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Figure 4.8: Modularity of Results versus Size of Results with Closeness Centrality
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Figure 4.9: Transitivity of Results versus Size of Results with Closeness Centrality
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Figure 4.10: Size of Results versus Query Time with Closeness Centrality: 1 Chance Variant

Variant results

This modification involves adding a counter to the CandidateList to track the number of

times a node has been tested, on the basis that a significant amount of time is wasted

continually retesting nodes in the CandidateList that will never be successfully added, but

are repeatedly tested due to the no-failure policy of the base algorithm. Notably, the query

response time for a given result size is about twice as fast using the 1-chance variant,

according to Figure 4.10.

This modification involves sorting the CandidateList by increasing vertex degree, on the

basis that vertices of low degree tend to be peripheral and have little impact on the overall

closeness centrality rankings. There is a minor, but potentially insignificant difference in

query result time as shown in Figure 4.11.

The most revealing results about the variants can be seen in Figure 4.12, here the sizes

of results for the same query node are compared across all nodes in the sample graphs.

Notably, the order-sensitivity of the algorithm can be seen by the disagreement in result

size between the sorting variant and the base algorithm. This indicates that a change that

only affects the order of trials has led to a different result, indicating the order sensitivity

discussed in Chapter 3.

Also of note, the 1-chance variant occasionally returns results of much smaller size,

indicating that the second chance mechanism in the base algorithm is useful for finding

larger results.
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Figure 4.11: Size of Results versus Query Time with Closeness Centrality: Sorting Variant
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Figure 4.12: Query Node versus Size of Results with Closeness Centrality: Base Algorithm,
Sorting Variant and 1-Chance Variant Compared
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Figure 4.13: Graph Centrality of query node q in G versus Size of Results with Graph
Centrality

4.3.3 Reverse graph centrality results

Figure 4.13 emphasizes the granularity of the graph centrality measure: since graph cen-

trality is the inverse of the eccentricity of a node, when this is paired with the small-world

property of social networks, the range of expected values is very low. In the case of the

Zachary dataset and the Les Miserables dataset, the graph diameter is 5 and the graph

radius is 3, leading to three possible options for graph centrality values: 0.2, 0.25, 0.33.

Despite the discrete nature of the graph centrality measure, a general positive trend

between result size and graph centrality score can be seen. However, it interesting to note

that there are several communities of low global graph centrality that buck the trend and

have unexpectedly large results.

These outliers that have low global graph centrality scores but have large results em-

phasize that local conditions may differ drastically from global conditions. This emphasizes

the usefulness of reverse centrality queries as a meaningful node evaluation tool.

The evaluation of modularity versus result size shows a bell-curve relationship between

modularity and the size of the result. At a certain result size, the modularity of the result is

generally highest, with lower values seen on either side. This is most clearly seen in Figure

4.13c. It likely follows that some of the returned results correspond to naturally occurring

communities in the graph, and smaller and larger results either do not include the entire

community or begin to include other communities.

In Figure 4.15, a strong linear relationship between result size and query time can be
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Figure 4.14: Modularity of Results versus Size of Results with Graph Centrality

0.0 0.1 0.2 0.3 0.4

5
10

15
20

25
30

35

Time (seconds)

S
iz

e 
of

 R
es

ul
ts

R2 0.925

(a) Zachary

0.0 0.5 1.0 1.5 2.0 2.5

0
20

40
60

80

Time (seconds)

S
iz

e 
of

 R
es

ul
ts

R2 0.953

(b) Les Miserables

0 1 2 3 4 5 6

0
20

40
60

80
10

0

Time (seconds)

S
iz

e 
of

 R
es

ul
ts

R2 0.923

(c) Political Books

Figure 4.15: Size of Results versus Time (seconds) with Graph Centrality

seen. This is positive as it demonstrates that the growing set of possible candidates as the

result grows does not negatively impact the query speed.

Transitivity, also known as the clustering coefficient, in Figure 4.16 shows an inversely

proportional relationship to result size. This indicates that the larger result sets are less

cohesive than the smaller results, and this follows from the structure of social networks.

The number of candidate tests performed shows a surprisingly weak relationship to

the total query time. In comparing Figure 4.17 to Figure 4.15, the number of successful

candidates has a much stronger correlation to the query time than the number of tested

candidates.
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Figure 4.16: Transitivity of Results versus Size of Results with Graph Centrality
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Figure 4.17: Number of Candidates Tested versus Time with Graph Centrality
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Figure 4.18: Number of Candidates Tested versus Number of Successful Candidates with
Graph Centrality

In Figure 4.18, although not perfect, a general correlation is seen between the number

of tested candidates and the number of successful candidates. There are no pathological

cases observed where the number of tested candidates approaches O(|CandidateList|2) as

was demonstrated in the reverse closeness centrality query experiments.
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Figure 4.19: Size of Results versus Query Time with Graph Centrality: 1 Chance Variant

Variant results

This modification involves adding a counter to the CandidateList to track the number of

times a node has been tested, on the basis that a significant amount of time is wasted

continually retesting nodes in the CandidateList that will never be successfully added, but

are repeatedly tested due to the no-failure policy of the base algorithm. Notably, the query

response time for a given result size is about twice as fast using the 1-chance variant,

according to Figure 4.19.

This modification involves sorting the CandidateList by increasing vertex degree, on the

basis that vertices of low degree tend to be peripheral and have little impact on the overall

closeness centrality rankings. There is a minor, but potentially insignificant difference in

query result time as shown in Figure 4.20.
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Figure 4.20: Size of Results versus Query Time with Graph Centrality: Sorting Variant

The most revealing results about the variants can be seen in Figure 4.21, here the sizes

of results for the same query node are compared across all nodes in the sample graphs.

Notably, the order-sensitivity of the algorithm can be seen by the occasional disagreement

in result size between the sorting variant and the base algorithm. This is most notable in

Figure 4.21c. This indicates that a change that only affects the order of trials has led to

a different result, indicating the order sensitivity discussed in Chapter 3. This variation in

result size also indicates that the results found are locally, rather than globally, maximal.

In addition, a strong trend can be seen in Figure 4.21c, where the result size for sorting is

generally larger than for the base algorithm. This indicates that the sorting variant provides

a better searching strategy than the base algorithm.

Also of note, the 1-chance variant frequently returns results of much smaller size, indi-

cating that the second chance mechanism in the base algorithm is useful for finding larger

results.
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Figure 4.21: Query Node versus Size of Results with Graph Centrality: Base Algorithm,
Sorting Variant and 1-Chance Variant Compared
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4.3.4 Reverse centrality queries versus global centrality

Reverse centrality queries provide novel information at the node level, which may signif-

icantly differ from the information available with respect to the entire graph. There are

cases where a globally insignificant node may play an important part in its own local region.

With that, the context of the query node is given greater importance due to local centrality,

whereas the same node may seem relatively insignificant at the global level.

4.4 Summary

This chapter began by introducing the three datasets that were used for experimental anal-

ysis. The implementation in R used for experimentation was described in Section 4.2.

Finally, detailed experimental analysis was provided on the three query types across the

three datasets introduced in the beginning of the chapter.

In summary, the major insights we gained from our experimental results are:

• In Section 4.3.1, we established the reverse degree centrality query method provides

query results very quickly for all datasets explored. Additionally, we verified the

expected linear relationship between result size and query node degree.

• Exploring reverse closeness centrality queries in Section 4.3.2, we saw a general lin-

ear relationship between result size and query time, but several pathological cases

were noted in the Political Books dataset. The presence of outliers in Figure 4.5

demonstrates that there are cases where nodes of low global closeness centrality can

dominate large regions. The counting chances variant was demonstrated to be an

effective method for significantly reducing query time, but at the expense of occasion-

ally smaller result sizes. The sorting variant was shown to perhaps marginally improve

query times, but more importantly, also occasionally produced larger results than the

base method.

• In Section 4.3.3, for reverse graph centrality queries, we established a strong linear

relationship between result size and query running time. The counting chances variant

proved to be useful in reducing query time, but also occasionally reduced the result

size. The sorting variant performed slightly worse than the base method, indicating

that sorting by vertex degree is not an appropriate heuristic for graph centrality.
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Outliers in Figure 4.13 demonstrate that nodes of low graph centrality, usually nodes

considered peripheral to the graph, occasionally return large results, demonstrating

strong local dominance under graph centrality.



Chapter 5

Conclusion and Future Work

5.1 Summary

The rapid growth in the volume and availability of complex network data provides us with

many opportunities to define new paradigms for exploring and understanding this data. Re-

verse centrality queries provide another analysis tool for understanding the complex struc-

ture and dynamics of a social network, especially in relation to individual nodes in the

network. The methods presented in this thesis provide new methods for answering these

novel queries.

We conclude by briefly summarizing the major contributions of this thesis:

• In Chapter 2, we introduced a novel query type for social network analysis called the

reverse centrality query.

• In Chapter 3, we gave incremental algorithms for finding locally optimal query results

for three types of reverse centrality queries.

• In Chapter 4, we provided a detailed analysis of the results of the three query types

on three real-world networks and demonstrated the queries provide an effective novel

means of graph exploration.

• In Section 5.2, we provide a wide number of future directions in which reverse centrality

queries may be improved in the future.

63
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5.2 Future work

In this thesis, we introduced reverse centrality queries, and provided a detailed treatment

of several aspects of these queries. There are many potential directions for future work in

this area. Further heuristic improvements to the methods presented in Chapter 3 may be

possible. Additional modifications to adapt the given methods to run efficiently on large

graphs would also be useful. In Chapter 2, we outlined several types of constraints that could

be added to the problem definition of reverse centrality queries. A detailed treatment of these

constraints, including experimentation and evaluation would be beneficial. The methods

of Chapter 3 use a basic breadth first search approach, a more sophisticated approach

that incorporates back-tracking is likely to improve the query result by searching more of

the problem space. These methods do provide a way to answer several types of reverse

centrality queries, but they are limited in their applicability due to time complexity issues.

An important future direction is the development of more efficient methods to increase the

size of graph that can be queried.

5.2.1 Heuristic improvements

For all algorithms, improvements may be found by using statistics which are pre-computed

on the whole graph, or on the connected component of the graph that the query node is

found in.

Global statistics

Using global centrality indices such as betweenness centrality, or other statistics such as

vertex degree and local density may help improve the efficiency of the algorithm in finding

large regions. Other static statistics may also heuristically improve our methods. These

statistics would be used to sort the candidate list, changing the search priority of the method.

Positive indicators such as low vertex degree may be used to indicate peripheral nodes

in the graph that can very likely be added without disrupting the dominance of the query

node. The sorting variant seen in Chapters 3 and 4 for graph and closeness centralities is

based on the use of low vertex degree as a positive indicator.

Negative indicators, such as high betweenness centrality may be used to identify influen-

tial nodes which are likely to dominate the query node. If a node dominates the query node
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in the global graph, it is very likely that that node will not contribute to the dominance

region of the query node except possibly as a peripheral node.

Partitioning

Another option is to pre-process the graph into community partitions and only consider

nodes within the query point’s own partition. This could additionally reduce query time by

reducing the size of the set of candidate nodes. In addition, partitioning would be a useful

means for reducing the query time on larger datasets. Partitioning could also improve the

performance of static statistics used heuristically in node selection in the two methods.

5.2.2 Feature vector networks

An extension that is possible for the future is the adaptation of these methods for feature

vector networks, where each node in the network has an associated feature vector. This

would allow more powerful queries to be run on the social network which are additionally

constrained by vector attributes.

5.2.3 Advanced search methods

The algorithms presented in Chapter 3 use a straight forward breadth first search technique

to identify nodes to add to the result set, improved by revisiting all potential candidate

nodes. This method could be further modified to allow back-tracking: the removal of

successful candidates to explore other search paths.

5.2.4 Variants on reverse centrality query answering

By limiting the expansion of the search to a fixed radius k, we can decrease the number of

possible iterations required to find an answer. This is especially useful in large graphs where

an answer may potentially be the entire graph and calculating this could be prohibitively

expensive.

These same methods can be used to generate multiple answers by varying k from 2 to

r, a user defined maximum radius. This parameter will be very small in practice due to the

(small world) nature of most complex networks.

Another way to improve query answering time would be to restrict the size of the re-

sulting answer to a fixed number of nodes, where |V (S)| < h, and h is a constant. This
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technique may be useful in preliminary evaluation to see whether the node dominates a

large area or not.

5.2.5 Local Centrality Measures

An idea briefly introduced in Definition 2.6.5 is that of local centrality. No available measure

that I am aware of properly quantifies this idea. I believe that this is a very fruitful future

research direction. The experimental results of this thesis demonstrate that there are indeed

nodes that are capable of dominating large regions, while showing only modest centrality in

the global graph.



Appendix A

Appendix 1

A.1 The All-Pairs Shortest Path (APSP) Problem

The all-pairs shortest path (APSP) problem involves finding the shortest paths between

all pairs of nodes in a graph. The APSP problem is directly related to distance-based and

path-based centrality indices. Determining the exact radius of the graph requires knowledge

of the longest shortest path (the eccentricity) for each node in the graph. Since the graph

centrality problem requires knowing the nodes that have eccentricity equal to the radius

of the graph, it follows that we must know the eccentricity of every node in the graph. It

follows that the graph center can be trivially calculated from knowing APSP for a given

graph. So the problem of determining the graph centrality in the general graph is bounded

by the complexity of the APSP problem.

Purpose-built algorithms for finding graph centers have improved on the APSP com-

plexity bound for specific subclasses of graphs, including chordal [12], 3-cactus [30], and

HDD-free [11] graphs. These specific algorithms exploit special properties of these classes of

graphs to determine at least one central vertex, however, they do not return the full graph

center. Additionally, the constraints imposed by these graph classes are too strong to be

applied on any real world network.

The APSP problem is well-studied in the field of graph theory. The classic solution

of utilizing breadth-first search from every node is O(mn) or O(n3) since the number of

links, m, is bounded by m ≤ n(n − 1). Speed-ups for this method either use fast matrix

multiplication, such as Seidel’s algorithm [44] that runs in O(n2.376), or methods that give

logarithmic improvements over the classic method, such as Feder and Motwani’s O(n3/ log n)
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method [16] for unweighted, undirected graphs. The static version of APSP is relevant to

the reverse centrality query introduced in this thesis.

The recent work by Chan [10] has improved the complexity bound on the problem for

static sparse graphs with m ≪ n1.376. In particular, for graphs where m ≤ n log log n,

the method achieves O(n2 log2 log n/ log n), which is impressive given the näıve method is

O(n3).

Additional work by Boitmanis et al. [5] has established an additive approximation

algorithm with time bound O(km) with an additive error at most 2(n−1)
k+1 , which leads to

an O(
√
nm) algorithm with at most O(

√
n) additive error. Approximation algorithms use

multiple breadth-first searches from k nodes within the graph.

Dijkstra’s algorithm [15] can be used to solve the single-source shortest paths problem

in time O(m+ n log n) when implemented with Fibonacci heaps.

A.1.1 Changing Distances: Dynamic All-pairs Shortest Path

Most relevant to the graph center problem is the dynamic APSP problem, where vertices are

either being added or deleted. An update operation deals with one vertex and any incident

edges, an incremental operation only involves adding edges and a decremental operation

only involves deleting edges. The fully dynamic case of APSP is the most challenging, but

is beyond the scope of what is required for the reverse centrality query problem.

The fully dynamic APSP problem was addressed in a ground-breaking paper by Deme-

trescu and Italiano [14] that presents a fully dynamic algorithm based on maintaining locally

shortest and historical paths as the graph evolves and achieve updates in O(n2 log3 n).

An exploration of the methods for the incremental and decremental dynamic The APSP

problem is relevant to the problem of solving reverse centrality queries. Since we are required

to repeatedly re-calculate the vertices with highest centrality as the induced subgraph either

grows or shrinks under the searching method. The partially dynamic APSP problem is

luckily an easier problem to tackle than the fully-dynamic case.

For the decremental case, Thorup [46] introduces a basic algorithm that handles up to

j deletions in O(j3 log j) total time. The amortized cost per update for Thorup’s method

is thus O(j2 log j) over j deletions. The decremental algorithm is simplified by the guaran-

tee that any deleted vertex will only increase shortest paths between other vertices whose

shortest paths include the deleted vertex along the path.
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A simple algorithm for addition updates can be implemented by using Dijkstra’s algo-

rithm to calculate the single-source shortest path from the added node to all existing nodes

in O(m+ n log n) time and then updating the shortest-path distance matrix in O(n2) time.

This gives an update cost of O(n2) for additive updates.
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