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Abstract

Software quality assessment and program comprehension have been challenging areas of re-

search in software engineering. Software dependencies bear valuable information that can be

utilized to gain insight into computer programs and compare different program versions. We

present a simple and effective indicator for structural problems and complex dependencies

on code-level, together with an automatic monitoring tool. We model low-level dependencies

between program operations using a use-def graph, which is generated from reaching defini-

tions of variables. Intuitively, a program operation that has more dependencies is harder to

understand because it requires consideration of more elements and possibilities. Using vari-

ous examples we show that the proposed analysis can be a good indicator of readability and

understandability of programs. We also developed another tool that inspects dependencies

on the architecture level. The tool visualizes introduced and removed dependencies across

different program versions.

Keywords: Static analysis; Readability; Refactoring; Product metrics; Software visualiza-

tion
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“No self-respecting architect leaves the scaffolding in place after completing the building.”

Carl Friedrich Gauss, 1777-1855
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Chapter 1

Introduction

In software engineering, static analysis refers to the practice of inspecting and analyzing

computer programs without executing them. This type of analysis is usually performed on

the source code of a program, and in some cases on the object files (compiled units). Static

analysis can be used to gain more insight about the program code and structure, to detect

software defects and anomalies, to provide information for proving properties of a computer

program (verification) and to facilitate the decision making procedure in a software process.

In most cases, static analysis denotes automated processes or procedures which can be

performed by software-analysis tools, possibly yielding more accurate results than those of

human experts, in less time.

Program analysis can provide directions for improving different aspects of software qual-

ity that affect customer satisfaction. It also helps decrease maintenance costs which con-

stitute a significant proportion of the full life-cycle cost of a software system [1, 21]. The

importance of such analyses is even more visible if we consider safety-critical systems such

as process-control systems in pharmaceutical plants, or control and monitoring systems in

aircrafts which are operated by complicated programs consisting of millions of lines of code.

Malfunctioning of such software might result in hardware failure which can be a big threat

to human lives and the environment [34].

Many desirable software qualities have been defined and studied. Coming up with quan-

tifiable measures to assess these quality factors for different software systems is one of the

challenges of the software community due to the complexity of software systems. However,

a lack of such measures means subjective and often unreliable opinion would have to be

used instead, which is against the fundamental goals of engineering.

1



CHAPTER 1. INTRODUCTION 2

Software systems, due to the frequency and amount of changes to their structure, are

very different from artifacts in other engineering disciplines. The frequent changes – often

essentially affecting the stability of the system – require a continuous effort to prevent the

structure from degeneration. There are several theories why this must happen (e.g., [23])

and several proposals and guidelines on how to prevent or fix this (e.g., [9, 10,29]).

We present a simple but effective idea that contributes to solving the following subprob-

lem: Given two versions of a software program that have the same behavior and differ only

in code structure, which version is to prefer in terms of low-level dependency structure. For

example, if the second version is the result of changing the first version, we would like to

know whether the change actually improves the code structure, i.e., was a positive ‘refac-

toring’. This is achieved by introducing a new software indicator, which reflects the quality

degree of the software with respect to a specific quality attribute.

We have the following requirements that the new indicator has to fulfill. Simplicity (easy

to interpret), scalability (applicability to different versions), and independence (complement-

ing other indicators) are inspired by Hansen’s list of requirements for software-complexity

measures [14].

1. Simplicity. We are striving to simplify code, and believe this requires a simple method.

Therefore, the indicator must be easy to understand and the indicator values easy to

interpret.

2. Flexibility. We are looking for an indicator that works for many imperative program-

ming languages.

3. Scalability. The new indicator should be applicable to partial programs (e.g., to be

applicable to diffs), should not require structured code, or the presence of the complete

control-flow structure.

4. Independence. The indicator should not be based on existing indicators, and should

be as orthogonal and complementing as possible.

5. Automatic. The calculation of the indicator values should be based only on facts

present in the program code, and not require experience or intelligence.

To further pursue our program comprehension goals, we also describe a new software

tool that we developed to track and visualize software artifacts and their changes during
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software evolution. Due to the nature of the material presented here, they are categorized

as static analysis activities and techniques.

Some software-engineering concepts used in this report are briefly discussed in the fol-

lowing sections of this chapter.

1.1 Control-Flow Graphs

A control-flow graph is a representation of a computer program using directed graphs. Some

nodes in the graph represent one or more procedural statements, i.e. basic blocks containing

a single or multiple sequential instructions [25]. Some nodes do not represent any procedural

statements and are meant as ‘auxiliary’ nodes to direct the flow to the next step. Edges

(links) of the control flow graph represent flow of control, and depict a jump from one

block (node) in the program to the next one. A predicate node is one that contains a

condition from which two or more edges emanate. Each subroutine (i.e., function, method

or procedure) is assumed to have a single ‘entry’ node and an ‘exit’ node.

Control-flow graphs are used by many static analysis tools. Example 1 shows a simple

Java method which calculates the greatest common divisor of two input integers (n > m >

0), and Figure 1.1 depicts the respective control flow graph:

int gcd(int n, int m)
{
int q = n, r = m;
while (r != 0)
{
int temp = q % r;
q = r;
r = temp;

}
return q;

}

Example 1 Figure 1.1: The control-flow graph for Example 1
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1.2 Software Dependencies

The term software dependencies can have different meanings in different contexts. It could

refer to, for example, the relations (dependencies) between a software package/component

and others, in the same or different versions of the software.

There might be different strategies for defining dependencies between software artifacts,

depending on the desired type of analysis and the required information.

In object-oriented programming, dependencies can be defined in terms of certain rela-

tionships between the elements of this programming paradigm, such as inheritance relations

between classes. A method-call dependency can be defined as the dependency between two

methods (functions) where one invokes (calls) the other in its body. Similarly, a class-call

dependency results when a method of one class calls a method which belongs to another

class. Then we say that the former is dependent on the latter. We can have dependency

between packages as well, when a class in one package is dependent on a class from another

one. Another type of dependency that can be defined between the classes is when a class is

dependent on another one for having a data field of the type specified by the latter.

On a lower level of abstraction, we can define dependencies between ‘fine-grained’ soft-

ware items such as lines of codes or even atomic program statements. One way to do this is

based on ‘use-def’ relations between variables within program statements. In other words,

a statement that uses a variable can depend on a statement that defines (assigns a value to)

it. This kind of dependency is more general and is applicable to programs written in other

programming paradigms or even unstructured code.

1.3 Thesis Outline

We proceed as follows: In Chapter 2, we discuss related work from the area of software

measurement. Chapter 3 presents the formal definition of a new software indicator called

‘dependency-degree’ (or for short ‘dep-degree’), after introducing preliminaries. Chapter 4

explores the proposed definition through some insightful examples. Chapter 5 discusses

applications of the indicator. First, we apply dep-degree to several sets of refactorings and

compare the indicator values with those of LOC (lines of code) and cyclomatic complexity.

Second, we suggest to apply the indicator in order to identify and locate code with complex

dependency structure. Chapter 6 presents a software tool that is implemented to calculate
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the indicator for java code, the algorithm used in the tool and its computational complexity.

Chapter 7 presents another plug-in tool that we developed to visualize and track introduced

and removed dependencies (on a more abstract level than code-level) across different versions

of the software. Chapter 8 concludes with an overview of the presented materials and

discusses possible future contributions.



Chapter 2

Related Work

Measurement plays a major role in any engineering process by attempting to provide a

better understanding of the attributes of the systems and models under study. Broadly

speaking, the measurement can be defined as “the assignment of numerals to objects or

events according to rules” [36]. But there are a variety of ‘rules’ under which these assign-

ments can be applied, yielding different kinds of scales and measurements. In order for an

indicator to be considered a measure, certain details such as the type of scale should be

clarified.

The concept of measurement has not yet been settled in software engineering as it

has in some other disciplines. In most cases, there is no way to measure software quality

attributes directly [34]. For example external attributes such as ‘understandability’ and

‘maintainability’ are related to how developers view the software and depend on many

factors, making it a difficult task to measure them. That is why an internal attribute of

software (such as its length) is measured instead, and it is assumed that a relationship exist

between what can be measured and what we really want to know.

2.1 Overview

There is a rich set of software measures defined in the literature to evaluate different aspects

of software systems. Some of these measures are designed only for specific programming

paradigms such as object-oriented programming [24, 30, 38]. There are numerous classic

software measures that have been studied extensively throughout the years, and some of

them are still widely in use today. However, recent efforts have been made to create software

6
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measures supported by a richer theoretical background [20].

In a survey by Mills [27], classic software measures are generally classified as either prod-

uct measures or process measures. Process measures are associated with particular models

of software development process and are used to measure different aspects of the process

such as the overall development time or the average level of experience of the programming

staff. Process measures are not the concern of this study.

Product measures, on the other hand, are designed to assess various attributes of a soft-

ware product at any stage of its development. They may be categorized into four types,

namely size measures, complexity measures, Halstead’s product measures and quality mea-

sures [27]. Some of these categories may overlap; for example some complexity measures

might be used to evaluate a certain quality characteristic of software.

2.2 Size Indicators

Perhaps the simplest proposed measure is the lines of code (LOC), an indicator for the size

of a program. It measures the length of a program by a pure syntactical count of lines,

without analyzing the contents in detail. LOC can be calculated in a number of different

ways, for examples when considering only non-comment and non-blank lines in a source

code, it is called the ‘logical lines of code’. Despite its popularity, LOC is invalid under

various conditions, for example when it is “used to compare productivity or quality data

across different programming languages” [18].

2.3 Complexity Indicators

Complexity measures are designed with the intent to measure ‘program complexity’. A

prominent complexity measure is the ‘cyclomatic complexity’ [25]. It is an indicator for the

complexity of the control-flow structure of a program because it measures the maximum

number of linearly independent paths in the control flow graph of a computer program. It

is defined as v(G) = e− n + 2p, where e, n and p are the number of edges, vertices and the

connected components of the control flow graph respectively.

The cyclomatic complexity measure has been found to generate useful information [18].

Nevertheless, it has certain limitations. For example it is simply an indicator of a program’s

structural complexity and not its data flow complexity. Also, it assigns the same complexity
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value to an if-else statement and a while loop, even though in practice a loop is more complex

than an alternative. Another limitation of the cyclomatic complexity is that it does not

distinguish between nested and sequential forms of control structures.

There have been efforts to improve existing measures such as the cyclomatic complexity.

Examples include Myer’s suggestion to remove an undesirable anomaly from the original

definition, or Stettar’s extension to include data declarations and references in the program

flow graph [28, 35]. However the extensions also have some limitations. For example, in

practice the Myers’ variant is not significantly different from the original value as computed

by McCabe [11]. Another variant of the cyclomatic complexity is the ‘essential complexity’.

The essential complexity of any program that is written entirely with high-level ‘structured

programming’ language constructs will be one. This measure is useful for evaluating the

complexity of an unstructured code, or detecting an implementation of poorly structured

logic.

A measure of the logical complexity of programs has also been proposed based on the

variable dependency of sequence of computations, inductive effort in writing loops and com-

plexity of data structures [17]. A graph is used to describe the dependence of a computation

at a node upon the computation of other nodes.

Some proposed to measure program complexity based on data-flow information. For

example Kafura and Henry proposed a measure of local information flows entering (fan-in)

and exiting (fan-out) each procedure (function) [15]. Tai proposed a measurement approach

based on data flow information in a control flow graph [37]. His measure is defined for a

structured control-flow graph, provided that certain conditions are met.

2.4 Halstead’s Measures

Halstead’s measures [12] are also often studied as possible measures of software complex-

ity [27]. Halstead considers a computer program as a collection of tokens that can be

classified as either operators or operands. The following base measures are defined by Hal-

stead [31]:
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n1: The number of distinct operators

n2: The number of distinct operands

N1: The total number of occurrences of operators

N2: The total number of occurrences of operands

n1
∗: The number of potential operators

n2
∗: The number of potential operands

All the other measures defined by Halstead are based on the above measures. For ex-

ample program length and program vocabulary are defined in the following manner:

Program length (N): N = N1 + N2

Program vocabulary(n): n = n1 + n2

According to Al Qutaish and Arban, Halstead defines program volume as (a) a suitable

measure for the size of any implementation of any algorithm; (b) a count of the number of

mental comparisons required to generate a program [31].

Since some of Halstead’s measures are not defined in a computable way, practitioners

(e.g., NASA 1) have used the following approximations:

Program Volume (V ): V = N × log2 n

Difficulty (HD): HD = n1
2 ×

N2
n2

Effort (HE): HE = V ×HD

Halstead’s ‘difficulty’ indicator (HD) can suggest the difficulty level of a program, and

the ‘effort’ indicator (HE) indicates the estimated effort required to develop a program.

2.5 Quality Indicators

Quality measures target the assessment of software quality factors such as program cor-

rectness, reliability and maintainability. For example, the number of defects in a software

product could be an indicator for the correctness of software. Such measures are often

extracted automatically from the product, e.g. the number of errors detected in program

tests. As mentioned before, there have been investigations of the ability of some complexity

measures such as Halstead’s effort and cyclomatic complexity by McCabe to predict the

1http://mdp.ivv.nasa.gov/halstead_metrics.html, as retrieved on April 27, 2010.

http://mdp.ivv.nasa.gov/halstead_metrics.html
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psychological complexity of software maintenance tasks [8].

2.6 Summary

The indicators measure certain properties of software, trying to indicate size, product prop-

erties, quality, and complexity. For our comparison, we chose LOC as the most prominent

indicator for size, cyclomatic complexity as the most prominent indicator for control-flow

complexity, and the Halstead’s difficulty and effort indicators. For details about the var-

ious measures we refer the reader to the survey and discussion articles on software mea-

sures [7, 8, 15,16,18,19,27].

The application of software measures has significantly advanced the techniques to au-

tomatically and abstractly assess properties of large software systems. But many software

engineers were too enthusiastic in applying measures, trying to use measures as indicators

for properties that they were not designed for. For example, LOC was often considered

a measure for size, but it is a measure for length, and just an indicator for size. Or, cy-

clomatic complexity was sometimes used as measure for program complexity, but it is a

measure for cyclomatic complexity of control-flow graphs, and might only roughly indicate

program complexity.

In order to compare our indicator dep-degree with other measures, we choose a few widely

used (but not necessarily accepted) measures for software programs, i.e. LOC, cylcomatic

complexity (CC) and Halstead’s difficulty (HD) and effort (HE). We tried to apply Tai’s

measure [37] in our experiments as well, but it is not possible to calculate the measurement

value due to several limiting requirements under which the value is defined.



Part I

The Measure Dep-Degree

11



Chapter 3

Definitions

In this chapter we provide the formal definitions of several concepts that are used in our

study.

3.1 Preliminaries

Our proposed software indicator is based on some prerequisite concepts, the definitions of

which are given within this section.

3.1.1 Control-Flow Graph (CFG)

We represent a computer program as a collection of control-flow graphs [2], one for each

function (or procedure) of the program. A control-flow graph G = (B, F ) is a directed graph

that consists of a set B of program operations (the nodes of the graph) and a set F ⊆ B×B

of control-flow edges of the program. A program operation is executed when control moves

from the entry to an exit of the operation node. A program operation is either an assignment

operation, a conditional, a function call, or a function return. A conditional is a predicate

that must be evaluated to true (false) for control to proceed along the first (second, resp.)

exit edge. All other operations have one exit edge. Program operations can read and write

values via variables from the set X of program variables.

In classic compiler literature (e.g., [2]), the nodes represent basic blocks, i.e., sequences

of operations, as illustrated in the control-flow graph subsection in the introduction section.

In our definition of CFG, a node represents only one program operation, as often done in

12
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program analysis. The two variants of CFGs are equivalent in terms of program semantics,

and can be transformed into each other.

3.1.2 Reaching Definitions

In this paper, we use a notion of operation dependency that is motivated by the data-flow

analysis for reaching definitions [2]. The function reaching definitions rdG : B×X → 2B for

a CFG G = (B, F ) assigns to a program operation bu and a variable x the set of all definitions

of variable x that can reach the operation bu. In other words, a program operation bd is in

the set of reaching definitions for program operation bu and variable x, if bd is an assignment

operation or a function call that assigns a value to x and there exists a path in the CFG

from bd to bu on which no other program operation assigns a value to x.

Example 2 shows a simple function, the control-flow graph of which is illustrated in

Figure 3.1. Figure 3.2 shows how the reaching definitions of the last program operation

(the return statement) with respect to the only variable used by the operation (i.e. ‘min’)

can be identified. In this case, two reaching definitions (operations) are detected, that is

{ ‘min = m’ , ‘min = n’ }. Note that the initializer statement ‘int min = 0’ is not a reaching

definition for the return statement, because the value of the variable ‘min’ is updated in

both branches of the ‘if’ statement.

3.1.3 Use-Def Graph

We now derive the use-def graph from the results of the reaching-definitions analysis. A

use-def graph SG = (B, E) for a CFG G = (B, F ) is a directed graph that consists of the

set B of program operations (of G) and the set E of use-def edges that are derived from

the reaching-definitions function as follows: an edge (bu, bd) is member of the set E if there

exists a variable x that is used in bu and for which bd ∈ rdG(bu, x) holds.

The use-def graph is a dependency graph on operation level, more precisely, it models the

data-flow dependencies between operations and the direction of an edge models the direction

of the dependency (from use to definition). In compiler optimization and program analysis,

this data-flow dependency is one of the most important dependencies that are considered

(but mostly stored in a different form as so-called ud-chains [2]).
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int
minimum(int m, int n)
{
int min = 0;
if (m < n)
min = m;

else
min = n;

return min;
}

Example 2
Figure 3.1: Control-Flow

Graph for Example 2
Figure 3.2: Searching for

Reaching Definitions

Figure 3.3 shows the use-def graph for the Example 2 discussed in the previous subsec-

tion. A node labeled ‘init def’ refers to the parameter initialization.

3.2 An Indicator for Problematic Code Structure

This sections contains the formal definition of the new software indicator that we are propos-

ing. The proposed indicator has also been discussed in a related publication [5].

3.2.1 Dependency-Degree

The dep-degree for program operations in a CFG G = (B, F ) is a total function ddG : B → N
that assigns to each program operation b the number of other program operations that it

depends on in SG = (B, E), i.e., ddG(b) = |{b′ ∈ B | (b, b′) ∈ E}| (the out-degree of b in
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Figure 3.3: Use-Def Graph for Example 2

graph SG). The dep-degree for program functions is a total function dd : G→ N that assigns

to each control-flow graph G the number of edges in its dependency graph SG = (G, E),

i.e., dd(G) =
∑

b∈B ddG(b) = |E| (the sum of all out-degrees in graph SG).

3.2.2 Problematic Code Structure

Inspired by Miller’s article on our capacity for processing information [26], we believe that

the comprehension of program code is easy if we have to remember only a few possible

states of the program (e.g., different variable values, branching choices), and that we make

mistakes while programming, or misunderstand a program, if we have to remember too

much information about the current program state.

The dep-degree for a single program operation tells us how many different pieces of

information we need to consider in order to understand the effect of the program operation;

more precisely, it tells us the number of all different predecessor operations that influence

the effect of the considered program operation (it sums up, over all variables used in the

operation, the number of different reaching definitions). Thus, if Miller’s insight is true

for program understanding, then the dep-degree of an operation is a good indicator for the

difficulty to understand the operation. It should be noted that we do not refer to dep-degree

as a measure for code complexity. There is no established empirical relationship between

software artifacts that is called code complexity. There are several attempts (e.g., McCabe,

Halstead), but none is generally accepted as a measure for code complexity.
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Remarks about dep-degree. We now provide some remarks on how dep-degree meets

our requirements from the introduction:

1. Simplicity. The concept of reaching definitions is well-known, and the construction

of the use-def graph as well as the calculation of the dep-degree value are straight-

forward. Thus, dep-degree can be implemented using efficient standard techniques

from data-flow analysis.

2. Flexibility. Dep-degree is applicable to any imperative programming language. And

yet, due to its simplicity, it has the potential to be customized to address certain

language-specific issues.

3. Scalability. Dep-degree is applicable to well-structured (for, while, no goto, no break)

as well as unstructured program code. It is applicable to complete functions as well

as partial programs (for partial programs, the value of dep-degree is based on the

reaching definitions that are present in the code fragment).

4. Independence. Dep-degree is a base indicator, i.e., it is solely based on facts present

in the code, it does not use any arithmetics or combination with other indicators.

Many other indicators are based on the control-flow structure, while dep-degree is

exclusively based on the data-flow structure; the indicator is a good complement to

other indicators.

5. Automatic. The calculation of the value for dep-degree consists of simply counting

edges in the use-def graph, for certain operations or the full graph. The use-def graph

is generated from reaching definitions, which can be computed in polynomial time

using standard program-analysis techniques.



Chapter 4

Exploring Dep-Degree

This chapter intends to provide the reader with some insight into our proposed analysis

using some small but rich examples.

4.1 Assignments and Arithmetics

Consider the two implementations of the function swap in Figure 4.1. The first implemen-

tation (left) has the advantage of using only two registers – which are allocated already

anyway – but the disadvantage of being more difficult to understand because it uses not

only assignments but also arithmetics. 1 The second implementation (right) has the advan-

tage of being easy to understand – it uses only assignment operations – but the disadvantage

that a simple code generator would allocate three registers for the execution of this code.

Figure 4.2 shows the use-def graphs for the two swap functions (a node labeled ‘init def’

refers to the parameter initialization of the call-by-value). The graph layout was calculated

using GraphViz (dot). On the right, the value of variable b (third assignment) depends

on the assignment of variable temp which in turn depends on the initial value of variable

a. The value of variable a depends on the initial value of variable b. The graph on the

left illustrates that this implementation not only involves arithmetics, but also has a more

complicated dependency structure.

The dep-degree is six for the function on the left and three for the function on the right,

which indicates that the function on the left has a more complex dependency structure.

1Furthermore, one has to understand the arithmetic-overflow semantics of the programming language in
order to establish correctness.

17
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void

swap(int a, int b) {

a += b;

b = a - b;

a -= b;

}

void

swap(int a, int b) {

int temp = a;

a = b;

b = temp;

}

Figure 4.1: Two ‘swap’ implementations

’a’ init def

a  + =  b ;

b  = a  -  b ;

a  -=  b ;

’b’ init def

’a’ init def

in t  t emp =  a ;

b  =  t emp;

’b’ init def

a  =  b ;

Figure 4.2: Use-def graphs for Figure 4.1

Table 4.1 shows that LOC and cyclomatic complexity do not distinguish the two functions.

This is because LOC measures length and McCabe measures control-flow complexity, which

is the same for both functions. The difficulty indicator (Halstead’s difficulty) suggests that

the function on the left has a higher ‘difficulty’ level than the one on the right. The value

of the effort indicator (Halstead’s effort) for the left function is also higher than the one for

the right function.

4.2 Strength Reduction and Nested Loops

In Figure 4.3 we compare two implementations for computing binomial coefficients. Both

functions take as input two non-negative integers n and k (required: k ≤ n), and compute

the binomial coefficient
(
n
k

)
(n choose k).

The function on the left computes the result without using multiplication — it simulates
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// Require: n >= k >= 0

int bico(int n, int k) {

int[] arr = arrInit(n+1);

for (int i = 0; i <= n; i++) {

int temp = arr[0];

for (int j = 1; j < i; j++) {

arr[j] = arr[j] + temp;

temp = arr[j] - temp;

}

}

return arr[k];

}

// Require: n >= k >= 0

int bico(int n, int k) {

int facK = 1;

for (int i = 1; i <= k; i++) {

facK = facK * i;

}

int facNk = 1;

for (int j = n; j > n-k; j--) {

facNk = facNk * j;

}

return facNk / facK;

}

Figure 4.3: Two ‘bico’ implementations

Pascal’s triangle to perform the computation. The array arr contains the i-th row of the

triangle at the end of the i-th iteration of the outer ‘for’ loop. The disadvantage of this

program is that it is rather difficult to understand because it uses nested loops instead of a

sequence of two loops, and it uses an array, the content of which is important to understand.

(An array access is more difficult than a variable access because it involves the array pointer

and an index.)

The function on the right computes (almost directly) the result using the formula
(
n
k

)
=

n!
(n−k)!k! , but has the disadvantage of using multiplication (more expensive to compute, more

expensive to verify because not linear). We say ‘almost directly’ because the second ‘for’

loop calculates n(n− 1) . . . (n− k + 1) = n!
(n−k)! .

The two functions bico are equal in the number of lines of code, the number of state-

ments, and the number of local variables (i,j,temp,arr versus i,j,facK,facNk). There-

fore, the length of the functions LOC yields the same value for both functions. Furthermore,

the functions use the same number of control structures (two ‘for’ loops), and therefore the

cyclomatic complexity yields the same value for both functions. But the low-level depen-

dency structures of the two functions are very different. The dependency graphs are shown

in Figures 4.4 and 4.5. The graph in Figure 4.4 has higher density such that the graph-

drawing algorithm ‘dot’ from GraphViz was not able to find a layout without edge crossings.

Table 4.1 lists the values for LOC, cyclomatic complexity, and dep-degree. LOC and cy-

clomatic complexity yield the same values, whereas dep-degree yields the values 28 and 24

for the left and right implementations respectively, indicating that the first implementation

has a more complex dependency structure. Unlike dep-degree, both Halstead’s indicators

http://www.graphviz.org/
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Method LOC CC DD HD HE

swap (left) 3 1 6 8.8 343.9
swap (right) 3 1 3 3.0 100.8

bico (left) 9 3 28 18.7 4919.4
bico (right) 9 3 24 21.4 5076.7

equals (left) 10 3 11 13.3 2694.0
equals (right) 11 4 8 8.5 1453.2

Table 4.1: The values of the indicators LOC (lines of code), CC (cyclomatic complexity),
DD (dep-degree), and Halstead’s HD (Difficulty) and HE (Effort) for the three examples

(difficulty and effort) have smaller values for the left implementation.

4.3 Early Return

In the next example we consider two alternative implementations of the equals function

for a class Pair (of two integer values). Figure 4.8 shows the example functions. The two

functions follow the same logic, but the first implementation uses a local variable result to

store the decision to return, whereas the second implementation returns as early as possible.

The second implementation seems to be easier to understand, because all special cases

are checked and immediately dealt with; after this, the reader can forget them, i.e., there are

not many dependencies. The first implementation requires the reader to track the outcome

of the various comparisons, and the last value of variable result, all the way to the end of

the function.

The cyclomatic complexity of the second implementation is higher, because it uses one

more ‘if’ statement (cf. Table 4.1). Also the program length LOC prefers the first imple-

mentation, because it is shorter. The value of dep-degree witnesses that the dependency

structure of the second implementation is less complicated (dep-degree = 8) compared to the

first (dep-degree = 11). The halstead’s indicators also suggest that the first implementation

is more ‘difficult’ and requires more ‘mental effort’ to be developed and maintained.

The use-def graphs for both implementations of the ‘equals’ method are shown in Fig-

ures 4.6 and 4.7.
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’n’ init def

int [ ]arr  =  arr Ini t (n  + 1)

i  < =  n

in t  temp = ar r [0]

arr[ j ]  = arr[ j ]  + temp

return  ar r [k]

int  i  =  0

i + +

j  <=  i

in t  j  =  1

j + +

temp = arr[ j ]  -  temp

’k’ init def

Figure 4.4: Use-def graph for Figure 4.3 (left)

’n’ init def

int  j  =  n

j  > n-k

j--

facNk = facNk * j

in t  i  =  1

i + +

facK = facK * i i  < =  k

int facK = 1

return facNk / facK

int  facNk = 1’k’ init def

Figure 4.5: Use-def graph for Figure 4.3 (right)
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Figure 4.6: Use-def graph for Figure 4.8 (left)

Figure 4.7: Use-def graph for Figure 4.8 (right)
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class Pair {

int x;

int y;

boolean equals(Object o) {

boolean result = false;

if (o != null) {

if (o instanceof Pair) {

result = this == o;

Pair p = (Pair) o;

result = result ||

( (x == p.x) && (y == p.y) );

}

}

return result;

}

}

class Pair {

int x;

int y;

boolean equals(Object o) {

if (o == null) {

return false;

}

if (this == o) {

return true;

}

if (! (o instanceof Pair) ) {

return false;

}

Pair p = (Pair) o;

return (x == p.x) && (y == p.y);

}

}

Figure 4.8: Two ‘equals’ implementations
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Applications of Dep-Degree

In this chapter we illustrate the effectiveness of our simple indicator for assessing code

changes (refactorings) and for indicating complex dependency structure.

5.1 Assessment before and after Refactoring

Our goal in this section is to show that dep-degree indicates structural improvements. There-

fore, we explore several concrete code examples that we already know are considered good

refactorings (we use them as ‘authoritative’ examples) and test if the indicator agrees. We

first discuss a few classic examples of refactoring from (or based on the techniques present in)

Fowler’s book [9]. Then we extract several examples from an open-source software project.

We selected code commits in which the programmers claim (through the commit logs) that

the change was a refactoring to improve the code structure. We are interested in exploring

if our indicator dep-degree agrees.

There is no other simple indicator for structural improvement available, and therefore,

as done in the last section, we compare dep-degree with the widely used indicators lines

of code, cyclomatic complexity and two other well-known indicators introduced by Maurice

Halstead, i.e. Halstead’s difficulty and effort indicators [12]. Lines of code (LOC) measures

the length of code; cyclomatic complexity (CC) measures the difference of control-flow nodes

and edges; Halstead’s difficulty and effort indicators are based on some preliminary measures

already mentioned in section 2.4. There were many attempts to define measures for code

complexity, but none of them is extensively used in practice. Dep-degree does not measure

code complexity either, but is an indicator for complex dependencies.

24
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Method Version LOC CC DD HD HE

printOwing
Original 20 5 27 12.5 6779.2

Refactored 1 1 1 1.0 20.7

getOutstanding
Original 0 0 0 0.0 0.0

Refactored 7 2 8 9.0 1188.0

getTaxRate
Original 0 0 0 0.0 0.0

Refactored 6 4 1 2.5 212.8

printDetails
Original 0 0 0 0.0 0.0

Refactored 6 1 6 3.4 453.1

log
Original 0 0 0 0.0 0.0

Refactored 1 1 2 1.0 8.0

TOTAL
Original 20 5 27 12.5 6779.2

Refactored 21 9 18 16.9 1882.6

Table 5.1: The ‘Extract Method’ example before and after refactoring

5.1.1 Extract Method

The ‘refactoring’ rule that deserves the name refactoring most is the ‘Extract Method’

rule: for a given code fragment, it recommends to factor out a cohesive, common, possi-

bly repeating ‘chunk’ of code and move it to a new method (function). We revisited (an

extended version of) the method mentioned by Fowler which prints the amount of money

a customer owes (printOwing). We extracted four new methods: ‘getOutstanding’, ‘get-

TaxRate’, ‘printDetails’, and ‘log’ (Figure 5.1).

We now wish to check if we actually improved the code. We calculate the values of the

three indicators LOC, cyclomatic complexity, and dep-degree, in order to assess the code.

For our example of refactoring printOwing we know the result already, as Fowler presents

good arguments why the refactored code is better. Therefore, we need an indicator that

matches this.

Table 5.1 presents the indicator values for lines of code (LOC), cyclomatic complexity

(CC), dependency degree (DD), and Halstead’s difficulty (HD) and effort (HE). The value

0 indicates that the method was empty before the refactoring, i.e., did not exist. Only the

new indicator DD and Halstead’s effort (HE) correctly identify the improvement of the code:

The DD value for printOwing was 27 before, and the sum over all new methods is 18; the
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the total HE value for the refactored version is also smaller than the value for the original

version of printOwing; the other two indicators suggest that the new code is longer (LOC

increased by one from 20 to 21), has a more complicated control flow (CC increased by four

from 5 to 9), and is more difficult overall (HD increased from 12.5 to 16.9).

5.1.2 Inline Method

Sometimes there might be too much ‘indirection’ in the code. For example some methods

(functions) might do simple delegation to other methods, and this can cause confusion or

make the code less readable because it becomes easier to get lost while tracking all the

delegation.

‘Inline method’ is a refactoring that deals with this problem by removing simple or

redundant methods and putting their bodies into the body of their caller. In a way, it is

the reverse of the process in ‘Extract Method’ refactoring.

Another application of this refactoring is when there is a group of badly refactored

methods, which can be inlined to one big method, and then possibly be re-extracted in a

better form.

Figure 5.2 shows an instance of ‘Inline Method’ refactoring. The ‘append’ method

takes an array of strings and a single string object as input, and returns a collection of

strings (ArrayList<String>). After the execution of the method is complete, the returned

collection contains all the string items that belong to the input array with the original order

preserved, plus the single string object appended to the end. Repackaging the array into

‘ArrayList’ is delegated to another method called ‘repackage’. However, repackaging could

simply be done within the ‘append’ method (as shown in the refactored version) because it

is already clear from the signature and the return type of the append method what it does.

Table 5.2 shows that all indicators except HE agree that the refactored version has

simplified the code. This example also shows that breaking a method into smaller ones (e.g.

using a process as in ‘Extract Method’ refactoring) is not necessarily always a good idea. It

requires a good reason to select and extract a chunk of code out of a method and move it

to a new method, and care on how to perform this operation. Otherwise, the code becomes

complicated with the introduction of redundant indirection and additional dependencies.
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// Original Version

void printOwing(Province province) {

Enumeration<Order> e = _orders.elements();

double outstanding = 0.0;

double taxRate;

// calculate outstanding

while (e.hasMoreElements()) {

Order each = (Order) e.nextElement();

outstanding += each.getAmount();

}

// tax rates

switch (province) {

case ALBERTA: taxRate = 0.05; break;

case BRITISH: taxRate = 0.12; break;

case ONTARIO: taxRate = 0.13; break;

default: taxRate = 0.10; break;

}

// print details

System.out.println("Name: " + _name);

System.out.println("Amount: $"

+ outstanding);

System.out.println("Tax: $"

+ outstanding * taxRate);

System.out.println("-------");

System.out.println("Total: $"

+ outstanding * (1 + taxRate));

}

// Refactored Version

void printOwing(Province province) {

printDetails(getOutstanding(),

getTaxRate(province));

}

double getOutstanding() {

double result = 0.0;

Enumeration<Order> e = _orders.elements();

while (e.hasMoreElements()) {

Order each = (Order) e.nextElement();

result += each.getAmount();

}

return result;

}

double getTaxRate(Province province) {

switch (province) {

case ALBERTA: return 0.05;

case BRITISH: return 0.12;

case ONTARIO: return 0.13;

default: return 0.10;

}

}

void printDetails(double outstanding,

double taxRate) {

log("Name: " + _name);

log("Amount: $"

+ outstanding);

log("Tax: $"

+ outstanding * taxRate);

log("-------");

log("Total: $"

+ outstanding * (1 + taxRate));

}

void log (String message) {

System.out.println(message);

}

Figure 5.1: An Example of ‘Extract Method’ Refactoring
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Method Version LOC CC DD HD HE

append
Original 4 1 4 3.3 184.5

Refactored 8 2 12 11.8 1720.1

repackage
Original 7 2 10 11.9 1510.0

Refactored 0 0 0 0.0 0.0

TOTAL
Original 11 3 14 15.2 1694.5

Refactored 8 2 12 11.8 1720.1

Table 5.2: The ‘Inline Method’ example before and after refactoring

5.1.3 Introduce Parameter Object

In many cases a group of parameters tend to be passed (to functions) together. This might

be due to a natural relation between these parameters, or simply because several functions

require all these parameters to perform their tasks. In any case, such situations suggest the

idea of consolidating these parameters into a solid entity (e.g. an object in the context of

object-oriented languages).

The idea represents a refactoring technique which has certain benefits. One advantage is

that it reduces the size of the parameter lists and consequently the difficulty in understanding

a code, since long parameter lists are harder to understand. Another (deeper) benefit is that

once the parameters are bundled together, one would likely notice common manipulations

of the parameter values in the bodies of functions which can be refactored as a behavior

and moved into the new object.

The small example shown in Figure 5.3 illustrates these ideas. However, one has to keep

in mind that the effect of this refactoring and the difference between indicator values would

likely be much more significant for larger and more complicated examples such as those in

the Subsection 5.1.7.

Both the original and refactored code use a ‘painter’ object to draw a line using the

‘Graphics’ type in java ‘awt’ package. The original version simply passes the coordinates

of the line’s end points as well as its width to the painter, whereas the refactored version

uses a parameter object of type ‘Edge’ to transfer the same information to the painter. It

is apparent how the reduced parameter list in the refactored version has made the code

simpler and more readable. It has decreased the dep-degree value (Table 5.3) because the
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// Original Version

ArrayList<String>

append(String[] col,

String newItem)

{

ArrayList<String> result =

repackage(col);

result.add(newItem);

return result;

}

ArrayList<String>

repackage(String[] col)

{

ArrayList<String> result

= new ArrayList<String>();

for (int i=0; i < col.length; i++)

{

result.add(col[i]);

}

return result;

}

// Refactored Version

ArrayList<String>

append(String[] col,

String newItem)

{

ArrayList<String> result =

new ArrayList<String>();

for (int i = 0; i < col.length; i++)

{

result.add(col[i]);

}

result.add(newItem);

return result;

}

Figure 5.2: An Example of ‘Inline Method’ Refactoring

refactored version uses less variables, i.e. the coordinate and width parameters are replaced

by an Edge object. However, the values of LOC and CC indicators remain unchanged. The

value of HD is slightly decreased. HE is also decreased from 740.4 to 474.3.

Assuming that switching the x and y coordinates in the above example is common, as

suggested by the ‘swapAxes’ flag (e.g. to calculate the reflection against the diagonal axis

y = x), this behavior has been represented by a method called ‘swapXY’ within the new

type ‘Edge’.

Method Version LOC CC DD HD HE

putEdge
Original 6 2 14 6.6 740.4

Refactored 6 2 7 6.3 474.3

Table 5.3: The ‘Parameter Object’ example before and after refactoring
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// Original Version

void putEdge(Graphics g, float width,

int xs, int ys, int xt, int yt,

boolean swapAxes)

{

OriginalPainter painter =

new OriginalPainter();

if (!swapAxes)

painter.drawEdge(g, width, xs, xt, ys, yt);

else

painter.drawEdge(g, width, ys, yt, xs, xt);

}

// Refactored Version

void putEdge(Graphics g,

Edge e,

boolean swapAxes)

{

RefactoredPainter painter =

new RefactoredPainter();

if (!swapAxes)

painter.drawEdge(g, e);

else

painter.drawEdge(g, e.swapXY());

}

Figure 5.3: An Example of ‘Introduce Parameter Object’ Refactoring

5.1.4 Parameterize Method

Sometimes it is possible to remove duplicate code by replacing the repetitive or similar pieces

of code with a single method (function) that handles the variations by parameters. This

also increases the flexibility because it makes it possible to deal with new variations simply

by adding parameters. For example, there might be several methods that do similar things

but with different values hardcoded in the method body. One can replace these similar

methods by a single one that uses a parameter for different values.

The example in Figure 5.4 is an extended version of the one by Fowler [9] which is an

instance of this refactoring. The dep-degree value of the refactored version is less than that

of the original one due to the removal of repetitive code and also the dependencies caused

by conditional statements (Table 5.4). Therefore the dep-degree indicator shows that the

refactoring has improved the code. The two indicators LOC and cyclomatic complexity

indicate a small improvement in the refactored version as they are both decreased by one

unit. Both HD and HE also show improvement in the code.

5.1.5 Pull Up Method

Some methods might have similar or identical purposes within subclasses in a class hierarchy.

They might simply return the same results, or even share the same body. This usually

suggests that these methods might be too abstract to belong to the their owner classes, and

that they should be moved to the superclass.
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Method Version LOC CC DD HD HE

baseCharge
Original 17 4 13 15.4 4599.6

Refactored 9 1 5 6.7 1114.5

usageInRange
Original 0 0 0 0.0 0.0

Refactored 7 2 4 4.9 316.2

TOTAL
Original 17 4 13 15.4 4599.6

Refactored 16 3 9 11.6 1430.7

Table 5.4: The ‘Parameterize Method’ example before and after refactoring

This refactoring is called ‘Pull Up Method’. It usually improves the code structure by

removing duplicate code. Even though two duplicate methods might work fine the way they

are, but there is the risk that one might be updated when the other is left forgotten. Also,

the code becomes less readable when crowded with duplicate code.

Figure 5.5 shows the effect of this refactoring on code simplification. The employees of

a company are modeled using a type hierarchy system. It is assumed that each employee

is either an engineer or a salesperson. Each of these job titles is associated with a class

named after it, and these classes are subclassed from a more general type called ‘Employee’.

The Employee interface is a way to handle general references and inquiries to the employee

objects representing the employees of the company. For example, both ‘printInfo’ methods

in Figure 5.5 take an object containing the records of an employee and print his/her name

and work experience. However, in the left example (original version), ‘Employee’ is just a

Java interface containing only the signatures of subclasses’ methods, whereas in the right

one (refactored version) it is an abstract class. This means that the employee data fields

(such as name) and related getter methods (e.g. getName) can be pulled up to the Employee

abstract class and removed from the subclasses. This makes sense since each employee has

a name and a work experience record regardless of his/her job title. It can be observed how

this refactoring affects the way a general inquiry (such as asking for an employee name)

takes place in the code. As shown in Table 5.5, all the indicators confirm that the printInfo

method that uses refactored types is simpler and more understandable than the other one,

because the refactored types remove the need for type matching, as a result of which the if

statements and the related dependencies are omitted.



CHAPTER 5. APPLICATIONS OF DEP-DEGREE 32

// Original Version

double baseCharge()

{

double result = 0.03 *

Math.min(lastUsage(),100);

if (lastUsage() > 100)

{

result += 0.05 *

(Math.min(lastUsage(),200) - 100);

}

if (lastUsage() > 200)

{

result += 0.07 *

(Math.min(lastUsage(),300) - 200);

}

if (lastUsage() > 300)

{

result += (lastUsage() - 300) * 0.09;

}

return result;

}

// Refactored Version

double baseCharge()

{

double result = 0.03 *

usageInRange(0, 100);

result += 0.05 *

usageInRange(100, 200);

result += 0.07 *

usageInRange(200, 300);

result += 0.09 *

usageInRange(300, Integer.MAX_VALUE);

return result;

}

int usageInRange(int start, int end)

{

if (lastUsage() > start)

{

return Math.min(lastUsage(), end) -

start;

}

else

return 0;

}

Figure 5.4: An Example of ‘Parameterize Method’ Refactoring

5.1.6 Replace Conditional with Polymorphism

Polymorphism is a feature of object-oriented programming which removes the need to in-

clude explicit conditional statements when there are objects whose behavior varies based

upon their type. When there is a conditional statement that decides which behavior to

select depending on the type of an object, it is possible to avoid such statement by “moving

each leg of the conditional to an overriding method in a subclass” [9]. Figure 5.6 shows

such an example. In the original version, constants (shown in capital letters) are used to

represent different employee types. However, in the refactored version actual types are used

to denote different employee titles (e.g. engineer, salesperson), each of which is a subtype

of the abstract class ‘Employee’. The method ‘payAmount’, which calculates the salary of
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Method Version LOC CC DD HD HE

printInfo
Original 20 3 15 11.3 3211.9

Refactored 5 1 5 3.6 281.7

Table 5.5: The ‘Pull Up Method’ example before and after refactoring

Method Version LOC CC DD HD HE

payAmount

Original 17 4 10 9.6 2012.1
Engineer 2 1 2 1.5 17.4
Manager 2 1 3 1.5 27.1

Salesperson 2 1 3 1.5 27.1

TOTAL
Original 17 4 10 9.6 2012.1

Refactored 6 3 8 4.5 71.6

Table 5.6: The ‘Replace Conditional with Polymorphism’ example before and after
refactoring

each employee based on his/her title (object type), is overridden with alternative implemen-

tations for each subtype. Polymorphism is used to call the appropriate ‘payAmount’ of an

Employee reference based on its underlying type. Table 5.6 lists the indicator values for the

given example.

5.1.7 Revisions from Code Repositories

In the following we assess several series of refactorings made to a small-sized software project

(CCVisu). The structural improvements resulted from a variety of refactoring schemas,

including ‘Extract Class’, ‘Extract Method’, ‘Move Method’, ‘Move Field’, ‘Parameter Ob-

ject’, and ‘Replace Array with Object’. We refer to the different software versions via SVN

revision numbers. The revisions are conveniently accessible using the following URL:

http://code.google.com/p/ccvisu/source/detail?r=44

where the number 44 is the SVN revision number.

ParseCmdLine. First we consider some refactorings that took place between revisions

28 and 34, i.e. a set of refactorings that were applied step by step to the method main

of the main class: a new type Options was extracted, an instance of which serves as a

http://code.google.com/p/ccvisu/source/detail?r=44
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// Using Original Types

void printInfo(Employee emp)

{

String name = null;

int workYears = 0;

if (emp instanceof Engineer)

{

Engineer engineer = (Engineer) emp;

name = engineer.getName();

workYears =

engineer.getWorkExperience();

}

else if (emp instanceof Salesperson)

{

Salesperson salesPerson =

(Salesperson) emp;

name = salesPerson.getName();

workYears =

salesPerson.getWorkExperience();

}

System.out.println("Name: " + name

+ " - Work Experience (in years): "

+ workYears);

}

// Using Refactored Types

void printInfo(Employee emp)

{

String name = emp.getName();

int workYears = emp.getWorkExperience();

System.out.println("Name: " + name

+ " - Work Experience (in years): "

+ workYears);

}

Figure 5.5: An Example of ‘Pull Up Method’ Refactoring

‘parameter object’ to many constructor calls, and a method parseCmdLine for parsing the

command-line arguments was extracted from the method main and moved to the new type.

Table 5.7 shows the indicator values for the method main of revision 28 and for the methods

main and parseCmdLine of revision 34.

LOC suggests that the refactorings have slightly improved the code, the cyclomatic

complexity suggests that the code became slightly worse after refactoring, and dep-degree

suggests that the code significantly improved. Halstead’s difficulty indicates that the refac-

toring has made the code more difficult, and Halstead’s effort suggests the code has been

improved by the refactoring.

Enums instead of ‘final int’. Revision 20 of CCVisu refactors some code in order

to introduce ‘enum’ (enumeration) types. In older versions of Java, developers had to

‘simulate’ enums by several final integer (‘int’) members, as in the non-refactored code in

Figure 5.6. Since recent versions, Java supports enums natively, and revision 21 transformed

the code accordingly. Table 5.8 shows the effect of this refactoring on the indicator values
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// Original Version

public class Employee {

static final int ENGINEER = 0;

static final int SALESMAN = 1;

static final int MANAGER = 2;

// ...

int payAmount(int overtimePay)

{

int basePayment = _monthlySalary;

switch (getType())

{

case ENGINEER:

basePayment += _experience;

break;

case SALESMAN:

basePayment += _commission;

break;

case MANAGER:

basePayment += _bonus;

break;

default:

throw new RuntimeException(

"Incorrect Employee");

}

return basePayment + overtimePay;

}

}

// Refactored Version

abstract class Employee {

protected int _monthlySalary;

// ...

abstract int payAmount(int overtimePay);

}

class Engineer extends Employee {

@Override

int payAmount(int overtimePay) {

return _monthlySalary * _experience

+ overtimePay;

}

}

class Manager extends Employee {

@Override

int payAmount(int overtimePay) {

return _monthlySalary + _bonus

+ overtimePay;

}

}

class Salesperson extends Employee {

@Override

int payAmount(int overtimePay) {

return _monthlySalary + _commission

+ overtimePay;

}

}

Figure 5.6: An Example of ‘Replace Conditional with Polymorphism’ Refactoring

for the methods getInFormat and getOutFormat. All the indicators agree: this change is

a significant improvement.

Colors. A new type Colors was introduced in revision 38 to better organize the access

of colors and to help simplify the code. Table 5.9 shows the values of the indicators for the

participating methods of this refactoring: all indicators agree that the new version is better,

except for one method where the cyclomatic complexity does not change, and two methods

for which the indicators HD and HE remain unchanged after refactoring.

ParseCmdLine refactored. The method parseCmdLine was further significantly sim-

plified by refactoring a data structure that was frequently used. It decreased the number
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Method Revision LOC CC DD HD HE

CCVisu.main
r28 328 77 512 56.6 554288.2
r34 81 27 64 38.0 78786.1

Options.parseCmdLine
r28 0 0 0 0.0 0.0
r34 215 53 331 32.9 194362.5

TOTAL
r28 328 77 512 56.6 554288.2
r34 296 80 395 70.9 273148.6

Table 5.7: Refactoring ‘parseCmdLine’ from r28 to r34

Method Rev LOC CC DD HD HE

getInFormat
r20 15 5 17 9.5 2449.9
r21 9 2 7 5.8 723.3

getOutFormat
r20 17 6 20 10.0 3068.6
r21 9 2 7 5.8 723.3

TOTAL
r20 32 11 37 19.5 5518.5
r21 18 4 14 11.6 1446.6

Table 5.8: Enum change from r20 to r21

Method Rev LOC CC DD HD HE

ClusterManager.ClusterManager
r37 261 1 186 10.3 30147.9
r38 225 1 168 10.3 30147.9

ClusterManager.refreshInfo
r37 47 20 70 12.5 16000.4
r38 12 2 19 7.5 2425.0

Options.parseCmdLine
r37 173 47 296 29.1 135576.5
r38 164 43 284 28.9 123946.5

ScreenDisplay.ScreenDisplay
r37 495 31 326 15.1 72772.2
r38 456 13 307 15.1 72772.2

TOTAL
r37 976 99 878 67.0 254497.0
r38 857 59 778 61.8 229291.6

Table 5.9: Better color handling from r37 to r38
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Method Rev LOC CC DD HD HE

Options.parseCmdLine

r43 162 43 282 29.0 123164.9
r44 162 43 154 21.2 92120.2
r117 172 45 158 24.3 112473.4
r118 155 45 125 21.6 89918.4

Table 5.10: Improvements from r43 to r44 and from r117 to r118

of variables used in each statement, and encapsulated some unnecessary details behind the

interface of the new data structure. This refactoring took place in revision 44. Another

refactoring was applied to the same method in revision 118 to further improve the method:

method chkAvail was extended by a new feature and got renamed to getNext. Table 5.10

reports that cyclomatic complexity does not notice these changes (value unchanged); LOC

stays unchanged for the refactoring at revision 44. Dep-degree confirms a significant im-

provement in the dependency structure. Halstead’s difficulty suggests that the code has

become slightly more difficult in revision 118 as compared with revision 44, whereas dep-

degree indicates that it has become simpler.

5.1.8 Position objects instead of 3-dim arrays

Another major refactoring was performed step by step throughout the revisions 112 to r117.

Positions in the 3-dimensional space were represented by a 3-dimensional array. During

the refactoring, the code was transformed in order to use objects of a class Position,

which encapsulates the three coordinates, and provides common operations of positions as

vector operations. Many disturbing lines of code were removed from several methods, one

method got removed. More specifically, the code that was implementing operations that

were truly vector operations, got explicitly moved to new methods. Table 5.11 reports that

LOC slightly decreased in total. The value of cyclomatic complexity is slightly higher, i.e.,

would not recommend the refactoring. The value of dep-degree confirms this change as a

structure-improving refactoring. Halstead’s difficulty and effort indicators also suggest that

the refactoring has simplified the code. (The value 0 in the table indicates an empty method

body, again.)
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5.1.9 Summary of Results

Throughout the section 5.1, the new indicator dep-degree, along with four other widely

used or well-known indicators (namely lines of code, cyclomatic complexity, and Halstead’s

difficulty and effort) were evaluated on several examples of refactoring. Some examples are

extended versions of the sample refactorings presented in the refactoring book by Fowler [9];

some others are inspired by the refactoring methods he discusses; and the rest of the ex-

amples are the application of refactorings to the source code of an open-source project,

CCVisu. Each example consists of an initial implementation and a refactored version of it.

The results show that the dep-degree indicator satisfies the expectations and confirms

that in all the given examples the refactorings have improved the dependency structure

of the code. The other indicators sometimes ‘agree’ with the refactoring, but other times

either find the refactoring neutral or vote against it occasionally. Therefore, in comparison

to the indicators lines of code, cyclomatic complexity, and Halstead’s difficulty and effort

which are often used for measuring maintainability and understandability, dep-degree is a

relatively better indicator for assessing code improvements between different versions, e.g.,

by refactoring.

5.1.10 Possible Limitations

There might be some limitations to the newly proposed indicator, dep-degree. Due to the

fact that dep-degree is based on the low-level software dependencies (between program op-

erations), it might not be able to detect certain high-level design improvements, particularly

the changes that hardly affect the code-level dependencies.

Another possible limitation is when there is no variable involved in the program code.

In such cases, the dep-degree value would be zero, since dep-degree measures the number of

reaching definitions for the variables used by each program operation.

Another example where dep-degree might not truly reflect the understandability of the

code is a program in which a variable can be initialized to multiple values depending on

the value of a parameter (e.g. when a switch statement with numerous branches is used to

initialize a variable). In this case, any successor operation that uses the initial value of the

variable is assigned a high indicator value, due to the large number of possibilities involved.

Nonetheless, it is likely that a developer realizes the initialization process quite easily by a

quick look at the program code, which is against the prediction of the indicator and its high
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value.

5.2 Indication of Problematic Code

In the last subsection we applied our indicator to the assessment of code changes as they

occur during refactorings, and showed that the dep-degree values match the developer opin-

ion, and that LOC and cyclomatic complexity are not applicable to assessing refactorings.

We would now like to point out two possible applications for using dep-degree for indicat-

ing problematic code, i.e., to indicate and locate the pieces of code with the most complex

dependencies (which then could be considered for refactoring). The adoption of measures

for refactoring inference has been found to be useful (e.g., [6, 33]), and we believe that our

indicator can be used to complement those approaches.

5.2.1 Identifying problematic operations

Dep-degree for program operations can be applied to single program operations. We imple-

mented a tool that generates a detailed report of the dep-degree values for each operation in

the program. This immediately proposes two possible uses: (a) we can list and inspect the

operations with highest dep-degree values, and (b) we can color (highlight) each operation

in the source code editor according to its dep-degree value.

We have implemented (a) and (b) in an Eclipse plug-in. For (a), our plug-in tool attaches

markers to the left vertical ruler of Eclipse’s main editor. These markers locate operations

with highest dep-degree values in the selected source file. Figure 5.7 shows a snapshot of the

tool where a yellow window has popped up listing the markers on the left vertical ruler of the

editor. The markers summarize the operations with highest dep-degree values. For (b), we

generate a relative color map rgb that assigns to each dep-degree value a color on the scale

from white to red, where 0 is mapped to white with rgb(0) = (255, 255, 255) and a predefined

maximum dep-degree value (ddmax) is mapped to red with rgb(ddmax) = (255, 0, 0). ddmax

can be set for example to 9 (= 7+2), so that any operation with the dep-degree value of over

8 is highlighted as ‘too complicated’ (the number 9 is inspired by Miller’s article regarding

the limit on our capacity to process information [26]). Figure 5.8 shows a snapshot of the

tool where program operations are colored according to their dep-degree values. Operations

with higher values are highlighted with a darker red color.
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Figure 5.7: Markers locating operations with highest dep-degree values

Also, if an operation is selected in the editor, then all defining operations (reaching

definitions) for the selected operation are highlighted.

5.2.2 Identifying problematic functions

Dep-degree for program functions can be applied to yield a value for each program func-

tion. The application ideas for the operation level can be ‘lifted’ to function level, i.e,

we can generate the dep-degree values for program functions and (a) look for outliers in

the sorted/ranked list of program functions and annotate functions with their dep-degree

values, or (b) assign colors to the graphical objects that represent functions in software

visualizations.
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Method Rev LOC CC DD HD HE

minimizeEnergy
r112 91 15 125 62.7 185610.9
r117 86 15 94 45.4 105963.5

getDirection
r112 44 6 86 43.7 62779.2
r117 34 4 70 35.0 37983.2

addRepulsionDir
r112 20 7 29 20.9 13464.1
r117 19 6 25 16.3 8953.3

computeBaryCenter
r112 11 1 12 10.7 2167.0
r117 5 1 4 4.2 247.0

getDist
r112 4 1 10 9.8 1758.5
r117 3 1 7 8.4 752.8

getDistToBaryCenter
r112 4 1 10 9.8 1758.5
r117 0 0 0 0.0 0.0

Position (Class)
r112 0 0 0 0.0 0.0
r117 26 6 56 31.5 2238.9

TOTAL
r112 174 31 272 157.6 265779.7
r117 173 33 256 140.8 156138.7

Table 5.11: Improved Position from r112 to r117
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Figure 5.8: Coloring program operations according to their dep-degree values



Chapter 6

Tool Implementation

In this chapter we present a software tool that we implemented to support the evaluation

of our indicator [4]. We also discuss the complexity of the algorithm we developed for the

implementation.

6.1 Algorithm

It is usually easy to manually calculate the values of the dep-degree indicator for small or

even some medium-sized programs. However, for larger and more complicated programs

this might not be feasible.

We have developed a software tool to automate the calculation of the proposed indicator

for Java programs. We implemented a simple and efficient algorithm to compute the reaching

definitions. However, one should note that only an approximate calculation of the set of the

reaching definitions is possible. The precise calculation of the reaching definitions requires

alias analysis, a technique in compiler theory that is used to determine whether a memory

location is referred to by different variables (or pointers). But the problem of statically

determining alias information has been proved to be undecidable [22,32].

The CFG of a program can be obtained through its abstract syntax tree which is created

while parsing the source code. In order to evaluate the indicator value, one has to calculate

for each program operation the size of the set of the reaching definitions of that operation.

For each variable used by an operation, the CFG can be traversed backward using a proce-

dure based on the depth-first search (DFS) algorithm, starting from the node representing

the operation. While running the ‘backward’ DFS, the graph traversal of the path currently

43



CHAPTER 6. TOOL IMPLEMENTATION 44

being visited halts as soon as a reaching definition with respect to the variable is discovered.

The DFS itself continues until all the accessible paths are explored.

Algorithm 1 Computing the reaching definitions
for each Program Operation in the Function do

for each Variable Used by the Program Operation do
Run A Backward DFS on the Control-Flow Graph

end for
end for

Consider a program function and let the directed graph G and the integers s and o be:

G = (V,E): The control-flow graph of the function with the set of vertices V and the

set of edges E

s: The total number of program operations within the function

o: The maximum number of variable occurrences in any program operation

The (backward) DFS algorithm takes O(|V | + |E|) every time it is invoked. Therefore

the complexity of the algorithm which calculates the dep-degree value for the function would

be O(so(|V |+ |E|)).
We can assume – at least for structured code – that the difference between the number

of vertices and edges in a CFG is negligible. For example a method with a cyclomatic

complexity of over 10 is considered too complicated [25]. This means:

cc = |E| − |V |+ 2 ≤ 10 =⇒ |E| − |V | ≤ 8 (6.1)

Therefore the complexity of the algorithm becomes O(so|V |).

6.2 Features and Architecture

Our implemented tool integrates with the Eclipse IDE in the form of a plug-in, and is

capable of interacting with the main source code editor of the development environment.

The plug-in uses the Eclipse Java Development Tools (JDT) to parse the selected source

file within the active editor and create the abstract syntax tree. Then, the control flow

graph of the program is produced by traversing the syntax tree using the available visitor

class (as in Visitor pattern) provided by JDT. The set of reaching definitions are computed
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for each node in the CFG and the indicator value is calculated for all program operations

accordingly.

The tool features a nice GUI and highlights atomic operations of a program in its source

text within the editor based on their indicator values. The higher dep-degree value an

operation has, the darker is the red color that highlights that operation. It is also possible

to view the exact indicator value for each operation in a dedicated text field. By clicking

or selecting a program statement in the editor, the set of all the operations representing

the reaching definitions of the selected statement are highlighted. The tool also generates

a text result which contains the indicator value for each method in the class file and each

statement within each method along with the set of reaching definitions of that statement.
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Chapter 7

Overview

Many software developers use a syntactical ‘diff’ in order to perform a quick review before

committing changes to the repository. Other developers are notified of the change by e-mail

(containing diffs or change logs), and they review the received information to determine if

their work is affected. We lift this simple process from the code level to the more abstract

level of dependencies: a software developer can use our software tool (called CheckDep) to

inspect introduced and removed dependencies before committing new versions, and other

developers receive summaries of the changed dependencies via e-mail. We find the tool useful

in our software-development activities and would like to make the tool available to others.

Our tool does not claim any novel concept, and is considered a purely practical contribution.

The results of this study are published in a corresponding conference paper [3].

The objective of CheckDep is to provide feedback on the consequences of code changes

in terms of dependencies. Our project was motivated by a concrete problem in an industrial

project: controller software was continuously extended for new product versions, and the

originally well-designed software was degenerating. The problem for maintenance in this

project is the amount of inter-dependencies between the various subsystems. A first measure

to approach the problem is to make sure that no new dependencies are introduced, and

therefore all new changes (commits) are inspected for dependency reduction. CheckDep

provides a list of changes in the dependency relations for any two versions of the project.

A second measure is to continuously refactor the system – whenever the product cycle

allows – in order to stepwise transform the system to a better subsystem structure, and to

evaluate every refactoring step with respect to the amount of dependencies introduced and

removed. CheckDep compares the workspace copy with the head revision before check-in,

47
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and notifies the developer of introduced dependencies. A change that reduces the number

of inter-subsystem dependencies is considered good under this measure, and a change that

introduces more new dependencies than it removes is considered suspicious and the developer

is alarmed. In addition to immediate textual feedback, we provide a clustering visualization

in order to locate and investigate the dependency changes.

CheckDep can be used as a command-line tool or as Eclipse plug-in. Command-line

invocations are necessary in automatic processes, such as being called from a Subversion

hook script automatically after each commit. The Eclipse plug-in requires the user to work in

two steps: First, the user has to specify the dependency types to be extracted (combination

of call, inheritance, and field access) and the two versions to compare (either by paths of

working directories, or by URLs of Subversion repositories). Second, the processing is done

and the textual and visual results are shown. The textual results are a brief summary of

the dependency changes and a list of all added and removed dependencies in RSF (Rigi

Standard Format). The visualization is based on a clustering layout (CCVisu1) that easily

identifies the area of change in a (large) project graph. CheckDep is free software, released

under the Apache 2.0 license.

Many existing tools have addressed similar problems (Creole 2, DA4Java 3, DepAn 4,

DependencyFinder 5). For example, ‘Creole’ is an Eclipse plugin that integrates ‘Shrimp’

– an application for visualization and exploration of software architecture – into Eclipse

platform’s Java Development Tools. ‘D4AJava’ uses nested graphs and special filterings

to present static dependencies between software artifacts (elements), easing the task of

understanding large dependency structures in the process of incremental composition of

graphs. Dependency Finder is a toolset for analyzing compiled Java code, and can be used

to extract dependency graphs. Unlike Creole and D4AJava, it does not feature visualization

of the dependency graphs, but returns the result in various known formats such as XML,

HTML, GraphML and regular text which might be used by other programs (e.g. to visualize

the dependencies).

The contribution of CheckDep is to provide a small tool for analyzing the change of

1http://www.sosy-lab.org/∼dbeyer/CCVisu/
2http://www.thechiselgroup.com/creole/
3http://seal.ifi.uzh.ch/240/
4http://code.google.com/p/google-depan/
5http://depfind.sourceforge.net/
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dependencies in different versions (via a smooth integration with Subversion). A unique

characteristic of CheckDep is its special visualization feature that enables the tool to help

navigating large dependency graphs, and allows the user to explore a ‘meaningful’ layout in

which related artifacts are displayed closely together.



Chapter 8

Features

Figure 8.1 illustrates the architecture of the CheckDep tool and its components. An arrow

in the figure indicates an inquiry from the component located at the head of the arrow.

Here is a list of the main features in CheckDep and their descriptions:

Dependency Differences. The goal of CheckDep is to provide a ‘diff’ on a more

abstract level and therefore it focuses on the difference between the dependencies of different

versions.

Subversion Integration. CheckDep can be applied to different local workspace copies,

but also to remote version repositories (specified by URL and revision number via choice

list on the configuration screen).

Visualization. For the visual presentation of the dependency differences, we obtained

the best results using a clustering layout. Software artifacts (classes, methods, fields) are

drawn as circles which are placed close to each other if they are coupled by many dependen-

cies, and placed at distant positions if they are not coupled by many dependencies. An edge

represents the dependency between the two connected artifacts. CheckDep highlights new

dependencies using red edges and removed dependencies using green edges. This reflects

the subsystem structure of the software, and at the same time helps the user find the parts

of the system that have changed and navigate through the graph.

Graph Query. In order to better achieve its main goal as a dependency ‘diff’ tool,

CheckDep provides a simple graph query mechanism that allows a user to focus on the

graph changes only. For example the user can have CheckDep show a minimal subgraph

that contains all the added or removed edges in the most recent view. In other words, if
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the user is using the zoom feature to view a subgraph (possibly representing a subsystem),

he/she can further restrict the layout to only show a subset of the subgraph that holds all

the new or old dependencies. It is possible to view only added or removed vertices (artifacts)

as well.

Extraction of Dependency Graphs. CheckDep uses a fact extractor that is based

on DependencyFinder to retrieve relations between methods and fields. We extended

the fact extractor to differentiate between call, inheritance, and field dependencies. This

enables us to select any of the three dependency types for the analysis.

The fact extractor in CheckDep provides accurate and detailed results which allows

generation of robust dependency graphs. The reason such accurate dependency analysis

is adopted is to avoid ambiguity caused by certain features such as method overloading

which could create duplicate entries (vertices) for the same entities (artifacts). This choice,

however, is a trade-off with the performance. Nonetheless, our analysis of the tool – while

operating on the source code of small and medium-sized software – demonstrates an accept-

able performance (Table 8.1). The performance tests are run in a computer with 4 GB of

memory and a dual core processor running at 2.10 GHz.

To analyze CheckDep’s performance, three open source java projects were chosen as

input for the tool, namely CCVisu, CPAChecker1 and Chic4web (a web service verification

tool). For each project, the source code of two different revisions were compared against

each other. Table 8.1 shows for each project the total number of distinct types (classes),

the total number of distinct members, the revision number, the times in seconds needed for

check-out, build, and fact extraction. The time required for visualizing the results depends

on the number of iterations taken by the energy minimizer algorithm. The more iterations

are taken by the algorithm, the more accurate layout is calculated. However, the number

of iterations can be restricted according to the user’s preference. Usually 100 iterations are

enough to obtain a reasonable layout.

1http://cpachecker.sosy-lab.org/
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Figure 8.1: CheckDep Architecture

project (types / members) rev co bld extr

CCVisu (236 / 1296) 28 26.4 6.2 4.834 117 1.4

CPAChecker (680 / 4656) 569 35.5 12.4 12.3574 33.1 3.0

Chic4web (133 / 1198) 114 65.2 0.9 2.9120 84.8 0.8

Table 8.1: Tool performance on open-source projects (all times are given in seconds)
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Applications of CheckDep

In this section we list a few useful applications of CheckDep.

9.1 Development

The tool can be used to compare the developer’s working copy against the head revision of

the repository with respect to dependencies, before committing new changes to the reposi-

tory. The differences in dependencies can be investigated graphically (clustering layout with

changed dependencies highlighted) or textually. Filters and zoom-in can be used to restrict

the result to a certain part of the software. A search feature can be used to locate specific

software elements in the graphical view.

9.2 Refactoring

The clustering layout arranges the software artifacts using well-defined distances, based

on their relatedness in the dependency graph. This is useful for inspecting and validating

refactoring results, where only a subset of related software artifacts are changed together.

The artifacts that participate in a refactoring are related, and therefore, they are closely

placed in the layout and easy to locate. The colored edges are highlighting the dependency

changes that a refactoring is responsible for. Short edges are not very important, because

the artifacts that are placed closely together are already related. The longer an edge is, the

more important the dependency is: very long edges represent inter-subsystem dependencies,
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Figure 9.1: A ‘pull-up method’ refactoring removes 6 dependencies (green) and adds 3
(red), which improves the software structure

and removal of such a dependency is a large gain, and introducing such a dependency is de-

generating the overall structure of the system in most cases (according to classic definitions,

a good structure consists of cohesive subsystems that are loosely coupled). Figure 9.1 shows

how CheckDep illustrates a local refactoring (lift getName and checkInAtWork to Employee).

9.3 Structure Assessment

In addition to many existing views for type hierarchy and call graphs in Eclipse, Check-

Dep integrates visual clustering (à la CCVisu) into Eclipse. In difference to the available

hierarchical or aesthetic layouts, this additional view reflects the relatedness of artifacts by

short distances, and separation by long distances. CheckDep highlights the changed part
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of a system in Fig. 9.2.

9.4 Design Change Identification

Recently an approach was introduced to automatically determine if a change in a source

code impacts the design (i.e., UML class diagram) of the related system [13]. Source changes

that affect the static design model of a software system (represented by a UML diagram)

in a meaningful way are called ‘design changes’. According to the paper, ‘design changes’

are identified in a series of steps, i.e. first by exploring the addition or deletion of classes,

then methods, and finally changes in dependency relationships (e.g., generalization, associ-

ation). This is where CheckDep comes in: most of the aforementioned changes are directly

identifiable and highlighted within various dependency graphs provided by CheckDep. For

example added or deleted ‘generalization’ can be realized by added or removed dependen-

cies and nodes in the inheritance graph; also, the added or removed dependencies in the

type-field graph denote added or deleted ‘associations’.

Not only is it possible to obtain such information from a simple textual output by

CheckDep, but the visualization unit also comes in handy for manual, yet convenient ex-

amination of changes in the related graphs (e.g. to locate and analyze design changes in

local subsystems).

9.5 Subversion Dependency Report

Although CheckDep was originally developed as an interactive tool, we found the ability to

automatically generate reports about changes in the dependencies very interesting. This is

implemented by adding a command-line call of CheckDep to the Subversion post-commit

hook script, which considers the head versus the second-last revision for dependency com-

parison. The report contains a summary with dependency statistics (number of removed

and added edges in the dependency graph).
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Figure 9.2: Localizing dependency changes; discs represent software artifacts (e.g.
methods); the rectangle indicates a zoom area, containing most of the changed artifacts

which are colored in red or green.



Chapter 10

Conclusion and Future Work

10.1 Conclusion

Dep-degree is the number of dependency edges in the use-def graph, and is defined for single

program operations as well as for program functions. This indicator is easy to understand,

simple to compute, flexible and scalable in its application, and independently complementing

other indicators; also, it is solely based on the facts present in the program source code and

can be calculated automatically.

We evaluated the proposed indicator (dep-degree) from two perspectives:

• First, we provided several examples, each consisting of two alternative implementa-

tions for the same task (e.g. a function). In each example, we showed that one imple-

mentation is easier to understand and has a better internal structure than the other

one using several good reasons and strong arguments. We calculated the dep-degree

values for both implementations of each example to verify whether the ‘simpler’ im-

plementation is assigned a lower dep-degree value, meaning that it has a less complex

dependency structure.

• Second, we compared the dep-degree indicator with four other widely used and well-

known indicators, i.e. lines of code, cyclomatic complexity, Halstead’s difficulty and

effort which are often used for measuring maintainability and understandability.

Our experiments show that dep-degree is a better indicator for readability and under-

standability of the code as compared with the four other indicators, and that it better

reflects the improvements in the program structure.
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In addition, we presented CheckDep, a small tool for analyzing dependency changes

between different versions of software. Many software developers use a syntactical ‘diff’

in order to perform a quick review before committing changes to the repository. This

simple process is lifted from the code level to the more abstract level of dependencies (i.e.

dependencies between classes and functions). CheckDep uses a meaningful clustering layout

to visualize dependency graphs which makes it a unique and notable tool among other related

software.

10.2 Future Work

Dep-degree measures the number of edges in a use-def graph. Our experiments show that

dep-degree is a promising and interesting indicator for code improvement and complex

dependency structure. We do not claim that dep-degree is a measure for program complexity.

We keep it for future work:

• to perform a careful empirical study that investigates whether the finding of our initial

experiments apply in general; perhaps we can establish that dep-degree truly reflects

an important aspect of program complexity and that dep-degree could be used as a

complementing indicator of program complexity.

• to investigate whether dep-degree can be used to detect a need for refactoring, and to

automatically infer the appropriate refactoring methods to improve the code.

• to study and extend the integration of dep-degree as an Eclipse plugin to make it

available to others.
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