

DISTRIBUTED INTELLIGENCE SYSTEMS
FOR DEVICE INTEGRATION AND CONTROL

by

Kevin Thomas
Bachelor of Engineering, Anna University, 2005

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

In the
School of Engineering Science

© Kevin Thomas 2010

SIMON FRASER UNIVERSITY

Spring 2010

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

 ii

APPROVAL

Name: Kevin Thomas

Degree: Master of Applied Science

Title of Thesis: Distributed Intelligence Systems

 for Device Integration and Control

Examining Committee:

 Chair: Dr. Mirza Faisal Beg

 Dr. William A. Gruver
Senior Supervisor

 Dorian Sabaz
Supervisor

 Dr. Ljiljana Trajkovic
Supervisor

 Dr. Craig Scratchley
Internal Examiner

Date Defended/Approved: ______April 20, 2010_____________________

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

 iii

ABSTRACT

Over the last quarter of a century, society has moved towards an immersion into

digital technology. Despite the sophistication of current technology, integration and

interoperability between digital and non-digital devices and equipment is both an existing

problem, and a growing one. The root cause is the conventional paradigm based on

highly centralized platforms for integration and operability.

This thesis proposes an alternate approach for device control using a Distributed

Intelligence System (DIS), presenting it as a viable alternative that enables entities to

work together in an intelligent manner to achieve user-defined global and local system

objectives. It integrates prior research efforts to develop hardware and software for a

real-world DIS, to form a complete system architecture, and applying the same to a

practical scenario of a simple security system. Additionally, it examines some of the

practical challenges and obstacles experienced over the entire systems development

cycle of developing a DIS.

Keywords: peer-to-peer, P2P, distributed intelligence systems, holonic,
distributed control, holon, holonic system

Subject Terms: systems engineering, systems integration, cybernetics

 iv

DEDICATION

To:

My only true and eternal God and Father, revealed to all humanity as

Jesus Christ His only begotten Son, Alpha and Omega, the Grand Weaver of

all life and the Ultimate Systems Architect and Engineer, who brought into

being by the power of His Spirit all that exists with three words: “Let there

be…”

And there was.

 v

ACKNOWLEDGEMENTS

To Dr. William A. Gruver: Thank you for taking me on as a student, and giving

me the opportunity to work with you to accomplish all that I have been able to.

To Dorian Sabaz: Thank you for your unwavering support, guidance and

patience in showing me what it means to set the bar high, and jump.

To Dr. Ljiljana Trajkovic: Thank you for the wonderful lab facilities you allowed

me to use during the course of my research work, and your dedication in your teaching.

To Colin: Thank you for all your prior work on HTP, that set proved invaluable in

my own work, for your help and encouragement.

To my friends in SFU Engineering Science: Thank you for all your friendship and

help over the last 3.5 years of my MASc program.

To my brothers and sisters at SFU C4C and UBC C4C: Thank you for all that you

have been to me!

To Rick and Barb Pearson: Thank you for being my parents-away-from-home, for

setting the Gold Standard to which I aspire, through your hospitality, love and support

during my time here.

To my beloved Father, Mother and sister: Thank you for all your encouragement,

patience and support during the uphill battle of my Master‘s degree.

To my great God and Heavenly Father: My utmost efforts to say ‗Thank You‘ for

Your faithfulness and all that You have taught me would be stammering at best. There

could not have been a greater lesson throughout the whole experience of graduate

school, than the assurance that whatever happens, I am and always will be my Father‘s

son.

 vi

TABLE OF CONTENTS

Approval .. ii

Abstract .. iii

Dedication .. iv

Acknowledgements .. v

Table of Contents .. vi

List of Figures .. ix

List of Tables ... xi

Chapter 1: Systems Engineering .. 1

1.1 Introduction .. 1

1.2 Types of Systems Today .. 2

1.2.1 Drawbacks of Centralised Systems .. 3

1.2.2 Examples .. 6

1.2.3 Distributed Intelligence System ... 8

1.2.4 Peer-to-Peer Systems ... 8

1.2.5 Extension from P2P to DIS ... 9

1.2.6 Examples .. 10

1.3 Thesis Description .. 11

Chapter 2: System Architecture and Design .. 12

2.1 Introduction .. 12

2.2 Architecture Selection .. 12

2.3 Architecture Considerations and Requirements 16

2.3.1 Flexibility ... 22

2.3.2 Scalability .. 23

2.3.3 Security ... 24

2.3.4 Robustness ... 24

2.3.5 Cost .. 25

2.3.6 Administration ... 25

2.4 Design Specifications and Considerations 28

2.4.1 Knowledge .. 34

2.4.2 Rules ... 35

2.4.3 Behaviour .. 35

2.5 Distributed Control .. 41

2.6 Conclusion of Architecture and Design Process............................... 46

Chapter 3: System Implementation ... 48

3.1 Introduction .. 48

 vii

3.2 Hardware Selection .. 48

3.3 Holon Board ... 49

3.4 Communications/Interface Board ... 53

3.5 Equipment .. 57

3.6 Software Selection ... 61

3.7 Holonic Technology Platform (HTP) ... 62

3.8 Communications/Interface Board ... 75

3.9 Holonic Unit Integration .. 80

3.10 Summary of Implementation Process ... 83

Chapter 4: Analysis .. 85

4.1 Introduction .. 85

4.2 Implementation Difficulties ... 85

4.2.1 Hardware .. 85

4.2.2 Software .. 88

4.3 System Performance and Limitations ... 90

Chapter 5: Conclusion ... 93

5.1 Introduction .. 93

5.2 DIS Development Cycle ... 93

5.3 Improvements and Future Work ... 95

5.3.1 Hardware .. 95

5.3.2 Software .. 97

5.4 Possible Specifications of a Future HU .. 98

5.5 Final Evaluation and Summary... 99

Appendices ... 100

Appendix 1: Partial Ordering Using Lattices .. 101

Appendix 2: Technologic Systems TS-7300 SBC ... 104

Appendix 3: Device Agent Configuration File .. 105

Appendix 4: RFID Subsystem Configuration File .. 106

Appendix 5: File Handler Source Code Listing .. 108

Appendix 6: File Parser Source Code Listing .. 111

Appendix 7: File Parameter Retrieval Source Code Listing 115

Appendix 8: File Display Source Code Listing ... 117

Appendix 9: File Writer Source Code Listing ... 118

Appendix 10: Run Script File Source Code Listing .. 119

Appendix 11: Serial Interface Access Class Source Code Listing 121

Appendix 12: Serial Interface Configuration Source Code Listing 124

Appendix 13: RFID Reader Access Source Code Listing 125

Appendix 14: RFID Reader Configuration Source Code Listing 130

Appendix 15: RFID Tag Reading Source Code Listing 132

Appendix 16: RFID System Embedded Source Code Listing 137

Appendix 17: Device Agent, Database Master Source Code Listing 148

Appendix 18: Device Agent Source Code Listing .. 150

Appendix 19: Device Agent Run DIS Event Source Code Listing 152

Appendix 20: Device Agent Run DIS Event Handler Source Code Listing 154

Appendix 21: Device Agent Run DIS Event Listener Source Code Listing 162

 viii

Appendix 22: Motion Sensor Signal Detection Source Code Listing 163

Reference List ... 166

 ix

LIST OF FIGURES

Figure 1.1: Example of centralised framework for controlling devices. 3

Figure 1.2: Example of P2P framework for controlling devices. 10

Figure 2.1: Centralised, Decentralised and Distributed Systems
architecture. ... 14

Figure 2.2: Distributed system architecture of a security system
application. .. 15

Figure 2.3: Abstract representation of a generic node. 17

Figure 2.4: Holon-Agent architecture. ... 18

Figure 2.5: DIS security system architecture with holons and agents. 20

Figure 2.6: Requirements of a DIS architecture. ... 27

Figure 2.7: UML sequence diagram of generic event-triggered process. 29

Figure 2.8: Hypothetical topology of peers within a distributed
architecture. ... 30

Figure 2.9: Agents operating within a DIS security system. 32

Figure 2.10: Abstract represent of Device Agent and generic device. 34

Figure 2.11: UML activity diagram of Device Agent. 36

Figure 2.12: Template for Device Agent. ... 37

Figure 2.13: Holon-Holon and Agent-Agent interaction model. 39

Figure 2.14: Hasse diagram for a DISC security system. 43

Figure 2.15: Changes in the lattice upon detecting movement. 44

Figure 2.16: Partial ordering and distributed control with four-node
lattice. .. 45

Figure 2.17: Diagram of possible security policy. .. 47

Figure 3.1: Mapping of architecture specifications to hardware. 49

Figure 3.2: Holon board of the Holonic Unit. ... 50

Figure 3.3: UML Use-Case of Holon Board acting on Communications
Board. .. 54

Figure 3.4: The TS-7300 SBC from Technologic Systems. 55

 x

Figure 3.5: Block diagram of DIS security system hardware. 57

Figure 3.6: Motion sensor with infrared sensor and LM324N. 58

Figure 3.7: Output signal from LM324N of motion sensor. 59

Figure 3.8: Completed interfacing of motion sensor and TS-7300. 59

Figure 3.9: RFID reader. ... 60

Figure 3.10: Interfacing of Axis 210, TS-7300 SBC and Holon Board. 61

Figure 3.11: Architecture of Holonic Logistics System under HTP. 63

Figure 3.12: Modifications made to HLS architecture. 64

Figure 3.13: Architecture of the Device Agent. .. 65

Figure 3.14: Event Handling by the Device Agent. .. 69

Figure 3.15: Architecture of implemented RFID subsystem........................... 72

Figure 3.16: UML activity diagram of RFID subsystem operation. 74

Figure 3.17: UML activity diagram of embedded C program. 80

Figure 3.18: Combined component listing of Holonic Unit. 81

Figure 3.19: Snapshot operation on Network Camera HU............................. 83

Figure 4.1: Repair work required on a Holon Board. 88

 xi

LIST OF TABLES

Table 1.1: Drawbacks experienced in large centralised systems..................... 6

Table 1.2: Benefits and challenges presented by the P2P framework. 11

Table 2.1: Comparison of DIS and multi-agent architectures......................... 22

Table 2.2: Comparison of different system architectures. 28

Table 2.3: Division of responsibilities between holons and agents. 33

Table 2.4: Agent Registration Table and Holon Event Table. 40

Table 3.1: Comparison of various JVM implementations. 53

Table 4.1: Results of timing tests conducted on DIS. 91

 1

CHAPTER 1: SYSTEMS ENGINEERING

1.1 Introduction

Since the inception of the Information Age over the last quarter of a century,

society has moved towards an increasing immersion into digital technology. Despite the

sophistication of current state-of-the-art, integration and interoperability between digital

and even non-digital devices and equipment remains an existing and growing problem.

The root cause is the paradigm that designs technology systems such that they are

reliant upon highly centralised frameworks for integration and operability.

It is possible to formulate a strong argument for the effect of highly hierarchical

and centralised order of human societies upon a correspondingly centralised sociological

structure, feeding into the political and therefore mechanical, and eventually

technological inventions and methodologies of the present. Challenges have risen

against this strong reliance upon centralised structures from time to time. For example,

ARPANET, the original framework of the internet, was essentially a peer-to-peer network

[1]. However, in what could be ascribed to a combination of sociological and

technological forces, this original system later had forms of centralisation overlaid upon it

(e.g.., servers), forcing it to support an inherently different architecture.

Breaking long established paradigms, such as systems reliant upon centralised

control, is a challenge in itself. The advent of modern electronics resulted in the

commitment of great effort into the construction of highly centralised systems, such as

web servers, file servers, centralised databases and master controllers in automation, to

name a few. One of the consequent problems of this established paradigm manifest in

the present state of affairs, is the design of electronic components and devices such as

CPUs, printers and manufacturing equipment to work within the context of this

centralised architecture. Thus, the development of a system operating on a

fundamentally different paradigm, while using technology inherently centralised nature,

requires one to make compromises, implement inefficient strategies and constrain

architectural decisions.

 2

This thesis investigates these issues, proposing an alternate approach using a

Distributed Intelligence System (DIS) [70] that employs a fully distributed, peer-to-peer

architecture. Through an implemented example of a DIS, it aims to show that such a

system is a viable alternative that enables entities to collaborate, co-ordinate and co-

operate with each other in an intelligent manner to achieve user-defined global and local

system objectives. It also examines the modifications required to current technology to

implement a DIS, and possible avenues of carrying them out.

1.2 Types of Systems Today

The development of contemporary cybernetic theory [2, 3, 4, 5] in the early 20tth

century found a major field of application in the implementation of systems for control of

various equipment and devices. The progressive shift in the primary controlling and

signalling mechanism from mechanical to electrical resulted in devices of greater

complexity and capability. It consequently became possible to progress from stand-alone

devices to the interconnection and integration of devices to form large systems with the

purpose of fulfilling a particular objective. This affected systems developed and

implemented for the purpose of oversight and fulfilment of the objective. It was required

that they be able to provide increased functionality, and handle the increasing complexity

of managing the underlying interactions of many devices working together. Systems

architected for control and oversight purposes underwent significant changes in order to

meet these imposed constraints.

Systems architecture began to assume a centralised form, relying upon an

underlying framework that concentrated command, control, communications and

intelligence within controller entities tasked with managing a large system of essentially

‗dumb‘ devices. This is a ‗Master/Slave‘ or ‗Client/Server‘ [6 - 8] framework. Later

attempts at proposing alternatives to highly centralised Client/Server systems involved

the use of frameworks where entities were potentially functionally or geographically

distributed, communicating with each other over a network using messages. These

solutions supposed that such a ‗Distributed System‘ [6, 7, 9-11] might overcome or

mitigate some of the problems experienced when constructing large systems using

centralised frameworks. Systems implementing such solutions saw some perceptible

improvements, but they were not of the significant magnitude anticipated; their

 3

fundamental architecture retained aspects of centralisation and consequently, the

problems associated with the same.

1.2.1 Drawbacks of Centralised Systems

Along with growth in size and complexity, limitations emerge in the usefulness of

designing systems using a centralised framework, shown as an example in Figure 1.1

[12] and outlined below.

Figure 1.1: Example of centralised framework for controlling devices.

1. Controller Capability

Any upward scaling in addition of devices or device complexity requires a

corresponding increase in sophistication of a controller‘s capabilities [13, 14]. Both

scenarios demand that a controller entity become increasingly powerful in terms of

 4

processing power; speed of response; detailed knowledge acquisition of devices under

its jurisdiction; decision-making and communication. Addition of controller entities may

mitigate some of the load experienced over the short term, but is still a temporary

solution and does not address the underlying shortcomings. Controllers operating within

a centralised framework cannot accommodate limitless expansion of such capabilities.

Upward scaling degrades controller performance and negatively affects system

operation as a whole.

2. Resource Management

Proper operation of a system is dependent on the availability of resources in

sufficient quantities, such as storage space, bandwidth for communication and available

energy, among others [15]. Controllers tasked with exercising control and oversight must

manage finite resources in such a manner that allows for smooth operation, while

provisioning appropriate reserves for unexpected situations. A centralised system, where

new devices do not contribute to the pool of resources and depend on controller entities

to manage and provide resources, is thus limited in its capability for growth.

3. Robustness

Increasing complexity and interconnection of devices to form large systems

increased the possibility for failure during operation. As the paradigm of constructing

systems moved towards the use of a centralised framework, sophistication of controller

entities allowed them to take increasing responsibility for the robustness of the system.

However, focusing increasing concentration of capability and responsibility within

intelligent controllers supervising ‗dumb‘ devices became a flaw. Failure of a controller

left the devices under its jurisdiction stranded and degraded system operation [16].

Failure of a number of controllers severely impeded system operation or brought it to a

halt.

4. Cost

Increasing reliance upon a sophisticated centralised framework also revealed

incurred cost as a drawback during initial implementation as well as expansion phases

[17, 18]. Implementation of the system in its initial form required the prior existence of a

complete infrastructure (encompassing services such as controllers, communications,

redundancy, storage, administration, maintenance and support among others) before

devices could operate together. With increasing application to realising large systems,

 5

the initial investment cost became a significantly unappealing factor. Furthermore, future

expansion required additional investment in supporting infrastructure for new equipment

before integration with the existing system could occur. Cost became prohibitive where

regular maintenance and upgrading of several components of large systems had to be

undertaken.

5. Security

It is required that systems for important applications be kept secure from

unauthorised or hostile access, that intends to compromise part or all of system

operation. Examples include, but are not restricted to, applications developed for energy

and utilities, medical and healthcare, defence, manufacturing, business and commerce,

finance, education, transportation, law and government. As large systems such as these

became progressively reliant upon centralised frameworks, securing them became

correspondingly difficult; the potential for inflicting damage if compromised by an intruder

paralleled increasing sophistication of entities in the system.

6. Administration

System administrators require regular generation and presentation of relevant

information pertaining to system events, device and controller status, resource

management, overall system performance and other details. In addition, modification of

the system configuration may be necessary from time to time. The trend in systems

utilising centralised frameworks is to provide dedicated entities at which such services

are concentrated. However, the difficulty of administration of a centralised system

increases with scale [17]. Increasing flow of information to administrative entities

burdens finite system resources and capabilities. Modifications that affect system

operation make administration an increasingly complex decision-making process,

especially in situations requiring numerous changes throughout the system.

Administrative changes require propagation of instructions back to controller entities,

placing further overhead on the system infrastructure. Cost extracts a significant penalty

upon centralised administration, during initial implementation and future scaling of the

same.

Table 1.1 summarises the discussion thus far.

 6

Table 1.1: Drawbacks experienced in large centralised systems.

Centralised
Feature

Drawback in a Centralised Framework

Controller
Capability

Increasing central sophistication needed

Resource
Management

Burden on contollers to manage limited resources

Robustness Failure of controllers leaves ‗dumb‘ devices stranded

Cost Large initial investment in supporting infrastructure

Security Compromised Feature Effect

Controller Entity Local disruption or halt of device
operation

Communications Monitoring of system-wide
communications

Data Access to system information and
records

Administration Modification of system-wide operation

Energy sources Reduced performance or complete
shutdown

Administration Overhead on system infrastructure; increasing complexity of
administrative changes

1.2.2 Examples

The application of centralised frameworks to process automation systems

illustrates the progression of centralised systems development and its implications.

Direct Digital Control (DDC) [19, 20, 21] and more sophisticated microprocessor-based

Programmable Logic Controllers (PLCs) [19, 22] became common in process

automation. These used an industrial computer to realize in software the input, decision-

making and output instructions that replaced centralised electrical controllers. Though a

significant improvement, a PLC still functions as an intelligent ‗master‘ entity in a

centralised framework, controlling many essentially ‗dumb‘ devices. The independent

 7

introduction of the Distributed Control System (DCS) [23, 24, 25] increased

sophistication of then existing automation system capabilities, and added new

functionality. The structure of a DCS is such that one or more functionally or

geographically distributed controllers control various sub-systems. However, it

essentially retains the highly centralised framework of previous systems in terms of the

features considered previously.

In order to support such functionality, communication infrastructure reflected a

correspondingly centralised approach. This was reflected in the framework of industry-

standard protocols such as Modbus [26]; Building Automation and Control Network

(BACNet) [27, 28]; Process Field Bus (PROFIBUS) [29], Controller Area Network (CAN)

[30, 31, 32] and DeviceNet [33, 34], among others. The distinctive feature was the

incorporation of a main high capacity, high-speed bus or ‗backbone‘ for routing all

communications between controllers, operator stations, and other entities on the

network. In addition, some communication frameworks incorporated ‗master‘ entities that

managed rights and privileges, sequenced the order of communications and so on. The

main bus or a master entity represented points of failure, which if compromised,

significantly damaged the operation and achievement of the system objective.

Products in the field of consumer electronics, appliances and mobile devices

originally functioned as stand-alone entities. Later development by manufacturers and

vendors for device networking and control gave rise to proprietary frameworks and

standards, becoming a barrier to interoperability. One of the recent initiatives taken to

address this challenge is Universal Plug and Play (UPnP) [35]. This is an ―industry

initiative designed to enable simple and robust connectivity among consumer

electronics, intelligent appliances and mobile devices from many different vendors‖ [35].

Although the proposed framework is detailed and comprehensive [36-39], it relies upon

some of the features of centralised systems discussed previously. One of these is the

requirement for a working communications infrastructure providing services such as

‗access points‘ that devices can connect to. Another feature is the necessity for

controller entities known as ‗control points‘ that devices must register with before being

able to advertise their existence and services provided to other devices in the system.

Although much of the framework takes on the form of a distributed system, these

elements represent points of vulnerability, failure of which can severely degrade device

interoperation or render it non-functional.

 8

These examples show that the difficulties experienced when centralised systems

become larger and increase in complexity are recognizable. These bottlenecks can lead

to future reoccurrences of present-day problems as large systems are constructed. A

fundamental re-consideration of the underlying framework is required.

1.2.3 Distributed Intelligence System

Attempts at overcoming the problems of centralised systems focused on

modifying the framework in order to make it more distributed, both geographically and

functionally. Although solutions were attempted, many proposed alternatives retained

underlying vestiges of centralised frameworks. Thus, although some improvement was

seen, these ‗distributed systems‘ experienced the same problems that they were

attempting to solve. It required the emergence of peer-to-peer systems employing a

fundamentally different framework, as a clue to the beginnings of a potentially viable

solution.

1.2.4 Peer-to-Peer Systems

Current efforts to provide new services and applications over various centralised

communications networks, present requirements and challenges. Meeting growth in

demand will require capabilities that the limitations of client/server frameworks will be

unable to meet in future. The emergence of peer-to-peer (P2P) applications [40 - 43] on

the Internet, and their demonstrated performance capability as highly scalable systems,

presents a starting point for a new framework. A main design principle underlying

successful P2P frameworks is their fully distributed and self-organizing [43] capability.

Steinmetz and Wehrle provide a working definition of a peer-to-peer system as follows:

―…a self-organizing system of equal, autonomous entities (peers) [which] aims

for the shared usage of distributed resources in a networked environment avoiding

central services. In short, it is a system with completely decentralized self-organization

and resource usage.‖ [44]

Although P2P technology is not new, the large-scale demonstrated benefits of

distributed resources [44] and distributed self-organisation [44] gained attention with

hybrid P2P systems such as Napster [1]. Recent applications relate to file sharing and

P2P communications, such as BitTorrent [1 - 46] and Skype [1, 42, 51]. Due to their

success [48 - 55], there is consequently increasing consideration to harnessing the

 9

framework for construction of other large-scale applications [56 - 69]. Current P2P

systems provide potential advantages over client-server frameworks in some respects,

but also present challenges in others [44]. Table 1.2 on page 11 outlines some of the

challenges.

1.2.5 Extension from P2P to DIS

The existing framework of a P2P system provides a useful basis for the

incorporation of additional functionality, necessary for the application under

consideration. In addition to being fully distributed in terms of communications

infrastructure, resources and self-organization, it will also require that intelligence

capabilities be provided to all participating entities in the framework. The inclusion of this

additional requirement is to allow all entities to work together in an intelligent fashion, to

exert control within the system for achievement of its overall objective as defined by the

user. Other challenges outlined in Table 1.2 will also require consideration and

formulation of appropriate solutions. This enhanced framework is a Distributed

Intelligence System (DIS) [70], which is a subset of the more general Distributed

Systems Paradigm. Figure 1.2 [12] illustrates an example of a P2P framework extended

for controlling devices.

 10

Figure 1.2: Example of P2P framework for controlling devices.

1.2.6 Examples

Interest in systems using distributed intelligence spans almost three decades.

Prior proposals for such systems, for example in air fleet control [71], were eventually

implemented upon centralised frameworks. Current interest occurs in areas such as

Ubiquitous Computing and Ambient Intelligence (AmI) [72]. One recently proposed

framework is Ambiance [73], intended for use on mobile devices, such as those in

Wireless Sensor Networks (WSN). However, Ambiance centralises important

functionality, relying on the use of a web client and server for proper operation. Although

research into distributed intelligence is ongoing, constructing a DIS upon an underlying

P2P framework is a relatively new topic.

 11

Table 1.2: Benefits and challenges presented by the P2P framework.

Feature Benefit Provided Challenge Presented

Controller
capability

Low intelligence capabilites Intelligent functioning of entities

Resource
availability

Entities contribute resources to pool Identifying and making available free
resources

Cost Participating entities supply
infrastructure capabilities

Open infrastructure variations as
entities enter and leave system

Security No server holding all system
information

Providing uniform security to all
entities

Robustness No central point of failure to severely
impede system function

Ensuring dynamic adaptation to
changing environment

Administration No central point of administration Accurate reporting and configuration

1.3 Thesis Description

The work undertaken in this thesis attempts to demonstrate that a DIS using an

underlying P2P framework provides a feasible avenue for engineering large systems that

do not face the problems plaguing the large centralised systems of today. The following

chapter presents a detailed consideration of the nature of a DIS framework, its

requirements, and proposes an example application to a simple security system.

Following this is an attempt to implement the proposed design as a working system, and

a description of the process required to engineer various working components. An

analysis stage examines the outcome of the implementation attempt, and the various

practical challenges encountered during the process. The work concludes with a

consideration of the lessons learned during the course of the endeavour, and application

to building a better DIS in future.

 12

CHAPTER 2: SYSTEM ARCHITECTURE AND DESIGN

2.1 Introduction

This chapter will discuss the system architecture and design of the intended

system in some detail, with specific emphasis upon outlining the Distributed Intelligent

Systems (DIS) architecture paradigm. Other possible architectures will be briefly

discussed, along with the relative motivations that one architectural approach may have

over another. Particular attention will be placed upon the interplay between local and

global objectives of devices within a distributed control environment. This will be

followed by a discussion of design methodology regarding intelligent devices existing

within the DIS architecture. Specifically, it will be introduced, how using discrete

mathematical structures like lattices can assist in the organizational requirements for a

DIS. In recent years, Lattice Theory has been making inroads into many fields in the

guise of Formal Concept Analysis (FCA) [74]. Briefly, FCA provides an ontological

construct via lattices, which can be used to organize a domain of objects and their

corresponding range of properties. In addition, examination of how these principles will

be incorporated into the design of the Holonic Technology Platform [75] (HTP) will also

be outlined. In order to show how the principles and paradigms developed during the

course of discussion apply in practice, all of the above will be applied to a real-world

application of a DIS system used for a simple security system.

2.2 Architecture Selection

The word ‗architecture‘ in its most general sense pertains to style and form [76].

Applied to the context of systems engineering, the system architecture process deals

with the abstract, high-level architecture of the system.. The current range of choices of

architecture may be expressed via the two extremeum of the known spectrum of

architectures::

 Fully centralised system architecture

 Fully distributed system architecture

 13

The first of these pair, the fully centralised architecture, better known by its more

common metonymy ‗Client/Server Architecture‘, is how much of today‘s software and

hardware systems are implemented. The emphasis of the architecture is towards

enabling concentration of various functions of the system at these central elements and

dependence of peripheral elements upon central elements in order to function [77].

The emphasis on the other extrememum of software system styling (Fully

distributed architecture) is towards the decomposition of system responsibilites and

functions to the individual elements in the system.

Between these two extremums there are a plethora of architecuture types [40,

78]. As an example, one such system architecture is known as a ‗Decentralised System‘.

While it may be debated that such architecture qualifies towards the category of

distributed systems, a legitimate case may also be put forward that a decentralised

system may be composed of multiple server entities which may consitute areas of

centralisation that work together as a co-ordinated group. The case may be put forward

that this is essentially a multi-tier client/server system which falls into the spectrum

bounded by the two formerly specified architecture paradigms, though a lesser form of

client/server architecture. Figure 2.1 illustrates these various paradigms of architecture.

The discussion of architectural paradigms thus far lends itself to a consideration

of the essential difference, between the more centralised system architectures that have

been described and that proposed in this thesis, a Distributed Intelligence System (DIS).

Specifically, this focuses on the difference between the tendency of centralised systems

to group all devices in a system together as one class, and treat the entire goal space as

one large indistinguishable set of requirements, as opposed to splitting this goal space

into smaller goal sub-spaces and constructing some kind of set of operations that can

organize the devices more effectively. A crude but perhaps applicable analogy is how a

vector space can be split into equivalent classes, for instance, one of which is the kernel

of the space, and that there exist linear operations connecting these sub-spaces

together [79]. However in a systems scenario, instead of vectors we have the set of

devices, where there arises a set of operations that linking these devices together.

These operations can be partitioned on a broad scale into two juxaposed sets of goals,

that is, local and global.

Another difference in architecture is intelligent management of the system while

handling potentially conflicting local and global goals, unlike simple distributed systems

 14

where the elements of the system may be endowed with very little understanding of how

they relate and function with each other in their immediate vicinity as well as with a

system-wide perspective in mind.

Figure 2.1: Centralised, Decentralised and Distributed Systems architecture.

These two criteria, that is, the partitioning of the goal space and the intelligence

aspect, will be targeted for incorporation into the description of the system architecture,

differentiating it from characterization as merely centralized or distributed system

architecture. As an illlustration of these ideas, the application of a security system was

used and developed as a working model to illustrate the points discussed thus far.

Figure 2.2 shows a simple security system consisting of three devices – a motion

sensor, network camera and Radio Frequency Identifier (RFID) tag reader, along with an

optional monitoring device for a system administrator. The security system functions with

a global user-specified objective of monitoring the movement of people or objects that

have been labelled with RFID tags within a secured environment.

 15

Figure 2.2: Distributed system architecture of a security system application.

The system‘s DIS architecture is demonstrated as devices work together to form

the complete system and meet their user-specified objectives. Each device carries out

its local security-related responsibilities, and also collaborates, co-ordinates and co-

operates with other devices in its vicinity to meet the larger objective as a group –

consistent monitoring of the movement of objects that have been labelled with an RFID

tag.

Immediately, it can be noticed the goal partitioning aspects are split into local

responsibilites, that is, those responsibilities that are required to maintain the device

attached, and the system responsibilities, which in this case is the simple objective of

surveillence. The intelligence aspect is manifested by how each device works with its

adjacent neighboring devices.

For the purpose of discussion, a functional unit within the system architecture

(e.g. a device within the security system that was described) will be referred to as a

 16

‗node‘ [80]. With respect to the interactions that must be conducted among them in order

to fulfil their roles within the system, these nodes will be referred to as ‗peers‘ [81].

2.3 Architecture Considerations and Requirements

A node in this DIS, illustrated in Figure 2.3, is comprised of the hardware and

software that enable it to function. The hardware is abstracted as any generic device that

accepts input for the purpose of control from a software entity residing on the same

device, and supplies output regarding its current state of operation to the same. This

software driving this device will be referred to as an ‗agent .‘ The agent takes

responsibility for the operation of the device within its local environment. It performs this

intra-device control based on specified local objectives and rules of operation. The agent

is in turn governed by another software entity also residing on the device, which will be

referred to as a ‗holon‘ [82]. The holon takes responsibility for the interaction of its node

with other nodes, i.e. in the system. It performs this inter-device control within the

context of specified ‗global‘ or system-wide objectives. In this regard, it will also accept

reporting from the agent regarding the state of the device and in turn supply the agent

with any relevant information that it may require for its own operation.

 17

Figure 2.3: Abstract representation of a generic node.

A more detailed discussion of the architectural relationship between the holon

and agent and the provisions that must be made within the proposed system references

Figure 2.4.

 18

Figure 2.4: Holon-Agent architecture.

In order for the holon to perform its role within the distributed system architecture,

it should primarily possess a reasonably comprehensive specification of the system

objective. It will require additional intelligence on how to operate with holons on other

nodes in order to achieve the system objective together. In its interaction with a single

agent residing on the node, the holon must possess knowledge regarding: the identity of

the agent; capabilities of the agent as specified via its Application Programming Interface

(API); its priority or privilege levels, if any; when and how it should be notified to take

action. In its interactions with other holons in on a system-wide level, it will need to

possess similar knowledge on their specifications as well. In the situation where a holon

may have jurisdiction over multiple agents residing on a single node, it will require the

 19

necessary intelligence in comprehending, routing and managing communications

between agents in intra-nodal and inter-nodal contexts such that the system objective is

satisfactorily achieved. This is contingent upon the holon being able to keep a regularly

updated record of the agent(s) under its jurisdiction and the holon will need to be

endowed with that capability.

Similarly, an agent within the distributed architecture under the jurisdiction of a

holon will require comprehensive specification necessary for control of the device that it

is operating upon. This specification may include, among other things: the identity of the

device; control commands that it responds to; response and output messages that it may

send back; rules regarding action to be taken with respect to messages from the device.

In addition to specification of the device itself, the agent will need specification of how to

communicate with the holon via its own API. The agent will also require knowledge of

the identities and specifications of other agents on the same node or different nodes, for

communication purposes related to inter-device control.

As an example, consider the security system being developed. Figure 2.5 depicts

the system architecture with the additional concepts that have been discussed thus far.

In this case, there will be a holon and associated agent residing on the motion sensor,

network camera, RFID tag reader and supervisor console. A node in this system will

henceforth be referred to as a Holonic Unit (HU). Thus, the system architecture will be

comprise of the following entities:

 Motion Sensor HU with Motion Sensor Holon and Agent

 Network Camera HU with Network Camera Holon and Agent

 RFID Tag Reader HU with RFID Tag Reader Holon and Agent

 Supervisor HU with Supervisor Holon and Agent

 20

Figure 2.5: DIS security system architecture with holons and agents.

The holons residing on the various holonic units possess the specification of the

overall ‗strategic‘ system objective – in this case, to monitor the status of the secured

environment and report pertinent information to the Supervisor HU. The parameter

specifying ‗pertinent information‘ may vary – registration of motion; snapshot of moving

entity; identification of RFID tags moving into or out of the secured environment and so

on. The Motion Sensor Holon possesses the knowledge that the Network Camera and

RFID Tage Reader Holons must be notified in the event of motion being sensed and

they must work together to inform the Supervisor Holon. As an example of possessing

knowledge of their associated agents, the Network Camera Holon is aware that an agent

identified as ‗Network Camera Agent‘ resides under its jurisdiction, may be instructed to

operate the camera via the commant ―Take Snapshot‖ and has highest level priority in

interaction when a snapshot has been taken by the camera. It also routes any incoming

communication to the Network Camera Agent from holons on other HUs.

Similarly, the RFID Tag Reader Agent possesses the knowledge that: it controls

a device identified as ‗RFID Tag Reader‘; the device responds to the command

‗Commence Reading Tags‘; it responds with messages listing the identification codes of

RFID Tags within sensor range; when a message is received, the rules of operation

specify that the RFID Tag Reader Holon must be notified with a message meant for the

 21

Supervisor Agent. Finally, it knows that agents identified as ‗Motion Sensor Agent‘,

‗Network Camera Agent‘ and ‗Supervisor Agent‘ exist within the system and how to

process messages received from or meant for them.

The intelligence differentiating this architecture from a security system

implemented via a distributed system architecture is exhibited as holonic units operate in

an intelligent manner, modifying necessary operating parameters related to operating

constraints (bandwidth, storage space, power consumption, etc.) and behaviour in

consultation with each other such that the system objective is satisfactorily met.

 In addition, a serverless environment such as this necessitates an alternative

solution to a central location of control logic and data, if it is to be functional. Architecture

considerations with regard to data manipulation and decision-making will be impacted.

Alternatives are needed to processes that bring data back to one particular entity or

node for processing and/or decision-making. Both code and control logic are distributed

over the HUs that form the system. Each HU must be endowed with the capability to

take responsibility for making the best processing decisions that it deems relevant, along

with its global system responsibility [82]. The system in its entirety will be realized

through its constituent nodes operating together in terms of program code and control

logic.

In this respect, most currently available distributed sytems platforms [83, 84]

making use of agents in their architecture, some examples of which are JADE [85],

Cougaar [86, 87] and JXTA [88], are not feasible without extensive modification for

demonstrating the proposed DIS system. For example, although JADE possesses many

useful features, it introduces an element of centralisation with reliance on the existence

of a ‗Main Container‘ [89] with which all agents must first register in order to function,

and without which proper operation is not possible. Similarly, although JXTA architecture

[90] refers to ‗peers‘, it may also employ elements of centralisation through the

subdivision of peers into categories such as ‗superpeers‘, ‗rendezvous peers‘ and ‗relay

peers‘ in terms of the functions that they perform. In addition, a splitting of

responsibilities between strategic and logistic objectives among entities is not inherent in

these architectures.

It is for these reasons that the Intelligent/Distributed Enterprise Automation

(iDEA) Laboratory [91] developed its own distributed agent environment, known as, the

Holonic Technology Platform (HTP) [75] which provides the necessary requirements to

 22

develop and implement a DIS in the security system application. Table 2.1 outlines some

of the general differences between the inherent properties expected of a DIS

architecture (which are adequately met by HTP) and other distributed architectures using

agents, that were evaluated.

Having discussed how a DIS would work, the hitherto consideration raises the

important aspect of system requirements that must be met by such a system. These

practical constraints are required to be satisfied in a manner that does not adversely

affect performance, both when realized for its initial requirements as well as for future

changes that may occur. Some of these we outline as follows.

Table 2.1: Comparison of DIS and multi-agent architectures.

Evaluation of System Architectures

Distributed Intelligence System Generic Multi-agent System

Separation and independent addressing
of global (strategic) and local (logistic)
objectives

No clear separation of objectives; greater
possibility of conflict in agent operation

Communications and other infrstructure
does not determine design of
environment

Architecture may be constrained by
infrastructure dependency

No centralisation of elements such as
communications, knowledge, data or
control

Elements of centralisation may be present,
requiring architectural modification,
particularly for conflict resolution

System is realized as a whole when all
constituents are organized and operate
together

No necessity or inherent perspective of
consituent nodes operating as a whole

2.3.1 Flexibility

Flexibility in the context of systems architecture refers to ease of modification or

adaptation of the system to changes in its environment [92]. In a Client/Server

environment, adaptation of the system requires repeated monitoring and configuration

from a central point. The requirement for a DIS in terms of flexibility is the capability for

 23

modification from anywhere in the system. Modification may occur in the context of

system topology, load distribution, resources, etc. The DIS should be able to intelligently

adapt to new scenarios whether upon specification from the user or a consensus agreed

upon by all the entities in the system due to change in the system environment. System

maintenance and modification should become easier, if nodes have to be taken offline or

shut down, without having to impact system performance significantly.

In this regard, an advantageous feature that will differentiate a DIS from

Client/Server or various multiagent systems hitherto discussed, is the ability to transfer

concepts of software coupling from multiagent systems to the hardware domain. Weiss

[93] initially discusses the idea of strong and loose coupling in the architecture of an

intelligent agent [94], later extending it to interactions between agents [95]. The rationale

behind this methodology was to propose an alternative to strong dependencies among

software modules for proper operation, thus providing a solution to problems created by

such technologies as the Remote Procedure Call (RPC) [96]. A DIS aims extend this

principle of loose coupling to hardware. For example, by implementing some form of

holon and agent into hardware, it can be endowed with some measure of intelligence.

This enables the breaking of strong dependency between various hardware modules,

and appropriating the advantages realised in software systems structured in such a

manner, such as the capability to intelligently adapt to changes in the system

environment.

2.3.2 Scalability

Scalability requirements concern the ability of the DIS to grow in terms of scale.

This also refers to the impact, if any, on performance of the system in terms of locating

and identifying entities, bandwidth, latency of system response and similar parameters.

A DIS is required to handle these demands in an intelligent manner as the system

grows. Processing and information handling should be spread throughout the system. In

addition, a DIS should be able to incrementally grow intelligently. Unlike the case of a

centralised framework, upward scaling of a DIS should not require extra controllers and

associated hardware; the devices themselves, with onboard holons and agents providing

intelligence for control, should provide this capability themselves.

Any system growth should contribute processing power and resources, instead of

becoming burdens on a finite centralised architecture. In addition, changes in complexity

 24

are required to be handled in a manner that does not adversely affect system

performance. Complexity issues will arise in system operations that require different

strategies to address them as opposed to those implemented for client/server

architectures. Examples of such operations might be: location of entities; routing of

communication; knowledge of the system and management of resources among others.

Data-related issues such as storage and distributed processing become more complex

and are required to be handled appropriately. As an example, in the security system

application, complexity arises in processing data generated by various sensors,

especially if the data generated by one device is required by another. One possible

strategy will require making intelligent decisions with regard to distributed processing of

information as it is generated at its source, reducing the complexity of moving data to

other locations or nodes to be processed there. No doubt, the selection of a DIS

architecture will extract a cost in terms of system complexity in contrast to a centralised

system, where complexity is concentrated at the server entity. However, a good DIS

architecture can mitigate this effect or even make it an asset.

2.3.3 Security

It is required that the DIS be secure in its operation. If one or more nodes are

compromised by a foreign entity that is hostile in its intent, data may be corrupted and

software modified to cause behaviour that was never intended to occur. The DIS should

possess intelligence within its architecture to circumvent nodes that have been

compromised. Nodes may continually monitor each other, work together to identify and

contain potentially compromised nodes and manage security of data and control logic

such that a hostile entity that manages to breach one or more nodes gains only partial

understanding of the system, insufficient to cause a complete system breach. An

intruding entity would have to compromise every single node in the system, instead of

compromising a central server.

2.3.4 Robustness

Robustness or fault tolerance in a systems engineering context relates to the

ability of the system to withstand failure in one or more of its components. This covers

the aspects of hardware, software control and communications. With respect to

hardware, each device ideally possesses all the hardware it requires for independent

 25

operation; there is a higher risk of system failure if all devices depend on a common

piece of hardware for normal functioning and whose malfunction can cause reliability

issues. In terms of software, the risk of software failure is distributed over all the

constituent holonic units, damage is mitigated and recovery can also be intelligently

managed. If one or more units are rendered inoperable, the remaining can work together

together to re-assign and perform the tasks assigned to the failed units and restore

system capability to the extent possible. With a system employing centralised

architecture, failure of a server entity can run the risk of failure of the entire system, even

if redundant servers are incorporated into the architecture. Communications capability

within the system should be distributed among the constituent devices; each device

should be provided with the capability to independently communicate with other devices

without a central point through which all communications must be routed.

In the case of the security system, the three essential devices that form the system do

not depend upon a central holonic unit for instruction on how to operate or course of

action to take.

2.3.5 Cost

Cost is related to other factors mentioned here. A DIS system is expected to

provide an advantage over client/server in terms of incremental cost of deployment. An

entire supporting infrastructure (communications, decision making, storage, services,

processing capability) does not need to pre-exist for the system to be able to work. Each

incremental change or alteration (or in the case of the security system, Holonic Unit),

contributes to these aspects of system resources. Thus, the system is required to

demonstrate the capability for incremental development and deployment, reducing the

associated costs.

2.3.6 Administration

System administration capabilities for a DIS requires a different approach than

usual practices employed in client/server scenarios. Due to the nature of the distributed

architecture, it is unfeasible to manage the system from a central node. A requirement

placed on the DIS in this regard is that information regarding current system status and

operating conditions be accessible from anywhere in the system. In addition, it will also

be required that an administrator be able to remotely access any node in the system, for

 26

the purpose of configuration, maintenance and upgrading. Thus, administration

capability and functionality is distributed over all the entities that comprise the system

architecture.

Consider Figure 2.6, which illustrates how a hypothetical security system, larger

in scale than the one under development, might exhibit these requirements. In this

scenario, the security system is comprised of multiple HUs operating on a security policy

similar to that outlined in the four-node system outlined in Figure 2.2. The system has

grown in scale with respect to Figure 2.2, with the addition of HUs. Each node with its

associated holon and agent makes resources available to the system, resulting in

contribution to distributed processing, communications, knowledge, storage, and control.

Also, incremental cost of development and deployment allows additional HUs to be

added to the system and configured with relevant tasks without requiring major

modifications to other HUs in the system. Although failure of a HU (such as one of the

network cameras) will result in the loss of contribution to the system objective and

resources provided by that HU, the system can intelligently work together to negotiate

contribution and usage of resources so that performance is maintained within

satisfactory limits. In addition, although a malicious node is potentially compromising one

of the Desktop PC HUs, the intruder will only be able to acquire the piece of data stored

on that HU, which is insufficient to construct a complete picture of knowledge or data

related to the whole system. In order to compromise it, the attacker would have to

compromise every HU present in the system

 27

Figure 2.6: Requirements of a DIS architecture.

A supervisor using the Smartphone HU is able to interact with and configure any

HU in the system, performing system administration and management. He might access

any HU remotely and only concern himself with making local changes to HUs, without

being burdened with the responsibility of the impact and modifications needed on a

system-wide level due to local changes.

Table 2.2 provides a comparison between different system architectures on a five-point

scale of comparison (Very Low, Low, Medium, High and Very High) with respect to

different general parameters on which each could be rated.

 28

Table 2.2: Comparison of different system architectures.

 System Architecture

Property Client/Server Decentralised Distributed DIS Holonic

Adaptability V.L L M H V.H

Scalability V.L L M H V.H

Robustness V.L L M H V.H

Security V.L L M H V.H

Cost V.H H M L V.L

Management V.H H M L V.L

2.4 Design Specifications and Considerations

In a similar fashion to the notion of architecture, the connotation of ‗design‘

involves specification of the kind of components, the nature of their function within the

system and the capabilities that will be provided in order for components (and the

system as a whole) to function properly.

The development of a DIS will require the peers in the system to communicate

with each others using an event-triggered process [96]. This may be accomplished by

notifications that peers send themselves or each other upon an event that has

transpired. Holons and agents residing on peers identify and register those on other

peers in their neighbourhood, and register with them in turn. This ‗handshaking‘ process

facilitates peer discovery, listing of services provided by each peer, protocols understood

and other vital information required for peers to establish communication. Figure 2.7

shows a UML sequence diagram illustrating a simple event-triggered process between

two generic agents on peers within a DIS. In such fashion, other interactions within and

 29

between peers are triggered based upon notification of events that have occurred

among holons and agents. Interaction or behaviour of holons and agents on a peer may

be specified or framed by a 'rule base' in the form of an 'event list' or table to be

referenced upon notification of an event.

Figure 2.7: UML sequence diagram of generic event-triggered process.

A corresponding action is undertaken or decision made once a matching event

description is found. In order to function effectively within their neigbourhood, peers must

have a means of acquiring information about their environment, such as the topology of

the architecture in which they find themselves. As an example, consider an abstract

topology of a distributed architecture in Figure 2.8. In this scenario, the holon on node ‗A‘

must be able to acquire knowledge of the ‗distance‘ of another holon in its

neighbourhood such as the holon on node ‗B‘, or of one ‗further‘ away, such as the one

on node ‗F‘. Distance specified in terms of the number of nodes that must be traversed

to deliver a message to an intended recipient provides peers in the system with a means

to construct a map of the known system topology. This and other relevant information is

specified in messages exchanged in the handshaking process.

 30

Figure 2.8: Hypothetical topology of peers within a distributed architecture.

The mechanism of interaction regarding local and global objectives of peers will

be achieved using an agent-based architecture similar to those previously discussed.

The agent paradigm is suitable for construction of a DIS, one of the reasons being its

methodology of architecting multiple interacting agents in a non-monolithic framework,

which can be easily modified, extended or re-built for different applications. Such

architectures are typically built with the aim to endow agents with capacities such as:

limited autonomy and intelligence; localised views of the system; negotiation of

strategies for problem sovling and recovery from failure, among others. These useful

features can be employed in enabling a DIS to meet its architecture requirements which

were discussed in Section 2.4. One aspect of agent-based architecture requiring

modification for the system under development arises when agents must deal with global

as well as local objectives. An example of a global objective might be to maintain a

system-wide resource (bandwidth, storage space, processor or memory usage) within a

certain limit or use it to the maximum possible. Some architectures would require agents

 31

on peers to deal with local and global objectives simultaneously. The consequence of

such a design strategy is that agents may end up doing too much work in trying to meet

both objectives, which may be difficult to meet if the objectives happen to conflict. Such

a situation would essentially be a smaller scale of the problem posed by the client-server

paradigm.

Although an agent-based system architecture is advantageous in many respects,

such modifications are necessary to incorporate the division of responsibilities in the DIS

between holons working to meet system-wide objectives and agents operating in a

limited jurisdiction with local responsibilities. Although some agent-based paradigms

characterise agents as operating to meet their own interests [97, 98], this will also

require modification for use in a DIS. An agent operating on a peer operates with the

intent of meeting a user-specified local objective by performing an assigned task.

Multiple agents residing on each peer may operate under the jurisdiction of a holon. An

agent will therefore have to work together with other agents residing on the peer in the

interest of meeting the local objective, where attainment of its own individual goal or

function is not completely attainable. For example, a HU in the four-peer security system

will have different agents residing on it, assigned with accomplishing different tasks,

examples of which may be: bandwidth usage, storage space and processing capability;

message handling; encryption; statistics collection; routing; provision of services to other

peers, and so on. This is illustrated as an example in Figure 2.9. The holons on each

peer are provided with the knowledge of the global view of the system objective

(monitoring the secured environment and reporting pertinent information to the

supervisor). The depicted agents operating on each peer work intelligently with each

other in handling their individual tasks to achieve their local objective, which is proper

operation and control of the device and its resources. They may report information back

to their respective holon, which will in turn make decisions about the importance and

relevance of information that it receives.

 32

 Figure 2.9: Agents operating within a DIS security system.

This splitting of responsibilities in this model, which will henceforth be referred to

as the Holon-Agent model, is summarized in the table below.

 33

Table 2.3: Division of responsibilities between holons and agents.

Responsibilities of the Holon Responsibilities of the Agent

System-wide goals
(e.g. Maintain available storage space)

Local objectives
(e.g. Device power consumption)

Collaboration, Co-ordination, Co-
operation

Facilitate services
(e.g. Startup device, Shutdown, etc.)

 Logistics
(e.g. Message routing: intra-holon and inter-

holon)

With respect to the Holon-Agent Model described thus far and Table 2.3,

collaboration [98] is the co-labouring of holons to accomplish the global objective(s) of

the system; co-ordination [98] is the interaction between holons in order to properly

sequence actions and events; co-operation [105] relates to groups of holons interacting

in a neighbourhood within the system. Section 2.4 considered details of the possible

knowledge required by holons and agents in their interactions with each other and

carrying out their operations. With reference to Figure 2.9, the Motion Sensor Holon,

Network Camera Holon, RFID Tag Reader Holon and Supervisor Holon will collaborate,

co-ordinate and co-operate between each other to achieve the global objective of the

security system. The Device Agent on each HU tasked with local management and

control of a device will process and execute control messages received from other

Device Agents in the system, as well as issuing control messages to other devices via its

respective Holon. Figure 2.10 abstracts the interaction between a Device Agent and its

associated generic device, along with a representation of its internal architecture.

 34

Figure 2.10: Abstract represent of Device Agent and generic device.

An agent operating under a Holon is essentially a package of software code and

associated resources that may perform a particular task relevant to local objectives on

the peer. Pertinent details relevant to the design and construction of the Device Agent

emerge from an examination of the requirements needed to control a generic device. For

the purposes of the DIS under development, the internal architecture of the Device

Agent is comprised of three main sections – Knowledge, Rules and Behaviour (KRB)

[94, 98], as described below.

2.4.1 Knowledge

The concept of ‗knowledge‘ possessed by the Device Agent relates to data that

the device generates regarding its own state or the state of its environment. This

may occur through an internal signal notifying change in state or an external signal

representing a change of state in the external environment or system of which the

device is a part. Knowledge acquisition occurs via messages that a Device Agents

receives from a device, sends to itself or to other agents in the DIS. For example, the

motion sensor may register motion within its sensor range. Transcription occurs from

the output voltage from the motion sensor into a message sent to the Device Agent

 35

controlling the motion sensor. When the Device Agent receives this message, and

processes it, it will have acquired the knowledge that there has been an internal

change of state (motion sensed) within the device (motion sensor). In a similar

fashion, as messages pass from one Device Agent to another requesting a service

or advising taking of action, knowledge acquisition occurs of changes occurring at

other points in the external system.

2.4.2 Rules

The concept of ‗rules‘ deals with the protocol for behaviour that a Device Agent

will follow once knowledge of internal or external states is acquired and processed.

The rules proposed for the DIS formulate a conditional statement resembling an ‗if-

then‘ statement. That is, given a finite set of states (either internal or external), if a

change in state occurs which will give rise to knowledge or awareness of the same

by a Device Agent, rules specify that in each case, a certain protocol is to be

followed in terms of the course of action to be taken. For example, in the DIS security

system, an abstract rule regarding the internal change of state of the motion sensor

might be:

―IF motion has been sensed, THEN proceed to notify the RFID holonic unit to begin

monitoring of RFID tags within its sensor range.‖

2.4.3 Behaviour

‗Behaviour‘ with respect to device control is carrying out the course of action(s)

specified by the rules that govern how to handle changes in internal/external states.

As an example, when the Device Agent controlling the motion sensor receives an

internal message specifying sensing of motion, acquisition of knowledge occurs. The

rules governing this change in internal state may specify notification of the Device

Agent controlling the RFID tag reader, to begin monitoring the movement of tags

within its sensor range. The corresponding behaviour carried out by the Device

Agent controlling the motion sensor will then be to:

 Compose a message notifying the Device Agent controlling the RFID tag

reader

 Send it to the HU responsible for the RFID tag reader

 36

Figure 2.11 illustrates the ideas discussed in the form of a UML activity diagram

of a Device Agent operating under a Holon and controlling a generic device.

Figure 2.11: UML activity diagram of Device Agent.

Thus, the architecture of the Device Agent should mirror these three concepts in

its implementation, composed of three sections dealing with each of these faculties -

acquiring and processing of knowledge, specification of rules outlining actions taken

after knowledge acquisition, and a section detailing the behaviour that implements those

rules. The design of the Device Agent will ideally follow the template laid out in Figure

2.12.

 37

Figure 2.12: Template for Device Agent.

This abstraction of Agents implementing control methodology in terms of

knowledge, rules and behaviour extends to the architecture of other agents providing

internal and external services within the DIS. It will be possible to implement

sophisticated methodologies of knowledge acquisition and interpretation of system state

change, specifications of rules and actions taken as a result.

The interaction between Device Agent and device will take place through

messages. Messages to the device are mapped from notifications that the agent may

receive from the Holon, requesting execution of a particular control function. They may

also be initiated by the agent itself, acting on local rules of behaviour regarding control of

the assigned device. Using its rule base, the agent will possess a means to look up the

corresponding message sent to the device for a given incoming notification. Having done

 38

so, the agent will transmit the message over the hardware link to the device. As an

example, consider a scenario in the security system depicted by Figure 2.13.

Figure 2.13: Interaction scenario within security system.

For the sake of clarity, other agents that are not relevant in the scenario under

consideration have been removed from the figure. The Network Camera Holon will

receive a message from the Motion Sensor HU for the Device Agent controlling the

network camera stating ―Wake Up Device‖, and will route it to the Device Agent. Routing

messages may involve a dedicated agent tasked with handling communications. After

the Device Agent deciphers the message, it will map the instruction to the corresponding

control message for the network camera, and then transmit it. When the network camera

receives the message, it will exit its idle state and wait for further control messages.

The existing core architecture of HTP provides for much of the messaging

capability required between agents [75]. However, HTP lacks the functionality required

to handle the KRB capabilities planned for the Device Agent. Specifically, there is no

mapping provision in HTP for a Device Agent to perform the necessary lookup,

regarding the proper course of action corresponding to an event notification. This

becomes a disadvantage when there may be a large number of event notifications that a

Device Agent is capable of responding to, as well as numerous courses of action that it

may choose from dependent upon the context of the situation. Attempting to provide this

 39

capability using HTP‘s current provisions for messaging and response would require all

of it to be concentrated within the Device Agent. This would be necessary, as the role,

capabilities and requirements of the Device Agent are unique amongst the other Agents

currently operating within the working HTP architecture [75]. Pursuing such a course of

design will ultimately result in an unwieldy Device Agent architecture and program code,

difficult to maintain and modify for future requirements. Thus, modification is necessary

to the existing HTP architecture is in order, to provide this functionality.

The proposed mechanism of the interaction between agents residing on different

holons as well as between holons themselves is illustrated in Figure 2.14.

Figure 2.13: Holon-Holon and Agent-Agent interaction model.

All agents operating under a Holon‘s jurisdiction will register with its Agent

Registration Table (ART), so that the Holon can keep track of them. This also enables

proper routing of incoming messages for different agents to the correct recipient. Apart

 40

from the ART, the Holon will also contain a Holon Event Table (HET), which will contain

a list of the user-defined events and notifications to which a particular agent will respond

to. Figure 2.15 illustrates possible architectures for the ART and HET.

Table 2.4: Agent Registration Table and Holon Event Table.

Agent Registration Table (ART)

Agent

Name

Agent ID Functional Description Area of

Responsibility

Services

Provided

Device

Agent

H1.DA001 Operation of motion

sensor

Device Control Startup();

Shutdown(); ...

Encryption

Agent

H1.EA001 Encryption/decryption of

messages, files, ...

Security Encrypt();

Decrypt(); ...

Holon Event Table (HET)

Event Name Event ID Description Notify Invoke

MS H1.DA001-MS Motion Sensed H2.DA002 Startup()

MS H1.DA001-MS Motion Sensed H3.DA003 RecordTags()

The following example with reference to Figures 2.13 and 2.14 will illustrate the

purpose of these components in the context of holon-holon, holon-agent and agent-

agent interaction. Consider the scenario previously discussed in Figure 2.13 in the

interaction between the Motion Sensor and Network Camera HU. Let Holon 1 and Holon

2 in Figure 2.14 represent the Motion Sensor Holon and Network Camera Holon

 41

respectively. Similarly, let Agent 1 and Agent 2 represent the Device Agents on the

Motion Sensor and Network Camera HUs. Let the rule base of Agent 1 on Holon 1

specify that it notify the Agent 2 on Holon 2 to start up its associated device upon a

triggered event. Upon this event, Agent 1 will generate a message and pass it to Holon

1. Holon 1 will consult its HET, which specifies the correct course of action is to send the

message to Agent 2 on Holon 2. Holon 1 will proceed to route the message to Holon 2,

whose HET specifies Agent 2 as the proper recipient. Appropriate routing delivers the

message to Agent 2, instructing it to start up its associated device. Agent 2 proceeds to

carry out this action. In such manner, the Holon-Agent model facilitates interactions

betweens holons and agents within the DIS.

2.5 Distributed Control

Referencing Table 2.2 and the earlier discussion related to the design details of

the Holon-Agent model, an important design aspect requiring consideration is the

ordering of entities within the architecture. An infrastructure is necessary that allows

clear specification of how nodes in the system are organized and related to each other.

In addition, this ordering mechanism must be such that it is suitable for use in a

distributed architecture, accommodating all the requirements and implications of a DIS

discussed thus far. Endowing this high-level functionality contributes to meeting such

requirements of the DIS architecture as flexibility, scalability and administration,

previously discussed in Section 2.3. For example, a means of specifying ordered

structure allows ease of adaptation to changes within the system environment, as it

might be possible for co-operating nodes to take intelligent decisions and make changes

to structural specifications without resulting in major impact to system performance. It

will be able to accommodate growth in the system without requiring substantial

modification to the structural specifications already existing within the system as a

whole. The mechanism of specification should have a positive impact on administration,

allowing a supervisor to make changes such that the nodes in the system work together

in an intelligent manner to implement the structural changes specified.

There are various ordering methodologies available to incorporate this design

feature into the high-level functionality of the DIS architecture, some examples being

linear ordering [99, 100], cyclic ordering [101] and partial ordering [102]. Of the various

possibilities available, the partial ordering concept is most suitable in meeting the

 42

requirements of this design feature. The lattice methodology of expressing partially

ordered sets (i.e. posets), taken from Formal Concept Analysis [102 -104] is employed in

designing this advanced functionality of the system. For a description of partial ordering,

please consult the Appendices.

Building on the application of the security system considered thus far, the

isomorphism of a lattice applies to a set of three nodes - the motion sensor, network

camera and RFID tag reader HUs respectively. Consider Figure 2.16, which illustrates

the isomorphism of the DIS security system as a Hasse diagram. All further explanation

of organization within the system references this representation. Let ‗D‘ be the entire set

of devices in the DIS. system. The elements that form the set are represented in set

notation as {MS, NC, RS}, representing the Motion Sensor HU, Network Camera HU and

RFID Tag Reader HU, respectively. The fourth unconnected element in the diagram

{SU} is representative of the system administrator, also known as the Supervisor.

 43

Figure 2.14: Hasse diagram for a DISC security system.

To illustrate how the lattice contributes to the ordering and control mechanism in

the DIS, consider the events and changes that occur within the lattice framework when a

person enters an area monitored by the security system. As {MS} senses motion, it may

undertake one or more courses of action, depending upon the rules specified by the

system administrator. In this case, the rules specify notification of {RS} to monitor RFID

tag movement, then {NC} to take a snapshot of the monitored area. Figure 2.17

illustrates the partial ordering occurring amongst the elements of the lattice, when

participating in this distributed control mechanism.

 44

Figure 2.15: Changes in the lattice upon detecting movement.

Finally, the rules for all three HUs {MS, NC, RS} instruct them to individually

notify {SU} with their acquired data of changes in the system environment. In this event,

it is required to bring {SU} into the ordering structure of the lattice, forming a new partial

ordering of four peers, shown in Figure 2.18.

 45

Figure 2.16: Partial ordering and distributed control with four-node lattice.

In this manner, it is seen how fully distributed peer control can be conducted in

an intelligent fashion among the devices of a DIS, in order to achieve a user-specified

global objective. In this application, {MS}, {NC}, {RS} and {SU} collaborate to achieve the

monitoring of a secure environment and report changes occurring within it. They co-

ordinate by taking decisions based on their user-specified rule bases, achieving a proper

sequence of action within the ordering infrastructure. Co-operation occurs as devices

can work together, modifying the sequence within the partial order and sacrificing their

individual goals if necessary, to achieve the system objective.

The ordering that a lattice methodology and its associated tools bring to the

simple architectures considered thus far favours its viability for use in a DIS. It

 46

possesses a simple and elegant, yet extremely flexible and scalable means of

dynamically creating and modifying the structure between nodes in the DIS. When all

nodes within a DIS possess the capability to contain and comprehend an algebraic

specification of the structural order, they will be able to maintain the structure within their

neighbourhood in an intelligent manner. In addition, dynamic modification of the ordering

specification during system runtime becomes much easier; nodes provided with new

specifications in the form of a lattice equation can reconfigure the structure of their

neighbourhood. All of this will occur in a completely distributed manner with no

centralized control.

2.6 Conclusion of Architecture and Design Process

The motivation for an in-depth analysis and discussion in this chapter was to

ensure the proper understanding and selection of architecture for a DIS system; the

impact of architecture selection on system requirements; the resulting issues requiring

solutions and the proper design of system entities with these factors in mind. The DIS

security system application considered and developed in this chapter will allow the

constituent nodes to implement a security policy without any centralised form of control.

For example, one possible security policy might be as follows: upon detecting motion,

the motion sensor is required to notify the network camera to take a snapshot of its field

of view and inform the RFID tag reader to register any RFID-tagged objects moving

within its sensor range. All three nodes will proceed to inform a terminal belonging to a

human supervisor of the registration of motion, any photographs taken and RFID tags

respectively. The supervisor may then proceed to take action as he or she sees fits.

Figure 2.19 shows a sequence diagram of this security policy.

The considerations of this chapter regarding a DIS system in general and the

security system application in particular explore the implications and issues that arise

during the selection and design of a distributed architecture, with the end goal of

demonstrating effective paradigms for development, implementation and deployment in

real world applications. The next chapter will explore the implementation of the DIS

security system in detail.

 47

Figure 2.17: Diagram of possible security policy.

 48

CHAPTER 3: SYSTEM IMPLEMENTATION

3.1 Introduction

This chapter focuses on the implementation of the system architecture and

design considerations of Chapter 2. The implementation process concerns the

translation of the designs and specifications for system architecture into working

hardware and software.

Implementation required careful selection of the type of hardware and software

capable of realizing the system objectives and requirements discussed in the previous

chapter. Specifications of hardware and software components and relevant details

regarding their working are provided. Discussion will cover the choices available for each

case, the relative benefits and drawbacks posed by each, the metric of evaluation of a

suitable component and the rationale for the final selection. Integration of components

into the system as a whole is an important stage of implementation, and due

consideration is given to stages of incorporating different modules. Individual

components were built and tested in stages, first in a stand-alone setting and then

integrated into the system and tested in that setting as well.

The testing of the completed system follows, in order to prove that the system

demonstrates the design objectives and requirements outlined in Chapter 2.

Consideration is given to compromises that were made in transition from design to

realization, due to constraints of hardware and software that were encountered. This

also examines issues and obstacles encountered during the implementation process

and their resolution.

3.2 Hardware Selection

The DIS architecture considerations of the design process required the use of

distributed hardware in order to realise specifications and requirements such as

flexibility, scalability, robustness and cost. This also facilitated the realisation of

distributed control of individual devices, with individual holons and agents residing on

each HU.

 49

Consideration was given to the nature of the hardware hosting the holon and

agents and interfacing with the associated device. An initial option given consideration

was the use of a single controlling device, with adquate resources of memory and

processing capability. . To provide modularity in the design, the system was divided into

two parts, one responsible for intelligence and decision making and the other tasked with

interfacing with devices as well as handling intra-HU and inter-HU communications. A

major advantage presented by this configuration is that a dedicated controller with

multiple interfacing capabilities allows easy attachment and removal of devices from the

HU. These two components will be henceforth referred to as the ‗Holon Board‘ and

‗Communications/Interface Board‘ respectively. Figure 3.1 shows the mapping of

architecture specifications of Figure 2.3 and Figure 2.4 from Chapter 2, to the

implemented hardware of a typical HU.

Figure 3.1: Mapping of architecture specifications to hardware.

3.3 Holon Board

The Holon Board provided the intelligence services of the HU. It executed almost

all the control and intelligence logic, housed the Holon and agents, and processed

incoming messages from other HUs. Hence, the processor used was required to be

more powerful, as well as possessing more system memory than the

Communication/Interface Boards. It emerged from the research work conducted by the

 50

iDEA Laboratory [91], and was designed and fabricated by Ovcharenko [105]. Its initial

purpose was to run all the software of the HU, and handle a lot of data throughput

generated by operations related to wireless communication and video. Figure 3.2 shows

the Holon Board.

Figure 3.2: Holon board of the Holonic Unit.

Initially conceived as a platform meant to implement embedded systems

communicating over wireless networks, the Holon Board is not a commercial off-the-

shelf product. It does not support many peripheral interfaces for communication with

devices, possessing only one standard serial interface communicating using RS-232 and

one USB interface to connect devices. It possessed an IEEE 1149.1 Standard Test

Access Port and Boundary-Scan Architecture [106] hardware interface, also known as

Joint Test Action Group or JTAG. It facilitated debugging and testing of the hardware of

the Holon Board. The Holon Boards of the Motion Sensor, Network Camera and RFID

Tag Reader HUs interfaced to their Communications/Interface Boards through their USB

interfaces. The Holon Board was a blank device, and contained no on-board software; it

therefore required an operating systems package before any DIS software components

 51

could function on it. The working operating system implemented on the Holon Board

was a Linux distribution specifically built for it using the OpenEmbedded software build

tool [107]. OpenEmbedded helps build Linux distributions for embedded systems and

help maintain them. Ångström [108], the distribution built for the Holon Board is another

embedded version of the GNU/Linux operating system. Ångström provided the

necessary core Linux kernel as well as a few essential tools and utilities necessary for

limited development and execution of software programs. However, Ångström does not

possess the full features of the Linux distribution provided with the

Communications/Interface Board. It is also limited in terms of the number and features of

the tools and utilities provided with it. One of the constraining factors that dictated the

extent of the features built into Ångström was the limited storage space available on the

Holon board.

In addition to the provision of an operating system, a major decision concerned

the selection of a Java Virtual Machine (JVM) [109, 110] as part of the associated

supporting software tools provided with Ångström. There were a number of options

available in terms of currently available architectures of the JVM – proprietary virtual

machine implementations provided by both commercial vendors as well as

implementations provided by the open-source community. The main implementations

evaluated for their capacity to execute the holon-agent architecture were:

 Java [111] from Sun Microsystems (Sun Java)

 Kaffe OpenVM [112]

 Cacao [113]

 JamVM [114]

Of these implementations, Sun Java is a commercial and proprietary product.

The other three (Cacao, Kaffe, and JamVM) are implementations that attempt to be

compatible with the official architecture specified by Sun Microsystems for the Java

Virtual Machine. Development and implementation stage of the DIS system initially

began on version 1.4 of the Java Development Kit (JDK) and Java Runtime Engine

(JRE) from Sun Microsystems (Sun Java 1.4). This decision was made as at the time of

development, Sun Java 1.4 was the most ubiquitous in terms of usage by industry, in

addition to being well understood and supported by the community of developers making

use of it.

 52

As development work progressed, project requirements dictated that the source

code of the JVM be available for inspection as well as modification, if necessary. As any

JVM implementation provided by Sun Microsystems is proprietary by nature, the source

code is not available for inspection and modification by the user. Hence, the decision to

use one of the various OSS alternatives previously listed. While evaluating the options

available, the criteria for selection was based on the constraints of memory and

processor usage, as well as storage space of the Holon Board, which would execute the

intelligence services as well as the JVM. Running on an embedded system, the JVM

would need to consume as little storage space as possible, along with the other software

that would also be stored on the Holon Board. It would also need to consume as little

memory while the system is running, as memory available on the Holon Board is limited,

and other software components required sufficient memory to be available in order not to

compromise system performance.

Kaffe OpenVM is the oldest and most mature open-source offering of a JVM,

being the original effort by the open-source community to provide a JVM for application

development and implementation. Kaffe in its fundamental development is be lean and

portable, but does suffer a drawback in terms of performance – it is significantly slower

in terms of execution speed than offerings from commercial vendors. In spite of this, it

possesses value for embedded systems development, because of its smaller size in

comparison to a standard JVM from Sun Microsystems, as well as making use of Just

In-Time (JIT) execution capability to run native code.

Cacao (also known as cacaovm) is a JVM that places emphasis on speed of

execution, making use of the principle of JIT execution, like Kaffe. First released in 2004

under the GNU Public License, it has been under active development since then. While

Cacao did seem to promise speed of execution, there were compatibility issues that

precluded its usage as the JVM on the Holon Board.

JamVM was the final option considered for usage on the Holon Board. It is

extremely compact as compared to other JVM implementations, while attempting to

conform to the Java Virtual Machine Specification, published by Sun Microsystems. In

addition, it also employs the Just-In-Time (JIT) execution technique in its compiler,

allowing speed of execution of java code. In addition, it is tested and currently supported

on a variety of different operating system and processor combinations. Given these

features, it was finally decided to use JamVM as the working JVM on the Holon Board.

 53

Table 1 shows the various options considered for the working JVM in terms of their

advantages and disadvantages for use in this particular system. Once JamVM was

selected as the working JVM, it was kept throughout the course of the project. There

were no upgrades as newer versions became available. This avoided subtle errors that

might have crept in because of changes made to the JamVM architecture from one

version to the other. Such errors are difficult to track and deal with during development.

In addition newer versions are less familiar (and hence less well supported) by the

development community and documentation will not exist regarding issues encountered

and solutions to the same.

Table 3.1: Comparison of various JVM implementations.

JVM Implementation Advantages of Use Disadvantages of Use

Sun Java Commercially supported

Well documented

Proprietary source code

Requires more storage space

Kaffe OpenVM Open source

Oldest, mature OSS JVM

Lean and portable

Insufficient documentation

Smaller user base

Slower than commercial JVMs

Cacao Open source Insufficient documentation

Small user base

Compatibility issues

JamVM Open source

Speed of execution

Widely ported and tested

Insufficient documentation

Small user base

Relatively new

3.4 Communications/Interface Board

A Communications/Interface Board interfaced with a device on a low level, read

output signals from it and supply input signals to control it, if needed. In addition, each

Communications/Interface Board possessed wireless communication capability, allowing

the formation of a wireless peer-to-peer network. It acted as the communications unit

between the Holon Board and its associated device(s), as well as between HUs. A

 54

Communications/Interface Board connected to a Holon Board, forming a two-element

holon-agent unit for device control. Figure 3.3 is a UML Use-Case diagram of the Holon

board acting on the Communications/Interface Board.

Figure 3.3: UML Use-Case of Holon Board acting on Communications Board.

One practical factor that necessitated this implementation strategy was the

limitations of the Holon Board in terms of the hardware interfaces available for I/O as

well as hardware resources such as memory, storage and processor speed. In addition,

the USB interface available on the Holon Board could only work in client mode with other

devices. Therefore, the implementation strategy dictated a device possessing multiple

hardware interfaces and a USB interface capable of working as a host in order to initiate

control of USB devices. The device chosen to realize this functionality was the TS-7300

Single Board Computer (SBC) provided as a commercial off-the-shelf product by

Technologic Systems. Figure 3.4 shows an image of the TS-7300 SBC.

Of the various peripheral interfaces available, the following implemented I/O

functionality between the TS-7300 and device or with the Holon Board:

 Secure Digital (SD) Card interface #1

 Ethernet interface #1

 Digital I/O interface #1 (DIO1)

 Serial (COM 1 DB9) interface

 USB interface

 55

Figure 3.4: The TS-7300 SBC from Technologic Systems.

The SD Card interface stored the operating system and supporting software. The

Ethernet interface communicated with the network camera. The motion sensor

connected to two pins of the DIO1 [115] interface. The Serial (COM1 DB9) interface

(which communicated using the RS-232 protocol) was used during development to load

software onto the SD Card and test them. The USB interfaces supplied power to and

operated an IOGEAR 54g Wi-fi USB Adapter [116]. This device operated using the IEEE

802.11 b/g [117, 118] wireless communications protocol and enabled wireless

communication between the HUs of the DIS security system. Communication between

each TS-7300 SBC and its respective Holon Board used the host USB interface on the

TS-7300, as the USB interface on the Holon boards could only operate in client mode.

The TS-7300 SBC possessed two slots capable of accommodating SD cards of 1 GB

capacity or more. This provided enough storage space for a full-featured operating

system and other software programs. The Holon Board lacked this type of hardware

interface.

 56

The tools and utilities supplied with the embedded operating system of the TS-

7300 SBC enabled much of its functionality. Although there are many embedded

operating systems feasible for use in this DIS, a major constraint that influenced

decision-making was the usage of open-source software (OSS) [119] for development

and implementation wherever possible. Since OSS makes the source code available to

the end user, it becomes easier to compile and deploy the software on hardware

platforms specially selected or developed for a particular application, such as the DIS

security system. Extensive modification of the source code is possible to meet

specialised requirements of the system and there are numerous choices available with

regard to tools that implement a desired feature or functionality. In this regard, the TS-

7300 SBC used an embedded version of the GNU/Linux [120] operating system. This

was a suitable choice, due to the increasing use of GNU/Linux in real-world commercial

applications of embedded systems. It is deployed on numerous hardware platforms and

documentation is extensively available with respect to development and tools available

for the same.

The TS-7300 used two different GNU/Linux distributions, selection of which

depended upon the user‘s requirements. One is TS-Linux [121], a compact Linux

distribution based on BusyBox [122, 123]. TS-Linux is suitable for implementing systems

that must be compact in terms of storage space, and provides the most essentially used

tools and utilities. However, in endeavouring for compactness of size and storage space

occupied, these tools and utilities often lack all the features of the complete versions. In

the event that a complete Linux distribution is required for development, the other

operating system of choice was a full Debian Linux [124] distribution with full versions of

associated tools and utilities. These were essential for system development and testing.

The version of Debian Linux used on the TS-7300 was version 3 (also known as

‗Sarge‘). Of the two, implementation used Debian Linux as the working operating

system.

Due to the software requirements of the DIS, Debian Linux functioned as the

operating system for the scope of my project. A JVM was not suitable for use on the TS-

7300, due to the relatively demanding memory and processor requirements. The TS-

7300 possessed limited memory capacity in comparison to the Holon Board, and a JVM

would adversely affect the communications and interfacing operations executed.

 57

3.5 Equipment

The four interacting devices of the DIS security application – motion sensor,

network camera, RFID tag reader and supervisor, interfaced with a TS-7300 and

together with their respective Holon Boards, formed a HU. All four HUs communicated

with each other over a wireless network. Figure 3.5 shows the various modules of the

system hardware. The Supervisor HU in Figure 3.5 did not interface with a Holon-

Communications/Interface unit; it possesses the capacity to support the functionality of

intelligence, communications, interfacing, and control. Implementation details follow.

Figure 3.5: Block diagram of DIS security system hardware.

The motion sensor was a commercial off-the-shelf device. It made use of an

infrared sensor to detect motion, and an LM324N [125] operational amplifier (op-amp) to

process the signal generated by the infrared sensor. The LM324N delivered an output

signal that went to +5V when the infrared sensor detected movement and a 0V signal

otherwise. Figure 3.6 shows the electronic board inside the motion sensor, containing

 58

the infrared sensor and LM324 op-amp. Figure 3.7 shows the output signal from the

LM324N as displayed on an oscilloscope when a series of motions occurred in front of

the motion sensor. The TS-7300 SBC received the signal from the output of the LM324N

through its Digital I/O interface. Figure 3.8 shows the completed interfacing of the two

components.

Figure 3.6: Motion sensor with infrared sensor and LM324N.

 59

Figure 3.7: Output signal from LM324N of motion sensor.

Figure 3.8: Completed interfacing of motion sensor and TS-7300.

 60

The RFID tag reader used was the M5e development system from ThingMagic

Inc. [126, 127], operating in the UHF spectrum and making use of an Application

Specific Integrated Circuit (ASIC) for its RFID reader chip and an Atmel ARM7

microcontroller for control of the device. Figure 3.9 shows the M5e with its associated

antenna and a Gen 2 RFID tag.

Figure 3.9: RFID reader.

The M5e also possessed a serial interface that communicated using the RS-232

protocol. This connected to the serial interface on the TS-7300, and controlled using an

RFID subsystem software component. This was necessary, as the RFID software

component required a JVM in order to operate.

The network camera selected for use in the system was the Axis 210 [128] from

Axis Communications. The Axis 210 is a professional grade surveillance camera that

communicates using the Internet Protocol (IP), supporting IPv6 as well as IPv4. It is able

to support advanced functionality due as it contains an embedded BusyBox Linux

distribution. This enables it to provide useful services such as an embedded web server,

a built in scripting tool for executing scripts, secure File Transfer Protocol (FTP), telnet,

etc. The Axis 210 interfaced to the Ethernet port on a TS-7300 SBC using a crossover

 61

cable. Figure 3.10 shows the Axis 210, TS-7300 and Holon Board forming the Network

Camera HU.

Figure 3.10: Interfacing of Axis 210, TS-7300 SBC and Holon Board.

The Axis 210 interfaced with the TS-7300 because it used an Ethernet interface to

communicate, and this was not available on the Holon Board. In addition, the Angstrom

OS did not have the necessary supporting tools to automate the login procedure to

BusyBox on the Axis 210.

3.6 Software Selection

Having established some of the specifics of the system hardware, this Section

will investigate the implementation of the software components helping to meet the

architectural requirements of the DIS as outlined in Chapter 2. Whenever possible, I

attempted to use already existing software tools that implemented necessary

functionality within the system, in order to reduce development and implementation time.

DIS components on the Holon Board implemented the architecture of the holon-

agent model. Among the options available, the Java programming language was

determined to meet these requirements. As Java makes use of a Java Virtual Machine,

object code implementing the holon-agent model should theoretically be hardware-

independent, i.e. the same object code should be able to run on HUs making use of

different hardware platforms with little or no modification. While essentially a high-level

 62

language, Java possesses the capability to interface with low-level program code written

in C through the Java Native Interface (JNI). Finally, one important factor that influenced

the selection of Java for implementation of necessary DIS components was the already

existing Holonic Technology Platform (HTP), which had previously implemented many of

the foundational components of the holon-agent model and did not require extensive

modification for the scope of this work.

3.7 Holonic Technology Platform (HTP)

Chapter 2 provided a brief mention of HTP as an alternative, agent-based

framework for developing a DIS, based upon an underlying peer-to-peer architecture.

HTP‘s stated system objectives [75] at the time of development were:

1. To create an environment where each individual node on a network is able to

work with other network nodes, in accomplishing a global task. In such an

environment, the individual must also accomplish its own task.

2. To allow each individual node on a network to have the capability to learn

new responsibilities and new sets of functionality, and to have the capability

to adapt to a changing network environment.

3. To create a system architecture where other system developers are able to

expand the functionality of the system without having to make changes to the

core of the environment.

The initial implementation of HTP met these objectives. The architecture was

organised such that it comprised of twelve agents organised under the Holonic Logistics

System (HLS) [75,], as shown in Figure 3.12

 63

Figure 3.11: Architecture of Holonic Logistics System under HTP.

The initial HTP framework laid the foundation using the holon-agent model, upon

which various holonic applications were possible. However, it lacked the necessary

functionality to meet the requirements of an application performing distributed control of

devices and handling interactions between them. Specifically, it did not possess

components such as the Device Agent constructed upon the KRB model, the Agent

Registration Table or Holon Event Table outlined in Chapter 2. Hence, modifications

were necessary to the HLS that incorporated these features. Figure 3.13 illustrates these

changes.

 64

Figure 3.12: Modifications made to HLS architecture.

The Device Agent was the major modification made to the HLS, and

implemented in Java. Its implementation was such to allow it to operate within the HTP

framework; this required minor architectural modifications to the HTP source code.

Figure 3.14 illustrates the architecture of the Device Agent.

 65

Figure 3.13: Architecture of the Device Agent.

The objective of the Device Agent was to anticipate incoming event-triggered

messages from devices regarding device state or data generated by the same;

determine the event that generated the message by consulting the HET; process the

message and respond with the appropriate messages instructing control action, in

accordance with a user-specified rule base.

The subsystem implementing the Device Agent made use of some of the tools

developed within the ‗Tools and Utilities‘ package. This was useful in manipulating the

configuration file of the Device Agent. The ‗DatabaseMaster‘ and ‗DeviceAgent‘ files are

compulsorily required for registration with HTP. Event description files such as ‗Run DIS

(Event)‘ specified the name of the event and registered it with HTP. These needed to

operate in concert with event listener files, tasked with listening for notifications that the

event specified had occurred. The associated event handler files contained detailed

instructions of appropriate course(s) of action upon notification of the event.

Implementation of program code for the Device Agent followed the KRB model

outlined in the section on its design in Chapter 2. In order for a particular Device Agent

to initialize and configure to the specific HU and device that it monitored, it opened and

read a configuration file containing all the necessary parameters and their corresponding

values needed for the Device Agent to configure itself. This configuration file was stored

 66

in the simple and popular text file (.txt) format. However, in order to implement more

complex and demanding applications requiring more sophisticated and powerful schema

for information representation, other formats such as XML are possible implementation

options. Listing 3.1 shows a section of code that was part of the initialisation and

configuration process. For the full source code listing, please see the Appendices.

Typical information that was stored in the configuration file included: Device

Agent name and identification number; connectivity information, such as IP addresses of

public void AssignConfigurationParameters()

 {

retrievalOfAgentConfigurationParameters = new

Package_ToolsAndUtilities.PackageToolsAndUtilities_FileParamete

rRetrieval();

 //Retrieve and set Agent Parameters

System.out.println("Retrieving Device Agent Identity

Parameters...");

NAME_OF_PARENT_HOLONIC_UNIT =

retrievalOfAgentConfigurationParameters.ExtractRequestedParamet

erAsString(parserOfAgentConfigurationFile.InitializationFilePar

ameters, "PARENT_HOLONIC_UNIT");

DEVICE_AGENT_ID =

retrievalOfAgentConfigurationParameters.ExtractRequestedParamet

erAsString(parserOfAgentConfigurationFile.InitializationFilePar

ameters, "DEVICE_AGENT_NAME");

DEVICE_AGENT_IDENTIFICATION_NUMBER =

retrievalOfAgentConfigurationParameters.ExtractRequestedParamet

erAsInteger(parserOfAgentConfigurationFile.InitializationFilePa

rameters, "DEVICE_AGENT_IDENTIFICATION_NUMBER");

System.out.println("Retrieving Message Location

Parameters...");

LOCATION_OF_MOTION_SENSED_MESSAGE =

retrievalOfAgentConfigurationParameters.ExtractRequestedParamet

erAsString(parserOfAgentConfigurationFile.InitializationFilePar

ameters,"PATH_TO_MOTION_SENSED_MESSAGE");

…

} //This is the end of the method definition

Listing 3.1 – Example of Device Agent configuration process.

 67

other HUs in the neighbourhood; location of incoming and outgoing message files;

operating system specifications; rules of action; behaviour specifying action to be

implemented when conditions meeting those rules. More complex forms of

representation could use XML or other methods to specify the configuration and rule

base for each agent, implemented as the system architect and developer sees fit. Listing

3.2 shows the contents of a sample configuration file. The full source code is provided in

the Appendices.

Once reading of the configuration file was completed and the Device Agent‘s

internal variables assigned the corresponding values specified in the configuration file,

the agent would wait for an internal message from HTP notifying it of some event that

required its attention. The listening, notification and handling of the event made use of

Java‘s internal event service. Through the messaging system made available by HTP

[75], Device Agents were able to send internal messages to themselves, as well as

external messages to other Device Agents residing on other HUs.

When either an internal or external arrived for the Device Agent, it would fire an

event handling mechanism written for that particular event. The Agent would then

execute the course of action specified in the event handling mechanism procedure.

Listing 3.3 shows a segment of the code related to event handling where the Device

//Main section Deliminators = ::

//Subsection Deliminators = :

<<DEVICE_AGENT.MAIN_SECTION>>::

<SUBSECTION.IDENTITY>:

PARENT_HOLONIC_UNIT=MotionSensorHolonicUnit

DEVICE_AGENT_NAME=MotionSensorDeviceAgent

<SUBSECTION.CONNECTIVITY>:

MOTION_SENSOR_HOLONIC_UNIT=192.168.0.50

<SUBSECTION.RULES>:

PRIMARY_INCOMING_MESSAGE_TO_MONITOR=

/DISC/Messages/MotionSensed.txt

<SUBSECTION.BEHAVIOUR>:

FIRST_COURSE_OF_ACTION=./ftpToRFIDReaderHolonicUnit.sh

SECOND_COURSE_OF_ACTION=./ftpToSupervisor.sh

Listing 3.2 – Sample Device Agent Configuration File

 68

Agent receives an instruction to start working. As another example, an external message

from the Device Agent on the Motion Sensor HU would arrive for the Device Agent on

the RFID Reader HU, informing it to commence reading the ID‘s of tags within its sensor

range. HTP internally routed this message to the Device Agent, triggering an event

handling mechanism to take the appropriate action of beginning scanning for RFID tags

within its sensor range. Figure 3.14 illustrates this as a UML sequence diagram.

public void

RunDISEventReceived(PackageDeviceAgent_RunDISEvent Event){

System.out.println("This is Device Agent, confirmed

working.");

System.out.println("Starting up DISC now.");

ManipulateAgentConfigurationFile();

AssignConfigurationParameters();

CheckIncomingMessageFolderForNewMessages = new

Thread(RunThreadCheckingIncomingMessageFolder, "DISC Incoming

Message Monitoring Thread");

CheckIncomingMessageFolderForNewMessages.start();

while(true){

try{

CheckIncomingMessageFolderForNewMessages.sleep(100);}

catch(InterruptedException

exceptionThrownWhileMonitoringIncomingMessages){

 CheckIncomingMessageFolderForNewMessages.run();}}}

Listing 3.3 – Example of event handling

 69

Figure 3.14: Event Handling by the Device Agent.

 70

Thus, there was successful implementation of the abstract concepts of

knowledge, rules and behaviour specified in the design and architecture section for the

Device Agent in Chapter 2.

The system software running on the Holon Board also used software

components facilitating communication with the TS-7300 SBC to which it interfaced. This

was addressed by implementing the DIS components handling communications and

interfacing for the TS-7300 SBC as general-purpose tools, so that they could be run on

the Holon Board to provide the same services with little or no modification.

An instance where scripts written in the Bourne Again Shell (BASH) [129 - 131]

automated subsystems of the DIS on the Holon Board was configuration of JamVM to

execute java code. Once JamVM was implemented as the working JVM, some

parameters had to be configured in order for DIS subsystems implemented in Java to

work properly. These include parameters such as the ‗PATH‘ variable (specifying the

location of the JVM home directory and important subdirectories) within the operating

system on the Holon Board, the setting of the ‗CLASSPATH‘ variable (specifying the

location of important JVM classes) of JamVM. Once the proper parameters were set for

the JamVM, the proper instructions ran the java program code implementing the various

DIS subsystems. A BASH script file contained these important instructions and

repeatedly executed as many times as necessary. Listing 3.4 shows a segment of the

source code for the script file used to start HTP. For a full listing, please consult the

Appendices.

 71

#!/bin/bash

#Bash script to run DISC files using JamVM

#Author: Kevin Thomas

#Date of last modification: 2009.06.10

#Java JDK & JRE settings for JamVM

JAVA_HOME=/usr/bin/jamvm:/usr/share/jamvm/

PATH=$PATH:/usr/bin/jamvm:/usr/share/jamvm/

JAVA_FILES_TO_COMPILE="HTPComponentTest.java"

JAVA_CLASS_FILES_TO_RUN="HTPComponentTest"

printf "\nThe current setting for the java PATH variable is:"

echo $PATH

printf "\nThe current setting for the java JAVA_HOME variable is:"

echo $JAVA_HOME

printf "\nThe current setting for the java CLASSPATH variable is:"

echo $CLASSPATH

cd $MAIN_WORKING_DIRECTORY

#Use JamVM to run the .class file(s)

jamvm -
Xbootclasspath:/usr/share/jamvm/classes.zip:/usr/share/classpath/gnu/java/locale/:/usr
/share/classpath/glibj.zip -verbose:class $JAVA_CLASS_FILES_TO_RUN

#This is the end of the script file

Listing 3.4 – Bash script automating configuration and start up of HTP

 72

Apart from the selection of the JVM, the other components implemented in Java

were the subsystem that read RFID tag data from the RFID Tag Reader and the Device

Agent. Figure 3.15 shows the architecture of the implemented RFID subsystem. All

discussion of the implementation will reference this figure.

Figure 3.15: Architecture of implemented RFID subsystem.

The purpose of the RFID subsystem is as follows: ―To initialize the RFID tag

reader, instruct it to read and retrieve the ID‘s of any RFID tags that enter its sensor

range and store the RFID tag ID into a text file for processing by the Device Agent.‖

When implementing components of the DIS, a goal of the development process

was to make the implementation as generic as possible, so that tools developed for

RFID application could build other applications as well. Thus, the ‗File Utility‘ package is

a set of generic file manipulation tools to handle text files; the ‗RFID Reader‘ package is

a set of generic tools to access and configure an RFID tag-reading device; the ‗Serial

Interface‘ package allows access and configuration of a generic serial interface. The file

 73

‗RFIDSystemEmbedded.class‘ is a java class file that invokes these various tools,

making use of them to accomplish the purpose of the RFID subsystem. Similarly, the file

‗TagReading.class‘ invokes the tools necessary to instruct the RFID tag reader to read

the IDs of RFID tags that come within the field of its sensor.

The ‗File Utility‘ package consists of a set of java class files to access, parse,

retrieve parameters from and write data to a file. The parameter file

‗RFIDPackageOperatingParameters.txt‘ configures various software components of the

RFID subsystem, such as the serial interface, RFID tag reader, tag recording system

and so on. This allows the user to configure the operating parameters of the RFID

subsystem without having to modify the source code in order to effect those changes.

The ‗Handler‘ class file is invoked to accesses the file, open it and close it once it is

processed. The ‗Parser‘ class file is a tool to parse the configuration file by sections, and

extract the various parameter values for processing. The ‗Parameter Retrieval‘ class

converts the various parameter values extracted by the Parser class into their

appropriate data types (string, integer, etc.) for use by the RFID subsystem program

code. Finally, the ‗Display‘ and ‗Writer‘ classes display the various parameters contained

in the configuration file, and write data to files, respectively.

The ‗RFID Reader‘ package contains two java class files. The ‗Access‘ class file

facilitates access to an RFID tag reading device, in order to send control signals to it.

The ‗Configuration class file enables the tag reader to be configured using device-

specific codes before certain functions can be performed. The tools within the RFID

Reader package are made use of after the configuration file has been processed and the

parameter values extracted.

Similarly, the ‗Serial Interface‘ package contains ‗Access‘ and ‗Configuration‘ java

class files that facilitate access to and configuration of a serial interface that

communicates using the RS-232 protocol. These tools are used after the parameters are

extracted from the configuration file within the File Utility package.

When the RFID subsystem is invoked, the ‗RFIDSystemEmbedded.class‘ file

uses the ‗Handler‘ class file within the ‗File Utility‘ package to access the configuration

file containing the various operating parameters and their values. The configuration file is

parsed into lines. The ‗Parser‘ class is used to further parse the extracted information by

section (Serial Interface, RFID Reader, etc.), subsection (Serial Port, Baud Rate, etc)

and individual parameters and store them in corresponding data structures. The tools

 74

within the ‗Serial Interface‘ and ‗RFID Reader‘ are used to access and configure the

serial interface and RFID tag reader respectively. The ‗TagReading.class‘ file then

carries out the operation of reading RFID tag IDs. When tags are sensed, the ‗Writer‘

class within the ‗File Utility‘ package is invoked to write the tag ID to a text file. Figure

3.16 illustrates this in a UML diagram.

Figure 3.16: UML activity diagram of RFID subsystem operation.

 75

The workstation to which the Holon Board was interfaced for programming

purposes made use of version 7.04 of Ubuntu [80] as the working operating system,

which is another Linux distribution provided by the open source community. This version

of the working operating system on the workstation remained unchanged throughout the

entire development and implementation cycle. The reason for this was to avoid subtle

problems and conflicts in the working of tools and programs, which would be difficult to

detect during development when versions of the operating system and its associated

tools were changed or upgraded.

3.8 Communications/Interface Board

One of the operating requirements of the Communications/Interface Board was

the capability to handle I/O in the case of devices or a Holon Board. In terms of input

from devices, examples of such software functionality were reading signals generated by

a device through an interface; encoding signals into a binary representation; packaging

data from devices into a message format and transmitting them to the Device Agent

residing on the Holon Board. From the perspective of output to devices in order to issue

them instructions, software functionality needed convert control commands from a

Device Agent on the Holon Board into signals understood by the individual device before

transmitting them. In both cases, buffering capability was required for data moving to or

from the device attached to the Communications/Interface Board. In addition,

functionality was required that would make use of wireless capability, enabling HUs to

communicate with one another. All of these capabilities required implementation on a

low-level in order for communications and control between the constituent nodes of the

system.

Some of the DIS software components implemented on the TS-7300 SBC used

the BASH scripting language, an OSS shell program provided with some Unix-like

operating systems. A scripting language allows some external control of various

application programs or operating system services. A frequent use of scripting

languages is to automate repetitive tasks or services, an advantage being modification

of programs without having to recompile the source code. In addition, applications and

operating system services usually provide interfaces for scripts to use.

For example, a BASH script performed remote connection to the Axis 210

network camera using the Ethernet interface and the telnet utility to execute the BASH

 76

script embedded on it. This script controlled the camera‘s snapshot-taking capability and

transfer of the photo back to the associated TS-7300 SBC. The script made use of an

embedded web server to take a snapshot and write it to a local directory on the camera.

It also employed an embedded file transfer service to transfer the snapshot to a

specified directory on the TS-7300 SBC. Listing 3.4 shows the source code for this

script. Another script enabled connection to the Holon Board and conducted the transfer

of files between them using the File Transfer Protocol (FTP) [133] implemented by an

appropriate tool. Setup of various interfaces for communication with devices and HUs

(such as the Ethernet, Wireless and Serial Interfaces) used BASH scripts executed

automatically upon start-up of the TS-7300 SBC.

 77

The software component that read signals from the motion sensor interfaced to

two pins of the Digital I/O interface on its respective TS-7300 SBC was implemented in

the C [134] programming language. C possesses the capability to communicate with

hardware on a low level, while being written in the syntax of a high-level language that is

easier to understand, maintain and modify. In addition, system operation anticipated that

the software component performing I/O to the motion sensor would remain in a single

#!/bin/bash

#Bash script to log in to Axis 210 Network Camera and request snapshot JPEG
image

#Author: Kevin Thomas

#Last modified: 2009.10.19

#Temporarily deactivate wireless interface wlan0

ifconfig wlan0 down

#Temporarily reactivate ethernet interface to Network Camera (eth0)

ifconfig eth0 up

#Perform automatic telnet login to Network Camera

./loginToNetworkCamera.exp

#Transfer file from Network Camera using standard FTP

./ftpFromNetworkCamera.sh

#Temporarily deactivate ethernet interface to Network Camera (eth0)

ifconfig eth0 down

#Temporarily reactivate wireless interface (wlan0)

rmmod zd_b

./setupAdhocNetwork.sh

#This is the end of the script file

Listing 3.4 – Bash script automating operation of Axis 210 network camera.

 78

location (i.e. on the TS-7300 SBC) for most of its operating life. Listing 3.5 shows a

section of the source code. Please refer to the Appendices for a full listing.

One pin functioned as a ‗ground‘ or reference signal, the other as a ‗live‘ or ‗data‘

signal. The comparison of the signal level on the data pin to that on the reference pin

would be used to determine whether motion had been sensed or not. The

microprocessor controlled these pins, and read the signal levels on the same into two

data registers dedicated solely for this purpose. The C program reading the data off the

startingLocationForPortBDataRegister = mmap(0, getpagesize(),
PROT_READ|PROT_WRITE, MAP_SHARED,
fileDescriptorHandlingMemoryLocation, 0x80840000);
PORT_B_DATA_REGISTER = (unsigned int
*)(startingLocationForPortBDataRegister + 0x04);
PORT_B_DATA_DIRECTION_REGISTER = (unsigned int
*)(startingLocationForPortBDataRegister + 0x14);
PORT_E_DATA_REGISTER = (unsigned int
*)(startingLocationForPortBDataRegister + 0x20);
PORT_E_DATA_DIRECTION_REGISTER = (unsigned int
*)(startingLocationForPortBDataRegister + 0x24);
GPIO_PORT_B_DATA_BIT = (unsigned int
*)(startingLocationForPortBDataRegister + 0xC4);
*PORT_B_DATA_DIRECTION_REGISTER = 0xf0;
*PORT_E_DATA_DIRECTION_REGISTER = 0xff;
*GPIO_PORT_B_DATA_BIT = 0x01;
stateOfPortBDataRegister = *PORT_B_DATA_REGISTER;

while(stateOfPortBDataRegister & 0x01){

 stateOfPortBDataRegister = *PORT_B_DATA_REGISTER;

}

WriteDataToFile(MOTION_SENSED);

for (counterToBlinkLED = 0; counterToBlinkLED < 5; counterToBlinkLED++){

 *PORT_E_DATA_REGISTER = 0xff;

 sleep(1);

 *PORT_E_DATA_REGISTER = 0x00;

 sleep(1); }

 close(fileDescriptorHandlingMemoryLocation);

 return 0;}

Listing 3.5 - Segment of C program reading signals from motion sensor.

 79

two pins first had to specify the direction of data flow on the same. This was necessary

as the pins could function as output, to send data to the outside world, or as input,

reading data in from some interfaced device.

The above segment performed proper configuration of the data registers in the

EP9302 ARM9 processor of the TS-7300 SBC. Once this was completed, it read the

contents of the data register monitoring the ‗live‘ signal line and designated it as the

‗initial‘ state of the incoming signal from the motion sensor. It proceeded to wait until the

detection of a change in signal level on the pins interfaced to the motion sensor. When

this occurred, it extracted the data stored in the data register and wrote it to a text file

stored in the embedded operating system. As a visual indication to the user that the

program was running correctly, it blinked two indicator LEDs on the TS-7300 board three

times in succession, upon detecting a change in signal level. Scripts running on the TS-

7300 SBC automatically transferred this file to the associated Holon Board on which

resided the Device Agent for the motion sensor. Figure 3.17 illustrates these steps in a

UML activity diagram.

 80

Figure 3.17: UML activity diagram of embedded C program.

3.9 Holonic Unit Integration

Aside from the implementation of the individual software and hardware

components, was the integration process where they were all brought together to form

their individual HUs and the complete DIS security system. Figure 3.18 shows the

combined hardware and software component listing of a typical HU on the DIS. A

discussion of how the integrated components worked together follows.

 81

Figure 3.18: Combined component listing of Holonic Unit.

The communication process between a devices and its associated Device Agent

on the Holon Board occurred via messages placed in the appropriate directories on the

Communications/Interface Board. When a device had generated data from an operation

(sensing motion, taking a snapshot, reading an RFID tag), it placed a file containing the

data into the appropriate directory. A script running on the Communications/Interface

Board registered the presence of a new message, and proceeded to send it to the

corresponding message directory for that device on the Holon Board. A similar script on

the Holon Board would notify the Device Agent, which proceeded to take action

according to the rules specified for it in its configuration file. This may have involved the

generation of a message meant for a Device Agent on another HU. In this case, the

communication process worked in reverse. A script on the Communications/Interface

Board detected the presence of a new message from the Holon Board, and invoked the

appropriate script for a file transfer over the wireless network to the

Communications/Interface Board on the destination HU. As an example, Figure 3.19

 82

shows the process involved when the Network Camera receives a message from the

Motion Sensor HU, instructing it to take a snapshot.

A similar process was involved when holons and agents on different HUs needed

to communicate with each other. By generating the appropriate message files and

placing them in the proper message directories, script files on the

Communications/Interface Board watching for new outgoing messages could transfer

them to the destination HUs, and similarly relay incoming messages.

Although this process worked for the implemented system, it was not the ideal

solution. It suffered from drawbacks, due to constraints of both hardware and software.

The coming chapter undertakes detailed discussion and consideration of this limitation,

among others.

 83

Figure 3.19: Snapshot operation on Network Camera HU.

3.10 Summary of Implementation Process

This chapter described the stages of implementation of the DIS security system

designed in Chapter 2. Discussion pertained to relevant details regarding

implementation of both hardware and software components. In each case, there was

consideration of design factors that influenced implementation strategy. There was

examination of various options available, as well as the relative merits and demerits of

each. The option that was finally implemented was given attention, with due attention to

the reason for selecting that over the others available.

 84

Obstacles experienced during the implementation process necessitated the

selection of certain solutions for implementation. Compromise was required in some

aspects of translation of architecture specifications into working components, due to

various limitations or compatibility issues with hardware and software. The next chapter

delineates and discusses this, through an analysis and critique of the accomplishments

of the system implementation process.

 85

CHAPTER 4: ANALYSIS

4.1 Introduction

Translation of the initial high-level system specifications into working software

and hardware components faced challenges at different stages of the implementation

process. Constraints and difficulties posed occurred due to limitations of software tools

and capabilities; hardware configuration and performance; design flaws and unforeseen

situations, among others. Solutions were required when encountering obstacles, and

required different strategies in addressing them.

In some cases, design specifications of components required reconsideration

and extensive modification work before proceeding forward. Other challenges called for

selection of different software tools from those initially decided upon, due to limitations in

capability, ease of use or other factors. Some design flaws revealed in hardware and

software required construction of a completely new component for optimum functioning.

Such solutions were unfeasible due to constraints of time and other factors; alternate

means were necessary to achieve adequate operation within reasonable performance

limits.

 This chapter will give due consideration to the resulting system, observations

made during the course of system implementation, and lessons learned from both.

4.2 Implementation Difficulties

4.2.1 Hardware

Obstacles in terms of system hardware were most significant with respect to the

Holon Board and Communications/Interface Board (TS-7300). Although selected to fulfil

appropriate roles within the HU, their individual limitations raised challenges in operating

with each other.

One of the observations in this regard related to the hardware interfaces on both

components. The Holon Board was quite restricted in the number of interfaces available;

it possessed only one serial (RS-232) and one USB interface. In addition, the USB

 86

interface could only operate in the configuration of a ‗client‘; it was unable to initiate

communication with attached devices. This imposed a further constraint in terms of the

number and nature of solutions available for communication. Since the Holon Board

accommodated intelligence and decision-making capabilities of the HU, it became a

drawback when it could not initiate communication with the TS-7300 after an agent or

holon had taken a decision or created a message that required sending. In contrast, the

TS-7300 possessed numerous hardware interfaces, including two USB interfaces – one

operating as a ‗host‘, the other as a ‗client‘. The strategy undertaken as a working

solution interfaced the USB interface on the Holon Board and the host USB interface on

the TS-7300. A proper implementation would require mandatory bidirectional

communication capability between the two devices. However, if using USB for

communication, this would require a host and client interface on each board. The ideal

would be a single USB interface that can function as host or client as required, or the

use of a different communications interface (such as Ethernet), with appropriate

inclusion into future versions of the Holon Board.

Hardware resources available on the TS-7300 [134] became a constraining

factor in terms of the software components residing on it. Its relatively small memory

capacity (32 MB of SDRAM) raised concern regarding the impact on its performance by

memory intensive software components, such as those written in Java. Such restrictions

limited the options of programming languages for development and implementation on

the TS-7300. Software components were implemented using languages such as C, C++

and BASH, and were less sophisticated in their functionality in comparison to those

executed on the Holon Board (such as the HTP platform with holons and agents).

The software driver of the Wi-Fi USB adapter used on the TS-7300 exhibited

limitations when operating in ad-hoc mode. One of these limitations was manifest during

start up of the system, as HUs attempted to form the wireless network for the first time

and form links with other HUs in their vicinity. A minimum of one HU (such as the

Supervisor) needed to be operational and broadcasting the right identification number of

the DIS WiFi network, prior to start up of other HUs. Deviation from this procedure, such

as independent and simultaneous start up of HUs, resulted in the self-assignment of

each with different Wi-Fi network identification numbers. The outcome was the formation

of essentially two or more different Wi-Fi networks, and the inability of HUs to locate

each other. This represents an aspect of centralisation in the Wi-Fi communications

 87

architecture. Similarly, temporary disabling of the wireless interface during operation,

followed by reactivation created problems; a significant amount of time was required for

the device to re-acquire signals from other HUs and join the network. As an example,

this became a particular obstacle in the operation of the Network Camera HU. Two

network interfaces on the associated TS-7300 were in operation – the wireless interface

used by the Wi-Fi adapter, and the Ethernet interface used by the Axis 210. Temporary

disabling of the wireless interface occurred when required to login to the Axis210 and

take a snapshot, in order for the script automating the telnet utility to use the Ethernet

interface. After retrieving the snapshot image, the Ethernet interface was disabled and

the wireless reactivated, in order to transfer the snapshot to the Supervisor HU.

However, this operation took a significant amount of time, as the wireless device driver

attempted to find the signal from the Supervisor HU and register with it in turn.

Flaws in hardware design discovered on the Holon Board hindered proper

execution of software components, and required addressing. For example, initial

attempts to execute HTP using JamVM in the Angstrom environment failed on all three

devices. Detailed examination of the root cause revealed the omission of providing an

on-board hardware clock during design and fabrication. HTP in its standard operation

checked the system time and made use of it in some aspects of its operation. A proper

implementation of the system would have required re-design and fabrication of new

Holon Boards incorporating on-board clocks. As this was unfeasible, appropriate

modifications were necessary to the HTP source code to remove the usage of system

time in any of its operations. The observations from this lesson will influence proper

implementation procedures of a DIS in future. Careful checking regarding various

requirements of the software platform for its proper operation, against the functionality

supplied by the hardware that it must reside on, will help to avoid such difficulties in

future.

Flaws introduced during the fabrication process of some Holon Boards presented

another difficulty during implementation. Software executed on these boards sometimes

functioned erratically, or not at all. Investigation revealed fluctuations of signals due to

imperfections in wiring contacts, or shorting of the same. These required repair work;

Figure 4.1 documents an example.

 88

Figure 4.1: Repair work required on a Holon Board.

4.2.2 Software

Implementing software components faced similar challenges and difficulties.

Some of these were due to the tools available for development and implementation.

Other problems arose because of the architecture of the DIS system itself.

Frequent problems arose with developing and implementing software for the

Holon Board A significant obstacle was the lack of a fully featured operating system, and

associated tools that would assist in development. A contributing factor to this drawback

was the dated nature of the board itself. Designed and fabricated with the hardware

technology available four years ago, its specifications did not accommodate for the rapid

development and sophistication of embedded Linux systems since its manufacture.

Hence, compromise was necessary due to hardware limitations, trading operating

system functionality for compactness, speed of loading and execution. Among the major

omissions from the toolset were on-board compilers, particularly for programs written in

Java and C. Other necessary omissions of tools and utilities included those for remote

login (e.g. telnet); searching and locating files; updating software with new versions and

native Java libraries for the serial port, among others. The result was an extremely

limited development environment, requiring much improvisation in order to overcome the

challenges faced.

 89

The inability to update the operating system with ease meant that it remained

static throughout the development and implementation process. The difficulty involved

and consumption of time outweighed the benefit gained by addition of helpful new tools

or functionality. The lack of an on-board compiler required editing and compiling of Java

and C programs elsewhere, such as on a development workstation or on the TS-7300,

before moving them onto the Holon Board. This resulted in wasted development time,

particularly when errors required editing, recompiling and transfer of the modified code

onto the board.

A major obstacle was the lack of native libraries for Java that supported serial

port communication. These were crucial for the proper functioning of the java code

written for the RFID subsystem. A solution was required that did not require developing

these components from scratch. This necessitated the use of the native library and

supporting Java API provided by the RXTX [135] project. Developed as an alternative to

the proprietary CommAPI [136] available from Sun Microsystems, RXTX is an OSS

solution supporting serial and parallel communication for the Java Development Kit

(JDK). Although RXTX is an extremely useful tool for development involving

communication over serial ports, there were numerous issues related to usage on the

Holon Board. Problems arose due to improper configuration and malfunction during

attempted operation. Many of these problems were due to limited availability and

improper organisation of documentation on the usage of RXTX with JamVM, on

operating systems such as Angstrom with a very small user base. In addition, although

both JamVM and RXTX were ported to embedded platforms using the ARM processor

architecture, there was very limited documentation of the issues encountered in doing

so. Thus, understanding, solving and documenting the numerous problems encountered

in getting RXTX to operate in the development environment occupied significant

amounts of development time.

Similarly, issues arose when attempting to execute DIS components developed

in Java using JamVM. Some were due to configuration problems related to the operating

system environment. Others arose due to compatibility issues with some of the Java

library components used in HTP or the RFID subsystem. As with RXTX, extremely

limited availability and improper organisation of documentation became the root cause of

many difficulties experienced when using JamVM. Necessary modifications to the HTP

 90

and RFID subsystem source code in order for them to function properly required

significant time and effort.

Although HTP is a demonstration of a how to construct a viable framework for

developing a DIS, shortcomings in its architecture presented difficulties that needed

circumventing. The current implementation of HTP presents a drawback when

modification is required to the HLS that forms its core. Development and addition of a

new Agent to the core architecture necessitates addition of source code to the

‗HolonicTechnologyPlatformMaster‘ file in the Executable Package. An Agent package

contains multiple files, each of which requires registration with this master file for proper

functioning of the Agent within the HLS. Modifications to this file become increasingly

cumbersome with new additions to the core. This feature presents a bottleneck to

development, and requires addressing. In addition, HTP did not contain functionality that

allowed it to interact with an operating system through the command line of a shell

program, such as the Bash shell used in GNU/Linux. The implementation strategy

compulsorily required this capability. After taking a decision specified by its rule base,

there needed to be a means for the Device Agent to take action. Modification was

required to the HTP architecture, allowing it to use the shell to execute scripts

automating various courses of action. Another drawback lay in the lack of an automated

ability to probe its operating environment and configure or adapt itself for proper

operation within the same. Finally, HTP also lacked simplicity in the process that

automated its initialisation and activation, requiring the writing of a correspondingly

detailed script for this purpose. This was also partly due to its implementation in Java,

and its corresponding dependence upon proper specification and configuration of JVM

parameters, such as those required by JamVM.

4.3 System Performance and Limitations

Simple tests conducted on the working DIS aimed to obtain some idea of basic

performance capabilities. The tests involved measuring the time taken to perform simple

system functions, such as transmission of a small message of a size of 3 bytes from one

node to another. The results are summarised in the table below.

 91

Table 4.1: Results of timing tests conducted on DIS.

Timed tests

Test Conducted Time taken in unoptimised

system (seconds)

Time taken in optimised

system (seconds)

Single-hop FTP to

Supervisor

< 1 < 1

Two-hop FTP to Supervisor 91 4

Three-hop FTP to

Supervisor

170 7

Login to Network Camera

and take snapshot

54 54

The results of the tests provide some basic insights. A direct transmission of a

simple message with minimal payload from one of the HUs associated with a device to

the Supervisor was quite fast. However, in an unoptimised DIS, the various FTP

operations that transmitted a single message over multiple Holonic Units to the

Supervisor required a significant amount of time. For example, a transmission of the

message ‗Take Snapshot‘ from the Motion Sensor HU to the Network Camera HU,

followed by the transmission of the message from the Network Camera HU to the

Supervisor was an instance of a two-hop FTP process. The major impeding factor was

the time taken for the Motion Sensor HU to obtain a login prompt from the Network

Camera HU (an average of 90 seconds) while performing an automated FTP process to

transmit the message file. If the time taken for the Communications/Interface Board to

perform an automated snapshot-taking procedure (54 seconds) is included, it requires

approximately 145 seconds for completion of the procedure. With the inclusion of an

extra node in the messaging chain covering three HUs before reaching the Supervisor, a

 92

time of almost 170 seconds was required for a message to reach the Supervisor. This is

an unacceptable response time for a real-world DIS in a security system application.

Optimisation of the system primarily involved configuration of the FTP services supplied

with the Debian Linux on the TS-7300, with the objective of reducing the waiting time for

one HU to retrieve a login prompt from another. Proper configuration resulted in a drop

by an order of magnitude in the values generated from the timing tests, as seen in the

second column of Table 4.1.

A drawback to the interpretation of these results was the lack of a similar security

system using a centralised architecture, as a reference for comparison with similar tests.

Similarly, the small scale of the system obviated a study of performance with increase in

the population of participating HUs and comparison with a corresponding centralised

architecture. Future study will investigate system performance of an improved and

optimised system, under situations involving high bandwidth usage and transmission

large messages. Furthermore, DIS architectures rely extensively on reliable

communications and messaging capabilities that facilitate negotiation among entities. In-

depth study, to investigate the effects of degraded communications capabilities upon the

operation of HUs towards the global system objective was not undertaken. However, the

possibility exists that with further development effort and optimisation, a high-

performance DIS for a security system application, with real-time response times can be

achieved.

 93

CHAPTER 5: CONCLUSION

5.1 Introduction

This thesis has attempted to demonstrate the viability of a Distributed Intelligent

System as an alternative framework to centralised architectures for control of devices. In

the course of this endeavour, we have experienced some aspects of the systems

development cycle.

The development cycle in systems engineering begins with an understanding of

an existing problem related to a system, and the formulation of an idea for a viable

solution to the same. A planning process follows, involving consideration of details

regarding the proposed solution, and its implementation. Subsequent implementation of

the solution follows, covering all aspects that translate the abstract system specifications

into a working system, in terms of hardware, software or both. Analysis performed upon

the results of implementation examines the outcome and lessons learned in the process,

which may be valuable for future undertakings. These become the basis for engineering

a better system in future, than the one currently designed and implemented.

This chapter concludes the process by considering the outcome of the

undertaking, and the direction of future work in building upon the progress made thus

far.

5.2 DIS Development Cycle

The concept of a DIS emerged from a consideration of the history of systems

development and engineering, focused on control of devices. Examination of increasing

reliance upon the centralised framework that progressively became the norm revealed

its drawbacks, particularly in the context of increasing scale in both the number of

devices comprising the system, as well as their inherent complexity. An inquiry into

attempts at solving these significant problems, through various forms of decentralised or

distributed systems, revealed their shortcomings in addressing the root cause of the

problem. The end of the inquiry process showed that an alternative solution based on a

different paradigm was necessary, in order to meet the requirements and challenges of

 94

large-scale systems development for the future. Attention was drawn to the significant

success demonstrated in this regard by the recent emergence of Internet applications

based upon the peer-to-peer (P2P) framework. Examination of the inherent benefits of

their underlying architecture suggested the viability of using a P2P system as a starting

point for constructing an alternative framework for device control applications.

Recognition was given to the modifications and added capabilities necessary to the

existing P2P architecture, in order to achieve this objective. A simple DIS security

system would demonstrate how the proposed architecture could be used in a real-world

application.

Detailed consideration was given to the nature of the DIS architecture, based

upon the formulation of the initial concept. Evaluation of the fundamental requirements

that the proposed alternative would have to meet, led to a specification of the entities

that would comprise the architecture. Particular emphasis on architectural specifications

related to the concept of a holon and associated agents residing on a device, each

entrusted with user-specified global and local objectives respectively. Consideration of

existing platforms using agent-based architectures dealt with their drawbacks that made

them unsuitable for the foundation of the DIS. A potential candidate identified was the

Holonic Technology Platform (HTP), expressly constructed as a framework for

developing systems operating in a P2P environment. Further delineation through the

design process resulted in the introduction of the holon-agent model and associated

support structures necessary for proper functioning of the same. The general application

to control of devices and specific application in the DIS security system, led to

formulation of the architecture and design specifications of a generic Device Agent

based on the Knowledge, Rules and Behaviour (KRB) model. With an understanding of

the structure of entities in the system in mind, architecture and design considerations

shifted to the problem of bringing order to the entire system, for the purposes of control.

Inherent value was noted in tools from Formal Concept Analysis (specifically partial

ordering and lattices), leading to invocation of the same as viable mechanisms. A

depiction applying the partial ordering methodology within the DIS concluded the

architectural and design process.

Implementation of the DIS architecture followed, translating the specifications

into working hardware and software components of the security system. Hardware

selection related to components hosting the Holon and associated agents, and

 95

equipment such as the motion sensor, network camera and RFID tag reader.

Explanation provided dealt with specifications of the components, the rationale behind

their selection, and interconnection of hardware modules to form the individual entities

within the DIS. Similar attention covered rationale for selection, specification and

implementation of software components implementing the intelligence aspect of the DIS.

This specifically related to HTP, the Device Agent and supporting components facilitating

operations within a Holonic Unit.

Following the implementation process, assessment of the results provided an

initial understanding of the difficulties and challenges involved in implementing a

proposed DIS, using existing tools for development and implementation. Consideration

of difficulties covered problems experienced in both the hardware and software domains.

Numerical results obtained demonstrated some of the aspects of system operation,

providing a basis for further insight into system performance and limitations.

The final stage involves contributing to improvements in future efforts at

engineering DIS, and follows in the next section.

5.3 Improvements and Future Work

The basis for engineering a better DIS draws upon the observations of the

implementation process, described in Section 4.2 of Chapter 4. This may provide scope

for future work, using the lessons learnt in this endeavour and past efforts in DIS

research to advance the state-of-the-art in the field.

5.3.1 Hardware

Efforts at improving DIS hardware capabilities will require re-consideration of

some hardware design paradigms. Applying the principle of loose coupling in multiagent

systems mentioned in Section 2.3, would contribute to realisation of ‗smart‘ hardware.

One such domain where application is required relates to hardware interfaces

such as USB, which currently operate only as host or client. It would be extremely

advantageous to develop a USB interface incorporating the intelligence required to

function as both, or switch between one and the other as required. Bidirectional

communications and control capability over USB is a valuable feature. Although the

counterargument might suggest using a different interface such as Ethernet to achieve

 96

such capability, it is also less compact and involves more electronics than USB, which is

currently widely used in very compact forms.

Another area for improvement pertains to flexibility of on-board storage. The

dated design of the Holon Board makes for difficulty in maintenance and modification -

the surface-mounted NOR and NAND flash memory chips cannot be easily removed and

replaced when necessary. The hardware capabilities are quite restricted, consequently

constraining the degree of sophistication of an operating software environment. The TS-

7300 provides inspiration for future design improvements, with its two on-board slots for

SD-Cards hosting the operating system and development tools. This allows variable and

expandable options in terms of on-board storage and support for more sophisticated

software capabilities. During the course of the project, a single slot on the TS-7300

accommodated an SD-Card of 2 GB capacity. Continuous lowering in cost of such

storage technology makes them viable for standard inclusion in the design of future DIS

hardware.

Chipsets and software drivers developed for wireless hardware require

incorporation of better intelligence capability, in order to function effectively in a peer-to-

peer environment. As mentioned in Section 4.2.1, the Wi-Fi chipset and associated

software driver operated in ‗ad-hoc‘ mode for the purposes of the project, but this was

not true peer-to-peer capability. For instance, formation of the wireless DIS network

required at least one HU to be already operating in ad-hoc mode, for the others to be

able to find and join it. A direction for future development and optimisation is the

capability to intelligently network with other devices and manage the wireless

infrastructure without this conditional requirement.

The proliferation of GNU/Linux, and its subsequent advancement in

sophistication in the embedded space, provides opportunities for increasing the

sophistication of devices and their integration of an on-board DIS system. The Axis 210

network camera used in the DIS security system application is an example of how future

attempts towards ease of integration may progress through the provision of on-board

embedded operating systems such as Angstrom, Debian, TS-Linux and others. The

ability to accommodate a full-featured Debian distribution on a SD Card as small as 512

MB proved to be extremely valuable during this project; advancements in hardware and

compact storage devices present future opportunities for incorporation into a DIS

through the ability to store and load full-featured operating systems on them.

 97

5.3.2 Software

Constructing a better DIS in future requires improvements in engineering of

software components on many different fronts. Some of the areas of difficulty

experienced during the course of this project, and requiring significant effort at

improvement are the operating system environment; development toolset and utilities;

architecture of intelligence platforms such as HTP and documentation.

Operating systems based on GNU/Linux for the embedded space have rapidly

increased in sophistication in recent years. However, improvements will facilitate ease of

support and use by a DIS. For example, difficulties encountered during this project

suggest incorporation of better intelligence in automatically detecting and configuring on-

board hardware. Similarly, the intelligence to probe a DIS for any required libraries or

supporting platforms (such as a JVM), determine the optimum one suited for the

operating environment, retrieve and install it would be advantageous. Such capability

opens opportunities for incorporation into future DIS systems.

Development tools and utilities require significant effort directed towards

increased sophistication. Despite attempts at advancement, they are still relatively

unsophisticated with respect to advancements in hardware. The limitations of the toolset

with respect to availability, ease of configuration, and ease of use consumed much

development time during this project. As an example, future effort to develop intelligence

in tools for automatic probing of and configuration to the environment will significantly

shift the balance in favour of productivity. This applies to development of operating

systems, programming languages, and supporting tools.

In terms of operating systems, cognizance of the need for greater architecture

independence by the OSS community has influenced the development of GNU/Linux,

particularly with respect to its kernel. Nonetheless, configuring, compiling and installing a

GNU/Linux-based operating system with supporting packages for an embedded target is

a tedious task. Many opportunities exist for improvement of development environments.

For example, sophisticated capabilities such as easy configuration and swapping of

kernels for different targets, will greatly contribute towards engineering better DIS

systems in future.

Similarly, efforts are also necessary to better the independence of programming

languages from underlying hardware or operating systems. For example, although Java

 98

was supposed to be independent of the underlying operating system, this is not the

case. Much room for improvement remains in attaining this goal, for both proprietary

offerings and the alternatives from the OSS community. For example, a useful feature

for JVMs such as JamVM might be an intelligence component that retrieves both the DIS

and operating system specifications, using the attained information to modify its own

configuration for proper operation. Many of the concepts employed in the DIS

architecture, such as loose coupling and the holon-agent model, are viable for

application on many fronts in the improvement of both operating systems and

development tools. Using the previous discussion of issues with JVMs as an example,

an agent-based architecture for JamVM might assist in intelligent configuration to the

requirements of an operating system or DIS.

Thus, there is much opportunity available on the hardware and software fronts

that will help in engineering a better DIS for future applications.

5.4 Possible Specifications of a Future HU

Although the realisation of the previously discussed future improvements may

require significant time and development effort, a suggestion of the specifications of the

next HU prototype is possible.

The current hardware made use of a mixture of Commercial Off-The-Shelf

(COTS) and custom-built embedded computers, employing the ARM microprocessor

architecture. A possible venture for the next prototype in this regard might be employing

an embedded computer using the Intel Atom [137] microprocessor. Used in the current

generation of ultra-portable notebook computers, also known as ‗netbooks‘, an additional

incentive is the existence of fully featured and commercial grade GNU/Linux distributions

such as Ubuntu, which have been specifically compiled for this platform. This should

allow easier development, with the existence of a wider user base and the increased

availability of technical support and documentation.

If necessary, fabrication of custom-built embedded hardware employing an

AtomTM processor complemented with a necessary amount of on-board memory and I/O

is being investigated in the iDEA Laboratory. If a custom-built solution is required,

advantageous features of the current individual embedded boards will be selected and

integrated into a single platform. Given the current state-of-the-art in miniaturisation of

embedded devices, it is viable to design a hardware package with the physical

 99

dimensions of a small mobile phone. This will result in the advantageous reduction of the

current physical implementation of a two-element controller to a single-element device

as the basis of the hardware package.

5.5 Final Evaluation and Summary

This thesis set out to show the viability of an alternative framework for device

control in contrast to the centralised frameworks that systems today rely upon. In this

respect, it aimed to demonstrate how all participating entities in the system might work

together within a peer-to-peer system architecture, having control, communications,

intelligence and decision-making capability endowed upon all of them. The resulting

proposal of a Distributed Intelligence System employed a model dividing the system

objectives into global and local responsibilities, handled by holons and agents

respectively. Furthermore, application of the proposed DIS to a simple security system

went through a systems development cycle process of design, development,

implementation and analysis. Although the resulting system was less than ideal and

modifications required to the initial goals, it contributed towards the primary objective of

the undertaking. The exercise also instilled valuable experience and important lessons

related to systems engineering, on the fronts of hardware and software along the way. It

is desired that the work contained herein will contribute to future efforts in the field of DIS

research.

A paradigm shift is required, if systems engineering is to find a viable and

comprehensive means of addressing the many problems faced today, brought about by

relying upon centralised frameworks for the construction of large-scale systems. The

alternative proposed by the DIS emerged from the confluence of many interacting

factors, including the emergence of P2P networks and their applications; holon-agent

models for system architectures and widespread adoption and advancement of OSS

such as GNU/Linux in embedded systems. The following quote is perhaps a fitting

manner in which to end this thesis:

―The formulation of a problem is often more essential than its solution, which may

be merely a matter of mathematical or experimental skill. To raise new questions, new

possibilities, to regard old problems from a new angle, requires creative imagination and

marks real advance in science.‖

- A. Einstein and L. Infeld, 1938

 100

APPENDICES

 101

Appendix 1: Partial Ordering Using Lattices

Building on the application of the security system considered thus far, the

isomorphism of a lattice applies to a set of three nodes - the motion sensor, network

camera and RFID tag reader HUs respectively. Consider Figure A1.1, which illustrates

the isomorphism of the DIS security system as a Hasse diagram. All further explanation

of organization within the system references this representation. Let ‗D‘ be the entire set

of devices in the DIS. system. The elements that form the set are represented in set

notation as {MS, NC, RS}, representing the Motion Sensor, Network Camera and RFID

Scanner, respectively. The fourth unconnected element in the diagram {SU} is

representative of the system administrator, also known as the Supervisor.

In this context, reflexivity is the property where for all the elements MS, NC and

RS ∈D, any selected element must be identical to itself, e.g. MS ≤ MS. Antisymmetry is

the property where in a comparison of two apparently distinct elements using both the ≤

and ≥ operators, if both conditions evaluate as being true, it implies that the elements

must in fact be identical. Antisymmetry enforces the actual ordering of elements and

prevents the possibility of two elements ordered by a binary relationship being

simultaneously greater and less than each other, e.g. MS ≤ NC and MS ≥ NC at the

same time. Finally, the property of transitivity means that deductions can be made based

on various binary relations among elements created by the partial ordering. For

example, if in order of security clearance level MS ≤ RS and RS ≤ NC, it can be logically

deduced that MS ≤ NC.

 102

Figure A1.1. Hasse diagram for a DISC security system with 3 peers.

With these properties in mind, the Hasse diagram of the DIS security system

shows that the first level of the null (empty) set contains no devices. The single elements

of the Motion Sensor (MS), Network Camera (NC) and RFID Tag Reader (RS) are one

level higher and disjoint from one another. The null set is a subset of each of these

elements, and connected to all of them. The third level represents the various pairings of

the single elements. The individual elements of the first level are members of only the

set of which they are a subset, e.g. {MS} is a subset of both {MS, NC} and {MS, RS}.

The final and fourth level of the lattice is representative of the complete set of devices.

In like manner, a Hasse diagram can be constructed for an isomorphism of any

number of nodes of a finite poset of devices in a DIS. Consider the isomorphism of a

poset D‘ = {MS, NC, RS and SU}. Figure 17 shows the Hasse diagram of D‘. As Figure

17 illustrates, the structural ordering brought into the architecture of a DIS with four

nodes is of a greater degree of complexity than that of a three-node DIS. Another

important conclusion that emerges upon examination is that the isomorphism of D‘ can

 103

be generated by algebraic structures that operate on the extra element of the Supervisor

node and its associated pairings with the nodes of D in Figure A1.2.

Figure A1.2: Hasse diagram of a poset D’ created from 4 elements.

 104

Appendix 2: Technologic Systems TS-7300 SBC

Figure A2.1: Block diagram of TS-7300 SBC and on-board components [134]

The TS-7300 SBC is a product meant for implementation of embedded systems.

It contains an on-board Cirrus EP9302 ARM9 [152] processor, complemented by various

peripheral devices and interfaces (Ethernet, USB, RS-232, VGA, SD Card, Compact

Flash, Analog to Digital Converters, Digital I/O pins, etc.). In addition, the TS-7300 SBC

possesses an on-board Cyclone II [138] Field Programmable Gate Array (FPGA)

manufactured by Altera Corporation. The Cyclone II FPGA is capable of being

reprogrammed on-the-fly, with primary use to provide additional peripheral logic such as

Digital Signal Processing, Digital I/O and other capabilities as needed. Figure 4 is a

diagram of the TS-7300 SBC showing its various components [134].

 105

Appendix 3: Device Agent Configuration File

//Main section Deliminators = ::
//Subsection Deliminators = :

<<DEVICE_AGENT.MAIN_SECTION>>::
<SUBSECTION.IDENTITY>:
PARENT_HOLONIC_UNIT=MotionSensorHolonicUnit
DEVICE_AGENT_NAME=MotionSensorDeviceAgent
DEVICE_AGENT_IDENTIFICATION_NUMBER=1
<SUBSECTION.CONNECTIVITY>:
MOTION_SENSOR_HOLONIC_UNIT=192.168.0.50
NETWORK_CAMERA_HOLONIC_UNIT=192.168.0.51
RFID_READER_HOLONIC_UNIT=192.168.0.52
SUPERVISOR_HOLONIC_UNIT=192.168.0.102
<SUBSECTION.LOCATION_OF_MESSAGE_FILES>:
PATH_TO_MOTION_SENSED_MESSAGE=/home/sage/workspace/DISC/Messages/M
otionSensed.txt
PATH_TO_TAG_READING_MESSAGE=/home/sage/workspace/DISC/Messages/StartT
agReading.txt
PATH_TO_TAKE_SNAPSHOT_MESSAGE=/home/sage/workspace/DISC/Messages/Ta
keSnapshot.txt
<SUBSECTION.LOCATION_AND_NAMES_OF_SCRIPT_FILES>:
PATH_TO_MAIN_SCRIPT_DIRECTORY=/home/sage/workspace/DISC/Scripts/
SCRIPT_HANDLING_FILE_TRANSFER_TO_MOTION_SENSOR_HOLONIC_UNIT=./ft
pToMotionSensorHolonicUnit.sh
SCRIPT_HANDLING_FILE_TRANSFER_TO_NETWORK_CAMERA_HOLONIC_UNIT=
./ftpToNetworkCameraHolonicUnit.sh
SCRIPT_HANDLING_FILE_TRANSFER_TO_RFID_READER_HOLONIC_UNIT=./ftpTo
RFIDReaderHolonicUnit.sh
SCRIPT_HANDLING_FILE_TRANSFER_TO_SUPERVISOR_HOLONIC_UNIT=./ftpToS
upervisor.sh
<SUBSECTION.OPERATING_SYSTEM_SPECIFICATIONS>:
SYSTEM_COMMAND_FOR_OPERATING_SYSTEM_SHELL=/bin/bash
<SUBSECTION.RULES>:
PRIMARY_INCOMING_MESSAGE_TO_MONITOR=/home/sage/workspace/DISC/Mess
ages/MotionSensed.txt
<SUBSECTION.BEHAVIOUR>:
FIRST_COURSE_OF_ACTION=./ftpToRFIDReaderHolonicUnit.sh
SECOND_COURSE_OF_ACTION=./ftpToSupervisor.sh

 106

Appendix 4: RFID Subsystem Configuration File

//Main section Deliminators = ::

//Subsection Deliminators = :

<<RFID.MAIN_SECTION>>::

<SUBSECTION.RFID_OPCODES>:

GET_VERSION=FF00031D0C

BOOT_FIRMWARE=FF00041D0B

SET_REGION=FF0197014BBC

SET_TAG_PROTOCOL=FF02930005517D

SET_TX_POWER=FF029209C4489D

SET_ANTENNA_PORT=FF02910101703B

READ_TAGS=022103E8

READ_MULTIPLE_TAGS=022203E8

GET_TAG_ID_BUFFER_ONE_TAG=02290001

CLEAR_TAG_ID_BUFFER=002A

<SUBSECTION.LOCATION_OF_FILE_STORING_TAGS_READ>

PATH_TO_TAG_ID_FILE=/home/sage/workspace/DISC/RFIDReader/TagID.txt

<<USER_INTERFACE.MAIN_SECTION>>::

<SUBSECTION.GLOBAL_VARIABLE_SETTINGS>:

UNSIGNED_READ_BUFFER_LENGTH_IN_BYTES=260

<SUBSECTION.CLASS_INSTANTIATION_SETTINGS>:

MESSAGE_ARRAY_ELEMENT_CONTAINING_LENGTH_FIELD_OF_RESPONSE_ME

SSAGE=1

MESSAGE_ARRAY_ELEMENT_CONTAINING_NUMBER_OF_RFID_TAGS_FOUND=

5

<<SERIAL_PORT_UTILITIES.MAIN_SECTION>>::

<SUBSECTION.PORT_NAME_OPTIONS>:

PORT_NAME_01=/dev/ttyUSB0

PORT_NAME_02=/dev/ttyS1

 107

PORT_NAME_03=/dev/ttyS2

PORT_NAME_04=/dev/ttyS3

PORT_NAME_05=/dev/ttyS4

PORT_NAME_06=/dev/ttyS5

PORT_NAME_07=/dev/ttyS6

PORT_NAME_08=/dev/ttyS7

<SUBSECTION.PORT_SPEED_OPTIONS>:

PORT_SPEED_01=9600

PORT_SPEED_02=19200

PORT_SPEED_03=38400

PORT_SPEED_04=57600

PORT_SPEED_05=115200

PORT_SPEED_06=230400

PORT_SPEED_07=460800

<SUBSECTION.PORT_OPENING_SETTINGS>:

SERIAL_PORT_TIMEOUT_VALUE=3000

<SUBSECTION.SERIAL_PORT_PARAMETERS>:

BAUD_RATE=9600

DATABITS_8 =

STOPBITS_1 =

PARITY_NONE =

<SUBSECTION.GET_RESPONSE_METHOD_SETTINGS>:

MESSAGE_HEADER_SIGNATURE_VALUE=-1

MESSAGE_ARRAY_ELEMENT_CONTAINING_HEADER_SIGNATURE=0

OFFSET_VALUE_TO_READ_COMMAND_STATUSWORD_AND_CRC=5

OFFSET_VALUE_TO_DETERMINE_TOTAL_LENGTH_OF_MESSAGE=2

<SUBSECTION.GET_RFID_TAG_METHOD_SETTINGS>:

SIZE_OF_ARRAY_TO_HOLD_TAG_ID=12

OFFSET_VALUE_USED_IN_PROCESSING_MESSAGE_ARRAY_TO_RETRIEVE_TA

G_ID=9

<SUBSECTION.GET_DATE_AND_TIME_METHOD_SETTINGS>:

OFFSET_VALUE_FOR_DETERMINING_YEAR=1900

OFFSET_VALUE_FOR_DETERMINING_MONTH=1

 108

Appendix 5: File Handler Source Code Listing

package Package_ToolsAndUtilities;

//Importing the Java I/O package
import java.io.*;
//Importing the String class from the Java Language package
import java.lang.String;

public class PackageToolsAndUtilities_FileHandler
{
 //Constant replacements
 private final static String END_OF_FILE_INDICATOR = null;
 private final static boolean FILE_IS_BEING_READ = true;
 //private final static boolean FILE_IS_NOT_BEING_READ = false;

 //Class variables
 public static String WORKING_PATH_DIRECTORY = "";
 public static int SIZE_OF_INITIALIZATION_FILE_IN_LINES = 0;
 private static FileReader handlerOfTheFile;
 private static BufferedReader managerOfStreamFromFileReader;
 public String[] contentsOfFile;

 public PackageToolsAndUtilities_FileHandler()
 {}//This is the end of the class constructor

 public void OpenFile()
 {
 try
 {
 handlerOfTheFile = new FileReader(WORKING_PATH_DIRECTORY);
 managerOfStreamFromFileReader = new BufferedReader(handlerOfTheFile);
 } //This is the end of the try structure
 //If an error occurs during opening file, process the exception
 catch(IOException ioexceptionWhileOpeningFile)
 {} //This is the end of the catch structure
 } //This is the end of the method definition

 public void ParseFileIntoLines()
 {
 contentsOfFile = new String[SIZE_OF_INITIALIZATION_FILE_IN_LINES];
 String currentLineBeingRead = "";
 int markerOfElementBeingAdded = 0;

 while(FILE_IS_BEING_READ)
 {
 //Open parameters file and start reading
 try

 109

 {
 currentLineBeingRead = managerOfStreamFromFileReader.readLine();
 if(currentLineBeingRead == END_OF_FILE_INDICATOR)
 {
 break;
 } //This is the end of the if structure
 else
 {
 //Otherwise, store the current line being read into the array.
 contentsOfFile[markerOfElementBeingAdded] = currentLineBeingRead;
 markerOfElementBeingAdded++;
 } //This is the end of the else structure
 } //This is the end of the try structure
 catch(IOException ioExceptionWhileReadingFile)
 {} //This is the end of the catch structure
 } //This is the end of the while structure
 } //This is the end of the method definition

 public void CloseFile()
 {
 try
 {
 //Close file after reading into array
 managerOfStreamFromFileReader.close();
 } //This is the end of the try structure
 catch(IOException ioExceptionWhileAttemptingToCloseFile)
 {}//This is the end of the catch structure
 } //This is the end of the method defintion

 public void DisplayFileContents()
 {
 int sizeOfArrayRepresentingFile = contentsOfFile.length;
 int markerForCurrentElementOfArray = 0;
 String currentElementOfArrayAsString = "";

 for(markerForCurrentElementOfArray = 0; markerForCurrentElementOfArray <
sizeOfArrayRepresentingFile;
 markerForCurrentElementOfArray++)
 {
 currentElementOfArrayAsString =
contentsOfFile[markerForCurrentElementOfArray];
 if(currentElementOfArrayAsString == END_OF_FILE_INDICATOR)
 {
 break;
 } //This is the end of the if structure
 else
 {
 System.out.println(currentElementOfArrayAsString);
 } //This is the end of the else structure
 } //This is the end of the for loop
 } //This is the end of the method definition

 110

/*
 //NOTE: This section is to be decommented for testing purposes ONLY.
 //It must be recommented afterwards.
 public static void main(String[] args){
 Handler filehandler = new Handler();
 filehandler.WORKING_PATH_DIRECTORY =
"/home/kevthomas/workspace/RFIDTesting/fileUtility/RFIDPackageOperatingParameters
.txt";
 filehandler.OpenFile();
 filehandler.ParseFileIntoLines();
 filehandler.CloseFile();
 filehandler.DisplayFileContents();
 } //This is the end of method main()
*/
} //This is the end of the class definition

 111

Appendix 6: File Parser Source Code Listing

package Package_ToolsAndUtilities;

import java.lang.String;

public class PackageToolsAndUtilities_FileParser
{
 //Constant replacements
 private final static String END_OF_FILE_INDICATOR = null;
 //Class variables (Public)
 public static String LOCATION_OF_TARGET_FILE = "";
 public static int SIZE_OF_INITIALIZATION_FILE_IN_LINES = 0;
 public String[] InitializationFileSections;
 public String[] InitializationFileSubsections;
 public String[] InitializationFileParameters;
 //Class variables (Private)
 private static String ignoreLinesBeginningWithOption01 = "";
 private static String ignoreLinesBeginningWithOption02 = "";
 private static String ignoreLinesBeginningWithOption03 = "";
 private static String ignoreLinesBeginningWithOption04 = "";

 //Class constructor for ParameterFileParser
 public PackageToolsAndUtilities_FileParser()
 {
 }//This is the end of the class constructor

 public void InitializeStructuresForExtractionProcedure()
 {
 InitializationFileSections = new
String[SIZE_OF_INITIALIZATION_FILE_IN_LINES];
 InitializationFileSubsections = new
String[SIZE_OF_INITIALIZATION_FILE_IN_LINES];
 InitializationFileParameters = new
String[SIZE_OF_INITIALIZATION_FILE_IN_LINES];
 } //This is the end of the method definiton

 public void ExtractMainSectionsFromTargetFile(String[]
InitializationFileContents)
 {
 ignoreLinesBeginningWithOption01 = "//";
 ignoreLinesBeginningWithOption02 = " ";
 ignoreLinesBeginningWithOption03 = " ";
 ignoreLinesBeginningWithOption04 = " ";

 112

 ExtractionProcedure(InitializationFileContents, InitializationFileSections,
ignoreLinesBeginningWithOption01,
 ignoreLinesBeginningWithOption02,
ignoreLinesBeginningWithOption03, ignoreLinesBeginningWithOption04);
 }// This is the end of the method definition

 public void ExtractSubsectionsFromTargetFile(String[] InitializationFileContents)
 {
 ignoreLinesBeginningWithOption01 = "//";
 ignoreLinesBeginningWithOption02 = "<<";
 ignoreLinesBeginningWithOption03 = " ";
 ignoreLinesBeginningWithOption04 = " ";
 ExtractionProcedure(InitializationFileContents,
InitializationFileSubsections, ignoreLinesBeginningWithOption01,
 ignoreLinesBeginningWithOption02,
ignoreLinesBeginningWithOption03, ignoreLinesBeginningWithOption04);
 } //This is the end of the method definition

 public void ExtractParametersFromTargetFile(String[] InitializationFileContents)
 {
 ignoreLinesBeginningWithOption01 = "//";
 ignoreLinesBeginningWithOption02 = "<<";
 ignoreLinesBeginningWithOption03 = "<";
 ignoreLinesBeginningWithOption04 = "-";
 ExtractionProcedure(InitializationFileContents,
InitializationFileParameters, ignoreLinesBeginningWithOption01,
 ignoreLinesBeginningWithOption02,
ignoreLinesBeginningWithOption03, ignoreLinesBeginningWithOption04);
 } //This is the end of the method definition

 public void ExtractionProcedure(String[] sourceArray, String[] targetArray, String
firstIndicatorToIgnore,
 String secondIndicatorToIgnore, String thirdIndicatorToIgnore,
String fourthIndicatorToIgnore)
 {
 int sizeOfArrayHoldingInitializationFile = sourceArray.length;
 int counterForSourceArray = 0;
 int counterForTargetArray = 0;
 String currentElementExtractedFromArrayList = "";

 for(counterForSourceArray = 0;
 counterForSourceArray < sizeOfArrayHoldingInitializationFile;
counterForSourceArray++)
 {
 currentElementExtractedFromArrayList =
sourceArray[counterForSourceArray];

 113

 if(currentElementExtractedFromArrayList ==
END_OF_FILE_INDICATOR)
 {
 break;
 } //This is the end of the if structure

if(currentElementExtractedFromArrayList.startsWith(firstIndicatorToIgnore) ||

currentElementExtractedFromArrayList.startsWith(secondIndicatorToIgnore) ||

currentElementExtractedFromArrayList.startsWith(thirdIndicatorToIgnore) ||

currentElementExtractedFromArrayList.startsWith(fourthIndicatorToIgnore))
 {
 continue;
 } //This is the end of the if structure
 else
 {
 AddExtractedElementToTarget(currentElementExtractedFromArrayList,
targetArray, counterForTargetArray);
 counterForTargetArray++;
 } //This is the end of the else structure
 } //This is the end of the for loop

 } //This is the end of the method definition

 public void AddExtractedElementToTarget(String elementToAdd, String[]
targetStructure, int indexOfTargetStructure)
 {
 targetStructure[indexOfTargetStructure] = elementToAdd;
 } //This is the end of the method definition

 public void ShowRequestedSectionExtractedOK(String[]
targetStructureToDisplay)
 {
 int counterForDisplayLoop = 0;
 int sizeOfMainSections = targetStructureToDisplay.length;
 String contentOfCurrentElement = "";

 for(counterForDisplayLoop = 0; counterForDisplayLoop <
sizeOfMainSections; counterForDisplayLoop++)
 {
 contentOfCurrentElement =
targetStructureToDisplay[counterForDisplayLoop];
 System.out.println(contentOfCurrentElement);
 }

 114

 } //This is the end of the method definition

} //This is the end of the class definition

 115

Appendix 7: File Parameter Retrieval Source Code Listing

package Package_ToolsAndUtilities;

//Import statements
import java.lang.String;

public class PackageToolsAndUtilities_FileParameterRetrieval
{
 //Class variables
 private static String extractedParameterLabelAndValue = "";
 private static int markerOfCurrentlyExaminedElement = 0;
 private static int sizeOfParameterList = 0;
 private static int markerOfEqualSignWithinString = 0;
 public static String extractedParameterValueAsString = "";
 public static int extractedParameterValueAsInteger = 0;

 public PackageToolsAndUtilities_FileParameterRetrieval()
 {
 } //This is the end of class constructor ParameterRetrieval

 public String ExtractRequestedParameterAsString(String[]
arrayContainingTargetParameter, String requestedParameterName)
 {
 sizeOfParameterList = arrayContainingTargetParameter.length;
 for(markerOfCurrentlyExaminedElement = 0;
 markerOfCurrentlyExaminedElement < sizeOfParameterList;
 markerOfCurrentlyExaminedElement++)
 {
 extractedParameterLabelAndValue =
arrayContainingTargetParameter[markerOfCurrentlyExaminedElement];

if(extractedParameterLabelAndValue.startsWith(requestedParameterName))
 {
 markerOfEqualSignWithinString =
extractedParameterLabelAndValue.indexOf("=");
 extractedParameterValueAsString =

 extractedParameterLabelAndValue.substring(markerOfEqualSignWithinSt
ring + 1);
 break;
 } //This is the end of the if structure
 } //This is the end of the for loop
 return extractedParameterValueAsString;
 } //This is the end of the method definition

 116

 public int ExtractRequestedParameterAsInteger(String[]
arrayContainingTargetParameter, String requestedParameterName)
 {
 sizeOfParameterList = arrayContainingTargetParameter.length;
 for(markerOfCurrentlyExaminedElement = 0;
 markerOfCurrentlyExaminedElement < sizeOfParameterList;
 markerOfCurrentlyExaminedElement++)
 {
 extractedParameterLabelAndValue =
arrayContainingTargetParameter[markerOfCurrentlyExaminedElement];

if(extractedParameterLabelAndValue.startsWith(requestedParameterName))
 {
 markerOfEqualSignWithinString =
extractedParameterLabelAndValue.indexOf("=");
 extractedParameterValueAsInteger =

 Integer.parseInt(extractedParameterLabelAndValue.substring(markerOfEq
ualSignWithinString + 1));
 break;
 } //This is the end of the if structure
 } //This is the end of the for structure
 return extractedParameterValueAsInteger;
 } //This is the end of the method definition

} //This is the end of the class definition

 117

Appendix 8: File Display Source Code Listing

package Package_ToolsAndUtilities;

//Import statements
import java.lang.String;

public class PackageToolsAndUtilities_FileDisplay
{
 //Constant replacements
 private final static String END_OF_FILE_INDICATOR = null;

 public PackageToolsAndUtilities_FileDisplay()
 {} //This is the end of the class constructor

 public void DisplayRequestedSectionOfTargetFile(String[]
extractedSectionOfTargetFile)
 {
 int sizeOfArrayHoldingExtractedSection =
extractedSectionOfTargetFile.length;
 int counterForDisplayLoop = 0;
 String currentElementOfArray;

 for(counterForDisplayLoop = 0; counterForDisplayLoop <
sizeOfArrayHoldingExtractedSection;
 counterForDisplayLoop++)
 {
 currentElementOfArray =
 extractedSectionOfTargetFile[counterForDisplayLoop];
 if(currentElementOfArray == END_OF_FILE_INDICATOR)
 {
 break;
 } //This is the end of the if structure
 else
 {
 System.out.println(currentElementOfArray);
 } //This is the end of the else structure
 } //This is the end of the for loop
 } //This is the end of the method definition

} //This is the end of the class definition

 118

Appendix 9: File Writer Source Code Listing

package Package_ToolsAndUtilities;

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;

public class PackageToolsAndUtilities_FileWriter
{
 public static String PATH_TO_FILE = "";
 public static String NAME_OF_FILE = "";

 public PackageToolsAndUtilities_FileWriter()
 {} //This is the end of the class constructor

 public void WriteStringToFile(String stringToWriteIntoFile)
 {
 try
 {
 FileWriter outputFile = new FileWriter(NAME_OF_FILE, true);
 BufferedWriter bufferedwriterWritingStreamToOutputFile = new
BufferedWriter(outputFile);
 System.out.println("CURRENT STRING BEING WRITTEN IS " +
stringToWriteIntoFile);
 bufferedwriterWritingStreamToOutputFile.write(stringToWriteIntoFile);
 bufferedwriterWritingStreamToOutputFile.newLine();
 bufferedwriterWritingStreamToOutputFile.close();
 } //This is the end of the try structure
 catch(IOException exceptionWhileAttemptingToWriteToFile)
 {} //This is the end of the catch structure
 } //This is the end of the method WriteStringToFile()

} //This is the end of the class definition

 119

Appendix 10: Run Script File Source Code Listing

//Import statements
import java.io.*;
import java.lang.Runtime;

public class PackageToolsAndUtilities_RunScriptFile
{
 //Class constructor
 public PackageToolsAndUtilities_RunScriptFile()
 {} //This is the end of the method definition

 public static void main(String[] args)
 {
 File wd = new File("/bin");
 System.out.println(wd);
 Process proc = null;
 try {
 proc = Runtime.getRuntime().exec("/bin/bash", null, wd);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 if (proc != null) {
 BufferedReader in = new BufferedReader(new
InputStreamReader(proc.getInputStream()));
 PrintWriter out = new PrintWriter(new BufferedWriter(new
OutputStreamWriter(proc.getOutputStream())), true);
 out.println("cd ..");
 out.println("pwd");
 out.println("exit");
 try {
 String line;
 while ((line = in.readLine()) != null) {
 System.out.println(line);
 }
 proc.waitFor();
 in.close();
 out.close();
 proc.destroy();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 120

 } //This is the end of the method definition

} //This is the end of the class definition

 121

Appendix 11: Serial Interface Access Class Source Code Listing

package serialInterfaceUtility;

import gnu.io.*;
import java.io.*;
import java.util.*;
//import fileUtility.*;

public class Access
{
 //Class variables
 //private static int responseLength = 0;
 public static int SERIAL_INTERFACE_TIMEOUT_VALUE = 0;
 public static String NAME_OF_APPLICATION = "";

 public Access()
 {
 } //This is the end of constructor Access()

 public static CommPortIdentifier GetSerialInterfaceID(String
stringRequestedInterfaceName)
 {
 //Get an enumeration of all ports known to JavaComm
 Enumeration enumerationSerialIntefaceIdentifiers =
CommPortIdentifier.getPortIdentifiers();

 // will be set if port found
 CommPortIdentifier commportidentifierRequestedSerialInterfaceID = null;

 // Check each port identifier if
 // (a) it indicates a serial (not a parallel) port, and
 // (b) matches the desired name.
 while (enumerationSerialIntefaceIdentifiers.hasMoreElements())
 {
 CommPortIdentifier commportidentifierCurrentInterfaceID =
(CommPortIdentifier) enumerationSerialIntefaceIdentifiers.nextElement();
 if(commportidentifierCurrentInterfaceID.getPortType() ==
CommPortIdentifier.PORT_SERIAL &&

commportidentifierCurrentInterfaceID.getName().equals(stringRequestedInterfac
eName))
 {
 commportidentifierRequestedSerialInterfaceID =
commportidentifierCurrentInterfaceID;

 122

 break;
 } //This is the end of the if structure
 } //This is the end of the while structure
 return commportidentifierRequestedSerialInterfaceID;
 } //This is the end of method GetSerialPortID

 /*
 * Open the seral port
 */
 public static SerialPort OpenSerialInterface(CommPortIdentifier
commportidentifierSerialInterfaceID) {
 SerialPort serialportInitializedSerialInterface = null;
 try
 {
 // Name of the application and timeout for acquiring the port
 serialportInitializedSerialInterface = (SerialPort)
commportidentifierSerialInterfaceID.open(NAME_OF_APPLICATION,
SERIAL_INTERFACE_TIMEOUT_VALUE);
 }
 catch(Exception exceptionWhileOpeningSerialInterface){}
 return serialportInitializedSerialInterface;
 } //This is the end of method OpenSerialPort()

 /*
 * Initialize and associate the Input Stream with the seral port
 */
 public static InputStream InitializeSerialInterfaceInputStream(SerialPort
serialportOpenedSerialInterface)
 {
 InputStream inputstreamInputStreamForOpenedSerialInterface = null;
 try
 {
 inputstreamInputStreamForOpenedSerialInterface =
serialportOpenedSerialInterface.getInputStream();
 } //This is the end of the try structure
 catch (Exception exceptionWhileOpeningInputStreamForSerialPort)
 {
 } //This is the end of the catch structure
 return inputstreamInputStreamForOpenedSerialInterface;
 } //This is the end of method InitializeSerialPortInputStream()

 /*
 * Initizlizes and associates the Output Stream with the serial port
 */
 public static OutputStream InitializeSerialInterfaceOutputStream(SerialPort
serialportOpenedSerialInterface)

 123

 {
 OutputStream outputstreamForSerialInterface = null;
 try
 {
 outputstreamForSerialInterface =
serialportOpenedSerialInterface.getOutputStream();
 }
 catch (Exception exceptionWhileInitializingSerialInterface)
 {
 } //This is the end of the catch structure
 return outputstreamForSerialInterface;
 } //This is the end of method InitializeSerialPortOutputStream()

} //This is the end of class Access

 124

Appendix 12: Serial Interface Configuration Source Code Listing

package serialInterfaceUtility;

import gnu.io.*;
//import java.io.*;
//import java.util.*;

public class Configuration
{
 public static int integerSPECIFYING_BAUD_RATE = 9600;

 public Configuration()
 {
 } //This is the end of the Serial Interface constructor

 /*
 * Set serial port parameters
 */
 public static void SetSerialInterfaceParameters(SerialPort
serialportOpenedSerialInterfaceID) {
 try
 {
 // baud rate needs to be dynamic

serialportOpenedSerialInterfaceID.setSerialPortParams(integerSPECIFYING_BA
UD_RATE,
 SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);
 } //This is the end of the try structure
 catch (UnsupportedCommOperationException
exceptionWhileSettingSerialInterfaceParameters){
 } //This is the end of the catch structure
 }

} //This is the end of class InterfaceConfiguration

 125

Appendix 13: RFID Reader Access Source Code Listing

package rfidReader;

import gnu.io.SerialPort;
import java.io.InputStream;

public class Access
{
 //Class variables
 private static int lengthOfResponseMessageFromReader = 0;

 public Access()
 {
 } //This is the end of constructor ReaderAccess()

 /*
 * Read bytes from m5e reader and converts the signed bytes
 * to unsigned.
 */
 public static int[] GetDataFromReader(InputStream inputstreamFromReader,
SerialPort serialportConnectedToReader)
 {
 //Data itself is 250 bytes max
 byte[] byteReadBuffer = new byte[260];
 int[] unsignedintegerReadBuffer = new int[260];
 byte testByteToCheckMessageHeader = 0;

 //Read the bytes from the m5e Reader
 try
 {
 //Test for the header byte of 0xFF before reading the rest of the message.
 // Signed 0xFF = -1
 while((testByteToCheckMessageHeader) != (-1))
 {
 inputstreamFromReader.read(byteReadBuffer, 0, 1);
 testByteToCheckMessageHeader = byteReadBuffer[0];
 } //This is the end of the while structure

 //Read data length 1 byte, offset 1, read 1 byte
 inputstreamFromReader.read(byteReadBuffer, 1, 1);

 //Converting from signed byte to unsigned to get the length of the data field
 byte temporaryHolderForDataFieldLength = byteReadBuffer[1];
 int dataFieldLength = temporaryHolderForDataFieldLength & 0xFF;

 126

 //To also read the Command, Status Word and CRC
 dataFieldLength = dataFieldLength + 5;

 // Update the total length of the message
 lengthOfResponseMessageFromReader = dataFieldLength + 2;

 // +2 to account for the offset of the byte array
 for(int indicatorForOffsetProcedure = 2;
 indicatorForOffsetProcedure < dataFieldLength + 2;
indicatorForOffsetProcedure++)
 {
 inputstreamFromReader.read(byteReadBuffer,
indicatorForOffsetProcedure, 1);
 } //This is the end of the for structure
 } //This is the end of the try structure
 catch (Exception exceptionWhileAttemptingToReadBytesFromReader){
 } //This is the end of the catch structure

 // Convert signed bytes to unsigned bytes
 for(int markerOfCurrentElementOfReadBuffer = 0;
 markerOfCurrentElementOfReadBuffer <
lengthOfResponseMessageFromReader;
 markerOfCurrentElementOfReadBuffer++)
 {
 unsignedintegerReadBuffer[markerOfCurrentElementOfReadBuffer] =
byteReadBuffer[markerOfCurrentElementOfReadBuffer] & 0xFF;
 } //This is the end of the for structure

 return unsignedintegerReadBuffer;
 } //This is the end of the method GetDataFromReader()

 /*
 * Gets the message from the Reader's response and returns only
 * the Tag ID field. This function is specific to the sample EPC Tags
 *
 */
 public static int[] GetRFIDTagID(int[] integerarrayOfReadBuffer)
 {
 int[] integerarrayOfTagID = new int[12];

 for (int integerPointingToTagIDFieldInResponseMessage = 0;
integerPointingToTagIDFieldInResponseMessage < 12;
 integerPointingToTagIDFieldInResponseMessage++)
 {
 integerarrayOfTagID[integerPointingToTagIDFieldInResponseMessage] =

 127

integerarrayOfReadBuffer[integerPointingToTagIDFieldInResponseMessage+9];
 } //This is the end of the for structure

 return integerarrayOfTagID;
 } //This is the end of method GetRFIDTagID()

 /*
 * Returns the length of the most recent processed message from the
 * m5e Reader
 *
 * Requires: N/A
 * Returns: Integer value of the length of the whole message
 */
 public static int GetLengthOfMessageFromReader()
 {
 return lengthOfResponseMessageFromReader;
 } //This is the end of method GetLengthOfMessageFromReader

 /*
 * CRC-16 Calculation used in all messages with the m5e reader.
 * calculated using the Command, Status Word, Data Length, and Data of the
 * message and is appended as the last 2 bytes of the message.
 */
 public static byte[] PerformCyclicRedundancyCheck16Procedure(byte[]
bytearrayOfDataToBeSentToReader)
 {
 int cyclicRedundancyCheckValue = 0xFFFF; // initial value
 int integerPolynomialValue = 0x1021; // 0001 0000 0010 0001 (0, 5, 12)

 byte[] bytearrayOfTemporaryCopyOfData =
bytearrayOfDataToBeSentToReader;

 for (int markerOfCurrentByteElement = 0; markerOfCurrentByteElement <
bytearrayOfTemporaryCopyOfData.length; markerOfCurrentByteElement++)
 {
 for (int i = 0; i < 8; i++)
 {
 boolean bit =
((bytearrayOfTemporaryCopyOfData[markerOfCurrentByteElement] >> (7-i) & 1)
== 1);
 boolean c15 = ((cyclicRedundancyCheckValue >> 15 & 1) == 1);
 cyclicRedundancyCheckValue <<= 1;
 cyclicRedundancyCheckValue |= (bit)?1:0;
 if(c15)
 {

 128

 cyclicRedundancyCheckValue ^= integerPolynomialValue;
 } //This is the end of the if structure
 } //This is the end of the for loop
 } //This is the end of the for loop
 // Cut off unwanted bits
 cyclicRedundancyCheckValue &= 0xFFFF;

 //Convert crc to hex string
 String CRCValueAsHexadecimalString =
Integer.toHexString(cyclicRedundancyCheckValue);

 //Convert hex string to byte[]
 byte[] bytearrayContainingCRCValueAsHexadecimal = new byte[2];
 for (int markerOfCurrentElementOfArray = 0; markerOfCurrentElementOfArray
< bytearrayContainingCRCValueAsHexadecimal.length;
 markerOfCurrentElementOfArray++)
 {

bytearrayContainingCRCValueAsHexadecimal[markerOfCurrentElementOfArray]
=

(byte)Integer.parseInt(CRCValueAsHexadecimalString.substring(2*markerOfCurr
entElementOfArray, 2*markerOfCurrentElementOfArray+2), 16);
 } //This is the end of the for loop

 return bytearrayContainingCRCValueAsHexadecimal;
 } //This is the end of method PerformCyclicRedundancyCheck16Proedure()

 /*
 * Takes a byte[] and calls PerformCyclicRedundancyCheck16Proedure() and
uses that result to create
 * a proper message to the M5e Reader
 *
 * Requires: a byte[] without the header (0xFF)
 * Returns: returns the full message with header and crc ready to be sent
 */
 public static byte[] GenerateMessage(byte[] bytearrayReceivedContainingData)
 {
 //To account for the header (1 byte) and the CRC (2 bytes)
 byte[] bytearrayContainingMessage = new
byte[bytearrayReceivedContainingData.length + 3];

 //Calculate CRC
 byte[] bytearrayContainingCyclicRedundancyCheckValue = new byte[2];

 129

 bytearrayContainingCyclicRedundancyCheckValue =
PerformCyclicRedundancyCheck16Procedure(bytearrayReceivedContainingData
);

 //Form the message, header, data, crc
 bytearrayContainingMessage[0] = (byte)0xFF;
 for(int integerPointingToCurrentElementOfDataArray = 1;
 integerPointingToCurrentElementOfDataArray <
bytearrayReceivedContainingData.length+1;
 integerPointingToCurrentElementOfDataArray++)
 {
 bytearrayContainingMessage[integerPointingToCurrentElementOfDataArray]
=

bytearrayReceivedContainingData[integerPointingToCurrentElementOfDataArray
-1];
 } //This is the end of the for structure
 bytearrayContainingMessage[bytearrayContainingMessage.length-2] =
bytearrayContainingCyclicRedundancyCheckValue[0];
 bytearrayContainingMessage[bytearrayContainingMessage.length-1] =
bytearrayContainingCyclicRedundancyCheckValue[1];

 return bytearrayContainingMessage;
 } //This is the end of method GenerateMessage()

} //This is the end of class ReaderAccess

 130

Appendix 14: RFID Reader Configuration Source Code Listing

package rfidReader;

public class Configuration
{
 public byte[] OPCODE_BYTES_FOR_GET_VERSION = {(byte)0xFF,
(byte)0x00, (byte)0x03, (byte)0x1D, (byte)0x0C};
 public byte[] OPCODE_BYTES_FOR_BOOT_FIRMWARE = {(byte)0xFF,
(byte)0x00, (byte)0x04, (byte)0x1D, (byte)0x0B};
 public byte[] OPCODE_BYTES_FOR_SET_REGION = {(byte)0xFF, (byte)0x01,
(byte)0x97, (byte)0x01, (byte)0x4B, (byte)0xBC};
 public byte[] OPCODE_BYTES_FOR_SET_TAG_PROTOCOL = {(byte)0xFF,
(byte)0x02, (byte)0x93, (byte)0x00, (byte)0x05, (byte)0x51, (byte)0x7D};
 public byte[] OPCODE_BYTES_FOR_SET_TX_POWER = {(byte)0xFF,
(byte)0x02, (byte)0x92, (byte)0x09, (byte)0xC4, (byte)0x48, (byte)0x9D};
 public byte[] OPCODE_BYTES_FOR_SET_ANTENNA_PORT = {(byte)0xFF,
(byte)0x02, (byte)0x91, (byte)0x01, (byte)0x01, (byte)0x70, (byte)0x3B};
 public byte[] OPCODE_BYTES_FOR_READ_TAGS = {(byte)0x02, (byte)0x21,
(byte)0x03, (byte)0xE8};
 public byte[] OPCODE_BYTES_FOR_READ_MULTIPLE_TAGS = {(byte)0x02,
(byte)0x22, (byte)0x03, (byte)0xE8};
 public byte[] OPCODE_BYTES_FOR_GET_ID_TAG_BUFFER_ONE_TAG =
{(byte)0x02, (byte)0x29, (byte)0x00, (byte)0x01};
 public byte[] OPCODE_BYTES_FOR_CLEAR_TAG_ID_BUFFER =
{(byte)0x00, (byte)0x2A};

 public Configuration()
 {} //This is the end of the Configuration() constructor

 public byte[] ConvertStringToBytes(String stringToConvert, int
integerStringDivisor, int integerSubstringSize)
 {
 int integerCounterForSegmentationLoop = 0;
 int integerActualValueOfCurrentStringElement = 0;
 int integerMarkingFirstElementOfSubstring = 0;
 int integerSizeOfString = stringToConvert.length();
 int integerIndexOfbyteArray = 0;
 int integerRepresentationOfSubstring = 0;
 String stringSubstringSegment = "";
 byte[] byteRepresentationOfString = new byte[integerStringDivisor];

 for(integerCounterForSegmentationLoop = 0;
integerCounterForSegmentationLoop < integerSizeOfString;
 integerCounterForSegmentationLoop++)

 131

 {
 integerActualValueOfCurrentStringElement =
(integerCounterForSegmentationLoop + 1);
 integerMarkingFirstElementOfSubstring =
(integerActualValueOfCurrentStringElement - integerSubstringSize);
 if((integerActualValueOfCurrentStringElement%integerSubstringSize) == 0)
 {
 stringSubstringSegment =
stringToConvert.substring(integerMarkingFirstElementOfSubstring,
integerActualValueOfCurrentStringElement);
 integerRepresentationOfSubstring =
Integer.parseInt(stringSubstringSegment, 16);
 //} //This is the end of the if structure
 byteRepresentationOfString[integerIndexOfbyteArray] =
(byte)(integerRepresentationOfSubstring);
 integerIndexOfbyteArray++;
 //System.out.println(stringSubstringSegment);
 } //This is the end of the if structure
 } //This is the end of the for structure
 //System.out.println(byteRepresentationOfString);
 return byteRepresentationOfString;
 } //This is the end of method ConvertStringToBytes()

} //This is the end of class Configuration

 132

Appendix 15: RFID Tag Reading Source Code Listing

import gnu.io.*;
import java.io.*;
import java.util.*;
import serialInterfaceUtility.*;
import rfidReader.*;
import fileUtility.Writer;

public class TagReading extends Thread
{
 //Variables related to the RFID reader configuration
 private static byte[] OPCODE_BYTES_FOR_READ_MULTIPLE_TAGS;
 private static byte[]
OPCODE_BYTES_FOR_GET_ID_TAG_BUFFER_ONE_TAG;
 private static byte[] OPCODE_BYTES_FOR_CLEAR_TAG_ID_BUFFER;

 //Variables related to the serial interface
 private static int[] arrayHoldingTagID;
 private static CommPortIdentifier serialInterfaceID;
 private static SerialPort serialInterfaceForRFID;
 private static OutputStream outputstreamToSerialInterface = null;
 private static InputStream inputstreamFromSerialInterface = null;
 //Data itself is 250 bytes max
 private static int[] unsignedReadBuffer = new int[260];
 //The total length of the response from the m5e Reader
 private static int messageResponseLength = 0;
 //The number of tags read from READ MULTIPLE TAGS command
 private static int numberOfRFIDTags = 0;
 // The value of the length of the data field
 private static int lengthOfDataField = 0;
 private static int counterForTotalNumberOfTagsRead = 0;

 //Variables related to file writing
 private static String PATH_TO_TAG_ID_FILE = "";
 private static fileUtility.Writer writeToTagIDFile;
 private static String tagIDAsString = "";

 public TagReading(CommPortIdentifier serialInterfaceIDReceived, SerialPort
serialInterfaceForRFIDReceived,
 byte[]
OPCODE_BYTES_FOR_READ_MULTIPLE_TAGS_RECEIVED, byte[]
OPCODE_BYTES_FOR_GET_ID_TAG_BUFFER_ONE_TAG_RECEIVED,

 133

 byte[]
OPCODE_BYTES_FOR_CLEAR_TAG_ID_BUFFER_RECEIVED, String
PATH_TO_TAG_ID_FILE_RECEIVED)
 {
 this.serialInterfaceID = serialInterfaceIDReceived;
 this.serialInterfaceForRFID = serialInterfaceForRFIDReceived;
 this.OPCODE_BYTES_FOR_READ_MULTIPLE_TAGS =
OPCODE_BYTES_FOR_READ_MULTIPLE_TAGS_RECEIVED;
 this.OPCODE_BYTES_FOR_GET_ID_TAG_BUFFER_ONE_TAG =
OPCODE_BYTES_FOR_GET_ID_TAG_BUFFER_ONE_TAG_RECEIVED;
 this.OPCODE_BYTES_FOR_CLEAR_TAG_ID_BUFFER =
OPCODE_BYTES_FOR_CLEAR_TAG_ID_BUFFER_RECEIVED;
 this.PATH_TO_TAG_ID_FILE = PATH_TO_TAG_ID_FILE_RECEIVED;
 writeToTagIDFile = new fileUtility.Writer();
 //writeToTagIDFile.PATH_TO_FILE = PATH_TO_TAG_ID_FILE;
 } //This is the end of the class constructor

 public void run()
 {
 while(true){
 //--
 serialInterfaceForRFID =
serialInterfaceUtility.Access.OpenSerialInterface(serialInterfaceID);
 System.out.println("Opened serial interface...");

 //Create an InputStream associated with the port.
 inputstreamFromSerialInterface =
serialInterfaceUtility.Access.InitializeSerialInterfaceInputStream(serialInterfaceFo
rRFID);
 System.out.println("Opened input stream from interface...");

 //Create an OutputStream associated with the port.
 outputstreamToSerialInterface =
serialInterfaceUtility.Access.InitializeSerialInterfaceOutputStream(serialInterface
ForRFID);
 System.out.println("Opened output stream to serial interface...");

 try
 {

outputstreamToSerialInterface.write(rfidReader.Access.GenerateMessage(OPC
ODE_BYTES_FOR_READ_MULTIPLE_TAGS));
 outputstreamToSerialInterface.flush();
 System.out.println("Wrote opcode for READ MULTIPLE TAGS...");
 } //This is the end of the try structure

 134

 catch(Exception exceptionWhileCreatingOutputStreamToInterface) {} //This is
the end of the catch structure

 //Set the baudrate, stop bits, data bits

serialInterfaceUtility.Configuration.SetSerialInterfaceParameters(serialInterfaceF
orRFID);
 System.out.println("Set baudrate, stop bits and data bits...");

 // Get the response from the m5e reader
 unsignedReadBuffer =
rfidReader.Access.GetDataFromReader(inputstreamFromSerialInterface,
serialInterfaceForRFID);
 System.out.println("Got response from reader...");
 //---

 // Get the length field of the response message from the first element of the
read buffer
 lengthOfDataField = unsignedReadBuffer[1];
 System.out.println("Got length of data field from read buffer. Field length is "
+ lengthOfDataField);

 // Get the number of tags found from the fifth element of the read buffer
 numberOfRFIDTags = unsignedReadBuffer[5];
 System.out.println("Got number of tags in read buffer. Number of tags found:
" + numberOfRFIDTags);

 //---
 if(lengthOfDataField > 0 && numberOfRFIDTags !=132)
 {
 for(int counterForTagIDLoop = 0; counterForTagIDLoop <
numberOfRFIDTags; counterForTagIDLoop++)
 {
 try
 {

outputstreamToSerialInterface.write(rfidReader.Access.GenerateMessage(OPC
ODE_BYTES_FOR_GET_ID_TAG_BUFFER_ONE_TAG));
 outputstreamToSerialInterface.flush();
 System.out.println("Wrote opcode for GET TAG ID, BUFFER ONE
TAG...");
 } //This is the end of the try structure
 catch(Exception e) {} //This is the end of the catch structure

 //Get the response from the m5e reader

 135

 unsignedReadBuffer =
rfidReader.Access.GetDataFromReader(inputstreamFromSerialInterface,
serialInterfaceForRFID);
 System.out.println("Got response from reader...");

 //Get the total length of the message
 messageResponseLength =
rfidReader.Access.GetLengthOfMessageFromReader();
 System.out.println("Got total length of message from reader...");

 //Print information
 //This function is specific to the Sample EPOC Tags
 arrayHoldingTagID =
rfidReader.Access.GetRFIDTagID(unsignedReadBuffer);
 tagIDAsString =
Integer.toHexString(arrayHoldingTagID[counterForTagIDLoop]);

 System.out.println("Accessing Writer to write tag id's to text file...");
 System.out.println("TAG ID BEING WRITTEN IS " + tagIDAsString);
 writeToTagIDFile.WriteStringToFile(tagIDAsString);
 }//This is the end of the for loop
 } //This is the end of the if structure

 //Reset Values
 numberOfRFIDTags = 0;
 lengthOfDataField = 0;
 System.out.println("Reset counter for number of RFID Tags and length of
data field...");

 // Clear the Tag ID Buffer
 try
 {

outputstreamToSerialInterface.write(rfidReader.Access.GenerateMessage(OPC
ODE_BYTES_FOR_CLEAR_TAG_ID_BUFFER));
 outputstreamToSerialInterface.flush();
 System.out.println("Wrote opcode for CLEAR TAG ID BUFFER...");
 } //This is the end of the try structure
 catch (Exception exceptionWhileClearingTheTagIDBuffer){} //This is the end
of the catch structure

 try
 {
 outputstreamToSerialInterface.close();
 System.out.println("Closed output stream to serial interface...");
 inputstreamFromSerialInterface.close();

 136

 System.out.println("Closed input stream from serial interface...");
 } //This is the end of the try structure
 catch (Exception e) {} //This is the end of the catch structure
 serialInterfaceForRFID.close();
 System.out.println("Closed serial interface...");
 }//This is the end of the while loop
 } //This is the end of method run()

} //This is the end of the class definition

 137

Appendix 16: RFID System Embedded Source Code Listing

//Import the RXTX Serial API utility
import gnu.io.*;
import java.io.*;
import java.util.*;
import java.lang.String;
import serialInterfaceUtility.*;
import rfidReader.*;
import fileUtility.*;

public class RFIDSystemEmbedded
{
 //Class variables
 //Variables related to Initialization file manipulation
 private static String LOCATION_OF_INITIALIZATION_FILE =
"/home/sage/workspace/RFIDTesting/fileUtility/RFIDPackageOperatingParamete
rs.txt";
 private static int SIZE_OF_MANIPULATED_FILE_IN_LINES = 61;
 private static fileUtility.Handler handlerOfRFIDInitializationFile;
 private static fileUtility.Parser parserOFRFIDInitializationFile;
 private static fileUtility.ParameterRetrieval
retrieveRFIDInitializationFileParameters;
 //Variables related to file writing
 private static String PATH_TO_TAG_ID_FILE = "";
 //private static FileWriter outputFileOfTagIDs;
 //private static BufferedWriter bufferedwriterWritingStreamToOutputFile;
 //Variables related to tag reading
 private static TagReading tagReader;

 //Variables related to RFID Reader configuration
 private static rfidReader.Configuration configurationOfRFIDReader;
 private static String RFID_OPCODE_FOR_GET_VERSION = "";
 private static byte[] OPCODE_BYTES_FOR_GET_VERSION = {(byte)0xFF,
(byte)0x00, (byte)0x03, (byte)0x1D, (byte)0x0C};
 private static String RFID_OPCODE_FOR_BOOT_FIRMWARE = "";
 private static byte[] OPCODE_BYTES_FOR_BOOT_FIRMWARE = {(byte)0xFF,
(byte)0x00, (byte)0x04, (byte)0x1D, (byte)0x0B};
 private static String RFID_OPCODE_FOR_SET_REGION = "";
 private static byte[] OPCODE_BYTES_FOR_SET_REGION = {(byte)0xFF,
(byte)0x01, (byte)0x97, (byte)0x01, (byte)0x4B, (byte)0xBC};
 private static String RFID_OPCODE_FOR_SET_TAG_PROTOCOL = "";
 private static byte[] OPCODE_BYTES_FOR_SET_TAG_PROTOCOL =
{(byte)0xFF, (byte)0x02, (byte)0x93, (byte)0x00, (byte)0x05, (byte)0x51,
(byte)0x7D};

 138

 private static String RFID_OPCODE_FOR_SET_TX_POWER = "";
 private static byte[] OPCODE_BYTES_FOR_SET_TX_POWER = {(byte)0xFF,
(byte)0x02, (byte)0x92, (byte)0x09, (byte)0xC4, (byte)0x48, (byte)0x9D};
 private static String RFID_OPCODE_FOR_SET_ANTENNA_PORT = "";
 private static byte[] OPCODE_BYTES_FOR_SET_ANTENNA_PORT =
{(byte)0xFF, (byte)0x02, (byte)0x91, (byte)0x01, (byte)0x01, (byte)0x70,
(byte)0x3B};
 private static String RFID_OPCODE_FOR_READ_TAGS = "";
 private static byte[] OPCODE_BYTES_FOR_READ_TAGS = {(byte)0x02,
(byte)0x21, (byte)0x03, (byte)0xE8};
 private static String RFID_OPCODE_FOR_READ_MULTIPLE_TAGS = "";
 private static byte[] OPCODE_BYTES_FOR_READ_MULTIPLE_TAGS =
{(byte)0x02, (byte)0x22, (byte)0x03, (byte)0xE8};
 private static String RFID_OPCODE_FOR_GET_ID_TAG_BUFFER_ONE_TAG
= "";
 private static byte[]
OPCODE_BYTES_FOR_GET_ID_TAG_BUFFER_ONE_TAG = {(byte)0x02,
(byte)0x29, (byte)0x00, (byte)0x01};
 private static String RFID_OPCODE_FOR_CLEAR_TAG_ID_BUFFER = "";
 private static byte[] OPCODE_BYTES_FOR_CLEAR_TAG_ID_BUFFER =
{(byte)0x00, (byte)0x2A};

 //Variables related to Serial Interface
 private static CommPortIdentifier serialInterfaceID;
 private static SerialPort serialInterfaceForRFID;
 private static OutputStream outputstreamToSerialInterface = null;
 private static InputStream inputstreamFromSerialInterface = null;
 private static String DESIGNATED_NAME_OF_APPLICATION = "Demo
Reader";
 private static int SERIAL_INTERFACE_TIMEOUT_VALUE = 0;
 private static String SERIAL_PORT_BEING_USED = "";
 //Data itself is 250 bytes max
 private static int[] unsignedReadBuffer = new int[260];

 public RFIDSystemEmbedded()
 {} //This is the end of the class constructor

 private static void ManipulateInitializationFile()
 {
 /*
 * Creates new object to handle the RFID parameter file
 * Sets the path to the location of the RFID parameter file
 * Assigns the data structure responsible for containing the complete
contents of the file
 * */
 System.out.println("Opening and reading Initialization File...");

 139

 handlerOfRFIDInitializationFile = new fileUtility.Handler();
 Handler.WORKING_PATH_DIRECTORY =
LOCATION_OF_INITIALIZATION_FILE;
 Handler.SIZE_OF_INITIALIZATION_FILE_IN_LINES =
SIZE_OF_MANIPULATED_FILE_IN_LINES;

 /*
 * Opens the RFID initialization file, parses it and closes it once done
 * */
 handlerOfRFIDInitializationFile.OpenFile();
 handlerOfRFIDInitializationFile.ParseFileIntoLines();
 handlerOfRFIDInitializationFile.CloseFile();

 /*
 * Creates a new object to parse the RFID parameter file.
 * It is provided with the path to the location of the RFID parameter file.
 * Assigns the data structures that will hold the main sections, subsections
and parameters
 * of the parameter file.
 * */
 System.out.println("Parsing Initialization File...");
 parserOFRFIDInitializationFile = new fileUtility.Parser();
 Parser.LOCATION_OF_TARGET_FILE =
LOCATION_OF_INITIALIZATION_FILE;
 Parser.SIZE_OF_INITIALIZATION_FILE_IN_LINES =
SIZE_OF_MANIPULATED_FILE_IN_LINES;

 /*
 * Extracts Main Sections, Subsections and Parameters from RFID
initialization file
 * */

parserOFRFIDInitializationFile.InitializeStructuresForExtractionProcedure();

parserOFRFIDInitializationFile.ExtractMainSectionsFromTargetFile(handlerOfRFI
DInitializationFile.contentsOfFile);
 System.out.println("Main Sections Extracted From Initialization File...");

parserOFRFIDInitializationFile.ExtractSubsectionsFromTargetFile(handlerOfRFI
DInitializationFile.contentsOfFile);
 System.out.println("Subsections Extracted From Initialization File...");

parserOFRFIDInitializationFile.ExtractParametersFromTargetFile(handlerOfRFID
InitializationFile.contentsOfFile);
 System.out.println("Parameters Extracted From Initialization File...");

 140

//parserOFRFIDInitializationFile.ShowRequestedSectionExtractedOK(parserOFR
FIDInitializationFile.InitializationFileParameters);
 } //This is the end of method ManipulateInitializationFile()

 private static void RetrieveAndSetParameterValues()
 {
 retrieveRFIDInitializationFileParameters = new fileUtility.ParameterRetrieval();

 //Retrieve and set RFID scanner opcodes
 System.out.println("Retrieving RFID Opcodes...");
 RFID_OPCODE_FOR_GET_VERSION =

 retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsSt
ring(parserOFRFIDInitializationFile.InitializationFileParameters,
"GET_VERSION");
 RFID_OPCODE_FOR_BOOT_FIRMWARE =

 retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsSt
ring(parserOFRFIDInitializationFile.InitializationFileParameters,
"BOOT_FIRMWARE");
 RFID_OPCODE_FOR_SET_REGION =

 retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsSt
ring(parserOFRFIDInitializationFile.InitializationFileParameters, "SET_REGION");
 RFID_OPCODE_FOR_SET_TAG_PROTOCOL =

 retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsSt
ring(parserOFRFIDInitializationFile.InitializationFileParameters,
"SET_TAG_PROTOCOL");
 RFID_OPCODE_FOR_SET_TX_POWER =

 retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsSt
ring(parserOFRFIDInitializationFile.InitializationFileParameters,
"SET_TX_POWER");
 RFID_OPCODE_FOR_SET_ANTENNA_PORT =

 retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsSt
ring(parserOFRFIDInitializationFile.InitializationFileParameters,
"SET_ANTENNA_PORT");
 RFID_OPCODE_FOR_READ_TAGS =

 retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsSt
ring(parserOFRFIDInitializationFile.InitializationFileParameters, "READ_TAGS");
 RFID_OPCODE_FOR_READ_MULTIPLE_TAGS =

 141

 retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsSt
ring(parserOFRFIDInitializationFile.InitializationFileParameters,
"READ_MULTIPLE_TAGS");
 RFID_OPCODE_FOR_GET_ID_TAG_BUFFER_ONE_TAG =

 retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsSt
ring(parserOFRFIDInitializationFile.InitializationFileParameters,
"GET_TAG_ID_BUFFER_ONE_TAG");
 RFID_OPCODE_FOR_CLEAR_TAG_ID_BUFFER =

 retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsSt
ring(parserOFRFIDInitializationFile.InitializationFileParameters,
"CLEAR_TAG_ID_BUFFER");

 //Retrieve and set Serial port timeout value
 System.out.println("Retrieving Serial Port Timeout Value...");
 SERIAL_INTERFACE_TIMEOUT_VALUE =

 retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsInt
eger(parserOFRFIDInitializationFile.InitializationFileParameters,
"SERIAL_PORT_TIMEOUT_VALUE");

 //Retrieve and set name of serial port being used
 System.out.println("Retrieving Serial Port Being Used...");
 SERIAL_PORT_BEING_USED =

 retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsSt
ring(parserOFRFIDInitializationFile.InitializationFileParameters,
"PORT_NAME_01");

 //Retrieve and set path to file for storing Tag ID's
 PATH_TO_TAG_ID_FILE =
retrieveRFIDInitializationFileParameters.ExtractRequestedParameterAsString(pa
rserOFRFIDInitializationFile.InitializationFileParameters,
"PATH_TO_TAG_ID_FILE");
 }//This is the end of method RetrieveAndSetParameterValues()

 private static void PrepareSerialInterface()
 {
 ResetSerialInterface();

 serialInterfaceUtility.Access accessToSerialInterface = new
serialInterfaceUtility.Access();
 System.out.println("Setting serial interface timeout value...");

 142

 accessToSerialInterface.SERIAL_INTERFACE_TIMEOUT_VALUE =
SERIAL_INTERFACE_TIMEOUT_VALUE;
 System.out.println("Setting Name of Application...");
 accessToSerialInterface.NAME_OF_APPLICATION =
DESIGNATED_NAME_OF_APPLICATION;

 //Identify the port to which the reader is attached to the PC.
 System.out.println("Getting serial interface ID...");
 serialInterfaceID =
accessToSerialInterface.GetSerialInterfaceID(SERIAL_PORT_BEING_USED);
 //Open and claim the ownership of the port.
 serialInterfaceForRFID =
accessToSerialInterface.OpenSerialInterface(serialInterfaceID);
 System.out.println("Serial port opened");
 //Create an InputStream associated with the port.
 inputstreamFromSerialInterface =
accessToSerialInterface.InitializeSerialInterfaceInputStream(serialInterfaceForRF
ID);
 System.out.println("Input stream from serial port created...");
 //Create an OutputStream associated with the port.
 outputstreamToSerialInterface =
accessToSerialInterface.InitializeSerialInterfaceOutputStream(serialInterfaceFor
RFID);
 System.out.println("Output stream to serial port created...");
 } //This is the end of method ConfigureRFIDReader()

 private static void ResetSerialInterface()
 {
 System.out.println("Resetting Serial Interface Parameters...");
 serialInterfaceID = null;
 serialInterfaceForRFID = null;
 outputstreamToSerialInterface = null;
 inputstreamFromSerialInterface = null;
 } //This is the end of method ResetSerialInterface()

 private static void PrepareRFIDReader()
 {
 configurationOfRFIDReader = new rfidReader.Configuration();
/*
 OPCODE_BYTES_FOR_GET_VERSION =
configurationOfRFIDReader.ConvertStringToBytes("RFID_OPCODE_FOR_GET
_VERSION", 5, 2);
 OPCODE_BYTES_FOR_BOOT_FIRMWARE =
configurationOfRFIDReader.ConvertStringToBytes("RFID_OPCODE_FOR_BOO
T_FIRMWARE", 5, 2);

 143

 OPCODE_BYTES_FOR_SET_REGION =
configurationOfRFIDReader.ConvertStringToBytes("RFID_OPCODE_FOR_SET
_REGION", 6, 2);
 OPCODE_BYTES_FOR_SET_TAG_PROTOCOL =
configurationOfRFIDReader.ConvertStringToBytes("RFID_OPCODE_FOR_SET
_TAG_PROTOCOL", 7, 2);
 OPCODE_BYTES_FOR_SET_TX_POWER =
configurationOfRFIDReader.ConvertStringToBytes("RFID_OPCODE_FOR_SET
_TX_POWER", 7, 2);
 OPCODE_BYTES_FOR_SET_ANTENNA_PORT =
configurationOfRFIDReader.ConvertStringToBytes("RFID_OPCODE_FOR_SET
_ANTENNA_PORT", 7, 2);
 OPCODE_BYTES_FOR_READ_TAGS =
configurationOfRFIDReader.ConvertStringToBytes("RFID_OPCODE_FOR_REA
D_TAGS", 4, 2);
 OPCODE_BYTES_FOR_READ_MULTIPLE_TAGS =
configurationOfRFIDReader.ConvertStringToBytes("RFID_OPCODE_FOR_REA
D_MULTIPLE_TAGS", 4, 2);
 OPCODE_BYTES_FOR_GET_ID_TAG_BUFFER_ONE_TAG =
configurationOfRFIDReader.ConvertStringToBytes("RFID_OPCODE_FOR_GET
_ID_TAG_BUFFER_ONE_TAG", 4, 2);
 OPCODE_BYTES_FOR_CLEAR_TAG_ID_BUFFER =
configurationOfRFIDReader.ConvertStringToBytes("RFID_OPCODE_FOR_CLE
AR_TAG_ID_BUFFER", 2, 2);
*/
 //Get version
 try {

outputstreamToSerialInterface.write(OPCODE_BYTES_FOR_GET_VERSION);
 outputstreamToSerialInterface.flush();
 System.out.println("Wrote opcode for GET VERSION...");
 } //This is the end of the try structure
 catch (Exception e){} //This is the end of the catch structure

 serialInterfaceUtility.Configuration configurationOfSerialInterface = new
serialInterfaceUtility.Configuration();

 // Set the baudrate, stop bits, data bits
 serialInterfaceUtility.Configuration.SetSerialInterfaceParameters(serialInte
rfaceForRFID);

 // Get the response from the m5e reader
 unsignedReadBuffer =
rfidReader.Access.GetDataFromReader(inputstreamFromSerialInterface,
serialInterfaceForRFID);
 System.out.println("Got response from RFID reader...");

 144

 // Boot Firmware FF 00 04 (1D 0B)
 try
 {

outputstreamToSerialInterface.write(OPCODE_BYTES_FOR_BOOT_FIRMWAR
E);
 outputstreamToSerialInterface.flush();
 System.out.println("Wrote opcode for BOOT FIRMWARE...");
 } //This is the end of the try structure
 catch (Exception e){} //This is the end of the catch structure

 // Get the response from the m5e reader
 unsignedReadBuffer =
rfidReader.Access.GetDataFromReader(inputstreamFromSerialInterface,
serialInterfaceForRFID);
 System.out.println("Got response from RFID reader...");

 try
 {

outputstreamToSerialInterface.write(OPCODE_BYTES_FOR_SET_REGION);
 outputstreamToSerialInterface.flush();
 System.out.println("Wrote opcode for SET REGION...");
 } //This is the end of the try structure
 catch (Exception e){} //This is the end of the catch structure

 //Get the response from the m5e reader
 unsignedReadBuffer =
rfidReader.Access.GetDataFromReader(inputstreamFromSerialInterface,
serialInterfaceForRFID);
 System.out.println("Got response from RFID reader...");

 // Set Current Tag Protocol (GEN2) FF 02 93 00 05
 try
 {

outputstreamToSerialInterface.write(OPCODE_BYTES_FOR_SET_TAG_PROT
OCOL);
 outputstreamToSerialInterface.flush();
 System.out.println("Wrote opcode for SET TAG PROTOCOL...");
 } //This is the end of the try structure
 catch (Exception e) {} //This is the end of the catch structure

 // Get the response from the m5e reader

 145

 unsignedReadBuffer =
rfidReader.Access.GetDataFromReader(inputstreamFromSerialInterface,
serialInterfaceForRFID);
 System.out.println("Got response from RFID reader...");

 // Set Read TX Power (25dBm) FF 02 92 09 C4
 try
 {

outputstreamToSerialInterface.write(OPCODE_BYTES_FOR_SET_TX_POWER
);
 outputstreamToSerialInterface.flush();
 System.out.println("Wrote opcode for SET TX POWER...");
 } //This is the end of the try structure
 catch (Exception e){} //This is the end of the catch structure

 //Get the response from the m5e reader
 unsignedReadBuffer =
rfidReader.Access.GetDataFromReader(inputstreamFromSerialInterface,
serialInterfaceForRFID);
 System.out.println("Got response from RFID reader...");

 // Set Antenna Port (one-port configuration for port 1) FF 02 91 01 01
 try
 {

outputstreamToSerialInterface.write(OPCODE_BYTES_FOR_SET_ANTENNA_
PORT);
 outputstreamToSerialInterface.flush();
 System.out.println("Wrote opcode for SET ANTENNA PORT...");
 } //This is the end of the try structure
 catch (Exception e){} //This is the end of the try structure

 // Get the response from the m5e reader
 unsignedReadBuffer =
rfidReader.Access.GetDataFromReader(inputstreamFromSerialInterface,
serialInterfaceForRFID);
 System.out.println("Got response from RFID reader...");

 try
 {
 outputstreamToSerialInterface.close();
 System.out.println("Closed output stream to serial interface...");
 inputstreamFromSerialInterface.close();
 System.out.println("Closed input stream from serial interface...");
 } //This is the end of the try structure

 146

 catch (Exception e){} //This is the end of the try structure

 serialInterfaceForRFID.close();
 System.out.println("Closed serial interface...");
 } //This is the end of method ConfigureRFIDReader()

 private static void CommenceTagReading(){
 System.out.println("Starting thread for tag reading...");
 //new Thread(tagReadingProcedure).start();
 tagReader = new TagReading(serialInterfaceID, serialInterfaceForRFID,
OPCODE_BYTES_FOR_READ_MULTIPLE_TAGS,
 OPCODE_BYTES_FOR_GET_ID_TAG_BUFFER_ONE_TAG,
OPCODE_BYTES_FOR_CLEAR_TAG_ID_BUFFER,
PATH_TO_TAG_ID_FILE);
 tagReader.start();
 } //This is the end of method CommenceTagReading()

/*
 private static void WriteTagIDToTextFile(int[] arrayOfTagIDs)
 {
 int markerOfCurrentTagID = 0;
 int numberOfTags = arrayOfTagIDs.length;
 String tagIDAsString = "";
 try
 {
 outputFileOfTagIDs = new FileWriter(PATH_TO_TAG_ID_FILE);
 bufferedwriterWritingStreamToOutputFile = new
BufferedWriter(outputFileOfTagIDs);
 for(markerOfCurrentTagID = 0; markerOfCurrentTagID < numberOfTags;
markerOfCurrentTagID++)
 {
 tagIDAsString =
Integer.toHexString(arrayOfTagIDs[markerOfCurrentTagID]);
 System.out.println("Current tag id being written is " + tagIDAsString);
 bufferedwriterWritingStreamToOutputFile.write(tagIDAsString);
 } //This is the end of the for structure
 bufferedwriterWritingStreamToOutputFile.close();
 } //This is the end of the try structure
 catch(IOException exceptionWhileAttemptingToWriteToFile)
 {} //This is the end of the catch structure
 } //This is the end of method
*/

 public static void main(String[] args)
 {
 System.out.println("Starting up RFID System...");

 147

 ManipulateInitializationFile();
 RetrieveAndSetParameterValues();
 PrepareSerialInterface();
 PrepareRFIDReader();
 //AccessAndConfigureSystemClock();
 CommenceTagReading();
 } //This is the end of method main()

} //This is the end of the class definition

 148

Appendix 17: Device Agent, Database Master Source Code
Listing

package Package_DeviceAgent;

//Import statements
import Package_AbstractComponents.*;
import Package_DeviceAgent.*;
import java.io.Serializable;
import java.util.*;

public class PackageDeviceAgent_DatabaseMaster extends
PackageAbstractComponents_AbstractDatabaseMaster implements Serializable
{

 /*************************/
 /* variable declarations */
 /*************************/

 private int VersionNumber;

 /*************************/
 /* Class Constructor */
 /*************************/
 public PackageDeviceAgent_DatabaseMaster()
 {
 VersionNumber = 1;
 this.SetOwner("Device Agent");
 } //This is the end of the method definition

 /*************/
 /* accessors */
 /*************/

 public int GetVersionNumber()
 {
 return VersionNumber;
 } //This is the end of the method definition

 /***********************************/
 /* software transfer functionality */
 /***********************************/

 public static void TestIfSoftwareHasBeenTransferredSuccessfully()

 149

 {
 System.out.println("SYSTEM INFORMATION: The following class,
PackageDeviceAgent_DatabaseMaster, has been loaded successfully after the
transfer of byte codes.");
 } //This is the end of the method definition
} //This is the end of the class definition

 150

Appendix 18: Device Agent Source Code Listing

package Package_DeviceAgent;

import java.io.Serializable;
import Package_AbstractComponents.*;
import Package_AlgorithmsAgent.PackageAlgorithmsAgent_DatabaseMaster;
import Package_ExecutablePackage.HolonicTechnologyPlatformMaster;

public class PackageDeviceAgent_DeviceAgent extends
PackageAbstractComponents_AbstractAgent implements Serializable
{
 /*************************/
 /* variable declarations */
 /*************************/

 //Variables related to HTP
 private int VersionNumber;
 private PackageDeviceAgent_DatabaseMaster DatabaseMaster;
 private HolonicTechnologyPlatformMaster HTPMaster;

 /*********************/
 /* Class Constructor */
 /*********************/
 public PackageDeviceAgent_DeviceAgent(HolonicTechnologyPlatformMaster
InputHTPMaster)
 {
 VersionNumber = 1;
 DatabaseMaster = new PackageDeviceAgent_DatabaseMaster();
 HTPMaster = InputHTPMaster;
 this.SetAgentName("Device Agent");
 } //This is the end of the method definition

 /*************/
 /* Accessors */
 /*************/

 public PackageDeviceAgent_DatabaseMaster GetDatabaseMaster()
 {
 return DatabaseMaster;
 } //This is the end of the method definition
/*
 public static void main(String[] args)
 {

 151

 //PackageDeviceAgent_DeviceAgent deviceAgentForRFIDReader = new
PackageDeviceAgent_DeviceAgent(HTPMaster);
 } //This is the end of the method definition
*/

 /***********************************/
 /* Software transfer functionality */
 /***********************************/

 public static void TestIfSoftwareHasBeenTransferredSuccessfully()
 {
 System.out.println("SYSTEM INFORMATION: The following class,
PackageDeviceAgent_DeviceAgent, has been loaded successfully after the
transfer of byte codes.");
 } //This is the end of the method definition
} //This is the end of the class definition

 152

Appendix 19: Device Agent Run DIS Event Source Code Listing

package Package_DeviceAgent;

//Import statements
import java.util.EventObject;
import java.io.Serializable;
import java.net.*;
import Package_ExecutablePackage.*;

public class PackageDeviceAgent_RunDISCEvent extends EventObject
implements Serializable
{
 /*************************/
 /* variable declarations */
 /*************************/

 private HolonicTechnologyPlatformMaster HolonicTechnologyPlatformMaster;
 private static String className = "PackageDeviceAgent_RunDISCEvent";

 /****************/
 /* constructors */
 /****************/

 public PackageDeviceAgent_RunDISCEvent(Object source,
HolonicTechnologyPlatformMaster InputHolonicTechnologyPlatformMaster)
 {
 super(source);
 HolonicTechnologyPlatformMaster =
InputHolonicTechnologyPlatformMaster;
 } //This is the end of the method definition

 /********************/
 /* accessor methods */
 /********************/

 public HolonicTechnologyPlatformMaster
GetHolonicTechnologyPlatformMaster()
 {
 return HolonicTechnologyPlatformMaster;
 } //This is the end of the method definition

 /***********************************/
 /* software transfer functionality */
 /***********************************/

 153

 public static void TestIfSoftwareHasBeenTransferredSuccessfully()
 {
 System.out.println("SYSTEM INFORMATION: The following class" +
className + ", has been loaded successfully after the transfer of byte codes.");
 } //This is the end of the method definition

} //This is the end of the class definition

 154

Appendix 20: Device Agent Run DIS Event Handler Source Code
Listing

package Package_DeviceAgent;

import java.io.*;
import java.net.DatagramSocket;
import Package_AbstractComponents.*;
import Package_DeviceAgent.*;
import Package_ExecutablePackage.HolonicTechnologyPlatformMaster;
import Package_ToolsAndUtilities.*;

public class PackageDeviceAgent_RunDISCEventHandler implements
PackageDeviceAgent_RunDISCEventListener, Serializable
{
 /*************************/
 /* variable declarations */
 /*************************/
 //Variables related to configuration file manipulation
 public static String PATH_TO_AGENT_CONFIGURATION_FILE =
"/DISC/HTP/Package_DeviceAgent/DeviceAgentConfiguration.txt";
 private static int SIZE_OF_CONFIGURATION_FILE_IN_LINES = 30;
 private static Package_ToolsAndUtilities.PackageToolsAndUtilities_FileHandler
handlerOfAgentConfigurationFile;
 private static Package_ToolsAndUtilities.PackageToolsAndUtilities_FileParser
parserOfAgentConfigurationFile;
 private static
Package_ToolsAndUtilities.PackageToolsAndUtilities_FileParameterRetrieval
retrievalOfAgentConfigurationParameters;
 private static
Package_ToolsAndUtilities.PackageToolsAndUtilities_CheckTimestamp
inspectorOfNewMessages;
 //Variables related to Device Agent Identity
 private static String NAME_OF_PARENT_HOLONIC_UNIT = "";
 private static String DEVICE_AGENT_ID = "";
 private static int DEVICE_AGENT_IDENTIFICATION_NUMBER;
 //Variables related to Thread Handling
 private static Thread CheckIncomingMessageFolderForNewMessages;
 //Variables related to Message Handling
 public static String LOCATION_OF_MOTION_SENSED_MESSAGE = "";
 public static String LOCATION_OF_TAG_READING_MESSAGE = "";
 public static String LOCATION_OF_TAKE_SNAPSHOT_MESSAGE = "";
 public static String PRIMARY_INCOMING_MESSAGE_TO_MONITOR = "";
 //Variables related to File Monitoring
 private static long oldTimestampOnFile;

 155

 private static long timestampOnModifiedFile;
 File fileHandleOnMessageFileBeingMonitored;
 //Variables related to Shell Script Execution
 PackageToolsAndUtilities_RunShellCommands executionOfShellScript = new
PackageToolsAndUtilities_RunShellCommands();
 public static String
SYSTEM_COMMAND_FOR_OPERATING_SYSTEM_SHELL = "";
 public static String LOCATION_OF_MAIN_SCRIPT_DIRECTORY = "";
 public static String
SCRIPT_HANDLING_FILE_TRANSFER_TO_MOTION_SENSOR_HOLONIC_U
NIT = "";
 public static String
SCRIPT_HANDLING_FILE_TRANSFER_TO_NETWORK_CAMERA_HOLONIC
_UNIT = "";
 public static String
SCRIPT_HANDLING_FILE_TRANSFER_TO_RFID_READER_HOLONIC_UNIT
= "";
 public static String
SCRIPT_HANDLING_FILE_TRANSFER_TO_SUPERVISOR_HOLONIC_UNIT =
"";
 //Variables related to behaviour
 public static String FIRST_COURSE_OF_ACTION = "";
 public static String SECOND_COURSE_OF_ACTION = "";

 /****************/
 /* event method */
 /****************/
 public void SayHelloEventReceived(PackageDeviceAgent_SayHelloEvent
Event)
 {
 System.out.println("This is Device Agent, confirmed working.");
 System.out.println("Starting up DISC now.");
 ManipulateAgentConfigurationFile();
 AssignConfigurationParameters();
 CheckIncomingMessageFolderForNewMessages = new
Thread(RunThreadCheckingIncomingMessageFolder, "DISC Incoming Message
Monitoring Thread");
 CheckIncomingMessageFolderForNewMessages.start();
 while(true)
 {
 try
 {
 CheckIncomingMessageFolderForNewMessages.sleep(100);
 } //This is the end of the try structure
 catch(InterruptedException
exceptionThrownWhileMonitoringIncomingMessages)

 156

 {
 CheckIncomingMessageFolderForNewMessages.run();
 } //This is the end of the catch structure
 } //This is the end of the while structure
 } //This is the end of the method definition

 /*******************/
 /* utility methods */
 /*******************/
 public void ManipulateAgentConfigurationFile()
 {
 /*
 * Creates new object to handle the Agent Configuration file
 * Sets the path to the location of the Agent configuration parameter file
 * Assigns the data structure responsible for containing the complete
contents of the file
 */
 System.out.println("Opening and reading Initialization File...");
 handlerOfAgentConfigurationFile = new
Package_ToolsAndUtilities.PackageToolsAndUtilities_FileHandler();
 PackageToolsAndUtilities_FileHandler.WORKING_PATH_DIRECTORY =
PATH_TO_AGENT_CONFIGURATION_FILE;
 PackageToolsAndUtilities_FileHandler.SIZE_OF_INITIALIZATION_FILE_I
N_LINES = SIZE_OF_CONFIGURATION_FILE_IN_LINES;

 /*
 * Opens the Agent configuration file, parses it and closes it once done
 */
 handlerOfAgentConfigurationFile.OpenFile();
 handlerOfAgentConfigurationFile.ParseFileIntoLines();
 handlerOfAgentConfigurationFile.CloseFile();

 /*
 * Creates a new object to parse the agent configuration file.
 * It is provided with the path to the location of the agent configuration file.
 * Assigns the data structures that will hold the main sections, subsections
and parameters
 * of the parameter file.
 */
 System.out.println("Parsing Agent Configuration File...");
 parserOfAgentConfigurationFile = new
Package_ToolsAndUtilities.PackageToolsAndUtilities_FileParser();
 PackageToolsAndUtilities_FileParser.LOCATION_OF_TARGET_FILE =
PATH_TO_AGENT_CONFIGURATION_FILE;
 PackageToolsAndUtilities_FileParser.SIZE_OF_INITIALIZATION_FILE_I
N_LINES = SIZE_OF_CONFIGURATION_FILE_IN_LINES;

 157

 /*
 * Extracts Main Sections, Subsections and Parameters from RFID
initialization file
 */
 parserOfAgentConfigurationFile.InitializeStructuresForExtractionProcedur
e();
 parserOfAgentConfigurationFile.ExtractMainSectionsFromTargetFile(hand
lerOfAgentConfigurationFile.contentsOfFile);
 System.out.println("Main Sections Extracted From Initialization File...");
 parserOfAgentConfigurationFile.ExtractSubsectionsFromTargetFile(handl
erOfAgentConfigurationFile.contentsOfFile);
 System.out.println("Subsections Extracted From Initialization File...");
 parserOfAgentConfigurationFile.ExtractParametersFromTargetFile(handle
rOfAgentConfigurationFile.contentsOfFile);
 System.out.println("Parameters Extracted From Initialization File...");
 //parserOfAgentConfigurationFile.ShowRequestedSectionExtractedOK(pa
rserOfAgentConfigurationFile.InitializationFileParameters);
 } //This is the end of the method definition

 public void AssignConfigurationParameters()
 {
 retrievalOfAgentConfigurationParameters = new
Package_ToolsAndUtilities.PackageToolsAndUtilities_FileParameterRetrieval();

 //Retrieve and set Agent Parameters
 System.out.println("Retrieving Device Agent Identity Parameters...");
 NAME_OF_PARENT_HOLONIC_UNIT =

 retrievalOfAgentConfigurationParameters.ExtractRequestedParameterAs
String(parserOfAgentConfigurationFile.InitializationFileParameters,
 "PARENT_HOLONIC_UNIT");
 DEVICE_AGENT_ID =

 retrievalOfAgentConfigurationParameters.ExtractRequestedParameterAs
String(parserOfAgentConfigurationFile.InitializationFileParameters,
 "DEVICE_AGENT_NAME");
 DEVICE_AGENT_IDENTIFICATION_NUMBER =

 retrievalOfAgentConfigurationParameters.ExtractRequestedParameterAsI
nteger(parserOfAgentConfigurationFile.InitializationFileParameters,
 "DEVICE_AGENT_IDENTIFICATION_NUMBER");

 System.out.println("Retrieving Message Location Parameters...");
 LOCATION_OF_MOTION_SENSED_MESSAGE =

 158

 retrievalOfAgentConfigurationParameters.ExtractRequestedParameterAs
String(parserOfAgentConfigurationFile.InitializationFileParameters,
 "PATH_TO_MOTION_SENSED_MESSAGE");
 LOCATION_OF_TAG_READING_MESSAGE =

 retrievalOfAgentConfigurationParameters.ExtractRequestedParameterAs
String(parserOfAgentConfigurationFile.InitializationFileParameters,
 "PATH_TO_TAG_READING_MESSAGE");
 LOCATION_OF_TAKE_SNAPSHOT_MESSAGE =

 retrievalOfAgentConfigurationParameters.ExtractRequestedParameterAs
String(parserOfAgentConfigurationFile.InitializationFileParameters,
 "PATH_TO_TAKE_SNAPSHOT_MESSAGE");

 System.out.println("Retrieving Script Location Parameters...");
 LOCATION_OF_MAIN_SCRIPT_DIRECTORY =

 retrievalOfAgentConfigurationParameters.ExtractRequestedParameterAs
String(parserOfAgentConfigurationFile.InitializationFileParameters,
 "PATH_TO_MAIN_SCRIPT_DIRECTORY");
 SCRIPT_HANDLING_FILE_TRANSFER_TO_MOTION_SENSOR_HOLO
NIC_UNIT =

 retrievalOfAgentConfigurationParameters.ExtractRequestedParameterAs
String(parserOfAgentConfigurationFile.InitializationFileParameters,

 "SCRIPT_HANDLING_FILE_TRANSFER_TO_MOTION_SENSOR_HOL
ONIC_UNIT");
 SCRIPT_HANDLING_FILE_TRANSFER_TO_NETWORK_CAMERA_HO
LONIC_UNIT =

 retrievalOfAgentConfigurationParameters.ExtractRequestedParameterAs
String(parserOfAgentConfigurationFile.InitializationFileParameters,

 "SCRIPT_HANDLING_FILE_TRANSFER_TO_NETWORK_CAMERA_HO
LONIC_UNIT");
 SCRIPT_HANDLING_FILE_TRANSFER_TO_RFID_READER_HOLONIC
_UNIT =

 retrievalOfAgentConfigurationParameters.ExtractRequestedParameterAs
String(parserOfAgentConfigurationFile.InitializationFileParameters,

 "SCRIPT_HANDLING_FILE_TRANSFER_TO_RFID_READER_HOLONI
C_UNIT");

 159

 SCRIPT_HANDLING_FILE_TRANSFER_TO_SUPERVISOR_HOLONIC_
UNIT =

 retrievalOfAgentConfigurationParameters.ExtractRequestedParameterAs
String(parserOfAgentConfigurationFile.InitializationFileParameters,

 "SCRIPT_HANDLING_FILE_TRANSFER_TO_SUPERVISOR_HOLONIC
_UNIT");

 System.out.println("Retrieving Operating System Specifications...");
 SYSTEM_COMMAND_FOR_OPERATING_SYSTEM_SHELL =

 retrievalOfAgentConfigurationParameters.ExtractRequestedParameterAs
String(parserOfAgentConfigurationFile.InitializationFileParameters,

 "SYSTEM_COMMAND_FOR_OPERATING_SYSTEM_SHELL");

 //Assign variable values depending on identity of Device Agent
 switch(DEVICE_AGENT_IDENTIFICATION_NUMBER)
 {
 case 1:
 PRIMARY_INCOMING_MESSAGE_TO_MONITOR =
LOCATION_OF_MOTION_SENSED_MESSAGE;
 FIRST_COURSE_OF_ACTION =
SCRIPT_HANDLING_FILE_TRANSFER_TO_RFID_READER_HOLONIC_UNIT;
 SECOND_COURSE_OF_ACTION =
SCRIPT_HANDLING_FILE_TRANSFER_TO_SUPERVISOR_HOLONIC_UNIT;
 break;
 case 2:
 PRIMARY_INCOMING_MESSAGE_TO_MONITOR =
LOCATION_OF_TAG_READING_MESSAGE;
 FIRST_COURSE_OF_ACTION =
SCRIPT_HANDLING_FILE_TRANSFER_TO_NETWORK_CAMERA_HOLONIC
_UNIT;
 SECOND_COURSE_OF_ACTION =
SCRIPT_HANDLING_FILE_TRANSFER_TO_SUPERVISOR_HOLONIC_UNIT;
 break;
 case 3:
 PRIMARY_INCOMING_MESSAGE_TO_MONITOR =
LOCATION_OF_TAKE_SNAPSHOT_MESSAGE;
 FIRST_COURSE_OF_ACTION =
SCRIPT_HANDLING_FILE_TRANSFER_TO_SUPERVISOR_HOLONIC_UNIT;
 break;
 } //This is the end of the switch structure
 } //This is the end of the method definition

 160

 public void CreateHandleForFileMonitoring(String specifiedFileToMonitor)
 {
 boolean indicatorOfSuccessfulCreation;

 //Create new File class with abstract path handler
 File fileHandleOnMessageFileBeingMonitored = new
File(specifiedFileToMonitor);
 //Attempt to create new file in given path location
 try
 {
 indicatorOfSuccessfulCreation =
fileHandleOnMessageFileBeingMonitored.createNewFile();
 if(indicatorOfSuccessfulCreation == true)
 {
 System.out.println("File was successfully created.");
 } //This is the end of the if structure
 else if (indicatorOfSuccessfulCreation == false)
 {
 System.out.println("File already exists.");
 }
 } //This is the end of the try structure
 catch(IOException exceptionThrownWhileCreatingFile)
 {
 System.out.println("Exception: I/O error occurred.");
 } //This is the end of the catch structure
 //Read the timestamp on the created file
 oldTimestampOnFile =
fileHandleOnMessageFileBeingMonitored.lastModified();
 System.out.println("Timestamp of initially created file in " +
specifiedFileToMonitor + " is: " + oldTimestampOnFile);
 } //This is the end of the method definition

 public void MonitorFileAndTakeAction(String specifiedFileToMonitor)
 {
 File targetFileToInspect = new File(specifiedFileToMonitor);
 while(true)
 {
 //Check timestamp value
 timestampOnModifiedFile = targetFileToInspect.lastModified();
 //Has the timestamp value been modified?
 if(timestampOnModifiedFile != oldTimestampOnFile)
 {
 System.out.println("File has been modified. New timestamp of modified
file is: " + timestampOnModifiedFile);
 //Update last recorded timestamp value
 oldTimestampOnFile = targetFileToInspect.lastModified();

 161

 //Take decision
 //Call function to perform file transfer
 System.out.println("Calling script to perform file transfer.");
 PerformFileTransfer(FIRST_COURSE_OF_ACTION);
 //PerformFileTransfer(SECOND_COURSE_OF_ACTION);
 //Continue checking timestamp value for modification
 continue;
 } //This is the end of the if structure
 } //This is the end of the while structure
 } //This is the end of the method definition

 public void PerformFileTransfer(String specifiedScriptHandlingFileTransfer)
 {
 executionOfShellScript.specificationOfWorkingDirectory =
LOCATION_OF_MAIN_SCRIPT_DIRECTORY;
 executionOfShellScript.systemCommandToExecute =
SYSTEM_COMMAND_FOR_OPERATING_SYSTEM_SHELL;
 executionOfShellScript.PerformSetupToRunShellCommands();
 executionOfShellScript.ExecuteShellCommands(specifiedScriptHandlingFi
leTransfer);
 } //This is the end of the method definition

 Runnable RunThreadCheckingIncomingMessageFolder = new Runnable()
 {
 public void run()
 {
 System.out.println("Starting thread to check incoming message folder for new
messages");

CreateHandleForFileMonitoring(PRIMARY_INCOMING_MESSAGE_TO_MONIT
OR);

MonitorFileAndTakeAction(PRIMARY_INCOMING_MESSAGE_TO_MONITOR);
 } //This is the end of the method definition
 }; //This is the end of the Thread definition

 /***********************************/
 /* software transfer functionality */
 /***********************************/
 public static void TestIfSoftwareHasBeenTransferredSuccessfully()
 {
 System.out.println("SYSTEM INFORMATION: The following class,
PackageDevelopmentAgent_CreateNewAgentCodeUsingTemplateEventHandler
, has been loaded successfully after the transfer of byte codes.");
 } //This is the end of the method definition
} //This is the end of the method definition

 162

Appendix 21: Device Agent Run DIS Event Listener Source Code
Listing

package Package_DeviceAgent;

public interface PackageDeviceAgent_RunDISCEventListener
{
 public void RunDISCEventReceived(PackageDeviceAgent_RunDISCEvent
Event);
} //This is the end of the class definition

 163

Appendix 22: Motion Sensor Signal Detection Source Code
Listing

#include<unistd.h>
#include<sys/types.h>
#include<sys/mman.h>
#include<stdio.h>
#include<fcntl.h>
#include<string.h>

//Function prototypes
int WriteDataToFile(int dataReceived);

//Global variables
FILE *fileStoringTestData;
int fileClosureError;
char nameOfTestFile[] = "MotionSensed.txt";

//Constants
int MOTION_SENSED = 1;

int main(int argc, char **argv)
{
 volatile unsigned int *PORT_E_DATA_REGISTER,
 *PORT_E_DATA_DIRECTION_REGISTER,
 *PORT_B_DATA_REGISTER,
*PORT_B_DATA_DIRECTION_REGISTER,
 *GPIO_PORT_B_DATA_BIT;
 int counterToBlinkLED;
 unsigned char stateOfPortBDataRegister;
 unsigned char *startingLocationForPortBDataRegister;
 int fileDescriptorHandlingMemoryLocation = open("/dev/mem", O_RDWR);
 startingLocationForPortBDataRegister = mmap(0, getpagesize(),
PROT_READ|PROT_WRITE, MAP_SHARED,
 fileDescriptorHandlingMemoryLocation, 0x80840000);
 PORT_B_DATA_REGISTER = (unsigned int
*)(startingLocationForPortBDataRegister + 0x04); //port b
 PORT_B_DATA_DIRECTION_REGISTER = (unsigned int
*)(startingLocationForPortBDataRegister + 0x14); //port b direction
 PORT_E_DATA_REGISTER = (unsigned int
*)(startingLocationForPortBDataRegister + 0x20); //port e data
 PORT_E_DATA_DIRECTION_REGISTER = (unsigned int
*)(startingLocationForPortBDataRegister + 0x24); //port e direction
 GPIO_PORT_B_DATA_BIT = (unsigned int
*)(startingLocationForPortBDataRegister + 0xC4); // debounce on port b

 164

 *PORT_B_DATA_DIRECTION_REGISTER = 0xf0; //upper nibble output, lower
nibble input
 *PORT_E_DATA_DIRECTION_REGISTER = 0xff; //all output (just 2 bits)
 *GPIO_PORT_B_DATA_BIT = 0x01; //enable debounce on bit 0
 stateOfPortBDataRegister = *PORT_B_DATA_REGISTER; // read initial state

 while(stateOfPortBDataRegister & 0x01)
 { // wait until button goes low
 stateOfPortBDataRegister = *PORT_B_DATA_REGISTER; // remember bit 0
is pulled up with 4.7k ohm
 } //This is the end of the while structure

 WriteDataToFile(MOTION_SENSED);

// blink 5 times, sleep 1 second so it's visible
 for (counterToBlinkLED = 0; counterToBlinkLED < 5; counterToBlinkLED++)
 {
 *PORT_E_DATA_REGISTER = 0xff;
 sleep(1);
 *PORT_E_DATA_REGISTER = 0x00;
 sleep(1);
 } //This is the end of the for structure

 close(fileDescriptorHandlingMemoryLocation);
 return 0;
} //This is the end of function main()

int WriteDataToFile(int dataReceived)
{
 fileStoringTestData = fopen(nameOfTestFile, "w");
 if(fileStoringTestData == NULL)
 {
 fprintf(stderr, "Error: Unable to write to file.\n");
 } //This is the end of the if structure
 else
 {
 int indicationOfSuccessfulWrite = fprintf(fileStoringTestData, "%d\n",
dataReceived);
 if(indicationOfSuccessfulWrite == dataReceived)
 {
 printf("Successful write.\n");
 } //This is the end of the if structure
 } //This is the end of the else structure
 fileClosureError = fclose(fileStoringTestData);
 if(fileClosureError != 0)
 {

 165

 printf("Error: File could not be closed.\n");
 } //This is the end of the if structure
 else
 {
 printf("File closed.\n");
 } //This is the end of the else structure
 return 0;
} //This is the end of function WriteDataToFile()

 166

REFERENCE LIST

 [1] J. Eberspacher and R. Schollimer, "Past and future," in Peer-to-Peer systems and

applications. Heidelberg, Germany: Springer-Verlag, 2005, pp. 18-19.

[2] W. R. Ashby, An Introduction to Cybernetics, 2nd ed., London: Chapman and Hall,

1967.

[3] C. François. "Systemics and cybernetics in a historical perspective," in Systems

Research and Behavioral Science, vol 16, pp. 203-219, 1999, Available:

http://www.uni-

klu.ac.at/~gossimit/ifsr/francois/papers/systemics_and_cybernetics_in_a_historic

al_perspective.pdf [Accessed Jan 2009].

[4] T.C Helvey,. The Age of Information: An Interdisciplinary Survey of Cybernetics,

Englewood Cliffs, N.J.: Educational Technology Publications, 1971.

[5] F. Heylighen and C. Joslyn, "Cybernetics and second order cybernetics," in

Encyclopedia of Physical Science & Technology, 3rd ed., vol. 4, R.A. Meyers,

New York: Academic Press, pp. 155-170.

[6] R. J. Maly, "Comparison of Centralized (Client-Server) and Decentralized (Peer-to-

Peer) Networking," Semester thesis, ETH Zurich, Zurich, Switzerland, 2003.

[7] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Concepts and

Design, 4th ed., Harlow, Essex, Pearson Education Limited, 2005.

[8] "Client-server", Jan. 28th, 2010. [Online]. Available: http://en.wikipedia.org/wiki/Client-

server. [Accessed: Feb 1st, 2010].

[9] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simulations, and

Advanced Topics, New Jersey: John Wiley and Sons, 2004.

[10] V. K. Garg, Elements of Distributed Computing, New York, John Wiley and Sons,

2002.

[11] A. S. Tanembaum and M. V. Steen, Distributed Systems: Principles and Paradigms,

2nd ed., London: Prentice Hall, 2006.

 167

[12] K. Thomas, W. A. Gruver, D. Sabaz, and C. Ng, ―A hybrid protocol architecture for

peer-to-peer control based on SIP and UPnP,‖ in Proceedings of the 2009 IEEE

International Systems Conference, March 23-26, 2009, Vancouver, Canada. New

York, NY: IEEE Systems Council, 2009.

[13] D. Trentesaux, "Distributed control of production systems," in Engineering

Applications of Artificial Intelligence, vol. 22, no. 7, pp. 971-978, Oct. 2009.

[14] I. Seilonen, Ã. T. Pirttioja, and K. Koskinen, "Extending process automation systems

with multi-agent techniques," Engineering Applications of Artificial Intelligence,

vol. 22, no. 7, pp. 1056-1067, Oct. 2009.

[15] D. Schoder, K. Fischbach, and C. Schmitt, "Application Areas" in Peer-to-Peer

Systems and Applications. Heidelberg, Germany: Springer-Verlag, 2005, pp. 25

– 32.

[16] R. J. Maly, "Comparison of Centralized (Client-Server) and Decentralized (Peer-to-

Peer) Networking," Semester thesis, ETH Zurich, Zurich, Switzerland, 2003, p. 8.

[17] R. Miller, "Facebook Now Running 10,000 Web Servers," Data Center Knowledge,

Apr, 23, 2008. Available: Data Center Knowledge,

http://datacenterknowledge.com. [Accessed Jan 31, 2009].

[18] M. Ahmed, "Google search finds seafaring solution," The Times, Sept 15, 2008.

Available: The Times Online, http://timesonline.co.uk. [Accessed Jan 31, 2009].

[19] J. R. Leigh, Applied Control Theory, 2nd ed., London: Peter Peregrinus Ltd, 1987.

[20] S. C. Sugarman, HVAC Fundamentals, Liburn: The Fairmont Press, 2004.

[21] "Direct Digital Control", Oct. 5th, 2009. [Online]. Available:

http://en.wikipedia.org/wiki/Direct_Digital_Control. [Accessed: Feb 1st, 2010].

[22] "Programmable Logic Controller", Feb 1st, 2010. [Online]. Available:

http://en.wikipedia.org/wiki/Programmable_logic_controllers. [Accessed: Apr

23rd, 2010].

[23] T. M. Stout and T. J. Williams. "Pioneering Work in the Field of Computer Process

Control" IEEE Annals of the History of Computing, 1995.

 168

[24] JRD TATA Automation Training Centre, Distributed Control Systems and

Applications in Control Industry for Industrial Automation and Control Engineers.

Pune, India: TATA Honeywell, 2005.

[25] "Distributed Control System", Feb. 2nd, 2010. [Online]. Available:

http://en.wikipedia.org/wiki/Distributed_Control_System. [Accessed: Feb 2nd,

2010].

[26] The Modbus Organization, ―Modbus Technical Resources,‖ The Modbus

Organization [Online]. Available: http://www.modbus.org/. [Accessed: Feb. 2,

2010].

[27] BACNet, ―Tutorials,‖ BACNet [Online]. Available: http://www.bacnet.org/. [Accessed:

Feb. 2, 2010].

[28] "BACNet", Jan. 23rd, 2010. [Online]. Available: http://en.wikipedia.org/wiki/BACNet.

[Accessed: Feb 1st, 2010].

[29] "Profibus PA System Description‖ Aug, 2007. [Online]. Available:

http://www.profibus.com/nc/downloads/downloads/profibus-pa-technology-and-

application-system-description/download/191/. [Accessed: Feb 1st, 2010].

[30] ―Technology,‖ CAN in Automation [Online]. Available: http://www.can-cia.de/.

[Accessed: Feb. 2, 2010].

[31] R. Bosch GmbH. CAN Specification 2.0, Stuttgart, Germany: Robert Bosch GmbH,

1991. [E-book] Available: Robert Bosch GmbH Automotive Semiconductors and

Sensors.

[32] "Controller Area Network", Feb. 2nd, 2010. [Online]. Available:

http://en.wikipedia.org/wiki/Controller_Area_Network. [Accessed: Feb 2nd, 2010]

[33] ―DeviceNet Technology Overview,‖ Open DeviceNet Vendor Association [Online].

Available: http://www.odva.org/. [Accessed: Feb. 2, 2010]

[34] ―DeviceNet Technology Overview,‖ 2004. [Online]. Available:

http://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00026R1.pdf.

[Accessed: Feb. 2, 2010].

[35] ―Welcome to the UPnP Forum!,‖ Dec. 31, 2009. [Online]. Available:

http://www.upnp.org/. [Accessed: Feb. 3, 2010].

 169

[36] UPnP Forum, UPnP Device Architecture version 1.1, 2008.

[37] UPnP Forum, UPnP Vendor's Implementation Guide, 2001.

[38] UPnP Forum, UPnP DeviceType:V Device Template Version 1.01, 2001.

[39] UPnP Forum, UPnP ServiceType:V Service Template Version 2.00, 2008.

[40] V. Gupta, et al., Peer-to-Peer Application Development: Cracking the Code, New

York: USA: Hungry Minds, 2002, pp. 1-4.

[41] I. Taylor and A. Harrison, From P2P and Grids to Services on the Web: Evolving

distributed communities, 2nd ed., London, UK:, Springer-Verlag, 2009.

[42] J. F. Buford, H. Yu and E. K. Lua, P2P Networking and Applications. Burlington, MA,

USA: Morgan Kaufman, 2009, pp. 8-12.

[43] K. Wehrle, et al., Peer-to-Peer Systems and Applications. Heidelberg, Germany:

Springer-Verlag, 2005, p. 1.

[44] R. Steinmetz and K. Werhle, "What is this peer-to-peer about?" in Peer-to-Peer

Systems and Applications, Heidelberg, Germany: Springer-Verlag, 2005, pp. 10-

15.

 [45] "BitTorrent", 2010 [Online]. Available: http://www.bittorrent.com/. [Accessed: Feb. 3,

2010].

[46] "BitTorrent (software)", Feb. 2nd, 2010. [Online]. Available:

http://en.wikipedia.org/wiki/BitTorrent_(software). [Accessed: Feb 6th, 2010].

 [47] "Skype", 2010 [Online]. Available: http://www.skype.com/getconnected/. [Accessed:

Feb. 3, 2010].

[48] TorrentFreak, "Mininova, 5 billion downloads and counting," TorrentFreak, May 26,

2008. [Online]. Available: http://torrentfreak.com/mininova-5-billion-downloads-

and-counting-080526/. [Accessed Feb. 6, 2010].

[49] TorrentFreak, "BitTorrent trio hit a billion pageviews a month," TorrentFreak, June

11, 2008. [Online]. Available: http://torrentfreak.com/bittorrent-trio-hit-a-billion-

pageviews-a-month-080611/. [Accessed Feb. 6, 2010].

[50] TorrentFreak, "Survey shows huge demand for legal P2P," TorrentFreak, June 16,

2008. [Online]. Available: http://torrentfreak.com/survey-shows-huge-demand-for-

legal-p2p-080616/. [Accessed Feb. 6, 2010].

 170

[51] TorrentFreak, "EA choose BitTorrent for warhammer online distribution,"

TorrentFreak, August 13, 2008. [Online]. Available: http://torrentfreak.com/ea-

choose-bittorrent-for-warhammer-online-distribution-080813/. [Accessed Feb. 6,

2010].

[52] TorrentFreak, "BitTorrent searches skyrocket as sites grow," TorrentFreak,

September 01, 2008. [Online]. Available: http://torrentfreak.com/bittorrent-

searches-skyrocket-as-sites-grow-080901/. [Accessed Feb. 6, 2010].

[53] TorrentFreak, "The pirate bay tops 15 million peers," TorrentFreak, September 15,

2008. [Online]. Available: http://torrentfreak.com/the-pirate-bay-tops-15-million-

users-080921/. [Accessed Feb. 6, 2010].

[54] TorrentFreak, "Mininova breaks download records," TorrentFreak, September 23,

2008. [Online]. Available: http://torrentfreak.com/mininova-breaks-download-

records-080923/. [Accessed Feb. 6, 2010].

[55] TorrentFreak, "‗Shocking‘ 61% of all upstream internet traffic is P2P," TorrentFreak,

October 21, 2008. [Online]. Available: http://torrentfreak.com/shocking-61-of-all-

upstream-internet-traffic-is-p2p-081021/. [Accessed Feb. 6, 2010].

[56] TorrentFreak, "Dutch university uses bittorrent to update workstations,"

TorrentFreak, March 6, 2008. [Online]. Available: http

http://torrentfreak.com/university-uses-utorrent-080306/. [Accessed Feb. 6,

2010].

[57] TorrentFreak, "Mininova to launch bitTorrent video streaming," TorrentFreak, March

19, 2008. [Online]. Available: http://torrentfreak.com/mininova-bittorrent-video-

streaming-080319/. [Accessed Feb. 6, 2010].

[58] TorrentFreak, "Download torrents on PS3, iPhone and web-enabled devices,"

TorrentFreak, June 10, 2008. [Online]. Available:

http://torrentfreak.com/download-torrents-on-ps3-iphone-and-other-web-enabled-

devices-080610/. [Accessed Feb. 6, 2010].

[59] TorrentFreak, "P2P-Next introduces live bittorrent streaming," TorrentFreak, July 18,

2008. [Online]. Available: http://torrentfreak.com/p2p-next-introduces-live-

bittorrent-streaming-080718/. [Accessed Feb. 6, 2010].

 171

[60] B. Jones, "EZTV trials tv-torrent streaming," TorrentFreak, July 26, 2008. [Online].

Available: http://torrentfreak.com/eztv-trials-streaming-080726/. [Accessed Feb.

6, 2010].

[61] TorrentFreak, "Pioneer‘s live bittorrent streaming device," TorrentFreak, September

11, 2008. [Online]. Available http://torrentfreak.com/pioneers-live-bittorrent-

streaming-device-080911/. [Accessed Feb. 6, 2010].

[62] TorrentFreak, "BitTorrent to speed up game distribution," TorrentFreak, September

15, 2008. [Online]. Available: http://torrentfreak.com/bittorrent-to-speed-up-game-

distribution-080915/. [Accessed Feb. 6, 2010].

[63] TorrentFreak, "DistriBrute: P2P powered desktop deployment," TorrentFreak,

October 16, 2008. [Online]. Available: http://torrentfreak.com/distribrute-p2p-

powered-desktop-deployment-081016/. [Accessed Feb. 6, 2010].

[64] ―DistriBrute,‖ 2009. [Online]. Available:

http://www.4m88.com/index.php/Products/products.html. [Accessed: Feb. 6,

2010].

[65] TorrentFreak, "Stanford university embraces bittorrent," TorrentFreak, October 18,

2008. [Online]. Available: http://torrentfreak.com/stanford-university-embraces-

bittorrent-081018/. [Accessed Feb. 6, 2010].

[66] TorrentFreak, "Tribler set to make bittorrent sites obsolete," TorrentFreak, October

28, 2008. [Online]. Available: http://torrentfreak.com/tribler-set-to-make-bittorrent-

sites-obsolete-081028/. [Accessed Feb. 6, 2010].

[67] ―Tribler,‖ 2009. [Online]. Available: http://www.tribler.org/trac/wiki. [Accessed: Feb.

6, 2010].

[68] TorrentFreak, "BBC trials bittorrent powered HD video streaming," TorrentFreak,

December 03, 2009. [Online]. Available: http://torrentfreak.com/bbc-trials-

bittorrent-powered-hd-video-streaming-091203/. [Accessed Feb. 6, 2010].

[69] TorrentFreak, "BitTorrent powered TV is coming," TorrentFreak, April 14, 2009.

[Online]. Available: http://torrentfreak.com/bittorrent-powered-tv-is-coming-

090414/. [Accessed Feb. 6, 2010].

[70] W.A. Gruver and D. Sabaz, "Distributed intelligent systems: What makes them

 172

'intelligent'‖, in Proceedings of IEEE Symposium on Microwave, Antenna,

Propagation and EMC Technologies for Wireless Communications, Beijing,

China, 2005.

 [71] R. Steeb, et al.., "Distributed Intelligence for Air Fleet Control", Santa Monica, CA:

The Rand Corporation, 1981.

[72] J. C. Augusto, et al.., Advances in Ambient Intelligence, Amsterdam, Netherlands:

IOS Press, 2007.

[73] R. Razavi, K. Mechitov, G. Agha and J. Perrot, "Ambiance: a mobile agent platform

for end-user programmable ambient systems" in Advances in Ambient

Intelligence, Amsterdam, Netherlands: IOS Press, 2007. pp. 81 - 106.

 [74] B. Ganter, et al., Formal Concept Analysis: Foundations and applications,

Heidelberg, Germany: Springer-Verlag, 2005.

[75] C. Ng, "Framework for developing Distributed Intelligence Systems in a peer-to-peer

environment," MASc. Thesis, School of Engineering Science, Simon Fraser

University, Burnaby, BC, Canada, 2007, pp. 59 – 62, pp. 109 – 115, pp. 72 – 99,

pp. 50 – 51, pp. 62 – 64, p. 72, pp. 88 - 93.

[76] Dictionary.com, "architecture," in Dictionary.com Unabridged. Source location:

Random House, Inc. http://dictionary.reference.com/browse/architecture.

Available: http://dictionary.reference.com. Accessed: November 23, 2009.

[77] Wikipedia.org, "Centralized system," in Wikipedia.org.

http://en.wikipedia.org/wiki/Centralized_system. Available:

http://en.wikipedia.org/wiki/. Accessed: November 23, 2009.

 [78] R. J. Maly, "Comparison of Centralized (Client-Server) and Decentralized (Peer-to-

Peer) Networking," Semester thesis, ETH Zurich, Zurich, Switzerland, 2003, pp.

1 – 12.

[79] D. G. Luenberger, Optimization by Vector Space Methods. New York, USA: John

Wiley and Sons, 1969.

[80] Dictionary.com, "node," in The Free On-line Dictionary of Computing. Source

location: Denis Howe. http://dictionary.reference.com/browse/node. Available:

http://dictionary.reference.com. Accessed: November 28, 2009.

 173

[81] Dictionary.com, "peer," in The Free On-line Dictionary of Computing. Source

location: Denis Howe. http://dictionary.reference.com/browse/peer. Available:

http://dictionary.reference.com. Accessed: November 28, 2009.

[82] A. Koestler, Janus: A Summing Up, Random House, 1978.

[83] C. Nikolai, and G. Madey, "Tools of the trade: a survey of various agent based

modeling platforms", in Journal of Artificial Societies and Social Simulation, 2008.

[84] R.J. Allan, "Survey of agent based modelling and simulation tools", STFC Daresbury

Laboratory, Warrington, UK, 2009.

[85] Jade - Java Agent DEvelopment Framework Available: http://jade.tilab.com/.

Accessed: November 28, 2009.

[86] A. Helsinger, M. Thome, and T. Wright, "Cougaar: a scalable, distributed multi-agent

architecture", in IEEE International Conference on Systems, Man, and

Cybernetics Conference, 2004.

[87] BBN Technologies Development Staff, "Cougaar Architecture Document", BBN

Technologies, 2004.

[88] jxta: JXTA Community Projects, Available: https://jxta.dev.java.net/. [Accessed: Nov.

28, 2009].

[89] F. Bellifemine, et al., "JADE: A White Paper," Telecom Italia Laboratory, Torino,

Italy, 2003.

[90] Sun Microsystems, JXTA Java Standard Edition v. 2.5: Programmers Guide, Sun

Microsystems, 2007.

[91] ―iDEA Lab‖. [Online]. Available: http://www2.ensc.sfu.ca/idea/. [Accessed: Feb. 12,

2010].

[92] T. Beiser, et al., "Requirements Engineering" in Multiagent Engineering. Heidelberg,

Germany: Springer-Verlag, 2006, p. 364.

[93] G. Weiss, Multiagent Systems, Cambridge, MA: MIT Press, 2000.

[94] M. Wooldridge, ―Intelligent Agents,‖ in Multiagent Systems, Cambridge, MA: MIT

Press, 2000, p. 49.

[95] S. Sen and G. Weiss, ―Learning in Multiagent Systems,‖ in Multiagent Systems,

Cambridge, MA: MIT Press, 2000, p. 269.

 174

[96] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Concepts and

design, 4th ed., Harlow, Essex: Pearson Education Limited, 2005, pp. 177 – 220,

pp. 201-207.

 [97] "Agent-Based Models of Industrial Ecosystems" [Online], Available:

http://policy.rutgers.edu/andrews/projects/abm/default.htm. [Accessed: Dec. 11,

2009].

[98] M. N. Huhns and L. M. Stephens, "Multiagent Systems and Societies of Agents" in

Multiagent Systems, Cambridge, MA: MIT Press, 2000, pp. 79 – 120, pp. 83 - 84.

 [99] G. Grätzer, Lattice Theory: First concepts and distributive lattices, San Francisco,

CA : W. H. Freeman and Co, 1971.

[100] J. G. Hocking and G. S. Young, Topology, Reading, MA: Addison-Wesley, 1961.

[101] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd ed., Cambridge,

UK: Cambridge University Press, 2001, p. 95.

[102] B. Ganter et al., Formal Concept Analysis: Foundations and applications,

Heidelberg, Germany: Springer-Verlag, 2005, p. 43.

[103] B. S. W. Schröder, Ordered Sets: An introduction, Boston, MA: Birkhäuser, 2003.

[104] H. A. Priestly, B. A. Davey, Introduction to Lattices and Order, Cambridge, UK:

Cambridge University Press, 1990.

 [105] S. Ovcharenko, "Mobile agent hardware design for distributed wireless networks,"

M.Eng. Report, School of Engineering Science, Simon Fraser University,

Burnaby, BC, Canada, 2006.

[106] IEEE, ―IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary-

Scan Architecture -Description,‖ IEEE, [Online]. Available:

http://http://standards.ieee.org/reading/ieee/std_public/description/testtech/1149.

1-1990_desc.html. [Accessed: Feb. 13, 2010].

[107] ―OpenEmbedded‖, Feb. 6, 2010. [Online]. Available:

http://wiki.openembedded.net/index.php/Main_Page. [Accessed: Feb. 12, 2010].

[108] ―The Angstrom Distribution: Embedded Power‖, Nov. 30, 2009. [Online]. Available:

http://www.angstrom-distribution.org/. [Accessed: Feb. 12, 2010].

 175

[109] "Java Virtual Machine", Feb. 13, 2010. [Online]. Available:

http://en.wikipedia.org/wiki/Java_Virtual_Machine. [Accessed: Feb 13th, 2010].

[110] Oracle Corporation, ―The Java Virtual Machine Specification,‖ Oracle Corporation,

2010. [Online]. Available: http://java.sun.com/docs/books/jvms/. [Accessed: Feb.

13, 2010].

[111] Oracle Corporation, ―Java Technology,‖ Oracle Corporation, 2010. [Online].

Available: http://sun.com/java/. [Accessed: Feb. 13, 2010].

[112] ―Kaffe.org‖, Feb. 26, 2008. [Online]. Available: http://www.kaffe.org/. [Accessed:

Feb. 13, 2010].

[113] ―CacaoVM‖, Mar. 16, 2009. [Online]. Available: http://www.cacaovm.org/.

[Accessed: Feb. 13, 2010].

[114] ―JamVM‖, Feb. 13, 2010. [Online]. Available:

http://sourceforge.net/projects/jamvm/. [Accessed: Feb. 13, 2010].

[115] Technologic Systems, TS-7300 Manual Hardware and Software, Technologic

Systems, 2008.

[116] IOGEAR, GWU523 Wireless-G USB 2.0 Adapter, IOGEAR Incorporated, 2005.

[117] IEEE Standards Association, ―IEEE Standard for Information Technology—

Telecommunications and information exchange between systems—Local and

metropolitan area networks—Specific requirements Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifications,‖ IEEE.

[Online]. Available: http://standards.ieee.org/getieee802/802.11.html. [Accessed:

Feb. 13, 2010].

[118] "IEEE 802.11", Feb. 4, 2010. [Online]. Available:

http://en.wikipedia.org/wiki/IEEE_802.11. [Accessed: Feb 13th, 2010].

[119] "Open-source software", Feb. 9, 2010. [Online]. Available:

http://en.wikipedia.org/wiki/Open_source_software. [Accessed: Feb 13th, 2010].

[120] ―The GNU Operating System‖, Feb. 12, 2010. [Online]. Available:

http://www.gnu.org/. [Accessed: Feb. 13, 2010].

[121] Technologic Systems, Linux for ARM on TS-72XX User's Guide, Technologic

Systems, 2008.

 176

[122] ―BusyBox‖, Jan. 27, 2010. [Online]. Available: http://busybox.net/. [Accessed: Feb.

13, 2010].

[123] G. Sally, Pro Linux Embedded Systems, New York, NY: Springer-Verlag New

York, 2010, pp. 293 - 308.

[124] ―Debian‖, Feb. 12, 2010. [Online]. Available: http://www.debian.org/. [Accessed:

Feb. 13, 2010].

[125] Fairchild Semiconductor, LM2902,LM324/LM324A,LM224/LM224A Quad

Operational Amplifier, Fairchild Semiconductor, 2002.

[126] ThingMagic Incorporated, MERCURY5e World-class UHF RFID Engine,

ThingMagic Incorporated, 2009.

[127] ThingMagic Incorporated, ―Mercury5e,‖ ThingMagic Incorporated, 2009. [Online].

Available: http://www.thingmagic.com/embedded-rfid-readers/mercury5e.

[Accessed: Feb. 13, 2010].

[128] Axis Communications, AXIS 210/211 Network Cameras - User‘s Manual, Axis

Communications, 2007.

[129] ―BASH‖, Nov. 20, 2006. [Online]. Available: http://www.gnu.org/software/bash/.

[Accessed: Feb. 13, 2010].

[130] C. Newham and B. Rosenblatt, Learning the bash Shell, Sebastopol, CA: O'Reilly

and Associates, 1998.

[131] K. O. Burtch, Linux Shell Scripting with Bash, Indianopolis, IN: Sams Publishing,

2004.

[132] ―Ubuntu‖, 2010. [Online]. Available: http://www.ubuntu.com/. [Accessed: Feb. 13,

2010].

[133] J. Postel and J. Reynolds, "RFC959 - File Transfer Protocol, " RFC959, october,

1985.

[134] Technologic Systems, TS-7300 Datasheet, Technologic Systems, 2007.

[135] ―RXTX‖, Feb. 4, 2009. [Online]. Available: http://www.rxtx.org/. [Accessed: Feb. 13,

2010].

 177

[136] Oracle Corporation, ―Java Communications,‖ Oracle Corporation, 2010. [Online].

Available: http://java.sun.com/products/javacomm/index.jsp. [Accessed: Feb. 13,

2010].

[137] Intel Corporation, ―Intel Atom Processor: Intel‘s Smallest Chip,‖ Intel Corporation,

2010. [Online]. Available: http://www.intel.com/technology/atom/. [Accessed: Apr.

5, 2010].

[138] Cirrus Logic, ―EP9301 User‘s Guide,‖ Cirrus Logic Incorporated, 2004.

[139] Altera, ―Cyclone II Device Handbook,‖ Altera Corporation, 2008.

