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ABSTRACT 

The goal is to investigate image-based reasoning in school geometry. A 

theoretical framework is proposed, consisting of a model for conceptualization of image 

data, four principles of conceptualization, and five specific geometrical skills. An 

explication of the van Hiele levels in terms of this framework confirms its validity; an 

interpretation of common errors in geometrical reasoning demonstrates its descriptive 

utility. 

It is argued that an axiomatic treatment of geometry in secondary schools is 

inappropriate, and therefore geometric arguments in school must utilize image data. Use 

of image data brings into question the generality of geometric results. The proposed 

framework is applied to understanding this issue. A pitfall of allowing image-based 

reasoning is that there must be strict limits on permissible conceptualizations from image 

data. 

The method of this study is theoretical. However, the theoretical model can be 

used to frame specific research questions in a future empirical study. 
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1 Introduction 

This thesis concerns the relationship between image and concept, which 

constitutes one of the great grand problems of the Western intellectual tradition. A 

comprehensive treatment of this topic would be over-ambitious. Thus, throughout this 

thesis I delimit the scope of my treatment of this general topic in various ways. My focus 

here is restricted to outlining a theoretical framework for image-based reasoning in 

geometry, along with some of the contexts that motivate and constrain it, and to some 

practical educational implications thereof. 

Throughout this thesis image-based reasoning will refer to the use in geometrical 

reasoning of data obtained directly from images. The goal is to understand the necessity, 

implications, and pitfalls of image-based reasoning in geometry in secondary schools. To 

achieve this end, it was necessary to investigate various themes in cognitive science, the 

history of geometry, and mathematics education. 

It was found that the existing literature did not provide an adequate framework for 

achieving the goal of understanding image-based reasoning. In consequence, a new 

theoretical framework is proposed. This introduction briefly discusses the sources 

referred to and outlines the development and application of the new model. 



1 .  Concept formation in mathematics education 

Geometry, at least in secondary schools, is concerned with the investigation of 

certain spatial properties of objects. These objects may be concrete or imagined, and 

either way they are usually represented as lines on paper, the geometry diagram. 

Properties may be given in advance, determined by inspection of the diagram, or 

established by logical deduction. 

These two types of cognitive structure, the diagram and its properties, image and 

concept, are the raw material for geometrical thinking. The first task of the thesis is to 

investigate the notions of image and concept and the relationship between them. 

Kosslyn (1 980, 1983) defined apercept as a mental representation of a perceived 

stimulus and an image as mental representation having the characteristics of a percept in 

the absence of the appropriate visual stimulation. In geometrical reasoning both types of 

representation are necessary, and both are referred to herein by the single term image. 

For purposes of this study, a concept is manifested by a mental representation 

consisting of a string of words. Anderson (1978) points out that there may be many 

surface representations of a single concept, just as there are synonyms and flexible word 

orders in human languages. It is preferable for concept to mean the stable, underlying 

mental representation rather than the variable surface representation. 

Two important theories are discussed of how mental representations are stored in 

the brain. Paivio (1 97 1) is the originator of dual-code theory, which assumes two 

separate formats for storage of mental representations, visual images and verbal concepts. 

According to Anderson (1 980), there is evidence that both verbal and visual data 

are stored in forms that capture the overall gist of the meaning rather than the exact 



utterance or the exact image. Moreover, it is clearly possible for the mind to translate 

easily between the two formats. 

Factors such as these inspired Pylyshyn's (1 973) propositional theory, which 

claims that there is a deep mental structure underlying both images and concepts, and 

which acts as a common language between the two. According to Pylyshyn, such a 

common language is essential, for otherwise there would need to be an infinite number of 

connections between any given concept and all of its particular instantiations. 

Anderson (1978) contends that the translation from one representation to another 

would require a third, intermediate representation, and then the translation from this third 

representation to one of the first two would require still another representation, and so on. 

According to Anderson, this regression argument invalidates propositional theory. 

A basic mechanism for concept construction in geometry is Piaget's empirical 

abstraction, as described in Dubinsky (1991) and Mitchelmore (2002). A child is shown 

a number of images of "triangle" and thereafter abstracts the concept "triangle." In 

generalization the domain of a concept is extended. The various forms of generalization 

are discussed in Mitchelmore (2002). Researchers have identified other forms of 

abstraction and generalization, but a proper investigation of this complex subject is 

beyond the scope of this study. 

More sophisticated ways of describing the mechanism of concept formation are 

Sfard's (1 99 1) model of interiorization-condensation-reification and the APOS model, 

summarized in Dubinsky (1 997) and described more fully in Czarnocha, Dubinsky, 

Prabhu, and Vidakovic (1 999). In both models the starting point for the construction of 



new conceptual objects is action rather than perception. Tall (1999) critiques the 

application of action-based models of concept formation to geometry. 

The theories of concept formation discussed so far are constructivist. Winslaw 

(2000) offers a different perspective. He proposes an alternative mechanism for the 

acquisition of mathematical knowledge, assuming that mathematical concepts are 

hardwired into the human brain. 

The purpose of this investigation is not to judge between the various theories of 

image and concept in cognitive psychology. Rather, the aim is a functional description of 

certain phenomena when image data are permitted in geometrical reasoning. A major 

inspiration in this regard was the work of Fischbein (1993), which comes close to the 

type of theoretical framework this thesis is reaching for. The prior discussion utilizes 

many of Fischbein's own references, and is included to provide at least some indication 

of how to think about these crucial notions of image and concept. The investigation of 

concept formation finishes with a discussion of Fischbein (1 993), which leads naturally 

into the rest of the thesis. 

Fischbein (1 993) proposed that image and concept were indivisibly linked in 

geometrical reasoning, the two together forming a unitary third entity called afigural 

concept. Fischbein and Nachlieli (1 998) enriched the notion with further research. 

Fischbein (1993) requires his concepts to exist within a formal, axiomatic 

framework. However, the characteristic feature of image-based reasoning is that it allows 

informal, non-axiomatic geometrical arguments, and it is necessary, therefore, to allow 

concepts to exist outside of the formal framework. Secondly, Fischbein does not clearly 

specify that the image-concept pair should allow flexible conceptualization of image data. 
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A paradigm example of this desirable flexibility is the image of a square, which may be 

conceptualized as a rhombus, a rectangle, a parallelogram, and a quadrilateral, to name 

but a few possibilities. It was a clarification of this second concern in particular that 

precipitated the proposed theoretical framework. 

1.2 Theoretical framework 

A conceptualization of an image is defined as a set of properties that can be said 

to be true of the image. As indicated above, with the example of the square, there are 

typically many possible conceptualizations of an image. Other possibilities for the square 

are opposite sides parallel, four sides equal, four angles equal, and so on. In order to 

clarify the interplay of image and concept, four principles of conceptualization were 

formulated. These are not formal, rigorous principles, but are a functional description of 

what is possible given a normal reasoning process. 

When image-based reasoning is allowed in geometry, a major dilemma is that the 

image is particular, although any propositions the geometer should wish to prove are 

general in nature. The framework is applied to resolving this issue. The solution 

depends on a proper understanding of the Greek schematic diagram and the new notion of 

schematic case. It was inspired by the work of Netz (1999,2004), although the new 

model seems to provide greater clarity. 

1.3 Historical overview of image-based reasoning 

The proposed framework is used as a lens through which to view the status of 

image-based reasoning in geometry at various points in the history of geometry. Netz 



(1 999) demonstrates that the Greeks considered diagrams to be essential to geometrical 

proofs, and they certainly allowed properties to be conceptualized from the diagram. 

Greek geometry is the paradigm case of image-based reasoning as a deductive science. 

According to Netz, the types of properties that can be uploaded reliably from images 

precisely determine the proper schematic interpretation of Greek geometrical diagrams. 

Other sources for Greek geometry that the reader may be interested to pursue are 

Friedman (2000) on the constructible nature of Greek geometrical objects, Heath 

(1 90811956) and Joyce (1 998) on Euclid's Elements, Klein (1 934-611968) on the non- 

existence of variables in Greek mathematics, and Mueller (1 981) on the issue of 

generality in Greek geometry. 

After Netz (1 999), the second major historical reference is Greaves (2002). His 

thesis is that the role of the diagram in geometrical reasoning at any given point in history 

depends on what is regarded at that time as the ultimate subject matter of geometry. 

Greaves discusses the history of the diagram from this perspective, from Euclid to 

Hilbert. 

Fowler (1 999) clarifies the non-arithmetical nature of Greek geometry, in the 

sense that Greek geometry did not utilize fixed units for measurement. Additional types 

of conceptualization are permitted in arithmetized geometry, although it is no longer a 

deductive science concerned with proving general results. Fowler characterizes 

Descartes' analytic geometry as the culmination of the arithmetization of geometry begun 

with Ptolemy, Heron, and Diophantus. 

Aside from Netz's (1 999) historical evidence, the necessity of image based- 

reasoning in Greek geometry could also be inferred from the work of Pasch on the 
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inadequacy of the Euclid's axioms for formal reasoning (Greaves, 2002). Hilbert 

(1 89911 97 1) subsequently developed a complete axiomatization of Euclid's geometry. 

The importance of the diagram reaches its nadir with Hilbert, in which image-based 

reasoning is completely disallowed. According to Greaves (2002), deduction in 

axiomatic geometry is entirely mechanical; there is no ultimate subject matter of 

axiomatic geometry. 

Freudenthal(1973) argues passionately against axiomatic geometry in secondary 

schools, in favour of a more intuitive approach. Zeitler (1991) surveys axiomatic systems 

for school geometry and concludes, with Freudenthal, that concrete, intuitive geometry is 

preferable to axiomatic geometry in school. 

1.4 Psychology of image-based reasoning 

Curriculum guidelines from British Columbia, Canada, the United Kingdom, and 

the United States demonstrate that deductive geometry without axioms is prescribed in 

these three cases. 

I then give an example of a typical school geometry proof, from Alexander and 

Kelly (1998), that uses diagrammatic inferences. This proof is interpreted and analyzed 

in detail in terms of the proposed framework. The analysis identifies five specific 

geometrical skills. These five skills greatly increase the descriptive power of the 

framework and provide a logical, developmental model for geometrical reasoning. 



1.5 The van Hiele Levels 

The van Hiele levels are an influential didactical theory of geometry. According 

to van Hiele, students move through distinct, discrete learning stages in geometry, from 

recognizing simple geometrical figures to formal deductive reasoning. 

Primary sources for the van Hiele levels are Van Hiele and van Hiele-Geldof 

(1 %8), the works collected in Fuys, Geddes, and Tischler (1 984), and van Hiele (1 986). 

A comprehensive secondary source is Fuys, Geddes, and Tischler (1 988). 

According to Wirszup (1976), the van Hiele levels had a significant impact on 

Soviet mathematics education in the 1960's and 1970's. It was Wirszup who finally 

brought the van Hiele levels to the attention of educators in the United States, and 

subsequently three major research studies were begun, as described by Hoffer (1983). 

The results of these studies are contained in Usiskin (1 982), Burger and Shaughnessy 

(1986), and Fuys et al. (1988). 

Although the theory of van Hiele seems logical and coherent in its original 

presentation, there are additional factors to consider. Mayberry (1983) contains results 

that appear to contradict the van Hiele assumption of students moving progressively 

through discrete levels; Mason (1 997) demonstrates that gifted students may skip van 

Hiele levels; and Clements and Battista (1 992) cite findings that connect the van Hiele 

levels to Piagetian stages of development, indicating that the van Hiele levels should not 

be considered purely a didactical theory. 

The five skills previously identified are compared with the van Hiele levels, using 

the detailed descriptors from Fuys et al. (1988). It is found that there is indeed an 

approximate correspondence between the two models, although each van Hiele level 



covers a broader spectrum of abilities. In the absence of empirical research, the 

comparison of the two approaches provides a partial validation of the theoretical 

framework developed in this thesis. 

1.6 Pitfalls of image-based reasoning 

Further validation is supplied by the ability of the new theoretical model to 

explain many errors in geometrical reasoning in a simple, comprehensive fashion. These 

particular types of errors can be characterized as the pitfalls of image-based reasoning. 

When image-based reasoning is allowed, there must be limits placed on the 

permitted inferences from the diagram in order for arguments to make sense. These 

limits are the schematic properties of the theoretical framework. Many mistakes in 

geometrical reasoning can be understood to result from non-schematic conceptualizations 

from the diagram. Descriptions of student errors from Robinson (1976), Fischbein 

(1 993), and Fischbein and Nachlieli (1 998) are used to support this notion. 

In the first case, a student may assume by appearance alone that a given figure is a 

square, for example, when it is really a more general quadrilateral. Students need explicit 

instruction in what they are allowed to infer from the diagram in order to avoid this type 

of error. Indeed, the pre-deductive measurement geometry taught in schools may 

mitigate against an appreciation of the schematic diagram. 

An even more fundamental case of mistaken diagrammatic inference occurs when 

a student's understanding of a concept is insufficiently general. For example, a square 

may not be recognized as such if it is presented standing on a comer. It may be supposed 

that the orientation of the figure, an incidental element in the student's conceptualization 
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of the diagram, does not match the student's concept of square. Imprecise concept 

formation in the elementary grades may be at fault. 

1.7 Reflection and critique 

As mentioned above, the goal throughout the investigation is to understand the 

necessity, implications, and pitfalls of image-based reasoning, and the proposed 

theoretical framework goes some way towards achieving this end. A more complete 

future presentation would M h e r  clarify the image-concept foundations of the model and 

more rigorously define schematic cases and schematic properties. Some areas for future 

research include a broader geographical investigation of geometry curricula, a study of 

textbook practice, and a review of computer-aided geometry instruction. More 

importantly, the theoretical framework may be used to formulate specific questions for 

empirical research. 

1.8 The property lattice 

The theoretical model developed emphasizes the conceptualization of properties 

from image data. Interestingly, an algebraic structure can be imposed on the various 

conceptualizations of a given image. This structure, the property lattice, is discussed in 

the appendix. It is separated thus from the main body of the argument because it is 

somewhat peripheral. Nevertheless, it is an analytical application of the 

conceptualization model that may interest some readers. 



2 Concept Formation in Mathematics Education 

Geometrical thinking involves the contemplation and manipulation of spatial 

images and the conceptual representations that can be held to be true of them. The first 

step in investigating this process is to clarify the notions of image and concept. 

2.1 Images and percepts 

The content of thought will be called a mental representation. This study will not 

attempt to describe mental representations at the neural level. The concern will be simply 

to indicate a way of thinking about mental representations at the functional level and to 

draw some distinctions. 

The notion of mental representation covers the whole gamut of human conscious 

and unconscious mental activity, including perceptions, ideas, feelings, dreams, language, 

and so on. For the purposes of investigating geometrical thinking, three types of mental 

representations are relevant: percepts, images, and concepts. Concerning percepts and 

images, the focus can be narrowed still further to mental representations that appear to 

have a visual, spatial content. Thus the apparent sensual content of representations 

involving other modalities such as hearing or touch is rejected. 

Apercept is defined as "the representation of a perceived stimulus" (Kosslyn, 

1983, p. 72). Metaphorically, "we can think of percepts as being projected onto the 

mental matrix directly from the ocular camera" (ibid., p. 91). Since the percept exists as 
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a representation in the mind, mental operations can adduce properties of the percept such 

as colours, shapes, and so on. It should be noted that the percept existing in the mind's 

eye is not the same as the perceived object existing external to the body. In fact, all the 

observer can ever know of the external object is what he or she can suppose from the 

mental representation, and the mental representation is facilitated by a jumble of firing 

neurons in the brain. The external world will remain forever unknowable. 

The impenetrable veil separating the external world from human inspection is a 

view held by philosophers such as Locke and Kant (Wikipedia, 2005, Philosophical ideas 

about perception, para. 2). It corresponds to the notion of indirectperception. Despite 

the simplicity and clarity of the concept of indirect perception, it seems to entail a 

paradox. In order to view the content of the screen in the mind's eye, one needs to 

imagine a little man inside one's head who observes the screen. But then he must have a 

screen inside his head, and a still smaller little man observing this screen. The process 

can continue in infinite regression. This absurdity is known as the homunculus problem, 

after the little man, or alternatively as Kyle's Regress. It is overcome by noting that the 

percept is not another object that can be viewed through the faculty of sight. Instead, it is 

a neural structure that only behaves as if the observer "sees" it. The illusion is created by 

mental functions that make distance comparisons, light intensity comparisons, and so on 

between different parts of the neural structure. At the neural level the brain has a 

functional resemblance only to a projection onto a screen. The infinite regress halts, 

therefore, at the level of the neural architecture of the brain (Kosslyn, 1983, pp. 22-25). 

An image is defined as a mental representation that "gives rise to the experience 

of 'seeing' in the absence of the appropriate visual stimulation from the eyes" (Kosslyn, 
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(1983, p. 29). As with percepts, it is possible to think of images as being projected onto 

the mental matrix, but in this case the projected data has been stored in the mind. In 

some cases images may have a close resemblance to physically existing objects, as when 

we recall the face of a loved one, but it is not at all necessary that images have 

corresponding physical instantiations external to the body-dreams, hallucinations, and 

creative imaginings are all examples of the latter. 

According to Kosslyn (1983, pp. 73-75), images and percepts involve similar 

mental structures and processes. Hallucinations, dreams, and so on indicate that an image 

can be mistaken for a percept; moreover, experimental evidence demonstrates that the 

reverse is true, that percepts can be mistaken for images. The uniform way in which 

percepts and images can both be treated as functionally similar mental representations is 

a powerful argument in favour of indirect perception. 

It is natural to ask how images and percepts differ, aside from their origin. 

According to Kosslyn (1983, p. 91), percepts are fixed by the input to the eyes, reflecting 

the relatively stable reality around us. On the other hand, "images are mutable, at the 

mercy of the full range of our powers of fantasy" (ibid., p. 91). Parts can be added or 

deleted fiom images or images can be transformed in any number of ways, including 

rotations, dilations, changes of perspective, colour, and so on. 

When a geometrical situation is given in verbal form, it may be necessary to 

envisage a corresponding image in order to provide intuitive input for the reasoning 

process. This image may be transferred to an external medium, such as a diagram on 

paper, in order to stabilize it. Further constructions may be visualized and added to the 

diagram in order to solve a problem, or various transformations may be imagined. In 



particular, it may be necessary to focus on just part of an image and then to regard this 

subset of the original image as an image in its own right. 

Sometimes, therefore, a stable diagrammatic percept is needed for the reasoning 

process, and sometimes creative imagining is necessary. Geometrical reasoning 

involving diagrams, therefore, straddles the perceptual and imaging functions of the 

brain. This study will use the term image consistently for a geometrical diagram, with 

the understanding that it could be referring to a percept, an image, or both, depending on 

the context. 

2.2 Concepts 

Aristotle had the following comments to make about images: "Now we have 

already discussed imagination in the treatise On the Soul and we have concluded there 

that thought is impossible without an image" (On Memory and Recollection, 450a 5, as 

cited in Kosslyn, 1980, p. 441); "Memory, even the memory of concepts, does not take 

place without an image" (ibid., 450a 7, p. 441). Can it be true that cognitive activity 

cannot take place without images? 

Bishop Berkeley pointed out that images are of necessity particular-an image of 

a dog, for example, is a specific breed with a certain size and shape (Kosslyn, 1983, p. 6). 

It could be supposed that the mind uses a particular image to represent a general concept, 

as, for example, geometry diagrams do for general propositions. In this case, however, it 

is not clear which properties of the particular case are supposed to be general and which 

are particular. In addition, it raises the question of how the brain encodes the information 

of this particular case given the fact that the particular case has already been earmarked to 
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represent the general concept. (These two points about particular images representing 

general concepts do not originate in this study, but I cannot trace their origin.) 

The mind needs a way of representing abstract, general concepts. Images will not 

do, but words are available to perform this function. "Dog" does not refer to a particular 

animal and "square" does not refer to a particular shape. Instead, these words refer to 

whole classes of objects that share certain similarities. Define concept to be a mental 

representation that manifests in the form of language. A concept is by its nature abstract 

and general. Examples of concepts in mathematics are "square," "2 + 3 = 5 ," and 

66 y = 2x + 1 ." Note that of course some strings of words will be nonsensical and will not 

represent concepts. 

In natural human languages there are often many ways of saying almost the same 

thing, such as "John talked to Sarah," "Sarah was talked to by John," "John spoke to 

Sarah," and so on. It may be supposed that all the many equivalent formulations in 

natural language will correspond to just one underlying conceptual representation. 

Anderson (1978, p. 250) describes this feature as "invariance under paraphrase." The 

situation is analogous to the many particular triangle images corresponding to the one 

triangle concept. 

Although the language of mathematics is more precise than natural language, 

there are still synonyms and different ways of formulating mathematical statements while 

preserving the same meaning. A simple example is the equivalence of the two statements 

66 x = y " and " y = x ." As with natural language, it can be supposed that the class of 

mathematical statements carrying the same meaning will correspond to just one 

underlying conceptual representation. 



Strictly speaking, the term concept will refer to the underlying mental 

representation rather than one of its corresponding surface statements. However, this 

study will usually refer to the statement itself as the concept. 

Humans manipulate concepts by means of deductive reasoning. For example, 

provided with the statements "All students like geometry" and "Jane is a student," we can 

deduce the additional third statement "Jane likes geometry." Whether the conclusion is 

true or not is immaterial where the validity of the deduction is concerned. Modern, 

axiomatic geometry is entirely concerned with mechanical deduction (Greaves, 2002. 

p.74). 

2.3 The link between image and concept 

Images and concepts are two ways the mind stores geometrical information. 

Which of the two, image or concept, has primacy? Kosslyn (1983, p. 5) points out that 

language is learned, and the supposition of verbal, conceptual primacy involves a 

paradox, since the first words must be learned somehow. On the other hand, as has been 

noted, images are poor carriers of conceptual information. 

This study briefly discusses two theories of how mental representations are stored 

in the brain. The dual-code theory of Paivio (1 971) maintains that representations are 

stored in two formats, visual images and verbal concepts. 

There is much evidence that verbal information is not necessarily stored in the 

memory in exact form; humans are often able, for example, to remember the gist of what 

someone says rather than the exact utterance (Anderson, 1980, pp. 96-98). Likewise, 

research has shown that visual data is stored by the brain in a more abstract form that 



captures the picture's meaning; subjects are more likely, therefore, to remember pictures 

that they are able to interpret meaningfully (ibid., pp. 98-101). Moreover, it is clearly 

possible to translate image data into verbal data and vice versa. In the first case, we 

describe what we see in words; in the second case, we draw a diagram to represent a 

geometrical statement. 

These factors inspired the propositional theory of Pylyshyn (1973), which claims 

that there is a deeper, propositional structure underlying both images and concepts and 

that this propositional structure acts as a common language between the two types of 

representation. He makes the point that dual-code theory assumes that the only modes of 

mental representation possible are images and words because these are the only modes of 

representation consciously available to introspection. There is no reason, however, to 

exclude the possibility of more abstract mental structures to which humans do not have 

conscious access. Pylyshyn argues that cognition may be mediated by something quite 

different fiom words or pictures. 

An image of a square will elicit the word "square." According to Pylyshyn (1973, 

p. 5), if the connection between image and concept were direct, then there would need to 

be an infinite number of such connections because of the infinite number of possible 

squares. The infinitude of connections is cited by Pylyshyn as an argument in favour of 

an intermediatepropositioml representation, into which the image of the square is 

translated first. Likewise, there may be many sentences that contain the same basic gist 

of meaning. These sentences all correspond, according to Pylyshyn, to a single 

proposition, which may not even need to be expressed in words at the level of deep 

structure in the mind. Anderson (1980, pp. 384-386), for example, cites empirical 



evidence that it is possible for humans to make conceptual distinctions even when they 

lack the words to describe these distinctions. 

Anderson (1978), however, challenges the idea that there is a common 

representation underlying both images and concepts that acts as a common language for 

translating between the two. He proposes a variation of the dual-code theory, whereby 

the gist of meaning contained in images and sentences can be encoded in compound 

representations where imagal fragments are tied together with verbal connections. This 

model seems to lack the descriptive power of propositional theory, in which different 

surface representations with the same meaning would correspond to the same proposition 

at the deep level-it is unclear to me how this desirable feature would be preserved under 

Anderson's proposal. 

Anderson's (1978, p. 256) argument against the Pylyshyn's "lingua franca" idea 
is the following: 

To translate from Code 1 to Code 2, it is necessary to translate Code 1 into a new 
code, Code 3, and then from Code 3 to Code 2. However, this argument leads to 
an infinite regress. To translate from Code 1 to Code 3, a new Code 4 would be 
needed and so on. 

This argument is not entirely convincing. Throughout human history there have been 

linguae francae used for communication over wide areas between people with different 

native languages. Latin, English, and Swahili are obvious examples. There is no reason 

not to suppose that the brain does not use a similar medium for translating between 

different forms of mental representation. 

It is clear that humans are able to translate between types of mental 

representations, and propositional theory seems to offer a simple, intuitive model for this 

process. For discussing geometrical reasoning the surface representations are 



geometrical figures and mathematical statements. It is unclear to what extent the 

underlying propositional representations would preserve the features of particularity or 

generality of these surface representations. 

Before moving on, it should be noted that there may be many possible translations 

of an image to general concept. An image of a square, for example, can be both a 

rhombus and a parallelogram. These multiple translations may only become apparent at 

the surface level of the conceptual representation, or they may be implicit in the 

propositional representation. A structure for the conceptual representations of an image 

is discussed in the Appendix. 

2.4 Origin of concepts 

According to Plato, concepts exist in the world of forms. Before birth human 

souls have knowledge of this world, and the role of the educator is to prompt its 

recollection. (See, for example, Plato's Meno, as cited in Fowler, 1999, pp. 3-7.) 

Opposed to Platonism is the theory of constructivism. Concepts are not "downloaded" 

from a world of forms, but are progressively constructed by each individual. I will 

briefly consider constructivist approaches and will finish with a few comments on an 

alternative both to Platonism and constructivism. 

Suppose that an instructor wishes to teach the concept "square" to a child. Then 

an obvious, and probably universal, approach is to show the child a number of images of 

squares explicitly associated with the word "square." At some stage the child will have 

constructed the conceptual representation "square," possibly mediated by a propositional 

representation. 
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According to the philosopher John Locke, abstraction is the mental process by 

which general ideas are generated from particular ideas (Kosslyn, 1983). The model of 

concept formation just presented is known as empirical abstraction, as identified by 

Piaget (Mitchelmore, 2002, pp. 158-1 59), whose ideas on abstraction are summarized in 

Dubinsky (1991). Empirical abstraction refers to the study of particular images to 

determine their similarities, which are then isolated as general concepts. Many other 

forms of abstraction have been identified, and it is a complex subject that is beyond the 

scope of this study to deal with adequately. 

Generalization is an idea related to abstraction. Mitchelmore's (2002, p. 160) G2 

generalization refers to extending the domain of an existing concept, and this simple 

definition seems appropriate for the purposes of this study. In the context of geometry, 

generalization would correspond to the child being able to identify certain shapes as 

triangles spontaneously, even those triangles that differ somewhat from the finite number 

of cases prompting the original empirical abstraction. 

It is common for concept formation to occur imperfectly. Thus, if the only 

examples of triangles shown to the child are acute-angled, then this incidental property 

may be abstracted mistakenly as an essential component of the triangle concept, and the 

child may not be able to generalize bbtriangle" to obtuse-angled triangles. 

In Sfard's (1 991) model of concept formation there are two ways of looking at 

mathematical concepts: the structural and operational perspectives. Paradigm examples 

are the natural numbers and functions. A structural conception of a natural number 

would define it as the class of all sets of the same finite cardinality, whereas an 

operational conception would regard it as being reached from 0 by the process of 



repeatedly adding 1; a structural conception of a function would regard it as a set of 

ordered pairs, whereas an operational conception would regard it as a "machine" that 

outputs a number for every input number. 

The bulk of Sfard's (1 99 1) argument deals with arithmetic and algebra rather than 

geometry. It seems that an operational interpretation of geometrical concepts lacks the 

appropriateness of a structural interpretation. Sfard herself acknowledges, "Some kinds 

of inner representations fit one type of conception better than the other" (ibid., p. 7). 

There is, according to Sfard (1991, pp. 18-20), a natural order of concept 

formation from the purely operational to the purely structural. First comes 

interiorization, in which the student performs the process on already familiar objects, 

reaching the stage of performing the process mentally without having to carry it out 

concretely. Secondly, condensation refers to the stage at which the process is turned into 

an autonomous entity, and the student is able to think of the process as a unified whole. 

Lastly, reiJication occurs when the whole process is seen as a new object. Reification, 

therefore, corresponds to the formation of structural concepts. 

APOS theory is a similar model of concept formation, except that it identifies 

action prior to process, and ends with schema anterior to conceptualizing structure. 

APOS theory is discussed in Czarnocha et al. (1999), and the following description is a 

paraphrase of the summary in Dubinsky (1 997). 

APOS stands for action-process-object-schema. The action consists of a physical 

or mental transformation of a physical or mental object according to some external 

instructions. Again, the paradigm example is that of the natural numbers, where the 

action corresponds to counting a collection of items, reaching, for example, 4 beans. 



When the student can perform the action mentally, or think about it without 

performing it down to the last detail, then the action has been interiorized to aprocess. 

Using the example of natural numbers, the student is able to operate efficiently by 

counting any collection of items, and the identity of the items themselves should slip into 

the background. Instead of 4 beans, for example, it could be 4 anything, and the action of 

counting becomes detached from the items themselves. 

When the student can see the process as a totality, then the student has 

encapsulated the process to an object. Note that even after the process has been 

encapsulated, the student must be able to operate with the process or the object, as 

required. The number 4 now exists, for example, as a concept, even though the student, 

of course, is still able to count 4 items. Encapsualtion is essentially the same as Sfard's 

(1 99 1 ) reification. 

Finally, the student will group together a coherent collection of actions, processes, 

and objects into a schema for the concept in question. In other words, the number 4 is 

packaged along with the other natural numbers and counting actions and processes into 

the natural numbers schema. Note that alongside the development of the concepts of the 

numbers themselves, operations such as addition, subtraction, and so on, will have 

developed from primitive to more abstract, complete forms. These operations, too, will 

be part of the schema. 

As was mentioned above, it seems less natural for geometrical concepts to be 

formed beginning with action or process. Ways can be proposed, of course, for 

geometrical concepts to be encapsulated with the APOS model. Tall (1999, p. 1 13) 

quotes as an example the action of a space transformation that preserves the integrity of a 



geometrical object. The permanent object can arise by means of encapsulating this set of 

space transformations. Surely this is not how humans really arrive at the concept of 

66 square." Likewise, the step-by-step construction of a triangle by means of adjoining line 

segments seems to be a poor substitute for immediate Gestalt recognition. 

According to Tall (1 999), "Dubinsky and his co-workers have made an 

impressive effort to formulate everything in action-process-object language. However, 

the urge to place this sequence to the fore leads to a description that, to me, soon becomes 

over-prescriptive" (ibid., p. 1 13). He continues, "The brain observes objects, and what 

seem to be primitive mathematical and logical concepts in ready-made brain modules. 

This seriously questions a rigid Action-Process-Object-Schema strategy in every 

curriculum" (ibid., p. 114). Rhetorically, he asks, "Is it providing a service to necessary 

diversity in human thought by restricting the learning sequence to one format of building 

mathematical actions, mathematical processes and mathematical objects?" (ibid., p. 1 17). 

In the three models of concept formation discussed, the simple object-based 

empirical abstraction model, Sfard's reification, and APOS, the constructivist perspective 

on mathematical ideas is tacitly assumed. As Winslerw (2000) points out, however, there 

is a common body of mathematical knowledge; each individual does seem to reach the 

same conclusions when constructing a mathematical understanding; and mathematical 

truths do appear to be common to all cultures, though the methods of presentation may be 

very different. Moreover, many mathematicians really believe in the permanence and 

objective truth of mathematical entities, even while professing formalism (ibid., p. 21, n. 

3). 



Winslmv (2000, pp. 14- 15) summarizes Chomsky7s theory of transformational 

grammar that at a deep structural level all human languages are similar, and there is a 

universal grammar that is hard-wired into the human brain. If this were not so, according 

to Chomsky, then natural languages could not be learned by exposure to a finite number 

of examples of grammatically correct statements. 

Winslmv (2000) argues that the acquisition of mathematical knowledge is 

analogous to the acquisition of language. How can it be that the vast body of 

mathematical knowledge, applicable to countless physical and social problems, is 

constructed by individuals on the basis of sensory data and a few simple processes such 

as counting? Just as humans possess a Chomskyan language acquisition device (LAD), 

they may also possess a Winslarwan mathematics acquisition device (MAD), and 

Winslarw gives an outline of how such a MAD should work. 

The notion of a mathematics acquisition device has the ring of plausibility. 

Language, after all, is a relatively new development in human evolutionary terms, 

whereas animals have had to survive in a Euclidean spatial environment before the first 

fish crawled from the sea. (I assume, without justification, that human and non-human 

animals really do inhabit a subjectively Euclidean universe.) 

Assimilating geometrical ideas may consist in making connections from imagal 

representations on the one hand and conceptual representations on the other to innate 

propositional representations. In fact, in order to accomplish the empirical abstraction 

necessary for geometry, there must be a faculty whereby humans are able to recognize 

the similarities between particular images. The philosopher David Hume proposed nearly 

300 years ago that this faculty, the principle of association of ideas, was indeed innate. 



I have reviewed some of the theories of image and concept and the origin of 

concepts. However, the aim of the investigation is not to judge between the various 

theories in cognitive psychology. Instead, a model that is functional rather than 

foundational is required. Fischbein (1993) supplies an interesting functional model for 

image-based reasoning. It inspired the theoretical framework discussed later. In 

addition, many of Fischbein's own references on image and concept have been utilized 

above. Fischbein's ideas, therefore, have been pivotal in the development of this thesis. 

2.5 Fischbein's figural concepts 

According to Fischbein (1 993), geometers work with image and concept. The 

image is the result of perception, an intuitive, visual instantiation of a geometric object, 

typically a geometric diagram. The concept, on the other hand, is a conceptual 

representation of the same geometric object, consisting of properties "imposed by, or 

derived from definitions in the realm of a certain axiomatic system" (ibid., p. 141). 

Fischbein's notion of concept assumes that concepts exist in a formal framework. I do 

not think this is a necessary assumption, and the theoretical framework developed herein 

will differ from Fischbein on this point. 

Fischbein (1993) claims that both image and concept are necessary for 

geometrical reasoning. He exemplifies this with what can be identified as a variation of 

Pappus' proof of Euclid's Proposition 5 from Book I of the Elements (Heath, 190811956, 

Vol. 1, pp. 25 1-255). Also known as the pons asinorum, this theorem states that the 

angles opposite equal sides of a triangle are themselves equal. Accordingly, an imagined 



copy of the original triangle is taken and reversed; it can be seen that the new triangle 

will fit perfectly over the original triangle, demonstrating the required equality of angles. 

The image is necessary to the argument, according to Fischbein (1993), because 

the conceptual triangle cannot be copied and reversed; on the other hand, the conceptual 

representation is necessary in order to maintain the rigor and generality of the argument. 

The particular type of proof chosen by Fischbein (1993) to illustrate his position 

is known as proof by superposition. As we shall see later, proof by superposition is 

dubious fiom a formal perspective, which brings into question its rigor and generality. 

Even Euclid, who uses proof by superposition elsewhere, preferred a longer, more 

complex proof of the pons asinorurn. Perhaps a different example would more 

successfully illustrate Fischbein's point. On the other hand, the proof by superposition 

will work perfectly well if informal reasoning is sufficient. 

According to Fischbein (1 993), image and concept together form a hybrid third 

type of entity: "The objects of investigation and manipulation in geometrical reasoning 

are then mental entities, called by usfigural concepts, which reflect spatial properties 

(shape, position, magnitude), and at the same time, possess conceptual properties-like 

ideality, abstractness, generality, perfection" (p. 143, author's italics). 

As the dual perspective of image and concept is developed in the proposed 

theoretical framework, there is interplay between the visual and verbal characteristics of 

cognition. Indeed, image and concept are inextricably linked as the geometer continually 

conceptualizes aspects of imagal data. The figural concept approach, on the other hand, 

does not emphasize this crucial feature of image-based reasoning. For example, the 

geometer may wish to further the argument by conceptualizing any number of possible 



properties from the image of a square, such "rhombus," "right angle," "parallel sides," 

and so on. 

Fischbein (1 993) interprets some difficulties that students have with geometry as 

an imperfect fusion of image and concept. For example, a square cannot be seen as a 

parallelogram because the dominance of the Gestalt image of the square in the figural 

concept prevents access to the conceptual component of the figural concept that would 

allow conceptualization of "parallelogram." By applying the model of this thesis, 

however, this difficulty can be interpreted as a lack of flexibility in conceptualization 

caused primarily by insufficiently varied instantiations of "parallelogram" that led to the 

initial empirical abstraction of the concept. 

It is interesting to note how Fischbein (1 993) handles incidental properties: 

I do not intend to affirm that the representation we have in mind, when imagining 
a geometrical figure, is devoid of any sensorial quality (like color) except space 
properties. But I affirm that, while operating with a geometrical figure, we act as 
ifno other quality counts. (p. 143, author's italics) 

This perspective is none other than Aristotle's qua operator, as described by Lear (1 982), 

and discussed later in more detail. 

The figural concept, above all, captures the necessary interdependence of 

conceptual data and image data for geometrical reasoning. It was the starting point for 

the proposed theoretical framework, which differs from Fischbein (1 993) in two main 

points: firstly, concepts do not require a formal framework; secondly, conceptual 

interpretations of image data may flexibly change during the course of geometrical 

reasoning. 



Theoretical Framework 

The core and main contribution of this thesis is a new theoretical framework 

presented below. It uses the terms image and concept from the previous discussion, it 

assumes they are linked, and it assumes that there is a mechanism for translating from 

one to the other. The details of this mechanism and the exact nature of image and 

concept will not be dealt with beyond the comments previously made. 

The main inspiration for this framework was Fischbein's (1993) figural concepts. 

It was necessary, however, to move beyond Fischbein's ideas in two respects. Firstly, 

Fischbein treats mathematical concepts as formal constructs, and I seek a more process 

oriented approach to conceptualization; secondly, flexible conceptual interpretations of 

image data are permitted, in that the same image, as I shall illustrate in detail below, can 

be conceptualized in a variety of different ways. In a sense, this new framework can be 

thought of as working toward a "logic" of image-based reasoning. 

3.1 Instantiation and conceptualization 

A conceptualization of an image is a conceptual representation that is true of the 

image. The conceptualization will consist of one or more statements and these statements 

will be referred to asproperties. An image will usually have many properties, and any 

subset of these is a conceptualization. 



The idea of conceptualizing images has a pedigree going back to the Ancient 

Greeks. Lear (1 982) interprets Aristotle's qua operator as follows: 

Let b be a [physical object] and let "b qua F' signify that b is being considered as 
an F. Then a property is said to be true of b qua F if and only if b is an F and its 
having that property follows of necessity of its being an F. (p. 168, author's 
italics) 

In other words, "door qua rectangle" means that the door is being considered as a 

rectangle. By this means, the mathematician :places himself behind a "veil of ignorance" 

(ibid., p. 168), in which he can say nothing about the properties of b that do not follow 

from necessity of its being an F. Those properties of b that do follow of necessity are 

referred to as essential properties of b qua F, whereas those properties of b that do not 

follow of necessity are incidental properties of b qua F (ibid., pp. 168-169). 

The door considered as a rectangle has four sides because the door is a rectangle 

and the fact of its being a rectangle necessitates that it has four sides; "four sides" is 

therefore an essential property. On the other hand, the door considered as a rectangle is 

only incidentally brown because "brown" is not a property that follows from the fact of 

its being a rectangle. Use of the qua operator is precisely what is meant by 

conceptualization, where the image is the door and the concept is "rectangle." 

Another perspective on conceptualization is Godfrey's (1 91 0) "geometrical 'eye"' 

(p. 197). He refers to developing students "power of seeing geometrical properties 

detach themselves from a figure" (ibid., p. 197). 

A conceptualization C of image I is shown in Figure 3.1. In this and other similar 

diagrams throughout this work, lower ovals will represent images, upper ovals will 



represent conceptualizations, straight arrows will represent establishment of 

conceptualizations, and curved arrows, when they appear later, will represent deductions. 

Figure 3.1: Conceptualization diagram. 

The following four principles of conceptualization are important to note. These 

principles refer not to a deterministic model of cognition, but what is possible by means 

of a normal reasoning process. The Appendix will develop this conceptualization 

framework further in a more analytical direction. 

3.1.1 Principle 1 of conceptualization 

Suppose that C and D are two conceptualizations of an image I. Then the union 

of the properties of C and D is also a conceptualization of I. 

This principle follows immediately from the definition of conceptualization. It 

provides a method for combining conceptualizations 



Figure 3.2: Principle 1 of conceptualization. 

3.1.2 Principle 2 of conceptualization 

If C is a conceptualization of image I, and D is a subset of C, then D 

is also a conceptualization of I. 

This principle also follows immediately from the definition of conceptualization. 

Figure 3.3: Principle 2 of conceptualization. 



3.1.3 Principle 3 of conceptualization 

If C is a conceptualization of image I, and the properties of D can be deduced 

from the properties of C, then D is also a conceptualization of I. 

The third principle means that any additional properties the geometer deduces 

from the properties of an image will also be properties of the image. Principle 3 is like a 

hypothetical syllogism of the form P+Q and Q+R therefore P+R, except that "C is a 

conceptualization of I" is not a logical inference. Principle 3 seems to be such a 

reasonable supposition, that it will be taken to be self-evidently true for the purposes of 

this investigation, even though it cannot be rigorously justified. 

Figure 3.4: Principle 3 of conceptualization. 

Principles 1 and 2 can be seen to be special cases of Principle 3. They are 

discussed separately because they follow immediately from the definition of 

conceptualization, whereas Principle 3 does not. 



3.1.4 Principle 4 of conceptualization 

If image I is contained in image J, and C is a conceptualization of I, then C is also 

a conceptualization of J. 

In other words, if certain properties are true of part of an image, then they are true 

of the whole image. The universal validity of this principle is questionable. However, as 

will be discussed later, geometrical images can be resolved into finite systems of points, 

lines, and curves. If a property is true of one such system, then it is surely true of the 

same system with the addition of a point, line, or curve, and then Principle 4 would 

follow by induction. 

Figure 3.5: Principle 4 of conceptualization. 

It is possible to start with a conceptual representation C and then form an image I 

such that C conceptualizes I. In this case, I is an instantiation of C. Thus, given the 

concept "square," a student may draw a quadrilateral with four equal sides and four equal 

angles. "Square" conceptualizes the image, and so the image is an instantiation of 

cc square." Conceptualization and instantiation are inverse operations. (Note that the 



terms  conceptualization^' and "instantiation" are certainly not original to this study, but 

are sprinkled throughout the literature.) 

It may occur that an image is given with a list of properties that are supposedly 

true of the image. Usually these given properties are such that they are not permitted to 

be conceptualized from the image alone, as will be discussed later. In fact, some 

properties may even seem untrue on the basis of figural information, particularly if the 

diagram is not metrically exact, as when a meta-reasoning process such as reductio ad 

absurdurn is to be used. 

How do formal notions such as "axiom," undefined term," "definition," and 

"proposition" fit into the schema being outlined? Euclid's Postulates 1,2, and 3 (Heath, 

190811956, Vol. 1, pp. 195-200) simply govern ways of adding components to a diagram. 

Thus, Postulate 1, which is present also in Hilbert's (1 89911971, p. 3) and Birkhoff s 

(1932, p. 330) formalizations of Euclid's geometry, states that for any two distinct points 

there is a straight line that passes through these two points. If image-based reasoning 

were permitted, this axiom would be a property conceptualized from any diagram 

containing two points. 

The side-angle-side (SAS) congruence theorem cannot be proved in rigorous 

formulations of geometry, and a weaker version of it becomes an axiom in Hilbert's 

(189911971, p. 12) system. As explained later, however, the SAS theorem can be 

demonstrated diagrammatically using proof by superposition. Although in this case 

imaginative transformation of the diagram is required rather than straightforward 

conceptualization, the reader may agree that image-based reasoning adequately "proves" 

the axiom. 



Terms that are usually undefined in axiomatic formulations, such as point, line, 

and so on are Gestalt conceptualizations from the image. Definitions are a shorthand way 

of referring to groups of Gestalt and relational properties. Thus, a triangle consists of 

three non-collinear points and the line segments joining the points when taken in pairs. 

It is necessary to use terms such as "proposition" or "theorem7' whenever 

geometry is approached deductively, whether on a formal axiomatic basis or on an 

informal basis allowing diagrammatic conceptualizations. A proposition or theorem 

simply states that if certain properties are true of an image then certain other properties 

are also true of the image. Thus, from Principle 3, the geometer can say that these other 

properties are also a conceptualization of the diagram. 

3.2 Schematic cases and generality 

When doing geometry, students will often be working from diagrams, usually 

systems of points, lines, and curves in black ink on white paper. In practical terms, the 

images will be neither absolutely perfect circles nor absolutely straight lines. It is 

necessary to consider carefully the allowable conceptualizations from imperfect image 

data. 

3.2.1 Schematic conceptualization and schematic cases 

There are many instantiations of the concept "dog"; some of these instantiations 

have long hair and others have short hair. It is acceptable to conceptualize "long hair" 

from one of these instantiations, but it is not justified to conclude that all dogs have long 

hair. But if this were a geometrical example, that is exactly what a geometer would wish 
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to do. The point is that not all instantiations of "dog" have long hair. If the 

mathematician wishes the conceptualization of an instantiation to be deductively 

meaningful, then he or she must limit conceptualizations to properties that would be true 

of all instantiations of the given concept. 

Firstly, it is necessary to formulate some conventions to salvage the diagram from 

complete chaos. Global and local conceptualizations, discussed later, are geometrical 

reasoning skills. These conventions will enable some fundamental global and local 

conceptualizations to be made. 

The conventions are (a) lines that look reasonably straight must be considered 

absolutely straight, (b) lines that look curved must be considered to be curves, (c) points 

must be considered to be dimensionless, (d) lines must be considered to have no 

thickness, (e) a point that reasonably looks to be on a line segment must be considered 

actually to be on that line segment, and (f) two line segments that reasonably look as 

though they meet at a point must be considered really to meet at that point. This list is 

not supposed to be exhaustive. The idea is that the geometer must be allowed to use the 

human pattern-recognition faculty to resolve the image into a finite system of points, 

lines, and curves that are related in spatially obvious ways. 

Secondly, it is necessary to eliminate conceptualizations such as orientation, 

colour, texture, and so on. These incidental properties certainly differ between different 

instantiations. If the diagram is turned upside down or looked at it in a dim light, they 

may even vary with the same instantiation. In any case, these kinds of properties are 

outside the domain of discussion of geometry. 



Thirdly, the unavoidable inaccuracy of the image prohibits conceptualization of 

actual lengths, areas, or angles based on fixed units of measurement. These are referred 

to as arithmeticalproperties, in the sense of Fowler's (1 999, pp. 8-14) "non-arithmetized 

geometry." Thus given, an image that appears to be a square, it is not permitted in 

deductive geometry to take a ruler, measure the lengths of the sides, and then use the 

resulting arithmetical conceptualization in a deductive argument. 

Neither is it allowed to conceptualize comparisons of lengths, areas, or angles 

between features of the diagram. These are referred to as metricalproperties, in the 

manner that Netz (1999, p. 18) uses "metric," (although Netz also includes "arithmetical" 

in his sense of the term.) Thus, given an image that appears to be a square, it is not 

permitted to assume that the four sides are equal, even though the most accurate ruler 

would seem to indicate that this is the case. 

Metrical conceptualizations include parallel lines because the determination of 

parallelism within the finite boundaries of the diagram would require a metrical 

comparison of distances-the geometer cannot follow the lines to infinity to check that 

they never meet! The property of tangency does not appear to be either arithmetical or 

metrical, but conceptualization from the diagram is not permitted because unavoidable 

inaccuracy of the diagram makes it indeterminate whether there are one or two points of 

intersection of the line and the curve. 

The geometer who wishes to conceptualize from the diagram must therefore 

eliminate incidental, arithmetical, and metrical conceptualizations, because these types of 

property may vary between particular, imperfect instantiations of a concept. (The 

geometer would not wish to admit incidental properties even if the diagram were perfect.) 
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There are two types of allowable conceptualization: global (or Gestalt) properties such as 

"point," "angle," "triangle," and so on; and local (or relational) properties such as "the 

point lies on the circle," "the two lines intersect," "the quadrilateral is inscribed in the 

circle," "the two points can be joined by a straight line," and so on. 

These examples of allowed diagrammatic conceptualizations are scattered 

markers on the boundaries of certitude. I do not know whether a rigorous 

characterization could be given of all permitted conceptualizations. 

Within the domain of geometrical discussion, and provided some reasonable 

conventions are agreed upon, it can be seen that the permitted conceptualizations are 

determined by the inability of imperfect diagrams to represent perfect geometrical 

concepts. This is precisely the Greek understanding of conceptualization of geometrical 

diagrams, as interpreted by Netz (1999,2004). Permitted conceptualizations from the 

diagram are schematic conceptualizations, which are composed of schematic properties, 

in the sense that Netz (1 999, p. 18) uses the term "schematic." Geometrical situations 

can involve arithmetical or metrical properties, but these must be given as conceptual 

representations independently from the diagram. 

In accordance with Klein's Erlangen Program (Zeitler, 1990, pp. 20-21), a 

schematic transformation can be defined as a transformation that preserves schematic 

properties. Schematic transformations, it seerns, are similar to projective transformations, 

except that there is no necessity for the transformation to be globally uniform. 

So far the discussion has considered only the necessary conditions on any 

properties that are allowed to be conceptualized from an instantiation in order for all 

instantiations of a given concept to have the same set of possible conceptualizations. Are 
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these conditions also sufficient? The short answer is, No. A good way to see this is to 

look at the different cases of a geometrical proposition. Consider the following: The 

concept "an angle is subtended at the centre by an arc of a circle, and an angle is 

inscribed by the same arc at the circumference of the circle" has several different 

instantiations that look quite different and fio:m which there are different possible 

conceptualizations, two of which are shown in Figure 3.6. 

Figure 3.6: Two instantiations that have different conceptualizations. 

In every case, the angle subtended at the centre is twice the inscribed angle. Each 

case requires a different proof because of the different conceptualizations available. Two 

instantiations of a concept belong to the same schematic case if and only if they have the 

same set of schematic properties. 

One final consideration is that components may be added to the instantiation of a 

concept, making additional schematic properties available, in order to complete a proof. 

Two instantiations must be considered to belong to the same schematic case provided 

theirpotential schematic properties also are the same. It seems likely that, within certain 

constraints, if two instantiations have the same actual schematic properties, then they also 



have the samepotential schematic properties. A detailed consideration of this issue is 

beyond the scope of the present study. 

3.2.2 Generality 

It is important to examine the issue of the generality of geometrical reasoning. 

After all, if arguments allow concepts uploaded from particular images, how can it be 

certain that general results are proved? If Fischbein's (1 993) figural concepts were the 

inspiration for the proposed theoretical framework, then a major stimulus behind it was to 

develop a model within which to understand the issue of generality. 

According to Netz (1 999, p. 240), the Greeks thought their results were general, 

and they certainly used image data in their arguments. Netz proposed a solution to the 

issue of generality in Greek geometry. His analysis motivated the argument below. 

It comes down to this: since all the conceptualizations within a given schematic 

case are identical, it is only necessary to provide one proof for each schematic case in 

order to guarantee generality. 

The difficulty comes when the geometer must identify the various schematic 

cases. Perhaps the only way of doing this is via spatial intuition-in other words, by 

playing around with diagrams until the various cases become clear. Another difficulty is 

that some propositions may require an infinite number of schematic cases, and then it is 

impossible, without algebra, to provide a general proof. 

However, within the constraints necessitated by intuitive verification of a finite 

number of schematic cases, the geometer can be assured of generality when 

conceptualizing from image data. 



3.2.3 Deducibility 

There is another issue. A proposition that is proved by allowing 

conceptualization of image data may not be provable within an axiomatic system such as 

Hilbert's (1 899Il97l). The proposition may use a particular concept uploaded from the 

diagram that cannot be deduced from the axioms. 

If a concept originates in an intuitive domain, there appears to be no way to 

guarantee its mathematical truth in a formal domain. Things that simply "look true" 

cannot be squeezed into the narrow constraints of an axiomatic system. Spatial intuition 

is ultimately irreducible. 

The possible non-deducibility of concepts uploaded from diagrams lessens in 

significance, however, if Godel's Incompleteness Theorem is taken into account. Godel 

showed that there was no axiomatization of basic arithmetic in which every true 

statement was provable. Surely Euclid's geometry is a more complex structure than basic 

arithmetic. It seems reasonable to suppose, therefore, that there are indeed true 

statements in Euclid's geometry that are not provable with any axiomatic system. Does it 

matter, then, if the geometer cannot demonstrate that every proposition proved using 

concepts uploaded from an image is deducible with Hilbert's (1 89911 971) axioms? 

The proposed theoretical framework arises out of a desire to understand the 

functional mechanisms of geometrical reasoning if the geometer is allowed to 

conceptualize image data. It will provide a foundation for a further discussion of 

geometrical reasoning from psychological and didactical perspectives. Firstly, however, 

I wish to look back, through the lens of this theoretical framework, at the genesis of 

deductive geometry in Ancient Greece. 



4 Historical Overview of Image-based Reasoning 

The discussion below will utilize the proposed theoretical framework to explicate 

aspects of the deductive geometry of Ancient Greece. Greek geometry has already been 

referred to in the investigation of schematic diagrams and generality, in an attempt to 

relocate some of Netz's (1999,2004) arguments in a more general context. I will return 

now to the specific case of Greece, and use this as a launching pad for a historical 

overview of image-based reasoning. This leads up to Hilbert and a discussion of the 

necessity of image-based reasoning in school geometry. 

4.1 The geometry of Euclid 

According to an estimate by Netz (1999, p. 275), it is likely that the first 

deductive proofs began to appear around 440 BCE. Within 150 years, around the 

beginning of the third century BCE, Euclid wrote his Elements, which can be regarded as 

the foundation of all mathematics. Two other giants of Greek geometry were 

Archimedes, active during the middle part of the third century BCE, and Apollonius, 

active towards the end of the third century BCE. The third century BCE may be regarded 

as the heyday of Greek deductive mathematics. 

Euclid's geometry can be thought of as the first attempt to formalize intuitive 

understanding of space. Ostensibly, it is a rigorous axiomatic system. From the basis of a 

set of axioms and definitions a series of propositions are proved by logical deduction. 



Despite the genius of the Greek geometers, their axiomatic system was imperfect. 

It was pointed out by Pasch in 1882 in his Vorlesungen iiber Neuere Geometric (Greaves, 

2002, p. 66; Netz, 1999, p. 27) that the system of postulates and common notions in the 

Elements is inadequate for a logical deduction of all intuitively obvious features of 

geometrical images. Pasch's Axiom, for example, which cannot be deduced from 

Euclid's axioms, states, "If a line intersects one side of a triangle and misses the three 

vertices, then it must intersect one of the other two sides" (Weisstein, 2005b). Pasch's 

Axiom is immediately available as a conceptualization from the image. 

Figure 4.1 : Pasch's Axiom. 

It is well known, too, that the proof of Euclid's Proposition 1 from Book I, the 

construction of an equilateral triangle on a given line segment, requires the use of 

diagrammatic inferences because at least the geometer has to know the two circles of the 

construction intersect (Heath, l908Il956, Vol. 1, pp. 241-243). 



Figure 4.2: Proposition I1 from the Elements. 

It seems obvious from the diagram that the circles do intersect, but strictly speaking the 

geometer needs the Continuity Axiom (Weisstein, 2005a). 

Other examples where Euclid's reasoning is inadequate by modern standards are 

the proofs by superposition. According to Joyce (1 998, Book I, Proposition 4, The 

method of superposition, para. I), superposition occurs three times in the Elements: Book 

I, Proposition 4 (Heath, 190811956, Vol. 1, pp. 247-2-50), Book I, Proposition 8 (ibid., 

Vol. 1, pp. 261-262), and Book 111, Proposition 24 (ibid., Vol. 2, pp. 53-54). In order to 

show that the two triangles are congruent in Proposition 4 of Book I, one imagines a copy 

of one superimposed exactly over the other. Greaves (2002, p. 28) argues that Euclid's 

Postulate 4, all right angles are equal (Heath, 190811 956, Vol. 1, p. 200), demonstrates 

that Euclid does not always sanction this kind of maneuver-othenvise why not move 

one right angle over the other to show equality? 

According to Heath (190811956, Vol. 1, pp. 224-228), Aristotle, Veronese, 

Schopenhauer, and Russell are philosophers who had problems with allowing movement 

in geometry. Greaves (2002, pp. 3 1-32) suggests that superposition could be 

reinterpreted to mean constructing another triangle over the first rather than moving the 



original triangle. Constructing a copy of the triangle is certainly sanctioned by Euclid's 

ruler and compass methods, but Greaves points out that such exact constructions would 

seem to rely on arithmetical exactness, and are therefore unreliable. 

The geometer cannot defend proof by superposition on the basis that it is a 

straightforward example of conceptualization of diagrammatic properties. Instead, one 

imagines a new diagram with the two triangles exactly superimposed-the proof is 

conducted through imaginative manipulation of the diagram. In order to justify the 

congruence theorems in non-axiomatic geometry, a mechanism such as proof by 

superposition is essential. 

Along with all other types of image-based reasoning, proof by superposition is 

prohibited by modern standards of rigor. A weaker form of Euclid's Proposition 4 of 

Book 1, for example, becomes an axiom in Hilbert (1 899Il97 1, p. 12). 

There are, therefore, significant gaps in the axiomatic formulation of Euclid. It 

follows that the Greek geometers would have to use conceptualizations of image data in 

their arguments. It seems reasonable to suppose that they felt no concern about doing so. 

I will continue by investigating how the schematic properties and schematic cases 

discussed previously can be applied to the Greek case. 

Firstly, it is necessary to revisit the conventions mentioned for the theoretical 

framework, which enable the geometer to salvage the diagram from chaos and resolve it 

into a system of points, lines, and curves. Friedman (2000, p. 186-1 87) argues that all the 

objects of Euclid's reasoning are iteratively constructed, with straight edge and compass, 

by means of Euclid's first three postulates, and are therefore finite systems of points, 



lines, and circular arcs. It is likely that the Greeks would interpret diagrams in precisely 

those terms. 

Some flexibility must have been allowed. Thus, Netz (2004, p. 115) points out 

that Archimedes sometimes used curved lines to represent straight lines, as in Figure 4.3, 

in which a "dodecagon" is inscribed in a circle, presumably to make the sides of the 

dodecagon more easily visible. 

Figure 4.3: Archimedes' "dodecagon" inscribed in a circle. 

The permitted schematic conceptualizations of diagrams, as I have already 

discussed, are precisely determined by the imperfectability of the diagram. Netz (2004, 

pp. 8-1 0) confirms the schematic, non-metrical nature of Greek diagrams. It seems 

reasonable to assume that the analysis of the last chapter corresponds approximately to 

the Greek view, although the Greeks would not have formulated it in explicit terms. 

When metrical information was necessary for a proposition, it was given 

separately by the Greeks in the text of the proposition. It seems that there were no Greek 

equivalents of the modern practice of a box to represent a right angle or slashes to denote 

equality of line segments. 



Fowler (1 999, pp. 9- 10) argues that arithmetical properties were never part of the 

original geometry of Euclid. Any additional metrical information about a proposition 

given separately fi-om the diagram could consist only of dimensionless comparisons 

between objects in the diagram, such as "equal to," "greater than," or a rational ratio of 

two quantities. Archimedes, for example, in his theorem on the surface area of a sphere, 

does not give anything like the modern formula, with its irrational n, but instead 

expresses the surface area of a sphere as four times the area of a great circle (Netz, 2004, 

p. 144). 

Given the schematic nature of Greek diagrams, the arguments for generality of the 

previous chapter apply, with some clarifications, to the geometry of Euclid. The 

conclusions, in summary, were as follows: (1) We can assume generality within each 

schematic case; (2) it is necessary to give a separate proof for each schematic case; (3) 

the determination of schematic cases must be done visually and intuitively; and (4) the 

system is inadequate in cases where there are an infinite number of schematic cases. 

Netz's (1999, ch. 6) argument for the generality of Greek geometry relies on 

implicit repeatability of proof for different instantiations of a general situation. If full 

account is taken of the implications of schematic diagrams, however, and the notion of 

schematic case is utilized, it seems that repeatability of proof is redundant. The geometer 

need only supply one proof for each schematic case. 

All Greek diagrams are constructible in a finite number of steps. The Greek proof 

of a proposition would describe the various features of the image in a particular order, 

and one can imagine the geometer checking for different cases as each feature is added. 

The cases identified by the Greeks probably would not have corresponded to formal 



schematic cases, since two diagrams may very well belong to different schematic cases 

while being identical in conceptualization from the point of view of what is actually 

needed for the proof. 

There are an infinite number of different schematic cases in Archimedes' 

proposition that the perimeter of a circle inscribed in a polygon is less than the 

circumference of the circle (Netz, 2004, pp. 41-43). Generality can be achieved for a 

particular polygon, but in the case of an n-gon, with a variable n, a single schematic 

diagram will not do. In fact an infinite number of schematic diagrams is required, one for 

each value of n. Netz (1999, p. 268, n. 59) refers to such diagrams as "doubly particular 

objects." The only satisfactory way of dealing with situations like this is to use a variable 

for the number of sides. According to Klein's (1934-611968, pp. 122-123) analysis, 

however, there were no variables in Greek geometry-the objects of investigation were 

always particular, and only the method was general. 

According to Mueller (1 98 1, p. 13), the Greeks themselves never provided an 

answer to the question of generality. It seems probable that the issue of generality did not 

occur to them. Our speculations, based on the research of Netz (1999,2004), are simply 

a retrospective attempt to justifj Greek reasoning in the light of modern standards. Does 

it matter if the Greek style of image-based reasoning lacked rigor? According to Netz 

(2004), "Archimedes' goal is not axiomatic perfection (where every axiom, and every 

application of an axiom, must be made explicit), but truth" (p. 42, author's italics). 



4.2 Arithmetized geometry and the geometry of Descartes 

Fowler (1999, p. 172) argues that Greek geometry before the second century BC 

was completely non-arithmetized, in the sense that no measurements were ever given on 

the basis of a standard unit. In later centuries, however, with the astronomy of Ptolemy 

and the mathematics of Heron and Diophantus, Greek geometry was blended with the 

earlier arithmetical methods from Babylon; these methods were further enriched by Arab 

astronomers and mathematicians in later centuries (ibid., p. 9). The goal of arithmetized 

geometry is measurement of particular cases rather than general truths. Arithmetized 

geometry is not a deductive science proving general results. 

In 1638 Rene Descartes built on arithrnetized geometry by combining it with 

algebra to create analytical geometry. Just as algebraic methods transform arithmetic 

from the study of the particular to the study of the general, analytic geometry transforms 

arithmetized geometry into a science once again concerned with general properties. 

The only axioms required of analytic geometry are those governing the real 

numbers. We are dealing now with subsets of the real plane that can be identified as the 

solutions to systems of equations. Geometry becomes manipulation of these equations, 

and it may properly be regarded as a branch of algebra (Greaves, 2002, p. 39). 

Conceptualization of image data is irrelevant for analytic geometry since all 

conceptual data are developed algebraically from given information. No enumeration of 

different cases is required because the mechanisms of algebra automatically distinguish 

between the different cases: the solution of a system of two linear equations either has a 

single solution or it does not; two circles intersect at 0, 1, or 2 points depending on the 



number of solutions of a quadratic equation. 'The variables guarantee generality within 

the domain of analytic geometry (Greaves, 2002, p. 38). 

We should note that the universe of analytic geometry is not Euclid's universe. 

Freudenthal(1973, pp. 43 1-432) points out that the algebraic approach leads to what has 

been referred to as "Euclidean space," in which the automorphisms preserve distance. In 

Euclid's geometry, on the other hand, the automorphisms preserve similarity, or in other 

words ratios of distances. (Because of this ambiguity, the present study is careful to refer 

to the ancient science as "Euclid's geometry" rather than "Euclidean geometry"; 

sometimes the term "synthetic geometry" is used for Euclid's geometry to contrast it with 

analytic geometry. To confuse matters further, Euclid's geometry without axioms will be 

referred to later as "Euclidean-style geometry.") 

Analytic geometry requires a familiarity with basic algebra. This, in itself, limits 

its applications in school. Freudenthal(l973, pp. 444-445) identified a second, more 

serious objection to analytic geometry in the classroom: some concepts that are simple 

and intuitive from the synthetic perspective can seem quite abstruse in analytical 

geometry. For example, the notion of angle requires some basic trigonometry for its 

analytical definition, whereas it can be grasped immediately and intuitively in synthetic 

terms. Freudenthal(1973) writes, "The angle concept is one of the precious gifts of 

geometry, a gift which should not be refused, a 'transcendent' tool by which 

extraordinary results are easily obtained, much more easily than by algebraic-analytic 

methods" (p. 445). Freudenthal makes the point that for analytic geometry to make any 

sense at all in spatial terms, it is necessary that a student first be acquainted with synthetic 

geometry in order to be able to reinterpret analytic geometry in synthetic terms. In other 
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words, "angle" would have to be taught first by synthetic means before attempting an 

analytical approach. 

4.3 Poncelet and the Continuity Principle 

One of the early nineteenth-century champions of synthetic geometry was French 

geometer Jean Victor Poncelet. His goal was to provide for the ancient synthetic 

geometry the same degree of generality that can be achieved through the algebraic 

methods of analytic geometry. 

Poncelet recognized the key function of the schematic nature of Greek diagrams, 

and he attempted to formalize this notion with his principle of continuity. Greaves (2002, 

p. 45) cites Poncelet as follows: 

The principle of continuity, considered simply from the point of view of 
geometry, consists in this, that if we suppose a given figure to change its position 
by having its points undergo a continuous motion without violating the conditions 
initially assumed to hold between them, the . . . properties which hold for the first 
position of the figure still hold in a generalized form for all the derived figures. 

Poncelet attempted to flesh out the principle of continuity by means of "precisely 

describing the initial conditions on the diagram and the types of diagrammatic motion 

which could be guaranteed not to violate them" (Greaves, 2002, p. 46). 

According to Greaves (2002, p. 46), Poncelet was unable to accomplish his 

program with sufficient rigor. Nevertheless, Poncelet is considered to be one of the 

originators of projective geometry. Schematic transformations can be regarded as a 

generalization of projective transformations. 



4.4 Hilbert's formalization of geometry 

Hilbert (1 89911971) devised the first complete axiomatization of Euclidean 

geometry. In Hilbert's formalization of Euclid's geometry, there is no place for intuitive 

conceptualization of image data. Formal geometry is mechanical, involving axioms, 

definitions, and the rules of logical inference. 

Greaves' (2002) thesis is the following: "The possibility of diagrammatic methods 

in formal proofs . . . in geometry has always been primarily dependent on the 

characteristics of the metaphysical and ontological theories under which they are carried 

out" (pp. 4-5, author's italics). According to the contrapositive of this thesis, the denial 

of the validity of any diagrammatic inferences implies that there is no ultimate subject 

matter of geometry in Hilbert's system. 

The formal approach dominates mathematics at the university level. The 

mathematician's attitude, as Freudenthal(1973) puts it, is that the "quicksand of reality is 

no basis to build a mathematical system; mathematics should be protected against any 

contamination with non-deductive germs" (p. 403). 

In its favour, formal geometry guarantees complete generality within its 

boundaries. But the formalization does place limits on geometrical truth. As has already 

been discussed, there is nothing to suggest that every true proposition is deducible from 

the axioms. Why, therefore, should the geometer follow Hilbert in discounting spatial 

intuition as a guide to geometrical truth? 

Should the perspective of higher mathematics affect curriculum content in 

secondary schools? If we are to give any credence to the van Hiele levels, discussed later 



in this thesis, then it is absolutely clear that axiomatic geometry should not and cannot be 

taught to students unless they first have a strong foundation in spatial, intuitive geometry. 

Freudenthal(1973) concurs with van Hiele's analysis that geometrical ideas 

should be introduced by intuitive means. He claims that it is pointless to introduce 

geometric objects by definitions, because a definition cannot make sense unless it is 

known at the outset what is being defined (ibid., pp. 416-41 8). He argues that the real 

objective of geometry is grasping the space in which we live and breathe and move (ibid., 

p. 403). According to Freudenthal, 

Geometry can only be meaningful if it exploits the relation of geometry to the 
experienced space. If the educator shirks this duty, he throws away an 
irretrievable chance. Geometry is one of the best opportunities that exists to learn 
how to mathematize reality. (pp. 406-407) 

The reader may agree with Freudenthal(1973, p. 448) that axiomatic geometry is 

simply too complex for students-there are many axioms to memorize, and often they 

seem either trivial or obscure. "The whole is so impenetrable that nobody would try 

working within the axiomatic system; no discoveries can be made within the axiomatic 

system, and proving propositions is a difficult thing to do" (ibid., p. 448). 

Zeitler (1991) analyzes the various axiom systems that could be used for school 

geometry. He comes to the same conclusion as Freudenthal: "We need less abstraction, 

less formalism or-better still-no axiomatics" (p. 24). 

Given that axioms are inappropriate for school geometry, what exactly is required 

of students? This topic will be dealt with next. 



5 Psychology of Image-based Reasoning 

In Chapter Three, I presented a theoretical framework for image-based reasoning 

in geometry. With this framework in mind, the history of geometry from the origins of 

image-based reasoning to the formal axiomatization of geometry was explored in Chapter 

Four. I concluded Chapter Four by arguing that teaching formal axiomatic geometry is 

inappropriate in a school setting. The first section of this chapter will clarify the kind of 

geometrical reasoning actually required of students. Then, based on a detailed analysis of 

a typical school geometrical problem, informed by the theoretical framework presented in 

Chapter Three, I deconstruct the reasoning required for the problem's solution into a 

number of specific skills. The geometrical skills identified greatly increase the 

descriptive power and pedagogical efficacy of the theoretical framework. This is 

illustrated in Chapter Six by interpreting the classical van Hiele levels pertaining to the 

development of geometrical reasoning. Then, in Chapter Seven, practical implications of 

these skills for teaching image-based reasoning in geometry will be explored. 

5.1 Geometry in mathematics curricula 

The discussion below examines the senior secondary geometry curricula of three 

organizations. These three were chosen for convenience rather than for their power to 

represent a variety of geometry teaching. It is hoped, nevertheless, that they can give 



some general sense of the geometrical knowledge expected of senior secondary school 

students early in the twenty-first century. 

The documents investigated are the following: 

"Shape and Space (3-D Objects and 2-D Shapes)" and "Shape and Space 

(Measurement)" for Principles of Mathematics 11 in the Mathematics 10 to 11  

Integrated Resource Package of the Ministry of Education, British Columbia, 

Canada (Government of British Columbia Ministry of Education [GBCME], 

2004a, 2004b) 

"Ma3 Shape, Space and Measures" for Key Stage 4 Higher of the National 

Curriculum of the Department of Education and Skills, United Kingdom 

(National Curriculum Online [NCO], n.d.) 

"Geometry Standard for Grades 9-12" in Principles and Standards for School 

Mathematics of the National Council of Teachers of Mathematics of the United 

States (National Council of Teachers of Mathematics [NCTM], 2004) 

The NCTM gives recommendations only, whereas the other two organizations 

provide mandatory guidelines for the schools within their jurisdictions. GBCME (2004a, 

2004b) is specific to Grade 11, whereas NCO (n.d.) covers Grades 10 and 1 1, and NCTM 

(2004) gives broad guidelines for Grades 9 to 12. 

NCTM (2004) places its expectations under four headings. The first heading is 

"Analyze characteristics and properties of two- and three-dimensional geometric shapes 

and develop mathematical arguments about geometric relationships" (ibid., 2004, italics 

added). It covers the traditional Euclidean-style geometry in the curriculum, including 

congruence and similarity, and students should be able to "establish the validity of 
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geometric conjectures using deduction, prove theorems, and critique arguments made by 

others" (ibid.). Trigonometry also is included under this heading. The other three 

headings cover coordinate geometry, transformations, and applications of geometry. 

GBCME (2004a) gives a list of theorems. Students are supposed firstly to 

confirm and apply these theorems by means of geometry software, and secondly to prove 

them using "established concepts and theorems" (ibid.). These theorems are as follows: 

the perpendicular bisector of a chord contains the centre of the circle 
the measure of the central angle is equal to twice the measure of the inscribed 

angle subtended by the same arc (for the case when the centre of the circle is in 
the interior of the inscribed angle) 

the inscribed angles subtended by the same arc are congruent 
the angle inscribed in a semicircle is a right angle 
the opposite angles of a cyclic quadrilateral are supplementary 
a tangent to a circle is perpendicular to the radius at the point of tangency 
the tangent segments to a circle from any external point are congruent 
the angle between a tangent and a chord is equal to the inscribed angle on the 

opposite side of the chord 
the sum of the interior angles of an n-sided polygon is 1 80•‹(n - 2). 

(ibid., Prescribed learning outcomes, para. 2) 

In addition, students are expected to be able to "solve problems, using a variety of circle 

properties, and justify the solution strategy used" (ibid., Prescribed learning outcomes, 

para. 2). Coordinate geometry is included in GBCME (2004b). Measurement, 

trigonometry, and transformations are not part of the Grade 1 1 curriculum. The geometry 

content for Grade 11 in this jurisdiction is entirely, therefore, traditional Euclidean-style 

geometry (with the aid of technology) plus coordinate geometry. Transformations, 

trigonometry, and measurement are distributed among the learning expectations for 

Grades 10 and 12. 

NCO (n.d.) is the most detailed of the three documents. Geometry is broken 

down into four sections. The first covers problem solving, communicating ideas, and 



general reasoning requirements, and might be equated with the NCTM (2004) 

applications category. The second section includes traditional Euclidean-style geometry 

and trigonometry. There is a detailed inventory of all properties of triangles, circles, and 

other figures that are required. Sometimes the terms "prove" or "understand a proof' are 

used explicitly of these properties, and at other times terms such as "explain why" or 

"understand that" are used. Terminology such as this implies that proofs are expected, 

with varying levels of formality. The third section covers transformations and coordinate 

geometry; the fowth section comprises measurement and geometrical constructions. The 

constructions, it should be noted, include traditional Euclidean constructions with straight 

edge and compasses. 

In summary, putting aside possible ap:plications of geometry to other subject 

areas, it can be seen that the geometry deemed appropriate for senior secondary school 

students includes five main topics: measurement, trigonometry, coordinate geometry, 

transformations, and Euclidean-style geometry. Each of these five areas can indeed be 

seen as the manipulation of properties of visual images, so that each can be interpreted in 

terms of the image-concept model. 

Measurement and trigonometry can be grouped together. Both are concerned 

with assigning arithmetical values to features of geometrical figures, such as angles, 

lengths, areas, and volumes. Algebraic and arithmetical manipulations are used to 

deduce required properties from given properties and known formulae. In lower grades, 

the student may have to determine approximate values from the diagram by using 

measuring tools such as a ruler or protractor. 



Coordinate (or analytical) geometry requires that the image exists in a plane 

containing two perpendicular lines, or axes. As with measurement and trigonometry, 

there needs to be a standard unit, so that coordinate geometry, too, is arithmetical in 

nature. The genius of coordinate geometry is that the distance of points from the axes 

can be variable. The properties of the figure, then, are conceptualized in the form of a set 

of equations, and then these equations are manipulated algebraically to achieve the 

required result. 

In transformational geometry the property that one figure is the transformation of 

another figure is represented in functional form, which again relies on a system of 

coordinates. Transformational geometry, therefore, is another variety of arithmetical 

geometry, and its conclusions are reached by arithmetical and algebraic manipulations. 

All that is left to consider is Euclidean-style synthetic geometry. A close reading 

of the three documents yields no instances of the term "axiom" or any of its synonyms. 

Despite references to deduction and proof, therefore, the geometry required is certainly 

not axiomatic, and it is not even the geometry of Euclid in the sense of Euclid's limited 

selection of axioms. Note that this study deliberately uses the term "Euclidean-style" for 

this variety of deductive geometry without axioms. 

Geometry as performed by Euclid and his contemporaries does not admit a 

standard unit of measure, so arithmetical properties are not allowed. Lengths and angles 

may be compared as ratios with rational values. These have been referred to as metrical 

properties, which must be given in conceptual form separately from the diagram. The 

schematic properties of Euclidean-style geometry, on the other hand, may be 

conceptualized directly from the diagram. This one factor distinguishes Euclidean-style 
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geometry from all other forms of geometry discussed. In consequence, the properties of 

Euclidean geometry are not generally amenable to arithmetical or algebraic manipulation, 

and the student is required to use logical deduction. If geometry is regarded as the 

manipulation of properties conceptualized from images, then Euclidean-style geometry 

consists of using logical deduction to manipulate schematic and metrical properties. 

5.2 Example proof of a geometrical proposition 

In order to demonstrate how the image-concept model developed so far works in a 

full Euclidean-style proof, this study examines a typical student exercise. It is taken from 

Alexander and Kelly (1998, p. 51 6), which is one of the two textbooks recommended by 

the Ministry of Education in British Columbia for their Principles of Mathematics 11 

course. 

Tangent segments PA and PB are drawn from an external point P to a circle 
[above]. The bisector of L P  intersects the circle at Q and C . Prove that 

LCAQ = 90'. 

Figure 5.1: Typical problem in deductive geometry. 

Note first that the text almost, but not completely, specifies the whole diagram. 

The construction of line segments CA and AQ is implied, but the statement of the 



problem makes no mention of line segments CB and BQ, which are not needed for the 

exercise. Presumably, the added symmetry is supposed to hint at the solution. This 

omission is similar to the incomplete specification of diagrams identified by Netz (1999, 

pp. 20-26) in original Greek source material. The small arcs marking LBPQ and LAPQ 

are not properly part of the diagram, but are a type of shorthand for the metrical property 

that the two angles are equal. 

It would be possible to give this problem without a diagram, leaving it to the 

student to instantiate the whole situation from the given information. Teaching 

experience shows, however, that a problem like this without a diagram would be out of 

reach for any but the most exceptional students. 

One may start by randomly conceptualizing properties from the diagram to see 

what may be deduced. This, however, is like finding one's way to the store by chasing 

squirrels. One needs to plan a route first, and then set out along that route. It is best to 

work backwards from the goal. 

At this juncture it should be mentioned that the reasoning process is extrapolated 

from teaching experience and the writer's introspection. This is not a scientific approach 

for describing student reasoning processes. However, the following discussion is offered 

as the type of thought process that a student would have to be capable of in order to able 

to solve this kind of problem. In real life even the most capable student would be 

unlikely to argue so systematically. 

The first observation is that if CQ is a diameter then LCAQ = 90' because "the 

angle inscribed in a semicircle is a right angle" (Alexander & Kelly, 1998, p. 459). 



Figure 5.2: Proof (1). 

Note that this idea entails focusing on part of the diagram and regarding it as an isolated 

unit. Implicit is Principle 4 of conceptualization, that any properties that are true of a 

particular section of the diagram will be true of the whole diagram. Also operative is 

Principle 3, that if" CQ is a diameter" conceptualizes the diagram, and " CQ is a 

diameter" implies " LCAQ = 90' ," then " LCAQ = 90' " also conceptualizes the diagram. 

The problem reduces, therefore, to showing that CQ is a diameter. "The 

perpendicular bisector of any chord contains the centre of the circle" (Alexander & Kelly, 

1998, p. 441) may occur to an astute student, and by definition a line that passes through 

the centre of a circle is a diameter. Thus, if CQ can be conceptualized as the 

perpendicular bisector of a chord, then it will be a diameter, as required. But where is the 

chord? We have to instantiate the concept " CQ is the perpendicular bisector of a chord." 

The difficult process of creative visualization, linking concept to particular image, may 

stymie many students. The obvious choice of' chords is AB , and so that must be 

constructed. 



Figure 5.3: Proof (2). 

Note that there are some hidden assumptions. The first is that line segment AB 

actually exists: it is an axiom of formal geometry that any two distinct points can be 

joined by a straight line. The second is that AB meets CP , which would require an 

axiom. Secondary school geometry is no longer developed axiomatically, and these 

assumptions would be taken as self-evidently true based on spatial intuitions. Most 

teachers would not even draw attention to them. We should point out that again 

Principle 4 is operative, ensuring that any properties true of the original diagram are also 

true of the diagram with the additional construction. 

Lastly, it is necessary to show that PD is a perpendicular bisector of AB . 

Figure 5.4: Proof (3). 



We need to show that AD = BD and that A D P  = LBDP = 90'. But this will follow if 

AAPD E ABPD . It is given that A P D  = LBPD , and the geometer can conceptualize 

DP = DP . Therefore, if PA = PB , then AAPD E ABPD can be deduced from the SAS 

theorem. The last (or rather first) link in the deductive chain is showing that PA = PB . 

Figure 5.5: Proof (4). 

It is given that PA and PB are tangents to the circle, and "the tangent segments to a circle 

from an external point are equal" (Alexander & Kelly, 1998, p. 490). 

Now that the planning process is completed, the whole deductive argument can be 

put together, starting from the diagram with the additional line segment AB instantiated. 

The whole process is shown in Figure 5.6. 

The argument follows a series of deductions that are local rather than global in that they 

refer only to isolated parts of the diagram. Each deduction is of the form R + S . R is a 

collection of properties that are either (a) given in the statement of the problem, (b) 

deduced as part of the argument, or (c) inferred directly from the local diagram. An 

example of the latter is A D P  + LBDP = 180'. S consists of one or more additional 

properties that are deduced from the properties of R . The inference often follows as a 

particular case of a previously proved result. 



semicircle 
Theorem 

Figure 5.6: Deconstruction of a geometric proof. 



However, in the case of "CPCTC" (i.e. "congruent parts of congruent triangles are 

congruent"), S is a subset of the properties of R since "congruent triangles" is simply a 

concise way of saying that each pair of corresponding sides and angles is congruent, and 

Principle 2 is being used. A similar "inference" follows in the case of a definition, where 

the property is simply restated using different words. 

The geometer can apply Principle 3 to justify that any new property is a 

conceptualization of the locality considered. Then, from Principle 4, it follows that the 

new property is a conceptualization of the global diagram. Thereafter, the focus can 

switch to a new part of the diagram for another local deduction. These local deductions 

are strung together according to a global, or strategic, understanding of the argument. 

The global perspective includes any additional constructions required-in this case 

AB -and the overall flow of the argument from locality to locality of the global 

diagram. Note that the properties for each starting point, R , are collected together from a 

number of sources specifically for the local deduction. Principle 1 guarantees that the 

collection of properties is a conceptualization of the local diagram. 

It is interesting to note that all of the properties are relational. For example, a line 

is related to a circle by tangency, two triangles are related by congruence, and so on. 

These local, or relational, conceptualizations refer to relationships between components 

of an image. There is another form of conceptualization, without which the local 

deductive process cannot begin. It is Gestalt, or global, recognition of circles, points, 

lines, triangles, and so on, which is the raw material for the relations of local 

conceptualization. 



The various components of this complex deductive process have been identified 

as local and global deduction and local and global conceptualization. If the diagram is 

not given or if additional constructions have to be added to the diagram, then the 

imaginative process of instantiation also is required. The discussion turns now to a more 

detailed investigation of each of these components of the deductive process, followed by 

an analysis how these ideas relate to an influential model of the development of 

geometric reasoning, the van Hiele levels. 

5.3 Geometrical skills 

How can a student achieve the ability to prove geometric propositions? No 

educator would claim that formal geometric deduction could be taught successfully as an 

introduction to geometry. Geometric deduction must be approached in stages. There are 

two issues in this respect, developmental and didactical. From the developmental 

perspective, the student's perceptual and representational notions of space have to be 

Euclidean, as described in Piaget and Inhelder (1948/1963), and the following discussion 

will assume that this is the case. 

Even if a student's cognitive development is such that the student is theoretically 

capable of geometric proof, going straight to global deduction would probably perplex 

even the most able student. Therefore, certain didactical considerations should be borne 

in mind. 

The levels developed by van Hiele and van Hiele-Geldof are an influential 

didactical theory of how geometrical understanding can be developed efficiently. These 



levels will be considered later. For now, the discussion will focus on the specific skills 

required for formal geometric proof. 

5.3.1 Global conceptualization 

The ability to assign properties to an image as a whole is referred to as global 

conceptualization. In terms of geometry, this simply means identification of common 

shapes. A student perceives the image of a square, for example, and conceptualizes it as 

a square because "it looks like a square." The student has not analyzed the components 

of the image to determine deductively it is "square" because of it has four equal sides and 

four equal angles. The result of global conceptualization can be referred to as a global 

property. 

Global conceptualization corresponds to the earliest training that a child receives 

in Euclidean-style geometry, where the child learns to assign names to common shapes 

through the process of empirical abstraction and generalization described earlier. The 

universe of the diagram is grasped holistically and assigned a global property. 

Thereafter, the student may generalize spontaneously to identify other shapes as 

satisfying this property. 

Examples of global conceptualization are all the usual geometric shapes, such as 

triangle, square, line, point, circle, and so on. Of course there are many other possible 

global conceptualizations, and the only limitation is the ability to name images. 

In Euclidean-style geometry some global conceptualizations can be made from 

the diagram, others have to be given conceptually in addition to the diagram or deduced 

from sufficient properties. It is permissible, for example, because of the diagrammatic 
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conventions discussed earlier, to conceptualize "line," "point," and "curve." It is not 

allowed to conceptualize "square" simply because the image looks like a square. This 

property would have to be given in addition to the diagram, or it could be deduced from 

its being a quadrilateral with four equal sides and four equal angles. 

Note that it may be possible to assign more than one global property to an image. 

Thus, a square may be globally conceptualized also as a rectangle, a rhombus, a 

parallelogram, a quadrilateral, a polygon, or simply as a geometrical shape. 

Primitive shapes such as points and lines are often components of larger objects 

such as triangles and quadrilaterals, but they may still be regarded as global properties 

provided they are conceptualized as geometrical objects in themselves. In the same way, 

geometrical diagrams may consist of more than one triangle, quadrilateral, and so on, 

each of which has a global conceptualization. Some compound diagrams may even have 

their own global conceptualizations. For example, a certain arrangement of five 

interlocking circles may be conceptualized immediately as "Olympic symbol," without 

consideration of the individual circles. Some commonly occurring shapes in the 

environment do have informal names, even if they lack formal designations in geometry. 

For example, the shape consisting of two rectangles, one centered inside the other, may 

be thought of as a "frame," even though "frame" is not an established geometrical term. 

The reader may wonder whether an image can be conceptualized without a 

conceptual statement. Perhaps the object may be encoded at a deep cognitive level in the 

sense of Pylyshyn's (1973) propositional theory, even though there is no surface 

conceptual representation. After all, Anderson (1980, pp. 384-386) cites evidence that 



conceptual distinctions can be made without the words to describe them. It is beyond the 

scope of the discussion to deal properly with this issue. 

Looking back to the sample proof in Figure 5.6, many global conceptualizations 

are made during the course of the proof. Circles, lines, points, and triangles have to be 

recognized as such in order to provide objects that can be related in a deductive structure. 

5.3.2 Local conceptualization 

A relationship between components of an image is referred to as local 

conceptualization. For example, the properties having four equal sides and four equal 

angles may be conceptualized from the image of a square-the relationship of equality 

holds between four different line segments and four different angles, respectively. 

Equalities of length, angle, area and volume are metrical properties. More 

generally, Greek geometry allows proportions involving rational ratios of these 

quantities. Modern geometry is less concerned with the arithmetic of proportions, but 

allows equations utilizing the basic arithmetical operations. 

Arithmetical properties that measure lengths, areas, and volumes according to 

standard units are not part of Euclid's geometry. The one exception to this rule is the use 

of a right angle as a standard unit for measuring angles, and a statement such as B = 60" 

may be interpreted to be a rational ratio of a right angle. 

Informal geometry allows direct conceptualization of metrical and arithmetical 

properties, either by observation or by using measuring tools. In Euclidean-style 

geometry, however, metrical properties must either be given separately in conceptual 

form or deduced logically. 



Various non-metrical relationships can form the basis for local conceptualizations. 

For example, one object may be a component, or subset, of another object. Thus, the 

property of a particular line segment being the side of a square is a local 

conceptualization. More generally, two objects may have a common subset, so that "two 

lines intersect at a point" is a local conceptualization. Other examples of this type are "a 

line passes through the centre of a circle," "a line intersects a circle at two distinct 

points," "a polygon has three distinct sides," and so on. The last two examples imply the 

ability to enumerate the instances of a global conceptualization, resulting in a local 

conceptualization. 

These non-metrical relationships are schematic properties, in that they may be 

uploaded directly from the diagram. The property of a line being tangent to a curve is 

unusual in that it is non-metrical and non-schematic. The property of tangency must be 

given conceptually. 

This forgoing discussion of possible local conceptualizations is not supposed to 

be exhaustive. A full examination of all possibilities is beyond the scope of the present 

study. 

All of the conceptual statements in Figure 5.6 are local conceptualizations. Local 

conceptualizations are the basis of deductive geometry. 

5.3.3 Local deduction 

An inference from one conceptualization to another is referred to as a local 

deduction. Local deductions may appear in a number of forms, as in the following 

examples: 



Definition. The definition of a square is a quadrilateral with equal sides and equal 

angles. Therefore, the concept of a quadrilateral with equal sides and equal angles 

implies the concept of a square. 

Elimination. The concept of a square implies four equal sides and four equal 

angles. Likewise, the concept of congruent triangles implies corresponding pairs of equal 

sides and equal angles. Essentially, "square" and "congruent triangles" can be thought of 

as a shorthand notation for a bundle of local properties. A deduction can be made by 

eliminating some properties from the conceptual representation and keeping others. The 

CPCTC deduction, for example, is an application of Principle 2. 

Algebraic deduction. Metrical relationships may be manipulated by algebraic 

methods. The perpendicularity of AB and DP in Figure 5.6 is an example. 

Proposition. As a result of a previous global deduction, it is known that a certain 

collection of properties implies some other property. For example, the concept of a point 

on the perpendicular bisector of a line segment implies the point is equidistant from the 

endpoints of the line segment. 

5.3.4 Global deduction 

When local deductions are strung together according to a strategic plan, the result 

is a global deduction. Global deduction implies the ability to prove geometric 

propositions. An example of global deduction is the complete proof of Figure 5.6. 

There is a creative element in global deduction that makes it difficult to grasp and 

difficult to teach. Typically, a student may have to work backwards from the goal in 

order to envisage the whole proof. Additional constructions may even be required in 



order to create conceptualizations to bridge from one part of the proof to another. Line 

segment BA in the proof of Figure 5.6 is an example of such a construction. 

In general terms, it can be seen that global deduction is a relation between local 

deductions; likewise, local deduction is a relation between local conceptualizations; and 

in turn, local conceptualization is a relation between global conceptualizations. The 

model can therefore be regarded as a logical, developmental framework. 

5.3.5 Instantiation 

In the discussion so far of the various abilities required for a geometrical proof no 

mention has been made of word problems, in which a student is confronted with a 

problem set out verbally, without a diagram. The student must produce a diagram by 

instantiating the concepts present in the verbal presentation of the problem. 

Mathematics teachers are aware that many students are reluctant to produce 

diagrams and are fearful of word problems. Does this fear and reluctance correspond to 

inability? It seems that instantiation of a concept involves creating an image whose 

conceptualization is the original concept. Thus instantiation is the inverse of 

conceptualization. Inverse operations are often difficult to perform. For example, long 

division is harder than long multiplication and extracting square roots from numbers is 

harder than squaring numbers. Perhaps the same is true of instantiation. 

We distinguished two types of conceptualization, global and local. For the 

corresponding distinction, "global instantiation" would refer to being able to produce the 

Gestalt image of a square, whereas "local instantiation" would refer to producing an 

image representing, for example, " AB is perpendicular to CD ." 



A square may be immediately instantiated in the mind as a Gestalt whole, and this 

would correspond to "global instantiation." However, actually producing a concrete 

image of a square would involve first drawing one side, then another, and so on; as each 

side is drawn, it must be oriented perpendicularly to the previous side and be the same 

length. Thus, "global instantiation" of the concrete image of a square of necessity 

assumes "local instantiation." 

Instantiation can be involved as part of a proof, as it was with the construction of 

line segment AB in Figure 5.6. Additional constructions like these are necessary when a 

global deduction has the form A+B+C, but concept B is not fully instantiated. 

Clearly, creative imagination is involved in instantiation. A through investigation 

of the phenomenon is beyond the scope of this study. 

5.4 Concluding remarks on geometrical reasoning skills 

It can be seen that the geometrical reasoning skills identified in this chapter add 

increased granularity to the framework. In wlhat follows, I will show how these skills 

cohere with the descriptive power of the van Hiele levels, and also have practical 

implications with regard to students' geometrical thinking. 

I have mentioned above that the deconstruction of the reasoning process required 

for the solution of a typical geometrical problem, and the resulting geometrical skill set 

identified in this chapter is based on introspection and analysis of my teaching experience 

rather than empirical research. The validity of the analysis can be tested, however, by 

taking an established model for geometrical reasoning and explicating it in terms of the 



new theoretical framework. The most influential, established model is the van Hiele 

levels, which will be discussed next. 



The van Hiele Levels 

There are at least four ways to consider the development of geometrical 

knowledge. The first is historical, and would lead through the arithmetical calculations 

of Babylon and Egypt, to the deduction of the Greeks, and thence to Descartes, Hilbert, 

and so on. The second way is to regard geometry as a complete, mature subject, and 

thence to describe its logical development from first principles. A third approach is to 

consider development of human cognition from early childhood as the mind becomes 

capable of increasingly sophisticated spatial processing. This third aspect is dealt with in 

Piaget and Inhelder (1 94811 963); a summary of Piaget's ideas on the development of 

spatial intuition is given in Smock (1976). Lastly, the didactic approach assumes that the 

student's cognitive development has already reached the level at which the student is 

capable of processing complex geometrical information, and considers the most efficient 

way of achieving actual student facility with geometrical thinking. This latter approach is 

epitomized by the van Hiele model, which details the ordered stages in which a student 

must acquire geometrical knowledge in order to be able to apply this knowledge in an 

insightful way. I will explicate the van Hiele levels in terms of the proposed theoretical 

framework. 

The following summary of the van Hiele levels is taken from Hoffer (1 983, p. 

207, author's italics): 



Level 0: 

Level 1 : 

Level 2: 

Level 3: 

Students recognize figures by their global appearance. They can 
say triangle, square, cube, and so forth, but they do not explicitly 
identify properties of figures. 
Students analyze properties of figures: "rectangles have equal 
diagonals" and "a rhombus has all sides equal," but they do not 
explicitly interrelate figures or properties. 
Students relate figures and their properties: "every square is a 
rectangle," but they do not organize sequences of statements to 
justify observations. 
Students develop sequences of statements to deduce one statement 
from another, such as showing how the parallel postulate implies 
that the angle sum of a triangle is equal to 180'. However, they do 
not recognize the need for rigor not do they understand 
relationships between other deductive systems. 

Level 4: Students analyze various deductive systems with a high degree of 
rigor comparable to Hilbert's approach to the foundations of 
geometry. They understand such properties of a deductive system 
as consistency, independence, and completeness of the postulates. 

It should be noted that Level 0 is sometimes referred to the Base Level, and that 

in his later writing Pierre van Hiele changed the numbering of the levels from 1 to 5 to 

emphasize the importance of the visual level (van Hiele, 1986). Most of the literature, 

however, refers to them as 0 to 4, and this is the practice this study will follow here for 

consistency. It should be noted that the idea of stages of development in geometrical 

thinking goes back at least to Godfrey (1 91 0, p. 200). 

In 1957 Pierre van Hiele and Dina van Hiele-Geldof completed dissertations at 

the University of Utrecht. Pierre van Hiele's work (summarized in Fuys et al., 1984, pp. 

237-241) deals with "insight" as a goal of learning, specifically with the example of 

geometry, and levels of thinking. Dina van Hiele's dissertation (translated in Fuys et al., 

1984, pp. 1-206) describes a didactic experiment based on raising the level of students' 

geometric reasoning. Pierre van Hiele gave a speech at a conference in S&vres in 1959, 

which led to the paper "La pensCe de l'enfant et la gCometrieW (translated as "The Child's 



Thought and Geometry" in Fuys et al., 1984, pp. 243-252). Soviet mathematics educators 

subsequently became interested in the van Hiele levels, resulting in further research and 

significant changes to the Soviet mathematics curriculum. The impact of the van Hiele 

levels on Soviet mathematics education is summarized in Wirszup (1976). Hoffer (1 983) 

also is a good reference for the early history of research into the van Hiele ideas. Aside 

from Freudenthal(1973), however, little interest was shown in the van Hiele levels in the 

West before the 1980's. Finally, two decades after the original work, it was Izaak 

Wirszup's lecture at the Closing General Session of the NCTM, and his subsequent paper 

(Wirszup, 1976) that brought the van Hiele ideas to the attention of educators in the 

United States. Three major research studies were begun in the United States in 1979; the 

results of these studies are reported in Usiskin (1982), Burger and Shaughnessy (1986), 

and Fuys et al. (1988). 

A convenient location for many primary sources on the van Hiele model is Fuys 

et al. (1 984). Other primary sources are van Hiele and van Hiele-Geldof (1 958) and van 

Hiele (1 986). Secondary sources for van Hiele research are Mayberry (1 983), who finds 

that students may operate at different levels for different concepts; Mason (1 997), who 

claims that gifted students may skip van Hiele levels; and Clements and Battista (1992), 

who cite findings indicating that the van Hiele levels involve cognitive developmental 

factors as well as didactical factors. 

The most comprehensive explication of the levels themselves, however, is 

contained in Fuys et al. (1 988). The authors identified descriptors for the van Hiele 

levels, which can be thought of ways in which the levels manifest themselves in student 

thinking. We will look at each descriptor for Levels 0 to 2, and interpret it in terms of the 
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skills described in the previous section. The descriptors were produced through an 

analysis of original van Hiele sources on the levels, together with input from Pierre van 

Hiele and other prominent researchers on the van Hiele levels. 

Level 0 Descriptors 
The student 
1. identifies instances of a shape by its appearance as a whole 

a. in a simple drawing, diagram or set of cut-outs. 
b. in different positions. 
c. in a shape or other more complex configuration. 

2. constructs, draws, or copies a shape. 
3. names or labels shapes and other geometric configurations and uses standard 
andlor nonstandard names and labels appropriately. 
4. compares and sorts shapes on the basis of their appearance as a whole. 
5. verbally describes shapes by their appearance as a whole 

(Fuys et al., 1988, pp. 58-59) 

Aside from 2, which refers to instantiation, these first five descriptors for Level 0 are 

simply instances of global conceptualization. These descriptors make it explicit that 

global conceptualization of a figure should occur in different circumstances and that 

concept formation is verbal in nature. Moreover, the global concepts can be used to sort 

objects. 

6. solves routine problems by operating on shapes rather than by using properties 
which apply in general. 

(ibid. p. 59) 

An example of this descriptor given by the authors is the use of concrete manipulatives, 

such as straight edges, to verify that the sides of a particular parallelogram do not meet 

and are therefore parallel. This descriptor provides a global conceptualization of a figure 

(parallelogram) and a local conceptualization (the relation of parallelism between 

opposite sides), and an apparent implication between the two. However, since the 



implication is concerned only with a particular case, local deduction is not present from 

the global concept "parallelogram" to the relational concept "opposite sides parallel." 

7. identifies parts of a figure but 
a. does not analyze a figure in terms of its components. 
b. does not think of properties as characterizing a class of figures. 
c. does not make generalizations about shapes or use related language. 

(ibid., p. 59, authors' emphasis) 

Clearly this descriptor refers to global conceptualization when part of a figure is 

conceptualized with no relationship to the whole. The authors give as an example of this 

descriptor students measuring the angles of a square to verify that they are all 90'. A 

byproduct of this process is the local conceptualization that all angles are equal. Again, 

because of the particularity of the student experiment, local deduction is not present. 

In conclusion, the main thrust of Level 0 seems to be global conceptualization, 

although some local conceptualization is present. Particularity precludes deduction of 

any type. Perhaps the paradigm Level 0 activity is given by Descriptor 4, sorting figures 

into classes by overall appearance. 

Level 1 Descriptors 
The student 
1. identifies and tests relationships among components of figures (e.g., 
congruence of opposite sides of a parallelogram; congruence of angles in a tiling 
pattern). 
2. recalls and uses appropriate vocabulary for components and relationships (e.g., 
opposite sides, corresponding angles are congruent, diagonals bisect each other). 

(Fuys et al., 1988, p. 60) 

The example given by the authors for the first descriptor is of a student spontaneously 

noting from the image of a square that it has four sides equal and four angles equal. 

Local conceptualization is present, as it global conceptualization. Any local deduction is 

informal, as the student is not yet deducing properties from the formal definition of a 



square. The second descriptor implies increasing familiarity with the conceptual 

language. 

3. a. compares two shapes according to relationships among their 
components. 
b. sorts shapes in different ways according to certain properties, including 
a sort of all instances of a class from non-instances. 

(ibid., p. 60) 

Shapes at Level 0 could be sorted according to their global conceptualization. This 

descriptor implies now that a student may sort shapes according to possible local 

conceptualizations. 

4. a. interprets and uses verbal descriptions of a figure in terms of its 
properties and uses this description to drawlconstruct the figure. 
b. interprets verbal or symbolic statements of rules and applies them. 

(ibid., pp. 60-61) 

Instantiation of conceptual information is implied by this descriptor. It differs from 

Descriptor 2 in Level 0 in that shapes are instantiated based on their properties. This 

form of instantiation is therefore the inverse of local conceptualization. 

5. discovers properties of specific figures empirically and generalizes properties 
for that class of figures. 

(ibid., p. 61) 

Global and local conceptualizations are present. Unlike Descriptor 6 of Level 0, it can 

also be concluded that an informal local deduction is present because of the 

generalization. 

6. a. describes a class of figures (e.g. parallelograms) in terms of its 
properties. 
b. tells what shape a figure is, given certain properties. 

(ibid., p. 61) 

This descriptor implies an informal local deduction of necessary properties satisfied by a 

geometrical figure. There is also an informal local deduction from sufficient local 



properties to the global conceptualization of the figure. As implied by Descriptor 10 

below, the deduction from sufficient conditions would be based on guesswork rather than 

a formal definition. 

7. identifies which properties used to characterize one class of figures also apply 
to another class of figures and compares classes of figures according to their 
properties. 

(ibid., p. 62)  

A student may note that both squares and rhombuses have four equal sides without 

making the deduction that all squares are rhombuses. This appears to be another form of 

Descriptor 3 above, where shapes are sorted according to possible local 

conceptualizations. 

8. discovers properties of an unfamiliar class of figures. 
(ibid., p. 62)  

This is simply local conceptualization. 

9. solves geometric problems by using known properties of figures or by 
insightful approaches. (ibid., p. 62)  

An example given by the authors is showing the line connecting the centres of two circles 

of equal radius is perpendicular to the line segment joining their points of intersection. 

Imaginative instantiation of a quadrilateral is necessary, the figure formed by joining the 

centres of the circles and their points of intersection. Then a necessary property of the 

circles is that all radii are equal, thence these equal line segments are a sufficient 

condition for a rhombus. Lastly a necessary property of a rhombus is that its diagonals 

are perpendicular. Thus global and local conceptualizations are necessary as is local and 

even global deduction and instantiation. Certainly an example such as has reached the 

limits of Level 1 thinking. 



10. formulates and uses generalizations about properties of figures (guided by 
teacherlmaterial or spontaneously on own) and uses related language (e.g. all, 
every, none) but 

a. does not explain how certain properties of a figure are interrelated. 
b. does not formulate and use formal definitions. 
c. does not explain subclass relationships beyond checking specific 
instances against given list of properties. 
d. does not see a need for proof or logical explanations of generalizations 
discovered empirically and does not use related language (e.g., if-then, 
because) correctly. 

(ibid., p. 63, authors' emphasis) 

This descriptor places limits on the deductions indicated by Descriptor 9. The fact of a 

quadrilateral being a rhombus because its sides are equal is an informal deduction rather 

than an inference from a formal definition. Only by an empirical investigation rather 

than a formal proof can a student explain why a rhombus has perpendicular diagonals. 

The fact of all squares being rhombuses could not be deduced rigorously, and would have 

to be based on a comparison of sets of properties of particular cases, as specified in 

Descriptor 3. 

The important feature of Level 1 thinking is that local conceptualization supplies 

properties of a particular figure, and then generalization extends these properties to a 

whole class of figures. The generalization is informal rather than being based on a formal 

definition, and student reasoning is not yet properly deductive. We can say in broad 

terms that the primary feature of Level 1 is local conceptualization. The paradigm Level 

1 activity is given by Descriptor 5,  determining the properties of a whole class of figures. 

Level 2 Descriptors 
The student 
1. a. identifies different sets of properties that characterize a class of figures 

and tests that these are sufficient. 
b. identifies minimum sets of properties that can characterize a figure. 
c. formulates and uses a definition for a class of figures. 

(Fuys et al., 1988, p. 64) 



This descriptor applies to the process of establishing a formal definition. Formal 

definitions mean that real deductive arguments are possible. 

2. gives informal arguments (using diagrams, cutout shapes that are folded, or 
other materials). 

a. having drawn a conclusion from given information, justifies the 
conclusion using logical relationships. 
b. orders classes of shapes 
c. orders two properties 
d. discovers new properties by deduction. 
e. interrelates several properties in a family tree. 

(ibid., pp. 64-66) 

Descriptors 2 refers to local deduction, based on logical reasoning rather than on 

empirically verified results. It covers all of the features of local deduction necessary for 

geometrical proof. It is now possible for a student to see that a square is a rhombus, 

because a square of necessity has four equal sides, which is a suficient condition for a 

rhombus. The authors' use of "informal" in this context presumably means "non- 

axiomatic." 

3. gives informal deductive arguments 
a. follows a deductive argument and can supply parts of the argument. 
b. gives a summary or variation of a deductive argument. 
c. gives deductive arguments on own. 

(ibid., pp. 66-67) 

Descriptors 3 refers presumably to global deduction. According to the authors' examples 

for a and b, the student is not yet producing global deductive arguments, but is able to 

follow and summarize the steps of a given argument. An example given for c is showing 

that opposite sides of a parallelogram are equal. 

4. gives more than one explanation to prove something and justifies these 
explanations by using family trees. 
5. informally recognizes difference between a statement and its converse. 

(ibid., p. 67) 



Students recognize that there are different routes to reach the same conclusion and that an 

argument cannot necessarily be reversed. These abilities look toward the strategic 

thinking necessary for global deduction. They are embellishments fi-om the main new 

facility of Level 2, which is local deduction. 

6. identifies and uses strategies or insightful reasoning to solve problems. 
(ibid., p. 67) 

The authors give the same example as in Descriptor 9 of Level 1, except that now the two 

circles have unequal radii, which means that the quadrilateral instantiated is a kite rather 

than a rhombus. There is little difference between the two examples, except that students 

may be less familiar with the properties of a kite than a rhombus. The Level 2 

deductions, however, have mathematical certainty. 

7. recognizes the role of deductive argument and approaches problems in a 
deductive manner but 

a. does not grasp the meaning of deduction in an axiomatic sense (e.g., 
does not see the need for definitions and basic assumptions). 
b. does not formally distinguish between a statement and its converse 
(e.g., cannot separate the "Siamese twins7'-the statement and its 
converse). 
c. does not yet establish interrelationships between networks of theorems. 

(ibid. p. 68, authors' emphasis) 

Lastly, having indicated that students are capable of a full geometric proof, the authors 

note the limitations on geometrical reasoning ability of students at Level 2. Descriptor 7 

refers to a student's lack of appreciation of Euclidean geometry as a formal deductive 

system. 

Level 2, reaching as it does, full geometric proof, with mathematically certain 

local deductions, has reached the limit necessary for secondary school geometry, 

assuming the curricula requirements outlined earlier. Level 3 continues with the formal 



reasoning within an axiomatic system, which is the level at which geometry is actually 

presented in Euclid's Elements. Level 4 takes us up to Hilbert and a comparison of 

axiomatic systems, which is clearly beyond the secondary school level. We will not 

analyze the descriptors for Levels 3 and 4, but for the sake of completeness they are 

given below. 

Level 3 Descriptors 
The student 
1. recognizes the need for undefined terms, definitions, and basic assumptions 
(e.g. postulates). 
2. recognizes characteristics of a formal definition (e.g., necessary and sufficient 
conditions) and equivalence of definitions. 
3. proves in an axiomatic setting relationships that were explained informally on 
level 2. 
4. proves relationships between a theorem and related statements (e.g., converse, 
inverse, contrapositive). 
5. establishes interrelationships among networks of theorems. 
6. compares and contrasts different proofs of theorems. 
7. examines effects of changing an initial definition or postulate in a logical 
sequence. 
8. establishes a general principle that unifies several different theorems. 
9. creates proofs from simple sets of axioms frequently using a model to support 
arguments. 
10. gives formal deductive arguments but does not investigate the axiomatics 
themselves or compare axiomatic systems. 

Level 4 Descriptors 
The student 
1. rigorously establishes theorems in different axiomatic systems (e.g., Hilbert's 
approach to foundations of geometry). 
2. compares axiomatic systems (e.g. Euclidean and non-Euclidean geometries); 
spontaneously explores how changes in axioms affect the resulting geometry. 
3. establishes consistency of a set of axioms, independence of an axiom, and 
equivalency of different sets of axioms; creates an axiomatic system for a 
geometry. 
4. invents generalized methods for solving classes of problems. 
5. searches for the broadest context in which a mathematical theoremlprinciple 
will apply. 
6. does in-depth study of the subject logic to develop new insights and approaches 
to logical inference. 

(Fuys et al., 1988, pp. 69-71, authors' emphasis) 



From the discussion above, Level 0 is approximately equal to global 

conceptualization, Level 1 to local conceptualization, and Level 2 to local deduction. 

Global deduction straddles Levels 1 and 2. Each van Hiele level, however, covers a 

broader range of abilities than the respective skills. 

Axiomatic thinking belongs to Level 3, whereas teachers at secondary school 

struggle for their students to achieve competence at Level 2 reasoning. It is clear from 

the perspective of the van Hiele levels that axioms have no place in secondary school 

geometry. Yes, it is possible to teach axiomatic geometry to students who have not 

reached Level 3, and yes, it is possible for students to learn certain facts and procedures 

by rote, but according to van Hiele and van Hiele-Geldof (1958), "They might accept the 

explanations of the teacher, but the subject taught will not sink into [the students' minds]. 

The pupil himself feels helpless" (p. 75). 

Comparison of the van Hiele levels with the geometrical skills established 

through the theoretical framework of this thesis has provided evidence of the validity of 

the new model. Further evidence of the descriptive power of the framework is given by 

the ease with which it can be used to interpret many common geometrical errors, which is 

the next topic. 



7 Pitfalls of Image-based Reasoning 

Many students find geometry difficult. If the researcher can isolate reasons for 

common geometrical mistakes, then educators can plan to overcome them. We claim that 

many geometrical errors by students result from conceptualization of incidental image 

data. They represent the pitfalls of image-based reasoning. The ease with which various 

errors in geometrical reasoning can be explained comprehensively within a coherent 

framework is further evidence of the validity of the proposed theoretical model. The 

errors fall into two broad categories. 

7.1 Concept associated with incidental properties 

The student's notion of the concept is burdened with incidental data. For 

example, a student is unable to conceptualize a square as such if it is represented standing 

on a comer, or is unable to recognize a quadrilateral as a kite if one of its angles is a 

reflex angle. As Hoffer (1983, p. 219) puts it, "Misconceptions, once learned, seem to 

persist, as exemplified by adults who firmly believe that a parallelogram, as displayed in 

most textbooks, cannot have a right angle." 

This problem is presumably caused by inaccurate empirical abstraction at the 

concept-formation stage because too few instantiations are given for a student to 

generalize the concept adequately. 



Examples of this type of error given by Robinson (1 976, p. 23) are (1) a line 

cannot be straight if it is neither horizontal nor vertical, (2) an angle cannot be a right 

angle if its vertex is on the left, and (3) an angle cannot be a right angle if its arms are not 

aligned horizontally and vertically. Clearly, -the student has not fully assimilated the 

concepts "straight line" and "right angle." 

Fischbein and Nachlieli (1 998) contains a series of investigations of this type of 

error. In one experiment 2 18 students in Grades 9 to 1 1 were asked to define 

"parallelogram" and then pick the parallelograms from eight images of quadrilaterals. 

While 89% were able to give a correct definition, only 72% were able correctly to 

identify the parallelograms among the quadrilaterals. It is probable that incidental 

properties such as "obliqueness" have been inadvertently conceptualized in the 

parallelogram definition by those students who failed, for example, to identify a square as 

a parallelogram. Another investigation in Fischbein and Nachlieli gives students a 

number of triangles in different orientations, asking them to identify the right-angled 

triangles. The right-angled triangle with its hypotenuse horizontal was less frequently 

identified than right-angled triangles in other orientations, which supports the observation 

of Robinson (1 976). It may be supposed that orientation is an incidental property that has 

been conceptualized. Lastly, when students were asked to identify the kites from a 

number of quadrilaterals, the concave kite was identified far less frequently than the 

others. It is possible that the incidental property of convexity has been conceptualized 

along with the kite definition. All of these cases deal with faulty geometrical reasoning 

because incidental properties from particular instantiations are uploaded to the 

conceptualization. 



These types of errors concern global conceptualization, which is the main thrust 

of van Hiele Level 0. Misconceptions such as these are formed at the beginning of a 

student's study of geometry and are never corrected. Ensuring proper concept formation 

at the elementary level would help to minimize these errors. It is possible that elementary 

textbooks do not contain sufficiently varied particular instantiations of concepts for 

correct empirical abstraction to occur. A more detailed investigation would refer to 

textbooks using the methodology of Valverde et al. (2002). 

7.2 Conceptualization of incidental properties 

A requirement for the validity of image-based reasoning is that diagrams are 

schematic and only schematic properties are allowed to be conceptualized from diagrams. 

A misapprehension of this necessity is a source of student error. 

An example of local conceptualization of incidental properties is a student 

assuming that two lines are equal in length because it appears that way in the diagram; an 

example of the global conceptualization of incidental properties is where the image of a 

quadrilateral is conceptualized as a square, when it is supposed to represent a more 

general shape. 

Fischbein (1993, pp. 145-148) conducted some research on fundamental errors of 

this kind. He asked students from Grades 2 to 6 to compare the point at the intersection 

of two lines and the point at the intersection of four lines. Students were asked if one 

point was bigger or heavier than the other point. At Grade 2,68% of students did not 

reply, perhaps because they did not understand the query; in Grade 3,45.7% claimed the 

point at the intersection of four lines was bigger; in Grade 4, 50.9% claimed it was 
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bigger; in Grade 5,40% claimed it was bigger; in Grade 6 still 20% of students found it 

was larger. The students are erroneously conceptualizing incidental properties such as the 

thickness or "weight" of the lines. Students that make this kind of error are far from 

understanding the basic conventions necessary for utilizing schematic diagrams. 

Among older students, conceptualization of incidental properties can take 

different forms. On the one hand, incidental data may be used for a subsequent 

deduction. 

Erroneous deduction based 
on conceptualization of 

incidental data 

Figure 7.1: Conceptualization of incidental data used for deduction. 

The error in conceptualizing four sides of a quadrilateral equal just because they 

appear that way, for example, is compounded by a deduction that the diagonals are 

perpendicular. Note that the local deduction itself is correct-it is the initial local 

conceptualization that is in error. 

One the other hand, an error in local deduction may be supported by a 

conceptualization of incidental data. 



Erroneous deduction 
supported by conceptualization 

of incidental data 

/-i/ of incidental data 

Figure 7.2: Erroneous deduction supported by incidental data. 

In this case, a theorem may be misapplied or a bogus new theorem invented. For 

example, a student may conclude that two triangles are congruent because two pairs of 

sides are equal and a pair of angles is equal, although the angles are not contained by the 

sides (Robinson, 1976, p. 21). The erroneous deduction is supported by 

conceptualization of incidental data, provided the two triangles appear to be congruent. 

It is possible to characterize this last example alternatively as a simple deductive 

mistake if the SAS theorem is misremembered or misapplied. Geometrical errors 

sometimes may be interpreted in more than one way. 

Robinson (1976, p. 20) gives an example of a geometrical error that can be 

interpreted in at least two ways. The researcher shows the student a quadrilateral that 

looks like a parallelogram. However, the given information is only that one pair of 

opposite sides are parallel. The student mistakenly deduces that the two transversal line 

segments are equal because "parallel lines are everywhere equidistant." This erroneous 

deduction is amply supported, by incidental diagrammatic evidence that the two 

9 1 



transversals are of equal length. In another interpretation, the student may have made the 

inappropriate metrical local conceptualization that the two transversals are parallel. Then 

a correct deduction can be made that the figure is a parallelogram, from which a second 

correct deduction can be made that the transversals are equal because opposite sides of 

parallelograms are equal. In the first interpretation, the erroneous deduction is supported 

by incidental data; in the second interpretation, an incidental local conceptualization is 

followed by correct deductions. 

7.3 Other types of geometrical error 

Of course not all geometric errors can be classified as problems with 

conceptualization of incidental data. For example, if a student does not correctly 

understand a concept, then it may result in an incorrect instantiation of the concept, 

leading to an incorrect deduction. Examples of this type cited by Robinson (1976, p. 20) 

are misunderstandings of the relations "equidistant," "complementary," and 

"perpendicular." 

Likewise, a student may be unable to understand and apply a theorem. An 

example of this type is the proportionality between corresponding sides of similar 

triangles. The student is unable to identifl the pairs of corresponding sides, or is unable 

to write the equation relating their lengths, even if the corresponding sides are identified. 

Problems with global deduction may also be classified as geometrical errors. In 

this case, a student is unable to articulate the series of local deductions necessary to prove 

a proposition, which may well involve being unable to instantiate any necessary 

additional constructions. In particular, the reductio ad absurdum type of global deduction 
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is very difficult for students to grasp, since it often involves instantiating concepts that 

are obviously not true from an arithmetical or metrical reading of the diagram. 

Difficulties with reductio ad absurdum may also be interpreted as cases of 

conceptualizing incidental data. 

7.4 Concluding remarks about geometrical errors 

Although there are different reasons for errors in geometrical reasoning, and some 

types of errors may even be interpreted in several ways, it is clear that conceptualization 

of incidental data is a major source of mistakes. 

As this investigation argues, geometry without axioms needs schematic diagrams. 

It is probable, however, that many students do not receive specific instruction in how to 

recognize and conceptualize schematic properties during their secondary school 

education. Moreover, the arithmetical, measurement geometry of earlier grades way well 

mitigate against a proper understanding of schematic diagrams. A conclusion of this 

study is that specific didactical strategies should be designed and implemented in order 

that senior secondary students may better appreciate the types of geometrical property 

that may be successfully uploaded from the diagram. 



Reflection and Critique 

The goal of this study has been to investigate the necessity, implications, and 

pitfalls of image-based reasoning in school geometry. In order to deal adequately with 

these issues it was found necessary to develop a new theoretical framework for image- 

based reasoning in geometry. Thus the conceptualization model, the principles of 

conceptualization, and the geometrical skills were formulated. The main thrust of this 

thesis is development of the framework, testing its validity by comparing it with the van 

Hiele levels, and demonstrating its descriptive power with an interpretation of common 

errors in geometrical reasoning. 

Educational researchers need a framework for image-based reasoning because 

image-based reasoning is necessary for geometry without axioms. An axiomatic 

treatment of geometry in secondary schools is inappropriate, as expounded by 

Freudenthal(1973) and Zeitler (1991) and confirmed by the van Hiele levels. 

An important implication of allowing image-based reasoning concerns the fact 

that the propositions of deductive geometry are general, whereas images are particular. 

How can the geometer justify arguing from the particular to the general? Finding a 

satisfactory resolution of this dilemma was a major concern of this study. It relies on a 

proper understanding of the notion of schematic case, and was inspired by Netz's (1 999) 

analysis of the Greek schematic diagram. 



A pitfall of allowing image-based reasoning is that the student must be fully 

aware of the types of properties that may be uploaded reliably from the diagram. Many 

errors in geometrical reasoning can be attributed to conceptualization of incidental 

properties. It is necessary for the schematic diagram and schematic properties to be 

taught explicitly in the classroom. This task is made all the harder because the 

measurement geometry of earlier grades would tend to program students with an 

arithmetical understanding of geometry diagrams. 

These conclusions depend firstly on an understanding of image and concept. The 

limited scope of this study naturally constrained the extent and depth of the investigation. 

Although image and concept are referred to as mental representations, the discussion 

does not address the real meaning of "mental representation." Neither does it deal fully 

with the origin of conceptual representations, aside from a glance at empirical abstraction 

and a brief overview of two more sophisticated theories. A foundational rather than 

functional study would attempt to define and distinguish between mental representations 

at the level of the neural architecture of the brain, and might refer first to the 

connectionism of Rumelhart et a1.(1986) in this regard. 

There are some omissions in the argument for the generality of image-based 

reasoning. In particular, more clarity is required both of the intuitive mechanism for 

determining schematic cases and the way in which additional diagrammatic constructions 

can affect schematic cases. 

Image-based reasoning was essential in Greek geometry, despite Euclid's axioms. 

Therefore, Greek geometrical practice is an important case study when trying to 

understand the implications of geometry without axioms. The historical overview of 



geometry after Euclid is quite sketchy, although it is not central to the main argument. A 

more extensive study would review the history of geometry teaching, particularly since 

Hilbert, which is a topic this thesis does not touch upon. 

The current study examines the geometry curricula of only three English-speaking 

educational jurisdictions. A more extensive investigation of geometry curricula would 

clarify the relative importance of axioms and schematic diagrams in more cases. 

It is conjectured that inaccurate empirical abstraction caused by a paucity of 

particular examples is the reason for a type of geometrical error related to the 

conceptualization of incidental properties. One way of investigating this would be to 

examine textbook practice, for which purpose Valverde et al. (2002) provides a 

compelling methodology. 

This study has suggested that attention to schematic diagrams is essential for 

successfully teaching deductive geometry without axioms, although it does not propose a 

concrete didactical program to achieve this end. It may be that the most efficient way to 

reduce errors caused by incidental conceptualizations would be to teach the schematic 

diagram explicitly. It would be informative to conduct empirical research on the effect of 

such a small-scale addition to the senior geometry curriculum. 

A gaping hole in the investigation so far is that no mention has been made of 

computer-aided learning in geometry. Various computer programs allow one to construct 

a geometrical diagram and then manipulate and measure its various components. A 

tremendous strength of this approach is that students are easily able to make and test 

conjectures. In fact, empirical verification of propositions is easy. However, it should be 

realized that that computer-generated images of this type emphasize arithmetical 
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properties rather than schematic properties. It is still necessary to teach deductive proof. 

We have suggested that the arithmetical measurement geometry of earlier grades may 

retard progress in deductive geometry. Computer-generated diagrams may have the same 

deleterious effect. Nevertheless, computer-aided geometry is a growing, important 

subject. A further investigation would have to address the role of computer-aided 

geometry in the classroom. 

The most pressing task, however, is to conduct empirical research. The 

theoretical framework developed through this investigation may suggest specific research 

questions. The resulting empirical research could provide further validation of the 

framework developed herein. 

In conclusion, the major contributions of this thesis are the theoretical framework, 

the deconstruction of deductive geometrical reasoning represented by Figure 5.6, and the 

resulting identification of the five geometrical reasoning skills. This framework for 

image-based reasoning in geometry and can be seen as an initial attempt to lay a 

foundation for a "logic" of image-based reasoning. As such, it also sheds light on the van 

Hiele levels. Moreover, the geometrical reasoning skills I have derived compliment and 

increase the pedagogical efficacy of this framework and have practical applications that 

can serve to improve the teaching of geometry. 



Appendix 

A geometric figure may usually be conceptualized in many ways. A square can be 

thought of also as a rectangle, a rhombus, a parallelogram, a quadrilateral, or just as a geometrical 

figure. In fact, a conceptualization of a geometric figure is simply a set of properties of the 

figure; the set of all conceptualizations is the power set of the set of all properties. 

We can impose an algebraic structure on the set of conceptualizations of a figure by 

means of the binary operation of set union. Thus, if c and d are two conceptualizations of a 

figure, then define c 0 d = c u d . However, this is the same structure than can be applied to any 

power set, and it is uninteresting. 

Another approach is needed. Define i? , the completion of conceptualization c ,  to be the 

set of all properties that can be deduced finitely from the properties of c . (Obviously, c F .) 

Then define the relation - such that c O d e F r= d . The relation - is an equivalence relation 

because it is reflexive, symmetric, and transitive. Thus, - defines a set of equivalence classes 

among the conceptualizations. Write [c] for the equivalence class containing c . In a sense, the 

members of an equivalence class all represent the same logical information content, and so 

equality of completions is a natural relation to use. Define completion classes to mean this set of 

equivalence classes of conceptualizations. 

Now define a binary operation between the completion classes by means of 

[c] 0 [dl = [c u d l .  It is not immediately obvious that this operation is well defined, so it is 

necessary to prove that it is so. Suppose there are conceptualizations c , c' , d , and d' such that 
- - - 
c = 2 and d = d' . It is necessary to show [c] 0 [dl = [c'] 0 [d'] . In other words, it is necessary 

-- 
to show [c u dl = [c' u d'] , or c u d = c' u d' . Suppose p E c u d . (It makes no difference if 

p E C' u d' .) Then 3p1,. . . , p, E c u d such that {p , ,  . . . , p, ) 3 p . Assume pl E c . (It 

makes no difference if pl E d .) Since F = Z' , 3q,,. . . , q, E C' such that {q,,. . . , q,) 3 p, . 

The same is true for every pi,  that it is possible to find a finite set of members of c' or d' from 



-- 
which it can be deduced. Therefore, p E c' u d' , and so c u d c c' u d' . By symmetry, 
-- 
c u d 2 c' u d' . Thus, [C  u dl = [c' u d'] , as required. 

It is easily seen to be true that ([c] 0 [dl) 0 [el  = [c] 0 ([dl 0 [el) and [c] 0 [dl = [dl 0 [c] 

so that the set of completion classes with this operation is a commutative semigroup. The empty 

set of properties can be referred to as the null conceptualization. It can be seen that [0] is an 

identity element, so that the set of completion classes is actually a monoid. Write 0 = 101. 

Every set of completion classes has another special element, which is the completion class of the 

set of all possible properties, called the universal conceptualization. Write 1 for this element. 

Clearly, [c] 0 1 = 1 for every c . Furthermore, [c] 0 [c] = [c] for every c , so that every 

completion class is idempotent. 

Define the relation [c] I [dl e [c] 0 [dl = [d l ,  which is easily seen to be reflexive, 

antisymmetric, and transitive. This relation, therefore, makes the completion classes into a 

partially ordered set. Clearly 0 is the least element and 1 is the greatest element, so that any two 

completion classes must have a supremum and an infimum. Therefore, the completion classes 

form a lattice. This is theproperty lattice of the geometric figure. It is clear that the lattice is 

more interesting than the semigroup because of the additional structure implied by the supremum. 

A more detailed analysis would need some lattice theory, which is beyond the scope of this 

investigation. 

The reader may see with the following example that a more interesting structure has been 

gained by considering the equivalence classes of completions. Consider U B C  and ADEF . 
Let c be the conceptualization that AB = DE and AC = D F  . Let d be the conceptualization 

LA = LD . The completions of c and d will not produce extra properties. However, c u d  

generates in addition the properties BC = EF , L B  = L E ,  and L C  = LF , because the union 

produces congruent triangles. 

There are other benefits to using completion classes. For example, considering the 

properties of a polygon, it is not necessary to include both interior angles and exterior angles, 

because, given an interior angle, the exterior angle belongs to the completion class of the interior 

angle. Similarly, definitions that group together properties are not needed as properties 

themselves, since they would belong to the completion class of the group of properties that form 

the definition. In fact, the only properties needed are a list of basic properties from which all 

other properties are generated. These are the generatingproperties. 



It would be very nice to be able to show that each set of generating properties of a given 

geometric figure contains the same number of elements, and then define this to be the 

"dimension" of the figure. This does not seem, however, to be possible in the general case. 

For AABC, assume the six generating properties are the measures of the angles A, B, 

and C and the lengths of the sides a, b, and c. Then the completion classes are as follows (in 

which square brackets are omitted to simplifL the notation): 

0, A, B, C, a, b, c, ABC, Aa, Ab, Ac, Ba, Bb, Bc, Ca, 

Cb, Cc, ab, ac, bc, Aab, Aac, Bab, Bbc, Cac, Cbc, 1 

It is unnecessary to write out the full multiplication table. Examples are 

[A]  0 [a ]  = [Aa]  , [A]  0 [cb] = 1,  and so on. It is interesting to note that there are 27 completion 

classes. The same analysis on a quadrilateral produces 160 completion classes. 

Consider another situation, with two triangles, and the six generating properties being 

equality of the three pairs of corresponding angles and the three pairs of corresponding sides. 

Then there is an obvious bijective mapping between the property sets of the two figures, and this 

mapping preserves the operation. Therefore, the two property lattices are isomorphic. This is 

exactly as it should be, because it seems clear that the two situations have precisely the same 

information structure. 

Associating an algebraic structure with a geometric figure in the manner discussed is 

reminiscent of algebraic topology. It could provide a way of classifLing geometrical figures 

according to the associated lattice structure. It appears, however, that there is no direct link 

between the property lattice and the invariants of algebraic topology-the former is concerned 

with information structure, whereas the latter reflects spatial structure. 

The property lattice can be applied outside of geometry. Kosslyn (1 983) makes the point 

that "images-like pictures-are susceptible to multiple interpretations. An image of a sitting 

man could be seen as representing 'bent knees,' 'John's head,' or a 'twentieth century person"' 

(p. 6). In any given situation, simply define the generating properties. For example, the 

generating properties "cloudy" (C) and "rainy" (R) determine the following set of completion 

classes: (0, C, 1 }, where 1, of course, is equivalent to CR. 

Note that if "sunny" (S) is included in the set of generating properties, the universal 

conceptualization would represent the very strange weather pattern CRS. It is necessary to be 

clear that the image is primary and that the conceptualizations are different perspectives on the 
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image. Simply choosing a set of properties without reference to an image can lead to absurdities. 

For example, if "night" (N) and "day (D)" are chosen, then ND is a ridiculous universal 

conceptualization. 

An application of the property lattice outside of geometry may be the laws of Gestalt, 

which are summarized by Kosslyn (1983, p. 88). Consider only the first of these, the law of 

proximity, according to which, parts of an image near each other will tend to be grouped together 

For example, XXXX is seen as one unit, whereas XX XX is two. In other words, an image is 

more likely to be conceptualized as a whole if its various components are close together. 

Suppose that two regions of an image have conceptualizations c and d , respectively. 

Then if F u d = c u d , the two regions are disjoint with respect to these conceptualizations. 

Disjointness means that the regions do not have "proximity," and are therefore likely to be 

conceptualized separately. For example, an image of a man in a car may result in the property 

"driver," whereas an image of a man standing separately from a car may produce no additional 

properties other than those supplied by a description of the man and a description of the car. 

The property lattice hints at a mathematical definition of the Gestalt law of proximity. 

Perhaps there are applications elsewhere in cognitive psychology. We can faintly discern that 

behind and beyond the messy cacophony of impressions, thoughts, and feelings in which we live 

lies a discrete, pure mathematical structure, the property lattice. 
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