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Abstract

The slowdown of Moore’s law and Dennard scaling has emphasized the importance of
domain-specific architectures. These architectures improve compute performance by lever-
aging architectural specialization to achieve efficiency and performance gains to handle
specific tasks and applications, that traditional scaling could no longer provide. Current
domain-specific architectures (DSAs) work with static data structures, only supporting in-
place updates (updates that don’t require data structure modifications). As DSAs target
real-world applications, supporting mutable and dynamically resizable data structures be-
comes necessary. DSAs lack a synchronization facility, so they cannot support dynamic data
structures and are forced to use address-based atomics or batch updates on the host. Both
approaches introduce prohibitive performance penalties, requiring large lock caches. Range-
blocks (RBlox) develops a hardware synchronization facility for DSAs to support dynamic
data structures, using key ranges to capture synchronization boundaries, tapping into the
inherent parallelism of the data structure layout. We make two novel contributions, along
with hardware implementation: i) Range locks are symbolic, compactly representing mu-
texes on multiple nested objects. Thus, any insert requires a single range lock, and a small
on-chip table suffices (2kb) compared to large caches (256kb) for address-based locks. ii)
Ranges explicitly represent regions of interest, instantly achieving mutual exclusion. On a
128-tile dataflow DSA, we improve performance by 15×, reduce DRAM bandwidth by 4×,
save 70% of on-chip traffic, and require 6.6% of on-chip energy (we demonstrate scalability
up to 256 tiles).

Keywords: Synchronization facility; DSA; Hardware Support; Dynamic Data Structures
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Chapter 1

Introduction

Traditional general purpose processors (GPP) face limitations and bottlenecks with the
slowdown of Moore’s law and Dennard scaling, which push for higher compute capabilities,
maintaining the size and power consumption. Innovations in hardware design have pushed
for a more significant performance boost with the development of hardware accelerators or
domain-specific architectures (DSAs). These specialized architectures reduce the cost and
power consumption for application-specific workloads compared to GPPs.

The data explosion, with the proliferation of data generated, stored, and processed,
represents one of the most significant challenges in the modern digital era, with an increasing
demand for high-performance and energy-efficient computing.

GPPs struggle to provide efficient processing capabilities required to process these enor-
mous amounts of data. Domain-specific architectures (DSAs) deviate from general-purpose
processors and cater to tailored workload-based optimizations, providing a platform for
processing data in parallel and offering scalability with higher performance and efficiency.

Current state-of-the-art spatial dataflow DSAs cater to data analytics, machine learning,
database workloads, etc [59, 60, 52]. However, they only deal with statically assigned data
structures at runtime and do not offer a facility to work with dynamically mutating data
structures. Many real-world applications such as graph processing [36, 56, 66, 3], machine
learning [49, 42], and data analytics [17] involve dataset changes over time and often
frequently. The challenge is that dataset changes necessitate changes to the underlying data
structure, e.g., new vertex insertions in a graph or new rows in a database. We refer to data
structures that effectively support such changes as dynamic data structures (DDX) [11, 41,
6, 32]. Unfortunately, current state-of-the-art DSAs do not support mutations; they only
work with static data-structures [39, 60, 14, 30, 2, 46, 13, 22, 15, 25, 64]. Static data-
structures [34, 28, 8] are typically affine, and mutations require moving already-stored data
in memory. We find that the updates stall readers and prior work have shown that updates
account for up to 90% of time [35, 37].
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Figure 1.1: Address-based Locks vs. Range-blocks synchronization for a B+tree traversal.
For clarity, we use an explicit notation for ranges: Lo (leftmost leaf) and Hi (rightmost leaf)
leaf. Inf: Max leaf value in the tree.

1.1 Mutations on host

Currently, DSAs operate solely on read-only workloads, with interspersed minor updates
(which do not structurally modify the underlying data structure, e.g., UPDATE WHERE).
Mutations to the data structure are pushed to the host machine, which performs data
structure inserts using mutexes and atomics, stalling the readers on the DSA. After the
inserts are done, the DSA continues with the reads. DSAs do not perform the inserts because
they currently do not support atomics or LL-SC since DSAs do not do loads and stores but
perform access-execute cycles.

Let us take an example of a dataflow accelerator that uses B+Trees as an underlying
data structure [60] for a simple database scan workload; here, the reads happen on the DSA
but on encountering an INSERT INTO statement, the readers are stalled and updates to the
B+Tree are pushed to the host which performs mutations, synchronized using address locks
(figure 1.1). A flag is associated with each node, which we grab and release as we traverse
to permit multiple threads to enter. The term address locks refers to the notion that locks
are associated with individual nodes [10] and are not explicitly aware of the data-structure
hierarchy. This is a consequence of the locks being implemented using hardware atomics
that work on memory addresses, i.e., Load-Linked Store-Conditional (LL-SC) and Compare-
and-Swap (CAS). Consequently, multiple challenges arise: i) Address locks introduce
high penalty. We find that even with hardware acceleration (e.g., lock cache [67, 65]), the
performance penalty is prohibitive due to the number of locks. Address locks must contend
with the uneasy tradeoff between lock granularity and parallelism. ii) Per-node locks, lead
to a large sync working set. Mutations will grab locks on each node during a traversal.
This leads to a large synchronization working set and thrashes hardware structures such as
lock caches [67, 65]. iii) Address-based atomics means locks are forced to perform
hand-over-hand. The locks are associated with the node’s address, and in a B+tree, only
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the parent includes a reference to the child pointer. Thus, to access each node’s lock, we
need to access the parent. This leads to long synchronization chains kick-starting from the
root and causes an entrance bottleneck.

1.2 Range-Blocks overview

Our Approach Range-blocks (RBlox) introduces hardware support for synchronizing
dynamic data structures in DSAs. The central idea is to use the key ranges to demarcate
synchronization boundaries. RBlox coordinates concurrent operations in the same logical
space as that used to organize the data structure and takes advantage of underlying par-
allelism in the layout. We added a small hardware table where threads register and check
ranges to avoid conflicts (Figure 1.1: Right). We observe multiple benefits for range locks
compared to address locks: i)Per-update locks lead to a small table. Ranges decou-
ple the locks from the nodes and associate them with the operation (or thread). Thus, the
number of entries required is proportional to the number of updates. ii) Range locks com-
pactly represent synchronization boundaries, meaning fewer locks are required
per update. Range locks are symbolic and enable a compressed representation. A range
lock on [7–14] serves as a mutex on children 7, 8–9,11 and 12–14; no need for individual
locks. iii) Instant locks for quick synchronization. Range locks explicitly identify all
locked ranges, which, by process of elimination, also identifies the available ranges. Thus,
we can identify and grab unlocked ranges, bypassing the need for ordered traversals, e.g.,
to insert a key 25, the update has grabbed [24–34] without traversing through ancestors.
iv) Adaptable concurrency with flexible lock granularity The system can implement
coarse-grained or fine-grained locking by choosing broader or narrower ranges (e.g., [7–14]
vs. [7–10]). This avoids algorithm redesigns.

1.3 Contributions

Contribution 1 We incorporate RBlox into spatial dataflow architectures [59, 60], and
enable parallel updates on the DSA. We port five different algorithms: database scans,
data analytics [59], pagerank [36], key-value stores [17], OS virtual-memory code [31], and
study multiple data-structures: B+trees, sorted-sets, hash-tables, and adjacency lists. Our
contributions are as follows:

• We propose a novel hardware facility for synchronization in DSAs based on data-
structure key ranges. RBlox enables DSAs to work with dynamic data structures.

• We evaluate two variants: RBlox, which employs a small table for mutual exclusion
only, and RBlox++, which enables instant locking and shortens critical path.

3



• RBlox improves performance by 7.8× by streamlining locks. We reduced sync ops
by 1

3 and DRAM energy by 35%. We analytically show that we only need 1 range
lock/update, and in the worst case, we need only O(Ntiles). i.e., 128 entries (≃2KB)
for 128 tile DSA.

• RBlox++ improves performance by 15× by instantly grabbing free range locks. It
reduces the number of sync ops on the critical path by 2

3 compared to baseline. It
requires an optional 16KB victim table to reuse unlocked ranges.

RBlox makes novel contributions across two themes: synchronization and spatial dataflow
architectures. We briefly state them to help contextualize our work. : Contribution 1: We are
the first to explore a practical implementation of range locks for in-memory data structures.
Prior work explored ranges for database transactions [27], virtual-memory [31], and file-
systems [48]. We exploit ranges to reduce the number of locks, enable instant locking,
and improve parallelism (compared to address-based locks). Contribution 2: We are the
first to support dynamically re-sizeable and mutable data structures in DSAs. The lack
of synchronization in DSAs has limited the types of applications, parallel patterns, and
data structures they support. We address this problem. Contribution 3: We are the first to
develop hardware support for range locks. Prior hardware support for synchronization has
focused on address-based atomics (e.g., [67, 65, 58, 63]). We analytically show that range
locks are more efficient (§ 4.2) and compare performance.

Contribution 2 Why is there a chapter 5? Discussing the relationship between chapters
3 and 5.

I authored another paper before RBlox, called METAL: Caching Multi-level Indexes
in Domain-Specific Architectures. METAL is an intelligent caching framework that can
be ported to spatial data flow accelerators for speeding up read-only workloads. METAL
has an index cache (IX-cache) that stores data structure layout information (we elaborate
on this in Chapter 5) for speeding up data DSA walks and employs reuse patterns [47].
METAL with only the index cache (IX-cache), is termed "METAL-IX ", which represents
my contributions to the paper.

We incorporate METAL-IX into four DSAs: Gorgon [59], Capstan [52], Aurochs [60],
and Widx [29] and target a set of 8 algorithms. In Chapter 5, we provide an overview of
the DSAs we target along with a detailed description. We evaluate index reuse in multiple
applications: data analytics, database scans, graph processing, spatial analysis, and sparse
matrix algebra. METAL’s contributions are as follows:

• We propose METAL an architectural template for enabling DSAs to work with multi-
level indexed data structures such as trees, hash tables, and fibers.
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• We create a novel cache architecture, index cache(IX-cache), that uses index ranges
as cache tags. Reorganizing the cache helps short-circuit index walks and improves
caching efficiency.

• METAL with index cache (termed METAL-IX) performs 2.8× better than address-
cache, and 1.6× better than X-cache [54] (state-of-the-art DSA cache). We save 1.4×
bandwidth vs. address and 1.2× vs. X-cache.

Contribution 3 Relation between my thesis and Aditya Prasanna’s M.Sc. thesis from
Simon Fraser University [47]. I worked on METAL-IX (chapter 5). Aditya Prasanna’s thesis
explores reuse patterns as an optimization to METAL-IX (called METAL). More details on
METAL (METAL-IX + Reuse patterns) can be found in his thesis.

1.4 Publications

This dissertation includes work published at ASPLOS’24, a peer-reviewed conference. I
have collaborated with my supervisor, Dr. Arrvindh Shriraman, to conduct the research
discussed. The publications are listed below, along with the contributions of the authors:

• ASPLOS’24 - METAL: Caching Multi-level Indexes in Domain-Specific
Architectures was previously published at the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, with
equal contribution author, Aditya Prasanna and supervisors Dr. Arrvindh Shriraman
and Dr. Jonathan Balkind.

– Anagha M Anil Kumar : Contributed to the index cache: idea, design, develop-
ment, and evaluation of the work. I implemented the IX-cache and its interfacing
with other modules on Gem5-SALAM [51] (a cycle-accurate hardware accelera-
tor simulation environment), constituting the METAL-IX. I also performed the
workload setup for METAL-IX and Baseline.

– Aditya Prasanna: Contributed to the Reuse Patterns: idea, design, development
and evaluation of the work, along with workload set up for METAL.

• ASPLOS’25 - RANGE-BLOCKS: A Synchronizing Facility for Data-Structures
in Domain-Specific Architectures was submitted to the 30th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, with co-author Aditya Prasanna and supervisor Dr. Arrvindh Shriraman. It is
currently in Major Revision.

– Anagha M Anil Kumar : Contributed to the idea, design, and development of
RBlox , RBlox++, and RBlox API. Completed the software implementation
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and also simulated on Gem5-Salam [51]. Performed evaluation for RBlox and
RBlox++.

– Aditya Prasanna: Contributed to the workload setup and delta pagerank end-to-
end implementation. Also performed performance cliff exploration.

1.5 Dissertation Outline

Chapter 2

Indexes Architectural Scope & Motivation

Spatial DSA

Section 2.1 Section 2.2

Chapter 3

Locking case 
study: B+Tree

RBlox Tables

Range-Blocks

Section 3.1 Section 3.2

Execution Model

Section 3.3-3.4

Microarchitecture

Section 3.5

RBlox API

Section 3.6

Chapter 5

METAL-IX Performance

METAL-IX Evaluation

Section 4.1 Section 4.2.1

DRAM Energy

Section 4.2.2

IxCache Design 
Sweep

Section 4.2.3-4.2.4

Workload Setup Performance

Range-Blocks Evaluation

Section 5.1 Section 5.2.1

Scalability Study

Section 5.2.2

Energy

Section 5.2.3

Design 
Exploration
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Correctness
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Figure 1.2: Dissertation overview

This dissertation is organized as follows: Chapter 2 describes the related work, scope,
and motivation for RBlox and METAL-IX. Chapter 3 describes RBlox and its architecture.
Chapter 4 describes the extensive evaluation carried out on RBlox. Chapter 5 describes
METAL-IX, whose IX-cache inspired the hardware for the RBlox tables. The summary is
outlined in chapter 6.
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Chapter 2

Impact and Scope

This chapter details the importance of indexes, followed by their challenges and deployment
in current state-of-the-art DSAs. We motivate that METAL speeds up reads in DSAs by
addressing the challenges of data-structure walks (§ 2.1).DSAs currently lack a synchroniza-
tion facility for writers. We motivate and develop RBlox to address these challenges (§ 2.2)
and discuss the limitations of previous work § 2.3.

2.1 Indexes in target DSAs

Indexed data-structures or indexes are data storage formats that organize and manage data
efficiently. They are of different types, such as B+Trees, Hash Tables, Graphs, etc. They
organize data in a way that significantly reduces search time, enhancing the performance of
operations such as querying and updating records, resulting in extensive usage in database
systems [40] for query execution speed optimization, as a product of reducing the amount of
data scanned. Indexes are also used in search engines to handle large-scale data efficiently.
Sparse Matrices employ indexes to represent and query data with low memory consumption,
indexes additionally optimize compute by parallel handling and accessing non-zero data
elements; Overall, indexes are invaluable to processing large volumes of real-world data and
contributing to more responsive systems.

State-of-the-art spatial dataflow architectures support indexes. They provide a streaming
interface that streams every node access from memory and a small scratchpad to exploit
immediate reuse. However, they do not account for locality reuse or index updates. Indexes
are structured to store data in a hierarchical and efficient way. The DSAs walk indexes
to access data objects [60, 54], and we find that the walk time accounts for 30%-90% of
end-to-end time.

Address-based caches are well understood to capture reuse in indexes and reduce the
walk latency by cutting memory access time. However, they have organizational flaws, and
we illustrate them as challenges while caching for a classic index - the B+tree. Challenge
1: Address caches always require root-to-leaf walks, which overflow the cache
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Figure 2.1: index walk with address cache vs. with IX-cache (METAL-IX).

capacity. The address cache is tagged by addresses. But each node’s address is only acces-
sible from its parent, so walks traverse the whole B+Tree. Even if a lower node is cached, we
cannot reach it until the parent is read. A hit or miss in the address cache triggers root-to-
leaf walks. However, on a hit, the address cache eliminates 1 memory access. Challenge 2:
Address caches are polluted with redundant nodes. Address cache caches all nodes
touched along a walk to minimize the walk latency. However, this results in redundant en-
tries because if we could identify the level already cached, we wouldn’t need to traverse the
redundant levels above it. Challenge 3: Tradeoff between reach and effectiveness:
Upper nodes are common across multiple walks and maximize the reach while lower nodes
effectively short circuit and reduce walk latency - this tradeoff requires knowledge of the
workload, which the address cache is blind to since it tags by addresses.

We observe that the same key is searched at all levels to locate the appropriate data
object during a walk. Lookup at every internal node can be redundant. This paves the path
to the idea of "short-circuiting", that is, traversing an index to retrieve a data object by
caching an internal node, reducing the number of redundant comparisons, especially in deep
indexes.

This motivated the development of the IX-cache, as an integration onto state-of-the-
art spatial DSAs to speed up index walks. Caching data-structure ranges helped start the
traversal from intermediate nodes instead of always starting from the root node, speeding
up index walks on the DSA, resulting in faster reads by 5.3×.

The IX-cache is a novel cache architecture that inverts the organization of the address
cache, and the [Lo–Hi] range in the index node constitutes the tag. The DSA probes the IX-
cache using index keys and can kickstart the walk from the cached node closer to the leaf on
a hit. Interestingly, beyond reducing the walk latency, a primary benefit of short-circuiting
is reducing the working set size (the total number of nodes touched during a walk). Per
tag matches require more energy than address cache, but fewer accesses mean lower overall
energy.

IX-cache can cache varying granularity of ranges - caching for reach would cache a
coarser-grained range - to short-circuit multiple walks, and caching for effectiveness would
cache a finer-grained range - to short-circuit more effectively and reduce walk latency.
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METAL employs reuse patterns in addition to IX-cache, which is further discussed in
Aditya Prasanna’s M.Sc. thesis (SFU) [47]. We term METAL with just IX-cache and without
using reuse patterns as METAL-IX.

2.2 Architecture Scope: Spatial Dataflow Architectures.

METAL speeds up reads on DSAs through short-circuiting but does not provide a synchro-
nization facility to speed up writes on DSAs. In fact, this is a gap in current state-of-the-art
dataflow architectures. We aim to address the paucity of research on synchronization in
domain-specific architectures (DSAs), the platform of choice for many applications [23].
RBlox evaluation reveals that our design does well against state-of-the-art synchronization
from CPUs and GPUs, lending confidence that the ideas are architecture-independent. The
architectural template for many DSAs in industry [45, 53, 1] and academia [39, 64, 16, 29,
52, 60, 15, 59] is spatial dataflow . Spatial dataflow organizes the chip as a distributed mesh
of compute and memory tiles, with many independent memory spaces such as scratchpads,
hardware FIFOs, and pipeline registers. They eschew caches, coherence, and atomics to
maximize compute-memory bandwidth and minimize data-movement energy. Due to the
dearth of synchronization, the generality of current DSAs is limited: i) they support ei-
ther read-only [60] or narrow write behaviour, e.g., reductions [21] ii) they employ space
inefficient affine static data-structures (e.g., bitmaps) [26] that cannot handle data resiz-
ing. iii) they only target deterministic algorithms [30] and cannot support faster-converging
dynamic algorithms [7].

Incorporating mutating data-structures in spatial dataflow pipelines is challenging: i)
data-structure writes require support for generalized multiple reader-writer synchronization,
while spatial dataflow is limited to single producer-single consumer. ii) Both the mutating
threads that need to be synchronized and when they need to be synchronized are only known
at runtime. Unfortunately, in spatial dataflow, all thread interactions must be statically
analyzable by the compiler. iii) Finally, in current DSAs, the compiler organizes the data
movement between synchronizing threads. However, mutations may dynamically update
different parts of the data-structure and cannot be statically scheduled.

GPPs use synchronization mechanisms like CAS and LL-SC. CAS is associated per node.
Address locks are associated with node addresses. We can put these addresses in a hash ta-
ble. If we could associate with keys instead of addresses in the table, we would create a new
synchronization mechanism through which we can shorten the critical path and also hold
fewer locks on the critical path. Usually, more focus is given to the synchronization strat-
egy as the synchronization mechanisms are well-defined in GPPs. Current spatial dataflow
architectures do not support CAS and LL-SC (load-linked, store-conditional) since they do
not support loads and stores and only operate with access-execute cycles. For DSAs, we have
implemented a novel synchronization mechanism - the RBlox tables. This table is tagged
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by index key ranges. If we hypothetically assume CAS was supported, we could consider
synchronization strategies which enable lock-free index implementation [61, 55]. However,
RBlox tables provide performance gain through instant locking and utilizing 1 entry/update
and can change the granularity of locking by grabbing a range higher up or lower down in
the tree. These tables are tagged by data-structure ranges and hold information on locks,
allowing us to support the following synchronization strategies: (i) storing 1 entry/update in
the table, reducing the number of synchronization operations on critical paths. (ii) instant
locking writes, enabling a smaller working set size and a smaller critical path. We also ex-
plore other locking mechanisms in this dissertation, such as L-Cache and R-List, to compare
against RBlox tables. L-Cache uses hand-over-hand as the synchronization mechanism, and
R-List uses range locks.

2.2.1 Enabling Associative data-structures in DSAs

Hash-Table

Btree

Layout
Parallelism

Ordered
  Sync

Safe 
Mutation

Variable 
Granularity 
   Sync.

9 10 121
112
?3

12
...

1 9

Graph: Adjaceny List

Figure 2.2: Traits of Associative Containers.

Keys and ranges are commonly found in data-structures such as dictionaries, hash maps,
sorted sets, adjacency graphs, and search trees [20, 50]. 1 We highlight the traits that make
associative containers ideally suited for handling concurrent mutations and the implications
that make range locks a natural fit. i) Trait: Parallel Layout. Implication: Parallel
range Locks Associative containers, by design, have parallelism-friendly layouts that group
keys and traverse them independently, e.g., index nodes in B+Trees, shards in graph lists,
and buckets in hash tables. Range locks capture this inherent concurrency in data layout.
ii) Trait: Safe and Sharded Mutations. Implication: Fine-grain range locks In
associative containers, the layout is typically sharded, and mutations are confined to “safe”
regions, e.g., within a sub-branch of B+Tree, partition of a graph, bucket in hash-table. This
enables narrow range-locks and naturally avoids coarse-grain blocking of threads. iii) Trait:
Hierarchical Synchronization. Implication: Simplified correctness rules Associa-
tive containers are lexicographically ordered, and mutations proceed in an ordered manner.

1Range locks can support affine data-structures with implicit keys (e.g., arrays), but mutations are inef-
ficient and thus not our focus.
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Figure 2.12: Prior State-of-the-Art Approaches to Synchronizing dynamic data-structures.

This ensures deadlock freedom for ranges. Data can be inserted or deleted by updating key
ranges and redirecting pointers without moving actual data. iv) Trait: Sparse Nodes.
Implication: Variable-granularity range locks. Each region includes a different num-
ber of leaf data and is sparse, i.e., it may not include all keys in the region’s sub-range.
Thus, a range lock protects a variable granularity of objects and can adapt to contention.

2.3 Limitations of Competing Approaches

There has not been much work on either i) supporting concurrent dynamic data-structures
in DSAs or ii) analyzing the tradeoffs between address-based and range-based locks for in-
memory data-structures. In this section, we construct three competing approaches based on
prior SOTA in CPUs/GPUs. Here, we qualitatively analyze their limitations (and quanti-
tatively evaluate them in § 4.2.1).
Option 1 (Baseline Hybrid): Batch mutations on the host.

This approach tethers the DSA to a host multicore and then completes the updates
[5, 44, 55] on the host in a bulk synchronous manner. The multicore is cache coherent and
supports atomics, but the DSA is not cache coherent with the host (it connects through
main memory).

We use the lock flag within each node to explicitly synchronize with the DSA (Fig-
ure 2.12). During an update, the host sets the flag and blocks the DSA’s walkers from
reading the node into the scratchpad. On completing the mutation, it resets the flag and
releases the walkers. Limitations: i) writer parallelism is limited since the multicore has
fewer threads (compared to DSA). We would need a 4–5× larger multicore to improve writer
throughput, but the power budget would exceed DSA. ii) each node requires a heavyweight
atomic operation, and iii) finally, readers on the DSA are slowed down by writer shootdowns.
Option 2: Hardware-accelerated Address Locks (LCache)
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Multiple works have proposed hardware acceleration for address-based locks [65, 67, 33,
19, 58]. These enable data-structure mutations to run on the DSA itself and improve the
update throughput since DSAs typically include more hardware threads. The idea (Fig-
ure 2.12) is to maintain a cache for the locks actively held. To acquire a lock, a thread
inserts the lock address into the cache. To check if a lock has been taken, we only need to
check the cache for a hit. Lock operations are faster since they avoid memory accesses in the
common case. Limitation: The lock working set (i.e., number of locks required) is large in
data-structures, which trashes the lock cache and increases lock latency. We observe that
the lock working set is large because of address-based locks.
Option 3: Linked List of Ranges (R-List)

In databases and OS, range locks are maintained in an auxiliary linked list [27, 31].
Range locks are derived from the logical space of the data structure and are physically
locked for access. These differ from transaction locks since the former grabs latches at the
data structure (lower) level, and the latter operates on the application level. Each node in
the list includes the range bounds, the identity of the holder (e.g., thread ID), and additional
metadata like lock type (shared or exclusive). The thread inserts a new node into the list
to acquire a lock. The nodes in the list are sorted in ascending order based on the Lo of
each range. The sorted list enables us to check and verify no conflicting ranges (without
scanning the entire list). Limitation: The primary challenge with R-List is the overhead
of verifying a range is available. This requires a scan through the linked list and a check at
each node. Sorting helps avoid scanning. Previous literature has not mentioned overheads
because they make them untenable for use in in-memory data-structures, whereas RBlox
makes these locks practical.
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Chapter 3

Range-Blocks

We perform a case study on the B+Tree locking mechanisms currently used (§ 3.1), followed
by our insights and observations on how we can port them to DSAs. We discuss the hardware
required on the DSA for the synchronization facility (§ 3.1) and our execution models (§ 3.3).
We understand the table microarchitecture (§ 3.5) and the RBlox API (§ 3.6). We then
discuss RBlox invariants and correctness (§ 3.7).

3.1 Locking Fundamentals: A B+Tree Example

Figure 3.1 illustrates state-of-the-art optimistic synchronization [10] in a classic associative
container, the B+Tree. Each node contains a lock word, acting as a counting semaphore for
multiple readers. During a lookup, the reader grabs and releases each node while traversing
the tree, needing only to read a snapshot safely. However, inserts may modify multiple
nodes and thus require multiple locks, potentially for an entire branch. These locks must be
managed carefully to prevent cascading. In a B+tree, modifications propagate from the leaf
upwards. An insert can cause a leaf to overflow, necessitating the expansion of its parent,
potentially cascading further up the tree until a node with sufficient space (a "safe" node) is
found. Locks must be conservatively acquired in order from the top down during traversal
to avoid deadlocks. When reaching a "safe" node, we establish a safe zone and release all

Insert 25 : 
Update
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2. Unlock locks in unsafe

42

Unsafe

3. Update nodes in unsafe zone

12

21 314 42.......

42

12

4 42

Exclusive 
(single writer)

Unlocked after 
acquiring safe child

25 3121

1. Lock all to safe
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12 15-31

21 314 42.......
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.......

4-42
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4-6

4-42

4-31

4-6

4-42

4-6

4-31

15-31

Figure 3.1: Illustration of synchronization in a B+tree. [15–31] is assumed to have sufficient
space for expansion. For clarity, we use an explicit notation for each node and list the Lo
(leftmost leaf) and Hi (rightmost leaf) keys across sub-branches.

13



1 2 3 4 5 6 7 8 9 10
Levels

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. N
od

es
/le

ve
l

Unsafe Safe

Figure 3.2: Percentage of safe nodes in a B+tree by level. B+Tree depth: 10. # size: 10M
nodes. Degree: 5

locks from the root to the safe node. All nodes in the "unsafe" zone remain locked to ensure
safety.

Insights The only locks the mutations need are those in the unsafe zone (below a safe
node). However, address locks require ordering and hand-over-hand. Therefore, we seek
to understand which locks are superfluous by plotting the distribution of safe nodes in a
data-structure (Figure 3.2). Insight 1: Most locks during hand-over-hand are superfluous,
i.e., they are immediately released since child nodes are safe (at a lower level). Insight
2: In particular, entrance locks at the top level are unnecessary. Safe nodes are frequently
encountered lower in the tree, where node ranges are narrower and affect fewer objects.
Insight 3: There is a potential to expose more parallelism if we have a mechanism to
grab the locks of the lower safe nodes. With our idea, if we use the same namespace for
synchronization as that used to organize the data-structure, we can minimize the region
being locked.
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3.2 Overview of RBlox Tables

RBlox hardware design includes two distinct tables to manage synchronization ranges (Fig-
ure 3.3). i) LTable: This table is essential for tracking the locked ranges actively partici-
pating in synchronization. Each concurrent update requires only 1 entry in the table, and
the size of the table is O(Nparallel−updates) (≃10s even on a DSA). ii) UTable This table
monitors the ranges that are unlocked and often reused. It serves as a temporary holding
area for entries that are removed from the LTable, facilitating the instant acquisition of
locks to boost performance.

The separation of the LTable and UTable enables a clear distinction between system cor-
rectness (handled by the LTable) and performance optimization (facilitated by the UTable).

Let’s look at the table organization. The two tables have the same logic for tags, but the
data fields are tailored to their roles. The LTable records that the compute tiles are either
sharing (SH) or owning (EX) a lock range. It also tracks the active readers using a bitmap to
know when to free the entry (a count would suffice, but bitmaps are more energy-efficient).
The UTable keeps track of recently used but unlocked ranges. This includes the address of
the corresponding data-structure node or region and whether it is safe (can accommodate a
mutation). Each entry in both tables is tagged with the [Lo, Hi] tuple, indicating a specific
range of keys. To ensure no conflicts, we check the tags before adding a new range in the
tables. In the upcoming section, we describe the tag matching in more detail.
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The UTable and LTable are tagged like a cache, but they do not handle misses and
evictions like a cache. Misses are handled by the thread and do not require hardware action.
A miss in the LTable indicates a free range lock, and a miss in the UTable means fast-path
locking is not feasible and falls back to ordered locking (we discuss this in the next section).
On evictions, the UTable can silently drop entries without affecting correctness. LTable never
encounters evictions since it only needs to accommodate 1 entry per hardware thread, and
we can size it to the hardware concurrency.

3.3 Execution Models

Range-Blocks contributes 2 execution models - RBlox and RBlox++. RBlox implements
a streamlined version of hand-over-hand locking, and only needs the LTable. RBlox++
uses the UTable to implement instant locking i.e., we avoid ordered traversals of the data-
structure and directly acquire the region.

RBlox – Hand-over-Hand using LTable Figure 3.6 illustrates an insert. y1 Initially,
a single entry is allocated in the LTable for the root’s range, [4–42] . This entry is set as a
shared lock, allowing multiple operations to enter the data-structure. We will reuse and trim
the entry’s ranges as we approach the target region for modification. y2 Next, we traverse
the data-structure. Since the root range compactly encompasses sub-ranges (e.g., [4–31] ),
no additional steps are needed until we reach a safe node. Upon reaching such a node,
we trim the range (adjust the lower and upper bounds) and switch the lock to Exclusive
to prepare for the mutation. y3 Finally, the synchronization is complete and the update
can safely mutate the region. In this example, [15–31] is assumed to be safe (and capable
of accommodating new entries). A single exclusive lock in [15–31] is all that is needed to
carry out all mutations on leaves, [21] and [31] since they fall in the protected range. Finally,
upon completion, we remove the entry in the LTable, permitting others to enter the branch.

RBlox++ – Instant locking of free ranges Ranges are symbolic and can instantly
validate whether there is an overlap with active updates. However, RBlox is still hand-over-
hand. Consider the insert in Figure 3.6. Once it reaches the safe node [15–31], it trims
and releases. Our insight is why not grab the safe range [15–31] instantly if there are no
conflicts. To support this, we leverage the UTable. When a range lock is released from the
LTable (e.g., [15–31] in Figure 3.6), it is inserted into the UTable along with whether the
range is safe, i.e., subsequent writes will be localized (we define and illustrate in detail in
the § 3.6). Read-only traversals also fill UTable as they encounter safe nodes. Now consider
a new insert in Figure 3.7. y4 We first check the UTable for unlocked ranges using the key
to be inserted. If a match is found, then it implies that there is no active mutation in the
region, and we instantly kickstart from there. y5 To grab the range, we move the entry from
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the UTable to the LTable. If there is a racing update, one of them will complete it first
and make progress. The rest of the traversal is the same as RBlox. This approach frees up
the entrance to the data-structure and reduces the critical path. If no match is found in
the UTable, the operation defaults to beginning from the root. When multiple entries in
UTable match, we pick the smallest safe range; if both [4–31] and [15–31] are available,
we will pick [15–31] since it is narrower. If only [4–31] is available, we will kickstart from it
but trim it as soon as we reach [15–31]. This strategy is effective as there are often many
unlocked, safe nodes at the bottom of the tree, leading to notable speedup (see Figure 3.2).

Lock-free reads Read-only operations can be made optimistic and synchronization free [10]).
Readers only need to validate the pointers during the traversal of the data-structure, and
they can do so without holding any locks (Figure 3.8). We embed a version number within
each node (in memory). When traversing the data-structure the readers check the version
number before and after using the node’s contents to ensure an intervening write has not
modified it. When a writer physically changes a node (e.g., updates key ranges or adds
a new branch), it increments the version number. Deletions could prove to be dangerous.
Thus, we simply mark the node and lazily clean it up as is convention [24]. Progress On
an intervening conflicting write, the reader restarts from the root. If starved, the reader
will insert the root range into the LTable. This gets trimmed as it makes progress, allowing
writers to enter but only after the reader.

RBlox vs Transaction Locks RBlox differs from transaction locks on multiple fronts.
To summarise:

• Lock operations: A single lock operation is enough for a transactional lock. In
contrast, for RBlox, the number of operations may vary, but it only requires a single
entry in the LTable.

• Nested Locks: A transaction may have multiple nested locks that need to be released
in order. RBlox, on the other hand, upgrades locks to finer-grained within the same
table entry.

• Lock escalation: Transactional locks increase coarseness to reduce overhead instead
of having multiple finer-grained locks. RBlox increases the fineness of locks to increase
concurrency, instead of intent locks higher up.

• Ordering: Transactional locks require explicit ordering to guarantee progress and
have deadlock freedom. RBlox guarantees progress and deadlock freedom. A lock is
grabbed on a range in the tree, and traversal is top-down. Therefore, as the walk
progresses, we only contract the range. More details on this in section § 3.7
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Figure 3.8: Illustration of lock-free reads.

3.4 Why range locks are more efficient in hardware?

Table 3.1 summarizes the discussion. 1. Number of entries per update. Ans: 1 vs.
O(Nnodes−per−walk) for address locks. Range locks are symbolic and compactly protect
nested objects without requiring separate locks on each. Further, hand-over-hand can be
implemented by trimming. In spin locks, we would have as many locks per update as nodes
in the branch. 2. Total lock working set. Avg: O(Nconcurrent−updates) Worst: O(Ntiles).
Since each update requires 1 entry, the number of entries required is the number of concur-
rent updates. On a DSA, the number of concurrent updates in the worst case equals the
number of hardware threads. Thus, the LTable can be sufficiently provisioned (and requires
no overflow handling). 3. Number of lock probes per update? Ans: O(Nsafe−per−walk)
vs. O(Nnodes−per−walk) for prior work. Since range locks are symbolic, they implicitly
protect sub-ranges. We only probe the table when changing lock type or inserting a new
range (see Figure 3.6). Address locks need to grab-and-release at each node. 4. Fully De-
coupled Design. We have separated the maintenance of the ranges for correctness (LTable)
and performance (UTable). Each table is independently organized: a monolithic LTable is
sufficient since it only contains 10s of entries. UTable is partitioned into banks and sets.

Table 3.1: RBlox vs Lock Caches.

Address-based Locks RBlox
Application General (locks,barriers,conditional) Dynamic data-structures
Target HW Multicore/NDP (10s cores) Tile Dataflow (100s PEs)
Lock Type Physical; address-based Symbolic (data-structure keys)

Locks/Update O(Nnodes−per−walk). Grab-and-release
locks at each node.

1 entry/update. Reuse entry to trim range

#Total Locks O(Nnodes−per−walk*Nupdates); Worst:
O(Ntotal−nodes)

O(Nupdates) Worst:O(Ntiles)

#Lock Probes O(Nnodes−per−branch) O(Nsafe−nodes/branch)
Overflows Yes #locks > #threads No #locks = #threads
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3.5 Table Microarchitecture

We now describe the microarchitecture and physical implementation of the LTable and
UTable. Both tables employ the same tag logic and differ only in the data fields. Each entry
in the table represents the exact [Lo, Hi] range lock requested by the application, i.e., the
application never encounters false-sharing. The table supports the following range checks:
i) for a given key (k), the tables verify if k /∈ [Lo, Hi], i.e., k < Lo or k > Hi. An LTable non-
match indicates the key is unlocked; UTable non-match simply means fall-back to RBlox.
ii) for a new range [start, end], we check �∩ [Lo, Hi] for all entries in LTABLE. If there is
no overlap with any entry, then the lock is available. Since start<end and Lo<Hi, we can
check a non-overlap with two comparisons - end<Lo or start>Hi.

For hardware scalability, we organize the table into banks and sets. To calculate the
bank and set IDs, we segment the ranges; however, each entry itself is maintained precisely.
On an insertion, if a lock’s range falls entirely within an aligned segment, then it maps to a
single bank and set. If a lock range crosses an alignment boundary, we split it into multiple
sub-ranges. Each sub-range will fit within an aligned segment and is independently allocated
to its bank and set. Any bank and set mapping function is feasible. For instance, here, the
range [1–12] is divided into [1–7] (fits within aligned segment [0-7]) and [8–12] (fits within
aligned segment [8-15]). The sub-range [1–7] has been mapped to bank 0 and [8–12] to bank
1 (Figure 3.9).

Now consider a probe [start, end] of the table; we need to consider all possible entries
that may include any of the keys in [start, end]. The common case is when the [start, end]
falls in an aligned segment and does not cross boundaries. Here, we only need to probe a
single entry in a unique bank and set. For example, consider that for any of the ranges
[1-6],[2-4],[3-7], we only need to check the bank 0, set 0. If a [start, end] check crosses
segment boundaries, we split the range along the alignment boundary and check each bank
independently – our segment mapping still narrows the number of entries searched. If any
check is true, this indicates some partial conflict, and the lock is denied. For instance, a
check for the range [4–9] is divided into [4–7] and [8–9], each segment checks their banks in
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Figure 3.9: Organizing RBlox table into banks and sets
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Comparator Logic.
Ref. nm Vdd Trans Bit. mW ns

[57, 12] 180 1.8 800 64 0.7 0.5
[43] 90 1.0 1051 64 1 0.23
[9] 90 1.2 – 64 0.9 0.85
[18] 90 1.0 1359 64 0.8 0.22

RBlox 45 0.85 1400 2×32 0.02 1

Figure 3.10: Right: Synthesis of tag match logic in Nangate 45nm. depth = 10, entries =
256. Left: Floorplan
parallel, and then we combine them. We find that range checks that span multiple banks
are uncommon since data-structures optimize lookups to narrow down ranges. We do model
the parallel lookups in our evaluation.

We also implement the RTL for LTable and UTable in Chisel, synthesize it (Figure 3.10),
and compare our complexity against prior literature (Fig. 3.10). Other tag implementations
are possible [57]. As an upper-bound estimate, we synthesize using nangate 45nm PDK and
OpenROAD [4].

3.6 Range Lock API

Range locks are designed to be a drop-in replacement for address locks in data-structures.
We first discuss the API and then illustrate usage. Shown below is the lock acquire.

bool r_lock(uint Lo, uint Hi, bool type, uint lt_idx):

• [Lo,Hi] specify the bounds of the range lock.

• type can be shared (1) or exclusive(0).

• lt_idx is entry in the LTABLE allocated for the lock.

A few design details: i) How do we identify [Lo, Hi]? Ranges are defined within the data-
structure nodes and available during the traversal, e.g., internal nodes (B+trees), skip-nodes
(skip lists), vertex lists (adjacency graphs). ii) What about non-integer key ranges,
e.g., strings? We hash all key types to an integer key, similar to surrogate keys in databases;
any hash function will do. Range locks will work as is, conservatively serializing objects with
the same hash. However, the goal of a typical hash function is to avoid collisions, which will
also avoid overlapping range locks. This approach cannot support range queries as we are
lenient on maintaining ordering on hashing and do not support ordered hash tables. iii) How
do we handle contention? First, range locks support all the standard strategies (e.g.,
ticket, queueing). They are independent of the lock itself and can be maintained as part of
the data-structure in memory. Note that range locks are instantaneous (see Figure 3.7) and
inherently minimize contention. Thus, RBlox uses simple back-off.
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void r_unlock(uint lt_idx, node_ptr = NULL, bool safe).
lt_idx specifies the entry to be cleared in the LTable.node_ptr and safe are optional
parameters for accelerating future lock requests.

The default unlock simply clears the LTable entry. When safe and node_ptr are provided
in unlock, we register the range in the UTable. This permits a fast-path lock that can
instantaneously lock the range without having to traverse data-structure nodes to obtain
the ranges. node_ptr is the address of the data-structure node associated with the range,
e.g., internal index node in B+Tree, skip-node in the list, bucket in the hash table. The
concept of safe node can be found in all self-balancing data-structures. It indicates that a
future update to the range will be self-contained and not expand to neighbouring ranges,
e.g., updates contained within a hash-table bucket without resizing the bucket array.

We provide a trylock method for accelerated instant locks. The thread specifies a key
that it is interested in. The range to be locked is obtained from the UTable, which was left
behind by a previous unlock. Since we have omitted the data-structure traversal, the trylock
has to also return a pointer to the data-structure node to the thread. The thread uses this
pointer to access the region to perform the mutation. The call is non-blocking; if no entry
in the UTable contains the key, the trylock fails and returns NULL; in this case, the thread
performs ordered traversals.

node_ptr* r_trylock(uint key)

key: Check the UTable for a range containing the key.

3.7 RBlox Invariants and Correctness

Rule#1 - Mutual independence. The ranges in the LTable (locked) and the UTable
(unlocked) are mutually independent, i.e., ∄ [LoLT , HiLT ] 1.5∩ [LoUT , HiUT ].
Rule#2 - Locked/Free Any [Lo—Hi] is considered locked if ∃ [LoLT ,HiLT ] in the LTable
that overlaps; otherwise it is unlocked. UTable is best effort and requires no rules.
Rule #3: LTable Exclusivity: If there exists a table entry for the range [Lo–Hi] exclu-
sively owned by tile T1, there cannot exist exclusive lock owned by T2 for [Lo’–Hi’] such
that [Lo’–Hi’] 1.5∩ [Lo–Hi].
Rule #4: Lock expansion prohibition: A lock owner is not allowed to expand. If a tile
holds [Lo–Hi], it cannot request [Lonew–Hinew] such that [Lo–Hi] ⊂ [Lonew–Hinew].
Rule #5 Lock Contraction: Only the lock owner is allowed to contract. i.e., if a tile T1
holds [Lo–Hi], only T1 can request a [Lonew–Hinew] such that [Lonew–Hinew] ⊂ [Lo–Hi].

We illustrate invariants using a visual aid (Figure 3.11).
Invariant #1: Mutual-Exclusion At any given moment, only a single processing unit
(referred to as a "tile") can have control over a specific range. According to Rule #3, if a tile
T3’s requested range [12–24] overlaps with a range [7–14] owned by T1, then T3 will have
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Figure 3.11: RBlox Correctness Illustration

to wait. Further, Rule #4 prevents any tile from extending privileges. Here, tile T1 cannot
widen the current range [7–14], which guarantees exclusion from existing ranges held by
other tiles.
Invariant #2: Preserving write atomicity. By Rule #3, if a tile T1 owns an exclusive
lock on [24–27] that means no other tile T2 can read or write a [Lo’–Hi’] that 1.5∩ or ⊂
[24–27].
Invariant #3: Progress guarantee We ensure progress by structuring the range requests
hierarchically. Rule #3 ensures that once a tile T1 grabs a range [7–14], no other tile can
grab a sub-range. Conversely, Rule #5 guarantees that any request from T1 to [Lo–Hi] ∈
[7–14] will be completed.
Invariant #4: Instant Locking is Equivalent to Ordered Locking. Figure 3.11
compares RBlox (ordered locking) vs RBlox++ (instant locking). We show that both reach
equivalent states. In RBlox, if we start from the root, we will keep trimming until we reach
[12–14], noticing that it is safe and free. In RBlox++, we obtain this information from the
UTable and reach the same state instantly. Two rules ensure the integrity: Rule #1 ensures
that entries in LTable and UTable are mutually exclusive, and Rule #2 ensures that any
entry in UTable can be locked without conflicts.
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Chapter 4

RBlox Evaluation

This chapter details the workload setup and the evaluation performed on RBlox.

4.1 Methodologies

Figure 4.1 shows the system configuration for cycle-validated SALAM simulator [51] from
MICRO 2020. Our LLVM compiler maps the computation onto the grid of functional
units [62, 51]. We write a functional model of the target DSA in C/C++ and host code
to drive it. The DSA definition is lowered using high-level-synthesis to a faithful "execute-
in-execute" simulator with timing. We model a 2.5D HBM stack connected to a tiled DSA
via an interposer. Our baseline simulator has been independently validated and verified
against real accelerators [51]. Existing chips (e.g., [45]) do not include synchronization and
are incapable of running our proposed applications. Hence, we need to measure it using
simulation. We now describe the applications we ported.
Database Scan [59].Lock Type - B+tree node

Each compute tile conducts batch updates that are queries of the following type: "UP-
DATE [fields] SET [values] FROM table WHERE X BETWEEN R1 AND R2". We simul-
taneously run range scans of the form "SELECT * FROM table WHERE X BETWEEN R1
AND R2". The primary data-structure is a B+tree prepopulated with 10M records; updates
add more records (max capacity is 4 billion records). We vary the read-to-update ratio from
80:20 to 20:80.
Data Analytics [59]. Lock Type - B+tree nodes and records We model a rideshare
application that includes user information and ride histories in a B+tree. We use a set
of representative queries from prior work [59]: "UPDATE x SET * WHERE y ” and a
"SELECT * FROM x WHERE y” in parallel, matching riders to dynamically changing
drivers. The fields in each record include the status of the rider, passenger count, and trip
length. We initialize with 10M riders.

KV-Store [29]. Lock Type - Skip Point We model a Redis-based sorted set table [50]
with 10M keys. The data-structure combines a hash table and a skip list per bucket. We
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Feature Config
Spatial Grid 128 tiles. Baseline: 128 tiles @1Ghz. 64k

scratchpad/tile. Network: Static mesh.
32b/cycle pipelined.

Compute 32bit. +,× (256), <<,|,& (256).
RBlox LTable: 1 entry-per-tile (4 banks). UTable:

4k entries (4 banks, 128 sets). 5 cy-
cles/bank. 2 cycle link. per-bank: 3750 fJ

LCache LCache: 16k entries (≃256KB). 5 cycle
(cache only).

Memory HBM 1000 8 Ch width:128 bit,
Bank width: 1024bit. BW:128GB/s,
9pJ/bit [38]. nRAS/nWR 17/8ns

Energy Reg:50fJ +:210fJ ×:1260fJ Bit:180fJ
<<:410fJ.

Multicore 24 cores, ARMv9, 2Ghz, OOO. pri-
vate L1D=64kB; L2=2MB. Fetch/Issue:
8.wide. HBM DRAM is shared

Design Explore We investigate 16–256 compute tiles and
256—16k entries UTable.

Figure 4.1: System Configuration

Table 4.1: Evaluation Summary

Question Answer
RBlox speedup? 7.8× vs. Base , 5.2× vs LCache, 6.5 × over R-List .§ 4.2.1.
RBlox++ speedup? 15× vs. Base, 6.8× vs LCache, 2× vs. RBlox, 12.5 × over

R-List.§ 4.2.1.
How does RBlox++ scale ? 12—14× speedup when increasing from 16 to 256 tiles.§4.2.2.
DRAM and on-chip Traffic? RBlox++ saves 4× DRAM and 64% of on-chip traffic vs.

LCache.§4.2.3.
LTable and UTable size? LTable = # of Tiles. UTable*: ≃2k—4k entries.§ 4.2.4.
Energy 6.6% of total on-chip energy. § 4.2.3
Best layout: 4 banks, 128 sets,8 ways

use a degenerate version of range locks to lock the skip points in the list, and only a single
node is required to be locked. The skip point to lock is determined based on key value.
Instant grabbing is quite effective, particularly in deep (highly associative) buckets, which
potentially improves performance.

Virtual Memory Descriptors(VMA) [31]. Lock Type - VMA regions Range
locks have been incorporated into OS kernels to manage access within the allocator of virtual
memory area (VMA) regions. One option for the kernel is to use a hash table-like structure,
with each bucket organized as a skip list of ranges in sorted order. It uses spin locks to
protect individual nodes, which can become a bottleneck. We use range locks instead, and
the hash table is a fallback.
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4.2 Evaluation

Table 4.1 summarizes the results. We evaluate five systems (see § 2.3): i) Base: hybrid
model that batches updates on host multicore while readers run on the DSA. ii) LCache:
includes support for hardware-accelerated address locks in DSA. iii) R-list: DSA maintains
range locks in a linked list. iv) RBlox: DSA maintains range locks in LTable. v) RBlox++:
DSA maintains ranges in LTable and UTable.

4.2.1 Performance Evaluation

Result: RBlox achieves 7.8× speedup over baseline, 5.2× over LCache, and 6.5× over
R-List.
Result: RBlox++ achieves 15× over baseline, 6.8 × over LCache, 2× speedup over RBlox,
and 13× over R-List.

We normalize the speedup relative to the hybrid baseline (multicore & DSA) - figure 4.2.
RBlox’s speedup can be attributed to two factors: i) Lock Elision: RBlox and RBlox++
require only 1 entry for each update in the LTable. This entry is updated only when the
range is narrowed at a safe node. This streamlines the lock mechanism and reduces the
number of synchronization operations on critical paths. SCAN and Analytics benefit from
this the most. ii) Increase in concurrency with instantaneous locks RBlox++ grabs
instant locks on the narrowest range available in the UTable. This leaves regions open
for concurrent access. In particular, many of the ranges left open are wide ranges in the
entrance. This allows for many more concurrent readers.

In PageRank, the skip nodes see high reuse, resulting in a high hit rate in the UTable.
This leads to two benefits: i) reduction in 60% of sync operations. ii) low lock latency due to
immediate acquisition instead of traversal. PageRank, with its high reuse of UTable entries,
could function with a smaller 1k entry UTable (§ 4.2.3).

Why competing approaches are slow?
The reason competition is slow is the synchronization mechanism itself (how a lock

is grabbed), not the synchronization strategy (which locks are grabbed). RBlox has the
same synchronization strategy as LCache and R-List; it mutually excludes the same data-
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Figure 4.2: Normalized Speedup. Higher is better. Configuration — 20% Updates, DSA:128
tiles. LTable:1 entry/tile. UTable: 4 banks×128 sets×8 ways (4096).
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structure regions and has no increase in concurrency. It performs better due to the efficiency
of locking. i)The baseline is limited by the number of cores dedicated to writes (24 threads)
compared to the DSA (128 threads). If the baseline has to increase writer throughput, it
would have to employ more power-hungry general-purpose cores with support for CAS and
LL-SC. ii) The LCache has more lock operations relative to RBlox. When traversing from
root-to-leaf, LCache needs to allocate an entry at each node and trashes the lock cache.
iii) R-List uses an auxiliary in-memory data-structure (e.g., B+Tree [31]) to maintain the
active ranges. This imposes high overhead since lock acquires and releases need to scan the
auxiliary data-structure iteratively. The main reason for prior approaches’ lower performance
is fundamental design flaws (and while the exact numbers may vary), we expect the trend
to hold even in alternative cache-coherent platforms. LCache and R-List are state-of-the-art
mechanisms in cache-coherent platforms that we have ported to DSAs.

4.2.2 Scalability Study

Result: RBlox++ improves performance by 11.6—15.3×.
We analyzed the scalability of our system by varying the number of compute tiles from

16 to 128 in RBlox++ (Figure 4.3). We use three applications to summarize our findings:
Scan (high parallelism), KV-Store, and PageRank (moderate parallelism). We maintain
a read: insert ratio at 80:20 across all workloads. Both the baseline hybrid and LCache
exhibit limited scalability. Their speedup levels off once the core count exceeds 32 to 64. The
parallelism of the host multicore constrains the base’s scalability, and LCache’s performance
suffers as more tiles trash the lock cache. RBlox++ consistently outperforms RBlox++ by
utilizing instant locking and a more efficient locking strategy. The speedup of RBlox++
is 15.3×, while RBlox’s speedup is limited to 10×. As the number of tiles increases, the
reuse of unlocked ranges in the UTable improves. At 16 tiles, we elide 30% of the locks;
at 128 tiles, it is 50%. In Scan, RBlox++ is being limited by the UTable size (fixed across
all workloads here) so performance tapers at 128 tiles. If we increase the UTable size,
performance improves further(see § 4.2.4).
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Figure 4.3: Speedup with increasing DSA tiles from 16 to 128. Normalized to 16T, Base.
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4.2.3 Energy

Result: Compared to LCache, RBlox++ improves by 3.9×. RBlox improves by 1.5 ×.
Result: RBlox++ reduces on-chip traffic by 70%.
Result: RBlox requires only 6.6% of on-chip energy.

We normalize data to LCache since it exhibits the lowest traffic amongst the alterna-
tives (Figure 4.4). R-List wastes significant bandwidth on the auxiliary data-structure (40%
higher traffic). RBlox and RBlox++ reduce the lock working set by decoupling locks from
the data-structure nodes and associating them with the update. We only need 1 range lock
entry/update, while LCache requires a lock for each node. In RBlox, there are no compul-
sory accesses to the DRAM as all lock operations only involve the on-chip RBlox table.
Finally, RBlox++ reduces DRAM traffic further by instant grabbing locks lower in the
data-structure. This reduces the lock set by 2

3 , and lowers bandwidth.
We also measured the on-chip traffic. Compared to LCache, RBlox reduces on-chip traffic

by 40%. The main reduction is due to the number of lock operations required. As discussed
in § 3.3, RBlox needs to update the LTable entry only when trimming ranges at a safe node.
However, LCache grabs-and-releases at each node, which necessitates an atomic operation
at the lock cache. RBlox reduces actual lock operations by 1

3 compared to LCache. Since
RBlox++ enables instant locking of free ranges, it shorts part of the data-structure traversal
and further reduces lock operations by ∼ 2

3 (vs. LCache).
On-chip Energy: Here, we plot the breakdown of the total on-chip energy for RBlox++
(Figure 4.5) into the following: compute tile, loads and stores, LTable and UTable. Here
is a breakdown of the accesses to the tables: i) UTable: Both readers and updates access
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Figure 4.4: DRAM Energy. Y-axis: Normalized to LCache.
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Figure 4.5: Energy Pie. (RBlox++) LTable: 128 entries (4 banks×32). UTable: 4096 entries.
4banks×128sets×8 ways.
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the UTable 1 time per traversal. This is if there exists a free lock range from where we can
start the synchronization. ii) LTable: Updates probe the LTable every time they acquire
a safe node (see Figure 3.6). Readers need to validate at every node and thus need LTable
access. On average, a data-structure mutation touches the LTable 4× per traversal (each is
3750fJ). For per-access energy counts, we synthesize the RTL (§ 3.5), and for RAMs, we
use CACTI.

4.2.4 UTable size vs. # of tiles in DSA

Result: The best configuration for DSAs up to 256 tiles is 4k entry UTable (organized as 4
banks, 128 sets/bank). Maximum speedup vs. RBlox is 5—6×. (Figure 4.6).

We vary the size of the DSA from 32 tiles to 256 tiles to study the scalability. For
correctness, the LTable size is always set to the number of tiles. For our baseline experiments
in the previous section, we chose 4k entries because it effectively captures the reuse of UTable
entries, achieves a high hit rate, and occupies 0.4% of the area of a 128-tile chip. Here, we
study UTable sizes from 256 to 16k entries. The UTable is divided into 4 banks and 128
sets/bank (# of ways vary based on size). The red line in the plot is a baseline RBlox with
64T (with only LTABLE) to study the impact of UTable.
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Our observations: i) Entries Limited (up to 512 entries): Until 512 entries, UTable does
not cache sufficient unlocked ranges to aid instant locks. At 128 and 256 tiles, the small
UTable is even thrashed, and we find the smaller 64-tile DSA performs better with a 31%
higher hit rate in the UTable. ii) Grab Limited (up to 4096 entries): The UTable behaviour
is stable and has sufficient capacity to enable instant locking and improve performance. We
improve performance by 5× for 128 and 256 tile DSAs by shortening the critical path by
70%. iii) Compute Limited (≥ 8192 entries): The UTable has sufficient capacity; and the
workload is compute-limited.

4.2.5 Impact of Update ratio

In Figure 4.7, we study the impact of highly volatile data-structures by varying read: update
ratios. The trends: i) For artificially high update ratios (>40%) RBlox is compet-
itive. RBlox++ degrades to RBlox Compared to LCache, both RBlox and RBlox++
scale well since both updates require a single entry (while LCache is thrashed due to number
of locks). Ranges enable compact representation of synchronization boundary. RBlox++’s
speedup does degrade due to the churn in the UTable entries. RBlox++’s speedup depends
on finding reusable unlocked ranges in the UTable; high volatility changes the unlocked
ranges frequently and minimizes this reuse. ii) For realistic scenarios (update ratio
<40%) RBlox++ provides significant performance boost. RBlox++’s UTable can cache un-
locked ranges and instant lock on them. This reduces the critical path by 70% and improves
performance by ≃ 2× compared to RBlox. iii) LCache limited under all scenarios.
Under realistic scenarios (update ratio <40%) LCache is limited by the critical path of an
update, multiple locks have to be acquired for each traversal. Under artificially high update
ratios, LCache is limited by the number of entries. It is thrashed. It is also limited by the
entrance to data-structure becoming a bottleneck.
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Figure 4.7: Impact of update ratio. LTable: 32, UTable: 4096 (4 banks, 128 sets). Benchmark:
Database.
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Chapter 5

METAL

This chapter outlines METAL-IX, a key contribution of METAL, whose IX-cache served as
the inspiration for the tables in RBlox. There are a few differences and similarities between
the IX-cache and tables, which were highlighted in the RBlox table hardware description
(§ 3.2). My contribution to METAL includes the METAL-IX (§ 5.1) and the hard nosed
evaluation of the same (§ 5.2).
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Figure 5.1: METAL-IX micro-architecture.

The index cache leverages range tags to short-circuit index walks and reduce the working
set and walk latency. It can capture wider index nodes that maximize reach, as well as those
closer to the leaf and minimize walk latency, thereby maximizing effectiveness.

METAL incorporates into spatial dataflow architectures [59, 29, 60], which maps the
computation onto a grid of compute tiles. Logically, these compute tiles interface with the
data-structure using keys (not addresses). Each data object in the index is allocated in
DRAM and has a unique key that provides a namespace that loads and stores can use. The
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index only contains pointers to the data object, and the IX-cache only targets the index
traversal itself.

METAL adds 2 components - the IX-cache, shared by multiple compute tiles to maximize
cooperative caching and a pattern controller [47].

Cache Block The IX-cache’s block includes child keys and pointers from an index node.
The block is tagged with the [Lo, Hi] tuple, representing the smallest and largest keys (the
range) stored in the block. Fig. 5.2 a) shows the possible layouts: i) Case 1: When block

size == node size, the cache tag [Lo, Hi] stores the exact range. e.g., we tag the red block
with [Lo=7,Hi=28] , the node’s end keys. ii) Case 2: When node size > block size, the
cache block holds a sub-range. Here the node [7-28] is split into three entries, [7-9] , [9-15] ,
and [15-28] . Each entry holds one of the child pointers. c) Case 3: When node size <

block size, the cache coalesces multiple nodes in the same level and stores a super-range
e.g., here the cache block fuses the two nodes [7-8] , and [9-12] .
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Figure 5.2: Packing index nodes into cache blocks

Hit Path The IX-cache is designed to short-circuit walks. Specifically, when the IX-cache
identifies a hit, it provides a pointer that facilitates the walk’s continuation much closer to
the desired leaf and, in some scenarios, directly points to the leaf. Every block in IX-cache
is tagged with the [Lo, Hi] tuple, which represents key ranges encompassed by the block.
Fig. 5.3 illustrates the stages in the pipeline (only the first is required, and the remaining
are optional): i) Matching stage: We use the range tags to match with the incoming key
and check entries for Lo ≤ key ≤ Hi. An exact match bypasses the remaining step e.g.,
in Fig. 5.3 key 7 will match [7-15] ). Like address, the tags are maintained in SRAM.
They are read out to registers with comparators attached. ii) Prioritize ties: In instances
where multiple matches arise, a ’level field’ helps break the tie by deciding the match to
prioritize. For illustration, a key marked 10 might match the cache’s red and green ranges.
However, priority would be given to [9-11] . A bitmap aids in maintaining relative priority.
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iii) Finally, we read the cached index node from the data array and extract the next child
pointer. Each cache block (which represents an index node) includes a set of sorted keys
along with child pointers. We find the child to be followed based on where the key falls in
the set of keys, e.g., here 10 will match 9-10 in the block [9*10*11]. We achieve this with
parallel ≤ across all the index keys, then find the first bit from the right (first >). In cases
where the node does not fit in the block, we split the node ranges across multiple blocks.

·------------------------

:Index node: 

uint32 c_keys[n] 

node* c_ptrs[n] 

void* data 

bool leaf 

-----------------------------------------

• • • • 

9 
> 

Hitmap ............ 

I 

I 

I 

I 

I 

I 

,, 

• • • • 

• • • • 

- ,-..------1>\

�-------------------------J 
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Figure 5.3: Hit Path: IX-cache Logic

Set-Associativity IX-cache can be made set-associative similar to an address-cache. Like
an address, index key values are divided into blocks (of size 2b) and sets. Block bits (b) come
from the key’s LSB. The keys are logically divided into 16 (b = 4) wide blocks, e.g., keys 0-
to-15 will be a block (Fig 5.4). Every index node will be mapped to the same set as the keys
it contains. Thus, index node [11-15] and [12-13] will map to set 0 (they are ∈ 0 − 15).
There are a few differences: i) the key space is virtual, i.e., there is no physical backing
memory. Thus, block size impacts the position of the set bits but not spatial locality. ii)
Each index node only includes a sub-range of the key block, e.g., here [11-15] does not
include [0-10]. This is why we use range tags. iii) We are caching an index of the key space,
not the key space itself. Larger block sizes can exacerbate set conflicts as more nodes may
map to the same set, e.g., In Fig. 5.4, if the block size was 32 (5 bits), nodes [11-15], [12-13],
and [19-28] would all map to set 0, leading to conflicts that limit capacity.

5.1.1 Walk Pipeline

Miss Path: A miss triggers a root-to-leaf walk. METAL re-purposes the prior microcode
engines that the DSAs already include [54, 60]. We only provide an overview due to lack of
space. Fig. 5.5 shows the index node, pseudo code, FSM, and microcode table. The walk
itself is highly serial and data-dependent since key values determine the next child pointer.
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Figure 5.4: Set-associative IX-Cache
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cursor= IxCache(key).or(Root)

while(cursor.leaf != true):

    for i in 0..N:  // parallelize
        if key < cursor.c_keys[i]:
            cursor=cursor.c_ptr[i];
            break;

End
Leaf

Child

Struct node:   
uint32  c_keys[n]

  node*   c_ptrs[n]
   void* data;

Figure 5.5: Cache miss handler.

However, each walker refills the data independently. The goal is to harvest memory-level
parallelism from these independent walks. For this, we break the walker into a set of states.
At each long-latency state, we yield to other requests. In the hardware pipeline, we multiplex
multiple walks on a single thread. There are two yield points in this index example: i) Wait:
accessing the current cursor, refilled from DRAM. ii) Search: searching the node’s internal
keys to find the next pointer. The steps are compiled into a table and microcode.

5.1.2 Similarities and differences between IX-cache and RBlox tables:

• MISS: On a miss, METAL-IX initiates DRAM access to retrieve the root node and
begins the traversal from there. In contrast, RBlox conservatively locks (from the root)
to perform writes.

• HIT: on a hit, METAL-IX short-circuits readers; on a hit, RBlox grabs instant lock
for writers.

• UPDATES: Usually, the entries in the IX-cache are only evicted with LRU and not
updated. In fact, an entry in the IX-cache is not updated during a traversal; RBlox
has entries in the tables that update often since it deals with mutating data-structures.
Additionally, during a traversal, an entry can update itself. We use the same entry in
the table to store as we traverse down the tree.
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• TAG: IX-cache and RBlox tables use the same tags- data-structure ranges.

• DATA: IX-cache holds more data, as it stores the entire node, along with a pointer
to itself and its children; RBlox stores just the pointers to the node and its children.
RBlox stores lesser metadata.

5.2 METAL-IX Evaluation
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Figure 5.6: METAL simulation set up.

Figure 5.6 shows the system configuration for cycle-validated SALAM simulator [51]
from MICRO 2020. Our LLVM compiler maps the computation onto the grid of functional
units [62, 51]. We write a functional model of the target DSA in C/C++ and host code to
drive it. The DSA definition is lowered using high-level-synthesis to a faithful "execute-in-
execute" simulator with timing. We implement IX-cache as a memory object in Gem5. We
use non-coherent crossbars in Gem5 to connect the DSA’s components to the scratchpad
and IX-cache. The DMA engines directly interface with the memory controller. All cache
blocks are set to 64 bytes to ensure a fair comparison. We deploy METAL across 4 DSAs
to implement 8 workloads.

We answer the following questions:

• How much can METAL-IX improve performance? Answer: 5.3 × vs Streaming , 2.8
× vs address based cache and 1.6 × vs X-Cache. § 5.2.1

• How much DRAM energy can METAL-IX save? Answer: 1.8 × vs Streaming , 1.4
× vs address based cache and 1.2 × vs X-Cache. § 5.2.2

• How much on chip energy is required by the IX-cache? Answer: 29.5% of total on-
chip. upto 5× lower vs. Addr; 3× vs X-cache. § 5.2.3

• What is the best configuration for the IX-cache? Answer: 16-way IX-cache § 5.2.4

• Does shared or private IX-cache perform better? Answer: Walk latency decreases by
6%-95% for private IX-cache. § 5.2.5
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Feature Config
DSA Grid 16 (8×2) —128 (8×16) tiles @1Ghz. Stati-

cally configured mesh. 32b/cycle pipelined.
Scratchpad 8K/tile (SpMM) to 64K/tile (JOIN)
Compute 32bit. +,× (256), <<,|,& (256).
Walkers 32 walkers; 4 outstanding (128 total)
Cache Set-Assoc (16-way): 1 cycle. 7000fJ. X-

cache. 1024 entries. 64k. 2 cycles.
IX-cache Set-Assoc (16-way). 1024 entries. 64k. 5 cy-

cles. 9000fJ/64k.
Memory HBM 1000, 8 Ch, Bank width: 1024bit.

BW:128GB/s
Energy Reg:50fJ +:210fJ ×:1260fJ Bit:180fJ

<<:410fJ
Host ARMv9, 2Ghz, OOO. 8 way. L1D 64kB;

L2 2MB

Table 5.1: Overview of Simulation Setup

5.2.1 Performance
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Figure 5.7: Speedup. METAL-IX vs. X-Cache vs. Address vs. Stream. (higher is better).

Result: Compared to address-cache, METAL-IX short-circuits and reduces working set.
Compared to X-Cache, METAL-IX allows caching intermediate nodes, not just leaf nodes.
Result: METAL-IX performs better by 5.3 × vs Streaming , 2.8 × vs address based cache
and 1.6 × vs X-Cache.

Fig. 5.7 plots the speedup. In this section and future sections, the baseline cache sizes
are set to 64k, 16-way, and 16 banks. METAL-IX achieves speedup by short-circuiting,
reducing working set and walk latency. y1 In workloads with significant working set size -
JOIN, IX-cache improves by 2.6 × compared to address cache due to short-circuiting and
saving multiple DRAM accesses. In contrast, a hit in the address cache only eliminates
a single access. We only improve by 2.6× since JOIN has high arithmetic intensity: 318
ops/walk. We improve performance over X-Cache [54] by 1.6 × overall since we enable
caching of intermediate nodes, applying LRU policy to the search batch of keys. y2 We
maximize performance in workloads where reach is important (Scan, JOIN) compared to
X-Cache since it only caches leaves. In RTree, working sets overflow, and gains are limited.
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5.2.2 DRAM Energy

Result: METAL-IX short-circuits and reduces DRAM energy by 1.4 ×. Compared to X-
Cache, METAL-IX allows caching intermediate nodes and reduces DRAM energy by 1.2
×.
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Figure 5.8: Normalized DRAM Energy (lower is better).

Fig. 5.8 shows the normalized dynamic energy in DRAM. Even in workloads with limited
speedup, METAL-IX reduces DRAM Energy (e.g., ≃ 1.5× in Nest.SEL and WHERE, com-
pared to address cache). METAL-IX reduces the total number of access by short-circuiting
walks. In memory-bound workloads (Scan, SpMM in Fig. 5.8: y4 ), we see a maximum re-
duction of DRAM energy. X-Cache’s hit path maximizes short-circuiting to the leaves, but
the walk starts from the root on a miss. Thus, X-Cache has minimal traffic benefit over the
address cache. METAL-IX caches intermediate nodes, maximizes reach, and saves traffic.
In JOIN, METAL-IX experiences high contention as it targets multiple B+Trees. Here,
METAL-IX short-circuits less and hence achieves less traffic reduction.

5.2.3 Energy

Result: METAL reduces cache energy by short-circuiting walks and reducing the number of
accesses- 3× lower energy.

Fig, 5.9: Top compares the energy of cache organizations. Energy = per-access cost ×
#accesses. The baseline is a 16-way address cache with the data array accessed only on a
match. METAL’s tags are also stored in SRAM. The only difference is the range match. We
find that the total per-access energy is more expensive for METAL - 9000fJ vs 7000fJ (for
X-cache and address-cache). Compared to the address cache, METAL reduces total accesses
by 2-4 ×. Compared to X-Cache, METAL achieves a higher hit rate by caching high reuse
index nodes, not just leaves. We observe that the IX-cache is queried on an average every
108 cycles. This makes the accesses to the IX-cache sparse and reduces total access cost
compared to address cache models where every memory access needs to go through the
cache hierarchy.

Fig. 5.9: Bottom, breaks down the energy of different modules: compute tile, IX-cache,
walker logic + pattern controller [47]. We show representative workloads from each of the
DSAs. The IX-cache accounts for 1

3 of overall on-chip energy.
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5.2.4 Set-Associative vs. Fully-Associative IX-Cache

In the coming experiments, we refer to Sets as KVStore.
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Figure 5.10: IX-cache Associativity. Left Y: Exe. Time Right Y: Miss rate. Lower is Better.
Baseline: Fully Assoc.

Result: A 16-way IX-cache is only 15% slower compared to fully-associative; a 32 entry
victim cache closes the gap.

We next characterize the impact of associativity. Fig. 5.10 plots the walk latency (lower
is better) from 4-way to 16-way normalized to fully associative. i) In workloads with high
reuse (SpMM), associativity has minimal impact. A 4-way increases walk latency 20% over
FA, and an 8-way is comparable to FA. ii) Overall, the 8-way and 16-way caches increase
walk latency 30% and 15%, respectively, over FA. iii) A 16-entry victim cache enables the
16-way to close the gap to within 5%. A 32-entry victim achieves the same performance.
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RTree is the exception that overloads the IX-cache; performance is still 50% slower than
fully-associative.

Key Block Size We now study the impact of the key ranges in the block (Fig. 5.11). We
vary the block range from 64 to 1024 aligned keys and investigate the impact on performance.
We find that 256 wide blocks are the most effective. In our workloads, we find that most
index ranges are ≃ 256 wide. Thus, the 256 wide block encounters low set conflicts and
avoids block duplication. We find that 1024 wide blocks lead to higher set conflicts as more
index nodes map to the same set. This leads to a high miss rate, ≃ 36% vs. 12 % for the
256 wide blocks. 64 wide blocks are too narrow to be duplicated across multiple sets. The
replication leads to cache space wastage and low utilization since the block only services a
narrower range; nearly 45% of the cache capacity is lost.
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Figure 5.11: Impact of key block size. Baseline = 256 wide.

Cache entry size vs. index node size We now study the impact of smaller IX-cache
entry that is 1

2 the size of an index node(32 Bytes as opposed to 64 Bytes). Consequently,
we can only cache a sector of the index node. We make the following observations: i) In
some applications, even if IX-cache can only hold a sub-sector of the node, the effectiveness
does not reduce, e.g., for scan, latency only goes up 25%. This is because sub-sectors may
service multiple walks and maintain the hit rate. ii) In workloads with high spatial locality
(multiple keys touched) at the leaf, caching only sub-sectors in the leaf impacts performance
i.e., KVStore (sets) and SpMM prefer wider cache entries.
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Figure 5.12: Impact of reducing IX-cache entry size.
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5.2.5 Shared vs. Private IX-cache

Result: Walk latency increases by 6%—95% for private. Between 9%–62% of cache capacity
lost due to duplication.

We investigate the impact of varying the number of tiles that share the IX-cache. Reduc-
ing the number of tiles shared reduces the potential for cooperative caching across walks.
Instead, we have to replicate entries across each private cache, leading to a loss of effec-
tive capacity. The baseline is 256kB IX-cache shared by 64 tiles. We compare it against
3 configurations: 2 x 128kB (32 tiles share 128kB), 4 x 64kB and 8x 32kB. All configura-
tions run METAL-IXḞig. 5.13 plots the slowdown in execution time (or increase in walk
latency), normalized to the baseline. We find that by privatizing the cache, we lose effective
capacity (red numbers on the bars). In applications with immediate reuse (SpMM), the
loss of effective capacity is minimal. In applications with index reuse and cooperative walks
(RTree), privatizing leads to increased replication and loss of effective capacity. Here, the
walk latency increases by 3 - 5 × even with METAL-IX.

We find that the loss of effective capacity leads to a 6% to 94% increase in walk latency.
The loss of effective capacity ranges from 38% to 91%. The R-tree workload is the most
sensitive to the loss of effective capacity. The R-tree workload has a high number of unique
index entries and, thus, is most sensitive to the loss of effective capacity. The SpMM work-
load is the least sensitive to the loss of effective capacity. The SpMM workload has a high
number of affine accesses and, thus, is least sensitive to the loss of effective capacity. Private
IX-cache lacks cooperative caching, due to which we observe a performance degradation of
27.8% for 2 x 128k cache, 42.6% for 4 x 64k caches, and 61.4% for 8 x 32k caches (from figure
5.13). We observe that for SpMM, utilization is not affected much due to a high number of
affine accesses, with a finite life span for each entry. In figure 5.13, the bars represent the
increase in walk latency, and the numbers in red represent the effective capacity (or number
of unique entries) in the IX-cache.
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Chapter 6

Summary & Thoughts

Indexed data structures have always been crucial, but their importance has grown signif-
icantly due to key technological advancements and data management trends, motivating
their deployment and usage on DSAs. We have developed METAL-IX, an architectural ad-
dition to enable DSAs to manage and reuse indexes. Previous work used to cater to indexes
in different formats, even resorting to asymptotically sub-optimal algorithms that are easier
to accelerate[59]. METAL-IX contributes the IX-cache, a novel cache architecture that uses
key indexes as cache tags for short-circuiting, thereby reducing latency for index reads. This
allows us to port traditional indexes to DSAs efficiently. Previously, we used different DSAs
to perform data analytics, spatial analytics, PageRank, etc. Now, with METAL, we can
support the above workloads through a single dataflow architecture, thereby generalizing
the dataflow architecture for different types of indexes.

The proliferation of sparse data demanded increased workloads that more commonly
performed writes to the indexes. Many real-world applications such as graph processing
[36, 56, 66, 3], machine learning [49, 42], and data analytics [17] involve dataset changes
over time and often frequently. However, current state-of-the-art DSAs do not include a
synchronization facility to support writes and just batch updates on the host machine.
Therefore, we introduced RBlox, which developed a novel hardware synchronization facility
for DSAs to support mutating dynamic data-structures. Unlike traditional address-based
locks, RBlox utilizes ranges to concisely and symbolically represent synchronization bound-
aries. We also show that range locks are more efficient in hardware. To summarise, RBlox
contributes in 2 major ways: i) RBlox reduces the number of locks in the critical path, and
ii) RBlox relaxes ordering constraints in the chain of fine-grain locks.
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