
On the limits of Linear and Affine Integer
Programming relaxations for Constraint

Satisfaction Problems
by

Kimia Hashemi

B.Sc., Amirkabir University of Technology, 2021

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Kimia Hashemi 2024
SIMON FRASER UNIVERSITY

Summer 2024

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Kimia Hashemi

Degree: Master of Science

Thesis title: On the limits of Linear and Affine Integer
Programming relaxations for Constraint
Satisfaction Problems

Committee: Chair: Matt Amy
Assistant Professor, Computing Science

Andrei Bulatov
Supervisor
Professor, Computing Science

Igor Shinkar
Committee Member
Assistant Professor, Computing Science

Qianping Gu
Examiner
Professor, Computing Science

ii

Abstract

A Constraint Satisfaction Problem (CSP) asks whether values from a specified domain
can be assigned to given variables subject to a set of constraints. The Promise Constraint
Satisfaction Problem (PCSP) is a variant of the CSP in which the input is a pair of similar
CSP instances, and the question is whether the stronger instance can be satisfied, or even the
weaker one is unsatisfiable. Algorithms for the CSP and PCSP have been a major research
direction for several decades. While the complexity of the CSP is largely understood, that
of the PCSP is widely open.

One of the recent algorithmic approaches to both problems uses various combinations of
Linear and Affine Programming relaxations of the problems. It has even been proposed that
such a combination may serve as a universal efficient for all cases of tractable CSPs and
PCSPs. In this thesis we refute this conjecture for some combinations of local algorithms,
Linear, and Affine Integer Programming relaxations.

Keywords: constraint satisfaction problem, promise constraint satisfaction, linear pro-
gramming, cohomology, algorithms

iii

Acknowledgements

I would like to sincerely thank my supervisor, Dr. Andrei Bulatov, for his guidance and
support throughout my M.Sc. degree. His expertise and encouragement made a significant
difference in the completion of this work.

I am also deeply grateful to my family for their unwavering support. Their encouragement
has been a constant source of strength for me.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Preliminaries 7
2.1 Relational Structures . 7
2.2 Constraint Satisfaction Problem (CSP) . 8
2.3 Promise Constraint Satisfaction Problem (PCSP) 10
2.4 Algebraic Tools . 11
2.5 Methods of Solving CSP . 14

2.5.1 Local Consistency . 14
2.5.2 Gaussian Elimination . 16
2.5.3 Basic Linear and Integer Programming 17

2.6 Methods of Solving PCSP . 18
2.6.1 Basic Linear Programming + Affine Relaxation 19
2.6.2 Cohomology . 20

3 Where Cohomology Fails 22
3.1 The Counter-example Algebra . 22
3.2 Experiments . 25

3.2.1 The setup . 25
3.2.2 Evaluation of the linear programming + affine relaxation algorithm 26
3.2.3 Evaluation of the consistency + cohomology algorithm 26

v

3.2.4 The instances . 27
3.2.5 Results . 29

Bibliography 31

Appendix A Code 34
A.0.1 Consistency . 34
A.0.2 Consistency + AIP . 38
A.0.3 Consistency + Cohomology . 41

vi

List of Tables

Table 3.1 Variable Assignments for I7 . 30

vii

List of Figures

Figure 3.1 The structure of instance I7 . 27

viii

Chapter 1

Introduction

The Constraint Satisfaction Problem (CSP) and its variants provide a fundamental and gen-
eral framework in theoretical computer science and include a wide variety of computational
problems including graph-coloring, k-SAT, and solving systems of linear equations. Indeed,
since its formal inception in early 70’s [37], the applications of the CSP in operational
research, such as scheduling and timetabling has been known to the artificial intelligence
community [9]. One can equivalently define the decision version of the CSP in different
ways. For example, the CSP is the problem of deciding whether a homomorphism exists
from one relational structure A to another one B, the latter structure is called a template.
Another way to define it as the problem of deciding whether values from a defined domain
can be assigned to some variables while keeping some constraints satisfied.

The decision CSP was naturally extended to a range of variants, including Quantified
CSP (QCSP), Valued CSP (VCSP) and many others, to capture a range of related problems
in the field. Recently, a new variant of the CSP, namely the Promise Constraint Satisfaction
Problem (PCSP) was introduced, as certain open problems such as approximate graph col-
oring and variants of satisfiability cannot be expressed using the CSP definition. The PCSP
extends the standard CSP: For two relational structures A and B with a homomorphism
from A to B, given a third relational structure I, decide whether I has a homomorphism
to A or does not have a homomorphism to B. The "promise" is that these are the only
possible options for I. Equivalently, one can assume that in every instance of a PCSP, each
constraint has a ”strict” and a ”weak” versions. The PCSP then asks to distinguish the case
when an instance has a solution with respect to the strict constraints from when it does
not have a solution even subject to the weak constraints [14], with the promise of no other
case in between.

Just like the CSP, the PCSP has the search and decision versions. In fact, a PCSP
where A = B is equivalent to a CSP on this relational structure, therefore it is easy to
see how the PCSP generalizes the CSP. Because of the close-knit connection between the
two structures, it makes sense to consider the same questions that have been asked about

1

CSPs (e.g., classification with respect to complexity classes like P or NP) for PCSPs, with
appropriate adjustments.

In terms of complexity, the general form of both the CSP and PCSP problems are
computationally hard as they include NP-hard problems, some of which are mentioned
earlier. That is why a major direction of research in this area focuses on identifying tractable
cases and investigating the underlying mathematical properties and structures that enable
their tractability. More specifically, the research focused on the so-called "non-uniform"
CSPs, which means their template are fixed and we study the exact complexity of such
CSPs. In fact, the famous Feder-Vardi dichotomy conjecture [22] on non-uniform CSPs,
proved using algebraic approach in [18] and [41], states that CSP arose form each finite
template is either in P or NP-complete. Similarly ,a dichotomy for symmetric boolean
PCSPs have been established in [11, 13] for non-uniform PCSPs (i.e., both A and B are
fixed relational structures). To better understand the complexity of PCSPs with the ultimate
goal of recognizing what restrictions in the structure of these problems make them tractable,
research continues.

The algebraic approach, which was the central tool in both proofs of the CSP Di-
chotomy, in its first layer uses the framework of so-called polymorphisms. In simple terms,
polymorphisms are multivariate mappings between relational structures that form a PCSP
templates. For example a simple polymorphism of a graph G is a homomorphism from some
power of G to G [32]. Similarly, they can be viewed as high-dimensional “symmetries” of
solution sets of a CSP or PCSP instance. Those CSPs which are solved efficiently happen
to have such symmetries, while the lack of them in a CSP indicates the hardness of the
corresponding problem [4]. On this same track, the focus of this thesis is to use algorith-
mic techniques to evaluate the applicability of some algorithms mentioned below to various
types of CSPs and PCSPs.

There are two general methods for solving tractable CSPs, namely Local Consistency and
Gaussian Elimination, the latter of which is out of scope of this thesis. It was conjectured
[24] and later characterised [5, 6, 15], that CSPs with no "ability to count" are solvable
by local consistency algorithms (or have bounded width), meaning all instances without a
solution are recognizable by some form of local consistency. Bounded-width refers to the fact
that in every iteration of a local consistency algorithm, it only deals with a bounded number
of constraints and/or variables and the CSPs with bounded-width ensure the existence of a
global solution. Some notions of local consistency methods include: Arc-Consistency, Path
Consistency, (k, l)-consistency, and (k, l)-minimality.

Integer and Linear programming and their variants are among mathematical program-
ming techniques which have a history of use cases in optimization and decision problems
[42]. We particularly focus on them as a CSP can be reformulated as an integer linear pro-
gramming problem. In fact, any instance of a decision CSP, and therefore PCSP, can be
described as a canonical 0-1 integer program. The Basic Linear Programming relaxation

2

(BLP) and Affine Integer Programming relaxation (AIP) and their combination BLP+AIP
[14] are among the standard polynomial-time relaxations for PCSPs [10].

These relaxations along with local consistency techniques, some newer cohomological
algorithmic approaches, and their combinations open up possibilities to stronger algorithms
to a point where it is believed they can solve all the polynomial-time CSPs and PCSPs. The
work presented in this thesis is the result of an attempt to refute this idea by constructing
carefully-designed algebras leading to CSP instances which do not have feasible solutions,
yet they can deceive these algorithms, in particular combination of (2 − 3)-consistency +
AIP and (2 − 3)-consistency + cohomology, into finding solutions. This will automatically
rejects the conjecture and motivates searching for a more powerful algorithm to solve all
polynomial-time CSPs and PCSPs.

Literature Review

One of the most well-studied problems in computer science and a fundamental example of
CSPs is Graph Coloring and its variants. We say that a graph G is k-colorable if one can
assign k colors to the vertices of G in a way that no two adjacent vertices have the same
color. While there exist polynomial-time algorithms for deciding if a graph is k-colorable for
k ≤ 2, it is well-known that for k ≥ 3 this problem is NP-hard. Such problems of the decision
CSP type can be equivalently defined in other ways; for example, we can define k-coloring
problem as the problem of deciding whether, for a fixed digraph H, a homomorphism from
G to H exists. We are interested in such problems where the target structure, in this case
H, is fixed and such problems are called non-uniform CSPs.

To demonstrate the earlier claim that PCSP is a natural generalization of CSP and
their connection, it is noteworthy to introduce a primary example of a PCSP, which is the
Approximate Graph Coloring, first introduced in [25]. Given a graph G, which is either
k-colorable or not even c-colorable for some c ≥ k, the approximate graph coloring is the
problem of deciding between the two cases. It is proved that this problem is NP-hard for all
3 ≤ k ≤ c ≤ 2k − 1 in [4]. For large k and c = 2Ω(k

1
3) this problem was proved to be in NP

[27], and the bounds were later improved to c =
(k

⌊ k
2 ⌋
)

− 1 for k ≥ 5 [40]. The approximate
graph coloring problem is proved to be NP-hard for all 3 ≤ k ≤ c under some additional
assumptions [21, 26].

Approximate Graph Coloring problem itself is a special case of Approximate Graph
Homomorphism problem, where for two fixed graphs A and B with a homomorphism from
A to B, given a graph G, it answers the question whether G has a homomorphism to A

or does not have a homomorphism to B. For all non-bipartite loop-less graphs A and B,
where there is a homomorphism from A to B, it has been conjectured that this problem is
NP-hard [13]. Using some algebraic topological techniques in [31, 33] Approximate Graph
Homomorphism problem is proved to be NP-hard for any non-bipartite 3-colorable graph
A and B = K3.

3

Aside from the occasional results for selected PCSP problems, the current knowledge
of complexity classification of PCSP problems is quite limited. A systematic investigation
of PCSPs (with fixed constraint languages) was initiated in [3, 11, 13] which suggested
the use of the algebraic approach to the PCSPs, as it showed to be a powerful tool for
proofs of CSP classification problems. The algebraic approach to CSPs, which includes using
structural properties of finite universal algebras associated with instances of the problem,
had a fundamental appearance in the independent proofs of the Feder-Vardi conjecture
[32]. In [8], a full explanation of the algebraic approach in the CSPs, leading to many
developments in both the CSP and universal algebra can be found. The algebraic approach
to CSP has also led to uncovering notable connections with the theory of Maltsev conditions
in universal algebra (e.g. [17, 16, 29])

The study of the complexity of the PCSP problems and the first link between the
algebraic approach and PCSPs was originated in [3] by Austrin, Håstad, and Guruswami.
In that paper, they introduced a natural promise variant of CNF-SAT and proved the
following hardness result for it: Given a CNF-formula with each clause having width w and
the promise that there is an assignment satisfying at least g = ⌈w

2 ⌉−1 literals in each clause,
it is NP-hard to find a satisfying assignment to the formula (which sets at least one literal
to true in each clause). On the other hand, when g = ⌈w

2 ⌉, it is easy to find a satisfying
assignment. Later in [10], they established a promising link between PCSPs and the CSP
universal algebraic frameworks. Their primary motivation was to further understand the
complexity of the PCSPs by focusing on the Boolean version and establishing a dichotomy.
More specifically, they classified all tractable cases of Boolean PCSPs when the constraint
predicates are symmetric. Following that, in [12], it is shown that the complexity of PCSPs
are completely captured by their polymorphisms, meaning that two PCSPs with the same
set of polymorphisms belong to the same complexity class. In [4], an extensive review of
algebraic approach to PCSPs along with some new results is done.

To explain the tractability of PCSP problems, the idea of reducing them to tractable
CSPs was introduced in [12] under the notion of homomorphic sandwiching. Those PC-
SPs that are reducible to tractable (finite-domain) CSPs are called finitely tractable. While
not every tractable PCSP is finitely tractable as shown by the counter example of 1-in-
3 vs NAE [4], it is conjectured in [12] that tractable finite-domain PCSPs can be re-
duced to tractable CSPs ,possibly over an infinite domain. Since the complexity of infinite-
domain CSPs remains largely unexplored and therefore finite tractability does not capture
all tractable PCSP problems, alternative algorithmic tools are necessary, potentially those
that have been investigated and proven effective for CSPs such as consistency as discussed
earlier. Furthermore, rather than employing, for instance, arc-consistency (the characteri-
zation of its power [23] has been lifted from CSP to PCSP in [4]) can be turned to convex
relaxations [19].

4

Any instance of a CSP can be expressed as a Basic Linear Programming relaxation
(BLP) and in fact a canonical analogue and the stronger version of arc-consistency [35].
The early results of attempting to characterize the power of this relaxation for CSPs in [34]
was expanded to PCSPs in [4]. They captured the power of BLP for PCSPs equivalently
in terms of the existence of symmetric polymorphisms of all arities, admitting a minion
homomorphism consisting of rational stochastic vectors, and a certain pp-constructability
concept.

Similar to BLP, another relaxation for PCSPs, first established in [12], is Affine Integer
Programming relaxation (AIP). The power of AIP for PCSP was also characterized in [4]
in terms of a minion consisting of integer affine vectors and polymorphisms of odd arities
invariant under certain permutations. A prime example of a PCSP instance solved by AIP
is 1-in-3 vs NAE [19].

Motivated to construct a stronger algorithm, in [14] BLP+AIP relaxation was intro-
duced. In the same paper, the power of BLP+AIP was characterized in terms of the minion
of the combination of AIP and BLP, and polymorphisms of odd arities invariant under
permutations that only permute odd and even coordinates. However, BLP+AIP is unable
to solve some instances of simple, tractable, non-Boolean PCSPs [14]. Therefore, building
on the work of Brakensiek et. al, in [19] Ciardo et. al investigated algorithms stronger that
BLP+AIP and introduced CLAP. Coming from the background of quantum foundations
and category theory Conghaile in [20] introduced a novel cohomological algorithm which
proved to have applications in solving CSPs and therefore PCSPs with power stronger than
k-consistency.

Our Results

As was mentioned above, it was conjectured that a certain combination of local consistency
algorithms and linear or affine integer relaxations suffices to solve any tractable PCSP and
CSP.

Conjecture 1.1. There is a combination of some level of consistency and the linear pro-
gramming or cohomology solves all the polynomial-time CSPs and PCSPs.

In this thesis we challenge this conjecture for some of those algorithms.
Note that Conjecture 1.1 (stated as Conjecture 2.6.3 in Section 2.6.2) allows for multiple

combinations of consistency and relaxation algorithms. In a recent paper Lichter and Pago
[36] refuted Conjecture 1.1 for some of those algorithms. In this thesis we consider a different
collection of algorithms. More specifically, we test the combination of Basic Linear Program-
ming (BLP) and Affine relaxation, as well as the combination of the (2, 3)-consistency and
cohomology algorithms. All the algorithms are described in detail in the thesis, and the
exact way we deal with them is explained in Section 3.2. In order to refute the conjecture
in those cases, we construct a small, 3-element algebra A which combines features that

5

are normally amenable to consistency algorithms, as well as features that require Gaussian
elimination to solve. The idea is then that such a combination would fool the algorithms
under consideration.

Next, we show that the algebra A satisfies the desired properties, show that the CSP over
this algebra is not solvable by the consistency algorithms and linear/affine programming
relaxation algorithms separately, and introduce several relations invariant with respect to
A and that therefore can be use in instances of the CSP over A. Finally, we construct two
instances of that CSP, I7 and I16 (the subscript here refers to the number of variables in
the instance). In Lemmas 3.2.1 and 3.2.2 we prove that these two instances do not have a
solution.

Next, we implement all the algorithms involved: the (2, 3)-consistency algorithm, the
Affine Integer Programming algorithm (AIP), and the cohomology algorithms. We then
run those algorithms on instances I7 and I16. We find that the combination of the BLP
and the AIP does not detect the inconsistency of I7, while the combination of the (2, 3)-
consistency and AIP correctly detects that I7 is inconsistent. This combination however
does not detect the inconsistency of I16. Since the CSP over the algebra A is known to be
solvable in polynomial time, this refutes Conjecture 2.6.3 for these algorithms.

Our results do not fully refute refute Conjecture 2.6.3, since a number of (potentially
more powerful) combinations of algorithms remain. In particular, we consider only consis-
tency of a fairly low level — it is lower than the arity of the relations involved. It is possible
that the consistency of a higher level, at least as high as the arity of the relation of the
instance, may lead to a desired algorithm. However, an instance that may fool such an
algorithm is quite complicated. It is based on graphs with high treewidth, see [2], and is
not be feasible for empirical testing, as it would involve thousands of variables.

6

Chapter 2

Preliminaries

We use the notation [n] = {1, . . . , n} throughout this thesis.

2.1 Relational Structures

For sets A1, . . . Ak, their Cartesian product is the set of k-tuples A1×. . .×Ak = {(a1, . . . , ak)|ai ∈
Ai, i ∈ [k]}. When A1, . . . Ak = A, we write Ak for A1 × . . . × Ak. A relation of arity k is
then defined as a subset R ⊆ Ak. It is often convenient to represent relations by matrices.
For example

R ̸= =
(

1 1 2 2 3 3
2 3 1 3 1 2

)

shows the disequality relation on the set {1, 2, 3}, where the tuples are written vertically. We
denote the tuples by bold lowercase letters, such as a. By a[i], we refer to the i-th entry of
tuple a. The projection of a on an index set I, denoted by prIa, is a tuple (a[i1], . . . , a[il]),
where I = {i1, . . . , il} ⊆ [k]. The projection of a relation R ⊆ A1 × . . . × Ak on I is defined
as prIR = {prIa | a ∈ R}. Similarly for a single set A, an n-ary operation p

(n)
i : An → A is

called a projection (or dictator) on A and has the form p
(n)
i (x1, . . . , xn) = xi. A constraint

language Γ is an arbitrary finite set of relations, of possible different arity, on a set A. In
this case, A is called the domain of Γ.

Definition 2.1.1. A relational structure is a tuple A = (A; RA
1 , . . . , RA

k), where each
RA

i ⊆ Aar(Ri) is a relation on A of arity ar(Ri) ≥ 1. For more clarity, we denote the
relational structures by bold capital letters and their templates with capital letters.

When A is a finite set, we say A is finite. We assume that all relational structures are
finite in this paper, unless specified otherwise. Two structures A = (A; RA

1 , . . . , RA
k) and

B = (B; RB
1 , . . . , RB

k) are called similar if the number of their relations is the same and
ar(RA

i) = ar(RB
i) for each i ∈ [k].

7

Example 2.1.1. For a (directed) graph G, we denote the vertex set by V (G) and the edge
set by E(G). Then G is a relational structure with V (G) as its domain and E(G) as its
only relation of arity two, i.e., a binary relation.

Definition 2.1.2. Let A and B be two similar relational structures. A homomorphism
from A to B, denoted by h : A → B, is a mapping h : A → B such that for each i

if (ai, . . . , aar(Ri)) ∈ RA
i then (h(ai), . . . , h(aar(Ri)) ∈ RB

i

We write A → B to denote that a homomorphism from A to B exists. If no such a
homomorphism exists, we simply write A /−→ B.

2.2 Constraint Satisfaction Problem (CSP)

The Constraint Satisfaction Problem (CSP) is defined as a decision problem: is it possible
to assign values to some variables such that all the pre-defined constraints are satisfied.

Definition 2.2.1. (CSP definition I) A CSP instance with constraint language Γ, denoted
by CSP(Γ), is defined as a tuple (V, A, C), where

• V is a set of variables,

• A, the domain, is a set of values, and

• C is a set of constraints {C1, . . . , Cn}, where each Ci itself is a pair and is denoted by
⟨si, Ri⟩. Each constraint scope si is a tuple of variables from V of length mi and the
corresponding Ri is an mi-ary relation on A.

The goal is to find a satisfying assignment for the CSP instance; that is, a function φ from
V to A such that for each Ci ∈ C, φ(si) ∈ Ri. This means that the scope of each constraint,
under φ, is mapped to a tuple of its corresponding relation.

We can also define CSP using the concepts of relational structures and homomorphisms.

Definition 2.2.2. (CSP definition II) Let A be a fixed relational structure. The decision
problem of whether a given relational structure I admits a homomorphism to A is denoted
by CSP(A). In this case, A is called the template for this problem.

CSP definitions I and II are equivalent and convertible. When we are given an instance
P = (V, A, C) from the first definition, we can construct an instance for the second definition
and vice versa.

Example 2.2.1. The Graph k-Colorability is the problem of deciding whether a coloring of
the vertices of a graph G with k colors exists, such that no two adjacent edges of G have
the same color, i.e., for any edge e = uv ∈ E(G), u should have a different color than v.

8

We call such a coloring a proper coloring. This problem can be formulated with Definition
2.2.2 as CSP(A), where A = Kk is a k-clique and for an input graph I, I → A is a graph
k-coloring. To see how this problem can equivalently be described with tools from Definition
2.2.1, take

• V = V (G),

• A = {1, . . . , k},

• C = {⟨(u, v), ̸=2⟩ |uv ∈ E(G)}, where ̸=2 is the binary disequality relation on the
domain A. More specifically, it consists of all the elements of A2 except the tuples
(ui, uj) where ui = uj.

A satisfying assignment φ : V → A correctly solves (V, A, C) in this example if for each edge
(u, v), φ(u) ̸= φ(v) holds, which is the same as ̸=2 (u, v).

Example 2.2.2. As a generalization of Example 2.2.1, we can define the problem of H-
Coloring, which has the same setting except instead of A = Kk, A is an arbitrary graph H.
Similarly, we seek a proper coloring, which is again basically a homomorphism I → A.

Example 2.2.3. Suppose we are given a set of Boolean variables, x1, . . . , xn, and that
they can each take the value of 0 or 1. We call these propositional variables and their
negations literals. Any disjunction of literals is called a clause and a collection of clauses is a
Conjunctive Normal Form (CNF). For a CNF Φ, a satisfying assignment makes every clause
true by assigning 0,1 to variables. Boolean Satisfiability is the problem of deciding, given a
CNF, whether such a satisfying assignment exists. Formally, given a CNF Φ = {c1, . . . , ck}
the corresponding instance (V, A, C) is

• V = {x1, . . . , xn}

• A = {0, 1}

• C = {⟨si, Rci⟩ | i ∈ [k]}, where si is the tuple of all the literals in ci and Rci consists
of all the tuples that satisfy ci.

Example 2.2.4. Let

e1 : a11x1 + a12x2 + · · · + a1nxn = b1

e2 : a21x1 + a22x2 + · · · + a2nxn = b2
...

...

em : am1x1 + am2x2 + · · · + amnxn = bm

be a system of m linear equations with n indeterminates, where x1, . . . , xn are the indeter-
minates, a11, a12, . . . , amn are the coefficients, and b1, . . . , bm are the constant terms. The

9

matrix representation is then of the form Ax=b

A =

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

am1 am2 · · · amn

 , x =

x1

x2
...

xn

 , b =

b1

b2
...

bm

 ,

where A is an m × n matrix and x and b are column vectors with n and m entries, respec-
tively. A solution to a system of linear equations, over some field F, is one that assigns values
to each of the variables such that all the equations are satisfied. Therefore, the corresponding
CSP instance (V, A, C) for this problem asks whether such an assignment exists.

• V = {x1, . . . , xn}

• A = the elements of field F

• C = {⟨si, Rei⟩ | i ∈ [m]}, where si is the tuple of all the variables with non-zero coef-
ficients in ei and Rei consists of all the tuples that satisfy ei. In short, the constrains
are the equations.

2.3 Promise Constraint Satisfaction Problem (PCSP)

PCSP is a fairly new and exciting variant of CSP which was introduced with the motivation
of finding approximately good solutions to an instance of a typically hard problem with the
promise that a good solution is guaranteed to exist. In a PCSP instance, every constraint
is associated with a ’strict’ and a ’relaxed’ relation. Given a PCSP instance, the goal is to
differentiate between the case when it has a solution subject to the strict constraint from
the case when, even subject to the relaxed constraint, it does not have a solution. More
formally, we define PCSP as follows.

Definition 2.3.1. Let A and B be a pair of similar relational structures such that A → B.
For a given input structure I, the decision version of PCSP(A, B) outputs YES if I → A
and NO if I /−→ B. In addition, it is always the case that either I → A or I /−→ B, which
is the promise in the PCSP. The pair (A, B) is called the PCSP template.

Note that when the strict form and the relaxed form of each constraint coincide, the
result is the standard CSP. This means that the PCSP framework generalizes CSP.

Remark 2.3.1. PCSP(A, A) is the same as CSP(A).

Example 2.3.1. The Approximate Graph Colorability, parameterized by two natural num-
bers c and k, k ≤ c, is the problem of deciding whether a given graph I is k-colorable or
is not c-colorable. This problem can be formulated as PCSP(A, B), where A = Kk and
B = Kc.

10

Example 2.3.2. [4] Take the following relational structures

T = ({0, 1} : (1, 0, 0), (0, 1, 0), (0, 0, 1)),

H2 = ({0, 1} : {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}).

The classic NP-hard CSP problems of these relational structures, namely CSP (T) and
CSP (H2) are called 1-in-3 and Not-all-equal-Sat, respectively. We can naturally define
PCSP (T, H2), which is proven to be in P [13, 12].

The CSP and PCSP constitute a broad range of problems and have played an important
role in the development of computational complexity theory. Naturally for such a broad
subject, multiple questions can be asked about a CSP instance. The original form of CSP,
as we defined earlier in 2.2, is a decision problem, i.e., we need to decide whether an instance
has a solution or not.

There are other versions of the CSP that include:

• The search problem, where we want to find a feasible solution for a given CSP instance.

• The counting problem, where we want to find how many solutions a given CSP instance
has.

• The Max-CSP, where given a CSP instance, we want to find a solution that satisfies
the most number of constraints as possible, even when the instance does not have
a solution. Since this is an optimization problem, it requires using approximation
approaches.

• The valued CSP, where given a CSP instance we assign values to tuples of constraint
relations and seek a solution that maximizes (or minimizes) the weight.

2.4 Algebraic Tools

It was conjectured that for each finite constraint language Γ, the decision CSP(Γ) is either
in P or NP-complete [23]. Both independent proofs of the conjecture, [18], [41], are heavily
based on the algebraic approach to CSP which includes using polymorphisms, multivariate
functions that preserve relations in a constraint language, and consequently solution sets of
the corresponding CSPs. The concept of polymorphism links relations and operations and
provides insight into complexity of constraint problems.

Definition 2.4.1. We define a polymorphism of a k-ary relation R on a set A to be a
mapping f : An → A that preserves R; meaning that for any a1, . . . , an ∈ R where each
tuple ai = (ai[1], ai[2], . . . , ai[k]) we have

(f(a1[1], . . . , an[1]), . . . , f(a1[k], . . . , an[k])) ∈ R.

11

To clarify, if we take a k × n matrix where the columns are a1, . . . , an ∈ R and apply f on
rows of this matrix, the resulting tuple is also a member of R. In this case, we call R to be
invariant with respect to f .
A polymorphism of a relational structure A = (A; RA

1 , . . . , RA
l) is a mapping f : An → A

such that for each i ≤ l and all a1, . . . , an ∈ RA
i where ai = (ai[1], ai[2], . . . , ai[ar(Ri)])

(f(a1[1], . . . , an[1]), . . . , f(a1[ar(Ri)], . . . , an[ar(Ri)])) ∈ RA
i .

We denote the set of all polymorphisms of A by Pol(A). For two similar relational structures
A and B, a polymorphism from A and B is a mapping f : An → B, defined similarly as
above, that is, for each i ≤ l and all a1, . . . , an ∈ RA

i where ai = (ai[1], ai[2], . . . , ai[ar(Ri)])

(f(a1[1], . . . , an[1]), . . . , f(a1[ar(Ri)], . . . , an[ar(Ri)])) ∈ RB
i .

The set of all such polymorphisms is denoted by Pol(A, B).

Example 2.4.1. Take the relational structures from example 2.3.2. We can verify that
Pol(T) consists of the projections on the set {0, 1} and Pol(H2) consists of operations
π(p(n)

i) in which p
(n)
i is a projection and π is a permutation on the set {0, 1}.

Definition 2.4.2. An L-ary polymorphism f is said to be symmetric if for any permutation
α in the symmetric group of size L), we have f (x1, ..., xL) = f (xα(1), ..., xα(L)).

Example 2.4.2. Take the system of linear equations in example 2.2.4 over the field Zp

of integers modulo p. Then the affine operation g(x, y, z) = x − y + z is an example of a
polymorphism, since for any u, v, w that are solutions to the linear system, so is u − v + w.
This is because u is a solution if and only if Au = b and we need to show that u − v + w
is also a solution, meaning A(u − v + w) = b, which is trivial to prove. However, g, which
satisfies the Mal’tsev identities g(x, y, y) = g(y, y, x) = x for all x, y ∈ R, is not symmetric.

There exists a similar operation, which is interreplaceable with the Mal’tsev operation,
and is symmetric. This p+1-ary mapping over the same field is defined as f(x1, . . . xp+1) =
x1 + x2 + . . . + xp+1 and, as promised, can be used instead of the Mal’tsev operation as
follows:
Without loss of generality, take p = 3. With the setting we have described in this example,
we show that x1 + x2 + x3 + x4 can be transformed to x − y + z and vise versa by means
of substitutions, which implies that they have the same invariant relations. Starting with

12

x1 + x2 + x3 + x4 = f(x1, x2, x3, x4), we define h(x, y, z) = f(x, y, y, z). Then

h(x, y, z) = f(x, y, y, z) = x + y + y + z

= x + 2y + z

≡ x − y + z (mod 3)

= g(x, y, z).

Conversely, take g(x, y, z) = x−y +z. With substitution of variables, introducing v ∈ R,
we have,

g(g(x, y, z), y, v) = (x − y + z) − y + v = x − y + z − y + v

≡ x + 2y + z + 2y + v (mod 3)

≡ x + y + z + v (mod 3)

= f(x, y, z, v).

An extension of symmetric polymorphisms is the class of block-symmetric polymor-
phisms, where a mapping f is said to be block-symmetric if its coordinates can be partitioned
into several blocks such that f is invariant under permutations within each block.

Definition 2.4.3. A mapping f : An → B is said to be block-symmetric if there exists a
partition of the coordinates of f into blocks B1 ∪ . . . ∪ Bk = [L] such that f is invariant
under permutations within each block Bi, meaning that the mapping output remains un-
changed regardless of the arrangements of the coordinates within each block. In addition,
the minimum size of any block is defined as the width of f .

Example 2.4.3. An example of a block-symmetric polymorphism is the alternating thresh-
old operation, defined as

AT (x1, . . . , xL) = 1[x1 − x2 + x3 − . . . ± xL ≥ 1],

where AT (x1, . . . , xL) equals 1 if x1 − x2 + x3 − . . . ± xL ≥ 1 and −1 otherwise. In this case,
the blocks are formed by the odd and even coordinates and the width is not bounded.

Next, we introduce a closure operator on the set of mappings.

Definition 2.4.4. For an n-ary function f : An → B and an m-ary function g : Am → B

and a given map π : [m] → [n], we call f a minor of g, and we write g = fπ, if for all
x1, . . . , xn ∈ A

f((x1, . . . , xn) = g((xπ(1), . . . , xpi(m))

As is easily seen, Pol(A) is closed under composition of functions for any A. However,
Pol(A, B) is generally not closed under composition, but it is always closed under taking
minors.

13

Definition 2.4.5. Let O(A, B) = {f : An → B | n ≥ 1} for the pair of sets (A, B). Then, a
(function) minion M on this pair is a non-empty subset of O(A, B) which is also closed under
taking minors. In other words, if f ∈ M then g = fπ ∈ M for any π : [ar(f)] → [ar(g)].
Furthermore, we denote the set of n-ary functions of M by M (n) for n ≥ 1.

When studying the CSP and PCSP, we make use of polymorphisms, which offers a
compact representation of extensive sets of relations. However, we also leverage the language
of universal algebra, which provides an even more structured and expansive framework. We
start by introducing some definitions.

Definition 2.4.6. Given a set A, called the universe, and F , a set of operations over A

which are called basic, a (universal) algebra is a pair A = (A, F).

We will need some basic constructions on algebras.

Definition 2.4.7. Let A = (A, F) be an algebra and B a subset of A such that for any
(k-ary) operation f ∈ F and any b1, . . . bk ∈ B we have f(b1, . . . bk) ∈ B. Then the algebra
B = (B, F |B) is a subalgebra of A. If A ̸= B, then B is said to be proper.

An example of an algebra is a semilattice, which is defined as below.

Definition 2.4.8. An algebra S = (S, {·}), where · is a semilattice operation, which means
it satisfies the equations x ·x = x, x ·y = y ·x, and x ·(y ·z) = (x ·y) ·z, is called a semilattice.

Another fundamental concept used later on is congruence, which is defined as the fol-
lowing.

Definition 2.4.9. For an algebra A = (A, F), let Inv(F) denote the the set of all relations
on A that are preserved by every operation from F . A congruences is an equivalent relation
θ ∈ Inv(F), meaning that for any operation f ∈ F and any (a1, b1), . . . , (ak, bk) ∈ θ it holds
that (f(a1, . . . , ak), f(b1, . . . , bk)) ∈ θ.

Let A be any algebra. Then the equality relation 0A and the full binary relation 1A on
A are congruences of A.

2.5 Methods of Solving CSP

We start by introducing some well-known methods of solving CSPs, the decision problem
in particular.

2.5.1 Local Consistency

A large group of algorithms that were suggested to solve CSP rely on some kind of local
propagation. These algorithms execute a propagation procedure that can either prove that
a given instance is unsatisfiable or modify it into a state that is locally consistent, while

14

keeping the set of solutions unchanged. Here, locally refers to the fact that at each step
of such algorithms we consider only a bounded number of variables or constraints. Then,
we can say that the CSP instance has a solution if the locally consistent instance has a
solution. We start by defining arc-consistency.

Definition 2.5.1. Given a CSP instance P = (V, A, C), we say it is arc-consistent if the
following condition is satisfied: For any ⟨s1, R1⟩, ⟨s2, R2⟩, I = s1 ∩s2, and any a ∈ R1, there
exists b ∈ R2 such that prIa = prIb.

The following algorithm takes a CSP instance P and return an arc-consistent instance
P ′ with the same set of solutions as P (if any exists).

Algorithm 1 Arc-consistency algorithm
Require: A CSP instance P = (V, A, C)
Ensure: An arc-consistent instance P ′ = (V, A, C′) with the same set of solutions as P

1: P ′ = (V, A, C′) := P where C′ = {⟨s, R′⟩|⟨s, R⟩ ∈ C, R′ = R}
2: repeat
3: for ⟨s1, R1⟩, ⟨s2, R2⟩ ∈ C′ such that I = s1 ∩ s2 ̸= ∅ and any a ∈ R1 do
4: if there exists no b ∈ R2 such that prIa = prIb then
5: Remove a from R1
6: end if
7: end for
8: until P ′ is arc-consistent

Arc-consistency can be generalized by considering tuples (instead of pairs) of variables
(instead of constraints). This leads us to another version of local consistency, namely (k, l)-
consistency. We start with the notion of weak partial solution.

Definition 2.5.2. For a CSP instance P = (V, A, C) and W ⊆ V , a mapping ϕ : W → A

is a weak partial solution of P on W if for every ⟨s, R⟩ ∈ C such that s ⊆ W , it holds that
ϕ|s ∈ R.

Next, we define (k, l)-consistency.

Definition 2.5.3. Let P = (V, A, C) be a CSP instance and k ≤ l be natural numbers.
Then P is said to be (k, l)-consistent if for any U ⊆ W ⊆ V such that |U | ≤ k, |W | ≤ l, any
weak partial solution of P on U can be extended to a weak partial solution on W . Plus, we
say Instance P is k-consistent if it is (k, k + 1)-consistent.

The following algorithm takes a CSP instance and returns a (k, l)-consistent instance
with the same set of solutions.

Example 2.5.1. Let P = (V, A, C) be a CSP instance given by

• V = {x, y, z}

15

Algorithm 2 (k, l)-consistency algorithm
Require: A CSP instance P = (V, A, C)
Ensure: A (k, l)-consistent instance P ′ = (V, A, C′) with the same set of solutions as P

1: for every U ∈ V , U ≤ k do create a constraint ⟨U, RU ⟩, where RU is the set of all weak
partial solutions of P on U

2: end for
3: P ′ := (V, A, C′) where C′ = C ∪ {⟨U, RU ⟩ | U ⊆ V, |U | ≤ k}
4: repeat
5: for U, W ⊆ V , |U | ≤ k, |W | = l, U ⊆ W and any a ∈ RU do
6: if there exists no weak partial solution ϕ of P ′ on W such that ϕ|U = a then
7: Remove a from RU

8: end if
9: end for

10: until P ′ is (k, l)-consistent

• A = {0, 1}

• C = {⟨(x, y, z), R1⟩, ⟨(x, y), R2⟩, ⟨(x, y, z), R3⟩}, where

R1 =

0 0 1 1
0 1 0 1
0 1 1 0

 , R2 =
(

0 1
0 1

)
, R3 = A3.

Then P is not arc-consistent because for ⟨(x, y, z), R1⟩, ⟨(x, y), R2⟩, (0, 1, 1) ∈ R1 there is
no tuple b ∈ R2 such that pr{x,y}(0, 1, 1) = (0, 1) = pr{x,y}b. However, P is (2,3)-consistent
since we can extend every assignment on a 2-element set to a weak solution.

For a wide range of constraint languages the existence of any set of local consistent
solutions implies the existence of a global solution. Such constraint languages are said to
have bounded width. It was first conjectured and later proved that CSP that lack bounded
width property can simulate relations to be encoded as linear equations over finite field [7].
Atserias et.al in [1] proved another limitation of this type of methods,: the k-consistency
algorithm is not always correct when the template of a CSP instance does not have tree-
width of at most k.

2.5.2 Gaussian Elimination

Another method of solving CSP is called Gaussian elimination, which comes from basic lin-
ear algebra. Unlike the already-mentioned algorithms which cannot solve linear equations,
Gaussian elimination can solve them. An appropriate extension of linear algebra problems
are CSPs over relations admitting a compact representation that can be solved by general-
izations of Gaussian elimination. A compact representation of a relation is its subset that
has cardinality polynomial in the arity of the relation, and uniquely determining the relation

16

given its polymorphisms. For an algebra A = (A, F), this property can be formalized using
few subpowers property.

Definition 2.5.4. Let A = (A, F) be an algebra. Then A is said to be an algebra with few
subpowers if there is a polynomial p such that for every k ∈ N and every k-ary relation R

invariant under F , there is a generating set Q of R such that |Q| ≤ p(k). A set Q ⊆ Ak.
is a generating set of a k-ary relation R over A invariant under F , if Q generates R as a
subalgebra of Ak.

This definition is followed by the theorem below.

Theorem 2.5.1. There is a k +1-ary operation that for any x, y ∈ A satisfies the following
identities:

f(x, x, y, y, y, . . . , y, y) = y,

f(x, y, x, y, y, . . . , y, y) = y,

f(y, y, y, x, y, . . . , y, y) = y,

f(y, y, y, y, x, . . . , y, y) = y,

. . .

f(y, y, y, y, y, . . . , y, x) = y.

Algebras with few subpowers property have been completely characterized by Idziak et.
al [28]. While it is notable to recognize the method that solves the linear equation CSP
problem, further discussion on the Gaussian elimination method is out of the scope of this
thesis.

2.5.3 Basic Linear and Integer Programming

Convex relaxations are among the powerful methods of designing exact and approximate
algorithms for the CSP. The general idea is to formulate a CSP instance as an integer
problem and later relax it to a convex problem such as linear (LP) or semidefinite program
(SDP). We start by introducing the foundations of basic integer and linear programming.

An instance P = (V, A, C), V = {v1, . . . , vn}, C = {C1, . . . , Cm}, of CSP(Γ) can be equiv-
alently described as a canonical 0-1 integer program, denoted by IP(P). For an assignment
V → A of a variable, we introduce a variable wi(a), where a ∈ A and i ∈ [n] is the index of
the variable. Since we are establishing an integer programming problem where the involved
variables can take value 0 or 1, when wi(a) = 1, we interpret that the variable vi is assigned
the value a. We also consider variables pj(y), where j ∈ [m] is the index of a constraint
Cj = ⟨sj , Rj⟩ and y ∈ RA

j is a potential assignment to sj . More formally, the resulting basic

17

integer program IP(P) with the described variables is as follows:

wi(a) ∈ {0, 1} ∀i ∈ [n] , a ∈ A

pj(y) ∈ {0, 1} ∀j ∈ [m] , y ∈ RA
j∑

a∈A

wi(a) = 1 ∀i ∈ [n]∑
y∈RA

j

pj(y) = 1 ∀j ∈ [m]

∑
y|i=a

pj(y) = wi(a) ∀i ∈ [n] , j ∈ [m]

(2.1)

We can relax IP(P) by letting the variables to take any value in the range [0, 1] instead
of {0, 1} to obtain LP(P), the basic linear program. This way, wi(a) is interpreted as a
probability distribution for the assignment V → A of a variable and still sums up to 1.
Similarly, a probability distribution over the satisfying assignments to each constraint is
pj(y). Just like in the basic integer programming setup, for every i, a, wi(a) equals the
marginal probability distribution of variable vi in every constraint. The formal basic linear
programming LP(P) with the described variables is the following:

wi(a) ≥ 0 ∀i ∈ [n] , a ∈ A

pj(y) ≥ 0 ∀j ∈ [m] , y ∈ RA
j∑

a∈A

wi(a) = 1 ∀i ∈ [n]∑
y∈RA

j

pj(y) = 1 ∀j ∈ [m]

∑
y|i=a

pj(y) = wi(a) ∀i ∈ [n] , j ∈ [m]

(2.2)

Sherali and Adams proposed [38] a hierarchy of linear programming relaxations that cap-
tures the process of enhancing convex relaxations by incorporating additional constraints
that are fulfilled by an integer solution. These constraints, although larger in scope, con-
tribute to generating more robust relaxations. Nevertheless, even the stronger versions of
convex relaxations have limitations as to the CSP problems they can solve or approximate
[39]. Yet another kind of relaxations, affine relaxations, are also a newly found method of
solving CSPs. They are introduced in Section 2.6.1.

2.6 Methods of Solving PCSP

We now turn to the PCSP. We introduce some methods of solving the PCSP. Note first that
the all the techniques that solve PCSP also apply to CSPs. To some extent the converse
is also true: the relaxations that solve CSPs are often applicable to PCSPs and inspire
methods of solving PCSP instances.

18

2.6.1 Basic Linear Programming + Affine Relaxation

This algorithm, developed by Brakensiek and Guruswami in [14] and inspired by the well-
studied methodology in the CSP, consists of two main parts. In the first part, we consider
the canonical linear programming relaxation and for a CSP instance P it is defined exactly
like the system of constraints defined in Equation 2.2. We let LPQ(P, A) represent the
rational polytope of the solutions.

The second part of the method is the affine relaxation of a PCSP. For the affine relaxation
the system of a linear constraints is the same as above, but we replace the condition that
each variable is a non-negative rational number with the condition that it is an integer
number (positive or not). Therefore, we let ri(a) ∈ Z replace wi(a) and qj(y) ∈ Z replace
pj(y). The explicit system is shown below and, similarly, we let Aff Z(P, A) denote the set
of solutions: ∑

a∈A

ri(a) = 1 ∀i ∈ [n]∑
y∈RA

j

qj(y) = 1 ∀j ∈ [m]

∑
y|i=a

qj(y) = ri(a) ∀i ∈ [n] , j ∈ [m]

(2.3)

The algorithm runs in three steps and involves finding solutions in the mentioned sets
(polytopes). Both linear systems can be solved in polynomial time via the algorithm pro-
posed in [30]. In certain cases the algorithm correctly solves the input PCSP instance P in
polynomial time.

Algorithm 3 BLP + Affine algorithm
Require: An instance P of PCSP(A, B)
Ensure: Accepts instance P satisfiable in A and rejects it if unsatisfiable in B

1: if There exists a relative interior point in LPQ(P, A) exists then Find it
2: else Reject
3: end if
4: Refine Aff Z(P, A) to Aff ′

Z(P, A) by discarding assignments to constraints which have
weight 0 according to the relative interior point. Namely, let ri(a) be 0 whenever wi(a)
is, and requiring qi(y) to be 0 whenever pi(y) is.

5: if Aff ′
Z(P, A) is empty then Reject

6: else Accept
7: end if

Theorem 2.6.1 (Theorem 3.2 of [14]). Let(A, B) be a promise template (over any finite
domains) such that Pol(A, B) has symmetric polymorphisms of arbitrarily large arities.
Then, the BLP+Affine algorithm correctly solves the decision PCSP(A, B).

Furthermore, the algorithm’s exact effectiveness is established by the presence of block-
symmetric polymorphisms, as mentioned in Definition 2.4.3, which are both necessary and
sufficient for its functioning.

19

Theorem 2.6.2 (Theorem 4.1 of [14]). Let (A, B) be a promise template (over any finite
domain) such that Pol(A, B) has block-symmetric polymorphisms of arbitrarily large width.
Then, the BLP+Affine algorithm correctly solves the decision PCSP(A, B).

Going back to one of the main examples of this thesis, systems of linear equations have
the right structure for BLP+Affine algorithm to be applied on.

Example 2.6.1. From Example 2.4.1, we know that the system of linear equations admits a
symmetric polymorphism. Furthermore, it has at least one block-symmetric polymorphism.
Therefore, it is easy to verify that it is solvable by BLP+Affine algorithm.

2.6.2 Cohomology

In [20], Conghaile introduced a novel algorithm based on concepts of cohomology and in-
spired by quantum foundations, category theory, and proved that it is stronger than k-
consistency. The paper has established a setting and formulation that is beyond the scope
of this thesis but the essence of the approach is close to Affine Integer Programming (AIP),
introduced earlier. Additionally, the input requires to be k-consistent for some k. The pro-
posed cohomological k-consistency method is equivalent to the following algorithm, which
takes a k-consistent CSP instance and constructs an Affine Integer Programming (AIP)
relaxation by introducing some additional marginal conditions. Then it continues to check
that for each of the variables in the relaxation there exists an integer solution with the
condition that that variable equals 1. If yes, the instance passes the cohomology test and
is accepted; otherwise the added constraint is removed and the process continues until the
instance is cohomologically consistent.

Recall that any instance P = (V, A, C) of CSP(Γ) can be similarly described as a canon-
ical integer program, denoted by IP(P). For an assignment V = {v1, . . . , vn} → A, as in
Section 2.6.1, we again introduce ri(a) ∈ Z, where, a ∈ A and i ∈ [n]. Furthermore, we
consider variable qj(y) ∈ Z, where j ∈ [m] is the index of constraint Cj = ⟨sj , Rj⟩ and
y ∈ RA

j is a potential assignment to sj . What differentiates this system of linear equations
from the previous settings is what follows:

1. The algorithm cycles through the introduced variables and creates an additional con-
straint by assigning one of the introduced variables (for all ri(a) and qj(y)) to 1
separately and adding it to the system. Then it attempts to find a solution for the
new system. If no feasible solution is found, the algorithm removes the a (or y) from
the set of possible values of vi (y from the corresponding constraint relation) and
continues with adding the next constraint. If, despite adding the new constraint, a
solution is found, we remove the added constraint and repeat the process by setting
the next variable to 1 and creating a new system with an additional constraint. Fi-
nally, the algorithm ensures the modified solution without cohomological obstractions

20

is found for each of the systems created or declares inconsistency if for at least one
system no solution is found.

2. There is no requirement of ri(a) and qj(y) to sum to 1.

For each round of the algorithm the explicit system is shown below and, similarly, we
let Aff Z(I, A) denote the submodule of solutions:

∑
y|i=a

qj(y) = ri(a) ∀i ∈ [n] , j ∈ [m]

rk(a) = 1 ∀k ∈ [n]
(or qk(y) = 1 ∀k ∈ [m])

(2.4)

The cohomology-based algorithm described above is as follows:

Algorithm 4 Cohomology algorithm
Require: A k-consistent instance P of CSP(A)
Ensure: An updated instance P ′ without cohomological obstractions

1: for each s ∈ ri(a) ∪ qj(y) do
2: Add s = 1 to Aff Z(P, A)
3: if There exists a solution in LPQ(P, A) then Find it
4: else remove s = 1 from constraints
5: end if
6: if Aff Z(P, A) is empty then Reject
7: else Continue
8: end if
9: end for

10: Accept

Aside from promise templates which admit symmetric or block-symmetric polymor-
phisms, there exists a tractable template which is solvable in polynomial time but does not
admit any trivial block-symmetric polymorphism and, thus, is not solvable by BLP + Affine
algorithm[14]. Therefore, the search for algorithms that solve all or at least a larger group of
promise templates must continue. A natural alternative for the BLP+AIP algorithm would
be to replace the BLP section of this approach with local consistency methods or Cohomol-
ogy. The power of these combinations have not been thoroughly studied and we also do not
know either they would solve all tractable PCSPs, but there exists a general belief over the
power of the combination of such linear programming and consistency approaches.

Conjecture 2.6.3. The combination of some level of consistency and the linear program-
ming or cohomology solves at least all the polynomial-time CSPs or PCSPs.

So far, no known CSP or PCSP instance has been suggested as a counterexample of this
conjecture. Therefore, a majority of the community believe that this conjecture is true. In
Chapter 3, we introduce the main contribution of this work and provide a counter example
that disproves this conjecture in some cases.

21

Chapter 3

Where Cohomology Fails

As mentioned in section 2.5.3, it is generally believed that all polynomial time PCSP tem-
plates, or any polynomial time solvable CSP problems, are solvable by the algorithms men-
tioned there. These methods include a combination of checking the consistency of the in-
stance followed by finite relaxation or cohomology methods. The main contribution of this
thesis is to provide a counter example that disproves this for some of those combinations.
More specifically, in the next section we introduce an algebra which gives rise to a CSP
instance, which eventually refutes conjecture 2.6.3.

3.1 The Counter-example Algebra

Let A = (A, F) be an algebra with universe A = {0, 1, 2} and two operations: a ternary
operation f such that f(x, y, z) = x + y + z (mod 2) if x, y, z ∈ {0, 1} and f(x, y, z) = x

otherwise; and a binary operation g(x, y) = 0 if {x, y} = {0, 2}, g(2, 2) = 2, and g(x, y) = 1
if {x, y} = {1, 2}.

Let R, T, S, Q ⊆ Ak, k ∈ {1, 5} be defined as below.

R =

1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 2
0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 2
0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 2
0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 2
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2

,

T =

0 2 0 0 0 2 2 2 0 0 0 2 2 2 0 0 2 0 0 0 2 2 2 0 0 0 2 2 2 0 2
0 0 2 0 0 2 0 0 2 2 0 2 2 0 2 0 0 2 0 0 2 0 0 2 2 0 2 2 0 2 2
0 0 0 2 0 0 2 0 2 0 2 2 0 2 2 0 0 0 2 0 0 2 0 2 0 2 2 0 2 2 2
0 0 0 0 2 0 0 2 0 2 2 0 2 2 2 0 0 0 0 2 0 0 2 0 2 2 0 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

,

22

S =

0 2 0 0 0 2 2 2 0 0 0 2 2 2 0
0 0 2 0 0 2 0 0 2 2 0 2 2 0 2
0 0 0 2 0 0 2 0 2 0 2 2 0 2 2
0 0 0 0 2 0 0 2 0 2 2 0 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q =

(
0
)

.

We verify that the relations R, T, S are invariant under the operations f, g.

Lemma 3.1.1. The relation R is invariant under the operations f and g.

Proof. Let x, y, z ∈ R. To show that R is invariant under f , it is sufficient to show that
f(x, y, z) ∈ R.

• Case 1: (2, 2, 2, 2, 2) ∈ {x, y, z}
In this case, by definition of f , f(x, y, z) = (2, 2, 2, 2, 2) ∈ R if (x) = (y) = (z) =
(2, 2, 2, 2, 2), or f(x, y, z) = (x) ∈ R otherwise.

• Case 2: x, y, z ∈ {0, 1}4 × {0, 2}
In this case, for the first four coordinates of x, y, z,

f(pr[4]x, pr[4]y, pr[4]z) = pr[4]x + pr[4]y + pr[4]z

= (x[1] + y[1] + z[1], x[2] + y[2] + z[2],

x[3] + y[3] + z[3], x[4] + y[4] + z[4])

∈ pr[4]R

By the structure of relation R, the parity of every tuple is odd and there are odd
number of tuples in the input of f . Therefore, the total parity is odd and regardless
of the fifth coordinate, f(x, y, z) ∈ R.

Similarly, to show R is invariant under g, it is sufficient to show that for x, y ∈ R it
holds that g(x, y) ∈ R. Firstly, let (2, 2, 2, 2, 2) ∈ {x, y}. It is easy to check that in this
case g(x, y) = x if y = (2, 2, 2, 2, 2) and g(x, y) = y if x = (2, 2, 2, 2, 2). In either case,
g(x, y) ∈ R. In all the other cases, we can verify that g(x, y) = x ∈ R.

Lemma 3.1.2. The relations T and S are invariant under the operations f and g.

Proof. Let x, y, z ∈ T . To show that T is invariant under f , it is sufficient to show that
f(x, y, z) ∈ T , which is obvious, since by definition f(x, y, z) = x.

As for operation g, let x, y ∈ T . Note that g(x, y) = 1 never occurs. On the other hand,
since tuples of T cover all the possible permutations of {0, 2}5 except (2, 2, 2, 2, 0), regardless
of x and y and by definition of g, g(x, y) ∈ T . Indeed, in order to obtain (2, 2, 2, 2, 0), one
of x and y has to be that tuple.

For S the argument is similar.

23

Observation 3.1.1. The partition {0, 1}, {2}, denoted as α = 01|2, is a congruence for
algebra A with the following properties:

1. A/α is a semilattice, and therefore is solvable by local consistency.

2. The α-block B = {0, 1} is an affine algebra, i.e., its operations are linear idempotent
and every relation is given by a system of linear equations.

Lemma 3.1.3. The algebra A does not have symmetric polymorphisms.

Proof. First, take the relations R′ =
(0 1 2

1 0 2
)

and Q′ =
(0 0 1 1 0 1 2 2

0 1 0 1 2 2 0 1
)
. Noticing the similar

structures of these relations to the relations introduced earlier in this sections, it is easy
to verify that R′ and Q′ are both invariant under operations of A, defined in 3.1, and
therefore they are also invariant under all the operations of A. Suppose h(x1, . . . , xn) is a
symmetric polymorphism of A with one block B, where permuting the inputs produces the
same output. In particular, h is a polymorphism of R′ and Q′. We branch over the parity
of n.

Case 1 : n is odd.

In this case, take h
(0 1 0 1 ... 0 1 2

1 0 1 0 ... 1 0 2
)

∈ R′. We can easily verify that the second row is a
permutation of the first row and since h is a symmetric polymorphism, the result equals(

a
a

)
for some a ∈ {0, 1, 2}. If a ∈ {0, 1}, the tuple

(
a
a

)
/∈ R′. Thus for

(
a
a

)
to be in R′ and

consequently for h to be a symmetric polymorphism of A, a /∈ {0, 1}, and we must have
a = 2.

Now consider h
(0 1 ... 0 1 2 1 0

1 0 ... 1 0 0 2 1
)

∈ Q′. Since h in this case is a permutation of itself from
before, h

(0 1 ... 0 1 2 1 0
1 0 ... 1 0 0 2 1

)
∈ R′. Similarly the second row of h is a permutation of its first

row and because of symmetricity of h, the result equals
(

a
a

)
. Then for

(
a
a

)
to be in Q′ and

consequently for h to be a symmetric polymorphism of A in this case, a must belong to
{0, 1} is possible while a ̸= 2. Therefore, no feasible value for a exists, and accordingly h

cannot be a polymorphism of A.

Case 2 : n is even.

In this case, take h
(0 1 0 1 ... 0 1 2 2

1 0 1 0 ... 1 0 2 2
)
. Similarly, the second row is a permutation of the first

row and therefore it the resulting tuple is equal to
(

a
a

)
for some a ∈ {0, 1, 2}. With similar

reasoning in Case 1, we can verify that a /∈ {0, 1} for h to be invariant under R′. Now, take
h
(0 1 ... 0 1 2 0 2 1

1 0 ... 1 0 0 2 1 2
)
. Similarly for to be invariant under Q′, a ̸= 2. Therefore, no feasible value

for a exists, and accordingly h cannot be a polymorphism of A.

We can conclude that regardless of the parity of the symmetric operation h(x1, . . . , xn),
it cannot be a polymorphism of the relations invariant in A. Therefore, A does not have a
symmetric polymorphism.

Lemma 3.1.4. The algebra A does not have block-symmetric polymorphisms.

24

Proof. The proof proceeds much like that of Theorem 3.1.3. Let h : A|B1∪...∪Bk| → A be a
block-symmetric polymorphism of A such that each block Bb, with b ∈ [k], has size lb ≥ 3.
Recall that R′ =

(0 1 2
1 0 2

)
and Q′ =

(0 0 1 1 0 1 2 2
0 1 0 1 2 2 0 1

)
are two relations invariant under the

operations of A. Take h(B∗
1 , . . . , B∗

k), where each B∗
b is a block of even or odd parity of

the form
(0 1 ...1 2

1 0 ...0 2
)

or
(0 1 ...1 2 2

1 0 ...0 2 2
)
. Clearly in each block, the second row is a permutation

of the first row and based on the definition of a block-symmetric polymorphism, each B∗
b

is symmetric, regardless of its parity. Therefore, h = (B∗
1 , . . . , B∗

k) equals
(

a
a

)
for some

a ∈ {0, 1, 2}. If a ∈ {0, 1}, we can see that h(B∗
1 , . . . , B∗

k) ∈ R, but if a = 2, h cannot be
invariant under R.

Now consider h(B†
1, . . . , B†

k) where each B†
b is a block of even or odd parity of the

form
(0 1 ...0 1 2 1 0

1 0 ...1 0 0 2 1
)

or
(0 1 ...0 1 2 0

1 0 ...1 0 0 2
)
. Similarly, these blocks, regardless of their parity are

symmetric. Again, h(B†
1, . . . , B†

k) equals
(

a
a

)
for some a ∈ {0, 1, 2}, where a ∈ {0, 1} is

the only possibility if h(B†
1, . . . , B†

k) belongs to Q′. Therefore, we can see that the block-
symmetric operation h cannot be a polymorphism of the relations invariant in A. Therefore,
A cannot have block-symmetric polymorphisms.

3.2 Experiments

In this section we conduct experiments that put the methods of solving CSP instances
that was explained in Section 2.6 to test. These experiments start by building up a CSP
instance by carefully constructing its set of constraints and then solving this instance with
the algorithms discussed earlier, namely consistency + affine relaxation and consistency
+ cohomology. The goal is to determine whether the CSP instance that arises from the
counter-example algebra in Section 3.1 is solvable by the these algorithms, and if so, to find
patterns in the solution in order to gain further insight.

3.2.1 The setup

The coding environment was first implemented in Python but because of the lack of proper
linear equation to matrix transformation functions and other matrix operations, which
was a necessary key in our experiment, we switched to Matlab. In our experiments, Matlab
provides rich toolkit when it comes to building systems of linear equations and optimization
without using external libraries. The integral part of the code is solving the systems of
linear equations that are built up, which can have up to 200 equations with more than
1700 variables, for which we tried to use in-built Matlab functions. It transpired that these
functions were unable to handle large systems of linear equations to find integer solutions
and they turned out to be impractically slow. Therefore, we decided to take advantage of
an industrial optimization solver, named Gurobi.

The code starts with the input of the counter-example CSP, including the relations
invariant under the operations of the algebra A along with the universe. Initially the con-

25

sistency constraints were added manually to the system. This step was later programmed
so that the consistency for any instance is added to the code automatically.

3.2.2 Evaluation of the linear programming + affine relaxation algorithm

For the final system of linear equations to be formed, we need to add two sets of equations:
1. The first set of equations contains variables, which we call universe-variables and

denote by r_i_BE_a, represent the main variables having each of the universe values.
These are the same variables as ri(a) ∈ Z, where a ∈ A and i ∈ [n] is the index of
the variable, introduced in Subsection 2.6.1. The corresponding equation is that their
sum across all universe values is equal to 1, formally ∑a∈A ri(a) = 1 ∀i ∈ [n]

2. The second set of equations contain variables, which we call column-variables and
denote by q_j_BE_y, represent each constraint in the CSP to be assigned the value
of each of the columns from their corresponding relation. These are the same variables
as qj(y) ∈ Z, where where j ∈ [m] is the index of constraint Cj = ⟨sj , Rj⟩ and y ∈ RA

j

is a potential assignment to sj , introduced in Subsection 2.6.1. The corresponding
equation is equivalent to ∑yi=a qj(y) = ri(a) ∀i ∈ [n], j ∈ [m].

The resulting system of linear equations is then transformed to a sparse matrix to be ready
for the Gurobi solver. The result of solving our system of linear equations with Gurobi solver
is a table with two columns: the left column are all the variables, including the original ones
and those that were created, and on the right column are the corresponding integer values
for variables.

3.2.3 Evaluation of the consistency + cohomology algorithm

Similarly, to create the final system of linear equations, we need to add two sets of equations:
1. Similar to above, the first set of variables, which we call universe-variables and show

with r_i_BE_a, represent the main variables having each of the universe values.
These are the same variables as ri(a) ∈ Z, where ∈ A and i ∈ [n] is the index of the
variable, introduced in Subsection 2.6.2. Unlike the evaluation of linear programming
+ affine relaxation algorithm above, we do not require these variables to sum up to 1.

2. Same as above, the second set of variables, which we call column-variables and show
with q_j_BE_y, represent the consistency constraints having each of the column
values of their corresponding relation. These are the same variables as qj(y) ∈ Z, where
j ∈ [m] is the index of constraint Cj = ⟨sj , Rj⟩ and y ∈ RA

j is a potential assignment
to sj , introduced in Subsection 2.6.2. The corresponding equation is equivalent to∑

yi=a qj(y) = ri(a) ∀i ∈ [n], j ∈ [m].
In the next step, two FOR loops run consequently. First, the code loops through variable

rk(a) for all a ∈ A and for all k ∈ [n] and sends it to a function FindAnIntSol which returns
a flag and an equation. The function checks if the parameter rk(a) is a valid assignment. If
so, the flag stays zero and the function returns the equation rk(a) = 1. In that case, the new

26

returned equation is added to the system of linear equations and is solved with the Gurobi
solver, as explained above. If the parameter is invalid, the flag changes to one and the code
prints "Function teminated early due to unsatisfied condition" and moves to ri+1(a).

Next, the same steps above is repeated for qk(y) ∀k ∈ [m] and y from the corresponding
constraint.

3.2.4 The instances

In this section we introduce our CSP instances. The input instances represent the CSPs
that arise from the counter-example algebra from Section 3.1. These instances are unique
and has a carefully-designed structure and they are meant to refute Conjecture 2.6.3.

3.2.4.1 Instance I7

The basic form of the instance, including the variables and the relations, can be visualized
in Figure 3.1. Each vertex represents a variable and there exists curves between the vertices
that are under some relation, together. The relations and the constraints, consisting of
tuples where each tuple represents the variables and the relation they are applied on is as
following.

Figure 3.1: The structure of instance I7

R3 =

1 0 1 0 2
0 1 0 1 2
0 0 2 2 2

 , T3 =

0 2 0 0 2 0 2
0 0 2 0 0 2 2
0 0 0 2 2 2 2

 , Q =
(
0
)

constraints ={[(v1, v2, v4), R3], [(v1, v3, v5), R3], [(v2, v3, V6), R3]

, [(v4, v5, v7), T3], [(v4, v6, v7), T3], [(v5, v6, v7), T3],

[(v7), Q], }

Lemma 3.2.1. The CSP instance I7 does not have a solution.

27

Proof. Firstly, since Q is applied on v7, the value of v7 must be 0. Next, from the first three
constraints, we can conclude that on {0, 1}, v1 ̸= v2, v2 ̸= v3, v1 ̸= v3, which is impossible.
Therefore, since no solution exists on {0, 1}, we must have (v1, v2, v3) = (2, 2, 2). Next, as
it was discussed, v7 = 0, and thus, we have the following cases for v4, v5, v6:

v4 = v5 = 0 or v4 ̸= v5

v4 = v6 = 0 or v4 ̸= v6

v5 = v6 = 0 or v5 ̸= v6,

where we can conclude 0 ∈ v4, v5, v6. This would mean that at least one of {v1, v2, v3} must
have a 0 or 1 value. Consequently, {v1, v2, v3} ∈ {0, 1} but we proved earlier that it is
impossible. Therefore the CSP does not have a solution.

3.2.4.2 Instance I16

We introduce another instance with 16 variables but similar characteristics. This instance
was introduced to challenge the cohomology approach to the CSP. The relations and the
constraints, consisting of tuples where each tuple represents the variables and the relation
they are applied on is as following.

R5 =

1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 2
0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 2
0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 2
0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 2
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2

,

T5 =

0 0 0 0 2 2 2 0 0 0 2 2 2 0 0 0 0 0 2 2 2 0 0 0 2 2 2 0 2
0 2 0 0 2 0 0 2 2 0 2 2 0 2 0 2 0 0 2 0 0 2 2 0 2 2 0 2 2
0 0 2 0 0 2 0 2 0 2 2 0 2 2 0 0 2 0 0 2 0 2 0 2 2 0 2 2 2
0 0 0 2 0 0 2 0 2 2 0 2 2 2 0 0 0 2 0 0 2 0 2 2 0 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

,

S5 =

0 2 0 0 0 2 2 2 0 0 0 2 2 2 0
0 0 2 0 0 2 0 0 2 2 0 2 2 0 2
0 0 0 2 0 0 2 0 2 0 2 2 0 2 2
0 0 0 0 2 0 0 2 0 2 2 0 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

Q =
(
0
)

28

constraints ={[(v1, v2, v3, v4, v6), R5], [(v1, v2, v3, v5, v7), R5], [(v1, v2, v4, v5, v8), R5]

, [(v1, v3, v4, v5, v9), R5], [(v2, v3, v4, v5, v10), R5], [(v6, v7, v8, v9, v11), T5]

, [(v6, v7, v8, v10, v12), T5], [(v6, v7, v9, v10, v13), T5], [(v6, v8, v9, v10, v14), T5]

[(v7, v8, v9, v10, v15), T5], [(v11, v12, v13, v14, v16), S5],

[(v11, v12, v13, v15, v16), S5], [(v11, v12, v14, v15, v16), S5], [(v11, v13, v14, v15, v16), S5],

[(v12, v13, v14, v15, v16), S5], [(v16), Q], }

The proof of the following lemma is fairly straightforward and similar to the proof for
Lemma 3.2.1.

Lemma 3.2.2. The CSP instance I16 that arises from the counter-example algebra from
Section 3.1 and is described in Section 3.2.4.2 does not have a solution.

3.2.5 Results

The experiment includes running each of the two algorithms, i.e., linear programming +
affine relaxation and consistency + cohomology, on instances I7 and I16, a total of four
separate tests. The goal is to show that in each of these tests, the corresponding algorithm
would find a solution for its respective instance in that test. We know from Lemmas 3.2.1
and 3.2.2 that neither of the instances have a solution. The algorithms finding solutions for
the instances would demonstrate that the structure of the instance, as desired, deceives the
algorithm, therefore, the Cojecture 2.6.3 is refuted.

For the instance I7, linear programming + affine relaxation algorithm finds a feasible
solution, as desired. A table containing the results by this algorithm on this instance can be
found below. On the other hand, when run on the instance, the consistency + cohomology
algorithm does not find a solution. This means that this algorithm can recognise that the
instance has no solution.

29

Table 3.1: Variable Assignments for I7

Variable Assignment
q1BE010 0
q1BE010 0
q1BE100 0
q1BE102 0
q1BE222 1
q2BE010 0
q2BE012 0
q2BE100 0
q2BE102 0
q2BE222 1
... ...
r1BE0 0
r1BE1 0
r1BE2 1
r2BE0 0
r2BE1 0
r2BE2 1
... ...
r7BE2 0

Similarly for instance I16, linear programming + affine relaxation algorithm finds a
feasible solution. However, unlike the case for instance I7, the consistency + cohomology
algorithm finds a solution. This therefore shows that the structure of I16 deceives this
algorithm.

Conclusion In conclusion, we considered two combinations of consistency and relaxation
algorithms, and in both cases found an instance of a polynomial time solvable CSP that are
not solved by those methods, thus, partially refuting Conjecture 2.6.3. As was mentioned
in the Introduction, Our results do not fully refute Conjecture 2.6.3, since a number of
(potentially more powerful) combinations of algorithms remain. In particular, we consider
only consistency of a fairly low level — it is lower than the arity of the relations involved. It
is possible that the consistency of a higher level, at least as high as the arity of the relation
of the instance, may lead to a desired algorithm. However, an instance that may fool such
an algorithm is quite complicated. It is based on graphs with high treewidth, see [2], and is
not be feasible for empirical testing, as it would involve thousands of variables.

30

Bibliography

[1] Albert Atserias, Andrei Bulatov, and Victor Dalmau. On the power of k-consistency.
In Lars Arge, Christian Cachin, Tomasz Jurdziński, and Andrzej Tarlecki, editors,
Automata, Languages and Programming, pages 279–290, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[2] Albert Atserias, Andrei A. Bulatov, and Víctor Dalmau. On the power of k -consistency.
In Automata, Languages and Programming, 34th International Colloquium, ICALP
2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture Notes in
Computer Science, pages 279–290. Springer, 2007.

[3] Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2 + ε)-sat is np-hard. SIAM
Journal on Computing, 46(5):1554–1573, 2017.

[4] Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub Oprsal. Algebraic approach
to promise constraint satisfaction. J. ACM, 68(4):28:1–28:66, 2021.

[5] Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width.
In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages
595–603, 2009.

[6] Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local
consistency methods. J. ACM, 61(1), jan 2014.

[7] Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local
consistency methods. J. ACM, 61(1), jan 2014.

[8] Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and How to Use
Them. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

[9] Sally C. Brailsford, Chris N. Potts, and Barbara M. Smith. Constraint satisfaction
problems: Algorithms and applications. European Journal of Operational Research,
119(3):557–581, 1999.

[10] Joshua Brakensiek and Venkatesan Guruswami. Promise Constraint Satisfaction:
Structure Theory and a Symmetric Boolean Dichotomy, pages 1782–1801.

[11] Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction: Alge-
braic structure and a symmetric boolean dichotomy, 2017.

[12] Joshua Brakensiek and Venkatesan Guruswami. An algorithmic blend of lps and ring
equations for promise csps, 2018.

31

[13] Joshua Brakensiek and Venkatesan Guruswami. Promise Constraint Satisfaction:
Structure Theory and a Symmetric Boolean Dichotomy, page 1782–1801. Society for
Industrial and Applied Mathematics, January 2018.

[14] Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Živný.
The power of the combined basic linear programming and affine relaxation for promise
constraint satisfaction problems. SIAM Journal on Computing, 49(6):1232–1248, 2020.

[15] Andrei Bulatov. Bounded relational width. 2009.

[16] Andrei Bulatov and Víctor Dalmau. A simple algorithm for mal’tsev constraints. SIAM
Journal on Computing, 36(1):16–27, January 2006.

[17] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM Journal on Computing, 34(3):720–742, January
2005.

[18] Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 319–330, 2017.

[19] Lorenzo Ciardo and Stanislav Živný. Clap: A new algorithm for promise csps. SIAM
Journal on Computing, 52(1):1–37, January 2023.

[20] Adam Ó Conghaile. Cohomology in constraint satisfaction and structure isomorphism,
2022.

[21] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate
coloring, 2005.

[22] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic
snp and constraint satisfaction: A study through datalog and group theory. SIAM
Journal on Computing, 28(1):57–104, 1998.

[23] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic
snp and constraint satisfaction: A study through datalog and group theory. SIAM
Journal on Computing, 28(1):57–104, 1998.

[24] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic
snp and constraint satisfaction: A study through datalog and group theory. SIAM
Journal on Computing, 28(1):57–104, January 1998.

[25] M. R. Garey and D. S. Johnson. The complexity of near-optimal graph coloring.
Journal of the ACM, 23(1):43–49, January 1976.

[26] Venkatesan Guruswami and Sai Sandeep. d-to-1 hardness of coloring 3-colorable graphs
with o(1) colors. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

[27] Sangxia Huang. Improved hardness of approximating chromatic number, 2013.

[28] PaweŁ Idziak, Petar Marković, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. SIAM Journal
on Computing, 39(7):3023–3037, 2010.

32

[29] PaweŁ Idziak, Petar Marković, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. SIAM Journal
on Computing, 39(7):3023–3037, January 2010.

[30] Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the
smith and hermite normal forms of an integer matrix. SIAM Journal on Computing,
8(4):499–507, November 1979.

[31] Andrei Krokhin and Jakub Opršal. The complexity of 3-colouring h-colourable graphs.
04 2019.

[32] Andrei Krokhin and Jakub Opršal. An invitation to the promise constraint satis-
faction problem, Aug 29 2022. Copyright - © 2022. This work is published under
http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the
ProQuest Terms and Conditions, you may use this content in accordance with the
terms of the License; Last updated - 2022-08-31.

[33] Andrei Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. Topology and
adjunction in promise constraint satisfaction. 2020.

[34] Gabor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. Linear
programming, width-1 csps, and robust satisfaction. In Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference, pages 484–495. ACM, 2012.

[35] Gábor Kun and Mario Szegedy. A new line of attack on the dichotomy conjecture.
European Journal of Combinatorics, 52:338–367, February 2016.

[36] Moritz Lichter and Benedikt Pago. Limitations of affine integer relaxations for solving
constraint satisfaction problems. CoRR, abs/2407.09097, 2024.

[37] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99–118, February 1977.

[38] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the con-
tinuous and convex hull representations for zero-one programming problems. SIAM
Journal on Discrete Mathematics, 3(3):411–430, 1990.

[39] Johan Thapper and Stanislav Živný. The power of sherali–adams relaxations for
general-valued csps. SIAM Journal on Computing, 46(4):1241–1279, 2017.

[40] Marcin Wrochna and Stanislav Živný. Improved hardness for h-colourings of g-
colourable graphs. 2019.

[41] Dmitriy Zhuk. A proof of csp dichotomy conjecture. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 331–342, 2017.

[42] H.J. Zimmermann and Angelo Monfroglio. Linear programs for constraint satisfaction
problems. European Journal of Operational Research, 97(1):105–123, 1997.

33

Appendix A

Code

A.0.1 Consistency

c l c ;
c l e a r a l l ;
%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗INPUTS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
num_of_variables = 16 ;
Dom = { ’0 ’ , ’ 1 ’ , ’ 2 ’ } ;
%Here goes the r e l a t i o n s , c on s t r a i n t s , and con s i s t e ncy
c o n s t r a i n t s as de s c r ibed in The Ins tance Sec t i on .%
%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ENDofINPUTS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
%Pre l iminary Var iab le D e f i n i t i o n%
dummy_variables = sym (’ x ’ , [1 num_of_variables]) ;
%Number o f the c o n s t r a i n t s
len_cons = length (cons) ;
%Number o f Or i g i na l Var i ab l e s
len_vars = num_of_variables ;
len_Dom = length (Dom) ;
len_Dom_times_V = len_Dom∗ len_vars ;

cu r r en t_cons_ f i r s tCe l l = {} ;
f o r i = 1 : len_cons

cu r r en t_cons_ f i r s tCe l l {end+1} = cons { i }{1} ;
end

cons_1 = c e l l (s i z e (cons)) ;
f o r i = 1 : numel (cons)

cons_1{ i } = cons { i }{1} ;
end
cons_2 = c e l l (s i z e (cons)) ;
f o r i = 1 : numel (cons)

cons_2{ i } = cons { i }{2} ;

34

end

vars_vector = 1 : 1 : num_of_variables ;

CC = nchoosek (vars_vector , 2) ;
CCV = num2cel l (CC, 2) ;

conss = {} ;
f o r i = 1 : l ength (CCV)

new_cons = make_new_cons (CCV(i) , cons) ;
conss {end+1} = new_cons ;

end

updated_conss = cons_postprocess (conss) ;

cons_after_phase1 = horzcat (cons , updated_conss) ;

%Phase 2

%Seperat ing the S and R of the updated Constra int Set a f t e r Phase1
cons_after_phase1_S = c e l l (s i z e (cons_after_phase1)) ;
f o r i = 1 : numel (cons_after_phase1)

cons_after_phase1_S{ i } = cons_after_phase1 { i }{1} ;
end
cons_after_phase1_R = c e l l (s i z e (cons_after_phase1)) ;
f o r i = 1 : numel (cons_after_phase1)

cons_after_phase1_R{ i } = cons_after_phase1 { i }{2} ;
end

CC2 = nchoosek (vars_vector , 3) ;
CCV2 = num2cel l (CC2 , 2) ;

tup l e = CCV2(1) ;

Print ingCons (cons_after_phase1_S , cons_after_phase1_R , len_cons)

func t i on cons i s t ancy (tup l e)
uv = tup l e { 1 } (1 : 2) ; % Extracts [u v]
uw = [tup l e {1}(1) , tup l e { 1 } (3)] ; % Extracts [u w]
vw = tup l e { 1 } (2 : 3) ; % Extracts [v w]

end

func t i on add_new_cons = make_new_cons (uv , cons)%%uv i s in the shape o f { [u , v] }
w = {};% c o n s t r a i n t s that have both uv in them
R_uv = {} ;

35

uv_as_vector = ce l l 2mat (uv) ;
f o r p = 1 : l ength (cons)
i n t e r s e c t i n g _ v a r i a b l e = i n t e r s e c t (uv_as_vector , cons {p }{1}) ;

i f l ength (i n t e r s e c t i n g _ v a r i a b l e) == 2
[~ , l o c] = i n t e r s e c t (cons {p}{1} , uv_as_vector) ;
in te r sec t_u_loc = l o c (1) ;
in te r sec t_v_loc = l o c (2) ;
R_uv_first_row = r e l a t i o n _ s p l i t t e r (intersect_u_loc , cons {p }{2}) ;
R_uv_second_row = r e l a t i o n _ s p l i t t e r (intersect_v_loc , cons {p }{2}) ;
R_uv_composed = relat ion_compose (R_uv_first_row , R_uv_second_row) ;
R_uv{end+1} = R_uv_composed ;

end
end

new_cons_s = uv_as_vector ;
new_cons_R = R_uv;

add_new_cons = {new_cons_s , new_cons_R } ;
end

func t i on V = r e l a t i o n _ s p l i t t e r (i n t e r s e c t_ l o c , R)
% S p l i t each s t r i n g in to a c e l l array o f s u b s t r i n g s
S = c e l l f u n (@(x) s t r s p l i t (x) , R, ’ UniformOutput ’ , f a l s e) ;

% Extract the f i r s t sub s t r i ng from each c e l l array
V = c e l l f u n (@(x) x{ i n t e r s e c t _ l o c } , S) ;

end

func t i on c = relat ion_compose (a , b)
% Convert the e lements o f a and b to s t r i n g s
% Combine the cor respond ing c h a ra c t e r s o f a and b with a space in between
% Convert the input s t r i n g s to ar rays o f c h a r a c t e r s
a_chars = num2cel l (a) ;
b_chars = num2cel l (b) ;

% Concatenate the c h a r a c t e r s from a and b with a space cha rac t e r in between
c_chars = s t r c a t (a_chars , { ’ ’ } , b_chars) ;

% Convert the r e s u l t to a c e l l array
c0 = c_chars ;
c = unique (c0) ;

end

func t i on displayWholeObj (obj)

36

% Display the contents o f a custom ob j e c t
i f i s c e l l (obj)

f o r i i = 1 : numel (obj)
displayWholeObj (obj { i i }) ;

end
e l s e

d i sp (obj) ;
end

end

func t i on updated_cons = cons_postprocess (conss)
temp_conss = {} ;

%De le t ing r e l a t i o n s that are z e ro s
f o r i = 1 : l ength (conss)

i f isempty (conss { i }{2}) == 0
temp_conss{end+1} = conss { i } ;

end
end
length (temp_conss)
f o r i = 1 : l ength (temp_conss)

temp_conss{ i }{1} ;
temp_conss{ i }{2} = temp_conss{ i }{2}{1};

end

updated_cons = temp_conss ;
end

func t i on Print ingCons (cons_after_phase1_S , cons_after_phase1_R , len_cons)
f o r i = len_cons +1:numel (cons_after_phase1_S)

f p r i n t f (’ { ’) ;
f p r i n t f (’ [’) ;
f p r i n t f (’%d ’ , cons_after_phase1_S{ i }) ;
f p r i n t f (’] , ’) ;
f p r i n t f (’ { ’) ;
f o r j = 1 : numel (cons_after_phase1_R{ i })

i f j < numel (cons_after_phase1_R{ i })
f p r i n t f (" ’% s ’ , " , cons_after_phase1_R{ i }{ j }) ;

e l s e
f p r i n t f (" ’% s ’ " , cons_after_phase1_R{ i }{ j }) ;

end
end
f p r i n t f (’ } ’) ;
f p r i n t f (’ } , . . . \ n ’) ;

end

37

end

A.0.2 Consistency + AIP

clc;
clear all;
%*********************** INPUTS ************************%
num_of_variables = 7;
Dom = {’0’, ’1’, ’2’};
%Here goes the relations , constraints , and consistency
constraints as described in The Instance Section .%
%*********************** END of INPUTS ************************%
dummy_variables = sym(’x’, [1 num_of_variables]);

eqn = {};
% constraints on R: A, B, C are the column variables
respecting each constraint
alphabets = sym(’A’, [1 1000]);
%Number of the constraints
len_cons = length(cons);
%Number of Original Variables
len_vars = num_of_variables ;
len_Dom = length(Dom);
len_Dom_times_V = len_Dom * len_vars ;

varss = {};
Ms = {};
vars_structs = {};
for i = 1: len_vars

vars_structs {i}. alphabet = char(dummy_variables (i));
temp = sym(vars_structs {i}. alphabet ,[1 length(Dom)]);

for j = 1: length(temp)%To make the variable names unique
y0 = [vars_structs {i}. alphabet , ’BE ’, Dom{j}];
yy0 = str2sym (y0);
temp(j) = yy0;

end

vars_structs {i}. alphabet_str = sym2cell (temp);
M = containers .Map(Dom , vars_structs {i}. alphabet_str);
vars_structs {i}. map = M;

varss{i} = i;
Ms{i} = vars_structs {i}. map;

38

eqn = eqn_maker_sumTo1 (eqn , Dom , vars_structs {i}.
alphabet_str);

end

MMM = containers .Map(varss ,Ms);

cons_structs = {};
for i = 1: len_cons

cons_structs {i}.id = i;
cons_structs {i}. var = cons{i}{1};
cons_structs {i}. relation = cons{i}{2};
cons_structs {i}. alphabet = char(alphabets (i));
tempo = sym(cons_structs {i}. alphabet ,
[1 length (cons_structs {i}. relation)]);

for j = 1: length(tempo)%To make the variable names unique
y = [cons_structs {i}. alphabet , ’BE ’, cons_structs {i}.

relation {j}];
yy = str2sym (y);
tempo(j) = yy;

end

cons_structs {i}. alphabet_str = sym2cell (tempo);
M = containers .Map(cons_structs {i}. relation , cons_structs {i

}. alphabet_str);
cons_structs {i}. map = M;

eqn = eqn_maker (eqn , cons_structs {i}.var , MMM , Dom ,
cons_structs {i}. relation , cons_structs {i}. map);

end

all_vars = [];
for i = 1: length(eqn)

temppp = symvar(eqn{i:i});
all_vars = cat(2, all_vars , temppp);
all_vars = unique(all_vars);

end

[wow1 ,wow2] = equationsToMatrix (eqn {:}, all_vars);
format rat;
wow1 = double (wow1);
wow2 = double (wow2);
f = zeros(size(wow1 , 2) ,1);
f = double(f);
intcon = 1: size(wow1 , 2);

wow1 = sparse (wow1);

39

model.A = wow1;
model.obj = f;
model.rhs = wow2;
model.lb = -inf*ones(size(wow1 ,2) ,1);
model.ub = +inf*ones(size(wow1 ,2) ,1);
model.sense = ’=’;
model.vtype = ’I’;

% Set the type of optimization problem to MIP
params. outputflag = 1;
params.method = 0; % primal simplex

% Solve the MIP using Gurobi
result = gurobi(model , params);

SolutionTable = table(all_vars ’,result.x);
displayWholeObj (SolutionTable)

% Print the solver runtime and number of nodes explored , and
status

status = result. status;
fprintf (’Solver status : %s \n’, status)
fprintf (’Solver runtime : %f seconds \n’, result . runtime);
fprintf (’Number of nodes explored : %d\n’, result . nodecount);

function eqn = eqn_maker (eqn , r1 , MMM , Dom , R, MA)
index = 1;
for k = r1

whichVar = MMM(k);
for i = Dom

tempp = {};
for j = R

j;
temp = split(j);
temp;
if(ismember (temp(index), i))

tempp{end +1} = MA(j{1});

end
end
eqn{end +1} = (sum ([tempp {:}]) - whichVar (i{1}) == 0);

end
index = index + 1;
end
end

function eqn = eqn_maker_sumTo1 (eqn , Dom , alpha_str)

40

temp = {};
for j = 1: length(Dom)

temp{end +1} = alpha_str {j};
end
eqn{end +1} = (sum ([temp {:}]) == 1);

end

A.0.3 Consistency + Cohomology

d iary (" Coho_16var_withConsistency_Result . txt ")

c l c ;
c l e a r a l l ;
%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗INPUTS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
num_of_variables = 22 ;
Dom = { ’0 ’ , ’ 1 ’ , ’ 2 ’ } ;
%Here goes the r e l a t i o n s , c on s t r a i n t s , and con s i s t e ncy
c o n s t r a i n t s as de s c r ibed in The Ins tance Sec t i on .%
%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗END OF INPUTS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
dummy_variables = sym (’ x ’ , [1 num_of_variables]) ;
eqn = {} ;
%c o n s t r a i n t s on R: A, B, C are the column v a r i a b l e s
r e s p e c t i n g each c o n s t r a i n t
a lphabets = sym (’A’ , [1 1 0 0 0 0 0]) ;
%Number o f the c o n s t r a i n t s
len_cons = length (cons) ;
%Number o f Or i g i na l Var i ab l e s
len_vars = num_of_variables ;
len_Dom = length (Dom) ;
len_Dom_times_V = len_Dom∗ len_vars ;

va r s s = {} ;
Ms = {} ;
var s_st ruc t s = {} ;
f o r i = 1 : len_vars

var s_st ruc t s { i } . a lphabet = char (dummy_variables (i)) ;
temp = sym(var s_st ruc t s { i } . alphabet , [1 l ength (Dom)]) ;

f o r j = 1 : l ength (temp)%To make the v a r i a b l e names unique
y0 = [var s_st ruc t s { i } . alphabet , ’BE’ , Dom{ j }] ;
yy0 = str2sym (y0) ;
temp (j) = yy0 ;

end

41

var s_st ruc t s { i } . a lphabet_str = sym2ce l l (temp) ;
M = c o n t a i n e r s .Map(Dom, var s_st ruc t s { i } . a lphabet_str) ;
va r s_st ruc t s { i } .map = M;

var s s { i } = i ;
Ms{ i } = var s_st ruc t s { i } .map ;

%eqn = eqn_maker_sumTo1(eqn , Dom, var s_st ruc t s { i } . a lphabet_str) ;
end

MMM = c o nt a i n e r s .Map(varss ,Ms) ;

All_A_variables_symbolic = {} ;
cons_structs = {} ;
f o r i = 1 : len_cons

cons_structs { i } . id = i ;
cons_structs { i } . var = cons { i }{1} ;
cons_structs { i } . r e l a t i o n = cons { i }{2} ;
cons_structs { i } . a lphabet = char (a lphabets (i)) ;
tempo = sym(cons_structs { i } . alphabet , [1 l ength (cons_structs { i } . r e l a t i o n)]);%%%????????

f o r j = 1 : l ength (tempo)%To make the v a r i a b l e names unique
y = [cons_structs { i } . alphabet , ’BE’ , cons_structs { i } . r e l a t i o n { j }] ;
yy = str2sym (y) ;
tempo (j) = yy ;
All_A_variables_symbolic {end+1} = yy ;

end

cons_structs { i } . a lphabet_str = sym2ce l l (tempo) ;
M = c o n t a i n e r s .Map(cons_structs { i } . r e l a t i o n , cons_structs { i } . a lphabet_str) ;
cons_structs { i } .map = M;

eqn = eqn_maker (eqn , cons_structs { i } . var , MMM, Dom, cons_structs { i } . r e l a t i o n , cons_structs { i } .map) ;
end

a l l_var s = [] ;
f o r i = 1 : l ength (eqn)

temppp = symvar (eqn{ i : i }) ;
a l l_var s = cat (2 , a l l_vars , temppp) ;
a l l_var s = unique (a l l_var s) ;

end

%%%For X#BE# v a r i a b l e s
f o r i = 1 : len_vars

f o r j = 1 : l ength (Dom)
temp = vars_st ruc t s { i } . a lphabet_str { j } ;
%eqn = eqn_coho (eqn , temp) ;
[eqn , f l a g] = eqn_coho (eqn , temp) ;

42

i f f l a g == 1
% Handle the case where the func t i on returned nothing
f p r i n t f (" For %s = 1 , func t i on terminated e a r l y due to u n s a t i s f i e d cond i t i on \n " , char (temp)) ;
f p r i n t f(’−−

−−−−−−−−\n ’)

%temp = hi ;
e l s e

[i n t s o l , e x i t f l a g] = FindAnIntSol (eqn , a l l_var s) ;
i f e x i t f l a g == ’OPTIMAL’

So lut ionTable = tab l e (a l l_vars ’ , i n t s o l) ;
displayWholeObj (So lut ionTable)
f p r i n t f (’% s = 1 passed , s o l u t i o n pr in ted above , cont inue \n ’ , temp) ;
f p r i n t f(’−−

−−−−−−−−−−−−\n ’)
eqn (end) = [] ;

e l s e
f p r i n t f (’% s = 1 f a i l e d , terminate \n ’ , temp) ;
r e turn

end
end

end
end

%For A#### v a r i a b l e s
f o r i = All_A_variables_symbolic

temp = ce l l2 sym (i) ;
%eqn = eqn_coho (eqn , temp) ;
[eqn , f l a g] = eqn_coho (eqn , temp) ;
i f f l a g == 1

% Handle the case where the func t i on returned nothing
f p r i n t f (" For %s = 1 , func t i on terminated e a r l y due to u n s a t i s f i e d cond i t i on \n " , char (temp)) ;
f p r i n t f(’−−

−−−−−−−−\n ’)
e l s e

[i n t s o l , e x i t f l a g] = FindAnIntSol (eqn , a l l_var s) ;
i f e x i t f l a g == ’OPTIMAL’

So lut ionTable = tab l e (a l l_vars ’ , i n t s o l) ;
displayWholeObj (So lut ionTable)
f p r i n t f (’% s = 1 passed , s o l u t i o n pr in ted above , cont inue \n ’ , temp) ;
f p r i n t f(’−−

−−−−−−−−−−−−\n ’)
eqn (end) = [] ;

e l s e
f p r i n t f (’% s = 1 f a i l e d , terminate \n ’ , temp) ;
r e turn

end

43

end
end

d iary o f f

f unc t i on [in tSo l , e x i t f l a g] = FindAnIntSol (eqn , a l l_var s)
[wow1 , wow2] = equationsToMatrix (eqn { : } , a l l_var s) ;
format ra t ;
wow1 = double (wow1) ;
wow2 = double (wow2) ;
f = ze ro s (s i z e (wow1 , 2) , 1) ;
f = double (f) ;

wow1 = spar s e (wow1) ;
model .A = wow1 ;
model . obj = f ;
model . rhs = wow2 ;
model . lb = − i n f ∗ ones (s i z e (wow1 , 2) , 1) ;
model . ub = +i n f ∗ ones (s i z e (wow1 , 2) , 1) ;
model . s ense = ’= ’ ;
model . vtype = ’ I ’ ;

% Set the type o f opt imiza t i on problem to MIP
params . ou tput f l ag = 1 ;
params . method = 0 ; % primal s implex

% Solve the MIP us ing Gurobi
r e s u l t = gurobi (model , params) ;

% Print the s o l v e r runtime and number o f nodes explored , and s t a tu s
s t a t u s = r e s u l t . s t a tu s ;
f p r i n t f (’ So lve r s t a t u s : %s \n ’ , s t a t u s)
f p r i n t f (’ So lve r runtime : %f seconds \n ’ , r e s u l t . runtime) ;
f p r i n t f (’ Number o f nodes exp lored : %d\n ’ , r e s u l t . nodecount) ;

i n t S o l = r e s u l t . x ;
e x i t f l a g = s t a tu s ;

end

%%AIP eqn maker
func t i on eqn = eqn_maker (eqn , r1 , MMM, Dom, R, MA)

index = 1 ;
f o r k = r1

whichVar = MMM(k) ;
f o r i = Dom

tempp = {} ;

44

f o r j = R
j ;
temp = s p l i t (j) ;
temp ;
i f (ismember (temp (index) , i))

tempp{end+1} = MA(j {1}) ;

end
end
eqn{end+1} = (sum ([tempp { : }]) − whichVar (i {1}) == 0) ;

end
index = index + 1 ;
end

end

%%Sum to 1 eqn maker
func t i on eqn = eqn_maker_sumTo1(eqn , Dom, alpha_str)

temp = {} ;
f o r j = 1 : l ength (Dom)

temp{end+1} = alpha_str { j } ;
end
eqn{end+1} = (sum ([temp { : }]) == 1) ;

end

%%Cohomology eqn maker_single s tep
func t i on [eqn , f l a g] = eqn_coho (eqn , a lph_str)

a = ’x8BE1 ’ ;
b = ’x9BE1 ’ ;
c = ’x10BE1 ’ ;
d = ’x11BE1 ’ ;
e = ’x12BE1 ’ ;
f = ’x13BE1 ’ ;
g = ’x14BE1 ’ ;
h = ’x15BE1 ’ ;
i = ’x16BE1 ’ ;
j = ’x17BE1 ’ ;
k = ’x18BE1 ’ ;
l = ’x19BE1 ’ ;
m = ’x20BE1 ’ ;
n = ’x21BE1 ’ ;
o = ’x22BE1 ’ ;
p = ’x22BE2 ’ ;
aa = str2sym (a) ;

45

bb = str2sym (b) ;
cc = str2sym (c) ;
dd = str2sym (d) ;
ee = str2sym (e) ;
f f = str2sym (f) ;
gg = str2sym (g) ;
hh = str2sym (h) ;
i i = str2sym (i) ;
j j = str2sym (j) ;
kk = str2sym (k) ;
l l = str2sym (l) ;

mm = str2sym (m) ;
nn = str2sym (n) ;
oo = str2sym (o) ;
pp = str2sym (p) ;

i f a lph_str == aa | | a lph_str == bb | | . . .
a lph_str == cc | | a lph_str == dd | | . . .
a lph_str == ee | | a lph_str == f f | | . . .
a lph_str == gg | | a lph_str == hh | | . . .
a lph_str == i i | | a lph_str == j j | | . . .
a lph_str == kk | | a lph_str == l l | | . . .
a lph_str == mm | | a lph_str == nn | | . . .
a lph_str == oo | | a lph_str == pp

f l a g = 1 ;
eqn = eqn ;

e l s e
f l a g = 0 ;
eqn{end+1} = (alph_str == 1) ;

end

end

46

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Preliminaries
	Relational Structures
	Constraint Satisfaction Problem (CSP)
	Promise Constraint Satisfaction Problem (PCSP)
	Algebraic Tools
	Methods of Solving CSP
	Local Consistency
	Gaussian Elimination
	Basic Linear and Integer Programming

	Methods of Solving PCSP
	Basic Linear Programming + Affine Relaxation
	Cohomology

	Where Cohomology Fails
	The Counter-example Algebra
	Experiments
	The setup
	Evaluation of the linear programming + affine relaxation algorithm
	Evaluation of the consistency + cohomology algorithm
	The instances
	Results

	Bibliography
	Appendix Code
	Consistency
	Consistency + AIP
	Consistency + Cohomology

