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Abstract

The world has been transformed by the coronavirus disease 2019 (COVID-19) pandemic.
Scientists, physicians and researchers have had to make decisions in evolving environments.
Clinical decision rules aid in making these decisions, however standard approaches to de-
rive these rules did not sufficiently address challenges arising for COVID-19 data analysis.
Specifically, problems may arise from the use of multisite emergency department (ED) data,
as sites may have different standards of practice and populations. This project investigates
the heterogeneity of data collected across Canada during the pandemic by the Canadian
COVID-19 Emergency Department Rapid Response Network (CCEDRRN). We use multi-
level regression models to capture variations among EDs and provinces. These results are
compared to a model employed by a previous study without addressing clustering effects
presented in the data. Moreover, the regression analysis introduces three time-related co-
variates to explore potential evolution of time trends in COVID-19 associated ED visits and
follow-up events.

Keywords: Correlation; Heterogeneity; Logistic Regression; Multilevel Regression Models;
Random Effects
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Chapter 1

Introduction

1.1 Background and Motivation

Over the last several years, the world has been transformed by the coronavirus disease 2019
(COVID-19) pandemic. The world has had to adapt and adjust, with scientists, physicians
and researchers having to make decisions in a constantly changing environment. Clinical
decision rules are tools which physicians use to ease decision making and increase the pre-
cision of patient assessments and diagnoses (McGinn et al., 2000): a number of these rules
were developed to aid clinicians during the COVID-19 pandemic. However, many current
statistical procedures used to derive clinical decision rules do not sufficiently address the
challenges which arose for data analysis during this pandemic. One such challenge emerges
from the use of multisite emergency department (ED) data, as ED sites may have different
standards of practice and populations. Accounting for the magnitude of site heterogeneity
in analysis may provide more appropriate conclusions than if it were to be ignored.

A number of clinical decision rules were developed to aid clinicians at the bedside dur-
ing the COVID-19 pandemic. Many researchers developed clinical decision rules to risk-
stratify patients for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infec-
tion (Schneider et al., 2021; Trubiano et al., 2020). There have also been numerous clinical
decision rules developed with interest in a particular COVID-19 related adverse event in
addition to death: admission to the intensive care unit (Azijli et al., 2021; Levine et al.,
2021), invasive ventilation (Douillet et al., 2021), hypoxia (Levine et al., 2021), or respi-
ratory decomposition (Sharp et al., 2021). Many different statistical approaches have been
utilized to develop clinical decision rules throughout the course of the pandemic. For exam-
ple, Schneider et al. (2021) used several different modelling and machine learning methods
to obtain a metric to rule-in or rule-out SARS-CoV-2 infection using contact history and
clinical symptoms. These methods included, but were not limited to, a conditional inference
decision tree, a respective random forest, and a lasso model. Many of the previously devel-
oped clinical decision rules did not use a truly representative sample of patients (Brooks
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et al., 2022) or, in the case of multisite studies, may not have appropriately captured the
clustering which was present.

Brooks et al. (2022) developed the CCEDRRN COVID Discharge Score (CCDS) using
a logistic regression model with seven predictors. These predictors consist of demographic
variables as well as vital signs, each of which can be measured at the bedside and do
not require laboratory or other tests that take time to obtain. The outcome of interest is
admission to the hospital or in-hospital death within 72 hours of being discharged from the
ED. This follow up period is shorter than what is used in previous clinical decision rules,
however it is commonly used across healthcare as it can assess immediate risks which could
be alleviated in the ED (Brooks et al., 2022). While this clinical decision rule is simpler to
implement at the bedside and may be preferable over the others for a number of reasons,
it only received moderate discrimination with an area under the curve (AUC) value of
approximately 70%. This could be a result of not accounting for certain factors, whether
they be patient, disease or contextual (Brooks et al., 2022). Properly accounting for these
factors as well as the nested structure of patient visits within EDs across several provinces
may improve this model.

The sudden emergence of the pandemic had researchers working quickly to make deci-
sions based on analysis with many limitations. The proposed research will investigate the
challenges associated with heterogeneity across sites and provinces, as well as their corre-
lations. The inference derived from this study will aid in decision making during future
pandemics.

1.2 CCEDRRN Registry

This project utilizes data collected by the Canadian COVID-19 Emergency Department
Rapid Response Network (CCEDRRN). Established in 2020, CCEDRRN is a pan-Canadian
registry which collected data on suspected or confirmed COVID-19 patients who presented
to participating Canadian EDs throughout the pandemic. The goal of this registry is to
provide population-based data over the course of the pandemic to aid in the derivation of
clinical decision rules, and to study the efficacy for relevant therapies and vaccines (Hohl
et al., 2021). The registry contains data from 55 participating EDs across 8 provinces and
data collection occurred from March 1, 2020 to September 25, 2022.

Hohl et al. (2021) explain that the diverse sites from across the country allow for the in-
clusion of patients who may typically be excluded from clinical trials, such as First Nations
people, study subjects who are pregnant, and prisoners. This resource aids in the under-
standing of the effects of the pandemic in these vulnerable populations and may provide
information necessary to improve hospital care for these patients (Hohl et al., 2021). The
data collected by the registry has been used in the implementation of at least two clinical
decision rules in addition to the CCDS from Brooks et al. (2022). The CCEDRRN COVID-
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19 Infection Score was developed by McRae et al. (2021) and Hohl et al. (2022) derived the
CCEDRRN COVID-19 Mortality Score.

The CCEDRRN data includes a number of different variables from each ED visit. The
CCDS (Brooks et al., 2022), which considers patient ED visits from March 1, 2020 to
September 8, 2021, focuses on a subset of these variables as candidate predictors, chosen
through literature review and consultation with clinicians. Each of these predictors are
available at a patient’s bedside and can be obtained without the need for further testing.

This data was collected over a period of three years and consists of ED visits from
several provinces. Over time, the severity of COVID-19 evolved and provinces implemented
different healthcare measures. This motivates analyses by ED, province, and pandemic wave.
Further inquiry into the change in trends across Canada as well as over time will provide
interesting insights into the behaviour of the disease.

1.3 Study Objectives

The analysis conducted in this project will utilize the data collected by CCEDRRN, con-
sidering the version of data as of September 2023. This includes ED visits from March 1,
2020 until September 25, 2022 and considers the same candidate predictors as those con-
sidered for the CCDS. This complete cohort includes additional ED visits from different
pandemic waves, compared to the early cohort utilized by Brooks et al. (2022). We consider
the same event as the CCDS: hospital admission or in-hospital death within 72 hours of
being discharged from the ED. If patients are admitted to or die in the hospital within 72
hours of being discharged, this may be an indicator that the patient should not have been
discharged initially. While we define the events using 72 hours, for computing purposes the
variable was actually calculated using a timeline of 3 calendar days. As we are looking to
compare the results from this study to the one performed by Brooks et al. (2022), we apply
similar inclusion and exclusion criteria to the CCEDRRN data.

This study will examine the heterogeneity of data collected in Canadian EDs during
the COVID-19 pandemic despite harmonizing data collection procedures. The hierarchical
structure of EDs is of interest, as they are located in cities, which are within provinces
(i.e., multilevel data). While practices and guidelines typically differ among provinces, they
may also vary across hospitals within provinces, illustrating the importance of investigating
the variation across these levels. Implementing a multilevel regression model through the
inclusion of random effects for site and province may capture this variation more efficiently
than the standard model.

This project is organized as follows. Our study criteria and a descriptive analysis of
patient visits to the ED, with geographical stratification and consideration for time, will
be summarized in Chapter 2. Chapter 3 will highlight insights obtained using a similar
approach to the analysis of COVID-19 related events of interest. We also compare the

3



efficiency of several different regression models in this chapter. All analyses in Chapters 2 and
3 are performed using R Statistical Software (v4.0.5) on the secure computing environment
CaraSpace, which is maintained by Popdata BC. This project concludes with a summary
and discussion in Chapter 4, which will also include suggestions for future investigations.
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Chapter 2

Analysis of COVID-19 Related
Emergency Department Visits

Characteristics of patients who visited the ED throughout the pandemic may have varied
depending on the ED or province, as well as over time. Thus, inquiry into the variation
between the different levels of the data structure may provide further justification for the
use of multilevel models. To investigate the effects of geography and time on patients who
visited a participating ED throughout the pandemic, we conduct descriptive analyses in
this chapter. We begin by summarizing the study criteria employed in this project, which
is similar to the criteria utilized to derive the CCDS. We explore a number of patient
characteristics and investigate any potential geographical or temporal effects.

2.1 Study Criteria

Our project considers the same criteria as what was used to derive the CCDS. Specific inter-
est lies in adults (aged 18 or older) confirmed to have COVID-19. A patient was considered
COVID-19 positive if they received a positive test result either 14 days prior to the ED visit
date or while in the ED, or had a discharge diagnosis of confirmed COVID-19.

We define vaccination status the same way as Brooks et al. (2022), which we summarize
here. Any individuals who visited the ED in 2020 were considered unvaccinated, as vaccines
were not approved by Health Canada until December 2020 (Brooks et al., 2022). The vac-
cination status of patients who presented to the ED in 2021 was coded based on medical
records or telephone follow-up. If this information was not documented or unavailable, we
implemented a rule developed by Brooks et al. (2022) to define vaccination status based on
patient status as a healthcare worker, age, province of residence, and ED visit date. Since
vaccine rollout was tightly controlled, this allowed researchers to easily assign patients as
unvaccinated if they were not eligible at the time of the ED visit. Any patients who were
eligible for the vaccine but had an unknown vaccination status were excluded from the study
(Brooks et al., 2022).

5



Of the 255,121 visits to the ED in the CCEDRRN registry throughout our timeframe,
68,233 visits were made by COVID-19 positive patients. Aside from arrival respiratory rate
(2.9% missing) and fever (2.8% missing), our data is complete. The visits which are missing
these values are excluded from the study, as these instances only occurred in approximately
4.7% of visits. There were 27,240 visits which met the inclusion criteria, with the correspond-
ing breakdown outlined in Figure 2.1. The data which met the inclusion criteria consists
of patient information from ED visits to 55 sites across eight provinces. When considering
trends by province, Manitoba is combined with Saskatchewan as there were less than five
eligible visits reported in Manitoba. A list of the participating sites included in our study
can be found in Table A.1. It should be noted that we consider ED visits as our unit of
analysis, not individual patients. We refer to this final study cohort as the complete cohort,
which is utilized for most of the analyses performed in this project.

Figure 2.1: Flow chart of inclusion and exclusion criteria
255,121 ED visits from

suspected COVID-19
individuals from March 1,

2020 to September 25, 2022

68,223 ED visits by SARS-
CoV-2 positive patients

Excluded (40,983 ED visits):
a) Age < 18 (3689)
b) Not discharged home (26262)
c) Long-term care (595)
d) Transfer to hospital (87)
e) Do-not-resuscitate order (194)
f) Unclear vaccination status (8826)
g) Missing data (1330)

27,240 ED visits which meet
inclusion/exclusion criteria

2.2 Descriptive Analysis

Upon arrival to a participating ED, patient information was recorded by clinicians and
added into the patient’s chart. This data included demographic information, comorbidities
and vital signs. Clinicians collected COVID-19 specific information as well, such as exposure
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risk, vaccination status and test results. Afterwards, research assistants went back to the
chart to enter the data into the CCEDRRN database.

A selection of these characteristics and their corresponding spread or prevalence in the
complete cohort across participating ED visits are listed in Table 2.1. The average age of
patients who visited the ED was approximately 47 years old, with the majority of patients
being female. The most commonly reported symptom was a cough, which occurred in about
62% of the study population. The vast majority of patients were unvaccinated (91.9%). This
is expected, not only given the timeline of vaccination development and its corresponding
rollout, but also since these individuals typically experienced more severe COVID-19 after
testing positive for SARS-CoV-2 (Brooks et al., 2022), making these patients more likely to
visit the ED. Of all the visits to the ED throughout this timeframe, there were 671 instances
which resulted in one of our events of interest: 37 (0.1%) of which were in-hospital death.

Table 2.1: Summary of patient characteristics from ED visits in the complete cohort: visits
between March 1, 2020 until September 25, 2022

Complete Cohort
(n = 27,240)

Age in years, mean (SD) 47 (17.3)
Female sex, n (%) 14,215 (52.2)
Pregnant, n (%) 590 (2.2)
Province, n (%) Sites
British Columbia 13 11,652 (42.8)
Québec 11 6,776 (24.9)
Alberta 7 3,535 (13.0)
Ontario 14 3,233 (11.9)
Nova Scotia 5 1,083 (4.0)
Saskatchewan 5 939 (3.4)
New Brunswick 1 22 (0.1)
Arrival from, n (%)
Home/community 26,725 (98.1)
Institutional/no fixed address 515 (1.9)
Arrival mode, n (%)
Self 26,725 (74.3)
Ambulance/police 7,003 (25.7)
Arrival heart rate, beats/min, mean (SD) 93.8 (17.7)
Arrival respiratory rate/min, mean (SD) 19.3 (4.2)
Arrival temperature, ◦C, mean (SD) 37 (0.8)
Presence of respiratory distress, n (%) 3,343 (12.3)
10 most common symptoms, n (%)
Cough 16,941 (62.2)
Shortness of breath (dyspnea) 13,076 (48.0)
Fever 11,994 (44.0)
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Table 2.1 continued
Complete Cohort

(n = 27,240)
Chest pain (includes discomfort or tightness) 11,131 (40.9)
Fatigue/malaise 8,298 (30.5)
Headache 6,680 (24.5)
Chills 6,139 (22.5)
Nausea/vomiting 6,101 (22.4)
Sore throat 5,971 (21.9)
Myalgia (muscle ache) 5,955 (21.9)
10 most common comorbidities, n (%)
Hypertension 5,142 (18.9)
Diabetes 3,121 (11.5)
Psychiatric condition/mental health diagnosis 2,547 (9.4)
Asthma 2,267 (8.3)
Coronary artery disease 969 (3.6)
Rheumatologic disorder 963 (3.5)
Chronic neuro disorder (not dementia) 869 (3.2)
Chronic lung disease (not asthma/IPF) 763 (2.8)
Active malignant neoplasm (cancer) 605 (2.2)
Atrial fibrillation 565 (2.1)
Smoking or vape use, n (%)
Not documented 21,658 (79.5)
Never 3,875 (14.2)
Current or past user 1,707 (6.3)
Illicit substance use, n (%)
Not documented 22,210 (81.5)
Never 4,026 (14.8)
Current or past user 1,004 (3.7)
Oxygen required in ED, n (%) 1,151 (4.2)
Medication administered in ED, n (%)
Dexamethasone, hydrocortisone, or prednisone 2,011 (7.4)
COVID-19 vaccination status, n (%)
Not vaccinated 25,041 (91.9)
Partially/fully vaccinated 2,199 (8.1)
Events, n (%)
Admission within 72 hours 634 (2.3)
In-hospital death within 72 hours 37 (0.1)
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Table 2.2: Distribution of gender in final study population: overall and compared to sex

Overall Sex
Gender Study Population Female Male
Female 17.97% 17.82% 0.15%
Male 15.80% 0.15% 15.65%
Two-spirit 0.02% 0.01% 0.01%
Something else 0.07% 0.05% 0.03%
Prefer not to answer 0.42% 0.17% 0.25%
Missing 65.72% 33.98% 31.74%

2.2.1 Sex and Gender Exploration

Following Brooks et al. (2022) work, primary interest in our investigations is in patient sex,
however gender was also obtained in data collection. While there was a waiver of consent
for collection of variables in patient charts, gender was collected as part of a telephone
follow-up survey which required patient consent. Only 9448 ED visits had patients consent
to the follow-up survey, which is approximately 35% of all participating visits to the ED.
This lead to a considerable amount of missing and undocumented information in terms of
patient gender. While there were 94 instances where a patient consented to participate in the
follow-up but did not respond to this question, the remaining portion of missing responses
is simply a result of the patient not participating in the follow-up. The missing responses
by individuals who agreed to participate may actually be very informative, as the reason
for the missing data may be related to the question itself. The exact reason for this missing
data is unknown and further research is warranted to properly utilize this information. The
distribution of responses for each gender under consideration is in Table 2.2. It should be
noted that the terms used for gender in the follow-up study are consistent with what is used
by the Government of Canada (Statistics Canada, 2022a), rather than gender terms such
as man and woman (Eidinger, 2021).

McNemar’s test was used to assess whether proportions of individuals whose gender is
male or female differs from their recorded sex. To do so, we assume that the data is missing
at random and exclude ED visits by individuals whose gender is missing from this analysis.
This test obtains a p-value of 0.912, indicating that there is no statistically significant
difference between the two groups. Thus, the number of individuals who are of male sex
does not differ significantly from the number of individuals who identify as male. The same
conclusion can be made for females.

2.3 Stratification by Province and Time Period

The data under study consists of patient visits to 55 EDs across seven provinces. The inclu-
sion of different EDs across several provinces leads to data with variations in practice and
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population diversities. Furthermore, as the pandemic evolved, subvariants of the disease
were dominant across the country at different times, increasing heterogeneity. The follow-
ing two sections will summarize investigations into any trends and associations observed in
terms of variations across geography or over time. For the following exploratory analyses,
we assume patient visits to the ED are independent and unless otherwise specified, a 5%
significance level is considered: any test which results in a p-value less than 0.05 is consid-
ered statistically significant. The stats package (R Core Team, 2021) is utilized to conduct
all tests used in this analysis to investigate any trends and differences with respect to ge-
ographical region or time. These tests include analysis of variance (ANOVA), chi-square,
Fisher’s, and Student’s t-test.

2.3.1 Analysis by Province

The inclusion of EDs, which are nested within provinces, provides an opportunity for hetero-
geneity to arise. For example, provinces have different standards of practice for EDs within
their geographical region. The patient characteristics explored previously are investigated
further to check for any significant differences between provinces.

Testing Differences Across Provinces

Any differences in means of continuous variables for each province is compared using
ANOVA tests. The chi-square test of homogeneity is used to assess the distribution of
categorical variables by province. In the case of a province having a count less than five,
Fisher’s exact test is utilized. Each of these tests consider a significance level of 5%, and
a summary of the results are displayed in Table 2.3. A statistically significant difference
is found in at least one province for the majority of the variables considered: arrival heart
rate, symptom of nausea/vomiting and patient admission within 72 hours of discharge are
the only variables where a significant difference is not found among provinces.

Due to statistical significance in a number of the variables considered, we also evaluated
practical significance using effect size. The effect size of province on each of the variables and
the corresponding 95% confidence interval are also listed in Table 2.3. These were obtained
using the effect size package (Ben-Shachar et al., 2020). For continuous variables, the effect
size is defined using η2, which measures the amount of variation in these variables that
can be explained by province (Adams & Conway, 2014). Each of the variables considered
here have very small effect sizes, illustrating they are not majorly affected by province. The
association between two categorical variables is obtained using Cramer’s V (Akoglu, 2018).
These effect sizes are all fairly small, despite a number of the variables being statistically
significantly different in at least one of the provinces. Province has the most noticeable
effect on the presence of respiratory distress and the symptom of chills.
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Table 2.3: Statistically significant differences between provinces

Effect size
P-value Estimate 95% CI

η2

Age <2e-16 0.01 (0.01, 0.01)
Arrival heart rate 0.119 <0.01 (0.00, 0.00)
Arrival respiratory rate <2e-16 0.01 (0.01, 0.01)
Arrival temperature, ◦C <2e-16 0.05 (0.04, 0.05)

Cramer’s V
Sex <0.001 0.05 (0.03, 0.06)
Pregnant 0.015 0.02 (0.00, 0.03)
Arrival from <0.001 0.05 (0.04, 0.07)
Arrival mode <0.001 0.03 (0.02, 0.04)
Presence of respiratory distress <0.001 0.21 (0.20, 0.22)
10 most common symptoms
Cough <2e-16 0.12 (0.11, 0.13)
Shortness of breath (dyspnea) <2e-16 0.09 (0.07, 0.10)
Fever <2e-16 0.10 (0.08, 0.11)
Chest pain (includes discomfort or tightness) <2e-16 0.07 (0.06, 0.08)
Fatigue / malaise <2e-16 0.10 (0.09, 0.11)
Headache <2e-16 0.06 (0.05, 0.08)
Nausea / vomiting <0.001 0.08 (0.07, 0.09)
Chills <0.001 0.22 (0.21, 0.23)
Myalgia (muscle ache) <0.001 0.09 (0.08, 0.10)
Diarrhea 0.003 0.02 (0.00, 0.03)
10 most common comorbidities
Hypertension <0.001 0.07 (0.05, 0.08)
Diabetes <0.001 0.06 (0.04, 0.07)
Psychiatric condition/mental health diagnosis <0.001 0.07 (0.06, 0.08)
Asthma <0.001 0.04 (0.02, 0.05)
Coronary artery disease <0.001 0.05 (0.03, 0.06)
Rheumatologic disorder <0.001 0.03 (0.00, 0.04)
Chronic neuro disorder (not dementia) <0.001 0.04 (0.03, 0.05)
Chronic lung disease (not asthma/IPF) 0.001 0.02 (0.00, 0.03)
Active malignant neoplasm (cancer) <0.001 0.05 (0.04, 0.06)
Past malignant neoplasm (cancer) <0.001 0.06 (0.05, 0.07)
Smoking or vaping <0.001 0.08 (0.07, 0.09)
Illicit substance use, <0.001 0.07 (0.06, 0.08)
Oxygen required in ED <0.001 0.06 (0.05, 0.07)
Medication administered in ED 0.001 0.03 (0.01, 0.04)
COVID-19 vaccination status <0.001 0.16 (0.15, 0.18)
Events
Composite event 0.017 0.02 (0.00, 0.03)
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Table 2.3 continued
Effect size

P-value Estimate 95% CI
Admission within 72 hours 0.062 0.02 (0.00, 0.03)
In-hospital death within 72 hours 0.003 0.02 (0.00, 0.03)

2.3.2 Temporal Analysis

Our study utilizes the complete cohort of data collected by CCEDRRN. Upon comparison
of Table 1 in Brooks et al. (2022) to Table 2.1 in this paper, there are a few interesting
differences. Of the 15,305 patient visits considered in Brooks et al. (2022), 535 (3.5%)
resulted in a patient being admitted to or dying in the hospital within 72 hours of being
discharged. This is higher than what was seen in the data under study for this project, as
only 2.4% of patient visits resulted in the event of interest. This motivates investigation
into differences in these patient characteristics with respect to time.

Further analysis is performed after splitting the complete cohort into two subsets; the
early cohort, which aligns with the timeframe considered by Brooks et al. (2022), and the
late cohort, which includes the remaining data. The early cohort includes data from March
1, 2020 until September 8, 2021, with the intention to obtain a similar sample as the one
used in Brooks et al. (2022). The late cohort consists of the remaining dataset and includes
any ED visits at a participating hospital from September 9, 2021 until September 25, 2022.

Table 2.4 summarizes patient characteristics in these two cohorts. There are a number of
similarities between the two cohorts, however there are some key differences. The proportion
of patients of female sex increased slightly in the late cohort, compared to the early cohort.
Furthermore, the late cohort also had a higher percentage of patients arrive at the ED
themselves, rather than with the help of an ambulance or police. The presence of respiratory
distress also dropped from 16% to 5.4% in ED visits from the early to the late cohort,
respectively. While the exact reason for these changes in trend is unknown, they may indicate
a decrease in the severity of these COVID-19 symptoms over time. This could be the result
of a number of factors such as, but not limited to, disease variant, vaccination status, natural
immunity, and implementation of public health measures. The proportion of ED visits which
result in the event of interest is also higher in the earlier cohort, as this number drops from
3.4% to approximately 1% in the later cohort.

12



Table 2.4: Summary of patient characteristics from ED visits in the early and late cohorts

Early Cohort Late Cohort
(n = 17,668) (n = 9,572)

Age in years, mean (SD) 47.1 (16.4) 47.1 (18.7)
Female sex, n (%) 8,929 (50.5) 5,286 (55.2)
Pregnant, n (%) 306 (1.7) 284 (3.0)
Province, n (%) Sites Sites
Alberta 7 3,535 (20.0) 0 —a

British Columbia 13 6,662 (37.7) 5 4,990 (52.1)
New Brunswick 1 5 (0.0) 1 17 (0.2)
Nova Scotia 5 219 (1.2) 4 864 (9.0)
Ontario 13 2,458 (13.9) 5 775 (8.1)
Québec 11 4,376 (24.8) 6 2,400 (25.1)
Saskatchewan 5 413 (2.3) 3 526 (5.5)
Arrival from, n (%)
Home (community) 17,308 (98.0) 9,417 (98.4)
Institutional/No fixed address 360 (2.0) 155 (1.6)
Arrival mode, n (%)
Ambulance/police 5,089 (28.8) 1,914 (20.0)
Self 12,579 (71.2) 7,658 (80.0)
Arrival heart rate, beats/min, mean (SD) 94 (17.2) 93.5 (18.6)
Arrival respiratory rate/min, mean (SD) 19.6 (4.3) 18.7 (3.8)
Arrival temperature, ◦C, mean (SD) 37 (0.8) 37 (0.8)
Presence of respiratory distress, n(%) 2,829 (16.0) 514 (5.4)
10 most common symptoms, n (%)
Cough 10,755 (60.9) 6,186 (64.6)
Shortness of breath (dyspnea) 9,236 (52.3) 3,840 (40.1)
Fever 7,875 (44.6) 4,119 (43.0)
Chest pain (includes discomfort or tightness) 6,871 (38.9) 4,260 (44.5)
Fatigue / malaise 5,525 (31.3) 2,773 (29.0)
Headache 4,161 (23.6) 2,519 (26.3)
Nausea / vomiting 3,964 (22.4) 2,137 (22.3)
Chills 3,686 (20.9) 2,453 (25.6)
Myalgia (muscle ache) 3,651 (20.7) 2,304 (24.1)
Diarrhea 2,816 (15.9) 1,053 (11.0)
10 most common comorbidities, n (%)
Hypertension 3,397 (19.2) 1,745 (18.2)
Diabetes 2,099 (11.9) 1,022 (10.7)
Psychiatric condition/mental health diagnosis 1,547 (8.8) 1,000 (10.4)
Asthma 1,394 (7.9) 873 (9.1)
Coronary artery disease 550 (3.1) 419 (4.4)
Rheumatologic disorder 524 (3.0) 439 (4.6)
Chronic neuro disorder (not dementia) 426 (2.4) 443 (4.6)
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Table 2.4 continued
Early Cohort Late Cohort
(n = 17,668) (n = 9,572)

Chronic lung disease (not asthma/IPF) 413 (2.3) 350 (3.7)
Active malignant neoplasm (cancer) 291 (1.6) 314 (3.3)
Past malignant neoplasm (cancer) 283 (1.6) 229 (2.4)
Smoking or vape, n (%)
Current or past 1,116 (6.3) 591 (6.2)
Never or not documented 16,598 (93.9) 9,010 (94.1)
Illicit substance use, n (%)
Current or past 610 (3.5) 394 (4.1)
Never or not documented 17,058 (96.5) 9,178 (95.9)
Oxygen required in ED, n (%) 892 (5.0) 259 (2.7)
Medication administered in ED
Dexamethasone, hydrocortisone, or prednisone 1,275 (7.2) 736 (7.7)
COVID-19 vaccination status, n (%)
Not immunized 16,221 (91.8) 8,820 (92.1)
Partially/fully vaccinated 1,447 (8.2) 752 (7.9)
Events, n (%)
Admission within 72 hours 539 (3.1) 95 (1.0)
In-hospital death within 72 hours 34 (0.2) — b

Early cohort: March 1, 2020 - September 8, 2021
Late cohort: September 9, 2020 - September 25, 2022
a, no participating ED visits from Alberta in this cohort
b, count is less than 5 and is omitted

The histogram in Figure 2.2 visualizes the trend in the number of ED visits over time.
Each colour indicates a different pandemic wave, defined using the same dates as what
CCEDRRN has used previously: 1) March 1, 2020 - June 30, 2020; 2) July 1, 2020 - February
28, 2021; 3) March 1, 2021 - July 14, 2021; 40 July 16, 2021 - November 21, 2021; 5)
November 22, 2021 - March 14, 2022; and 6) March 15, 2022 - July 31, 2022. Note that
in our analysis, there were only 17 visits to the ED between August 1, 2022 - September
25, 2022, so we include these visits in the sixth wave. The red dot dash line is the cutoff
between the early and late cohorts. The second and third wave appear to have had the
highest number of ED visits.

Testing Differences by Time Period

The patient characteristics are studied in more detail to determine if there are any statis-
tically significant differences between the early and late cohorts. Assuming equal variances,
Student’s t-test is used to assess whether the continuous variables in the two study cohorts
have the same population mean. Similarly, the distribution of categorical variables in both
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Figure 2.2: Histogram of ED visits across the study period with normal densities

cohorts are compared using the chi-square test of homogeneity. Both testing procedures
consider a significance level of 5%, and the results from the analyses can be found in Ta-
ble 2.5. These analyses indicate a statistically significant difference in the average patient
arrival heart rate, respiratory rate, and temperature. In fact, the corresponding averages of
these variables are higher in the early cohort. In other words, the average arrival heart rate,
respiratory rate and temperature (degrees Celsius) decreased over time.

The distribution of a number of the categorical variables is statistically significantly
different as well. Overall, only five of the variables considered obtained a p-value greater
than 0.05: age, nausea/vomiting symptoms, smoking status, medication administered in the
ED (dexamethasone, hydrocortisone, or prednisone), and COVID-19 vaccination status. The
remaining variables are statistically significantly different between the two cohorts.

While the majority of variables obtained a statistically significant p-value, the corre-
sponding effect sizes are actually fairly small. These effect sizes can also be found in Table
2.5. The effect size of study cohort on continuous variables is obtained using η2 and Cramer’s
V is used to estimate the effect of study cohort on categorical variables. Despite many of
these variables being significantly different between the two study cohorts, the effect of
study cohort on these variables is minimal overall. The two variables which appear to be
most affected by study cohort are province and respiratory distress.
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Table 2.5: Statistically significant differences between the early and late cohorts

Effect size
P-value Estimate 95% CI

η2

Age 0.974 <0.01 (0.00, 0.00)
Arrival heart rate 0.008 <0.01 (0.00, 0.00)
Arrival respiratory rate <2e-16 0.01 (0.01, 0.01)
Arrival temperature, ◦C <0.001 <0.01 (0.00, 0.00)

Cramer’s V
Sex <0.001 0.04 (0.03, 0.06)
Pregnant <0.001 0.04 (0.03, 0.05)
Province <2e-16 0.36 (0.35, 0.37)
Arrival from 0.018 0.01 (0.00, 0.03)
Arrival mode <2e-16 0.10 (0.08, 0.11)
Presence of respiratory distress <2e-16 0.22 (0.21, 0.23)
10 most common symptoms
Cough <0.001 0.04 (0.02, 0.05)
Shortness of breath (dyspnea) <2e-16 0.12 (0.10, 0.13)
Fever 0.150 0.01 (0.00, 0.03)
Chest pain (includes discomfort or tightness) <2e-16 0.05 (0.04, 0.07)
Fatigue / malaise <0.001 0.02 (0.01, 0.04)
Headache <0.001 0.03 (0.02, 0.04)
Nausea / vomiting 0.847 0.00 (0.00, 0.01)
Chills <2e-16 0.05 (0.04, 0.07)
Myalgia (muscle ache) <0.001 0.04 (0.03, 0.05)
Diarrhea <2e-16 0.07 (0.06, 0.08)
10 most common comorbidities
Hypertension 0.047 0.01 (0.00, 0.02)
Diabetes 0.003 0.02 (0.01, 0.03)
Psychiatric condition/mental health diagnosis <0.001 0.03 (0.02, 0.04)
Asthma <0.001 0.02 (0.01, 0.03)
Coronary artery disease <0.001 0.03 (0.02, 0.04)
Rheumatologic disorder <0.001 0.04 (0.03, 0.05)
Chronic neuro disorder (not dementia) <2e-16 0.06 (0.05, 0.07)
Chronic lung disease (not asthma/IPF) <0.001 0.04 (0.03, 0.05)
Active malignant neoplasm (cancer) <2e-16 0.05 (0.04, 0.06)
Past malignant neoplasm (cancer) <0.001 0.03 (0.02, 0.04)
Smoking or vaping 0.663 0.00 (0.00, 0.01)
Illicit substance use 0.006 0.02 (0.00, 0.03)
Oxygen required in ED <2e-16 0.06 (0.04, 0.07)
Medication administered in the ED 0.162 <0.01 (0.00, 0.02)
COVID-19 vaccination status 0.346 0.00 (0.00, 0.02)
Events
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Table 2.5 continued
Effect size

P-value Estimate 95% CI
Composite event <2e-16 0.07 (0.06, 0.08)
Admission within 72 hours <2e-16 0.06 (0.05, 0.08)
In-hospital death within 72 hours 0.001 0.02 (0.01, 0.03)

Results in Table 2.5 indicate that age does not differ significantly between the two
cohorts. Despite statistically significant differences present between cohorts in terms of
arrival heart rate and arrival temperature, the η2 for the effect of study cohort on age
appears to be similar to the corresponding η2 for these two variables. We investigate these
results to further understand this situation. The histograms in Figure 2.3 illustrate what we
saw earlier. There is no obvious change in trend of patient age across the two study cohorts.
In fact, the similar effect sizes are due to the effect of rounding, as the effect size of study
cohort on age is actually < 0.0001, while study cohort has an effect size of 0.0003 on arrival
heart rate. Thus, while both of these effect sizes are small, study cohort has more of an
effect on heart rate upon arrival to the ED than it does on patient age. Similar conclusions
can be made in terms of patient temperature upon arrival to the ED: before rounding, the
corresponding η2 is 0.0005.

Vaccination Status

One interesting characteristic which is not significantly different across the two time periods
is patient vaccination status. Despite the increase in vaccinations amongst the Canadian
population over time, the proportion of patients included in the study who were vaccinated
is not significantly different between the two time periods. Recall that CCEDRRN only
collected data on patients who visited the ED, and as illustrated in this data, these indi-
viduals were mostly unvaccinated. This is consistent with our expectations as unvaccinated
individuals who test positive for SARS-CoV-2 usually have more severe symptoms (Brooks
et al., 2022). Thus, while the rate at which patients visited the ED may have decreased
over time, the majority of these individuals continued to be unvaccinated, despite the rise
in vaccinated individuals across the country.

2.4 Summary

In this chapter, we provided a thorough descriptive analysis of patients who visited the
ED. We investigated certain patient characteristics which not only included demographic
information and medical history, but also vital signs recorded at patient intake. Further
analysis was performed to investigate any potential spatial or temporal effects in terms
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Figure 2.3: Histograms of age and arrival heart rate in each study cohort

of the patients who visited a participating ED. This revealed a significant difference in
a number of patient characteristics across both geography and two time periods. These
analyses indicate that there are likely geographical and temporal effects, and accounting for
these in the model could result in more informative results.
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Chapter 3

Analysis of COVID-19 Associated
Follow-Up Events

3.1 Descriptive Analysis

Patient characteristics in the complete cohort were explored further in those who experi-
enced the COVID-19 related event: hospital admission or in-hospital death within 72 hours
of discharge. It is evident that the average age is higher in patients who experienced the
event than the corresponding age in the overall study population, increasing from 47 to 56
years old. There were also noticeable differences with respect to patient sex, as the majority
of patients who were either admitted to or died in the hospital within 72 hours of discharge
were male (60.4%), where males made up less than half (47.8%) of the study population.
Another interesting difference is in the number of patients who required oxygen upon arrival
to the ED. Of all the patient visits included in this study, only 4% of visits involved supple-
mental oxygen, however this number rose to 49.9% in visits where the patient encountered
an event. Several other intriguing characteristics are summarized in Table 3.1.

Table 3.1: Characteristics of patients who were admitted to or died in the hospital within
72 hours of ED discharge in the complete cohort

Events
(n = 671)

Age in years, mean (SD) 56.2 (16.3)
Female sex, n (%) 266 (39.6)
Pregnant, n (%) 12 (1.8)
Province, n (%) Sites
British Columbia 10 302 (45.0)
Québec 9 142 (21.2)
Alberta 7 110 (16.4)
Ontario 9 82 (12.2)
Nova Scotia 4 20 (3.0)
Saskatchewan 2 15 (2.2)
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Table 3.1 continued
Events

(n = 671)
New Brunswick 0 0 (0.0)
Arrival from, n (%)
Home (community) 657 (97.9)
Institutional/No fixed address 14 (2.1)
Arrival mode, n (%)
Ambulance/police 370 (55.1)
Self 301 (44.9)
Arrival heart rate, beats/min, mean (SD) 97.9 (18.4)
Arrival respiratory rate/min, mean (SD) 24.3 (7.0)
Arrival temperature, ◦C, mean (SD) 37.4 (1.1)
Presence of respiratory distress, n (%) 286 (42.6)
10 most common symptoms, n (%)
Shortness of breath (dyspnea) 537 (80.0)
Cough 423 (63.0)
Fever 338 (50.4)
Fatigue/malaise 251 (37.4)
Chest pain (includes discomfort or tightness) 207 (30.8)
Nausea/vomiting 173 (25.8)
Diarrhea 158 (23.5)
Headache 115 (17.1)
Chills 111 (16.5)
Myalgia (muscle ache) 105 (15.6)
10 most common comorbidities, n (%)
Hypertension 220 (32.8)
Diabetes 148 (22.1)
Psychiatric condition/mental health diagnosis 72 (10.7)
Rheumatologic disorder 64 (9.5)
Asthma 58 (8.6)
Coronary artery disease 53 (7.9)
Chronic lung disease (not asthma/IPF) 47 (7.0)
Obesity 40 (6.0)
Chronic kidney disease 39 (5.8)
Chronic neuro disorder (not dementia) 38 (5.7)
Smoking or vape use, n (%)
Not documented 466 (69.5)
Never 127 (18.9)
Current or past user 78 (11.6)
Illicit substance use, n (%)
Not documented 429 (63.9)
Never 214 (31.9)
Current or past user 28 (4.2)
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Table 3.1 continued
Events

(n = 671)
Oxygen required in ED, n (%) 335 (49.9)
Medication administered in ED, n (%)
Dexamethasone, hydrocortisone, or prednisone 304 (45.3)
COVID-19 vaccination status, n (%)
Not vaccinated 604 (90.0)
Partially/fully vaccinated 67 (10.0)
Events, n (%)
Admission within 72 hours 634 (94.5)
In-hospital death within 72 hours 37 (5.5)

3.2 Stratification by Province and Time Period

Our analysis in Section 2.3 revealed significant differences across geography as well as over
time. These differences were found in a number of patient characteristics, including our
defined COVID-19 related event: hospital admission or death within 72 hours of discharge.
We now investigate these differences further to potentially provide insights into why this
may be the case. The following tests consider a 5% level of significance and use the stats
package (R Core Team, 2021).

3.2.1 Analysis by Province

Due to a small number of events in certain provinces, Fisher’s exact test is utilized to
investigate the association between patient event and province. This test obtained a p-value
of 0.017, concluding that there is in fact a difference in terms of the number of events between
provinces with a significance level of 5%. In other words, the proportion of events which
occurred at participating EDs differs in at least one of the seven provinces considered. The
corresponding percentages of events for each province can be found in Table 3.2. This table
also lists the percentages of events across two time periods of interest, which were defined
earlier. The first time period, the early cohort, considers the same timeframe as Brooks et al.
(2022), and the late cohort includes the remaining data. The differences between these two
time periods will be discussed further in the upcoming temporal analysis.

Post Hoc Tests

Post hoc tests are performed to determine which of the provinces differed from one another.
Fisher’s exact test is used on each of the

(7
2
)

= 21 pairwise comparisons and the Bonferroni
correction is applied to account for multiple comparisons. In this case, a p-value less than
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Table 3.2: Percentage of ED visits resulting in hospital admission or in-hospital death within
72 hours of discharge by province in each study cohort

Complete cohort Early cohort Late cohort
Alberta 3.1% 3.1% —∗

British Columbia 2.6% 3.8% 1.0%
New Brunswick 0.0% 0.0% 0.0%
Nova Scotia 1.8% 5.9% 0.8%
Ontario 2.5% 3.0% 1.2%
Québec 2.1% 2.7% 1.0%
Saskatchewan 1.6% 2.2% 1.1%
∗, no participating ED visits during this time period
Complete cohort: ED visits from March 1, 2020 - September 25, 2022
Early cohort: ED visits from March 1, 2020 - September 8, 2021
Late cohort: ED visits from September 9, 2021 - September 25, 2022

Table 3.3: Time period of data collection in each province

First ED visit Last ED visit
Alberta March 11, 2020 May 23, 2021
British Columbia March 2, 2020 September 25, 2022
New Brunswick May 4, 2020 April 11, 2022
Nova Scotia March 14, 2020 May 16, 2022
Ontario March 1, 2020 August 3, 2022
Québec March 3, 2020 July 29, 2022
Saskatchewan March 16, 2020 May 20, 2022

0.05/21 = 0.0024 is deemed significant. There is a significant difference in the number of
events in Alberta compared to Québec, and the results from this analysis are in Table
A.2. Since we are interested in a composite event, we use Fisher’s exact test to investigate
each component of the event of interest. This revealed a statistically significant difference
between Alberta and Québec in terms of the number of in-hospital deaths within 72 hours of
discharge (p-value = 0.001). However, there is no statistically significant difference between
the number of hospital admissions within 72 hours of discharge in each of the provinces
considered.

Upon further investigation, it was discovered that Alberta did not have any visits to
a participating ED after May 23, 2021, while the other provinces had participating ED
visits until 2022. The time period of data collection in each province can be found in Table
3.3. The differences in time periods for data collection is likely a factor contributing to the
significant differences observed during this analysis.
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3.2.2 Temporal Analysis

The percentage of ED visits which resulted in the event of interest for both time periods
can be found broken down by each province in Table 3.2. As mentioned previously, Alberta
did not have any participating ED visits in the late cohort. Excluding New Brunswick,
which did not have any patient events over the entire study period, each of the remaining
five provinces saw a lower percentage of events in the late cohort. In fact, this percentage
decreases by at least 50% compared to the early cohort. These differences illustrate the
evolution of the pandemic over time and how the inclusion of a covariate to account for
this may be worth investigating further. The decreasing trend in the number of COVID-19
related events can be seen in Figure 3.1. The daily percentages of ED visits which had a
patient experience the COVID-19 related event are plotted in Figure 3.2.

Figure 3.1: Histogram of COVID-19 related events across the study period with normal
densities

Figure 3.2: Plot of daily percentage of ED visits with COVID-19 related event
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3.3 Regression Analysis

The CCDS was derived using a logistic regression model and the continuous predictors were
fit using restricted cubic splines with 3 knots. Brooks et al. (2022) chose candidate predic-
tors which include age, sex, pregnancy, type of residence, ED arrival mode, comorbidities,
symptoms, respiratory rate, ED oxygen delivery, physician or nurse impression of respi-
ratory distress, medication administered in ED, immunization status, and use of alcohol,
tobacco, vapes, and illicit substances. Aside from arrival respiratory rate (4.2% missing) and
fever (2.3% missing), the data used for their study was complete. The CCDS used multiple
imputation to account for the missing data and the final model was obtained using a fast
step-down procedure. This final model includes key predictors which consist of a subset of
the candidate predictors: age, sex, temperature, arrival mode, pregnancy, respiratory dis-
tress, and arrival respiratory rate. The CCDS considers a composite outcome of hospital
admission or in-hospital death within 72 hours of ED discharge. This modelling did not
account for the multilevel structure of the CCEDRRN data.

The implementation of mulitilevel models, or mixed effects regression models, will allow
for hierarchical data structures to be accounted for in modelling. The inclusion of random
effects in these models incorporate the heterogeneity present across the different levels
present in the data. This type of modelling is applicable to the CCEDRRN data, as the
ED visits occurred at 55 different EDs within seven provinces: the EDs are nested within
provinces. There is likely some sort of effect of ED sites as a result of distinct standards
of practice at different hospitals. This ideology can further be applied to account for the
heterogeneity present across provinces.

The following analyses will explore a binary response variable Y , which denotes whether
or not the ED visit resulted in an event. The response variable will be either 0 or 1, where
Y = 1 indicates the patient was admitted to or died in the hospital within 72 hours of ED
discharge, and Y = 0 otherwise.

We initially consider a fixed-effects regression model with all candidate predictors, which
are identical to those considered by Brooks et al. (2022). In our descriptive analyses, smok-
ing/vape use and illicit substance use are broken down into three categories: not docu-
mented, never, and current or past user. We assume confirmation of past or present use is
more likely to be reported in patient charts, while no previous use may be omitted. There-
fore, we combine the not documented and never categories in our modelling. To investigate
whether the inclusion of additional ED visits influences the predictors chosen for the final
model compared to the previous work by Brooks et al. (2022), we repeat model selection us-
ing the same fast step-down procedure. Although the candidate variables considered in this
project are the same as those considered for the CCDS, the variables included in the final
model differ between the two projects. This may be a result of a combination of factors, such
as the inclusion of additional visits in the dataset as well as differences in modelling pro-
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Table 3.4: Final variables after model selection compared to the variables used in the CCDS.

Variables Our model CCDS
Age • •
Sex • •
Pregnant • •
Arrival mode • •
Respiratory distress • •
Chronic kidney disease or dialysis •
Arrival respiratory rate • •
Arrival temperature • •
Oxygen required in ED •
Medication administered in ED •

cedures; Brooks et al. (2022) modelled continuous predictors using restricted cubic splines,
while we do not.

There are p = 10 final predictors in our model, which include age, sex, pregnancy,
arrival mode, respiratory distress, chronic kidney disease or dialysis, arrival respiratory
rate, temperature, oxygen required in ED, and ED medication. Table 3.4 lists the final
variables after model selection in our project as well as in the CCDS. Each of the models
considered in this section include these final variables. Seven of the variables in our model
were also included in the CCDS. The additional three variables, which were not included
in the derivation of the CCDS, are the presence of chronic kidney disease and/or need for
dialysis, as well as the requirement of oxygen or medication while in the ED. One interesting
thing to note is that the latter two of these additional variables are related to the medical
intervention required, based on a patient’s presentation to the ED. This may be an indicator
of how patient care evolved as the pandemic progressed.

We investigate the fit of several models in this section. We use Akaike information
criterion (AIC) and likelihood ratio tests to make comparisons and evaluate which of these
models is best. The fixed effects logistic regression models are fitted using the stats (R Core
Team, 2021) package, while the two- and three-level models, or mixed effects models, utilize
the lme4 (Bates et al., 2015) package. The continuous variables are scaled to avoid large
eigenvalues, ensuring we obtain an identifiable model.

3.3.1 Fixed Effects Logistic Regression Model

We begin by implementing a generalized linear model and perform a simple logistic regres-
sion analysis. This models the logit of the probability of an event Yi, admission or death in
the ED within 72 hours of discharge, occurring for ED visit i. A total of 27,240 ED visits
met our inclusion criteria, so we consider i = 1, . . . , 27, 240. The model we consider in this
case is written as
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Table 3.5: Results for fixed effects regression model (3.1)

Estimate Std. Error Pr(>|z|)
Intercept -4.699 0.255 < 2e-16 ∗

Age 0.286 0.046 < 0.000 ∗

Sex (vs. female)
Male 0.227 0.091 0.012 ∗

Pregnant 0.788 0.323 0.015 ∗

Arrival mode (vs. ambulance/police)
Self -0.310 0.095 0.001 ∗

Respiratory distress 0.703 0.099 0.000 ∗

Chronic kidney disease or dialysis 0.590 0.204 0.004 ∗

Arrival respiratory rate 0.211 0.026 < 2e-16 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C -0.040 0.239 0.867
> 37.5◦C 0.367 0.244 0.132

Oxygen required in ED 2.055 0.107 < 2e-16 ∗

Medication administered in ED 1.314 0.101 < 2e-16 ∗

AIC: 4545.2
∗, variable is significant at α = 0.05

logit
{
P (Yi = 1|Xi)

}
= Xiβ, (3.1)

where β is a vector consisting of regression parameters including the intercept, and X is a
(p + 1) vector of the intercept and covariates for the corresponding ED visit. A summary
of the 11 parameter estimates obtained from the implementation of this regression model
along with the corresponding standard errors and p-values are in Table 3.5.

Inclusion of Covariate for Study Cohort

Preliminary analyses in Section 2.3.2 indicate that time may play a crucial role in the
modelling process. As a result of this, we add a covariate to model (3.1) which indicates
the study cohort in which the ED visit occurred. This covariate is equal to 0 if the ED visit
was part of the early cohort (March 1, 2020 - September 8, 2021), and 1 if was part of the
late cohort (September 9, 2021 - September 25, 2022).

The results from this analysis are shown in Table 3.6. This model includes the same 10
variables we considered previously as well as the covariate for study cohort. The AIC value
for this model is much smaller than the AIC for the model without it. The study cohort
variable is also significant at a 5% level of significance. This illustrates that accounting
for time in this way is beneficial. Furthermore, a likelihood ratio test comparing these two
models confirms that including the study cohort variable improves the efficiency of the
model with a p-value < 0.0001.
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Table 3.6: Results for fixed effects regression model (3.1) with added covariate for study
cohort

Estimate Std. Error Pr(>|z|)
Intercept -4.516 0.255 < 2e-16 ∗

Age 0.324 0.047 < 0.000 ∗

Sex (vs. female)
Male 0.212 0.091 0.020 ∗

Pregnant 0.901 0.323 0.005 ∗

Arrival mode (vs. ambulance/police)
Self -0.265 0.095 0.005 ∗

Respiratory distress 0.610 0.099 < 0.000 ∗

Chronic kidney disease or dialysis 0.684 0.206 0.001 ∗

Arrival respiratory rate 0.201 0.027 < 0.000 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C 0.001 0.239 0.995
> 37.5◦C 0.375 0.244 0.124

Oxygen required in ED 2.033 0.107 < 2e-16 ∗

Medication administered in ED 1.379 0.102 < 2e-16 ∗

Study cohort (vs. early cohort)
Late cohort -1.001 0.121 < 2e-16 ∗

AIC: 4466.9
∗, variable is significant at α = 0.05
Early cohort: ED visits from March 1, 2020 - September 8, 2021
Late cohort: ED visits from September 9, 2021 - September 25, 2022
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Inclusion of Covariate for ED Visit Date

We consider an additional model which includes a covariate to denote the date of patient ED
visit occurred. This fixed effects logistic regression model includes a continuous covariate for
time in addition to the 10 variables defined previously. The results from this analysis are in
Table A.3. The covariate for time in this model is significant with a level of significance of 5%.
This model obtained a lower AIC (4468.6) than our initial model, which does not account
for time. Furthermore, the AIC is very similar to our model which includes a covariate
for study cohort (4466.9). In fact, there are no major differences between the two models:
they both have similar standard errors, aside from the standard errors of the time covariate
themselves. Study cohort obtained a standard error of 0.121, which is approximately double
the corresponding value for the ED visit date covariate, 0.052. The two models deem the
same 11 variables as significant at a level of 5%. Once again, a likelihood ratio test comparing
this model to one which does not account for time confirms that including this variable
improves model efficiency (p-value < 0.0001).

3.3.2 Two-Level Model: Random Effect for Site

We extend model (3.1) to investigate whether a random intercept for site should be included.
A generalized linear mixed effects model with the logit link is used to implement this idea.
This model is similar to (3.1) and is written as

logit
{
P

(
Yij = 1|b0j ,Xij

)}
= Xijβ + b0j , (3.2)

where β and X are defined similarly to those in (3.1), and visit i occurs at ED site j, for
j = 1, . . . , 55. In other words, i denotes the level one unit (27,240 ED visits), and j denotes
the level two unit (55 sites). This model also has a random intercept term for site, denoted
by b0j , which remains constant for all ED visits within a particular site. We assume that Yij

are independent and follow a Bernoulli distribution, conditional on the site random effect
b0j , where b0j ∼ N(0, σ2

0).
The results from this analysis are shown in Table 3.7. As we expected, there is variability

between EDs, which is estimated to be about 0.237, indicating the inclusion of random
effects is likely advantageous. The random intercepts and corresponding standard errors for
sites can be seen in the caterpillar plot in Figure 3.3. Upon comparison to the one-level
(fixed effects) model, it is clear that the inclusion of a random intercept for site through a
two-level model is beneficial, evident through comparison of AIC values and the likelihood
ratio test. A smaller AIC value indicates a better model, and the corresponding value for
our model with a random intercept for site is 4502.8, while the AIC for the one-level model
is 4545.2. A likelihood ratio test also confirms these findings with a p-value < 0.0001.
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Table 3.7: Results for multilevel regression model (3.2) with a random intercept for site

Estimate Std. Error Pr(>|z|)
Fixed Effects
Intercept -4.959 0.273 < 2e-16 ∗

Age 0.308 0.047 < 0.000 ∗

Sex (vs. female)
Male 0.230 0.091 0.011 ∗

Pregnant 0.766 0.325 0.019 ∗

Arrival mode (vs. ambulance/police)
Self -0.305 0.096 0.001 ∗

Respiratory distress 0.618 0.106 < 0.000 ∗

Chronic kidney disease or dialysis 0.616 0.207 0.003 ∗

Arrival respiratory rate 0.203 0.026 < 0.000 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C 0.074 0.240 0.758
> 37.5◦C 0.525 0.248 0.034 ∗

Oxygen required in ED 2.249 0.114 < 2e-16 ∗

Medication administered in ED 1.334 0.102 < 2e-16 ∗

Random Effects Var. Estimate
Site (Intercept) 0.237

AIC: 4502.8
∗, variable is significant at α = 0.05

Figure 3.3: Caterpillar plot of site random intercepts and standard errors from model (3.2)
using the complete cohort
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Inclusion of Covariates for Time

Since including a covariate for time significantly improved model (3.1), we explore the
effect of accounting for time in model (3.2) by considering two different scenarios. In the
first model, we add the same indicator variable for study cohort as described in the previous
section. The results from the analysis of this model with study cohort are in Table 3.8. Once
again, this model obtained a smaller AIC (4447.2) than the corresponding two-level model
without the covariate for study cohort (4502.8). Furthermore, accounting for study cohort
in the model which includes a random intercept for site achieved a smaller AIC than the
corresponding fixed effects model which includes study cohort (4466.9).

We also consider a model which includes a covariate for the date of patient ED visit.
The results from this analysis are in Table A.4. As with the previous model, the inclusion of
time in the model decreases the corresponding AIC value compared to the two-level mixed
effects model without a time covariate.

Likelihood ratio tests are performed to examine the efficiency of these two models which
include time. These results indicate that including the two variables for time improve effi-
ciency over the two-level model without it.

Random Effect for Province

We have considered a number of two-level models which include a random intercept for
ED sites. We now conduct similar analyses utilizing the two-level model defined in equation
(3.1), however we include a random intercept for province rather than site. We also consider
the scenarios which include a time related covariate for study cohort and for ED visit date.
These results are summarized in Tables A.6 - A.8.

The results from these model indicate the two-level models with random effects for
province are less efficient than the corresponding model which considers a random effect
for site. The AIC values for the model with no time covariate (4520.0), the study cohort
covariate (4455.7), and a variable for ED visit date (4452.9) are larger when province is
considered than the corresponding models with a random effect for site.

3.3.3 Three-Level Model: Random Effects for Site and Province

The data considered in this analysis has three levels: ED visits are nested within different
sites, and each ED is within a particular province. A generalized linear mixed effects model
with the logit link is used to investigate whether random intercepts for site and province
should be included. This model is written as

logit
{
P

(
Yijk = 1|b(2)

0jk, b
(3)
0k ,Xijk

)}
= Xijkβ + b

(2)
0jk + b

(3)
0k , (3.3)

where β and X are defined similarly to those in (3.1). In this case, visit i takes place at ED
site j (j = 1, . . . , 55) in province k (k = 1, . . . , 7). Under this model, i, j and k denote the
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Table 3.8: Results for multilevel regression model (3.2) with a random intercept for site and
added covariate for study cohort

Estimate Std. Error Pr(>|z|)
Fixed Effects
Intercept -4.744 0.272 < 2e-16 ∗

Age 0.339 0.048 < 0.000 ∗

Sex (vs. female)
Male 0.214 0.091 0.019 ∗

Pregnant 0.874 0.325 0.007 ∗

Arrival mode (vs. ambulance/police)
Self -0.258 0.096 0.007 ∗

Respiratory distress 0.559 0.105 < 0.000 ∗

Chronic kidney disease or dialysis 0.685 0.208 0.001 ∗

Arrival respiratory rate 0.197 0.027 < 0.000 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C 0.077 0.241 0.751
> 37.5◦C 0.498 0.248 0.045 ∗

Oxygen required in ED 2.189 0.114 < 2e-16 ∗

Medication administered in ED 1.387 0.103 < 2e-16 ∗

Study cohort (vs. early cohort)
Late cohort -0.939 0.129 < 0.000 ∗

Random Effects Var. Estimate
Site (Intercept) 0.179

AIC: 4447.2
∗, variable is significant at α = 0.05
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Table 3.9: Results for multilevel regression model (3.3) with random intercepts for site and
province

Estimate Std. Error Pr(>|z|)
Fixed Effects
Intercept -4.967 0.297 < 2e-16 ∗

Age 0.312 0.047 < 0.000 ∗

Sex (vs. female)
Male 0.228 0.091 0.012 ∗

Pregnant 0.774 0.325 0.017 ∗

Arrival mode (vs. ambulance/police)
Self -0.305 0.096 0.001 ∗

Respiratory distress 0.596 0.106 < 0.000 ∗

Chronic kidney disease or dialysis 0.611 0.207 0.003 ∗

Arrival respiratory rate 0.204 0.026 < 0.000 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C 0.109 0.240 0.649
> 37.5◦C 0.576 0.248 0.020 ∗

Oxygen required in ED 2.270 0.114 < 2e-16 ∗

Medication administered in ED 1.325 0.102 < 2e-16 ∗

Random Effects Var. Estimate
Site : Province (Intercept) 0.134
Province (Intercept) 0.093

AIC: 4499.3
∗, variable is significant at α = 0.05

level one, two and three units. This model has a random intercept term for site as well as
one for province, which are denoted by b(2)

0jk and b(3)
0k , respectively. Once again, we assume

Yijk are independent and follow a Bernoulli distribution, conditional on the random effects
b

(2)
0jk and b(3)

0k . We also assume these random effects are independent from one another, and
that b(2)

0jk ∼ N(0, σ2
(2)) and b(3)

0k ∼ N(0, σ2
(3)). The term b

(2)
0jk remains constant for each visit

at site j within province k, and b(3)
0k is constant across all visits within province k.

The variables chosen through model selection for the fixed effects logistic regression
model are also considered the final variables for this model. Table 3.9 summarizes the
results from this analysis. The inclusion of a random effect for province further reduced
the AIC compared to our initial two-level model. Once again, accounting for the potential
heterogeneity across provinces proves to be advantageous. As anticipated, there is some
variability among both ED sites and provinces, estimated to be 0.134 and 0.093, respectively.
The caterpillar plots in Figure 3.4, which display the random intercepts across sites and
provinces, visualize the higher variability across sites over provinces.

The effects of a selection of predictors on the conditional probability of a patient ex-
periencing the event from model (3.3) can be seen in Figure 3.5. These plots are obtained
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Figure 3.4: Caterpillar plots of random intercepts and standard errors for sites and provinces
from model (3.3) using the complete cohort

using the effects package (Fox & Weisberg, 2019). Each plot includes 95% point-wise confi-
dence intervals for the fitted effects, with bands for continuous predictors and error bars for
categorical predictors (Fox & Weisberg, 2018). These plots confirm our findings from the
descriptive analyses performed earlier. For example, the effect plot for patient age indicates
older patients have a higher probability of experiencing the event of interest than younger
patients.

Inclusion of Covariates for Time

We take this model one step further, and once again add a covariate which indicates the
study cohort the ED visit occurred in. A summary of the results from this analysis are in
Table 3.10. As expected, this model is a better fit to the data with an AIC of 4445.1, while
the AIC for the three-level model without the time covariate is 4499.3.

We also conduct an analysis while including a covariate for ED visit date in model
(3.3). As we saw with the one- and two- level models defined previously, the inclusion of
this covariate increases model fit and the results are in Table A.5. In this case, the model
obtained an AIC of 4441.4, which is once again very similar to the model which considered
study cohort rather than Julian time.

These conclusions are confirmed by likelihood ratio tests. Both models which account for
time have significant improvements over and are more efficient than the three-level model
which ignores time.
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Figure 3.5: Effect plots for age, sex, arrival respiratory rate, and oxygen requirement in the
ED using model (3.3) with the complete cohort
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Table 3.10: Results for multilevel regression model (3.3) with random intercepts for site and
province, and added covariate for study cohort

Estimate Std. Error Pr(>|z|)
Fixed Effects
Intercept -4.719 0.290 < 2e-16 ∗

Age 0.343 0.048 < 0.000 ∗

Sex (vs. female)
Male 0.213 0.091 0.020 ∗

Pregnant 0.880 0.324 0.007 ∗

Arrival mode (vs. ambulance/police)
Self -0.260 0.096 0.007 ∗

Respiratory distress 0.542 0.105 < 0.000 ∗

Chronic kidney disease or dialysis 0.678 0.208 0.001 ∗

Arrival respiratory rate 0.197 0.027 < 0.000 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C 0.103 0.241 0.668
> 37.5◦C 0.537 0.248 0.031 ∗

Oxygen required in ED 2.205 0.114 < 2e-16 ∗

Medication administered in ED 1.380 0.103 < 2e-16 ∗

Study cohort (vs. early cohort)
Late cohort -0.927 0.129 < 0.000 ∗

Random Effects Var. Estimate
Site : Province (Intercept) 0.108
Province (Intercept) 0.068

AIC: 4445.1
∗, variable is significant at α = 0.05
Early cohort: ED visits from March 1, 2020 - September 8, 2021
Late cohort: ED visits from September 9, 2021 - September 25, 2022
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3.3.4 Investigations into Pandemic Waves

The previous regression analyses indicate that accounting for time is beneficial in our mod-
els. We considered two different variables for time. The first was an indicator variable which
denoted which study cohort the ED visit occurred in. The second variable considered time
as a continuous predictor using the date of the ED visit. Both of these predictors proved to
be advantageous over the model which did not take time into account at all.

Waves of infection were present as a result of many different factors, including the
emerging of new variants as well as changes in human behaviour and attitudes towards the
pandemic. We repeat our previous analyses, with the addition of a categorical predictor
which denotes the pandemic wave each ED visit occurred in. The pandemic waves are
defined the same way as previous CCEDRRN research, as explained previously. The results
from this analysis are shown in Table 3.11. These results indicate that accounting for each
level of the data and pandemic wave in the model further reduces the corresponding AIC
value, illustrating an increase in model efficiency over the model which ignores pandemic
wave.

Similar results are obtained using a two-level model with a random effect for province,
which can be seen in Table A.9. However, once again, the model with a random effect for
province is less efficient than the two-level model which includes a random effect for site.
As the two-level model which accounts for heterogeneity across sites is preferred over the
corresponding model for province, the remaining analyses in this thesis only consider this
scenario. In other words, when referring to the two-level model in the following investiga-
tions, we consider the one which has a random effect for site.

3.3.5 Modelling with Interactions

It is reasonable to assume that these variables are interacting with one another to some
extent. Based on our previous work, we explore different variable interactions with our
three time covariates. To determine which variables to consider for interactions with our
time variables, we utilize the effect sizes obtained in our descriptive analysis. We also ex-
amine models which include each pairwise interaction with the time variable of interest. We
conduct analysis using each of the models discussed previously: fixed effects logistic regres-
sion model (one-level model), a multilevel model a random intercept for ED site (two-level
model), and a multilevel model with random intercepts for ED site and province (three-level
model).

Study Cohort

In the case of study cohort, we investigate its interaction with two variables: respiratory
distress and the requirement of oxygen in the ED. These variables are the only two whose
interaction with study cohort is statistically significant in the model. The results for each of
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the three models with study cohort interactions is in Table 3.12. We reach similar conclusions
in terms of model fit when comparing the one-, two-, and three-level models. There is only a
small difference in AIC values between the two- and three-level models, and both are much
lower than the one-level model. This may indicate that the two-level model is adequate to
analyse this data, as the computation time required to model while considering EDs nested
within provinces may outweigh the minor benefit in model fit. In fact, a likelihood ratio
test comparing these two- and three-level models resulted in a p-value of 0.0580, indicating
there is no significant difference between the two models.

ED Visit Date

Next, we study interactions with our continuous time variable. In this context, we consider
the interaction of time with respiratory distress, as it is the only statistically significant
pairwise interaction. The presence of respiratory distress also has the highest effect size of
all variables, with a Cramer’s V of 0.22. Thus, we only consider respiratory distress for
our investigation into interactions with the continuous time. The results from these models
can be found in Table 3.13. Once again, the two-level model appears to be sufficient in
terms of modelling efficiency. In this case, the difference between the AIC values for the
corresponding two- and three-level models is less than 3. A likelihood ratio test comparing
these two models obtained a p-value equal to 0.0371. Considering a significance level of 5%,
we conclude there is a significant difference between the two models, however this would
not be the case if our significance level decreased to 1%.

Pandemic Wave

Similar to the case considering ED visit date, the only variable which has a significant in-
teraction with pandemic wave is also the presence of respiratory distress. The results from
these analyses are summarized in Table 3.14. The two- and three-level models obtained sim-
ilar AIC values, indicating there may be no major difference in accounting for heterogeneity
across provinces in this instance. As the case with the ED visit date interaction, a p-value
of 0.0403 was obtained from a likelihood ratio test comparing the two- and three-level mod-
els which include an interaction time with pandemic wave. The conclusion made from this
test depends on the significance level considered: at the 5% significance level, we conclude
there is a significant difference between the two models, and the three-level model is more
efficient.
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3.3.6 Comparison to the CCEDRRN COVID Discharge Score

One of the motivating factors behind this project is to examine whether a modelling pro-
cedure which accounts for heterogeneity across levels outperforms the standard approach
used by Brooks et al. (2022) to derive the CCDS. In order to investigate this further, we
model the early cohort data using fixed effects logistic regression models as well as multilevel
models and compare the results.

As mentioned previously, the CCDS was derived using data collected by CCEDRRN
from March 1, 2020 - September 8, 2022. Therefore, the CCDS was derived in the midst of
the pandemic and the inclusion of a covariate for time was unrealistic. While our analyses
indicate that accounting for time greatly increases the adequacy of the model, in order to
provide a more reasonable comparison between the modelling procedures in the two study
periods we consider our model which excludes a covariate for time.

To complete the analysis, participating sites in the early cohort were split into derivation
and validation sets. The sites were assigned randomly to a set, with approximately 75% of
eligible patients and outcomes assigned to the derivation set, while the remaining 25%
were assigned to the validation set. This closely follows the method used by Brooks et al.
(2022). Using the derivation set, we include the 10 final predictors from our initial model
and consider three different modelling procedures: a fixed effects logistic regression model,
a two-level model (with a random intercept for site), and a three-level model (with random
intercepts for site and province).

Our two- and three-level regression models, which account for clustering present within
EDs or within EDs and provinces, respectively, both outperformed the fixed effects logistic
regression model which ignores any clustering. These results are shown in Table 3.15. Just
as we saw using the complete cohort, the two- and three-level models both outperform
the one-level model, evident through smaller AIC values. Figures 3.6 and 3.7 illustrate the
variation among the random intercepts from the two- and three-level regression models,
respectively. The caterpillar plot in Figure 3.6 shows the range of random intercepts across
sites, obtained from model (3.2). While the values of these intercepts are fairly small, they
do differ between sites. A similar interpretation can be made upon review of Figure 3.7,
which visualizes the random intercepts for site as well as province, estimated using model
(3.3).

We also use likelihood ratio tests to assess if these models are statistically significantly
different from one another. Once again, both multilevel models are significantly different
than the single level model, as the two pairwise likelihood ratio tests obtained p-values
<0.0001. Furthermore, the likelihood ratio test comparing the two multilevel models de-
termined that these two models do not differ significantly, with a p-value of 0.3010. These
likelihood ratio tests are summarized in Table 3.16.

42



Figure 3.6: Caterpillar plot of site random intercepts and standard errors from model (3.2)
using the derivation set from the early study cohort

Figure 3.7: Caterpillar plots of random intercepts and standard errors for sites and provinces
from model (3.3) using the derivation set from the early study cohort
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Table 3.16: P-values from likelihood ratio tests for model comparison using the derivation
set from the early study cohort

Corresponding Model
One-Level Two-Levela

No Time Covariate (Early Cohort)
One-level — —
Two-levela < 0.0001 —
Three-level < 0.0001 0.3010

a, with site random effects

Using the validation set, we also obtain the area under the receiver operating charac-
teristic curve (AUC) for these three models. Each of the models considered using the early
cohort obtained an AUC of approximately 0.87, compared to the 0.70 AUC obtained in
the derivation of the CCDS. This indicates that the models described here may be more
efficient than the one utilized for the CCDS. The receiver operating characteristic (ROC)
curve with the AUC for our three-level model with the early cohort is shown in Figure 3.8.
The 95% confidence intervals for the specificity at different sensitivities are also included
in this plot. These are obtained using marginal calculations, resulting in similar curves for
the one- and two-level models. Thus, the one- and two-level model curves are omitted. The
ROC curves, AUC values and confidence intervals are obtained using the pROC package
(Robin et al., 2011) in R.

Figure 3.8: Receiver operating characteristic curve with area under the curve and corre-
sponding 95% confidence intervals

There are two key differences between our models and the model used to derive the
CCDS. While the two models include the same seven predictors, our models include three
additional predictors. Our two- and three-level models also incorporate random effects to
account for the clustering present across EDs and provinces. The analysis of the early
cohort with multilevel data reveals that including these variables as well as accounting
for the clustering of EDs nested within provinces improves the model efficiency. The early
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Table 3.17: Summary of AIC values from each model using the complete cohort

One-Level Two-Levela Three-Level
Time Covariate
Excluded 4545.2 4502.8 4499.3
Study Cohort 4466.9 4447.2 4445.1
ED Visit Date 4468.6 4444.0 4441.4
Pandemic Wave 4450.3 4432.4 4429.9

Interactions
Study Cohortb 4456.4 4443.2 4441.4
ED Visit Datec 4462.3 4441.7 4439.3
Pandemic Waved 4449.1 4434.4 4432.2

a, with site random effects
b, study cohort interactions with respiratory distress and oxygen in ED
c, ED visit date interactions with respiratory distress
d, pandemic wave interactions with respiratory distress

cohort consists of ED visits within the same time period as Brooks et al. (2022) study,
indicating that using a multilevel model in their study could have potentially improved the
performance of the CCDS.

3.4 Summary

Overall, this analysis indicates that including a covariate which accounted for the timeframe
the ED visit occurred in creates a more efficient model. The increase in model efficiency is
clear when comparing AIC values for each model, and a summary of the AIC values for each
model considered in this section is found in Table 3.17. In particular, the table compares
results from models with and without the time covariate. Likelihood ratio tests were also
utilized to evaluate model efficiency, and a summary of these results from the complete
cohort are in Table 3.18.

The analysis also illustrates that including random intercepts for site is beneficial. The
addition of a random intercept for province does not consistently increase the model effi-
ciency as much as anticipated, as the AIC from this model is only slightly smaller than the
AIC from the two-level model. Likelihood ratio tests confirm these findings depending on the
significance level considered. Comparisons between the two- and three-level models in each
scenario using the complete cohort obtained a p-value smaller than 0.05, but larger than
0.01. In other words, the inclusion of random intercepts for site may be sufficient in mod-
elling this data; each of the three-level models indicate less heterogeneity across provinces
than ED sites.

While the model with the lowest AIC overall is the one which incorporates all three levels
of the data as well as a variable for pandemic wave, we compared the two study cohorts
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using the model which excludes a time variable. The CCDS was derived to ease decision
making during the pandemic, therefore accounting for time in the model was unfeasible.
The results from this analysis reveal there was a higher amount of variability between both
provinces and EDs in the early cohort compared to the late cohort. It is also evident that
at the time of the early cohort, when the CCDS was being derived, it would have been
beneficial to utilize multilevel modelling to account for heterogeneity present across the
levels in the CCEDRRN data, evident through higher AUC values.

Table 3.18: P-values from likelihood ratio tests for model comparison from the complete
cohort

Corresponding Model
One-Level Two-Levela

No Time Covariate
One-level — —
Two-levela < 0.0001 —
Three-level < 0.0001 0.0187

Time Covariate: Study Cohort
One-level — —
Two-levela < 0.0001 —
Three-level < 0.0001 0.0445

Time Covariate: ED Visit Date
One-level — —
Two-levela < 0.0001 —
Three-level < 0.0001 0.0313

Time Covariate: Pandemic Wave
One-level — —
Two-levela < 0.0001 —
Three-level < 0.0001 0.0331

Interaction with Study Cohortb

One-level — —
Two-levela < 0.0001 —
Three-level < 0.0001 0.0580

Interaction with ED Visit Datec

One-level — —
Two-levela < 0.0001 —
Three-level < 0.0001 0.0371

Interaction with Pandemic Waved

One-level — —
Two-levela < 0.0001 —
Three-level < 0.0001 0.0403

a, with site random effects
b, study cohort interactions with respiratory distress and oxygen in ED
c, ED visit date interactions with respiratory distress
d, pandemic wave interactions with respiratory distress
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Chapter 4

Discussion

4.1 Project Summary

The COVID-19 pandemic brought to light a number of complexities encountered by scien-
tists, physicians and researchers when making decisions in an environment which is rapidly
changing. One of these complications occurs when faced with multilevel data, which is very
common in many fields in addition to healthcare. One example is multisite data collected
across Canada throughout the pandemic. This data includes information from different
emergency departments, which are nested within provinces. Just as provinces likely have
different standards of practice and populations, the same may be true for EDs within a
province. Using methods which account for this heterogeneity may provide more reasonable
conclusions than methods which do not consider the variation.

We explored the data collected by CCEDRRN to investigate whether accounting for
heterogeneity across the levels present in the data is influential. This included thorough
descriptive analyses of both patient visits to the ED as well as any patient visits which
resulted in our event of interest: admission to the ED or in-hospital death within 72 hours of
being discharged from the ED. We looked for any significant changes in trend in terms of ED
and province, as well as any changes over time. We considered three different time variables:
study cohort, the date of the ED visit, as well as the pandemic wave the visit occurred in.
Our analysis found that there were differences in a number of patient characteristics across
the country as well as over time. Rather than simply using descriptive statistics to evaluate
any changes in trends across the country and over time, we investigated these features in
more detail through the use of multilevel regression models.

We conducted a number of regression analyses using fixed effects and multilevel regres-
sion models. These multilevel models included a random intercept for ED to account for
any major differences across sites. We also explored multilevel models which had random
intercepts for EDs and for province. The inclusion of these random effects further account
for any heterogeneity which may be present across EDs as well as across provinces. While
accounting for this heterogeneity through the use of multilevel regression models resulted in
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smaller AIC values, likelihood ratio tests confirmed our initial speculations that considering
this heterogeneity is beneficial.

We also compared our results to those obtained by Brooks et al. (2022) for the derivation
of the CCDS. The models considered the same initial candidate predictors, however after
the pandemic progressed, an additional three variables are selected for the final model. We
found that the use of our models may have improved model fit compared to the one utilized
to derive the CCDS: the AUC confirmed these findings.

4.2 Final Remarks and Future Investigations

The thorough investigations in this project revealed a number of potential areas for future
research. A non-exhaustive list of these topics is summarized below. This methodology and
research could assist in modelling and evaluating clinical assessment and practice when
faced with future pandemics.

4.2.1 Time

The temporal analysis summarized in Section 2.3.2 found that there were in fact statistically
significant differences in a number of covariates as time progressed. Including a covariate
which accounts for time may provide more meaningful conclusions. The inclusion of a covari-
ate for time could help to describe the evolution of the disease over time, and also provide
insights into the implementation of different public health measures as time progressed. Our
analyses consider time as a linear predictor, however this may not be the most appropriate
implementation of the variable. Further analysis could also be performed to investigate the
inclusion of a non-linear time covariate.

We conducted analyses with covariates for the time period an ED visit occurred in, a
continuous variable for ED visit date, as well as a variable which indicates the pandemic
wave at the time of the ED visit, however time could also be defined a uniformly distributed
variable. We recognize this may not be feasible in the derivation of clinical decision rules,
which are being established in real time. In this case, the rule may be adjusted with the
introduction of new variants as the pandemic evolved.

4.2.2 Additional Predictors

Our analysis uses the same candidate predictors as those considered by Brooks et al. (2022)
for the CCDS. However, there are a number of other variables available in the CCEDRRN
dataset, including patient race and ethnic group. The inclusion of the additional predictors
collected by CCEDRRN may strengthen these models.
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4.2.3 Data Entry Error

Upon final review of this project, we found that an error was made upon data entry. Specif-
ically, the issue is with one ED visit which was recorded as occurring at site 101. This site
is located in British Columbia, however the visit was documented as occurring in Ontario.
Once this data entry error is resolved, likely through omission of this particular ED visit,
the analyses run in this project could be performed again. While it may be reasonable to
assume this one visit would not have a significant impact on the results discussed in this
project, it would be relatively straightforward as we have everything required to run the
analysis again.

4.2.4 Derivation of a Clinical Decision Rule

In the future, a clinical decision rule could be developed using one of the models defined in
this paper. This could then be compared to the rule established using the standard approach
by Brooks et al. (2022) to further evaluate the extent to which the two methods differ.

4.2.5 Correlated Random Effects

Our analysis assumes the site and province random effects are independent from one another.
However, this assumption may be unrealistic. Exploring correlated random effects in these
models may provide more practical results.

4.2.6 Geographical Location

Our spatial analysis in Section 2.3.1 obtained results which supported statistically significant
differences among the seven provinces considered in this study. Provinces faced different
severities of the disease at different times. They also implemented public health measures
differently and investigating this further may be worthwhile. Furthermore, there may also
be regions within a province which could be seen as more similar compared to the rest of
the province, such as cities. Exploration into the trends within these regions may be worth
considering as well. This analysis may involve the inclusion of weights for provinces based
on population size, or even a simple covariate which accounts for geographical location.

4.2.7 Bias in Multilevel Models

The covariates explored in our models may be correlated with the random effects. If random
effects are not independent from model covariates, resulting coefficient estimates may be
biased. This potential bias is worthy of future investigation to determine the extent of
any bias present in our models. In this case, the use of fixed effects models may be more
suitable (Clark & Linzer, 2015; Kalbfleisch & Wolfe, 2013). Kalbfleisch and Wolfe (2013)
discuss these issues and demonstrate the differences in modelling procedures using examples.
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4.2.8 Machine Learning Techniques

This thesis explores the efficiency of multilevel regression models. While we utilized gener-
alized linear mixed effects models, future work could adapt the models through the use of
machine learning methods.

4.2.9 Simplified Estimation

The estimation procedures for models with binary outcomes are typically fairly complicated,
however this is not the case when the response is normally distributed. Implementation of
a model which has more straightforward modelling procedures for binary outcomes could
greatly simplify the modelling process.

The results presented in this project do not include standard errors of the variance
components for the random effects. Standard errors of these components could provide
another measure to indicate how suitable our model estimates are.

4.2.10 Comparison of Sex and Gender

Further interest may lie in exploring any differences in outcomes in terms of patient gender
compared to sex. The data used in this project did not contain complete information about
patient gender. In fact, there was a considerable amount of missing or undocumented data
for this question. The reason for the missing data may be of interest, as a patient may not
have answered this question for a number of reasons. This may be due to several reactions
to the question, for example did they feel the question was relevant to them, or were they
hesitant about any potential repercussions regarding their responses.

4.2.11 Population-Adjusted Analysis

The CCEDRRN data consists of patient information from ED visits across the country, as
long as the patient visited an ED which agreed to participate in the study. Unfortunately,
this may not truly be a representative sample of our target population. For example, British
Columbia had one fewer participating ED compared to Ontario, however, considering the
population in 2022, Ontario had about 2.8 times the number of people than British Columbia
(Statistics Canada, 2022b).

Approximately 42% of the patient visits in the complete cohort are from British Columbia,
while only about 12% are from Ontario. These numbers are consistent with the percentage
of patients who were admitted to or died in the hospital within 72 hours of being discharged
from a participating ED: 45% visited an ED in British Columbia, and 12% in Ontario. In
other words, the two provinces have similar numbers of EDs included in this study, despite
the vast differences in population totals. Furthermore, Québec also had a higher population
than British Columbia in 2022, although there were less EDs in the study from Québec than
British Columbia. The Canadian population and number of participating EDs are broken
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Table 4.1: Canadian population in 2022 by participating province

Population in 2022 Participating EDs Number of EDs∗

Ontario 15,145,006 14 178
Québec 8,672,185 11 115
British Columbia 5,356,284 13 41
Alberta 4,510,891 7 109
Saskatchewan 1,178,422 5 64
Nova Scotia 1,025,445 5 17
New Brunswick 809,568 1 0
∗, estimate of the number of EDs is based on information from the National Ambulatory Care
Reporting System (NACRS) in 2021/2022 (Canadian Institute for Health Information, 2022)

down by province in Table 4.1. These issues are a limitation to our study, as the sample is
non-representative of the population and the number of participating sites in a province is
likely not proportional to the total number of sites in that province. This could potentially
lead to biased inferences.

Typically, the ultimate goal of modelling is prediction and this could be problematic
when it comes time to provide inferences to the Canadian population. In order to do so,
future work could involve a population-adjusted analysis to account for these issues.
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Appendix A

Tables

Table A.1: Participating sites

Number of
Site Hospital Province visits, n
101 Vancouver General Hospital BC 1621
102 Lions Gate Hospital BC 873
103 Saint Paul’s Hospital BC 1680
104 Mount Saint Joseph’s BC 792
105 Surrey Memorial Hospital BC 4618
106 Royal Columbian Hospital BC 578
107 Abbotsford Regional Hospital BC 623
108 Eagle Ridge BC 360
109 Victoria General Hospital BC —∗

110 Royal Jubilee Hospital BC —∗

111 Nanaimo General Hospital BC —∗

112 Royal Inland Hospital BC 136
115 Kelowna General Hospital BC 366
201 University of Alberta Hospital AB 298
202 Foothills Medical Centre AB 565
203 Rockyview General Hospital AB 528
204 Peter Lougheed Centre AB 1033
205 South Health Campus AB 492
206 Northeast Community Health Centre AB 310
302 Regina General Hospital SK —∗

303 St Paul’s Hospital SK 273
304 Royal University SK 613
305 Saskatoon City Hospital SK 48
306 Royal Alexandra Hospital AB 309
307 Health Sciences Centre and St. Boniface Hospital MB —∗

401 Sunnybrook ON 506
403 The Ottawa Hospital - Civic Campus ON 170
404 The Ottawa Hospital - General Campus ON 225
406 Kingston General Hospital ON 341
407 Hamilton General Hospital ON 80
408 Health Science North ON 219
409 London Health Sciences Center ON 498
410 North York General Hospital Toronto [Site Closed] ON 138
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Number of
Site Hospital Province visits, n
411 Juravinski Hospital ON 103
412 Victoria Hospital-LHSC ON 567
413 Toronto General Hospital ON —∗

414 Toronto Western Hospital ON 247
415 Hotel Dieu Hospital ON 137
701 Hôtel-Dieu de Lévis QC 937
702 Jewish General Hospital QC 2448
703 Centre Hospitalier de l’Université Laval (CHU de Québec) QC 77
705 Royal Victoria Hospital QC 684
706 Hôpital de l’Enfant-Jésus (CHU de Québec) QC 674
707 Hôpital du Saint-Sacrement (CHU de Québec) QC 37
708 Hôpital Saint-François d’Assise (CHU de Québec) QC 57
709 Hôtel-Dieu de Québec (CHU de Québec) QC 17
710 IUCPQ QC 187
711 Hôpital du Sacré-Coeur QC 1436
712 Montréal General Hospital (MUHC) QC 222
901 Saint John Regional Hospital NB 22
902 Halifax Infirmary NS 498
903 Dartmouth General Hospital NS 298
904 Hants Community Hospital NS 54
905 Cobequid Community Health Centre NS 216
908 Secondary Assessment centers [Site Closed] NS 17
∗, count is less than 5 and is omitted
Abbreviations: AB, Alberta; BC, British Columbia; MB, Manitoba; NB, New Brunswick; NS, Nova Scotia;
ON, Ontario; QC, Québec; SK, Saskatchewan; IUCPQ, Institut universitaire de cardiologie et de
pneumologie de Québec

Table A.2: P-values from post-hoc analyses using Fisher’s test to assess for differences in
the number of events per province

BC AB SK ON QC NB NS
BC — — — — — — —
AB 0.0981 — — — — — —
SK 0.0650 0.0103 — — — — —
ON 0.9003 0.1640 0.1091 — — — —
QC 0.0363 0.0019∗ 0.3871 0.1699 — — —
NB 1.0000 1.0000 1.0000 1.0000 1.0000 — —
NS 0.1558 0.0273 0.7341 0.2471 0.7293 1.0000 —
∗, p-value < 0.0024
Abbreviations: AB, Alberta; BC, British Columbia;
NB, New Brunswick; NS, Nova Scotia; ON, Ontario;
QC, Québec; SK, Saskatchewan
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Table A.3: Results for fixed effects regression model (3.1) with added covariate for ED visit
date

Estimate Std. Error Pr(>|z|)
Intercept -4.865 0.257 < 2e-16 ∗

Age 0.297 0.047 < 0.000 ∗

Sex (vs. female)
Male 0.230 0.091 0.012 ∗

Pregnant 0.882 0.326 0.007 ∗

Arrival mode (vs. ambulance/police)
Self -0.295 0.095 0.002 ∗

Respiratory distress 0.632 0.099 < 0.000 ∗

Chronic kidney disease or dialysis 0.686 0.207 0.001 ∗

Arrival respiratory rate 0.202 0.027 < 0.000 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C 0.008 0.240 0.972
> 37.5◦C 0.393 0.244 0.108

Oxygen required in ED 2.049 0.107 < 2e-16 ∗

Medication administered in ED 1.459 0.103 < 2e-16 ∗

ED visit date -0.448 0.052 < 2e-16 ∗

AIC: 4468.6
∗, variable is significant at α = 0.05
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Table A.4: Results for multilevel regression model (3.2) with a random intercept for site
and added covariate for ED visit date

Estimate Std. Error Pr(>|z|)
Fixed Effects
Intercept -5.092 0.275 < 2e-16 ∗

Age 0.315 0.048 < 0.000 ∗

Sex (vs. female)
Male 0.230 0.091 0.012 ∗

Pregnant 0.859 0.328 0.009 ∗

Arrival mode (vs. ambulance/police)
Self -0.283 0.096 0.003 ∗

Respiratory distress 0.568 0.105 < 0.000 ∗

Chronic kidney disease or dialysis 0.687 0.209 0.001 ∗

Arrival respiratory rate 0.197 0.027 < 0.000 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C 0.077 0.242 0.750
> 37.5◦C 0.501 0.249 0.044 ∗

Oxygen required in ED 2.208 0.114 < 2e-16 ∗

Medication administered in ED 1.469 0.104 < 2e-16 ∗

ED visit date -0.438 0.057 < 0.000 ∗

Random Effects Var. Estimate
Site (Intercept) 0.210

AIC: 4444.0
∗, variable is significant at α = 0.05
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Table A.5: Results for multilevel regression model (3.3) with random intercepts for site and
province, and added covariate for ED visit date

Estimate Std. Error Pr(>|z|)
Fixed Effects
Intercept -5.060 0.294 < 2e-16 ∗

Age 0.318 0.048 < 0.000 ∗

Sex (vs. female)
Male 0.227 0.091 0.013 ∗

Pregnant 0.866 0.327 0.008 ∗

Arrival mode (vs. ambulance/police)
Self -0.286 0.096 0.003 ∗

Respiratory distress 0.555 0.105 < 0.000 ∗

Chronic kidney disease or dialysis 0.683 0.209 0.001 ∗

Arrival respiratory rate 0.198 0.027 < 0.000 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C 0.101 0.242 0.677
> 37.5◦C 0.536 0.249 0.031 ∗

Oxygen required in ED 2.220 0.114 < 2e-16 ∗

Medication administered in ED 1.462 0.104 < 2e-16 ∗

ED visit date -0.436 0.057 < 0.000 ∗

Random Effects Var. Estimate
Site : Province (Intercept) 0.122
Province (Intercept) 0.076

AIC: 4441.4
∗, variable is significant at α = 0.05
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Table A.6: Results for multilevel regression model (3.2) with a random intercept for province

Estimate Std. Error Pr(>|z|)
Fixed Effects
Intercept -4.874 0.288 < 2e-16 ∗

Age 0.307 0.046 < 0.001 ∗

Sex (vs. female)
Male 0.228 0.091 0.012 ∗

Pregnant 0.827 0.322 0.010 ∗

Arrival mode (vs. ambulance/police) -0.300 0.095 0.002 ∗

Self
Respiratory distress 0.588 0.101 < 0.001 ∗

Chronic kidney disease or dialysis 0.571 0.206 0.005 ∗

Arrival respiratory rate 0.197 0.027 < 0.001 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C 0.115 0.242 0.635
> 37.5◦C 0.537 0.249 0.031 ∗

Oxygen required in ED 2.180 0.114 < 2e-16 ∗

ED medication 1.428 0.105 < 2e-16 ∗

Random Effects Var. Estimate
Province (Intercept) 0.091

AIC: 4520.0
∗, variable is significant at α = 0.05
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Table A.7: Results for multilevel regression model (3.2) with a random intercept for province
and added covariate for study cohort

Estimate Std. Error Pr(>|z|)
Fixed Effects
Intercept -4.596 0.279 < 2e-16 ∗

Age 0.339 0.048 < 0.001 ∗

Sex (vs. female)
Male 0.211 0.091 0.021 ∗

Pregnant 0.920 0.323 0.004 ∗

Arrival mode (vs. ambulance/police)
Self -0.260 0.095 0.006 ∗

Respiratory distress 0.536 0.101 < 0.001 ∗

Chronic kidney disease or dialysis 0.657 0.207 0.002 ∗

Arrival respiratory rate 0.200 0.027 < 0.001 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C 0.105 0.240 0.662
> 37.5◦C 0.523 0.248 0.035 ∗

Oxygen required in ED 2.140 0.112 < 2e-16 ∗

ED medication 1.361 0.102 < 2e-16 ∗

Study cohort (vs. early cohort)
Late cohort -0.953 0.124 < 0.001 ∗

Random Effects Var. Estimate
Province (Intercept) 0.059

AIC: 4455.7
∗, variable is significant at α = 0.05
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Table A.8: Results for multilevel regression model (3.2) with a random intercept for province
and added covariate for ED visit date

Estimate Std. Error Pr(>|z|)
Fixed Effects
Intercept -4.942 0.280 < 2e-16 ∗

Age 0.314 0.047 < 0.001 ∗

Sex (vs. female)
Male 0.225 0.091 0.013 ∗

Pregnant 0.909 0.325 0.005 ∗

Arrival mode (vs. ambulance/police)
Self -0.288 0.095 0.002 ∗

Respiratory distress 0.557 0.101 < 0.001 ∗

Chronic kidney disease or dialysis 0.662 0.208 0.001 ∗

Arrival respiratory rate 0.200 0.027 < 0.001 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C 0.108 0.241 0.654
> 37.5◦C 0.536 0.248 0.031 ∗

Oxygen required in ED 2.155 0.111 < 2e-16 ∗

ED medication 1.441 0.104 < 2e-16 ∗

ED visit date -0.446 0.055 < 0.001 ∗

Random Effects Var. Estimate
Province (Intercept) 0.063

AIC: 4452.9
∗, variable is significant at α = 0.05
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Table A.9: Results for multilevel regression model (3.2) with a random intercept for province
and added covariate for pandemic wave

Estimate Std. Error Pr(>|z|)
Fixed Effects
Intercept -4.194 0.316 < 2e-16 ∗

Age 0.351 0.049 < 0.001 ∗

Sex (vs. female)
Male 0.216 0.091 0.018 ∗

Pregnant 0.923 0.325 0.004 ∗

Arrival mode (vs. ambulance/police)
Self -0.264 0.095 0.006 ∗

Respiratory distress 0.507 0.102 < 0.001 ∗

Chronic kidney disease or dialysis 0.671 0.208 0.001 ∗

Arrival respiratory rate 0.199 0.027 < 0.001 ∗

Arrival temperature (vs. < 36◦C)
36◦C− 37.5◦C 0.112 0.241 0.642
> 37.5◦C 0.518 0.248 0.037 ∗

Oxygen required in ED 2.118 0.112 < 2e-16 ∗

ED medication 1.412 0.105 < 2e-16 ∗

Pandemic wave (vs. wave 1)
Wave 2 -0.482 0.169 0.004 ∗

Wave 3 -0.355 0.174 0.042 ∗

Wave 4 -0.999 0.257 < 0.001 ∗

Wave 5 -1.396 0.222 < 0.001 ∗

Wave 6 -1.732 0.265 < 0.001 ∗

Random Effects Var. Estimate
Province (Intercept) 0.064

AIC: 4437.6
∗, variable is significant at α = 0.05
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