
Resilient Neural Networks at the Edge:
Uncovering and Mitigating Bit-Flip
Vulnerabilities in Full-Precision and

Quantized DNNs
by

Mahmoud Abumandour

B.Sc., Mansoura University, 2022

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Mahmoud Abumandour 2024
SIMON FRASER UNIVERSITY

Summer 2024

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Mahmoud Abumandour

Degree: Master of Science

Thesis title: Resilient Neural Networks at the Edge: Uncovering
and Mitigating Bit-Flip Vulnerabilities in
Full-Precision and Quantized DNNs

Committee: Chair: Tianzheng Wang
Assistant Professor, Computing Science

Alaa R. Alameldeen
Supervisor
Associate Professor, Computing Science

Arrvindh Shriraman
Committee Member
Associate Professor, Computing Science

Zhenman Fang
Examiner
Assistant Professor, Engineering Science

ii

Abstract

Deep Neural Networks (DNNs) are vulnerable to attacks that reduce accuracy and impact
critical applications that rely on their performance. Bit-flip attacks (BFA) enable an attacker
to identify a small number of bits that, when flipped, could severely degrade DNN model
accuracy. This thesis studies the impact of random and targeted BFA on DNN model accuracy
for edge devices. We propose a simple software mechanism to limit an attack’s impact on
full-precision DNN models. We uncover a vulnerability in quantized DNN models where
a few critical model parameters use a higher-precision representation. To our knowledge,
we demonstrate the first semi-black box BFA that degraded the accuracy of a quantized
DenseNet121 model from 85% to the level of a random guesser (10%) by only flipping 14 out
of more than 58 million bits. To address this vulnerability, we propose a software redundancy
mechanism that can effectively defend against random and targeted bit-flip attacks with an
average of 0.3% performance overhead and 8.2% storage overhead in the worst case.

Keywords: Machine Learning Security; Bit-Flip Attacks; Deep Learning; Quantization;
Hardware Security; Rowhammer

iii

Acknowledgements

I want to extend my deepest gratitude to my advisor, Professor Alaa Alameldeen, whose
guidance and unwavering support have been instrumental throughout this journey. Your
insights and encouragement have profoundly shaped my research and academic growth.

I am also thankful to my Memory Architecture Research Group lab mates at SFU, with
whom I have had many thought-provoking and insightful conversations that have impacted
this work in many ways.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 4
2.1 Bit-Flip Attacks . 4
2.2 DNN Model Quantization . 5
2.3 DRAM Organization and Operation . 7
2.4 Memory Fault Injection using Rowhammer 8
2.5 Mounting Rowhammer . 9

2.5.1 Uncached Memory Access . 9
2.5.2 Virtual-to-Physical Memory Mapping 9
2.5.3 Memory Layout Massaging . 9

2.6 Defences against Bit Faults . 10
2.6.1 Error-Correcting Codes (ECC) . 10
2.6.2 Rowhammer Defences . 11
2.6.3 Fault Tolerance using Replication . 11

3 Threat Model 13

4 Experimental Setup 14
4.1 Model Architectures and Datasets . 14
4.2 Software Setup . 14
4.3 Hardware Platform . 15

v

5 BFA Against FP32 Models: Analysis and Solution 16

6 Analysis of BFA Against Quantized DNN Models 20
6.1 BFA Against Quantized Models . 20
6.2 BFA against quantized LLMs . 23
6.3 A Practical Rowhammer Attack Against Quantized Models 24

7 Protecting Quantized Models 25

8 Related Work 29

9 Limitations and Future Work 31
9.1 Range Constraints for FP32 Model Parameters 31
9.2 Algorithm-based BFA Against Quantized Models 31
9.3 Circumventing TMR . 32

10 Conclusion 33

Bibliography 34

vi

List of Tables

Table 2.1 Address mapping function reported in [68] 8
Table 2.2 Rowhammer threshold over DRAM generations from 2014 to 2021. [34, 35] 12

Table 4.1 Emulated system configuration . 15

Table 5.1 Percentage of vulnerable parameters for δ = 50% and δ = 10%. 17

Table 6.1 Average number of random bit-flips within high-precision vectors to
degrade models to a random guesser. 23

Table 6.2 GPT2 text completion output for a pristine model versus attacked
models with 20 bit-flips in high-precision parameters. 23

Table 7.1 The size of high-precision parameter vectors and their portion of total
model size . 26

Table 7.2 The percentage of N -bit-flip runs (out of 1000) that cause a 10%
accuracy drop with and without using TMR. 27

vii

List of Figures

Figure 2.1 The structure of a fully connected layer. Operations are done com-
pletely in the integer domain. Down-scaling from 32-bit to 8-bit
integers is carried out after the fully connected operation before
applying the activation function. 6

Figure 5.1 (a) shows the bit distribution for the MobileNetV1 FP32 model
(trained on the MSCOCO dataset with 85% Top-1 accuracy). A bar
at Bit Index = i corresponds to the number of parameters with the
ith bit equal to 1. The number of parameters with the most significant
exponent bit activated is 13 out of 221,794 (less than 0.0059%). (b)
shows the parameter value distribution for the same model. 17

Figure 5.2 Average performance overhead (i.e., additional execution time) of
implementing software range-checking. 18

Figure 6.1 The accuracy of quantized AutoEncoder (a), DS-CSS (b), and Mo-
bileNetV1 (c) against a single bit-flip attack. Each point at Bit Index
= i represents the model’s accuracy after flipping the ith bit in the
parameter matrix viewed as a contiguous array of bits. 21

Figure 6.2 Testing fully random BFA and random BFA within high-precision
vectors. 22

Figure 7.1 Average performance overhead of implementing TMR in terms of the
execution times . 27

Figure 9.1 Attack success probability for different values of bit-flip probability p. 32

viii

Chapter 1

Introduction

Deep neural networks (DNNs) are the foundation of a multitude of artificial intelligence ap-
plications such as image classification [13], speech recognition [52], autonomous driving [79],
image captioning [3, 44], and medical diagnosis [14]. DNNs are deployed on many systems
of different capabilities, from small, limited consumer devices to large, high-performance
computer clusters. It is becoming more popular to run DNNs on consumer devices to provide
real-time intelligent insights to the user. As state-of-the-art DNNs are computationally
intensive, deploying them efficiently on small edge devices requires optimization and down-
scaling. Model quantization is a widely employed technique as it substantially reduces
energy consumption and memory footprint while preserving model accuracy [31, 28, 27].
The increasing dependence on edge devices powered by DNNs [66, 51, 33] underscores the
importance of protecting the models and their internal data integrity. This is especially
important, considering that sensitive user data is often involved. Therefore, ensuring the
reliability and confidentiality of DNN models and their internal data becomes crucial for
ensuring the secure functionality of these devices in everyday use.

Edge devices operate in diverse environments without integrity or safety guarantees
for stored data. Hence, such devices are vulnerable to hardware fault injection attacks like
Rowhammer [35]. Such mechanisms have been successfully used to launch attacks against
both full-precision and quantized DNNs, which can compromise the model by modifying a
few parameters in memory [84, 62, 48].

Hong et al. [23] show that for full-precision 32-bit floating point (FP32) models, the most
considerable accuracy degradation occurs when flipping bits that increase the magnitude of
parameters to extreme values (i.e., the most significant bits in the exponent field) which
results in exploded, wrong model outputs. Conversely, quantized DNNs are recognized for
resilience against random bit-flip attacks (BFA) as parameters are represented using small-bit
widths [62]. This limits the range of possible parameter values, reducing the severity of
changing model parameters via bit flips.

This thesis presents two key findings. Firstly, we show that full-precision models can be
made more resilient against bit-flip attacks using a simple range-checking mechanism that

1

ensures model parameters are within an acceptable range of values. Secondly, we show that
quantized models have nontrivial amounts of data susceptible to random BFA, which can be
exploited to launch an attack with a high success probability while having limited knowledge
about the system. In quantized models, the majority of parameters are stored in a low-width
representation, e.g., 8-bit integer values. However, some critical model parameters, such as
bias vectors and batch normalization parameters, are quantized to a higher-precision integer
representation, typically 32-bit integers [38, 65, 31, 39]. This approach allows the model to
maintain high accuracy while still reducing its storage requirements since the high-precision
parameters constitute only a tiny portion of the overall model size.

We present a BFA that targets those highly vulnerable regions and show that it’s
highly effective in degrading DNN models for seven different DNN architectures that
perform different tasks. For example, we show that an attacker can successfully degrade
DenseNet121[26] trained on CIFAR10 from 85% accuracy to 10%, turning it into a random
guesser by flipping 10 bits on average. We also showcase the impact of our proposed attack
against the GPT2 Large Language Model [61]. We show that the model outputs meaningless
text in the presence of a small number of bit-flips.

Many recent hardware and software mechanisms have been proposed to defend against
Rowhammer attacks, such as [17, 57, 43, 80, 67]. However, such mechanisms require nontrivial
hardware changes and incur nontrivial performance overheads for low Rowhammer thresholds.
Therefore, these hardware proposals are more suitable for larger systems than for resource-
constrained edge devices, which are the focus of our proposal.

To defend quantized DNN models on edge devices against BFA, we propose and evaluate
a software mechanism that uses triple modular redundancy (TMR) to protect and rectify
sensitive model data. We show we can mitigate the attack with low performance and storage
overheads. Our experimental results demonstrate that the average performance overhead
for our software mechanism is 0.3% across many models. We also show that the storage
overhead is 3.7% of model size on average (8.2% in the worst case).

In this thesis, we make the following contributions:

• We propose and evaluate a simple software range-checking mechanism to mitigate BFA
against FP32 models.

• We uncover a vulnerability that stems from modern DNN quantization methods,
allowing attackers to identify vulnerable regions in a model without time-consuming
testing of model parameters.

• To our knowledge, we propose the first semi-black box BFA against quantized DNNs,
successfully degrading various models to random guesser-level by flipping a small
number of bits in high-precision tensors. The attack requires limited knowledge about
the model and the underlying system.

2

• We propose a software protection mechanism against this attack and show that it can
effectively defend quantized DNNs while incurring negligible performance and storage
overheads.

3

Chapter 2

Background

This chapter provides an overview of existing BFA vectors. We then explain how DNNs are
quantized and organized in memory. Next, we overview Rowhammer, a powerful hardware
fault-injection technique. We then review how Rowhammer attacks are mounted. Finally,
we discuss methods for hardening and safeguarding data in memory systems based on
redundancy and other hardware-based Rowhammer mitigation mechanisms.

2.1 Bit-Flip Attacks

BFA against DNNs can be categorized into targeted and untargeted attacks. Targeted attacks
aim to stealthily deceive the DNN into mispredicting specific inputs while maintaining the
prediction accuracy for other input samples, allowing the attacker to control the misprediction
behaviour of the model in a concealed manner. For instance, T-BFA [63] is shown to divert a
ResNet-18 model trained on the ImageNet dataset to mispredict all the testing images from
one source class to a target class selected by the adversary without significantly affecting
the overall model accuracy by flipping 27 bits. In contrast, the objective of untargeted BFA
is to degrade the overall inference accuracy of the model by flipping a small number of bits
in the model parameters.

Full-precision model parameters are highly vulnerable to simple untargeted BFA. Stored
in the IEEE-754 single floating point representation, perturbations in the most significant
exponent bits can change a parameter to an extreme value, drastically changing the model’s
outputs. Prior work [23] shows that, for various models, flipping the most significant
exponent bit in any of 40% of the parameters can significantly degrade model accuracy. For
quantized models, random bit-flips do not substantially change parameter values and have
an insignificant effect on model accuracy. Hence, the conventional wisdom is that BFA is not
as easily executable on quantized models as it is for FP32 models. To launch a successful
BFA on a quantized model, the attacker needs perfect white-box access to the model and its
parameters to be able to search for specific bit chains that incur the most damage on the
model.

4

The iterative approach followed by most state-of-the-art attacks involves searching for
the bit locations in the parameter matrix that would incur the maximum increase in the
calculated loss using the testing set x:

Θi+1 = argmax
θ̂∈{Θ̂i}

[L(f(x; θ̂)) − L(f(x; Θi))] (2.1)

In Equation 2.1, L is the loss function, Θi is the parameter matrix after iteratively
flipping i bits, and {Θ̂i} is the set of possible parameter matrices after flipping a single bit
starting with Θi. Using a sophisticated bit-search algorithm necessitates that the attacker
has full white-box access to the model (including all the parameter values and a batch of
the training or the testing sets) and the underlying system to run the search offline before
attempting to induce a bit-flip which is not always possible. The majority of prior works
manage to degrade a quantized DNN to a random guesser using only a tiny number of
bit-flips using progressive vulnerable bit-identifying algorithms while assuming that the
attacker has open access to model architecture, values of all the parameters, and a batch of
training or testing data [62, 84].

2.2 DNN Model Quantization

State-of-the-art DNN models require substantial storage and computation, making them
unsuitable for small, computationally limited devices. One widely used technique for deploy-
ing large models on small devices is quantizing model parameters into a lower bit-width
representation.

Integer-only Quantization

Model parameters are commonly quantized to integer-only values as integer arithmetic is far
less energy-consuming than operations on floating-point parameters.

To convert a real-valued parameter r ∈ R to a quantized representation q, an affine
quantization scheme is commonly used as it allows integer-only arithmetic without having to
de-quantize the parameters to their original representation. One popular affine quantization
scheme, described in [31], is as follows.

q = Q(r) = round(r

S
) + Z (2.2)

where Q is the function that maps real values to quantized integer values; S is the
scaling factor, a real-valued number responsible for defining the distance between adjacent
quantization levels; and Z is the integer zero-point. The choice of Z = 0 is known as
symmetric quantization, which allows the mapping of r = 0 to q = 0 without a quantization
error. Symmetric quantization is widely used as zero-padding operations are commonly used

5

Figure 2.1: The structure of a fully connected layer. Operations are done completely in
the integer domain. Down-scaling from 32-bit to 8-bit integers is carried out after the fully
connected operation before applying the activation function.

in DNNs. S and Z are called the quantization parameters and are maintained separately for
each tensor.

In symmetric quantization, S is calculated as follows:

S = β − α

2b − 1 (2.3)

where b is the bit width of quantized values and α and β are the FP32 range parameters,
beyond which values are clipped to qmin and qmax.

Static vs. Dynamic Quantization

Values for α and β can be determined either statically before inference or dynamically
for every input sample. Since weight matrices typically do not change during inference,
range detection and quantization are applied before running inference. Jacob et al. [31]
uses α = wmin and β = wmax. Activations differ for each input sample, so they are often
quantized dynamically.

Dynamic quantization requires computing statistics on activations during inference to
decide on an appropriate range, which means that it can be more accurate at the cost of
computation overhead.

Static quantization computes range parameters before inference, meaning a single range
will be used for all inputs. This results in lower accuracy for out-of-distribution input samples
but does not impose any computational overhead. One approach to finding range parameters
during static quantization is to run inference for various inputs and averaging the seen ranges
[31]. Choukroun et al. [9] propose choosing the range parameter that minimizes the mean
square error between the quantized and unquantized values.

Quantizing Standard Operations in DNNs

A common operation during DNN inference is multiplying the matrices of weights and
activations and then adding the result to the bias term (also known as the fully connected
layer). Weights and activations are commonly quantized to 8-bit integer representation.

6

Hence, intermediate results of element-wise multiplications must be accumulated in 32-bit
integer accumulators. For this reason, biases are either quantized to 32-bit integers or not
quantized at all in all integer quantization schemes we have surveyed [38, 65, 31, 39]. For
example, in PyTorch 2.3 [58], biases are quantized to 32-bit integers in both static and
dynamic post-training quantization (PTQ) and not quantized at all in quantization-aware
training (QAT). Furthermore, biases only make up a tiny portion of the overall model size
while having a high impact on model accuracy, so maintaining a high precision for biases is
vital to preserving model accuracy after quantization. Other important parameters, such as
batch normalization, are kept in a high-precision format. Figure 2.1 shows the structure of a
quantized fully-connected layer.

Another standard operation used in modern DNNs is Batch Normalization [30]. It helps
stabilize and accelerate training by normalizing each layer’s inputs to have zero mean and unit
variance. This reduces the dependency on initial weight values and allows for higher learning
rates, accelerating training without the risk of divergence. Quantizing batch normalization
parameters to a low-width representation can be detrimental to learning. The parameters,
including mean, variance, and learnable scale and shift, require high precision and an extensive
parameter range to reflect the data distribution and ensure network stability. High precision
is essential because the computation of these parameters involves reciprocation, square root,
and sum of product operations, which are sensitive to numerical inaccuracies. Quantization
to lower precision can introduce significant errors, leading to improper normalization,
training instability, slower convergence, and reduced model performance. Typically, Batch
Normalization parameters are either quantized to a higher-precision integer representation
[31] or left in their original floating point representation [86]

2.3 DRAM Organization and Operation

The predominant technology in memory systems is Dynamic Random Access Memory
(DRAM). It’s organized in a hierarchy of channels, dual in-line memory modules (DIMMs),
ranks, banks, and cells. Cells are the indivisible storage unit in DRAM, containing a capacitor
to store the charge denoting a single bit and a transistor to control access to the cell value.
Cells are organized in columns and rows, which make up banks. Banks are grouped to form
ranks (typically, each side of the DIMM module is a rank). Each DIMM is inserted into a
channel, connecting the memory module to the CPU and its memory controller. DRAM is
usually accessed on the granularity of a row, which is 8KiB, by copying it into a per-bank
row buffer. After bringing the correct row into the row buffer, the CPU can request data at
the granularity of 64-bit words served from the row buffer so long as it has not been replaced
by another row.

Memory controllers use an addressing function to map each physical address to a specific
location in memory (channel, DIMM, rank, bank, row, and column). Those functions are

7

undocumented for various CPU manufacturers but can be reverse-engineered using physical
hardware or software methods [59, 68]. A standard mapping function is choosing bits in
the physical address and XORing them together to minimize bank conflicts. Seaborn [68]
reports that on his setup with 8192 MB physical memory over two DIMMs, the mapping is
shown in Table 2.1. Each DIMM has two ranks, eight banks in each rank, 32768 (215) rows
per bank, and each row is 8 Kilobytes.

Table 2.1: Address mapping function reported in [68]

Bit index Usage
0-5 The six least-significant bits in the byte index into the

row. Used as the cache block byte index (for a 64-bit
cache block)

6 Channel selector
7-13 High order bits of the byte index into the row
14-16 XOR’d with the three least significant bits of the row

index to select the bank
17 Rank selector
18-32 Row index in the bank
33+ May be used if the physical memory does not start

from address 0

2.4 Memory Fault Injection using Rowhammer

DRAM is vulnerable to Rowhammer [35], a memory fault injection mechanism caused by
DRAM disturbance errors. This vulnerability arises from repeatedly accessing a DRAM
row, intensifying the electromagnetic coupling between DRAM cells and accelerating charge
leakage from adjacent rows. The minimum number of required DRAM row activations to
induce a bit-flip is called the Rowhammer Threshold (TRH). Due to DRAM scaling and
continuous shrinkage of DRAM cells, this threshold has been decreasing, making DRAM
chips more susceptible to errors. Rowhammer was demonstrated as a security threat against
systems of different varieties, including embedded systems [15], mobile systems [74] and
servers [46]. High Bandwidth Memory (HBM), due to its dense architecture and close
proximity of cells, is also particularly vulnerable to Rowhammer [55], exacerbating the
challenge of mitigating such attacks in modern memory technologies. Flipping a single bit in
the victim’s address space typically takes a long time, and bit-flips are transient (i.e., on
disk reload, bit-flips are rectified). Hence, attackers must identify a small subset of highly
important bits to target and cause to flip. Attacks that utilize Rowhammer have been used
to leak confidential data and escalate privileges [69, 17, 74, 85]. Rowhammer-based methods

8

have been the principal hardware vulnerabilities exploited to launch attacks against systems
running DNNs [84, 63].

There are two main variants of Rowhammer: single- and double-sided. Single-sided
Rowhammer repeatedly accesses a single aggressor row and expects flips to happen in
the two adjacent rows. Double-sided Rowhammer requires achieving a sandwich memory
layout wherein the attacker hammers the two adjacent rows and expects bit flips in the
middle row. Double-sided Rowhammer induces higher pressure on the target row, amplifying
charge leakage and inducing more bit flips [4]. However, it requires virtual-to-physical and
physical-to-bank mapping knowledge, which may not always be obtainable.

2.5 Mounting Rowhammer

Mounting Rowhammer can be tricky even if the DRAM chip is vulnerable, as it breaks the
abstractions provided by the hardware and the operating system. This section demonstrates
the three obstacles an attacker faces in mounting a successful Rowhammer attack.

2.5.1 Uncached Memory Access

The attacker must race against the DRAM refresh time to flip successfully before restoring
the charge in the target cells. The x86 ISA provides an explicit cache flush instruction
clflush, which the attacker can repeatedly use to remove the hammered data from the
cache. Another approach is to repeatedly access addresses that map to the same cache set,
thereby enforcing repeated cache evictions. x86 also provides non-temporal access instructions
that inherently don’t bring the accessed data into the cache.

2.5.2 Virtual-to-Physical Memory Mapping

One of the challenges against flipping bits in the victim’s memory is to position memory
pages in such a way that allows the hammering of the attacker’s data to affect the victim’s
bits. The first practical version of a Rowhammer attack [69] used the /proc/PID/pagemap

provided for Linux systems, providing complete information about virtual-to-physical page
mapping. Unprivileged access to such an interface has been prohibited since Linux kernel
version 4.0 was introduced [70]. Another approach is to use the huge pages feature available
to some x86 systems, which gives the user process a large, contiguous physical memory block,
providing sufficient mapping information for the attacker to mount the attack.

2.5.3 Memory Layout Massaging

For an attacker to induce bit-flips in the victim’s data, the target data must be carefully
positioned in a place the attacker can affect by repeatedly accessing adjacent data. The
attacker, therefore, needs to influence the system to allocate the target data in such a location.

9

One approach used by [64] exploits memory deduplication1 to trick the OS into mapping
a victim page and an attacker page to the exact physical page containing Rowhammer-
vulnerable bits at desired offsets. However, even though it has been demonstrated as a
reliable method for memory massaging, it is not an on-by-default feature and is turned off
on many systems.

Another approach, memory waylaying, is described in [20]. File page data is cached in
DRAM in most operating systems. These cached pages are considered free, available memory,
as they can be evicted anytime. When one of the page cache pages is evicted, it is brought
back into a random page in memory in both Linux and Windows. The attacker can repeatedly
influence the system to evict the target page until it is placed on an attacker-chosen page.
Waylaying depends on a prefetching side-channel described in [21] to detect when the target
page is in a suitable location from the attacker’s perspective.

Kwong et al. [42] describe an approach that exploits the Linux buddy allocator to allocate
a contiguous block of 2 MiB of physical memory. The attacker must know when the victim
will allocate the target page (after n pages of allocations). The attacker would free a page
with flippable bit locations and then free other n − 1 pages. Those pages would go back
into the pool in a last-in-first-out fashion. After that, the attacker would invoke the victim,
which will cause the target page to be placed in the first-freed page (the one with vulnerable
locations).

2.6 Defences against Bit Faults

Systems with severe reliability requirements can employ defence mechanisms to safeguard
sensitive data against failures. Various software and hardware mechanisms have been proposed
to defend against bit errors. Herein, we describe some of these approaches.

2.6.1 Error-Correcting Codes (ECC)

ECC is a technique commonly used to guarantee reliability against errors in memory data
symbols. DRAM chips with ECC implement binary linear block code schemes to encode data
blocks into codewords. A codeword consists of r data bits and k parity-checking bits. The
number of parity bits k controls the tradeoff between reliability guarantees and storage and
performance overheads. For instance, the DDR4 standard [32] specifies the codeword size
of 72 bits, with r = 64 and k = 8. Other systems implement more complex ECC schemes
inside the memory controller [29], such as chipkill [12]. Chipkill distributes ECC bits across
memory chips, enabling regular memory operation even when an entire DRAM chip fails.
Although ECC (Error-Correcting Code) provides data integrity guarantees, recent work has

1Memory deduplication is a kernel mechanism that merges physical pages with identical content and
marks the virtual pages as copy-on-write

10

shown that systems implementing ECC remain susceptible to the Rowhammer attack [10].
This attack exploits the timing difference between accessing a correct codeword and one
with a bit error that is detected and corrected by ECC and then induces more bit flips in the
same row. This vulnerability has been demonstrated even in ECC schemes that are capable
of correcting multiple bit errors, including advanced techniques like Chipkill. Therefore,
while ECC enhances reliability against bit errors, it is insufficient as a standalone defense
against Rowhammer attacks.

2.6.2 Rowhammer Defences

Various hardware and software mitigation mechanisms have been proposed to defend against
Rowhammer. Typically, a Rowhammer defence involves an access-tracking mechanism and a
corrective action that is taken when a potential hammering attempt is detected. In Target
Row Refresh (TRR) and similar techniques [17, 57, 43], access tracking is done using counters
that track the number of accesses for a potential aggressor row, and when the number of
accesses exceeds a predefined threshold, adjacent potential victim rows are refreshed. Those
mechanisms require hardware modifications and may require extra storage impervious
to Rowhammer to store the counters [57]. Furthermore, systems with victim-refreshing
protection are still susceptible to more sophisticated attacks such as Half-Double [36], which
does not target the immediately adjacent rows.

More recent defences, such as AQUA [80] and SRS [67], apply the corrective action on
the aggressor row by either swapping it to a random location or quarantining it, breaking
its spatial proximity with the victim row. While those aggressor-row-centric mechanisms are
resilient against sophisticated hammering patterns, they incur a prohibitive performance
overhead for low TRH, projected to decrease aggressively in the upcoming years. Table 2.2
shows the measured threshold for different DRAM generations with labels old and new
referring to the same generation classified by the manufacturing date [34]. While those
solutions provide strong guarantees against Rowhammer, the overhead and the required
hardware modifications may not be practical for resource-constrained edge devices and are
usually considered for large and more capable systems.

2.6.3 Fault Tolerance using Replication

N-modular redundancy (NMR) is a standard protection approach for systems with severe
security requirements. NRM entails storing N copies of sensitive data in memory. When data
is accessed, the system retrieves and compares the N copies simultaneously. A majority vote
is conducted among the N copies to determine the correct value, and the most common value
is designated as correct. In the event of error detection (i.e., no consensus in the data copies),
the system can correct all the stored copies to the designated correct value. While NMR
provides high levels of fault tolerance, it can come at the expense of significant performance
and storage overhead, especially when dealing with large amounts of sensitive data. For

11

Table 2.2: Rowhammer threshold over DRAM generations from 2014 to 2021. [34, 35]

DRAM Generation Rowhammer Threshold
DDR3 (old) 139K
DDR3 (new) 22.4K
DDR4 (old) 17.5K
DDR4 (new) 10K
LPDDR4 (old) 16.8K
LPDDR4 (new) 4.8K

example, if N = 3, the system must store three copies of the data, which triples the storage
requirements. Additionally, retrieving and comparing multiple copies of data can slow down
memory access times and affect cache locality. As a result, NMR may not be practical for
applications that require fast access to large amounts of data.

12

Chapter 3

Threat Model

The primary attack vectors we discuss are mounted against DNNs quantized to a low-
precision integer representation and stored in DRAM. The attacker is co-located with the
victim’s device either on the same system or through the network, enabling them to induce
bit-flips in the victim’s memory [46, 72, 82]. The attacker’s goal is to degrade model accuracy
as much as possible. The attacker cannot tamper with the training process and aims to
degrade model accuracy for legitimate input samples (i.e., for experimentation, we use the
testing set of the task dataset). The attacker is limited in the number of bit-flips they can
induce, given that a single bit-flip can take a long time to cause, and they are non-persistent
across system resets as correct model data will be reloaded from the storage.

We assume that the attacker knows the underlying model architecture. This assumption
is reasonable as deploying open-source, pre-trained models is common. Even for proprietary
models, prior works have extracted the model architecture without any previous knowledge
[25]. We assume that the attacker lacks access to the model parameter values. This is a
reasonable assumption because open-source models (whose source code is available) often
require fine-tuning or training from scratch, which would alter their parameter values as
the model is further optimized for its specific task. Also, it’s common to embed proprietary
models optimized for specific tasks in edge devices, in which case the attacker cannot access
the parameters. Prior works show that it is possible to estimate network parameters using
power or timing side-channels accurately. However, Xiang et al. [81] show that smaller models
(the primary targets for this work) are more challenging to accurately reverse-engineer due
to their simplicity and small impact on the overall system power consumption. Other prior
works exploit specific design or hardware choices, which may not apply to the device under
attack due to the diversity in edge devices hardware [71, 78, 6]. We also assume they can
mount Rowhammer, targeting random bits within the high-precision regions of the victim
model. We demonstrate how an attacker can use Rowhammer to launch the attack we
propose in Section 6.3.

13

Chapter 4

Experimental Setup

This section describes our experimental setup to evaluate the DNN model’s vulnerability
to BFA. We describe our benchmarks, datasets, software setup, and the hardware system
configuration we modelled.

4.1 Model Architectures and Datasets

We test DNNs of different complexities and sizes suitable for various tasks commonly done on
mobile or small edge devices. We use all four benchmarks from the MLPerf Tiny benchmark
suite [5] and experiment with larger models for one of the benchmarks. We also evaluate our
attack for quantized models against GPT2 [61], a Large Language Model (LLM), which can
be used as a text completion model for mobile devices. The MLPerf Tiny Benchmark suite
includes DNNs trained for tasks commonly run on mobile and small embedded devices. The
MobileNetV1 architecture [24] is trained using the MSCOCO dataset [45] and is used for the
Visual Wake Words benchmark, which targets detecting the presence of a person or more in
input images. The Keyword Spotting benchmark trains a Decoder-Side Convolutional Neural
Network (DS-CNN) [83] using the Google Speech Commands dataset [76] to recognize short
phrases using sound input. The Anomaly Detection benchmark trains a fully connected
AutoEncoder on machine noises to detect anomalous machines using the ToyADMOS dataset
[37]. Finally, the Image Classification benchmark trains a small Residual Neural Network
(ResNet-8) [22] on the CIFAR10 dataset [40], which contains 60,000 32x32x3 RGB images
categorized into 10 classes. The testing set for CIFAR10 consists of 10,000 images. Similar to
prior works, we sample 1,000 images to speed up exhaustive testing. We also experimented
with larger models, namely, DenseNet121 and ResNet-50, a more extensive Residual Neural
Network, for the image classification benchmark.

4.2 Software Setup

We use TensorFlow [1] version 2.12 to train FP32 models. We then convert FP32 models
into an integer 8-bit representation using TensorFlow Lite, which we use as the main testing

14

Table 4.1: Emulated system configuration

Component Parameter Value
ISA RISC-V

CPU Mode in-order
Clock 1 GHz

Size 256 MB
DRAM Model LPDDR3

Clock 800 MHz
Cache Size 32 KB

L1 ICache / DCache Associativity 2
Latency 1 cycle

platform for our bit-flip analysis of quantized DNN models. To test the efficiency of TMR
for sensitive data in quantized models, we modify the TensorFlow Lite Micro [11] framework
to include redundancy for sensitive parameters and check their integrity at inference time.

4.3 Hardware Platform

To evaluate our proposed protection mechanism for quantized DNNs, we model a small,
resource-constrained system core connected to a low-power DRAM memory chip using the
gem5 simulator [7]. Table 4.1 shows key configuration parameters for our modelled system.

15

Chapter 5

BFA Against FP32 Models:
Analysis and Solution

Models stored in the floating point format have been proven to be fragile against BFA due to
the vast change a bit-flip could cause if it occurs in the most significant bit locations of the
exponent field. Hong et al. [23] show that even a single bit-flip in any of nearly half of the
parameters can inflict at least 10% relative degradation in model accuracy without any prior
knowledge of the model. We run exhaustive bit-flip testing for six DNNs trained on four
tasks and confirm the results presented in [23]. We calculate the percentage of parameters
in each model with at least one vulnerable bit. We define a vulnerable bit as a bit that
would inflict δ relative accuracy degradation on the model if flipped. For larger models (e.g.
DenseNet121 and ResNet-50), testing every bit is too time-consuming as the number of
parameters is on the order of millions. To mitigate this, we follow the same approach used
in [23] and sample 100,000 parameters at random and limit the tests to the bits in those
parameters. This is a sound simplification as even for the models we exhaustively test, the
percentage of vulnerable parameters is high and distributed across the model layers.

Most of the risk of BFA against FP32 models comes from flipping the most significant
exponent bit of parameters from 0 to 1, resulting in a substantial change in the parameter
value, drastically affecting all the calculations that depend on that parameter. Figure 5.1(a)
shows the bit distribution for all the parameters of the MobileNetV1 model used for the
Visual Wake Words benchmark. In the pristine model, most parameters (99.9941%) have
the most significant exponent bit set to 0.

To address the vulnerability in FP32 models, we propose a simple range-checking defence
that could be applied to hardware or software. For each model, we store the minimum
and maximum parameter values. The parameters are checked against the minimum and
maximum parameter values during inference. If a parameter is out of range, the most
significant exponent bit is reset to 0. The intuition behind this mechanism is that if a
bit-flip attack drastically changes a parameter, this is likely caused by flipping the most
significant bits of the exponent. This simple mechanism yields effective results as the range

16

(a) Bit distribution (b) Weight Value Distribution

Figure 5.1: (a) shows the bit distribution for the MobileNetV1 FP32 model (trained on the
MSCOCO dataset with 85% Top-1 accuracy). A bar at Bit Index = i corresponds to the
number of parameters with the ith bit equal to 1. The number of parameters with the most
significant exponent bit activated is 13 out of 221,794 (less than 0.0059%). (b) shows the
parameter value distribution for the same model.

Table 5.1: Percentage of vulnerable parameters for δ = 50% and δ = 10%.

Model Accuracy # Params. Vuln. params (%) Vuln. params. in range (%)
δ = 50% δ = 10% δ = 50% δ = 10%

AutoEncoder 81% 100,000 30.61% 64.99% 0.33% 0.59%
DS-CNN 92% 24,908 50.57% 51.95% 2.30% 7.94%
MobileNetV1 85% 100,000 0.24% 9.60% 0.0% 0.44%
ResNet-8 87% 78,666 48.12% 48.74% 0.53% 2.81%
ResNet-50 84% 100,000 13.00% 31.00% 0.11% 0.11%
DenseNet121 88% 100,000 21.09% 32.40% 0.04% 0.09%

of parameters is usually tightly distributed around 0, and flipping the most significant bit in
the exponent field will almost certainly take the parameter out of range. Figure 5.1(b) shows
the weight distribution of the MobileNetV1 model. We observe that the weight distributions
for other models are similar.

Table 5.1 shows the percentage of vulnerable parameters for δ = 10% and δ = 50% for
the model with and without protection. The last column corresponds to the defended model
(after range-checking) and shows the number of tested weights that bypass the defence (i.e.,
the bit-flip does not take the weight out of range and degrades the model by δ). The results
show that using this simple approach can significantly reduce the risk of BFA against FP32
models. For instance, for δ = 50%, the percentage of vulnerable parameters is reduced from
30.61% to 0.33% for the AutoEncoder DNN (99.2% reduction in vulnerable parameters). In
the worst case, the percentage of vulnerable bits for δ = 10% is reduced to 7.94% in the case
of DS-CNN. We attribute this to the model’s small size and simplicity, so it’s more sensitive

17

Figure 5.2: Average performance overhead (i.e., additional execution time) of implementing
software range-checking.

for bit flips that don’t drastically change a parameter. Even in this case, the reduction in the
number of vulnerable parameters is 84.72%. Figure 5.2 shows the impact on the performance
of using range-checking in software. On average, the incurred overhead in execution time
amounts to 2.46%, a tolerable level. However, the overhead grows with the model size.

This range-checking mechanism can be implemented in hardware with modest state
overhead and negligible performance overhead for models exhibiting a substantial slowdown
since hardware-based range-checking and bit flipping can be much faster than software.
The required hardware additions include adding range registers, dedicated comparators to
compare model parameters against the range, and simple bit-flipping logic for the most
significant bit. We did not explore this hardware mechanism in detail since our software
range-checking mechanism is sufficient for resource-constrained edge devices as they primarily
run small models. However, a custom hardware solution could be explored in future work.
Per-tensor range checking. Although our findings indicate that this simple software
range-checking mechanism adequately safeguards the most vulnerable parameters, it might
not be sufficient for the most susceptible models, such as DS-CNN. We explored an alternative
approach involving storing per-tensor ranges instead of a global model range. We observe
improved outcomes by comparing parameters to their corresponding tensor range, especially
for more susceptible models. This approach decreased the percentage of vulnerable parameters
for DS-CNN to 1.5% and 6.4% for δ = 50% and δ = 10%, respectively. Other less-vulnerable
models were not significantly impacted. However, this strategy introduces a tradeoff as
it expands the attack surface, necessitating additional measures to protect many range

18

parameters against tampering. These ranges could be securely stored in on-chip secure
memory if available.

19

Chapter 6

Analysis of BFA Against Quantized
DNN Models

This section analyzes the adverse effect bit-flip attacks can have on quantized models. We
then describe a practical Rowhammer attack that a co-located malicious process can mount
and compromise the model.

6.1 BFA Against Quantized Models

Integer quantization is one of the most common quantization schemes used for DNNs,
representing parameters in low-bit-width integers, typically 8-bit integers. The low-precision
integer representation necessitates that most of the 28 possible values will be used to achieve
the best accuracy possible. This means that a bit-flip is unlikely to substantially change the
value of a parameter and take it out of the parameter range. Hence, the effect of random
bit-flips on quantized DNNs is not significant. To evaluate the resilience of quantized DNNs,
we treat the whole model data as a contiguous array of bits in memory, and we exhaustively
flip every bit to evaluate the accuracy of the attacked model.

Figure 6.1 shows a complete bit-flip profile of three quantized models (DS-CNN, Au-
toEncoder, and MobileNetV1). The two main observations from the figure are: 1) a random
bit-flip is highly unlikely to affect the model accuracy of a quantized model significantly,
and 2) some tiny, contiguous regions are more vulnerable against bit-flips and can degrade
the model to worse than a random guesser using a single bit-flip.

Upon investigating the vulnerable regions, we identified them to be high-precision
parameter vectors. In practice, most frameworks either quantize bias tensors and other
important low-volume tensors into high-precision integer representation [1, 65, 38, 31, 58] or
leave them as FP32 [53]. For instance, high-precision quantization of bias vectors meets a
practical need as bias values are added to many layer outputs, making them more sensitive
to quantization errors. Furthermore, they constitute a small portion of the model size.
Table 7.1 shows the size of high-precision parameter tensors in the six DNNs. Since two

20

(a) DS-CNN (b) AutoEncoder (c) MobileNetV1

Figure 6.1: The accuracy of quantized AutoEncoder (a), DS-CSS (b), and MobileNetV1 (c)
against a single bit-flip attack. Each point at Bit Index = i represents the model’s accuracy
after flipping the ith bit in the parameter matrix viewed as a contiguous array of bits.

extra copies of those regions are to be stored, the worst-case storage overhead is 8.2% for
DS-CNN. We demonstrate a simple yet highly effective attack vector against quantized
models, which exploits this characteristic. In the next section, we propose a defence strategy
using redundancy in software to protect those sensitive regions.

In scenarios where attackers lack access to exact model parameters, traditional progressive
bit-search algorithms become impractical due to their dependence on complete white-box
access to the model and its parameter values. Instead, adversaries may resort to flipping
as many random bits as possible in model data, which, as we show next, is ineffective in
substantially degrading DNNs’ accuracy.

We propose a more effective attack leveraging the limited information available to the
adversary. Attackers can significantly impact model performance by identifying and targeting
the highly vulnerable, high-precision regions shown in Figure 6.1. Our method involves
randomly flipping bits within these regions, exploiting the sensitivity of these parameters
to maximize degradation with a high probability. Figure 6.2 shows the results for a single
run of a completely random attack versus randomly selecting bits only from high-precision
vectors for three models.

In the first strategy, we flip random bits from the whole model. As expected, randomly
flipping bits from the entire model is inadequate even after 50 cumulative bit-flips (up to
100 for ResNet-50 and MobileNetV1). At the low end, DS-CNN starts to break at around
40 bits across several runs. Similar to the FP32 version of the model, the small size of the
model and its simplicity lead to its breakage relatively quickly after flipping a small number
of completely random bits.

For our proposed attack, we confine the attack’s bit flips to the high-precision vectors of
the model. This strategy quickly degrades the model to a random guesser in most cases. We
have run each attack five hundred times and show the median number of bit-flips within
high-precision vectors to turn the model into a random guesser in Table 6.1. This simple
attack strategy can inflict significant accuracy degradation on most models using a small

21

(a) DS-CNN (b) AutoEncoder

(c) MobileNetV1 (d) ResNet-50

(e) ResNet-8 (f) DenseNet121

Figure 6.2: Testing fully random BFA and random BFA within high-precision vectors.

22

Table 6.1: Average number of random bit-flips within high-precision vectors to degrade
models to a random guesser.

Model Pristine Accuracy Median Bit Flips to
Random Guesser

AutoEncoder 81.0% 16
DS-CNN 90.2% 10
MobileNetV1 84.2% 32
ResNet-8 80.0% 7
ResNet-50 84.5% -
DenseNet121 84.0% 14

number of bit-flips. Even though the attack cannot degrade ResNet-50 to a random guesser
using a practical number of bit-flips, we can still inflict significant accuracy degradation on
it. For example, the median number of bit-flips required to reduce the accuracy by 10% (i.e.,
for δ = 10%) across five hundred runs is 21.

6.2 BFA against quantized LLMs

Table 6.2: GPT2 text completion output for a pristine model versus attacked models with
20 bit-flips in high-precision parameters.

Input Prompt Pristine Model Output Attacked Model Output
"My Trip to Yosemite was" My Trip to Yosemite was

a great experience, and I
can’t wait to go back again to
the beautiful park next spring

My Trip to Yosemite was
a newcom!!!!! (C! (New!! (C!!
(New!! (C! (! (! (NewC! (C!

(NewC!
"The economy is " The economy is recovering

and people are looking for
jobs.

The economy is this week.
The U.S. Treasury issued the

first-ever note
"What is the meaning of life?" What is the meaning of

life? – "life is the pursuit of
the highest ideals,"

What is the meaning of
life? !" – "! –!!!" – "! –! –!" –!"

To demonstrate the risk of our proposed attack against LLMs, we experiment with
GPT2, an LLM commonly used on mobile devices for text completion due to its balanced
resource efficiency, making it a suitable choice for deployment despite the constraints of
such devices compared to newer, more computationally demanding models. We repeatedly
launched 20-bit-flip attacks against it for fifty trials and examined the output manually.
We use the same prompts for both the pristine and the attacked models. We observe that

23

32 trials (out of 50) resulted in the model outputting meaningless text. Table 6.2 shows
examples of pristine and attacked model outputs.

6.3 A Practical Rowhammer Attack Against Quantized Mod-
els

In Section 6.1, we examined the effect of flipping bits in quantized models’ parameters and
concluded that high-precision regions are the most vulnerable. Many models we discussed
could be degraded to a random guesser using a few bit-flips in those regions. This section
describes a practical Rowhammer attack, which a malicious, co-located user can mount and
ultimately destroy the model.

The attacker constructs the model in their userspace since they know the model architec-
ture but initialize it with random parameters and run inference once. The attacker monitors
memory accesses to know when the vulnerable, high-precision parameters are allocated
(after n memory page requests). Next, the attacker needs to allocate n consecutive physical
memory pages. Massaging the buddy allocator in Linux has been successfully used to obtain
a physically consecutive region of size 2 MiB [42]. The buddy allocator serves blocks of sizes
4096 · 2n that may or may not be contiguous. First, The attacker exhausts the smaller blocks
using the mmap system call and provides the MMAP_POPULATE flag, enforcing the kernel to
allocate data immediately instead of the default lazy allocation mechanism. The attack
described in [42] uses the /proc/pagetypeinfo interface to monitor the available block
sizes. However, Linux now requires root privileges to access that interface. Alternatively,
the attacker may use the side-channel described in [16] to detect if the allocated chunk is
contiguous.

Next, the attacker frees one of the physical pages with vulnerable bit locations. In the
attack we describe against quantized models, the attacker does not target specific bits in
the high-precision regions but can randomly induce bit flips in them. Hence, any page with
flippable locations will suffice. The attacker then frees the remaining n−1 pages. Since Linux
inserts freed pages into the page frame cache in a last-in-first-out fashion, the next nth page
to be requested will be allocated in the page with vulnerable locations. The attacker then
immediately invokes the victim’s process inference. The page with the selected high-precision
region will be allocated in the nth requested page, which will have vulnerable bit locations.

For a highly effective attack, the attacker may use double-sided hammering to induce
the highest number of bit-flips [35]. Double-sided hammering requires the attacker also to
know the DRAM address mapping that converts physical addresses to a (channel, rank,
bank, row) tuple, which can be obtained using the side-channel described in [59].

24

Chapter 7

Protecting Quantized Models

In Section 6.1, we showed that random BFA against quantized models is ineffective in
inducing a significant accuracy degradation. We also uncover a vulnerability in quantized
models that exploits the characteristics of how DNNs are quantized in practice. This section
proposes using Triple Modular Redundancy (TMR) in software to protect sensitive data.
Previously, we have shown that the maximum damage that can be induced by an adversary
that cannot run sophisticated bit search algorithms can be achieved by flipping bits in
high-precision parameter vectors. Since those vulnerable regions can be determined before
deployment and those parameter vectors constitute a small portion of the model, we can
afford to use expensive redundancy mechanisms to guarantee their integrity.

One approach is to use DRAM chips that support ECC. ECC memory chips usually apply
redundancy to all memory contents and provide simple ECC schemes, such as Single Error
Correction, Double Error Detection (SECDED). However, the higher cost of ECC memory
is unsuitable for economic edge devices. We have shown that vulnerability is concentrated in
small, contiguous regions, so it would be better to provide stronger integrity guarantees for
those regions. Furthermore, prior work [10] shows that ECC DRAM chips are not impervious
to the Rowhammer attack. Another solution would be to implement secure on-chip vaults to
store high-precision parameters. While this would eliminate the risk, the implementation
can be complex and inflexible due to the variance of systems running inference. Additionally,
storing sensitive parameters in dedicated chips can lead to a single point of failure and would
be harder to patch and adapt to newly discovered threats.

We propose using TMR in software to safeguard the high-precision vectors. This entails
storing three replicas of the sensitive data. During inference, all three copies are fetched
and cross-verified for consistency. Compared to TMR for the whole memory, TMR for the
sensitive data only is much more efficient since high-precision vectors constitute tiny portions
of the overall model size, as shown in Table 7.1. The worst case for storage overhead is

25

Table 7.1: The size of high-precision parameter vectors and their portion of total model size

Model Overall Size High Precision Parameters Size %
AutoEncoder 270KB 6.5KB 2.4%
DS-CNN 56KB 2.3KB 4.1%
MobileNetV1 325KB 10.6KB 3.7%
ResNet-8 96KB 1.4KB 1.5%
ResNet-50 26MB 111.3KB 0.4%
DenseNet121 7.3MB 41KB 0.5%
GPT2 124MB 432KB 0.3%

about 8.2% of the model size (for DS-CNN)1. Furthermore, as a software solution, it allows
full backward compatibility with model files and does not require any modifications to the
inference hardware.

To assess the performance implications of our proposed defence, we modified the Tensor-
Flow Lite Micro framework [11] to include extra copies of high-precision parameters. We
also modified the inference code to fetch the three copies and conduct a majority vote to
determine the correct value. If an inconsistent copy is detected, it is overwritten using the
value decided by the majority. We then model a small system in gem5 and run inference to
measure the performance overhead. Figure 7.1 shows the performance overhead in normalized
execution time for a system running the code with the TMR implementation installed. The
geometric mean for performance impact across the six models is 0.3% of the baseline, and in
the worst case (DS-CNN), the overhead is 1.36%.

Next, we test the resilience of TMR against our targeted attack. We analyze the worst-
case scenario regarding security, wherein the data and the redundant copies are all exposed
to the attacker, who can induce bit-flips in any of them. The likelihood of causing bit-flips
in at least two of three copies is extremely low, as the Rowhammer-vulnerable bits are rare
and scattered throughout the memory. We model this behaviour by flipping random bits
uniformly across the three replicas of high-precision vectors, so there is a low probability that
at least two bit-flips will land in the same position of the same parameter in the replicas. To
stress-test the system, we assume the adversary can launch up to 32 bit-flips. Table 7.2 shows
the percentage of runs that induce a 10% relative accuracy drop with and without TMR
measured across a thousand runs. TMR consistently provides effective mitigation against
the attack across all network architectures. For instance, the attack is successful against
DS-CNN and ResNet-8 100.0% of the runs without TMR, and it goes down to 0.4% in both
cases when we use TMR at inference time. We observe that there is a slight probability that

1Since DS-CNN’s sensitive parameters represent 4.1% of the whole model data, creating two additional
replicas requires an overhead of 8.2%.

26

Figure 7.1: Average performance overhead of implementing TMR in terms of the execution
times

Table 7.2: The percentage of N -bit-flip runs (out of 1000) that cause a 10% accuracy drop
with and without using TMR.

Model % Without TMR % With TMR
N = 16 N = 32 N = 32

AutoEncoder 91.5% 97.2% 0.0%
DS-CNN 99.8% 100.0% 0.4%
MobileNetV1 66.4% 89.8% 0.0%
ResNet-8 99.8% 100.0% 0.4%
ResNet-50 19.8% 52.8% 0.0%
DenseNet121 88.9% 99.0% 0.7%

the attack can be successful even using TMR when bits in different copies that correspond
to the same bit in the same parameter are flippable (at least two out of three) and the
model happens to be vulnerable to flipping the bit at that location. Evidently, this only
happens in the highly vulnerable models (DS-CNN, ResNet-8, and DenseNet121), in which
managing to corrupt at least two copies that map to the same bit is highly likely to damage
the model significantly. Also, ResNet-50, which we found to be inherently less vulnerable
than other models, is further fortified, bringing the percentage of successful attacks from
52.8% to 0.0% against a 32-bit-flip BFA.

To further gauge the effectiveness of our software mechanism, we estimate the likelihood
of a successful attack. We define such an attack as an adversary’s ability to bypass TMR

27

by corrupting at least one vulnerable bit whose corruption results in a relative accuracy
degradation of δ = 10% or more. We assume that a random bit in memory is flipped
with a probability p. To capture the variability in Rowhammer-flippable bits, we show the
attack success probability (ASP) for different values of p in Figure 9.1. As p increases, the
most vulnerable models (those with the most vulnerable bits in the high-precision regions)
become more susceptible to the attack. Nevertheless, even in the most vulnerable models
and at notably high p values, the ASP remains minimal given that the attacker is usually
constrained in time and the number of bit-flips they can induce.

28

Chapter 8

Related Work

Due to their versatility, deep learning models have been increasingly employed in various
applications. Many applications are highly safety-critical, and accuracy fluctuations can
lead to severe consequences [79, 14, 2]. Hence, multiple works have discussed the attack and
defence sides of DNNs.

Rakin et al. [62] demonstrates one of the first effective bit-flip attacks against quantized
models using a bit-search algorithm. However, they assume that any bit in DNN model
parameters is flippable, which is unrealistic. Yao et al. [84] demonstrate one of the first
practical BFAs against DNNs using Rowhammer, which also uses a bit-search algorithm.
ZeBRA [56] is another BFA vector that does not require access to training or test data and
relies on synthetic data samples. The three mentioned works require white-box access to the
model architecture, all the parameters, and a batch of testing data. Such requirements may
not always be available. To our knowledge, our proposed attack against quantized DNNs is
the first BFA that assumes a semi-black box threat model wherein the attacker only knows
the model architecture without having access to model parameters or test data. T-BFA [63]
is a recent targeted BFA that makes a ResNet-18 misclassify all inputs of class x to class y

in the test set. Ghavami et al. [18] demonstrate another targeted BFA that maintains the
model’s accuracy for legitimate inputs while effectively neutralizing adversarial defences,
causing even a protected model to misclassify adversarial inputs. Our work concentrates on
untargeted BFA and defences against them.

Various works have introduced defences specific to BFAs and increased the reliability
against natural bit faults. NeuroPots [47] injects known vulnerable parameters that a
vulnerable bit-search algorithm would detect and protects those parameters by performing a
checksum. Using NeuroPots can incur a significant performance overhead and can require
model re-training. Aegis [75] defends against targeted BFA by including extra internal
classifiers (ICs), one of which can be randomly chosen as an early exit path during inference.
Aegis requires model re-training to include the ICs and only defends against targeted BFAs.
Forget and Rewire (FaR) [54] is a defence specific for vision transformers that neutralizes
gradient-based attacks such as DeepHammer [84] by rewiring important parameters to

29

neurons with no influence on the model output, i.e., neurons with activation values close to
zero for a batch of the training set, at inference time. Zhou et al. [87] also show that vision
transformers that use knowledge distillation [73] are more resilient against bit-flip attacks.

Ranger [8] corrects random bit faults by checking the range of activation values to
avoid error propagation through the network. Instead of using global, layer-wise activation
ranges, FitAct [19] uses trainable activation functions to provide per-neuron ranges. However,
activation-limiting approaches have two problems. 1) They introduce hyperparameters that
require per-model profiling and calibration, and 2) they can wrongfully clip activations for out-
of-distribution inputs. Wasim et al. [77] primarily focuses on random faults in computation
and requires model retraining and augmentation. Our work focuses on defending models
against data adversarial BFA and can be deployed without modifying the model. Mahmoud
et al. [50] selectively protect the most vulnerable feature maps in CNNs by computing the
likelihood that an error in computation would propagate to the output. However, it can
incur a performance overhead of 48% and only works for CNNs. In contrast, we propose a
lightweight solution to protect sensitive parameters for quantized models without incurring
a significant overhead. Furthermore, we show that our solution works for various network
architectures.

Defences against random, transient hardware faults (to which the two previous works
belong) assume a non-adversarial environment. In contrast, we assume the presence of an
adversary launching BFA, intentionally degrading model accuracy with a high success rate.

30

Chapter 9

Limitations and Future Work

This thesis analyzed attacks and proposed defences for FP32 and quantized DNNs. This
section notes some limitations of this work and describes potential future opportunities.

9.1 Range Constraints for FP32 Model Parameters

Our solution for BFA against FP32 models is grounded in our empirical observation that
the parameter ranges are generally confined to smaller values. For models with parameters
that span a larger range, some bit-flips that drastically alter a parameter to an extreme
value can go undetected by the defence. This limitation can be effectively mitigated through
interventions at either the model architecture level or via post-training adjustments. On the
architecture level, several methods exist to mitigate this issue without compromising model
accuracy during training. These include regularization [49, 41, 30] and early stopping [60],
which help, either directly or indirectly, maintain weights at smaller values. Additionally,
as we have discussed in section 5, the utilization of per-tensor ranges for comparison can
constrain vulnerable regions only to the tensors with larger parameter ranges. Those tensors
could then undergo additional protection strategies akin to those implemented for quantized
models.

9.2 Algorithm-based BFA Against Quantized Models

We demonstrate an effective semi-black box BFA against quantized models and propose
and analyze a defence strategy using redundancy. Prior works generally assume a white-box
threat model in which the attacker has access to not only the model architecture but also
all parameter values and a subset of the training or testing sets, which may not be realistic
for all systems. In this case, the attacker can run sophisticated algorithms to select the most
vulnerable bits in the low-precision parameters (weights) that can induce cumulative accuracy
degradation. Our defence mechanism does not protect against such attacks as our threat
model assumes the attacker does not know the exact values of model parameters. However,
since the same algorithms can be run before deploying the model, the most vulnerable bit

31

Figure 9.1: Attack success probability for different values of bit-flip probability p.

chains can be identified and hardened using an approach similar to what we described for
high-precision parameters. A defence against white-box attacks using similar principles to
our solution is a topic for future work.

9.3 Circumventing TMR

Depending on the distribution of the flippable bit cells, the attacker can flip bits in different
copies that map to the same parameter and circumvent the TMR voting mechanism. Our
randomized analysis (assuming vulnerable bits are uniformly distributed) shows a negligible
attack success rate. However, OS/inference software may map the data to more vulnerable
regions in physical memory, increasing the attack success rate. A possible solution would
be implementing TMR for vulnerable parameters in hardware, which can randomize the
locations of the replicas in memory, making it harder for the attacker to identify bit locations
that correspond to the same bit in the three replicas. However, such hardware solutions
might incur significant complexity for edge devices. Another solution would be keeping extra
copies depending on the security requirement. For instance, keeping five replicas reduces
ASP from 10−3 to approximately 10−6 for p = 10−3 for ResNet-50 while increasing the
storage overhead from 1.25% to 2.1% of the model size.

32

Chapter 10

Conclusion

In this work, we analyzed the risk of bit-flips against FP32 models. We proposed a simple
solution based on the fact that most vulnerability comes from flipping the most significant
bits in the exponent field. We highlighted a vulnerability in quantized DNNs, which exploits
the fact that important, low-volume parameters are kept at a higher precision. We also
show that this vulnerability requires no sensitivity studies or complex algorithms to find
the most damaging bit-flips from the attacker’s perspective. We exploit this vulnerability
in an attack to make many DNN models completely malfunction (i.e., reach the level of a
random guesser) by flipping a few bits without requiring open access to the model parameters
and training or testing data. For instance, we managed to degrade a DenseNet121 model
from 85% accuracy to a random guesser accuracy level (10%) using ten bit-flips on average.
We also demonstrate the risk of such an attack against LLMs by testing it against GPT2,
which produces meaningless outputs using only 20 bit-flips with a high probability. We
propose and implement low-overhead TMR in the TensorFlow Lite Micro, guaranteeing
strong reliability in aggressive attack scenarios without incurring significant storage and
performance overheads.

33

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Rakshit Agrawal, Jack W. Stokes, Karthik Selvaraj, and Mady Marinescu. Attention in
recurrent neural networks for ransomware detection. In ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
3222–3226, 2019.

[3] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen
Gould, and Lei Zhang. Bottom-up and top-down attention for image captioning and
visual question answering. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018.

[4] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das, Matthew
Hicks, Yossi Oren, and Todd Austin. Anvil: Software-based protection against next-
generation rowhammer attacks. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’16, page 743–755, New York, NY, USA, 2016. Association for Computing
Machinery.

[5] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries,
Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed, Danilo Pau, et al.
MLPerf tiny benchmark. Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, 2021.

[6] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI NN: Reverse
engineering of neural network architectures through electromagnetic side channel. In
28th USENIX Security Symposium (USENIX Security 19), pages 515–532, Santa Clara,
CA, August 2019. USENIX Association.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,

34

Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A.
Wood. The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7, aug 2011.

[8] Z. Chen, G. Li, and K. Pattabiraman. A low-cost fault corrector for deep neural
networks through range restriction. In 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 1–13, Los Alamitos,
CA, USA, jun 2021. IEEE Computer Society.

[9] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantization of
neural networks for efficient inference. In 2019 IEEE/CVF International Conference
on Computer Vision Workshop (ICCVW), pages 3009–3018, 2019.

[10] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. Exploiting
Correcting Codes: On the effectiveness of ECC memory against rowhammer attacks. In
2019 IEEE Symposium on Security and Privacy (SP), pages 55–71, 2019.

[11] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li, Nick
Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, et al. Tensorflow Lite Micro:
Embedded machine learning for TinyML systems. Proceedings of Machine Learning
and Systems, 3:800–811, 2021.

[12] Timothy J Dell. A white paper on the benefits of chipkill-correct ECC for PC server
main memory. IBM Microelectronics division, 11(1-23):5–7, 1997.

[13] Mingyu Ding, Bin Xiao, Noel Codella, Ping Luo, Jingdong Wang, and Lu Yuan. Davit:
Dual attention vision transformers. In European Conference on Computer Vision, pages
74–92. Springer, 2022.

[14] Jose Dolz, Karthik Gopinath, Jing Yuan, Herve Lombaert, Christian Desrosiers, and
Ismail Ben Ayed. Hyperdense-net: a hyper-densely connected cnn for multi-modal image
segmentation. IEEE transactions on medical imaging, 38(5):1116–1126, 2018.

[15] Apostolos Fournaris, Lidia Pocero Fraile, and Odysseas Koufopavlou. Exploiting
hardware vulnerabilities to attack embedded system devices: a survey of potent mi-
croarchitectural attacks. Electronics, 6(3):52, Jul 2017.

[16] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Grand pwning unit:
Accelerating microarchitectural attacks with the GPU. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 195–210, 2018.

[17] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor van der Veen, Onur Mutlu,
Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Trrespass: Exploiting the many
sides of target row refresh. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 747–762, 2020.

[18] Behnam Ghavami, Seyd Movi, Zhenman Fang, and Lesley Shannon. Stealthy attack on
algorithmic-protected dnns via smart bit flipping. In 2022 23rd International Symposium
on Quality Electronic Design (ISQED), pages 1–7, 2022.

[19] Behnam Ghavami, Mani Sadati, Zhenman Fang, and Lesley Shannon. Fitact: Error
resilient deep neural networks via fine-grained post-trainable activation functions. In
2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
1239–1244, 2022.

35

[20] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli
O’Connell, Wolfgang Schoechl, and Yuval Yarom. Another flip in the wall of rowhammer
defenses. In 2018 IEEE Symposium on Security and Privacy (SP), pages 245–261, Los
Alamitos, CA, USA, may 2018. IEEE Computer Society.

[21] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Mangard.
Prefetch side-channel attacks: Bypassing smap and kernel aslr. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16,
page 368–379, New York, NY, USA, 2016. Association for Computing Machinery.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[23] Sanghyun Hong, Pietro Frigo, Yiğitcan Kaya, Cristiano Giuffrida, and Tudor Dumitras, .
Terminal brain damage: Exposing the graceless degradation in deep neural networks
under hardware fault attacks. In 28th USENIX Security Symposium (USENIX Security
19), pages 497–514, 2019.

[24] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[25] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie, Yufei
Ding, Chang Liu, Timothy Sherwood, and Yuan Xie. Deepsniffer: A dnn model extraction
framework based on learning architectural hints. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, page 385–399, New York, NY, USA, 2020. Association
for Computing Machinery.

[26] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[27] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

[28] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Quantized neural networks: Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research, 18(1):6869–6898, 2017.

[29] Intel. Intel e7500 chipset datasheet. 2002.

[30] Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37, ICML’15,
page 448–456. JMLR.org, 2015.

36

[31] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2704–2713, 2018.

[32] JEDEC. DDR4 SDRAM registered DIMM design specification. pages 4.20.28–5, 2014.

[33] Ruimin Ke, Yifan Zhuang, Ziyuan Pu, and Yinhai Wang. A smart, efficient, and
reliable parking surveillance system with edge artificial intelligence on iot devices. IEEE
Transactions on Intelligent Transportation Systems, 22(8):4962–4974, 2020.

[34] Jeremie S. Kim, Minesh Patel, A. Giray Yağlıkçı, Hasan Hassan, Roknoddin Azizi, Lois
Orosa, and Onur Mutlu. Revisiting rowhammer: an experimental analysis of modern
dram devices and mitigation techniques. In Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture, ISCA ’20, page 638–651. IEEE
Press, 2020.

[35] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA), pages 361–372, 2014.

[36] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp, Nicolas
Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. Half-Double: Hammering from
the next row over. In 31st USENIX Security Symposium (USENIX Security 22), pages
3807–3824, Boston, MA, August 2022. USENIX Association.

[37] Yuma Koizumi, Shoichiro Saito, Hisashi Uematsu, Noboru Harada, and Keisuke Imoto.
Toyadmos: A dataset of miniature-machine operating sounds for anomalous sound
detection, 2019.

[38] Alexander Kozlov, Ivan Lazarevich, Vasily Shamporov, Nikolay Lyalyushkin, and Yury
Gorbachev. Neural network compression framework for fast model inference. arXiv
preprint arXiv:2002.08679, 2020.

[39] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient
inference: A whitepaper, 2018.

[40] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (Canadian institute for
advanced research). 2009.

[41] Anders Krogh and John A. Hertz. A simple weight decay can improve generalization.
NIPS’91, page 950–957, San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers
Inc.

[42] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. Rambleed: Reading
bits in memory without accessing them. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 695–711, 2020.

[43] Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn. Twice:
Preventing row-hammering by exploiting time window counters. In 2019 ACM/IEEE
46th Annual International Symposium on Computer Architecture (ISCA), pages 385–396,
2019.

37

[44] Yehao Li, Yingwei Pan, Ting Yao, and Tao Mei. Comprehending and ordering semantics
for image captioning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 17990–17999, 2022.

[45] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in
context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors,
Computer Vision – ECCV 2014, pages 740–755, Cham, 2014. Springer International
Publishing.

[46] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker Tadesse Aga,
Clémentine Maurice, and Daniel Gruss. Nethammer: Inducing Rowhammer faults
through network requests. In 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 710–719, 2020.

[47] Qi Liu, Jieming Yin, Wujie Wen, Chengmo Yang, and Shi Sha. NeuroPots: Realtime
proactive defense against Bit-Flip attacks in neural networks. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 6347–6364, Anaheim, CA, August 2023.
USENIX Association.

[48] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. Fault injection attack on deep
neural network. In 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 131–138, 2017.

[49] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Interna-
tional Conference on Learning Representations, 2019.

[50] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Christopher W. Fletcher, Sarita V.
Adve, Charbel Sakr, Naresh Shanbhag, Pavlo Molchanov, Michael B. Sullivan, Timothy
Tsai, and Stephen W. Keckler. Optimizing selective protection for cnn resilience. In
2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE),
pages 127–138, 2021.

[51] Radu Marculescu, Diana Marculescu, and Umit Ogras. Edge ai: Systems design and ml
for iot data analytics. KDD ’20, page 3565–3566, New York, NY, USA, 2020. Association
for Computing Machinery.

[52] Assaf Michaely, Carolina Parada, Frank Zhang, Gabor Simko, and Petar Aleksic.
Keyword spotting for Google assistant using contextual speech recognition. In ASRU
2017, 2017.

[53] Szymon Migacz. 8-bit Inference with TensorRT. Technical report, NVIDIA, 2018.

[54] Najmeh Nazari, Hosein Mohammadi Makrani, Chongzhou Fang, Hossein Sayadi, Setareh
Rafatirad, Khaled N. Khasawneh, and Houman Homayoun. Forget and rewire: En-
hancing the resilience of transformer-based models against bit-flip attacks. In Davide
Balzarotti and Wenyuan Xu, editors, 33rd USENIX Security Symposium, USENIX
Security 2024, Philadelphia, PA, USA, August 14-16, 2024. USENIX Association, 2024.

[55] Ataberk Olgun, Majd Osseiran, Abdullah Giray Yağlıkcı, Yahya Can Tuğrul, Hao-
cong Luo, Steve Rhyner, Behzad Salami, Juan Gomez Luna, and Onur Mutlu. An
experimental analysis of rowhammer in hbm2 dram chips, 2023.

38

[56] Dahoon Park, Kon-Woo Kwon, Sunghoon Im, and Jaeha Kung. Zebra: Precisely
destroying neural networks with zero-data based repeated bit flip attack. arXiv preprint
arXiv:2111.01080, 2021.

[57] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho Ahn, and Jae W.
Lee. Graphene: Strong yet lightweight row hammer protection. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–13, 2020.

[58] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[59] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard.
DRAMA: Exploiting DRAM addressing for Cross-CPU attacks. In 25th USENIX
Security Symposium (USENIX Security 16), pages 565–581, Austin, TX, August 2016.
USENIX Association.

[60] Lutz Prechelt. Early Stopping — But When?, pages 53–67. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[61] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[62] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip attack: Crushing neural
network with progressive bit search. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1211–1220, 2019.

[63] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti, and Deliang
Fan. T-bfa: Targeted bit-flip adversarial weight attack. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(11):7928–7939, 2021.

[64] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and Herbert
Bos. Flip feng shui: Hammering a needle in the software stack. In 25th USENIX Security
Symposium (USENIX Security 16), pages 1–18, Austin, TX, August 2016. USENIX
Association.

[65] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng, Ro-
man Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Levenstein,
et al. Glow: Graph lowering compiler techniques for neural networks. arXiv preprint
arXiv:1805.00907, 2018.

[66] Raj Sachdev. Towards security and privacy for edge ai in iot/ioe based digital mar-
keting environments. In 2020 Fifth International Conference on Fog and Mobile Edge
Computing (FMEC), pages 341–346, 2020.

[67] Anish Saxena, Gururaj Saileshwar, Prashant J. Nair, and Moinuddin Qureshi. Aqua:
Scalable rowhammer mitigation by quarantining aggressor rows at runtime. In 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 108–123,
2022.

39

[68] Mark Seaborn. How physical addresses map to rows and banks in dram. 2015.

[69] Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer bug to gain kernel
privileges. 2015.

[70] Kirill A. Shutemov. pagemap: Do not leak physical addresses to non-privileged userspace.
2015.

[71] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine learning models
that remember too much. CCS ’17, page 587–601, New York, NY, USA, 2017. Association
for Computing Machinery.

[72] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano Giuffrida,
Herbert Bos, and Kaveh Razavi. Throwhammer: Rowhammer attacks over the network
and defenses. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages
213–226, Boston, MA, July 2018. USENIX Association.

[73] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-
rolles, and Herve Jegou. Training data-efficient image transformers & distillation
through attention. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 10347–10357. PMLR, 18–24 Jul 2021.

[74] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clementine
Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida. Drammer:
Deterministic rowhammer attacks on mobile platforms. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, page
1675–1689, New York, NY, USA, 2016. Association for Computing Machinery.

[75] Jialai Wang, Ziyuan Zhang, Meiqi Wang, Han Qiu, Tianwei Zhang, Qi Li, Zongpeng
Li, Tao Wei, and Chao Zhang. Aegis: Mitigating targeted bit-flip attacks against deep
neural networks. In 32nd USENIX Security Symposium (USENIX Security 23), pages
2329–2346, Anaheim, CA, August 2023. USENIX Association.

[76] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition.
arXiv preprint arXiv:1804.03209, 2018.

[77] Syed Talal Wasim, Kabila Haile Soboka, Abdulrahman Mahmoud, Salman H Khan,
David Brooks, and Gu-Yeon Wei. Hardware resilience properties of text-guided image
classifiers. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
editors, Advances in Neural Information Processing Systems, volume 36, pages 67886–
67899. Curran Associates, Inc., 2023.

[78] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. I know what you see: Power
side-channel attack on convolutional neural network accelerators. ACSAC ’18, page
393–406, New York, NY, USA, 2018. Association for Computing Machinery.

[79] Li-Hua Wen and Kang-Hyun Jo. Fast and accurate 3d object detection for lidar-camera-
based autonomous vehicles using one shared voxel-based backbone. IEEE Access,
9:22080–22089, 2021.

40

[80] J. Woo, G. Saileshwar, and P. J. Nair. Scalable and secure row-swap: Efficient and safe
row hammer mitigation in memory systems. In 2023 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 374–389, Los Alamitos,
CA, USA, mar 2023. IEEE Computer Society.

[81] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao, Jinyin Chen,
Yi Liu, Zhefu Wu, Qi Xuan, and Xiaoniu Yang. Open dnn box by power side-channel
attack. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(11):2717–2721,
2020.

[82] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. One bit flips, one
cloud flops: Cross-VM row hammer attacks and privilege escalation. In 25th USENIX
Security Symposium (USENIX Security 16), pages 19–35, Austin, TX, August 2016.
USENIX Association.

[83] Ren Yang, Mai Xu, and Zulin Wang. Decoder-side hevc quality enhancement with
scalable convolutional neural network. In 2017 IEEE International Conference on
Multimedia and Expo (ICME), pages 817–822, 2017.

[84] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. DeepHammer: Depleting the intelligence
of deep neural networks through targeted chain of bit flips. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1463–1480. USENIX Association, August
2020.

[85] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom. Pthammer: Cross-
user-kernel-boundary rowhammer through implicit accesses. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 28–41, Los
Alamitos, CA, USA, oct 2020. IEEE Computer Society.

[86] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients.
ArXiv, abs/1606.06160, 2016.

[87] Xuan Zhou, Souvik Kundu, and Peter Anthony Beerel. What makes vision transformers
robust towards bit-flip attack? In ICLR 2024 Workshop on Mathematical and Empirical
Understanding of Foundation Models, 2024.

41

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Bit-Flip Attacks
	DNN Model Quantization
	DRAM Organization and Operation
	Memory Fault Injection using Rowhammer
	Mounting Rowhammer
	Uncached Memory Access
	Virtual-to-Physical Memory Mapping
	Memory Layout Massaging

	Defences against Bit Faults
	Error-Correcting Codes (ECC)
	Rowhammer Defences
	Fault Tolerance using Replication

	Threat Model
	Experimental Setup
	Model Architectures and Datasets
	Software Setup
	Hardware Platform

	BFA Against FP32 Models: Analysis and Solution
	Analysis of BFA Against Quantized DNN Models
	BFA Against Quantized Models
	BFA against quantized LLMs
	A Practical Rowhammer Attack Against Quantized Models

	Protecting Quantized Models
	Related Work
	Limitations and Future Work
	Range Constraints for FP32 Model Parameters
	Algorithm-based BFA Against Quantized Models
	Circumventing TMR

	Conclusion
	Bibliography

