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Abstract
Learning high- or infinite-dimensional functions from limited samples is a key task in Com-
putational Science and Engineering (CSE). For example, in Uncertainty Quantification for
CSE, a fundamental problem involves approximating solutions to parametric (or stochas-
tic) Partial Differential Equations whose solutions take values in abstract spaces. While
this problem has been studied for several decades, it remains difficult due to the significant
challenges posed. Specifically, pointwise samples are expensive to acquire, errors may cor-
rupt the data, and the ranges of these functions lie in Banach spaces while their domain
is usually high- or infinite-dimensional. In this work, we combine recently developed ap-
proximation theory for holomorphic, high-dimensional functions asserting exponential (in
finite dimensions) and algebraic (in both finite and infinite dimensions) convergence rates,
along with recent methods from convex optimization and deep learning (DL) for computing
approximations based on ℓ1- or weighted ℓ1-minimization strategies. We focus on overcom-
ing the aforementioned challenges and closing key gaps between smooth high-dimensional
function approximation theory and practice. First, we establish the existence of efficient al-
gorithms based on the Chambolle-Pock algorithm for computing polynomial approximations
to Hilbert-valued functions, achieving the same theoretical rates as current benchmarks. Our
first main results account for all sources of error, i.e., polynomial approximation, sampling,
algorithmic and physical discretization errors. Second, we present a novel result on DL for
approximating smooth Banach-valued functions with known and unknown parametric de-
pendence. Here, we extend key results from Compressed Sensing (CS) theory to Banach
spaces. In summary, our second results assert the existence of a dimension-independent
class of DNNs, whose training procedure is based on minimizing a regularized or unregular-
ized ℓ2-loss function, achieving near-optimal algebraic rates of convergence for holomorphic,
infinite-dimensional Banach-valued functions. Next, we use the theory of m-widths to show
that these convergence rates are near-optimal for infinite-dimensional Banach-valued, holo-
morphic functions. Finally, we present numerical experiments demonstrating the practical
efficacy of DL on challenging problems including the parametric diffusion, Navier-Stokes-
Brinkman and Boussinesq equations. In other words, the methods and algorithms developed
in this thesis are essentially optimal for approximating holomorphic functions in high di-
mensions from limited samples.
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Notation and symbols
The notation described below is used multiple times throughout the thesis

Indices, multi-indices, and vector notation
N, N0 The sets of positive and nonnegative integers, respectively

ν An index in N0

F The set of multi-indices in NN
0 with at most finitely many nonzero terms

ν A multi-index in Nd
0 (or F , if d = ∞)

a ≲ b There exists a constant c > 0 independent of a and b such that a ≤ cb

aν The product ∏k∈[d] a
νk
k for a = (a)k∈[d] and ν = (ν)k∈[d]

e1, . . . , ed The canonical basis of Rd

[d] Set notation to denote {1, . . . , d}, equal to N if d = ∞

R+ The set of positive numbers

div(·), div(·) Vector and tensor divergence operator
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Function approximation
d Number of parametric variables, either d ∈ N or d = ∞

U Parameter domain, a subset of Rd (or RN, if d = ∞)

Ω Physical domain, e.g., Ω = (0, 1)2 ⊂ R2

∂Ω Boundary of the physical domain Ω

V Output space, typically a scalar field, or a Banach space

V∗ Continuous dual of the output space

VK Finite dimensional subspace of the output space V

y = (yk)k∈[d] parametric variable, y ∈ U

f = f(y) Generic Banach-valued parametric map from U to V

u = u(y) Banach-valued parametric map from U to V,
typically the solution to a parametric differential equation

f̂ , û Approximation to f or u

m Number of samples

y1, . . . ,ym Sample points in U

ni Measurement error; noisy samples take the form f(yi) + ni

PK(·) Bounded and linear operator PK : V → VK

(if V is a Hilbert space, PK is the orthogonal projection from V to VK)

Polynomial approximation
Ψν νth element of the one-dimensional orthonormal polynomial basis of L2

ϱ([−1, 1])

Ψν νth element of the d-dimensional orthonormal polynomial basis of L2
ϱ(U)

cν Coefficients of a function with respect to Ψν

S Typically, a finite subset of Nd
0 (or F , if d = ∞) of size |S|

ΛHC
n,d The hyperbolic cross index set of order n ∈ N0

fΛ Truncated expansion of f with respect to {Ψν}ν∈F

Θ(n, d) The cardinality of the index set employed
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O Typically, an open subset of Cd or CN (if d = ∞) in which a function

has a holomorphic extension

ρ,ρ = (ρk)k∈[d] Parameter ρ > 1 or ρ > 1 defining a Bernstein ellipse or polyellipse

Bρ,Bρ The Bernstein ellipse or polyellipse with parameter ρ or ρ

Eρ, Eρ The corresponding filled-in Bernstein ellipse or polyellipse with
parameter ρ or ρ

R(b, ε) Complex region defined by a union of filled-in Bernstein polyellipses

H(b, ε) Class of (b, ε)-holomorphic functions with L∞-norm at most one

H(p) The union of H(b, 1) for ∥b∥p ≤ 1 with 0 < p < 1

H(p,M) The union of H(b, 1) for ∥b∥p,M ≤ 1 with 0 < p < 1

Sequences
Λ A multi-index set in Nd

0 (or F , if d = ∞), possibly finite or infinite

cΛ = (cν)ν∈Λ A vector or sequence with indices in Λ

supp(c) The support of c, i.e., the set of multi-indices ν for which cν ̸= 0

ν A multi-index in Nd
0 (or F , if d = ∞)

w = (wν)ν∈Λ A sequence of nonnegative weights

u = (uν)ν∈Λ The intrinsic weights, defined by uν = ∥Ψν∥L∞(U)

|S|w The weighted cardinality of a set S ⊆ Λ

m(Λ) m(Λ) = maxν∈Λ ∥ν∥1
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Neural networks
Φν DNN approximation to a basis function Ψν

N A class of DNN

A′ Approximate measurement matrix defined by Φν

J (·) Regularization functional J : N → [0,∞)

σ(·) Nonlinear activation function

Aℓ(·) Affine linear map Aℓ : RNℓ → RNℓ+1 , acting on the ℓ-th layer

Wℓ Weight matrix acting on the ℓ-th layer

bℓ Bias vector acting on the ℓ-th layer

L(·) Loss function

TΘ(·) Variable restriction operator TΘ : RN → Rn with |Θ| = n

Optimization
argmin The set of (global) minimizers of an optimization problem

A Measurement matrix defined by {Ψν}ν∈Λ

f (Noisy) measurement vector

λ Regularization parameter in an optimization problem

ĉ The reconstruction of a vector c via an optimization problem

G Objective function associated to a minimization problem
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Optimal learning
R(·) Arbitrary reconstruction map R : Vm → L2

ϱ(U ; V)

S(·) Adaptive sampling operator S : Y → Vm

∆(·) Scalar-valued reconstruction mapping ∆ : Rm → RN

Γ(·) Scalar-valued adaptive sampling operator Γ : RN → Rm

Bp
N (w) Weighted unit ball of elements in ℓpN (w)

θm(b) (Adaptive) m-width Θ(H(b); Y, L2
ϱ(U ; V)) where Y is a subspace of X

θm(p) (Adaptive) m-width Θ(H(p); Y, L2
ϱ(U ; V)) where Y is a subspace of X

θm(p,M) (Adaptive) m-width Θ(H(p,M); Y, L2
ϱ(U ; V)) where Y is a subspace of X

θm(p) Supremum of θm(b) over b ∈ ℓp(N) with ∥b∥p ≤ 1

θm(p,M) Supremum of θm(b) over b ∈ ℓpM(N) with ∥b∥p,M ≤ 1

dm(K,X ) Gelfand m-width of a subset K of a normed space (X , ∥ · ∥X )

Em
ada(K,X ) Adaptive compressive m-width of a subset K of a normed space (X , ∥ · ∥X )
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Sequences spaces and products
ℓp(Λ) The space of ℓp-summable, scalar-valued sequences indexed over Λ,

where 0 < p ≤ ∞

ℓpN (w) The finite dimensional space (RN , ∥ · ∥p,w)

⟨·, ·⟩ The Euclidian inner product on ℓ2(Λ)

σs(·)p The ℓp-norm best s-term approximation error

σs,L(·)p The ℓp-norm best s-term approximation error in lower sets

z̃ The minimal monotone or anchored majorant of a sequence z ∈ ℓ∞(Λ),
where Λ = Nd

0 or Λ = F (if d = ∞)

ℓpM(Λ; V), ℓpM(Λ) The space of Banach-valued or scalar-valued sequences with ℓp-summable
monotone majorants, where 0 < p ≤ ∞ and Λ = Nd

0 or Λ = F (if d = ∞)

ℓpA(Λ; V), ℓpA(Λ) The space of Banach-valued or scalar-valued sequences with ℓp-summable
anchored majorants, where 0 < p ≤ ∞ and Λ = Nd

0 or Λ = F (if d = ∞)

(k,w) Weighted sparsity k ≥ 0 with respect to the weights w ≥ 0

σk(·)p,w The ℓpw-norm best (k,w)-term approximation error

u · v Component-wise product of vector for functions in Lp(Ω)

u : v Component-wise product of tensors for functions in Lp(Ω)

w ⊙ v The Hadamard product w ⊙ v = (wivi)i∈[N ] for w,v ∈ RN

ρ⊗ ρ Tensor product for measures, e.g., ρ(d) = ρ⊗ · · · ⊗ ρ

w ⊗ v Tensor product of vectors, e.g., w ⊗ v = (wivj)i,j∈[N ] for w,v ∈ RN

; V Indicates spaces, norms, and approximation errors of sequences
that take values in a Banach space V, such as ℓp(Λ; V), ∥ · ∥p;V , or σs(·)p;V

xxiii
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ϱ Either a probability measure on [−1, 1] or the resulting tensor-product

probability measure on U = [−1, 1]d (or U = [−1, 1]N, if d = ∞)

Lp
ϱ(U) The space of p-integrable scalar-valued functions f : U → C

with respect to the measure ρ, with 1 ≤ p < ∞

L∞(U) The space of essentially bounded scalar-valued functions f : U → C

C(U) The space of continuous scalar-valued functions f : U → C

Lp
ϱ(U ; V) The space of p-integrable Banach-valued functions f : U → V

with respect to the measure ρ, with 1 ≤ p < ∞

L∞(U ; V) The space of essentially bounded Banach-valued functions f : U → V

Y Normed vector subspace of the Lebesgue-Bochner space L2
ϱ(U ; V)

C(U ; V) The space of continuous Banach-valued functions f : U → V
with respect to the uniform norm

Lp(Ω) Standard Lebesgue space of functions with a physical domain Ω

W s,p(Ω) Standard Sobolev spaces with s ∈ R and p ≥ 1

H1(Ω) Sobolev space with s = 1 and p = 2

H1/2(∂Ω), H−1/2(∂Ω) Space of traces of functions in H1(Ω), and its dual

H1
0(Ω) Sobolev space of functions in H1(Ω) with zero trace on the boundary Ω

L2
0(Ω) Space of functions in L2(Ω) with zero mean

L2(Ω) Space of tensor functions with each component in L2(Ω)

L2
skew(Ω) Space of skew-symmetric tensor functions in L2(Ω)

L2
tr(Ω) Space of trace-free tensor functions in L2(Ω)

H(divp; Ω) Space of vector functions v ∈ L2(Ω) with div(v) ∈ Lp(Ω), with p ≥ 1

H(divp; Ω) Space of tensor functions v ∈ L2(Ω) with div(v) ∈ Lp(Ω), with p ≥ 1

H0(divp; Ω) Space of tensor functions in H0(divp; Ω) with zero mean trace

H(div; Ω) , H(div; Ω) Special case of vector and tensor functions in H(div2; Ω)
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Chapter 1

Introduction

In order to understand our world, we rely on science to make forecasts and look for pat-
terns in nature, making observations and comparing them to our description of the uni-
verse through the language of mathematics. Computers have become fundamental tools for
achieving better and more reliable predictions of physical phenomena. We have seen scien-
tific computing providing support and faster simulations in various fields, such as economics,
biology, engineering, chemistry and physics, to name a few. However, modern scientific com-
puting still faces challenges describing complex phenomena involving specific quantities of
interest in those fields.

An essential task in scientific computing is the approximation of specific quantities of
interest involving physical phenomena depending on parameters. The setting for this thesis
is high-dimensional problems coming from computational science and engineering, especially
Uncertainty Quantification (UQ) [27,56,119,176,209,239,246]. Its contributions are optimal
and efficient methods for learning high-dimensional, Banach-valued functions from limited
data with theoretical error guarantees and sample complexity bounds. The material in this
thesis is based on [7, 8, 10,18].

1.1 Problem statement

In particular, we study parametric models that take a parametric variable y and give as
an output f(y). We assume that y belongs to a parametric domain U , typically a subset
of Rd, where d ∈ N ∪ {∞}, and f takes values in a space V. Specifically, given m sample
points y1, . . . ,ym ∈ U we consider approximations to

f : U → V,y 7→ f(y),

from its m sample values (or snapshots)

f(y1), . . . , f(ym) ∈ V. (1.1.1)
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In this thesis, the mechanism computing the sample values f(y) is assumed to be available
and is treated as a black box. As noted in [12, Rmk. 1.1], we refer to methods that construct
an approximation of f from its sample values as nonintrusive methods. In practice, one may
only want to approximate a certain scalar-valued quantity of interest Q(f(y)) of f . Typical
examples include the mean of f over some physical domain, or its evaluation at a specific
point. However, approximating f itself allows one to subsequently approximate arbitrarily
many quantities of interest of it. See, e.g., the last paragraph of [12, §1.2.3].

Due to their relevance in the main motivating applications, we consider smooth functions
in this thesis. The formal definition of a holomorphic function will be presented in section
§2.3. Informally, we say that a target function f of a parametric model is smooth when
it is holomorphic with respect to its parameters y. Hence, it is natural to compare our
theoretical results with those current benchmark methods for smooth functions, e.g., the
best s-term polynomial approximation as suggested in [12].

1.2 Motivations

Although our work applies more generally, this thesis is primarily motivated by parametric
Differential Equations (DEs) [63, 71]. In UQ, many applied problems are posed in terms
of (systems of) Ordinary Differential Equations (ODEs) or Partial Differential Equations
(PDEs) that are smooth with respect to their parameters (see §1.6 and §2.3). In this setting,
given a parameter y ∈ U , obtaining the output f(y) ∈ V may involve an expensive numerical
simulation to approximately solve the PDE. This fact motivates the construction of efficient
algorithms to accurately approximate f from the least amount of samples m as possible.

Parametric DEs

In most applications involving the solution of a DE, obtaining measurements from the
real world may introduce uncertainties in some parameters. For example, in fluid dynamics,
some mechanical properties of the fluid may be uncertain due to changes in the environment,
errors in measurement devices or lack of computational resources. These uncertainties can
be modelled as random variables, and the resulting stochastic differential equations can be
reformulated as deterministic PDEs [156, §2.1.1]. Then, using this framework, relevant and
valuable statistics from solutions of PDEs with random input data can be computed [268,
Chp. 1]. As mentioned in [156, §1.1.2], in practice, this is done by computing the solution
of the underlying PDE for a large set of values of y using expensive iterative solvers, e.g.,
fixed-point iteration methods.

In such problems, one considers a function u = u(x,y), depending on parametric and
physical variables y ∈ U and x ∈ Ω, respectively, that arises as the solution of a DE system

Dx(u,y) = 0. (1.2.1)
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Here Dx(·,y) is a differential operator in x that depends on the parameters y, that also
encodes the relevant boundary or initial conditions for the problem. Hereafter, we use the
notation u = u(y) instead of f = f(y) when refering specifically to the case where the
function to be approximated arises a the solution of a DE.

Common examples include parametric diffusion problems, natural convection in porous
media, Boussinesq approximations, Navier-Stokes equations, and various other generally
nonlinear and coupled systems. Understanding these problems is relevant, for example, in
fluid mechanics, where the viscosity of the fluid may be unknown [222,240] and its paramet-
ric dependence may be caused by an undetermined contaminant, an error in measurements
or external factors. Below we provide two of the three motivating examples of parametric
PDEs considered in this thesis.

Parametric elliptic diffusion equation

A classic example is the parametric elliptic diffusion equation: Given y ∈ U , find u such
that

−div(a(x,y)∇u(x,y)) = F (x), x ∈ Ω, u(x,y) = 0, on ∂Ω, (1.2.2)

where the diffusion coefficient a(x,y) is parametric, and the forcing term F (x) is non-
parametric. In electrostatics, it describes the potential field generated by a given charge
distribution [153]. It is also crucial in modeling the conduction of heat in solids [221] and
has various applications in fluid dynamics [33,109,269].

Parametric Navier-Stokes-Brinkmann equations

Another example that will be considered in this thesis is the parametric nonlinear stationary
Navier-Stokes-Brinkmann (NSB) equations with random viscosity. Consider a bounded and
Lipschitz physical domain Ω ⊆ R2. Given y ∈ U , the modelling of a viscous fluid in a porous
medium within Ω can be described by the incompressible NSB equations with random
viscosity: find u : Ω × U → R2 and p : Ω × U → R such that

ηu(y) − λdiv(a(y)e(u(y))) + (u(y) · ∇)u(y) + ∇p(y) = f, in Ω (1.2.3)

div(u(y)) = 0, in Ω

u =

uD, on ∂Ωin

0, on ∂Ωwall

(a∇e(u) − pI)ν = 0, on ∂Ωout∫
Ω
p = 0,

3



where λ = Re−1, where Re is the Reynolds number, a : Ω×U → R+ is the random viscosity
of the fluid, η ∈ R+ is the scaled inverse permeability of the porous media, u is the velocity
of the fluid, e(u) = 1

2(∇u + (∇u)t) is the symmetric part of the gradient and p is the
pressure of the fluid. Moreover, f : Ω → R is a forcing term that is independent of the
parameters. Here, we consider a nonzero inflow on the inlet ∂Ωout, a zero normal Cauchy
stress on the outlet ∂Ωout and a no-slip condition on the walls ∂Ω \ {∂Ωout ∪ ∂Ωin}. Note
that, to simplify the notation, we have dropped the x term from (1.2.3).

The deterministic version of this problem is taken from [115, §5.2] and was introduced
in [256]. The study of the effect of a random viscosity on Navier-Stokes type of equations
is important to determine measurement errors or uncertainties in porous media [177]. In
particular, if the viscosity is not known precisely, introducing it as a random variable in the
NSB equations can be used to characterize such uncertainties statistically instead of relying
on measurements which may not capture the variability of the viscosity of the fluid through
porous media.

Returning to the general problem (1.2.1), we assume that the (numerical) PDE solver is
a black box (see also §1.4) that generates the m sample values (1.1.1) of f(y) = u(·,y).
The construction of approximations to the parametric map y 7→ u(·,y) without modifying
the numerical PDE solver, as mentioned on §1.1, is known as a nonintrusive approach. In
contrast, this thesis does not aim to cover the so-called intrusive methods, where the specific
DE is an essential part of the construction of the approximation. See [96, 122, 239, 246] for
more details on intrusive methods.

1.3 Challenges

Towards the end of 1957, when Richard Bellman published his book Dynamic Programming
[38], the mathematical community was already starting to understand the computational
limitations when dealing with high-dimensional problems. Many problems in UQ, such as
those stemming from (1.2.1), require us to construct approximations to functions perform
approximations of functions depending on many (or even infinitely-many) parameters that
describe even more complex phenomena. For example, it is common to use Karhunen-Loève
(KL) expansions to model diffusion coefficients as in (1.2.2). See, e.g., [176, §2.1] further
discussion and examples of modeling random fields with KL expansions. Most of the time,
it is either impossible or prohibitely expensive to exactly evaluate the underlying function
or relevant quantity of interest. Thus, techniques for computing accurate approximations of
such functions have become indispensable for modern CSE.

With this in mind, we now describe the main challenges this thesis aims to tackle.
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The challenge of high dimensions

As mentioned in [12], Bellman coined the term curse of dimensionality (see also [38,39,63])
to describe computational situations that appear when certain approximations that work
well in lower dimensions start to show undesirable results in higher dimensions. It can
also impact the problem in different ways. For some sampling-based approaches (e.g., some
stochastic collocation rules) it can require a number of points depending exponentially on
the dimension [209, Rmk. 3.12]. This could lead to undesirable algorithm performance or
results without meaningful representation of the physical phenomenon.

Hence, the foremost challenge is developing efficient efficient methods for approximating
computational models in UQ that maintain their performance as the dimension of the model
increases, thereby defeating the curse of dimensionality.

The challenge of Banach-valued functions

Obtaining the sample values in (1.1.1) is not a straightforward task, since the output space
V is typically an infinite-dimensional function space, and therefore requires discretization.
We typically know relevant details of the algorithms used for computing such discretizations
(e.g., via a Finite Difference (FD), Finite Element (FE) or spectral method), such as con-
vergence rates with respect to the number of degrees of freedom used in the discretization.
However, this process always incurs an error, and therefore it is vital that the subsequent
approximation method is robust, and has quantifiable bounds with respect to this error.
In particular, as an input of the process to simulate, we have a parameter y ∈ U , and the
output f(y) ∈ V, where V is a function space, e.g., Lebesgue and Sobolev spaces. Most
current works consider models where the output is a scalar- or Hilbert-valued function.

While standard PDE problems, such as (1.2.2), are naturally formulated in weak form in
Hilbert spaces, the efficient numerical solution of more complex PDEs increasingly involves
weak formulations in Banach spaces [52,81,110,116,149]. As an example, a primal formula-
tion (in the sense of FEM) of the steady-state Navier-Stokes equations (NSE) usually gives
a solution belonging to a Hilbert space [240, §3]. However, a mixed formulation of the NSEs
could be posed in Banach spaces as in [149]. More generally, problems of Banach-valued
function approximation arise naturally in the context of UQ within the framework of para-
metric operator equations [98,99,225,234]. In addition, when providing recovery guarantees
and approximation rates for smooth function approximation, certain results are easily ex-
tendible from the scalar- to the Hilbert-valued setting, due to the presence of an inner
product. However, extending results from the Hilbert-valued setting to the Banach-valued
case is more delicate. The absence of an inner product heavily impacts the analysis of such
methods.

Specifically, this thesis investigates the approximation properties, convergence and limits
of approximability of methods of computation depending on samples for smooth function
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approximation in Hilbert and Banach spaces. As mentioned above, our focus is mainly on
parametric solution maps of PDEs where different types of weak formulations may lead to
different solution maps y 7→ f(·,y) ∈ V.

The challenge of obtaining samples

With modern technological advances, data may seem unlimited, available and free of errors.
For instance, the classification of images in social media benefits from a large source of high-
quality training samples from users. This is far from what happens in practice in CSE. Here,
many problems are data-starved or work with scarce data since most of them rely on large,
costly simulations. For instance, in practical parametric DEs applications, generating sample
values of the form (1.1.1) involves using computationally expensive solvers or acquiring
expensive real-world data. Furthermore, to get better approximations to the underlying
physical process, CSE requires ever more complex mathematical models, with more features
to analyze (more parameters). As mentioned in [12, §1.1], there is consequently a need for
algorithms whose sample complexity does not scale poorly as the parametric dimension
increases.

This also gives rise to another challenge: namely, the measurements of f(y) are always
inexact. Here different sources of error must be considered, such as random noise, numerical
errors, and calibration errors in physical devices, to name a few. Hence, the last challenge is
developing methods so that corruptions in the samples do not lead to a drastic deterioration
in the resulting approximations. We refer §2.7 for further details on these errors.

Identifying the challenges

In order to give a clear understanding of how these main challenges in UQ affect the main
results in the thesis, we divide them into four key challenges. First, rather than considering
sample values as in (1.1.1), we now consider m noisy sample values given by

di = f(yi) + ni ∈ V, i = 1, . . . ,m, (1.3.1)

where ni is a measurement error term in the ith measurement.
We now state the four key challenges that motivate this work:

(C-i) The domain U ⊆ Rd of f high- or infinite-dimensional, e.g., typical parametric DEs
depend on many parameters.

(C-ii) Generating data is expensive, e.g., acquiring each sample di may involve running a
numerical PDE solver.

(C-iii) The data di is corrupted by errors, e.g., numerical errors resulting from the PDE
solver.
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(C-iv) The function f takes values in an infinite-dimensional function space V, typically a
Hilbert or Banach space.

1.4 Key considerations in this work

To frame our main contributions, we need several further fundamental considerations.

Lebesgue-Bochner spaces

In general, this thesis considers a function f ∈ X , where in most cases (X , ∥ · ∥X ) is a
Lebesgue-Bochner space. Typically, we consider X as the Bochner space L2

ϱ(U ; V) (see Chap-
ter 2 for the definition). The parameter domain U is a subset of Rd or RN, and the output
space is a Banach or Hilbert space. As we describe next, the parameters (yk)d

k=1 are usually
assumed to be independent and vary in bounded intervals Uk ⊂ R (which, up to rescal-
ing, can be taken to be equal to [−1, 1]). Thus y = (yk)d

k=1 belongs to a hyperrectangle
U = ∏d

k=1 Uk. In particular, we focus on the symmetric hypercube U = [−1, 1]d of side
length 2 with d ≫ 1 or d = ∞.

The sampling strategy

This thesis considers sample points y drawn from a probability measure ϱ on U [12]. Specif-
ically, we obtain the samples using Monte Carlo sampling (MCS), which draws independent
and identically distributed random samples y1, . . . ,ym ∈ U . This is very common in prac-
tice, particularly in high-dimensional UQ settings. As mentioned in [122, §3.1], by using
MCS methods one can obtain error decay that scale mildly with (or are independent of) d,
which is a clear advantage in view of (C-i). However, in practice, generating enough data
and sample values f(y) to do a useful study may take seconds or minutes, to days or even
weeks. Thus, challenges (C-ii) and (C-iii) remain present.

Remark 1.4.1 As a further consideration, we note that in many scenarios one may have
substantial flexibility to choose the sample points y1, . . . ,ym ∈ U in (1.1.1). However, in
other scenarios they may be fixed, e.g., when dealing with legacy data or when we have
no control over the sampling procedure. As mentioned above, we consider Monte Carlo
sampling – which may be considered either as a chosen sampling strategy or a fixed one,
depending on the setting.

A black box model
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Given an input yi, we assume that we have access to a black box model (or solver in a PDE
setting) producing an output that approximates f(yi). These approximations must belong
to a finite-dimensional space and be characterized by a finite set of numbers. Specifically, the
sample values di in (1.3.1) are assumed to be elements of a finite-dimensional space VK ⊆ V
of dimension K ∈ N. For example, in a PDE setting VK may be chosen as a FE space.
Here, we do not specify precisely how such an approximation is performed, nor how large
an error this results in. In other words, we consider the computation that evaluates f at yi

as a black box. A particular case of interest is when the di are the orthogonal projections
of the exact sample values f(yi). However, we do not assume this in what follows since, in
practice, the numerical computation that yields di may not involve computing a projection.
Our objective is to develop approximations for which the error scales linearly in ∥n∥2;V , the
norm of the noise (ni)m

i=1 defined in (1.3.1), thus accounting for any black box mechanism
for computing the samples.

Known versus unknown anisotropy

In general, high-dimensional approximation is only possible under some type of anisotropy
assumption, i.e., the function in question depends more strongly on certain variables than
others. In some cases the nature of this anisotropy – i.e., the order of importance of the
variables and the relative strengths of the interactions between them – may be known in
advance. However, in more realistic scenarios, it is unknown. On the one hand, in the known
anisotropy setting, a reconstruction procedure can use this information to achieve a good
approximation uniformly over a certain class of smooth functions. On the other hand, in the
unknown anisotropy case, the reconstruction procedure has no access to this information.
In this work, we consider both the known and unknown anisotropy settings.

Uniform versus nonuniform recovery

We now describe uniform and nonuniform recovery, which are subtely different concepts.
The latter describes the situation where a single draw of the points y1, . . . ,ym is sufficient
for recovery of a fixed function f with high probability up to the specified error bound.
Conversely, uniform recovery concerns the situation where a single draw of the sample
points y1, . . . ,ym is sufficient for recovery of any function with high probability up to the
specified error bound. The reason for this difference in our theoretical results stems from
bounding a certain discrete error term (see, e.g., the discussion in Remark 3.3.4), which is
a random variable depending on f and the sample points.
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1.5 Methods considered in this thesis

This thesis focuses on the use of polynomial and Deep Learning (DL)-based methods for
smooth function approximation. Polynomials lie at the heart of many well-established ap-
proximation schemes. On the other hand, machine learning techniques based on Deep
Neural Network (DNNs) have achieved some impressive results in inverse problems in
imaging, PDEs, protein structure prediction, and biological applications, to name a few
[87,118,158,163,172,235].

1.5.1 Polynomial approximation

Polynomial-based methods are a convenient tool for deriving explicit convergence rates for
function approximation in high- or infinite-dimensions. These convergence rates are fast
when assuming that the function f is smooth with respect to its variables. For instance,
best polynomial approximation rates can be as fast as exponential in the number of terms
in the polynomial expansion [12, §1.3]. In this thesis, we consider the best polynomial
approximations of holomorphic functions. Such functions are relevant for the parametric
DE problems considered in this thesis (see §1.2) but are not necessary for using polynomial-
based methods.

1.5.2 Deep Learning

Mathematically, the first construction of a DNN appeared in [193]. In recent years, Deep
Learning (DL) and DNNs have begun to have a significant impact on scientific computing
and its many applications. Impressive results have been achieved by training large models
with billions of parameters using vast datasets on large distributed computing resources.
However, many still question their use in critical applications that require rigorous safety
standards. As the process of training DNNs on real-world or synthetic data is increasingly
considered for applications in medicine, science, and engineering, it is important to quantify
the efficiency and reliability of DL from both theoretical and practical standpoints.

1.6 Key questions in this thesis

In this thesis, we focus on overcoming the challenges (C-i) to (C-iv) above through the de-
velopment of stable, accurate and efficient approximations to holomorphic high- or infinite-
dimensional Banach-valued functions, based on polynomials and DNNs. We also study
fundamental limits of approximatibility for such functions, using the theory of m-widths,
Gelfand widths and Kolmogorov widths.

To guide the reader and highlight the main contributions in each chapter, we pose nine
fundamental questions. Our answers to these question will involve polynomial approxima-
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tions based on compressed sensing and efficient restart schemes for first-order optimization
solvers.

Question 1 Are there methods for computing approximations to holomorphic, finite- or
infinite-dimensional, Hilbert-valued functions from limited samples that achieve similar the-
oretical rates as benchmarks such as the best s-term polynomial approximation?

Question 2 Can these methods be implemented efficiently as algorithms, and what is their
computational cost?

In particular, keeping in mind challenge (C-i), from Question 2 we pose two more specific
questions.

Question 3 Is it possible to approximate a holomorphic Hilbert-valued function of
infinitely-many variables with error decaying algebraically fast in m via an algorithm whose
computational cost is subexponential in m?

Question 4 For finite-dimensional problems, i.e., d < ∞, is it possible to approximate
a Hilbert-valued holomorphic function with error decaying exponentially fast in m via an
algorithm whose computational cost is polynomial in m?

Note that Questions 1–4 will constitute a substantial part of this thesis. Specifically
Chapters 3–4 deal with algorithms computing near-best polynomial approximations in
Hilbert spaces. We also broaden our focus to considering Banach-valued functions in Chap-
ters 5–7, where we turn our atention to an an alternative approach. The answer to the four
following questions involve DL and more specifically DNNs, key extensions of compressed
sensing for Banach-valued functions and emulation of polynomials via DNNs.

Question 5 In the known or unknown anisotropy case, is it possible to learn smooth high or
infinite-dimensional Hilbert- or Banach-valued approximations from a limited dataset using
DNNs with a complete theoretical understanding of the sample complexity and approximation
rates?

Question 6 Is it possible to efficiently apply DL to learn smooth parametric functions
with architectures commonly used in practice to approximate Banach-valued solutions of
challenging DEs from limited samples, and does it achieve close to the theoretical rates
espoused by Question 5?

As mentioned in §1.3, there is a growing interest in the study of Banach-valued solutions of
parametric PDEs in the context of parametric PDEs. Consequently, it is crucial to identify
and extend key results from smooth function approximation from the Hilbert- to the Banach-
valued case. A key question involves investigating whether, in practice, approximating more
general Banach-valued functions results in a worse decay rate compared to Hilbert-valued
approximation.
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Question 7 Is there any preliminary empirical evidence indicating that learning a Banach-
valued solution of a parametric DE exhibits a decay rate in terms of the number of samples
that is worse than in the Hilbert-valued case?

Next, the answer to the following question involves optimal learning and a natural
question that arises when deriving the approximation rates in the previous context. More
precisely, we seek to determine the underlying limits of approximability from limited samples
for smooth functions.

Question 8 Are the approximation rates derived in answering Questions 1–5 optimal?

Our final inquiry is related to the challenges (C-iii) and (C-iv) from §1.3. In this work,
it is important to understand the impacts of different types of errors in the approximations.
Various factors, including numerical errors, physical discretization errors, sampling errors
and optimization errors (commited when certain minimization problems are not solved
exactly) can influence the accuracy of the approximations.

Question 9 How do various types of errors, such as numerical errors, physical discretiza-
tion errors, sampling errors and optimization errors, impact the accuracy of the approxi-
mations constructed in answering Questions 1–5?

1.7 Outline and contributions of this thesis

We now briefly outline the remainder of this thesis and describe the contribution of each
chapter in relation to the key questions above.

Chapter 2 is a crucial starting point, providing a comprehensive presentation of the
general notation used in this thesis. It also introduces significant function spaces, rele-
vant examples, and additional considerations. This chapter formally defines the concepts of
smoothness, holomorphy, and parametric dependence, along with the best s-term polyno-
mial approximation and DNNs. These concepts lay the foundation for the analysis in the
subsequent chapters.

Chapter 3 is dedicated to addressing Questions 1 and 9 in the context of polynomial
approximation. It focuses on the methods used for computing polynomial approximations to
Hilbert-valued functions. We present three main theorems that deal with finite and infinite-
dimensional cases, focusing on unknown anisotropy.

The methods developed in Chapter 3 are not algorithms, as they rely on exact minimizers
of certain convex optimization problems. In Chapter 4, we address this issue, by developing
efficient algorithms that approximately solve these problems. In particular, we show that
these algorithms achieve the desired approximation rates, thereby answering Questions 2–4,
and remain robust to the other sources of error, thus answering Question and 9.
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In Chapter 5 we switch focus and consider DL-based methods. We also extend from
Hilbert-valued to Banach-valued functions. Our goal is to answer Questions 5 and 9, and to
derive similar rates to those shown in the previous chapters. The key idea in this chapter
involves emulating polynomial approximation methods, specifically, those based on least
squares and compressed sensing, as DNN training problems.

In Chapter 6, we introduce new concepts based on optimal learning. Our aim is to deter-
mine whether or not the algebraic approximation rates obtained by the methods developed
in Chapters 3-5 are optimal. Specifically, this chapter aims to answer Question 8 by us-
ing the theory of (adaptive) m-width, and by reducing the problem to one of determining
lower bounds on the Gelfand and Kolmogorov widths of certain weighted unit balls in finite
dimensions.

Chapter 7 presents three numerical experiments that address Questions 6–7. The ex-
periments consist of three parametric PDEs: an elliptic diffusion equation, a Navier-Stokes-
Brinkman equation and a Boussinesq equation. We provide a detailed methodology to ensure
reproducibility, describe each problem and its main challenges, and analyze the empirical
results, highlighting their significance and relevance to the thesis.

The thesis also includes several appendices that supplement the main content. In Ap-
pendix A, we utilize the arguments presented in [12] to demonstrate that, by employing a
mixed formulation (in the sense of FE), the parametric solution map of the Poisson problem
is a mapping for which the theory developed in the previous chapters applies. Appendix
B presents several key lemmas necessary to achieve the desired error bounds discussed in
Chapter 6.

1.8 Literature review

In this section, we describe how our works relate to several existing areas of research and
previous works. We commence with a general overview of works relating parametric DEs
and smooth function approximation.

A substantial body of literature has demonstrated that solution maps for various para-
metric DEs are holomorphic functions of their parameters [27,56,63,71,77,122,144,157,258].
To mention a few examples: elliptic PDEs with both affine and nonaffine parametric de-
pendencies, parabolic PDEs, PDEs defined over parametrized domains dealing with shape
uncertainty, parametric Initial Value Problems (IVPs), parametric hyperbolic problems,
and parametric control problems. More classical results in this area can be found, for in-
stance, in [265] and related references. For surveys on more recent findings, we direct readers
to [71], [12], and related references.

Alongside efforts to establish holomorphic regularity of parametric DEs, there has been
a focus on applying polynomial approximation, particularly best s-term polynomial approx-
imation, to construct finite approximations to such functions. As mentioned in §1.5.1, best
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s-term approximation involves approximating the function f using an s-term expansion
that corresponds to its largest s coefficients (measured in a suitable norm) with respect to a
polynomial basis. Common choices for the basis include Taylor polynomials, tensor-product
Legendre and Chebyshev polynomials on bounded hypercubes, or tensor-product Hermite
and Laguerre polynomials on Rd or [0,∞)d. See [234] for a detailed overview.

In this thesis we focus on nonintrusive surrogate model constructions where various
methods have been developed. A partial list includes sparse polynomial approximation
[36, 43, 63, 64, 71, 72, 136, 137], Gaussian process regression (or kriging) [239, 246], radial
basis functions [159, 239], reduced-basis methods [143, 223], and most recently DNNs and
DL [7,16,82,84,87,141,180,214,215,236].

1.8.1 Chapter 3

The systematic study of best s-term polynomial approximation of high- or infinite-
dimensional holomorphic functions began around 2010 with the works of [43,72,73,136,255].
For reviews, see [71] and [12, Chpt. 3]. Note that many of these works assume that the func-
tion is a solution of a parametric PDE, and therefore first demonstrate that such a function
is holomorphic. However, other works avoid this step and use specific properties of the DE
to obtain refined estimates. See, e.g., [29,30] for results of this type. Other recent works such
as [47] also study the problem without assuming the function is a solution of a parametric
PDE.

The study of least-squares method for constructing such approximations from sample
points began in the early 2010s [61, 70, 195, 200]. Many works have pursued various exten-
sions, such as enhanced sampling strategies [124, 199, 204, 237, 251, 277, 278], near-optimal
sampling strategies [13,74,132], optimal sampling strategies [32,101,102,160,182,253], meth-
ods for general domains [20, 100, 198], optimal and adaptive methods [76, 196, 197] and
multilevel strategies [131]. See [75,126,130] and [12, Chpt. 5] for reviews.

Compressed sensing was introduced in the context of image and signal processing by
modelling image and signals as sparse vectors [19, 54, 103, 112]. Its use in polynomial ap-
proximation started early in the last decade with the works of [45, 104, 191, 226, 271].
This has also led to substantial research. See [94, 95, 104, 191, 225, 273] and references
therein for applications to parametric PDEs. Various extensions include refined sampling
strategies [23, 97, 127, 133, 155, 183, 250], iterative methods and basis selection techniques
[22, 135, 262, 274–276], nonconvex optimization methods [123, 257, 270, 272], sublinear-time
algorithms [65, 66], gradient-enhaced minimization techniques [21, 125, 154, 218, 245, 249],
methods for dealing with corrupted samples [3, 4, 145, 238] and multilevel and multifidelity
strategies [48, 208]. For additional information and reviews, see [134, 166, 190, 205] and [12,
Chpt. 7].

Here, weighted ℓ1-minimization plays an important role and has been developed in
works such as [1–3, 12, 64, 217, 227, 273] and [12, Chpts. 6-7]. Alongside with the notions of
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lower and anchored sets (see §2.4.4). These have been extensively studied in the best s-term
polynomial approximation literature. Compressed sensing techniques aiming to exploit such
structures were first considered in [2, 3, 64] and [12, Chpt. 7]. Moreover, the extension of
classical compressed sensing theory from vectors in RN (or CN ) to Hilbert-valued vectors in
VN was first developed in works such as [95,234]. In Chapter 3 in order to prove our main
results, we also extend this framework to the weighted setting and Banach-valued case.

1.8.2 Chapter 4

Primal-dual methods have, over the last decade, been established as efficient methods for
solving (convex) optimization problems, especially for image reconstruction [279]. In [207]
the authors show convergence of the ergodic sequence of the form O(1/t) for t number of
steps. In [57] the authors show a over-relaxation step with a similar rate to [207]. See [58,59]
for more on the primal-dual iteration and [228–230] for the general notion of restarts in
continuous optimization. We use primal-dual methods to solve (weighted) ℓ1-minimization
problems in compressed sensing. Note that there are also various non-optimization based
techniques in the compressed sensing literature (see, e.g., [112]), including iterative threshold
and greedy methods (the latter are closely related to the adaptive least-squares methods
discussed earlier [12, §6.2.5]). However, these do not currently possess theoretical guarantees
in the weighted setting.

There have been several previous attempts to connect compressed sensing theory for an-
alyzing the sample complexity of polynomial approximations via (weighted) ℓ1-minimization
and best s-term polynomial approximation theory. In [225], the authors consider approxi-
mating scalar quantities of interest of solutions to affine parametric operator equations in
Banach spaces. Assuming a certain weighted summability criterion, they first show holo-
morphy of the parametric solution map and then use a weighted ℓ1-minimization procedure
in combination with Chebyshev polynomials to derive algebraic rates of convergence in the
L2

ϱ-norm of the form O
(
(m/polylog(m))1/2−1/p

)
. The work in Chapter 4 is more general,

since its starting point is a holomorphic function, not a solution of a parametric operator
equation. We also consider Hilbert-valued functions, i.e., the whole solution map, not a
scalar quantity of interest of it. Moreover, the work of [225] is based on exact minimizers
of certain constrained, weighted ℓ1-minimization problems, whereas we construct full al-
gorithms. Recently, at the same time as writing the theory for this chapter, some similar
results were presented in the book [12]. However, these only consider the scalar-valued case
and do not address algorithms, which is the main focus of Chapter 4.

1.8.3 Chapter 5

In CSE, there is increasing empirical evidence that DL is a promising tool for solving chal-
lenging problems, such as UQ problems where the underlying model is described in terms
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of parametric DEs [7, 37, 42, 68, 85, 90, 118, 121, 138, 162, 168, 178, 181]. In addition, theoret-
ical results on DNNs overcoming the curse of dimensionality (in some suitable sense) have
emerged [202], but they do not address how the training procedure learns from limited
samples. Obtaining these samples is often expensive, involving physical or numerical exper-
iments. For example, in uncertainty quantification problems where the underlying model is
described by the solution of DEs, costly numerical solvers are typically used to obtain these
sample evaluations. Therefore, understanding the sample complexity of training DNNs is
crucial.

As we explain later, Chapter 5’s main results are established by emulating polynomials
using DNNs. Early approaches on approximation methods for smooth functions involving
multivariate polynomials include interpolation schemes using sparse grids (see [62, 71, 75]
and [12, Chpt. 1] and references therein). As discussed in [12, §1.7], these methods are best
suited to the known anisotropy setting, since they generally require a priori knowledge of
a good polynomial subspace in which to construct the approximation. They also do not
generally obtain optimal rates in terms of m, due to growing Lebesgue constants [62, 75].
More recently, there has been significant focus on least-squares methods [61, 70, 200] and
methods based on compressed sensing [104,191,226]. See [12, Chpts. 5 & 7] for reviews. The
former are suitable for the known anisotropy case since they require knowledge of a good
polynomial subspace. In contrast, the latter can handle the unknown anisotropy setting.

Using polynomial techniques to establish theoretical guarantees for DNN training from
limited samples was previously considered in [7, 16]. These works consider either scalar- or
Hilbert-valued functions in finite dimensions and approximation via ReLU DNNs. Chapter 5
can be considered a theoretical extension to the (significantly more challenging) infinite-
dimensional and Banach-valued setting, using other families of DNNs. As noted above,
emulation of DNNs by polynomials is a well-established technique in DNN approximation
theory. In this chapter, we use ideas from [91, 180, 215, 235] to establish our main results.
For more on polynomial-based methods for high-dimensional approximation, see [12,64,71]
and references therein. See also [172] for a different approach based on reduced bases to
derive DNN approximation results for parametric PDEs.

Another line of recent DL research involves learning operators between function spaces
[42, 53, 174, 181, 189, 206, 267]. This is motivated in great part by parametric PDEs, where
the operator is, for example in the case of (1.2.2), the mapping from the diffusion coefficient
to the PDE solution a ∈ L∞(Ω) → u = u(·, a) ∈ H1

0(Ω). Chapter 5 is related to this line
of investigation in that we assume a parametrization of a in terms of an infinite vector
y ∈ [−1, 1]N for which the map y 7→ u(·,y) is holomorphic. However, it is also different
in scope, as we consider approximating an arbitrary Banach-valued, holomorphic function
f : U → V which may or may not arise as the solution map of a parametric DE. We note
also that many of the aforementioned works assume a Hilbert space formulation, whereas
we consider Banach spaces.
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1.8.4 Chapter 6

When applied to infinite-dimensional, holomorphic, Hilbert-valued functions, the methods
developed in Chapters 3-5 of this thesis exhibit algebraic rates of convergence of the form
O
(
(m/polylog(m))1/2−1/p

)
when applied to the class of Hilbert-valued smooth functions.

Here, m represents the number of pointwise samples, typically Monte Carlo samples, and
0 < p < 1 is a smoothness parameter. However, to the best of our knowledge, few works
have sought to determine the underlying limits of approximability from samples for such
function classes.

The study of Kolmogorov widths began around 1936, as mentioned in [187] and [165].
Since then, it has been widely used to study how well the worst element of a space can be
approximated. Other works, such as [220] and references therein, have contributed to the
essential theory of widths. Recently, works like [28,44] have provided a detailed mathemat-
ical description of the concept of optimal learning in the context of PDEs, and [101] has
addressed the approximation of functions based on pointwise data.

Gelfand widths, as discussed in [111], have become key to understanding the limits of
approximation and performance bounds for sparse recovery methods. For methods using
compressed sensing and results on m-widths providing matching upper and lower estimates
for certain classes of functions in ℓp balls, we refer to [69] and references therein.

It is worth noting that while [28] considers Kolmogorov widths for Hilbert-valued func-
tions u(y) arising as solutions to certain parametric elliptic PDEs, it does not address the
question of finite samples.

Generally speaking, our work in Chapter 6 is related to recent advances [44, 253] in
optimal recovery [93, 194]. We use concepts and ideas from information-based complex-
ity [210–212, 260], in particular m-widths, to understand the aforementioned limits of ap-
proximability from samples for smooth functions. More specifically, we use lower estimates
for the Gelfand widths, Kolmogorov widths and in general m-widths theory (see, e.g., [220]).

1.8.5 Chapter 7

Note that the majority of the content in this thesis is theoretical. However, Chapter 7 focuses
on the practical implementation of DL for approximating complex parametric PDEs. As
previously mentioned, recent advances have demonstrated that DNNs can efficiently learn
solution maps of parametric PDEs, significantly improving computational speed. Yet, a gap
remains between theory and practice [16]. After reviewing recent developments, highlighting
significant works, methodological advancements, and emerging trends in the application of
DNNs to parametric PDEs, we now turn our attention to the specific PDEs addressed in
Chapter 7.
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The Poisson problem

The Poisson problem, described by the equation −div(∇u) = f , has numerous significant
applications in science and engineering. As mentioned in §1.2 it is applied in electrostatics
[153], heat transfer in solids [221] and fluid dynamics [33,109,269].

When using FEM to solve the Poisson problem, some variables are obtained by direct
differentiation (e.g., the gradient of u), which can result in a loss of accuracy [173]. In many
practical applications, it is important to obtain accurate approximations of the gradient
or other variables of interest. To address this, various methods have been employed mixed
formultions, or other methods to solve the Poisson problem. For detailed discussions on
these methods, we refer to [71,108,113,114,219,233] and the references therein.

Many recent works have shown that DL is effective at learning the solution of the
parametric Poisson equation. There are numerous studies on this topic, including [42, 83,
85,139,167,172], to name a few.

Navier-Stokes-Brinkman equations

The Navier-Stokes-Brinkman (NSB) equations model a wide variety of viscous fluids through
porous media, phase change models, and fluids in complex geometries [150,161,188]. In some
cases, the velocity flow or the geometry becomes too complex to model via Darcy’s or Navier-
Stokes equations, and the incorporation of the Brinkman model provides good accuracy in a
variety of contexts [152, §1.1]. For instance, NSB equations appear in [266] where the authors
present a 2D numerical model for natural convection in a square cavity for a melting process.
For a review of phase change models, we refer to [105]. A model closer to the one used in
this thesis appears in the prediction of a filter and absorption of contaminants in water
purification problems [201]. Several works have employed different methods to numerically
solve similar Stokes, Navier-Stokes, and Brinkman flows. See, e.g., [31,46,115,117,129,152]
and references therein.

Boussinesq approximation

The analysis of an incompressible viscous fluid governed by the Navier-Stokes equations
coupled with a nonlinear heat equation is considered in [24] as the Boussinesq approximation
for a constant viscosity. An early derivation of the Boussinesq approximation in a non-
stationary combustion theory framework can be found in [192]. Years later, in [41] the
authors prove the existence and uniqueness of an analogous non-parametric Boussinesq
approximation. For further details we refer to [55, 128, 175, 185]. The nonlinear coupled
problem is considered through a temperature-dependent viscosity and a buoyancy term
approximation given in [86,216], the latter is based on the theoretical derivation in [184]. A
primal formulation (in the sense of FEMs) for the viscosity and thermal conductivity of the
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fluid, which depend on the temperature, are discussed in [81]. The weak formulation of the
Boussinesq problem in Chapter 7 is based on the fully-mixed formulation in [116] taking
ideas from [81].
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Chapter 2

General preliminaries

In this chapter, we describe the main notation, definitions and technical details required
throughout this thesis.

2.1 Notation

We now introduce the main notation used in this thesis. We denote N and N0 as the sets of
positive and nonnegative integers, respectively, and R+ for the set of positive numbers. As
usual for d ∈ N, we write [d] to denote {1, . . . , d}. In the case where d = ∞, we write [d] = N
as the set of positive integers. When d ∈ N, we write Kd for the scalar vector space (real
space when K = R or complex when K = C) with d components, and when d = ∞ we write
KN for the vector spaces of real- or complex- valued sequence indexed over N. Similarly, we
write Nd

0 or NN
0 as the set of nonnegative multi-indices of length d ∈ N ∪ {∞}. Let d ∈ N.

We define the multi-index set F as the set of nonnegative multi-indices, i.e.,

F := Nd
0 = {ν = (νk)d

k=1 : νk ∈ N0}, d < ∞. (2.1.1)

In the infinite-dimensional case we define F as the set of multi-indices in NN
0 with at most

finitely-many nonzero terms. That is

F := {ν = (νk)∞
k=1 ∈ NN

0 : |{k : νk ̸= 0}| < ∞}. (2.1.2)

We also write ej = (δj,k)k∈[d] for the standard basis vectors, where j ∈ N or j ∈ [d]. We
write w ⊙ v = (wivi)i∈[d] for the Hadamard product and w ⊗ v = (wivj)i,j∈[d] for the tensor
product of vectors w = (wi)i∈[d] and v = (vi)i∈[d].

We write 0 and 1 for the multi-indices consisting of all zeros and all ones, respectively.
The inequality µ ≤ ν is understood componentwise for any multi-indices µ = (µi)i∈[d]

and ν = (νi)i∈[d], i.e., µ ≤ ν means that µk ≤ νk for all k ∈ [d]. Let ν = (νi)i∈[N ] and
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µ = (µi)i∈[N ]. Then we also write

νµ =
∏

i∈[N ]
νµi

i , and ν! =
∏

i∈[N ]
(νi!),

with the convention that 00 = 1.
Let N ∈ N, S ⊆ [N ] and x ∈ CN . We write xS ∈ CN for the vector with ith entry equal

to xi if i ∈ S and zero otherwise. We also write Sc for the complement [N ] \ S of S.
Given 0 < p ≤ ∞ and we write ∥ · ∥p for the usual vector ℓp-norm (if p ≥ 1) or ℓp-

quasinorm (if 0 < p ≤ 1). For 0 < p, q < ∞ we define the matrix ℓp,q-(quasi)norm of an
m×n matrix G = (Gi,j)m,n

i,j=1 as ∥G∥q
p,q := ∑n

j=1(∑m
i=1 |Gi,j |p)q/p, and similarly when p = ∞

or q = ∞.

2.2 Function spaces

In this thesis, we employ a variety of function spaces. We now define the main spaces used.

2.2.1 Measures and parametric domain

First, we consider measures that arise as tensor products of probabilities measures supported
on the interval [−1, 1], and we write ϱ(1) for such a measure.

Here we focus mainly on two examples, the uniform and Chebyshev (arcsine) measures.
These are defined by

dϱ(1)(y) = 2−1 dy, and dϱ(1)(y) = 1
π
√

1 − y2 dy, y ∈ [−1, 1], (2.2.1)

where dy is the Lebesgue measure. In finite dimensions, we let the parametric domain
U = [−1, 1]d be the symmetric d-dimensional hypercube of side length 2 and define the
probability measure on U by tensoring the one-dimensional measure:

ϱ = ϱ(d) := ϱ(1) ⊗ . . .⊗ ϱ(1). (2.2.2)

In particular, the d-dimensional uniform and Chebyshev measures are given by

dϱ(y) = 2−d dy, and dϱ(y) =
∏

k∈[d]

1
π
√

1 − y2
k

dy, ∀y = (yk)d
k=1 ∈ U , (2.2.3)

respectively. In infinite dimensions, we consider the infinite-dimensional symmetric hyper-
cube U = [−1, 1]N of side length 2 and write y = (yj)j∈N ∈ U for the variable in this
domain. For the uniform or Chebyshev measures, the Kolmogorov extension theorem guar-
antees the existence of a probability measure on U as the infinite tensor-product of their
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one-dimensional measure (see, e.g., [252, §2.4]), which we denote as

ϱ = ϱ(∞) = ϱ(1) ⊗ ϱ(1) ⊗ . . . . (2.2.4)

2.2.2 V-valued sequence spaces

Throughout, we let (V, ∥·∥V) be a (separable) Banach space over K (R or C) and write
(V∗, ∥·∥V∗) for its continuous dual. We consider v ∈ V as an arbitrary element of V and
v∗ ∈ V∗ as an arbitrary element of V∗. We let ⟨·, ·⟩V be the duality pairing between V and
V∗, ⟨v∗, v⟩V = v∗(v). Note that

∥v∥V = sup
v∗∈V∗

∥v∗∥V∗ ≤1

|v∗(v)| = max
v∗∈V∗

∥v∗∥V∗ =1

|v∗(v)|, ∀v ∈ V, (2.2.5)

(see, e.g., [50, Cor. 1.4]). We let VN be the vector space of Banach-valued vectors of length
N , i.e., v = (vi)N

i=1 where vi ∈ V, i = 1, . . . , N . More generally, let Λ ⊆ Nd
0 denote a

(possibly infinite) multi-index set. We write v = (vν)ν∈Λ for a sequence with V-valued
entries, vν ∈ V. In particular, when (V, ⟨·, ·⟩V) is a Hilbert space we consider ⟨·, ·⟩V as the
inner product with corresponding induced norm ∥v∥2

V := ⟨v,v⟩V , where

⟨u,v⟩V =
∑
ν∈Λ

⟨uν , vν⟩V .

For 0 < p ≤ ∞, we define the ℓp(Λ; V) space as the set of those sequences v = (vν)ν∈Λ for
which ∥v∥p;V < ∞, where

∥v∥p;V :=
{

(∑ν∈Λ ∥vν∥p
V)1/p 0 ≤ p < ∞,

supν∈Λ ∥vν∥V p = ∞.

Given a vector of positive weights w = (wν)ν∈Λ, we define the weighted ℓqw(Λ; V) space,
0 < q ≤ 2, as the set of V-valued sequences v = (vν)ν∈Λ for which the weighted (quasi-)
norm

∥v∥q,w;V :=

∑
ν∈Λ

w2−q
ν ∥vν∥q

V

1/q

,

is finite. Notice that ℓ2w(Λ; V) coincides with the unweighted space ℓ2(Λ; V).

2.2.3 Lebesgue-Bochner and Sobolev spaces

Now, given a probability measure ϱ and 1 ≤ p ≤ ∞, in either finite or infinite dimensions, we
define the weighted Lebesgue-Bochner space Lp

ϱ(U ; V) as the space consisting of (equivalence
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classes of) strongly ϱ-measurable functions f : U → V for which ∥f∥Lp
ϱ(U ;V) < ∞, where

∥f∥Lp
ϱ(U ;V) :=


(∫

U
∥f(y)∥p

V dϱ(y)
)1/p

1 ≤ p < ∞,

ess supy∈U ∥f(y)∥V p = ∞.

(2.2.6)

For further details we refer to [151, Chp. 1]. For simplicity if V = C we write Lp
ϱ(U ;C) =

Lp
ϱ(U). However, typically in this thesis, V will be a function space.

Let Ω ⊂ Rn be a bounded domain with a polyhedral boundary ∂Ω with n ∈ {2, 3}.
We frequently consider V as the the Lebesgue space Lp(Ω;C) of µ-measurable functions
v : Ω → C for which ∥v∥Lp(Ω;C) < ∞, where

∥v∥Lp(Ω;C) :=


(∫

Ω
|v(x)|p dµ

)1/p

1 ≤ p < ∞,

ess supx∈Ω |v(x)| p = ∞.

(2.2.7)

For further details we refer to [50, §4.2]. Similarly, for simplicity we write Lp(Ω;R) = Lp(Ω).
Note that Lp

ϱ(U ; V) is a space of functions from the parametric variable y to V, and the
space Lp(Ω) is only a space of functions from the physical variable x to C. We use L and L
to distinguish the former from the latter. We now define the main examples considered in
this thesis.

We introduce the notation Lp(Ω) and Lp(Ω) to represent the vectorial and tensorial
counterparts of Lp(Ω). We write W s,p(Ω) for the standard Sobolev space with s ∈ R and
p > 1, and we write H1(Ω) when p = 2 and s = 1. We also define the following closed
subspace of H1(Ω) given by

H1
0(Ω) := C∞

0 (Ω)∥·∥H1(Ω) .

Here C∞
0 (Ω)∥·∥H1(Ω) denotes the closure of C∞

0 (Ω) (i.e., the space of C∞(Ω) functions with
compact support) with respect to the norm ∥ · ∥H1(Ω), which is given by

∥v∥H1(Ω) :=
(
∥∇v∥2

L2(Ω) + ∥v∥2
L2(Ω)

)1/2
∀v ∈ H1(Ω).

Additionally, we consider the space of traces of functions in H1(Ω), denoted by H1/2(∂Ω),
and its dual, H−1/2(∂Ω) (see, e.g., [46, §1.2] for further details).

For scalar functions u and vector fields v, we use ∇u and div(v) to denote their gradi-
ent and divergence, respectively. For tensor fields σ and τ , represented by (σi,j)i,j∈[n] and
(τi,j)i,j∈[n] respectively, we define div(σ) as the divergence operator div acting along the
rows of σ, and we define the trace and the tensor inner product, respectively, as

tr(σ) =
∑
i∈[n]

σi,i, and τ : σ =
∑

i,j∈[n]
τi,jσi,j .
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Furthermore, we write H1(Ω) and H1(Ω) for the vectorial and tensorial counterparts of
H1(Ω), respectively. Keeping this in mind, we introduce the Banach spaces

H(divq; Ω) :=
{

v ∈ L2(Ω) : div(v) ∈ Lq(Ω)
}
,

H(divq; Ω) :=
{

τ ∈ L2(Ω) : div(τ ) ∈ Lq(Ω)
} (2.2.8)

provided with the natural norms

∥v∥H(divq ;Ω) := ∥v∥L2(Ω) + ∥div(v)∥Lq(Ω),

∥τ∥H(divq ;Ω) := ∥τ∥L2(Ω) + ∥div(τ )∥Lq(Ω) .

In Chapter 7 we use these spaces with q = 4/3 and q = 2 in the mixed variational formula-
tions of the considered PDEs. For the latter we simply write H(div; Ω).

Often, under certain conditions, such as incompressibility conditions [116, eq.(2.4)], it
is convenient to define variations of these spaces. For example, we define

L2
tr(Ω) :=

{
τ ∈ L2(Ω) : tr(τ ) = 0

}
, (2.2.9)

which represents the space of integrable functions with zero trace over Ω. Furthermore,
given the decomposition (see, e.g., [114])

H(div4/3; Ω) = H0(div4/3; Ω) ⊕ R I , (2.2.10)

we may also consider

H0(div4/3; Ω) :=
{

τ ∈ H(div4/3; Ω) :
∫

Ω
tr(τ ) = 0

}
, (2.2.11)

as the space of elements in H(div4/3; Ω) with zero mean trace. Finally, we define

L2
skew(Ω) = {η ∈ L2(Ω) : η + ηt = 0},

and the space of L2(Ω) functions with zero integral over Ω as

L2
0(Ω) =

{
ν ∈ L2(Ω) :

∫
Ω
ν = 0

}
.

These spaces will be crucial to define the main examples considered in §7.4.
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Finite-dimensional discretizations of V

In most cases, we are unable to work directly in the space V because it is typically infinite-
dimensional. Therefore, we also consider a finite-dimensional subspace

VK ⊆ V. (2.2.12)

Often, V represents the solution space of a parametric DE. In this case, VK would typically
correspond to a FE discretization of V. Assuming (2.2.12) corresponds to considering so-
called conforming discretizations in the context of FEMs [108, Def. 1.68]. We let {φk}K

k=1
be a (not necessarily orthonormal) basis of VK , where K = dim(VK) ≤ dim(V). We also
assume that there is a bounded linear operator

PK : V → VK . (2.2.13)

To simplify several of the subsequent bounds, we define

πK = max {∥PK∥V→V , 1} (2.2.14)

(the assumption πK ≥ 1 is convenient and is of arguably of little consequence for practical
purposes). Note that we do not specify a particular form for this operator except when V
is a Hilbert space – see Remark 2.2.1 for some further discussion.

For convenience, if f ∈ L2
ϱ(U ; V) is defined everywhere, then we write PK(f) for the

function defined pointwise as

PK(f)(y) = PK(f(y)), y ∈ U . (2.2.15)

Later, our various error bounds involve f − PK(f) measured in suitable Lebesgue-Bochner
norms.

Remark 2.2.1 When V is a Hilbert space, it is natural to choose PK as the orthogonal
projection onto VK . Then PK(v) is the best approximation in VK of v ∈ V and (2.2.14)
holds with cK = 1. The case of Banach spaces is more delicate. First, the best approximation
problem

inf
z∈VK

∥v − z∥V

may not have a unique solution (a solution always exists since VK is a finite-dimensional
subspace). Thus the best approximation map

PVK
: v 7→ {vK ∈ VK : ∥v − vK∥V = inf

z∈VK

∥v − z∥} (2.2.16)
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is set-valued. Furthermore there does not generally exist a linear operator PK : V → VK with
PK(v) ∈ PVK

(v), ∀v ∈ V. The work in [92,148] establishes conditions on the set PVK
(v) to

show the linearity of such operators in a general normed linear space V. From [92, Lem. 2.1],
such an operator is bounded with ∥PK(v)∥V ≤ 2∥v∥V . From [92, Thm. 2.2], a sufficient and
necessary condition for the existence a linear operator in PVK

(v) is that ker(PVK
) contains

a closed subspace W such that V = VK + W, where

ker(PVK
) := {v ∈ V : 0 ∈ PVK

(v)}. (2.2.17)

Note further that if V is strictly convex and ker(PVK
) is a subspace of V, then PVK

is
linear [92, Cor. 2.5]. Moreover, if V = Lp(Ω) with 1 < p < ∞, the operator PK is linear if
and only if the quotient space Lp(Ω)/VK is isometrically isomorphic to some other Lq(Ω)
space [26, Thm. 5].

2.3 Holomorphy

Due to their relevance to our motivating problem, we are interested in smooth functions
with respect to their variables. There is a large body of literature [27, 43, 56, 63, 71–73, 77,
122, 136, 137, 140, 144, 146, 147, 157, 170, 258, 265] that has established that solution maps
of a wide range of different parametric DEs are holomorphic (i.e., analytic) functions of
their parameters. Here, we assume that the parameter-to-solution map y 7→ u(y) admits a
holomorphic extension to an open neighbourhood of a suitable complex region.

We now recall the definition of holomorphy and holomorphic extension for Banach-
valued functions. We note that equivalent definitions are possible (see, e.g., [142, Chp. 2])
and that the definition employed in this thesis is based on the notion of the Gateaux partial
derivative. For other details on differentiability we refer to [34, Chp. 17], and the references
therein. Note the following definitions apply in both the finite- (d ∈ N) and infinite- (d = ∞)
dimensional settings, where we recall that [d] = N and Cd = CN when d = ∞.

Definition 2.3.1 (holomorphy; finite- or infinite-dimensional case). Let d ∈ N ∪ {∞},
O ⊆ Cd be an open set and V be a separable Banach space. A function f : O → V is
holomorphic in O if and only if it is holomorphic with respect to each variable in O. That
is to say, for any z ∈ O and any j ∈ [d], the following limit exists in V:

lim
h∈C
h→0

f(z + hej) − f(z)
h

∈ V.

We now give the definition of holomorphic extensions to open sets O ⊂ Cd.

Definition 2.3.2 (holomorphic extension). Let V be a Banach space. A function f : U → V
is holomorphic in U ⊆ O ⊆ Cd if it has a holomorphic extension to O, i.e., there is a
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f̃ : O → V that is holomorphic in O with f̃ |U = f . In this case, we also define ∥f∥L∞(O;V) :=
∥f̃∥L∞(O;V) or, when V = C, simply ∥f∥L∞(O).

Observe that if O is a closed set, then we say that f is holomorphic in O if it has a
holomorphic extension to some open neighbourhood of O.

We now introduce the precise class of functions considered in this work

2.3.1 The class of (bbb, ε)-holomorphic functions

In classical polynomial approximation theory, convergence rates can be shown by considering
functions that are holomorphic in certain polyellipses, whose size then stipulates the rate of
decay of the approximation error. We will clarify this concept later. First, we present some
key definitions of classical polynomial approximation theory.

In one dimension, for a given ρ > 1, we define the filled-in Bernstein ellipse of parameter
ρ as the complex region defined by

Eρ =
{

1
2(z + z−1) : z ∈ C, 1 ≤ |z| ≤ ρ

}
⊂ C.

Note that this defines an ellipse with ±1 as its foci and major and minor semi-axis lengths
given by 1

2(ρ ± ρ−1). In addition, by convention Eρ = [−1, 1] when ρ = 1. As mentioned
before, in classical polynomial approximation theory, any f that is holomorphic in Eρ can be
approximated by a polynomial of degree n with an error depending on ρ−n. See, e.g., [261,
Thm. 8.1].

Now, let d ∈ N ∪ {∞}. Given ρ = (ρj)d
j=1 ∈ Rd with ρ ≥ 1, we define the filled-

in Bernstein polyellipse of paramter ρ as the region in the complex plane defined by the
Cartesian product

Eρ = Eρ1 × Eρ2 × · · · ⊂ Cd.

We denote the class of Banach-valued functions that are holomorphic in Eρ with norm at
most one as

B(ρ) =
{
f : U → V, f holomorphic in Eρ, ∥f∥L∞(Eρ;V) ≤ 1

}
. (2.3.1)

In infinite dimensions, we also consider a class of functions that are holomorphic in a certain
union of Bernstein polyellipses. Let b = (bj)j∈N ∈ [0,∞)N, ε > 0 and the complex region
defined by

R(b, ε) =
⋃Eρ : ρ ≥ 1,

∞∑
j=1

(
ρj + ρ−1

j

2 − 1
)
bj ≤ ε

 ⊂ CN. (2.3.2)
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Keeping this in mind, we now define the class of (b, ε)-holomorphic functions [12,63,77,235].
Since the seminal work [73], this class of functions has played a crucial role in the context
of parametric PDEs (see also [71] and references therein).

Definition 2.3.3. A function f : U → V, where U = [−1, 1]N, is (b, ε)-holomorphic if it is
holomorphic in the complex region R(b, ε).

In analogy with Bρ, we define the class H(b, ε) of (b, ε)-holomorphic functions with norm
at most one over the domain of holomorphy as

H(b, ε) =
{
f : U → V, f holomorphic in R(b, ε), ∥f∥L∞(R(b,ε);V) ≤ 1

}
. (2.3.3)

The class of (b, ε)-holomorphic functions was developed in context of parametric DEs. Over
the last decade many works have shown that common parametric DEs (1.2.1) possess solu-
tion maps y 7→ u(·,y) that are (b, ε)-holomorphic functions of their parameters for suitable
b depending on the DE [27, 56, 63, 71, 72, 77, 122, 136, 137, 146, 234, 234, 259]. See [12, Ch. 4]
and [71] for overviews.

Note that, for simplicity, one could remove the parameter ε > 0 in (2.3.2) by rescaling
b. In some cases ε is redundant and we simply denote R(b, 1) as R(b) and H(b, 1) as
H(b). However, in other cases, the term b may be fixed and related to the smoothness of a
parametric PDE. In those cases, it is convenient to treat b and ε separately. See [12, §3.8]
for further detals.

Given this, we now introduce the main assumption in this thesis.

Assumption 2.3.4 (holomorphic extension). Let d ∈ N ∪ {∞}. The unknown target
function (see §1.1) f : U → V satisfies f∈B(ρ) as in (2.3.1) for some ρ ≥ 1 (when d < ∞)
or f ∈ H(b, ε) as in (2.3.3) for some b ≥ 0 (when d = ∞).

Affine representations and the class H(b, ε) of functions

Now, we introduce the concept of affine representations and their importance in the analysis
of parametric DEs. These representations provide a simple way to identify the parameter
b ∈ [0,∞)N of H(b, ε)-holomorphic functions with a sequence {∥ψj∥L∞(Ω)}j∈N. The general
aspects of this sections are taken from [12,71].

Consider the general parametric DEs problem in (1.2.1). In practice, the parameters
y ∈ [−1, 1]N are used to model a term (or terms) in the DEs to quantitatively characterize
the effect of uncertainty on the output u(y). For example, they may appear in the definition
of the diffusion coefficient a(·,y) in the elliptic diffusion equation (1.2.2) or the viscosity
of a fluid in the NSB problem (1.2.3). Often, we consider affine parametrizations of the
coefficient a.
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Keeping this in mind, for a parameter a in a suitable set, we can define the solution
map to the problem in (1.2.1) by

u : a 7→ u(a) ∈ V,

where a is a random variable with predescribed probability measures. Thus, we can study
the holomorphic extension of y 7→ u(y) by looking at the composition of y 7→ a(y) with
the solution map a 7→ u(a) [12, §4.2.2].

As mentioned above, we are interested in affine representations of the coefficient a. More
precisely, let Ω be a physical domain and {ψj}j∈N be a sequence of functions in L∞(Ω). We
say that an affine representer is a function of the form

a(x,y) = a(x) +
∑
j∈N

yjψj(x), ∀x ∈ Ω,y ∈ U , (2.3.4)

where a is a fixed function in L∞(Ω), and the series convergences in the L∞(Ω)-norm. For
instance, for the unit square Ω = (0, 1)2, consider the following affine coefficients

a(x,y) = 2.62 +
∑
j∈N

yj
sin(πx1j)
j3/2 , ∀x ∈ Ω, ∀y ∈ [−1, 1]N. (2.3.5)

Affine representations arise naturally in parametric formulations, e.g., where a is a piecewise
constant over fixed partitions of the physical domain, describing the shape of a boundary
of the physical domain or through the eigenfunctions of a covariance operator in a KL
expansion (in an infinite-dimensional case) [71, §1.2].

The Karhunen-Loève expansion is an important tool for describing certain infinite-
dimensional models. More precisely, consider a probability space (S,F ,P), where P is a
probability measure over a sample space S and F is a σ-algebra on S. As a consequence of
Mercer’s theorem [246, Thm 11.3], any second-order stochastic process a : Ω×S → with con-
tinuous covariance function can be represented as an infinite sum of random variables [246,
Thm 11.4]. For instance, consider a ∈ L∞(Ω) and the covariance operator C : L2(Ω) → L2(Ω)

v 7→ C(v) =
∫

Ω
Ca(·,x)v(x) dx, Ca(z,x) = E((a(z, ·) − a(z))(a(x, ·) − a(x))),

for all x, z ∈ Ω. Then, the Karhunen-Loève expansion has the form (2.3.4) with ψj =
√
λjϕj

and
yj(ω) = 1√

λj

∫
Ω

(a(x, ω) − a(x))ϕj(x) dx

for all ω ∈ S and j ∈ N, where {λj}j∈N are the real nonnegative eigenvalues and {ϕj}j∈N

are the corresponding eigenfunctions [12, Ex. 4.6]. Later, in Chapter 7 (see (7.4.2)), we will
use the coefficient [209, Eq. (5.2)], which represents the truncation of a one-dimensional
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random field with stationary covariance

C[log(aN ) − 0.5](x1, x2) = exp
(

−(x1 − x2)2

L2
c

)
.

Affine parametric diffusion equation and the class H(b, ε) of functions

Here we give a precise example of a parametric PDE in infinite dimensions whose solution
admits a well-defined and holomorphic extension to a complex region containing the filled-in
Bernstein polyellipse. Let Ω ⊂ R2 be a bounded Lipschitz domain, ∂Ω be the boundary of
Ω and F ∈ L2(Ω). Consider the stationary diffusion equation with parametrized diffusion
coefficient a : Ω × U → R and homogeneous Dirichlet boundary conditions in (1.2.2).

Suppose that a is as in (2.3.4) with ā ∈ L∞(Ω) and assume that for {ψj}j∈N we have
that ∑

j∈N
|ψj(x)| ≤ a(x) − r

for some r > 0. For instance, take a as in (2.3.5) and r < 0.00762. Consider the map
y 7→ u(y), where u(y) ∈ H1

0(Ω) is the unique weak solution of the standard formulation:
given y ∈ [−1, 1]N find u(y) such that∫

Ω
a(y)∇u(y)∇v =

∫
Ω
Fv, ∀v ∈ H1

0(Ω). (2.3.6)

Then it can be shown [12, Prop. 4.9] that this map is (b, ε)-holomorphic for any ε < r

and b = (bj)j∈N such that bj≥∥ψj∥L∞(Ω). In the case of (2.3.5) we can take bj =
∥ sin(πj·)/j3/2∥L∞(Ω) = j−3/2 and 0 < ε < 0.00762. In other words, as claimed, for an
affine diffusion coefficient, the terms in the expansion (2.3.5) directly relate to the holomor-
phy parameter b.

The diffusion equation represents a classical problem in parametric PDEs. However, most
studies addressing this problem focus on homogeneous Dirichlet boundary conditions (see,
e.g., [42,83,85,139,167,172]). Naturally, one may encounter problems with nonhomogeneous
Dirichlet boundary conditions and seek to establish conditions under which the parameter to
solution map y 7→ u(y) has a holomorphic extension to a certain complex region. To achieve
this, we can use mixed formulations, addressing the nonhomogeneous case by introducing
an additional unknown to the formulation (see [114] for further details).

To illustrate this, in addition to the above formulation, consider a nonparametric term
g ∈ H1/2(∂Ω). Here H1/2(∂Ω) is the trace space on the boundary ∂Ω as defined in §2.2.
Now, consider the linear elliptic equation with Dirichlet boundary conditions

−div(a(x,y)∇u(x,y)) = F (x), in Ω

u(x,y) = g(x), on ∂Ω.
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Then, we can prove that the map y ∈ U 7→ (u,σ)(·,y) ∈ L2(Ω) × H(div; Ω) is also (b, ε)-
holomorphic for the same b ≥ 0 and ε > 0. Here σ is an additional variable given by
σ(y) = a(y)∇u(y) in Ω. The space L2(Ω)×H(div; Ω) comes from using mixed formulations
as in (A.2.3). In particular, H(div; Ω) comes from the need of div(σ) ∈ L2(Ω). We will return
to this example in Chapter 7. See Appendix A for a proof.

2.3.2 Parametric dependence: known and unknown cases

Now return to the general setting, where f : U → V is a (b, ε)-holomorphic function of
infinitely many variables. It is worth noting that the b ∈ [0,∞)N is a nonnegative sequence
that controls the anisotropy of functions in the class H(b, ε). Specifically, large bj means
that the condition

∞∑
j=1

(
ρj + ρ−1

j

2 − 1
)
bj ≤ ε

in (2.3.2) holds only for smaller values of the parameter ρj , meaning that functions in H(b, ε)
are less smooth with respect to the variable yj . That is, they have analytic continuations
only to small Bernstein ellipses in this variable. Conversely, if bj is small (or in the extreme,
bj = 0), then functions in H(b, ε) possess analytic continuations to larger Bernstein ellipses,
and are therefore smoother with respect to the variable yj .

With this in mind, we now distinguish two important cases for holomorphic function ap-
proximation in infinite dimensions.

Known anisotropy

In some settings, the parameter b may be known. In other words, we have prior under-
standing about the behaviour of the target function with respect to its variables. We refer
to this as the known anisotropy case. This setting has its advantages. For instance, one can
strive to use this information to design an approximation scheme based on b. To be more
precise, having information about b, can be useful when choosing a suitable index set for
constructing a polynomial approximation to the target function.

Unknown anisotropy

As discussed, for some particular types of DEs, such as those described in §2.3.1, we can
establish bounds for b. However, in the more practical UQ setting, where f is considered a
black box (i.e., the underlying DE model, if one exists, is hidden) we usually do not have such
information. Moreover, even if we can find a sufficient value b = (bj)j∈N = (∥ψj∥L∞(Ω))j∈N,
such as in the case of the Poisson problem with parametric coefficient (2.3.5), this value may
not be sharp. This comes from the fact that R(b, ε) ⊆ R(b′, ε) (see (2.3.2) and (2.4.19)) for
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any 0 ≤ b′ ≤ b. Which makes difficult to know an optimal value for b. We refer to unknown
anisotropy to the case where we do not have information about b.

Motivated by this discussion, in this work we consider both the known and unknown
anisotropy settings.

2.3.3 Holomorphy and polynomial approximation

Holomorphy motivates the use of polynomial approximation. A particularly important con-
cept in this area is the best s-term polynomial approximation, which serves as a key theoreti-
cal benchmark. Here, the function f is approximated by an s-term expansion corresponding
to its largest s coefficients (measured in the V-norm) with respect to a polynomial ba-
sis. Common choices include Taylor polynomials, tensor-product Legendre and Chebyshev
polynomials on bounded hypercubes or tensor-product Hermite and Laguerre polynomials
on Rd or [0,∞)d. Over the last fifteen years, there has been a significant effort in develop-
ing the theory of best s-term polynomial approximation (see the aforementioned references,
plus those in §2.3). Signature results have established exponential and algebraic convergence
rates for the best s-term approximation. The former assert that the error decays at least ex-
ponentially fast in s1/d in finite dimensions for any holomorphic function. The latter assert
that the error decays algebraically fast; specifically, like s1/2−1/p for some 0 < p < 1. These
algebraic rates also hold in infinite dimensions, thus establishing best s-term approximation
as a (theoretical) means to approximate holomorphic functions of infinitely many variables.
We review several such results in §2.4.3.

2.4 Best s-term polynomial approximation

In this section we introduce one of the most important tools used in this work, orthogonal
polynomials and polynomials expansions.

2.4.1 Orthogonal polynomial expansions

From [203, §2.1] (or [248, §2.2]) under mild assumptions that are always fulfilled in the
context of this work (ϱ is a Lebesgue-Stiltjes probability measure on R and has finite poly-
nomial moments of all orders) there exists a unique orthonormal polynomial basis {Ψν}ν∈N0

of L2
ϱ([−1, 1]), where Ψν = Ψ(1)

ν is a polynomial of degree ν. In particular, when ϱ(1) is the
measure in (2.2.1), we obtain the Legendre and Chebyshev polynomials, respectively.

Consider the multi-index set F ⊆ Nd
0 and the corresponding tensor-product measure ϱ

on U = [−1, 1]d, defined as in (2.1.1) and (2.2.2) when d < ∞, or as defined in (2.1.2) and
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(2.2.4) when d = ∞. Then, the set of functions {Ψν}ν∈F ⊂ L2
ϱ(U) given by the tensorization

Ψν(y) =
∏

k∈[d]
Ψνk

(yk), y ∈ U , ν ∈ F , (2.4.1)

form an orthonormal basis of L2
ϱ(U). Note that, by the definition in (2.1.2), in the infinite

dimensional case (d = ∞) (2.4.1) is well-defined since any ν ∈ F has only finitely-many
nonzero terms. Therefore, when d = ∞ (2.4.1) is equivalent to

Ψν(y) =
∏

k:νk ̸=0
Ψνk

(yk),

which is a product of finitely-many terms. Note that Ψ(1)
0 = 1 since ϱ(1) is a probability

measure.
Let f be a function in the Lebesgue-Bochner space L2

ϱ(U ; V) defined in §2.2. Then it has
a convergent expansion (in L2

ϱ(U ; V)) given by

f =
∑
ν∈F

cνΨν , where cν :=
∫

U
f(y)Ψν(y) dϱ(y) ∈ V, (2.4.2)

and the coefficients cν are elements of V. Now let S ⊂ F be a multi-index set and

PS;V =
{∑

ν∈S

cνΨν : cν ∈ V
}

⊂ L2
ϱ(U ; V). (2.4.3)

Then, the L2(U ; V)-norm best s-term polynomial approximation fs of f is defined as

fs ∈ argmin
{

∥f − g∥L2
ϱ(U ;V) : g ∈ PS,V , S ⊂ F , |S| = s

}
. (2.4.4)

Intuitively, the best s-term polynomial approximation is a theoretical benchmark that aims
to measure how well one can approximate a function f using polynomials with indices from
an arbitrary index set S of a given size s.

Suppose that V is a Hilbert space. Then, a short exercise with Parseval’s identity gives
that

inf{∥f − g∥L2
ϱ(U ;V) : g ∈ PS;V}

is achieved by the expansion
fs =

∑
ν∈S∗

cνΨν , (2.4.5)

where S∗ ⊂ F , |S∗| = s, is the set of consisting of the multi-indices of the largest s values of
the coefficient norms (∥cν∥V)ν∈F . In this case, when V is a Hilbert space, using Parseval’s
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identity we obtain that the error satisfies

∥f − fs∥L2
ϱ(U ;V) =

√∑
ν /∈S∗

∥cν∥2
V . (2.4.6)

We note in passing another important property of the best s-term approximation, the
map f 7→ fs is nonlinear. Since given two functions f, g ∈ L2(U ; V) we have that (f + g)s ̸=
fs + gs.

2.4.2 Sparsity and best s-term approximation error

The equivalence (2.4.6) motivates studying s-term approximation of the sequences of poly-
nomial coefficients. We now provide a series of definitions pertaining to this study. We recall
that here and elsewhere, for a sequence c = (cν)ν∈Λ and a set S ⊆ Λ, we define cS as the
sequence with νth entry equal to cν if ν ∈ S and zero otherwise.

Definition 2.4.1 (Sparsity). Let Λ ⊆ F denote a (possibly infinite) multi-index set, and
c = (cν)ν∈Λ be a V-valued sequence. The support of c is the set

supp(c) = {ν ∈ Λ : ∥cν∥V ̸= 0}. (2.4.7)

A sequence is s-sparse for some s ∈ N0 satisfying s ≤ |Λ| if it has at most s nonzero entries,
i.e.,

|supp(c)| ≤ s.

The set of such vectors is denoted by Σs.

Definition 2.4.2 (Best s-term approximation error). Let Λ ⊆ F denote a (possibly infinite)
multi-index set, 0 < p ≤ ∞, c ∈ ℓp(Λ; V) and s ∈ N0 with s ≤ |Λ|. The ℓp-norm best s-term
approximation error of c is

σs(c)p;V = min
{

∥c − z∥p;V : z ∈ ℓp(Λ; V), |supp(z)| ≤ s
}
, (2.4.8)

where this norm and the space ℓp(Λ; V) are defined in §2.2.

Notice that this is equivalent to

σs(c)p;V = inf
{

∥c − cS∥p;V : S ⊆ Λ, |S| ≤ s
}
.

Recall that the space ℓp(Λ; V) and ∥ · ∥p;V are defined in §2.2.
Let c = (cν)ν∈F be the coefficients of some function f ∈ L2

ϱ(U ; V), as defined in (2.4.2).
Then, when p = 2 and V is a Hilbert space, we have the following:

σs(c)2;V = ∥f − fs∥L2
ϱ(U ;V),
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where fs is its best s-term polynomial approximation (2.4.4). Thus, we can study the error
of fs by studying the quantity σs(c)2;V . For notational purposes, we denote this quantity
in terms of the coefficients c. However, in other works, this term is sometimes referred to
as σs(f)2;V .

In later chapters, it is also useful to consider approximations to sequences involv-
ing weights that penalize large coefficients at certain indices. Now, let Λ ⊆ F and
w = (wν)ν∈Λ > 0 be positive weights. Given a set S ⊆ Λ, we define its weighted car-
dinality as

|S|w :=
∑
i∈S

w2
i .

Note that |S|w may take values in R ∪ {+∞}. The following two definitions extend Defi-
nitions 2.4.1 and 2.4.2 to the weighted setting:

Definition 2.4.3 (Weighted sparsity). Let Λ ⊆ F . A V-valued sequence c = (cν)ν∈Λ is
weighted (k,w)-sparse for some k ≥ 0 and weights w = (wν)ν∈Λ > 0 if

|supp(c)|w ≤ k,

where supp(z) = {ν : ∥zν∥V ̸= 0} is the support of z. The set of such vectors is denoted by
Σk,w.

Definition 2.4.4 (Weighted best (k,w)-term approximation error). Let Λ ⊆ F , 0 < p ≤ 2,
w > 0, c ∈ ℓpw(Λ; V) and k ≥ 0. The ℓpw-norm weighted best (k,w)-term approximation
error of c is

σk(c)p,w;V = min
{

∥c − z∥p,w;V : z ∈ Σk,w

}
. (2.4.9)

Recall that the space ℓpw(Λ; V) and ∥ · ∥p,w;V are defined in §2.2. Notice that this is
equivalent to

σk(c)p,w;V = inf
{

∥c − cS∥p,w;V : S ⊆ Λ, |S|w ≤ k
}
. (2.4.10)

2.4.3 Rates of best s-term polynomial approximation

As noted, best s-term polynomial approximation of holomorphic functions is a well-studied
subject, especially in the context of solutions of parametric DEs. See, e.g., [35, 36, 43, 47,
63, 72, 73, 136, 215, 255, 258] and, in particular, [71] and [12, Chpt. 3]. Here, we recap two
standard types of error decay rates for this approximation, those of algebraic and exponential
type, respectively. Note that these results are for Chebyshev and Legendre polynomial
approximations – the main focus of this work. The latter type of decay rate holds in finite
dimensions, while the former holds in both finite and infinite dimensions. In this work,
these error decay rates serve as the optimal benchmark against which to compare the
approximations computed from sample values.
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The following results are standard in the Hilbert-valued case, and have appeared in
various different guises in the aforementioned works. See for instance [12, Chpt. 3].

Theorem 2.4.5 (Algebraic rates of convergence; finite-dimensional case). Let V be a Hilbert
space, 0 < p < ∞ and f ∈ B(ρ) for some ρ ≥ 1. Let c = (cν)ν∈Nd

0
be as in (2.4.2). Then,

for every s ≥ 1 there are sets S1, S2 ⊂ F , |S1|, |S2| ≤ s, such that

∥f − fS1∥L2
ϱ(U ;V) ≤ C · s1/2−1/p, ∥f − fS2∥L∞(U ;V) ≤ C · s1−1/p, (2.4.11)

where fSi = ∑
ν∈Si

cνΨν for i = 1, 2 and C = C(d, p,ρ) > 0 depends on d, p and ρ only.

Theorem 2.4.6 (Algebraic rates of convergence; infinite-dimensional case). Let V be a
Hilbert space, 0 < p < 1, ε > 0, b = (bj)j∈N ∈ ℓp(N) with b ≥ 0 and f ∈ H(b, ε), where
H(b, ε) is as in (2.3.3). Then, for every s ≥ 1 there are sets S1, S2 ⊂ F , |S1|, |S2| ≤ s, such
that

∥f − fS1∥L2
ϱ(U ;V) ≤ C · s1/2−1/p, ∥f − fS2∥L∞(U ;V) ≤ C · s1−1/p, (2.4.12)

where fSi = ∑
ν∈Si

cνΨν for i = 1, 2 and C = C(b, ε, p) > 0 depends on b, ε and p only.

We next state a result on exponential convergence in finite dimensions. Such rates have
been established in various different works (see, e.g., [35, 36, 71, 215, 258]). The following
result is a minor modification of [12, Thm. 3.15], in which we allow arbitrary s ≥ 1 at the
expense of a constant C in the error bound.

Theorem 2.4.7 (Exponential rates of convergence; finite-dimensional case). Let V be a
Hilbert space, 0 < p ≤ 2 and f ∈ B(ρ) for some ρ ≥ 1. Let c = (cν)ν∈Nd

0
be as in (2.4.2).

Then, for every s ≥ 1 there is a set S ⊂ F , |S| ≤ s, such that

∥f − fS∥L2
ϱ(U ;V) ≤ ∥f − fS∥L∞(U ;V) ≤ C · exp(−γs1/d), (2.4.13)

for all

0 < γ < (d+ 1)−1

d!
d∏

j=1
ln(ρj)

1/d

, (2.4.14)

where fS = ∑
ν∈S cνΨν and C = C(d, γ, p,ρ) > 0 is a constant depending on d, γ, p and ρ

only.

Remark 2.4.8 It is possible to improve the rate (2.4.13) by removing the (d+ 1)−1 factor
in (2.4.14) [258]. The difficulty in doing this is that such rates are not necessarily attained in
lower sets (this is, however, true if ρ is sufficiently large – see [12, Lem. 7.20]). As we discuss
next, lower sets are a crucial ingredient in our analysis. Conversely, the rates described in
Theorem 2.4.7 can always be attained in lower sets.
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2.4.4 Lower and anchored sets

A common thread throughout this thesis is the construction of polynomial approximations
that satisfy similar error bounds to those of the best s-term approximation fs, for any
holomorphic function f . Hence, ideally, we would have access to the multi-index set S
corresponding to the largest s coefficients of f (measured in the V-norm). However, this
is not possible in general, since the only information we have about f is its values at
a finite number of sample points. Another problem is that its largest coefficients could
occur at arbitrarily-large multi-indices. Fortunately, it is well known that near-best s-term
polynomial approximations can be constructed using sets of multi-indices with additional
structure. These are lower sets (used in the finite-dimensional case) and anchored sets
(used in the infinite-dimensional case). Classical references for lower and anchored sets
include [89,171,186,254].

Definition 2.4.9. A set Λ ⊆ F is lower if the following holds for every ν,µ ∈ F :

(ν ∈ Λ and µ ≤ ν) =⇒ µ ∈ Λ.

A set Λ ⊆ F is anchored if it is lower and if the following holds for every j ∈ N:

ej ∈ Λ =⇒ {e1, e2, . . . , ej−1} ⊆ Λ.

More recently, these structures have been used extensively in the construction of inter-
polation, least-squares and compressed sensing schemes for polynomial approximation with
desirable sample complexity bounds (see, e.g., [12] and references therein).

Minimal monotone majorant

In the infinite-dimensional case, we need an additional assumption on b in order to establish
convergence of the various approximation methods. Let z = (zi)i∈N ∈ RN be a sequence.
We define its minimal monotone majorant as

z̃ = (z̃i)i∈N, where z̃i = sup
j≥i

|zj |, ∀i ∈ N. (2.4.15)

Then, given 0 < p < ∞, we define the monotone ℓp space ℓpM(N) as

ℓpM(N) = {z ∈ ℓ∞(N) : ∥z∥p,M := ∥z̃∥p < ∞}. (2.4.16)

In subsequent chapters, we will often assume that b ∈ ℓpM(N).
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2.4.5 Weights and error bounds for Banach-valued functions

Theorems 2.4.5-2.4.7 provide error bounds for polynomial approximations. However, they
have the limitations that they only apply to Hilbert-valued functions, and the sets whose
existence they assert may not be structured in the above sense (see §2.4.4). We now recap a
series of results that are valid for Banach-valued functions, and considered structured sets.

In the previous section, we introduced the concept of weighted sparsity (Definition 2.4.3)
and the definition of weighted best (k,w)-term approximation error (Definition 2.4.4) with
reference to general weights. However, a specific type of weights u ≥ 1, known as intrinsic
weights, offer useful properties that we will extensively utilize in this thesis. We commence
by specifying these weights.

w = u = (uν)ν∈Λ, uν = ∥Ψν∥L∞(U), ν ∈ Λ. (2.4.17)

These weights have the property that if the coefficients c ∈ ℓ1u(Λ; V) of a polynomial expan-
sion of u given by (2.4.2) then u ∈ L∞(U ; V) and the expansion converges in the L∞(U ; V)-
norm. Moreover, applying triangle inequality, the definition of the L∞(U ; V)-norm in (2.2.6)
and the fact that u ≥ 1, we have the bound∥∥∥∑

ν∈Λ
cνΨν

∥∥∥
L∞(U ;V)

≤
∑
ν∈Λ

∥cνΨν∥L∞(U ;V) ≤
∑
ν∈Λ

∥cν∥V∥Ψν∥L∞(U) =
∑
ν∈Λ

∥cν∥Vuν = ∥c∥1,u;V .

(2.4.18)
In particular, for Chebyshev and Legendre polynomials these are given explicitly by

uν = ∥Ψν∥L∞(U) =


∏d

j=1
√

2νj + 1, Legendre

2∥ν∥0/2, Chebyshev

where ∥ν∥0 := |supp(ν)| for all ν ∈ Λ.

The finite-dimensional case

Consider the finite-dimensional case, where U = [−1, 1]d for d < ∞ and f : U → V is a
Banach-valued function. We now summarize the various approximation error bounds in the
following theorem. This result combines various well-known results in the literature. It is
essentially the same as [12, Thm. 3.25]. However, we have made a number of minor edits to
fit the notation and setup of this thesis (see Remark 2.4.11 below).

Theorem 2.4.10 (Best s-term decay rates; finite dimensions). Let d ∈ N, f ∈ B(ρ) for
some ρ ≥ 1, where B(ρ) is as in (2.3.1), and c = (cν)ν∈Nd

0
be its Chebyshev or Legendre

coefficients. Then the following best s-term decay rates hold:
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(i) for any 0 < p ≤ q ≤ 2 and s ∈ N, there exists a lower set S ⊂ Nd
0 of size |S| ≤ s such

that
σs(c)q;V ≤ ∥c − cS∥q;V ≤ ∥c − cS∥q,u;V ≤ C · s1/q−1/p,

where σs(c)q;V is as in Definition 2.4.2 (with Λ = Nd
0), u is as in (2.4.17) and C =

C(d, p,ρ) > 0 depends on d, p and ρ only;

(ii) for any 0 < p ≤ q ≤ 2 and k > 0,

σk(c)q,u;V ≤ C · k1/q−1/p,

where σk(c)q,u;V is as in Definition 2.4.4, u is as in (2.4.17) (with Λ = Nd
0) and

C = C(d, p,ρ) > 0 depends on d, p and ρ only;

(iii) for any 0 < p ≤ 2,

0 < γ < (d+ 1)−1

d!
d∏

j=1
log(ρj)

1/d

,

and s ∈ N, there exists a lower set S ⊂ Nd
0 of size |S| ≤ s such that

σs(c)p;V ≤ ∥c − cS∥p;V ≤ ∥c − cS∥p,u;V ≤ C · exp(−γs1/d),

where σs(c)p;V is as in Definition 2.4.2 (with Λ = Nd
0), u is as in (2.4.17) and C =

C(d, γ, p,ρ) > 0 depends on d, γ, p and ρ only.

Remark 2.4.11 There are several differences between Theorem 2.4.10 and [12, Thm. 3.25].
A minor difference is that we do not specify the various constants C appearing in the
result. Another difference is in the presentation of (iii). Here we allow arbitrary s ≥ 1
(instead of s ≥ s̄) at the expense of a larger (and unspecified) constant C. The main
difference, however, is the additional term ∥c − cS∥q,u;V appearing in (i). This can be shown
as follows. First, one defines the sequence c̄ = (u2/q−1

ν cν)ν∈Nd
0

so that ∥c − cS∥q,u;V =
∥c̄ − c̄S∥q;V and then uses Stechkin’s inequality in lower sets (see, e.g., [12, Lem. 3.9]) to
show that ∥c̄ − c̄S∥q;V ≤ s1/q−1/p∥c̄∥p,M;V , where ∥·∥p,M;V is the norm on the majorant ℓp

space ℓpM(Nd
0; V) (see, e.g., [12, Defn. 3.8]). Finally, it can be shown that ∥c̄∥p,M;V ≤ C(d, p,ρ)

using standard arguments. See, e.g., [12, Lem. 7.19] (this lemma only considers the scalar-
valued case; however the extension to the Banach-valued case is straightforward).

Remark 2.4.12 In the Hilbert-valued case, Theorem 2.4.10 implies Theorems 2.4.5 and
2.4.7. For the former, we note that ∥f − fS1∥L2

ϱ(U ;V) = ∥c − cS1∥2;V and from (2.4.18) we
have that ∥f − fS2∥L∞(U ;V) ≤ ∥c − cS2∥1,u;V . We then apply (i) with q = 2 or q = 1. For the
latter, we use (iii) with p = 1. Also note that proving Theorem 2.4.10 and Theorem 2.4.13
(see also [12, Thm. 3.25 and Thm. 3.15]) involves establishing the summability of a bounding
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sequence for the V-norms of the polynomial coefficients in (2.4.2). This bound is equal to
∥f∥L∞(Eρ;V) multiplied by a factor that is independent of f and depending on ρ only.
Consequently, the index set in Theorem 2.4.10 and Theorem 2.4.13 are independent of f .

The infinite-dimensional case

We now consider the infinite-dimensional case, where d = ∞ and U = [−1, 1]N. The following
theorem is based on [12, Thms. 3.29 and 3.33].

Theorem 2.4.13 (Best s-term decay rates; infinite-dimensional case). Let ϱ be the tensor-
product uniform or Chebyshev measure on U = [−1, 1]N and {Ψν}ν∈F be the corresponding
tensor-product orthonormal Legendre or Chebyshev polynomial basis of L2

ϱ(U). Let 0 <

p < 1, ε > 0, b ∈ ℓp(N) with b > 0 and f ∈ H(b, ε), where H(b, ε) is as in (2.3.3). Let
c = (cν)ν∈F be the Chebyshev or Legendre coefficients of f , as in (2.4.2). Then the following
best s-term decay rates hold:

(i) For any p ≤ q < ∞ and s ∈ N, there exists a lower set S ⊂ F of size |S| ≤ s such
that

σs(c)q;V ≤ ∥c − cS∥q;V ≤ ∥c − cS∥q,u;V ≤ C · s1/q−1/p,

where σs(c)q;V is as in (2.4.8) (with Λ = F), u is as in (2.4.17) and C = C(b, ε, p) > 0
depends on b, ε and p only.

(ii) For any p ≤ q ≤ 2 and k > 0, there exists a set S ⊂ F with |S|u ≤ k such that

σk(c)q,u;V ≤ ∥c − cS∥q,u;V ≤ C · k1/q−1/p,

where σk(c)q,u;V is as in (2.4.10) (with Λ = F), u is as in (2.4.17) and C =
C(b, ε, p) > 0 depends on b, ε and p only.

(iii) Suppose that b is monotonically nonincreasing. Then, for any p ≤ q < ∞ and s ∈ N,
there exists an anchored set S ⊂ F of size |S| ≤ s such that

σs(c)q;V ≤ ∥c − cS∥q;V ≤ ∥c − cS∥q,u;V ≤ C · s1/q−1/p,

where σs(c)q;V is as in (2.4.8) (with Λ = F), u is as in (2.4.17) and C = C(b, ε, p) > 0
depends on b, ε and p only.

Note that Theorem 2.4.13 implies Theorem 2.4.6. This follows from (i) with q = 2 or
q = 1.

Remark 2.4.14 Besides the term ∥c − cS∥q,u;V , parts (i) and (iii) can be found in [12,
Thm. 3.28] and [12, Thm. 3.33], respectively. As in the finite-dimensional case (see Remark
2.4.11), the main difference is the assertion of the bound on ∥c − cS∥q,u;V . This can be
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established through similar arguments, using either the majorant ℓp space ℓpM(F ; V) or the
anchored ℓp space ℓpA(F ; V) (see, e.g., [12, Defn. 3.31]) and then Stechkin’s inequality in
lower or anchored sets (see, e.g., [12, Lem. 3.32]). See also [12, Lem. 7.23] (this lemma
only considers the scalar-valued case; however the extension to the Banach-valued case is
straightforward).

Note that neither [12, Thm. 3.28] nor [12, Thm. 3.33] asserts part (ii) of Theorem
2.4.13. This can be shown via the weighted Stechkin’s inequality (see, e.g., [12, Lem. 3.12]),
which gives the bound σk(c)q,u;V ≤ ∥c∥p,u;V · k1/q−1/p, and then by showing that ∥c∥p,u;V ≤
C(b, ε, p). This latter fact can be obtained by the straightforward extension of [12, Lem.
7.23] to the Banach-valued setting.

Note that part (iii) of Theorem 2.4.13 assume that b ∈ ℓp(N) is monotonically nonincreasing.
In our main theorems we consider the weaker assumption that b ∈ ℓpM(N) with b ≥ 0. For
this we require the following corollary of Theorem 2.4.13.

Corollary 2.4.15. Let 0 < p < 1, ε > 0, b ∈ ℓpM(N) with b ≥ 0 and f ∈ H(b, ε), where
H(b, ε) is as in (2.3.3). Let c = (cν)ν∈F be the Chebyshev or Legendre coefficients of f , as
in (2.4.2). Thenfor any p ≤ q < ∞ and s ∈ N, there exists an anchored set S ⊂ F of size
|S| ≤ s such that

σs(c)q;V ≤ ∥c − cS∥q;V ≤ ∥c − cS∥q,u;V ≤ C · s1/q−1/p,

where σs(c)q;V is as in (2.4.8) (with Λ = F), u is as in (2.4.17) and C = (b, ε, p) > 0
depends on b, ε and p only.

Proof. Let b̃ be the minimal monotone majorant of b, defined in (2.4.15). We first claim
that

R(b̃, ε) ⊆ R(b, ε), (2.4.19)

where R is as in (2.3.2) with ε = 1. Let ρ ≥ 1 be such that

∞∑
j=1

(
ρj + ρ−1

j

2 − 1
)
b̃j ≤ ε.

Then, since b̃j ≥ bj for all j, we have

∞∑
j=1

(
ρj + ρ−1

j

2 − 1
)
bj ≤ ε.
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Thus,

R(b̃, ε) =
⋃E(ρ) : ρ ≥ 1,

∞∑
j=1

(
ρj + ρ−1

j

2 − 1
)
b̃j ≤ ε


⊆
⋃E(ρ) : ρ ≥ 1,

∞∑
j=1

(
ρj + ρ−1

j

2 − 1
)
bj ≤ ε

 = R(b, ε),

as required.
Now let f ∈ H(b, ε), i.e., f is holomorphic in R(b, ε) and satisfies ∥f∥L∞

ϱ (R(b,ε)) ≤ 1.
It follows from (2.4.19) that f ∈ H(b̃, ε). Since b̃ is monotonically nonincreasing and ℓp-
summable, part (iii) of Theorem 2.4.13 now immediately implies the result.

Remark 2.4.16 (Dependence of the set S on b, ε and p only) As stated, the vari-
ous sets S described in these two results in infinite dimensions depend on the function
f being approximated. In fact, an inspection of the proofs of these results (see the refer-
ences [12, Thm. 3.28] and [12, Thm. 3.33]) reveals that they only depend on b and ε. This
holds because the proofs rely on bounds for the polynomial coefficients cν that depend on
ν, b and ε only. To be more precise, [12, Thm. 3.28] involves establishing the summability of
a bounding sequence for the V-norms of the polynomial coefficients in (2.4.2). This bound
is equal to ∥f∥L∞(R(b,ε);V) multiplied by a factor that is independent of f and depending on
ρ and ε only. Consequently, the index set in Theorem 2.4.13 part (ii) is independent of f .
Likewise, for the index sets in Theorem 2.4.13 part (i) and (iii), the coefficients in [12, Thm.
3.33]) are bounded by a monotonically nonincreasing sequence (see [12, Eq. (3.55)] ) that
only depends on b and ε. We will use this observation later in the proofs of the main results
of Chapter 5 (Theorems 5.3.3 and 5.3.4).

2.4.6 Hyperbolic cross index sets

Consider a smooth function f with expansion (2.4.2) and a polynomial approximation of
the form (2.5.2) with a target index set S. As mentioned in §2.3.2, we consider both the
known and unknown anisotropy cases. For the former, we may aim to use the knowledge
of b to choose a suitable index set S that attains the desired error bounds in §2.4.5. When
b is unknown, we do not have knowledge of a suitable index set. Later, we will tackle this
issue with compressed sensing techniques. However, to do so, we need to restrict the infinite
index set F to a finite, but large index set Λ. We shall use hyperbolic cross index sets for
this task.

Λ = ΛHC
n,d =

{
ν = (νk)d

k=1 ∈ Nd
0 :

d∏
k=1

(νk + 1) ≤ n

}
⊂ Nd

0. (2.4.20)

We term n the order of the hyperbolic cross. Note that it is common to consider (2.4.20)
as the hyperbolic cross of order n − 1. We use n here as it is slightly more convenient for
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this work. When defined this way, ΛHC
n,d is in fact the union of all lower sets (see Definition

2.4.9) in d dimensions of size at most n (see, e.g., [12, Prop. 2.5]). Therefore, ΛHC
n,d is a good

candidate for the set Λ, since, by Theorems 2.4.10 and 2.4.13 we know that it contains a
lower set S of size n that achieves the stipulated algebraic or exponential error bounds.

In infinite dimensions, we define the following index set

Λ = ΛHCI
n =

ν = (νk)∞
k=1 ∈ F :

n∏
j=1

(νk + 1) ≤ n, νk = 0, k > n

 ⊂ F . (2.4.21)

In this case, the union of all anchored sets (Definition 2.4.9) of size at most n in infinite
dimensions is a subset of ΛHCI

n (see, e.g., [12, Prop. 2.18]). Note that ΛHCI
n is isomorphic to

ΛHC
n,n under the restriction map ν = (νk)∞

k=1 ∈ F 7→ (νk)n
k=1 ∈ Nd

0. For convenience, we now
also define

N = Θ(n, d) =

|ΛHC
n,d| d < ∞,

|ΛHCI
n | = |ΛHC

n,n| d = ∞,
(2.4.22)

as the cardinality of the index set employed. In general, the exact behaviour of Θ(n, d) is
unknown. However, it admits a variety of different bounds. These are summarized as follows
for d < ∞:

N = |ΛHC
n,d| ≤ min

{
2n34d, en2+log(d)/ log(2),

n(log(n) + d log(2))d−1

(d− 1)!

}
. (2.4.23)

The bounds are based on [60,169]. See also [12, Lem. B.3–B.5].

2.5 Recovery of orthogonal polynomial coefficients

As noted in §1.5, a main contribution of this thesis is methods and algorithms for comput-
ing polynomial approximations to holomorphic, Banach-valued functions from the samples
(1.1.1). Having introduced the necessary components, we now describe how this is done. In
particular, we explain how the approximation of f via orthogonal polynomials can be refor-
mulated as a problem of recovering a finite vector consisting of its (unknown) coefficients
in some suitable multi-index set.

Let f ∈ L2
ϱ(U ; V) be a function defined everywhere with convergent expansion (2.4.2),

N ∈ N and VN be the vector space of Banach-valued vectors of length N , i.e., v = (vi)N
i=1

where vi ∈ V, i = 1, . . . , N . Let Λ ⊂ F be a finite multi-index set of size |Λ| = N with the
ordering Λ = {ν1, . . . ,νN } and let w = (wν)ν∈Λ ∈ RN , with w > 0 be a vector of positive
weights. In practice, in this thesis, the weights will be chosen as (2.4.17) and Λ as the set
(2.4.20) in finite dimensions or (2.4.21) in infinite dimensions, for a suitable choice of n.
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Consider m ∈ N and let y1, . . . ,ym ∈ U be sample points. Define the normalized mea-
surement matrix and the measurement and error vectors by

A =
(

Ψνj (yi)√
m

)m,N

i,j=1
∈ Cm×N , f = 1√

m
(f(yi) + ni)m

i=1 and e = 1√
m

(ni)m
i=1 ∈ Vm,

(2.5.1)
where ni is a measurement error term as in (1.3.1).

We also define the truncated expansion of f based on the index set Λ and its corre-
sponding vector of coefficients as

fΛ =
∑
ν∈Λ

cνΨν , cΛ = (cνj )N
j=1 ∈ VN . (2.5.2)

Notice that the matrix A = (ai,j)m,N
i,j=1 immediately extends to a bounded linear operator

A : VN → Vm. Specifically, A ∈ B(VN ,Vm) is given by

x = (xi)N
i=1 ∈ VN 7→ Ax =

 N∑
j=1

ai,jxj

m

i=1

∈ Vm. (2.5.3)

For ease of notation, we make no distinction henceforth between a matrix A ∈ Cm×N and
the corresponding linear operator in B(VN ,Vm) (or B(VN

K ,Vm
K )). With this in hand, notice

that
AcΛ = 1√

m
(fΛ(yi))m

i=1 = 1√
m

(f(yi))m
i=1 − 1√

m
(f(yi) − fΛ(yi))m

i=1 ,

and therefore

AcΛ + e + ẽ = f , where ẽ = 1√
m

(f(yi) − fΛ(yi))m
i=1 . (2.5.4)

Therefore, we have formulated the recovery of cΛ (and consequently fΛ ≈ f) as the solution
of a noisy linear system (2.5.4), where the noise term e + ẽ encompasses both the noise
e = (ni)m

i=1/
√
m in the sample values and the error ẽ due to the truncation (2.5.2) of

the infinite expansion (2.4.2) via the index set Λ. Thus, a key goal in Chapters 3–4 is to
develop methods and algorithms that take m sample values (f(yi) + ni)m

i=1 and construct
approximations to cΛ ∈ VN from the linear system (2.5.4). Note that, in this thesis, (2.5.4)
is an underdetermined linear system with m equations and N > m unknowns. Which means
that, in general, the exact recovery of the coefficients cΛ ∈ VN is not feasible since it has
infinitely many solutions. This motivates the use of sparsity and techniques from compressed
sensing, where we exploit the fact that cΛ is an (approximately) sparse vector.

43



2.5.1 Finite-dimensional approximation

In this thesis, we aim to construct approximations using methods and algorithms that pro-
duce outputs in finite computational time. Note that the coefficients cΛ belong to the space
VN , which is generally a Hilbert or Banach space. In order to compute an approximation,
we consider {φK}K

k=1 as a basis for VK . Consequently, the approximation to f must belong
to a finite-dimensional subspace VK ⊂ V. The technical aspects of this process are discussed
in more detail in Chapter 4. In summary, based on the discussion in §1.4, the approximation
to f we aim to construct is given by

f̂Λ =
∑
ν∈Λ

ĉνΨν , ĉΛ = (ĉνj )N
j=1 ∈ VN

K , (2.5.5)

where

ĉνi =
K∑

k=1
ĉi,kφk,

with (ĉi,k)N,K
k,j=1 ∈ CN×K . Therefore, the goal is to construct approximations ĉΛ ∈ VN

K to
cΛ ∈ VN from the linear system (2.5.4).

2.5.2 Unknown anisotropy recovery

We now consider the unknown anisotropy setting as mentioned in §2.3.2.
In view of the best s-term approximation error bounds shown in §2.4.2–2.4.4, we expect

the vector of coefficients cΛ ∈ VN to be approximately sparse. In other words, cΛ, should be
well approximated by its s largest coefficients. However, in view of the theoretical approxi-
mation results shown in §2.4.5, we also expect cΛ to be well approximated by a subset of s
coefficients whose indices define a lower or anchored set.

In classical compressed sensing, one exploits sparse structure via minimizing an ℓ1-norm.
To exploit sparse and lower or anchored structure, we follow ideas of [2, 4, 12, 64] and use
a weighted ℓ1-norm penalty. To be more precise, based on the discussion in §2.5.1, we
consider minimizing an objective function recovering a vector z ∈ VN

K with a data fidelity
term ∥Az − f∥2;V and a sparsity-promoting term ∥z∥1,w;V . Minimizing the weighted ℓ1-
norm has some geometrical properties to promote sparse solutions. In addition, it can be
viewed as a convex relaxation of minimizing an ℓ0 type of problem, which is nonconvex
and generally NP-hard to solve [112, Chpt. 2]. See [19, §5.4] for further details. Specifically,
we compute an approximate solution via the Banach-valued, weighted Square-Root LASSO
(SR-LASSO) optimization problem [3,40,247]

min
z∈VN

K

G(z), G(z) := λ∥z∥1,w;V + ∥Az − f∥2;V . (2.5.6)
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Here λ > 0 is a tuning parameter and A and f are as in (2.5.1). This parameter balances
the trade-off between the fidelity term and the sparsity promoting term [12, §6.2.4]. Note
that if ĉΛ is a solution of (2.5.6) then we define the approximation to f as

f̂Λ =
∑
ν∈Λ

ĉνΨν .

Note that f̂Λ is a solution to the problem

min
p∈PS;VK

λJ (p) +

√√√√ 1
m

m∑
i=1

∥di − p(yi)∥2
V , (2.5.7)

where di = f(yi) + ni is as in (1.3.1), PΛ;VK
is as in (2.4.3) and J : PS;VK

→ R+ is a norm
over the coefficients of p given by

J (p) = ∥c∥1,w;V .

Moreover, the coefficients ĉΛ of any solution f̂ to (2.5.7) also solve (2.5.6). Thus, the two
problems are equivalent.

Remark 2.5.1 As an alternative to solving (2.5.6), we could use a formulation based on
a constrained basis pursuit or unconstrained LASSO problem. However, we consider the
SR-LASSO problem (2.5.6) instead. While other approaches are arguably more common,
based on [3] the SR-LASSO has the desirable property that the optimal values of its hyper-
parameter λ is independent of the noise term (in this case e + e′). This is not the case for
other formulations, whose hyperparameters need to be chosen in terms of the (unknown)
magnitude of the noise in order to ensure good theoretical and practical performance (see,
e.g., [19, Chpt. 6]). This is particularly problematic in the setting of function approxima-
tion, where such terms are function dependent (for instance, the term e′ depends on the
expansion tail f − fΛ) and therefore generally unknown. See [3] and [12, §6.6] for further
discussion.

2.5.3 Known anisotropy recovery

In the previous case, we assumed that the coefficients were approximately sparse, but, due
to the unknown anisotropy, we do not know which coefficients are the most significant.
In the results for the best s-term approximation §2.4.3 the set S is independent of f (see
Remark 2.4.12 and Remark 2.4.16). Thus we choose the set Λ ⊂ F as a large set in which
we expect these significant coefficients to lie. Conversely, in the known anisotropy setting
where b is known, we also know a suitable set S ⊂ F of size |S| = s, due to the results in
Theorems 2.4.13.

45



Analogously as before, we define the normalized measurement matrix by

A =
(

Ψνj (yi)√
m

)m,s

i,j=1
∈ Cm×s, (2.5.8)

where {ν1, . . . ,νs} is an ordering of S. Likewise, we truncate the expansion of f and its
vector coefficients based on (2.5.2) for the index set S. In contrast to the previous case,
where m < N , we now assume that m ≥ s. Hence, there is no need for compressed sens-
ing techniques. Instead, we formulate the vector recovery problem as the Banach-valued
minimization problem

min
z∈Vs

K

G(z), G(z) := ∥Az − f∥2;V . (2.5.9)

As before, if ĉS is a solution of (2.5.9) then we define the approximation to f as

f̂S =
∑
ν∈S

ĉνΨν .

Note that f̂S is a solution to the problem

min
p∈PS;VK

√√√√ 1
m

m∑
i=1

∥di − p(yi)∥2
V , (2.5.10)

where di = f(yi) + ni is as in (1.3.1), PS;VK
is as in (2.4.3). As before, the coefficients ĉS

of any solution f̂ to (2.5.10) also solve (2.5.9). Thus, the two problems are equivalent.
To end this section, it is worth mentioning here that mathematically, the known

anisotropy setting is just a particular case of the unknown anisotropy setting with λ = 0
and Λ and N replaced by S and s, respectively.

2.6 Deep learning

Similar to past works in approximation theory [7, 16, 82, 84, 88, 141, 213, 215, 236], the main
theoretical results about DL in this thesis are proved by drawing a connection between
DNNs and the recovery of polynomials coefficients. In Chapter 5 use DNNs to emulate
polynomial approximation via least squares (in the known anisotropy case) as in (2.5.9)
and compressed sensing (in the unknown anisotropy case) as in (2.5.6).

In this section, we define the DL setup considered in this work. It is important to note
that machine learning, particularly DL, is a broad subject that we will not attempt to
review beyond what is necessary for this thesis.
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2.6.1 Deep neural networks

In general terms, the objective of the DL framework used in this thesis is to approximate
a certain function g : Rn → RK by constructing a mapping that uses the available data
(zi, g(zi))m

i=1 ⊂ Rn × RK to find a function Φ : Rn → RK that is able to generalize on
new points z ∈ Rn and to obtain good approximations on the training data g(zi) ∈ RK for
i = 1, . . . ,m. To train the DNN it is standard to use a loss function L : N → R, where N
is a certain family of DNNs.

Before introducing DNNs, we need further notation and setup.

Definition 2.6.1 (affine maps). An affine linear map A : Rn → Rp is an operator that can
be written as A(z) = W z + b, where W ∈ Rp×n is the weight matrix and b ∈ Rp is the
bias vector.

In the following, σ : Rn → Rn denotes an activation function on vectors z ∈ Rn. In this
work, we consider either the Rectified Linear Unit (ReLU)

σ1(z) := max{0, z},

Exponential Linear Unit (ELU)

σ(z) =

z z > 0,

ez − 1 z ≤ 0,

Rectified Polynomial Unit (RePU)

σℓ(z) := max{0, z}ℓ, ℓ = 2, 3, . . .

or hyperbolic tangent (tanh)

σ0(z) = ez − e−z

ez + e−z

activation function. Keeping these concepts in mind, we define a DNN.

Definition 2.6.2 (feedforward DNNs). Let D ∈ N0 and N0, . . . ND+2 ∈ N. Consider affine
maps Aℓ : RNℓ → RNℓ+1 given by Aℓ(z) = Wℓz + bℓ and an activation function σ which we
assume acts componentwise, i.e., σ(z) := (σ(zi))n

i=1 for z = (zi)n
i=1. Then a DNN is a map

Φ : RN0 → RND+2 given by

Φ : RN0 → RND+2 , z 7→ Φ(z) = AD+1(σ(AD(σ(· · ·σ(A0(z)) · · · )))). (2.6.1)

The values {Nl}D+1
l=1 are the widths of the hidden layers. For convenience, we define

width(N ) = max{N1, . . . , ND+1}, depth(N ) = D,
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where N is a class of DNNs with a fixed architecture (i.e., fixed activation function, depth
and widths).

2.6.2 Recovery of coefficients via DNNs

Recall that we consider functions of the form f : U → V, where U = [−1, 1]d, d ∈ N (or
d = N) and noisy samples di = f(yi) +ni is as in (1.3.1). As in the previous case §2.5.1, we
must consider approximations of f(y) in the finite dimensional space VK . Using the basis
{φk}K

k=1 we can rewrite this as

f(y) ≈
K∑

k=1
ck(y)φk.

Here we focus on DNNs approximating these coefficient functions ck : U → R. Note that a
DNN, as defined in Definition 2.6.2, has finite domain n ∈ N whereas the coefficient may
have d = N. For now, to keep notation simple we assume d < ∞. In §5.1.1 we introduce a
variable restriction operator (see (5.1.3)) to solve this issue.

In this thesis we aim to construct a DNN Φ : Rd → RK as in Definition 2.6.2 that
approximates f from the data (di)m

i=1 ∈ Vm by minimizing an objective function G : N → R

min
Φ∈N

G(Φ).

We primarily choose G as

G(Φ) :=

√√√√ 1
m

m∑
i=1

∥fΦ(yi) − di∥2
V + J (Φ), (2.6.2)

where J : N → R is a function promoting sparsity or some other desirable feature and

fΦ(y) =
K∑

k=1
Φ(y)kφk, ∀y ∈ U . (2.6.3)

Note that, if Φ̂ : Rd → RK is a solution to the problem (2.6.2), then we define the approxi-
mation to f as fΦ̂ as in (2.6.3).

2.7 Main sources of error

The remainder of this thesis focuses on the approximation to holomorphic functions based
on either polynomials, as discussed in §2.5, or DNNs as in §2.6. A key objective in the
subsequent chapters is to establish error bounds for the various methods introduced. We
measure this error in the L2

ϱ(U ; V)- and L∞(U ; V)-Bochner norms. Specifically, we shall
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derive bounds of the form

∥f − f̂∥L2
ϱ(U ;V) ≲ Eapp +mθ1 (Edisc + Esamp + Eopt) ,

in the L2
ϱ(U ; V)-norm and

∥f − f̂∥L∞(U ;V) ≲ mθ2 (Eapp + Edisc + Esamp + Eopt) ,

in the L∞(U ; V)-norm. Here θ1, θ2 ≥ 0 are a small algebraic factor (often θ1 = 0) and
the other terms are the main sources of error in the problem. We now discuss these error
sources.

(i) Eapp is the approximation error. Depending on the specific setup, it decays alge-
braically or exponentially with respect to the samples m (up to some log terms). It is
equivalent to the corresponding decay rate for the best s-term approximation error,
which depends on the smoothness of f (see §2.3.3).

(ii) Edisc is a physical discretization error. It accounts for the fact that we cannot typically
perform computations in V, since it is an infinite-dimensional function space (see
§1.4). Instead, we perform computations in some reduced dimension finite-dimensional
subspace VK ⊂ V, e.g., a FE space in the case of parametric PDEs (see §2.2).

(iii) Esamp is the sampling error. It is equal to
√

1
m

∑m
i=1 ∥ni∥2

V , and it accounts for the
measurement errors (ni)i. In other words, this means that the approximation based
on polynomials or DNNs are robust to noise in the samples (1.3.1).

(iv) Eopt is the optimization error. It accounts for the fact that the problems (2.5.6) and
(2.5.9) are never solved exactly, but only within some tolerance. This error depends
on how close we are to minimizing the objective function G in §2.5.

In the following chapters, we will delve into a detailed analysis of function approximation,
encompassing approximation errors, physical discretization errors, sampling errors, and op-
timization errors. We will study how these errors manifest in different contexts and discuss
strategies for mitigating them to improve the overall performance and reliability of function
approximation methods answering Questions 1–9 of §1.6. Specifically, the term Eapp plays a
crucial role in the answers to Question 1 for methods using orthogonal polynomials, Ques-
tion 3 in the context of algorithms approximating Hilbert-valued functions of infiniterly
many variables and Question 5 for DNNs approximating high-dimensional Banach-valued
functions from limited samples. Furthermore, we investigate whether the rates obtained
for this approximation error are optimal, addressing Question 8. We also investigate how
other errors, including Edisc, Esamp and Eopt affect the accuracy of the approximation, while
answering Question 9.
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Chapter 3

Compressed sensing for near-best
polynomial approximation from
limited samples

This chapter focuses on methods used to compute approximations of Hilbert-valued func-
tions based on a finite set of sample values. We begin in §3.1 with various preliminaries.
We recall key notation and present the problem statement in §3.1.2. In §3.2 we describe the
main constributions of this chapter. Next, in §3.3, we state our main results on the exis-
tence of methods approximating smooth Hilbert-valued functions. We provide a discussion
on these results in §3.4. In §3.5 we recap the main setup and describe the methods from the
main results. Next, in §3.6 we present extensions of relevant results of compressed sensing
that will be use later in the proofs. In §3.7 we use these to present three general Theorems
from which we derive the main results in this chapter. In §3.8 we preent the proofs of the
main results. Finally, in §3.9 we write our conclusions and address Question 1 of §1.6, before
outlining some future work in §3.10.

The content of this chapter is primarily derived from [10].

3.1 Preliminaries

Broadly speaking, in the contex of Chapter 3 a method is a map that takes a finite input
and computes a polynomial approximation to a certain function of interest f .

Our main results in this chapter consider (V, ⟨·, ·⟩V) to be a Hilbert space and assume
holomorphy (see §2.3) of the underlying function with respect to the parameter space U in
order to attain the desired rates in §2.4.3. Extensions to Banach spaces will be considered in
Chpt 5 in the context of DL. We assume no a priori knowledge of the region of holomorphy
(see §2.3.2), concentrating solely on the unknown anisotropy case. If such information is
available, least-squares methods can be applied as in §2.5.3 in a straightforward manner to
compute an approximation. Note that we assume holomorphy in order to provide concrete
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algebraic and exponential rates of approximation. The methods introduced in this chapter
exist independently of the smoothness assumption. Specifically, they can be applied to
nonholomorphic functions, such as those with finite smoothness, although without the same
theoretical guarantees.

3.1.1 Setup

We now describe the setup considered in this chapter. Let U = [−1, 1]d, where d ∈ N
or d = ∞. Let ϱ be either the uniform or Chebyshev (arcsine) measure and consider the
associated tensor-product Legendre or Chebyshev polynomials. Now let f : U → V be the
function we seek to approximate, which we now assume is continuous. Draw m sample
points y1, . . . ,ym i.i.d. from ϱ and let

di = f(yi) + ni, i = 1, . . . ,m, (3.1.1)

be m noisy samples of f , where n = (ni)m
i=1 ∈ Vm accounts for errors in the measurements.

The discrete space VK

Recall the discussion of finite-dimensional discretizations from §2.2. We now make the as-
sumption that the given data (3.1.1) belongs to a finite-dimensional space VK ⊆ V. Consider
a basis {φk}K

k=1 for VK . We assume that the computation that evaluates f(yi) produces the
coefficients of the sample values di in this basis. This is a natural assumption to make. For
example, for a function that arises as the solution of a DE as in (1.2.1), typically these are
the coefficients associated with a basis derived from a FEM. Therefore, we now write the
sample values as

di = f(yi) + ni =
K∑

k=1
di,kφk, i = 1, . . . ,m, (3.1.2)

and consider the values di,k ∈ C as the data we obtain by sampling f (See (iii) in §2.7).
Recall from §2.2 that we assume the existence of bounded linear operator PK : V → VK .
Note that, in this chapter V is a Hilbert space and, by the discussion in Remark 2.2.1, PK

is the orthogonal projector from V onto VK , where PK(f)(y) = PK(f(y)) (see (2.2.15))
when f is defined everywhere.

3.1.2 Problem statement

We now formally define the input, the output of the method and the problem statement.

Definition 3.1.1 (Input). The input of the mapping is the collection of sample points
(yi)m

i=1 and the array of mK values (di,k)m,K
i,k=1 ∈ Cm×K defined by (3.1.2).
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We now define the output. To this end, we first fix a multi-index set Λ ⊂ F of size
|Λ| = N for some N ≥ 1. This set defines a polynomial space (see (2.4.3))

PΛ;V =

∑
ν∈Λ

cνΨν : cν ∈ V

 ⊂ L2
ϱ(U ; V),

within which we shall construct the resulting polynomial approximation, where {Ψν}ν∈F

form an orthonormal basis of L2
ϱ(U) as in (2.4.1).

Definition 3.1.2 (Output). The output of the method are the coefficients (ĉj,k)N,K
j,k=1 ∈

CN×K such that the approximation f̂ ∈ PΛ;VK
is given by

f̂ : y 7→
N∑

j=1

(
K∑

k=1
ĉj,kφk

)
Ψνj (y), (3.1.3)

where ĉj,k ∈ C for j ∈ [N ], k ∈ [K] and ν1, . . . ,νN is some indexing of the multi-indices in
Λ, and Ψνj is as in (2.4.1) for j ∈ [N ].

Definition 3.1.3 (Methods for polynomial approximation of Hilbert-valued functions). Let
Λ ⊂ F of size |Λ| = N be given, along with an indexing ν1, . . . ,νN of the multi-indices in
Λ. A method for polynomial approximation of Hilbert-valued functions from sample values
is a map of the form

M : Um × Cm×K → CN×K ,
(
(yi)m

i=1, (di,k)m,K
i,k=1

)
7→ (ĉj,k)N,K

j,k=1. (3.1.4)

With this in hand, the formal problem we study in this chapter is: provided m sample
values as in (3.1.2), represented as mK input values (as in Definition 3.1.1), construct
methods as in Definition 3.1.3 that compute NK coefficients (as defined in Definition 3.1.2)
of a polynomial approximation f̂ to f , while providing guarantees on the error f − f̂ in the
L2

ϱ(U ; V)- and L∞(U ; V)-norms.

Remark 3.1.4 As formulated above, it is up to the user to choose a suitable multi-index set
Λ in Definition 3.1.3. Fortunately, as we see in our main results below, this multi-index set
is given simply and explicitly in terms of m and another parameter ϵ (a failure probability).
In particular, no ‘oracle’ knowledge of the function being approximated is required. Thus,
one can also make the stronger assertion in what follows in which the mapping takes the
same input, but outputs both the desired index set Λ and the polynomial coefficients. For
ease of presentation, we shall not do this.

When d = ∞ each sample point yi is an infinite sequence of real numbers. It is implicit
in Definition 3.1.3 that the mapping only accesses finitely-many entries of this sequence.
This does not cause any problems. As noted, the polynomial approximation is obtained in
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the index set Λ, which is a finite subset of F . Hence, the multi-indices in Λ are nonzero
only in their first n entries, for some n. Therefore, it is only necessary to access the first
n entries of each sequence yi. More concretely, in our main results below, the polynomial
approximation in infinite dimensions is obtained in a multi-index set Λ in which only the
first n terms can be nonzero, where n is an integer given explicitly in terms of m and ϵ.

3.2 Contributions

Our main contribution is three theorems providing algebraic decay rates (finite- and infinite-
dimensional case) and exponential decay rates (finite dimensional case) for methods, in the
sense of Definition 3.1.3, approximating holomorphic functions f , where V is a Hilbert space.
In each theorem, we construct methods approximating f to within an explicit error bound
with high probability. Specifically, our error bounds take the form

∥f − f̂∥L2
ϱ(U ;V) ≲ Eapp + Edisc + Esamp,

and in the L∞(U ; V)-norm

∥f − f̂∥L∞(U ;V) ≲
√
m

L
(Eapp + Edisc + Esamp) ,

where f̂ is an approximation to f , L = L(m, ε) is a (poly)logarithmic factor in m (see
(3.3.1)), and the terms Eapp, Edisc and Esamp are as in §2.7.

There are several distinguishing features of our analysis that we now highlight:

1. We overcome the curse of dimensionality in the approximation error. The term Eapp

decays algebraically fast in m/L. Specifically, when f ∈ B(ρ) with B(ρ) as in (2.3.2),
is holomorphic in Eρ for an arbitrary ρ in finite dimensions or f ∈ H(b, ε) with H(b, ε)
as in (2.3.3) is (b, ε)-holomorphic in infinite dimensions, for some 0 < p < 1, we have

Eapp ≲ C ·
(
m

L

)1/2−1/p

,

where C depends on d, p and ρ (finite dimensional case) or b, ε and p (infinite-
dimensional case).

2. We achieve exponential decay rates in the approximation error in finite dimensions.
Let f ∈ B(ρ) with B(ρ) as in (2.3.2) be holomorphic in Eρ for an arbitrary ρ. The
term Eapp decays exponentially fast in m/L. That is, for some γ > 0 and a constant

53



c0 > 0 to be specified,

Eapp ≲ C ·


exp

(
−γ

2

(
m

c0L

) 1
d

)
Exponential rate, Chebyshev,

exp
(

−γ
(

m
c0L

) 1
2d

)
Exponential rate, Legendre,

(3.2.1)

where C depends on d, γ and ρ.

3. The exponential decay rates obtained in the approximation error are uniform guar-
antees (see §1.4). This means that a single draw of the sample points is sufficient for
recovering any function in B(ρ) with high probability. In contrast, we only achieve
the desired algebraic rate with high probability for each fixed f , which makes our
algebraic rate results nonuniform.

3.3 Main results

We now present the main results of this chapter. In addition to the above discussion, our
contribution are methods achieving the rates of the best s-term approximation with respect
to the number of samples m (recall Theorems 2.4.10–2.4.13). These results employ specific
choices of the index set Λ in order to obtain the desired approximation rates. See §2.4.6 for
further details. Specifically, in finite dimensions, recall that the hyperbolic cross index set is
the set ΛHC

n,d defined in (2.4.20). In infinite dimensions, we use the index set ΛHCI
n defined in

(2.4.21). Let N = Θ(n, d) (see (2.4.22)) be the cardinality of the index set employed. Recall
that the exact behaviour of Θ(n, d) is unknown, but it admits the bounds in (2.4.23).

Given m ≥ 3 and ϵ ∈ (0, 1), we define

L = L(m, d, ϵ) =

log2(m) · min{log(m) + d, log(2d) · log(m)} + log(ϵ−1) d < ∞,

log4(m) + log(ϵ−1) d = ∞.

(3.3.1)

Algebraic rates of convergence, finite dimensions

Theorem 3.3.1 (Existence of a method; algebraic case, finite dimensions). Let d ∈ N,
{Ψν}ν∈Nd

0
⊂ L2

ϱ(U) be either the orthonormal Chebyshev or Legendre basis and {φk}K
k=1 be

a basis for VK . Then for every m ≥ 3, 0 < ϵ < 1 and K ≥ 1, there is a mapping

M : Um × Cm×K → CN×K ,

where N = Θ(n, d) is as in (2.4.22) with n = ⌈m/L⌉ and L = L(m, d, ϵ) as in (3.3.1),
with the following property. Let f ∈ B(ρ) for arbitrary ρ ≥ 1, draw y1, . . . ,ym randomly
and independently according to ϱ and let (di,k)m,K

i,k=1 ∈ Cm×K be as in (3.1.2) for arbitrary
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noise terms n = (ni)m
i=1 ∈ V. Let (ĉj,k)N,K

j,k=1 = M((yi)m
i=1, (di,k)m,K

i,k=1) and define the ap-
proximation f̂ as in (3.1.3) based on the index set Λ = ΛHC

n,d. Then the following holds with
probability at least 1 − ϵ. The error satisfies

∥f − f̂∥L2
ϱ(U ;V) ≤ c1 · ζ, ∥f − f̂∥L∞(U ;V) ≤ c2 ·

√
m

L
· ζ, (3.3.2)

for any 0 < p ≤ 1, where

ζ := C ·
(
m

c0L

)1/2−1/p

+
∥n∥2;V√

m
+ ∥f − PK(f)∥L∞(U ;V), (3.3.3)

c0, c1, c2 ≥ 1 are universal constants and C = C(d, p,ρ) depends on d, p and ρ only.

We now make several remarks about this result. The same remarks apply (with obvious
modifications) to all subsequent results as well. First, notice how the index set Λ in which
the approximation is constructed is given completely explicitly in terms of m, d and ϵ. Thus,
as claimed in Remark 3.1.4, no ‘oracle’ information about the function being approximated
is required. Indeed, notice that the mapping described in this theorem is universal in the
sense that its applies equally to any function f ∈ B(ρ) and any ρ ≥ 1.

A key aspect of this theorem is the factor ζ, defined in (3.3.3), which determines the
error bounds (3.3.2). As claimed in §2.7, this incorporates three main key errors arising in
the approximation process:

(i) The approximation error. This is the algebraically-decaying term Eapp = C ·
(m/(c0L))1/2−1/p. It is completely equivalent to the best s-term approximation er-
ror bound in Theorem 2.4.5, except with s replaced by m/(c0L).

(ii) The sampling error. This is the term Esamp = ∥n∥2;V/
√
m, where n = (ni)m

i=1 is as in
(3.1.2). In other words, the effect of any errors in computing the sample values f(yi)
enters linearly in the overall error bound.

(iii) The physical discretization error. This is the term Edisc = ∥f − PK(f)∥L∞(U ;V). It
describes the effect of working in the finite-dimensional subspace VK , instead of the
full space V. Critically, it depends on the orthogonal projection (best approximation)
PK(f) of f from VK .

Notice that (i) also describes the sample complexity of the scheme. Indeed, Theorem 3.3.1
asserts that there is a polynomial approximation that can be obtained from m samples
that attains the best s-term rate s1/2−1/p, where s = m/(c0L) scales like m up to the
polylogarithmic factor L.
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Algebraic rates of convergence, infinite dimensions

We now consider algebraic rates of convergence in the infinite-dimensional setting. In this
case, we assume that f belongs to the class H(b, ε), where b ∈ ℓp(N) and ε > 0 (see §2.3.1).

Theorem 3.3.2 (Existence of a method; algebraic case, infinite dimensions). Let d = ∞,
{Ψν}ν∈F ⊂ L2

ϱ(U) be either the orthonormal Chebyshev or Legendre basis and {φk}K
k=1 be

a basis for VK . Then for every m ≥ 3, 0 < ϵ < 1 and K ≥ 1, there is a mapping

M : Um × Cm×K → CN×K ,

where N = Θ(n, d) is as in (2.4.22) with n = ⌈m/L⌉, where L = L(m, d, ϵ) is as in (3.3.1),
with the following property. Let ε > 0, 0 < p < 1 and b ∈ ℓpM(N) with b ≥ 0. Let f ∈ H(b, ε),
draw y1, . . . ,ym randomly and independently according to ϱ and let (di,k)m,K

i,k=1 ∈ Cm×K be as
in (3.1.2) for arbitrary noise terms n = (ni)m

i=1 ∈ V. Let (ĉj,k)N,K
j,k=1 = M((yi)m

i=1, (di,k)m,K
i,k=1)

and define the approximation f̂ as in (3.1.3) based on the index set Λ = ΛHCI
n . Then the

following holds with probability at least 1 − ϵ. The error satisfies

∥f − f̂∥L2
ϱ(U ;V) ≤ c1 · ζ, ∥f − f̂∥L∞(U ;V) ≤ c2 ·

√
m

L
· ζ, (3.3.4)

where
ζ := C ·

(
m

c0L

)1/2−1/p

+
∥n∥2;V√

m
+ ∥f − PK(f)∥L∞(U ;V), (3.3.5)

c0, c1, c2 ≥ 1 are universal constants and C = C(b, ε, p) depends on b, ε and p only.

We now make a few remarks about the algebraic rates discussed in this chapter. The-
orems 3.3.1 and 3.3.2 are nonuniform and achieve the corresponding algebraic rates for a
fixed function f . Specifically, a single draw of the sample points y1, . . . ,ym is sufficient to
recover a fixed function f with high probability up to the specified error bound (see §1.4).

Note that in finite dimensions, we attain an algebraic rate that scales like m up to a
polylogarithmic factor of the order O(log3(m)) in terms of m. Conversely, in the infinite-
dimensional case, it is of the order of O(log4(m)). This rate is not equivalent to that of the
best s-term rates in §2.4.3, specifically (2.4.12). This discrepancy arises from the necessity
for accurate and stable recovery methods based on orthonormal polynomials (see §3.6).
Specifically, these logarithmic factors arise when asserting the wRIP for the measurement
matrix. See Lemma 3.7.1. Additionally, unlike the finite-dimensional case, the polylogarith-
mic factor log3(m) becomes log4(m). This change is due to the factor d in L from (3.3.1)
becoming log(m).

As mentioned in Theorem 3.3.1, the method in finite dimensions is more general in the
sense that it applies to any function f ∈ B(ρ) and any ρ ≥ 1. In contrast, in infinite
dimensions, it applies to a specific class of anisotropic holomorphic functions in H(b, ε).
Specifically, Theorem 3.3.2 involve the assumption b ∈ ℓpM(N). Unfortunately, as we will see
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in Chapter 6, it is impossible to learn infinite-dimensional functions for which we only know
that b ∈ ℓp(N).

Exponential rates of convergence, finite dimensions

Finally, we consider exponential rates of convergence in finite dimensions.

Theorem 3.3.3 (Existence of a method; exponential case, finite dimensions). Let d ∈ N,
{Ψν}ν∈Nd

0
⊂ L2

ϱ(U) be either the orthonormal Chebyshev or Legendre basis and {φk}K
k=1 be

a basis for VK . Then for every m ≥ 3, 0 < ϵ < 1 and K ≥ 1, there is a mapping

M : Um × Cm×K → CN×K ,

where N = Θ(n, d) is as in (2.4.22) with

n =

⌈
√
m/L⌉ Legendre,

⌈m/(2dL)⌉ Chebyshev,
(3.3.6)

and L as in (3.3.1), with the following property. Draw y1, . . . ,ym randomly and inde-
pendently according to ϱ. Then, with probability at least 1 − ϵ, the following holds. Let
f ∈ B(ρ) for arbitrary ρ ≥ 1, (di,k)m,K

i,k=1 ∈ Cm×K be as in (3.1.2) for arbitrary noise terms
n = (ni)m

i=1 ∈ V. Let (ĉj,k)N,K
j,k=1 = M((yi)m

i=1, (di,k)m,K
i,k=1) and define the approximation f̂ as

in (3.1.3) based on the index set Λ = ΛHC
n,d. Then the error satisfies

∥f − f̂∥L2
ϱ(U ;V) ≤ c1 · ζ, ∥f − f̂∥L∞(U ;V) ≤ c2 ·

√
m

L
· ζ, (3.3.7)

for any

0 < γ < (d+ 1)−1

d!
d∏

j=1
log(ρj)

1/d

,

where

ζ := C ·


exp

(
−γ

2

(
m

c0L

) 1
d

)
Chebyshev

exp
(

−γ
(

m
c0L

) 1
2d

)
Legendre

+
∥n∥2;V√

m
+ ∥f − PK(f)∥L∞(U ;V), (3.3.8)

c0, c1, c2 ≥ 1 are universal constants and C = C(d, γ,ρ) depends on d, γ and ρ only.

A notable difference between Theorem 3.3.3 and Theorems 3.3.1 and 3.3.2 is that it
provides different decay rates for the Chebyshev or uniform measures. For points drawn
from the Chebyshev measure, the exponential approximation rate is better and takes the
form exp

(
−γ

2

(
m

c0L

) 1
d

)
, having a more favourable exponent of 1/d on the m/(c0L) term
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than the exponent 1/(2d) for points drawn from the uniform measure. This difference reflects
the fact that uniformly-distributed sample points are relatively poor points for polynomial
approximation in finite (and, in particular, low) dimensions, whereas points drawn from
the Chebyshev measure are much better. It is notable that this difference vanishes when
considering algebraic rates. Thus in higher, in particular, infinite dimensions we expect
uniformly-distributed points to perform well. This phenomenon has been investigated in [6]

Theorem 3.3.3 asserts that there are methods in which the approximation error decays
exponentially fast in terms of the number of samples m for finite-dimensional function
approximation. However, the curse of dimensionality is not avoided in the decay rate, making
this result less desirable in high dimensions. This brings a key advantage for using algebraic
rates. Here, we pay the price of not having exponential decay rates but avoid the curse
of dimensionality on the approximation error. Note that the curse of dimensionality is not
avoided in the constant C(d, p,ρ) in Theorem 3.3.1. However, by virtue of the infinite-
dimensional setting, there is no curse of dimensionality in Theorem 3.3.2

Remark 3.3.4 In the algebraic case, in order to obtain the desired algebraic exponent
1/2 − 1/p we bound a term in (3.7.9) with high probability for each fixed f . See Step 4
of the proof of Theorem 3.7.3. This renders the ensuing result nonuniform. Conversely, in
the exponential case (where the appearance of small algebraic factors is not a concern,
since they can be absorbed into the exponentially-decaying term) we bound this term with
probability one for any f . See Step 4 of the proof of Theorem 3.7.5. Note that one could
also derive uniform guarantees in the algebraic case by considering a fixed value of p and
letting M and A depend on p, or by considering a restricted range 0 < p ≤ p∗ < 1. Both
strategies involve a larger value of n, with its size depending on p or p∗. See [12, §7.6.2] for
further discussion.

3.4 Discussion

This chapter bridges a gap between the best s-term polynomial approximation theory and
the practical scenario of computing such approximations from sample values. In particular,
it asserts that algebraic and exponential rates with respect to the number of samples m
that are highly similar to those of the best approximation.

Our main results assume holomorphy of the underlying function in order to attain these
rates. However, they assume no a priori knowledge of the region of holomorphy. As discussed
in §2.5.3, if such information is available, then least-squares methods can be applied in a
straightforward manner to compute an approximation. The holomorphy assumption is made
in order to have concrete algebraic and exponential rates.

Our analysis is based on compressed sensing theory and involve computing approximate
minimizers of certain weighted ℓ1 -minimization problems. Here we highlight some key
contributions of the proofs:
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1. We provide precise error rates for polynomial approximation via compressed sensing.
Most prior work on compressed sensing involves quantifying the sample complexity
to obtain a certain (weighted) best approximation error. Subject to a holomorphy
assumption, we use this to obtain specific algebraic and exponential rates.

2. Prior works consider polynomial approximations formed by exact minimizers of non-
linear optimization problems. Our main results in this chapter do not involve mini-
mizers. However, in §3.7.3 we consider error bounds for inexact minimizers, which will
be useful in Chapter 4.

3. Most prior works on compressed sensing (with the exception of [95]) focus on scalar-
valued functions, e.g., quantities of interest of parametric DEs. We show results about
mappings that work in the Hilbert-valued setting, and, crucially, provide error bounds
that take into account discretization error.

4. Following [2, 4, 12, 64, 225, 227], we work in a weighted setting in order to promote
sparsity in lower or anchored sets (recall §2.4.4).

5. Finally, as discussed below, we consider noise-blind decoders (see Remark 2.5.1, and
also [3]).

The optimization problem

Our approach first formulates the approximation problem as the recovery of a finite, Hilbert-
valued vector (i.e., an element of VN ) via a weighted Square-Root LASSO (SR-LASSO) opti-
mization problem. The use of SR-LASSO, as opposed to the classical LASSO or various con-
strained formulations, is crucial to this work. SR-LASSO is noise-blind (see Remark 2.5.1),
meaning it admits an optimal parameter choice that is independent of the noise e and ẽ in
(2.5.4). Consequently, it gives rise to methods that do not require any a priori (and generally
unavailable) estimates of the measurement error (ni)m

i=1 or the truncation error with respect
to the finite polynomial space in which the approximation is constructed. See §2.5.2.

The index set and universality

Notice how the index set Λ in which the approximation is constructed is given completely
explicitly in terms of m, d and ϵ. Thus, as claimed in Remark 3.1.4, no ‘oracle’ informa-
tion about the function being approximated is required. Indeed, notice that the methods
described in this theorem are universal, in the sense that they apply equally to any function
f ∈ B(ρ) and any ρ ≥ 1 (in finite dimensions) or any f ∈ H(b, ε) and any b, ε (in infinite
dimensions).

The sample complexity
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A key aspect of this theorem is the factor ζ, which determines the error bounds (3.3.2)
(3.3.4) and (3.3.7). As discussed in §2.7, ζ incorporates three main errors arising in the ap-
proximation process. Notably, the approximation error also describes the sample complexity
of the scheme. Specifically, Theorem 3.3.1 asserts that a polynomial approximation can be
obtained from m samples, achieving the s-term rate s1/2−1/p, where s = m/(c0L) scales like
m up to the polylogarithmic factor L. This is also true for Theorem 3.3.2. Moreover, the
exponential rates in the approximation error in Theorem 3.3.3 are comparable to the rates
in (2.4.13) of the form exp(−γs1/d) with γ defined in (2.4.14).

3.5 The methods and proofs setup

Before diving into the details of the proofs, we now recap our main setup and important
aspects for the rest of the chapter. Consider a high-dimensional function f ∈ L2

ϱ(U ; V) with
expansion (2.4.2). We follow the setup from §2.5. More specifically §2.5.2. Here the solution
to the linear system in (2.5.4) recovers the polynomial coefficients cΛ ∈ VN

K of the truncated
expansion (2.5.2) of f from m sample values. Keeping this in mind, our methods are based
on the solution to the minimization problem (2.5.6) recovering the coefficients in (2.5.4).

3.5.1 The methods in Theorems 3.3.1– 3.3.3

In the following we describe more about the methods in Theorems 3.3.1– 3.3.3. These are
described in Table 3.1. In particular, the output of the method is defined by Ĉ = (ĉi,k)N,K

i,k=1 ∈
CN×K where each coefficient ĉi,k is defined by the relation

ĉνi =
K∑

k=1
ĉi,kφk ∈ VK , i ∈ [N ],

where {φk}K
k=1 is a basis of VK ⊂ V. Note that these are indeed well-defined methods, since

the minimizer of (2.5.6) with smallest ℓ2-norm is unique (this follows from the facts that
(2.5.6) is a convex problem, therefore its set of minimizers is a convex set, and the function
z 7→ ∥z∥2

2,V is strongly convex). This particular choice is arbitrary, and is made solely so
as to have a well-defined method. It is of no consequence whatsoever. Indeed, the various
error bounds we prove later hold for any minimizer of (2.5.6).

Having defined the methods, the following section provides the main theory to prove
Theorems 3.3.1– 3.3.3.

3.6 Compressed sensing

While the construction of the methods asserted in our main results in this chapter is based on
classical techniques from compressed sensing [12,19,112], in the following section we extend
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• Let m, ϵ and n be as given in the particular theorem and set Λ = ΛHC
n,d (Theorem

3.3.1 and 3.3.3) or Λ = ΛHCI
n (Theorem 3.3.2).

• Set λ = (4
√
m/L)−1, where L = L(m, d, ϵ) is as in (3.3.1).

• Let D = (di,k)m,K
i,k=1 ∈ Cm×K and Y = (yi)m

i=1 be an input, as in (3.1.2), and set
F = 1√

m
D.

• Let A and w be as in (2.5.1) and (2.4.17), respectively.

• Define the output Ĉ = M(Y ,D) as the minimizer of (2.5.6) with smallest ℓ2-
norm.

Table 3.1: The methods M : Um × Cm×K → CN×K used in Theorems 3.3.1, 3.3.2 and 3.3.3

relevant aspects of the theory of compressed sensing to the Hilbert- and Banach-valued
setting, and use these to obtain various error bounds and sample complexity estimates that
lead to the main theorems in not only this chapter, but subsequent results in this thesis.

3.6.1 The weighted robust Null Space Property

Although the results in this chapter pertain to Hilbert-valued functions, the theory presented
in this section can be applied to the more general setting where (V, ∥·∥V) is a Banach space.
Henceforth, V will be assumed to be a Banach space unless stated otherwise.

As described in §2.5.2, we consider weighted ℓ1-minimization type of problems to recover
the polynomial coefficients of an expansion of f of the form (2.4.2). Let A ∈ B(WN ,Wm)
be the measurement matrix as in (2.5.1), where W ⊆ V is a closed subspace. The weighted
robust Null Space Property (wrNSP) is a property on the matrix A that, if satisfied, ensures
accurate and stable recovery. It implies certain distance bounds in the ℓ1w- and ℓ2-norms.
We now formally define this property. See, e.g., [12, Defn. 6.22] or [227, §4.1].

Definition 3.6.1. The matrix A has the weighted robust Null Space Property (rNSP) over
W of order (k,w) with constants 0 ≤ ρ < 1 and γ ≥ 0 if

∥xS∥2;V ≤
ρ∥xSc∥1,w;V√

k
+ γ∥Ax∥2;V , ∀x ∈ WN ,

for any S ⊆ [N ] with |S|w ≤ k.

Recall from §2.1 that xS is the vector with ith entry equal to xi if i ∈ S and |S|w is the
weighted cardinality of set S.

The following lemma is standard in the scalar case (see, e.g., [12, Lem. 6.24]). We omit
the proof of its extension to the Banach-valued case, since it follows almost exactly the same
arguments.
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Lemma 3.6.2 (Weighted rNSP implies ℓ1w and ℓ2 distance bounds). Suppose that A ∈
B(WN ,Wm) has the weighted rNSP over a closed subspace W ⊆ V of order (k,w) with
constants 0 < ρ < 1 and γ > 0. Let x, z ∈ WN . Then

∥z − x∥1,w;V ≤ C1
(
2σk(x)1,w;V + ∥z∥1,w;V − ∥x∥1,w;V

)
+ C2

√
k∥A(z − x)∥2;V , (3.6.1)

∥z − x∥2;V ≤ C ′
1√
k

(
2σk(x)1,w;V + ∥z∥1,w;V − ∥x∥1,w;V

)
+ C ′

2∥A(z − x)∥2;V , (3.6.2)

where the constants are given by

C1 = (1 + ρ)
(1 − ρ) , C2 = 2γ

(1 − ρ) , C ′
1 =

(
(1 + ρ)2

1 − ρ

)
and C ′

2 =
((3 + ρ)γ

1 − ρ

)
.

The previous result implies bounds for certain approximate minimizers of the optimiza-
tion problems introduced in §2.5. In particular, consider the optimization problem in (2.5.6).
We say that x ∈ VN

K is an inexact minimizer of (2.5.6), for some ζ > 0, if

G(x) ≤ ζ + min
z∈VN

K

G(z).

Lemma 3.6.3 (Weighted rNSP implies error bounds for inexact minimizers). Suppose that
A ∈ B(WN ,Wm) has the weighted rNSP over a closed subspace W ⊆ V of order (k,w) with
constants 0 ≤ ρ < 1 and γ > 0. Let x ∈ WN , f ∈ Vm and e = Ax − f ∈ Vm, and consider
the minimization problem

min
z∈WN

G(z), G(z) := λ∥z∥1,w;V + ∥Az − f∥2;V , (3.6.3)

with parameter

0 < λ ≤ (1 + ρ)2

(3 + ρ)γ k
−1/2. (3.6.4)

Then

∥x̃ − x∥1,w;V ≤ C1

(
2σk(x)1,w;V + G(x̃) − G(x)

λ

)
+
(
C1
λ

+ C2
√
k

)
∥e∥2;V ,

∥x̃ − x∥2;V ≤ C ′
1√
k

(
2σk(x)1,w;V + G(x̃) − G(x)

λ

)
+
(
C ′

1√
kλ

+ C ′
2

)
∥e∥2;V ,

for any x̃ ∈ WN ,where the constants are given by

C1 = (1 + ρ)
(1 − ρ) , C2 = 2γ

(1 − ρ) , C ′
1 =

(
(1 + ρ)2

1 − ρ

)
and C ′

2 =
((3 + ρ)γ

1 − ρ

)
.

62



Proof. First notice that C ′
1/C

′
2 ≤ C1/C2 since 0 < ρ < 1, where C1, C2, C ′

1 and C ′
2 are as

in Lemma 3.6.2. Hence the condition on λ implies that

λ ≤ min{C1/C2, C
′
1/C

′
2}k−1/2, (3.6.5)

Using this lemma and this bound, we deduce that

∥x̃ − x∥1,w;V ≤ 2C1σk(x)1,w;V+C1
λ

(
λ∥x̃∥1,w;V + ∥Ax̃ − f∥2;V − λ∥x∥1,w;V

)
+C2

√
K∥e∥2;V .

The definition of G in (3.6.3) gives

∥x̃ − x∥1,w;V ≤ 2C1σk(x)1,w;V + C1
λ

(
G(x̃) − G(x) + ∥e∥2;V

)
+ C2

√
k∥e∥2;V ,

which is the first result. The second follows in an analogous manner.

This result provides information about the error bound for inexact minimizers in terms
of the best k-term approximation error, an optimization error G(x̃) − G(x) and error in the
measurement errors. Notice that defining the weighted rNSP over a closed subspace W ⊆ V
allows us to assert error bounds for the minimization problem over, for example, the space
W = VK . This fact will be useful later in the proofs.

3.6.2 Matrices satisfying the weighted rNSP over Banach spaces

In this section, we give explicit conditions in terms of m under which the measurement
matrix (2.5.1) satisfy the weighted rNSP over Banach spaces. It is well known that showing
the (weighted) rNSP directly can be difficult. In the classical, scalar setting, this is over-
come by showing that the (weighted) rNSP is implied by the so-called (weighted) restricted
isometry property (wRIP). Keeping in mind the definition of weighted sparsity and the set
of weighted sparse vectors Σk,w from Definition 2.4.3, we now introduced the wRIP and
describe its relation to the (weighted) rNSP.

Definition 3.6.4. Let w > 0 and k > 0. A bounded linear operator A ∈ B(VN ,Vm) has
the weighted Restricted Isometry Property (wRIP) over V of order (k,w) if there exists a
constant 0 < δ < 1 such that

(1 − δ)∥z∥2
2;V ≤ ∥Az∥2

2;V ≤ (1 + δ)∥z∥2
2;V , ∀z ∈ Σk,w ⊆ VN . (3.6.6)

The smallest constant such that this property holds is called the (k,w)th weighted
Restricted Isometry Constant (wRIC) of A, and is denoted as δk,w. See, e.g., [19, Def. 6.25]
and [227, §4.2].
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wRIP implies weighted rNSP

The following result shows that the wRIP is a sufficient condition for the weighted rNSP.
This result is well known in the scalar-valued case (see, e.g., [12, Theorem 6.26]).

Lemma 3.6.5 (wRIP implies the weighted rNSP). Let w > 0, k > 0 and suppose that
A ∈ Cm×N has the wRIP over C of order (2k,w) with constant δ2k,w < (2

√
2 − 1)/7. Then

A has the weighted rNSP of order (k,w) over V with constants ρ = 2
√

2δ2k,w/(1 − δ2k,w)
and γ =

√
1 + δ2k,w/(1 − δ2k,w).

However, in this thesis, rather than the classical setting of a vector in CN , one seeks to
recover a Hilbert- or Banach-valued vector in VN . The former, due to their approximation
properties and inner product has a simpler analysis. Below we prove an equivalence between
the scalar wRIP over C and the Hilbert-valued wRIP over V. While for the latter, we only
consider sufficient conditions to show the weighted rNSP over Banach spaces.

The Hilbert-valued case

In the Hilbert-valued case by showing the wRIP over C (or V) we are able to show the
wrNSP over the Hilbert space V. The following result shows the equivalence between the
scalar wRIP over C and the Hilbert-valued wRIP over V.

Lemma 3.6.6 (wRIP over C is equivalent to the wRIP over V). Let w > 0, k > 0 and
A = (ai,j)m,N

i,j=1 ∈ Cm×N be a matrix. Then A satisfies the wRIP over C of order (k,w) with
constant 0 < δ < 1 if and only if the corresponding bounded linear operator A ∈ B(VN ,Vm)
defined by

x = (xi)N
i=1 ∈ VN 7→ Ax :=

(
N∑

i=1
ai,jxj

)m

i=1
∈ Vm,

satisfies the wRIP over V of order (k,w) with the same constant δ.

Proof. We follow similar arguments to [95, Rmk. 3.5]. First, we rewrite the equivalence as
follows:

(1 − δ)∥x∥2
2;V ≤ ∥Ax∥2

2;V ≤ (1 + δ)∥x∥2
2;V , ∀x ∈ VN , |supp(x)|w ≤ k, (3.6.7)

if and only if

(1 − δ)∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1 + δ)∥x∥2
2, ∀x ∈ CN , |supp(x)|w ≤ k. (3.6.8)

Suppose that (3.6.8) holds. Let x = (xj)N
i=1 ∈ VN be (k,w)-sparse and {ϕi}i be an or-

thonormal basis of V. Then, for each i ∈ [N ], xi ∈ V can be uniquely represented as

xi =
∑

j

αi,jϕj , αi,j ∈ C.
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Let xj = (αi,j)N
i=1 ∈ CN . Then supp(xj) ⊆ supp(x) and therefore xj is (k,w)-sparse. Hence

(3.6.8) gives
(1 − δ)∥xj∥2

2 ≤ ∥Axj∥2
2 ≤ (1 + δ)∥xj∥2

2. (3.6.9)

Now observe that

∑
j

∥xj∥2
2 =

N∑
i=1

∑
j

|αi,j |2 =
N∑

i=1
∥xi∥2

V = ∥x∥2
2;V ,

and ∑
j

∥Axj∥2
2 =

∑
j

m∑
i=1

∣∣∣∣∣
N∑

k=1
ai,kαkj

∣∣∣∣∣
2

=
m∑

i=1

∥∥∥∥∥
N∑

k=1
ai,kxk

∥∥∥∥∥
2

V

= ∥Ax∥2
2;V .

Summing (3.6.9) over j, we deduce that (3.6.7) holds.
Conversely, suppose that (3.6.7) holds and let z = (zi)N

i=1 ∈ CN with |supp(z)|w ≤ k.
Define x = (ziϕi)N

i=1 ∈ VN and notice that ∥x∥2;V = ∥z∥2 and ∥Ax∥2;V = ∥Az∥2. Since
supp(x) = supp(z) and |supp(z)|w ≤ k, we now apply (3.6.7) to deduce that (1 − δ)∥z∥2

2 ≤
∥Az∥2

2 ≤ (1 + δ)∥z∥2
2. We conclude that (3.6.8) holds.

wRIP over Banach spaces

Let A ∈ Cm×N be a matrix of the form (2.5.1). In the Banach-valued case, by showing
that A has the wRIP over C we are able to show that also has the wrNSP over the Banach
space V at the cost of an extra factor

√
m in the error bound (see Chp. 5). We now derive

explicit conditions for such a matrix A ∈ Cm×N to give rise to an associated operator
A ∈ B(VN ,Vm) (see (2.5.3)) that satisfies the weighted rNSP over VN with V a Banach
space. Note that as an alternative to the equivalence in Lemma 3.6.7 between wRIP over C
and Hilbert spaces, the following lemma shows that the wRIP over C is a sufficient condition
for the wRIP over Banach spaces.

Lemma 3.6.7 (Weighted rNSP over C implies weighted rNSP over V). Suppose that a
matrix A ∈ Cm×N satisfies the weighted rNSP over C of order (k,w) with 0 ≤ ρ < 1 and
γ ≥ 0, and let s∗ = s∗(k) := max{|S| : |S|w ≤ k, S ⊆ [N ]}. Then the corresponding operator
A ∈ B(VN ,Vm) defined by (2.5.3) satisfies the weighted rNSP over V of order (k,w) with
constants 0 ≤ ρ′ < 1 and γ′ > 0 given by ρ′ =

√
s∗ρ and γ′ =

√
s∗γ, respectively.

Proof. Let v ∈ VN and |S|w ≤ k. Using (2.2.5) we get

∥vS∥2
2;V =

∑
i∈S

∥vi∥2
V =

∑
i∈S

 max
v∗∈V∗

∥v∗∥V∗ =1

|v∗(vi)|


2

≤ |S|

 max
v∗∈V∗

∥v∗∥V∗ =1

∥v∗(vS)∥2


2

, (3.6.10)
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where v∗(vS) := (v∗(vi))N
i=1 ∈ CN . Since A has the weighted rNSP over C we get

∥v∗(vS)∥2 ≤
ρ∥v∗(vSc)∥1,w√

k
+ γ∥A(v∗(v))∥2, ∀v ∈ VN ,∀v∗ ∈ V∗. (3.6.11)

If ∥v∗∥V∗ = 1, then we also have

∥v∗(vSc)∥1,w ≤ ∥vSc∥1,w;V and ∥A(v∗(v))∥2 = ∥v∗(A(v))∥2 ≤ ∥A(v)∥2;V .

Therefore

∥v∗(vS)∥2 ≤
ρ∥vSc∥1,w;V√

k
+ γ∥A(v)∥2;V , ∀v ∈ VN , ∀v∗ ∈ V∗, ∥v∗∥V∗ = 1.

Combining this with (3.6.10) and noting that |S| ≤ s∗(k), we deduce that

∥vS∥2;V ≤
√
s∗(k)

(
ρ∥vSc∥1,w;V√

k
+ γ∥A(v)∥2;V

)
, ∀v ∈ VN ,

as required.

As mentioned before Lemma 3.6.7, the extra factor
√
s∗ is one of the causes of the extra

m-dependent factors–the other being the absence of Parseval’s identity in Banach spaces–in
the final error bound for the Banach-valued case as opposed to the Hilbert-valued case. See
for instance, the discussion about Theorem 5.3.1 and 5.3.2 in §5.4.

3.7 Error bounds for polynomial approximation via weighted
SR-LASSO

Having developed the necessary tools for compressed sensing in the Hilbert-valued setting,
we now specialize to the case of polynomial approximation via the Hilbert-valued, weighted
SR-LASSO problem (2.5.6). Our main results in this section, Theorems 3.7.3–3.7.5, yield
error bounds for (inexact) minimizers of this problem in terms of the best polynomial
approximation error, the Hilbert space discretization error and the noise.

3.7.1 Overview

This section involve a number of technical steps, we now give a brief overview of how these
proofs proceed.

We begin by focusing on the polynomial approximation problem. We first give a sufficient
condition in terms of m for the measurement matrix (2.5.1) to satisfy the wRIP with high
probability (Lemma 3.7.1). Next, we state and prove three general results (Theorems 3.7.3–
3.7.5) that give error bounds for polynomial approximations obtained as inexact minimizers
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of the Hilbert-valued, weighted SR-LASSO problem. These results are then ready to be
divided into the three cases considered in our main results(Theorems 3.3.1– 3.3.3), i.e., the
algebraic and finite-dimensional case, the algebraic and infinite-dimensional case, and the
exponential case. We finally prove the main results in §3.8.

3.7.2 The wRIP for the polynomial approximation problem

Let {Ψν}ν∈F ⊂ L2
ϱ(U) be either the tensor Chebyshev or Legendre polynomial basis,

Λ =

ΛHC
n,d d < ∞,

ΛHCI
n d = ∞,

(3.7.1)

be the hyperbolic cross index set and draw y1, . . . ,ym independently and identically from
the measure ϱ. Then we define the measurement matrix A exactly as in (2.5.1).

We now assert conditions on m under which the measurement matrix (2.5.1) satisfies the
wRIP. For this, we use the following result, which is an adaptation of [51, Thm. 2.14] (we
make several small notational changes herein for consistency with the notation used in this
thesis; moreover, we replace the logarithmic factor log2(k/δ2) with log2(k/δ), as revealed
by an inspection of the proof).

Lemma 3.7.1 (wRIP for Chebyshev and Legendre polynomials). Let ϱ be the tensor-
product uniform or Chebyshev measure on U = [−1, 1]d with d ∈ N or d = ∞, {Ψν}ν∈F

be the corresponding tensor-product orthonormal Legendre or Chebyshev polynomial basis
of L2

ϱ(U), Λ be as in (3.7.1) for some n ≥ 1 and y1, . . . ,ym be drawn independently and
identically from the measure ϱ. Let c0 be a universal constant, 0 < δ, ϵ < 1 and k ≥ 1,

L′ = L′(k, n, d, ϵ) :=

log2(k/δ) · min{log(n) + d, log(2d) · log(2n)} + log(2/ϵ) d < ∞,

log2(k/δ) · log2(en) + log(2/ϵ) d = ∞,

and suppose that
m ≥ c0 · δ−2 · k · L′(k, n, d, ϵ), (3.7.2)

then, with probability at least 1 − ϵ, the matrix A defined in (2.5.1) satisfies the wRIP over
C of order (k,u) with constant δk,u, where u are the intrinsic weights (2.4.17).

Proof. We let N = |Λ|. Then ∥∥∥Ψνj

∥∥∥
L∞

ϱ (U)
= uνj ,

67



and therefore the condition ∥Ψνj ∥L∞(U) ≤ uν required by [51, Thm. 2.14] holds. Now, using
(2.4.23) (and recall that |ΛHCI

n | = |ΛHC
n,n|) we can get the estimate

log(eN) ≤ c

min{d+ log(n), log(2d) · log(2n)} d < ∞,

log2(en) d = ∞,

for a potentially different universal constant. Here, in the last inequality, we used the esti-
mate log(eN) ≤ 4 log2(en), which comes from (2.4.23) and some basic algebra,

log(eN) ≤ log
(
e2n2+log(n)/ log(2)

)
≤
(

2 + log(n)
log(2)

)
log(en) ≤ 4 log2(en).

Now, condition (3.7.2) gives

c0 · δ−2 · k · (log(eN) · log2(k/δ)) ≤ c0 · δ−2 · k · (log(eN) · log2(k/δ) + log(2/ϵ))

≤ c0 · δ−2 · k · L′ ≤ m

after relabelling the constant c0 in (3.7.2) as c ·c0. Therefore, from [51, Thm. 2.14] we obtain
that with probability at least 1−2 exp(−c1δ

−2m/k) the matrix A defined in (2.5.1) satisfies
the wRIP over C of order (k,u) with constant δk,u for some c1 > 0. To conclude the result,
we notice that

m ≥ c1δ
−2 · k · log(2/ϵ) ⇒ 2 exp(−c1δ

−2m/k) ≤ ϵ.

Hence, replacing c0 by max{c0, c1} in (3.7.2), we deduce that the result holds with proba-
bility at least 1 − ϵ, as required.

Remark 3.7.2 As formulated above, Lemma 3.7.1 only considers the case k ≥ 1. However,
for k < 1 ≤ minν∈F u

2
ν , the set of weighted (k,u)-sparse vectors is empty. Therefore the

RIP of order (k,u) is trivially satisfied in this case.

3.7.3 Bounds for polynomial approximations obtained as inexact mini-
mizers

We now present the main results of this section. These three results provide error bounds for
polynomial approximations obtained as (inexact) minimizers to the weighted SR-LASSO
problem (2.5.6). Each theorem corresponds to one of the three scenarios in our main results
in §3.3. Hence, we label them accordingly as algebraic and finite dimensional, algebraic and
infinite dimensional, and exponential. In order to state these results, we now define some
additional notation. Given f ∈ L2

ϱ(U ; V) and Λ ⊆ F , where F is as in (2.1.1)–(2.1.2), we let

EΛ,2(f) = ∥f − fΛ∥L2
ϱ(U ;V), EΛ,∞(f) = ∥f − fΛ∥L∞(U ;V),
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where fΛ is as in (2.5.2), and, given a subspace VK ⊆ L2
ϱ(U ; V), we let

Edisc(f) = ∥f − PK(f)∥L∞(U ;V),

where PK(f) is as in (2.2.15).

Theorem 3.7.3 (Error bounds for inexact minimizers, algebraic and finite-dim. case). Let
d ∈ N, m ≥ 3, 0 < ϵ < 1, {Ψν}ν∈Nd

0
⊂ L2

ϱ(U) be either the orthonormal Chebyshev or
Legendre basis, VK be a subspace of V and Λ = ΛHC

n,d be the hyperbolic cross index set with
n = ⌈m/L⌉ where L = L(m, d, ϵ) is as in (3.3.1). Let f ∈ L2

ϱ(U ; V) be a function defined
everywhere, draw y1, . . . ,ym randomly and independently according to ϱ and suppose that
A, f and e are as in (2.5.1). Consider the Hilbert-valued, weighted SR-LASSO problem
(2.5.6) with weights w = u as in (2.4.17) and λ = (4

√
m/L)−1. Then there exists universal

constants c0, c1, c2 ≥ 1 such that the following holds with probability at least 1 − ϵ. Any
c̃ = (c̃ν)ν∈Λ ∈ CN satisfies

∥f − f̃∥L2
ϱ(U ;V) ≤ c1 · ξ, ∥f − f̃∥L∞(U ;V) ≤ c2 ·

√
k · ξ, f̃ :=

∑
ν∈Λ

c̃νΨν ,

where

ξ = σk(cΛ)1,u;V√
k

+ EΛ,∞(f)√
k

+ EΛ,2(f) + Edisc(f) + G(c̃) − G(PK(cΛ)) +
∥n∥2;V√

m
,

cΛ is as in (2.5.2), PK(cΛ) = (PK(cν))ν∈Λ, k = m/(c0L) for L = L(m, d, ϵ) as in (3.3.1),
and n is as in (2.5.1).

Proof. We divide the proof into several steps.

Step 1: Splitting the error into separate terms. Consider the L2
ϱ(U ; V)-norm error first. By

the triangle inequality and the fact that PK is a projection, we have

∥f − f̃∥L2
ϱ(U ;V) ≤ ∥f − PK(f)∥L2

ϱ(U ;V) + ∥PK(f) − PK(fΛ)∥L2
ϱ(U ;V) + ∥PK(fΛ) − f̃∥L2

ϱ(U ;V)

≤ ∥f − PK(f)∥L∞(U ;V) + ∥f − fΛ∥L2
ϱ(U ;V) + ∥PK(fΛ) − f̃∥L2

ϱ(U ;V)

= Edisc(f) + EΛ,2(f) + ∥PK(fΛ) − f̃∥L2
ϱ(U ;V).

Then, by orthonormality, we have

∥f − f̃∥L2
ϱ(U ;V) ≤ Edisc(f) + EΛ,2(f) + ∥PK(cΛ) − c̃∥2;V .
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Similarly, for the L∞(U ; V)-norm error, we have

∥f − f̃∥L∞(U ;V) ≤ ∥f − PK(f)∥L∞(U ;V) + ∥PK(f) − PK(fΛ)∥L∞(U ;V) + ∥PK(fΛ) − f̃∥L∞(U ;V)

≤ ∥f − PK(f)∥L∞(U ;V) + ∥f − fΛ∥L∞(U ;V) + ∥PK(fΛ) − f̃∥L∞(U ;V)

= Edisc(f) + EΛ,∞(f) + ∥PK(fΛ) − f̃∥L∞(U ;V).

Using the definition (2.4.17) of the weights u, we deduce that

∥f − f̃∥L∞(U ;V) ≤ Edisc(f) + EΛ,∞(f) + ∥PK(cΛ) − c̃∥1,u;V .

Therefore, the rest of the proof is devoted to showing the following bounds:

∥PK(cΛ) − c̃∥2;V ≤ c1 · ξ, ∥PK(cΛ) − c̃∥1,u;V ≤ c2 ·
√
k · ξ. (3.7.3)

We do this in the next two steps by first asserting that A has the weighted rNSP (Step 2)
and then by applying the error bounds of Lemma 3.6.3 (Steps 3 and 4).

Step 2: Asserting the weighted rNSP. We now show that A has the weighted rNSP over VK

of order (k,u) with probability at least 1 − ϵ/2. This is based on Lemma 3.7.1. Let c̄0 be
the constant in Lemma 3.7.1, set δ̄ = 1/4 and observe that

L = L(m, d, ϵ) ≥ log2(3) · min{log(3) + 1, log(3) · log(2)} ≥ 1,

since m ≥ 3. This implies that m ≥ m/L ≥ m/(c0L) = k since c0 ≥ 1 as well. Since
n = ⌈m/L⌉ ≤ m/L+ 1 ≤ 2m, we deduce that

log2(2k/δ̄) min {log(n) + d, log(2d) · log(2n)} + log(4/ϵ)

≤ log2(2m/δ̄) · min {log(2m) + d, log(2d) · log(4m)} + log(4/ϵ)

≲ L(m, d, ϵ).

In particular, this implies that

m = c0 · k · L(m, d, ϵ) ≥ c̄0 · δ̄−2 · 2k · L′(2k, n, d, ϵ/2),

where L′ is defined as in Lemma 3.7.1, and therefore (again assuming a suitably-large choice
of c0) (3.7.2) holds with k replaced by 2k. We deduce that A satisfies the wRIP of order
(2k,u) with constant δ2k,u ≤ 1/4, with probability at least 1 − ϵ/2. Then, we deduce from
Lemmas 3.6.6 and 3.6.5 that A has (with the same probability) the weighted rNSP of order
(k,u) over VK with constants ρ = 2

√
2/3 and γ = 2

√
5/3.
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Step 3: Bounding PK(cΛ)− c̃ using the weighted rNSP. We use Lemma 3.6.3. First, consider
the value of λ. Since c0 ≥ 1 we have m/L ≥ m/(c0L) = k. Hence, recalling the values for ρ
and γ obtained in the previous step, we have

1
4√

c0

1√
k

= 1
4
√
m/L

= λ ≤ 1
4
√
k
<

(1 + ρ)2

(3 + ρ)γ
1√
k
. (3.7.4)

Therefore (3.6.4) holds. We now apply this lemma with V = VK , x = PK(cΛ), x̃ = c̃ and
e = APK(cΛ) − f . Notice first that the best (k,u)-approximation error (2.4.10) satisfies

σk(PK(cΛ))1,u;V = inf

 ∑
ν∈Λ\S

uν∥PK(cν)∥V : S ⊆ Λ, |S|u ≤ k

 ≤ σk(cΛ)1,u;V , (3.7.5)

since PK is a projection. Hence, applying Lemma 3.6.3 and using the lower bound in (3.7.4),
we get

∥c̃ − PK(cΛ)∥2;V ≤ c1

[
σk(cΛ)1,w;V√

k
+ G(c̃) − G(PK(cΛ)) + ∥APK(cΛ) − f∥2;V ,

]
,

∥c̃ − PK(cΛ)∥1,u;V ≤ c2
[
σk(cΛ)1,w;V +

√
k (G(c̃) − G(PK(cΛ))) +

√
k∥APK(cΛ) − f∥2;V

]
,

(3.7.6)

with probability at least 1 − ϵ/2. Therefore, to show (3.7.3) and therefore complete the
proof, it suffices to show that the following holds with probability at least 1 − ϵ/2:

∥APK(cΛ) − f∥2;V ≤
√

2
(
EΛ,∞(f)√

k
+ EΛ,2(f)

)
+ Edisc(f) +

∥n∥2;V√
m

. (3.7.7)

The overall result then follows by the union bound.

Step 4: Showing that (3.7.7) holds. Observe that

√
m∥(APK(cΛ) − f)i∥V ≤ ∥PK(fΛ)(yi) − f(yi)∥V + ∥ni∥V

≤ ∥PK(fΛ)(yi) − PK(f)(yi)∥V + ∥f(yi) − PK(f)(yi)∥V + ∥ni∥V

≤ ∥f(yi) − fΛ(yi)∥V + Edisc(f) + ∥ni∥V .

Therefore

∥APK(cΛ) − f∥V;2 ≤

√√√√ 1
m

m∑
i=1

∥f(yi) − fΛ(yi)∥2
V + Edisc +

∥n∥2;V√
m

. (3.7.8)
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For this final step, we follow near-identical arguments to those found in [12, Lem. 7.11].
This shows that √√√√ 1

m

m∑
i=1

∥f(yi) − fΛ(yi)∥2
V ≤

√
2
(
EΛ,∞(f)√

k
+ EΛ,2(f)

)
, (3.7.9)

with probability at least 1 − ϵ/2, provided m ≥ 2k log(4/ϵ). However, the bound on this
discrete error term follows due to the assumptions on m and the arguments given in Step
2. Thus we obtain (3.7.7) and the proof is complete.

Theorem 3.7.4 (Error bounds for inexact minimizers, algebraic and infinite-dim. case).
Let d = ∞, m ≥ 3, 0 < ϵ < 1, {Ψν}ν∈F ⊂ L2

ϱ(U) be either the orthonormal Chebyshev or
Legendre basis, VK be a subspace of V and Λ = ΛHCI

n be the hyperbolic cross index set with
n = ⌈m/L⌉ where L = L(m, d, ϵ) is as in (3.3.1). Let f ∈ L2

ϱ(U ; V) be a function defined
everywhere, draw y1, . . . ,ym randomly and independently according to ϱ and suppose that
A, f and e are as in (2.5.1). Consider the Hilbert-valued, weighted SR-LASSO problem
(2.5.6) with weights w = u as in (2.4.17) and λ = (4

√
m/L)−1. Then there exists universal

constants c0, c1, c2 ≥ 1 such that the following holds with probability at least 1 − ϵ. Any
c̃ = (c̃ν)ν∈Λ ∈ CN satisfies

∥f − f̃∥L2
ϱ(U ;V) ≤ c1 · ξ, ∥f − f̃∥L∞(U ;V) ≤ c2 ·

√
k · ξ, f̃ :=

∑
ν∈Λ

c̃νΨν ,

where

ξ = σk(cΛ)1,u;V√
k

+ EΛ,∞(f)√
k

+ EΛ,2(f) + Edisc(f) + G(c̃) − G(PK(cΛ)) +
∥n∥2;V√

m
,

cΛ is as in (2.5.2), PK(cΛ) = (PK(cν))ν∈Λ, k = m/(c0L) for L = L(m, d, ϵ) as in (3.3.1),
and n is as in (2.5.1).

Proof. The proof has the same structure as that of the previous theorem. Steps 1, 3 and 4
are identical. The only differences occur in Step 2. We now describe these changes. Once
more we observe that L = L(m,∞, ϵ) ≥ 1 since m ≥ 3. Hence m ≥ m/L ≥ m/(c0L) = k

since c0 ≥ 1. We also have n = ⌈m/L⌉ ≤ 2m. Using this, we deduce that

c̄0 · δ̄−2 · 2k · (log2(2k/δ̄) · log2(en) + log(4/ϵ)) ≤ c0 · k · L(m,∞, ϵ) = m,

for a suitably-large choice of c0. An application of Lemma 3.7.1 now shows that A has the
wRIP of order (2k,u) with constant δ2k,u ≤ 1/4, as required.

Theorem 3.7.5 (Error bounds for inexact minimizers, exponential case). Let d ∈ N, m ≥ 3,
0 < ϵ < 1, {Ψν}ν∈Nd

0
⊂ L2

ϱ(U) be either the orthonormal Chebyshev or Legendre basis, VK

be a subspace of V and Λ = ΛHC
n,d be the hyperbolic cross index set with n as in (3.3.6). Draw
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y1, . . . ,ym randomly and independently according to ϱ. Then, with probability at least 1 − ϵ,
the following holds. Let f ∈ L2

ϱ(U ; V) be a function defined everywhere and suppose that
A, f and e are as in (2.5.1). Consider the Hilbert-valued, weighted SR-LASSO problem
(2.5.6) with weights w = u as in (2.4.17) and λ = (4

√
m/L)−1. Then there exists universal

constants c0, c1, c2 ≥ 1 such that any c̃ = (c̃ν)ν∈Λ ∈ CN satisfies

∥f − f̃∥L2
ϱ(U ;V) ≤ c1 · ξ, ∥f − f̃∥L∞(U ;V) ≤ c2 ·

√
k · ξ, f̃ :=

∑
ν∈Λ

c̃νΨν ,

where
ξ = σk(cΛ)1,u;V√

k
+ EΛ,∞(f) + Edisc(f) + G(c̃) − G(PK(cΛ)) +

∥n∥2;V√
m

,

cΛ is as in (2.5.2), PK(cΛ) = (PK(cν))ν∈Λ, k = m/(c0L) for L = L(m, d, ϵ) as in (3.3.1),
and n is as in (2.5.1).

Proof. The proof has the same structure as that of Theorem 3.7.3. Step 1 is identical, and
reduces the proof to showing that (3.7.3) holds. We now describe the modifications needed
in Steps 2–4:

Step 2: Asserting the weighted rNSP. We now show that A has the weighted rNSP over VK

of order (k,u) with probability at least 1 − ϵ. This step is essentially the same, except for
the choice of n and the probability 1 − ϵ instead of 1 − ϵ/2.

Step 3: Bounding PK(cΛ) − c̃ using the weighted rNSP. Since λ and k are the same as in
Theorem 3.7.3, the bound (3.7.4) also holds in this case. We then follow the same arguments,
leading to (3.7.6) holding with probability at least 1− ϵ. Finally, rather than (3.7.7), we ask
for the slightly modified bound

∥APK(cΛ) − f∥2;V ≤ EΛ,∞(f) + Edisc(f) +
∥n∥2;V√

m
, (3.7.10)

to hold with probability one.

Step 4: Showing (3.7.10) holds. By the same argument, we see that (3.7.8) holds. Instead
of the probabilistic bound (3.7.9), we now simply bound it as√√√√ 1

m

m∑
i=1

∥f(yi) − fΛ(yi)∥2
V ≤ ∥f − fΛ∥L∞(U ;V) = EΛ,∞(f).

This immediately implies (3.7.10).

Finally, we observe that we can simplify the previous estimates in this case using the bound
EΛ,2(f) ≤ EΛ,∞(f).
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3.8 Proofs of the main results: Theorems 3.3.1– 3.3.3

We are now ready to prove the main results of this chapter. In several of these proofs, we
require the following definition. Let s ∈ N and define

k(s) := max{|S|u : S ⊂ Nd
0, |S| ≤ s, S lower}, (3.8.1)

where u are the intrinsic weights (2.4.17) (recall the definition of a lower set from Definition
2.4.9). It can be shown that

k(s) = s2, (Legendre), k(s) ≤ min{2ds, slog(3)/ log(2)}, (Chebyshev). (3.8.2)

See, e.g., [12, Eqn. (7.42) and Props. 5.13 & 5.17]. We will use this property several times
in what follows.

3.8.1 Theorem 3.3.1: algebraic rates of convergence, finite dimensions

Proof. The mapping was described in Table 3.1. As shown therein, we can write the corre-
sponding approximation as f̂ = ∑

ν∈Λ ĉνΨν , where ĉ = (ĉν)ν∈Λ is a minimizer of (2.5.6).
Next, due to the various assumptions made, we may apply Theorem 3.7.3. Setting f̃ = f̂

and c̃ = ĉ, we deduce that

∥f − f̂∥L2
ϱ(U ;V) ≤ c1 · ξ, ∥f − f̂∥L∞(U ;V) ≤ c2 ·

√
k · ξ, (3.8.3)

where (after writing out the term Edisc(f) explicitly)

ξ = σk(cΛ)1,u;V√
k

+ EΛ,∞(f)√
k

+EΛ,2(f) + ∥f − PK(f)∥L∞(U ;V) + G(ĉ) − G(PK(cΛ)) +
∥n∥2;V√

m
,

(3.8.4)
and k = m/(c0L) with c0 ≥ 1 a universal constant. We now bound each term separately.

Step 1. The terms σk(cΛ)1,u;V/
√
k, EΛ,∞(f)/

√
k and EΛ,2(f). The term σk(cΛ)1,u;V/

√
k is

estimated via (ii) of Theorem 2.4.10 with q = 1. This gives

σk(cΛ)1,u;V√
k

≤ C(d, p,ρ) · k1/2−1/p = C(d, p,ρ) ·
(
m

c0L

)1/2−1/p

. (3.8.5)

We estimate the term EΛ,2(f) by first recalling that Λ = ΛHC
n,d is the union of all lower sets

(see Definition 2.4.9) of size at most n = ⌈m/L⌉ (see §2.4.6). Hence, using (i) of Theorem
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2.4.10 with s = n and q = 2, we get

EΛ,2(f) = ∥c − cΛ∥2;V ≤ ∥c − cS∥2;V ≤ C(d, p,ρ) · n1/2−1/p ≤ C(d, p,ρ) ·
(
m

c0L

)1/2−1/p

.

(3.8.6)
Here, in the last step we recall that n = ⌈m/L⌉ and c0 ≥ 1.

It remains to consider EΛ,∞(f)/
√
k. Due to the choice of weights, we have EΛ,∞(f) ≤

∥c − cΛ∥1,u;V . We now apply (i) of Theorem 2.4.10 once more, with s = n and q = 1, to get

EΛ,∞(f) ≤ ∥c − cS∥1,u;V ≤ C(d, p,ρ) · n1−1/p.

Since n = ⌈m/L⌉ ≥ m/(c0L) = k, we obtain

EΛ,∞(f)√
k

≤ C(d, p,ρ) ·
(
m

c0L

)1/2−1/p

. (3.8.7)

Step 2. The term G(ĉ) − G(PK(cΛ)). Since ĉ is a minimizer of (2.5.6) and PK(cΛ) ∈ VN
K is

feasible for (2.5.6), this term satisfies

G(ĉ) − G(PK(cΛ)) ≤ 0. (3.8.8)

Step 3. Conclusion. We now substitute the bounds (3.8.5)–(3.8.8) into (3.8.4). Since k ≤
m/L, we deduce that ξ ≤ ζ, where ζ is given by (3.3.3). This completes the proof.

3.8.2 Theorem 3.3.2: algebraic rates of convergence, infinite dimensions

Proof. The proof is similar to that of Theorem 3.3.1, except that it uses Theorem 3.7.4 in
place of Theorem 3.7.3. In particular, we see that (3.8.3) also holds in this case with ξ as
in (3.8.4) and k = m/(c0L).

Step 2 is identical. The only differences occur in Step 1. We now describe the changes
needed in this case. First consider the term σk(cΛ)1,u;V/

√
k. To bound this, we use Theo-

rem 2.4.13 with q = 1 > p. This gives

σk(cΛ)1,u;V√
k

≤ C(b, ε, p) · k1/2−1/p = C(b, ε, p) ·
(
m

c0L

)1/2−1/p

.

To estimate EΛ,2(f), recall that Λ = ΛHCI
n contains all anchored sets (see Definition 2.4.9) of

size at most n = ⌈m/L⌉ (§2.4.6). Hence, using Corollary 2.4.15 with s = n and q = 2 > p,
we get

EΛ,2(f) = ∥c − cΛ∥2;V ≤ ∥c − cS∥2;V ≤ C(b, ε, p) · n1/2−1/p ≤ C(b, ε, p) ·
(
m

c0L

)1/2−1/p

.
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Finally, for EΛ,∞(f), we use Corollary 2.4.15 once more (with q = 1 > p) to get

EΛ,∞(f)√
k

≤
∥c − cS∥1,u;V√

k
≤ C(b, ε, p) · k1/2−1/p = C(b, ε, p) ·

(
m

c0L

)1/2−1/p

.

Having done this, we also observe that G(ĉ) − G(PK(cΛ)) ≤ 0 in this case, since ĉ is once
more an exact minimizer. Using this and the previously-derived bounds, we conclude that
ξ ≤ ζ, where ζ is as in (3.3.5). This gives the result.

3.8.3 Theorem 3.3.3: exponential rates of convergence, finite dimensions

Proof . The proof has the same structure to that of Theorem 3.3.1, the only differences
being the use of Theorem 3.7.5 instead of Theorem 3.7.3 and the estimation of the various
terms in Step 1. Suppose first that m ≥ c02d+2L and define the following:

s =

⌈
√
m/(4c0L)⌉ Legendre,

⌈m/(4c02dL)⌉ Chebyshev.
(3.8.9)

Observe that

s ≤


√
m/(c0L) Legendre,

m/(c02dL) Chebyshev,

and therefore the quantity k(s)∈ N defined in (3.8.1) satisfies

1 ≤ k(s) ≤ m

c0L
= k.

Now consider the term σk(cΛ)1,u;V/
√
k. Notice that σk(cΛ)1,u;V ≤ σk(s)(c)1,u;V . Using this

and (iii) of Theorem 2.4.10 with p = 1 we have

σk(cΛ)1,u;V√
k

≤
σk(s)(c)1,u;V√

k
≤ C(d, γ,ρ) · exp(−γs1/d)√

k
≤ C(d, γ,ρ) · exp(−γs1/d).

Note that this is possible since any lower set S of size at most s satisfies |S| ≤ |S|u ≤ k(s)
by definition. In the last inequality we used that k ≥ 1.

Now consider EΛ,∞(f). Recall that Λ = ΛHC
n,d, where n is as in (3.3.6). Clearly n ≥ s,

since c0 ≥ 1. Hence Λ contains all lower sets of size at most s. We deduce that

EΛ,∞(f) ≤ ∥c − cS∥1,u;V ,

for any lower set of size s. We now use (iii) of Theorem 2.4.10 with p = 1 once more, to get

EΛ,∞(f) ≤ C(d, γ,ρ) · exp(−γs1/d).
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We now combine this with the previous bound to deduce that the quantity ξ in Theorem
3.7.5 satisfies

ξ ≤ C(d, γ,ρ) · exp(−γs1/d) + Edisc(f) +
∥n∥2;V√

m
,

(here, we also recall that the term G(ĉ)−G(PK(cΛ)) ≤ 0, as in the proof of Theorem 3.3.1).
Using the value of s and recalling that m ≥ c02d+2L, we deduce that

ξ ≤ C(d, γ,ρ) ·


exp

(
−γ

2

(
m

4c0L

) 1
d

)
Chebyshev

exp
(

−γ
(

m
4c0L

) 1
2d

)
Legendre

+
∥n∥2;V√

m
+ ∥f − PK(f)∥L∞(U ;V).

However, this bound also clearly holds for all m ≥ 1, up to a change in the constant
C(d, γ,ρ). After relabelling the universal constant 4c0 as c0, we deduce that ξ ≤ ζ, where ζ
is as in (3.3.8). This concludes the proof.

3.9 Conclusions

Sparse polynomial approximation is a useful tool in parametric model problems, including
surrogate model construction in UQ. The theory of best s-term approximation supports
the use of polynomial based methods, and techniques such as least squares and compressed
sensing are known to have desirable sample complexity bounds for obtaining polynomial
approximations. In this work, we have closed a key gap between these two areas of research,
by showing the existence of mappings that achieve exponential and near-best algebraic rates
of the best s-term approximation with respect to the number of samples m.

Keeping this in mind, this Chapter answers Question 1 of §1.6 in the affirmative.

Answer to Question 1
There are mappings for computing approximations to holomorphic finite- or infinite-
dimensional, Hilbert-valued functions from limited samples that achieve similar theo-
retical rates as benchmarks such as the best s-term polynomial approximation.

In addition, we answer Question 9 of §1.6 for the setting in this chapter.

Answer to Question 9
In the L2

ϱ(U ; V)-norm the errors Esamp and Edisc enter the error linearly. In the
L∞(U ; V)-norm these terms enter the error multiplied by a factor

√
m/L.
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3.10 Future work

Note that this chapter is the foundation of Chapter 4, where we introduce efficient algorithms
to compute the desired approximations. Therefore, we discuss future work at the end of
Chapter 4.
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Chapter 4

Efficient algorithms for computing
near-best polynomial
approximations via compressed
sensing from limited samples

This chapter focuses on algorithms (i.e., methods involving finitely-many arithmetic oper-
ations) used to compute approximations of Hilbert-valued functions based on a finite set
of sample values. We begin in §4.1 with various preliminaries. We recall key notation and
present the problem statement in §4.1.2. In §4.2 we describe the main constributions of
this chapter. Next, in §4.3, we state our main results on efficient methods approximating
smooth Hilbert-valued functions. We provide a discussion on these results in §4.4. In §4.5
we recap the main setup and describe the algorithms. Next in §4.6 we describe the restart-
ing procedure for our efficient algorithm. We continue in §4.7 with the calculations of the
computational cost of the algorithms. In §4.8 we provide error bounds for solutions of a
minimization problem. In §4.9 we preent the proofs of the main results. Finally, in §4.10 we
write our conclusions and address Questions 2–4 of §1.6 for both scalar and Hilbert-valued
functions and Question 9, outlining some future work in §4.11.

The content of this chapter is primarily based on [10].

4.1 Preliminaries

Theorems 3.3.1–3.3.3 establishes the existence of methods that takes sample values as input
and produces the coefficients of a polynomial approximation that achieves a desired alge-
braic (in finite and infinite dimensions) or exponential (in infinite dimensions) error bounds.
The methods in the previous chapter arise as minimizers of the weighted ℓ1-minimization
problem (2.5.6). However, these methods are not algorithms per se since they involve mini-
mizers of nonlinear optimization problems. The main results in Chapter 3 do not claim that
these minimizers can be computed in finitely many arithmetic operations. Thus far in this
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thesis, it remains unknown whether rates similar to those proven in the previous chapter
in terms of the number of samples m can be achieved through an algorithm computing a
polynomial approximation from the sample values. The goal of this chapter is to address
this issue.

We now give the formal problem statement, which involves a few technicalities and
definitions, particularly the precise definition of an algorithm.

4.1.1 Setup

For clarity and convenience, we will recall some key definitions from the previous chapters.
We consider the same setup as in Chapter 3, in particular, §3.1.1. That is, we consider
(V, ⟨·, ·⟩V) to be a Hilbert space and U = [−1, 1]d, where d ∈ N or d = ∞. We consider the
associated tensor-product Legendre or Chebyshev polynomials obtained from the uniform
or Chebyshev measure ϱ. We assume holomorphy of the continuous target function f (see
§2.3) in order to attain the desired rates in §2.4.3. We draw m sample points y1, . . .ym i.i.d.
from ϱ and consider m noisy sample evaluations of f as in (3.1.1).

The discrete space VK

Let N,K ∈ N. As in §3.1.1, we assume that the data (3.1.1) belongs to a finite-dimensional
space VK ⊆ V, with basis {φk}K

k=1 and denote

G = (⟨φj , φk⟩V)K,K
j,k=1 ∈ CK×K (4.1.1)

as the Gram matrix of this basis. In what follows, we assume that it is possible to perform
matrix-vector multiplications with G. In other words, we have access to the function

TG : CK → CK , x 7→ Gx. (4.1.2)

Note that G is self adjoint and positive definite. However, G is only equal to the identity
when {φk}K

k=1 is orthonormal. Recall from §2.2 and by the discussion in Remark 2.2.1 that
PK is the orthogonal projector from V onto VK , where PK(f)(y) = PK(f(y)) (see (2.2.15)).

4.1.2 Problem statement

We now formally define the input, the output, an algorithm, the computational cost of an
algorithm and the problem statement of this chapter.

As in Chapter 3, we consider as an input (as in Definition 3.1.1) the collection of sample
points (yi)m

i=1 and the array of mK values (di,k)m,K
i,k=1 ∈ Cm×K defined by (3.1.2) and as an

output (as in Definition 3.1.2) the coefficients (ĉj,k)N,K
j,k=1 ∈ CN×K providing an approxima-

tion (3.1.3) to the target function f .
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Definition 4.1.1 (Algorithm for polynomial approximation of Hilbert-valued functions).
Let Λ ⊂ F of size |Λ| = N be given, along with an indexing ν1, . . . ,νN of the multi-indices
in Λ. An algorithm for polynomial approximation of Hilbert-valued functions from sample
values is a mapping

A : Um × Cm×K → CN×K ,
(
(yi)m

i=1, (di,k)m,K
i,k=1

)
7→ (ĉj,k)N,K

j,k=1

for which the evaluation of A((yi)m
i=1, (di,k)m,K

i,k=1) involves only finitely-many arithmetic
operations (including square roots), comparisons and evaluations of the matrix-vector mul-
tiplication function TG, where TG is as (4.1.2) and G is the Gram matrix (4.1.1). If (di,k)
is as in (3.1.2) for some function f , then the resulting approximation f̂ of f is given by

f̂ : y 7→
N∑

j=1

(
K∑

k=1
ĉj,kφk

)
Ψνj (y), (4.1.3)

where (ĉj,k)N,K
j,k=1 = A((yi)m

i=1, (di,k)m,K
i,k=1).

Definition 4.1.2 (The computational cost). The computational cost of an algorithm A,
is the maximum number of arithmetic operations and comparisons used to compute the
output from any input.

Note that the number of arithmetic operations to evaluate Gx (the Gram matrix G in
(4.1.1)) for any x is K2 in general. For convenience, let

F : CK×K → N, (4.1.4)

and write F (G) for the maximum number of arithmetic operations and comparisons re-
quired to evaluate TG(x) for arbitrary x ∈ CK . Note that F (G) ≤ K2 in general. However,
this may be smaller in certain cases, e.g., when G is structured or sparse or in the case of
finite elements, depending on the connectivity of the mesh..

Then, formally stated, the problem we study in this chapter is: devise algorithms (as
in Definition 4.1.1) that take (3.1.1) as input (as in Definition 3.1.1) and compute approx-
imations to the coefficients of a polynomial approximation f̂ as outputs (as in Definition
3.1.2) to f after a finite number of arithmetic operations and comparisons with guarantees
on the computational complexity (as in Definition 4.1.2) while providing guarantees on the
error f − f̂ in the L2

ϱ(U ; V)- and L∞(U ; V)-norms.

4.2 Contributions

Considering the same setup of Chapter 3, our main contribution is six theorems about algo-
rithms (see Tables 4.1–4.2 and Algorithms 1–5), in the sense Definition 4.1.1, for construct-
ing polynomial approximations that achieve the same rates as the theoretical benchmark
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provided by the best s-term polynomial approximation in §2.4.3. In other words, polyno-
mial approximations of holomorphic functions can be achieved in a sample efficient manner.
Furthermore, they can be computed in subexponential (in the infinite-dimensional case) or
algebraic computational cost (in the finite-dimensional case).

To be more specific about the contribution of this chapter we need to introduce an
additional concept.

The algorithmic error

The key element of the theory in this chapter (see, e.g., Theorem 4.3.1) is that the same
error bound as in Theorems 3.3.1–3.3.3 is attained, up to an additional term. In particular,
we have the three sources of errors from §3.2 (see also (i)–(iii) in §2.7), plus the following
fifth error (in terms of the count in §2.7):

(v) The algorithmic error. This term, which is denoted by Ealg depends on the num-
ber of iterations t performed by the algorithm that computes the coefficients of the
polynomial approximation f̂ . This is the error committed by the algorithm A in ap-
proximately computing the methods M in Theorems 3.3.1–3.3.3.

We now have the concepts to describe our main contributions precisely. We assert the
existence of algorithms where the algorithmic error Ealg decay is O(1/t), as t → ∞, and
efficient algorithms where the algorithmic error Ealg decay is, O(e−t) as t → ∞. Specifically,
our error bounds take the form

∥f − f̂∥L2
ϱ(U ;V) ≲ Eapp + Edisc + Esamp + Ealg,

∥f − f̂∥L∞(U ;V) ≲
√
m

L
(Eapp + Edisc + Esamp + Ealg) ,

where f̂ is an approximation to f as in (4.1.3), L = L(m, ε) is a (poly)logarithmic factor in
m (see (4.3.2)), the terms Eapp, Edisc and Esamp are as in §2.7. We also construct efficient
versions of these algorithms that requires an additional assumption. In this case the error
bounds take the form

∥f − f̂∥L2
ϱ(U ;V) ≲ Eapp + Edisc + Esamp + Ealg + ζ ′,

∥f − f̂∥L∞(U ;V) ≲
√
m

L

(
Eapp + Edisc + Esamp + Ealg + ζ ′) .

Here ζ ′ > 0 plays the role of an upper bound for Eapp +Edisc +Esamp. We assume the upper
bound Eapp + Edisc + Esamp ≤ ζ ′ as a technicality in the proof. However, in practice, this
bound is not needed (for more details see below in item 2. of §4.4).
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4.3 Main results

We reiterate at this stage that these results are formulated for Chebyshev and Legendre
polynomials. For convenience, we define

α =

1 Legendre,

log(3)/ log(4) Chebyshev.
(4.3.1)

Moreover, for convenience we recall (3.3.1). That is, given m ≥ 3 and ϵ ∈ (0, 1), we define

L = L(m, d, ϵ) =

log2(m) · min{log(m) + d, log(2d) · log(m)} + log(ϵ−1) d < ∞,

log4(m) + log(ϵ−1) d = ∞.

(4.3.2)

Algebraic rates of convergence, finite dimensions

Theorem 4.3.1 (Existence of an algorithm; algebraic case, finite dimensions). Let d ∈ N,
{Ψν}ν∈Nd

0
⊂ L2

ϱ(U) be either the orthonormal Chebyshev or Legendre basis and {φk}K
k=1 be a

basis for VK . Then, for every m ≥ 3, 0 < ϵ < 1, K ≥ 1 and t ≥ 1, there exists an algorithm

At : Um × Cm×K → CN×K ,

in the sense of Definition 4.1.1, where N = Θ(n, d) is as in (2.4.22) with n = ⌈m/L⌉
and L = L(m, d, ϵ) as in (4.3.2), such that the following property holds. Let f ∈ B(ρ)
for arbitrary ρ ≥ 1, draw y1, . . . ,ym randomly and independently according to ϱ and
let (di,k)m,K

i,k=1 ∈ Cm×K be as in (3.1.2) for arbitrary noise terms n = (ni)m
i=1 ∈ V. Let

(ĉj,k)N,K
j,k=1 = At((yi)m

i=1, (di,k)m,K
i,k=1) and define the approximation f̂ as in (4.1.3) based on

the index set Λ = ΛHC
n,d in (2.4.20). Then the following holds with probability at least 1 − ϵ.

The error satisfies

∥f − f̂∥L2
ϱ(U ;V) ≤ c1 ·

(
ζ + 1

t

)
, ∥f − f̂∥L∞(U ;V) ≤ c2 ·

√
m

L
·
(
ζ + 1

t

)
, (4.3.3)

where c1, c2 ≥ 1 are universal constants and for any 0 < p ≤ 1,

ζ := C ·
(
m

c0L

)1/2−1/p

+
∥n∥2;V√

m
+ ∥f − PK(f)∥L∞(U ;V), (4.3.4)

is as in (3.3.5) where c0 ≥ 1 is a universal constant and C = C(b, ε, p) depends on b, ε and
p only. The computational cost of the algorithm is bounded by

c3 · [m · Θ(n, d) · d+ t · (m · Θ(n, d) ·K + (Θ(n, d) +m) · (F (G) +K)) · (Θ(n, d))α] ,
(4.3.5)
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where n = ⌈m/L⌉ is as in Theorem 3.3.1, Θ(n, d) is as in (2.4.22), α is as in (4.3.1), F (G)
is as in (4.1.4) and c3 > 0 is a universal constant.

As we mentioned earlier, the same error bound as in Theorem 3.3.1 is attained, up to
an additional term Ealg = 1/t. Unfortunately, the 1/t decay rate of the algorithmic error is
slow. Thus, it may be computationally expensive to compute an approximation to within a
desired error bound. Fortunately, as explained in the next result, it is possible to improve
it to e−t subject to the additional technical assumption mentioned in §4.2.

Theorem 4.3.2 (Existence of an efficient algorithm; algebraic case, finite dimensions).
Consider the setup of Theorem 4.3.1. Then for every t ≥ 1 and ζ ′ > 0 there exists an
algorithm

At,ζ′ : Um × Cm×K → CN×K ,

in the sense of Definition 4.1.1 such that the same property holds whenever ζ ′ ≥ ζ, except
with (4.3.3) replaced by

∥f − f̂∥L2
ϱ(U ;V) ≤ c1·

(
ζ + ζ ′ + e−t

)
, ∥f − f̂∥L∞(U ;V) ≤ c2·

√
m

L
·
(
ζ + ζ ′ + e−t

)
, (4.3.6)

where c1, c2 ≥ 1 are universal constants and ζ is as in (4.3.4). The computational cost of
the algorithm is bounded by

c3 · [m · Θ(n, d) · d+ t · (m · Θ(n, d) ·K + (Θ(n, d) +m) · (F (G) +K)) · (Θ(n, d))α] ,

where n = ⌈m/L⌉ is as in Theorem 3.3.1, Θ(n, d) is as in (2.4.22), α is as in (4.3.1), F (G)
is as in (4.1.4) and c3 > 0 is a universal constant.

We refer to this as an ‘efficient’ algorithm, since the parameter t enters linearly in the
computational cost but the algorithmic error scales like e−t. The main limitation of this
result is that the algorithm parameter ζ ′ needs to be an upper bound for the true error
bound ζ in order for (4.3.6) to hold. As mentioned in §4.2, this is a technical assumption for
the proof, and does not appear necessary in practice as shown through numerical experiment
in [10, §5].

Algebraic rates of convergence, infinite dimensions

We now consider algebraic rates of convergence in the infinite-dimensional setting.

Theorem 4.3.3 (Existence of an algorithm; algebraic case, infinite dimensions). Let d = ∞,
{Ψν}ν∈F ⊂ L2

ϱ(U) be either the orthonormal Chebyshev or Legendre basis and {φk}K
k=1 be

a basis for VK . Then for every m ≥ 3, 0 < ϵ < 1, K ≥ 1 and every t ≥ 1, there exists an
algorithm

At : Um × Cm×K → CN×K ,
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in the sense of Definition 4.1.1, where N = Θ(n, d) is as in (2.4.22) with n = ⌈m/L⌉, where
L = L(m, d, ϵ) is as in (4.3.2), with the following property. Let ε > 0, 0 < p < 1 and b ∈
ℓpM(N) with b ≥ 0. Let f ∈ H(b, ε), draw y1, . . . ,ym randomly and independently according
to ϱ and let (di,k)m,K

i,k=1 ∈ Cm×K be as in (3.1.2) for arbitrary noise terms n = (ni)m
i=1 ∈ V.

Let (ĉj,k)N,K
j,k=1 = At((yi)m

i=1, (di,k)m,K
i,k=1) and define the approximation f̂ as in (4.1.3) based

on the index set Λ = ΛHCI
n . Then the following holds with probability at least 1−ϵ. The error

satisfies

∥f − f̂∥L2
ϱ(U ;V) ≤ c1 ·

(
ζ + 1

t

)
, ∥f − f̂∥L∞(U ;V) ≤ c2 ·

√
m

L
·
(
ζ + 1

t

)
, (4.3.7)

where c1, c2 ≥ 1 are universal constants and for any 0 < p ≤ 1,

ζ := C ·
(
m

c0L

)1/2−1/p

+
∥n∥2;V√

m
+ ∥f − PK(f)∥L∞(U ;V), (4.3.8)

is as in (3.3.5) where c0 ≥ 1 is a universal constant and C = C(b, ε, p) depends on b, ε and
p only. The computational cost of the algorithm is bounded by

c3 · [m · Θ(n,∞) · n+ t · (m · Θ(n,∞) ·K + (Θ(n,∞) +m) · (F (G) +K)) · (Θ(n,∞))α] ,

where n = ⌈m/L⌉ is as in Theorem 3.3.2, Θ(n,∞) is as in (2.4.22), α is as in (4.3.1),
F (G) is as in (4.1.4) and c3 > 0 is a universal constant.

In finite dimensions, the computational cost estimate (4.3.5) is somewhat difficult to
interpret, since its behaviour depends on the relative sizes of m and d. Fortunately, in
infinite dimensions we can give a more informative assessment. Suppose, for simplicity,
that K is fixed (for example, K = 1 in the case of a scalar-valued function approximation
problem). Then the computational cost is bounded by

c ·m · Θ(n,∞) · n+ cK · t ·m · Θ(n,∞)α+1,

where c > 0 is a universal constant cK > 0 is a constant depending on K only. Recall from
(2.4.22) that Θ(n,∞) = |ΛHCI

n | = |ΛHC
n,n|. Now, when d = n and n is sufficiently large, the

minimum in (2.4.23) is attained by the second term en2+log(n)/ log(2). Substituting this into
the above expression and recalling that n = ⌈m/L⌉, where L = L(m,∞, ϵ) is as in (4.3.2),
we deduce that the computational cost is bounded by

cK · t ·m · g(m)(α+1) log(4g(m))/ log(2), g(m) :=
⌈

m

log4(m) + log(ϵ−1)

⌉
.
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Since m ≥ 3 by assumption, we have log(m) ≥ 1 and therefore g(m) ≤ m. Hence, this
admits the slightly looser upper bound

cK · t ·m1+(α+1) log(4m)/ log(2).

Therefore the computational cost (for fixed K and t) is subexponential in m.

Theorem 4.3.4 (Existence of an efficient algorithm; algebraic case, infinite dimensions).
Consider the setup of Theorem 4.3.3. Then, for every t ≥ 1 and ζ ′ > 0 there exists an

algorithm
At,ζ′ : Um × Cm×K → CN×K ,

in the sense of Definition 4.1.1 such that the same property holds whenever ζ ′ ≥ ζ, except
with (4.3.7) replaced by

∥f − f̂∥L2
ϱ(U ;V) ≤ c1·

(
ζ + ζ ′ + e−t

)
, ∥f − f̂∥L∞(U ;V) ≤ c2·

√
m

L
·
(
ζ + ζ ′ + e−t

)
, (4.3.9)

where c1, c2 ≥ 1 are universal constants and and ζ ≤ ζ ′ is as in (4.3.8). The computational
cost of the algorithm is bounded by

c3 · [m · Θ(n,∞) · n+ t · (m · Θ(n,∞) ·K + (Θ(n,∞) +m) · (F (G) +K)) · (Θ(n,∞))α] ,
(4.3.10)

where n = ⌈m/L⌉ is as in Theorem 3.3.2, Θ(n,∞) is as in (2.4.22), α is as in (4.3.1),
F (G) is as in (4.1.4) and c3 > 0 is a universal constant.

Similar as Theorem 4.3.2 in the finite dimensional case, Theorem 4.3.4 presents the the-
oretical results for our ‘efficient’ algorithm for infinite-dimensional function approximation.

We now recall some similarities between the results presented thus far and those in
Chapter 3 (see Theorems 3.3.1 and Theorem 3.3.2). Naturally, we used the results in the
previous chapter to derive our error bounds in Theorems 4.3.1–4.3.4. Thus these results are
also nonuniform and achieve the corresponding algebraic rates for a fixed function f with
high probability up to the specified error bound (see §1.4). For the same reasons discussed
in Chapter 3, we attain an algebraic rate that scales like m up to a polylogarithmic factor of
the order O(log3(m)) in terms of m. In contrast, in the infinite-dimensional case, this rate
is of the order of O(log4(m)). We will see later in Chapter 6 that these algebraic rates in
infinite dimensions are near-optimal. As mentioned in Theorem 3.3.1, the method in finite
dimensions is more general in that it applies to any function f ∈ B(ρ) and any ρ ≥ 1.
Conversely, in infinite dimensions, it applies to the class of functions H(b, ε).

Exponential rates of convergence, finite dimensions

Finally, we consider exponential rates of convergence in finite dimensions.
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Theorem 4.3.5 (Existence of an algorithm; exponential case, finite dimensions). Let d ∈ N,
{Ψν}ν∈Nd

0
⊂ L2

ϱ(U) be either the orthonormal Chebyshev or Legendre basis and {φk}K
k=1 be

a basis for VK . Then for every m ≥ 3, 0 < ϵ < 1, K ≥ 1, and for every t ≥ 1, there exists
an algorithm

At : Um × Cm×K → CN×K ,

in the sense of Definition 4.1.1 where N = Θ(n, d) is as in (2.4.22) with

n =

⌈
√
m/L⌉ Legendre,

⌈m/(2dL)⌉ Chebyshev,

and L as in (4.3.2), with the following property. Draw y1, . . . ,ym randomly and inde-
pendently according to ϱ. Then, with probability at least 1 − ϵ, the following holds. Let
f ∈ B(ρ) for arbitrary ρ ≥ 1, (di,k)m,K

i,k=1 ∈ Cm×K be as in (3.1.2) for arbitrary noise terms
n = (ni)m

i=1 ∈ V. Let (ĉj,k)N,K
j,k=1 = At((yi)m

i=1, (di,k)m,K
i,k=1) and define the approximation f̂ as

in (4.1.3) based on the index set Λ = ΛHC
n,d. Then the error satisfies

∥f − f̂∥L2
ϱ(U ;V) ≤ c1 ·

(
ζ + 1

t

)
, ∥f − f̂∥L∞(U ;V) ≤ c2 ·

√
m

L
·
(
ζ + 1

t

)
, (4.3.11)

where c1, c2 ≥ 1 are as in (3.3.7), for any

0 < γ < (d+ 1)−1

d!
d∏

j=1
log(ρj)

1/d

,

where

ζ := C ·


exp

(
−γ

2

(
m

c0L

) 1
d

)
Chebyshev

exp
(

−γ
(

m
c0L

) 1
2d

)
Legendre

+
∥n∥2;V√

m
+ ∥f − PK(f)∥L∞(U ;V), (4.3.12)

where c0 ≥ 1 is a universal constant and C = C(d, γ,ρ) depends on d, γ and ρ only. The
computational cost of the algorithm is bounded by

c3 · [m · Θ(n, d) · n+ t · (m · Θ(n, d) ·K + (Θ(n, d) +m) · (F (G) +K)) · (Θ(n, d))α] ,

where n is as in (3.3.6), Θ(n, d) is as in (2.4.22), α is as in (4.3.1), F (G) is as in (4.1.4)
and c3 > 0 is a universal constant.

Theorem 4.3.6 (Existence of an efficient algorithm; exponential case, finite dimensions).
Consider the setup of Theorem 4.3.5. Suppose that there is a known upper bound ζ ′ ≥ ζ,
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where ζ is as in (4.3.12). Then, for every t ≥ 1 and ζ ′ > 0 there exists an algorithm

At,ζ′ : Um × Cm×K → CN×K ,

in the sense of Definition 4.1.1 for which the same property holds whenever ζ ′ ≥ ζ, except
with (4.3.11) replaced by

∥f − f̂∥L2
ϱ(U ;V) ≤ c1 ·

(
ζ + ζ ′ + e−t

)
, ∥f − f̂∥L∞(U ;V) ≤ c2 ·

√
m

L

(
ζ + ζ ′ + e−t

)
,

(4.3.13)
where c1, c2 ≥ 1 are as in (3.3.7). The computational cost of the algorithm is bounded by

c3 · [m · Θ(n, d) · n+ t · (m · Θ(n, d) ·K + (Θ(n, d) +m) · (F (G) +K)) · (Θ(n, d))α] ,
(4.3.14)

where n is as in (3.3.6), Θ(n, d) is as in (2.4.22), α is as in (4.3.1), F (G) is as in (4.1.4)
and c3 > 0 is a universal constant.

As we did before for Theorem 4.3.3, suppose that K is fixed and, since we consider
exponential rates, that d is also fixed. Then, using the third estimate in (2.4.23), we deduce
that the computational cost of this algorithm is bounded by

cK,d · (m · n2 · (log(n))d−1 + t ·m · (n · (log(n))d−1)α+1).

Using the crude bound n ≤ m, we deduce the bound

cK,d ·
(
t ·mα+2(log(m))(d−1)(α+1)

)
.

Thus, for fixed t, the computational cost is polynomial in m as m → ∞.

4.4 Discussion

In addition to the features established in Chapter 3 (see items 1–3 in §3.2 and §3.4), there
are several distinguishing features of our analysis that we now highlight:

1. We introduce novel, efficient algorithms designed to compute approximate minimiz-
ers within a finite computational time frame. Our algorithms and analysis are based
on compressed sensing theory and involve computing approximate minimizers of the
weighted ℓ1-minimization problems defined in (2.5.6). These are, to the best of our
knowledge, the first results that show efficient algorithms for polynomial approxima-
tion via ℓ1-minimization with full theoretical guarantees

2. As discussed previously in §4.2, we construct one type of algorithm (see Table 4.1
and Algorithm 2) where the algorithmic error Ealg is O (1/t) as t → ∞. This decay
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is relatively slow, especially in the regime where Eapp is exponentially small in m.
However, we also present an efficient algorithm (Table 4.2 and Algorithm 5) for which
this term decays exponentially-fast in t (specifically, O(e−t) as t → ∞), subject to an
additional the theoretical constraint that there is a positive constant ζ ′ such that
Eapp + Edisc + Esamp ≤ ζ ′. This constraint is seemingly an artefact of the proof. The
numerical experiments in [10] suggest it is unnecessary in practice.

3. In the infinite-dimensional case (Theorems 4.3.3–4.3.4), the computational cost is
subexponential in m. Specifically, after t iterations of the algorithm, it is

O
(
t ·m1+(α+1) log(4m)/ log(2)

)
, m → ∞,

where α = 1 (Chebyshev) or α = log(3)/ log(4) ≈ 0.79 (Legendre).

4. In the finite-dimensional, exponential setting (Theorems 4.3.5–4.3.6), the computa-
tional cost is algebraic in m for fixed d. Namely,

O
(
t ·mα+2(log(m))(d−1)(α+1)

)
, m → ∞.

5. While these algorithms are motivated by the desire to have full error bounds, they
are also completely practical. For this we refer to the series of numerical experiments
in [10] demonstrating their practical efficacy. In fact, these experiments show that our
algorithms work even better than what is theoretically suggested.

4.5 The construction of the algorithms in Theorems 4.3.1,
4.3.3 and 4.3.5

Before diving into the details of the proofs, we will recap our main setup, along with
important aspects of the algorithms and their construction. Consider a high-dimensional
continuous function f ∈ L2

ϱ(U ; V) with expansion (2.4.2). As in the previous chapter, we
follow the setup in §2.5.2. Here, after finitely-many arithmetic operations, our algorithms
recover the polynomial coefficients cΛ ∈ VN

K of the truncated expansion (2.5.2) of f from
m sample values based on the solution to the minimization problem (2.5.6) for the linear
system in (2.5.4).

To develop these algorithms, we use two key ideas. First, we use a powerful, general-
purpose first-order optimization method for solving (2.5.6). Second, we use the technique of
restarts to drastically accelerate its convergence. For the former, we employ the primal-dual
iteration (also known as the Chambolle–Pock algorithm) [57, 58]. We present error bounds
for this method for solving the Hilbert-valued, weighted SR-LASSO (2.5.6), which decay
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like O (1/t), where t is the iteration number. Next, we use a restarting procedure introduced
in [78,79], to obtain faster, exponential decay of the form O(e−t).

See Remark 2.5.1 for further details about the use of SR-LASSO, as opposed to the
classical LASSO or various constrained formulations.

4.5.1 Equivalent minimization problems and method well-definedness

Here we start describing the construction of the algorithms presented in our main results.
First, we must show that they are well-defined methods, as outlined in Definition 3.1.3. To
do so, we require some additional notation.

Given 1 ≤ p ≤ ∞ and 1 ≤ q ≤ 2, we define the weighted ℓp,q
w -norm of a matrix

C = (ci,k)N,K
i,k=1 ∈ CN×K as

∥C∥p,q,w =

 N∑
i=1

w2−p
i

(
K∑

k=1
|ci,k|q

)p/q
1/p

.

Note that this is precisely the weighted ℓpw-norm of the vector of (∥ci∥q)N
i=1, where ci =

(ci,k)K
k=1 ∈ CK is the ith row of C. Further, if p = q = 2, then this is just the unweighted

ℓ2,2-norm of a matrix (which is simply its Frobenius norm). In this case, we typically write
∥·∥2,2.

As mentioned, we first must proved that our algorithm is a well-defined method. Since
(2.5.6) yields a vector in VN

K and, as methods, the algorithms should yield outputs in CN×K .
Thus, we first need to reformulate

min
z∈VN

K

G(z), G(z) := λ∥z∥1,w;V + ∥Az − f∥2;V (4.5.1)

using the basis {φi}K
i=1 for VK . Notice that any vector of coefficients c = (cνi)N

i=1 ∈ VN
K is

equivalent to a matrix of coefficients

C = (ci,k)N,K
i,k=1 ∈ CN×K ,

via the relation

cνi =
K∑

k=1
ci,kφk, i ∈ [N ].

Next, observe that if g = ∑K
k=1 dkφk ∈ VK then

∥g∥V = ∥d∥G =
√

d∗Gd, (4.5.2)

where d = (dk)K
k=1 ∈ CK and G ∈ CK×K is the Gram matrix for {φk}K

k=1, given by (4.1.1).
Since G is positive definite, it has a unique positive definite square root matrix G1/2. Hence
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we may write
∥g∥V = ∥G1/2d∥2.

Now let z ∈ VN
K be arbitrary, Z ∈ CN×K be the corresponding matrix and zi ∈ CK be the

ith row of Z. Then

∥z∥1,w;V =
N∑

i=1
wi∥zνi∥V =

N∑
i=1

wi∥G1/2zi∥2 = ∥ZG1/2∥2,1,w.

Similarly, let A = (ai,j)m,N
i,j=1 ∈ Cm×N and f = (fi)m

i=1 ∈ Vm
K be as in (2.5.1) and let

B ∈ Cm×K be the matrix corresponding to f . Then

∥Az − f∥2
2;V =

m∑
i=1

∥∥∥∥∥∥
N∑

j=1
ai,jzνi − fi

∥∥∥∥∥∥
2

V

= ∥(AZ − B)G1/2∥2
2,2.

Therefore, we now consider the minimization problem

min
Z∈CN×K

{
λ∥Z∥2,1,w + ∥(AZ − B)G1/2∥2,2

}
. (4.5.3)

This is equivalent to (4.5.1), and so to (2.5.6), in the following sense. A vector ĉ = (ĉνi)N
i=1 ∈

VN
K is a minimizer of (4.5.1) if and only if the matrix Ĉ = (ĉi,k)N,K

i,k=1 ∈ CN×K with entries
defined by the relation

ĉνi =
K∑

k=1
ĉi,kφk, i ∈ [N ],

is a minimizer of (4.5.3).
Note that, as in §3.5.1, these are indeed well-defined methods. The minimizer of (4.5.3)

with smallest ℓ2,2-norm is unique because (4.5.3) is a convex problem. Therefore, its set of
minimizers is a convex set, and the function Z 7→ ∥Z∥2

2,2 is strongly convex.
Recall that the error bounds for these algorithms are based on the theory developed in

§3.3 for methods. Therefore, following the setting in the previous chapter, we start by de-
riving methods for approximately solving the optimization problem (2.5.6), or equivalently
(4.5.3).

4.5.2 The primal-dual iteration

A key reason for using the primal-dual iteration [57], is that both functions defining the
minimization problem in (4.5.4) are not required to be differentiable [19, §7.5]. We first
briefly describe the primal-dual iteration in the general case (see [57–59], as well as [19, §7.5])
for more detailed treatments), before specializing to the weighted SR-LASSO problem in
the next subsection.
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Let (X , ⟨·, ·⟩X ) and (Y, ⟨·, ·⟩Y) be (complex) Hilbert spaces, g : X → R ∪ {∞}, h : Y →
R ∪ {∞} be proper, lower semicontinuous and convex functions and A ∈ B(X ,Y) be a
bounded linear operator satisfying dom(h) ∩A(dom(g)) ̸= ∅. The primal-dual iteration is a
general method for solving the convex optimization problem

min
x∈X

{g(x) + h(A(x))} . (4.5.4)

Under this setting the (Fenchel–Rockafeller) dual problem is

min
ξ∈Y

{g∗A∗(ξ)) + h∗(−ξ)} , (4.5.5)

where g∗ and h∗ are the convex conjugate functions of g and h, respectively. Recall that,
for a function f : X → R ∪ {∞}, its convex conjugate is defined by

f∗(z) = sup
x∈X

(Re ⟨x, z⟩V − f(x)) , z ∈ X . (4.5.6)

The Lagrangian of (4.5.4) is defined by

L(x, ξ) = g(x) + Re ⟨A(x), ξ⟩Y − h∗(ξ), x ∈ dom(g), ξ ∈ dom(h∗), (4.5.7)

and L(x, ξ) = ∞ if x ̸∈ dom(g) or L(x, ξ) = −∞ if ξ ̸∈ dom(h∗). This in turn leads to the
saddle-point formulation of the problem

min
x∈X

max
ξ∈Y

L(x, ξ).

The primal-dual iteration seeks a solution (x̂, ξ̂) of the saddle-point problem by solving the
following fixed-point equation

x̂ = proxτg(x̂− τA∗(ξ̂)),

ξ̂ = proxσh∗(ξ̂ + σA(x̂)),
(4.5.8)

where τ, σ > 0 are stepsize parameters and prox is the proximal operator, which is defined
by

proxf (z) = arg min
x∈X

{
f(x) + 1

2∥x− z∥2
X

}
, z ∈ dom(f).

To be precise, given initial values (x(0), ξ(0)) ∈ X × Y the primal-dual iteration defines a
sequence {(x(n), ξ(n))}∞

n=1 ⊂ X × Y as follows:

x(n+1) = proxτg(x(n) − τA∗(ξ(n))),

ξ(n+1) = proxσh∗(ξ(n) + σA(2x(n+1) − x(n))).
(4.5.9)
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In the next section now apply this scheme to (2.5.6) and (4.5.3).

4.5.3 The primal-dual iteration for the weighted SR-LASSO problem

It is now convenient to describe an algorithm to approximately solve the Hilbert-valued
problem (2.5.6). Then, by using the equivalence between elements of VN

K and CN×K , we
obtain an algorithm for approximately solving (4.5.3).

Consider the problem in (2.5.6), in particular consider X = (VN
K , ⟨·, ·⟩2;V), Y =

(Vm
K , ⟨·, ·⟩2;V) and g : X → R ∪ {∞}, h : Y → R ∪ {∞} as the proper, lower semicon-

tinuous and convex functions

g(x) = λ∥x∥1,w;V , h(y) = ∥y − f∥2;V , x ∈ VN
K , y ∈ Vm

K .

By using (4.5.6) we first find the proximal maps of g and h∗. For the latter, we see that

h∗(ξ) = sup
v∈Vm

K

(
Re ⟨v, ξ⟩V − ∥v − f∥2;V

)
= Re ⟨f , ξ⟩V + sup

v∈Vm
K

(
Re ⟨v, ξ⟩V − ∥v∥2;V

)
, ∀ξ ∈ Vm

K .

From [34, Ex. 13.3 & 13.4] it follows that

(∥·∥V)∗ = δB, B := {ξ ∈ Vm
K : ∥ξ∥2;V ≤ 1},

where δB is the indicator function of the set B, taking value δB(ξ) = 0 when ξ ∈ B and
+∞ otherwise. Hence

h∗(ξ) = Re ⟨f , ξ⟩V + δB(ξ). (4.5.10)

Using this, we obtain

proxσh∗(ξ) = arg min
z∈Vm

K

{
σδB(z) + σRe ⟨f , z⟩V + 1

2∥z − ξ∥2
2;V

}
= arg min

z:∥z∥2;V ≤1

{1
2∥z − (ξ − σf)∥2

2;V

}
= projB(ξ − σf),

where projB is the projection onto B, which is given explicitly by

projB(ξ) = min
{

1, 1
∥ξ∥2;V

}
ξ.

On the other hand, applying the definition of the proximal operator to the function τg with
parameter τ > 0, we deduce that(

proxτg(x)
)

i
= proxτwiλ∥·∥V

(xi), i = 1, . . . , N, x = (xi)N
i=1 ∈ VN

K .
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Algorithm 1: primal-dual-wSRLASSO – the primal-dual iteration for the weighted
SR-LASSO problem (2.5.6)

inputs : measurement matrix A ∈ Cm×N , measurements f ∈ VN
K , positive

weights w = (wi)N
i=1, parameter λ > 0, stepsizes τ, σ > 0, maximum

number of iterations T ≥ 1, initial values c(0) ∈ VN
K , ξ(0) ∈ Vm

K

output : c̄ = primal-dual-wSRLASSO(A,f ,w, λ, τ, σ, T, c(0), ξ(0)), an
approximate minimizer of (2.5.6)

initialize: c̄(0) = 0 ∈ VN
K

1 for n = 0, 1, . . . T − 1 do
2 p = (pi)N

j=1 = c(n) − τA∗ξ(n)

3 c(n+1) =
(
max{∥pi∥V − τλwi, 0} pi

∥pi∥V

)N

i=1
4 q = ξ(n) + σA(2c(n+1) − c(n)) − σf

5 ξ(n+1) = min
{

1, 1
∥q∥2;V

}
q

6 c̄(n+1) = n
n+1 c̄(n) + 1

n+1c(n+1)

7 end
8 c̄ = c̄(T )

Moreover, a simple adaptation of [34, Ex. 14.5] with the ∥·∥V -norm gives

proxτ∥·∥V
(x) = max{∥x∥V − τ, 0} x

∥x∥V
, ∀x ∈ VK \ {0}.

Hence,

proxτg(x) =
(

max{∥xi∥V − τλwi, 0} xi

∥xi∥V

)N

i=1
, x = (xi)N

i=1 ∈ VN
K \ {0}.

With this in hand, we are now ready to define the primal-dual iteration for (2.5.6). As we
see later, the analysis of convergence for the primal-dual iteration is given in terms of the
ergodic sequence

c̄(n) = 1
n

n∑
i=1

c(i), n = 1, 2, . . . ,

where c(i) ∈ VN
K is the primal variable obtained at the ith step of the iteration. Hence,

we now include the computation of these sequences in the primal-dual iteration for the
weighted SR-LASSO problem (2.5.6), and take this as the output. The resulting procedure
is described in Algorithm 1.

Having done this, we next adapt Algorithm 1 to obtain an algorithm for (4.5.3). This is
given in Algorithm 2.
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Algorithm 2: primal-dual-wSRLASSO-C – the primal-dual iteration for the
weighted SR-LASSO problem (4.5.3)

inputs : measurement matrix A ∈ Cm×N , measurements B ∈ Cm×K , positive
weights w = (wi)N

i=1, Gram matrix G ∈ CK×K , parameter λ > 0,
stepsizes τ, σ > 0, maximum number of iterations T ≥ 1, initial values
C(0) ∈ CN×K , Ξ(0) ∈ Cm×K

output : C = primal-dual-wSRLASSO-C(A, b,w,G, λ, τ, σ, T,C(0),Ξ(0)), an
approximate minimizer of (4.5.3)

initialize: C(0) = 0 ∈ CN×K

1 for n = 0, 1, . . . T − 1 do
2 P = (pi,k)N,K

j,k=1 = C(n) − τA∗Ξ(n)

3 for i = 1, . . . , N do
4 pi = (pi,k)K

k=1
5 (c(n+1)

i,k )K
k=1 = max{∥G1/2pi∥2 − τλwi, 0} pi

∥G1/2pi∥2

6 end
7 C(n+1) = (c(n+1)

i,k )N,K
i,k=1

8 Q = Ξ(n) + σA(2C(n+1) − C(n)) − σB

9 Ξ(n+1) = min
{

1, 1
∥QG1/2∥2,2

}
Q

10 C(n+1) = n
n+1C(n) + 1

n+1C(n+1)

11 end
12 C = C(T )

Remark 4.5.1 Note that even though the square-root matrix G1/2 is used in Algorithm
2, this matrix does not need to be computed. Indeed,

∥G1/2d∥2 =
√

d∗Gd, d ∈ CK ,

and for a matrix C ∈ CN×K , we have

∥CG1/2∥2,2 =

√√√√ N∑
i=1

∥∥G1/2ci

∥∥2
2 =

√√√√ N∑
i=1

c∗
i Gci,

where ci ∈ CK is the ith row of C. In particular, computing ∥G1/2d∥2 involves c(F (G) +
K) arithmetic operations, and computing ∥CG1/2∥2,2 involves cm(F (G) + K) arithmetic
operations, for some universal constant c > 0.

4.5.4 The algorithms in Theorems 4.3.1, 4.3.3 and 4.3.5

We are now almost ready to specify the algorithms used in Theorems 4.3.1, 4.3.3 and 4.3.5.
Notice that Algorithms 1 and 2 require the measurement matrix A as an input. Hence, we
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Algorithm 3: construct-A – constructing the measurement matrix (2.5.1)
inputs : sample points y1, . . . ,ym ∈ Ud, finite index set Λ = {ν1, . . . ,νN } ⊂ F
output : A = construct-A((yi)m

i=1,Λ) ∈ Cm×N , the measurement matrix (2.5.1)
initialize: C(0) = 0 ∈ CN×K

1 k = max{j : (νi)j ̸= 0, i = 1, . . . , N, j = 1, . . . , d}
2 n = max{(νi)j : i = 1, . . . , N, j = 1, . . . , n}
3 for i = 1, . . . ,m do
4 Set z = (zj)k

j=1 = ((yi)j)k
j=1

5 bi,j = Ψj(zi), i = 1, . . . , k, j = 0, . . . , n,
6 for j = 1, . . . , N do
7 ai,j = ∏n

l=1 bl,(νj)l

8 end
9 end

10 A = 1√
m

(ai,j)m,N
i,j=1

need to describe the computation of this matrix for Chebyshev and Legendre polynomials.
This is summarized in Algorithm 3. Notice that line 5 of this algorithm involves evaluating
the first k one-dimensional Chebyshev or Legendre polynomials. This can be done efficiently
via the three-term recurrence relation, as explained in §4.7 in the proof of Lemma 4.7.2.

Therefore, the specific algorithms used in Theorem 4.3.1, Theorem 4.3.3 and 4.3.5 are
given in Table 4.1.

4.6 An efficient restarting procedure; the algorithms used in
Theorems 4.3.2, 4.3.4 and 4.3.6

While the primal-dual iteration converges under very general conditions, it typically does
so very slowly, with the error in the objective function decreasing like O (1/t), where t is the
iteration number. To obtain exponential convergence (down to some controlled tolerance)
we employ a restarting procedure. This is based on recent work of [78,79].

A restarting procedure

Restarting is a general concept in optimization, where the output of an algorithm after a
fixed number of steps is then fed into the algorithm as input, after suitably scaling the
parameters of the algorithm [228–230]. In the case of the primal-dual iteration for the
weighted SR-LASSO problem, this procedure involves three hyperparameters: a tolerance
ζ ′ > 0 and scale parameters 0 < r < 1 and s > 0.

The efficient algorithm, step-by-step
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• Let m, ϵ, n and t be as given in the particular theorem and set:

• Λ = ΛHC
n,d (Theorems 3.3.1 and 3.3.3) or Λ = ΛHCI

n (Theorem 3.3.2),
• λ = (4

√
m/L)−1, where L = L(m, d, ϵ) is as in (3.3.1),

• τ = σ = (Θ(n, d))−α, where Θ(n, d) and α are as in (2.4.22) and (4.3.1),
respectively,

• T = ⌈2(Θ(n, d))αt⌉.

• Let D = (di,k)m,K
i,k=1 ∈ Cm×K and Y = (yi)m

i=1 be an input, as in (3.1.2), and set
B = 1√

m
D.

• Compute A = construct-A(Y ,Λ).

• Let G and w be as in (4.1.1) and (2.4.17), respectively.

• Define the output C = A(D), where

A(D) = primal-dual-wSRLASSO-C (A,B,w,G, λ, τ, σ, T,0,0)

Table 4.1: The algorithms A : Um × Cm×K → CN×K used in Theorem 4.3.1, Theorem 4.3.3 and
4.3.5.

After applying one step of the primal-dual iteration (Algorithm 1 or 2) yielding an output
c(1), it then scales this vector and the right-hand side vector f by an exponentially-decaying
factor al (defined in terms of ζ ′, r and s), before feeding in these values into the primal-dual
iteration as input.

We explain the motivations behind the specific form of the restart procedure for the
primal-dual iteration later in the proof section. For now, we simply state the procedures
in the case of the weighted SR-LASSO problems (2.5.6) and (4.5.3). These are given in
Algorithms 4 and 5, respectively. With these in hand, we can also give the algorithms used
in Theorems 4.3.2, 4.3.4 and 4.3.6. See Table 4.2.

Note that these algorithms involve a number c⋆, which is a universal constant. It is
possible to provide a precise numerical value of this constant by carefully tracking the
constants in several of the proof steps. Since doing so is not especially illuminative, we
forgo this additional effort. Instead, we now give a little more detail on this constant:

Remark 4.6.1 From (4.9.2) we see that c⋆ = 3296√
c0, where c0 is the universal constant

that arises in (3.3.3). As shown in the proof of Theorem 3.7.3, the constant c0 needs to be
chosen sufficiently large so that the measurement matrix A satisfies the so-called wRIP.
In particular, it is related to the universal constant c > 0 defined in Lemma 3.7.1. See, in
particular, (3.7.2). A numerical value for this constant can indeed be found using results
shown in [64]. With this in hand, one can then keep track of the constant c0 in the proof of
Theorem 3.7.3 to find its numerical value. This discussion also highlights why tracking the
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Algorithm 4: primal-dual-rst-wSRLASSO – the restarted primal-dual iteration
for the weighted SR-LASSO problem (2.5.6)

inputs : measurement matrix A ∈ Cm×N , measurements f ∈ VN
K , positive

weights w = (wi)N
i=1, parameter λ > 0, stepsizes τ, σ > 0, number of

primal-dual iterations T ≥ 1, number of restarts R ≥ 1, tolerance
ζ ′ > 0, scale parameter 0 < r < 1, constant s > 0, initial values
c(0) = 0 ∈ VN

K ξ(0) = 0 ∈ Vm
K .

output : c̃ = primal-dual-rst-wSRLASSO(A,f ,w, λ, τ, σ, T,R, ζ ′, r, s), an
approximate minimizer of (2.5.6)

initialize: c̄(0) = 0 ∈ VN
K , ε0 = ∥b∥2;V

1 for l = 0, . . . , R− 1 do
2 εl+1 = r(εl + ζ ′)
3 al = sεl+1
4 c̃(l+1) = al · primal-dual-wSRLASSO(A,f/al,w, λ, τ, σ, T, c̃

(l)/al,0)
5 end
6 c̃ = c̃(R)

value of c⋆ is non particularly illuminative. Indeed, it is well-known that universal constants
appearing in RIP estimates in compressed sensing are generally very pessimistic [12,19,112].

4.7 The computational cost of the algorithms

This section proves a lemma on the computational cost of Algorithm 2. This will be used
later when proving the main theorems:

Lemma 4.7.1 (Computational cost of Algorithm 2). The computational cost of Algorithm
2 is bounded by

c · (m ·N ·K + (m+N) · (F (G) +K)) · T,

where c > 0 is a universal constant and F is as in (4.1.4).

Proof. We proceed line-by-line. Line 2 involves a matrix-matrix multiplication and matrix
subtraction, for a total of at most

c ·m ·N ·K (line 2)

arithmetic operations for some universal constant c. Now consider lines 3–5. By the previous
remark, we may calculate ∥G1/2pi∥2 =

√
p∗

i Gpi using one multiplication with the matrix
G, one inner product of vectors of length K and one square root (recall from Definition 4.1.1
that we count square roots as arithmetic operations). This involves at most c · (F (G) +K)
arithmetic operations. Hence the cost of line 5 is at most

c · (F (G) +K) (line 5),
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Algorithm 5: primal-dual-rst-wSRLASSO-C – the restarted primal-dual itera-
tion for the weighted SR-LASSO problem (4.5.3)

inputs : measurement matrix A ∈ Cm×N , measurements B ∈ CN×K , positive
weights w = (wi)N

i=1, Gram matrix G ∈ CK×K , parameter λ > 0,
stepsizes τ, σ > 0, number of primal-dual iterations T ≥ 1, number of
restarts R ≥ 1, tolerance ζ ′ > 0, scale parameter 0 < r < 1, constant
s > 0, initial values C(0) = 0 ∈ CN×K , Ξ(0) = 0 ∈ Cm×K

output : C̃ = primal-dual-rst-wSRLASSO-C(A, b,w,G, λ, τ, σ, T,R, ζ ′, r, s), an
approximate minimizer of (4.5.3)

initialize: C̃(0) = 0 ∈ CN×K , ε0 = ∥BG1/2∥2;2

1 for l = 0, . . . , R− 1 do
2 εl+1 = r(εl + ζ)
3 al = sεl+1
4 C̃(l+1) = al · primal-dual-wSRLASSO-C(A,B/al,w,G, λ, τ, σ, T, C̃(l)/al,0)
5 end
6 C̃ = C̃(R)

for a possibly different universal constant c. Therefore, the total cost of lines 3–5 is

c · (F (G) +K) ·N (lines 3–5).

Line 7 involves no arithmetic operations and line 8 involves at most

c ·m ·N ·K (line 8)

operations. Consider line 9. Due to the previous remark, the computation of ∥QG1/2∥2,2
can be performed in at most c ·m · (F (G)+K) operations (since Q is of size m×K). Hence
line 9 involves at most

c ·m · (F (G) +K) (line 9)

operations. Finally, line 10 involves at most

c ·N ·K (line 10)

operations. After simplifying, we deduce that lines 2–10 involve at most

c · (m ·N ·K + (K + F (G)) · (N +m))

operations. The result now follows by multiplying this by the number of iterations T .

Lemma 4.7.2 (Computational cost of Algorithm 3). The computational cost of Algorithm
3 is bounded by

c ·m · (n+N) · k,
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• Let m, ϵ, n, t and ζ ′ be as given in the particular theorem and set:

• Λ = ΛHC
n,d (Theorems 4.3.2 and 4.3.6) or Λ = ΛHCI

n (Theorem 4.3.4),
• λ = (4

√
m/L)−1, where L = L(m, d, ϵ) is as in (3.3.1),

• τ = σ = (Θ(n, d))−α, where Θ(n, d) and α are as in (2.4.22) and (4.3.1),
respectively,

• T = ⌈(Θ(n, d))αc⋆⌉, where c⋆ is a universal constant,
• R = t
• r = e−1

• s = (Θ(n,d))αT
2

• Let D = (di,k)m,K
i,k=1 ∈ Cm×K and Y = (yi)m

i=1 be an input, as in (3.1.2), and set
B = 1√

m
D.

• Compute A = construct-A(Y ,Λ).

• Let G, A and w be as in (2.5.1), (4.1.1) and (2.4.17), respectively.

• Define the output C̃ = A(D), where

A(D) = primal-dual-rst-wSRLASSO-C(A,B,w,G, λ, τ, σ, T,R, ζ, r, c)

Table 4.2: The algorithms A : Um × Cm×K → CN×K used in Theorems 4.3.2, 4.3.4 and 4.3.6.

where c > 0 is a universal constant and k and n are as in lines 1 and 2 of the algorithm.

Proof. Consider line 5 of the algorithm. Evaluation of the first k+1 Chebyshev or Legendre
polynomials can be done via the three-term recurrence relation. In the Chebyshev case, this
is

Ψ0(z) = 1, Ψ1(z) =
√

2z, Ψj+1(z) = 2zΨj(z) − cjΨj−1(z), j = 1, . . . , k,

where cj = 1 if j ≥ 1 and 1/
√

2 otherwise, and in the Legendre case, it is

Ψ0(z) = 1, Ψ1(z) =
√

3z,

Ψj+1(z) =
√
j + 3/2
j + 1

(
2j + 1√
j + 1/2

zΨj(z) − j√
j − 1/2

Ψj−1(z)
)
, j = 2, . . . , k,

(recall that these polynomials are normalized with respect to their respective probability
measures). Hence the computational cost for line 5 is bounded by c ·n ·k. The computational
cost for lines 6–8 is precisely N · (k − 1). Hence, the computational cost for forming each
row of A is bounded by c · (n · k +N · k). The result now follows.
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4.8 Error bounds and the restarting scheme for the primal-
dual iteration

We now recall the theory developed in the previous chapter. In particular, the following
section builds upon the arguments presented in §3.7. The bounds for polynomial approx-
imations, obtained as inexact minimizers (Theorems 3.7.3–3.7.5), reduce the problem of
proving the main results in this chapter (Theorems 4.3.1–4.3.6) to two tasks. The first
involves bounding the error in the objective function, i.e., the term

G(c̃) − G(PK(cΛ)),

where c̃ is either an exact minimizer or an approximate minimizer obtained via the primal
dual iteration. The second involves the various approximation error terms depending on f

and its polynomial coefficients.

4.8.1 Overview

We begin in §4.8.2 by establishing error bounds for inexact minimizers obtained through a
finite number of iterations of the primal-dual iteration and address the first task mentioned
in §4.8. To be more specific, we provide an error bound for the (unrestarted) primal-dual
iteration when applied to Hilbert-valued weighted SR-LASSO problem (3.6.3). This is de-
tailed in Lemma 4.8.2. With these bounds in hand, we proceed to derive a restarting scheme
in §4.8.3, which is the crucial part for the efficient algorithm. The error bound for this scheme
is presented in Theorem 4.8.4.

In §4.9, we conclude with the final arguments. We utilize the three key theorems from
the previous chapter (Theorems 3.7.3–3.7.5) and proceed to estimate each of the error
terms mentioned earlier. For the polynomial approximation error, we rely on several results
outlined in §2.4.5. To estimate the error in the objective function, we use the results provided
in the subsequent section, §4.8.2. After carefully bounding the other two error terms, we
finally arrive at the main results.

4.8.2 Error bounds for the primal-dual iteration

We now return to the general setting of the primal-dual iteration, where it is applied to
the problem (4.5.4) and takes the form (4.5.9). The following result from [58, Theorem 5.1]
establishes an important error bound for the Lagrangian difference.

Theorem 4.8.1. Let τ, σ > 0, initial points (x(0), ξ(0)) ∈ X ×Y and a bounded linear opera-
tor A ∈ B(X ,Y), be such that ∥A∥2

B(X ,Y) ≤ (τσ)−1. Consider the sequence {(x(n), ξ(n))}∞
n=1
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generated by the primal-dual iteration (4.5.9). Then, for any (x, ξ) ∈ X × Y,

L(x̄(n), ξ) − L(x, ξ̄(n)) ≤
τ−1∥x− x(0)∥2

2;V + σ−1∥ξ − ξ(0)∥2
2;V

n
, (4.8.1)

where
x̄(n) = 1

n

n∑
k=1

x(k) and ξ̄(n) = 1
n

n∑
k=1

ξ(k),

are the ergodic sequences and L is the Lagrangian (4.5.7).

The following lemma shows a decay rate of 1/n on the objective function in the case of
the primal-dual iteration when applied to the problem (3.6.3). It is an extension of [19, Lem.
8.6] to the weighted and Hilbert-valued setting.

Lemma 4.8.2. Let A ∈ B(VN ,Vm) and τ, σ > 0 be such that ∥A∥2
B(VN ,Vm) ≤ (τσ)−1.

Consider the sequence {(x(n), ξ(n))}∞
n=1 generated by the primal-dual iteration in (4.5.9)

applied to (3.6.3) with x(0) ∈ VN and ξ(0) = 0 ∈ Vm. Then, for any x ∈ VN ,

G(x̄(n)) − G(x) ≤
τ−1∥x − x0∥2

2;V + σ−1

n
, x̄(n) = 1

n

n∑
k=1

x(k). (4.8.2)

Proof. Using (4.5.7) and (4.5.10), the left-hand side of (4.8.1) is given by

Tn(x, ξ) :=
(
λ∥x̄(n)∥1,w;V + Re ⟨Ax̄(n) − f , ξ⟩2;V + δB(ξ)

)
−
(
λ∥x∥1,w;V + Re ⟨Ax − f , ξ̄(n)⟩2;V + δB(ξ̄(n))

)
,

where B is the unit ball in Vm. Observe that the term ξ(n) produced by this iteration
satisfies

∥∥∥ξ(n)
∥∥∥

2;V
≤ 1. This follows from the observation shown in §4.5.3 that the proximal

mapping
proxσh∗(ξ) = projB(ξ − σf)

involves the projection onto the unit ball B. Hence the ergodic sequence ξ̄(n) satisfies∥∥∥ξ̄(n)
∥∥∥

2;V
≤ 1 as well. Suppose now that Ax(n) − f ̸= 0 and set

ξ = Ax(n) − f∥∥Ax(n) − f
∥∥

2;V
.

Then δB(ξ) = δB(ξ̄(n)) = 1 and therefore

Tn(x, ξ) =
(
λ∥x̄(n)∥1,w;V + ∥Ax̄(n) − f∥2;V

)
−
(
λ∥x∥1,w;V + Re ⟨Ax − f , ξ̄(n)⟩2;V

)
≥
(
λ∥x̄(n)∥1,w;V + ∥Ax̄(n) − f∥2;V

)
−
(
λ∥x∥1,w;V + ∥Ax − f∥2;V

)
.
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Clearly, the same bound also holds in the case Ax(n) − f = 0 where ξ is an arbitrary unit
vector. Hence Theorem 4.8.1 and the fact that ∥ξ − ξ0∥2;V = ∥ξ∥2;V = 1 gives the result.

4.8.3 The restarting scheme

For convenience, we now introduce new and slightly modify some existing notation. First,
we redefine the objective function G of the Hilbert-valued weighted SR-LASSO problem
(3.6.3) to make the dependence on the term f explicit: namely, we set

G(x,f) = λ∥x∥1,w;V + ∥Ax − f∥2;V , x ∈ VN , f ∈ Vm.

We then let
E(z,x,f) = G(z,f) − G(x,f), x, z ∈ VN , f ∈ Vm. (4.8.3)

Now consider the ergodic sequence x̄(n) produced by n iterations of the primal-dual iteration
(4.5.9) applied to (3.6.3) with parameters τ, σ > 0, x0 ∈ VN and ξ0 = 0 ∈ Vm. For reasons
that will become clear in a moment, we now make the dependence on the vector f in (3.6.3),
the number of iterations x̄(n) and the initial vector x0 explicit, by defining

P(x0,f , n) = x̄(n).

With this in hand, we conclude this discussion by noting the following two scaling properties:

G(ax,f) = aG(x,f/a), E(az,x,f) = aE(z,x/a,f/a). (4.8.4)

These hold for any a > 0 and for any x, z ∈ VN and f ∈ Vm.

Lemma 4.8.3. Suppose that A ∈ B(VN ,Vm) has the weighted rNSP over V of order (k,w)
with constants 0 < ρ < 1 and γ > 0. Consider the Hilbert-valued weighted SR-LASSO
problem (3.6.3) with parameter λ = c/

√
k, where 0 < c ≤ (1+ρ)2

(3+ρ)γ . Let E and P be as defined
above, τ, σ satisfy ∥A∥2

B(VN ,Vm) ≤ (τσ)−1 and x,x0 ∈ VN , f ∈ Vm, a > 0. Then

E(aP(x0/a,f/a, n),x,f) ≤ C2

aτn
(E(x0,x,f) + ξ)2 + a

σn
,

where
C = 2 max

{
C ′

1/c, C
′
2
}
, (4.8.5)

C ′
1, C

′
2 are as in Lemma 3.6.3 and

ξ = ξ(x,f) = σk(x)1,w;V√
k

+ ∥Ax − f∥2;V . (4.8.6)
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Proof. The scaling property (4.8.4) and Lemma 4.8.2 give

E(aP(x0/a,f/a, n),x,f) = aE(P(x0/a,f/a, n),x/a,f/a)

≤ a

(
τ−1∥x/a− x0/a∥2

2;V + σ−1

n

)

=
∥x − x0∥2

2;V
aτn

+ a

σn
.

Now consider the term ∥x − x0∥2;V . Since A has the weighted rNSP and λ satisfies (3.6.4),
we may use Lemma 3.6.3 to get

∥x − x0∥2;V ≤ C ′
1√
k

(
2σk(x)1,w;V + G(x0,f) − G(x,f)

λ

)
+
(
C ′

1√
kλ

+ C ′
2

)
∥Ax − f∥2;V

= C ′
1√
kλ

E(x0,x,f) + 2C ′
1
σk(x)1,w;V√

k
+
(
C ′

1√
kλ

+ C ′
2

)
∥Ax − f∥2;V

≤ 2 max
{
C ′

1/c, C
′
2
}

(E(x0,x,f) + ξ) .

Substituting this into the previous expression now gives the result.

This lemma gives the rationale behind the restarted scheme. It says the error in the
objective function of the scaled output aP(x0/a,f/a, n) of the primal-dual iteration with
initial value x0 can be bounded in terms of the error in the objective function at the initial
value, plus terms depending on the scaling parameter a, the number of iterations n and the
compressed sensing error term ξ. By choosing these parameters suitably and iterating this
procedure, we obtain the restarting scheme. We summarize this in the following theorem:

Theorem 4.8.4 (Restarting scheme). Suppose that A ∈ B(VN ,Vm) has the weighted rNSP
over V of order (k,w) with constants 0 < ρ < 1 and γ > 0. Consider the Hilbert-valued
weighted SR-LASSO problem (3.6.3) with parameter λ = c/

√
k, where 0 < c ≤ (1+ρ)2

(3+ρ)γ . Let
x ∈ VN , f ∈ Vm, ζ ′ ≥ ξ, where ξ is as in (4.8.6), 0 < r < 1 and define the sequence

ε0 = ∥f∥2;V , εk+1 = r(εk + ζ ′), k = 0, 1, 2, . . . .

Let E and P be as defined above, τ, σ satisfy ∥A∥2
B(VN ,Vm) ≤ (τσ)−1 and set

n =
⌈ 2C
r
√
στ

⌉
, ak = 1

2σεk+1n, k = 0, 1, 2, . . . ,

where C is as in (4.8.5). Then the iteration x̃(0), x̃(1), x̃(2), . . ., defined by

x̃(0) = 0, x̃(k+1) = akP(x̃(k)/ak,f/ak, n), k = 0, 1, 2, . . . ,

104



satisfies
E(x⋆

k,x,f) ≤ εk ≤ rk∥f∥2;V + r

1 − r
ζ ′, k = 0, 1, 2, . . . .

Proof. We use induction on k. Suppose first that k = 0. Then, by definition,

E(x̃(k),x,f) = E(0,x,f) ≤ G(0,f) = ∥f∥2;V = ε0.

Now suppose that the result holds for k. The previous lemma gives

E(x̃(k+1),x,f) = E(akP(x̃(k)/ak,f/ak, n),x,f)

≤ C2

akτn

(
E(x̃(k),x,f) + ζ

)2
+ ak

σn

≤ C2

akτn
(εk + ζ)2 + ak

σn
.

We now substitute the values of n and ak to obtain

E(x̃(k+1),x,f) = 2C2(εk + ζ)
rστn2 + 1

2r(εk + ζ) ≤ 1
2r(εk + ζ) + 1

2r(εk + ζ) = εk+1.

This completes the proof.

This theorem states that the restarted primal-dual iteration x̃(0), x̃(1), x̃(2), · · · yields
an objective function error E(x̃(k),x,f) that converges exponentially fast in the number
of restarts k. Further, each (inner) primal-dual iteration involves a number of steps n that
depends on the parameters C, r, σ and τ . In other words, n is a constant independent of k.
Hence, the restarted scheme converges exponentially fast in the total number of primal-dual
iterations as well.

As discussed in the numerical experiments section in [10, §5.1.1], it is typical to use this
theorem to optimize the choice of r. Recall that this leads to the explicit choice r = e−1.
We use this value in our algorithms – see Table 4.2.

4.9 Proofs of the main results: Theorems 4.3.1–4.3.6

We are now ready to prove the main results of this chapter.

4.9.1 Theorems 4.3.1–4.3.2: algebraic rates of convergence, finite dimen-
sions

Proof of Theorem 4.3.1. The argument is similar to that of Theorem 3.3.1. Recall from
§4.5.4 that, in this case the approximation f̂ = ∑

ν∈Λ c̃νΨν , where ĉ = c̄(T ) is the ergodic
sequence obtained after T steps of the primal-dual iteration applied to (2.5.6). Hence, the
only difference is the estimation of G(ĉ) − G(PK(cΛ)) in Step 2.
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We now do this using Lemma 4.8.2. In order to apply this lemma we first need to
estimate ∥A∥B(VN

K ,Vm
K ). Let x = (xν)ν∈Λ ∈ VN

K and define p(y) = ∑
ν∈Λ xνΨν . Then

∥Ax∥2;V =

√√√√ 1
m

m∑
i=1

∥p(yi)∥2
V ≤ sup

y∈U
∥p(y)∥V ≤

∑
ν∈Λ

∥xν∥Vuν ≤ ∥x∥2;V

√
|Λ|u.

Now the set Λ is lower and of cardinality |Λ| = Θ(n, d). Hence, by (3.8.2) with s = N , we
have |Λ|u ≤ (Θ(n, d))2α, where α is as in (4.3.1). Since x was arbitrary, we get

∥A∥2;V ≤ (Θ(n, d))α. (4.9.1)

Since the primal-dual iteration in §4.5.4 is used with τ = σ = (Θ(n, d))−α, we have that
∥A∥2

2;V ≤ (τσ)−1. Hence we may apply Lemma 4.8.2. Since the iteration is also initialized
with the zero vector and run for a total of T = ⌈2(Θ(n, d))αt⌉ iterations (see §4.5.4 once
more), this gives

G(ĉ) − G(PK(cΛ)) ≤ (Θ(n, d))α
∥PK(cΛ)∥2

2;V + 1
T

.

Observe that
∥PK(cΛ)∥2;V ≤ ∥cΛ∥2;V ≤ ∥c∥2;V = ∥f∥L2

ϱ(U ;V) ≤ 1.

Here, in the last step, we use the fact that f ∈ B(ρ), and therefore

∥f∥L2
ϱ(U ;V) ≤ ∥f∥L∞(U ;V) ≤ 1.

Using this and the value of T , we deduce that

G(ĉ) − G(PK(cΛ)) ≤ 1
t
.

Substituting this into (3.8.4) and combining with the other estimates (3.8.5)–(3.8.7) derived
in Step 2 of the proof of Theorem 3.3.1 now gives the desired error bound.

It remains to estimate the computational cost. We do this via Lemmas 4.7.1 and 4.7.2.
First observe that the value k in Lemma 4.7.2 is equal to k = d in this case, since the index
set Λ = ΛHC

n,d is a d-dimensional hyperbolic cross index set. Similarly, the value n in Lemma
4.7.2 is bounded by the order n of this hyperbolic cross. As Λ is a lower set, we also have
n ≤ N . Hence, the computational cost for forming the matrix A is bounded by c ·m ·N · d.
We now use Lemma 4.7.1 to bound the computational cost of the algorithm. Finally, we
recall that N = Θ(n, d) and T = ⌈2(Θ(n, d))αt⌉ in this case.

Proof of Theorem 4.3.2. As in the previous proof, we only need to estimate the term G(ĉ)−
G(PK(cΛ)). Recall from Table 4.2 that in this case ĉ = c̃(R) is the output of the restarted
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primal-dual iteration with R restarts. Our goal is to use Theorem 4.8.4 applied to the
problem (2.5.6) with weights w = u as in (2.4.17), λ = (4

√
m/L)−1 and x = PK(cΛ).

We first show that the conditions of this theorem hold. Recall from Step 2 of the proof
of Theorem 3.7.3 that the matrix A has the weighted rNSP of order (k,u) over VK with
constants ρ = 2

√
2/3 and γ = 2

√
5/3. In particular,

(1 + ρ)2

(3 + ρ)γ ≥ 0.64.

We now use (3.7.4) to see that

λ = 1
4√

c0

1√
k

≤ (1 + ρ)2

(3 + ρ)γ
1√
k
,

for a sufficiently large choice of c0.
Next, with this choice of x, we see that

ξ(x,f) = σk(PK(cΛ))1,u;V√
k

+ ∥APK(cΛ) − f∥2;V .

Using (3.7.5) and (3.7.7), we get

ξ(x,f) ≤ σk(cΛ)1,w;V√
k

+
√

2
(
EΛ,∞(f)√

k
+ EΛ,2(f)

)
+ ∥f − PK(f)∥L∞(U ;V) +

∥n∥2;V√
m

,

with probability at least 1 − ϵ. Using (3.8.5)–(3.8.7), we deduce that

ξ(x,f) ≤ ζ,

with probability at least 1 − ϵ, where ζ is as in (3.3.3). Hence, ξ(x,f) ≤ ζ ′.
Next, recall from Table 4.2 that τ = σ = (Θ(n, d))−α in this case. Due to (4.9.1), we see

that ∥A∥2;V ≤ (τσ)−1 as well.
Now consider the constant C defined in (4.8.5). The values for ρ and γ give that C ′

1 ≤
C ′

2 ≤ 103. Since λ = c/
√
k with c = 1/(4√

c0), we see that

4C ≤ 812/c = 3296√
c0 := c⋆. (4.9.2)

Therefore, recalling that r = 1/2 and τ = σ = (Θ(n, d))−α, we see that⌈ 2C
r
√
στ

⌉
= ⌈(Θ(n, d))αc⋆⌉ = T,

where T is as specified in Table 4.2, and

1
2rσ(εk + ζ ′)T = (Θ(n, d))αT

4 εk+1 = sεk+1 = ak,
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where s and ak are as specified in Table 4.2 and Algorithm 4, respectively.
With this in hand, we are now finally in a position to apply Theorem 4.8.4. We deduce

that
G(ĉ) − G(PK(cΛ)) = E(c̃(R),PK(cΛ),f) ≤ εk = e−R∥f∥2;V + ζ ′.

To complete the proof of the error bound (4.3.6), we simply note that ∥f∥2;V ≤ ∥f∥L∞(U ;V) ≤
1, since f ∈ B(ρ).

It remains to estimate the computational cost. As before, the computational cost for
forming the matrix A is bounded by c · m · N · d. Next, by construction, we observe that
the algorithm consists of R = t primal-dual iterations, each involving T = ⌈(Θ(n, d))αc⋆⌉
steps. Therefore, by Lemma 4.7.1 the computational cost for the algorithm is

c · (m ·N ·K + (m+N) · (F (G) +K)) · ⌈(Θ(n, d))αc⋆⌉ · t.

Since N = Θ(n, d) and c⋆ is a universal constant, the result follows.

4.9.2 Theorems 4.3.3–4.3.4: algebraic rates of convergence, infinite di-
mensions

Proof of Theorem 4.3.3. The argument is similar to that of Theorem 4.3.1. Here ĉ = c̄(T )

is the ergodic sequence obtained after T steps of the primal-dual iteration applied to (2.5.6)
as well.

We recall that the set Λ is lower and of cardinality |Λ| = Θ(n, d) with d = ∞. Hence,
by (3.8.2) with s = N , we have |Λ|u ≤ (Θ(n, d))2α, where α is as in (4.3.1). Using this, we
get

∥A∥2;V ≤ (Θ(n, d))α,

as before. Since the primal-dual iteration in Table 4.2 is used with τ = σ = (Θ(n, d))−α, we
have that ∥A∥2

2;V ≤ (τσ)−1. Hence, following the same steps we deduce that

G(ĉ) − G(PK(cΛ)) ≤ 1
t
.

Substituting this into (3.8.4) and combining with the other estimates (3.8.5)–(3.8.7) derived
in Step 2 of the proof of Theorem 3.3.1 now gives the desired error bound.

The computational cost estimate is similar to the that in the proof of Theorem 4.3.1. In
this case, observe that the value k in Lemma 4.7.2 is equal to n. Hence the computational
cost of forming A is bounded by c · m · N · n in this case. The computational cost for the
algorithm is given by Lemma 4.7.1. To complete the estimate, we substitute the values
N = Θ(n, d) and T = ⌈2(Θ(n, d))αt⌉, as before.
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Proof of Theorem 4.3.4. The proof is similar to that of Theorem 4.3.2 and involves esti-
mating the term G(ĉ) − G(PK(cΛ)). Using the same steps, we deduce that

ξ(x,f) ≤ ζ,

with probability at least 1 − ϵ/2, where ζ is as in (3.3.5). Hence, ξ(x,f) ≤ ζ ′.
Next, recall from Table 4.2 that τ = σ = (Θ(n, d))−α with d = ∞ in this case. Due to

(4.9.1), we see that ∥A∥2;V ≤ (τσ)−1 holds. We now apply Theorem 4.8.4 to obtain

G(ĉ) − G(PK(cΛ)) = E(c̃(R),PK(cΛ),f) ≤ εR = e−R∥f∥2;V + ζ ′.

To complete the proof of the error bound (4.3.6), we simply note that ∥f∥2;V ≤ ∥f∥L∞(U ;V) ≤
1, since f ∈ B(b, ε).

The computational cost estimate is as in the previous proof.

4.9.3 Theorems 4.3.5–4.3.6: exponential rates of convergence, finite di-
mensions

Proof of Theorem 4.3.5. The argument is the same as the proof of Theorem 4.3.1. The
difference relies on the fact that now ζ has the following bound

ξ ≤ C·


exp

(
−γ

2

(
m

4c0L

) 1
d

)
Chebyshev

exp
(

−γ
(

m
4c0L

) 1
2d

)
Legendre

+
∥n∥2;V√

m
+∥f − PK(f)∥L∞(U ;V)+G(ĉ)−G(PK(cΛ)),

where C = C(d, γ,ρ). To estimate the final term, we argue exactly as in the proof of
Theorem 4.3.1. The computational cost estimate is likewise identical.

Proof of Theorem 4.3.6. The proof is similar to that of Theorem 4.3.2, except we use The-
orem 3.7.5 instead. Recall from Step 2 of the proof of Theorem 3.7.5 that the matrix A has
the weighted rNSP of order (k,u) over VK with constants ρ = 2

√
2/3 and γ = 2

√
5/3 with

probability 1 − ϵ. In particular,
(1 + ρ)2

(3 + ρ)γ ≥ 0.64.

We now use (3.7.4) to see that

λ = 1
4√

c0

1√
k

≤ (1 + ρ)2

(3 + ρ)γ
1√
k
,

for a sufficiently large choice of c0, as before.
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Next, with the choice x = PK(cΛ) as before, we see that

ξ(x,f) = σk(PK(cΛ))1,u;V√
k

+ ∥APK(cΛ) − f∥2;V .

Using (3.7.10), we get

ξ(x,f) ≤ σk(cΛ)1,w;V√
k

+ EΛ,∞(f) + ∥f − PK(f)∥L∞(U ;V) +
∥n∥2;V√

m
,

with probability 1 − ϵ. It now follows from the proof of Theorem 3.3.3 that

ξ(x,f) ≤ ζ,

with probability at least 1 − ϵ, where ζ is as in (3.3.8). Hence, ξ(x,f) ≤ ζ ′.
The rest of the proof follows the same steps as the proof of Theorem 4.3.2.

4.10 Conclusions

In this chapter, we have closed a key gap between the best s-term polynomial approximation
theory, which asserts exponential or algebraic rates of convergence for the approximation
of holomorphic functions, and the development of efficient algorithms capable of achieving
these rates after a finite number of iterations. Specifically, we have shown that (weighted)
ℓ1-minimization problems can be used to practically compute sparse polynomial approxi-
mations to holomorphic functions from limited samples. Our approach also demonstrates
robustness to sampling, algorithmic, and physical discretization errors. We consider both
scalar- and Hilbert-valued functions in an unknown anisotropy setting, which is particularly
relevant in the context of parametric or stochastic DEs. Our results involve several signif-
icant advancements of existing techniques, including the introduction of a novel restarted
primal-dual iteration for solving weighted ℓ1-minimization problems in Hilbert spaces. Based
on this, we answer Question 2 of §1.6 in the affirmative.

Answer to Question 2

There exist efficient and practical algorithms that achieve the same algebraic (in finite-
or infinite-dimensions) and exponential (in finite dimensions) rates as those of the best
s-term approximation with respect to the number of samples m.

The computational cost: Algebraic case, infinite dimensions
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In finite dimensions, as mentioned in the discussion before Theorem 4.3.4, the computational
cost (4.3.10) (for fixed K and t) is subexponential in m. Keeping this in mind, we answer
Question 3 of §1.6 in the affirmative.

Answer to Question 3

In the infinite-dimensional case, the computational cost is subexponential in m. Specif-
ically, it is

O
(
t ·m1+(α+1) log(4m)/ log(2)

)
, m → ∞,

where α = 1 (Chebyshev) or α = log(3)/ log(4) ≈ 0.79 (Legendre).

Whether or not this can be reduced to an algebraic cost is an open problem.

The computational cost: exponential case, finite dimensions

As before, based on the discussion in §4.3, for fixed t, the computational (4.3.14) of the
algorithm in Theorem 4.3.6 is polynomial in m as m → ∞. In addition, by using the
efficient algorithm of Theorem 4.3.6 (subject to the caveat that an upper bound for the
error is known) we answer Question 4 of §1.6 in the affirmative.

Answer to Question 4

In the finite-dimensional, exponential setting, the computational cost is algebraic in m
for fixed d. Namely,

O
(
t ·mα+2(log(m))(d−1)(α+1)

)
, m → ∞,

where α = 1 (Chebyshev) or α = log(3)/ log(4) ≈ 0.79 (Legendre).

Whether or not the polynomial growth rate described above is sharp is an open problem.

In addition, we answer Question 9 of §1.6 for the setting in this chapter.

Answer to Question 9
In the L2

ϱ(U ; V)-norm the errors Esamp, Ealg and Edisc enter the error linearly. In the
L∞(U ; V)-norm these terms enter the error multiplied by a factor

√
m/L.

4.11 Future work

There are a number of avenues for further research.

• First, this work has focused on Chebyshev and Legendre polynomials on the hypercube
[−1, 1]d. It is plausible that it can be extended to general ultraspherical or Jacobi poly-
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nomials. See [17] for some work in this direction. Other possible extensions involves
Hermite or Laguerre polynomials on Rd or [0,∞)d. This is an interesting problem for
future research.

• It is notable that the algorithms developed in this thesis do not generally compute
m-term polynomial approximations. Indeed, (inexact) minimizers of the SR-LASSO
problem will generally be nonsparse vectors of length N = Θ(n, d). It is interesting to
investigate whether one can develop algorithms that achieve the same error bounds
while computing m-term polynomial approximations. In classical compressed sensing,
one can typically compute sparse solutions by using a greedy or iterative procedure
(see, e.g., [112]). Unfortunately, it is not clear how to extend these procedures to
the weighted case with theoretical guarantees. Nonetheless, certain weighted greedy
methods appear to work well in practice for sparse polynomial approximation [5]. On
the other hand, a sparse approximation can always be obtained from an (inexact)
minimizer of the SR-LASSO problem by thresholding. See [9, Rem. 6.9]

• We have shown that the computational cost is, at worst, subexponential inm in infinite
dimensions and algebraic in m (for fixed d) in finite dimensions. This is often not the
main computational bottleneck in parametric model problems (generally, computing
the samples is the most computationally-intensive step). Whether these are optimal is
an interesting open problem. Here, ideas from sublinear-time algorithms [65, 66] may
be particularly useful.

• In the case of the exponential rates, it is notable that the best s-term approximation
error is exponentially small in γ · s1/d (see Theorem 2.4.7). Conversely, the exponents
in §3.3 are γ/2(m/(c0L))1/d (Chebyshev) and γ(m/(c0L))1/(2d) (Legendre case). The
reason for this can be traced to the sample complexity estimate for computing a
sparse (and lower) polynomial approximation via compressed sensing with Monte
Carlo sampling, i.e., m ≈ c0 · 2d · s · L (Chebyshev) or m ≈ c0 · s2 · L (Legendre). To
see why this is the case, combine Lemma 3.7.1 with (3.8.2). In the setting of least
squares, in which the desired polynomial subspace is known, it is possible to change
the sampling measure to obtain sample complexity bounds that are log-linear in s

and therefore near optimal. See, e.g., [74, 132]. More recently, several works [32, 101,
102, 160, 182, 253] have also introduced sampling schemes that achieve linear sample
complexity in s – i.e., optimal up to a constant. Unfortunately, it is unknown whether
linear or log-linear sample complexity is possible in the compressed sensing setting,
where the target subspace is unknown. See [15] for further discussion on this issue.
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Chapter 5

Deep neural networks for Banach-
and Hilbert-valued approximations
from limited samples

The purpose of this chapter is to demonstrate that DL is effective at learning holomorphic
infinite-dimensional functions that take values in Banach spaces from limited samples. Our
main results are practical existence theorems showing that there are DNN architectures
and training procedures similar to those used in practice that can efficiently (in terms of
sample complexity) approximate the functions described in §2.3.1. Here we consider the
Banach-valued case whereas in the previous chapters we consider the Hilbert-valued case
only. We begin in §5.1 with various preliminaries. We recall key notation and present the
problem statement in §5.1.2 and §5.2. Next, in §5.3, we state our main results about DNN
approximation in the unknown and known anisotropy case. We provide a discussion on these
results in §5.4. In §5.5 we reformulate the training problem and give the proof strategy. Next
in §5.6 we provide two key lemmas to prove the wRIP property. In §5.7, we elaborate on
the approximation of orthogonal polynomials by using DNNs. In §5.8 we present the proofs
of the main results. Finally, in §5.9 we write our conclusions and address Question 5 of §1.6
for both scalar and Hilbert-valued functions, outlining some future work in §5.10.

In this chapter, we focus on infinite-dimensional, Banach-valued functions. The material
in this chapter is primarily based on [8]. For previous work on finite-dimensional, Hilbert-
valued functions, see [7].

5.1 Preliminaries

In Chapters 3 and 4 we studied methods and specific methods to construct polynomial
approximations that achieved the desired convergence rates of §2.4.5. In these chapters, we
focused exclusively on the unknown anisotropy case within a Hilbert-valued function ap-
proximation setting. However, driven by their impressive results in a variety of applications
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(see §1.8.3), DL is increasingly supplanting classical methods and algorithms, and appears
poised to revolutionize scientific computing. Nonetheless, many still question the use of DL
in critical applications that require rigorous safety standards. As DL, specifically the process
of training DNNs on real-world or synthetic data, is increasingly considered for applications
in medicine, science, and engineering, it is important to quantify the efficiency and reliabil-
ity of DL from both theoretical and practical standpoints. Informally, this leads us to posing
the following question: Are there classes of DNNs and training procedures (i.e., minimizing
a loss function) from which one can learn Banach-valued (b, ε)-holomorphic functions from
limited samples? Are these classes of DNNs stable with respect to various errors that arise
in the approximation problem, including those described in §2.7?

Before stating the problem formally (see §5.1.2), we require some notation and setup.

5.1.1 Setup

Here we consider a similar setup to §3.1.1. We now highlight the main aspects and differences
with the previous chapters. We consider continuous functions of the form f : U → V, where
U = [−1, 1]N is as in §2.2 with d = ∞ and (V, ∥ ·∥V) is a Banach space. Given sample points
y1, . . . ,ym ∼i.i.d. ϱ as in Chapter 1, where ϱ is either the uniform or Chebyshev (arcsine)
measure over U , we assume that the measurements take the form

di = f(yi) + ni ∈ V, i = 1, . . . ,m, (5.1.1)

where the ni represent measurement errors (see (3.1.1)). We consider approximations of
f(y) in the finite dimensional space VK . Using the basis {φk}K

k=1 we can write this as

f(y) ≈
K∑

k=1
ck(y)φk. (5.1.2)

Recall from §2.2 that we assume the existence of bounded linear operator PK : V → VK .
Note that, in Chapter 3–4 this operator PK is the orthogonal projector from V onto VK . In
contrast, in this chaper we only assume that this bounded linear operator exists (see §2.2),
where PK(f)(y) = PK(f(y)) as in (2.2.15) when f is defined everywhere.

Notice that, in contrast to (3.1.3), the coefficients ck in this approximation are scalar-
valued functions of y, i.e., ck : [−1, 1]N → R. We construct a DNN (as in Definition 2.6.2)
to approximate these coefficient functions.

Observe that, in contrast to Chapters 3–4, we do not assume that the samples di to be
elements of a finite-dimensional subspace. In typical applications, the samples are computed
via some numerical routine, which employs a fine discretization of V (see §1.4 for further
details). In this chapter we do not consider how the evaluations f(yi) are obtained. It may
be done by approximating the DE solution with parameter value yi, where ni represents the
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simulation error. However, it is important to mention that we do not assume any structure
to the noise ni in (5.1.1), other than it be small and bounded in norm.

Now, observe that any DNN as defined in (2.6.1) has domain Rn, whereas the coeffi-
cients ck in (5.1.2) have domain U ⊂ RN. In order to use a DNN to approximate infinite-
dimensional functions, we also require a certain restriction operator. Let Θ ⊂ N, |Θ| = n.
Then we define the variable restriction operator

TΘ : RN → Rn, y = (yj)∞
j=1 7→ (yj)j∈Θ. (5.1.3)

Given a DNN Φ of the form (2.6.1),with D hidden layers, N0 = |Θ| = n, ND+2 = K and
activation function σ we consider the approximation fΦ,Θ(y) by

f(y) ≈ fΦ,Θ(y) =
K∑

k=1
(Φ ◦ TΘ(y))kφk. (5.1.4)

In our main results, besides describing the DNN architecture N we also describe a suitable
choice of set Θ defining the variable restriction operator.

5.1.2 Problem statement

We now formally define training as the process of constructing a DNN Φ of the form
(5.1.4) that approximates f from the data (f(yi) + ni)m

i=1 ∈ Vm by minimizing a function
G : N → R. That is, for a given family of DNNs N with a given architecture, we define the
DNN training problem with associated objective function G by

min
Φ∈N

G(Φ). (5.1.5)

Note that this is equivalent (see §5.5.3–5.5.4) to a minimization problem for the weights
and biases (as defined in Definition 2.6.2). In this thesis, we primarily choose G as

G(Φ) :=

√√√√ 1
m

m∑
i=1

∥fΦ,Θ(yi) − di∥2
V + J (Φ), (5.1.6)

where J : N → R is a function promoting sparsity or some other desirable feature.
Then, formally stated, the problem we study in this chapter is: Given a truncation

operator TΘ with |Θ| = n and a class of DNNs N as in Definition 2.6.2 of the form
Φ : Rn → RK , use the training data {(yi, f(yi) + ni)}m

i=1 ⊂ [−1, 1]N × V as in (5.1.1) to
learn Φ̂ ∈ N by solving a certain minimization problem of the form (5.1.6), and construct
an approximation to f of the form

f ≈ fΦ̂,Θ(y) =
K∑

k=1
(Φ̂ ◦ TΘ(y))kφk ∀y ∈ U , (5.1.7)
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with guarantees on the error f − fΦ̂,Θ in the L2
ϱ(U ; V)- and L∞(U ; V)-Bochner norms.

5.2 Contributions

In this chapter, we establish results for DL by reinterpreting a polynomial-based approx-
imation based on compressed sensing as a DNN training procedure, particularly by ap-
proximately emulating orthogonal polynomials using DNNs. In our previous work [7], we
accomplished this for the Hilbert-valued case in finite dimensions. In this chapter, we focus
on the infinite-dimensional, Banach-valued case. Specifically, we extend the Hilbert-valued
compressed sensing theory developed in Chapter 3 to the Banach-valued case. Furthermore,
unlike previous chapters, we address both known and unknown anisotropy cases (see §2.3.2).
This involves developing DL strategies that depend on the holomorphy parameter b and
lead to smaller DNN architectures, as well as strategies that are independent of b.

In summary, our main contribution are four theorems dealing with the known and
unknown anisotropy settings, and the case where V is a Banach space or a Hilbert space
(the additional structure in the case of the latter yields rather improved estimates). In
each theorem, we assert the existence of a DNN architecture with explicit width and depth
bounds and a training procedure based on a (regularized) ℓ2-loss function from which any
resulting DNN approximates f to within an explicit error bound, with high probability.
Specifically, our error bounds in the unknown anisotropy case take the form

∥f − f̂∥L2
ϱ(U ;V) ≲ Eapp +mθ1 (Edisc + Esamp + Eopt) , (5.2.1)

and in the L∞(U ; V)-norm

∥f − f̂∥L∞(U ;V) ≲ E∞
app +mθ2 (Edisc + Esamp + Eopt) ,

where f̂ is the learned approximation to f . Here θ1 = 0 and θ2 = 1/2 if V is a Hilbert space.
If V is a Banach space θ1 = θ2 = 1/2 in the unknown anisotropy case or θ1 = θ2 = 1 in the
known anisotropy case.

There a several distinguishing features of our analysis, that we now highlight:

1. We overcome the curse of dimensionality in the approximation error. The terms Eapp

and E∞
app decay algebraically fast in m/L, where L is a (poly)logarithmic factor in m.

Specifically, when f is (b, ε)-holomorphic with b ∈ ℓp(N) for some 0 < p < 1, then

Eapp ≲ πK ·
(
m

L

)−σ(p)
,

where σ(p) > 0 is given by σ(p) = 1/p−1/2 if V is a Hilbert space or, if V is a Banach
space, σ(p) = 1/p−2 (known anisotropy) with p ≤ 1/2 or σ(p) = 1

2(1/p−1) (unknown
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anisotropy) with p ≤ 1/2, and πK a constant depending on the finite-dimensional
subspace VK .

3. In the Hilbert space case our error bounds are optimal in terms of the number of sam-
ples m, up to constants and (poly)logarithmic factors. Specifically, the rate m1/2−1/p is
the best achievable for the class of functions considered, regardless of sampling strat-
egy or learning procedure (see Chapter 6). Our results for Banach-valued functions
are near-optimal in the L2

ϱ(U ; V)-norm. For instance, in the unknown anisotropy case
they are suboptimal by a factor of m

1
2p and in the known anisotropy case they are

suboptimal only by a factor of m 3
2 . We conjecture that optimal rates (up to constants

and log factors) also hold for Banach-valued functions.

4. We overcome the curse of dimensionality in the DNN architecture N . We consider
either the Rectified Linear Unit (ReLU), Rectified Polynomial Unit (RePU) or hy-
perbolic tangent (tanh) activation function. In the ReLU case the depth of the
fully-connected architecture has explicit dependence on the smoothness of f and
polylogarithmic-linear scaling in m. For the latter two, the width and depth satisfy

depth(N ) ≲ log(m), width(N ) ≲

m
2 known anisotropy,

m3+log2(m) unknown anisotropy.
(5.2.2)

5. We analyze both the known and unknown anisotropy settings. In the Hilbert space
case, the only differences between the two are the width of the DNN architecture and
the (poly)-logarithmic term L. Both the depth and the approximation error Eapp have
the same bounds.

6. We analyze Banach-valued functions. As observed, previous work has generally con-
sidered either scalar- or Hilbert-valued functions. To the best of our knowledge, these
are first theoretical results on learning Banach-valued functions from samples with
DNNs. Our results in the Hilbert-valued case are comparable to those in Chapter 4
in infinite dimensions.

The basic idea behind our theorems is to use DNNs to emulate polynomial approximation
via least squares (in the known anisotropy case) and compressed sensing (in the unknown
anisotropy case). As a by-product, we also show guarantees for polynomial approximation
to infinite-dimensional Banach-valued functions from limited samples. To the best of our
knowledge, these results are also new.
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5.3 Main results

We now present the main results of this chapter. In order to state our results, we require an
additional concept. First, let (5.1.5) be a DNN training problem with associated objective
function G. Then we say that Φ̂ ∈ N is an Eopt-approximate minimizer of this problem, for
some Eopt ≥ 0, if

G(Φ̂) ≤ Eopt + min
Φ∈N

G(Φ). (5.3.1)

We now recall the definition of a minimal monotone majorant (see §2.4.4). Let b = (bi)i∈N ∈
RN be a sequence, its minimal monotone majorant is defined by

b̃ = (b̃i)i∈N, where b̃i = sup
j≥i

|bj |, ∀i ∈ N.

Given 0 < p < ∞, we recall the definition of the monotone ℓp space ℓpM(N) as

ℓpM(N) = {b ∈ ℓ∞(N) : ∥b∥p,M := ∥b̃∥p < ∞}. (5.3.2)

5.3.1 Learning in the case of unknown anisotropy

Theorem 5.3.1 (Banach-valued learning; unknown anisotropy). There are universal con-
stants c0, c1, c2 ≥ 1 such that the following holds. Let m ≥ 3, 0 < ϵ < 1, 0 < p ≤ 1/2,
ε > 0, ϱ be either the uniform or Chebyshev probability measure over U = [−1, 1]N, V be a
Banach space, VK ⊆ V be a subspace of dimension K, PK : V → VK be a bounded linear
operator, πK be as in (2.2.14),

L = L(m, ϵ) = log4(m) + log(ϵ−1) (5.3.3)

and
Θ = [n], where n =

⌈
m

c0L

⌉
. (5.3.4)

Then there exist

(a) a class N j of DNNs Φ : Rn → RK with either the ReLU (j = 1), RePU (j = ℓ) or
tanh (j = 0) activation function with ℓ = 2, 3, . . . and bounds for its depth and width
given by

width(N 1) ≤ c1,1 ·m3+log2(m), depth(N 1) ≤ c1,2 · log(m)
[

log2(m) + p−1 log(m) +m
]
,

in the ReLU case and

width(N j) ≤ cj,1 ·m3+log2(m), depth(N j) ≤ cj,2 · log2(m),
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in the tanh (j = 0) or RePU (j = ℓ) cases, where cj,1, cj,2 are universal constants in
the ReLU and tanh cases and cj,1, cj,2 depend on ℓ = 2, 3, . . . in the RePU case;

(b) a regularization function J : N j → [0,∞) equivalent to a certain norm of the trainable
parameters;

(c) a choice of regularization parameter λ involving only m and ϵ;

such that the following holds for every b ∈ ℓpM(N) with b ≥ 0. Let f ∈ H(b, ε), where H(b, ε)
is as in (2.3.3), draw y1, . . . ,ym ∼i.i.d. ϱ and consider noisy evaluations di = f(yi)+ni ∈ V,
i = 1, . . . ,m, as in (5.1.1). Then, with probability at least 1 − ϵ, every Eopt-approximate
minimizer Φ̂, Eopt ≥ 0, of the training problem

min
Φ∈N j

G(Φ), where G(Φ) =

√√√√ 1
m

m∑
i=1

∥fΦ,Θ(yi) − di∥2
V + λJ (Φ), (5.3.5)

satisfies

∥f − fΦ̂,Θ∥L2
ϱ(U ;V) ≤ c1

(
Eapp,UB +m1/2 · (Edisc + Esamp + Eopt)

)
, (5.3.6)

∥f − fΦ̂,Θ∥L∞(U ;V) ≤ c2
(
E∞

app,UB +m1/2 · (Edisc + Esamp + Eopt)
)
, (5.3.7)

where fΦ̂,Θ is as in (5.1.7),

Eapp,UB = C · πK ·
(
m

L

) 1
2 (1−1/p)

, E∞
app,UB = C · πK ·

(
m

L

) 1
2 (1−1/p)

, (5.3.8)

Esamp =

√√√√ 1
m

m∑
i=1

∥ni∥2
V , Edisc = ∥f − PK(f)∥L∞

ϱ (U ;V),

and C = C(b, ε, p) depends on b, ε and p only.

Note that Theorem 5.3.1 applies to general Banach spaces. Also note that, due to
the proof strategy, in Theorem 5.3.1 (also for Theorem 5.3.3) the L2

ϱ(U ; V)-norm and the
L∞(U ; V)-norm approximation errors follow the same rate. This is because, without Par-
seval’s identity, we are forced to bound most of the significant errors in terms of their
L∞(U ; V)-norm. However, in the Hilbert space case we are able to improve the error bound
in several ways.

Theorem 5.3.2 (Hilbert-valued learning; unknown anisotropy). Consider the setup of The-
orem 5.3.1, except where 0 < p < 1 and V is a Hilbert space. Then the same result holds,
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except with (5.3.6) and (5.3.7) replaced by

∥f − fΦ̂,Θ∥L2
ϱ(U ;V) ≤ c1 (Eapp,UH + Edisc + Esamp + Eopt) , (5.3.9)

∥f − fΦ̂,Θ∥L∞(U ;V) ≤ c2
(
E∞

app,UH +m1/2(Edisc + Esamp + Eopt)
)
, (5.3.10)

with Eapp,UB and E∞
app,UB replaced by

Eapp,UH = C · πK ·
(
m

L

)1/2−1/p

E∞
app,UH = C · πK ·

(
m

L

)1−1/p

,

respectively and potentially different values of the constants c0, c1, c2, cj,1, cj,2 and C(b, ε, p).

In Theorem 5.3.2, we can obtain near-optimal rates (see Chapter 6) of the form
(m/L)1/2−1/p, where L is a polylogarithmic factor of the order O(log4(m)) for the L2

ϱ(U ; V)-
norm approximation errors. Since these results are also nonuniform (i.e., they achieve the
corresponding algebraic rates for a fixed function f) and hold in the unknown anisotropy
case, these algebraic rates are comparable to those of Theorem 3.3.2 and Theorem 4.3.3.

Note that Theorem 5.3.1 holds for a fixed 0 < p ≤ 1/2 and Theorem 5.3.2 holds for
a fixed 0 < p < 1. However, this assumption is only needed for the ReLU case, where, as
we see, the depth of the DNN architecture behaves likes O (1/p) for small p. In the RePU
and tanh cases, the depth of the architecture is independent of p. This means that the
results in fact holds simultaneously for all 0 < p ≤ 1/2 and 0 < p < 1, respectively, in
these cases. Therefore, these activations can fully address the unknown anisotropy case.
Indeed, the architectures and training procedures are completely independent of b, with the
assumption b ∈ ℓpM(N) being used only to assert a bound for the approximation error term.
ReLU activations lead to schemes that depend on p, but are otherwise independent of b as
well.

Upon inspection of the proof (see, e.g., (5.8.20)), we notice that allowing 0 < p ≤ p∗ for
some p∗ < 1 feasible in the case of Theorem 5.3.1 if we enlarge the search space in (5.3.4)
to n = ⌈(m/c0L)

1
2(1−p∗) ⌉, resulting in larger width and depth bounds. However, to maintain

these bounds as small as possible, we shall abstain from doing so.

5.3.2 Learning in the case of known anisotropy

The previous two theorems address the case of unknown anisotropy, since the DNN archi-
tecture and training strategy do not require any knowledge of the anisotropy parameter
b ∈ ℓpM(N) (and, as noted, in the RePU and tanh cases, the parameter p). We now consider
the case of known anisotropy, in which we have knowledge of b to design the architecture
and training strategy.

Theorem 5.3.3 (Banach-valued learning; known anisotropy). There are universal con-
stants c0, c1, c2 ≥ 1 such that the following holds. Let m ≥ 3, 0 < ϵ < 1, 0 < p ≤ 1/2,
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ε > 0, b ∈ ℓp(N) with b ≥ 0, ϱ be either the uniform or Chebyshev probability measure over
U = [−1, 1]N, V be a Banach space, VK ⊆ V be a subspace of dimension K, PK : V → VK

be a bounded linear operator, πK be as in (2.2.14) and

L = L(m, ϵ) = log(m) + log(ϵ−1). (5.3.11)

Then there exist

(a) a set Θ ⊂ N of size
|Θ| = n :=

⌈
m

c0

⌉
, (5.3.12)

(b) a class N j of DNNs Φ : Rn → RK with either ReLU (j = 1), RePU (j = ℓ) or tanh
(j = 0) activation function and bounds for its depth and with given by

width(N 1) ≤ c1,1 ·m2, depth(N 1) ≤ c1,1 · log(m)
(
p−1 log(m) +m

)
,

in the ReLU case and

width(N j) ≤ cj,1 ·m2, depth(N j) ≤ cj,2 · log2(m),

in the tanh (j = 0) or RePU (j = ℓ) cases, where cj,1, cj,2 are universal constants in
the ReLU and tanh cases and cj,1, cj,2 depend on ℓ = 2, 3, . . . in the RePU case;

such that the following holds. Let f ∈ H(b, ε), where H(b, ε) is as in (2.3.3), draw
y1, . . . ,ym ∼i.i.d. ϱ and consider noisy evaluations di = f(yi) + ni ∈ V, i = 1, . . . ,m,
as in (5.1.1). Then, with probability at least 1 − ϵ, every Eopt-approximate minimizer Φ̂,
Eopt ≥ 0, of the training problem

min
Φ∈N j

G(Φ), where G(Φ) =

√√√√ 1
m

m∑
i=1

∥fΦ,Θ(yi) − di∥2
V , (5.3.13)

satisfies

∥f − fΦ̂,Θ∥L2
ϱ(U ;V) ≤ c1

(
Eapp,KB +m (Edisc + Esamp + Eopt, )

)
, (5.3.14)

∥f − fΦ̂,Θ∥L∞(U ;V) ≤ c2
(
E∞

app,KB +m(Edisc + Esamp + Eopt)
)
, (5.3.15)

where fΦ̂,Θ is as in (5.1.7),

Eapp,KB = C · πK ·
(
m

L

)2−1/p

, E∞
app,KB = C · πK ·

(
m

L

)2−1/p

, (5.3.16)
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Esamp =

√√√√ 1
m

m∑
i=1

∥ni∥2
V , Edisc = ∥f − PK(f)∥L∞

ϱ (U ;V),

and C = C(b, ε, p) depends on b, ε and p only. Moreover, if b ∈ ℓpM(N), then the set Θ in
(a) may be chosen explicitly as

Θ = [n], where n =
⌈
m

c0L

⌉
. (5.3.17)

Theorem 5.3.4 (Hilbert-valued learning; known anisotropy). Consider the same setup as
Theorem 5.3.3, except where 0 < p < 1 and V is a Hilbert space. Then the same result holds,
except (5.3.14) and (5.3.15) replaced by

∥f − fΦ̂,Θ∥L2
ϱ(U ;V) ≤ c1 (Eapp,KH + Edisc + Esamp + Eopt) , (5.3.18)

∥f − fΦ̂,Θ∥L∞(U ;V) ≤ c2
(
E∞

app,KH +m1/2 (Edisc + Esamp + Eopt)
)
, (5.3.19)

with Eapp,KB and E∞
app,KB replaced by

Eapp,KH = C · πK ·
(
m

L

)1/2−1/p

E∞
app,KH = C · πK ·

(
m

L

)1−1/p

,

and potentially different values of the constants c0, c1, c2, cj,1, cj,2 and C(b, ε, p).

In Theorem 5.3.4, we can obtain near-optimal rates (see Chapter 6) of the form
(m/L)1/2−1/p, where L is now a polylogarithmic factor of the order O(log(m)) for the
L2

ϱ(U ; V)-norm approximation errors. Theorems 5.3.3 and 5.3.4 are also nonuniform (achieve
the corresponding algebraic rates for a fixed function f) as Theorem 3.3.2 and Theorem
4.3.3. However, note that the last two are theorems in the unknown anisotropy setting.

5.4 Discussion

We now comment on five important aspects of the main results.

The various approximation errors

These errors deserve additional discussion. The term Eapp decays algebraically fast in m/L,
where L is a (poly)logarithmic factor in m. In particular, these take the form

Eapp,UB = C · πK ·
(
m

L

) 1
2 (1−1/p)

, Eapp,KB = C · πK ·
(
m

L

)2−1/p

,

Eapp,UH = C · πK ·
(
m

L

)1/2−1/p

, Eapp,KH = C · πK ·
(
m

L

)1/2−1/p

,
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and

E∞
app,UB = C · πK ·

(
m

L

) 1
2 (1−1/p)

, E∞
app,KB = C · πK ·

(
m

L

)2−1/p

,

E∞
app,UH = C · πK ·

(
m

L

)1−1/p

, E∞
app,KH = C · πK ·

(
m

L

)1−1/p

,

where L is roughly log(m) in the known anisotropy case and log4(m) in the unknown
anisotropy case. This discrepancy arises because of the proof strategy. In the known
anisotropy setting we emulate a polynomial least-squares scheme via a DNN. Conversely,
in the unknown anisotropy setting we emulate a polynomial (weighted) ℓ1-minimization
scheme, with significantly more intricate analysis via compressed sensing techniques.

The curse of dimensionality

In all cases, we overcome the curse of dimensionality in the sample complexity. Note that the
term Eapp,UH is the same as what was shown in Chapter 4 for polynomial approximation via
compressed sensing of Hilbert-valued functions. Further, both the terms Eapp,KH and Eapp,UH

are optimal up to constants and the logarithmic factors (see Chapter 6). By contrast, the
bounds for Banach-valued functions are worse in both cases. Besides not having Parseval’s
identity, this arises as a consequence of just having the duality pair and not a proper inner
product in the proofs, which is a key step in the proofs that lifts the weighted rNSP over R
to the Banach space V (see Lemma 3.6.7). We expect it may be possible to improve these
rates via a different argument.

Architecture

Another key difference between the known and unknown anisotropy cases is the width of the
DNN architecture. Here, we overcome the curse of dimensionality in the DNN architecture
N . For the RePU and tanh activation functions, it is polynomial in m in the former case;
specifically, O(m2) for large m. In the latter case, it behaves like O(m3+log2(m)), i.e., faster
than polynomial, but still subexponential in m. This discrepancy arises from having to
include many more coordinate variables in the unknown anisotropy case to guarantee the
desired approximation error. Conversely, in the known anisotropy case we may restrict only
to those variables that are known to be important. In the ReLU case the depth of the fully-
connected architecture has explicit dependence on the smoothness of f and polylogarithmic-
linear scaling in m.

Monotonicity of b

The unknown anisotropy case also involves the stronger assumption b ∈ ℓpM(N), a condition
that was also encountered in Chapters Chapters 3 and 4. This assumption means that the
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variables are, on average, ordered in terms of importance. In fact, it is impossible in the
unknown anisotropy setting to learn functions with only the assumption b ∈ ℓp(N). This is
a key result we show in Chapter 6. By contrast, in the known anisotropy case we may in
fact assume that b ∈ ℓp(N). Yet we do not have any control over the set Θ that defines the
truncation operator in this case, except for its size. However, if we suppose that b ∈ ℓpM(N)
then we may choose Θ explicitly as in (5.3.17).

The handcrafted architecture

Our main results should be interpreted as a primarily theoretical contribution, i.e., showing
the existence of DNN architectures and training strategies (similar to those used in practice)
for learning such functions from limited datasets that are near-optimal in terms of the
amount of training data m. We remark in passing that in our DNNs only the parameters
in the final layer are trained, which results in a convex optimization problem (see §5.5.3–
5.5.4). The other parameters are handcrafted and designed to (approximately) emulate
suitable orthonormal polynomials. A consequence of this approach is that the ensuing DNN
training strategies are not expected to yield superior performance over the corresponding
(least-squares or compressed sensing-based) polynomial approximation procedures.

This provides some justification for the application of DL to parametric PDEs, where
superior performance over state-of-art techniques, including polynomial-based methods, has
been recently observed [7]. Having said that, our results do also provide credence to various
empirical observations about DL for these applications. First, it has been observed that
ReLU activations often lead to worse practical performance with similar-sized architectures
than smoother activations. In our setting, we require deeper and wider ReLU DNNs to
obtain the same rates. Second, it has been observed that width is more important than
depth in such applications. This broadly agrees with our width and depth bounds (5.2.2).
See also [91] for similar discussion.

However, it is important to stress that there still remains a substantial gap between
theory and practice. Practical DL strategies train all (or most) layers via a nonconvex
optimization problem and typically employ simpler and smaller architectures (see, e.g., the
bounds in (5.2.2)). Yet, they currently lack theoretical guarantees. Further narrowing this
gap is an interesting objective for future work. For a practical implementation of DNNs on
Banach-valued function approximation see Chapter 7.

Near-optimality

In this chapter, we utilize the results from Chapter 6 to assert the near-optimality of the
constructions of our manufactured architecture. However, Chapter 6 only considers the
L2

ϱ(U ; V)-norm. Therefore, we cannot claim that the L∞(U ; V)-norm bounds we obtained
are near–optimal. However, in the Hilbert-valued case we obtain the rate (m/L)1−1/p in the
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L∞(U ; V)-norm approximation error, which is the same as that obtained, for instance, in
Theorems 3.3.2 and Theorem 4.3.3. Proving that these rates are the optimal rates in the
L∞(U ; V)-norm is still an open problem.

5.5 Formulating the training problems and proof strategy

The remainder of this chapter is devoted to set up and formulating the training problems
and proofs of the main results. As mentioned in §5.2, we first formulate learning problems
for Banach-valued functions using orthogonal polynomials, and then use DNNs to emulate
these polynomials. The main theorems are then obtained using techniques from compressed
sensing theory.

Specifically, we proceed as follows. In this section, we reformulate the problem as a
recovery problem for Banach-valued vectors (see §2.5). We then introduce the class of DNNs
considered and formulate separate learning problems in the known and unknown anisotropy
cases. Then in §5.7 we describe how to emulate polynomials using DNNs, and give bounds
for the width and depths of the corresponding architectures. Finally, with the necessary
tools in place, in §5.8 we give the proofs of the main results.

5.5.1 Formulation as a vector recovery problem

Observe that the formulation as a vector follows the same steps as that of §2.5. In the
following we recall some main aspects. Let m ∈ N, y1, . . . ,ym ∈ U be the sample points
and f ∈ L2

ϱ(U ; V) be a continuous function. From (2.5.1), let the normalized measurement
matrix taking values in R and the measurement and error vectors by

A =
(

Ψνj (yi)√
m

)m,N

i,j=1
∈ Rm×N , f = 1√

m
(f(yi) + ni)m

i=1 ∈ Vm and e = 1√
m

(ni)m
i=1 ∈ Vm.

(5.5.1)
We also define the truncated expansion of f based on the index set Λ and its corresponding
vector of coefficients as in (2.5.2). Notice that the matrix A = (ai,j)m,N

i,j=1 immediately
extends to a bounded linear operator as in (2.5.3). With this in hand, from §2.5 we recall
that

AcΛ = 1√
m

(fΛ(yi))m
i=1 = 1√

m
(f(yi))m

i=1 − 1√
m

(f(yi) − fΛ(yi))m
i=1 ,

and therefore

AcΛ + e + ẽ = f , where ẽ = 1√
m

(f(yi) − fΛ(yi))m
i=1 .

Hence, vector cΛ of unknown coefficients is a solution of the previous noisy linear system.
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5.5.2 The class of DNNs N and the approximate measurement matrix

We now precisely define the class of DNNs and the approximate measurement matrix that
emulates A. First, fix Θ ⊂ N, |Θ| = n and let Φν,δ,Θ = Φν,δ ◦ TΘ be a DNN approximation
to the basis function Ψν for ν ∈ Λ, where Φν,δ : Rn → R is a DNN of the form (2.6.1)
and TΘ is as in (5.1.3). The term δ > 0 is a parameter that controls the accuracy of the
approximation Φν,δ,Θ ≈ Ψν . These definitions will be useful later in the proofs. Now let

ΦΛ,δ : Rn → RN , ȳ 7→ (Φν,δ(ȳ))ν∈Λ, ΦΛ,δ,Θ = ΦΛ,δ ◦ TΘ, ∀ȳ = (ȳj)j∈Θ ∈ Rn,

and define the class of DNNs N by

N =
{

Φ : Rn → RK : ΦΘ(ȳ) = Z⊤ΦΛ,δ(ȳ), Z ∈ RN×K , ȳ = (ȳj)j∈Θ ∈ Rn
}
, (5.5.2)

where Z ∈ RN×K is the matrix of trainable parameters. We now also define the approximate
measurement matrix A′ ≈ A by

A′ =
(

Φνj ,δ,Θ(yi)√
m

)m,N

i,j=1
∈ Rm×N . (5.5.3)

5.5.3 Unknown anisotropy recovery

As discussed in §2.4.6, choosing an appropriate index set is a vital step towards obtaining
the desired approximation rates in §5.3. Recall the definition of ΛHCI

n in (2.4.21), which
is isomorphic to the n-dimensional hyperbolic cross index set of order n − 1. Notice from
(2.4.23) that

N := |ΛHCI
n | ≤ en2+log(n)/ log(2), ∀n ∈ N. (5.5.4)

Let w = u ≥ 1 be the so-called intrinsic weights, given by (2.4.17). We now construct the
DNN training problem considered in Theorem 5.3.1. As in §2.5.2, we consider the Banach-
valued, weighted SR-LASSO optimization problem

min
z∈VN

K

G(z), G(z) := λ∥z∥1,u;V + ∥Az − f∥2;V . (5.5.5)

As in (2.5.6) λ > 0 is a tuning parameter and A and f are as in (5.5.1). To obtain a DNN
training problem, we replace A with its approximation A′, defined by (5.5.3), giving the
optimization problem

min
z∈VN

K

G′(z), G′(z) := λ∥z∥1,u;V + ∥A′z − f∥2;V . (5.5.6)

To show that (5.5.6) is equivalent to a DNN training problem we argue as follows. Let
{φi}K

i=1 be the basis of VK and z = (zνj )N
j=1 be an arbitrary element of VN

K . Now, recall
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that N is the class of DNNs defined in (5.5.2). Then, we can associate z with a DNN Φ ∈ N
via the relation

Φ = Z⊤ΦΛ,δ, where Z = (Zj,k)N,K
j,k=1 ∈ RN×K is such that zνj =

K∑
k=1

Zj,kφk, ∀j ∈ [N ].

(5.5.7)
Now observe that

fΦ,Θ(y) =
K∑

k=1
((Φ ◦ TΘ)(y))kφk =

K∑
k=1

(Z⊤ΦΛ,δ,Θ(y))kφk

=
K∑

k=1

N∑
j=1

Zj,kΦνj ,δ,Θ(y)φk =
∑
ν∈Λ

zνΦν,δ,Θ(y).

Hence, if di = f(yi) + ni ∈ V are the noisy evaluations of f , then

∥∥A′z − f
∥∥

2;V =

√√√√√ 1
m

m∑
i=1

∥∥∥∥∥∥
∑
ν∈Λ

zνΦν,δ,Θ(yi) − di

∥∥∥∥∥∥
2

V

=

√√√√ 1
m

m∑
i=1

∥fΦ,Θ(yi) − di∥2
V .

Now let J : N → [0,∞) be the regularization functional defined by

∥z∥1,u;V =
N∑

j=1
uνj ∥zνj ∥V =

N∑
j=1

uνj

∥∥∥∥∥
K∑

k=1
Zj,kφk

∥∥∥∥∥
V

:= J (Φ),

where Φ ∈ N is as in (5.5.7). Clearly J is a norm over the trainable parameters, as claimed.
Using this and the previous relation, we deduce that (5.5.6) is equivalent to the DNN training
problem

min
Φ∈N

√√√√ 1
m

m∑
i=1

∥fΦ,Θ(yi) − di∥2
V + λJ (Φ).

By this, we mean that every minimizer Φ̂ ∈ N of this problem corresponds to a minimizer
ẑ of (5.5.6) via the relation (5.5.7), and vice versa.

5.5.4 Known anisotropy recovery

Recall the discussion in §2.5.3. Analogously to §2.5, we define the normalized measurement
matrix and the approximate normalized measurement matrix by

A =
(

Ψνj (yi)√
m

)m,s

i,j=1
∈ Rm×s, and A′ :=

(
Φνj ,Θ(yi)√

m

)m,s

i,j=1
∈ Rm×s, (5.5.8)

where {ν1, . . . ,νs} is an ordering of S. Likewise, we truncate the expansion of f and its
vector coefficients based on (2.5.2) for the index set S. Defining the class of DNNs N as in
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(5.5.2), except with Λ and N replaced by S and s, respectively, we now see that the training
problem (5.3.13) can be expressed as the Banach-valued minimization problem

min
z∈Vs

K

G′(z), G′(z) :=
∥∥A′z − f

∥∥
2;V , (5.5.9)

where f = 1√
m

(di)m
i=1 ∈ Vm. To be precise, any ẑ = (ẑν)ν∈S that is a minimizer of (5.5.9)

defines a minimizer Φ̂ of (5.3.13) via the relation (5.5.7), except with Λ and N replaced
by S and s, respectively. As before, we also consider (5.5.9) as an approximation to a
minimization problem with matrix A for the polynomial coefficients cS :

min
z∈Vs

K

G(z), G(z) := ∥Az − f∥2;V .

To end this section, it is worth mentioning here that, for ease of notation we denote G and G′

as the objective function for both the known and unknown anisotropy case. Mathematically,
the known anisotropy setting is just a particular case of the unknown anisotropy setting
with λ = 0 and Λ and N replaced by S and s, respectively.

5.6 Matrices satisfying the weighted rNSP over Banach
spaces

We now assert conditions on m under which the measurement matrix (2.5.1) satisfies the
wRIP. For this, we use the following result, which is Lemma 3.7.1 applied to the infinite-
dimensional case only.

Lemma 5.6.1 (wRIP for Chebyshev and Legendre polynomials). Let ϱ be the tensor-
product uniform or Chebyshev measure on U = [−1, 1]N, {Ψν}ν∈F be the corresponding
tensor-product orthonormal Legendre or Chebyshev polynomial basis of L2

ϱ(U), Λ = ΛHCI
n be

as in (2.4.21) for some n ≥ 1 and y1, . . . ,ym be drawn independently and identically from
the measure ϱ. Let c0 be a universal constant, 0 < δ, ϵ < 1 and k ≥ 1, suppose that

m ≥ c0 · δ−2 · k ·
(
log2(k/δ) · log2(en) + log(2/ϵ)

)
, (5.6.1)

then, with probability at least 1 − ϵ, the matrix A defined in (2.5.1) satisfies the wRIP over
R of order (k,u) with constant δk,u, where u are the intrinsic weights (2.4.17).

Recall from Remark 3.7.2 that the previous lemma only considers the case k ≥ 1. The
case k < 1 is trivially satisfied.

The previous result will be used in the case of unknown anisotropy. In the case of known
anisotropy, we require a different argument in order to obtain the better scaling with respect
to m in Theorem 5.3.3. As we see later, this case can be analyzed by asserting conditions
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under which the relevant measurement matrix A defined in (5.5.8) has the rNSP of ‘full’
order k = |S|u, where S is the index set used to construct A.

Lemma 5.6.2 (Weighted rNSP for Chebyshev and Legendre polynomials in the ‘full’ case).
Let ϱ be the tensor-product uniform or Chebyshev measure on U = [−1, 1]N, {Ψν}ν∈F be
the corresponding tensor-product orthonormal Legendre or Chebyshev polynomial basis of
L2

ϱ(U), S ⊂ F and y1, . . . ,ym be drawn independently and identically from the measure ϱ.
Let 0 < δ, ϵ < 1, k = |S|u, where u are the intrinsic weights (2.4.17), and suppose that

m ≥ ((1 − δ) log(1 − δ) + δ)−1 · k · log(k/ϵ). (5.6.2)

Then, with probability at least 1 − ϵ, the matrix A ∈ Rm×s, s = |S|, defined in (5.5.8)
satisfies the weighted rNSP over R of order (k,u) with constants ρ = 0 and γ ≤ (1−δ)−1/2.

Proof. Since k = |S|u is the weighted cardinality of the ‘full’ index set S, the wrNSP is
equivalent to the condition

∥x∥2 ≤ γ∥Ax∥2, ∀x ∈ Rs.

Define the space P = span{Ψν : ν ∈ S} ⊂ L2
ϱ(U). Then by Parseval’s identity, this inequal-

ity is equivalent to
∥p∥L2

ϱ(U) ≤ γ∥p∥disc, ∀p ∈ P,

where ∥p∥disc =
√

1
m

∑m
i=1 |p(yi)|2. Thus, by [12, §5.2] and [12, Thm. 5.7], we have γ ≤

(1 − δ)−1/2, provided

m ≥ ((1 − δ) log(1 − δ) + δ)−1 · κ · log(s/ϵ), (5.6.3)

where s = |S| and κ = κ(P) is defined by (see [12, Eqn. (5.15)])

κ = sup
y∈U

∑
ν∈S

|Ψν(y)|2.

Observe that κ ≤
∑

ν∈S u
2
ν = |S|u = k and s = |S| ≤ |S|u = k, since u ≥ 1. Hence (5.6.3)

is implied by (5.6.2). This gives the result.

5.7 Deep neural network approximation

In this section we detail the second key component of our proofs, which is the approximation
of the orthonormal polynomials Ψν by DNNs.
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5.7.1 Approximate multiplication via DNNs

Our results are based on three different different DNN architectures (tanh, ReLU and RePU)
that emulate the product of n numbers. The first two follow from [91] and [215], respectively.
The third is based on [179] and [215].

Lemma 5.7.1 (Approximate multiplication of n numbers by ReLU and tanh DNNs). Let
0 < δ < 1, n ∈ N and consider constants {Mi}n

i=1 ⊂ Rn
+. Then there exists a ReLU (j = 1)

or a tanh (j = 0) DNN Φj
δ : ∏n

i=1[−Mi,Mi] → R satisfying

sup
|xi|≤Mi

∣∣∣∣∣
n∏

i=1
xi − Φj

δ(x)
∣∣∣∣∣ ≤ δ, where x = (xi)n

i=1, (5.7.1)

for j ∈ {0, 1}. The width and depth are bounded by

width(Φ1
δ) ≤ c1,1 · n,

depth(Φ1
δ) ≤ c1,2

(
1 + log(n)

[
log(nδ−1) + log(M)

])
,

in the ReLU case, where M = ∏n
i Mi and

width(Φ0
δ) ≤ c1,1 · n, depth(Φ0

δ) ≤ c1,2 · log2(n),

in the tanh (j = 0) case and cj,1, cj,2 are universal constants for j ∈ {0, 1}.

Proof. First, in the tanh case, let N ≥ maxi∈[n]{Mi} be such that x ∈ [−N,N ]n. Then the
result in the tanh case is a direct application of [91, Lem. 3.8]. We now focus on the ReLU
case. Let Mi > 0 such that |xi| ≤ Mi for all i ∈ [n]. Now, write the multiplication of these
terms as

n∏
i=1

xi =
(

n∏
i=1

xi/Mi

)
·

n∏
i=1

Mi =
(

n∏
i=1

xi/Mi

)
·M.

Then, using [215, Prop. 2.6], for any δ̃ ≤ δ there exists a ReLU DNN Φ
δ̃,1 such that

∣∣∣∣∣M
(

n∏
i=1

xi

Mi

)
−M · Φ

δ̃,1

(
x1
M1

, . . . ,
xn

Mn

)∣∣∣∣∣ ≤ Mδ̃.

We now set δ̃ = δ/M . Since the composition of affine maps is an affine map, we can define
a ReLU DNN of the same architecture as

Φ̃δ,M (x1, . . . , xn) = M · Φδ/M,1

(
x1
M1

, . . . ,
xn

Mn

)
. (5.7.2)

This implies that ∣∣∣∣∣
n∏

i=1
xi − Φ̃δ,M (x1, . . . , xn)

∣∣∣∣∣ ≤ δ.
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Taking the supremum over |xi| ≤ Mi we obtain (5.7.1). We now bound the width and depth.
From [215, Prop. 2.6] notice that there exists a constants c2 > 0 such that

depth(Φ̃δ,M ) ≤ depth(Φδ/M,1) ≤ c2 (1 + log(n) log(nM/δ)) .

Next, from the construction of the DNN for the product of n numbers as a binary tree
in [235, §3.2], observe that the product of two numbers involves a maximum of 12 nodes
per layer. Thus, for the product of n numbers, the width is bounded by

width(Φ̃δ,M ) ≤ 12
⌈
n

2

⌉
.

This completes the proof.

The following lemma asserts the existence of a RePU DNN to calculate the multiplication
of two numbers. Its proof can be found in [179, Lem. 2.1] (see also [215, Appx. A] and [179,
Thm. 2.5]).

Lemma 5.7.2 (Exact multiplication of two numbers by a RePU DNN). For ℓ = 2, 3, . . .,
there exists a RePU DNN Φ̄ℓ : R2 → R such that

Φ̄ℓ(x1, x2) = x1x2, ∀x1, x2 ∈ R.

The width and depth of this DNN are

width(Φ̄ℓ) = cℓ, depth(Φ̄ℓ) = 1,

where cℓ is a constant depending on ℓ.

We now use similar arguments to those in [215, §2.3], and notice that the previous
lemma implies the existence of RePU DNN for multiplying n different numbers. The next
lemma and its proof are based on [215, Prop. 2.6], which, in turn, employs techniques
from [235, Prop. 3.3]. Basically, the idea here is to construct a DNN Φℓ as a binary tree of
Φ̄ℓ-networks using Lemma 5.7.2. Unlike in the ReLU and tanh cases (see Lemma 5.7.1), the
resulting multiplication is exact and we do not require the assumption |xi| ≤ Mi, i ∈ [n].

Lemma 5.7.3 (Exact multiplication of n numbers by RePU). For ℓ = 2, 3, . . ., there exists
a RePU DNN Φℓ : Rn → R such that

Φℓ(x) =
n∏

i=1
xi, ∀x = (xi)n

i=1 ∈ Rn. (5.7.3)

The width and depth are bounded by

width(Φℓ) ≤ cℓ,1 · n, depth(Φℓ) ≤ c2 log2(n),

131



where cℓ,1 and c2 are positive constants and only cℓ,1 depends on ℓ.

Proof. Let ñ := min{2k : k ∈ N, 2k ≥ n}. For every x = (x1, . . . , xn) ∈ Rn we define the
vector x̃ = (x1, . . . , xn, xn+1, . . . , xñ) ∈ Rñ, where xn+1 = . . . = xñ = 1. Observe that the
map x 7→ x̃ is affine and, hence, can be implemented by a suitable choice of weights and
biases in the first layer. Arguing as in [215, Prop. 2.6], let l ∈ N, consider vectors in R2l and
define the mapping

Rl(z1, . . . , z2l) :=
(
Φ̄ℓ(z1, z2), . . . , Φ̄ℓ(z2l−1, z2l)

)
∈ Rl,

where Φ̄ℓ is as in Lemma 5.7.2. Now, for k ∈ N we consider the composition

Rk := R1 ◦R2 ◦R22 ◦ . . . ◦R2k−1 . (5.7.4)

Keeping this in mind we now define Φℓ : Rn → R by

Φℓ(x1, . . . , xn) := Rlog2(ñ)(x1, . . . , xñ).

Observe that in this case there are log2(ñ) terms in (5.7.4), then Rlog2(ñ) and Φℓ are well
defined. We immediately deduce (5.7.3). We now estimate the depth and width of Φℓ. First,
note that ñ ≤ 2n. Then, following [215, Prop. 2.6] and using Lemma 5.7.2, there exists a
positive constant c2 such that

depth(Φℓ) ≤ c2 log2(n).

Moreover, from Lemma 5.7.2 and [179, Lem. 2.5], the construction of the DNN implies the
existence of a constant cℓ > 0 depending on ℓ such that

width(Φℓ) ≤ cℓ · n.

Thus the bound for the width holds.

5.7.2 Emulation of orthogonal polynomials via DNNs

Having shown that DNNs can emulate the multiplication of n numbers, we are now able to
emulate orthonormal polynomials. We do this by appealing to the fundamental theorem of
algebra, which allows us to represent any such polynomial as a product of its roots. This
approach is based on [87], which considered only ReLU DNNs and Legendre polynomials.
This approach differs from other constructions (see, e.g., [215, Prop. 2.13]) which first em-
ulate univariate orthogonal polynomials and then use the previously derived multiplication
networks.
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Theorem 5.7.4. Let Λ ⊂ F be a finite multi-index set, m(Λ) = maxν∈Λ ∥ν∥1 and Θ ⊂ N,
|Θ| = n, satisfy ⋃

ν∈Λ
supp(ν) ⊆ Θ.

Let {Ψν}ν∈F ⊂ L2
ϱ(U) be the orthonormal Legendre or Chebyshev polynomial basis of L2

ϱ(U).
Then for every 0 < δ < 1 there exists a ReLU (j = 1), RePU (j = ℓ) or tanh (j = 0) DNN
Φj

Λ,δ : Rn → R|Λ|, such that, if Φj
Λ,δ(z) = (Φj

ν,δ(z))ν∈Λ, z = (zj)j∈Θ ∈ Rn and TΘ is as in
(5.1.3), then

∥Ψν − Φj
ν,δ ◦ TΘ∥L∞(U) ≤ δ, ∀ν ∈ Λ, j ∈ {0, 1, ℓ}.

In the case of the ReLU (j = 1) activation function, the width and depth of this DNN satisfy

width(Φ1
ν) ≤ c1,1 · |Λ| ·m(Λ),

depth(Φ1
ν) ≤ c1,2 ·

(
1 + log(m(Λ)) ·

[
log(m(Λ)δ−1) +m(Λ) + n

])
.

In the case of the RePU (j = ℓ) or tanh (j = 0) activation function, the width and depth of
this DNN satisfy

width(Φj
Λ,δ) ≤ cj,1 · |Λ| ·m(Λ), depth(Φj

Λ,δ) ≤ cj,2 · log2(m(Λ)).

Here cj,1, cj,2 are universal constants in the ReLU, RePU and tanh cases, with only cℓ,1

depending on ℓ = 2, 3, . . ..

Proof. We divide the proof into two cases.

Case 1: Legendre polynomials. The univariate Legendre polynomials {Ψν}ν∈N0 are given by
(see, e.g., [12, §2.2.2])

Pν(y) = 1
2νν!

dν

dyν
(y2 − 1)ν and Ψν(y) =

√
2ν + 1Pν(y), ∀ν ∈ N0. (5.7.5)

Hence, their multivariate counterparts can be written as

Ψν(y) =
∏

i∈supp(ν)

√
2νi + 1Pνi(yi), ∀y ∈ U , ν ∈ F , (5.7.6)

where supp(ν) is as in (2.4.7). Using the fundamental theorem of algebra we may write

Ψν(y) =
∏

i∈supp(ν)

νi∏
j=1

(√
2νi + 1dνi

)1/νi (yi − r
(νi)
j ), ∀y ∈ U , ν ∈ F . (5.7.7)

Here, {r(νi)
j }νi

j=1 are the νi roots of the polynomial Pνi and dνi is a scaling factor. Using
(5.7.5), we see that the leading coefficient of Pν is dν = 2−ν (2ν)!

(ν!)2 . Then, by Stirling’s formula
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for factorials
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n, this coefficient satisfies

d0 = 1 and dν ≤ e2ν

π
√

2ν
, 1 ≤ ν.

Next, for ν ∈ Λ, we define the affine map Aν : Rn → R∥ν∥1 , Aν(y) = (ai,j(y))i∈supp(ν),j∈[νi],
by

ai,j(y) =
(√

2νi + 1dνi

)1/νi (yi − r
(νi)
j ), i ∈ supp(ν), j ∈ [νi], ∀y ∈ U . (5.7.8)

With this in mind, given ν ∈ Λ, this allows us to define the product of the ∥ν∥1 terms (5.7.7)
that comprise Ψν . It is useful, however, to make the number of factors in this multiplication
constant for all ν ∈ Λ. To this end, we now redefine the affine map Aν : Rn → Rm(Λ) by
padding the output vector with m(Λ) − ∥ν∥1 terms equal to one.

Our aim now is to apply Lemma 5.7.1 to show that there exists a DNN that approximates
the multiplication of the factors in Aν(y). To do so, we need to identify bounds Mk for each
of the terms in the output vector Aν(y), with k ∈ [m(Λ)]. First, notice that the roots of
the Legendre polynomials are in [−1, 1] for (5.7.7). Then each factor in (5.7.8) is bounded
by

M̃i := 2(
√

2νi + 1)1/νi

( e2νi

π
√

2νi

)1/νi

, i ∈ supp(ν), j ∈ [νi].

Clearly, the other terms in Aν(y) are bounded by Mk = 1. Therefore, since |supp(ν)| ≤
|Θ| = n we get

m(Λ)∏
k=1

Mk =

 ∏
i∈supp(ν)

νi∏
j=1

M̃i

 ·

m(Λ)−∥ν∥1∏
k=1

1


=

∏
i∈supp(ν)

νi∏
j=1

2(
√

2νi + 1)1/νi

( e2νi

π
√

2νi

)1/νi

≤ 22∥ν∥1

( e
π

)n ∏
i∈supp(ν)

√
2νi + 1

2νi

≤ 22m(Λ)
( e
π

)n (3
2

)n/2
=: M.

This defines the multiplication of m(Λ) factors. Using Lemma 5.7.1 (or Lemma 5.7.3 in the
case of RePU, in which case the previous calculation is unnecessary), for any 0 < δ < 1 there
exists a ReLU (j = 1), a RePU (j = ℓ) or a tanh (j = 0) DNN Φj

δ,M,ν that approximates
the multiplication of the m(Λ) factors defining Aν . Thus, we define the DNN Φj

ν : Rn → R
by

Φj
ν = Φj

δ,M,ν ◦ Aν , j ∈ {0, 1, ℓ}.

134



By construction, we have

∥Ψν − Φj
ν ◦ TΘ∥L∞

ϱ (U) ≤ δ, j ∈ {0, 1, ℓ}, ∀ν ∈ Λ.

Applying the bound for M , and some basic algebra we obtain the respective bounds for the
width and depth of each Φj

ν . Specifically,

width(Φ1
ν) ≤ c1,1 ·m(Λ),

depth(Φ1
ν) ≤ c1,2 ·

(
1 + log(m(Λ)) ·

[
log(m(Λ)δ−1) +m(Λ) + n

])
,

in the ReLU case, and

width(Φj
ν) ≤ cj,1 ·m(Λ), depth(Φj

ν) ≤ cj,2 · log2(m(Λ))

otherwise. Here cj,1, cj,2 are universal constants in the ReLU, RePU, tanh cases, with
only cℓ,1 depending on ℓ. Observe that we have found DNNs Φj

ν of the same depth that
approximate each polynomial Ψν for ν ∈ Λ. We consider now the DNN formed by vertically
stacking these DNNs, i.e., Φj

Λ,δ = (Φj
ν)ν∈Λ. It follows immediately that the depth and width

of this DNN satisfy

width(Φ1
ν) ≤ c1,1 · |Λ| ·m(Λ),

depth(Φ1
ν) ≤ c1,2 ·

(
1 + log(m(Λ)) ·

[
log(m(Λ)δ−1) +m(Λ) + n

])
,

in the ReLU case, and

width(Φj
ν) ≤ cj,1 · |Λ| ·m(Λ), depth(Φj

ν) ≤ cj,2 · log2(m(Λ)).

in the RePU and tanh cases. This completes the proof for the Legendre polynomials.

Case 2: Chebyshev polynomials. The orthonormal Chebyshev polynomials are defined by

Ψν(y) = 2∥ν∥0/2 ∏
i∈supp(ν)

cos(νiarccos(yi)), ∀y ∈ U , ν ∈ F . (5.7.9)

We can write each factor as a product over the roots of the polynomials cos(νiarccos(yi)),
to give

Ψν(y) =
∏

i∈supp(ν)

νi∏
j=1

(
21/2dνi

)1/νi (yi − r
(νi)
j ), ∀y ∈ U , ν ∈ F . (5.7.10)
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Define the affine mapping Aν : Rn → Rm(Λ) with entries

ai,j(y) =
(
21/2dνi

)1/νi (yi − r
(νi)
j ), i ∈ supp(ν), j ∈ [νi],

where dν = 2ν−1, and the remaining m(Λ) − ∥ν∥1 entries being equal to one. As in the
previous case, the roots r(νi)

j ∈ [−1, 1]. Hence we define M as

M =
m(Λ)∏
i=1

Mi =
∏

i∈supp(ν)

νi∏
j=1

(
21/2dνi

)1/νi 2 = 22∥ν∥1−∥ν∥0/2 ≤ 22m(Λ).

Then, using same arguments as those for the Legendre case, by Lemma 5.7.3 and Lemma
5.7.1 for any 0 < δ < 1 there exists a ReLU (j = 1), a RePU (j = ℓ) or a tanh (j = 0)
DNN Φj

δ,M that approximates the multiplication of m(Λ) factors defined in (5.7.10) with
this specific choice of M . Thus, we define the DNNs Φj

ν : Rn → R by

Φj
ν = Φj

δ,M ◦ Aν , j ∈ {0, 1, ℓ},

for which the following bound holds∥∥∥Ψν − Φj
ν ◦ TΘ

∥∥∥
L∞

ϱ (U)
≤ δ, j ∈ {0, 1, ℓ}, ∀ν ∈ Λ.

We now obtain the result using the bound for M and the same arguments as in the Legendre
case.

5.8 Proofs of main results: Theorems 5.3.1–5.3.4

We are now ready to prove Theorems 5.3.1-5.3.4. The general strategy comes from the
proof of the main results in §3.8 (see also [7, §B.4]) in the Hilbert-valued setting. We
first show that the polynomial matrix A ∈ Rm×N has the wrNSP. Then, we show that
its approximation via DNNs A′ ∈ Rm×N has the wrNSP by using a perturbation result
from [7, Lem. 12] (see also [19, Lem. 8.5]). This implies that the operator A′ ∈ B(VN ,Vm)
has the wrNSP by Lemma 5.6.1 (also Lem.3.7.1). Next, after splitting the error into various
terms, we use Lemma 3.6.3 in combination with the results in §2.4.5 to derive the desired
error bounds. Finally, we use the results of §5.7 to estimate the depths and widths of the
DNN architectures.

Recall that we use the notation a ≲ b to mean that there exists a constant c > 0
independent of a and b such that a ≤ cb.

5.8.1 Theorem 5.3.1: unknown anisotropy, Banach-valued case

We commence with the unknown anisotropy case.
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Proof of Theorem 5.3.1. The proof is divided in several steps.

Step 1: Problem setup. Let Θ, |Θ| = n be as in (5.3.4), Λ = ΛHCI
n be as in (2.4.21), N = |Λ|

and δ > 0 be a constant whose value will be chosen later in Step 4. Let ΦΛ,δ be as in
Theorem 5.7.4 and consider the class of DNNs (5.5.2). Then, as shown in §5.5.1–5.5.3,
we can reformulate the DNN training problem (5.3.5) as the Banach-valued, weighted SR-
LASSO problem (5.5.6).

Step 2: Establishing the weighted rNSP. Let A′ ∈ Rm×N be given by (5.5.3). We now
prove that the induced operator A′ ∈ B(VN ,Vm) has the rNSP over V of order (k,u) with
constants γ′ > 0 and 0 < ρ′ < 1 to be specified. We do this first by establishing the wrNSP
for A, and then by using a perturbation result [7, Lem. 12] to establish it for A′.

First, define the weighted sparsity parameter

k :=
√

m

c0L
, (5.8.1)

where L = L(m, ϵ) is as in (5.3.3) and c0 ≥ 1 is a universal constant. Observe that m ≥
m/L ≥ m/(c0L) = k2, since m ≥ 3 by assumption and therefore L(m, ϵ) ≥ 1 for all
0 < ϵ < 1. Our aim now is to apply Lemma 3.7.1 to show that A has the wRIP over R of
order (2k,u). Let c̄0 be the constant considered therein (related, in turn, to the constants
in [51, Thm. 2.14]). Note that we now use the notation c̄0 to avoid confusion with the
constants c0 in Theorem 5.3.1. Set

δ̄ = 1
(4

√
2
√
k + 1)

.

Consider (5.6.1). Since k ≤
√
m and m ≥ 3, we have log2(k/δ̄) ≲ log2(m) and since

n = ⌈m/(c0L)⌉ ≤ 2m we have log(en) ≲ log(m). Hence, using the fact that log(m) ≳ 1
once more, we deduce that

log2(k/δ̄) · log2(en) + log(4/ϵ) ≲ log4(m) + log(ϵ−1) = L(m, ϵ).

We now assume that
k ≥ 1. (5.8.2)

In particular, this implies that m/(c0L) ≥ 1. We discuss the case k < 1 at the end of the
proof. Using this, we get

c̄0 · δ̄−2 · 2k ·
(
log2(k/δ̄) · log2(en) + log(4/ϵ)

)
≤ c0 · k2 · L(m, ϵ) = m,

for a suitably-large choice of the universal constant c0. It follows that condition (5.6.1),
with k and ϵ replaced by 2k and ϵ/2, respectively, holds. Therefore, with probability at
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least 1 − ϵ/2, the matrix A has the wRIP over R of order (2k,u) with constant

δ2k,u = δ̄ = 1
4
√

2
√
k + 1

. (5.8.3)

We now seek to apply Lemma 3.6.7. Notice that, with this value of δ2k,u, we have

2
√

2 δ2k,u

1 − δ2k,u
= 1

2
√
k
,

√
1 + δ2k,u

1 − δ2k,u
≤ 3

2 .

Here, in the second step, we used the fact that k ≥ 1, by assumption. Thus, with probability
at least 1 − ϵ/2, A ∈ Rm×N has the weighted rNSP over R of order (k,u) with constants

ρ = 1
2
√
k
, γ = 3

2 . (5.8.4)

Next, we turn our attention to the matrix A′. It is a short argument (see Step 3 of the proof
of [7, Thm. 5]) based on the definition of Φν,δ,Θ to show that

∥A − A′∥2 ≤
√
Nδ. (5.8.5)

Now suppose that δ satisfies √
Nδ ≤ δ̃ := 2

3(3 + 4k) . (5.8.6)

Later in Step 4 we will ensure that this condition is fulfilled. Then, using a straightforward
extension of [19, Lem. 8.5] from the unweighted to the weighted case we deduce that, with
probability at least 1 − ϵ/2, A′ has the weighted rNSP over R of order (k,u) with constants

ρ+ γδ̃
√
k

1 − γδ̃
= 3

4
√
k

:= ρ̃,
γ

1 − γδ̃
≤ 7

4 := γ̃.

Here, in the second step we used the fact that k ≥ 1 once more. Finally, we now apply
Lemma 3.6.7. First note that s∗(k) ≤ k since u ≥ 1. Hence, with probability at least
1− ϵ/2, the corresponding operator A′ ∈ B(VN ,Vm) has the weighted rNSP over V of order
(k,u) with constants

√
kρ̃ = 3

4 := ρ′,
√
kγ̃ ≤ 2

√
k := γ′. (5.8.7)

Step 3: Estimating the error. First, we recall that PK : V → VK is a bounded linear operator
and πK = max{∥PK∥V→VK

, 1}. Let f ∈ H(b, ε) and consider its expansion (2.4.2). As in
(2.5.2), let fΛ = ∑

ν∈Λ cνΨν be the truncated expansion of f . For convenience, we now
recall some notation from §3.7.3

EΛ,2(f) = ∥f − fΛ∥L2
ϱ(U ;V), EΛ,∞(f) = ∥f − fΛ∥L∞(U ;V), Edisc = ∥f − PK(f)∥L∞(U ;V).

(5.8.8)
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We now derive an error bound for f −fΦ̂,Θ, where Φ̂ is an approximate minimizer of (5.3.5)
and fΦ̂,Θ is as in (5.1.7). Write Φ̂ = Ĉ⊤ΦΛ,δ for Ĉ ∈ RN×K and let ĉ = (ĉν)ν∈Λ be the
corresponding approximate minimizer of (5.5.6) defined via the relation (5.5.7). Set

fΨ̂ =
∑
ν∈Λ

ĉνΨν .

Then

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)

≤ ∥f − PK(f)∥L2
ϱ(U ;V) + ∥PK(f) − PK(fΛ)∥L2

ϱ(U ;V) + ∥PK(fΛ) − fΨ̂∥
L2

ϱ(U ;V) + ∥fΨ̂ − fΦ̂,Θ∥
L2

ϱ(U ;V)

=: A1 +A2 +A3 +A4.

In addition, for the L∞(U ; V)-norm error, we have

∥f − fΦ̂,Θ∥
L∞(U ;V)

≤ ∥f − PK(f)∥L∞(U ;V) + ∥PK(f) − PK(fΛ)∥L∞(U ;V) + ∥PK(fΛ) − fΨ̂∥
L∞(U ;V) + ∥fΨ̂ − fΦ̂,Θ∥

L∞(U ;V)

=: B1 +B2 +B3 +B4.

We now bound the terms A1, A2, A3, A4, B1, B2, B3 and B4 in several substeps.

Step 3(i): Bounding A1 and B1. First, we have A1 ≤ B1 = Edisc

Step 3(ii): Bounding A2 and B2. Using the linearity of PK and the fact that it is a bounded
operator, we have

A2 ≤ πK∥f − fΛ∥L2
ϱ(U ;V) = πKEΛ,2(f). (5.8.9)

and
B2 ≤ πK∥f − fΛ∥L∞(U ;V) = πKEΛ,∞(f). (5.8.10)

Step 3(iii): Bounding A3 and B3. Let u be the intrinsic weights in (2.4.17). Recall that
V is a Banach space. Then, we bound A3 by B3 in order to obtain a bound in terms of
the coefficients in the ℓ1u(Λ; V)-norm. This step is not necessary in the Hilbert-valued case
when Parseval’s identity is available, and we can bound A3 by the coefficients cΛ,K − ĉ in
the ℓ2(Λ; V)-norm. This issue causes an extra m-dependent factors in the final error bound.
Therefore, we have

A3 =
∥∥PK(fΛ) − fΨ̂

∥∥
L2

ϱ(U ;V) ≤ B3 =
∥∥PK(fΛ) − fΨ̂

∥∥
L∞(U ;V) ≤

∥∥cΛ,K − ĉ
∥∥

1,u;V

where cΛ,K = (PK(cν))ν∈Λ.
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We now apply Lemma 3.6.3 to the problem (5.5.6). In Step 2 we showed that, with
probability at least 1 − ϵ/2, A′ ∈ B(VN

K ,Vm
K ) has the weighted rNSP of order (k,u) with

constants ρ′ and γ′ given by (5.8.7) and k given by (5.8.1). Hence, this lemma gives

∥∥cΛ,K − ĉ
∥∥

1,u;V ≤ C1

(
2σk(cΛ,K)1,u;V + G′(ĉ) − G′(cΛ,K)

λ

)
+
(
C1
λ

+ C2
√
k

)∥∥A′cΛ,K − f
∥∥

2;V ,

with probability at least 1−ϵ/2, where C1 = (1 + ρ′)/(1 − ρ′), C2 = 2γ′/(1 − ρ′) and G′ is as
in (5.5.6). Notice that this holds provided λ ≤ C ′

1/(C ′
2
√
k), where C ′

1 = (1 + ρ′)2/(1 − ρ′),
C ′

2 = (3 + ρ′)γ′/(1 − ρ′). Using the values for γ′ and ρ′ we get

1
6
√
k

=
( 1
γ′

) 1
3 <

1
γ′

[
1 − 2

(3 + ρ′)

]
= 1
γ′

[(1 + ρ′)
(3 + ρ′)

]
≤ 1
γ′

[
(1 + ρ′)2

(3 + ρ′)

]
,

which implies that

λ := 1
6
√
m/L

= 1
6√

c0k
≤ 1√

k
· 1

6
√
k

≤ 1√
k

· 1
γ′

[
(1 + ρ′)2

(3 + ρ′)

]
= C ′

1
C ′

2
√
k
, (5.8.11)

as required. Here we used the fact that c0 ≥ 1. Now, since ĉ is an approximate minimizer
and cΛ,K ∈ VN

K is feasible for (5.5.6), we have G′(ĉ) − G′(cΛ,K) ≤ Eopt, where Eopt is as
in (5.3.1). Also, due to the values of ρ′ and γ′ given by (5.8.7), we notice that C1, C

′
1 ≲ 1

and C2, C
′
2 ≲

√
k. Substituting this into the previous bound and noticing that 1/λ ≲ k, we

obtain ∥∥cΛ,K − ĉ
∥∥

1,u;V ≲ σk(cΛ,K)1,u;V + kEopt + k
∥∥A′cΛ,K − f

∥∥
2;V ,

with probability at least 1−ϵ/2. Consider the first term. Since PK satisfies (2.2.14), (2.4.10)
implies that

σk(cΛ,K)1,u;V = inf

 ∑
ν∈Λ\S

uν∥PK(cν)∥V : S ⊆ Λ, |S|u ≤ k

 ≤ πKσk(cΛ)1,u;V .

Hence

∥∥cΛ,K − ĉ
∥∥

1,u;V ≲ πKσk(cΛ)1,u;V + k
∥∥A′cΛ,K − f

∥∥
2;V + kEopt, (5.8.12)

with probability at least 1 − ϵ/2. We now estimate the second term. Let i = 1, . . . ,m and
write

√
m
(
A′cΛ,K − f

)
i =

∑
ν∈Λ

PK(cν)Φν,δ,n(yi) − f(yi) − ni

=
∑
ν∈Λ

PK(cν) (Φν,δ,n(yi) − Ψν(yi)) +
∑
ν∈Λ

PK(cν)Ψν(yi) − f(yi) − ni.
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Then, using Theorem 5.7.4, the triangle inequality and the fact that PK is a bounded linear
operator, we get

∥
√
m(A′cΛ,K − f)i∥V ≤

∑
ν∈Λ

∥PK(cν)∥Vδ +

∥∥∥∥∥∥
∑
ν∈Λ

PK(cν)Ψν(yi) − f(yi)

∥∥∥∥∥∥
V

+ ∥ni∥V

≤ δ
∑
ν∈Λ

∥PK(cν)∥V +

∥∥∥∥∥∥
∑
ν ̸∈Λ

PK(cν)Ψν(yi)

∥∥∥∥∥∥
V

+ ∥f(yi) − PK(f)(yi)∥V + ∥ni∥V

≤ πK

√
Nδ∥cΛ∥2;V + πK

∥∥∥∥∥∥
∑
ν ̸∈Λ

cνΨν(yi)

∥∥∥∥∥∥
V

+ ∥f − PK(f)∥L∞
ϱ (U ;V) + ∥ni∥V

= πK

(√
Nδ∥cΛ∥2;V + ∥f(yi) − fΛ(yi)∥V

)
+ Edisc + ∥ni∥V ,

where Edisc is as in (5.3.8). Notice that, by (2.4.2), the Cauchy-Schwarz inequality and the
orthonormality of {Ψν}ν∈F , we have

∥cν∥V =
∥∥∥∥∫

U
f(y)Ψν(y) dϱ(y)

∥∥∥∥
V

≤
∫

U
∥f(y)∥V |Ψν(y)| dϱ(y) ≤ ∥f∥L2

ϱ(U ;V)·1 ≤ 1, ∀ν ∈ Λ.

In the last inequality we used the fact that ∥f∥L2
ϱ(U ;V) ≤ ∥f∥L∞(U ;V) ≤ 1. Hence

∥A′cΛ,K − f∥2;V ≤ πKNδ + πK

√√√√ 1
m

m∑
i=1

∥f(yi) − fΛ(yi)∥2
V + Edisc + Esamp,

where Esamp is as in (5.3.8). Now, since m = c0 · L · k2 ≥ 2 · k2 · log(4/ϵ) for a sufficiently
large choice of the universal constant c0, the arguments in [12, Lem. 7.11] imply that√√√√ 1

m

m∑
i=1

∥f(yi) − fΛ(yi)∥2
V ≤

√
2
(
EΛ,∞(f)

k
+ EΛ,2(f)

)
, (5.8.13)

with probability at least 1 − ϵ/2, where EΛ,2(f) and EΛ,∞(f) are as in (5.8.8). We deduce
that ∥∥A′cΛ,K − f

∥∥
2;V ≲ πK

(
Nδ + EΛ,∞(f)

k
+ EΛ,2(f)

)
+ Edisc + Esamp,

with probability at least 1 − ϵ/2. Substituting this into (5.8.12) and applying the union
bound now yields

A3 ≤ B3 ≲ πK

√
k

(
σk(cΛ)1,u;V√

k
+

√
kNδ + EΛ,∞(f)√

k
+

√
kEΛ,2(f)

)
+ k (Eopt + Esamp + Edisc) ,

(5.8.14)
with probability at least 1 − ϵ.
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Step 3(iv): Bounding A4 and B4. Recalling that fΦ̂,Θ = ∑
ν∈Λ ĉνΦν,δ,Θ and that u ≥ 1, we

first write

∥fΨ̂ − fΦ̂,Θ∥
L2

ϱ(U ;V)
≤ ∥fΨ̂ − fΦ̂,Θ∥

L∞(U ;V)
≤
∑
ν∈Λ

∥Ψν − Φν,δ,Θ∥L∞(U)uν∥ĉν∥V ≤ δ∥ĉ∥1,u;V .

Recall that ĉ is an approximate minimizer of (5.5.6). Hence

λ∥ĉ∥1,u;V ≤ λ∥0∥1,u;V + ∥A′0 − f∥2;V + Eopt = ∥f∥2;V + Eopt,

where 0 ∈ VN
K is the zero vector. Using the definitions of f and λ in (2.5.1) and (5.8.11),

respectively, we see that

∥ĉ∥1,u;V ≲ k
(
∥e∥2;V + ∥f∥L∞

ϱ (U ;V) + Eopt
)

≤ k (Esamp + 1 + Eopt) .

Note that δk ≲ 1 due to (5.8.6). Since k ≥ 1, we get

A4 ≤ B4 ≲ kδ +
√
k (Esamp + Eopt) . (5.8.15)

Step 3(v): Final bound. Combining the estimates in Step 3(i), (5.8.9),(5.8.10), (5.8.14) and
(5.8.15) and using the facts that πK ≥ 1 and k ≥ 1 we deduce that

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≲ πK

√
k

(
σk(cΛ)1,u;V√

k
+

√
kδN + EΛ,∞(f)√

k
+

√
kEΛ,2(f)

)
+ k (Esamp + Eopt + Edisc) ,

(5.8.16)

which results in the same bound for the L∞-norm error

∥f − fΦ̂,Θ∥
L∞(U ;V)

≲ πK

√
k

(
σk(cΛ)1,u;V√

k
+

√
kδN + EΛ,∞(f)√

k
+

√
kEΛ,2(f)

)
+ k (Esamp + Eopt + Edisc) .

(5.8.17)

The fact that the L2
ϱ(U ; V) and the L∞(U ; V)-norm error are bounded by the same terms in

this case it is not surprising as we bound most of the important terms by their corresponding
L∞(U ; V) norm. This concludes Step 3.

Step 4: Establishing the algebraic rates. Here, we bound the first four terms in (5.8.17) (and
consequently in (5.8.16)). Recall the definition of k in (5.8.1). Then part (ii) of Theorem
2.4.13 with q = 1 > p gives

σk(cΛ)1,u;V√
k

≤ C(b, ε, p) · k1/2−1/p = C(b, ε, p) ·
(
m

c0L

) 1
2 (1/2−1/p)

,
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where C(b, ε, p) > 0 depends on b, ϵ and p only. Next, define the following term:

EΛ(f) = EΛ,∞(f)√
k

+
√
kEΛ,2(f).

As noted, the set Λ = ΛHCI
n contains the union of all anchored sets of size at most n

(see [12, Prop. 2.18]). We now use Corollary 2.4.15 with s = n and q = 1. This implies that
there exists an anchored set S ⊂ F of size |S| ≤ n such that

EΛ,∞(f) = ∥f − fΛ∥L∞
ϱ (U ;V) ≤ ∥c − cΛ∥1,u;V ≤ ∥c − cS∥1,u;V ≤ C(b, ε, p) · n1−1/p. (5.8.18)

Similarly, using Corollary 2.4.15 with q = 1 we get

EΛ,2(f) = ∥f − fΛ∥L2
ϱ(U ;V) ≤ ∥c − cΛ∥1,u;V ≤ ∥c − cS∥1,u;V ≤ C(b, ε, p) · n1−1/p. (5.8.19)

Therefore

EΛ(f) ≤ C(b, ε, p) ·
(
k−1/2 · n1−1/p +

√
k · n1−1/p

)
≤ C(b, ε, p) · k1/2 · n1−1/p. (5.8.20)

Since p ≤ 1/2, the exponent 1 − 1/p is negative. Using the definitions of n and k in (5.3.4)
and (5.8.1), respectively, we see that n ≥ k2. Hence

EΛ(f) ≲ C(b, ε, p) · k5/2−2/p ≤ C(b, ε, p) · k1/2−1/p = C(b, ε, p) ·
(
m

c0L

) 1
2 (1/2−1/p)

.

Here, in the penultimate step we use the fact that k ≥ 1 by assumption and p ≤ 1/2.
Returning to (5.8.17) , we deduce that

∥f − fΦ̂,Θ∥
L∞(U ;V)

≤ πK · C(b, ε, p) ·
(
m

c0L

) 1
2 (1−1/p)

+ k (Edisc + Esamp + Eopt) , (5.8.21)

provided δ satisfies kδN ≤ k1−1/p. Hence it suffices to to choose

δ ≤ N−1k− 1
p .

Therefore, recalling (5.8.6), we now set

δ = min

 2
3(3 + 4k)

√
N
,
k

− 1
p

N

 . (5.8.22)
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In this way, using the definition of Eapp,UB in (5.3.8), (5.8.21) and the bound k ≲
√
m we

get

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≲ Eapp,UB +m1/2 · (Edisc + Esamp + Eopt),

∥f − fΦ̂,Θ∥
L∞(U ;V)

≲ E∞
app,UB +m1/2 · (Edisc + Esamp + Eopt),

as required.

Step 5: Bounding the width and depth of the DNN architecture. We have now established
the main error bounds (5.3.6) and 5.3.7. In this penultimate step, we derive the bounds for
the width and depth of the class of DNNs N . To do this, we follow similar arguments to
those in Step 6 of the proof of [7, Thm. 5]. Using (5.8.22) and the facts that k ≥ 1 and
p < 1, we first see that

δ ≳ N−1k− 1
p ⇒ log(δ−1) ≲ log(N) + 1

p
log(k). (5.8.23)

From the definition of ΛHCI
n in (2.4.21) notice that m(Λ) = maxν∈Λ ∥ν∥1 ≤ n. We now apply

Theorem 5.7.4 with the ReLU activation function and the choice Θ = [n] as in (5.3.4). Notice
that this choice is valid, since every ν ∈ Λ = ΛHCI

n satisfies supp(ν) ⊆ [n]. We deduce that
the width and depth of the DNN N = N 1 satisfies

width(N 1) ≲ Nn,

depth(N 1) ≲
(
1 + log(n)

[
log(n) + log(N) + p−1 log(k) + n

])
,

Noticing that, 3 ≤ m, k2 ≤ n ≤ m and N ≲ n2+log2(n), log(N) ≲ log2(n) (these follow
from (2.4.23)) now gives the result in the ReLU case. On the other hand, for the RePU or
hyperbolic tangent activation function, the width and depth of this DNN satisfy

width(N j) ≤ cj,1 · n3+log2(n), depth(N j) ≤ cj,2 · log2(n),

where cj,1, cj,2 are universal constants for the hyperbolic tangent activation function (j = 0)
and cj,1, cj,2 depend on ℓ for the RePU activation function (j = ℓ). The bounds in these
cases now follow from the fact that n ≤ m.

Step 6: The case k < 1. So far, we have assumed that k ≥ 1. We now address the case
k < 1. In this case, since p < 1 we have

k =
√

m

c0L
< 1 ⇒ 1 <

(
m

c0L

) 1
2 (1−1/p)

. (5.8.24)
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Next, we skip Step 2 of the above argument, and go directly to Step 3. Note that

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≤ ∥f − fΦ̂,Θ∥

L∞(U ;V)
≤ B1 +B2 +B3 +B4.

We now bound the various terms.

Step 6(i): Bounding B1. Once more we have B1 ≤ Edisc.

Step 6(ii): Bounding B2. Using (5.8.10) and (5.8.18) with n = 1 we get

B2 ≤ πKEΛ,∞(f) ≤ πKC(b, ε, p).

Step 6(iii): Bounding B3. Once more, using (5.8.18) with n = 1 and triangle inequality we
obtain

∥PK(fΛ) − fΨ̂∥
L∞(U ;V) ≤ ∥PK(fΛ) − PK(f) + PK(f) − fΨ̂∥

L∞(U ;V)

≤ πK · C(b, ε, p) + πK∥f∥L∞(U ;V)+∥ĉ∥1,u;V .

Since ĉ is an approximate minimizer, following the same analysis as Step 3(iv) gives

∥ĉ∥1,u;V ≲ k(Esamp + 1 + Eopt).

Therefore B3 ≲ k(Esamp + 1 + Eopt) + πK .

Step 6(iv): Bounding B4. This step is almost identical and gives B4 ≲ kδ(Esamp + 1 +Eopt).

Step 6(v): Final bound. Combining the previous estimates and using the fact that πK ≥ 1,
δk < k < 1 (the first inequality follows from (5.8.22)), we deduce that

∥f − fΦ̂,Θ∥
L∞(U ;V)

≲ πK(C(b, ε, p) + 1) + k(Esamp + Eopt) + Edisc.

The condition (5.8.24) and the fact that m ≥ 3 give that m1/2 > 1 > k. Using (5.8.24) once
more, we deduce that

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≤ ∥f − fΦ̂,Θ∥

L∞(U ;V)
≲ πK ·

(
m

c0L

) 1
2 (1−1/p)

+m1/2(Esamp +Eopt +Edisc).

The error bounds (5.3.6)–(5.3.7) in the case k < 1 now follows with C = C(b, ε, p) + 1,
depending on b, ε and p only.

Step 6(v): Bounding the width and depth of the DNN architecture. It remains to bound the
width and depth of the DNN architecture in the case k < 1. Since m/(c0L) < 1, by (5.3.4)
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we see that n = 1 in this case. Recall also that δ is defined by (5.8.22). Hence δ ≳ 1/N in
this case, since k < 1 and N ≥ 1. We deduce that log(δ−1) ≲ log(N). We now argue as in
Step 5, using this bound and the fact that n = 1 < m. Thus, the bounds still hold in this
case.

5.8.2 Theorem 5.3.2: unknown anisotropy, Hilbert-valued case

Proof of Theoorem 5.3.2. The proof is similar to that of Theorem 5.3.1, except that it uses
Parseval’s identity and Lemma 3.6.6 instead of Lemma 3.6.7.

Step 1: Problem setup. This step is identical.

Step 2: Establishing the weighted rNSP. In this case, we define

k := m

c0L
, (5.8.25)

where L = L(m, ϵ) is as in (5.3.3) and c0 ≥ 1 is a universal constant. Observe that
m ≥ m/L ≥ m/(c0L) = k. Let c̄0 be the constant considered in Lemma 3.7.1. Set
δ̄ =

(
4
√

2 + 1
)−1

. Observe that in this case we do not need the assumption k > 1 as
in the previous case. Indeed, since k ≤ m, m ≥ 3 and n ≤ 2m we deduce that

c̄0 · δ̄−2 · 2k ·
(
log2(k/δ̄) · log2(en) + log(4/ϵ)

)
≤ c0 · k · L(m, ϵ) = m,

for a suitably-large choice of the universal constant c0. By similar arguments to those of
the previous theorem, considering Lemma 3.7.1 and Remark 3.7.2, we deduce that, with
probability at least 1−ϵ/2, the matrix A has the wRIP over R of order (2k,u) with constant

δ2k,u = δ̄ = 1
4
√

2 + 1
. (5.8.26)

Hence, by Lemma 3.6.5 it has the weighted rNSP over R of order (k,u) with constants

ρ = 1
2 , γ = 3

2 . (5.8.27)

Note that (5.8.5) holds in this case, since this property pertains to the matrices A and A′

and not the associated linear operators. We now assume that δ satisfies

√
Nδ ≤ δ̃ := 2

3(3 + 4
√
k)
. (5.8.28)
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By the same extension of [19, Lem. 8.5] and from the values of ρ and γ in (5.8.27) the
matrix A′ has the weighted rNSP of order (k,u) over R with constants

ρ+ γδ̃
√
k

1 − γδ̃
= 3

4 := ρ̃,
γ

1 − γδ̃
≤ 9

4 := γ̃, (5.8.29)

with probability at least 1 − ϵ/2. Then, applying Lemma 3.6.6 the corresponding operator
A′ ∈ B(VN ,Vm) satiesfies the weighted rNSP over V of order (k,u) with constants ρ′ < 1
and γ′ > 0, where ρ′ = ρ̃ and γ′ = γ̃, with probability 1 − ϵ/2.

Step 3: Estimating the error. The setup, Step 3(i) and Step 3(ii) are identical. For Step 3(iii),
we can use Parseval’s identity to bound A3 in terms of the ℓ2(Λ; V)-norm of the coefficients
cΛ,K − ĉ. That is,

A3 =
∥∥PK(fΛ) − fΨ̂

∥∥
L2

ϱ(U ;V) =
∥∥cΛ,K − ĉ

∥∥
2;V ,

where cΛ,K = (PK(cν))ν∈Λ. We now apply Lemma 3.6.3 to the problem (5.5.6). This lemma
gives

∥∥cΛ,K − ĉ
∥∥

2;V ≤ C ′
1√
k

(
2σk(cΛ,K)1,u;V + G′(ĉ) − G′(cΛ,K)

λ

)
+
(
C ′

1√
kλ

+ C ′
2

)∥∥A′cΛ,K − f
∥∥

2;V ,

with probability at least 1 − ϵ/2, where C ′
1 = (1 + ρ′)2/(1 − ρ′), C ′

2 = (3 + ρ′)γ′/(1 − ρ′)
and G′ is as in (5.5.6). The values of ρ′ and γ′ in (5.8.29) give

λ := 1
6
√
m/L

= 1
6
√
c0k

≤ 1
6
√
k
<

(1 + ρ′)2

(3 + ρ′)γ′
1√
k
.

Now, since m = c0 · L · k ≥ 2 · k · log(4/ϵ) for a sufficiently large choice of the universal
constant c0, once more the arguments in [12, Lem. 7.11] imply that√√√√ 1

m

m∑
i=1

∥f(yi) − fΛ(yi)∥2
V ≤

√
2
(
EΛ,∞(f)√

k
+ EΛ,2(f)

)
, (5.8.30)

with probability at least 1−ϵ/2. Notice that (5.8.13) is slightly different to (5.8.30). Following
similar arguments to Step 3(iii), we deduce that A3 satisfies

A3 ≲ πK

(
σk(cΛ)1,u;V√

k
+Nδ + EΛ,∞(f)√

k
+ EΛ,2(f)

)
+ Eopt + Esamp + Edisc. (5.8.31)

For B3, notice once again that applying Lemma 3.6.3 to the problem (5.5.6) gives

B3 ≤
∥∥cΛ,K − ĉ

∥∥
1,u;V ≤ C1

(
2σk(cΛ,K)1,u;V + G′(ĉ) − G′(cΛ,K)

λ

)
+
(
C1
λ

+ C2
√
k

)∥∥A′cΛ,K − f
∥∥

2;V ,
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with probability at least 1−ϵ/2, where C1 = (1 + ρ′)/(1 − ρ′), C2 = 2γ′/(1 − ρ′), and where
ρ′ and γ′ are as in (5.8.29), and G′ is as in (5.5.6). Therefore, we deduce that

B3 ≲ πK

√
k

(
σk(cΛ)1,u;V√

k
+Nδ + EΛ,∞(f)√

k
+ EΛ,2(f)

)
+

√
k(Eopt+Esamp+Edisc) (5.8.32)

with probability at least 1 − ϵ. Step 3(iv) is essentially the same except that we use the
bounds 1/λ ≲

√
k,

√
kδ ≲ 1 and δ

√
k ≤ δ

√
N ≤ δN in this case to get the bound

A4 ≤ B4 ≲
√
kδ(Esamp + 1 + Eopt) ≲ Nδ + Esamp + Eopt.

Hence, combining the estimates and using the fact that k ≤ n ≤ N once more, we deduce
that

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≲ πK

(
σk(cΛ)1,u;V√

k
+Nδ + EΛ,∞(f)√

k
+ EΛ,2(f)

)
+ Esamp + Eopt + Edisc.

(5.8.33)

and

∥f − fΦ̂,Θ∥
L∞(U ;V)

≲ πK

√
k

(
σk(cΛ)1,u;V√

k
+Nδ + EΛ,∞(f)√

k
+ EΛ,2(f)

)
+

√
k(Esamp + Eopt + Edisc).

(5.8.34)

This concludes Step 3.

Step 4: Establishing the algebraic rates. By the same arguments, except using (5.8.25), we
get

σk(cΛ)1,u;V√
k

≤ C(b, ε, p) · k1/2−1/p = C(b, ε, p) ·
(
m

c0L

)(1/2−1/p)
.

Similarly as in Step 4, there exists an anchored set S ⊂ F of size |S| ≤ n such that

EΛ,∞(f) = ∥f − fΛ∥L∞
ϱ (U ;V) ≤ ∥c − cΛ∥1,u;V ≤ ∥c − cS∥1,u;V ≤ C(b, ε, p) · n1−1/p.

Now, using Corollary 2.4.15 with q = 2 we get

EΛ,2(f) = ∥f − fΛ∥L2
ϱ(U ;V) ≤ ∥c − cΛ∥2;V ≤ C(b, ε, p) · n1/2−1/p.

Hence

EΛ(f) = EΛ,∞(f)√
k

+EΛ,2(f) ≲ C(b, ε, p)·
(
k−1/2n1−1/p + n1/2−1/p

)
≲ C(b, ε, p)·

(
m

c0L

)1/2−1/p

.
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Here, in the final step, we used the definitions of k and n and the fact that p < 1. Therefore,
using (5.8.33) and (5.8.34) we conclude that

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≲ C(b, ε, p) · πK ·

(
m

c0L

)(1/2−1/p)
+ Esamp + Eopt + Edisc,

∥f − fΦ̂,Θ∥
L∞(U ;V)

≲ C(b, ε, p) · πK ·
(
m

c0L

)(1−1/p)
+m1/2(Esamp + Eopt + Edisc),

for potentially different values of C(b, ε, p) provided δ ≤ N−1k1/2−1/p. Hence, in view of
(5.8.28), we now set δ = min

{
2

3(3+4
√

k)
√

N
, k1/2−1/p

N

}
.

Step 5: Bounding the width and depth of the DNN architecture. This step is essentially
the same. Since bound (5.8.23) remains valid, the only possible difference is in the various
universal constants.

Note that in this proof we do not need the assumption k < 1. Hence, Step 6 is not necessary.

5.8.3 Theorem 5.3.3: known anisotropy, Banach-valued case

Proof of Theorem 5.3.3. We proceed in similar steps to those of the previous two theorems.

Step 1: Problem setup. Let S ⊂ F be a finite index set and write s = |S|. We will choose a
suitable S in Step 4 below. Now let Θ ⊂ N be any set for which

⋃
ν∈S

supp(ν) ⊆ Θ. (5.8.35)

Notice that the left-hand side is a finite set, since S is finite and any multi-index ν ∈ F has
only finitely many nonzero terms. Hence Θ can be chosen as a finite set. We make a precise
choice of Θ in Step 4 once we have defined S. Next, let ΦS,δ be as in Theorem 5.7.4, where
δ > 0 will also be chosen in Step 4, and consider the class of DNNs (5.5.2) with S in place
of Λ and s in place of N .

Step 2: Establishing the weighted rNSP. The main difference in this case is the use of Lemma
5.6.2 to assert the weighted rNSP instead of Lemma 5.6.1. Let A,A′ ∈ Rm×s be given by
(5.5.8) and set

k̄ := m

11L ≤ m

2 , (5.8.36)

where L = L(m, ϵ) ≥ 1 is as in (5.3.11). We now make the following assumption:

k̄ ≥ k := |S|u. (5.8.37)
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Later, when we construct the set S in Step 4 we will verify that this holds. We now apply
Lemma 5.6.2 with δ = 2/5. Notice that

m = 11 · k̄ · L(m, ϵ) ≥ ((1 − δ) log(1 − δ) + δ)−1 · k · log(2k/ϵ).

Hence, with probability at least 1 − ϵ/2, the matrix A has the weighted rNSP over R of
order (k,u) with constants ρ = 0 and γ =

√
5/3. Or equivalently (recall the proof of Lemma

5.6.2), the bound
∥x∥2 ≤

√
5/3∥Ax∥2, ∀x ∈ Rs, (5.8.38)

holds with probability at least 1 − ϵ/2. Now, much as before, we have

∥A − A′∥2 ≤
√
sδ. (5.8.39)

Suppose that
√
sδ ≤

√
3

2
√

5
. (5.8.40)

Then, if (5.8.38) holds, we have

∥x∥2 ≤
√

5/3
∥∥A′x

∥∥
2 + ∥x∥2/2, ∀x ∈ Rs,

which implies that
∥x∥2 ≤ 2

√
5/3

∥∥A′x
∥∥

2, ∀x ∈ Rs.

We deduce that, with probability at least 1 − ϵ/2, A′ has the weighted rNSP over R of
order (k,u) with constants ρ = 0 and γ = 2

√
5/3. Finally, applying Lemma 3.6.7 (and

recalling that u ≥ 1), we deduce that the corresponding operator A′ ∈ B(Vs,Vm) satisfies
the weighted rNSP over V of order (k,u) with constants ρ′ = 0 and γ′ = 2

√
k
√

5/3, with
the same probability.

Step 3: Estimating the error. Let f ∈ H(b, ε). This step is again similar to Step 3 of the
proof of Theorem 5.3.1. We first write

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≤ A1 +A2 +A3 +A4,

∥f − fΦ̂,Θ∥
L∞(U ;V)

≤ B1 +B2 +B3 +B4,

with A1, A2, A3, A4, B1, B2, B3 and B4, defined in the same way, except with Λ replaced
by S throughout.

Step 3(i): Bounding A1 and B1. This step is identical and gives A1 ≤ B2 ≤ Edisc.
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Step 3(ii): Bounding A2 and B2. This step is identical and gives A2 ≤ πKES,2(f) and
B2 ≤ πKES,∞(f) .

Step 3(iii): Bounding A3 and B3. Let u be the intrinsic weights in (2.4.17), using the
definition of k in (5.8.37) and the Cauchy-Schwarz inequality we get

A3 ≤ B3 ≤ ∥cS,K − ĉ∥1,u;V =
∑
ν∈S

uν∥cν,K − ĉν∥V ≤
(∑

ν∈S

u2
ν

)1/2(∑
ν∈S

∥cν,K − ĉν∥2
V

)1/2

and therefore
B3 ≤

√
k∥cS,K − ĉ∥2;V .

We now use the weighted rNSP for A′ to deduce that

B3 ≲ k∥A′(cS,K − ĉ)∥2;V ≤ k
(
∥A′cS,K − f∥2;V + ∥A′ĉ − f∥2;V

)
.

Now ĉ is an approximate minimizer of (5.5.9) and cS,K ∈ Vs
K is feasible. Therefore

B3 ≲ k
(
2∥A′cS,K − f∥2;V + Eopt

)
.

Via the same arguments as before, we now bound

∥A′cS,K − f∥2;V ≤ πKsδ + πK

√√√√ 1
m

m∑
i=1

∥f(yi) − fS(yi)∥2
V + Edisc + Esamp.

Now, it follows from (5.8.36) and (5.8.37) that m = 11k̄L ≥ 11k(log(m) + log(1/ϵ)) ≥
2k log(4/ϵ). Hence, a minor modification of [12, Lemma 7.11] gives√

1
m

∑
i

∥f(yi) − fS(yi)∥2
V ≤

√
2
(
ES,∞(f)√

k
+ ES,2(f)

)

with probability at least 1 − ϵ/2. Combining this with the previous bound, we deduce that

A3 ≤ B3 ≲ πK

√
k
(√

ksδ + ES,∞(f) +
√
kES,2(f)

)
+ k (Eopt + Edisc + Esamp) , (5.8.41)

with probability at least 1 − ϵ.

Step 3(iv). Bounding A4 and B4. As in the corresponding step in the previous proofs, we
first write

A4 ≤ B4 ≤ ∥fΨ̂ − fΦ̂,Θ∥
L∞(U ;V)

≤
∑
ν∈S

∥Ψν − Φν,δ,Θ∥L∞(U)∥ĉν∥V ≤ δ
√
s∥ĉ∥2;V .
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Since A′ has the weighted rNSP and ĉ is an approximate minimizer, we get

∥ĉ∥2;V ≲
√
k
∥∥A′ĉ

∥∥
2;V

≤
√
k(
∥∥A′ĉ − f

∥∥
2;V + ∥f∥2;V)

≤
√
k(
∥∥A′0 − f

∥∥
2;V + ∥f∥2;V + Eopt)

≤
√
k(Esamp + 1 + Eopt).

Note that δ
√
s ≲ 1 due to (5.8.40). Hence we obtain

B4 ≲
√
s
√
kδ +

√
k(Esamp + Eopt).

Step 3(v). Final bound. Combining the estimates for A1, A2, A3, A4, B1, B2, B3 and B4

from the previous substeps and noticing that πK ≥ 1 by definition and k = |S|u ≥ 1 (since
u ≥ 1), we obtain

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≲ πK

(
ksδ +

√
kES,∞(f) + kES,2(f)

)
+ k (Eopt + Edisc + Esamp) ,

(5.8.42)
and the same bound for the L∞-norm error

∥f − fΦ̂,Θ∥
L∞(U ;V)

≲ πK

(
ksδ +

√
kES,∞(f) + kES,2(f)

)
+ k (Eopt + Edisc + Esamp) .

(5.8.43)

Step 4: Establishing the algebraic rates. Suppose that b ∈ ℓp(N) (we address the case b ∈
ℓpM(N) in Step 6 below). We now make a suitable choice of S so as to obtain the desired
algebraic rates of convergence.

We first apply part (ii) of Theorem 2.4.13 with k̄ in place of k. Let q = 1. Then this
guarantees the existence of a set S1 with |S1|u ≤ k̄ such that

∥c − cS1∥2;V ≤ ∥c − cS1∥1,u;V ≤ C(b, ε, p) · k̄1−1/p. (5.8.44)

We now define

S = S1 ∩ Λ, where Λ = ΛHC
⌈k̄⌉,∞ =

ν = (νk)∞
k=1 ∈ F :

∏
k:νk ̸=0

(νk + 1) ≤ ⌈k̄⌉

 . (5.8.45)

Observe that |S|u ≤ |S1|u ≤ k̄. Therefore (5.8.37) holds for this choice of S. Note also that
S is independent of f ∈ H(b, ε) and depends only on b, ε (see Remark 2.4.16).

Having defined S, we now bound

ES,2(f) ≤ ES,∞(f) = ∥f − fS∥L∞
ϱ (U ;V) ≤ ∥c − cS∥1,u;V ≤ C(b, ε, p) · k̄1−1/p + ∥c − cΛ∥1,u;V .
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Now, the set Λ is precisely the union of all lower sets (see Definition 2.4.9) of size at most
⌈k̄⌉ (see, e.g., [12, Prop. 2.5]). Hence, by part (i) of Theorem 2.4.13,

∥c − cΛ∥1,u;V ≤ C(b, ε, p) · k̄1−1/p.

Since k ≤ k̄, we deduce that

√
kES,∞(f) + kES,2(f) ≤ C(b, ε, p) · k̄2−1/p.

Substituting this bound into (5.8.42) and (5.8.43) gives

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≲ C(b, ε, p) · πK

(
ksδ + k̄2−1/p

)
+ k (Eopt + Edisc + Esamp)

and

∥f − fΦ̂,Θ∥
L∞(U ;V)

≲ C(b, ε, p) · πK

(
ksδ + k̄2−1/p

)
+ k (Eopt + Edisc + Esamp) .

We now set
δ = min

{ √
3

2
√

5
√
k̄
, k̄

− 1
p

}
. (5.8.46)

Notice that (5.8.40) holds for this choice of δ, since s = |S| ≤ |S|u = k ≤ k̄. Substituting
this into the previous expression and using the definition (5.8.36) of k̄ and (5.8.37) now
gives

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≲ Eapp,KB +m (Eopt + Edisc + Esamp) , (5.8.47)

and
∥f − fΦ̂,Θ∥

L∞(U ;V)
≲ E∞

app,KB +m (Eopt + Edisc + Esamp) , (5.8.48)

as required.

Step 5: Bounding the width and depth of the DNN architecture. We first consider Θ. Recall
that Θ must satisfy (5.8.35). By construction, any ν ∈ S is also an element of Λ, and
therefore 2∥ν∥0 ≤ ⌈k̄⌉. Hence |supp(ν)| = ∥ν∥0 ≤ log2(⌈k̄⌉). Since |S| = s, we deduce that∣∣∣∣∣ ⋃

ν∈S

supp(ν)
∣∣∣∣∣ ≤ s log2(⌈k̄⌉).

Observe that s = |S| ≤ |S|u ≤ k̄, since u ≥ 1. Using the definition (5.8.36) of k̄, the fact
that m ≥ 3 and the definition (5.3.11) of L, we see that

s log2(⌈k̄⌉) ≤ m

11L
log(m)
log(2) ≤ m

11 log(2) ≤ n,
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where n is as in (5.3.12). Thus, we now choose Θ as any set of size n that satisfies (5.8.35).
We now estimate the width and depth of the DNN architecture. First, observe that

log(δ−1) ≲ p−1 log(k̄) ≤ p−1 log(m).

In addition, due to the choice (5.8.45), we have

m(S) = max
ν∈S

∥ν∥1 ≤ max
ν∈Λ

∥ν∥1 ≤ ⌈k̄⌉ ≤ m. (5.8.49)

Hence, applying Theorem 5.7.4 with the set S in place of Λ and Θ as chosen above, we
deduce that the width and depth in the case of the ReLU activation function satisfy

width(N 1) ≲ m2, depth(N 1) ≲
(
1 + log(m)

(
p−1 log(m) +m

))
.

Here, we also used the facts that s = |S| ≤ k ≤ k̄ ≤ m and n ≲ m. Now, for either the
RePU or tanh activation function, we have

width(N j) ≤ cj,1 ·m2, depth(N j) ≤ cj,2 · log2(m),

where cj,1, cj,2 are universal constants for the tanh activation function (j = 0) and cj,1, cj,2

depend on ℓ for the RePU activation function (j = ℓ). This gives the desired bounds.

Step 6: Modifying the proof in the case b ∈ ℓpM(N). In this case, we replace the definition of
S in (5.8.45) with

S = S1 ∩ Λ, where Λ = ΛHCI
⌈k̄⌉ ,

and ΛHCI
⌈k̄⌉ is as in (2.4.21). Recall from the discussion in §2.5.2 that this set contains all

anchored sets of size at most ⌈k̄⌉. Thus, we may argue as in Step 4, but using Corollary
2.4.15 instead of Theorem 2.4.13 to bound the error c − cΛ. Doing so, and using exactly the
same value for δ yields an identical bounds (5.8.47) and (5.8.48).

We now modify Step 5 accordingly. By definition of ΛHCI
⌈k̄⌉ , any multi-index ν ∈ S must

satisfy supp(ν) ⊆ {1, . . . , ⌈k̄⌉}. It follows from (5.8.36) that ⌈k̄⌉ ≤ n, where n is as in
(5.3.17). Hence we may take Θ as in (5.3.17). Finally, we note that (5.8.49) also holds for
this choice of S. Thus the bounds for the widths and depths of the various DNN classes
hold in this case as well.

5.8.4 Theorem 5.3.4: known anisotropy, Hilbert-valued case

Proof of Theoorem 5.3.4. The proof involves several modifications to that of the previous
theorem. Step 1 is identical. In Step 2, instead of Lemma 3.6.7 we use Lemma 3.6.6 and
Lemma 3.6.5 to deduce that the operator A′ ∈ B(Vs,Vm) has the weighted rNSP over V of
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order (k,u) with k-independent constants ρ′ = 0 and γ′ = 2
√

5/3, with probability at least
1 − ϵ/2.

Step 3: Estimating the error. Let f ∈ H(b, ε). Consider the same setup as before, with

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≤ A1 +A2 +A3 +A4,

∥f − fΦ̂,Θ∥
L∞(U ;V)

≤ B1 +B2 +B3 +B4,

and A1, A2, A3, A4 and B1, B2, B3 and B4 defined in the same way. Step 3(i) and Step
3(ii) are identical.

Step 3(iii): Bounding A3 and B3. As in the corresponding step in the proof of Theorem
5.3.2, using Parseval’s identity we first write

A3 = ∥cS,K − ĉ∥2;V .

Following the same arguments as before, noticing that γ′ ≲ 1, we deduce that

A3 ≲ πK

(√
sδ + ES,∞(f)√

k
+ ES,2(f)

)
+ Eopt + Edisc + Esamp.

with probability at least 1 − ϵ. By using the same arguments as in the previous proof,
noticing that γ′ ≲ 1, we only see one additional factor

√
k bounding B3, so we obtain

B3 ≲ πK

√
k

(√
sδ + ES,∞(f)√

k
+ ES,2(f)

)
+

√
k(Eopt + Edisc + Esamp),

with probability at least 1 − ϵ.

Step 3(iv). Bounding A4 and B4. Using the same arguments as in the corresponding step
in the previous proofs, noticing once more that γ′ ≲ 1, we obtain

A4 ≤ B4 ≲
√
sδ + Esamp + Eopt. (5.8.50)

Step 3(v). Final bound. Combining the estimates for A1, A2, A3, A4, B1, B2, B3 and B4

from the previous substeps we obtain

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≲ πK

(√
sδ + ES,∞(f)√

k
+ ES,2(f)

)
+ Eopt + Edisc + Esamp

and

∥f − fΦ̂,Θ∥
L∞(U ;V)

≲ πK

√
k

(√
sδ + ES,∞(f)√

k
+ ES,2(f)

)
+

√
k(Eopt + Edisc + Esamp).
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Step 4: Establishing the algebraic rates. Suppose that b ∈ ℓp(N). We now apply part (ii) of
Theorem 2.4.13 with k̄/2 in place of k. Let q = 1. Then this guarantees the existence of a
set S1 with |S1|u ≤ k̄/2 such that

∥c − cS1∥1,u;V ≤ C(b, ε, p) · k̄1−1/p.

Similarly, letting q = 2, we obtain a set S2 with |S2|u ≤ k̄/2 such that

∥c − cS2∥2;V ≤ C(b, ε, p) · k̄1/2−1/p.

Instead of (5.8.45), we now define

S = (S1 ∪ S2) ∩ Λ, where Λ = ΛHC
⌈k̄⌉,∞ =

ν = (νk)∞
k=1 ∈ F :

∏
k:νk ̸=0

(νk + 1) ≤ ⌈k̄⌉

 .
(5.8.51)

Observe that |S|u ≤ |S1|u + |S2|u ≤ k̄. Therefore (5.8.37) holds for this choice of S. Once
more S is independent of f ∈ H(b, ε) and depends only on b, ε.

Having defined S, we now bound

ES,∞(f) = ∥f − fS∥L∞
ϱ (U ;V) ≤ ∥c − cS∥1,u;V ≤ C(b, ε, p) · k̄1−1/p + ∥c − cΛ∥1,u;V

and by Parseval’s identity

ES,2(f) = ∥f − fS∥L2
ϱ(U ;V) = ∥c − cS∥2;V ≤ C(b, ε, p) · k̄1/2−1/p + ∥c − cΛ∥2;V .

Following similar arguments as before, by part (i) of Theorem 2.4.13, we have

∥c − cΛ∥2;V ≤ C(b, ε, p) · k̄1/2−1/p and ∥c − cΛ∥1,u;V ≤ C(b, ε, p) · k̄1−1/p. (5.8.52)

Since k ≤ k̄, we deduce that

ES,∞(f)√
k

+ ES,2(f) ≤ C(b, ε, p) · k̄1/2−1/p.

Substituting this bound into (5.8.42) and (5.8.43) gives

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≲ πK

(√
sδ + k̄1/2−1/p

)
+ Eopt + Edisc + Esamp

and
∥f − fΦ̂,Θ∥

L∞(U ;V)
≲ πK

√
k
(√

sδ + k̄1/2−1/p
)

+
√
k(Eopt + Edisc + Esamp).
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Arguing in the same way as Step 4, and making a similar choice as in (5.8.46) for δ, we see
that

∥f − fΦ̂,Θ∥
L2

ϱ(U ;V)
≲ Eapp,KH + Eopt + Edisc + Esamp,

and
∥f − fΦ̂,Θ∥

L∞(U ;V)
≲ E∞

app,KH +m1/2(Eopt + Edisc + Esamp),

as required.
Step 5 is identical. For Step 6, we replace the definition of S in (5.8.51) with

S = (S1 ∪ S2) ∩ Λ, where Λ = ΛHCI
⌈k̄⌉ , (5.8.53)

and ΛHCI
⌈k̄⌉ is as in (2.4.21). Finally, we note that (5.8.49) also holds for this choice of S. Thus

the bounds for the widths and depths of the various DNNs hold in this case as well.

5.9 Conclusions

The main results in this chapter demonstrate the existence of sample-efficient training
procedures for approximating infinite-dimensional, holomorphic functions taking values in
Hilbert or Banach spaces using DNNs. They account for all main sources of error in the
problem through the approximation error Eapp, the physical discretization error Edisc, the
sampling error Esamp and the optimization error Eopt. Note that the second error Edisc is
given in terms of the linear operator PK(f), where this operator is only used to provide a
bound for Edisc and it is not used in the training procedure.

From Hilbert-valued to the Banach-valued case

In the L2
ϱ(U ; V)-norm considering the Hilbert-valued case, our results are optimal up to

constants and (poly)logarithmic factors. Specifically, the rate m1/2−1/p is the best achievable
for the class of infinite-dimensional functions considered, regardless of sampling strategy or
learning procedure.

Keeping in mind our four theorems we can answer Question 5 of §1.6 in the affirmative.

Answer to Question 5

It is possible to learn infinite-dimensional Hilbert-valued or Banach-valued approxi-
mations to functions from a limited dataset using DNNs with a complete theoreti-
cal understanding of the sample complexity and algebraic approximation rates. More-
over, these approximation error rates overcome the curse of dimensionality and, in the
Hilbert-valued case, are optimal up to constatnts and (poly)logarithmic factors in the
L2

ϱ(U ; V)-norm.
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In addition, we answer Question 9 of §1.6 for the setting in this chapter.

Answer to Question 9

Banach-valued case

For the unknown anisotropy, the terms Esamp, Eopt and Edisc enter the error multiplied
by a factor of m1/2 in the the L2

ϱ(U ; V) and L∞(U ; V)-norms. Conversely, for the known
anisotropy, these terms enter the error multiplied by a factor of m in the the L2

ϱ(U ; V)
and L∞(U ; V)-norms.

Hilbert-valued case

For the unknown anisotropy, the terms Esamp, Eopt and Edisc enter the error linearly in
the the L2

ϱ(U ; V)-norm and are multiplied by a factor of m1/2 in the L∞(U ; V)-norm.
For the known anisotropy, these terms enter the error linearly in the the L2

ϱ(U ; V)-norm
and are multiplied by a factor of m1/2 in the L∞(U ; V)-norm.

5.10 Future works

There are several interesting directions for future research

• First, whether or not the rates of decay of the approximation error can be improved in
the Banach-valued case is an open problem. We conjecture that they can, and optimal
rates can be shown for Banach-valued function approximation with DNNs. However,
this will require a different approach and is the subject of a future work.

It is worth noting, however, that better rates can be shown for certain spaces VK . In
particular, following a different proof strategy [19, §13.2.1], one could use the basis
{φi}K

i=1 to assert a wRIP-type bound of the form

αK(1 − δ)∥v∥2;V ≤ ∥Av∥2;V ≤ βK(1 + δ)∥v∥2;V

for all s-sparse vectors v ∈ VN
K , where αK and βK depend the space VK . How-

ever, this dependence leads to (typically undesirable) convergence rates of the type
(ϖKm)1/2−1/p, where ϖK depends on βK/αK . The construction and implementation
of suitable discretizations – i.e., those for which βK/αK ≲ 1 – is nontrivial and go be-
yond the scope of this work (see, e.g., [263] and references therein for more information
on this topic).

• As mentioned several times above, while our results in the L2
ϱ(U ; V)-norm rate when

V is a Hilbert space are optimal (up to the polylogarithmic factor L), it is currently
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unknown whether the rate (m/L)1−1/p is optimal for the L∞
ϱ (U ; V)-norm. Indeed,

Chapter 6 only considers optimal approximation rates in the L2
ϱ(U ; V)-norm and it is

unclear if it can be extended to the L∞
ϱ (U ; V)-norm.

• As described in [42], existing DL approaches for parametric DEs are often not robust
when the mesh (e.g., a finite difference or FE mesh) used to simulate the training
data is refined, since the DNN architecture depends on the mesh size. In our work,
the DNN architecture depends on the space VK . This could correspond to the mesh
used to generate the data, leading to a non-mesh invariant approach. But, as in [42],
VK could also be constructed in a different manner, e.g., via PCA in the case of Hilbert
spaces, leading to a mesh-invariant scheme. There are various open problems in this
direction; for example, how to compute a reduced dimension space VK when V is a
Banach space, or how to perform adaptive mesh refinement (see, e.g., [106,107]).

• We have not strived to optimize the width and depths of the corresponding DNNs.
In the RePU and tanh cases, the depth grows logarithmically in m, which is rea-
sonable in practice. However, the width bounds are O

(
m2) in the known anisotropy

case and O
(
m3+log2(m)

)
in the unknown case. The latter, in particular, grows super-

algebraically in m. In the known anisotropy case, it may be possible to reduce this
quadratic scaling by finding a more efficient way to emulate polynomials using DNNs.
However, the primary reason for the superalgebraic growth in the unknown case stems
not from the specific emulation procedure, but from the need to emulate all polyno-
mials in the large index set (2.4.21): recall the cardinality bound (2.4.23). Finding a
way to avoid forming all polynomials in this index set would be useful not just for
improving the width bounds in these practical existence theorems. It would also be
extremely helpful for the underlying compressed sensing-based polynomial approxi-
mation schemes, as these schemes suffer from high computational cost for precisely
this reason. See Chapter 4.
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Chapter 6

Optimal learning of holomorphic
functions

The purpose of this chapter is to provide theoretical approximation guarantees for the
class of functions described in §2.3.1, demonstrating that the algebraic rates obtained in
Chapters 3–5 are close to the best possible rates for approximating infinite-dimensional,
Banach-valued holomorphic functions from limited samples. We begin in §6.1 by introducing
key preliminary concepts, the setup, and new definitions. In §6.2, we outline our main
contributions, and in §6.3, we present the main results. We discuss important aspects of these
results in §6.4. In §6.5, we introduce additional concepts and notations for the proofs, which
we then provide in §6.6. Finally, we draw some conclusions in §6.7, answer Question 8 of §1.6,
and discuss future work in §6.8. This chapter also relies on two appendices (Appendices B
and C) that present several technical results needed for the main arguments in this chapter.

The content of this chapter is primarily derived from [18].

6.1 Preliminaries

In Chapters 3–5 we presented a series of convergence rates of the form
O((m/polylog(m))1/2−1/p) for the approximation of Hilbert-valued, (b, ε)-holomorphic
functions in infinite dimensions. Specifically, these rates are achieved for the unknown
anisotropy case in Chapters 3–5 and for the known anisotropy case in Chapter 5. The
approximation of such functions from finitely many samples is of particular interest,
and motivated by their applications in processes that can be represented by a function
f : y ∈ U 7→ f(y) ∈ V arising as a solution of a (system of) parametric DEs (see
Chapter 1). Consequently, it is crucial for this thesis to establish whether the algebraic
decay rates in §2.4.3 represent the optimal approximation rates, with respect to the number
of samples m, that the non-adaptive (random) sampling and recovery strategies developed
in Chapters 3-5 achieve.

Before stating the problem formally in §6.1.5, we require some setup and definitions.
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6.1.1 Setup

In this chapter we consider a Banach space (V, ∥ ·∥V). As in §2.2, we consider a nonnegative
Borel probability measure ϱ(1) on the interval [−1, 1]. We then define ϱ as a tensor product
of measures ϱ(1), and we denote this by

ϱ = ϱ(1) × ϱ(1) × · · · .

The existence of such measure on [−1, 1]N is guaranteed by the Kolmogorov extension
theorem (see, e.g. [252, §2.4]). A typical example we consider in this chapter is case where
ϱ(1) is the uniform probability measure, i.e., the tensor product of the univariate measure
dρ(y) = 1

2 dy as in (2.2.1). Note that in Chapters 3–5 we focus on the uniform or Chebyshev
measure only.

Recall that a function f : [−1, 1]N → V is (b, ε)-holomorphic §2.3 if it is holomorphic
in the region R(b, ε) defined in (2.3.2). In addition, recall the definition of the space of
holomorphic functions with L∞-norm at most one H(b, ε) defined in (2.3.3). In this chapter,
for simplicity we consider ε = 1 (see §2.3.1). As in the previous chapters, we refer to b ≥ 0
as the anisotropy parameter of a function f ∈ H(b). For more discussion on how b relates
to the anisotropy of f see §2.3.1.

As mentioned in §2.3.2, an important consideration in this thesis is whether b is known or
unknown. In the known anisotropy setting, a reconstruction procedure can use b to achieve
a good approximation uniformly over the class H(b). However, in the unknown anisotropy
setting, the reconstruction procedure has no access to b. In this case, motivated by the best
s-term approximation theory described in §2.4.3, we fix a 0 < p < 1 and consider the classes

H(p) =
⋃{

H(b) : b ∈ ℓp(N), b ∈ [0,∞)N, ∥b∥p ≤ 1
}

and
H(p,M) =

⋃{
H(b) : b ∈ ℓpM(N), b ∈ [0,∞)N, ∥b∥p,M ≤ 1

}
,

where ℓpM(N) is the monotone ℓp-space defined in §2.1. One of the reasons to introduce these
spaces is that, as we will see later in §6.3.1, it is generally impossible to approximate (b, ε)-
holomorphic functions in infinite dimensions from limited samples without any assumption
on b. Therefore we must define a space that allows to formally quantify this aspect.

Given this setup, in this chapter we pose the following question: How well can we uni-
formly approximate functions in H(b), for fixed b ∈ ℓp(N) with b ≥ 0, H(p) or H(p,M)
from m samples, and how does this reconstructions depend on b (in the first case) and p (in
the first, second and third cases)?

In the following section we provide necessary definitions to formally state the problem
in this chapter.
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6.1.2 Sampling operators

We now define the concept of adaptive sampling operator. Note that this is commonly
referred to as adaptive information in the field of information-based complexity [211, §4.1.1].
Since it is generally simpler than the Banach-valued case, we commence with the scalar-
valued case V = R.

Definition 6.1.1 (Adaptive sampling operator; scalar-valued case). Consider a normed
vector space (Y, ∥·∥Y). A scalar-valued adaptive sampling operator is a map of the form

S : Y → Rm, S(f) =


S1(f)

S2(f ;S1(f))
...

Sm(f ;S1(f), . . . , Sm−1(f))

 ,

where S1 : Y → R is a bounded linear functional and, for i = 2, . . . ,m, Si : Y × Ri−1 → R
is bounded and linear in its first component.

Notice that any linear map S : Y → Rm is an adaptive sampling operator. The rationale
for considering adaptive sampling operators is to cover approximation methods where each
subsequent sample is chosen adaptively in terms of the previous measurements.

Note also that this definition allows for arbitrary adaptive sampling operators. An im-
portant special case is that of (adaptive) pointwise samples (so-called standard informa-
tion [211, §4.1.1]). Let Y = C(U). Then this is defined as

S(f) = (f(yi))m
i=1 ∈ Rm, ∀f ∈ C(U), (6.1.1)

where yi is the ith sample point, which is potentially chosen adaptively based on the previous
measurements f(y1), . . . , f(yi−1).

Next, we consider the Banach-valued case. In the following definition, for any w ∈ V and
v = (vi)m

i=1 ∈ Rm, we write wv for the vector (wvi)m
i=1 ∈ Vm. Note that in this definition,

we consider Lebesgue–Bochner spaces only, as opposed to arbitrary Banach spaces.

Definition 6.1.2 (Adaptive sampling operator; Banach-valued case). Consider a vector
space Y ⊆ L2

ϱ(U ; V) with norm ∥·∥Y and an operator

S : Y → Vm, S(f) =


S1(f)

S2(f ;S1(f))
...

Sm(f ;S1(f), . . . , Sm−1(f))

 ,

where S1 : Y → V is a bounded linear operator and, for i = 2, . . . ,m, Si : Y × V i−1 → V
is a bounded linear operator in its first component. Then S is a Banach-valued adaptive
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sampling operator if the following condition holds. There exist v, w ∈ V\{0}, a normed
vector space Ỹ ⊆ L2

ϱ(U) and a scalar-valued adaptive sampling operator S̃ : Ỹ → Rm (see
Definition 6.1.1) such that if vg ∈ Y for some g ∈ L2

ϱ(U) then g ∈ Ỹ and S(vg) = wS̃(g).

Note that the condition imposed in Definition 6.1.2 is not a strong one. For example,
it trivially holds in the important case of (adaptive) pointwise sampling. Here, we consider
Y = C(U ; V) and

S(f) = (f(yi))m
i=1 ∈ Vm, ∀f ∈ Y,

where yi ∈ U is the ith sample point, which is potentially chosen adaptively based on the
previous measurements f(y1), . . . , f(yi−1). In this case, we clearly have

S(vg) = vS̃(g), ∀g ∈ Ỹ := C(U), v ∈ V,

where S̃ is the scalar-valued (adaptive) pointwise sampling operator (6.1.1).
The condition imposed in Definition 6.1.2 is used to establish our lower bounds – in

particular, the reduction to a discrete problem in Lemma 6.6.2. It is an open problem
whether these bounds hold in the Banach-valued case without this assumption.

Given the definition of a sampling operator above, we need a way to measure how good
the recovery of f can be from its samples. To do so, in this chapter, we study the (adaptive)
m-width (which is related to the information complexity [211, §4.1.4]).

6.1.3 Adaptive m-widths

We now generalize a standard definition (see, e.g., [44]) that measures the worse-case re-
covery error for a function f from a set K. Given f ∈ K ⊆ Y, the adaptive sampling
operator S first yields m measurements belonging to the underlying Banach space V. Then,
an arbitrary reconstruction map R takes this vector of m V-valued measurements and pro-
duces an approximation in L2

ϱ(U ; V). Thus, we define the (adaptive) m-width of a subset
K ⊆ Y, which pertains to the optimal sampling and reconstruction maps for minimizing
the worst-case recovery error over the set K.

Definition 6.1.3. Let (V, ∥·∥V) be a Banach space. The (adaptive) m-width of a subset
K ⊆ Y is a number given by

Θm(K; Y,X ) = inf
{

sup
f∈K

∥f − R(S(f))∥X : S : Y → Vm adaptive, R : Vm → X
}
,

(6.1.2)
where Y is a normed vector subspace of the Lebesgue–Bochner space X = L2

ϱ(U ; V) with
K ⊆ Y, R is an arbitrary reconstruction map and S is an adaptive sampling operator, as
in Definitions 6.1.1 (for scalar-valued functions) and 6.1.2 (for Banach-valued functions).
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Note that the choice of Y determines the type of allowed sampling operators. For in-
stance, if Y = C(U ; V) is the space of continuous functions from U to V with respect to the
uniform norm, then the type of allowed sampling operators includes (adaptive) pointwise
sampling, whereas if Y = X then it does not. Note, however, that Y plays a quite minor
role in our analysis: our lower bounds (see §6.3.1) hold for arbitrary Y, while our upper
bounds (see §6.3.2) require the (mild) assumption that Y is compactly contained in X . We
provide some additional discussion on Y in Remark 6.1.4 below.

Observe that (6.1.2) generalizes standard definitions [44], where the measurements
S(f) ∈ Rm are scalar-valued. We introduce this extension to allow for Banach-valued mea-
surements, as this is relevant for sampling-based approximation methods for parametric
PDEs.

6.1.4 Adaptive m-widths in the case of known and unknown anisotropy

Known anisotropy

In the definition of the the m-width in (6.1.2) the optimal reconstruction map can (and
generally will) depend on the anisotropy parameter b. Motivated by the discussion in §6.1.1
and to make the notation simpler, in the case of known anisotropy we define

θm(b) = Θm(H(b); Y, L2
ϱ(U ; V)). (6.1.3)

In addition, our interest also lies in the case where b ∈ ℓp(N) or b ∈ ℓpM(N) for some
0 < p < 1. Thus, we also define

θm(p) = sup
{
θm(b) : b ∈ ℓp(N), b ∈ [0,∞)N, ∥b∥p ≤ 1

}
,

θm(p,M) = sup
{
θm(b) : b ∈ ℓpM(N), b ∈ [0,∞)N, ∥b∥p,M ≤ 1

}
.

(6.1.4)

Unknown anisotropy

In the unknown anisotropy setting, we define

θm(p) = Θm(H(p); Y, L2
ϱ(U ; V)), θm(p,M) = Θm(H(p,M); Y, L2

ϱ(U ; V)). (6.1.5)

Notice that θm(p) is not equivalent to θm(p), and likewise for θm(p,M) and θm(p,M). The
former pertains to reconstruction maps that are not permitted to depend on b, whereas the
latter pertains to reconstruction maps that can. In particular, we have

θm(p) ≥ θm(p) ≥ θm(p,M) and θm(p,M) ≥ θm(p,M).
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Remark 6.1.4 Note that one cannot set Y = K in (6.1.3) or (6.1.5), since K is not a
linear subspace of L2

ϱ(U ; V). In the known anisotropy case, a natural choice would be to
set Y = G(b), where G(b) is vector space of (b, 1)-holomorphic functions equipped with the
L∞(R(b); V)-norm. In this case, H(b) is the unit ball of G(b). However, there is no similar
such choice in the cases of H(p) (or H(p,M)). It follows immediately from the definition
that H(p) is a union over b ∈ ℓp(N), ∥b∥p ≤ 1 of unit balls of the subspaces G(b), each
equipped with a different norm. Therefore, H(p) is contained in a union of subspaces

H(p) =
⋃

∥b∥p≤1
H(b) ⊂

⋃
∥b∥p≤1

G(b).

However, it is possible to show that the right-hand side is not itself a subspace. Therefore,
there is no intrinsic choice for Y in the unknown anisotropy setting.

6.1.5 Problem statement

Keeping these concepts in mind, we now formally define the problem statement for this
chapter. Our goal is to study how effective adaptive sampling operators and an arbitrary
recovery scheme R : Vm → L2

ϱ(U ; V) can be for both known and unknown anisotropy cases.
First, we examine the known anisotropy case where the arbitrary recovery scheme R is

allowed to depend on b ∈ ℓp(N). Specifically, we aim to determine the best performance of
a sampling and recovery scheme in this scenario: Are there lower and upper bounds for the
adaptive m-width θm(b) in terms of m, and are these bound sharp?

Additionally, we investigate the performance of a sampling and recovery scheme when
considering all possible (unit-norm) b ∈ ℓp(N) and b ∈ ℓpM(N). Are there lower and upper
bounds for the adaptive m-widths θm(p,M) in terms of m, and are these bounds are sharp.

Next, we address the unknown anisotropy case where the arbitrary recovery scheme
R is not allowed to depend on b ∈ ℓp(N). Here, our objective is to determine the best
performance of a sampling and recovery scheme in this context: Are there lower and upper
bounds for the adaptive m-width θm(p) and θm(p,M) in terms of m, and are these bounds
are sharp?

6.2 Contributions

Our main contributions in this work are lower and upper bounds for θm(b), θm(p), θm(p,M),
θm(p) and θm(p,M). We first establish lower bounds for θm(b) and θm(p), which show that no
method – i.e., no combination of an arbitrary (adaptive) sampling operator and (potentially
nonlinear) reconstruction map – can achieve better rates than m1/2−1/p within the class of
(b, 1)-holomorphic functions for b ∈ ℓp(N) and 0 < p < 1. We also show sharp bounds when
considering θm(p,M). These lower bounds are close to the rates achieved by the algorithms
and DL discussed in Chapters 4–5 (see §4.3 and §5.4). Hence, our results indicate that
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these algorithms are near optimal (we use the term ‘indicate’ here since the bounds for
these methods are generally nonuniform with respect to the function, whereas our lower
bounds are uniform – see §1.4 for further discussion).

In Chapters 4–5 we provided upper bounds in the context of Hilbert-valued function
approximation using pointwise samples (see the discussion in §6.3.2 for more details). In
this chapter, we show that sharper uniform upper bounds in the Hilbert-valued case can be
attained. Specifically, we show that the rate m1/2−1/p can be achieved without log factors in
the known anisotropy case, and up to a possible small log factor by using a suitable random
sampling operator and reconstruction map.

A key conclusion of this chapter is that in the unknown anisotropy setting the term
θm(p) does not decay as m → ∞. In other words, approximation from finite samples is
impossible without some inherent ordering of the variables, even if the samples are chosen
adaptively.

6.3 Main results

6.3.1 Lower bounds

We first consider lower bounds. Note that these bounds hold for any choice of the normed
vector space Y appearing in (6.1.2) that contains K = H(b) (known anisotropy case) or
K = H(p),H(p,M) (unknown anisotropy case).

To state the corresponding result in the known anisotropy case, we now recall the def-
inition of the ℓ2-norm best s-term approximation error of a sequence c ∈ ℓ2(N;R) from
Definition 2.4.2. This is given by

σs(c)2 = min{∥c − z∥2 : z ∈ ℓ2(N), |supp(z)| ≤ s},

where supp(z) = {i : zi ̸= 0} for z = (zi)i∈N ∈ RN.

Theorem 6.3.1 (Known anisotropy; lower bounds and the rate m1/2−1/p ). Let m ≥ 1 and
ϱ be a tensor-product probability measure on U . Then the following hold.

(a) For every b ∈ [0,∞)N with b ∈ ℓ1(N), the m-width (6.1.3) satisfies

θm(b) ≥ c · σm(b)2,

where c > 0 depends on the measure ϱ and ∥b∥1 only.

(b) For every 0 < p < 1, the m-widths (6.1.4) satisfy

θm(p) ≥ θm(p,M) ≥ c · 2−1/p ·m1/2−1/p, (6.3.1)

where c > 0 depends on the measure ϱ only.
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(c) Let (g(n))n∈N be a positive nondecreasing sequence such that

∑
n∈N

(ng(n))−1 < ∞.

Then, for every 0 < p < 1, there exists a b ∈ ℓpM(N), b ∈ [0,∞)N such that

θm(p) ≥ θm(p,M) ≥ θm(b) ≥ c′ · g(2m)−1/p ·m1/2−1/p, (6.3.2)

where c′ = c · 2−1/p ·
(∑

n∈N(ng(n))−1)−1/p and c is the constant in (b).

Part (a) of this result provides a lower bound for the m-width θm(b) in terms of the
best m-term approximation error σm(b)2. The inequality often referred to as Stechkin’s
inequality (see, e.g., the historical note [12, Rem. 3.4] on the origins and naming of this
inequality and [12, Lem. 3.5]) shows that

σm(b)2 ≤ ∥b∥p(m+ 1)1/2−1/p,

whenever b ∈ ℓp(N). Hence, the main contribution of part (b) is to show that the rate
m1/2−1/p is, in effect, sharp when considering all possible (unit-norm) b ∈ ℓp(N) or b ∈
ℓpM(N). However, it is notable that, based in the proof technique, the b that achieves this
bound depends on m and has equal entries, i.e., it corresponds to a class of the functions
H(b) that is completely isotropic. In part (c), we prove that a nearly sharp lower bound of
the form g(2m)−1/p ·m1/2−1/p can be obtained for a fixed b, which is independent of m and
determined only by a nondecreasing function g. Specifically, the function g can be chosen
to grow very slowly, such as g(n) = log2(n+ 1) or even g(n) = log(n+ 1)(log(log(n+ 1)))2.
For further examples, we refer to [231, Ch. 3].

We now consider lower bounds in the unknown anisotropy setting.

Theorem 6.3.2 (Unknown anisotropy; lower bounds). Let m ≥ 1, ϱ be a tensor-product
probability measure on U and 0 < p < 1. Then the following hold.

(a) The m-width θm(p) in (6.1.5) satisfies

θm(p) ≥ c · 21/2−2/p, (6.3.3)

where c > 0 depends on the measure ϱ only.

(b) The m-width θm(p,M) in (6.1.5) satisfies

θm(p,M) ≥ θm(p,M) ≥ c · 2−1/p ·m1/2−1/p, (6.3.4)

where c > 0 depends on the measure ϱ only.
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Part (a) of this theorem, more precisely the factor 21/2−2/p, shows that approximation
from finite samples is, in fact, impossible in the space H(p), since the m-width does not
decay as m → ∞. Note that this bound holds for any sampling operator, i.e., not just
the random pointwise samples considered in Chapters 3–5. This is perhaps unsurprising.
Functions in H(p) are anisotropic, but their (infinitely-many) variables can be ordered in
terms of importance in arbitrary and infinitely-many different ways. It seems implausible
that one could approximate such functions from a finite set of data. This result confirms
this intuition.

However, part (b) of this theorem reveals that the situation changes completely when
we restrict to the monotone space H(p,M). Here the lower bound for the m-width is once
more m1/2−1/p. Note that this change holds for any sample strategy. Thus, Chapters 3–5
suggest that pointwise samples are nearly optimal when we consider the aforementioned
monotone space.

6.3.2 Upper bounds

We now present a series of upper bounds for the various m-widths. In addition to the
discussion in §6.2, we recall that in Chapters 4–5 we showed nonuniform upper bounds (see
Remark 3.3.4 and the discussion after Theorem 5.3.4) of the form (m/polylog(m))1/2−1/p

using pointwise samples. These polylogarithmic factors were of the order of O(log4(m)) in
the case of unknown anisotropy (see Theorem 4.3.3 and Theorem 5.3.2) and of the order of
O(log(m)) in the known anisotropy case (see Theorem 5.3.4). Below, we show that the rate
m1/2−1/p can be achieved without log factors in the known anisotropy case, and up to a
possible small log factor by using a suitable random sampling operator and reconstruction
map. Our main upper bounds below are uniform since they consider a worst-case error over
all f .

In the following results, we make the additional (mild) assumption that the normed
vector space Y appearing in (6.1.2) is compactly contained in L2

ϱ(U ; V), i.e., Y ↪→ L2
ϱ(U ; V).

Theorem 6.3.3 (Known anisotropy; upper bounds). Let V be a Hilbert space, m ≥ 1, ϱ be
the uniform probability measure on U and 0 < p < 1. Then the following hold.

(a) The m-width (6.1.3) satisfies

θm(b) ≤ c ·m1/2−1/p, ∀b ∈ ℓp(N), b ∈ [0,∞)N, (6.3.5)

where c > 0 depends on b and p only. Moreover, this bound is attained by a bounded
linear (nonadaptive) sampling map S and a bounded linear reconstruction operator
R.
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(b) In addition, for any q ∈ (p, 1) the m-width (6.1.4) satisfies

θm(p,M) ≤ c ·m1/2−1/q, (6.3.6)

where c > 0 depends on p and q only.

Part (a) shows that in the case of known anisotropy for a fixed b we can achieve a rate
m1/2−1/p as an upper bound with a constant depending on b ∈ ℓp(N). In contrast, the proof
of part (b) provides a uniform bound over all b belonging to the unit ball of the monotone
ℓp space ℓpM(N). Notice also that part (b) only considers the monotone space ℓpM(N). We
suspect that achieving a uniform bound for all b belonging to the unit ball of the standard
ℓp space ℓp(N) may be possible. However, this is a problem for future research.

The key difference between parts (a) and (b) is the algebraic rate, which can be arbitrar-
ily close to m1/2−1/p, but not equal to it. Currently, we do not have an explicit expression
for how the constant c in part (b) depends on p and q and, in particular, how it behaves as
q → p+, besides the knowledge that it must blow up. In particular, the question of whether
(6.3.6) may in fact hold with q = p is an open problem and, if true, its proof would require
a different technique. See Remark 6.6.4 for some additional discussion.

Both Theorem 6.3.3 and the next result are proved using Legendre polynomials. In
Theorem 6.3.3, the sampling operator S computes m Legendre coefficients of f from a
suitable index set (depending on b only). However, unlike in Chapters 4–5, the sampling
operator S in our upper bounds does not compute pointwise samples of the target function
f in either result. Consequently, while our theorems in this chapter provide upper bounds
for the m-widths, they do not address the practical scenario of pointwise samples.

In the unknown anisotropy setting, we resort to a different approach based on compressed
sensing (see §3.6). For a more detailed discussion see §6.4. In summary the idea is to choose
the sampling operator S so that the recovery problem for the coefficients reduces to the
problem of recovering a sparse vector from random Gaussian measurements. In order to use
this approach, we need to carefully restrict the infinite vector of polynomial coefficients to a
finite vector of length N . As in Chapters 3–5 we use the hyperbolic cross index set in §2.4.6.
Specifically, we do this so that no large coefficients are excluded from the resulting finite
vector. This is where we use the additional assumption b ∈ ℓpM(N) and the properties of
anchored sets (see §2.5.2). See the proof in §6.6.4 which follows a similar idea to the previous
chapters. For notational convenience, in the following result we introduce a normal random
vector r ∼ N (0, Iℓ), ℓ = mN , which contains the entries of the aforementioned Gaussian
random matrix.

Theorem 6.3.4 (Unknown anisotropy; upper bounds). Let V be a Hilbert space, m ≥ 3
and ϱ be the uniform probability measure on U = [−1, 1]N. Then there exists an ℓ = ℓ(m),
a (nonlinear) reconstruction map Rr : Vm → L2

ϱ(U ; V) and a (nonadaptive) bounded linear
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sampling operator Sr : Y → Vm depending on a random vector r ∼ N (0, Iℓ), where Iℓ is
the ℓ× ℓ identity matrix, such that the following holds.

(a) We have

Er∼N (0,Iℓ) sup
f∈H(b)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V) ≤ c ·

(
m

log2(m)

)1/2−1/p

,

for all b ∈ ℓpM(N), b ∈ [0,∞)N, and 0 < p < 1, where c > 0 depends on b and p only.

(b) For 0 < p < q < 1, the m-width (6.1.5) satisfies

θm(p,M) ≤ Er∼N (0,Iℓ) sup
f∈H(p,M)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V) ≤ c ·m1/2−1/q,

where c > 0 depends on p and q only.

Part (b) of this theorem shows that the lower bounds in Theorem 6.3.2(b) can be nearly
achieved by a (nonadaptive) random sampling operator and reconstruction map. Here,
“nearly” means with a rate that can be arbitrarily close to 1/2 − 1/p, but not equal to
it. As in the previous result, we also have no explicit expression for the constant c in part
(b). This is for much the same reasons as those discussed in Remark 6.6.4. By contrast,
Theorem 6.3.4(a) shows that the algebraic rate 1/2 − 1/p can be achieved, but with a
constant depending on b. Crucially, however, the sampling operator and reconstruction
map in Theorem 6.3.4(a) are both independent of b and p and therefore part (a) is also
a result about the unknown anisotropy setting, even though the supremum is taken over
H(b).

Theorems 6.3.3 and 6.3.4 consider only the uniform probability measure on U . We an-
ticipate they hold for more general tensor-product probability measures, such as Jacobi
measures. See the preprint [17].

Remark 6.3.5 We also note in passing that Theorems 6.3.3–6.3.4 assume that V is a
Hilbert space. In the case of Theorem 6.3.3, the reason to use a Hilbert spaces comes from
a technical step in the proof that uses Parseval’s identity. We encounter the same issue
in Chapter 5 (see the discussion after Theorem 5.3.1). Whether these rates hold in the
Banach-valued case remains an open problem.

6.4 Discussion

In addition to the discussion in §6.3, we now comment on two important aspects of the
main results. These are crucial to understand their proofs.

Lower bounds
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The proofs of our lower bounds rely on the reduction of the continuous problem to a discrete
one. First, we prove a holomorphy result of order-one polynomials. This allows us to lower
bound the m-width θm(b) in terms of a certain discrete problem. Having done this, we
then use certain results on the so-called Gelfand and Kolmogorov width [111,220] of certain
weighted ℓp balls to get the desired bounds.

Theorem 6.3.3: Known anisotropy; upper bounds

As mentioned after Theorem 6.3.3, the sampling operator S computes m Legendre coeffi-
cients of f from a suitable index set (depending on b only). The reconstruction map then
simply forms the corresponding Legendre polynomial expansion. In particular, the recon-
struction map is linear. This approach is possible in the setting of known anisotropy, since
we can choose the index set in terms of b.

Theorem 6.3.4: Unknown anisotropy; upper bounds

The main difficulty in this theorem comes from choosing a suitable sampling operator and
reconstruction map that do not depend on an specific choice of index set. As we did in
the previous Chapters 3–5, we see the polynomial coefficients as an (approximately) sparse
vector, whose significant entries are unknown (since b is unknown). Then we choose the
sampling operator S so that the recovery problem for the coefficients reduces to the problem
of recovering a sparse vector from random Gaussian measurements. Specifically, S computes
m random weighted sums of the Legendre coefficients of f where the weights are i.i.d. normal
random variables (a similar idea was also used in a different context in [11]). Finally, we
formulate the (nonlinear) reconstruction mapin terms of a convex ℓ1-minimization problem.

6.5 Proofs setup

Before diving into the details of the proofs, we now provide further setup and introduce
important notations.

6.5.1 Notation

Let 0 < p ≤ ∞ and w = (wi)i∈N > 0 be a sequence of positive weights. We define the
weighted ℓp-space ℓp(w) to be the set of all sequences z = (zi)i∈N ∈ RN for which the
weighted (quasi-) norm ∥z∥p,w is finite. That is

∥z∥p,w :=


(∑

i∈Nw
−p
i |zi|p

)1/p
< ∞, p < ∞,

supi∈N

{
w−1

i |zi|
}
< ∞, p = ∞.
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When w = 1 is the vector of ones, we just write (ℓp, ∥·∥p). For N ∈ N and w = (wi)i∈[N ],
we use ℓpN (w) to denote the finite dimensional space (RN , ∥·∥p,w) of vectors of length N .
When w = 1, we just write (ℓpN , ∥·∥p).

Next, we write

Bp
N (w) =


{

x = (xi)N
i=1 ∈ RN :

(∑N
i=1wi

−p|xi|p
)1/p

≤ 1
}

p < ∞,{
x = (xi)N

i=1 ∈ RN : maxi=1,...,N

{
w−1

i |xi|
}

≤ 1
}

p = ∞,
(6.5.1)

for the weighted ℓp-norm (quasi-norm) unit ball when p ≥ 1 ( 0 < p < 1). When w = 1, we
simply write Bp

N .

6.5.2 Widths and standard results on widths

We commence with a brief overview of Gelfand widths and their properties, since these will
be crucial in the proofs of the lower bounds. See [220] or [112, Ch. 10] for more details. Let
K be a subset of a normed space (X , ∥·∥X ). Then its Gelfand m-width is

dm(K,X ) = inf
{

sup
x∈K∩Lm

∥x∥X , L
m a subspace of X with codim(Lm) ≤ m

}
. (6.5.2)

An equivalent representation is

dm(K,X ) = inf
{

sup
x∈K∩Ker(A)

∥x∥X , A : X → Rm linear
}
.

The Gelfand width is related to the following quantity:

Em
ada(K,X ) = inf

{
sup
x∈K

∥x− ∆(Γ(x))∥X , Γ : X → Rm adaptive, ∆ : Rm → X
}
, (6.5.3)

where Γ is an adaptive sampling operator as in Definition 6.1.1. This is referred to as the
adaptive compressive m-width of a subset K of a normed space (X , ∥·∥X ) in [112, Ch. 10].
Note that, if X = L2

ϱ(U ;R) and V = R, then Em
ada(K,X ) coincides with Θm(K; X ,X ) in

(6.1.2).
The following result is standard and can be found in [112, Thm. 10.4].

Theorem 6.5.1. Let K ⊆ X , where (X , ∥·∥X ) is a normed space. If −K = K then

dm(K,X ) ≤ Em
ada(K,X ).
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Finally, we also define the Kolmogorov m-width of a subset K of a normed space (X , ∥·∥X )
as

dm(K,X ) = inf
{

sup
x∈K

inf
z∈Xm

∥x− z∥X , Xm a subspace of X with dim(Xm) ≤ m

}
.

6.6 Proof of main results: Theorems 6.3.1–6.3.4

6.6.1 Proof of Theorem 6.3.1: known anisotropy, lower bound

As mentioned in §6.4, we first prove a holomorphy result of order-one polynomials that
allows us to lower bound the m-width θm(b) in terms of a certain discrete problem.

We start by making the following observation. Let ρ be a probability measure as in §2.2
and recall that ϱ is the tensor-product probability measure defined in (2.2.1) . Since ρ is a
nonnegative Borel probability measure on the interval [−1, 1] its moments exist [264, §6.1].
Now let

τ =
∫ 1

−1
y dρ(y), and σ =

√∫ 1

−1
(y − τ)2 dρ(y), (6.6.1)

be the first and second moment of ρ and notice that τ, σ < ∞. Then the functions

ψi(y) = yi − τ

σ
, y = (yj)j∈N ∈ U , i ∈ N,

form an orthonormal set {ψi}i∈N ⊂ L2
ϱ(U) (but not a basis).

Lemma 6.6.1 (Holomorphy of order one polynomials). Let ϱ be a tensor-product probability
measure as in (2.2.4), p ∈ (0, 1], b ∈ [0,∞)N with b ∈ ℓp(N), v ∈ V \ {0} and consider a
sequence c = (ci)i∈N ⊂ RN with |ci| ≤ bi for all i ∈ N. Define the function

f =
∞∑

i=1
civψi. (6.6.2)

Then f is (b, 1)-holomorphic with

∥f∥L∞(R(b);V) ≤ ∥v∥V
σ

(
1 + (|τ | + 1)∥c∥p

)
.

Proof. Notice that (|ci|)i∈N ∈ ℓ1(N) and that f is holomorphic at any y ∈ U for which the
series ∑∞

i=1 civψi(y) converges absolutely. Now suppose that y ∈ Eρ, where ρ satisfies the
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condition in (2.3.2) with ε = 1. Then |yi| ≤ (ρi + ρ−1
i )/2 and therefore∥∥∥∥∥

∞∑
i=1

civψi(y)
∥∥∥∥∥

V

≤
∞∑

i=1
∥civ∥V

( |yi| + |τ |
σ

)

≤ ∥v∥V
σ

( ∞∑
i=1

|ci|
(
(ρi + ρ−1

i )/2 − 1
)

+ ∥c∥1 + |τ |∥c∥1

)

≤ ∥v∥V
σ

(
1 + (|τ | + 1)∥c∥p

)
,

as required.

In the next result, we relate the m-width θm(b) in (6.1.3) to the Gelfand m-width of a
certain finite-dimensional unit ball.

Lemma 6.6.2 (Reduction to a discrete problem; known anisotropy case). Let ϱ be a tensor-
product probability measure as in (2.2.4), b ∈ [0,∞)N with b ∈ ℓ1(N). Let N ∈ N and I ⊂ N
be an index set with |I| = N . Then the m-width (6.1.3) satisfies

θm(b) ≥ C(b, τ, σ) · dm(B∞
N (bI), ℓ2N ), (6.6.3)

where B∞
N (bI) is as in (6.5.1) and

C(b, τ, σ) = σ

1 + (1 + |τ |)∥b∥1
. (6.6.4)

Observe that the bound (6.6.3) holds trivially when N ≤ m, since dm(B∞
N (bI), ℓ2N ) = 0

in this case (see [112, §10.1]).

Proof. Let S be as in Definition 6.1.2. Then there are v ∈ V\{0}, w ∈ V\{0} and a normed
vector space Ỹ ⊆ L2

ϱ(U) such that S(vg) = wS̃(g) whenever vg ∈ Y and g ∈ L2
ϱ(U), where

S̃ : Ỹ → Rm is as in Definition 6.1.1. Now let c = (ci)i∈I ⊂ RN be any sequence supported
in I with |ci| ≤ bi, ∀i ∈ I, and define f : U → V by

f = cv
∑
i∈I

ciψi, c = σ

∥v∥V(1 + (|τ | + 1)∥b∥1) . (6.6.5)

Since ∥c∥1 ≤ ∥b∥1, Lemma 6.6.1 implies that f ∈ H(b) ⊆ Y. By definition, we have

S(f) = wS̃(g), g = c
∑
i∈I

ciψi ∈ Ỹ.

Now let Γ : RN → Rm be the scalar-valued adaptive sampling operator defined by

Γ(d) = S̃
(
c ·
∑
i∈I

diψi

)
, d = (di)i∈I ∈ RN .
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Here, for convenience, we index vectors in RN using the index set I. We need to show
that this operator is well defined. Since S̃ has domain Ỹ, this is equivalent to showing that∑

i∈I diψi ∈ Ỹ for all d = (di)i∈I ∈ RN . To see this, recall that H(b) ⊂ Y and therefore

H0(b) := {f : U → V, (b, 1)-holomorphic} ⊆ Y,

since Y is a vector space. Now, for any d = (di)i∈I ∈ RN , the function ∑i∈I diψi is entire,
therefore

v ·
∑
i∈I

diψi ∈ H0(b).

Hence, ∑i∈I diψi ∈ Ỹ due to Definition 6.1.2, and therefore Γ is well defined.
With this in hand, recall that c ∈ RN is zero outside of the index set I. Hence we may

consider it as an element of RN indexed over I. Using this and the definition of Γ, we have
S(f) = wS̃(g) = wΓ(c) = (w(Γ(c))i)m

i=1 ∈ Vm.
Now let R : Vm → L2

ϱ(U ; V) be an arbitrary reconstruction map and let R̃ : Rm →
L2

ϱ(U ; V) be defined by
R̃(z) = R(w · z), ∀z ∈ Rm.

Observe that
R(S(f)) = R(w · Γ(c)) = R̃(Γ(c)). (6.6.6)

Let V∗ be the dual space of V. From the Hahn–Banach theorem (see [232, Thm. 3.3]) there
exists a linear bounded functional ϕ∗

v ∈ V∗ with unit norm such that ϕ∗
v(v) = ∥v∥V . Using

this fact and the definition of a norm in Banach spaces, for every y ∈ U , we get

∥f(y) − R ◦ S(f)(y)∥V = sup
ϕ∗∈V∗,∥ϕ∗∥V∗ =1

|⟨ϕ∗, f(y) − R ◦ S(f)(y)⟩V∗×V |

≥ |⟨ϕ∗
v, f(y) − R ◦ S(f)(y)⟩V∗×V |

=
∣∣∣∣∣c′∑

i∈I

ciψi(y) − ⟨ϕ∗
v,R ◦ S(f)(y)⟩V∗×V

∣∣∣∣∣ ,
where c′ = c∥v∥V = σ/(1 + (|τ | + 1)∥b∥1). Then, squaring and integrating over U , we can
use Bessel’s inequality on the rightmost term to obtain

∥f − R ◦ S(f)∥2
L2

ϱ(U ;V) ≥ ∥c′∑
i∈I

ciψi − ϕ∗
v ◦ R ◦ S(f)∥2

L2
ϱ(U)

≥
∑
j∈I

|⟨ψj , c
′∑

i∈I

ciψi − ϕ∗
v ◦ R ◦ S(f)⟩L2

ϱ(U)|2.
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Combining this with (6.6.6) we obtain

∥f − R ◦ S(f)∥2
L2

ϱ(U ;V) ≥ (c′)2∑
j∈I

|cj − ⟨ψj , ϕ
∗
v ◦ R ◦ S(f)⟩L2

ϱ(U)/c
′|2

= (c′)2∑
j∈I

|cj − ⟨ψj , ϕ
∗
v ◦ R̃(Γ(c))⟩L2

ϱ(U)/c
′|2.

Notice from the last term that every map R̃ : Rm → L2
ϱ(U ; V) gives rise to a mapping

z 7→ ∆(z) with ∆ : Rm → RN via

∆(z) =
(
⟨ψi, ϕ

∗
v ◦ R̃(z)⟩L2

ϱ(U)/c
′
)

i∈I
=
(∫

U
ψi(y) · ϕ∗

v

(
R̃(z)(y)

)
dϱ(y)/c′

)
i∈I

. (6.6.7)

Hence we obtain

∥f − R ◦ S(f)∥2
L2

ϱ(U ;V) ≥ (c′)2∑
i∈I

|ci − (∆(Γ(c)))i|2 = (c′)2∥c − ∆(Γ(c))∥2
2.

Thus, we have shown that for any pair (S,R) and any f of the form (6.6.5), the error
∥f − R ◦ S(f)∥L2

ϱ(U ;V) can be bounded below by a constant times the error ∥c − ∆(Γ(c))∥2
for some pair (Γ,∆). Using this, we deduce that

θm(b) = inf
{

sup
f∈H(b)

∥f − R(S(f))∥L2
ϱ(U ;V) : S : Y → Vm adaptive, R : Vm → L2

ϱ(U ; V)
}

≥ c′ inf

 sup
c∈RN ,c ̸=0
|ci|≤bi,∀i∈I

∥c − ∆(Γ(c))∥2 : Γ : RN → Rm adaptive, ∆ : Rm → RN


≥ c′Em

ada(B∞
N (bI), ℓ2N ),

where in the final inequality we recall (6.5.3). The result now follows from Theorem 6.5.1.

Next, we give a lower bound for the right-hand side of (6.6.3). For this, we make use of
Theorem C.0.2, which is due to Stesin [241].

Proof of Theorem 6.3.1. We first prove part (a). Let N ∈ N with N > m and I ⊂ N,
|I| = N be the index set corresponding to the largest N entries of b. First, using the duality
result Theorem C.0.3 and then Lemma C.0.4 we obtain

dm(B∞
N (bI), ℓ2N ) = dm(B2

N , ℓ
1
N (1/bI)) = dm(B2

N (bI), ℓ1N ). (6.6.8)
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Here 1/bI is the vector with entries 1/bI = (1/bi)i∈I . Next, applying Theorem C.0.2 with
p = 2 and q = 1 we see that the right-hand side of the previous equation satisfies

dm(B2
N (bI), ℓ1N ) =

 max
i1,...,iN−m∈I

ik ̸=ij

N−m∑
j=1

(bij )2

−1/2


−1

. (6.6.9)

Now, let π : N 7→ N be a bijection whose entries are a nonincreasing rearrangement of the
vector b in nonincreasing order. That is bπ = (bπ(j))j∈N is such that

bπ(1) ≥ bπ(2) ≥ · · · bπ(N) ≥ . . . ≥ 0.

Observe that bI has a one-to-one relation with the first N terms of bπ. Hence, the maximum
in (6.6.9) is achieved by the last N −m terms of (bπ(i))N

i=1. Thus,

dm(B2
N (bI), ℓ1N ) = min

i1,...,iN−m∈I
ik ̸=ij

N−m∑
j=1

(bij )2

1/2

=

 N∑
j=m+1

b2
π(j)

1/2

.

Moreover, we know that σm(b)2
2 = ∑∞

j=m+1 b
2
π(j), which implies that

σm(b)2
2 =

N∑
j=m+1

b2
π(j) +

∞∑
j=N+1

b2
π(j) = (dm(B2

N (bI), ℓ1N ))2 +
∞∑

j=N+1
b2

π(j).

Then, from (6.6.8) and Lemma 6.6.2 we obtain

σm(b)2
2 ≤ C(b, τ, σ)−2 · θ2

m(b) +
∞∑

j=N+1
b2

π(j),

where C(b, τ, σ) is as in (6.6.4). Taking limit when N → ∞ we obtain the result.
Next we prove part (b). Consider the sequence b = (bi)∞

i=1 with

bi = (2m)−1/p, i = 1, . . . , 2m, bi = 0, i > 2m. (6.6.10)

Observe that b ∈ ℓpM(N) and that ∥b∥p,M = ∥b∥p = 1 by construction. Also, note that

σm(b)2 =

√√√√ 2m∑
i=m+1

(2m)−2/p = 2−1/pm1/2−1/p.

Thus using this and part (a) we get θm(p,M) ≥ C(b, τ, σ) ·σm(b)2 ≥ C(τ, σ) ·2−1/pm1/2−1/p,
where

C(τ, σ) = σ

1 + (1 + |τ |) = σ

1 + (1 + |τ |)∥b∥p
≤ C(b, τ, σ). (6.6.11)
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Finally, we prove part (c). Let cp,g =
(∑

n∈N(ng(n))−1)−1/p and consider the sequence
b = (bi)∞

i=1 defined by bi = cp,g(ig(i))−1/p. Observe that ∥b∥p = 1 by construction. Recall
that ℓpM(N) is the space of sequences whose minimal monotone majorant is in ℓp(N), with
norm defined as the ℓp-norm of the majorant. Since the constructed b is mononotonically
nonincreasing, it is equal to its minimal monotone majorant. Therefore, b ∈ ℓpM(N) and
∥b∥p,M = ∥b∥p = 1. Then, using monotonicity once more, we get that

(σm(b)2)2 = c2
p,g

∞∑
i=m+1

(ig(i))−2/p ≥ c2
p,g

2m∑
i=m+1

(ig(i))−2/p ≥ c2
p,g2−2/p · (g(2m))−2/pm1−2/p.

Hence, using part (a) we get

θm(p,M) ≥ c · cp,g2−1/p · (g(2m))−1/p ·m1/2−1/p,

where c = C(τ, σ) is the constant depending on ϱ in (6.6.11), as required.

6.6.2 Proof of Theorem 6.3.2: unknown anisotropy, lower bound

We first proceed as in the proof of Theorem 6.3.1. The following lemma does for the m-width
θm(p) what Lemma 6.6.2 did for θm(b).

Lemma 6.6.3 (Reduction to a discrete problem; unknown anisotropy case). Let p ∈ (0, 1],
N ∈ N, ϱ be a tensor-product probability measure as in (2.2.4) and τ , σ be as in (6.6.1).
Then the m-width (6.1.5) satisfies

θm(p) ≥ C(τ, σ) · dm(Bp
N , ℓ

2
N ),

where Bp
N is as in (6.5.1) with w = 1 and

C(τ, σ) = σ

2 + |τ |
. (6.6.12)

Proof. Recall that θm(p) is defined by

θm(p) = inf
{

sup
f∈H(p)

∥f − R(S(f))∥L2
ϱ(U ;V) : S : Y → Vm adaptive, R : Vm → L2

ϱ(U ; V)
}
.

Let S : Y ⊂ L2
ϱ(U ; V) → Vm be a general adaptive sampling operator as in Definition 6.1.2

and v be the corresponding nonzero element of V. Consider b ∈ ℓp(N) with b ∈ [0,∞)N and
∥b∥p ≤ 1, and let c = (ci)i∈N ∈ RN be any sequence supported in [N ] with |ci| = bi for
i ∈ [N ]. Define the function

f = σ

(2 + |τ |)∥v∥V
v

N∑
i=1

ciψi. (6.6.13)
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Lemma 6.6.1 implies that f ∈ H(b). We now use the same arguments as in the proof of
Lemma 6.6.2 to obtain

∥f − R ◦ S(f)∥L2
ϱ(U ;V) ≥ c′∥c − ∆(Γ(c))∥2,

where c′ = σ/(2 + |τ |) and Γ, ∆ are as before. We next take the supremum over b ≥ 0 with
b ∈ ℓp(N) and ∥b∥p ≤ 1 and all sequences c of the above form. Then we get

sup
f∈H(p)

∥f − R ◦ S(f)∥L2
ϱ(U ;V) ≥ c′ sup

c∈ℓp(N), ∥c∥p≤1
supp(c)⊆[N ]

∥c − ∆(Γ(c))∥2.

Hence

θm(p) ≥ c′ inf

 sup
c∈ℓp(N), ∥c∥p≤1

supp(c)⊆[N ]

∥c − ∆(Γ(c))∥2 : Γ : RN → Rm adaptive, ∆ : Rm → RN

 .
Using this and (6.5.3) we see that

θm(p) ≥ c′Em
ada(Bp

N , ℓ
2
N ).

We now apply Theorem 6.5.1 with K = Bp
N and X = ℓ2N to get the result.

Proof of Theorem 6.3.2. We first prove part (a). To do so, we use the bound obtained in
Lemma 6.6.3. Let N ∈ N be such that

N ≥ me
log(38e)

2p
m−1 ⇔

2p
log(38e) log(eN/m)

m
≥ 1. (6.6.14)

Then, from Proposition C.0.1 with q = 2 we obtain

dm(Bp
N , ℓ

2
N ) ≥

(1
2

)2/p−1/2
.

Thus,

θm(p) ≥ σ

2 + |τ |

(1
2

)2/p−1/2
,

as required. Part (b) follows immediately from part (b) of Theorem 6.3.1 and the inequality
θm(p,M) ≥ θm(p,M).

6.6.3 Proof of Theorem 6.3.3: known anisotropy, upper bound

Here we will employ polynomial techniques to establish the two upper bounds presented
in Theorems 6.3.3 and 6.3.4. See Appendix B for further details on the Legendre coeffi-
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cients summability and relevant polynomial approximation theory. We commence in this
subsection with the proof of Theorem 6.3.3.

Proof of Theorem 6.3.3. The proof is divided into three parts. We first construct a sampling
operator S and show that it is a well-defined sampling operator in the sense of Definition
6.1.2. Then we prove parts (a) and (b), respectively.

Consider F to be the set of multi-indices with at most finitely-many zero entries and
{Ψν}ν∈F be the orthonormal Legendre basis of L2

ϱ(U). Let S ⊂ F be a finite index of size
|S| = m that will be chosen later in the proof and Y ⊇ H(b) with Y ↪→ L2

ϱ(U ; V). We now
define S : Y → Vm and R : Vm → L2

ϱ(U ; V) by

S(f) =
(
⟨f,Ψν⟩L2

ϱ(U)
)

ν∈S
and R(v) =

∑
ν∈S

vνΨν , (6.6.15)

for any f ∈ Y and v= (vν)ν∈S ∈ Vm, respectively. Observe that ⟨f,Ψν⟩L2
ϱ(U) ∈ V are

precisely the coefficients of the expansion of f in (2.5.2) with Λ = S. However, we keep this
notation to emphasize that S is a linear operator.

We first prove that S is well defined and that it satisfies the conditions of Definition
6.1.2. By construction and the fact that Y ↪→ L2

ϱ(U ; V) we readily see that S is a bounded
linear operator. Therefore, it suffices to show there exists a normed vector space Ỹ ↪→ L2

ϱ(U),
a nonzero v ∈ V, and a bounded, linear scalar-valued sampling operator S̃ : Ỹ → Rm such
that, if vg ∈ Y for g ∈ L2

ϱ(U), then g ∈ Ỹ and S(vg) = vS̃(g). To this end, let v ∈ V,
∥v∥V = 1, be arbitrary and define the space

Ỹ = {g ∈ L2
ϱ(U) : vg ∈ Y}.

It is easily seen that this is a vector space and that the quantity ∥g∥Ỹ = ∥vg∥Y , ∀g ∈ Ỹ,
defines a norm on Ỹ. Moreover, using the fact that ∥v∥V = 1 and Y ↪→ L2

ϱ(U ; V), there
exists a constant C > 0 such that

∥g∥L2
ϱ(U) = ∥vg∥L2

ϱ(U ;V) ≤ C∥vg∥Y = C∥g∥Ỹ , ∀g ∈ Ỹ.

Hence Ỹ ↪→ L2
ϱ(U). We now define the scalar-valued sampling operator

S̃ : Ỹ → Rm, S̃(g) =
(
⟨g,Ψν⟩L2

ϱ(U)
)

ν∈S
, ∀g ∈ Ỹ.

Note that S̃ is closely related to the operator S, except that it is defined over a space
Ỹ consisting of scalar-valued functions. Observe that S̃ is linear and bounded, with the
latter property due to the fact that Ỹ ↪→ L2

ϱ(U). Moreover, if vg ∈ Y then g ∈ Ỹ and
S(vg) = vS̃(g) by construction. Therefore S̃ satisfies the desired properties. We deduce
that S is a well defined operator that satisfies the conditions of Definition 6.1.2, as required.
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We now prove part (a) of Theorem 6.3.3. Let f ∈ H(b). By (6.6.15) and Parseval’s
identity (see Remark 6.3.5) we get

∥f − R ◦ S(f)∥2
L2

ϱ(U ;V) =
∑
ν ̸∈S

∥cν∥2
V ,

where c = (cν)ν∈F is as in (2.4.2) (see §B.1 for further information). Now we choose the
specific set S. Let b ∈ ℓp(N), b ∈ [0,∞)N. From Corollary B.2.3, there exists a set S ⊂ F of
size |S| = m depending on b and p only such that

∑
ν ̸∈S

∥cν∥2
V

1/2

≤ C(b, p) ·m1/2−1/p,

where C(b, p) > 0 is the constant in Lemma B.2.1. Now, taking supremum over f ∈ H(b)
we get

sup
f∈H(b)

∥f − R ◦ S(f)∥L2
ϱ(U ;V) ≤ C(b, p) ·m1/2−1/p.

Since b was arbitrary, this completes the proof of part (a).
Next we prove part (b). Let q ∈ (p, 1). Then any b ∈ ℓpM(N) satisfies b ∈ ℓq(N) and

therefore
θm(b) ≤ C(b, q) ·m1/2−1/q

by part (a). Using this we get

θm(p,M) = sup
∥b∥p,M≤1

θm(b) ≤ sup
∥b∥p,M≤1

C(b, q) ·m1/2−1/q.

The result now follows from Lemma B.2.2.

Remark 6.6.4 As shown in this proof, the constant c = cp,q in part (b) of Theorem 6.3.3
comes from Lemma B.2.2. Unfortunately, the dependence of this constant on p and q is
unknown, since it depends on an abstract summability criterion (see, e.g., [12, Lem. 3.29])
that does not give explicit upper bounds on the norm of the relevant sequence (in this case,
the term ∥g̃(p)∥q in (B.2.7)). A first step towards understanding the constant cp,q would
involve modifying the proof of this result to provide explicit bounds. However, one can
already deduce from the proof of Lemma B.2.2 that cp,q must blow up as q → p+, since the
sequence h̃(p) /∈ ℓp(N) (see (B.2.4)). Therefore, if part (b) of Theorem 6.3.3 were to hold
with q = p, its proof would require a different technique.

6.6.4 Proof of Theorem 6.3.4: unknown anisotropy, upper bound

As in the previous proof, we rely on Legendre polynomial expansions. Consider the setup
of §2.5 once more. In the previous proof, we made a judicious choice of index set S ⊂ F

181



depending on the term b and used it to define the sampling and reconstruction map that
gave the desired bound. In Theorem 6.3.4 we consider the case of unknown b. Recalling
the discussion in §6.4 (see also §2.4.5), we must proceed in a different way, in which the
sampling operator S and the reconstruction map R do not rely on a specific choice of S.
Fortunately, we can circumvent this issue by formulating a compressed sensing problem
(see, e.g., §3.6). Here, by using a suitable set of (random) measurements and a recovery
procedure, we can construct an approximation that gives us the desired error bounds.

First we restrict the search space to one that contains the union of all anchored sets,
which has the desirable property that it is itself a finite index set. Given n ∈ N, let Λ ⊂ F
be the index set defined in (2.4.21). This set contains all anchored sets of size at most
n [12, Prop. 2.18]. Recall from (5.5.4) that the size of this index set is bounded by

N := |ΛHCI
n | ≤ en2+log(n−1)/ log(2), ∀n ∈ N.

Given Λ and f with expansion (2.4.2), consider the truncated expansion of f based on the
index set Λ and its corresponding vector coefficients in VN as (2.5.2). Here, ν1, . . . ,νN is
some ordering of the multi-indices in Λ.

In this proof we also use the ℓp(F ; V)- and ℓp([N ]; V)-norms, as defined in §2.2.

Setup and the vector recovery problem

We now describe the sampling operator and reconstruction map that are used to establish
Theorem 6.3.4. Let A = 1/

√
m(ai,j)m,N

i,j=1 ∈ Rm×N , where the ai,j are independent Gaussian
random variables with zero mean and variance one. Note that the entries of A define the
random vector r by allocating each entry of A to an entry of r. Observe that this gives

r ∼ N (0, ImN ). (6.6.16)

Now let Φi,r : U → R, Φi,r = 1/
√
m
∑N

j=1 ai,jΨνj for i = 1, . . . ,m, where {Ψν}ν∈F are the
Legendre polynomials (see §2.4). We next define the sampling operator Sr : Y ⊂ L2

ϱ(U ; V) →
Vm by

Sr(f) =
(
⟨f,Φi,r⟩L2

ϱ(U)
)m

i=1
= f . (6.6.17)

Using the same argument as in the proof of Theorem 6.3.3 with Φi,r in place of Ψν , we
deduce that Sr is well-defined and satisfies Definition 6.1.2. Now, let cΛ ∈ VN be the vector
of coefficients of fΛ in (2.4.2). Then

Sr(f) = AcΛ.
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Next, we define Rr : Vm → L2
ϱ(U ; V) as the reconstruction map

Rr(v) =


∑

ν∈Λ ĉνΨν v ∈ Ran(A),

0 v /∈ Ran(A),
(6.6.18)

where Ran(A) is the range of A, the vector ĉΛ = (ĉν)ν∈Λ is defined by

ĉΛ = argmin
{

∥z∥2;V : z ∈ M(v,A)
}
,

and M(v,A) is the set of minimizers

M(v,A) = argmin
z∈VN

∥z∥1;V subject to Az = v.

Note that we make this slightly awkward-looking definition for Rr to ensure that it is a
well-defined (i.e., single-valued) map. In general, the minimization problem defined above
does not have a unique solution. Thus, we choose the solution with the minimal ℓ2-norm
to enforce uniqueness. Further, the problem has no solution if v /∈ Ran(A). Hence in this
case, we simply set Rr(v) = 0.

Note that the composition of this reconstruction map with the sampling operator Sr

gives that

Rr(Sr(f)) =
∑
ν∈Λ

ĉνΨν , where ĉΛ ∈ argmin∥z∥1;V subject to Az = f , (6.6.19)

and f is as in (6.6.17). Because of this setup, in order to prove Theorem 6.3.4, we first need
to consider properties of matrices A ∈ Rm×N , and consequently operators in B(VN ,Vm), to
recover (approximately) sparse vectors by solving the (Hilbert-valued) basis pursuit (BP)
problem

min
z∈VN

∥z∥1;V subject to Az = f , (6.6.20)

with f ∈ Vm. Specifically, we shall make use of the robust Null Space Property (rNSP).
Note that this is different to the weighted robust Null Space Property (wrNSP) defined in
§3.6.

Definition 6.6.5. A matrix A ∈ Rm×N satisfies the robust Null Space Property (rNSP) of
order 1 ≤ s ≤ N over VN with constants 0 < ρ < 1 and γ > 0 if

∥xS∥2;V ≤
ρ∥xSc∥1;V√

s
+ γ∥Ax∥2;V , ∀x ∈ VN ,

for any S ⊆ [N ] with |S| ≤ s.
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Recall that xS is the vector in VN with ith entry equal to xi if i ∈ S and zero otherwise.
The following result is a straightforward application of [95, Prop. 4.2]. It shows that the
rNSP is sufficient to provide an error bound for minimizers of the BP problem (6.6.20).

Theorem 6.6.6. Suppose that A ∈ Rm×N has the rNSP over V of order s ∈ [N ] with
constants 0 < ρ < 1 and γ > 0. Let x ∈ VN , f = Ax ∈ Vm. Then every minimizer x̂ ∈ VN

of the BP problem (6.6.20) satisfies

∥x − x̂∥1;V ≤ C1σs(x)1;V and ∥x − x̂∥2;V ≤ C2
σs(x)1;V√

s
, (6.6.21)

where C1 = 2(1 + ρ)/(1 − ρ), C2 = 2(1 + ρ)2/(1 − ρ).

Here σs(x)p;V is the ℓp-norm best s-term approximation error, as defined in (2.4.8).
Now consider a matrix A = 1/

√
m(ai,j)m,N

i,j=1, whose entries ai,j are independent Gaussian
random variables with zero mean and variance one. Then, following similar arguments to
those in Lemma 3.7.1 (or [12, Ch. 6] for the scalar case), one can show that if

m ≥ c ·
(
s · log(2N/s) + log(2ϵ−1)

)
, (6.6.22)

for some universal constant c > 0, then A satisfies rNSP over V of order s with constants
ρ ≤ 1/2 and γ ≤ 3/2 with probability at least 1 − ϵ (see [12, Thm. 6.11–6.12] for more
details).

Remark 6.6.7 We note in passing that the universal constant c in (6.6.22) can be es-
timated. However, its precise value plays a minor role in what follows. The discussion
in [12, §6.3.2] and the estimates in [112, Rmk. 9.28] suggests that in our case this constant
can be taken as c ≈ 80.098 · (2

√
2 + 1)2.

Error bounds in probability

To prove Theorem 6.3.4, we need to show an error bound in expectation. The first step
towards doing this is establishing an error bound in probability. This is given by the following
theorem.

Theorem 6.6.8. Let V be a Hilbert space, m ≥ 3, 0 < ϵ < 1, ϱ be the uniform probability
measure on U , Sr : Y → Vm and Rr : Vm → L2

ϱ(U ; V) be defined as in (6.6.17) and
(6.6.18), respectively, where Λ = ΛHCI

n is the index set in (2.4.21) with n = ⌈m/ log2(m)⌉,
and L = L(m, ϵ) = log2(m) + log(2ϵ−1). Then the following hold.

a) With probability at least 1 − ϵ,

sup
f∈H(b)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V) ≤ C̃(b, p) ·

(
m

L

)1/2−1/p

,
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for all b ∈ ℓpM(N), b ≥ 0, and 0 < p < 1.

b) With probability one,

sup
f∈H(b)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V) ≤ C̃(b, p),

for all b ∈ ℓp(N), b ≥ 0, and 0 < p < 1.

Here the constant C̃(b, p) depends on b and p only.

Proof. We first prove part (b). Using triangle inequality and Parseval’s identity we obtain

∥f−Rr(Sr(f))∥L2
ϱ(U ;V) ≤ ∥f∥L2

ϱ(U ;V)+∥Rr(Sr(f))∥L2
ϱ(U ;V) = ∥c∥2;V+∥ĉΛ∥2;V , ∀f ∈ H(b).

Using the inequality ∥c∥2;V ≤ ∥c∥1;V and the fact that ĉΛ is a minimizer of (6.6.19), we get

∥ĉΛ∥2;V ≤ ∥ĉΛ∥1;V ≤ ∥cΛ∥1;V ≤ ∥c∥1;V .

Let b ∈ ℓp(N), b ≥ 0, and f ∈ H(b). Lemma B.2.1 implies that the Legendre coefficients
satisfy

∥c∥1;V ≤ ∥c∥p;V ≤ C(b, p),

where C(b, p) is the constant of this lemma. Therefore, taking the supremum over f ∈ H(b)
we get

sup
f∈H(b)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V) ≤ 2C(b, p). (6.6.23)

We give the final bound for part (b) after defining C̃(b, p) in (6.6.25).
We now prove part (a). Let A ∈ Rm×N be the random matrix used in the construction

of Sr and recall that A extends to a bounded linear operator A : VN → Vm given by
(2.5.3). Let

s =
⌊

m

18c · L(m, ϵ)

⌋
,

where c > 0 is the constant in (6.6.22). We now assume that s ≥ 1, which is equivalent to
m/(18c ·L(m, ϵ)) ≥ 1. We show part (a) with the assumption s < 1 at the end of the proof.
From the estimate for N in (2.4.23) we get

log(2N/s) ≤ log(eN) ≤ log(e2n2+log(n)/ log(2)) ≤
(

2 + log(n)
log(2)

)
log(en) ≤ 2(log(en))2.
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Hence

s · log(2N/s) + log(2ϵ−1) ≤ s · (2(log(en))2 + log(2ϵ−1))

≤ 18s · (log2(m) + log(2ϵ−1))

≤ 18s · L(m, ϵ).

Here we use n ≤ 2m in the second inequality combined with log(2em) ≤ 3 log(m) (since
m ≥ 3) in the second inequality. Now, using (6.6.22) and the definition of s, we deduce that,
with probability 1 − ϵ the matrix A has the rNSP over V of order s with constants ρ ≤ 1/2
and γ ≤ 3/2.

Next, we derive a bound for the approximation error. Using the triangle inequality we
get

∥f − Rr(Sr(f))∥L2
ϱ(U ;V) ≤ ∥f − fΛ∥L2

ϱ(U ;V) + ∥fΛ − Rr(Sr(f))∥L2
ϱ(U ;V).

Now, Parseval’s identity gives

∥fΛ − Rr(Sr(f))∥L2
ϱ(U ;V) = ∥cΛ − ĉΛ∥2;V ,

where ĉΛ is as in (6.6.19). Since A has the rNSP over V, we may apply Theorem 6.6.6 to
get

∥fΛ − Rr(Sr(f))∥L2
ϱ(U ;V)≤ C2

σs(cΛ)1;V√
s

≤ 9σs(cΛ)1;V√
s

.

This last inequality is due to the fact that ρ ≤ 1/2 in Theorem 6.6.6. Then, using Corollary
B.2.3 with q = 1 > p we get

σs(cΛ)1;V√
s

≤ σs(c)1;V√
s

≤ C(b, p) · s1/2−1/p, ∀f ∈ H(b), b ∈ ℓp(N), b ≥ 0.

Now let b ∈ ℓpM(N), b ≥ 0, f ∈ H(b) and consider the term ∥f − fΛ∥L2
ϱ(U ;V). By applying

Corollary B.3.3 with q = 2 > p, we get that there exists an anchored set SA ⊂ F with
|SA| ≤ n such that

∥c − cSA∥2;V ≤ CA(b, p) · n1/2−1/p,

where the constant CA(b, p) is as in (B.3.3). Using the definition of Λ given in (2.4.21), we
know that it contains the union of all anchored sets of size n and therefore SA ⊆ Λ. This
yields

∥f − fΛ∥L2
ϱ(U ;V) = ∥c − cΛ∥2;V ≤ ∥c − cSA∥2;V ≤ CA(b, p) · n1/2−1/p, ∀f ∈ H(b).

Combining these two results, noticing that s ≤ n and using the definition of s we get

∥f − Rr(Sr(f))∥L2
ϱ(U ;V) ≤ C̃(b, p) ·

(
m

L

)1/2−1/p

, ∀f ∈ H(b) (6.6.24)
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and all b ∈ ℓpM(N), b ≥ 0, as required. Here the constant

C̃(b, p) = 9(18c)1/p−1/2C(b, p) + CA(b, p), (6.6.25)

depends on b and p only. Notice that, the inequality 2C ≤ C̃ and (6.6.23) give the final
bound for part (b).

Finally, we prove the case s < 1, i.e., m < 18c · L(m, ϵ). Since p < 1, we have

1 <
(

m

18c · L

)1/2−1/p

.

From part (b) we deduce that

sup
f∈H(b)

∥f−Rr(Sr(f))∥L2
ϱ(U ;V) ≤ 2C(b, p)

(
m

18c · L

)1/2−1/p

= (18c)1/p−1/22C(b, p)
(
m

L

)1/2−1/p

,

where C is the constant from Lemma B.2.1 and c > 0 the constant in (6.6.22). The result
now follows immediately by noticing that (18c)1/p−1/2·2C ≤ C̃, where C̃ is as in (6.6.25).

Proof of Theorem 6.3.4. Let Sr, Rr be as in Theorem 6.6.8 and set

ϵ =
(

m

log2(m)

)1/2−1/p

< 1. (6.6.26)

Recall that the random vector r is defined by (6.6.16), where N = |Λ|. Since Λ = ΛHCI
n

and n = ⌈m/ log2(m)⌉, we deduce that there exists an ℓ = ℓ(m) depending on m only such
that r ∼ N (0, Iℓ). In particular, ℓ(m) = m · |ΛHCI

n |. Next, using the definition of θm(p,M)
in (6.1.5), notice that the following holds:

θm(p,M) ≤ Er∼N (0,Iℓ) sup
f∈H(p,M)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V).

We now prove part (a). Let L(m, ϵ) be as in Theorem 6.6.8. Sincem ≥ 3, we have log(m) > 1.
Therefore

L(m, ϵ) ≤ log2(m) + log(2) + (1/p− 1/2) log(m) ≤ (1/2 + log(2) + 1/p) log2(m) =: cp log2(m),

where ϵ is as in (6.6.26). Now let E be the event

E =

 sup
f∈H(b)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V) ≤ C(b, p) ·

(
m

log2(m)

)1/2−1/p

, ∀b ∈ ℓpM(N), b ≥ 0, 0 < p < 1

 ,
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where C(b, p) = (cp)1/p−1/2 · C̃(b, p) and C̃(b, p) is the constant in Theorem 6.6.8. Then
Theorem 6.6.8 implies that P(Ec) ≤ ϵ. Hence

Er∼N (0,Iℓ) sup
f∈H(b)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V)

= E
(

sup
f∈H(b)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V)

∣∣∣E)+ E
(

sup
f∈H(b)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V)

∣∣∣Ec

)

≤ C(b, p) ·
(

m

log2(m)

)1/2−1/p

+ C̃(b, p) · ϵ

≤ 2C(b, p) ·
(

m

log2(m)

)1/2−1/p

.

This completes the proof of part (a).
We now prove part (b). Let Sr, Rr be as in Theorem 6.6.8 with ϵ as in (6.6.26). Using

Theorem 6.6.8 part (a) we get that P(Ẽ) ≥ 1 − ϵ, where

Ẽ =
⋂

b∈ℓq
M(N),b≥0
0<q<1

 sup
f∈H(b)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V) ≤ C(b, q) ·

(
m

log2(m)

)1/2−1/q
 ,

and

C(b, q) = (cq)1/q−1/2 · C̃(b, q) = 9
(

18c
(1

2 + log(2) + 1
q

))1/q−1/2
(C(b, q) + CA(b, q)) ,

where c is the constant in (6.6.22).
Note that C(b, q) is the constant in Lemma B.2.1 and CA(b, q) is the constant in Lemma

B.3.1, both with q instead of p. Then, since q > p, applying Lemma B.2.2 and Lemma B.3.2
we obtain the following uniform bound for C(b, q):

sup
∥b∥p,M≤1

C(b, q) ≤ 9
(

18c
(1

2 + log(2) + 1
q

))1/q−1/2
(

sup
∥b∥p,M≤1

C(b, q) + sup
∥b∥p,M≤1

CA(b, q)
)

≤ cp,q,

where cp,q is a positive constant depending on p and q only. Next, recall that

H(p,M) =
⋃

{H(b) : b ∈ ℓpM(N), b ≥ 0, ∥b∥p,M ≤ 1}.
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Since q > p, any b ∈ ℓpM(N) satisfies b ∈ ℓqM(N). Therefore

Ẽ ⊆
⋂

b∈ℓp
M(N),b≥0

∥b∥p,M≤1
0<p<q<1

 sup
f∈H(b)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V) ≤ C(b, q) ·

(
m

log2(m)

)1/2−1/q


⊆
⋂

b∈ℓp
M(N),b≥0

∥b∥p,M≤1
0<p<q<1

 sup
f∈H(b)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V) ≤ cp,q ·

(
m

log2(m)

)1/2−1/q
 =: E.

Therefore P(E) ≥ P(Ẽ) ≥ 1 − ϵ and by using a similar argument to that of part (a) we
obtain

Er∼N (0,Iℓ) sup
f∈H(p,M)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V)

= E
(

sup
f∈H(p,M)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V)

∣∣∣E)+ E
(

sup
f∈H(p,M)

∥f − Rr(Sr(f))∥L2
ϱ(U ;V)

∣∣∣Ec

)

≤ cp,q ·
(

m

log2(m)

)1/2−1/q

+ cp,q · ϵ ≤ 2cp,q ·
(

m

log2(m)

)1/2−1/q

,

where cp,q is a constant depending on p and q only. To complete the proof, we need to
remove the log2(m) factor from the error bound. However, this follows immediately (up to
a possible change in the constant) since q ∈ (p, 1) was arbitrary.

6.7 Conclusions

This chapter introduced new theoretical guarantees for the limits of approximating Banach-
valued, (b, 1)-holomorphic functions in infinite dimensions from finite data, where b ∈ ℓp(N),
0 < p < 1. Specifically, in Theorems 6.3.1–6.3.4 we established new lower and upper bounds
for various (adaptive) m-widths in both the known and unknown anisotropy cases. As we
showed, when these bounds are decaying, they do so at a rate close to m1/2−1/p.

Before answering Question 8 of §1.6 we provide a summary of the results.

1. We demonstrated that optimal recovery is attainable for functions in the monotone
case, i.e., b ∈ ℓpM(N) with an algebraic decay with respect to the number of samples
m.

2. For functions in H(b), the best decay rate of the m-width θm(b) in terms of the number
of samples m is the same as that of the best m-term approximation error σm(b)2.

189



3. The rate m1/2−1/p is sharp when considering all possible (unit-norm) b ∈ ℓpM(N).
However, the type of b that achieves this bound corresponds to the class of functions
in H(b) that is completely isotropic.

4. A nearly sharp lower bound of m1/2−1/p can be achieved for a fixed and m-independent
b ∈ ℓp(N), but dependent on a nondecreasing function

5. Approximating a Banach-valued, (b, 1)-holomorphic function from limited data is im-
possible without any prior information on the variables, i.e., in the space H(p), in
which b is unknown and b ∈ ℓp(N) only. Specifically, the m-width θm(p) does not
decay as m → ∞.

6. In contrast, when considering functions in H(p,M), the best possible rate of decay of
the corresponding m-width θm(p,M) is m1/2−1/p.

7. In the case of a known fixed sequence b ∈ ℓp(N), the rate m1/2−1/p can be achieved
by a specific sampling-recovery pair (S,R) up to a constant depending on b.

8. Moreover, the same sampling-recovery pair (S,R) yields a bound that holds uniformly
for all b ∈ ℓpM(N) and achieves a rate m1/2−1/t for arbitrary t > p in the case of known
anisotropy.

9. There is a random sampling-recovery pair (S,R) that is independent of b and p that
achieves the upper bound (m/ log2(m))1/2−1/p but with a constant depending on b in
the case of unknown anisotropy.

10. The same sampling-recovery pair (S,R) yields a bound that holds uniformly for all
b ∈ ℓpM(N) and achieves a rate m1/2−1/t for arbitrary t > p in the case of unknown
anisotropy.

We now answer Question 8 of §1.6.

Answer to Question 8
Yes, the approximation rates derived in answering Questions 1–5 are near-optimal.

Note that this chapter does not consider algorithms achieving these rates, but ‘reconstruc-
tion maps’ involving minimizers of certain convex optimization problems. For a more de-
tailed exploration using algorithms or DL to achieve rates of the form (m/polylog(m))1/2−1/p

we refer to Chapter 4 and Chapter 5.

6.8 Future work

There are several other promising directions for future research.
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• As mentioned there are a variety of methods that can achieve an approximation error
decay rate of (m/polylog(m))1/2−1/p for (b, ϵ)-holomorphic functions. For instance, in
Chapters 3–5 we achieve an upper bound for the approximation error in the Hilbert-
valued case for each b ∈ ℓpM(N) using i.i.d. pointwise samples, i.e., standard information
as it is commonly termed [211,212]. As discussed therein, the results shown in Chap-
ters 3–5 are nonuniform guarantees, since the decay rates obtained from i.i.d. samples
hold for a fixed function f . On the other hand, the results shown in this chapter are
uniform, and therefore stronger, since they hold for any function belonging to the
given class. However, our upper bounds do not consider pointwise samples. Ongoing
work involves showing uniform guarantees (and therefore optimal approximation) for
infinite-dimensional, holomorphic functions from i.i.d. pointwise samples. See [17] for
recent work in this direction.

• As shown in part (b) of Theorems 6.3.3 and 6.3.4, our upper bounds for θm(p,M) and
θm(p,M) are non-sharp in comparison to the lower bounds shown in Theorems 6.3.1
and 6.3.2 by an algebraic factor that can be made arbitrarily small. We conjecture
that this gap can be closed. A possible route towards doing so involves showing that
the constant C(b, p) in Lemma B.2.2 and CA(b, p) in Lemma B.3.2 can be bounded
uniformly for b ∈ ℓpM(N) with ∥b∥p,M ≤ 1.

• In the case of known anisotropy, Theorem 6.3.1 part (b) establishes that approximation
from finite data is possible, even for the worst case of b ∈ ℓp(N) with unit norm,
i.e., there is a lower bound for θm(p) with a rate of m1/2−1/p. Nonetheless, Theorem
6.3.3 part (b) does not provide an analogous upper bound for θm(p). As a result, it is
interesting to bridge this gap. Ongoing work involves showing a uniform upper bounds
for all b belonging to the unit ball of the space ℓp(N). See [17] for recent work in this
direction.

• It is an open problem to extend Theorem 6.3.3 and Theorem 6.3.4 to the Banach-
valued case. While the analysis in Chapter 5 indicates that such an extension is pos-
sible, using it would result in a worse exponent 1/2(1 − 1/p) (or 1/2(1 − 1/q)) in the
unknown anisotropy case or 2−1/p (or 2−1/q) in the known anisotropy case, in place
of 1/2 − 1/p (or 1/2 − 1/q), which is suboptimal. Proving that the same rates can
be achieved in the Banach-valued case would close a key theoretical gap observed in
Chapter 5 between approximating holomorphic Hilbert- and Banach-valued functions.

• Finally, it remains an open problem to derive bounds in the L∞(U ; V)-norm instead of
the L2

ϱ(U ; V)-norm. The approximation theory of parametric PDEs is well studied in
the L∞(U ; V)-norm. Yet our proof strategy for the lower bounds on the m-widths relies
on using the L2

ϱ(U ; V)-norm. We note that the best s-term polynomial approximation
attains rates of the form s1−1/p in this norm. We therefore conjecture that versions of
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our main theorems hold in this norm, except with an exponent of 1 − 1/p (or 1 − 1/q)
in place of 1/2 − 1/p (or 1/2 − 1/q).
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Chapter 7

Numerical approximation to
parametric PDEs using DNNs

Up to this point in this thesis, we have conducted an in-depth theoretical study of ap-
proximating Banach-valued, holomorphic functions from pointwise samples. In particular
Chapter 5 provides practical existence theorems that offer a theoretical justification for us-
ing DL in scientific computing, and Chapter 6 shows that the rates attained are essentially
optimal. These theorems set a theoretical goal to achieve in practice, in terms of approxima-
tion errors, by demonstrating the existence of potentially effective architectures and training
procedures for learning a holomorphic function from a limited number of sample points m.
This chapter focuses on the practical aspects of DNNs for approximating smooth functions.
Specifically, we implement various DNN architectures to approximate Hilbert- and Banach-
valued functions that arise as solutions to parametric PDEs. Additionally, we study how the
approximation, with respect to the given sample values, improves as we increase the number
of samples. Section §7.1 introduces the key preliminary considerations for this chapter. In
§7.2, we present the setup for the DNN approximation, including a detailed description of
the methodology and the problem statement. In §7.3 we present the contributions of this
chapter. Section §7.4 introduces the parametric PDE problems and provides a description of
the parametric coefficients used. In §7.5, we describe the numerical results obtained, and in
§7.6 , we provide additional general discussion on these results. Finally, in §7.7, we answer
Questions 6–7 of §1.6.

7.1 Preliminaries

In Chapter 5, we constructed DL procedures that, in light of the main results from Chap-
ter 6, are near-optimal for Hilbert-valued functions. However, as discussed, these procedures
are based on emulating polynomial-based methods. These are of limited practical utility
since DL aims to surpass the performance of these traditional methods, thereby making
traditional methods less desirable for practical applications.
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Specifically, the methods in Chapter 5 rely on handcrafted architectures where only the
final layer is trained, and they utilize nonstandard loss functions involving explicit regular-
ization. Therefore, evaluating how standard DL procedures–where all layers are trained, and
the loss function is the standard ℓ2-loss—perform in practice is key. Theoretical analysis of
this case is beyond the scope of this work. Instead, we focus on the practical implementation
and performance of DL on a series of challenging parametric DE problems.

7.2 Setup

It is important to note that we will use the standard notation u to refer to the function
to be approximated (the solution) when specifically discussing the solution of parametric
DEs, instead of f . Now we briefly recall the setup from §2.6. Let K, d, L ∈ N. The goal is to
approximate a given function u : U → V, where U is the parameter space and V is a Banach
or Hilbert space. Here {φk}K

k=1 represents a basis of the finite-dimensional space VK ⊂ V,
e.g., a FE basis.

7.2.1 Deep neural network approximation

The approximation is achieved by constructing a fully connected feedforward DNN Φ :
Rd → RK with L hidden layers, each with a constant width N ∈ N, such that

u(y) =
K∑

k=1
ck(y)φk ≈ uΦ(y) =

K∑
k=1

(Φ(y))kφk, (7.2.1)

where the coefficients ck : U → R are scalar-valued functions as in (5.1.2).
Given u, we compute a DNN approximation from the samples {(yi, u(yi))}m

i=1 by mini-
mizing a loss function L : N → R, where N is a family of DNNs of a chosen architecture.
A common practice choice is to choose the ℓ2-loss function

L(Φ) := 1
m

m∑
j=1

(
K∑

k=1
(Φ(yj)k − ck(yj))2

)
, Φ ∈ N . (7.2.2)

Here, ck are the coefficients defined in (7.2.1).

7.2.2 Methodology

In this section, we outline the general implementation details to ensure reproducibility
and clarity and detail the methodology, including the choice of DNN architecture, training
procedure, and evaluation metrics. We highlight any modifications made to the standard
DNN setup to suit the numerical approximation of each parametric DE. Our experiments
consist of three different PDEs: (i) a Poisson problem, (ii) a Navier-Stokes-Brinkman (NSB)
problem, and (iii) a Boussinesq problem. We describe these in detail in §7.4.
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We now summarize the main methodology:

(i) Choice of architectures and initialization. Based on the strategies in [16], we
fixed the number of nodes per layer N and depth L such that the ratio β := L/N is
β = 0.5. We restrict our analysis to the Rectified Linear Unit (ReLU)

σ1(z) := max{0, z},

hyperbolic tangent (tanh)

σ2(z) := ez − e−z

ez + e−z
,

or Exponential Linear Unit (ELU)

σ3(z) =

z z > 0,

ez − 1 z ≤ 0

activation function. Additionally, we use TensorFlow’s He uniform initializer, which
initializes the weights by drawing samples from a uniform distribution within the range
determined by the He initialization scheme. We also set the seed for the random num-
ber generator. By providing a seed, the initialization process becomes deterministic,
meaning that each time the code runs with the same seed value, the same initial
weights will be generated.

(ii) Training data and design of experiments. First, we define a trial as a complete
training run for a DNN approximating a specific function, initialized as mentioned
above.

We run several trials solving the problem:

Given the measurements {(yi, u(yi))}m
i=1, approximate a smooth function u.

Each of our architectures is trained across a range of datasets with increasing sizes.
This involves utilizing a set of training data consisting of values {(yi, u(yi))}mk

i=1, where
mk denotes the size of the training data and belongs to the set {m1,m2, . . . ,mfinal}.
Here, each u(yi) is generated by computing the solution of the parametric PDE at
points drawn randomly and independently from the uniform measure {yi}mfinal

i=1 ⊂ U ,
and mfinal represents a large number of total training points available for each trial,
e.g., mfinal = 500. Subsequently, for each trial we calculate the minimum testing error
and run statistics across all trials for each dataset.

To be more specific, for each experiment we consider training with 14 sets of points
of size mi ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500}, and for 9 different
architectures (4 × 40, 5 × 50 and 10 × 100 with ReLU, ELU and tanh activation
functions) over two dimensions (d = 4 and d = 8) and two PDE coefficients (a1 from
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(7.4.1) and a2 from (7.4.2)). This setup results in 504 DNNs to be trained for each
trial.

In this thesis we run experiments over 8 or 12 trials per solution depending on the
PDE. That is, for 12 trials we trained and tested a total of 6,048 NNs per component
of the solution of a PDE. For 8 trials we run a total 4,032 NNs per component of the
solution of a PDE.

(iii) Implementation. The software employed for conducting our numerical experiments
depends on the implementation of the open-source FE library FEniCS, specifically
version 2019.1.0 [25], and Google’s Tensorflow version 2.12.0. More information about
Tensorflow at https://www.tensorflow.org/. The main code and instructions for
running it on a local machine are accessible on GitHub via https://github.com/

Sebanthalas/MLSPDE.

(iv) Hardware. We conducted most of our computations in single precision, utilizing the
Intel Xenon Processor E5-2683 v4 CPU with either 125GB or 250GB of RAM per
node available on the Compute Canada Cedar compute cluster provided by Simon
Fraser University as a member of the Digital Research Alliance of Canada (https:

//alliancecan.ca).

The procedure for training and testing the DNN in the case of 12 trials is as follows:
We first set up the architecture, the sample size mi, dimension d and the PDE. Once
these parameters are established, we conduct a total of 12 trials per experiment. We
then submit a job array to the cluster (also known as a task array or an array job),
dividing the 12 trials into threads of 3 trials each. That is, each thread is responsible
for training and testing, linearly, 3 trials on a single core. Tables 7.1 and 7.2 illustrate
this distribution for the experiments: Node 1, Thread 1 runs trials 1, 5, and 9; Node 1,
Thread 2 runs trials 2, 6, and 10; Node 1, Thread 3 runs trials 3, 7, and 11; and Node
1, Thread 4 runs trials 4, 8, and 12. These tables also details the maximum memory
used and the wall time for the thread. For the experiments over 8 trials we follow a
similar idea, but only with 8 trials divided into threads of 2 trials. See Table 7.3 for
an illustration.

Under normal circumstances, the training and testing would be carried out on faster,
specialized GPUs, i.e., Cedar’s Tesla P100 GPUs. However, during the experiments, we
used Cedar’s CPUs due to usage limitations and undergoing infrastructure upgrades
on its Cedar clusters. This meant that the training and testing of each DNN took
longer. However, one can take advantage of the large amount of CPUs available on
Cedar’s clusters and run the experiments in parallel reducing the total training and
testing time. For more details on this incident, see https://status.alliancecan.

ca/view_incident?incident=1100.
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(v) Optimizers for training and parametrization. To train the DNN, we utilize the
Adam optimizer [164], incorporating an exponentially decay learning rate. We train our
model for 60,000 epochs or until converging to a tolerance level of ϵtol = 5 · 10−7 in
single precision. In light of the nonmonotonic convergence behaviour observed during
the minimization of the nonconvex loss (see, e.g., [7, 16]), we implement an early
stopping strategy. More precisely, we save the weights and biases of the partially
trained DNN once the ratio between the current loss and the last checkpoint loss is
reduced below 1/8 or if the current weights and biases produce the best loss value
observed in training. We then restore these weights after training only if the loss value
of the current weights is larger than that of the saved checkpoint.

(vi) Testing data and error metric. The testing data is generated similarly to the
training data, obtaining solutions at different points yi ⊂ U for i = 1, . . . ,mtest.
However, the testing data is generated by using a deterministic high-order sparse grid
collocation method [209]. In particular, we use sparse grid quadrature rules to compute
approximations to the Bochner norms

∥u∥L2
ϱ(U ;V) =

(∫
U

∥u(y)∥2
V dϱ(y)

)1/2
≈
(

mtest∑
i=1

∥u(yi)∥2
Vwi

)1/2

,

where ϱ is the measure defined in (2.2.4), using the approximation formula to the
L2

ϱ(U ; V) relative error

etest
u =

(∑mtest
i=1 ∥uh(yi) − uΦ(yi)∥2

Vwi
)1/2(∑mtest

i=1 ∥uh(yi)∥2
Vwi

)1/2 ,

where wi are the quadrature weights associated with the sparse grid rule. As mentioned
in [7] we use a high order isotropic Clenshaw Curtis sparse grid quadrature, since this
method shows a superior convergence over Monte Carlo integration to evaluate the
global error in Bochner spaces. The sparse grid rule gives mtest points at a level ℓ for d
dimensions. We rely on the TASMANIAN sparse grid toolkit [242–244] for the generation
of the isotropic rule to study the generalization performance of the DNN.

(vii) Visualization. The graphs in Figs. 7.5–7.22 show the geometric mean (the main
curve) and plus/minus one (geometric) standard deviation (the shaded region). We
use the geometric mean because our errors are plotted in logarithmic scale on the
y-axis. See [12, Appx. A.1] for further discussion about this choice.

(viii) Resources. For the Poisson and Navier-Stokes-Brinkman PDEs, we run 12 trials.
For the Boussinesq problem, we run 8 trials due to the larger problem size. In Tables
7.1–7.3 we show the maximum computational resources used per node for the most
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demanding architecture in each problem. That is, mi = 500 (samples), d = 8, a = a1

(coefficient), σ = σ2 (activation function) and L = 10 (number of layers).

– For the Poisson problem we used 504 nodes with 1×32 core CPUs (totaling 2016
threads, 6.8 GB RAM per node) each running 3 trials, approximately 4 hours
and 15 minutes to complete.

– For the Navier-Stokes-Brinkman PDE we use the same setup, allocating 9.88 GB
of RAM per node. The runs take approximately 9 hours and 13 minutes for each
of the two components of the solution to complete.

– For the Boussinesq PDE, we allocate 504 nodes with 1×32 core CPUs running 4
threads per node (totaling 2016 threads, 10 GB of RAM per node) each running
2 trials, approximately 12 hours and 32 minutes for each of the 3 components to
complete.

Given this, the total time required to reproduce the results in parallel having 504
nodes available with the above setup is approximately 60 hours or 2.5 days. The
results were stored locally on the cluster and the estimated total space used to store
the data for testing and training and results from computation is approximately 70
GB of memory. The trained models were not retained due to space limitations on the
cluster.

Poisson equation - Maximum resources requested - per data point
Node Trials RAM (GB) CPU (hrs:min) wall time (hrs:min)

Thread 1 1,5,9 1.734 4:00 4:14
Thread 2 2,6,10 1.737 4:04 4:15
Thread 3 3,7,11 1.748 3:47 4:00
Thread 4 4,8,12 1.672 3:43 4:00

Table 7.1: Shows the maximum requested and used resources for the Poisson problem for a single
data point trought 12 different trials.

NSB problem - Maximum resources requested - per data point
Node Trials RAM (GB) CPU (hrs:min) wall time (hrs:min)

Thread 1 1,5,9 2.53 9:01 9:11
Thread 2 2,6,10 2.57 9:04 9:13
Thread 3 3,7,11 2.53 9:01 9:12
Thread 4 4,8,12 2.49 9:02 9:12

Table 7.2: Shows the maximum requested and used resources for the NSB problem for a single data
point trought 12 different trials.
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Boussinesq problem - Maximum resources requested - per data point
Node Trials RAM (GB) CPU (hrs:min) wall time (hrs:min)

Thread 1 1,5 1.933 11:44 11:51
Thread 2 2,6 1.922 12:17 12:23
Thread 3 3,7 1.918 12:24 12:31
Thread 4 4,8 1.932 12:25 12:32

Table 7.3: Shows the maximum requested and used resources for the Boussinesq problem for a single
data point trought 8 different trials.

7.3 Contributions

Keeping this methodology in mind, we now formally define the contributions of this chapter.
We divide this into three key constributions.

1. We use DL to approximate the solutions of three specific parametric PDEs. First,
based on a mixed formulation, we approximate the solution to a diffusion equation
whose solution u is (b, ϵ)-holomorphic and Hilbert-valued. Second, we approximate the
solution to a NSB problem in two dimensions, whose weak solution is Banach-valued.
Third, we test DNNs approximating a coupled problem in 3D based on a Boussinesq
approximation whose solution is also Banach-valued.

2. We provide insight into the practical approximation capabilities of DL with respect to
the number of samples m for those parametric DEs. Specifically, we compare different
architectures approximating these solutions and plot their results on a log-log plot to
compare their approximation rate of decay as we increase the number of samples.

3. Differing from more standard variational formulations in Hilbert spaces, we show that
mixed variational formulations (which offer several advantages to problems that are
naturally posed in Banach spaces) can be combined with DL to provide practical im-
plementations for approximating challenging PDEs.

7.4 Main formulations

In this section, we introduce three parametric PDE problems whose solutions we aim to
approximate using DL. As mentioned in §7.3, the first problem involves approximating a
Hilbert-valued solution of a parametric diffusion equation with a physical domain in R2

using a mixed formulation, to which the theory developed in Chapter 5 applies. The second
problem involves learning the solution to a parametric PDE with a Banach-valued solution,
which serves to explore the performance of DL on parametric PDEs with mixed boundary
conditions. Finally, we use DNNs to approximate the solution of a parametric PDE from
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fluid mechanics with a physical domain in R3 and with three functions of interest, two
of which are Banach-valued. These examples are particularly relevant to problems with
stochastic coefficients, such as unexpected variations in the diffusion coefficient or randomly
changing viscosity in fluid dynamics, which are among our main motivating problems (see
§1.2). In this section we provide a brief summary of these formulations.

7.4.1 The parametric coefficients

As mentioned in §2.3.1, we study scenarios where the uncertainty arises as stochastic coef-
ficients in a given parametric DE, which can be effectively modeled by using affine repre-
sentations. Let Ω as the physical domain of a given PDE. Our experiments first consider
the following affine diffusion coefficient

a1(x,y) = 2.62 +
d∑

j=1
yj

sin(πx1j)
j3/2 , ∀x ∈ Ω, ∀y ∈ [−1, 1]d. (7.4.1)

Next, we consider a coefficient that arises from a Karhunen-Loève expansion (see §2.3.1),
which is a modification of the example from [209] of a diffusion coefficient with one-
dimensional (layered) spatial dependence given by

a2(x,y) = exp

1 + y1

(√
πβ

2

)1/2

+
d∑

i=2
ζi ϑi(x) yi

 (7.4.2)

ζi := (
√
πβ)1/2 exp

−
(⌊

i
2

⌋
πβ
)2

8

 , ϑi(x) :=

 sin
(⌊

i
2

⌋
πx1/βp

)
, if i is even,

cos
(⌊

i
2

⌋
πx1/βp

)
, if i is odd,

for x ∈ Ω and y ∈ [−1, 1]d. Here we let βc = 1/8, and βp = max{1, 2βc}, β = βc/βp.
In order to implement the coefficients defined above we truncate them to a parameter
dimension d = 4, 8.

7.4.2 The parametric diffusion equation

We commence with a well known elliptic parametric boundary value problem. Let Ω ⊂ R2

be a bounded Lipschitz domain, ∂Ω be the boundary of Ω, f ∈ L2(Ω;R) and g ∈ H1/2(∂Ω).
See §A.2 for further details on the space H1/2(∂Ω).

Given y ∈ U consider the linear elliptic equation with Dirichlet boundary conditions

−div(a(x,y)∇u(x,y)) = f(x), in Ω,

u(x,y) = g(x), on ∂Ω.

Here, the parameters are in U = [−1, 1]d, the coefficient a(x,y) is parametric, the term f(x)
is nonparametric and g(x) is nonparametric as well. With a slight abuse of notation, we
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sometimes switch between the notation u(·,y) and u(y) when referring to the parametric
solution map y 7→ u(·,y).

The mixed variational formulation

Our first step in precisely defining the problem is to identify sufficient conditions on y 7→
a(y) for the map y 7→ u(y) to be well-defined. To do this, we turn our attention to the
mixed variational formulation of the elliptic problem in (A.2.3) (see also (7.4.4)–(7.4.5)
below). Using a mixed formulation to study the solution of PDEs offers several benefits.
One key advantage is that it allows us to introduce additional variables that can be of
physical interest. Additionally, mixed formulations can naturally accommodate different
types of boundary conditions and introduce Dirichlet boundary conditions directly into the
formulation rather than imposing them on the search space. For further details on mixed
formulations, we refer to [114] and references within.

Assume that there exists r,M > 0, independent of y such that

0 < r ≤ ess inf
x∈Ω

a(x,y) = amin(y), and amax(y) = ess sup
x∈Ω

a(x,y) ≤ M, ∀y ∈ U . (7.4.3)

Then, based on the analysis in §A.2, the problem can be stated as a first-order system:
given y ∈ U , find (σ, u)(y) ∈ H(div; Ω) × L2(Ω) such that

da(y)(σ(y), τ ) + b(τ , u(y)) = G(τ ), ∀τ ∈ H(div; Ω), (7.4.4)

b(σ, v) = F (v), ∀v ∈ L2(Ω). (7.4.5)

Here d and b are the bilinear forms defined by

da(y)(σ, τ ) =
∫

Ω
a−1(y)σ · τ , ∀(τ ,σ) ∈ H(div; Ω) × H(div; Ω)

b(τ , v) =
∫

Ω
div(τ )v, ∀(τ , v) ∈ H(div; Ω) × L2(Ω)

and the functionals G ∈ (H(div; Ω))′ and F ∈ L2(Ω) are defined by

F (v) = −
∫

Ω
fv, ∀v ∈ L2(Ω), and G(τ ) = ⟨γ(τ ) · n, g⟩1/2,∂Ω, ∀τ ∈ H(div; Ω). (7.4.6)

Well-posedness and holomorphy

Given y ∈ U , f ∈ L2(Ω;R) and g ∈ H1/2(∂Ω), consider a parametric coefficient a ∈
L∞(U ; L∞(Ω;R)) as in (2.3.4) such that (7.4.3) holds. Then Theorem A.2.1 shows that the
mapping y 7→ (σ, u)(y) ∈ H(div; Ω) × L2(Ω) is well-defined. Moreover, Proposition A.3.2
shows that it admits a holomorphic extension to a certain complex region.
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For intance, consider the convergent affine representation (7.4.1). Observe that the con-
dition (A.3.3) in Proposition A.3.3 holds with M = 2.7 and

∣∣∣∑
j∈N

yj
sin(πx1j)
j3/5

∣∣∣ ≤
∑
j∈N

1
j3/5 ≈ 2.61238 = 2.62 − r, (7.4.7)

for some r < 0.00762. Then, the Hilbert-valued Poisson problem with coefficient a1,
f ∈ L2(Ω;R) and g ∈ H1/2(∂Ω) analyzed via the mixed formulation (7.4.4)–(7.4.5) is well
defined, and for each y ∈ U , there exists a unique solution (σ, u)(y) ∈ H(div; Ω) × L2(Ω).
Furthermore, let ρ ≥ 1 and 0 < ϵ < 0.00762 be such that (A.3.4) holds with ψj =
sin(πx1j)/j3/2. Then, the mapping y 7→ (σ, u)(y) admits a holomorphic extension to an
open set containing Eρ, where Eρ is the filled-in Bernstein polyellipse defined in (A.3.4).
In other words, the mapping y 7→ (σ, u)(y) is (b, ε)-holomorphic for 0 < ϵ < 0.00762 and
b = (bi)i∈N given by bj = ∥ sin(πj·)/j3/2∥L∞(Ω) = j−3/2.

Remark 7.4.1 Observe that when solving the Poisson problem with affine coefficient a1 we
have that b ∈ ℓpM(N) for every for p < 2/3 ≈ 0.666. Thus, we expect a theoretical rate of con-
vergence with respect to the amount of samples that is arbitrarily close to m1/2−3/2 = m−1.
This holomorphy result applies to the affine diffusion (7.4.1), not to the log-transformed
diffusion coefficient (7.4.2). However, we consider the latter in our numerical experiments
since it has been widely used in various similar works [7, 14, 16, 209] and we expect that it
is possible to extend Proposition A.3.2 to this case.

The specific problem conditions

We now formally define the specific parametric diffusion equation considered in this thesis.
This is as follows: given y ∈ [−1, 1]d, find u(y) satisfying

−div(ai(x,y)∇u(x,y)) = 10, in Ω,

for i = 1, 2, where Ω = (0, 1)2. See Fig. 7.1 for an illustration and a typical FEM dis-
cretization used in this work. For the Dirichlet boundary condition, we consider a constant
value u(x,y) = 0.5 on bottom of the boundary (0, 1) × {0}, and as well as a zero boundary
conditions on the rest of the boundary.

The FE discretization
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Figure 7.1: Shows the domain for the parametric difussion equation.

Notice that we consider approximations in the function spaces H(div; Ω),L2(Ω), which are
infinite-dimensional spaces. We consider discretizations [67, Chp. 3] (in the sense of FEs)
of the form HK ⊆ H(div; Ω) and QK ⊆ L2(Ω) for some K ∈ N.

We let TK be a regular triangulation of Ω made up of triangles T of minimum diameter
hmin = 0.0844 and maximum diameter hmax = 0.1146 with a total number of degrees of
freedom K = 2622. The value of h > 0 represents a discretization parameter, i.e., the mesh
size in this context. Therefore, we write the FE approximation of u in terms of the FE basis
{φk}K

k=1 as

u(y) ≈ uh(y) =
K∑

k=1
ck(y)φk ∈ QK , (7.4.8)

and likewise for σ(y).

Remark 7.4.2 Note that we mention the FEM in various parts of this thesis. As a dis-
claimer, this is not a thesis about specific Galerkin methods, and our theory and imple-
mentation apply to more general settings. Recall that we use these methods as black-box
solvers to obtain the sample points and sample values. For instance, one may also consider
using finite difference methods, spectral methods, finite volume methods, virtual elements
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Figure 7.2: Shows the solution (u)(y) to the parametric Poisson problem in (7.4.4)–(7.4.5) for a
given parameter y = (1, 0, 0, 0)⊤ with affine coefficient a1, utilizing a total of 732 degrees of freedom
(DoF) for u. The left displays the solution given by the FEM solver, while the right column shows
the 4 × 40 ELU DNN approximation after 60000 epochs of training with m = 500 sample points.

methods, etc. Here, we use the FEM for its versatility and relatively easy software imple-
mentation. We do not aim to discuss specific FEs to keep our analysis as general as possible.
Therefore, we rely on the works in [67,108] and references therein showing a detailed analy-
sis of specific choices of FEs and their approximation properties to the problems presented
in this chapter. See, e.g., [49,67,108,114,120] for further detailed introduction to the FEM
and other Galerkin-type methods.

7.4.3 The Navier-Stokes-Brinkman equations

We now consider a parametric model describing the dynamics of a viscous fluid through
porous media. Consider a bounded and Lipschitz physical domain Ω ⊆ R2. Given y ∈ U ,
we consider a manufactured modelling of a fluid in a porous medium with random viscocity
within Ω that can be described by the incompressible nonlinear stationary Navier-Stokes-
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Brinkman (NSB) equations: find u : U × Ω → R2 and p : U × Ω → R such that

ηu − λdiv(a(y)e(u(y))) + (u(y) · ∇)u(y) + ∇p(y) = f, in Ω

div(u(y)) = 0, in Ω (7.4.9)

u =

uD, on ∂Ωin

0, on ∂Ωwall

(a∇e(u) − pI)ν = 0, on ∂Ωout∫
Ω
p = 0,

where λ = Re−1 and Re is the Reynolds number, a : U ×Ω → R+ is the random viscosity of
the fluid, η ∈ R+ is the scaled inverse permeability of the porous media, u is the velocity of
the fluid, e(u) = 1

2(∇u + (∇u)t) is the symmetric part of the gradient and p is the pressure
of the fluid, and f : Ω → R is an external force independent of the parameters. Here, the
fourth condition imposes a zero normal Cauchy stress

(a∇e(u) − pI)ν = 0

for the output boundary on ∂Ωout. Note as well that the incompressibility of the fluid
imposes on uD the compability condition∫

∂Ω
uD · n = 0,

on ∂Ωin. The third condition imposes a no-slip condition on the walls Ωwall [115, eq.(2.3)].
The analysis of the detailed mixed formulation used for this problem in the nonpara-

metric case is given in [115]. Over the last decade, many works have employed a mixed
formulation using a Banach space framework, solving different PDEs in continuum mechan-
ics in suitable Banach spaces. The advantage of this formulation is that no augmentation is
required, the spaces are simpler and closer to the original model, and it allows for obtaining
more direct approximations of variables of physical interest [115, §1].

The mixed variational formulation

Based on the analysis in [115], the mixed variational formulation of the parametric NSB
equations in (7.4.9) becomes: given y ∈ U , find (u, t,σ,γ)(y) ∈ L4(Ω) × L2

tr(Ω) ×
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H0(div4/3; Ω) × L2
skew(Ω) such that

λ

∫
Ω
ai(y)t(y) : s −

∫
Ω

s : σ(y) −
∫

Ω
(u ⊗ u)(y) : s = 0,∫

Ω
t(y) : τ +

∫
Ω

γ(y) : τ +
∫

Ω
u(y) · div(τ ) = ⟨τn,uD⟩∂Ωin ,∫

Ω
δ : σ(y) +

∫
Ω

v · div(σ(y)) −
∫

Ω
ηu(y) · v =

∫
Ω

f · v,

(7.4.10)

for all (v, s, τ , δ) ∈ L4(Ω) × L2
tr(Ω) × H0(div4/3; Ω) × L2

skew(Ω). Moreover, we impose the
Neumann boundary condition via a Nietsche method as in [115, §5.2] adding

κ⟨(σ + u ⊗ u)n), τn⟩∂Ωout = 0

to in (7.4.10) where κ ≫ 1 is a large constant (e.g., κ = 104). As usual in this formulations,
the pressure p ∈ L2

0(Ω) can be computed according to the postprocessing formula

p = −1
2tr(σ + (u ⊗ u)).

Note that above we omitted the term y for simplicity.

The specific problem conditions

In particular, we consider to approximate solutions to the parametric NSB problem with
λ = 0.1, a scaled inverse permeability of η = 10 + x2

1 + x2
2, an external force f = (0,−1)⊤,

and random viscosity ai as in (7.4.1)–(7.4.2) with i = 1, 2.
We once more consider the unit square as the domain Ω = (0, 1)2. We consider an inlet

boundary defined by ∂Ωin = (0, 1) × {1}, an outlet boundary ∂Ωout = {1} × (0, 1) and walls
defined by ∂Ωwall = {0} × (0, 1) ∪ (0, 1) × {0}. For simplicity, we use the same mesh as that
of the previous example. See Fig. 7.1.

On the Neumann boundary ∂Ωout we consider a zero normal Cauchy stress. We consider
a Dirichlet condition given by uD = (0.0625)−1((x2 − 0.5)(1 − x2), 0) on ∂Ωin and a no-slip
velocity on ∂Ωwall.

Remark 7.4.3 (Other auxiliary variables) As we describe later in §7.5, we report the
performance of the DNNs approximating (u, p)(y) ∈ L4(Ω) × L2(Ω). Note that any solver
based on the above formulation outputs several other variables, e.g., (t,σ,γ)(y) ∈ L2

tr(Ω)×
H0(div4/3; Ω)×L2

skew(Ω). One could also approximate these auxiliary variables using DNNs.
However, we restrict our experiments to (u, p) as these are the primary variables of interest
in the problem.

Testing the approximation capabilities of DNNs applied to more complex PDEs, such
as the NSB problem, reveals that one can practically implement DL to solve parametric
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DEs whose solution is Banach-valued. However, it is important to mention that we do not
analyze the holomorphy of the map y 7→ (u, p)(y) in this thesis. Doing so would require
extending the theory in Appendix A to the Banach-valued case, which requires further
investigation and goes beyond the scope of this thesis. We leave the study of holomorphic
extensions of the map y 7→ (u, p)(y) as future work.

7.4.4 The stationary parametric Boussinesq equations

In our first two-dimensional parametric diffusion example, the primary challenge is ensuring
the (b, ε)-holomorphy of the map y 7→ u(y) ∈ L2(Ω) for the mixed formulation. Additionally,
we consider a nonzero Dirichlet boundary condition, unlike previous works [16, 71, 95] that
focus on the more restrictive homogeneous Dirichlet case with u ∈ H1

0(Ω).
In our second example, we use DL to approximate a solution with two components

of a PDEs with mixed boundary conditions. Specifically, we use DL to approximate the
solution of a PDE with Dirichlet and Neumann boundary conditions, as well as Banach-
valued components in the solution, e.g., u ∈ L4(Ω). While this example currently lacks a
holomorphy guarantee, we observe a convergence rate that aligns with what we expect (see
§7.5). We conjecture this rate holds for more challenging problems.

To illustrate this claim with an example, we now consider a parametric coupled PDE
in three dimensions (Ω ⊂ R3) with two random coefficients affecting different parts of the
coupled problem. The nonparametric version of this problem is taken from [80].

The Boussinesq model arises in a variety of engineering and fluid dynamics problems
where changes in temperature affect the velocity of the fluid. Here, we consider a modi-
fication of the Boussinesq formulation in [80] that combines a parametric incompressible
Navier–Stokes equation with a parametric heat equation. The parametric dependence af-
fects both: the Navier–Stokes equation is affected by a parametric variable multiplying the
temperature-dependent viscosity, and the equation for heat flow is affected directly by the
thermal conductivity of the fluid. To be more precise, given y ∈ U , our goal is to find the
velocity u : U × Ω → R2, pressure p : U × Ω → R and temperature φ : U × Ω → R of a fluid
such that

−div(2a(y)µ(φ(y))e(u(y))) + (u(y) · ∇)u(y) + ∇p(y) = φ(y)g, in Ω,

div(u(y)) = 0, in Ω, (7.4.11)

−div(K(y)∇φ(y)) + u(y) · ∇φ(y) = 0, in Ω,

u = uD, on ∂Ω,

φ = φD, on ∂Ω,∫
Ω
p(y) = 0,
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where g = (0, 0,−1)⊤ is a gravitational force, K : U × Ω → R3×3 is a parametric uniformly
positive tensor describing the thermal conductivity of the fluid, given by

K(x,y) =

1.89 +
∑
j∈N

yj
sin(πx3j)
j9/5




exp(−x1) 0 0
0 exp(−x2) 0
0 0 exp(−x3)

 , (7.4.12)

for all x ∈ Ω, and y ∈ [−1, 1]N, µ : R → R+ is the temperature dependent viscosity given by
µ(φ) = 0.1 + exp(−φ), and a : U × Ω → R is a parametric variable affecting the viscosity of
the fluid assumed to be in L∞(Ω). Then, in this case we have (a(y),K(y)) ∈ L∞(Ω)×L∞(Ω).
As in the previous example e(u) is the symmetric part of ∇u.

The fully-mixed variational formulation

The complete derivation of a fully-mixed variational formulation for the non-parametric
Boussinesq equation in Banach spaces can be found in [80, §3.1]. We now rewrite it for the
parametric case. Given y ∈ U , find (u, t,σ, φ, t̃, σ̃)(y) ∈ L4(Ω) × L2

tr(Ω) × H0(div4/3; Ω) ×
L4(Ω) × L2(Ω) × H(div4/3; Ω) such that

−
∫

Ω
v · div(σ(y)) + 1

2

∫
Ω

t(y)u(y) · v −
∫

Ω
φ(y)g · v = 0 ∀ v ∈ L4(Ω) ,∫

Ω
2a(y)µ(φ(y))tsym(y) : s − 1

2

∫
Ω

(u ⊗ u)(y) : s =
∫

Ω
σ(y) : s ∀ s ∈ L2

tr(Ω) ,∫
Ω

τ : t(y) +
∫

Ω
u(y) · div(τ ) = ⟨τν,uD⟩∂Ω ∀ τ ∈ H0(div4/3; Ω) ,

−
∫

Ω
ψ div(σ̃(y)) + 1

2

∫
Ω
ψ(y)u(y) · t̃ = 0 ∀ψ ∈ L4(Ω) ,∫

Ω
K(y)t̃(y) · s̃ − 1

2

∫
Ω
φ(y)u(y) · s̃ =

∫
Ω

σ̃(y) · s̃ ∀ σ̃ ∈ L2(Ω) ,∫
Ω

τ̃ · t̃(y) +
∫

Ω
φ(y) div(τ̃ ) = ⟨τ̃ · ν, φD⟩∂Ω ∀ τ̃ ∈ H(div4/3; Ω) ,∫

Ω
tr(2σ + u ⊗ u)(y) = 0,

(7.4.13)
where p ∈ L2

0(Ω) can be recovered by using

p = −1
6tr(2σ + 2cI + u ⊗ u), with c = − 1

6|Ω|

∫
Ω

tr(u ⊗ u). (7.4.14)

As in the previous example, we omitted the term y for simplicity from this equation. For
further details on this formulation we refer to [80] and references within.
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Here, given y ∈ U , we consider to approximate

y ∈ U 7→ (u, p, φ)(y) ∈ (L4(Ω) × L2
0(Ω) × L4(Ω)) (7.4.15)

of (7.4.13) by using DNNs and study the approximation capabilities as we increase the
number of training samples m. As in the previous example, we do not aim to approximate
the other variables (t,σ, t̃, σ̃)(y) ∈ L2

tr(Ω) × H0(div4/3; Ω) × L2(Ω) × H(div4/3; Ω) (see,
Remark 7.4.3 for further details).

The specific problem conditions

In particular, we consider the unit cube Ω = (0, 1)3 as the domain in R3. In addition,
we consider a nonzero boundary condition uD = (1, 1, 0) on the bottom face of the cube
∂Ωbottom = (0, 1) × (0, 1) × {0}, and zero on the rest of the faces. In addition we consider
φD = exp(4(−(x1 − 0.5)2 − (x2 − 0.5)2)) on ∂Ωbottom and zero otherwise. For simplicity,
approximate the solution to the problem using the parametric coefficients a1 and a2 given
by (7.4.1) and (7.4.2) respectively. See Fig. 7.4 for an example of the solution (u, p, φ)(y)
for a given y ∈ [−1, 1]4.

7.5 Numerical results

We now present numerical result for the three parametric PDEs defined in the previous
section.

Parametric affine diffusion equation

First we introduce further details about the experiments and figures below:

i) In Figures 7.5–7.7 we show the average relative L2
ϱ([−1, 1]d,L2(Ω)) approximation

errors versus the number of samples m for various DNN architectures solving the
Hilbert-valued diffusion equation in (7.4.4)–(7.4.5). The testing involved computing
the geometric mean performance over 12 trials, represented by the colored lines, and
the (geometric) standard deviation, shown in shaded colors. We refer to [12, Appendix
A.1.3] for more details. We also represent in all the figures the decay rate m−1 for
comparison.

ii) To approximate the Bochner norms, we used a sparse grid rule of level 5 with 1105
points when d = 4 and level 4 with 3937 points when d = 8 to compute the relative
testing error. Thus, the figures are divided into two parts: the (top) part displays
results for d = 4, while the (bottom) part shows results when d = 8. Additionally,
the left side of each figure presents results for the parametric coefficient a1 in (7.4.1),
while the right side shows results for a2 in (7.4.2).
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In Fig. 7.5, we observe that wider DNNs generally outperform narrower ones when d = 4
dimensions. Specifically, all ELU DNN architectures achieve relative errors closer to two
digits of accuracy for the affine coefficient, and for the coefficient a2 when d = 4. Also
in all four plots the 10 × 100 ELU DNN shows a decay rate close to m−1 for m < 100
samples. Despite this, all architectures present a worse decay rate as the training sample
size increases. We also note a relatively small variance across the 12 trials. Additionally,
when comparing the ELU DNN, we notice a decrease in the performance as the problem
dimension increases from d = 4 to d = 8 regardless of the parametric coefficient.

Figure 7.6 employs the same parameters as Figure 7.5, but using a ReLU DNN archi-
tecture. Here, we observe a better decay rate on average (solid line) after m = 300 points
compared to that of the ELU activation function. In addition, all ReLU DNNs achieve an
error below 10−1 at some point, but in average these rates do not go beyond 10−2.

In contrast, Figure 7.7 reveals that deeper and wider 10×100 tanh DNNs perform worse
than their ReLU or ELU counterparts. Additionally, a larger standard deviation in the error
after 100 training points for wider DNNs. In average shallow tanh DNNs are similar to ELU
newtworks in this case, but with a larger standard deviation in the error.

Parametric NSB equations

Here, we present the average relative L2
ϱ([−1, 1]d,V) approximation errors versus the number

of samples m for various DNN architectures solving the Banach-valued NSB problem in
(7.4.10). In particular, we focus on the approximation of u(y) ∈ L4(Ω) in Figures 7.8–7.10
and the approximation of p ∈ L2

0(Ω) in Figures 7.11–7.13. As in the previous case, testing
involved computing the average performance over 12 trials. We used the same sparse grid
rule, level 5 with 1105 points when d = 4 and level 4 with 3937 points when d = 8. The
figures are organized in the same way as before.

Regarding the approximation of u, when comparing Figure 7.8 to the rates in Figure 7.5
for the diffusion problem, we observe a similar behaviour between their corresponding ar-
chitectures. In the case where d = 4, increasing the number of weight and biases achieves
better performance when using ELU activation functions and more training points. In con-
trast, when d = 8 dimensions for the affine coefficient using larger DNNs does not improve
the performance. It is interesting that the ELU 10 × 100 architecture tends to follow a
decay rate similar to m−1 in some cases, e.g., the log-transformed diffusion with d = 4. In
contrast, smaller DNNs show a faster rate up to 100 sample points.

The situation changes in Figure 7.9, where the performance of the DNNs deteriorates
compared to Figure 7.8. The decay rate now is slower than using ELU DNNs.

In Figure 7.10, we notice that the error for a 10 × 100 DNN in general follows a straight
line but at a worse decay rate than the other architectures. In general, the performance of
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smaller DNNs seems to be better than the larger ones but with a larger standard deviation
in the error.

The results for p are comparable to those of u for similar architectures. We note that
larger DNNs in Figure 7.11 perform better. Note that the approximation tends to follow the
decay rate m−1 in Figure 7.11. As for Figure 7.12, it shows better decay rate in comparison
to Figure 7.6 near 500 points. In addition, as shown in Figure 7.13, smaller DNNs tend to
have a smaller standard deviation in the error.

Parametric Boussineq equations

As in the previous example, we need to introduce additional details about the experiments
and figures for the Boussinesq problem:

i) In Figures 7.14–7.22, we present the average relative L2
ϱ([−1, 1]d,V) approximation

errors versus the number of samples m for various DNN architectures solving the
Banach-valued Boussinesq problem in (7.4.13). In contrast to the Poisson and NSB
problems, here we explore the capabilities of DNNs over 8 trials. Testing involved
computing the average performance over all trials. We employ a smaller number of
trials than before due to the increased complexity of this problem, which requires
more computational resources. We also include the decay rate m−1 in all figures for
comparison.

ii) To approximate the Bochner norms, we also used a sparse grid rule of level 5 with
1105 points when d = 4, but a level 3 with 849 points when d = 8 to compute the
relative testing error. The figures are divided into the same sections as in the previous
cases.

Upon examining Fig. 7.14, it becomes apparent that for the affine coefficient, the per-
formance of the DNN improves as we increase the number of samples m until 100 training
points for both d = 4 and d = 8. After this point the testing error appears to ceases to
decrease. In contrast, when using the coefficient a2, the DNN is still able to decrease the
testing error, albeit at a slightly lower rate than before after reaching 100 training points.

In Fig. 7.15, we observe that the testing error decays at a slower rate, reaching approx-
imately 2 · 10−2 near 500 points.

Fig. 7.16 reveals that the shallow tanh DNNs exhibit a similar performance near 500
training points as the ELU DNNs, but worse performance for smaller numbers of training
points. However, similar to the previous two problems, the 10 × 100 architecture does not
perform well as the number of samples increases.

The pattern persists for the remaining approximations. Notably, in Fig. 7.20, the ELU
DNN approximating the pressure p closely follows the approximation rate of m−1 for the
affine coefficient.
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7.6 Additional discussion

These experiments consistently highlight the reliability of ELU DNNs, which generally
exhibit a smaller standard deviation from the mean error as we increase the number of
training samplesm. This makes them a favorable choice in many scenarios, offering a balance
between performance and sample complexity. However, it is crucial to note that deeper and
wider DNNs are not universally superior, as they can lead to diminished performance or
larger standard deviations. This becomes particularly evident when using the tanh activation
function. The results also underscore the tanh DNNs, despite their potential to achieve low
generalization error as shown in Fig. 7.22. This suggests that while tanh DNNs can be
effective in certain contexts, their performance may be less consistent compared to ELU
DNNs.

Furthermore, the experiments do not provide significant evidence to support the notion
that DNNs perform better when approximating functions in Hilbert spaces compared to
Banach spaces. This suggests that the choice of function space may not have a substantial
impact on the performance of DNNs in function approximation tasks. This highlights a
clear gap between theory and practice and keeps the door open for research to try to
achieve better approximation rates for the Banach-valued case, as the theory still claims a
worse decay rate than the Hilbert case.

Regarding the practical side approximating complex parametric PDE problems with
DNNs, the results suggest starting with ELU DNNs and then considering ReLU DNNs, with
the caveat that ReLU DNNs tend to have a larger standard deviation than ELU DNNs. Ad-
ditionally, the findings caution against using larger and wider tanh DNNs in approximating
parametric PDEs, as their behaviour shows to be worst than smaller architectures as the
number of samples increases, unlike for ReLUs or ELUs.

7.7 Conclusions

In this chapter, we investigated the practical approximation capabilities of different DNN
architectures for three parametric PDEs. We tested 4 × 40, 5 × 50, and 10 × 100 DNNs
architectures in combination with ReLU, tanh, and ELU activation functions. We applied
these DNN archtiectures to learn the FE coefficients of solution maps for three problems:
the Poisson problem in a 2D physical domain, a Navier-Stokes-Brinkman problem in a 2D
physical domain, and a Boussinesq problem in a 3D physical domain.

Keeping this in mind and the discussion in §7.6, we answer Question 6 in the affirmative
and Question 7 of §1.6 in the negative.
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Answer to Question 6

It is possible to efficiently apply DL to learn smooth parametric Banach-valued func-
tions using standard architectures and training procedures to approximate parametric
PDEs from limited samples

Answer to Question 7

There is no preliminary empirical evidence indicating that learning the FEM coefficients
of a Banach-valued solution of a parametric DE exhibits a decay rate in terms of the
number of samples that is worse than in the Hilbert-valued case.

In summary, while DNNs demonstrate the capability to approximate complex parametric
PDEs and exhibit a decay rate in the error as the number of training samples increases,
there are limitations to this rate of improvement. Increasing the dimensionality of the prob-
lem tends to increase the error on average, but it does not significantly affect the rate of
decay. Notably, simpler functions with fewer degrees of freedom, such as the pressure or
temperature in the Boussinesq problem, are learned more effectively by DNNs compared
to more complex functions like the velocity field u. These observations provide valuable
insights into the behaviour and performance of DNNs in function approximation tasks,
highlighting the importance of thoughtful architecture selection and careful consideration
of problem complexity and number of coefficients to be approximated.

7.8 Future work

There are several interesting directions for future research.

• First, it is important to investigate the impact of other activation functions such
as Rectified Power Unit (RePU), Leaky Rectified Linear Unit (Leaky ReLU), and
Scaled Exponential Linear Unit (SELU) on the performance of DNN approximating
parametric PDEs. These activation functions may offer distinct advantages in terms
of learning dynamics and model performance, and their comparative analysis could
reveal which functions are most effective under different conditions, such as different
boundary conditions. Moreover, additional experiments are needed to explore different
DNN architectures by varying the widths and depths of the DNNs. For instance, by
keeping the width constant and incrementally increasing the depth, we can study how
the DNN approximation capabilities evolve. This would be important to optimize the
choice of parameters in the DNN.

• In this work, we exclusively utilized the He uniform initializer for weights and biases.
It is essential to investigate the effects of different initialization methods on model
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performance and convergence. By comparing various initialization techniques, we can
gain valuable insights into its effect on the approximation capabilities of the DNN.

• In this chapter we used a maximum number of training points of mmax = 500. It
is interesting to investigate wheter increasing the number of samples will make the
approximation better or if after a certain amount of samples the DNN is not capable
of reduce the testing error.

• Here we only considered steady-state PDEs. It would be important to extend this
work to time-dependet problems. This could involve training the model on dynamic
datasets to evaluate its effectiveness in handling temporal variations. Additionally,
explore more complex situations where boundary conditions significantly impact the
solution, providing insights into the ability of the model to handle real-world, dynamic
scenarios.

• Finally, it would be interesting to study the theoretical aspects of the different para-
metric PDEs shown in this chapter. Unfortunately, it is not clear how to show that the
Navier-Stokes-Boussinesq problem and Boussinesq equations are (b, ε)-holomorphic
in a specific complex region. Showing holomorphic extensions of these problems in
a Banach-valued setting may help to bridge the gap between theory and practice
between Chapter 5 and Chapter 7.
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Figure 7.3: The figure shows the solution (u, p)(y) to the parametric NSB problem in (7.4.9) for a
given parameter y = (1, 0, 0, 0)⊤ with affine coefficient a1, utilizing a total of 1464 degrees of freedom
(DoF) for u and 244 DoF for p. The left column displays the solution given by the FEM solver,
while the right column shows the 4 × 40 ELU DNN approximation after 60000 epochs of training
with m = 500 sample points. The top displays the magnitude of the vector field u and its direction
with white arrows. On the bottom side, we show the pressure p.
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Figure 7.4: The figure shows the solution (u, φ, p)(y) to the parametric Boussinesq problem in
(7.4.13) for a given parameter y = (1, 0, 0, 0)⊤ with an affine coefficient a1. The solution utilizes
a total of 18480 degrees of freedom (DoF) for u and 528 DoF for both φ and p. The left column
displays the solution given by the FEM solver, while the right column shows the 4 × 40 ELU DNN
approximation after 60000 epochs of training with m = 500 sample points. The top row displays
streamlines of the vector field u and their direction with colored arrows. In the middle row, we
visualize the temperature distribution inside the cube using colored spheres, with the hottest region
at the center of the cube. The bottom row illustrates the points of highest pressure p.
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Figure 7.5: Average relative L2
ϱ([−1, 1]d,L2(Ω)) approximation error versus number of samples m for

ELU DNNs solving the Hilbert-valued diffusion equation in (7.4.4)–(7.4.5).
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Figure 7.6: Average relative L2
ϱ([−1, 1]d,L2(Ω)) approximation error versus number of samples m for

ReLU DNNs solving the Hilbert-valued diffusion equation in (7.4.4)–(7.4.5).
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Figure 7.7: Average relative L2
ϱ([−1, 1]d,L2(Ω)) approximation error versus number of samples m for

tanh DNNs solving the Hilbert-valued diffusion equation in (7.4.4)–(7.4.5).
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Figure 7.8: Average relative L2
ϱ([−1, 1]d,L4(Ω)) approximation error versus number of samples m for

ELU DNNs approximating u ∈ L4(Ω) for the Banach-valued NSB problem in (7.4.10).
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Figure 7.9: Average relative L2
ϱ([−1, 1]d,L4(Ω)) approximation error versus number of samples m for

ReLU DNNs approximating u ∈ L4(Ω) for the Banach-valued NSB problem in (7.4.10).

221



10 1 10 2
10 -3

10 -2

10 -1

10 0

10 1 10 2
10 -3

10 -2

10 -1

10 0

10 1 10 2
10 -3

10 -2

10 -1

10 0

10 1 10 2
10 -3

10 -2

10 -1

10 0

Figure 7.10: Average relative L2
ϱ([−1, 1]d,L4(Ω)) approximation error versus number of samples m

for tanh DNNs approximating u ∈ L4(Ω) for the Banach-valued NSB problem in (7.4.10).
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Figure 7.11: Average relative L2
ϱ([−1, 1]d,L2(Ω)) approximation error versus number of samples m

for ELU DNNs approximating p ∈ L2
0(Ω) for the Banach-valued NSB problem in (7.4.10).
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Figure 7.12: Average relative L2
ϱ([−1, 1]d,L2(Ω)) approximation error versus number of samples m

for ReLU DNNs approximating p ∈ L2
0(Ω) for the Banach-valued NSB problem in (7.4.10).
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Figure 7.13: Average relative L2
ϱ([−1, 1]d,L2(Ω)) approximation error versus number of samples m

for tanh DNNs approximating p ∈ L2
0(Ω) for the Banach-valued NSB problem in (7.4.10).
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Figure 7.14: Average relative L2
ϱ([−1, 1]d,L4(Ω)) approximation error versus number of samples m

for ELU DNNs approximating u ∈ L4(Ω) for the Banach-valued Boussinesq problem in (7.4.13).
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Figure 7.15: Average relative L2
ϱ([−1, 1]d,L4(Ω)) approximation error versus number of samples m

for ReLU DNNs approximating u ∈ L4(Ω) for the Banach-valued Boussinesq problem in (7.4.13).
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Figure 7.16: Average relative L2
ϱ([−1, 1]d,L4(Ω)) approximation error versus number of samples m

for tanh DNNs approximating u ∈ L4(Ω) for the Banach-valued Boussinesq problem in (7.4.13).
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Figure 7.17: Average relative L2
ϱ([−1, 1]d,L4(Ω)) approximation error versus number of samples m

for ELU DNNs approximating φ ∈ L4(Ω) for the Banach-valued Boussinesq problem in (7.4.13).
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Figure 7.18: Average relative L2
ϱ([−1, 1]d,L4(Ω)) approximation error versus number of samples m

for ReLU DNNs approximating φ ∈ L4(Ω) for the Banach-valued Boussinesq problem in (7.4.13).
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Figure 7.19: Average relative L2
ϱ([−1, 1]d,L4(Ω)) approximation error versus number of samples m

for tanh DNNs approximating φ ∈ L4(Ω) for the Banach-valued Boussinesq problem in (7.4.13).
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Figure 7.20: Average relative L2
ϱ([−1, 1]d,L2(Ω)) approximation error versus number of samples m

for ELU DNNs approximating p ∈ L2
0(Ω) for the Banach-valued Boussinesq problem in (7.4.13).
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Figure 7.21: Average relative L2
ϱ([−1, 1]d,L2(Ω)) approximation error versus number of samples m

for ReLU DNNs approximating p ∈ L2
0(Ω) for the Banach-valued Boussinesq problem in (7.4.13).
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Figure 7.22: Average relative L2
ϱ([−1, 1]d,L2(Ω)) approximation error versus number of samples m

for tanh DNNs approximating p ∈ L2
0(Ω) for the Banach-valued Boussinesq problem in (7.4.13).
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Appendix A

Holomorphic maps for mixed
formulations

In Chapter 7, §7.4, we introduced a parametric DE whose weak solution was obtained via a
mixed formulation. The following appendix section includes a variety of results and exten-
sions proving that the solution map y 7→ (σ, u)(y) of (7.4.4)–(7.4.5) admits a holomorphic
extension to an open neighbourhood O such that Eρ ⊆ O for some ρ ≥ 1. This shows
an example of a non-trivial parametric PDE whose solution is Hilbert-valued and satisfies
Assumption 2.3.4. The analysis of the holomorphic extension of the solution map in this
appendix is based on [12, §4], and the analysis of the mixed formulation is based on [114]
(see also [108,120]).

A.1 Babuska-Brezzi theory for real and complex variables

First we introduce the general framework and notation to study mixed formulations. Let
(H, ⟨·, ·⟩H) and (Q, ⟨·, ·⟩Q) be Hilbert spaces over C. We say that a : H × H → C and
b : H × Q → C are bounded sesquilinear operators if they are linear with respect to their
first argument, antilinear in their second argument, i.e.,

a(σ, c1τ1 + c2τ2) = c1a(σ, τ1) + c2a(σ, τ2) ∀σ, τ1, τ2 ∈ H, ∀c1, c2 ∈ C
b(σ, c1u1 + c2u2) = c1b(σ, u1) + c2b(σ, u2) ∀σ ∈ H, ∀u1, u2 ∈ Q, ∀c1, c2 ∈ C

and if there exists Ma,Mb > 0 such that

|a(σ, τ)| ≤ Ma∥σ∥H∥τ∥H ∀σ, τ ∈ H and |b(σ, u)| ≤ Mb∥σ∥H∥u∥Q, ∀σ ∈ H, u ∈ Q.

Let A : H → H and B : H → Q be the linear operators induced by a, b. That is,

a(σ, τ) = ⟨A(σ), τ⟩H ∀σ, τ ∈ H and b(σ, u) = ⟨B(σ), u⟩Q ∀σ ∈ H, u ∈ Q.
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Note that these operators can be defined through the Riesz operator [108, Thm. A.16] (see
also [50, Thm. 5.5]) and they satisfy the following identity:

a(σ, τ) = ⟨σ,A′(τ)⟩H ∀σ, τ ∈ H and b(σ, u) = ⟨σ,B′(u)⟩H , ∀σ ∈ H, u ∈ Q,

where A′ : H → H and B′ : Q → H are the adjoint operators of A and B, respectively.
Now consider the problem: find (σ, u) ∈ H ×Q such that

a(σ, τ) + b(τ, u) = G(τ) ∀τ ∈ H,

b(σ, v) = F (v) ∀v ∈ Q,

where F ∈ Q∗ and G ∈ H∗ are the continuous duals of Q and H, respectively. Then, using
the Riesz operator once more, we can rewrite this problem as: find (σ, u) ∈ H×Q such that

A(σ) +B′(u) = RH(G),
B(σ) = RQ(F ),

where RH : H∗ → H and RQ : Q∗ → Q are the respective Riesz operators.

A.1.1 The inf-sup condition for b

In this section we consider the inf-sup condition for b. For more details on other frameworks
we refer the reader to [50, 108]. Let b : H ×Q → C be the sesquilinear form defined above.
Then, we say that b satisfies the continuous inf-sup condition if there exists a β > 0 such
that

inf
v∈Q
v ̸=0

sup
τ∈H
τ ̸=0

|b(τ, v)|
∥τ∥H∥v∥Q

≥ β.

Notice that using the adjoint operator we obtain

sup
τ∈H
τ ̸=0

|b(τ, v)|
∥τ∥H

= sup
τ∈H
τ ̸=0

|⟨B′(v), τ⟩|
∥τ∥H

= ∥B′(v)∥H , ∀v ∈ Q

and therefore the inf-sup condition is equivalent to

∥B′(v)∥H ≥ β∥v∥Q, ∀v ∈ Q.

The following result establishes an equivalent condition to the previous inequalities. Its
proof can be found in [114, Lem 2.1] for the real-valued case. A simple inspection of the
proof reveals that it is also valid in the complex-valued case.

Lemma A.1.1. Let b : H × Q → C be a bounded sesquilinear form with induced operator
B : H → Q. Then the following statements are equivalent.
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i) There exists β > 0 such that

sup
τ∈H
τ ̸=0

|b(τ, v)|
∥τ∥H

≥ β∥v∥Q, ∀v ∈ Q.

ii) The operator B′ : Q → N(B)⊥ is an isomorphism (linear bijection), and

∥B′(v)∥H ≥ β∥v∥Q, ∀v ∈ Q.

iii) The operator B : N(B)⊥ → Q is an isomorphism (linear bijection), and

∥B(τ)∥H ≥ β∥τ∥H , ∀τ ∈ N(B)⊥.

iv) The operator B : H → Q is surjective.

A.1.2 The BNB theorem for complex-valued Hilbert spaces

The following saddle-point structure is taken from [108, §2.4]. In particular, the real-valued
case is implied by [108, Thm. 2.34]. However, a simple inspection to the proof of [114, Thm.
2.2–2.3] reveals that its real-valued version can be extended to the complex-valued case
following similar arguments. We present its proof for completeness.

Theorem A.1.2 (Complex-valued Babus̆ka-Nec̆as-Brezzi (BNB) theorem). Let (H, ⟨·, ·⟩H)
and (Q, ⟨·, ·⟩Q) be Hilbert spaces over C, a : H × H → C and b : H × Q → C be bounded
sesquilinear operators with induced linear forms A : H → H and B : H → Q, such that

a(σ, τ) = ⟨A(σ), τ⟩H , and b(σ, u) = ⟨B(σ), u⟩Q,

|a(σ, τ)| ≤ ∥A∥∥σ∥H∥τ∥H and |b(σ, u)| ≤ ∥B∥∥σ∥H∥u∥Q

for all σ, τ ∈ H, and u ∈ Q. Let V := N(B) and assume that

i) there exists α > 0 such that

|a(τ, τ)| ≥ α∥τ∥2
H , ∀τ ∈ V,

(this is known as the V -ellipticity condition)

ii) there exists β > 0 such that

sup
τ∈H
τ ̸=0

|b(τ, v)|
∥τ∥H

≥ β∥v∥Q, ∀v ∈ Q. (A.1.1)

Then for each pair (G,H) ∈ (H∗ ×Q∗) there exists a unique solution (σ, u) ∈ H ×Q
to the problem

a(σ, τ) + b(τ, u) = G(τ) ∀τ ∈ H,

b(σ, v) = F (v) ∀v ∈ Q,
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that satisfyies

∥u∥Q ≤ α+ ∥A∥
αβ

(
∥G∥H∗ + ∥A∥

β
∥F∥Q∗

)
∥σ∥H ≤ 1

α

(
∥G∥H∗ + (α+ ∥A∥)

αβ
∥F∥Q∗

)

Proof. We first reformulate the problem as follows: find (σ, u) ∈ H ×Q such that

A(σ) +B′(u) = RH(G)
B(σ) = RQ(F ),

where RH : H∗ → H and RQ : Q∗ → Q are the respective Riesz operators. Notice that
RQ(F ) ∈ Q and from (A.1.1) we know that B is an isomorphism from V ⊥ into Q. Therefore
exists σg ∈ N(B)⊥ = V ⊥ ⊆ H such that

B(σg) = RQ(F ),

and
∥σg∥H ≤ 1

β
∥B(σg)∥Q = 1

β
∥F∥Q∗ .

Next, let Π : H → V be the orthogonal projector from H to V , and σg ∈ H be as defined
above. Then, Π(RH(G) − A(σg)) ∈ V . Since a is a sesquilinear V -elliptic operator, the
complex-valued Lax-Milgram lemma in [224, Rmk. 5.1.2] implies that there exists a unique
σ0 ∈ V such that

A(σ0) = Π(RH(G) −A(σg)) (A.1.2)

and
∥σ0∥H ≤ 1

α
∥Π(RH(G) −A(σg))∥H ≤ 1

α

(
∥G∥H∗ + ∥A∥

β
∥F∥Q∗

)
.

Observe that, by definition, A(σ0) ∈ V and therefore Π(RH(G) − A(σg + σ0)) = 0. This
implies that RH(G) − A(σg + σ0) ∈ V ⊥. Since B is an isomorphism from V ⊥ to Q, there
exists u ∈ Q such that B′(u) = RH(G) −A(σg + σ0), that is

A(σg + σ0) +B′(u) = RH(G).

This u satisfies

∥u∥Q ≤ 1
β

∥B′(u)∥H = 1
β

∥RH(G) −A(σg + σ0)∥H ≤ α+ ∥A∥
αβ

(
∥G∥H∗ + ∥A∥

β
∥F∥Q∗

)
,

as required. Defining σ = σg + σ0 ∈ H and noticing that B(σ0) = 0 conclude the existence
of a desired pair (σ, u). It remains to show uniqueness. This is implied by the solution of
the homogeneous problem, since it follows the same arguments as [114, Theorem 2.1] we
omit its proof.
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A.2 The parametric diffusion equation

This section is mainly based on [12, §4.2]. Specifically, we use the same arguments to prove
that the mixed formulation of the non-homogeneous Poisson problem is well-defined and
that it has a holomorphic extension to an open neighborhood of a suitable filled-in Bernstein
polyellipse. First, consider a bounded Lipschitz domain Ω ⊂ R2, let ∂Ω be the boundary of
Ω, f ∈ L2(Ω;R) and g ∈ H1/2(∂Ω). Here H1/2(∂Ω) is the trace space on the boundary ∂Ω,
that is,

H1/2(∂Ω) := γ0(H1(Ω)),

were γ0 : H1(Ω) → L2(∂Ω) is the bounded linear operator such that γ0(φ) = φ|γ for all φ
in the space of restrictions to Ω of functions that are of class C∞

0 in an open set containing
Ω. Note that the space (H1/2(∂Ω), ∥ · ∥1/2,∂Ω) is complete, where

∥g∥1/2,∂Ω := inf{∥v∥H1(Ω) : v ∈ H1(Ω) such that γ0(v) = g}, ∀g ∈ H1/2(∂Ω).

For a more complete review on trace spaces we refer to [114, §1.3.2].

Now, consider the linear elliptic equation with Dirichlet boundary conditions

−div(a(x,y)∇u(x,y)) = f(x), in Ω (A.2.1)
u(x,y) = g(x), on ∂Ω.

The variable y ∈ U = [−1, 1]N, the coefficient a(x,y) is parametric, the term f(x) is
nonparametric and g(x) is nonparametric as well. Our main goal is to study the regularity
of the parametric map y 7→ u(·,y). With a slight abuse of notation, we sometimes switch
between the notation u(·,y) and u(y) when referring to the parametric solution map.

Our first step is to identify sufficient considitions on y 7→ a(y) for the map y 7→ u(y) to be
well defined. Now we turn our attention to the weak mixed variational formulation of the
elliptic problem in (A.2.1).

First, assume that there exists r,M > 0, independent of y such that

0 < r ≤ ess inf
x∈Ω

a(x,y) = amin(y), and amax(y) = ess sup
x∈Ω

a(x,y) ≤ M, ∀y ∈ U . (A.2.2)

Next, for any value of the parameter y ∈ U , define the additional unknown σ(y) =
a(y)∇u(y) in Ω. Then the problem can be stated as a first-order system: given y ∈ U ,
find (σ, u)(y) such that

a−1(y)σ(y) = ∇u(y), in Ω,
−div(σ(y)) = f, in Ω,

u(y) = g, on ∂Ω.

Multiplying the first equation by τ ∈ H(div; Ω), and applying Green’s identity [114,
Lem. 1.4], we get

⟨a−1σ, τ ⟩L2(Ω) + ⟨u,div(τ )⟩L2(Ω) = ⟨γ0(τ ) · n, g⟩H−1/2(∂Ω)×H1/2(∂Ω),
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where n is the outward normal vector to ∂Ω, ⟨·, ·⟩H−1/2(∂Ω)×H1/2(∂Ω) denotes the duality pair
between H1/2(∂Ω) and its dual H−1/2(∂Ω) with respect to the inner product of L2(∂Ω). For
simplicity, we write H = H(div; Ω), Q = L2(Ω), and ⟨·, ·⟩H−1/2(∂Ω)×H1/2(∂Ω) as ⟨·, ·⟩1/2,∂Ω.
Next, multiplying the second equation by v ∈ Q we get the mixed variational formulation:
find (σ, u) ∈ H ×Q such that

da(σ, τ ) + b(τ , u) = G(τ ), ∀τ ∈ H, (A.2.3)
b(σ, v) = F (v), ∀v ∈ Q,

where d and b are the bilinear forms defined by

da(σ, τ ) = ⟨a−1σ, τ ⟩L2(Ω), ∀(τ ,σ) ∈ H ×H

b(τ , v) = ⟨div(τ ), v⟩L2(Ω), ∀(τ , v) ∈ H ×Q

and the functionals G ∈ H∗ and F ∈ Q∗ are defined by

F (v) = ⟨−f, v⟩L2(Ω), ∀v ∈ Q, and G(τ ) = ⟨γ0(τ ) · n, g⟩1/2,∂Ω, ∀τ ∈ H.

Now, we show the well-posedness of this variational formulation. Observe that this requires
a real-valued version of the BNB theorem. However, a simple inspection reveals that this is
implied by the complex version above. For the general version of this theorem in real-valued
Banach spaces see [120, Theorem 4.1] (see also [114, Theorem 2.1] for the real-valued case
in Hilbert spaces).

Theorem A.2.1 (Poisson equation; real-valued case). Suppose that a ∈ L∞(U ; L∞(Ω;R))
is bounded above and below by positive constants r,M , i.e.,

0 < r ≤ ess inf
x∈Ω

a(x,y) = amin(y), and amax(y) = ess sup
x∈Ω

a(x,y) ≤ M, ∀y ∈ U . (A.2.4)

Given y ∈ U , consider the mixed formulation in (A.2.3). Then, for any f ∈ L2(Ω), g ∈
H1/2(∂Ω), there exists a unique solution (σ(y), u(y)) ∈ H ×Q to the problem

da(σ, τ ) + b(τ , u) = G(τ ), ∀τ ∈ H, (A.2.5)
b(σ, v) = F (v), ∀v ∈ Q,

and this solution satisfies

∥u∥Q ≤ r +M

rβ

(
∥g∥1/2,∂Ω + 1

rβ
∥f∥L2(Ω)

)
,

∥σ∥H ≤ M

(
∥g∥1/2,∂Ω + (r +M)

rβ
∥f∥L2(Ω)

)
.

Proof. This proof is based on [114, §2.4.1]. First, observe that (A.2.4) implies

0 < M−1 ≤ ess inf
x∈Ω

a−1(x,y) = a−1
min(y), and a−1

max(y) = ess sup
x∈Ω

a−1(x,y) ≤ r−1, ∀y ∈ U .
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Naturally d, b are bounded bilinear forms and F,G are bounded linear functionals, with
bounds

|da(τ ,σ)| ≤ r−1∥τ∥H∥σ∥H , |b(τ , v)| ≤ ∥τ∥H∥v∥Q,

|F (v)| ≤ ∥f∥L2(Ω)∥v∥Q, |G(τ )| ≤ ∥g∥1/2,γ∥τ∥H ,

for all τ ,σ ∈ H and v ∈ Q, respectively. Now let B : H → Q be the induced operator of b
given by B(τ ) = div(τ ) for all τ ∈ H. Hence

V = N(B) = {τ ∈ H : div(τ ) = 0 in Ω}.

This implies that the operator da is V -elliptic. That is

da(τ , τ ) = ⟨a−1τ , τ ⟩L2(Ω) ≥ M−1⟨τ , τ ⟩L2(Ω) = M−1∥τ∥2
L2(Ω) = M−1∥τ∥2

H , ∀τ ∈ V.

Now we need to prove the surjectivity of the operator B, which is equivalent to the inf-sup
condition (A.1.1). Let v ∈ Q and consider the auxiliary variational problem

−∆z = v, in Ω
z = 0, on Ω.

Due to Lax-Milgram lemma there exists a unique z ∈ H1
0(Ω) such that

∥∇z∥L2(Ω) ≤ C∥v∥Q,

where C > 0 is a constant depending on the Friedrich-Poincaré inequality [114, Lem. 1.1].
Then, defining τ̃ = −∇z in Ω we deduce τ̃ ∈ H and B(τ̃ ) = v in Ω. Therefore B is
surjective. Using the real-valued version of the BNB theorem we get the result.

In summary, under the sufficient conditions of Theorem A.2.1, the parametric solution map

(σ, u) : U → H ×Q,

is well-defined, Hilbert-valued mapping belonging to the space L∞(U , H ×Q).

The complex-valued version of this result follows the similar arguments to those of the
real-valued version.

Corollary A.2.2 (Poisson equation; complex-valued case). Suppose that
a ∈ L∞(U ; L∞(Ω;C)) is bounded below and above by positive constants r,M , i.e.,

0 < r ≤ ess inf
x∈Ω

Re (a(x,y)) = amin(y), and amax(y) = ess sup
x∈Ω

|a(x,y)| ≤ M, ∀y ∈ U .

(A.2.6)
Given y ∈ U , consider the mixed formulation in (A.2.3). Then, for any f ∈ L2(Ω;C),
g ∈ H1/2(∂Ω;C), there exists a unique solution (σ(y), u(y)) ∈ (H × Q) = (H(div; Ω;C) ×
L2(Ω;C)) to the problem

da(σ, τ ) + b(τ , u) = G(τ ), ∀τ ∈ H, (A.2.7)
b(σ, v) = F (v), ∀v ∈ Q,
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and this solution satisfies

∥u∥Q ≤ 1 + (r/M)2

β

(
∥g∥1/2,∂Ω + 1

rβ
∥f∥L2(Ω)

)
,

∥σ∥H ≤ M2

r

(
∥g∥1/2,∂Ω + (1 + (r/M)2)

β
∥f∥L2(Ω)

)
.

Proof. Under the assumption (A.2.6), we get

|da(τ , τ )| ≥ Re (da(τ , τ )) =
∫

Ω
Re (a−1)|τ |2

=
∫

Ω

Re (a)
Re 2(a) + Im 2(a) |τ |2

≥ r

M2 ∥τ∥L2(Ω) = r

M2 ∥τ∥H , ∀τ ∈ N(B).

Moreover, the first inequality implies that

|da(σ, τ )| = |⟨a−1(y)σ, τ ⟩L2(Ω)| ≤ 1
r

∥σ∥H∥τ∥H ∀τ ,σ ∈ H.

Replacing r
M2 and 1/r instead of α and ∥A∥ in Theorem A.1.2, and following the same steps

as in Theorem A.2.1 we get the result.

A.2.1 Affine parametric dependence

As in [12, §4.2.1], we now assume that there exists functions a0 ∈ L∞(Ω) and {ψj}j∈N ⊂
L∞(Ω) such that

a(x,y) = a0(x) +
∑
j∈N

yjψj(x), ∀x ∈ Ω, ∀y ∈ U . (A.2.8)

Under the parametric dependence assumption, the uniform ellipticity condition (A.2.6) is
equivalent to ∑

j∈N
|ψj(x)| ≤ a0(x) − r, ∀x ∈ Ω,

for some r > 0. This implies the absolute convergence of the series ∑j∈N yjψj(x) for every
x ∈ Ω and y ∈ U and therefore (A.2.6) holds wit M = 2∥a0∥L∞(Ω).

A.3 Holomorphic extension of the solution map

We now follow the same arguments as those in [12, §4.2.2] to prove the holomorphic exten-
sion of the solution map. First, we generalize the definition in §2.3 to holomorphic maps
between Banach spaces [12, Def. 4.7].

Definition A.3.1 (holomorphic mapping between Banach spaces). Let (X, ∥ · ∥X) and
(Y, ∥ · ∥Y ) be Banach spaces and O ⊆ X be an open set. A mapping F : X → Y is
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holomorphic in O if, for every x ∈ O, F has a Fréchet derivative dF(x), i.e., there exists a
bounded linear operator dF(x) : X → Y that satisfies

lim
∥h∥X→0

∥F(x+ h) − F(x) − dF(x)h∥Y

∥h∥X
= 0.

We now show that the solution map y 7→ (σ(y), u(y)) of (A.2.7) with diffusion coefficient
a = a(·,y) given by (A.2.8) admits a holomorphic extension to an open neighborhood of
a suitable filled-in Bernstein polyellipse and therefore satisfies the holomorphic extension
assumption, Assumption 2.3.2.

Step 1. The holomorphic extension of a → (σ, u)(a). We first consider the solution
(σ, u) as a function of the diffusion coefficient a ∈ L∞(Ω;R) and study the solution map
a 7→ (σ, u)(a). This map is an operator between the Banach spaces L∞(Ω;R) and H ×Q =
H(div; Ω;R)×L2(Ω;R), which is well defined for those a satisfying (A.2.4). The main result
below shows that this mapping admits a holomorphic extension to the open region

OUE =
⋃
r>0

M>0

{a ∈ L∞(Ω;C) : ess inf
x∈Ω

Re(a(x)) ≥ r, ∥a∥L∞(Ω,C) < M} ⊂ L∞(Ω,C).

Proof of step 1. Let H × Q = H(div; Ω;R) × L2(Ω;R) and f ∈ Q and g ∈ H. Consider
the parametric operator L : L∞(U) → L(H ×Q,H ×Q) given by

LT (a) = L(T (a)) =
[
DT (a) B∗

B 0

]

where DT (a) : H → H and B : H → Q are such that

⟨DT (a)(σ), τ ⟩ = ⟨T (a)σ, τ ⟩L2(Ω), ⟨B(τ ), v⟩ = ⟨div(τ ), v⟩L2(Ω). (A.3.1)

for all T (a) = 1/a ∈ L∞(Ω) satisfying (A.2.2). Assuming that there exists r,M > 0 such
that

0 < r ≤ ess inf
x∈Ω

a(x,y) = ãmin(y), and amax(y) = ess sup
x∈Ω

a(x,y) ≤ M, ∀y ∈ U ,

the inverse L−1
T (a) is well defined and we can write

L−1
T (a)

[
f
g

]
=:
[
σ̃(T (a))
ũ(T (a))

]
.

Then, we can write the mapping a 7→ (σ, u)(a) as

a 7→ T (a) 7→ (σ, u)(a) = (σ̃, ũ)(T (a)),
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where once more T (a) = 1/a for any a ∈ L∞(Ω) satisfying (A.2.2). This composition will
be useful later. Our first goal is to find conditions such that the mapping a 7→ (σ, u)(a) can
be extended to complex-valued diffusion coefficients a ∈ L∞(Ω;C).

The complex version of the BNB theorem gives the following result. Let a ∈ L∞(Ω;C), and
assume that (A.2.6) holds for some r > 0 and M > 0. Then the operator LT (a) is invertible
and

∥L−1
T (a)(f, g)∥H×Q ≤ C1(M, r, β)∥f∥Q + C2(M, r, β)∥g∥H ,

for all f ∈ Q and g ∈ H, where

C1(M, r, β) = (1 + βM)
(

1 + (r/M)2

rβ2

)
, C2(M, r, β) = 1 + (r/M)2

β
+ M2

r
. (A.3.2)

Hence, a natural way to extend (σ, u) is to consider (σ̄, ū)(T (a)) = L−1
T (a)(f, g). We are now

ready to prove that (σ̄, ū) is holomorphic in a suitable open set.

Proposition A.3.2 (holomorphic extension of a 7→ (σ, u)(a)). The solution map

(σ, u) : L∞(U) → H(div; Ω) × L2(Ω)

associated with prolem (A.2.5) admits a well-defined and holomorphic extension

(σ̄, ū) : OUE → H(div; Ω;C) × L2(Ω;C),

where OUE ⊂ L∞(Ω;C) is the open region defined as

OUE =
⋃
r>0

M>0

RUE
r,M , with RUE

r,M = {a ∈ L∞(Ω;C) : ess inf
x∈Ω

Re (a(x)) ≥ r, ∥a∥L∞(Ω;C) ≤ M}.

Moreover, the following upper bound holds in each region RUE
r,M of uniform ellipticity:

∥(σ̄, ū)∥L∞(RUE
r,M ;H(div;Ω;C)×L2(Ω;C)) ≤ C1(M, r, β)∥f∥L2(Ω) + C2(M, r, β)∥g∥H1/2(∂Ω)

where C1, C2 are the constants in (A.3.2).

Proof. We follow [12, Prop. 4.8] to prove that OUE is open. Let a ∈ OUE. Then there exists
r,M > 0 such that ess infx∈Ω Re (a(x)) ≥ r and ∥a∥L∞(Ω;C) ≤ M . Now, let 0 < ϵ < r. For
any b ∈ L∞(Ω;C) such that ∥b− a∥L∞(Ω;C) < ϵ, we have

ess inf
x∈Ω

Re (b(x)) > ess inf
x∈Ω

Re (a(x)) − ∥b− a∥L∞(Ω;C) > r − ϵ > 0,

and ∥b∥L∞(Ω;C) ≤ ∥a∥L∞(Ω;C) + ∥b − a∥L∞(Ω;C) ≤ M + ϵ. Hence b ∈ OUE. This proves the
claim.

We now show that (σ, u) admits a holomorphic extension over OUE. First we decompose
the map a 7→ (σ̄, ū)(a) into the following concatenation of four maps:
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OUE → L∞(Ω;C) → L(H ×Q,H ×Q) → L(H ×Q,H ×Q) → H ×Q

a 7→ T (a) = 1/a 7→ LT (a) 7→ L−1
T (a) 7→ L−1

T (a)(f, g),

where L−1
T (a)(f, g) = (σ̄, ū)(a).

As in [12, Prop. 4.8], the rest of the proof is devoted to showing that (σ̄, ū) is holomorphic
in OUE by veryfying that T , LT (a), the inversion mapping and the evaluation mapping are
holomorphic in suitable open domains.

The map T (a) = 1/a

The mapping T : OUE → L∞(Ω;C) defined as T (a) = 1/a has a Frechet derivative d( 1
a)h =

−h/a2 in the open domain OUE. Therefore, by Definition A.3.1 it is holomorphic in OUE.

The parametric diffusion operator L

We now prove that the operator L : L∞(U) → L(H ×Q,H ×Q) is holomorphic, where

La = L(a) =
[
Da B∗

B 0

]
,

and Da : H → H and B : H → Q are such that (A.3.1) holds for all a ∈ L∞(Ω) satisfying
(A.2.2).

First, notice that the Frechet derivative of L is given by

dL(a)(h) =
[
Dh 0
0 0

]
.

In particular we have

∥L(x+ h) − L(x) − dL(x)h∥L(H×Q,H×Q)

=
∥∥∥ [D(x+h) B∗

B 0

]
−
[
Dx B∗

B 0

]
−
[
Dh 0
0 0

] ∥∥∥
L(H×Q,H×Q)

=
∥∥∥ [0 0

0 0

] ∥∥∥
L(H×Q,H×Q)

= 0.

Therefore ∥L(x+h)−L(x)− dL(x)h∥L(H×Q,H×Q) = 0 and by Definition A.3.1, the operator
L is holomorphic in L∞(Ω,C).

We refer to [12, Prop. 4.8], which proves that the inverse map is holomorphic. In particular,
the operators in L(T (RUE

r,M )) are invertible due to Theorem A.1.2. Moreover, the inverse
mapping is well defined and holomorphic in the open set L(OUE) = ⋃

r>0
M>0

L(T (RUE
r,M )).

As in [12, Prop. 4.8], the evaluation mapping is linear and hence holomorphic, and that
the composition of holomorphic maps is holomorphic. We conclude that a 7→ (σ̄, ū)(a) is
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holomorphic in OUE. Furthermore, the upper bound follows from applying the uniform
bound in Theorem A.1.2.

We now show that the map y 7→ (σ, u)(y) admits a complex holomorphic extension to an
open neighborhood of the filled-in Bernstein polyellipse Eρ provided ρ satisfies a suitable
summability condition.

Proposition A.3.3 (holomorphic extension of y 7→ (σ, u)(y)). Let β > 0 be a constant
depending on the n-dimensional Friedrich-Poincaré inequality. Suppose that there exists
functions a0 ∈ L∞(Ω) and {ψj}j∈N ⊂ L∞(Ω) such that

a(x,y) = a0(x) +
∑
j∈N

yjψj(x), ∀x ∈ Ω, ∀y ∈ U .

Let r,M > 0 be such that

∥a0∥L∞(Ω) ≤ M, and
∑
j∈N

|ψj(x)| ≤ a0(x) − r, (A.3.3)

holds for all x ∈ Ω. Moreover, let ρ ∈ RN with ρ ≥ 1 and 0 < ε < r be such that

∑
j∈N

(
ρj + ρ−1

j

2 − 1
)

∥ψj∥L∞(Ω) ≤ ε. (A.3.4)

Then, the solution map

(σ, u) : U → H(div; Ω;R) × L2(Ω;R)

associated with prolem (A.2.5) admits a well-defined and holomorphic extension

(σ̄, ū) : O → H(div; Ω;C) × L2(Ω;C)

to an open set O ⊆ CN such that Eρ ⊂ O, where Eρ is the filled-in Bernstein polyellipse. In
particular, (σ̄, ū) : O → H(div; Ω;C) × L2(Ω;C) is such that (σ̄, ū)|U = (σ, u). Moreover,
the following upper bound holds:

∥(σ̄, ū)∥L∞(Eρ;H(div;Ω;C)×L2(Ω;C)) ≤ C1(M, r, β, ε)∥f∥L2(Ω) + C2(M, r, β, ε)∥g∥H1/2(∂Ω)

where the constants C1 and C2 are given by

C1(M, r, β, ε) = (1 + 2βM)
(

1 + ((r − ε)/M)2

4(r − ε)β2

)
, C2(M, r, β, ε) = 1 + ((r − ε)/M)2

4β + 4M2

(r − ε) .

Proof. As in [12, Proposition 4.9], we define a complex extension of the parametrization
y 7→ a(y) as

z ∈ CN 7→ a(x, z) = a0(x) +
∑
j∈N

zjψj(x) ∈ C, ∀x ∈ Ω. (A.3.5)
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This is a well defined mapping for every z ∈ Eρ. In fact, using (A.3.4) and the uniform
ellipticity condition (A.3.3) we get

∑
j∈N

|zj ||ψj(x)| ≤
∑
j∈N

ρj + ρ−1
j

2 |ψj(x)| ≤
∑
j∈N

|ψj(x)| +
∑
j∈N

(
ρj + ρ−1

j

2 − 1
)

∥ψj∥L∞(Ω)

≤ a0(x) − (r − ϵ).

Since |zj | ≤ (ρj + ρ−1
j )/2 for every j ∈ N by definition of the Bernstein polyellipse Eρ,

we deduce that the infinite sum in (A.3.5) converges absolutely and uniformly for z ∈ Eρ.
Furthermore, for every z ∈ E(ρ) we get

|a(x, z)| ≤ |a0(x)| +
∑
j∈N

|zj ||ψj(x)| ≤ 2|a0(x)| − (r − ε) ≤ 2M, ∀x ∈ Ω,

and

ess inf
x∈Ω

Re (a(x, z)) = ess inf
x∈Ω

a0(x) +
∑
j∈N

Re (zj)ψj(x)


= ess inf

x∈Ω

a0(x) −
∑
j∈N

ρj + ρ−1
j

2 |ψj(x)|


≥ r − ε.

Hence, a(Eρ) ⊆ RUE
r−ε,2M is the region in which the complex uniform ellipticity condition

holds with parameter r − ε and bound 2M .

Note that the mapping z 7→ a(z) is affine and therefore holomorphic. Recall from Propo-
sition A.3.2 that this parametrization maps E(ρ) into the open region OUE ⊂ L∞(Ω;C),
where the mapping a 7→ (σ, u)(a) admits a holomorphic extension a 7→ (σ̄, ū)(a). Combining
these two results we deduce that we can extend y 7→ (σ, u)(y) = (σ(a(y)), u(a(y))) in a
holomorphic way to Eρ as

z 7→ (σ̄, ū)(z) = (σ̄(a(z)), ū(a(z))),

since the composition of holomorphic maps is holomorphic. Now, from the upper bound
2M and lower bound r− ε above, and using (A.3.2) we obtain the uniform upper bound in
the result.

Finally, we provide an open set O containing Eρ in which z 7→ (σ̄, ū)(z) is holomorphic.
The argument follows the same arguments as in [12, Prop. 4.9]. Let 0 < δ < r − ε, and let
O be the open interior of the polyellipse Eρ̃ with parameter ρ̃ ≥ 1 defined implicitly by

ρ̃j + ρ̃−1
j

2 =
ρj + ρ−1

j

2 + δ∑
j∈N ∥ψj∥L∞(Ω)

, ∀j ∈ N.
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Then for every x ∈ Ω, we have

∑
j∈N

ρ̃j + ρ̃−1
j

2 |ψj(x)| ≤
∑
j∈N

ρj + ρ−1
j

2 |ψj(x)| + δ ≤ a0(x) − (r − ε− δ).

Hence, arguing as in the first part of the proof, we deduce that a(O) ⊆ RUE
r−ε−δ,2M . Combin-

ing the previous proposition and that z 7→ a(z) is holomorphic, we get that z 7→ (σ̄, ū)(z)
is holomorphic in O.
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Appendix B

Legendre coefficients summability
and best s-term polynomial
approximation rates

This appendix presents four lemmas on the summability of the coefficients of the Legendre
polynomial expansion for the class of (b, 1)-holomorphic functions introduced in §A.3. These
will allow us to obtain upper bounds on the m-widths (6.1.3)–(6.1.5).

B.1 Setup

Consider the setup from Chapter 2 where d = ∞. Recall that F is the set of multi-indices
with at most finitely-many nonzero entries. Let ϱ be the uniform probability measure on
U = [−1, 1]N and {Ψν}ν∈F be the orthonormal Legendre basis of L2

ϱ(U) constructed via the
tensorization

Ψν(y) =
∏
k∈N

Ψνk
(yk), y ∈ U ,ν ∈ F ,

where Ψν is the univariate, orthonormal Legendre polynomial of degree ν. Then any f ∈
L2

ϱ(U ; V) has the convergent expansion (2.4.2). Now let S ⊂ F be a finite index set of size
N . Then the truncated series of f is given by

fS =
∑
ν∈S

cνΨν . (B.1.1)

B.2 ℓp-summability and best s-term rates

Given a (multi-)index set Λ ⊆ F . Recall the definition of the ℓp(Λ; V)-norm from §2.2

∥v∥p;V =
{

(∑ν∈Λ ∥vν∥p
V)1/p

, 0 < p < ∞,

supν∈Λ ∥vν∥V , p = ∞,
v = (vν)ν∈Λ.
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We shall typically use this in the case Λ = F or Λ = [N ].

The proof of the following lemma can be found in [12, Thm. 3.28] and provides a key
summability estimate for the Legendre coefficients of a (b, 1)-holomorphic function.

Lemma B.2.1. Let 0 < p < 1 and b ∈ ℓp(N) with b ≥ 0. Then the Legendre coefficients
c = (cν)ν∈F in (2.4.2) satisfy

∥c∥p;V ≤ C(b, p), ∀f ∈ H(b), (B.2.1)

where C(b, p) depends on b and p only.

We are particularly interested in bounding the supremum of C = C(b, q) over b ∈ ℓpM(N)
for 0 < p < q < 1. This bound is used in the proof of part (b) of Theorems 6.3.3 and 6.3.4.
The following result is obtained by modifying the proof of [12, Thm 3.28].

Lemma B.2.2. Let 0 < p < q < 1. Then

sup
∥b∥p,M≤1

C(b, q) ≤ cp,q,

where C = C(b, q) is the constant in (B.2.1) and cp,q is a positive constant depending on p
and q only.

Proof. Consider b ∈ ℓpM(N) with ∥b∥p,M ≤ 1. Notice from [12, Eq. (3.48)] that the constant
C in (B.2.1) can be taken to be

C(b, q) = ξ(κ̃)d

( ∞∑
n=0

(2n+ 1)q/2

κ̃qn

)d/q

∥g(b)∥q, (B.2.2)

where ξ(t) = min{2t, π
2 (t + t−1)}/(t − 1) for every t > 1, the term κ̃ = κ̃(b) > 1 is defined

as the unique solution to
κ̃+ κ̃−1

2 = 1 + 1
2∥b∥1

,

and

g(b)ν = ∥ν∥1!
ν! h(b)ν

∏
j∈N

(ξ(κ̃)
√

3νj + 1), ∀ν ∈ F ,

h(b)j = 2ebj+d,

(B.2.3)

where d ∈ N is a truncation parameter.

We aim to bound (B.2.2) by a constant depending on p and q. First, we show that there is a
convergent sequence h̃ independent of b that can replace h(b) in (B.2.3). Then, we proceed
using similar arguments to those in the proof of [12, Thm. 3.28] to get the result.

Let b̃ be the minimal monotone majorant (2.4.15) of b. Using Stechkin’s inequality we get
∞∑

j=n+1
b̃j = σn(b̃)1 ≤ n1−1/p∥b̃∥p = n1−1/p∥b∥p,M ≤ cpn

1−1/p,
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for some constant cp depending only on p. Also by monotonicity,

nb̃2n ≤ b̃n+1 + · · · + b̃2n ≤
∞∑

j=n+1
b̃j ≤ cpn

1−1/p.

Hence bn ≤ b̃n ≤ c̃pn
−1/p for a possible different constant depending on p. Note that the

inequality for odd values of n can be established using a similar argument. Keeping this in
mind, we define the sequence h̃(p) = (h̃(p)j)j∈N by

h̃(p)j = 2c̃pe(j + d)−1/p,

where d ∈ N is a parameter that will be chosen in the next step. Thus, we get the bound

h(b)j = 2ebj+d ≤ 2c̃pe(j + d)−1/p = h̃(p)j , ∀j ∈ N.

Observe that h̃(p) ∈ ℓ1(N). Moreover, using the fact that q/p > 1 and a simple convergence
argument, we obtain that

∥h̃(p)∥q = 2c̃pe

∑
j∈N

(j + d)−q/p

1/q

< ∞, (B.2.4)

which implies that h̃(p) ∈ ℓq(N). We now choose d = d(p) as the minimum d ∈ N such that

∥h̃(p)∥1 =
∑
j∈N

2c̃pe(j + d)−1/p < 1. (B.2.5)

On the other hand, since ∥b∥1 ≤ ∥b∥1,M ≤ ∥b∥p,M ≤ 1 and examining the solution of
equation

κ̃+ κ̃−1

2 = 1 + 1
2∥b∥1

,

we deduce that κ̃ > 2.6 through a straightforward inspection. Hence, from the definition of
ξ and the lower bound on κ̃ we get that ξ(κ̃) ≤ 2κ̃/(κ̃− 1) ≤ 4. Note that this upper bound
is independent of κ̃, and therefore independent of b. Keeping this in mind, we get

g(b)ν = ∥ν∥1!
ν! h(b)ν

∏
j∈N

(ξ(κ̃)
√

3νj + 1) ≤ ∥ν∥1!
ν! h̃(p)ν

∏
j∈N

(4
√

3νj + 1) =: g̃(p)ν , ∀ν ∈ F ,

(B.2.6)
which implies that ∥g(b)∥q ≤ ∥g̃(p)∥q. Therefore, we can bound (B.2.2) by

C(b, q) = ξ(κ̃)d

( ∞∑
n=0

(2n+ 1)q/2

κ̃qn

)d/q

∥g(b)∥q ≤ ξ(κ̃)d

( ∞∑
n=0

(2n+ 1)q/2

κ̃qn

)d/q

∥g̃(p)∥q.

(B.2.7)
To show that ∥g̃(p)∥q < ∞ we combine (B.2.4) with (B.2.5) and apply [12, Lem. 3.29].
It remains to bound the other term in the previous inequality. Recall that ξ(κ̃) ≤ 4 and
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κ̃ > 2.6. Then,

ξ(κ̃)d

( ∞∑
n=0

(2n+ 1)q/2

κ̃qn

)d/q

≤ 4d

( ∞∑
n=0

(2n+ 1)q/2

(2.6)qn

)d/q

≤ cp,q < ∞,

where cp,q is a positive constant depending on p and q only. Note that cp,q depends on p due
to the dependence of d on p. In this way, by taking supremum over ∥b∥p,M ≤ 1 in (B.2.7)
we get the result.

We now present a best s-term approximation rate for the Legendre polynomials. For non-
sparse vectors in ℓp(F ; V), we recall from (2.4.8) the definition of the ℓp-norm best s-term
approximation error as

σs(x)p;V = inf
z∈ℓp(F ;V)

{∥x − z∥p;V : |supp(z)| ≤ s}, x ∈ ℓp(F ; V), (B.2.8)

where supp(z) is the support of the vector z as in (2.4.7). The following result can be
deduced from Stechkin’s inequality and Lemma B.2.1. Note that the proof of Lemma B.2.1
(see [12, Thm. 3.28]) involves establishing the summability of a bounding sequence for the
V-norms of the polynomial coefficients in (2.4.2). This bound is equal to ∥f∥L∞(R(b);V)
multiplied by a factor that is independent of f and depending on b only. Consequently, the
index set in the following result is independent of f .

Corollary B.2.3. Let 0 < p < 1, q ≥ p, b ∈ ℓp(N) with b ≥ 0 and s ∈ N. Then, there
exists a set S ⊂ F of size |S| ≤ s depending on b and p only such that

σs(c)q;V ≤ ∥c − cS∥q;V ≤ C(b, p) · s1/q−1/p, ∀f ∈ H(b), (B.2.9)

where C(b, p) > 0 is the constant in (B.2.1) and c = (cν)ν∈F are the Legendre coefficients
in (2.4.2).

B.3 ℓpA-summability and best s-term rates in anchored sets

In the last part of this appendix we require the notion of lower and anchored sets and
the minimal anchored majorant of a sequence and the ℓpA space. A sequence c ∈ ℓ∞(F ; V)
belongs to ℓpA(F ; V) if its minimal anchored majorant c̃ = (c̃ν)ν∈F , defined by

c̃ν =
{

sup{∥cµ∥V : µ ≥ ν} if ν ̸= ej for any j ∈ N,
sup{∥cµ∥V : µ ≥ ei for some i ≥ j} if ν = ej for some j ∈ N,

(B.3.1)

belongs to ℓp(F). In particular, we define its ℓpA(F ; V)-norm by

∥c∥p,A;V = ∥c̃∥p;V . (B.3.2)

For further details we refer to [12, Def. 3.31].

Similar to Lemma B.2.1, the following result shows summability of the Legendre coefficients
of a (b, 1)-holomorphic function in the ℓpA-norm.
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Lemma B.3.1. Let 0 < p < 1 and b ∈ ℓpM(N) with b ≥ 0. Then the Legendre coefficients
c = (cν)ν∈F in (2.4.2) satisfy

∥c∥p,A;V ≤ CA(b, p), ∀f ∈ H(b), (B.3.3)

where CA(b, p) depends on b and p only.

Proof. Let b̃ be the minimal monotone majorant of b, defined in (2.4.15). Following the
same argument as in Corollary 2.4.15 we get that R(b̃) ⊆ R(b) where R(b) is as in (2.3.2).
Therefore, H(b) ⊆ H(b̃). Since b̃ ∈ ℓp(N) is monotonically nonincreasing [12, Thm. 3.33]
implies the result.

As in Lemma B.2.2, we are interested in bounding the supremum of CA = CA(b, q) over
b ∈ ℓpM(N). This bound will be useful for the proof of part (b) of Theorem 6.3.4. The
following result is obtained by modifying the proof of [12, Thm 3.33].

Lemma B.3.2. Let 0 < p < q < 1. Then

sup
∥b∥p,M≤1

CA(b, q) ≤ cp,q,

where CA(b, p) is the constant in (B.3.3) and cp,q is positive constant depending on p and q
only.

Proof. Let b̃ be the minimal monotone majorant (2.4.15) of b ∈ ℓpM(N) with ∥b̃∥p = ∥b∥p,M ≤
1 and κ̃ = κ̃(b̃) > 1 be the unique solution to

κ̃+ κ̃−1

2 = 1 + 1
4∥b̃∥1

.

Observe that κ̃ ≥ 2. Then, a simple inspection reveals that

√
2n+ 1 ≤ 6

5

(3
2

)n

≤ 6
5

(1 + κ̃

2

)n

,∀n ∈ N. (B.3.4)

Also, define η = η(κ̃) := (1 + κ̃)/(2κ̃) < 1. Now, notice from [12, Eq. (3.62)] and the last
paragraph in the proof of [12, Thm. 3.33] , that the constant CA in (B.3.3) can be taken to
be

CA(b, q) = C̃A(b̃, q) = Dd
1

( ∞∑
n=0

ηqn

)d/q

∥g(b̃)∥q, (B.3.5)

where D1 = D1(κ̃) := max{1, 6/5ξ(κ̃)} with ξ(t) = min{2t, π
2 (t + t−1)}/(t − 1) for every

t > 1, and

g(b̃)ν = ∥ν∥1!
ν! h(b̃)ν

∏
j∈N

(ξ(κ̃)
√

3νj + 1), ∀ν ∈ F ,

h(b̃)j = 4eb̃j+d,

(B.3.6)

where d ∈ N is a truncation parameter.
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Now, following the same arguments as in (B.2.3)–(B.2.7) we deduce that

C̃A(b̃, q) = Dd
1

( ∞∑
n=0

ηqn

)d/q

∥g(b̃)∥q ≤ Dd
1

( ∞∑
n=0

ηqn

)d/q

∥g̃(p)∥q, (B.3.7)

where, using [12, Lem. 3.29] once more, we see that the sequence g̃(p), defined in (B.2.6)
satisfies ∥g̃(p)∥q < ∞. It remains to bound the other term in the previous inequality. As in
the last steps in the proof of Lemma B.2.2, with ξ(κ̃) ≤ 4 and κ̃ ≥ 2, we deduce that

Dd
1

( ∞∑
n=0

ηqn

)d/q

≤ 4d
(6

5

)d
( ∞∑

n=0

(4
5

)qn
)d/q

≤ cp,q < ∞, (B.3.8)

where cp,q is a positive constant depending on p and q only. Finally, by taking the supremum
over ∥b∥p,M ≤ 1 in (B.3.7) we get the result.

Let 0 < p ≤ ∞. We now introduce the concept of the ℓp-norm best s-term approximation
error in anchored sets. This is defined as

σs,A(x)p;V = inf
z∈ℓp(F ;V)

{∥x − z∥p;V : |supp(z)| ≤ s, supp(z) anchored}, x ∈ ℓp(F ; V).

(B.3.9)
Now we provide an algebraic s-term rate in anchored sets. The following result follows
similar arguments to those used in Corollary B.2.3 and it is deduced by applying [12, Lemma
3.32] and Lemma B.3.1 to the Legendre coefficients c = (cν)ν∈F in (2.4.2). Observe that, to
prove Lemma B.3.1 the V-norm of the coefficients in (2.4.2) are bounded by a monotonically
nonincreasing sequence (see [12, Eq. (3.55)]) that only depends on b. Therefore, the anchored
set in the following corollary is independent of f .

Corollary B.3.3. Let 0 < p < 1, q ≥ p, b ∈ ℓpM(N) and s ∈ N. Then, there exists an
anchored set S ⊂ F of size |S| ≤ s such that

σs,A(c)q;V ≤ ∥c − cS∥q;V ≤ CA(b, p) · s1/q−1/p, ∀f ∈ H(b), (B.3.10)

where CA(b, p) is the constant in (B.3.3) and c = (cν)ν∈F are the Legendre coefficients in
(2.4.2).
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Appendix C

Widths of weighted ℓp-norm balls
in RN

In this appendix, we present a proposition providing a lower bound to the Gelfand m-width
in terms of m and N ∈ N, an equality theorem proving the connection between Gelfand m-
widths and Kolmogorov widths for a particular set of spaces, a duality result by Stesin [241]
and a lemma that establishes the relationship between the unit balls in these spaces using
the Kolmogorov m-widths.

First, recall the definition of the Gelfand m-width from §6.5.2. The following proposition
can be obtained from [111, Prop. 2.1] by an inspection of the proof.

Proposition C.0.1 (Lower bound). Let N ∈ N. For 0 < p ≤ 1, m < N and p < q ≤ ∞,

dm(Bp
N , ℓ

q
N ) ≥

(1
2

) 2
p

− 1
q

min

1,
2p

log(38e) log(eN/m)
m


1
p

− 1
q

. (C.0.1)

We now give the proof of an equality result based on the methodology described in [112, Lem.
10.15]. Specifically, we show that the Kolmogorov widths of ℓpN -balls in the weighted ℓqN space
are equivalent to certain Gelfand widths.

First, for 1 ≤ p, p∗, q, q∗ ≤ ∞ we recall the definitions of the Gelfand and Kolmogorov
widths for this particular case, see §6.5.2. The Gelfand m-width of the subset Bq∗

N (1/w) of
ℓp

∗

N is

dm(Bq∗

N (1/w), ℓp
∗

N ) = inf

 sup
x∈Bq∗

N (1/w)∩X m

∥x∥p∗ , X m a subspace of ℓp
∗

N with codim(X m) ≤ m

 ,
and the Kolmogorov m-width of a subset Bp

N of the space ℓqN (1/w) is

dm(Bp
N , ℓ

q
N (w)) = inf

 sup
x∈Bp

N

inf
z∈Xm

∥x − z∥q,w, Xm a subspace of ℓqN (w) with dim(Xm) ≤ m

 .
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Theorem C.0.2 (Stesin). Let N ∈ N with N > m, 1 ≤ q < p ≤ ∞, and w ∈ RN be a
vector of positive weights. Then

dm(Bp
N (w), ℓqN ) =

 max
i1,...,iN−m∈[N ]

ik ̸=ij

N−m∑
j=1

w
pq/(p−q)
ij

1/p−1/q


−1

.

Theorem C.0.3 (Equality). For 1 ≤ p, q ≤ ∞, let w ∈ RN be a vector of positive weights
and p∗, q∗ be such that 1/p∗ + 1/p = 1 and 1/q∗ + 1/q = 1. Then

dm(Bp
N , ℓ

q
N (w)) = dm(Bq∗

N (1/w), ℓp
∗

N ). (C.0.2)

Proof. First, given x ∈ Bp
N and a subspace Xm of ℓqN (w), we follow the same arguments as

those in [112, Lem. 10.15] to obtain

inf
z∈Xm

∥x − z∥q,w = ⟨ϕ,x⟩,

for some linear bounded functional ϕ ∈ X◦
m, with ∥ϕ∥(ℓq

N (w))∗ ≤ 1, where

X◦
m := {ϕ ∈ (ℓqN (w))∗ : ϕ(x) = 0, ∀x ∈ Xm}.

Now, by the definition in (6.5.1) we get

inf
z∈Xm

∥x − z∥q,w ≤ sup
ϕ∈Bq∗

N (1/w)∩X◦
m

⟨ϕ,x⟩.

On the other hand, for all ϕ ∈ Bq∗
N (1/w) ∩X◦

m, and z ∈ Xm we have

⟨ϕ,x⟩ = ⟨ϕ,x − z⟩ ≤ ∥ϕ∥(ℓq
N (w))∗∥x − z∥q,w.

Then we deduce the following equality

inf
z∈Xm

∥x − z∥q,w = sup
ϕ∈Bq∗

N (1/w)∩X◦
m

⟨ϕ,x⟩. (C.0.3)

Taking supremum on both sides over x ∈ Bp
N , we have

sup
x∈Bp

N

inf
z∈Xm

∥x − z∥q = sup
x∈Bp

N

sup
ϕ∈Bq∗

N (1/w)∩X◦
m

⟨ϕ,x⟩

= sup
ϕ∈Bq∗

N (1/w)∩X◦
m

sup
x∈Bp

N

⟨ϕ,x⟩

= sup
ϕ∈Bq∗

N (1/w)∩X◦
m

∥ϕ∥p∗ sup
x∈Bp

N

∥x∥p

= sup
ϕ∈Bq∗

N (1/w)∩X◦
m

∥ϕ∥p∗ .

Taking the infimum over all subspaces Xm with dim(Xm) ≤ m and noticing the one-to-one
correspondence between the subpaces X◦

m and the subspaces X m with codim(X m) ≤ m, we
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obtain
dm(Bp

N , ℓ
q
N (w)) = dm(Bq∗

N (1/w), ℓp
∗

N ),

as required.

The following result establishes a connection between the unit ball in the weighted space
ℓqN (w) and the unit weighted ball in ℓqN , using the Kolmogorov m-width

dm(Bp
N (1/w), ℓqN ) = inf

 sup
x∈Bp

N (1/w)
inf

z∈Xm

∥x − z∥q, Xm a subspace of ℓqN with dim(Xm) ≤ m

 .
Lemma C.0.4. Let w ∈ RN be a vector of positive weights and 1 ≤ p, q ≤ ∞. Then

dm(Bp
N , ℓ

q
N (w)) = dm(Bp

N (1/w), ℓqN ). (C.0.4)

Proof. Let x ∈ Bp
N and z ∈ Xm, where Xm is a m-dimensional subspace of X = ℓqN (w).

Then

inf
z∈Xm

∥x − z∥q,w = inf
z∈Xm

∑
i∈[N ]

( |xi − zi|
wi

)q
1/q

= inf
z′∈X′

m

∥∥(1/w) ⊙ x − z′∥∥
q.

Notice there is a one-to-one correspondence between subspaces Xm and subspaces X ′
m =

{(1/w) ⊙ z : z ∈ Xm}. Also, there is a one-to-one correspondence between x ∈ Bp
N and

(1/w) ⊙ x ∈ Bp
N (1/w). Thus,

dm(Bp
N , ℓ

q
N (w)) = dm(Bp

N (1/w), ℓqN ).

as required.
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