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Abstract

The discovery of the cosmic acceleration, along with the old cosmological constant problem
and the still-unknown nature of dark matter, stimulated exploration of alternate theories
of gravity. The interest in testing general relativity (GR) on cosmological scales is further
fuelled by the opportunities offered by existing and forthcoming cosmological surveys. This
thesis presents several original contributions to the actively developing area of cosmological
tests of gravity.

First, we present a new version of Modified Growth with CAMB (MGCAMB), a widely used
numerical tool for cosmological tests of gravity. New features include a parameterization
allowing for a simultaneous reconstruction of phenomenological functions characterizing
departures from the background expansion and departures in the linear growth of cosmic
structures from the ΛCDM prediction. Other new features include the option to test models
with a scalar field coupled only to dark matter, and the option to include dark energy
perturbations when working with alternative background expansion histories. This version
of MGCAMB comes with a Python wrapper to run it directly from the Python interface,
making it easy to use with commonly used Monte-Carlo Markov Chain samplers.

Next, we show how cosmological observations could distinguish between a modification of
gravity and additional dark matter interactions - a question that has not been quantitatively
investigated before. We demonstrate that data from a next generation survey, such as the
Square Kilometer Array, will make it possible to distinguish between the two possibilities
through measurements of gravitational redshift.

Finally, we extend the framework in MGCAMB with a phenomenological model that can cap-
ture the nonlinear evolution of cosmic structures in a broad range of modified gravity
theories. The extension employs the halo model reaction code ReACT used for modeling the
nonlinear corrections in extensions of the ΛCDM model. We demonstrate that using this
extension allows one to derive stronger constraints on modified gravity from the existing
Dark Energy Survey data. The nonlinear extension will be of particular importance for the
next generation of high resolution surveys such as Euclid and the Large Synoptic Survey
Telescope.
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Chapter 1

Introduction

The study of modern cosmology, which experienced several decades of rapid growth follow-
ing the breakthrough observations of cosmic microwave background (CMB) anisotropies by
COBE satellite, is in the midst of a new golden era. The revolutionary discovery of gravita-
tional waves (GW) from black hole binaries by the The Laser Interferometer Gravitational-
Wave Observatory (LIGO) Collaboration in 2015 [1], followed by detection of GWs from a
neutron star merger in 2017, ushered a new era of multi-messenger astronomy. Along with
James Webb Space Telescope (JWST)1 and a number of ongoing and forthcoming large
scale cosmological surveys, such as the Dark Energy Survey (DES)2, the Dark Energy Spec-
troscopic Instrument (DESI)3 and the Large Synoptic Survey Telescope (LSST)4, they are
offering new opportunities for testing our cosmological model and searching for signatures
of new physics.

The current cosmological model assumes co-existence of non-interacting cold dark matter
(CDM) and normal matter, as well as a positive cosmological constant Λ that plays the role
of dark energy (DE) responsible for the acceleration of the cosmic expansion first discovered
from observations of Type Ia supernovae in 1998 [2]. While the ΛCDM model survived
nearly three decades of intense scrutiny, and, overall, provides a good fit to the available
cosmological data, it is seen as a placeholder model until the nature of DE and CDM is
understood. Of particular concern is the "old" cosmological constant (CC) problem [3, 4]
which refers to the so far unsuccessful attempts to explain why most of the vacuum energy
density predicted by quantum field theory (QFT) does not seem to gravitate. The CC

1https://webb.nasa.gov/

2https://www.darkenergysurvey.org/

3https://www.desi.lbl.gov/

4https://www.lsst.org/
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problem5, coupled with the discovery of cosmic acceleration, are the primary motivations
for exploring alternative theories of gravity and DE. Adding to this motivation is the yet
unknown nature of dark matter.

In addition to the open questions about the physical nature of the two dark components,
certain tensions between datasets, when interpreted in the context of the ΛCDM model,
have emerged in recent years [5]. The most significant of them is the so-called Hubble
tension, which is the disagreement between the value of the Hubble parameter measured
“directly” by studying the rate at which distant galaxies are moving away from us, and the
value predicted by the ΛCDM model with parameters that best fit the CMB observations.
Such tensions could still be caused by yet unknown systematic errors, but could also be
pointing to a potential missing ingredient in the cosmological model. Attempts to resolve
the tensions also motivated significant work on theories of modified gravity, dark energy
and interacting dark sectors.

1.1 Cosmological tests of gravity and MGCAMB

The field of cosmological tests of modified gravity has matured significantly over the past
couple of decades. Studies evolved from the phenomenology of specific models, such as
f(R) [6, 7, 8, 9] and Dvali-Gabadadze-Porrati (DGP) [10, 11], to the development of general
frameworks [12, 13, 14, 15, 16, 17, 18, 19] for studying broad classes of modified gravity
theories, such as Horndeski [20, 21] and beyond [22, 23, 24, 25], along with the numerical
tools for interpreting observations within these frameworks, such as EFTCAMB [26, 27, 28]
and hi_class [29, 30].

Modified Growth with CAMB (MGCAMB), first introduced in 2008 [31] and significantly up-
graded in 2011 [32], 2019 [33] and 2023 [34], is a patch for the popular Einstein-Boltzmann
solver CAMB [35, 36], allowing one to compute cosmological observables in models with mod-
ified relations between the gravitational metric potentials and the matter density contrast.
It has been used in conjunction with Monte-Carlo Markov Chain (MCMC) samplers, such
as CosmoMC [37, 38] and Cobaya [37, 39, 40] to constrain modifications of gravity on cosmo-
logical scales [41, 42, 43].

The essential difference between MGCAMB (and similar software, like MGCLASS [44] and
ISiTGR [45, 46, 47]) and codes like EFTCAMB and hi_class is that the latter are exact
tools for testing scalar-tensor theories, albeit of most general type, while the former are
purely phenomenological, helping constrain departures from GR that are more directly
probed by large-scale structure surveys. In practice, one always has to choose a particular

5The "old" CC problem concerns the technically unnatural fine-tuning of Λ needed to cancel out the huge
energy in the vacuum. The "new" CC problem, also known as the coincidence problem, appeared after the
discovery of cosmic acceleration and asks why the constant DE density happens to be of the same order as
the current matter density of the Universe.
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parameterization and such choices are often driven by intuition gained from scalar-tensor
theories. Thus, there is a good degree of synergy between theory-specific tools and MGCAMB

when it comes to obtaining theoretical priors [48] on the phenomenological variables and
the interpretation of the constraints [49]. A recent example of such a synergistic approach
was the joint reconstruction [50, 51] of the two MGCAMB functions, µ and Σ, parameterizing
the relations between the matter density contrast and the Newtonian and Weyl potentials,
respectively, and the dark energy (DE) density fraction, ΩX , with the help of a correlation
prior derived from scalar-tensor theories.

1.2 Distinguishing a dark matter interaction from a modifi-
cation of gravity

In the standard cosmological model, dark matter takes the form of a slow-moving (“cold”),
non-interacting, non-baryonic species. Since such a particle has not been detected yet, sev-
eral extensions to the simple CDM paradigm have been proposed. These include scenarios
where dark matter interacts weakly with particles of the Standard Model [52, 53], with
the dark sector (e.g. dark radiation) [54, 55], or through self-interactions via a fifth (non-
gravitational) force [56, 57, 58, 59].

To test for gravity modifications and dark matter interactions, the standard approach is
to employ measurements of the growth rate of cosmic structure obtained through redshift-
space distortions (RSD) (see e.g. Refs. [60, 61, 62, 63]). Since gravity governs the way
cosmic structure evolves with time, deviations from GR generically modify the growth rate,
which is achieved by involving a deviation in the Poisson equation and thus affecting the
evolution of all cosmic components. Similarly, the growth rate would also be affected by
any new force acting on the dark matter particles, namely, a fifth force would only modify
the Euler equation for dark matter, as this would have an impact on structure formation.
Current analyses are testing these two scenarios separately. The community working on
gravity modifications usually assumes that dark matter is a cold non-interacting particle
and uses the growth rate of structure to test theories beyond GR, see e.g. Ref. [64]. By
contrast, the community working on non-standard dark matter models typically assumes
the validity of GR and uses the growth rate to constrain the strength of dark matter
interactions [65, 66, 67]. As we do not know which scenario (if any) is correct, it is important
to ask whether it is possible to test for both kinds of modifications at the same time and
disentangle them from one another.

1.3 Extending cosmological tests of gravity to nonlinear scales

Until now, the parameterization in MGCAMB can only be used to constrain departures of
the evolution of cosmological perturbations from GR within the range of validity of linear

3



perturbation theory. On the other hand, a significant portion of the information contained
in the data from large scale structure (LSS) surveys is in the correlations over scales ≲ 10
Mpc, where the growth of cosmic structures turns nonlinear [68, 69, 70, 71]. While in the Λ
Cold Dark Matter (ΛCDM) model the nonlinear corrections can be accurately calculated
using the Halofit model [72, 73], with the latest version of CAMB adopting HMcode 2020 [74],
Halofit cannot be used for MG models. Due to this limitation, when using MGCAMB with
Cobaya or CosmoMC, a linear cut was required to remove the part of the data that could
not be reliably modelled by linear theory [33]. In this thesis, we overcome this limitation by
adding to MGCAMB a capability to compute observables on nonlinear scales.

1.4 Overview of the thesis

The aim of this thesis is to employ the computational tool MGCAMB to do cosmological tests
of gravity in order to explore some new scenarios in modified gravity theories as well as the
particular properties of dark matter introduced by the existence of a fifth force, with the
help of new models and features in the code. The thesis is organized as follows. In Chapter 2,
we will generally review the framework of the standard cosmological model in the presence
of the Friedmann-Lemaître-Robertson-Walker (FLRW) universe. Specifically, we will start
by showing how the isotropic and homogeneous universe on large scales is governed by GR in
detail, and also discuss the framework of linear pertubation theory, and how different matter
components evolve along with the cosmic background acceleration. We then introduce some
major cosmological observables that are commonly used in modern studies of large scale
structure in cosmology before making the extension to modified gravity theories, where their
phenomenological signature is nicely interpreted with the help of MGCAMB.

In Chapter 3, we present a new version of MGCAMB (2023) as an upgrade. The added
features include new models, such as a scalar field coupled only to dark matter in the quasi-
static approximation, the option to include DE perturbations when working with w ̸= −1
backgrounds, and a new binned parameterization allowing for a simultaneous reconstruction
of µ, Σ and ΩX as functions of redshift. We will describe all new features in detail and
demonstrate their use in a few representative examples in this chapter.

In Chapter 4, we employ MGCAMB to produce synthetic data of redshift space distortions
(RSD) with the gravitational redshift based on the specifications of Square Kilometer Array
Phase 2 (SKA2), along with the weak gravitational lensing (WL) and Cosmic Microwave
Background (CMB) data, based on which we perform a MCMC analysis to successfully break
the degeneracy between modified gravity model and dark fifth force, with the generalized
Brans-Dicke (GBD) type symmetron, and the symmetron form of coupled quintessence (CQ)
as the representative examples implemented in MGCAMB, respectively. We also demonstrate
the range of validity of the disentanglement between the two models by varing the coupling

4



strength of the symmetron model, and also the Compton wavelength, i.e. the scales of the
modification effects.

In [75, 76, 77], a halo-model-based approach for modelling the effect of nonlinearities
in modified gravity theories, the halo model reaction (HMR), was introduced and used to
test DGP and f(R) gravity models at percent-level accuracy. The HMR approach was
also compared to N -body simulations in phenomenological extensions of GR in [78, 79]
showing good agreement. Recently, HMR was applied in the Stage-IV cosmic shear forecast
study [80] that adopted the linear parametrization of MG proposed in [81, 82, 83]. However,
until now, the HMR approach has not been applied to cosmological tests of gravity using the
µ-Σ parametrization used, for example, in the DES analysis [43]. In Chapter 5, we implement
the HMR as an option in MGCAMB, making it possible to use LSS data on nonlinear scales.
As we show, this results in stronger constraints on µ and Σ even after marginalizing over
the additional HMR parameters.
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Chapter 2

Cosmological Observables

In this chapter, we introduce the relevant components of the standard model of cosmology
in the framework of GR and the main cosmological observables extracted from the data
from cosmological surveys and commonly used for testing gravity. We also describe the
framework for testing alternative gravity models in the framework of MGCAMB.

2.1 Friedmann-Lemaître-Robertson-Walker Cosmology

In the standard model of cosmology, the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric establishes the fundamental geometry of an isotropic, homogeneous and expanding
universe. Specifically, the invariant line element ds in a FLRW universe can be written in
spherical coordinates as

ds2 = a(τ)2
[
−dτ2 + dr2

1 − k̃r2 + r2dΩ2
]
, (2.1)

where dΩ2 = dθ2 + sin2 θ dϕ2, k̃ is the spatial curvature constant, which is taken to belong
to the set {−1, 0,+1}, corresponding to a open, flat, or closed universe, respectively, a(τ)
is the scale factor, and τ is the conformal time, which is related to the physical time t via:
dτ = dt/a(t). Also we use the unit of c = 1.

In the work presented in this thesis, we will assume a flat spacetime, with k̃ = 0, since it
is observationally favoured and is also predicted by inflation, which is the leading paradigm
for setting the initial conditions in the early universe. Therefore, we will work with a flat
FLRW metric in which the line element is

ds2 = a2(τ)
[
−dτ2 + dxidxi

]
. (2.2)

In addition to the background evolution, we will be interested in the dynamics of small
perturbations that describe the large-scale structure in the universe. The choice of the
coordinates when perturbing the metric around the FLRW background is not unique, and
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the value of the perturbations in a given physical quantity, such as the matter density or the
metric, will in general be different in different coordinate system. For example, one could
choose the time coordinate to be associated with the hypersurface of constant dark matter
density. In that frame, the dark matter perturbation would vanish. While this example
may not be very practical, as the equations for the other variables would become rather
complicated, eliminating the freedom to change the perturbations through a coordinate
transformation, or “fixing the gauge”, is a necessity as not doing so can lead to unphysical
solutions. In practice, the gauge is fixed by setting certain variables, or their combinations,
to zero.

The perturbed FLRW metric can be written as

gµν = a2(γµν + hµν), (2.3)

where a2γµν is the background metric and a2hµν is the perturbation. The tensor hµν can
be decomposed into scalar, vector, and vector modes. A “scalar mode" perturbation is
characterized by a scalar function or a gradient of a scalar function. “Vector modes” and
“tensor modes” are, respectively, perturbations that are constructed out of divergence-free
vectors and divergence- and trace-free tensors, respectively. In this thesis, we will only be
interested in scalar mode perturbations.

In Fourier space, for a given Fourier mode k, a general scalar mode perturbation can be
written as [84, 85]

h00 = −2A, h0i = −Bk̂i, hij = 2HLδij + 2HT

(
− k̂ik̂j + 1

3δij
)
, (2.4)

where k̂ = k/k and A, B, HL and HT are scalar functions of k and τ .
One can set two out of these four functions to zero by a coordinate transformation. To

see how this happens, consider an infinitesimal change of coordinates as follows,

xµ → x̃µ = xµ + ξµ(xα), (2.5)

where ξµ = (ξ0, ξi) is an infinitesimally small parameter. A physical property, represented
by a scalar quantity Γ(xµ), should have the same value in any coordinate system, including
x̃µ, such that Γ(xµ) = Γ̃(x̃µ). Propagating the perturbation to linear order, one can write:

Γ(xµ) = Γ0(τ) + δΓ(xµ), Γ̃(x̃µ) = Γ0(τ̃) + δΓ̃(x̃µ). (2.6)

Considering the coordinate transformation, we have:

Γ̃(x̃µ) = Γ0(τ) + dΓ0

dτ
ξ0 + δΓ(xµ) + ξµ∂µΓ0(τ), (2.7)
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where the last term on the right side is O(2) and can be omitted at linear order. Hence, the
perturbation transforms as:

δΓ̃ = δΓ − dΓ0

dτ
ξ0 . (2.8)

One can then choose a ξ0 to make δΓ̃ = 0. Additionally, the spatial components of ξµ have
a gradient-free (vector mode) and curl-free (scalar mode) parts,

ξi = ξi
v + δij∇jξ, (2.9)

where ξ is another scalar degree of freedom that one can use to set another function to
zero. One can use these two scalar coordinate transformations to set two of the four “scalar
mode” metric perturbations to zero.

Two commonly used gauges are the conformal Newtonian gauge and the synchronous
gauge. In the conformal Newtonian gauge, B = HT = 0, A = Ψ, HL = −Φ, where Ψ
and Φ are the Newtonian gravitational potentials. The standard Boltzmann codes, such
as CAMB, are developed in the synchronous gauge, where A = B = 0, HL = h/6, and
HT = −3(η + h/6), in which we define scalar potentials h and η to be consistent with the
notation of Ma and Bertschinger [86] used in CAMB.

The synchronous gauge does not completely fix the gauge, making the solution of the
system of perturbations not unique. A convenient way to fix the residual gauge freedom is
to set the CDM velocity to zero, since CDM only evolves under the influence of gravity and
is not directly observable.

While the equations and variables used to evolve linear cosmological perturbations de-
pend on the gauge choice, cosmologists ultimately use theory to make predictions for quan-
tities that are observable. Such observable quantities are gauge-independent.

Within GR, the gravitational interactions between the relativistic and non-relativistic
particles are achieved through the response to the geometrical curvature of the spacetime,
and the dynamics of spacetime is prescribed by the following Einstein-Hilbert action [87],

SEH =
∫

d4x
√

−g
{[ 1

16πG(R − 2Λ)
]

+ Lm (ψm, gµν)
}

(2.10)

where R is the Ricci scalar, G is the gravitational constant, Λ is the cosmological constant
that plays the role of DE in the ΛCDM model, and Lm (ψm, gµν) is the matter component
of the Lagrangian density, which includes CDM, baryons, photons and neutrinos. One then
varies SEH with respect to gµν , and uses the principle of least action, i.e. δSEH/δgµν = 0,
to derive the dynamical equation for the metric, known as the Einstein’s equation,

Gµν = Rµν − 1
2gµνR = 8πGTµν , (2.11)
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where Gµν is called the Einstein tensor, Rµν is the Ricci tensor, and the Tµν on the right
side of the Eq. (2.11) is the energy-momentum tensor for all components of particle fluids,
which takes the form of:

Tµν = (ρ+ P )uµuν − Pgµν (2.12)

where uµ = dxµ/(−ds2)1/2 is defined as the four-velocity of the particle fluid, P is the
pressure and ρ is the density of matter and energy. In particular, the perturbation of each
component in the energy-momentum tensor δTµ

ν is given by: [86]

δT 0
0 = −δρ, (2.13)

δT 0
i = (ρ+ P )vi, (2.14)

δT i
j = δPδi

j + Σi
j , (2.15)

where Σi
j is defined as the anisotropic shear pertubation, with Σi

i = 0. Conventionally,
we can also define the perturbation quantities θ as the velocity divergence of each matter
species, θ = ∂jvj , and σ as the anisotropic stress, based on the (ij) component of δTµ

ν , as
given by:

(ρ+ P )σ = −(k̂ik̂j − 1
3δij)Σij . (2.16)

Here the quantities θ and σ imply the sum over different components of matter and radiation,
including baryons, CDM, photons and neutrinos, namely,

(ρ+ P )θ =
∑

s

(ρs + Ps)θs, (ρ+ P )σ =
∑

s

(ρs + Ps)σs, (2.17)

where the index s runs over all particle species.
Based on linear perturbation theory, it is natural to split the Einstein tensor Gµν into

background and perturbation components as:

Gµν = G(0)
µν + δGµν , (2.18)

where ’0’ denotes the background component. By substituting the FLRW metric in Eq. (2.11),
one can derive the background evolution equation, also known as the Friedmann equation,

H2 = 8πG
3 a2ρ+ k̃, (2.19)

where the k̃ is the spatial curvature constant, with {+1, 0,−1} standing for a closed, flat, or
open universe, ρ is the total background density of matter and energy. Here H is the Hubble
parameter defined as H = ˙a(τ)/a(τ) with the dot representing the derivative w.r.t conformal
time τ , and it characterizes the background expansion rate of the Universe. Besides, one
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can derive the time derivative (w.r.t conformal time) form of it:

Ḣ = −1
6a

2(ρ+ 3P ), (2.20)

where P is the total background pressure of matter and energy. Since we focus on the flat
spacetime in this work, i.e. k̃ = 0 in Eq. (2.19), we will then obtain a simpler form of the
Friedmann equation,

H2 = 8πG
3 a2ρ, (2.21)

while the derivative form stays the same as Eq. (2.20).
The Einstein’s equation at the perturbation level is given by: δGµν = 8πGδTµν , which

leads to four equations for the Newtonian potentials in Fourier space: [86]

k2Φ + 3 ȧ
a

(
Φ̇ + ȧ

a
Ψ
)

= −4πGa2δρ, (2.22)

k2
(

Φ̇ + ȧ

a
Ψ
)

= 4πGa2(ρ+ P )θ, (2.23)

Φ̇ + ȧ

a
(Ψ + 2Φ̇) +

(
2 ä
a

− ȧ2

a2

)
Ψ + k2

3 (Φ − Ψ) = 4πGa2δP, (2.24)

k2(Ψ − Φ) = −12πGa2(ρ+ P )σ. (2.25)

Note that only two of the equations above are independent due to the Bianchi identity, i.e.
∇µG

µν = 0. One can substitute Eq. (2.23) into Eq. (2.22) to form the Poisson equation for
Φ, which is algebraic:

k2Φ = −4πG a2ρ∆, (2.26)

where ρ∆ ≡
∑

s ρs∆s and ∆s is the comoving matter density contrast, which relates to
matter density contrast δs = δρs/ρs via:

∆s = δs + 3H(1 + ws)θs

k2 , (2.27)

where ws = Ps/ρs, with index s running over all particle species. Then combining with
(2.25), which is also algebraic, one can obtain the Poisson equation for Ψ. Thus, out of four
perturbed Einstein equations, one only needs two algebraic equations:

k2Ψ = −4πG a2[ρ∆ + 3(ρ+ P )σ], (2.28)

k2(Φ − Ψ) = 12πG a2(ρ+ P )σ . (2.29)

The cosmological redshift is commonly defined as: z = 1/a − 1, with a being the scale
factor as introduced before, and we have a = 1 at present time. Upon entering the matter-
domination era, which corresponds to approximately redshift z < 1000, the anisotropic
stress from photons and neutrinos is negligible, leading to Φ = Ψ in the late-time Universe.
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In addition, the combined energy-momentum tensor of all the particle species is con-
served, namely, its covariant derivative will satisfy:

∇µT
µν = ∂µT

µν + Γµ
γµT

γν + Γν
µγT

µγ = 0. (2.30)

We will focus on the matter species, i.e. baryons and CDM. The (00) and the (0i) com-
ponents of Eq. (2.30) give the continuity equation and the Euler equation of the matter
species, respectively. For baryons, taking into account their coupling to photons, they are

δ̇b + θb − 3Φ̇ = 0, (2.31)

θ̇b + Hθb = k2Ψ + c2
sk

2δb + 4ργ

3ρb
aneσT (θγ − θb), (2.32)

where the labels b, and γ refer to baryons and photons, respectively, and c2
s = δP

δρ is the
square of sound speed. The last term on the right side of Eq. (2.32) is due to coupling
between baryons and photons before recombination, in which ne gives the proper mean
density of free electrons, and σT is the cross-section of the Thompson scattering. Note all
time derivatives here are taken w.r.t conformal time. For CDM, the Euler equation takes a
simpler form since CDM is not interacting with the other particle species in ΛCDM model,
namely,

δ̇c + θc − 3Φ̇ = 0, (2.33)

θ̇c + Hθc = k2Ψ, (2.34)

where c denotes CDM. Using Eqs (2.32)-(2.34), one can derive the evolution dynamics of
baryons and CDM in the conformal Newtonian gauge.

The matter perturbations in the conformal Newtonian gauge and synchronous gauge
are related to each other via [86]:

δ(syn) = δ(Newton) − α
ρ̇

ρ
,

θ(syn) = θ(Newton) − αk2 , (2.35)

where α = (ḣ+ 6η̇)/(2k2). By applying these conversion relations, we may also acquire the
continuity and Euler equations for baryons and CDM in the synchronous gauge as:

δ̇b + θb + 1
2 ḣ = 0, (2.36)

θ̇b + Hθc = c2
sk

2δb + 4ργ

3ρb
aneσT (θγ − θb), (2.37)

δ̇c + θc + 1
2 ḣ = 0, (2.38)

θ̇c + Hθc = 0. (2.39)
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2.2 Cosmic Microwave Background

The cosmic microwave baryonicackground (CMB) is the leftover radiation from the early
epoch, serving as basic evidence for the hot Big Bang theory. During the recombination
period, the protons and electrons recombined to form hydrogen, which marks the end of the
Thompson scattering. The photons decoupled with baryons and begin the free streaming
process from the last scattering surface. In this section, we will focus on the scalar mode
perturbations only, which is the main and the only observationally confirmed contribution
to the temperature and polarization anisotropies, and the one relevant to the large scale
structure of the Universe.

The CMB radiation field is characterized by a rank-2 intensity tensor Iij , which also
contains the temperature and polarization information: [88, 89]

Iij =
(

⟨|E1|2⟩ ⟨E1E
∗
2⟩

⟨E2E
∗
1⟩ ⟨|E2|2⟩

)
=
(

I +Q U − iV

U + iV I −Q

)
. (2.40)

where I,Q, U, V are Stoke’s parameters, in which the intensity I is associated with the
temperature anisotropies, and Q and U describe the linear polarization. V represents cir-
cular polarization, and is not expected to be generated in the standard cosmological model.
E1 and E2 represent the polarization components of electromagnetic field formed on the
orthogonal basis, perpendicular to the propagation direction n̂.

The intensity I of radiation at a given frequency is given by the black body spectrum,
namely,

I(T ) = 2hν3

c2
1

ehP lν/kBT − 1
, (2.41)

where ν denotes the frequency of the radiation, hP l is Planck’s constant, c is the speed of
light, kB is Boltzmann’s constant and T is the black body temperature. Because Thom-
son scattering preserves the black body nature of CMB, it is conventional to represent
anisotropies of CMB intensity in terms of anisotropies of the black body temperature. The
dimensionless temperature perturbation observed at a given direction on the sky n̂ is defined
as

Θ(n̂) = ∆T (n̂)
T̄

, (2.42)

where T̄ ≈ 2.726 K is the mean CMB temperature.
The CMB is observed to be nearly Gaussian distributed. To extract the statistics of

CMB perturbations, the temperature anisotropy, Θ(n̂) is commonly expanded into spherical
harmonic functions as:

Θ(n̂) =
∑
lm

aT,lmYlm(n̂). (2.43)

For a Gaussian random field, aT,lm are completely independent for different moments of l
and m, and are characterized by their two-point function, or the angular power spectrum
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CT l, given by
CT l = 1

2l + 1
∑
m

⟨a∗
T,lmaT,lm⟩. (2.44)

The complete formalism for CMB polarization was introduced in [88], and the major
points can be summarized as follows. The Stoke’s parameters Q and U are spin-2 states
and can be expanded into spin-2 spherical harmonic series as

(Q+ iU)(n̂) =
∑
lm

a2,lm 2Ylm(n̂), (2.45)

(Q− iU)(n̂) =
∑
lm

a−2,lm −2Ylm(n̂), (2.46)

where, like in the case of intensity I, Q and U are in units of the black body temperature
fluctuation. The spin-2 polarization multipoles can be combined into linear combinations
to define

aE,lm = −(a2,lm + a−2,lm)
2 , (2.47)

aB,lm = i(a2,lm − a−2,lm)
2 , (2.48)

which separate the parity-even (E) and the parity-odd (B) parts. One can then define two
scalar quantities to describe parity-even and parity-odd polarization patterns on the sky as

E(n̂) =
∑
lm

aE,lmY
m

l (n̂), (2.49)

B(n̂) =
∑
lm

aB,lmY
m

l (n̂), (2.50)

Similar to the temperature anisotropies, one can define the angular power spectrum for
polarization modes as well,

CEl = 1
2l + 1

∑
m

⟨a∗
E,lmaE,lm⟩ (2.51)

CBl = 1
2l + 1

∑
m

⟨a∗
B,lmaB,lm⟩. (2.52)

In the actual numerical calculations, e.g. in CAMB and MGCAMB, we adopt angular power
spectra for TT, TE, and EE as the observables, given by:

C
(ℓ)
T T = (4π)2

∫
k2dkPR(k) |∆T ℓ(k)|2 , (2.53)

C
(ℓ)
T E = (4π)2

∫
k2dkPR(k)∆T ℓ(k)∆Eℓ(k), (2.54)

C
(ℓ)
EE = (4π)2

∫
k2dkPR(k) |∆Eℓ(k)|2 , (2.55)
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where PR(k) refers to the primodial curvature power spectrum, and ∆Xℓ(k) are defined as
below. In Fourier space, PR(k) can be calculated through ∆R, which is the amplitude of
the primodial curvature perturbation as [90]

⟨∆∗
R(k1)∆R(k2)⟩ = PR(k)δ(k1 − k2). (2.56)

In the Eqs. (2.53)-(2.55), ∆Xℓ(k) are defined as the transfer functions for each correlation
case, which are derived using:

∆T ℓ(k) =
∫ τ0

0
dτS

(S)
T (k, τ)jℓ(x), (2.57)

∆Eℓ(k) =
√

(ℓ+ 2)!
(ℓ− 2)!

∫ τ0

0
dτS

(S)
E (k, τ)jℓ(x), (2.58)

in which jℓ(x) are the spherical Bessel functions. S(S)
T (k, τ) and S

(S)
E (k, τ) are the source

terms of the CMB radiation field, which are specified by

S
(S)
E (kτ) = 3g(τ)Π(τ, k)

4x2 ,

S
(S)
T (k, τ) = g

(
∆T0 + 2κ̇op + v̇b

k
Π + 3Π̇

4k2

)
+ eκop(η̇ + α̈)

+g
(
α+ v̇b

k
+ 3Π̇

4k2

)
+ 3gΠ̇

4k2 . (2.59)

Here κop is the total optical depth, g is the visibility function defined as: g(τ) = κ̇op exp(κop),
α = (ḣ + 6η̇)/2k2, with η and h the two metric potentials in the synchronous gauge as
introduced in Sec. 2.1, and all the dots represent the time derivatives with respect to the
conformal time τ . Also, vb stands for the velocity field of baryons, and Π is the polarization
term, which is denoted as

Π = ∆(S)
T2

+ ∆(S)
E2

+ ∆(S)
E0
. (2.60)

The three quantities on the right side of Eq. (2.60), as well as ∆T0 in Eq. (2.59) are the
hierarchical terms, corresponding to the solutions of photon’s Boltzmann equations at the
perturbation level, which are essentially the dynamical evolution of radiation particles in
the phase space formed by their energy and momentum.

In addition to the temperature and polarization anisotropies generated from the last
scattering surface, the integrated Sachs-Wolfe (ISW) effect [91] is a secondary anisotropy in
the cosmic microwave background (CMB), produced by time variations in the gravitational
potential on large scales that CMB photons need to traverse from the surface of last scat-
tering to observers. Because gravitational potentials are traced by the large scale structure
(LSS) in the Universe, the ISW effect is correlated with the matter distribution at lower
redshifts. The ISW effect is largely sensitive to dark energy and curvature of the Universe,
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for which gravitational potentials also vary with time, either at the transition epoch from
radiation to matter domination or the late time Universe when modified gravity or dark
energy has the major influence. Analytically, the ISW effect can written as(∆T

T

)
ISW

= −
∫
dx eκop [Φ̇ + Ψ̇], (2.61)

where κop is the optical depth, the dot denotes the time derivative with respect to conformal
time, and Φ and Ψ are the two Newtonian gravitational potentials. The term (Ψ̇ + Φ̇) is
equivalent to (η̇ + α̈) in the synchronous gauge on the right side of Eq. (2.59).

In addition, due to the existence of gravitational potentials which trace the distribution
of matter including CDM and baryons on large scales, the trajectory of CMB photons gets
deflected in the travelling process from the surface of last scattering to us. To characterize
such a distortion effect, we can define the lensing potential based on the gravitational
potentials as [92]

ΨL(n̂) = −
∫ χ∗

0
dχ

dA(χ∗ − χ)
dA(χ∗)dA(χ)

(
Ψ(χn̂; τ0 − χ) + Φ(χn̂; τ0 − χ)

)
, (2.62)

where the term τ0 − χ represents the conformal time at which the photon was at position
χn̂, χ∗ is the comoving distance of the photon source, and dA(χ) is defined as the angular
diameter distance. The CMB lensing can therefore be described by the deflection angle α
which is defined as:

α = −
∫ χ∗

0
dχ

dA(χ∗ − χ)
dA(χ∗)dA(χ)∇n̂

(
Ψ(χn̂; η0 − χ) + Φ(χn̂; η0 − χ)

)
, (2.63)

where ∇n̂ denotes the covariant angular derivative on the sphere defined by n̂, and dA(χ) = χ

under the flat-sky approximation. The consequence of CMB lensing is to redistribute the
CMB temperature and polarization anisotropies relative to their original positions on the
last-scattering surface. Since CMB anisotropies are sensitive to the lensing potential, it
offers another way to measure the latter and compare to the measurements of the weak
gravitational lensing of galaxies as described in Sec. 2.4.

2.3 Matter Power Spectrum

The matter power spectrum characterizes the two-point correlation of the matter density
field, and it corresponds to the result of transformation from real-space correlation function
into Fourier space. Based on the comoving matter density contrast ∆(k, z), the matter
power spectrum can be formulated by:

∆(k, z) =
∫

d3x

(2π)3/2 ∆(x, z)e−ik·x, (2.64)
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and
⟨∆∗(k, z)∆(k′, z)⟩ = (2π)3δ(3)(k − k′)P (k), (2.65)

where δ(3)(k − k′) is the 3-dimensional Kronecker delta function, and the angle brackets on
the left side denote the statistical ensemble average of the correlation between two points
in the matter density field. Therefore, the matter power spectrum follows:

P (k, z) = 2π2∆2(k, z)
k3 . (2.66)

Here a factor of k3 is included to make ∆2(k, z) a dimensionless quantity.
In practice, the transfer function ∆trans(k, z) is adopted to describe the evolution of

scalar perturbations, connecting the primodial curvature perturbation ∆R to the late-time
scalar perturbation mode, as done in the main computational tools: CMBFAST, CAMB, MGCAMB,
namely, [93]

∆(k, z) = ∆R(k)∆trans(k, z), (2.67)

and therefore,

P (k, z) = 2π2

k3 PR(k)∆2
trans(k, z) (2.68)

where PR(k) is the primodial curvature power spectrum from Eq. (2.56), commonly com-
puted via:

PR(k) = As

(
k

ks

)ns−1
. (2.69)

Here the parameter ks is introduced as the pivot scale scalar, ns is the scalar spectral index,
and As represents the initial scalar power amplitude at the pivot scale, with the latter two
among the six vanilla cosmological parameters in ΛCDM model, and we have ignored the
running parameters of the scalar spectral index, dns/d ln k and d2ns/d ln k2.

Besides, we point out that the transfer function does not only apply to matter density
contrast. By replacing the transfer function ∆trans with that of another variable, e.g. Weyl
potential W = (Ψ + Φ)/2, one can compute the corresponding power spectra: matter-Weyl
cross power spectrum PmW (k, z) and Weyl-Weyl power spectrum PW W (k, z).

2.4 Weak Gravitational Lensing

Weak gravitational lensing (WL) describes the phenomenon where the photons radiating
from background sources are deflected by the foreground mass distribution that is formed
by CDM and clusters of galaxies, along with the associated gravitational potential in the
large scale structure. This could be broadly divided into two cases, with the first on the
deflection of CMB photons as discussed earlier in Sec. 2.2. The latter refers to the case where
galaxies are the background sources, with the photons emitted from them also experiencing
deflection in the process travelling from the source to observers, leading to the magnification
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of galaxy images, featured by convergence field κ, and also the distortion of galaxy images,
which suggests that the shapes of galaxies are changed, commonly known as the cosmic
shear effect.

Intrinsically, weak gravitational lensing signal is a statistical measurement of the dis-
tribution of source galaxies along with the foreground mass distribution which is traced
by the gravitational potentials on large scales. In general, there are three types of observ-
ables for weak lensing: galaxy-galaxy clustering, cross correlation of galaxy-galaxy lensing,
and lensing-lensing auto correlation, which is also referred to as cosmic shear. The Dark
Energy Survey (DES) [94, 95] is a prominent cosmological survey for measuring weak lens-
ing signals, more specifically, the angular correlation functions between galaxy clusters and
lensing potential, and here we will adopt the formalism in DES to summarize the weak
lensing observables.

Firstly, similar to the scenario of CMB lensing, one may define the lensing efficiency
term, as given by:

qκ(χ) = χ

∫ χh

χ
dχ′nκ(z(χ′)) dz

dχ′
χ′ − χ

χ′ , (2.70)

where nκ(z(χ)) is the normalized number density of source galaxies as a function of redshift
z, χ is the comoving radial distance, and the upper limit of integral χh is the comoving
distance to the horizon, which represents the maximum comoving distance over which weak
gravitational lensing can affect the light emitted from background source galaxies. Addi-
tionally, to describe the number density distribution of foreground galaxies, one can also
define:

qδg (k, χ) = b(k, z(χ))ng(z(χ)) dz
dχ
, (2.71)

where b(k, z) is the galaxy bias term specific to the type of galaxies, such as redMaGiC
galaxies in DES Year-1 [94, 95] and Year-3 [96], as well as specifications of different cosmo-
logical surveys. Working under the Limber approximation [97, 98, 99, 100], for which one
assumes small angular separations (thus large multipole moment ℓ) and power spectrum
P (k) varies more slowly than spherical Bessel functions, the angular correlation function of
galaxy-galaxy clustering can be expressed by:

w(θ) =
∫

dl

2π lJ0(lθ)
∫
dχ
qδg

(
l+1/2

χ , χ
)
qδg

(
l+1/2

χ , χ
)

χ2 × Pm

(
l + 1/2
χ

, z(χ)
)

(2.72)

where J0(lθ) is the zeroth-order Bessel function, and Pm(k, z) is the matter power spec-
trum as introduced in Sec. 2.3. Similarly, we can calculate galaxy-galaxy lensing correlation
functions as:

γt(θ) =
∫

dl

2π lJ2(ℓθ)
∫
dχ
qδg ( ℓ+1/2

χ , χ)qκ(χ)
χ2 PmW

(
ℓ+ 1/2
χ

, z(χ)
)
, (2.73)
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as well as cosmic shear functions given by:

ξ+/−(θ) =
∫

dl

2π lJ0/4(ℓθ)
∫
dχ
qκ(χ)qκ(χ)

χ2 PW W

(
ℓ+ 1/2
χ

, z(χ)
)
, (2.74)

where PmW (k, z) is the matter-Weyl power spectrum, PW W (k, z) is the Weyl-Weyl power
spectrum, as discussed in Sec. 2.3, J2(ℓθ) and J4(ℓθ) are different orders of Bessel functions
to make the transformation of correlation functions into real angular space, with the neglect
of the shear bias terms specific to the galaxy surveys. Other important cosmological surveys
that are useful to investigate weak lensing include Kilo-Degree Survey (KiDS) [101], the
Large Synoptic Survey Telescope (LSST)1 and Euclid2.

2.5 Redshift Space Distortion

As discussed earlier, the redshift of the light emitted by galaxies is mostly determined by the
cosmic background expansion. The galaxies, however, also have peculiar velocities caused
by the local gravitational potential. The line of sight (LoS) direction of peculiar velocities
will make the ditribution of galaxies appear squashed or distorted depending on whether
the galaxies are moving towards or away from the observer. Such an effect only changes the
positions of those galaxies in the radial direction of redshift space, and this is commonly
known as redshift space distortion (RSD). RSD is one of the main probes to measure the
growth structure and cosmic velocity field of the Universe.

For starters, we require the galaxy number density to be the same in real space and
redshift space, i.e.:

Ns(x⃗3
s)d3xs = Nr(x⃗3

r)d3xr, (2.75)

where r denotes the comoving distance in real space, while s denotes the distance in redshift
space. RSD effect can then be described by the analytical mapping relation as follows:

s⃗ = r⃗

(
1 + u(r)

rH

)
, (2.76)

where H is the Hubble parameter in conformal time, and u(r) is given by the peculiar
velocity field v⃗(r⃗) via:

u(r) = r̂ · v⃗(r⃗). (2.77)

From Eq. (2.75), one may apply Jacobian transformation between Ns and Nr, prescribed
by:

Ns(x⃗3
s) = J(r; s)Nr(r⃗3

s). (2.78)

1https://www.lsst.org/

2https://www.esa.int/Science_Exploration/Space_Science/Euclid
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and J(r; s) will follow:

J(r; s) =
(

1 + du

dr

1
H

)−1 (
1 + u

rH

)−2
≈
(

1 − du

dr

1
H

)
, (2.79)

where the last term is dropped due to the large distance approximation, where kr ≫ 1. In
Fourier space, the radial derivative of the velocity field du

dr can be derived through:

du

dr
= µk

d

dr
v = µ2

k∇ · v⃗(r⃗) = µ2
kθ, (2.80)

where µk = r̂ · k̂, and we have used the definition of velocity divergence θ = ∇ · v⃗(r⃗). As
established in Sec. 2.1, by using the continuity equation for matter density contrast δ, we
can then obtain:

θ = −δ̇ = −fHδ, (2.81)

where the dot denotes the time derivative w.r.t conformal time, and f = d log δ
d log a is defined as

the linear growth rate of the cosmic structure. By combining the equations above, one can
get:

J(r; s) = 1 + µ2
kfδ (2.82)

As pointed out earlier, the number density conservation of galaxies requires:

N̄(1 + δs) = N̄(1 + δr)J(r; s), (2.83)

so we can obtain the relation on the matter density contrast δ between redshift space and
real space as:

δs = δr(1 + fµ2
k). (2.84)

In linear Kaiser model [102], we can assume galaxy bias is linearly coupled to the matter
density contrast, i.e.

δg = bδ, (2.85)

which leads to
δs,g(k, z) = δg(k, z)(1 + βµ2

k), (2.86)

where β = f/b, and also corresponding power spectrum of galaxies that is measured, which
takes the form:

Pδs,gδs,g (k, µk) = Pδgδg (k)(1 + βµ2
k)2. (2.87)

It is then straightforward to expand the power specturm in terms of Legendre polynomials
as:

Pδs,gδs,g (k, µk) =
∑

ℓ

(2ℓ+ 1
4π

)
P(ℓ)(k)Lℓ(µk), (2.88)
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to extract the major statistical information from the monopole (P0), quadrupole (P2) and
hexadecapole (P4) of the galaxy power spectrum, since Eq. (2.87) is up to fourth order in
µk.

In general, we can analyse the RSD effect without the necessity of relating matter density
contrast δ to velocity field u(r). Based on Eq. (2.84), we have:

δs = δr − µ2
k

H
θ, (2.89)

and then one can obtain the redshift-space power spectrum by taking the "square" of two
sides of the equation:

Ps(k, µk) = Pδδ(k) − 2Pδθ(k)µ2
k + Pθθµ

4
k, (2.90)

where Pδθ(k) = −2δ θ
H , and Pθθ = ( θ

H)2.
Another observable relevant to RSD effect is the matter clustering amplitude, commonly

referred to as the parameter σ8, which denotes the normalized integration of matter density
perturbation over a sphere with radius 8 h−1Mpc, where h = H0

100 km/s Mpc−1 , and H0 is the
Hubble constant giving the present value of Hubble parameter. Namely,

σ2
8 =

〈∣∣∫ dr3δ(x)
∣∣2〉

|
∫
dr3|2

. (2.91)

Alternatively, a commonly chosen parameter to measure is the S8 paramater, which is also
based on σ8:

S8 = σ8

(
Ωm

0.3

) 1
2

, (2.92)

where Ωm is the fractional density of matter.
In practice, what cosmologists directly measure for the RSD signal is fσ8, in that it gives

the combination of the structure growth rate and the amplitude of matter clustering, and
is also insensitive to the galaxy bias, namely, differences between the clustering of galaxies
and matter.

2.6 Distance Measures

In modern cosmology studies, the primary aim is to make precise measurements of the
expansion rate of cosmic background in order to achieve better interpretation of dark energy.
This, however, can not be achieved directly, since we can only observe the light arriving
from different regions of the Universe. Given the brightness and the angular size of specific
objects, known as standard candles and standard rulers, we are able to deduce the distances
from the objects to us and also estimate the expansion rate of the Universe.
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The angular diameter distance, denoted as dA(a), is the ratio between the physical size
of the object l and the angular size θ it subtends on the sky, i.e. dA(a) = l/θ. In comoving
coordinates, the size of the object is given by l/a, and the distance to it is the comoving
distance χ(a), such that we can express dA(a) as:

dA(a) = aχ(a) = χ(z)
1 + z

, (2.93)

with the comoving distance χ(a) given by:

χ(a) =
∫ t0

t

dt′

a(t′) =
∫ 1

a

da′

a′H(a′) , (2.94)

where t0 denotes the present time. Therefore, using angular diameter distances and ob-
served redshifts of given objects, we can estimate the comoving distance χ(a), and infer
the expansion rate from it, characterized by the Hubble parameter according to Eq. (2.94).
Fortunately, the sound horizon at the surface of last scattering serves as such a standard
ruler, setting the scale of the baryon acoustic oscillations (BAO) and the acoustic peaks
in the CMB angular spectrum and power spectrum of galaxies. The available BAO mea-
surements include those from the Baryon Oscillation Spectroscopic Survey (BOSS), the
Extended Baryon Oscillation Spectroscopic Survey (eBOSS) and the Dark Energy Spectro-
scopic Instrument (DESI) [103].

The luminosity distance, dL, connects the intrinsic brightness of a given object with the
observed light flux from it. Assuming all photons carry the same energy Eγ , the luminosity
of an object is defined as the energy radiated from it per unit time, namely,

Ls = Nγ × Eγ

t . (2.95)

For a chosen standard candle, the radiated photons that pass a spherical shell at late
times will be less than those at earlier times due to the cosmic expansion, following the
proportionality of: Nγ(a)/∆t ∝ a, and the same rule applies to total energy, hence the
luminosity passing through a shell with comoving radius χ(a) is given by: L(χ(a)) = Lsa

2

across the spherical shell. Then we can define the luminosity distance as:

dL(a) = χ(a)
a

, (2.96)

such that the flux through the same shell is given by:

F = L(χ(a))
4πχ2(a) = Ls

4πd2
L(a) . (2.97)

Similarly, one can estimate the expansion rate from the luminosity distance given by
Eq. (2.96), through the definition of comoving distance in Eq. (2.94). Type Ia supernovae (SN
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Ia) are a nice example of a standard candle, whose intrinsic luminosity is well-understood.
The current datasets for SN Ia measurements are available from Pan-STARRS1 (PS1)
Medium Deep Survey [104], which provides Pantheon SN Ia samples, as well as the Sloan
Digital Sky Survey (SDSS)-II and the Supernova Legacy Survey (SNLS) collaborations. [105]
Besides, the SH0ES project (Supernovae, H0, for the Equation of State of Dark energy) also
uses SN Ia as a standard candle to achieve a more precise measurement on the Hubble con-
stant H0.

2.7 Phenomenological Parameterisation in MGCAMB

In MGCAMB, departures from GR are encoded in two phenomenological functions of the scale
factor a and Fourier number k, µ(a, k) and γ(a, k), introduced in the Newtonian gauge
linearized Einstein equations as

k2Ψ = −4πG µ(a, k) a2[ρ∆ + 3(ρ+ P )σ], (2.98)

k2[Φ − γ(a, k)Ψ] = 12πG µ(a, k) a2(ρ+ P )σ . (2.99)

At late times, the Universe is matter-dominated, when the background density of radiation
decreases faster than that of matter, so the anisotropic stress contribution from photons
and neutrinos is negligible, and the equations become

k2Ψ = −4πGµ(a, k)a2ρ∆, (2.100)

Φ = γ(a, k)Ψ . (2.101)

A popular and equivalent parameterization employs Σ(a, k), instead of γ(a, k), defined as

k2(Φ + Ψ) = −4πG Σ(a, k) a2[2ρ∆ + 3(ρ+ P )σ] . (2.102)

In the limit of negligible photon and neutrino anisotropic stress, i.e. well after the onset of
matter domination, Σ and γ are simply related via

Σ = µ

2 (1 + γ). (2.103)

In the 2019 version of MGCAMB, when the user opted to specify µ and Σ, they would
be converted into µ and γ using Eq. (2.103), with the subsequent calculations carried by
the code in terms of the latter. One of the new features in the 2023 version is the direct
implementation of the µ and Σ parameterization in the equations, eliminating the need to
assume validity of Eq. (2.103), i.e. the need to neglect the anisotropic stress from relativistic
particle species.

22



We note that variations of the gravitational coupling in the Solar System are tightly
constrained by lunar ranging [106, 107] and other experiments. The parameterization in
Eq. (2.100) implies an effective coupling Geff ≡ µ(a, k)G, determining the gravitational
clustering of matter on cosmological scales, where G is the Newton’s constant measured on
the Earth. In particular, this parameterization allows forGeff ̸= G at the present time, a = 1.
This is indeed possible in theories with a screening mechanism [108, 109, 110, 111, 112],
allowing for gravity to be different cosmologically, while being indistinguishable from GR in
the Solar System. As all screening mechanisms are intrinsically nonlinear, they cannot be
described using tools of linear perturbation theory employed in MGCAMB. Hence, while
testing gravity on linear scales, we effectively assume the existence of a screening mechanism.

MGCAMB also allows the user to work with functions Q(a, k) and R(a, k), defined as [113]

k2Φ = −4πG Q(a, k) a2ρ∆, (2.104)

k2(Ψ −R(a, k)Φ) = −12πG Q(a, k) a2(ρ+ P )σ. (2.105)

An entirely different parameterization of modified growth, also available in MGCAMB, is
based on Linder’s parameter γL [82], defined via f ≡ [Ωm(a)]γL , where f is the growth rate
and Ωm(a) is the background matter density fraction.

For each of the above choices of phenomenological functions, the user can choose a
parameterization from a set of built-in options or add their own. The built-in MGCAMB pa-
rameterizations can be broadly divided into two categories – those based on the expressions
for µ and γ obtained from scalar-tensor theories in the quasi-static approximation, and the
ad hoc parameterizations introduced in the literature. The latter includes the Planck [42]
and DES [43] parameterizations of µ and Σ, while in the former category there are the
Bertschinger-Zukin parameterization [114], which applies to most scalar-tensor theories, the
generic [31] and the Hu-Sawicki [8] f(R), the symmetron [111] and the dilaton [115, 109, 116].
We note that, in all the scalar-tensor-theory-based parameterizations, it is assumed that
baryons and CDM are universally coupled to the scalar field. One of the added features in
the 2023 version is the option to constrain scalar field models with coupling only to CDM.

The background evolution in the 2019 version of MGCAMB is set by specifying the DE
equation of state, w, with w = −1 corresponding to Λ, and built-in options for a constant
w and the (w0, wa) parameterization [117, 118],

w(a) = w0 + wa(1 − a). (2.106)

The 2023 version has an additional option of a parameterization of the DE density fraction
ΩX(a). Note that, in the default CAMB, in models with w ̸= −1, there is a contribution
of DE density fluctuations to the Poisson equation calculated either under the assumption
of a minimally coupled scalar field [119], i.e. the quintessence, or the parameterized post-
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Friedmann (PPF) fluid model [120]. In MGCAMB, w is an effective quantity that need not be
associated with a fluid, hence, the DE perturbations were not included. This, however, led
to a small discrepancy between the output of CAMB and that of MGCAMB with µ = γ = 1 for
w ̸= −1 background models. To give the user the option to eliminate this discrepancy, we
added the DE perturbation option to the 2023 version of MGCAMB.

For a general modified gravity theory, namely the scalar-tensor type of the generalized
Brans-Dicke (GBD), the evolution equations of baryons and CDM, including continuity and
Euler equations due to the conservation of energy-moment tensor Tµν , are the same as those
in GR, as described in Sec. 2.1. The exception is the CDM-only coupling model, also known
as coupled quintessence (CQ) [121, 122, 34], which is one of the new features implemented
in MGCAMB, where the conservation equations are modified due to the additional contribution
from scalar field pertubation, which we will extensively discuss in Sec. 3.1.2.

In MGCAMB, in order to solve the full set of the differential equations, a central quantity
to calculate is Z = kα − 3 η̇

k , where α = (ḣ + 6η̇)/2k2, η and h represent the two scalar
fields in the synchronous gauge as introduced in Sec. 2.1, and the dot denotes the time
derivative w.r.t. conformal time. It can be obtained by adopting the gauge transformation
on the metric pertubations prescribed in [86] as:

Ψ = α̇+ Hα, (2.107)

Φ = η − Hα, (2.108)

and reordering the terms for η̇. In Sec. 3.1.3, we present more details on the derivation of
this quantity in the case of µ− Σ parameterisation.

As can be seen from Eq. (2.98), the phenomenological function µ significantly modifies
the relations between gravitational potential Ψ and comoving matter density contrast ∆,
hence it can be measured as the enhancement on the matter power spectrum Pm(k, z)
based on ∆, which is employed by the galaxy-galaxy auto correlation function observed in
WL signal, and also the RSD, which is a prominent probe of the growth of structure on
large scales, as described in Sec. 2.5. On the other hand, the function Σ effectively modifies
the Poisson equation for the lensing potential as shown by Eq. (2.102), thus it will have a
direct role in lensing-related effects that exist in the cosmological observables. These include
lensing-lensing auto correlation and galaxy-galaxy lensing cross correlation in WL, CMB
lensing, and the ISW effect in CMB anisotropies Cℓ as introduced in Sec. 2.2.
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Chapter 3

New MGCAMB Tests of Gravity
with CosmoMC and Cobaya

In this chapter, we present a new version of MGCAMB, publicly available at https://

github.com/sfu-cosmo/MGCAMB_v4 that comes with tools for using it with Cobaya [37, 39,
40] and an implementation in the latest version of CosmoMC [37, 123, 38].

3.1 MGCAMB 2023

The new added features of this release of MGCAMB are:

• added compatibility with Cobaya, and an implementation in the latest CosmoMC;

• added Python wrapper to run MGCAMB using the Python interface;

• an option to constrain models of a scalar field coupled only to CDM in the QSA limit;

• a direct implementation of the µ-Σ parameterization in the Einstein-Boltzmann solver,
eliminating the need to convert to µ-γ using Eq. (2.103);

• added background model based on parameterization of the DE density (as opposed
to w), denoted as ΩX ;

• a non-parametric parameterization of µ, Σ and ΩX , based on a cubic-spline interpo-
lation over a set of discrete nodes in a. This allows a joint reconstruction of µ, Σ and
ΩX [50, 51];

• the option of including DE perturbations to restore the consistency with CAMB when
working with w ̸= −1 background models.

In what follows, we describe these new features in more detail.
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3.1.1 MGCAMB with Cobaya and CosmoMC

Cobaya and CosmoMC are two commonly-used MCMC samplers in cosmological studies, as
introduced in Sec. 1.1. In order to use Cobaya with MGCAMB, one needs to install Cobaya first
from the Cobaya website [40]. Generally, running Cobaya with MGCAMB is the same as running
it with CAMB. We have created an input YAML file, available for download at https://github.

com/sfu-cosmo/MGCobaya, that includes both the basic cosmological model parameters and
MGCAMB-specific new parameters along with complete instructions. Users are referred to the
provided template file temp.yaml and can modify it according to which MG model they
want to work with.

Additionally, a new version of MGCosmoMC, which is a modified version of the latest
release of CosmoMC with MGCAMB implemented in it, is publicly available at: https://

github.com/sfu-cosmo/MGCosmoMC.

3.1.2 Scalar field coupled only to CDM

MGCAMB evolves the full set of Einstein-Boltzmann equations parameterized via the functions
µ-γ. Built-in expressions for the latter are typically based on their QSA form in scalar-
tensor theories and are derived in the Jordan frame, in which baryons and CDM follow the
geodesics and obey the standard conservation equations, while the scalar field is coupled to
the metric, thus modifying Einstein equations. The Brans-Dicke type theories, such as f(R),
can also be formulated in the Einstein frame, conformally related to the Jordan frame, in
which Einstein equations are not modified, but all the matter is non-minimally coupled to
the scalar field. As all of our observational tools and units are based on the Standard Model
physics, theoretical predictions must be made in the baryon frame, which is the Jordan
frame in this case.

In addition to the universally coupled case, it is interesting to study models in which the
scalar field only couples to CDM [124, 125]. In this case, the baryon frame is the Einstein
frame, i.e. Einstein’s equations are not modified. Instead, the CDM conservation equations
are modified by the coupling to the scalar field. While the cosmological phenomenology of
the universal and CDM-only coupled cases is very similar, the technical implementations of
the two in MGCAMB are different. In the latter case, µ = γ = Σ = 1, but the CDM continuity
and Euler equations acquire new terms. In the Newtonian gauge, in Fourier space, they are
given by (see Appendix A for more details)

δ̇c + θc − 3Φ̇ − ˙(βδϕ) = 0, (3.1)

θ̇c +
[
H + βϕ̇(0)

]
θc − k2Ψ = βk2δϕ , (3.2)

where δc is the density contrast, θc is the velocity divergence, ˙ = ∂/∂τ , H = ȧ/a, ϕ(0) is
the background scalar field, δϕ is the perturbation, m(ϕ) and β(ϕ) are the mass and the
coupling functions defined in Appendix A. When applying the QSA, we assume that all
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time-derivatives of the scalar field can be neglected, giving

δ̇c + θc = 0, (3.3)

θ̇c + Hθc − k2Ψ = βk2δϕ , (3.4)

with δϕ algebraically related to the density contrast:

δϕ = − βρcδc

k2/a2 +m2 , (3.5)

thus eliminating the scalar field entirely from all equations. We note that this is a strong
version of the QSA which is not applicable to theories in which kinetic energy of the scalar
field is a non-negligible fraction of the total energy [126]. However, this is a good approxima-
tion for theories like chameleon, symmetron and dilaton, in which the scalar field remains
at the minimum of the slowly evolving effective potential. In theories where this is not the
case, one should add the scalar field explicitly to the code, which is not done in MGCAMB.

For the implementations in MGCAMB, it is necessary to convert the CDM Euler equation
to synchronous gauge using [86]

δ(syn) = δ(con) − α
ρ̇

ρ
, (3.6)

θ(syn) = θ(con) − αk2 , (3.7)

where α = (ḣ + 6η̇)/(2k2), and h and η are the synchronous gauge potentials [86]. And
therefore,

δ̇c + θc + 1
2 ḣ = 0 (3.8)

θ̇c + Hθc = −k2β̃2 ρc (δc − 3αH)
k2/a2 +m2 , (3.9)

where β̃(ϕ) = β(ϕ)/
√

8πG, and all the quantities are now in synchronous gauge.
The 2023 MGCAMB has built-in parameterizations for CDM-coupled scalar field models

based on the forms of m(a) and β̃(a) in the symmetron and dilaton models as described
in [127]. In [122], we tested the validity of the QSA for these models by comparing to the
exact solutions with an explicitly present scalar field, and found that the QSA works very
well for a broad range of parameters. Other forms of m and β̃ are straightforward to add.

3.1.3 Direct µ − Σ parametrization

As mentioned earlier, the original version of MGCAMB was based on the set of linearly per-
turbed Einstein equations parameterized via the functions µ(a, k) and γ(a, k). Depending
on the data sets that one considers, it can be preferable to work with the combination
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µ(a, k) - Σ(a, k). In the original version, this choice would be first transformed into the
corresponding µ(a, k) - γ(a, k), with MGCAMB determining γ from γ = 2Σ/µ− 1, along with
the derivatives. As discussed earlier, the latter is an approximated relation valid as long as
the modifications occur well-after the onset of matter domination and anisotropic stresses
of relativistic species can be neglected. It can be generalized to properly take into account
these effects; nevertheless, also in view of numerical accuracy, we opted for adding a direct
implementation of µ and Σ, with the latter defined via Eq (2.102), in the equations for
perturbations. When working with µ−Σ models, the user can opt for this direct implemen-
tation by setting MG_flag=5. Using other values for MG_flag would revert to the old way
based on converting to γ.

The modifications to equations in the µ− Σ case are similar to those for µ−γ described
in [33]. Here we point out the main differences. The modified Poisson equations with the
µ− Σ parameterization are defined in the Newtonian gauge via Eqs (2.98) and (2.102). To
convert to the synchronous gauge, and to find the variable Z used in CAMB,

Z = kα− 3 η̇
k
, (3.10)

we start with the transformations given by Eqs. (B.4) and (B.5) to find α and α̇ as

α̇ = −η − a2

2k2 Σ
[
2ρ∆ + 3ρ

(
1 + w

)
σ
]
, (3.11)

α = 1
H

{
η + a2

2k2

[(
2Σ − µ

)
ρ∆ +

(
Σ − µ

)
3ρ
(
1 + w

)
σ
]}
. (3.12)

Then, following the same steps that were used in the µ − γ case, as described in [33], we
obtain

η̇ = 1
2

a2

k2 + 3
2a

2(2Σ − µ)ρ(1 + w){
(2Σ − µ)kρq

[
1 + 3(H2 − Ḣ)

k2

]
+ ρ∆

[
2H(Σ − µ) − (2Σ̇ − µ̇)

]
+ k2α

[
(2Σ − µ)ρ(1 + w) − 2

a2 (H2 − Ḣ)
]

− 2(Σ − µ)ρΠ̇ + 2ρΠ
[
(Σ − µ)3H(1 + w) − (Σ̇ − µ̇)

]}
, (3.13)

where Π = 3
2(1 + w)σ, and (1 + w)θ = kq, allowing us to determine Z.

We have tested that, for late-time modifications (which includes all models currently
implemented in MGCAMB), the results are equivalent to those based on the conversion to γ.
Still, the added option gives the users the possibility to work with new models that may
involve early-time modifications of µ and Σ.
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3.1.4 Effective dark energy density fraction ΩX

The dynamics of DE in CAMB is set by specifying the equation of state parameter w. In
this version of MGCAMB, we added the option of specifying the DE energy density instead.
Namely, we introduce a function ΩX(a), defined via the Friedmann equation,

H2

H2
0

= Ωra
−4 + Ωma

−3 + ΩX(a) , (3.14)

where H = a−1da/dt is the Hubble parameter (defined in terms of the physical time t),
H0 is its present value, Ωr and Ωm are the fractional energy densities of radiation and
matter, respectively, and ΩX = ΩDEX(a) with X(a = 1) = 1 and Ωr + Ωm + ΩDE = 1.
Thus, ΩX(a), describes the collective contribution of any terms other than the radiation
and matter densities, including terms due to modifications of gravity that may alter the
Friedmann equation. In MG theories, the energy density of the effective DE fluid, defined
as above, need not be positive and can cross zero, making its equation of state singular.
Hence, when deriving constraints on MG, it is reasonable to avoid introducing w and work
with the effective DE density instead.

The effective DE pressure peff
DE, used in the equations in CAMB, can be obtained from

X(a) via [128]
Y = −X − 1

3
dX

da
a, (3.15)

with Y (a) = peff
DE(a)/ρeff

DE(a = 1).
In the current version of MGCAMB, ΩX(a) is implemented as a cubic spline over a discrete

set of nodes, as detailed in the next section. Other parameterizations can be added following
the general scheme for adding new models to MGCAMB.

To work with ΩX , one needs to choose DE_model = 3 in the params_MG.ini file. This
option can be used independently from the choice of parameterizations of µ and Σ. For
example, to use the “DES” parameterization along with ΩX , one needs to set MG_flag =

1, pure_MG_flag = 2, musigma_par = 1 and DE_model = 3.

3.1.5 The cubic-spline parameterization and reconstructions

To allow for a non-parametric reconstruction of the functions µ, Σ and ΩX , in this release,
we provide an implementation of a pixelization which can be easily modified or extended
by the user for their own purpose.

We restrict to the time-dependent case, and parameterize the functions µ, Σ and ΩX by
fitting nodes placed at certain chosen redshifts, and the values of these functions at inter-
mediate redshifts are determined by a cubic spline interpolation. In the code, each function
is assigned with 11 fitting nodes, with the first ten uniformly distributed in the redshift
range of z ∈ [0,3], and the last one set at z = 4. This is because most observations can
only provide tomographic measurements at z < 3, thus variations of these functions beyond
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z = 3, if any, are difficult to probe. From z = 4 to z = 1000, we require all three functions
to smoothly transit from the fitted value at z = 4 to the ΛCDM value, which are unity
for µ, Σ, and ΩDE for ΩX . This is hardcoded using 9 additional nodes uniform in the scale
factor a whose values are determined by a tanh function. In sum, there are 11 × 3 − 1 = 32
free parameters1 to be determined, which is quite challenging given the strong degeneracies
among these parameters. The way out is to apply the correlated priors [129, 130], which
can be calculated in theory [51, 50], to remove the flat directions of the likelihood surface.
The covariance matrices for a few correlated priors are available in the MGCosmoMC pack-
age: https://github.com/sfu-cosmo/MGCosmoMC, under data/corr_prior. To make the
priors work with Cobaya, one would need to construct an external likelihood class following
the general way instructed on the Cobaya website [40]. The priors are simply implemented
as a new contribution to the total χ2 via:

χ2 = (f − ffid) C−1 (f − ffid)T , (3.16)

where f ≡ {ΩXi, µi,Σi} describes the discrete nodes for the functions, with the fiducial value
ffid determined by the so-called running average method [16] to avoid the statistically biased
result, instead of the mean value obtained from the covariance matrices for the functions,
which is denoted as C in the expression.

Note that these three functions do not have to be in the same parametric form. For
example, when µ and Σ are parameterised using the aforementioned fitting nodes with the
cubic spline, dark energy can take the (w0, wa) parametrization, in which case one needs
to set MG_flag = 6 and DE_model = 2 in the params_MG.ini file. Likewise, when ΩX is a
free function with fitting nodes, µ and Σ can take a simpler form as already mentioned in
the previous subsection.

3.1.6 DE perturbations

A dynamical DE, i.e. any form of DE other than Λ, necessarily implies inhomogeneities in
the DE fluid [131]. In CAMB, in models with w ̸= −1, the DE stress-energy fluctuations are
computed either based on a quintessence scalar field [119] or the PPF fluid model [120].
In previous versions of MGCAMB, the DE contribution to the stress-energy perturbations
was not included in the perturbed Einstein equations. Instead, it was assumed that their
contribution would be absorbed into the phenomenological functions µ and γ. This, however,
caused a small but noticeable difference between the best fit parameters obtained using CAMB

compared to the µ = γ = 1 limit of MGCAMB for w ̸= −1 background cosmologies. In the
current version, we have added the option MGDE_pert in the params_MG.ini to include the
DE perturbations, calculated using the quintessence or the PPF model, in the equations of

1X(a = 1) = 1 by definition.
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MGCAMB, in the same way as they appear in CAMB. Whether the DE perturbations should be
included when running MGCAMB depends on the context.

In MG theories, the DE equation of state w is not necessarily representative of a scalar
field, or a conserved fluid assumed by the PPF model. Rather, it is an effective quantity rep-
resenting the overall modification of the Friedman equation due to changes to the Einstein
equation as well as the impact of inhomogeneities in the extra degree of freedom. Hence, us-
ing the quintessence or the PPF model for DE perturbation when performing model-agnostic
tests of MG is, strictly speaking, theoretically inconsistent. On the other hand, if the user’s
priority is to be able to recover the default-CAMB-based results in the µ = γ = Σ = 1 limit
when running w ̸= −1 models, they should include the DE perturbations.

In addition to the DE perturbations arising from DE dynamics, in scalar-tensor theories,
in the Einstein frame, there is a contribution to the energy density perturbations in the
Poisson equation due to the non-minimal coupling of the scalar field to matter. Since the
baryon frame in the CDM-only coupled case is the Einstein frame, this term appears on the
right hand side of Eq. (A.6). We note that it is generally very small on sub-horizon scales
and could be safely neglected for models for which the QSA holds well. Nevertheless, we
keep it for completeness.

3.2 Testing gravity with the new MGCAMB

In what follows, we demonstrate the use of the new MGCAMB for deriving constraints on
parameters of two new models that were not present in previous versions. The first is the
CDM-only coupled symmetron, which we compare to the universally (all matter) coupled
case. The second is a joint reconstruction of ΩX , µ and Σ as functions of redshift using the
cubic spline model with and without the Horndeski prior.

3.2.1 Constraints on the universally and the CDM-only coupled sym-
metron

The built-in parameterizations in MGCAMB include the symmetron and dilaton models de-
scribed in terms the QSA forms of the mass function m(a) and the coupling β̃(a). As
described in Sec. 3.1.2, in addition to the previously implemented case of the scalar field
universally coupled to all matter, the current version also includes the option for the scalar
field coupled only to CDM. Fig. 3.1 compares the matter power spectra of two scalar field
models, symmetron and dilaton, with CDM-only vs universal coupling. In both cases and
for both models there is an enhancement due to the fifth force. However, this enhancement
is smaller in the CDM-only coupled case, since the fifth force affects only a fraction of total
matter.

In what follows, we compare the constraints on the symmetron model for the two cases
with the universal and the CDM-only coupling. To work with this model, we set MG_flag=3,
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Figure 3.1: The relative difference in the matter power spectrum for two scalar field models
with universal and CDM-only coupling compared to ΛCDM model. For the symmetron
model, the parameter values are β∗ = 1.0, ξ∗ = 10−3 (λc = 4.29 Mpc), a∗ = 0.5; while the
parameter values for dilaton model are β0 = 1.0, ξ0 = 10−4 (λc = 0.43 Mpc), atrans = 0.001,
where atrans sets the transition time from GR to MG regime. In both panels, the blue line
corresponds to the CDM-only coupled scalar field, while the red line corresponds to the
universally coupled scalar field.

QSA_flag = 2 for the universal coupling and MG_flag=4, QSA_flag = 2, CDM_flag = 1

for the CDM-only coupling in the params_CMB_MG.ini file for the CosmoMC runs, or the
input YAML file if using Cobaya.

In the symmetron model, under the QSA, the functions β̃(a) and m(a) are given by [116,
127]

β̃(a) = β⋆

√
1 −

(
a⋆

a

)3
, (3.17)

m(a) = H0
c

1
ξ⋆

√
1 −

(
a⋆

a

)3
, (3.18)

for a > a⋆, where a∗ is the scale factor at which the symmetry breaking takes place. Prior
to the symmetry breaking, the minimum of the effective scalar field potential is at ϕ = 0,
implying β̃(a) = 0. Hence, under the QSA, the symmetron model reduces to ΛCDM, and
we evolve the ΛCDM equations for a < a⋆. In [122], it was found that these QSA-based
expressions work well for a broad range of parameters.

Current data is unable to constrain all three symmetron parameters (ξ∗, β∗ and a∗)
simultaneously. For our demonstration, we set β∗ = 1 and a∗ = 0.5, and constrain the
remaining parameter ξ∗ that sets the Compton wavelength of the fifth force mediated by
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coupling Universal coupling CDM-only coupling Universal coupling+AL CDM-only coupling+AL

ξ∗ 0.0011 0.0016 0.0013 0.0022
λc(Mpc) 4.743 7.051 5.802 9.539

Table 3.1: The 2σ upper bounds on ξ∗ and λc for the two models with fixed and varying
AL, respectively, as defined in the text.
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Figure 3.2: The 68% and 95% marginalized confidence level contours for Ωm, S8 and λc in
the universally coupled (blue) and the CDM-only coupled symmetron (red), with fixed and
varying AL, respectively. The other symmetron model parameters are fixed at β∗ = 1 and
a∗ = 0.5. The ΛCDM (green) contours are shown for comparison.

the scalar field,
λc = c

H0
ξ∗ . (3.19)

We present our results in terms of λc.
We use the new version of MGCosmoMC to compare constraints on λc in the symmetron

model with universal and CDM-only coupling. Along with ξ∗, we vary the main cosmologi-
cal parameters: Ωbh

2, Ωch
2, θ, τ , ns and ln[1010As]. Our dataset includes the Planck 2018

CMB temperature, polarization and lensing [132], joint measurements of baryon acoustic
oscillations (BAO) and redshift-space distortions (RSD) from the Baryon Oscillation Spec-
troscopic Survey (BOSS) Data Release 12 (DR12) [62], the SDSS DR7 MGS data [133],
the BAO measurement from 6dF [134], and the Dark Energy Survey (DES) Year 1 galaxy-
galaxy-lensing correlation data [94] with the standard cut of nonlinear scales (see [33] for
more details on the implementation of the cut). We use a logarithmic prior on ξ∗ covering
seven orders of magnitude, ξ∗ ∈ [10−6, 1].
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Fig. 3.2 shows the marginalized joint constraints on λc for the universal and the CDM-
only coupling cases, along with the derived parameters S8 and Ωm. As expected, λc is
constrained more stringently in the universally coupled case compared to the CDM-only
coupled case, whether the CMB lensing parameter, AL, is fixed or set free to vary, since all
of the matter is affected by the fifth force in the universally coupled case. The quantitative
68% and 95% confidence level constraints on λc cannot be readily obtained from getdist

due to the fact that we use a logarithmic prior and the parameter is unbounded from below.
Instead, in Table 3.1, we provide the “2σ” upper bounds on ξ∗ and λc defined as the value
of the parameter at which the marginalized probability is equal to 1/e2 of the peak value.
For a Gaussian distribution, this would set the 95% confidence level, or the 2σ bound.

We note that there is a degeneracy between S8 and λc at larger values of S8, which is
plausible since the fifth force tends to increase the clustering amplitude of matter. Note
that the value of Ωm stays the same, i.e. the increase in clustering can be achieved without
increasing the matter fraction. In addition, the mean values of Ωm and S8 are lower when AL

is varying, since CMB temperature data tends to elevate Ωm and S8 due to the preference
for more CMB lensing effects when AL is fixed. Instead, when AL is varied, one finds a
preference for AL > 1.

3.2.2 Reconstructing gravity with and without a Horndeski prior

As a second worked out example, we perform a combined non-parametric reconstruction
of ΩX , µ and Σ from current cosmological data. We set {MG_flag=6, DE_flag=3} in the
input params_CMB_MG.ini file, which corresponds to modeling all three functions through
the cubic spline over 11 fitting nodes in redshift, as described in Sec. 3.1.5. We fit the
resulting 32 free parameters of the theory, along with the standard cosmological parameters,
to data, considering both the case with and without the Horndeski correlated prior (as
already discussed, the Horndeski prior can be added by including cor_prior_Hor_ox.ini

and setting use_SMPrior = T in the input .ini file).
Our dataset is comprised of the Planck 2018 CMB temperature, polarization and lensing

spectra [132], the full shape consensus results of joint measurements of BAO and RSD from
BOSS DR12 [62] complemented by portion of the eBOSS DR16 data release [135, 136, 137,
137, 137, 137, 138] not included in DR12, the BAO measurements from MGS and 6dF,
the Pantheon sample of uncalibrated supernovae [104], along with the DES Y1 data with
the standard cut of nonlinear scales. The results are shown in Fig. 3.3 and Fig. 3.4. They
reproduce the more general results obtained in [50, 51], where the same set of data were
used. We refer the reader to the latter work for an extensive discussion of the findings. Here
we shall simply comment on the main points: the reconstructed functions are consistent
with their ΛCDM predictions within 2 − 3σ; the role of the prior, in preventing overfitting
of the data, is clearly visible; all three functions show some mild deviations from their
ΛCDM values, hinting at the features that would be needed for late time dark energy in
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order to ease some of the cosmological tensions [5]. In particular, as can be seen in Fig. 3.3,
it is possible for late time modifications to ease the S8 tension if AL, is let free to vary.
This is achieved mostly through the combined behaviour of ΩX and µ, with an increase in
ΩX at intermediate redshifts, and µ achieving values above unity at low and intermediate
redshifts, while Σ is close to unity in the redshift range relevant for the CMB lensing kernel.

One expects the values of µ, Σ and ΩX at adjacent redshifts not to be entirely indepen-
dent, as these functions are generally smooth and correlated with each other. The Horndeski
correlated prior plays an important role in suppressing the likelihood of abrupt unphysical
changes in the data-only reconstruction, preventing an overfitting and ensuring that the
reconstruction is independent of the binning scheme. We use the prior covariance obtained
from the ensemble of cosmological histories within Horndeski theories generated in [48].
There, the space of Horndeski models was sampled by varying the five free functions of time
that appear in the effective field theory (EFT) action for (linear) Horndeski gravity, keeping
only the solutions that satisfy basic principles of physical viability (e.g. no instabilities) and
are in broad agreement with the observed cosmic expansion history. The strength of the
resultant correlation depends on the amount of freedom in a given model (e.g. the entire
Horndeski vs only the Brans-Dicke subset). We have made the covariance matrices for a few
correlated priors available in the MGCosmoMC package, but the user could follow the same
template to build other correlation matrices, e.g. for other theories of gravity.

While it is not evident from the results that we are presenting here, in the original recon-
struction work [51] it was shown that current cosmological data can constrain 15 combined
modes of ΩX , µ and Σ. This is already significantly more than the few parameters typi-
cally employed in simple parameterizations and highlights the importance of non-parametric
methods.
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Figure 3.3: The 68% and 95% marginalized confidence level contours for S8, AL and Ωm, in
the cases of joint reconstruction of µ, Σ and ΩX using the same datasets with varying AL,
with and without the Horndeski prior, respectively, in comparison with ΛCDM model.
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all subplots correspond to the 68% confidence level regions obtained from the marginalized
posterior distributions for each node, and the solid lines inside the bands correspond to the
mean values of parameter functions.
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Chapter 4

Disentangling Modified Gravity
from a Dark Force with
Gravitational Redshift

As discussed earlier in Sec. 1, it is of fundamental importance to be able to distinguish a
modification to gravity from a dark fifth force acting only on dark matter. In Ref. [121],
it was shown that this cannot be achieved with current observables. The growth rate of
structure is affected by the modifications in both scenarios, potentially in the very same
way. On the other hand, weak lensing, which is sensitive to the sum of the two gravitational
potentials describing the geometry of the Universe, is also generically unable to discriminate
between the two cases. While it is possible to look for observational signatures of specific
models (see e.g. Refs. [112, 139, 140]), these two scenarios cannot be disentangled without
knowing a priori which kind of modifications (if any) are present in the data.

Ref. [121] however pointed out that the degeneracy can be broken by considering mea-
surements of an observable accessible by the coming generation of galaxy surveys: gravita-
tional redshift [141, 142]. This effect, originally predicted by Einstein [143], directly probes
the gravitational potential encoding the distortion of time and entering the Euler equation.
This yields an immediate test of modified gravity and provides a way to distinguish it from
the presence of a fifth force acting on dark matter.

In this work, we quantify the capability of gravitational redshift to break the degeneracy
between gravity modifications and a dark fifth force, performing a Markov Chain Monte
Carlo (MCMC) analysis on synthetic data, based on the survey specifications of the Square
Kilometer Array Phase 2 (SKA2) [144]. We consider two specific models: the symmetron
modified gravity model [111], which is a scalar-tensor theory of generalized Brans-Dicke
(GBD) type, and a coupled quintessence (CQ) model [124, 125] with exactly the same form
of the coupling and the potential as the symmetron, but with only dark matter coupled
to the scalar field. We show that the parameters of the two models are fully degenerate in
an analysis including RSD, weak lensing and cosmic microwave background (CMB) data.
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We then demonstrate that including gravitational redshift into the analysis breaks the
degeneracy, and we determine how large the deviations from ΛCDM need to be for this
observable to be effective.

The rest of this chapter is organized as follows. In Sec. 4.1, we present the GBD and
CQ models considered in our analysis, highlighting their degeneracies in RSD and weak
lensing data. We then describe the galaxy clustering, weak lensing and CMB observables
included in the analysis in Sec. 4.2 and discuss the details of the numerical investigation in
Sec. 4.3. Finally, we present the results in Sec. 4.4. We include some additional details on
the GBD and CQ models in Appendix C and on the specifications for the galaxy clustering
observables in Appendix D.

4.1 The two degenerate scenarios

4.1.1 GBD and CQ

In order to illustrate the disentangling power of gravitational redshift, we compare a mod-
ified gravity model with a scenario involving a dark fifth force acting on dark matter. The
argument that follows is fully general and applicable to any model belonging to these cate-
gories, but for the sake of concreteness, we focus on a GBD scalar-tensor theory and a CQ
model, following Ref. [121]. Both scenarios involve an additional scalar field, according to
the actions given in Appendix C. In the GBD case, the scalar field has the same conformal
coupling to all cosmic components, whereas in CQ the coupling only involves dark matter
(in the form of CDM) and propagates a dark force of non-gravitational origin. We denote
the coupling strengths with β1 and β2 and the scalar field masses with m1 and m2 in the
GBD and CQ models, respectively.

We work within linear perturbation theory and assume that the Universe is described by
a perturbed flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric in the conformal
Newtonian gauge, with line element

ds2 = a2[−(1 + 2Ψ)dτ2 + (1 − 2Φ)dx2] , (4.1)

where τ denotes conformal time and a the scale factor. The two metric potentials Ψ and Φ
encode perturbations in the geometry of the Universe. The matter content can be described
by two fields: the density contrast δ = δρ/ρ and the velocity divergence θ. These contain
contributions from both CDM (c) and baryons (b), ρδ = ρbδb + ρcδc and ρθ = ρbθb + ρcθc.
The relations among these fields, listed in Appendix C, are provided by the chosen theory
of gravity and the energy-momentum conservation. In particular, we notice that the GBD
scenario involves a nonzero anisotropic stress and modifications in the Poisson equation,
whereas the CQ case only includes modifications in the Euler equation for CDM.
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4.1.2 Impact on the growth of cosmic structure

Let us analyze the implications of the GBD and CQ scenarios on the growth of cosmic
structure. In either scenario, combining the Einstein and conservation equations yields an
equation for the growth of density fluctuations in the linear regime of the form

δ̈ + Hδ̇ = 4πGeffa
2ρδ . (4.2)

Here, overdots indicate derivatives with respect to conformal time, H is the conformal
Hubble parameter and Geff is the effective Newton constant that encodes the effective
gravitational coupling. The latter takes the following form in the two models:

GGBD
eff = G

[
1 + 2β̃2

1k
2

a2m2
1 + k2

]
, (4.3)

GCQ
eff = G

[
1 + 2β̃2

2k
2

a2m2
2 + k2

(
ρc

ρ

)2 (δc

δ

)]
, (4.4)

where G is the Newton constant and we have defined β̃2
i = β2

i /(8πG), for i = 1, 2. We
remark that the only difference between the two expressions is the term (ρc/ρ)2 (δc/δ)
suppressing the value of Geff in the CQ case, due to the fact that the coupling only affects
CDM in this scenario. However, such a difference can be absorbed into the unknown value
of the coupling β2. Therefore, measurements of the growth of cosmic structure that only
constrain Geff cannot distinguish between a scenario where β1 = 0 (GR is valid) and β2 ̸=
0 (CDM experiences a fifth force), and a scenario where β1 ̸= 0 (gravity is modified)
and β2 = 0 (there is no dark fifth force). In general, if we analyze the data allowing for
both β1 and β2 to vary, we see from Eqs. (4.3) and (4.4) that one can only constrain
the combination β2

1 + (ρc/ρ)2 (δc/δ)β2
2 . While the shape of the degeneracy depends on the

specific models considered, deviations in the Poisson and the Euler equations are generically
indistinguishable through measurements of the growth of structure [145].

4.1.3 Impact on weak lensing

The other key large-scale structure observable is weak lensing, measured in cosmic shear,
magnification of high-redshift galaxies, and the lensing of the CMB. Weak lensing is directly
sensitive to the Weyl potential, i.e. the sum of the two gravitational potentials Φ and Ψ [93].
However, as shown in Ref. [121], measurements of the Weyl potential cannot disentangle
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GBD from CQ, as in both scenarios we have the following Poisson-like relation,1

k2(Φ + Ψ) = −8πGρδ . (4.5)

This shows that the Weyl potential is directly related to the evolution of density fluctua-
tions and is consequently subject to the same degeneracy found with measurements of the
growth of structure. Note that modified gravity models other than GBD can lead to modi-
fications in Eq. (4.5) and consequently can be distinguished from a dark fifth force through
measurements of weak lensing. However, the opposite statement is not true: models with a
dark fifth force always leave Eq. (4.5) unchanged and thus cannot be distinguished from a
GBD modification of gravity using weak lensing.

4.1.4 The setup for the analysis

In the following, we will show that the two types of modifications can be disentangled using
gravitational redshift, which provides a direct measurement of the potential Ψ appearing
in the Euler equation. For the purpose of this demonstration, we adopt the symmetron
model [111, 116, 127, 34], in which the modifications become important only at late cosmo-
logical times, above a given value of the scale factor a⋆. The time evolution of β̃1,2 and m1,2

in this model is given by

β̃(a) = β⋆

√
1 −

(
a⋆

a

)3
, (4.6)

m(a) = m⋆

√
1 −

(
a⋆

a

)3
, (4.7)

for a > a⋆. We fix a⋆ = 0.5 for both scenarios and study the constraints on the parameters
β∗1 and β∗2 for different values of the masses that set the Compton wavelength of the scalar
field.

4.2 Observables

We consider three observables to constrain the GBD and CQ models: galaxy clustering,
weak lensing, and the CMB.

1This assumes that A2 ≈ 1 in the GBD action in Eq. (C.1), which is required for the screening mechanism
to be effective [112]. As discussed in Appendix C, this assumption has no impact on the arguments presented.
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4.2.1 Galaxy clustering

Spectroscopic galaxy surveys provide a measurement of the galaxy number counts fluctua-
tions,

∆gal(n̂, z) ≡ N(n̂, z) − N̄(z)
N̄(z)

, (4.8)

where N is the number of galaxies in a pixel centered in direction n̂ and at redshift z, and N̄
denotes the average number of galaxies inside the pixel. The observable ∆ can be expressed
within linear perturbation theory as [146, 147, 148]

∆gal(n̂, z) = bδ − 1
H
∂r(V · n̂) + 1

H
∂rΨ + 1

H
V̇ · n̂

+
(

1 − 5s+ 5s− 2
Hr

− Ḣ
H2 + f evol

)
V · n̂ ,

(4.9)

where r denotes the comoving distance to the galaxies, b is the galaxy bias, s is the magnifi-
cation bias and f evol is the evolution bias. The dominant contribution to ∆ arises from the
first two terms, which respectively encode the effect of matter density perturbations and
RSD [102]. These are the only two contributions that are measurable with current data.
The other terms are relativistic corrections suppressed on sub-horizon scales by a factor of
H/k, including the Doppler terms and the gravitational redshift effect given by the radial
derivative of Ψ.2

We can extract information from ∆gal(n̂, z) by measuring its two-point correlation func-
tion ξ ≡ ⟨∆gal(n̂, z)∆gal(n̂′, z′)⟩. The density and RSD terms in Eq. (4.9) generate three
even multipoles in the correlation function: a monopole, a quadrupole and a hexadecapole,
which probe the growth of structure and are the key quantities measured in a standard RSD
analysis. Relativistic corrections to these three multipoles have been shown to be negligible,
being suppressed by (H/k)2 relative to the density and RSD contributions [149]. One can
however exploit the anti-symmetry generated by relativistic effects. This is manifested in
the presence of odd multipoles, most notably a dipole, when cross-correlating two different
populations of galaxies [151, 152, 153, 154, 155, 156]. Since the dipole is sensitive to the
effect of gravitational redshift, which is suppressed by only a single power of H/k, measuring
it can help to disentangle modified gravity from a dark fifth force, as we show below.

The cross-correlation between two populations of galaxies with different luminosities—
a bright and faint sample labelled B and F, respectively—generates the following even

2Note that ∆gal is also affected by other relativistic effects suppressed by (H/k)2 and by gravitational
lensing, whose impact is negligible in the redshift range considered in this work [149, 150].
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multipoles in the flat-sky approximation:

ξBF
0 (z, d) = 1

2π2

∫
dk k2

[
bBbFPδδ + 1

5

( 1
H

)2
Pθθ

− 1
3(bB + bF)

( 1
H

)
Pδθ

]
j0(kd) , (4.10)

ξBF
2 (z, d) = − 1

2π2

∫
dk k2

[
− 2

3(bB + bF)
( 1

H

)
Pδθ

+ 4
7

( 1
H

)2
Pθθ

]
j2(kd) , (4.11)

ξBF
4 (z, d) = 1

2π2

∫
dk k2

[
8
35

( 1
H

)2
Pθθ

]
j4(kd) . (4.12)

Here, jℓ denotes the spherical Bessel function of order ℓ and Pδδ, Pθθ and Pδθ are the auto-
and cross-power spectra, which depend on k and z. The velocity divergence θ is defined in
Fourier space by V = i(k/k2) θ. The dipole is given by

ξBF
1 (z, d) = − 1

2π2

∫
dk k2

[(bB − bF)
H

(
kPδΨ −

Pδθ̇

k

)
−(bBαF − bFαB)Pδθ

k
+ 3

5(αB − αF)Pθθ

Hk

]
j1(kd)

− 1
5π2

∫
dk k2d

r

( 1
H

)
(bB − bF)Pδθ(k, z)j2(kd) , (4.13)

where as a shorthand we have defined

αB,F ≡ 1 − 5sB,F + 5sB,F − 2
rH

− Ḣ
H2 + f evol

B,F . (4.14)

The first term in Eq. (4.13), proportional to PδΨ, is the contribution from gravitational
redshift. This key term is not present in the even multipoles and provides the information
needed to disentangle the GBD and CQ scenarios. The last term in Eq. (4.13) is a wide-
angle correction, which is needed for a consistent treatment of the dipole [157].3 Note that
anti-symmetry can only be probed by cross-correlating distinct populations, meaning that
the dipole signal is nonzero only for B ̸= F.

4.2.2 Weak lensing

Weak lensing can be measured through cosmic shear. Here, we consider both shear-shear
correlations and shear-clustering correlations (also called galaxy-galaxy lensing), both of

3Note that wide-angle corrections also enter the even multipoles, but can be neglected since they are
more suppressed compared to those in the dipole [158, 151].
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which can be written in terms of the density power spectrum Pδδ by employing Eq. (4.5).
We can safely neglect the covariance between the lensing observables and the spectroscopic
galaxy clustering sample, since the lensing correlations are largely insensitive to the small
radial modes from which the growth of structure and gravitational redshift are measured
[159].

4.2.3 CMB

We consider the CMB temperature and polarization angular power spectra (TT, TE and
EE). We are interested in scenarios in which the deviations from ΛCDM appear at late
cosmological times, leaving the physics at the time of last scattering unchanged. Therefore,
the role of the CMB observables in this analysis is primarily to constrain the standard
cosmological parameters.

In addition to this, there are also the secondary CMB anisotropies. In particular, we
note that late-time modifications to the growth of cosmic structure can impact the CMB
on large scales through the integrated Sachs-Wolfe (ISW) effect. Moreover, the temperature
and polarization spectra we employ in this analysis are affected by gravitational lensing.
Since both ISW and gravitational lensing depend on the Weyl potential, we can use Eq. (4.5)
to relate these terms to the density power spectrum Pδδ, thus providing constraints on β∗1

and β∗2. However, this does not give any contribution in discriminating between the two
types of modifications, and, for this reason, we do not include separate measurements of
the CMB lensing potential.

4.3 Numerical analysis

4.3.1 The general approach

In order to quantify the degeneracy between the GBD and CQ scenarios and assess the
ability of gravitational redshift to break it, we use MGCAMB [31, 32, 33, 34], a modified
gravity patch of the Boltzmann code CAMB [35, 160]. We employ Cobaya [161, 39] to carry
out an MCMC analysis of the mock data set consisting of the observables described in
Sec. 4.2. As a first step, we generate the mock data for a given fiducial model involving
one kind of modification only, for example CQ with β∗2 = 1 and fixed mass m∗2. We then
perform a fit of the data allowing for both β∗1 and β∗2 to vary, fixing m∗1 = m∗2.4 The
resulting constraints will either indicate the presence of a degeneracy or the lack thereof: if
the two configurations {β∗1 = 0, β∗2 ̸= 0} and {β∗1 ̸= 0, β∗2 = 0} provide an equally good
fit, we can conclude that the data cannot distinguish between the two scenarios. On the

4Note that by simultaneously varying both β∗1 and β∗2, we are not claiming that we live in a universe
where both gravity modifications and a dark fifth force are present. Rather, this approach is necessary to
determine which models can be constrained by the data, without arbitrarily excluding one of the modifica-
tions.

44



other hand, if the case {β∗1 ̸= 0, β∗2 = 0} is excluded, the two kinds of modifications can
be disentangled from one another, breaking the degeneracy.

For each data vector, we perform two types of analysis to assess the degeneracy between
the two models: one where we do not include the dipole in the clustering data in Eq. (4.15),
i.e. there are no constraints from gravitational redshift, and another one where the dipole
is included. We build a multivariate Gaussian likelihood for the combination of the three
observables and adopt wide uniform priors on the free parameters.

In each analysis, we have 11 free parameters: 5 cosmological parameters, with fiducial
values ωb = 0.02242, ωc = 0.12, h = 0.677, As = 2.105 × 10−9, and ns = 0.9665; 4 bias
parameters related to the galaxy populations (defined in Appendix D); and 2 parameters
associated with GBD and CQ, β∗1 and β∗2, see Eq. (4.6). Since the mass of the scalar field
is strongly degenerate with the coupling and thus cannot be separately constrained [34], we
fix it to the same value in both scenarios, m∗1 = m∗2, and run our analysis for different
choices of the Compton wavelength λ∗ ≡ 1/m∗.

4.3.2 Data vector specifications

Galaxy clustering

The galaxy clustering data vector consists of the following eight multipoles:

D =
(
ξBB

0 , ξBF
0 , ξFF

0 , ξBF
1 , ξBB

2 , ξBF
2 , ξFF

2 , ξTT
4
)
. (4.15)

This includes the usual even multipoles of RSD and importantly, also the dipole ξBF
1 . Note

that we only consider the hexadecapole in the total population of galaxies (labelled T),
as Eq. (4.12) does not contain a dependence on population-specific biases so that consid-
ering different galaxy samples does not provide additional information. We compute the
multipoles in Fourier space from power spectra generated using MGCAMB and perform the
transform to configuration space using the FFTLog method [162].

Since the dipole is too small to be measured from current data [153], we perform the
forecasts assuming a SKA2-like survey, for which the dipole is expected to reach a signal-to-
noise ratio of 80 [163]. We consider the specifications of Ref. [144] for the number density, sky
coverage and galaxy bias. The separations considered in this work range from d = 20h−1Mpc
to d = 160h−1Mpc, an interval where nonlinear corrections were found to be negligible for
the dipole [164]. Furthermore, we assume a bias difference of 1 between the bright and faint
galaxy populations, in agreement with that measured in Ref. [153]. More details on the
modelling of the galaxy bias and the magnification bias can be found in Appendix D.

We use the data vector covariance calculated in Appendix C of Ref. [165], which includes
both shot noise and cosmic variance. We account for the covariance between different sep-
arations and different multipoles, but neglect the one between different redshift bins, since
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the bins are quite wide and do not overlap thanks to the spectroscopic precision of the
redshift measurements.

Gravitational lensing

For gravitational lensing, we consider the specifications of the Dark Energy Survey (DES)
Year-1 [94, 95] and compute the shear-shear correlations and the galaxy-galaxy lensing
correlations using MGCAMB. Since MGCAMB is based on linear perturbation theory, we impose
the “aggressive” scale cut implemented in Ref. [33] to effectively remove the data in the
nonlinear regime. This is more restrictive than the cut used in the DES analysis for the
ΛCDM model [94], since in our case it would be incorrect to follow the same approach and
assume the validity of GR to model the observables on mildly nonlinear scales. All nuisance
parameters, including intrinsic alignment, lens photo-z shift, source photo-z shift and shear
calibration are fixed according to the DES Year 1 standard values [94, 95].

Note that by the time SKA2 data will be available, more precise measurements of weak
lensing will have been performed by Euclid5 and LSST6. However, we do not include these
in our forecasts, since weak lensing cannot break the degeneracy between GBD and CQ, as
discussed in Sec. 4.1.3.

CMB

For the CMB power spectra, we consider the Planck specifications introduced in Ref. [166],
using the 143 GHz channel parameter values to compute the noise of the measurement [31].
The cosmic variance is computed according to Refs. [167, 168].

4.4 Results

4.4.1 Breaking the degeneracy

In Fig. 4.1, we show the marginalized constraints on β∗1 and β∗2 for a CQ fiducial model
with β∗2 = 1, λ∗ = 10 Mpc, a combination that is not excluded by current data, see Ref. [34].
The blue contours correspond to the analysis without the dipole, i.e. without gravitational
redshift, while the red contours include it. As expected, when the dipole is not present,
we obtain a perfect elliptic degeneracy between β∗1 and β∗2, which matches the analytical
expectation discussed in Sec. 4.1.2. This means that even though no gravity modifications
were included in the mock data vector, the data (RSD, weak lensing, and CMB) are equally
well described using either the (correct) CQ model or the GBD one.

5https://www.esa.int/Science_Exploration/Space_Science/Euclid

6https://www.lsst.org/
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Figure 4.1: Marginalized 1σ and 2σ contours on β∗1 and β∗2, with and without gravitational
redshift. Here, the fiducial model is CQ and is specified by β∗2 = 1 and λ∗ = 10 Mpc (with
β∗1 = 0). The inclusion of gravitational redshift allows us to exclude GBD and thus break
the degeneracy between modified gravity and a fifth force.

In the GBD case, the best fit is around β∗1 = 0.84 and not β∗1 = 1. This reflects the
fact that the impact of a dark fifth force with coupling strength β∗2 = 1 on the growth
of cosmic structure can be mimicked by a modification of gravity with smaller coupling
β1 = (ρc/ρ)(δc/δ)1/2β2 ≃ (ρc/ρ)3/2β2 ≃ 0.84β2, as can be seen from Eqs. (4.3)-(4.4) with
our choice of fiducial cosmological parameters. This degeneracy has important consequences
when jointly analyzing RSD, weak lensing and CMB data: if CDM is subject to additional
interactions, such modifications in the dark sector could be incorrectly interpreted as evi-
dence for modified gravity, even though GR remains valid.

The inclusion of gravitational redshift into the analysis decisively breaks the degeneracy
between the two models. Indeed, we can clearly see that the red contours exclude the case
β∗2 = 0, indicating that a pure modification of gravity no longer fits the data. Even with
the dipole, a large portion of the parameter space is still allowed, implying that models with
both a dark fifth force and a modification of gravity are not excluded. However, such sce-
narios involving both kinds of modifications would be disfavoured according to the Occam’s
razor. An alternative representation of the constraints in polar coordinates is presented in
Appendix E.

47



0.0 0.2 0.4 0.6 0.8 1.0
*1

0.0

0.2

0.4

0.6

0.8

1.0

*2

Standard RSD analysis
RSD + Gravitational redshift
Gravitational redshift only
Fiducial models

Figure 4.2: The 1σ confidence regions for four different fiducial values of the CQ coupling
β∗2. For all fiducial models (indicated by stars) we set λ∗ = 10 Mpc. All parameters except
for β∗1 and β∗2 have been fixed to their fiducial values.

4.4.2 Varying the coupling strength

As a next step, we investigate how small the CQ parameter β∗2 can be for the two mod-
els to be distinguishable with a SKA2-like survey. In Fig. 4.2, we present the constraints
on various fiducial models with fixed λ∗ = 10 Mpc and different values of β∗2. To reduce
the computational cost of the analysis, we fix the cosmological parameters to their fiducial
values, and perform a likelihood minimization analysis only considering the spectroscopic
galaxy sample. The CMB and weak lensing data are essential in constraining the cosmo-
logical parameters, but the constraints on β∗1 and β∗2 are driven by RSD and gravitational
redshift.

We show the results including the RSD data only (in blue), the dipole only (in yellow)
and the combination of the two (in red). Since the cosmological parameters are fixed, the
contours are now artificially much tighter than in Fig. 4.1, but the degeneracy is perfectly
captured and we obtain a very good qualitative agreement with Fig. 4.1 for the correspond-
ing fiducial model. We notice that the case β∗2 = 0.7 is at the edge of the region where the
addition of the dipole can exclude a pure GBD scenario, whereas this observable does not
give any additional information for the fiducial model with β∗2 = 0.6. This means that if
there is a fifth force acting on CDM with a coupling β∗2 ≤ 0.6, we will clearly detect the
modifications with a survey like SKA2, but we will not be able to determine whether they
are due to a dark fifth force or a modification of gravity. On the other hand, if the coupling
is larger, the dipole will be able to discriminate between the two scenarios.
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Figure 4.3: As in Fig. 4.1, but for fiducial parameters β∗2 = 0.6 and λ∗ = 100 Mpc (with
β∗1 = 0). The inclusion of gravitational redshift allows us to exclude GBD at 1σ.

4.4.3 Varying the Compton wavelength

In Figs. 4.1 and 4.2, we have fixed the value of λ∗ to 10 Mpc. Since λ∗ governs the Compton
wavelength of the force mediated by the scalar field, a larger value of this parameter would
generate modifications in the clustering observables at larger scales. In Fig. 4.3, we show
the constraints on mock data generated for a CQ fiducial model with β∗2 = 0.6 and λ∗ =
100 Mpc, where we see that the dipole is able to break the degeneracy between the two
models at the 1σ level. This is due to the fact that, for λ∗ = 100 Mpc, this observable is
significantly modified at large scales when β∗2 = 0.6, contrary to the previous case with
λ∗ = 10 Mpc, where the modifications are very small for this value of β∗2.

4.4.4 The range of validity of our results

All the results presented so far concern GR models with a dark fifth force acting on CDM.
Since the situation is symmetric, the same conclusions also apply in the case of GBD
modified gravity with no CDM interactions. In this case, the elliptic degeneracy without
gravitational redshift will be such that mock data generated by a GBD model with β∗1 = 1
can be well described by a CQ scenario with β2 ≃ (ρc/ρ)−3/2 ≃ 1.19. Including gravitational
redshift allows us to distinguish between the two scenarios down to β∗1 ≃ 0.7 for λ∗ = 10
Mpc.

Finally, for the dipole to be helpful in this analysis, let us briefly discuss two quantities
that impact the aforementioned thresholds in β∗1 and β∗2. First, the bias difference between
the correlated galaxy populations directly governs the amplitude of the gravitational redshift
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contribution, which in turn determines the ability of the dipole to discriminate between the
models. Here, we have assumed a bias difference of 1, consistent with the measurements
from BOSS [153]. The population of galaxies detected by SKA2 may significantly differ
from that of BOSS, possibly leading to a smaller bias difference. However, it is possible to
boost this difference by exploring different ways to divide the galaxies into two populations,
for example performing density splits based on their environment, which can increase the
amplitude of the gravitational redshift contribution [169, 170].

Secondly, the range of scales considered in the analysis also has an influence on the role
played by the dipole. Here, we have adopted a minimum separation of 20h−1Mpc, since at
such scales nonlinear effects are expected to have a small impact on the dipole in GR [164].
The situation may be slightly different in modified gravity. We checked that if the minimum
separation is raised to 32h−1Mpc, the constraining power of the dipole slightly decreases,
leading to wider contours. As a consequence, the limiting values for β∗1 and β∗2 obtained in
Sec. 4.4.2 would become somewhat larger, but the main message of our work would remain
unchanged.
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Chapter 5

Extending MGCAMB tests of
gravity to nonlinear scales

In this Chapter, we present a new extension of MGCAMB, based on the halo model re-
action (HMR) method, allowing for modelling the nonlinear growth of cosmic structures
in alternative gravity models. In what follows, we introduce the HMR method in Sec. 5.1,
describe the implementation of the HMR in MGCAMB in Sec. 5.2, and demonstrate its use in
Sec. 5.3.

5.1 Modelling the effect of nonlinearities on the matter power
spectrum

In this section, we introduce the HMR method and the corresponding computational tool,
ReACT1.

5.1.1 The halo model reaction method

In order to use the information from nonlinear scales for constraining models beyond ΛCDM,
one needs to modify the standard halo model. To model the effect of nonlinearities one can
introduce a reaction function R(k, z) defined as [75]

R(k, z) ≡ PNL(k, z)
PL(k, z) + P pseudo

1h (k, z)
, (5.1)

where PNL(k, z) is the nonlinear spectrum for the targeted modified cosmology. The de-
nominator is the nonlinear ‘pseudo’ spectrum, which is defined as a ΛCDM spectrum whose
linear clustering matches the modified cosmology at the targeted redshift z, i.e.

P pseudo
L (k, z) = PMG

L (k, z) . (5.2)

1https://github.com/nebblu/ACTio-ReACTio
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In Eq. (5.1) we have implicitly assumed the halo model to construct the pseudo spectrum,
where we have separated the 2-halo, or linear, spectrum PL(k, z), and the 1-halo spectrum,
P pseudo

1h (k, z).
Based on the approach in Refs. [171, 76, 77], the reaction function can be computed

using:

R(k) = (1 − fv)2 P
(cb)
HM (k) + 2fv (1 − fv)P (cbv)

HM (k) + f2
vP

(v)
L (k)

P pseudo
HM (k, z)

, (5.3)

where ‘HM’ represents the halo model, ‘cb’ denotes cold dark matter and baryons, ‘ν’
denotes massive neutrinos, and fv = Ωv,0/Ωm,0 being the ratio of energy density fractions
of massive neutrinos to total matter today. In Eq. (5.3), the total halo model matter power
spectrum is constructed from the weighted sum of individual components in the presence
of massive neutrinos [172]. The P

(cbv)
HM (k) stands for the cross power spectrum between

neutrinos and the other two matter components, defined as

P
(cbv)
HM (k) ≈

√
P

(cb)
HM (k)P (v)

L (k) , (5.4)

and P
(cb)
HM is given by [173, 77]

P
(cb)
HM (k) =

[
(1 − E)e−k/k⋆ + E

]
P

(cb)
L (k) + P

(cb)
1h (k) . (5.5)

The relevant parameters are given by

E(z) = limk→0
(1−fv)2P

(cb)
1h

(k,z)
P pseudo

1h
(k,z)

, (5.6)

k⋆(z) = −k̄
(

ln
[

A1(k̄,z)±A2(k̄,z)
(1−fv)2P

(cb)
L (k̄,z)

(
1−E(z)

)])−1

, (5.7)

with A1(k, z) and A2(k, z) expressed as

A1(k, z) =f2
vP

(v)
L (k, z) + P pseudo

HM (k, z)RSPT(k, z)

− (1 − fv)2
[
E(z)P (cb)

L (k, z) + P
(cb)
1h (k, z)

]
, (5.8)

A2(k, z) =2
√
f2

vP
pseudo
HM (k, z)P (v)

L (k, z)RSPT(k, z) , (5.9)

respectively. RSPT(k, z) is the 1-loop standard perturbation theory (SPT) prediction for the
reaction function, which characterizes the quasi-nonlinear scales well, and is used to calibrate
the halo model reaction to better predict this transitory regime in the presence of modifica-
tions to gravity. Typically SPT has a good accuracy in the range 0.01 < k Mpch−1 < 0.1,
whereas the nonlinear regime is typically considered to be given by k > 0.1 hMpc−1 for late
time structure formation. This latter regime can be more accurately predicted by P (cb)

1h (k).
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5.1.2 The nonlinear phenomenological parameterization

Since we need to compute the matter power spectrum, a natural starting point is the Poisson
equation describing the relation between gravitational metric potentials and matter density
contrast. In linear perturbation theory, which is the default framework of MGCAMB, we
have the modified equations given by Eqs. (2.98) and (2.99). These can be extended to
describe perturbations on smaller cosmological scales, which can be generally separated
into quasi-nonlinear scales and fully nonlinear scales. Namely, [77]

k2ΨQNL = −4πGµ(a, k)a2ρmδQNL(k, a) + S(k, a), (5.10)

k2ΨNL(k, a) = −4πG[1 + F(k, a)]a2ρmδNL(k, a), (5.11)

where the labels QNL and NL denote ‘quasi-nonlinear’ and ‘nonlinear’, respectively. S(k, a)
is the source term that contains the 2nd-order and 3rd-order contributions in perturbation
theory that describes the additional modifications on quasi-nonlinear scales. The function
F(k, a) in the second equation captures the fully nonlinear modification to the Poisson
equation.

In [77], two different approaches were proposed for deriving quantitative prediction for
δNL, and the relation between the function µ and the nonlinear modification F(k, a): the
parameterized post-Friedmannian framework [174] and a simpler phenomenological param-
eterization that we will adopt below. The latter approach has the benefit of being simple,
having only a few free parameters, while still being able to reproduce the nonlinear effects
in representative modified gravity theories.

In the phenomenological parameterization, the function F(k, a) is taken to be the error
function (Erf). The error function was shown to reflect the general profile of the effective
gravitational constant in a variety of modified gravity theories [77], and allows for a smooth
transition from the unscreened to the screened regime. The specific form is taken to be

FErf = Erf
[
ayh10J̄

]
× (1 − µ(k̂, a)), (5.12)

in which

k̂ = 10p4

a2yhRth
, (5.13)

J̄ = p1 − p2 log (Rth) + p3 log (ayenv) , (5.14)

where yh = (Rth/a)/(Ri/ai), Rth being the comoving halo top-hat radius and the subscript
‘i’ stands for initial time. yenv is the normalised radius of the environment. Note that, if
µ ∼ 1 in the GR limit, 1+FErf ∼ 1, and the nonlinear correction to modified perturbations
also disappears. There are four additional nonlinear regime parameters: p1 - p4 introduced
in this framework that represent typical MG phenomenological effects. Namely, p1 param-
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eterizes the strength of screening, p2 and p3 characterize the mass dependency and the
environment dependency, respectively, and p4 sets the Yukawa suppression scale [175]. The
QNL correction, described by S(k, a), was shown in [77] to have a negligible effect for scale-
independent MG theories, while it can have up to a 2% effect on the power spectrum for the
Hu-Sawicki f(R) model. We will ignore the QNL correction in the current implementation.

5.2 The nonlinear extension and other upgrades of MGCAMB

As mentioned earlier, the effect of nonlinearities on the matter power spectrum can be cap-
tured using the reaction function. In what follows, we describe how ReACT [176], a publicly
available code for computing the reaction function, can be used with MGCAMB. We also de-
scribe the other upgrades implemented in the latest version of MGCAMB and MGCobaya [177].

5.2.1 MGCAMB with ReACT

Since both ReACT and MGCAMB come with Python wrappers, making them work together
amounts to establishing an appropriate Python interface. As mentioned in Sec. 5.1.2, the
nonlinear modfication function F(k, a) depends on the linear modification µ(k, a), which
is specified for the models implemented MGCAMB, namely, the generic scalar-tensor, f(R),
Planck and DES parameterizations, etc. We need to implement the same models in the part
of ReACT that calculates µ. To achieve this, we create a new “case”, labeled 14, in addition
to existing cases in the default ReACT repository [176]. Then, we use a wrapper function to
pass the parameters of the µ(k, a) functions from MGCAMB to ReACT. Since ReACT can also
output the modified linear power spectrum P (k), we conduct consistency checks between
MGCAMB and ReACT to validate our implementation. As a representative case, we compare
the linear power spectra for the DES parameterization, defined as: [43]

µ = 1 + µ0
ΩDE(a)
ΩDE,0

, (5.15)

Σ = 1 + Σ0
ΩDE(a)
ΩDE,0

, (5.16)

where µ0 and Σ0 are the present values of µ and Σ, respectively, and ΩDE(a) = ρDE/ρtot.
As can be seen from Fig. 5.1, we find a good agreement between the two codes.

We also implement the dynamical dark energy options, including the cubic-spline pa-
rameterization of the dark energy density [50, 51, 34], to make it possible to use ReACT with
the full range of models implemented in MGCAMB.

In MGCAMB, we use the function call compute_reaction_nu_ext, which is an option in the
Python interface of ReACT, to compute the reaction function with the contribution of massive
neutrinos. As input, this function requires three types of linear power spectra: P total

MG (k),
P cb

MG(k) and P cb
ΛCDM(k), under the assumption of the ΛCDM background, which can be
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Figure 5.1: The relative difference in modified linear matter power spectra at z = 0 computed
using MGCAMB and ReACT for the DES parametrization with µ0 = 0.4 and Σ0 = 0.1.

easily computed by MGCAMB. Besides, we add a new function named get_react_function

into the nonlinear Python module of MGCAMB to return the result of the reaction function and
get MGCAMB to compute the pseudo power spectrum P pseudo

HM (k, z) in Eq. 5.3. We then adopt
the commonly-used interpolator function in CAMB and MGCAMB to get the fully nonlinear
power spectrum PNL(k, z).

Currently, ReACT can only provide nonlinear corrections for the matter power spectrum
and not the Weyl potential W = (Φ + Ψ)/2. Thus, PW W (k) and PW δ(k), needed for in-
terpreting data from weak lensing surveys, must be calculated separately. We assume that
the relation between W and δ is the same as the one on linear scales and is given by
Eq. (2.99). With this assumption, we can compute PW W (k) and PW δ(k) from the matter
power spectrum Pδδ(k).

In addition to the parameters of the functions µ and Σ, we have four parameters, p1 - p4,
specifying the nonlinear correction. In what follows, we simply take p1 as the only parameter
for the nonlinear regime, setting the others to zero, as was also done in [80]. This is justified
for our example using the DES parameterization (where µ only depends on time), since for
scale-independent MG models the screening has no environmental or halo mass dependence
and, hence, no dependence on p2 or p3. Also, there is no Yukawa suppression, and hence
no dependence on p4, in models with no scale-dependence. We have observed that varying
p1 in the case of the DES parameterization results in up to ∼ 10% percent differences in
the z = 0 nonlinear power spectrum, for µ0 = 0.4 and Σ0 = 0.1, as shown by Fig. 5.2. The
limit p1 → ∞ corresponds to no screening and the limit p1 → −∞ corresponds to a strong
screening where the power spectrum goes back to the ΛCDM prediction.

The current version of ReACT is limited to making predictions up to redshift z = 2.5,
which is good enough to account for nonlinear modification effects at late times. On the other
hand, the redshift bins in the DES likelihood go to slighly higher redshifts. To maintain
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Figure 5.2: The relative difference in the nonlinear matter power spectrum PNL(k) with
different values of p1 with respect to the case of p1 = 0.5 for the DES parametrization with
µ0 = 0.4 and Σ0 = 0.1.

a relatively smooth transition from low to high redshifts, we adopt the P pseudo(k, z) for
redshifts above z = 2.5 without losing much of precision, since the majority of the modified
nonlinear correction effects are focused on the redshifts below z = 2.5. Fig. 5.3 shows the
smooth transition of output P (k, z) from low to high redshifts for several representative k
modes.

5.2.2 Other upgrades

In addition to the nonlinear extension, we have added a few other features to MGCAMB and
MGCobaya to aid cosmological tests of gravity.

Galaxy-Weyl correlation in the DES Year-1 likelihood

The DES Year-1 likelihood, as implemented in Cobaya, computes the galaxy-Weyl correla-
tion from the galaxy-galaxy correlation using the standard equations of GR relating density
contrast δ = δρ/ρ and W . In order to use the likelihood to constrain modifications of
Einstein’s equations, including the possibility of Σ ̸= 1, we have modified the DES Year-1
likelihood implementation in MGCobaya to compute PW δ(k) within MGCAMB together with
PW W (k) and Pδδ(k).

Implementation of the DES Year-3 likelihood in Cobaya

We follow the formulation for calculating the weak lensing observables as described in [64]
to implement the DES Year-3 likelihood in Cobaya. For the lens sample, we follow the
treatment in [64]. Specifically, we choose the MagLim sample [178], which contains six
tomographic redshift slices with nominal edges at z = [0.20, 0.40, 0.55, 0.70, 0.85, 0.95, 1.05],
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Figure 5.3: The modified matter power spectrum P (k, z) as a function of redshift for several
representative values of k for the DES parametrization with µ0 = 0.4,Σ0 = 0.1, and p1 = 0.5.

as the lens galaxy sample. We remove the two highest redshift MagLim bins from our
analysis, as [179] revealed issues with the sample at z > 0.85.

Regarding the intrinsic alignments (IA) model used in the likelihood, we use the non-
linear alignment (NLA) model which is consistent with the DES Collaboration’s study of
modified gravity constraints form their Year-3 data [64], but not the same as the model (tidal
alignment and tidal torquing, TATT) used in their constraints on the ΛCDM model [179].

The two-point angular correlation functions for the separation θ are computed as,

wi(θ) =
∑

ℓ

2ℓ+ 1
4π Pℓ(cos θ)Cii

δgδg
(ℓ) ,

γij
t (θ) =

∑
ℓ

2ℓ+ 1
4π

P 2
ℓ (cos θ)
ℓ(ℓ+ 1) Cij

δgE(ℓ) ,

ξij
±(θ) =

∑
ℓ⩾2

2ℓ+ 1
4π

2(G+
ℓ,2(cos θ) ±G−

ℓ,2(cos θ))
ℓ2(ℓ+ 1)2

× [Cij
EE(ℓ) ± Cij

BB(ℓ)] ,

(5.17)

where i, j denote two different redshift slices, Pℓ is the Legendre polynomials of order ℓ, Pm
ℓ

is the associated Legendre polynomial, and the functions G+/−
ℓ,m (x) are combinations of the

associated Legendre polynomials Pm
ℓ (x) and Pm

ℓ−1(x) given explicitly in Eq. (4.19) of [180].
The angular power spectra C(ℓ) in Eqs. (5.17) receive contributions from the galaxy

density (δg), gravitational shear (κ), intrinsic alignments (I), cosmic magnification (mag)
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and redshift space distortions (RSD). Specifically,

Cij
EE(ℓ) =Cij

κκ(ℓ) + Cij
κIE

(ℓ) + Cji
κIE

(ℓ) + Cij
IEIE

(ℓ) ,

Cij
BB(ℓ) =Cij

IBIB
,

Cij
δobsE(ℓ) =Cij

δgκ(ℓ) + Cij
δgIE

(ℓ) + Cij
δmagκ(ℓ) + Cij

δµIE
(ℓ) ,

Cii
δobsδobs(ℓ) =Cii

δgδg(ℓ) + Cii
δmagδmag(ℓ) + Cii

δRSDδRSD(ℓ)

+ 2Cii
δgδmag(ℓ) + 2Cii

δgδRSD(ℓ) + 2Cii
δRSDδmag(ℓ) . (5.18)

The exact expression for the angular clustering power spectrum between two galaxy fields
A,B is

Cij
AB(ℓ) = 2

π

∫
dχ1W

i
A(χ1)

∫
dχ2W

j
B(χ2)∫

dk

k
k3PAB(k, χ1, χ2)jℓ(kχ1)jℓ(kχ2) , (5.19)

with PAB being the corresponding three-dimensional power spectrum, and the kernels W ij
A,B

contain relevant contributions mentioned above.
For the level of sensitivity of the DES measurements on the shear-shear (CEE, CBB) and

galaxy-shear (CδobsE) spectra, one can evaluate them efficiently using the Limber approxi-
mation [97], namely,

Cij
AB(ℓ) =

∫
dχ
W i

A(χ)W j
B(χ)

χ2 PAB

(
k =

ℓ+ 1
2

χ
, z(χ)

)
, (5.20)

for which PW δ, PW W (k) and Pδδ(k) are computed within MGCAMB, as in the case of the DES
Year-1 likelihood described in Sec. 5.2.2.

However, the galaxy-galaxy spectrum (Cδgδg) is measured better than the shear-shear
and galaxy-shear spectra, and the Limber approximation fails to provide the theory predic-
tion with the required precision. Therefore we evaluate Cδgδg using the exact formula in Eq.
(5.19). To be efficient, we follow the method described in [181] to calculate the double-Bessel
integral in Eq. (5.19) with the FFTLog algorithm.

We have created wrapper functions for µ, γ, and Σ in the Python interface of MGCAMB,
making it convenient to test the time evolution of these phenomenological functions at a
given Fourier number k for all implemented modified gravity models.
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Synchronization with CAMB

The current version of MGCAMB2 is now forked with CAMB3 on GitHub, making it convenient
to keep it consistent with future upgrades of CAMB.

5.3 Demonstrations

To demonstrate the use of the nonlinear extension of MGCAMB, we adopt the DES parametriza-
tion, to make it easy to compare to the previous results in the literature.

Parameters Flat Prior Fiducial
µ0 (-0.2,1.2) 0.4
Σ0 (-0.2,0.4) 0.1
p1 (-2,2) 0.5

Ωbh
2 - 0.112

Ωch
2 - 0.0226

ns - 0.969
ln(1010As) - 3.06

100 θMC - 1.0410
τ - 0.067

Σmν - 0.06

Table 5.1: The fiducial values and the range of flat priors used for the MG and cosmological
parameters in the tests using the synthetic DES-like data.

NL ext + DES baseline no NL ext + aggressive cut NL ext + aggressive cut
µ0 0.393 ± 0.046 0.392 ± 0.097 0.393 ± 0.098
Σ0 0.100 ± 0.012 0.110 ± 0.015 0.102 ± 0.016

Table 5.2: The mean values and the 68% CL uncertainties for µ0 and Σ0 recovered from
the synthetic data with and without the nonlinear extension (NL ext), while applying the
aggressive linear cut. Results show that the nonlinear extension does not impact constraints
derived from linear scales.

First, we perform a test on mock data, generating synthetic DES-like galaxy-galaxy,
galaxy-lensing and lensing-lensing (3×2pt) correlations for a fiducial model with µ0 =
0.4,Σ0 = 0.1 and p1 = 0.5, and assuming a ΛCDM background expansion. As our “data”
covariance, we adopt the covariance matrix from the DES Year-1 likelihood rescaled down
by a factor of 25 as the actual DES Year-1 covariance would not allow us to constrain the
nonlinear parameter p1. We then run MCMC chains using MGCobaya [177] to see if we can
recover the input model. We vary µ0 and Σ0, and also p1 when the nonlinear extension is

2https://github.com/sfu-cosmo/MGCAMB

3https://github.com/cmbant/CAMB
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applied, with the priors given in Tab. 5.1. The other cosmological parameters are fixed to
the fiducial values specified in Tab. 5.1, and the DES likelihood parameters are fixed at the
standard values of DES Year-1 [43, 95], to help us isolate the impact of using the nonlinear
extension.

As mentioned earlier, the DES 3×2pt data includes information from nonlinear scales.
For their Year-1 constraints of the ΛCDM model [43], the DES collaboration applied a
conservative cut to keep only scales that can be reliably modelled with Halofit. We will
refer to the DES 3×2pt data with this conservative cut as “DES baseline”. In earlier MGCAMB

studies that used DES data, an additional “aggressive” cut was applied [33] to eliminate all
nonlinear scales, as MGCAMB was unable to model them until now.

In what follows, we compare the case of using the baseline DES-like data with the
nonlinear extension of MGCAMB to the case without the nonlinear extension and applying the
aggressive linear cut.

As a first test, we compare the results with and without the nonlinear extension, while
applying the agressive cut in both cases. As shown in Fig. 5.4 and Table 5.2, the recovered
constraints on the parameters µ0 and Σ0 are consistent with each other and with the fiducial
model, demonstrating that nonlinear corrections do no impact the linear scales.

0.2 0.4 0.6
0

0.05

0.10

0.15

0

0.06 0.10 0.14
0

NL ext + aggressive cut
no NL ext + aggressive cut

Figure 5.4: Joint 68% and 95% CL constraints on µ0 and Σ0 obtained from the synthetic
data with and without the nonlinear extension (NL ext), while applying the aggressive linear
cut in both cases. Results show that the nonlinear extension does not impact constraints
derived from linear scales.

As our next test, we compare the case of using the nonlinear extension in MGCAMB along
with the baseline DES-like synthetic data to the case without the nonlinear extension and
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DES Y3 baseline + PBRS DES Y3 with linear cut + PBRS
µ0 0.003 ± 0.201 -0.012 ± 0.216
Σ0 0.016 ± 0.039 0.043 ± 0.045

Table 5.3: The mean values along with 68% CL uncertainties for µ0 and Σ0 obtained using
the nonlinear extension with the DES Year-3 baseline data, and without the extension while
using the linear cut. PBRS denotes the combination of Planck 2018, BAO, RSD, and SN
Ia as detailed in Sec. 5.3.

applying the aggressive linear cut. The joint constraints on µ0 and Σ0 are shown in Fig. 5.5,
along with the constraint on p1 in the former case. It is clear that, in the case where the
nonlinear extension and the baseline data are used, one obtains better constraints on µ0 and
Σ0 even after marginalizing over p1. The corresponding numbers are provided in Table 5.2,
showing the 1σ uncertainty in µ0 is reduced by a factor of 2.1 when the nonlinear extension
is used, which is consistent with Fig. 3 of [80].
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Figure 5.5: The comparison of constraints on µ0 and Σ0 between the case of using the
baseline DES-like synthetic data with the nonlinear extension (NL ext) and the case with
the aggressive cut (without the nonlinear extension).

Finally, we use MGCAMB with the nonlinear extension to derive constraints on µ0 and Σ0

from current cosmological datasets. We use the DES Year-3 3×2pt data [64], Planck 2018
CMB temperature, polarization and lensing spectra [132], joint measurements of baryon
acoustic oscillations (BAO) and redshift-space distortions (RSD) from eBOSS DR16, the
SDSS DR7 MGS data [133], the BAO measurement from 6dF [134], and the Pantheon sam-
ple of uncalibrated supernovae [104]. We compare the case of using the nonlinear extension
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with the baseline DES Year-3 data to the case without the nonlinear extension and ap-
plying the linear cut. We used the same linear cut as the one adopted in the DES Year-3
constraints [64] on modified gravity models. From the posterior plots in Fig. 5.6, it is clear
that one obtains stronger constraints on µ0 and Σ0 in the case with the nonlinear exten-
sion. There is practically no difference in the posteriors of µ0, but the improvement in the
constraint on Σ0 is apparent. This is because a weak lensing survey like DES primarily con-
strains Σ. The corresponding numbers are provided in Table 5.3. The constraints obtained
with a linear cut are consistent with those reported by the DES collaboration [64].
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Figure 5.6: Constraints on µ0 and Σ0 obtained using the nonlinear extension and the baseline
DES Year-3 data, and without the nonlinear extension and using the linear cut. PBRS
denotes the combination of Planck 2018, BAO, RSD, and SN Ia as detailed in Sec. 5.3.
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Chapter 6

Summary

This thesis began with an overview of the main ingredients of the current cosmological
model and the types of observations available to cosmologists, with a particular focus on
cosmological tests of gravity. We then introduced a commonly used phenomenological pa-
rameterisation for investigating modified gravity.

In Chapter 3, we presented MGCAMB 2023, which comes with tools for using it with
Cobaya [37, 39, 40], as well as an implementation in the latest version of CosmoMC [37, 123,
38]. This new version includes several added features: new built-in models, e.g. a scalar field
coupled only to dark matter in the quasi-static approximation; a direct implementation of
the µ-Σ parameterization in the Einstein-Boltzmann solver, eliminating the need to convert
to µ-γ; the option to include DE perturbations when working with w ̸= −1 backgrounds; a
new binned parameterization allowing for a simultaneous reconstruction of µ, Σ and ΩX (the
fractional dark energy density) as functions of redshift. For each of these we have provided
detailed instructions on how to use it. In some cases, we have also provided a worked out
example complete with fits to currently available cosmological data.

As we have shown in Chapter 4, combining RSD with gravitational lensing cannot dis-
tinguish a modification of gravity from additional forces acting on CDM. By performing an
MCMC analysis, we have demonstrated that mock data generated by a coupled quintessence
model with a fifth force acting on CDM is equally well fitted by a GBD modified gravity
scenario. This means that, we may wrongly claim to have discovered a deviation from GR
on cosmological scales, whereas in reality the modifications are due to new interactions in
the dark sector (or vice versa). This ambiguity can be resolved by including the effect of
gravitational redshift into the analysis. Thanks to its sensitivity to the temporal distortion
Ψ of the metric, gravitational redshift combined with RSD directly probes the validity of
the Euler equation for CDM. This provides an efficient way to discriminate between dark
interactions and modifications of gravity. Here, we have quantified the constraining power
of gravitational redshift by comparing a GBD modification of gravity with a CQ model,
finding that modifications that are still in agreement with current constraints will be dis-
tinguishable by a future survey like SKA2. This is particularly remarkable, since measuring
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gravitational redshift does not require new data, but can be simply achieved by augmenting
the standard RSD analysis with the dipole generated in the cross-correlation of different
galaxy samples.

In Chapter 5, we have extended MGCAMB to add capability to make predictions of mod-
ified gravity models for cosmological observables on scales where nonlinearities are impor-
tant. The extension employed the halo model reaction method, with the reaction function
computed using ReACT interfaced in the Python wrapper of MGCAMB. We have tested the non-
linear extension on a synthetic dataset based on a two-parameter phenomenological model,
recovering the input fiducial parameters µ0 and Σ0. The mock test demonstrates that using
the nonlinear extension with the baseline DES-like data improves constraints on µ0 and Σ0

relative to the case when a linear cut was applied. We then use the nonlinear extension to
derive constraints on µ0 and Σ0 from a combination of current datasets that include the
DES Year-3 data and find an enhancement in the constraints. The nonlinear extension of
MGCAMB will enable using the a wider range of the data from the current and forthcoming
cosmological surveys, including weak lensing surveys such as LSST and Euclid.
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Appendix A

Scalar field coupled to CDM

The action of a theory with a scalar field coupled to CDM can be written as

S =
∫

d4x
√

−g
[
M2

Pl
2 R − 1

2∂µϕ∂
µϕ− V (ϕ)

+ Lc

(
ψc, A

2(ϕ)gµν

)
+ LSM (ψSM, gµν)

]
(A.1)

where LSM represents the Lagrangian density of the Standard Model of particle physics,
which includes baryons and radiations, and Lc represents the Lagrangian density of dark
matter. Here Mpl ≡ (8πG)−1/2 is the reduced Planck mass, and ϕ is the scalar field. The
coupling of the scalar field to dark matter arises due to the conformal factor A(ϕ) that alters
the gravitational metric felt by the CDM. Varying the action in Eq. (A.1) with respect to
ϕ gives the equation of motion for ϕ,

□ϕ = V,ϕ − A,ϕ

A
T c = V,ϕ + A,ϕ

A
ρc ≡ V eff

,ϕ (A.2)

where ,ϕ is the derivative with respect to ϕ, T c = −ρc is the trace of the CDM stress-energy
T c

µν , and we have defined the effective potential V eff . The Einstein’s equation is obtained
by varying the action with respect to gµν :

Gµν = M−2
Pl

[
T SM

µν + T c
µν + T ϕ

µν

]
, (A.3)

where the stress-energy tensor of the standard matter is conserved, ∇µT SM
µν = 0, and so is

the sum of the scalar field and the CDM stress-energies: ∇µ[T c
µν + T ϕ

µν ] = 0, but T c
µν and

T ϕ
µν are not individually conserved. We have

∇µT c
µν = −βρc∂νϕ , (A.4)

where β ≡ A,ϕ/A.

Perturbing Eq. (A.4) to first order and transforming to Fourier space, yields the continuity
and the Euler equations for CDM given by Eqs. (3.1) and (3.2). Also, perturbing Eq. (A.2)
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to first order and taking the QSA, gives

δϕ = − βρcδc

k2/a2 +m2 , (A.5)

where m2 ≡ V eff
,ϕϕ evaluated at the minimum of the effective potential. Namely, when apply-

ing the QSA we assume that the scalar field is always at the minimum of V eff . This allows
us to eliminate the scalar field entirely from all equations.

The form of the Einstein equations is unchanged in this model, hence µ = γ = Σ = 1. There
is a contribution from the scalar energy density, V,ϕδϕ, on the right hand side of the Poisson
equation, which is negligible for the class of models for which our QSA is valid. However,
we include it in the Poisson equation, after using (A.5), as

k2Ψ = −4πGa2
[
ρ∆ + β2ρca

2

k2 +m2a2 ρc∆c + 3(ρ+ p)σ
]
. (A.6)

While not strictly relevant to MGCAMB, let us note that combining Eqs. (3.3) and (3.4) in the
QSA limit, we obtain the second order differential equation for δc:

δ̈c + Hδ̇c = −k2 [Ψ + βδϕ] (A.7)

which has the additional term on the right hand side, due to the fifth force mediated by the
scalar field. The same equation for the baryons is

δ̈b + Hδ̇b = −k2Ψ , (A.8)

where we have omitted the baryon-photon coupling effect for the convenience of discussion.
Hence, the total matter density contrast, δ = (ρcδc + ρbδb)/(ρc + ρb), obeys

δ̈ + Hδ̇ = 4πGa2
(
1 + 2β̃2k2

k2 +m2a2
ρ2

cδc

ρ2δ

)
, (A.9)

where we have used Eq. (A.5) to replace δϕ. This allows us to identify the effective gravi-
tational coupling as

Geff = G
(
1 + 2β̃2k2

k2 +m2a2
ρ2

cδc

ρ2δ

)
, (A.10)

which is very similar to the Geff on obtains from scalar-tensor theories with a universal
coupling to matter,

Geff = G
(
1 + 2β̃2k2

k2 +m2a2

)
, (A.11)

making it challenging to distinguish between the two cases observationally [121].
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Appendix B

The synchronous gauge
implementation of Einstein
equations in the CDM-only
coupled scalar field models

While the contribution from the scalar field density perturbation to the Poisson equation
(A.9) is negligible for the QSA-compatible models that we study, for completeness, we show
their implementation in MGCAMB, which uses the synchronous gauge. Let us introduce

Cϕ ≡ β2ρca
2

k2 +m2a2 , (B.1)

and write

− k2Ψ
4πGa2 = ρ∆ + Cϕρc∆c + 3(ρ+ p)σ, (B.2)

k2(Φ − Ψ)
4πGa2 = 3(ρ+ p)σ , (B.3)

where ρ∆ = ρδ + 3H(ρ+ p)θ/k2 includes all species, including photons and neutrinos. Our
goal is to derive the quantity Z = ḣ/(2k) appearing in CAMB. Applying the transformation
between the two gauges [86],

Ψ = α̇+ Hα, (B.4)
Φ = η − Hα, (B.5)
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where α = (ḣ+ 6η̇)/2k2, to (B.2) and (B.3), allows us to write

α̇ = −η − a2

2k2

[
2ρ∆ + Cϕρc∆c + 3ρ (1 + w)σ

]
, (B.6)

α = 1
H

{
η + a2

2k2

[
ρ∆ + Cϕρc∆c

]}
. (B.7)

We can rewrite (B.7) as

η = Hα− a2

2k2 [ρ∆ + Cϕρc∆c] = Hα− a2

2k2 Γ, (B.8)

where Γ = ρ∆ + Cϕρc∆c. We can also combine (B.6) and (B.7) to obtain

α̇ = −Hα− a2

2k2
[
Γ + 3ρ (1 + w)σ

]
. (B.9)

Taking the derivative of (B.8), we obtain

η̇ = Ḣα+ Hα̇− a2

2k2 Γ̇ − a2

k2 HΓ. (B.10)

In order to calculate Γ̇, we need to know ˙(ρ∆). For standard matter, the conservation
equations are

δ̇ = −(1 + w)
(
θ + ḣ

2

)
− 3H

(
δp

δρ
− w

)
δ, (B.11)

θ̇ = −H(1 − 3w)θ − ẇ

1 + w
θ + δp/δρ

1 + w
k2δ − k2σ . (B.12)

From this, we can write

˙(ρ∆) = − 3Hρ∆ − (1 + w)ρθ
[
1 + 3

k2
(
H2 − Ḣ

)]
− 3Hρ(1 + w)σ − (1 + w)ρ

(
k2α− 3η̇

)
. (B.13)

For dark matter, the conservation equations are given by (3.8) and (3.9), from which we
find

˙(ρc∆c) = −3Hρc∆c − ρcθc

[
1 + 3

k2

(
H2 − Ḣ

) ]
− ρc

(
k2α− 3η̇

)
− (ββ̇ + 3Hβ2)ρ

2
c(δc − 3αH)
(k2 + a2m2) , (B.14)

where we have used w = 0 and σ = 0 for CDM. We also have

Γ̇ = ˙(ρ∆) + Cϕ
˙(ρc∆c) + Ċϕρc∆c. (B.15)
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Using Eqs. (B.13) and (B.14) in (B.15), we have

Γ̇ = −3Hρ∆ − ρθ(1 + w)
[
1 + 3

k2

(
H2 − Ḣ

) ]
− ρ(1 + w)

(
k2α− 3η̇

)
− 3Hρ (1 + w)σ

+ Cϕ

{
− 3Hρc∆c − ρcθc

[
1 + 3

k2

(
H2 − Ḣ

) ]
− ρc

(
k2α− 3η̇

)
− (ββ̇ + 3Hβ2)ρ

2
c(δc − 3αH)
(k2 + a2m2)

}
+ Ċϕρc∆c . (B.16)

We then substitute Γ and Γ̇ into the equation for η̇, and solve for η̇, to find

η̇ = 1
2

a2

k2 + 3
2a

2[ρ(1 + w) + Cϕρc]{
kρq

[
1 + 3(H2 − Ḣ)

k2

]
− ρc∆cĊϕ + k2α

[
Cϕρc − ρDE (1 + wDE)

]
+ (1 + Cϕ)(ββ̇ + 3Hβ2)ρ

2
c(δc − 3αH)
k2/a2 +m2

}
, (B.17)

with kq = (1 + w)θ. Finally, we can obtain Z used in the code from

Z = kα− 3 η̇
k
. (B.18)
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Appendix C

Generalized Brans-Dicke and
coupled quintessence scenarios

Below we provide the relevant equations in the GBD and CQ models, following the notations
and conventions of Ref. [121]. In particular, we work in the baryon frame, i.e. the frame
where Standard Model (SM) particles follow the geodesics of the metric. The action for the
GBD model is given by

SGBD =
∫

d4√
−g

[
A−2(ϕ)
16πG R− 1

2∂µϕ∂
µϕ− V (ϕ)

+ Lm(ψCDM, ψSM, gµν)
]
,

where G is the Newton constant, g is the determinant of the baryon frame metric gµν and R
is the associated Ricci scalar. The scalar field is denoted with ϕ, V is its potential and A is
a generic function of ϕ. The contributions of SM and CDM particles, denoted by ψSM and
ψCDM respectively, are included in the matter Lagrangian density Lm. The scalar field is
conformally coupled to all matter, such that also CDM follows the geodesics of the baryon
frame metric gµν .

On the other hand, in the CQ scenario, the scalar field is conformally coupled to CDM only.
In the baryon frame, the action is given by

SCQ =
∫

d4√
−g

[ 1
16πGR− 1

2∂µϕ∂
µϕ− V (ϕ)

+ LSM(ψSM, gµν) + LCDM(ψCDM, A
2(ϕ)gµν)

]
,

where the gravitational part of the action is not modified and CDM particles follow geodesics
of A2(ϕ)gµν .

We adopt the line element in Eq. (4.1) and work under the quasi-static approximation,
neglecting time derivatives of the metric and the field perturbations over spatial ones [122].
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For GBD, this leads to the following sets of equations in Fourier space on sub-horizon scales:

k2Φ = −4πGa2 (ρbδb + ρcδc) − β1k
2δϕ, (C.1)

k2(Φ − Ψ) = −2β1k
2δϕ, (C.2)

δ̇b + θb = 0, (C.3)
θ̇b + Hθb = k2Ψ, (C.4)
δ̇c + θc = 0, (C.5)

θ̇c + Hθc = k2Ψ, (C.6)

δϕ = −β1(ρcδc + ρbδb)
m2 + k2/a2 , (C.7)

□ϕ = V,ϕ + β1(ρc + ρb) ≡ V eff ,ϕ , (C.8)

δ̈ + Hδ̇ = 4πGa2ρδ

[
1 + 2β̃1

2
k2

a2m2
1 + k2

]
. (C.9)

Here, □ ≡ ∇µ∇µ, the scalar field coupling strength is given by β1 = A,ϕ/A, where a comma
indicates a derivative, and we have defined β̃1 ≡ β1/

√
8πG.

For CQ, the analogous set of equations is

k2Φ = −4πGa2 (ρbδb + ρcδc) , (C.10)
k2(Φ − Ψ) = 0, (C.11)

δ̇b + θb = 0, (C.12)
θ̇b + Hθb = k2Ψ, (C.13)
δ̇c + θc = 0, (C.14)

θ̇c + (H + β2ϕ̇)θc = k2Ψ + k2β2δϕ, (C.15)

δϕ = − β2ρcδc

m2
2 + k2/a2 , (C.16)

□ϕ = V,ϕ + β2ρc ≡ V eff ,ϕ , (C.17)

δ̈ + Hδ̇ = 4πGa2ρδ

[
1 + 2β̃2

2
k2

a2m2 + k2

(
ρc

ρ

)2(δc

δ

)]
, (C.18)

where β̃2 is defined in the same way as β̃1. The effective potential V eff is defined via
Eqs. (C.8) and (C.17) for the two scenarios and related to the scalar field mass viam2 = V eff

,ϕϕ.

Following Ref. [164], we assume A−2 ≈ 1, with no impact on the arguments presented in
our analysis. For GBD, this implies that the Newton constant G appearing in the equations
always corresponds to the present-time value, which is a robust assumption since the redshift
evolution of the gravitational coupling is constrained to be very small in screened GBD
theories [182]. In the case of CQ, allowing for A−2 ̸= 1 simply corresponds to a rescaling of
the coupling β2.
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Appendix D

Galaxy clustering survey
specifications

We adopt the SKA2 specifications from Ref. [144], assuming measurements of the clus-
tering correlation function multipoles in 15 spectroscopic redshift bins centered at z =
0.15, 0.25, . . . , 1.55, each with width ∆z = 0.1. In each bin, we evaluate the multipoles at
35 separations from d = 20h−1Mpc to d = 160h−1Mpc in increments of 4h−1Mpc.

We model the galaxy bias according to the fitting function from Ref. [144],

bP(z) = bP,1 exp(bP,2z) ± ∆b/2, (D.1)

where P indicates the bright (B) or faint (F) galaxy population. We let the parameters
bP,1 and bP,2 free with fiducial values 0.554 and 0.873, respectively, and we set ∆b = 1 in
agreement with the bias difference measured in Ref. [153].

For the purpose of our forecasts, we fix the magnification bias according to Appendix B in
Ref. [145] and set the evolution bias to 0. Both quantities will be directly measurable from
the average number of galaxies once the data become available.
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Appendix E

Constraints in polar coordinates

An alternative visualization of the constraints can be achieved by performing a change to
polar coordinates,

R =
√
β2

∗1 + β2
∗2 , θ = β∗2

R
. (E.1)

We show in Fig. E.1 the 1σ confidence regions on R, θ for the same CQ fiducial model as
in Fig. 4.1, i.e. with β∗2 = 1, λ∗ = 10 Mpc. For simplicity, these constraints were obtained
by fixing all cosmological parameters to their fiducial values.

0.85 0.90 0.95 1.00
R

0.2

0.4

0.6

0.8

Standard RSD analysis
RSD + Gravitational redshift
Gravitational redshift only

Figure E.1: The 1σ and confidence regions on the polar coordinates R and θ. Here, the
fiducial model is CQ and is specified by β∗2 = 1 and λ∗ = 10 Mpc (with β∗1 = 0).
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