
Deep Generative Models for Subgraph
Prediction

by

Erfaneh Mahmoudzadeh

B.Sc., Shahid Beheshti University, 2020

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Erfaneh Mahmoudzadeh 2024
SIMON FRASER UNIVERSITY

Summer 2024

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Erfaneh Mahmoudzadeh

Degree: Master of Science

Thesis title: Deep Generative Models for Subgraph Prediction

Committee: Chair: Mo Chen
Assistant Professor, Computing Science

Oliver Schulte
Supervisor
Professor, Computing Science

Martin Ester
Committee Member
Professor, Computing Science

Maxwell Libbrecht
Examiner
Associate Professor, Computing Science

ii

Abstract

Graph Neural Networks (GNNs) are crucial across various domains due to their ability to
model complex relational data. This work introduces subgraph queries as a new task in
deep graph learning. Unlike traditional tasks like link prediction or node classification, sub-
graph queries predict components of a target subgraph based on evidence from an observed
subgraph. For instance, they can predict a set of target links and node labels. In this work,
I have introduced VGAE+ to answer these queries, using a probabilistic deep Graph Gen-
erative Model (GGM): an inductively trained Variational Graph Auto-Encoder (VGAE),
enhanced to represent a joint distribution over links, node features, and labels. Bayesian
optimization tunes the weighting of links, node features, and labels. I developed deter-
ministic and sampling-based inference methods for estimating subgraph probabilities from
the VGAE distribution. Evaluation on six benchmark datasets shows VGAE+ surpasses
baselines, with AUC improvements up to 0.2 points.

Keywords: Subgraph Query; Inductive Link Prediction; Inductive Node Classification;
Variational Graph Auto-Encoder; Probabilistic Graph Query; Bayesian optimization

iii

Dedication

To my parents, who are my roots no matter how far I am from them.
To Amineh, Aghileh, and Ali, who I love the most and are always there for me.
To Saba, Hosna, and Suren, who remind me there is always hope for a brighter future.
To all the young people of my country, whose chance to experience a day like this was
unjustly taken from them.

iv

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Oliver Schulte, for
his unwavering support, insightful guidance, and constant encouragement throughout my
master’s journey. I am truly thankful for your mentorship.

A special thanks to Parmis Naddaf and Kiarash Zahirnia. Your endless support has
made all the difference in my research. Your friendship and guidance have been invaluable,
and I am deeply grateful.

I also want to extend my appreciation to Dr. Max Libbrecht for fulfilling the role of my
examiner, Dr. Martin Ester for serving as a member of my committee, and Dr. Mo Chen
for chairing my thesis defense. Their contributions and support are greatly appreciated.

v

Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables ix

List of Figures x

1 Introduction and Overview 1
1.1 Background and Definitions . 1

1.1.1 Graphs . 1
1.1.2 Inductive, Semi-inductive and Transductive Training Methods 2
1.1.3 Graph Queries . 3
1.1.4 Variational Auto-Encoders . 5

1.2 Overview of Thesis . 6
1.2.1 Motivation . 6
1.2.2 Approach . 7
1.2.3 Evaluation . 8
1.2.4 Contributions . 9

2 Related Works 10
2.1 Graph Queries . 10
2.2 Inductive Graph Training . 10
2.3 Graph Generative Models . 11
2.4 Link Prediction . 11
2.5 Node Classification . 12
2.6 Two-Task GNNs . 13

vi

2.7 Subgraph Classification . 14

3 Method and Approach 15
3.1 Problem Statement . 15

3.1.1 Example of Semi-Inductive Subgraph Queries 16
3.2 Model Definition . 18

3.2.1 Augmented VGAE Generative Model 18
3.2.2 Implementation . 20

3.3 Subgraph Inference from a VGAE Model . 21
3.3.1 Inference Models . 21

4 Experiments 25
4.1 Datasets . 25
4.2 Data Preprocessing . 26
4.3 Test Query Design . 26
4.4 Metrics . 27

4.4.1 Metrics for Subgraph Queries . 27
4.4.2 Metrics for Link Queries . 27
4.4.3 Metrics for Node Queries . 27

4.5 Experimental Setup . 28
4.6 Baselines . 28

4.6.1 Two-Task Methods . 28
4.6.2 Link Prediction Baselines . 29
4.6.3 Node Classification Baselines . 29
4.6.4 Baseline Setup . 29

5 Results 31
5.1 Subgraph Queries . 31

5.1.1 Single Neighbor Queries . 32
5.1.2 Neighborhood Queries . 33

5.2 Link Prediction Queries . 34
5.2.1 Single Link Queries . 34
5.2.2 Joint Link Queries . 35

5.3 Node Classification Queries . 36
5.3.1 Single Node Queries . 36
5.3.2 Joint Node Queries . 38

5.4 Subgraph Queries vs. Node Classification and Link Prediction 39
5.5 Ablation Study . 39

5.5.1 Objective Function . 39
5.5.2 Iterative Joint Link Prediction . 40

vii

6 Conclusion and Future Work 42
6.1 Conclusion . 42
6.2 Limitation and Future Works . 42

Bibliography 44

Appendix A Additional Information and Examples 47
A.1 Code . 47
A.2 Examples For All Queries . 47

A.2.1 Inductive Query Examples . 47
A.2.2 Inductive Query Examples . 49

viii

List of Tables

Table 4.1 Statistics of the datasets. 26

Table 5.1 ROC-AUC results for subgraph queries in semi-inductive and inductive
settings. 31

Table 5.2 AP results for subgraph queries in semi-inductive and inductive settings. 31
Table 5.3 ROC-AUC results for link prediction in semi-inductive and inductive

settings. 34
Table 5.4 Hit-Rate @20% results for link prediction in semi-inductive and induc-

tive settings. 34
Table 5.5 AP results for link prediction in semi-inductive and inductive settings. 35
Table 5.6 ROC-AUC results for node classification in semi-inductive and induc-

tive settings. 36
Table 5.7 AP results for node classification in semi-inductive and inductive settings. 37
Table 5.8 F1-score macro results for node classification in semi-inductive and

inductive settings. 37
Table 5.9 Ablation Study on the training objective 3.2. 40
Table 5.10 ROC-AUC results for iterative joint link prediction 41

ix

List of Figures

Figure 1.1 Example of a directed and undirected graph and corresponding ad-
jacency and feature matrices. 2

Figure 1.2 Examples of inductive, semi-inductive and transductive subgraph
queries. 4

Figure 1.3 Example of joint link prediction and node classification: predicting
potential actors for Christopher Nolan’s new movie and its genre.
Target links are dashed lines marked with “?”. Solid links are specified
as evidence. 6

Figure 1.4 After training a single GGM, the approximate inference methods
described in this thesis can answer a user query. 8

Figure 3.1 An example of Semi-inductive Neighborhood Query 17
Figure 3.2 An example of Semi-inductive Single Neighbor Query 17
Figure 3.3 Model Architecture: First, the input graph is represented by an ad-

jacency matrix A and a feature matrix X. These two matrices are
the input of the model. Then, the encoder generates latent node em-
beddings Z. Finally, the decoders generate reconstructed adjacency
matrix Ã, reconstructed feature matrix X̃, and reconstructed node
labels matrix L̃. Then the reconstructed graph is represented using
Ã, X̃, and L̃ . 18

Figure 3.4 An example of a semi-inductive subgraph query: Red dashed links
are target links, and black dashed links are unspecified links. Red
colored nodes are target nodes for node classification. The squares
beside each node represent features for that node. 22

Figure 4.1 Predicting multiple links by computing independent link probabili-
ties for each target link. 29

Figure 5.1 Bar chart for ROC-AUC results for Inductive Neighborhood and
Inductive Single Neighbor queries 32

Figure 5.2 Bar chart for AP results for Inductive Neighborhood and Inductive
Single Neighbor queries . 32

x

Chapter 1

Introduction and Overview

In this chapter, I review terms and definition on graphs, graph query tasks, and Graph
Generative Models.

1.1 Background and Definitions

In this section, I provide an overview of the foundational concepts and terminologies that are
essential for understanding the subsequent discussions on graphs and graph neural networks
in this thesis.

1.1.1 Graphs

Attributed graphs are mathematical structures used to represent relationships between pairs
of objects. In graph theory, a graph G is defined as an ordered pair (V,E), where V is a set
of nodes and E is a set of edges or links. Each node u in a graph can have a set of features.
Each edge (u, v) in a graph connects node u to node v. In a directed graph, the order of
nodes u, v is important, while in an undirected graph it does not matter. An undirected
link between nodes refers to symmetric relationships like the connections on the LinkedIn
website, while directed links refer to the relations that are asymmetric, for example, the
connection on the Twitter website is directed, you may follow some while they do not follow
you. Figures 1.1a and 1.1b show examples of a directed and an undirected graph, along with
their adjacency matrix and feature matrix.
A graph G, with N nodes and k features, can be represented with one N × N adjacency
matrix, A, where A[u, v] shows the connection between node u and v, and one N×k feature
matrix, X, where X[u] shows the features of node u.

Homogeneous Graph A homogeneous graph is a graph with one type of nodes and one
type of edges. In these graphs all nodes or edges have the same type. For example, in a
citation network, all nodes are papers. Also all edges are identical, which means we have
one type of relation between entities. For example, in the citation network, each edge(u, v)

1

(a) A directed graph with 3 nodes with 2 fea-
tures and 3 links. Since links are directed in
this graph, we have an asymmetric adjacency
matrix

(b) A directed graph with 3 nodes with 2 fea-
tures and 2 links. Since links are undirected
in this graph, we have a symmetric adjacency
matrix

Figure 1.1: Example of a directed and undirected graph and corresponding adjacency and
feature matrices.

means that paper u has cited paper v. Homogeneous graphs are often used to model networks
where the entities and their relationships are uniform.

Heterogeneous Graph A heterogeneous graph is a graph with different types of nodes
and edges. This means that, in these graphs, each node can represent different entities with
different features, and each edge can represent different types of relations between entities.
For example, in a movie database network, each node can represent a movie, a director, or
an actor, and each edge can represent different relations like “played in” or “directed”. This
complexity of heterogeneous graphs allows them to better model real-world systems, where
interactions are not uniform.

1.1.2 Inductive, Semi-inductive and Transductive Training Methods

Inductive, Semi-inductive and transductive prediction methods are fundamental approaches
for training graph learning models, distinguished by whether the model is trained to gener-
alize to unseen nodes (inductive) or to make predictions only within the confines of a fixed
set of nodes present during training (transductive).

Inductive and Semi-inductive Prediction Inductive and Semi-inductive queries in
graph analysis involve using learned patterns and structures from a training graph to infer
unseen parts of the graph or entirely new graphs. This approach allows models to generalize
beyond the specific instances they were trained on. In practice, these queries can be applied
to various tasks, such as node classification, where the model predicts the labels of nodes in
a new graph, and link prediction, where the model predicts the existence of edges between
nodes in new or partially observed graphs [8].

Transductive Prediction Transductive learning in graph queries focuses on predicting
labels for a specific set of nodes within the graph, leveraging both the labeled and unlabeled
data available during the training phase. Unlike inductive learning, which aims to infer a
generalizable model applicable to any new data point, transductive learning targets only

2

those nodes present in the training set. This approach is particularly useful in scenarios
where the task is to classify or label a known set of nodes in a graph, utilizing the graph’s
structure and relationships between nodes to improve prediction accuracy [43, 45].

1.1.3 Graph Queries

The term graph query refers to prediction tasks for graph data. Graph query tasks are used
for extracting information from graph-structured data. Here, I review some common graph
queries.

Link Prediction

In graph queries, link prediction involves estimating the likelihood of the existence of a link
between two nodes in a graph. The goal of this task is to identify missing links in the graph
and determine whether two nodes should be connected. Several methods use knowledge
from the given graph to calculate this likelihood. Link prediction is a common task in
network analysis and can be used in various applications such as social network analysis,
recommendation systems, and bioinformatics. Here are some of the most common methods:

1. Heuristic-Based Methods: This method involves identifying nodes with higher mutual
structural features. These methods include measures like Common Neighbors: where
two nodes are more likely to be connected if they share many mutual neighbors, and
the Jaccard Coefficient, which calculates the similarity between nodes by dividing the
number of common neighbors by the total number of unique neighbors [19].

2. Matrix Factorization: This method involves using techniques like Singular Value De-
composition (SVD) or Non-negative Matrix Factorization (NMF) on the adjacency
matrix. The resulting latent features enable the prediction of missing links and the
identification of potential connections within the target nodes in the graph [22].

3. Graph Embedding Methods: These methods use a combination of structural and fea-
ture information to generate embeddings for each node. Based on these node embed-
dings, they predict the probability of a target link between them [45, 7].

Node Classification

Node classification is a task in graph queries where the goal is to predict the labels of target
nodes using both the node features and the graph’s structural information. Some nodes in
the graph may have known labels, and the task is to use these labeled nodes to predict the
labels for the unlabeled target nodes. This task is common in various applications, such as
social network analysis (predicting user interests), fraud detection (classifying fraudulent
transactions), and biological network analysis (identifying protein functions). The most
common approach is to compute latent node feature vectors, also known as node embeddings,

3

which can then be used as inputs to standard machine learning classifiers to predict node
labels. Here are some methods for node classification:

1. Feature Propagation: In this method, features of nodes are iteratively spread across
the graph to enhance the classification task. Initially, nodes possess their own features,
and some nodes may be labeled. During propagation, each node updates its features
by aggregating information from its neighbors until the feature vectors stabilize. The
final feature matrix is the embedding for each node [39].

2. Graph-based Machine Learning Models: These models iteratively update node repre-
sentations by incorporating information from their local neighborhoods, allowing them
to capture the complex relationships and dependencies within the graph, ultimately
facilitating accurate node classification. For example, Graph Convolutional Networks
(GCNs) [45], Graph Attention Networks (GATs) [33], and GraphSAGE [8], work by
leveraging the structure and features of a graph to do node classification.

3. Matrix Factorization: These methods involve decomposing the graph’s adjacency ma-
trix A into lower-dimensional matrices to uncover latent features that represent the
nodes. These latent features capture the underlying structure and relationships within
the graph, making them useful for predicting node labels [46].

Subgraph Queries

(a) Inductive Query (b) Semi-inductive Query

(c) Transductive Query

Figure 1.2: Examples of inductive, semi-inductive and transductive subgraph queries.

Subgraph Queries (SQs) specify a set of links and labels for a set of query nodes. The
specification can involve a language as complex as first-order logic [3]. In this work, I present

4

a straightforward SQ syntax, primarily consisting of combinations of links and/or node
attributes and labels. The syntax is adequate to represent the link prediction and node
classification tasks previously studied in graph learning. (See Section 2.) Figure 1.2 shows
examples for inductive, semi-inductive and transductive subgraph queries. In Figure 1.2a
target query nodes are nodes 4 and 6 and our subgraph query is to predict the labels
for those nodes and predict the existence of links (6, 4) and (5, 4). Since nodes 4 and 6
were unseen during the training, this is an inductive SQ. Figure 1.2b shows examples for
inductive, semi-inductive and transductive subgraph queries. In Figure 1.2a target query
nodes are nodes 4 and 6 and our subgraph query is to predict the labels for nodes 4, 6 and
predict the existence of links (3,4) and (6,4). Since nodes 4 and 6 were unseen during the
training and node 3 was seen during the training time, this is an inductive SQ. In Figure
1.2b target query nodes are nodes 1, 4, and 6 and our subgraph query is to predict the
labels for nodes 3, 4, 6 and predict the existence of links (3,4) and (6,4). Since nodes 4 and
6 were unseen during the training and node 3 was seen during the training time, this is a
semi-inductive SQ. Also Figure 1.2c shows an example for transductive SQ, where target
query nodes are nodes 1 and 3 and our subgraph query is to predict the labels for those
nodes and predict the existence of links (1,3) and (2,3). Since nodes 1, 2, and 3 were used
during the training, this is a transductive SQ.

1.1.4 Variational Auto-Encoders

This method involves identifying nodes with higher mutual structural features [15]. These
models are probabilistic models that learn to encode data to a lower-dimensional space
(latent space) and decode data from the latent space to the original dimensions. During
training, the VAE aims to minimize the reconstruction error between the input data and
the data generated by the decoder, making them similar. During testing, it tries to generate
new data points similar to the input data on which it was trained. Also, it minimizes the
Kullback-Leibler Divergence (KLD) between the distribution of latent representations and
a predefined prior distribution.

Variational Graph Auto-Encoders

Variational Graph Auto-Encoders (VGAEs) are extensions of Variational Auto-Encoders
(VAEs) designed to work with graph-structured data [16]. VGAEs combine the strengths of
GNNs with the probabilistic nature of VAEs to learn robust representations of graphs. The
architecture of a VGAE typically consists of two main components: the encoder and the
decoder. The encoder maps the input graph to a latent space. It uses a GNN to encode the
node features and the graph structure into a latent representation. This latent representation
is characterized by a mean vector µ and a variance vector σ for each node. Similar to VAEs,

5

VGAEs sample latent vectors z from generated distribution by the encoder.

q(z[u]|E = e,Y = y) ∼ N(µ[u], σ[u]). (1.1)

The decoder reconstructs the graph structure from the latent space. It predicts the proba-
bility of the existence of edges between pairs of nodes based on their latent representations.

1.2 Overview of Thesis

This thesis discusses the motivation for subgraph queries and my approach to answering
them.

1.2.1 Motivation

Figure 1.3: Example of joint link prediction and node classification: predicting potential
actors for Christopher Nolan’s new movie and its genre. Target links are dashed lines marked
with “?”. Solid links are specified as evidence.

Due to the importance of graph data, deep graph learning is a growing field with many
applications. Typical graph learning tasks include link prediction and node classification.
Most research in this area has provided models that perform either link prediction or node
classification tasks. This research introduces subgraph prediction, a novel task in graph
learning that simultaneously performs link prediction and/or node classification within a
specific subgraph. In this section, I provide some examples to illustrate the power of sub-
graph prediction, describe use cases, and clarify its relationship to link prediction and node
classification. Figure 1.3 shows a scenario with a new film directed by Christopher Nolan.
Previously, he collaborated with Cillian Murphy, Christian Bale, and Tom Hardy in “The
Dark Knight Rises,” and with Cillian Murphy in “Oppenheimer.” Suppose our evidence
stipulates that Cillian Murphy is cast in this new movie, and we want to predict which pre-
vious collaborators will join him and what type of movie it will be. The subgraph prediction

6

task is to jointly predict: (i) the movie’s genre and (ii) which additional actors will join the
cast.

Predicting the genre of the new movie is an instance of single node classification, an
extensively studied task [38, 2]. Predicting whether Tom Hardy will be in the new movie
(independent of other actors) is an instance of single link prediction, an equally extensively
studied task [9]. Predicting whether Tom Hardy, Cillian Murphy, and Christian Bale will
all join the movie, is an instance of joint link prediction, a recently introduced task [23] that
generalizes single link prediction. This example query illustrates how subgraph prediction
generalizes both joint link prediction and node classification.

For another example, consider fraud detection in financial networks. A node classifica-
tion approach is to label a network node as “suspicious” or “normal” [31]. However, recent
attack types involve collusion among many network nodes controlled by the attackers [17].
Detecting collusion can be achieved by a more powerful approach based on joint node clas-
sification. Moreover, attacking nodes exchange messages at a substantially higher frequency
than normal nodes [34]. Subgraph prediction can capture joint association patterns among
node labels and links to model both which nodes are suspicious and how suspicious nodes
interact with each other.

Subgraph queries are significantly more expressive than works that focus on single tasks.
They allow users to choose a set of links and a set of node features or labels rather than
assuming a fixed prediction target type (e.g., single link, single label). Second, users can
provide different kinds of evidence, depending on what is known, and use a single system for
answering the query. In contrast, previous researchers have developed a separate customized
method for different evidence types [29]. Answering general relational queries, including
subgraph queries, is a major use case for non-neural statistical-relational models, such as
Markov Logic networks [3], and Probabilistic Soft Logic [13], which motivates my goal of
expanding the prediction tasks to which neural models can be applied.

Recent generative AI models have shown the usefulness of a single multi-task system for
many users compared to separate systems tailored for individual tasks. For deploying graph
learning, a single query answering system is important in a production environment where
it is not known in advance which graph queries will be important, and users may not have
the resources to build a customized machine learning solution for different query types.

1.2.2 Approach

Figure 1.4 shows our system design. Our approach is a form of domain-specific pre-training: a
probabilistic Graph Generative Model (GGM) is learned from data in a deployment domain.
The model is used to answer queries with no further learning required. The deployment do-
main can be large (e.g., 1M nodes), whereas queries are typically small (e.g., involving 10-100
nodes). Specifically, I train a generative Variational Graph Auto-Encoder (VGAE) [16, 9]
inductively so that the VGAE can be applied to query targets of different sizes that may

7

Figure 1.4: After training a single GGM, the approximate inference methods described in
this thesis can answer a user query.

involve unseen nodes. The input for VGAE is a graph. To use the graph as input of the
model, the links in the graph are represented by an adjacency matrix A, and node features
are represented by using a feature matrix X. The generative probabilities over graphs (im-
plicitly) define a conditional probability P (target_subgraph|evidence_subgraph) for every
subgraph query. The VGAE utilizes an encoder-decoder architecture with a GNN as an en-
coder, augmented to generate node labels or features as well as links. While VGAEs are not
SOTA for generating realistic graphs, they are useful for generating node embeddings for
downstream prediction tasks, such as link prediction [23]. I describe and evaluate approx-
imate inference methods for estimating conditional subgraph probabilities from a trained
VGAE. Ease of use and wide applicability make inference from a single model useful, even
if, on some queries, inference from a model is less accurate than a system custom-built for
that query.

1.2.3 Evaluation

I evaluate a variety of query types depending on whether 1) the target subgraph involves
a single neighbor or multiple neighbors of a target node, and 2) the target comprises only
links among testing nodes (inductive), or links that connect training and test nodes (semi-
inductive). Our main baseline is to estimate link probabilities and node labels independently
using state of the art node classification/link prediction methods. For subgraph queries, I
find that the VGAE+ model achieves superior or competitive performance on all datasets
and settings, especially inductive inference. For node classification/link prediction problems,
I find that the inference from the augmented VGAE model, VGAE+, is competitive with
custom methods, even though our subgraph query system supports a much wider range of
queries.

8

1.2.4 Contributions

Our main contributions are as follows.

• Introducing the task of conditional subgraph prediction.

• Approximate inference methods, including sampling, for answering subgraph queries
from a single trained GGM.

• An augmented Variational Graph Auto Encoder model for jointly modelling links
and node features or labels. A new training objective for the VGAE+ that utilizes
Bayesian optimization to weight link prediction and node classification.

9

Chapter 2

Related Works

I review the work most related to the topics addressed in this thesis.

2.1 Graph Queries

Powerful (non-probabilistic) graph query languages have been developed, such as Cypher
and SPARQL [5, 26, 6]. Graph queries are typically used to retrieve data that is stored in
a graph data model. Such graph queries typically return a set of nodes or links that satisfy
a complex condition [6]. In contrast, subgraph queries return a probability for a target
subgraph, conditional on other subgraphs. Below I often refer to probabilistic graph queries
as “graph queries” for short, although the concept is different from that used in graph query
languages.

2.2 Inductive Graph Training

Inductive graph learning has been a major topic in recent research [8, 42, 27]. Unlike tra-
ditional transductive learning, which operates on a fixed set of nodes and edges, inductive
graph training focuses on making predictions for nodes or graphs that were not part of the
training set. In this approach, models use GNNs to work with new, unseen data. This makes
it a strong approach for real-world tasks where new information is always emerging. Hetero-
geneous Graph Transformer (HGT) [12] addresses the problem of inductive link prediction
in heterogeneous networks. The encoder in the HGT uses meta relations to parameterize at-
tention and message passing mechanisms, ensuring nodes and edges maintain type-specific
representations. The decoder then aggregates these messages, using attention weights to
update the target node’s representation, ultimately providing contextualized embeddings
for downstream tasks. GIN [40] is used for inductive graph classification task. It learns to
classify entire graphs, rather than individual nodes. To support inductive link prediction or
node classification training, our query answering approach can be used with any inductive
encoder-decoder graph neural network architecture, trained with the variational ELBO ob-

10

jective, modified to generate attributes as well as links. To our knowledge, this is the first
use of the variational ELBO objective to support inductive subgraph prediction.

2.3 Graph Generative Models

Graph Generative Models (GGMs) are machine learning models designed to generate new
graphs that are similar to a given set of training graphs. GraphRNN [18] is an autoregressive
model that generates graphs node by node and edge by edge using a Recurrent Neural Net-
work (RNN) to capture the sequential dependencies in graph structure. GraphVAEs [30] en-
code entire graphs into a latent space and then decode this latent representation to generate
new graphs. These models are particularly effective for generating graphs of fixed size and
structure by learning a probabilistic representation of the graph’s underlying distribution.
Another example for GGMs are Graph Generative Adversarial Networks (GraphGANs) [35].
GraphGANs generate realistic graph structures by learning from existing graph data. They
consist of two main components: (1) a generator which tries to create graph structures that
mimic the properties of real graphs and (2) a discriminator which evaluates the authenticity
of these generated graphs by distinguishing them from real graph samples.

Inference from a model requires the following properties of a GGM.

1. Supports the computation/estimation of explicit graph probabilities.

2. Admits a conditional variant, that supports conditioning on subgraphs.

3. Applies to graphs of different sizes.

VGAEs meet these requirements, so I base our experiments on them. Specifically, I employ
the most recent VGAE designed for link prediction [23]. Another advantage of the VGAE
is that it is designed for a single large dataset, as are most methods for link prediction and
node classification, so I can employ the same benchmark datasets. In contrast, other deep
GGMs are usually trained on datasets with many disjoint graphs [4] (e.g., molecules). I
believe that developing deep GGMs so that they support answering subgraph queries is a
fruitful new direction for GNNs.

2.4 Link Prediction

For deep graph models, the most common setting is single link completion: predict a single
target link given a set of known links, which typically include a large set of training links.
Other recent variants include the following single link tasks.

1. Condition on the attributes of the two target nodes only.

(a) DEAL [10] is a model for inductive link prediction in attributed graphs, that uses
dual encoders for attribute and structure embeddings along with an alignment
mechanism.

11

2. Condition on links among training and test nodes.

(a) SEAL is a framework designed for transductive single link prediction [32]. SEAL
generates embeddings by extracting local enclosing subgraphs around target links
to learn graph structure features from these subgraphs. Nodes within these sub-
graphs are labeled based on their distances to the target link, and these labeled
subgraphs are input to the GNN, which processes them to produce link prediction
scores.

(b) IGMC generates embeddings by first extracting a local enclosing subgraph around
each user-item pair and labeling the nodes based on their roles and distances [44].
This labeled subgraph is then processed by a GNN to learn and aggregate fea-
ture representations. Finally, the target user and item representations are con-
catenated and passed through a Multi-Layer Perceptron (MLP) to predict the
rating.

3. Condition on links among other test nodes only.

(a) The GraIL model is the inductive version of SEAL [32]. GraIL generates em-
beddings by extracting local subgraphs around target nodes, labeling the nodes
based on their distances to the target link, and then using a GNN to iteratively
aggregate and update node representations. The final subgraph representation
and node embeddings are combined with the target relation embedding to score
the likelihood of the given relation.

These single link tasks are generalized by the recently introduced joint link prediction
task [23]. In joint link prediction, the target is a set of links to be predicted jointly, given
another set of links and node features as evidence. Joint link prediction is the closest pre-
decessor to our work in that it aims to answer a large class of graph queries from a single
model. However, joint link prediction does not provide the capability of predicting node
labels or features, which is important in many applications. Subgraph prediction requires
training a generative model to support the dual task of joint link prediction and joint node
classification, which I address with Bayesian optimization in this thesis.

2.5 Node Classification

Node classification is one of the most common tasks in graph analysis [9]. The goal is to
predict a class for each unlabeled node in the graph based on available graph evidence [14],
which usually includes all links and node features. In this research I have considered two
types of node classification:

1. Semi-inductive node classification frameworks

12

(a) DeepWalk is a transductive model that generates latent representations of nodes
in a graph by using local information from truncated random walks [25]. The
method uses optimization techniques to build representations that capture shared
similarities in local graph structure between nodes. These representations are
then used as input features for classification methods, such as logistic regression,
to do node classification.

2. Inductive node classification frameworks

(a) MVGRL is a self-supervised approach for learning representations of nodes and
graphs by contrasting different structural views of graphs [11]. MVGRL trans-
forms a sample graph into two correlated structural views: an adjacency matrix
for local structure and a diffusion matrix for global structure. This approach cap-
tures both local and global information. Two separate GNNs process each view.
These GNNs generate node representations, which are then passed through a
shared MLP projection head. The node representations are pooled to obtain
graph-level representations and processed again through the MLP projection
head. A discriminator scores the agreement between these representations.

These models differ in that they only perform node classification, whereas a subgraph
query also requires predicting links.

2.6 Two-Task GNNs

There is a recent trend towards two-task GNNs that support both node classification and
link prediction [37]. I have considered three models that can perform both node classification
and link prediction tasks. However, while these models are designed to handle both node
classification and link prediction, they require separate training for each task. In contrast,
I train a single model for the large set of diverse tasks that can be represented as sub-
graph queries. To our knowledge, inference from a generative model to estimate subgraph
probabilities is a new application of GGMs.

1. The Generalizable Graph Masked Auto-Encoder (GiGaMAE) is a self-supervised gen-
erative model designed to enhance the generalization capabilities of node representa-
tions in graphs [29]. This model uses a graph masked auto-encoder framework where
edges and features of the graph are masked, and the resulting masked graph is en-
coded by a GNN to generate latent node representations. Instead of directly recon-
structing the original graph’s edges or features, GiGaMAE reconstructs embeddings
from Node2Vec for structural information and PCA for attribute information, as tar-
gets. For node classification and link prediction, GiGaMAE leverages the learned node
embeddings, which are optimized through a mutual information-based reconstruction

13

loss that balances shared and distinct information across multiple targets. Although
this model can perform both node classification and link prediction, it requires sepa-
rate training for each task. Consequently, the generated node embeddings are different
and specifically customized for each individual task.

2. GraphSAGE is an inductive model designed to generate low-dimensional embeddings
for nodes within large graphs [8]. GraphSAGE learns embeddings for the new nodes in
a graph by aggregating information from their local neighborhood and tries to capture
the structural properties of the graph by looking at the nodes and links surrounding
each node. In this study, I employed GraphSAGE for both link prediction and node
classification tasks. For node classification, I utilized the supervised method outlined
in the original paper [8]. For link prediction, GraphSAGE was utilized as an encoder,
trained in the unsupervised mode. I trained a separate link predictor that takes as
input two node embeddings and outputs a probability indicating whether a link exists
between the two nodes.

3. Graph Attention Networks (GATs) are inductive models that use attention mecha-
nisms to generate node embeddings in graphs [33]. Each node’s features are initially
transformed linearly, and the importance of neighboring nodes is determined through
learnable attention coefficients, which are computed using a shared attentional mech-
anism and then normalized via the softmax function. The node embeddings are gen-
erated by aggregating the features of the neighboring nodes, weighted by these nor-
malized attention coefficients. This method allows GATs to dynamically focus on the
most relevant parts of the neighborhood for each node. For link prediction, I trained
a separate link decoder that takes as input two GAT node embeddings and outputs
a probability, indicating whether a link exists between the two nodes. And for node
classification, I followed the original paper [33].

2.7 Subgraph Classification

Subgraph classification is a task in graph learning that focuses on identifying and cate-
gorizing substructures within a larger graph, with significant challenges related to feature
extraction and computational efficiency. SUBGNN is a subgraph neural network that learns
disentangled subgraph representations [1]. Like our approach, their query targets and evi-
dence are subgraphs. However, their system addresses only classifying the target subgraph
with a single label. In contrast, I assign subgraph probabilities.

14

Chapter 3

Method and Approach

This chapter defines probabilistic subgraph queries, categorizes different kinds of graph
queries, and proposes a method to answer them using VGAE models.

3.1 Problem Statement

Subgraph queries (SQs) specify a set of links and labels for a set of query nodes. SQs
allow users to query over nodes and links in graphs and return probabilistic answers to those
queries. In this research, I introduce a simple subgraph query syntax that uses combinations
of links, node attributes, and labels to represent prediction tasks commonly studied in graph
learning. (Chapter 2).

Data Format. An attributed labelled graph is a pair G = (V,E) comprising a finite set of
nodes V with features and labels, and links E, which may be positive (present) or negative
(absent). Each node is assigned a k-dimensional attribute xi with k > 0 and a node label
li. A graph with N nodes can be represented by the following objects.

• An N ×N adjacency matrix A with {0, 1} Boolean entries.

• An N × k node feature matrix X with {0, 1} Boolean entries.

• An N × l node label matrix Ł with a one-hot encoding of l discrete labels for each
node.

A target subgraph of graph G = (V,E) is a graph GY = (V Y , EY) where V Y ⊆ V and
EY ⊆ E. Similarly, an evidence subgraph of graph G is a graph GE = (V E , EE) where
EE ⊆ E and EE ∩ EY = ∅. We refer to the nodes V E that appear in the evidence as
evidence nodes, to the nodes V Y that appear in the target as target nodes, and to their
union as query nodes (i.e., V = V E ∪ V Y).

15

Definition of Subgraph Queries. A relational random variable corresponds to either
a node attribute or an adjacency. Let A = {A[u, v] : u ∈ V, v ∈ V } be the set of link
variables, and L = {L[u] : u ∈ V } be the set of node label variables, and X = {X[u] :
u ∈ V } be the set of feature variables.

A subgraph query P(target|evidence) is of the form

P(AY = aY ,LY = lY ,X Y = xY |AE = aE ,LE = lE ,X E = xE)

where

• AY = {A[ui, vi] : i = 1, . . . , |AY |,A[ui, vi] ∈ EY } is the list of binary target links, each
assigned a value ai ∈ {0, 1}. Similarly, AE = {A[ui, vi] : i = 1, . . . , |AE |,A[ui, vi] ∈
EE} is the list of binary evidence links.

• LY = {L[ui] : i = 1, . . . , |LY |, ui ∈ V Y } is the list of target node labels, each assigned
a one-hot encoding of the l class labels li ∈ {0, 1}l. Similarly, LE = {L[ui] : i =
1, . . . , |LE |, ui ∈ V E} is the list of evidence node labels.

• X Y = {X[ui] : i = 1, . . . , |X Y |, ui ∈ V Y } is the list of target node features, each
assigned a feature vector xi ∈ R1×k. Similarly, X E = {X[ui] : i = 1, . . . , |X E |, ui ∈
V E} is the list of evidence node features.

The indices i index elements in a query not nodes in a graph. Given a partition of nodes
into observed training nodes and unobserved test nodes, a query is inductive if a test node
appears in the target nodes.

Note that the target and evidence specifications can be and typically are partial in that
some graph components are unspecified. For example, for two evidence nodes u and v, the
evidence may specify their features, but not whether there exists a link between them or
not.

Our definition of subgraph query treats a node feature x[u] as a group, in that either
all or no features of node u are specified in a query. This restriction is not essential; we use
it mainly to simplify notation.

3.1.1 Example of Semi-Inductive Subgraph Queries

Figure 3.1b shows an example of Semi-inductive Neighborhood Query, the most complex
SQ type I consider in this research (Section 4.3), and Figure 3.2b shows an example of
Semi-inductive Single Neighbor Query (Section 4.3). The query nodes are 1–6, nodes 1–3
are training nodes, and nodes 4–6 are testing nodes. Figures 3.1a and 3.2a show the ground
truth graph with a partition of nodes. Node labels are green and blue. Figures 3.1b and
3.2b show examples for neighborhood and single neighbor queries, respectively. In these
figures, target labels and links are colored red. Black dashed links are unspecified links in

16

evidence. Figures 3.1c and 3.2c show the output of the model for neighborhood query and
single neighbor query, where the model has specified the existence of red target links and
the label of the target nodes.

For Figure 3.1, the query target is to predict the labels of nodes 1, 3, 5, and 6, and the
target links. The positive target links comprise the pairs (1, 4) and (5, 4), and the negative
target links comprise the pairs (3, 4) and (6, 4). The query evidence comprises all 6 node
feature vectors (not shown). Positive evidence links are (1, 2), (1, 3), (2, 3), (3, 6), and (1, 5).
Negative evidence links are (3, 5), (2, 6), (2, 5), and (1, 6). The links (2, 4) and (5, 6) are
represented by black dashed links and are unspecified. As you can see in Figure 3.1c, the
model has predicted the correct labels for nodes 1, 3, and 5 and wrong label for node 6.
Additionally, for link prediction, we have correct predictions for links (1, 4), (3, 4), and (6, 4)
and wrong prediction for link (5, 4).

For Figure 3.2, the query target is to predict the label of node 4, and the target
links. The positive target link is (6, 4), and the negative target link is (3, 4). The query
evidence comprises all 6 node feature vectors (not shown). Positive evidence links are
(1, 2), (1, 3), (2, 3), (3, 6), (1, 5), and (1, 4). Negative evidence links are (3, 5), (2, 6), (2, 5), and
(1, 6). The links (2, 4) and (5, 6) are represented by black dashed links and are unspecified.
As you can see in Figure 3.2c, the model has predicted the wrong label for node 4. Also,
for link prediction, we have correct predictions for links (3, 4) and (6, 4).

(a) Input graph (b) Neighborhood query (c) The output of the model.

Figure 3.1: An example of Semi-inductive Neighborhood Query

(a) Input graph (b) Single Neighbor query. (c) The output of the model.

Figure 3.2: An example of Semi-inductive Single Neighbor Query

17

Figure 3.3: Model Architecture: First, the input graph is represented by an adjacency matrix
A and a feature matrix X. These two matrices are the input of the model. Then, the encoder
generates latent node embeddings Z. Finally, the decoders generate reconstructed adjacency
matrix Ã, reconstructed feature matrix X̃, and reconstructed node labels matrix L̃. Then
the reconstructed graph is represented using Ã, X̃, and L̃

In this work, I mask the AY in the original matrix with zeroes to reconstruct these
values by using the encoder’s embeddings and our decoders. Since my system performs
unsupervised node classification and my model does not use node labels as input, I do not
use labels as training input.

3.2 Model Definition

In this thesis, I take the Variational Graph Auto-Encoder (VGAE) [16] as the basic gener-
ative model for answering SQs. This section describes VGAE+, a VGAE augmented with
feature and label reconstruction along with training and implementation details. Figure 3.3
shows the VGAE model architecture. Given a training graph G = (V,A,X,L), the graph
encoder takes as input the adjacency matrix A and then the feature matrix X and outputs
node embeddings Z. Then the model reconstructs graph G by reconstructing A, X, and
node label matrix L and outputs graph G′ = (V,A′,X ′,L′).

3.2.1 Augmented VGAE Generative Model

In the VGAE model, links are generated independently, given node embeddings. Following
the GraphVAE approach [30], I generate node classes and node features independently
as well, given node embeddings. Let Z be an N × d matrix that represents latent node
embeddings. I utilize three decoder models (see Figure 3.3):

pθ(A|Z) =
∏
u,v

pθ(A[u, v]|z[u], z[v])

pψ(X|Z) =
∏
u

pψ(X[u]|z[u])

pϕ(L|Z) =
∏
u

pϕ(L[u]|z[u])

(3.1)

18

where pθ : Rd × Rd → [0, 1] is a trainable link decoder, and pψ resp. pϕ denotes a
trainable feature decoder resp. label decoder.

The graph encoder qϕ(z|X,A) is implemented by a GNN that takes as input an at-
tribute graph and returns latent node embeddings. For compatibility with baseline methods,
the encoder does not receive node labels as input, but adding them is straightforward. A
VGAE+ is trained using the variational ELBO objective [16, 9] as follows:

L(θ, ϕ) = −EZ∼qϕ(Z|X,A)[α× ln pθ(A|Z)

+ β × ln pψ(X|Z) + γ × ln pϕ(L|Z)
]

+KL
(
qϕ(Z|X,A)||p(Z)

)
.

(3.2)

Where KL(.||.) is Kullback-Leibler divergence which measures difference between two
probability distributions. p(Z) is prior distribution of Z which is usually taken as a stan-
dard Gaussian distribution. The approximate posterior qφ(Z|X,A) is the graph encoder.
The reconstruction likelihood pϕ(L|Z), pψ(X|Z), and pθ(A|Z) are computed by the de-
coders of the VGAE+. Here α, β and γ are hyperparameters that weight the importance of
different reconstruction tasks. The higher the values of these hyperparameters, the greater
the effects they have on the loss function. Equation (3.2) is the training objective used in
our experiments.

Data Splitting

In order to answer inductive queries involving unseen nodes, I train the VGAE+ without
node IDs. The input graph is one large graph Gin = (V,E). Suppose the nodes in the
graph are divided into three categories: training nodes Vtr , inductive test nodes Vte, and
validation nodes Vva. I randomly partition the nodes in the input graph as follows: 70%
training nodes Vtr , 20% inductive test nodes Vte, and 10% validation nodes Vva. To train an
inductive model, the training graph is the input subgraph induced by Vtr , which excludes
test nodes. To train the model properly for node classification, I make sure that the training
nodes Vtr include nodes from all the classes in each dataset.

Bayesian Optimization

The weight hyperparameters α, β, γ are found by Bayesian optimization [24]. Bayesian
optimization is a sequential model-based optimization technique used for optimization. It is
an algorithm for finding the best set of parameters for a given objective function. Bayesian
optimization efficiently searches the parameter space and often finds optimal or near-optimal
solutions with fewer function evaluations compared to grid search or random search methods
by intelligently selecting points to evaluate.

The optimizer optimizes these parameters over the interval [0,1] so that they minimize
the value of the reconstruction loss:

19

minα,β,γEZ∼qϕ(Z|X,A)[ln pθ(A|Z) + ln pψ(X|Z) + ln pϕ(L|Z)
]

(3.3)

which is the model score on the validation graph. The validation graph comprises all
validation nodes, their neighbors in the input graph, and all links that involve at least
one validation node. CE(Label) and BCE(Features) are computed over the labels of all
validation nodes. BCE(Link) is computed over all validation graph links.

3.2.2 Implementation

This section details the specific implementation of VGAE+, focusing on the encoder, link
decoder, feature decoder, and node classifier.

Encoder

The graph encoder qφ(z|X,A) is implemented by a GNN that takes an attributed labeled
graph as input and returns node embeddings Z. The node embeddings are independent,
and for each node, represent a conditional Gaussian distribution, such that

q(z[u]|X,A) ∼ N(µ[u], σ[u]) (3.4)

with mean and covariance µ[u], σ[u] for node u.

Link Decoder

As a strong link decoder, I utilize a Stochastic Block Model (SBM) [21], which is defined
as:

pθ(A[u, v]|z[u], z[v]) = z[u]⊤Λz[v] (3.5)

where Λ ∈ Rd×d is the trainable d-block matrix in the SBM.

Feature Decoder

Node features are reconstructed independently, given node embeddings. Our benchmark
datasets comprise discrete features, so our feature decoder is of the form pψ : Rd → {0, 1}k

pψ(X|Z) =
N∏
u=1

k∏
d=1

pψ(Xd[u]|z[u]) =
N∏
u=1

k∏
d=1

σ(x̃d[u]), (3.6)

where ψ are the parameters of a fully connected neural net feature decoder that maps
a node embedding z[u] to a k-dimensional node feature reconstruction x̃[u].

20

Node Classifier

The node classifier pϕ : Rd → {0, 1}l, classifies the node labels independently under a
one-hot encoding, given the same node embeddings:

pϕ(L|Z) =
N∏
u=1

pϕ(L[u]|z[u]) =
N∏
u=1

softmax(l̃[u]) (3.7)

where ϕ are the parameters of a fully connected node classifier that maps a node embedding
z[u] to a l-dimensional vector l̃[u].

3.3 Subgraph Inference from a VGAE Model

Consider a subgraph query Equation 3.1 with n query nodes:

P(AY = aY ,LY = lY ,X Y = xY |E = e) (3.8)

where E is a list of evidence variables. (See Figures 3.2b and 3.1b) I define two subgraph
inference models, deterministic (Det) and Monte Carlo (MC), for the VGAE+ generative
model. Essentially, the deterministic method uses node embeddings computed determinis-
tically from the evidence, whereas the MC method samples node embeddings conditional
on the evidence.

3.3.1 Inference Models

For a fixed set of n query node embeddings z, the target probability is given by

Pη(AY = aY ,LY = lY ,X Y = xY |z) (3.9)

and can be computed by multiplying the independent decoder probabilities (Equation
3.5, 3.6, and 3.7) parameterized by η. The posterior distribution over the n node em-
beddings is a conditional Gaussian distribution, such that p(z[u]|E = e) ∼ N(µ[u], σ[u])
with mean and covariance µ[u], σ[u] for node u. Equation 3.12 below shows how to approx-
imate the posterior using the GNN encoder. Let µE be the mean node embeddings from
the posterior distribution.

Deterministic Inference This inference method computes the mean of node embeddings
using the prior network, then passes the computed mean as final embedding to each decoder
to compute a target probability. If we have m targets in Y , then the query probability is
computed as follows:

P(AY ,LY ,X Y |E = e) ≈ P(AY ,LY ,X Y |zµE). (3.10)

21

Figure 3.4: An example of a semi-inductive subgraph query: Red dashed links are target
links, and black dashed links are unspecified links. Red colored nodes are target nodes for
node classification. The squares beside each node represent features for that node.

where zµE = µE .

Monte Carlo Inference This inference method samples S node embeddings from the
posterior distribution, and averages the subgraph probabilities:

P(AY ,LY ,X Y |E = e) ≈ 1
S

S∑
s=1

P(AY ,LY ,X Y |zs) (3.11)

where Zs ∼
∏n
u=1 p(z[u]|E = e).

Posterior Distribution p(Z|E = e)

Training a VGAE+ model provides decoder models pη and an encoder qϕ. The challenge is
that the encoder assumes as input an adjacency matrix, or equivalently, a complete subgraph
induced by the query nodes. I bridge the gap between a partially specified subgraph and a
complete induced subgraph by imputing graph components missing from the evidence with
0 as a default value. For missing links, using the 0 default is the approach taken in previous
work [23, 16]. As discussed by [23], 0 default is appropriate for links: First, a message-passing
encoder treats 0 links as uninformative, which is appropriate for unspecified links. Second,
because of graph sparsity, the mode of the true link posterior given the evidence is close to
0. For node features and labels, the 0 default is also appropriate given our one-hot encoding,
since the VGAE+ encoder is trained not to propagate information from 0-valued features
or labels.

Formally, to obtain evidence embeddings, I approximate the posterior distribution
using the trained encoder qϕ:

p(Z|E = e) ≈ qϕ(Z|AE,0,XE,0) (3.12)

where the evidence matrices AE,0 and XE,0 are defined as follows: 1) The dimension
of AE,0 is n × n. If AE specifies a link assignment A[u, v] = ei, then AE,0[u, v] := ei;

22

otherwise AE,0[u, v] := 0. 2) The dimension of XE,0 is n × k. If X E specifies a feature
vector X [u] = xi, then XE,0[u] := xi; otherwise XE,0[u] := 0. Similarly, we can assign a
default value of 0 to unspecified node labels, but our experiments do not utilize queries that
include node labels as evidence. Note that while the number of training nodes may be very
large, the number of query nodes is typically small (on the order of 10-100). Applying the
same encoder to subgraphs of different sizes is possible because I train the VGAE+ model
inductively.

To illustrate, consider Figure 3.4. Since the link between nodes 1 and 2 is specified to
exist, the evidence adjacency matrix assigns AE,0[1, 2] := 1. The link between nodes 3
and 5 is specified not to exist, so the evidence matrix assigns AE,0[3, 5] := 0. Since the
link between nodes 5 and 6 is unspecified, the evidence matrix assigns AE,0[5, 6] := 0.
The feature vector for node 3 is unspecified, the evidence matrix assigns the zero feature
vector XE,0[2] := 0. The following matrices demonstrate AE , AE,0, X E , and XE,0 for the
example query in Figure 3.4, where links (2, 4) and (5, 6) and features for nodes 3, 5 are
unspecified. Unspecified values are shown with “?”:

• AE =

1 1 1 0 1 0
1 1 1 ? 0 0
1 1 1 0 0 1
1 ? 0 1 0 0
1 0 0 0 1 ?
0 0 1 0 ? 1

• AE,0 =

1 1 1 0 1 0
1 1 1 0 0 0
1 1 1 0 0 1
1 0 0 1 0 0
1 0 0 0 1 0
0 0 1 0 0 1

• X E =

1 1
0 1
? ?
1 0
? ?
1 1

23

• XE,0 =

1 1
0 1
0 0
1 0
0 0
1 1

24

Chapter 4

Experiments

I describe our benchmark datasets, the design of the test queries, and how the evaluation
metrics are computed.

4.1 Datasets

To evaluate all the methods, I utilize datasets from previous studies of GGMs [16, 41, 10].

• Cora is a citation dataset that consists of nodes that represent machine learning
papers divided into seven classes. In this dataset nodes represent papers and links
represent citations among them [28].

• ACM is a citation dataset. It has three types of nodes (author, paper, subject) and
two types of edges (paper-author, paper-subject) [41].

• IMDb is a movie dataset with three types of nodes (movie, actor, director) and two
types of edges (movie-actor, movie-director). In this dataset labels are the genres of
movies [41].

• CiteSeer is also a citation dataset which consists of nodes that represent machine
learning papers divided into six classes. In this dataset nodes represent papers and
links represent citations among them [28].

• Photo & Computers are datasets from the Amazon co-purchase graph [20]. In these
datasets, nodes represent goods, links indicate that two goods are frequently bought
together, node features are bag-of-words encoded product reviews, and class labels
are given by the product category [10].

Table 4.1 presents statistics for all 6 benchmark datasets. In this table edge density
refers to the number of links in a graph divided by the total number of possible links in
that graph. This metric measures the connectedness or compactness of a graph. A lower
number indicates a sparser graph, meaning there are fewer connections between the nodes.

25

Dataset Nodes Links Edge Density Average Node Degree

Cora [16] 2,708 5,429 0.00074 3.8
ACM [41] 8,993 18,929 0.00093 2.2
IMDb [41] 12,772 19,120 0.00046 2.9
CiteSeer [16] 3,327 4,732 0.00171 2.7
Photo [10] 7,650 238,162 0.01629 36.7
Computers [10] 13,752 491,722 0.01041 36.7

Table 4.1: Statistics of the datasets.

The average node degree in a graph is the average of the degrees of all the nodes in the
graph.

4.2 Data Preprocessing

Following previous link prediction studies [16], I add self-loops and make all links undi-
rected (i.e., if the training data contains an adjacency, v → u, it also contains u → v). Cora,
CiteSeer, Photo, and Computers are homogeneous datasets, whereas ACM and IMDb are
heterogeneous datasets. Since our comparison methods use homogeneous GNNs, I homoge-
nize different edge types so that every edge in the adjacency matrix is represented by 0 for
no link and 1 for link existence.

4.3 Test Query Design

In all queries, the evidence E does not contain node labels, but specifies: (1) the node feature
vector for each query node, (2) the non-target links from the input graph. (e.g. in Section
3.1.1.) To define query targets, I randomly select a set of 100 test nodes as target nodes
from the test nodes Vte. Evidence links vary depending on the inductive or semi-inductive
query type. (See Section 3.2.1). Target links and nodes depend on the query type as follows.

Single Neighbor Queries For each target node u ∈ Vte, I randomly select two test links,
one positive pair (u, v+) from the neighborhood of u, and one negative pair (u, v−) from
outside the neighborhood. The resulting query is of the form P (L[u],A[u, v+],A[u, v−]|E):
Which of the two links is true and what is the label of the target node (Figure ??.)?

Neighborhood Queries For each target node u ∈ Vte with at least one neighbor, suppose
it has deg(u) neighbors. Let v+

1 , . . . , v
+
deg(u) enumerate the nodes in the neighborhood of

u. I randomly select |deg(u)| negative test nodes v−
1 , . . . , v

−
deg(u). The resulting query is

of the form P({L[v+
i],A[u, v+

i],L[v−
i],A[u, v−

i] : i = 1, . . . , deg(u)}|E) : Which nodes are
neighbors and what are their labels (Figure A.1b.)?

26

4.4 Metrics

For single-neighbor queries, I compute the mean of each metric across all test queries.
For neighborhood queries, the metric is calculated separately for each query, over all the
components of the query (e.g., all the neighbors to be predicted). Then, I report the mean of
each metric across all neighborhood queries. I score link prediction and node classification
separately using different metrics. Separate scoring for each downstream task is supported
by the VGAE+ inference model (3.9), but in fact, favors the single-task prediction baselines
over our joint prediction model. The reason for independent scoring for one task is that our
baseline methods are not designed for subgraph queries. Therefore, I use them only to
obtain scores for individual tasks. The joint predictive performance for a subgraph query
is measured by the average AUC score and AP score over predicted links and node labels.
I have evaluated the performance of our model on all three tasks of link prediction, node
classification, and subgraph queries, using three sets of metrics:

4.4.1 Metrics for Subgraph Queries

• ROC-AUC measures the area under the Receiver Operating Characteristic (ROC)
curve. This metric measures the performance of the model across all possible classifi-
cation thresholds.

• Average Precision (AP) measures the weighted mean of precision over all possible
classification thresholds.

4.4.2 Metrics for Link Queries

• ROC-AUC

• AP

• Hit-Rate (HR) is computed as follows: (1) For each method, find the set T of the
top 20% links as ranked by the method. (2) Find the number of ground-truth links in
T . (3) Divide by the total number of links in T .

4.4.3 Metrics for Node Queries

• ROC-AUC

• AP

• F1-score macro is a metric used to evaluate the performance of a classification
model, especially in situations where the dataset is imbalanced. It is the harmonic
mean of precision and recall, calculated separately for each class, and then averaged.
This ensures that each class is given equal weight, regardless of its prevalence in the

27

dataset. F1-score macro is particularly useful because it highlights the performance
of the model across all classes, preventing high performance on a dominant class from
overshadowing poor performance on minority classes. This makes it a valuable metric
for assessing models in multi-class and imbalanced data scenarios.

4.5 Experimental Setup

I built VGAE+ on the VGAE implementation for joint link prediction [23], following the
authors’ recommendation of using MC inference for link prediction and a graph isomorphism
network (GIN) encoder [40] with 2 layers and embedding dimension 128. I extended their
VGAE architecture to include the reconstruction of node features and labels, as described
in Section 3.2. Node labels are predicted using the node classifier (Equation 3.7), trained
end-to-end. I give results for deterministic prediction (Equation 3.10) and MC prediction
(Equation3.11) with 30 samples. (For the GitHub repository for VGAE+, see Section A.1)

4.6 Baselines

I select baselines that are well established and represent a variety of approaches to node
classification and single link prediction. Node classification methods perform joint label pre-
diction (known as semi-supervised node classification [38]) similar to our VGAE+ model.
I apply single link prediction methods to a set of target links separately to obtain a prob-
ability for each target link (cf. [23].) I organize methods according to whether they were
originally evaluated on both link prediction and node classification, or just one or the other.

4.6.1 Two-Task Methods

These frameworks train two separate link prediction and node classification models using
the same GNN architecture.

GiGaMAE Generalizable Graph Masked Auto-Encoder [29] is a self-supervised gener-
ative model that employs a graph masked auto-encoder framework. GiGaMAE reconstructs
embeddings from Node2Vec for structural information and PCA for attribute information
based on the downstream task (see Sections 2). I use the authors’ code to obtain node label
and link prediction probabilities. For link prediction, GiGaMAE utilizes a decoder that as-
signs a score to each node pair based on the similarity between their embeddings. For node
classification, the decoder uses logistic regression.

GraphSAGE [8] is an inductive model. I have used the DGL implementation (SAGE-
Conv) [36], with the supervised training mode, for node classification, where the decoder
uses the node labels. For node classification, it uses a simple feedforward neural network
architecture as a node classifier. For link prediction, I train an SBM link decoder end-to-end
using their unsupervised training.

28

GAT are a kind of GNN that computes different weights for different nodes in a neigh-
borhood [33]. I have used the DGL implementation (GAT) [36], with the supervised training
mode, for node classification, where the decoder sees the node labels. GAT embedding sys-
tem trained with the same micro-F1 score as in the original paper [33]. For link prediction,
I train an SBM link decoder end-to-end using their unsupervised training.

4.6.2 Link Prediction Baselines

These are the baselines for link prediction tasks:
SEAL is a well-known method for transductive link prediction [43]. I train SEAL in-

ductively by omitting node IDs (cf. [32, 23]). This is similar to the approach of GraIL, here
is used for homogeneous graphs rather than knowledge graphs. The basic idea of SEAL is
to embed the subgraph around a target link.

DEAL was designed for both transductive and inductive cold-start link prediction
tasks [10]. The distinguishing feature of the DEAL approach is that at test time, it uses
only the node attributes for link prediction. This makes it a strong baseline for independent
prediction since it is not sensitive to the presence of evidence links.

4.6.3 Node Classification Baselines

These are the baselines for node classification tasks:
MVGRL is an inductive self-supervised approach for learning representations of nodes

and graphs by contrasting different structural views of graphs [11]. I use the authors’ code
to train a node classification model.

DeepWalk is a transductive graph embedding method that learns node representa-
tions by treating random walks on the graph as sentences and applying word embedding
techniques [25]. It captures structural information of the graph by mapping nodes to low-
dimensional vectors in a continuous space. The reported results are based on the DGL im-
plementation and pertain only to the transductive setting, as DeepWalk cannot be adapted
for the inductive setting. I trained a logistic regression model for node classification [25].

4.6.4 Baseline Setup

Figure 4.1: Predicting multiple links by computing independent link probabilities for each
target link.

29

For all hyperparameters, I apply the same settings as reported in the original papers.
I also use the same split for better evaluation of training, validation, and test nodes in all
experiments.

Joint Link Queries I extend the single link prediction methods to predict multiple links
by computing independent link probabilities for each target link given the evidence, then
multiplying them to approximate the multi link joint probability. Figure 4.1 shows this
process; in symbols:

P(A[u, v1], . . . ,A[u, vm]|E) ≈
m∏
i=1

P(A[u, vi]|E). (4.1)

where u is a target node and v1 . . . vm are all the possible neighbors of u.
To compute ranking metrics for neighborhood queries, we require a score to each po-

tential neighbor u of a test node v. For the baseline methods, I use the probability of the
link A[u, v], computed either by independent prediction. For the VGAE sampling methods,
I use the link probability averaged over all samples.

Subgraph Queries Since our baselines can only perform node classification or link pre-
diction, to evaluate the performance of VGAE+ in comparison to them, we have evaluated
GAT, GraphSAGE, and GiGaMAE separately on these tasks. The evaluation metrics for
these tasks include the AUC and AP.

The AUC and AP for subgraph queries are computed as the average of the AUC and
AP obtained from node classification and link prediction tasks. This averaging provides a
measure of the model’s ability to handle the more complex task of subgraph prediction,
which inherently involves both predicting links and classifying nodes within the subgraph.

30

Chapter 5

Results

In this section, I evaluate VGAE+ performance on six benchmark datasets. First, I discuss
the results for subgraph queries. Next, I break down the subgraph AUC scores into their
link prediction and node label components. This allows us to understand the results in more
detail and to compare with more single-task baselines.

5.1 Subgraph Queries

Single Neighbor Queries Neighborhood Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers

Semi-inductive

VGAE+(Det) 0.937 0.837 0.863 0.949 0.960 0.910 0.868 0.815 0.764 0.935 0.854 0.789
VGAE+(MC) 0.949 0.828 0.900 0.941 0.951 0.960 0.933 0.716 0.735 0.951 0.950 0.919
GAT 0.862 0.909 0.843 0.910 0.935 0.922 0.829 0.726 0.733 0.900 0.881 0.840
GraphSAGE 0.797 0.723 0.748 0.750 0.860 0.858 0.701 0.689 0.677 0.786 0.846 0.724
GiGaMAE 0.913 0.886 0.920 0.896 0.956 0.929 0.917 0.782 0.746 0.896 0.900 0.703

Inductive

VGAE+(Det) 0.932 0.751 0.880 0.963 0.947 0.945 0.858 0.797 0.824 0.943 0.885 0.886
VGAE+(MC) 0.926 0.832 0.900 0.912 0.954 0.955 0.866 0.831 0.866 0.889 0.825 0.819
GAT 0.728 0.841 0.760 0.798 0.849 0.866 0.681 0.573 0.650 0.648 0.630 0.582
GraphSAGE 0.766 0.783 0.644 0.702 0.761 0.712 0.710 0.475 0.463 0.709 0.684 0.566
GiGaMAE 0.896 0.668 0.715 0.896 0.788 0.805 0.828 0.716 0.700 0.885 0.816 0.718

Table 5.1: ROC-AUC results for subgraph queries in semi-inductive and inductive settings.

Single Neighbor Queries Neighborhood Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers

Semi-inductive

VGAE+(Det) 0.844 0.836 0.830 0.889 0.908 0.884 0.878 0.826 0.829 0.902 0.862 0.869
VGAE+(MC) 0.787 0.796 0.745 0.858 0.918 0.901 0.709 0.727 0.786 0.855 0.903 0.855
GAT 0.751 0.734 0.747 0.760 0.783 0.621 0.743 0.681 0.659 0.724 0.699 0.606
GraphSAGE 0.592 0.755 0.645 0.820 0.688 0.650 0.515 0.528 0.473 0.711 0.492 0.572
GiGaMAE 0.902 0.739 0.790 0.885 0.938 0.843 0.916 0.669 0.740 0.902 0.879 0.750

Inductive

VGAE+(Det) 0.829 0.816 0.870 0.920 0.919 0.945 0.845 0.776 0.846 0.944 0.901 0.886
VGAE+(MC) 0.887 0.859 0.821 0.882 0.929 0.958 0.808 0.857 0.801 0.841 0.929 0.950
GAT 0.610 0.648 0.668 0.708 0.740 0.586 0.554 0.586 0.631 0.600 0.591 0.500
GraphSAGE 0.578 0.522 0.466 0.657 0.558 0.565 0.566 0.574 0.561 0.723 0.576 0.593
GiGaMAE 0.896 0.710 0.731 0.907 0.915 0.833 0.820 0.612 0.747 0.937 0.854 0.741

Table 5.2: AP results for subgraph queries in semi-inductive and inductive settings.

Tables 5.1 and 5.2 and Figures 5.1 and 5.2 show the ROC-AUC and AP results for
subgraph queries, which predict both links and node labels. In the inductive setting, target
nodes, and potentially some of their neighbors, are unseen during training.

31

(a) ROC-AUC results for Inductive Neighbor-
hood queries.

(b) ROC-AUC results for Inductive Single
Neighbor queries.

Figure 5.1: Bar chart for ROC-AUC results for Inductive Neighborhood and Inductive Single
Neighbor queries

(a) AP results for Inductive Neighborhood
queries.

(b) AP results for Inductive Single Neighbor
queries.

Figure 5.2: Bar chart for AP results for Inductive Neighborhood and Inductive Single Neigh-
bor queries

5.1.1 Single Neighbor Queries

The task is to predict the link and node label for a single neighbor of a target node (See
Figure ??).

ROC-AUC

VGAE+ scores higher than all three baselines in the inductive setting. The improvement
over the next best baseline is substantive on 6 out of 6 datasets; for instance, on IMDb, the
improvement is almost 0.2 AUC points.

GiGaMAE was designed for the transductive setting and is generally competitive
with VGAE+(MC) and VGAE+(Det) on single neighbor semi-inductive queries. VGAE+
scores substantially higher than GraphSAGE and GAT on all datasets and is usually better
than GiGaMAE and performs better on 4 out of 6 datasets; for instance, on CiteSeer by
almost 0.05 AUC points. For other 2 datasets, ACM and IMDb it is also very competitive.

32

AP

For this metric, VGAE+(MC) scores higher than all three baselines in the inductive
setting. The improvement over the next best baseline is substantive on 5 out of 6 datasets;
for instance on ACM, the improvement is almost 0.15 AP points.

For the semi-inductive setting, VGAE+(MC) scores substantially higher than Graph-
SAGE and GAT, and is competitive with GiGaMAE; for instance on ACM by almost 0.1
AP points.

5.1.2 Neighborhood Queries

In these queries the task is to predict the links that connect a target node to its neighbors
and the neighbors’ labels. (See Figure ??.)

ROC-AUC

Considering the inductive setting, where some target nodes are unseen during training,
both VGAE+ methods score higher than all three two-task baselines on all datasets. The
biggest improvement for VGAE+(MC) is observed on the Computers dataset (0.28 AUC
points). The strong performance on inductive queries illustrates how a generative model
can generalize to data that may be incomplete or new, by inferring unseen information.

In the semi-inductive setting, where all target nodes are observed during training,
VGAE+ achieves the highest score on all datasets. The VGAE+(MC) top scores are sub-
stantially higher than the baselines; for instance, on Computers it outperforms by more
than 0.2 AUC points.

AP

For the inductive setting, both VGAE+ methods again score higher than all three two-
task baselines on all datasets. The biggest improvement for VGAE+(MC) is observed on
the Computers dataset (0.21 AP points).

In the semi-inductive setting, VGAE+ achieves the highest score on 5 out of 6
datasets. The VGAE+(Det) top scores are higher than the baselines; for instance, on ACM
it outperforms by more than 0.16 AP points.

Our results show that for some datasets, inference through sampling from an approxi-
mate posterior, Monte Carlo sampling, yields substantive accuracy improvements. However,
sampling takes longer to produce query results. To give a sense of the difference, for the
biggest Computers dataset, sampling 30 node embeddings vs. using a single determinis-
tic one takes about 4 times as long (39.02s/query for VGAE+(MC) vs. 11.951s/query for
VGAE+(Det)), using a single NVIDIA A40 GPU.

In conclusion, inference from a VGAE model offers the best performance for predicting
jointly both links and node labels.

33

5.2 Link Prediction Queries

Tables 5.3, 5.4, and 5.5 show the AUC, AP, and Hit-Rate@20% scores for link prediction
queries.

Single Link Queries Joint Link Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers

Semi-inductive

VGAE+(Det) 0.898 0.959 0.937 0.941 0.947 0.871 0.759 0.962 0.894 0.910 0.798 0.753
VGAE+(MC) 0.912 0.954 0.957 0.952 0.956 0.935 0.886 0.960 0.901 0.941 0.940 0.928
SEAL 0.910 0.904 0.906 0.948 0.935 0.908 0.741 0.500 0.620 0.752 0.684 0.701
GAT 0.862 0.943 0.874 0.913 0.902 0.892 0.764 0.925 0.845 0.904 0.872 0.814
GraphSAGE 0.854 0.969 0.917 0.589 0.858 0.913 0.725 0.962 0.893 0.666 0.853 0.823
GiGaMAE 0.907 0.943 0.950 0.950 0.949 0.917 0.902 0.959 0.963 0.940 0.930 0.906
DEAL 0.800 0.986 0.981 0.914 0.832 0.823 0.676 0.979 0.962 0.910 0.857 0.826

Inductive

VGAE+(Det) 0.891 0.963 0.939 0.950 0.936 0.925 0.754 0.954 0.867 0.925 0.857 0.821
VGAE+(MC) 0.865 0.970 0.942 0.900 0.931 0.922 0.778 0.968 0.935 0.856 0.760 0.752
SEAL 0.756 0.666 0.854 0.627 0.924 0.972 0.693 0.681 0.830 0.679 0.506 0.450
GAT 0.667 0.870 0.796 0.731 0.796 0.835 0.491 0.699 0.632 0.470 0.453 0.380
GraphSAGE 0.561 0.593 0.492 0.504 0.552 0.444 0.543 0.535 0.467 0.512 0.528 0.507
GiGaMAE 0.887 0.732 0.929 0.943 0.798 0.764 0.725 0.920 0.918 0.921 0.854 0.706
DEAL 0.780 0.902 0.957 0.861 0.852 0.844 0.678 0.953 0.935 0.837 0.759 0.757

Table 5.3: ROC-AUC results for link prediction in semi-inductive and inductive settings.

Single Link Queries Joint Link Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers

Semi-inductive

VGAE+(Det) 87.5 100 100 95.9 97.8 92.5 83.9 84.2 84.7 91.6 84.6 85.3
VGAE+(MC) 100 100 98.2 100 100 100 100 100 98.5 97.3 100 100
GAT 92.5 100 100 95.0 94.2 91.5 76.9 82.8 78.9 92.0 77.0 72.8
GraphSAGE 90.0 100 100 92.5 97.5 92.5 73.8 98.2 90.0 94.7 83.1 85.5
GiGaMAE 96.5 71.8 78.9 97.5 85.0 84.7 94.6 69.9 72.5 95.8 76.7 84.1
DEAL 100 100 100 100 100 100 100 100 100 100 100 100

Inductive

VGAE+(Det) 87.5 100 95.0 95.3 92.6 88.2 63.9 82.7 80.4 90.5 86.7 85.3
VGAE+(MC) 100 100 100 100 100 98.5 100 100 100 98.6 100 100
SEAL 97.9 84.3 90.2 97.4 98.1 99.5 52.0 11.5 38.0 48.0 4.00 100
GAT 89.5 100 98.8 92.1 96.4 90.0 56.8 72.6 64.5 81.0 68.5 65.8
GraphSAGE 87.8 100 100 94.7 93.7 96.1 68.8 94.5 87.8 90.5 85.1 78.5
GiGaMAE 95.0 65.3 54.2 97.5 85.0 85.0 94.2 54.1 30.6 96.8 70.6 87.1
DEAL 100 100 100 100 100 100 100 100 100 100 100 100

Table 5.4: Hit-Rate @20% results for link prediction in semi-inductive and inductive settings.

5.2.1 Single Link Queries

In these queries, the task is to predict one positive link and one negative link. (See Figure
??.)

ROC-AUC

For single link inductive queries, VGAE+ outperforms the strongest baselines GiGa-
MAE and DEAL on 4 out of 6 datasets (Cora, ACM, Photo, and Computers) by 0.11 AUC
points. On the IMDb dataset, the VGAE+(MC) score is competitive. VGAE+ inference
beats the other single link prediction baselines. For single link semi-inductive queries,
the VGAE+(MC) scores are the highest on 4 out of 6 datasets, but similar in magnitude
to the GiGaMAE and DEAL baselines. A strong baseline performance is expected because
semi-inductive single link prediction is the most extensively researched link prediction task.

34

Single Link Queries Joint Link Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers

Semi-inductive

VGAE+(Det) 0.880 0.965 0.976 0.931 0.940 0.956 0.872 0.934 0.859 0.939 0.940 0.935
VGAE+(MC) 0.862 0.942 0.876 0.912 0.944 0.962 0.765 0.940 0.886 0.920 0.960 0.920
SEAL 0.925 0.907 0.934 0.926 0.914 0.908 0.655 0.322 0.641 0.738 0.790 0.720
GAT 0.874 0.878 0.889 0.834 0.846 0.796 0.806 0.859 0.832 0.786 0.754 0.712
GraphSAGE 0.738 0.895 0.805 0.860 0.900 0.820 0.500 0.535 0.513 0.631 0.500 0.678
GiGaMAE 0.948 0.863 0.893 0.985 0.992 0.987 0.984 0.789 0.867 0.987 0.992 0.998
DEAL 0.824 0.987 0.984 0.928 0.823 0.818 0.647 0.985 0.969 0.927 0.894 0.862

Inductive

VGAE+(Det) 0.796 0.835 0.988 0.948 0.944 0.969 0.756 0.796 0.894 0.969 0.978 0.952
VGAE+(MC) 0.892 0.955 0.887 0.898 0.972 0.970 0.832 0.968 0.856 0.907 0.965 0.987
SEAL 0.787 0.701 0.647 0.697 0.897 0.959 0.748 0.545 0.577 0.544 0.741 0.775
GAT 0.534 0.781 0.667 0.695 0.799 0.757 0.628 0.737 0.743 0.655 0.583 0.534
GraphSAGE 0.486 0.554 0.471 0.532 0.627 0.549 0.723 0.678 0.659 0.707 0.622 0.616
GiGaMAE 0.981 0.824 0.856 0.998 0.979 0.985 0.879 0.723 0.843 0.984 0.957 0.982
DEAL 0.780 0.967 0.957 0.861 0.852 0.844 0.780 0.967 0.957 0.861 0.852 0.844

Table 5.5: AP results for link prediction in semi-inductive and inductive settings.

HR@20%

For the HR@20% metric, on single link inductive queries, VGAE+(MC) outperforms or
is equal to the strong baseline DEAL on 5 out of 6 datasets. On the Computers dataset, the
VGAE+(MC) score is competitive. VGAE+ inference beats the other single link prediction
baselines. For single link semi-inductive queries, VGAE+(MC) outperforms or is equal
to the strong baseline DEAL on 5 out of 6 datasets. On the IMDb dataset, the VGAE+(MC)
score is competitive.

AP

For the AP metric, although VGAE+ does not usually outperform the strong baselines
GiGaMAE and DEAL, it is very competitive. Also, as I discussed in Section 5.1 in the joint
node classification and link prediction setting it performs better than GiGaMAE. In single
link inductive queries, VGAE+(Det) outperform on IMDb datasets by 0.03 AP points.
On Cora, ACM, Photo, and Computers datasets, VGAE+(MC) has the second best results.
For single link semi-inductive queries, VGAE+(Det) achieves the second best results
on 3 out of 6 datasets (ACM, IMDb, and CiteSeer), and the reported AP results for both
VGAE+(MC) and VGAE+(Det) are competitive with DEAL and GiGaMAE.

5.2.2 Joint Link Queries

In these queries, the task is to predict m positive links and m randomly chosen negative
links that are connected to the target node. (See Figure ??.)

ROC-AUC

For inductive joint link prediction, VGAE+ achieves top scores on all datasets com-
pared to the baselines. VGAE+(MC) performs the best on Cora, ACM, and IMDb, and
VGAE+(Det) outperforms on CiteSeer, Photo, and Computers. For semi-inductive joint
link prediction, VGAE+(MC) outperforms DEAL and GiGaMAE on 3 out of 6 datasets

35

by 0.13 AUC points. On Cora and IMDb, GiGaMAE performs slightly better by only 0.06
AUC points on Cora, and DEAL only outperforms on ACM by 0.12 AUC points.

HR@20%

For the HR@20% metric, on joint link inductive queries, VGAE+(MC) outperforms
or is equal to the strong baseline DEAL on 5 out of 6 datasets. On the CiteSeer dataset,
the VGAE+(MC) score is competitive only 1% less than DEAL. VGAE+ inference beats the
other single link prediction baselines. For joint link semi-inductive queries, VGAE+(MC)
outperforms or is equal to the strong baseline DEAL on 4 out of 6 datasets. On the IMDb
and CiteSeer datasets, the VGAE+(MC) score is only 2% less than DEAL.

AP

For the AP metric, similar to Single Neighbor Queries, VGAE+ is very competitive with
DEAL and GiGaMAE. In inductive joint link queries, VGAE+(Det) outperforms on
Photo dataset by 0.02 AP points. On ACM, and Computers datasets, VGAE+(MC) has
the best results. For Cora, IMDb, and CiteSeer, VGAE+ achieves the second best re-
sults compared to all baselines. For semi-inductive joint link queries, VGAE+(Det)
achieves the second best results on 3 out of 6 datasets (Cora, CiteSeer, and Computer), and
VGAE+(Det) achieves the second best results on 3 out of 6 datasets (ACM, IMDb, and
Photo). The reported AP results for both VGAE+(MC) and VGAE+(Det) are competitive
with DEAL and GiGaMAE on all 6 datasets.

5.3 Node Classification Queries

Tables 5.6, 5.7, and 5.8 show the AUC, AP, and F1-score macro scores for node classification
queries.

Single Node Queries Joint Node Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers

Semi-Inductive

VGAE+(Det) 0.977 0.715 0.789 0.957 0.973 0.948 0.977 0.668 0.634 0.959 0.910 0.824
VGAE+(MC) 0.986 0.701 0.842 0.930 0.946 0.986 0.980 0.471 0.568 0.960 0.959 0.909
GAT 0.861 0.876 0.813 0.907 0.967 0.951 0.893 0.526 0.621 0.896 0.889 0.866
GraphSAGE 0.740 0.477 0.580 0.911 0.863 0.804 0.677 0.416 0.460 0.907 0.840 0.626
GiGaMAE 0.920 0.823 0.890 0.842 0.963 0.941 0.932 0.604 0.529 0.852 0.871 0.500
MVGRL 0.888 0.708 0.788 0.807 0.963 0.980 0.853 0.715 0.767 0.815 0.953 0.892
DeepWalk 0.868 0.643 0.684 0.847 0.950 0.862 0.726 0.567 0.553 0.731 0.937 0.819

Inductive

VGAE+(Det) 0.974 0.540 0.821 0.976 0.958 0.965 0.961 0.641 0.780 0.961 0.912 0.890
VGAE+(MC) 0.986 0.693 0.856 0.924 0.976 0.987 0.954 0.695 0.796 0.922 0.890 0.886
GAT 0.790 0.812 0.724 0.865 0.902 0.896 0.870 0.446 0.668 0.826 0.806 0.784
GraphSAGE 0.970 0.973 0.797 0.900 0.970 0.980 0.877 0.416 0.460 0.907 0.840 0.626
GiGaMAE 0.906 0.604 0.501 0.850 0.778 0.847 0.932 0.513 0.482 0.850 0.778 0.730
MVGRL 0.650 0.804 0.684 0.550 0.835 0.801 0.614 0.679 0.632 0.534 0.892 0.827

Table 5.6: ROC-AUC results for node classification in semi-inductive and inductive settings.

5.3.1 Single Node Queries

In these queries, the task is to determine the class of the target node. (See Figure ??.)

36

Single Node Queries Joint Node Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers

Semi-inductive

VGAE+(Det) 0.807 0.706 0.784 0.846 0.875 0.811 0.883 0.718 0.798 0.858 0.783 0.803
VGAE+(MC) 0.712 0.650 0.614 0.803 0.892 0.840 0.652 0.513 0.685 0.790 0.846 0.790
GAT 0.628 0.590 0.605 0.686 0.719 0.445 0.679 0.502 0.486 0.661 0.643 0.500
GraphSAGE 0.445 0.615 0.485 0.780 0.475 0.480 0.531 0.519 0.432 0.790 0.483 0.465
GiGaMAE 0.855 0.615 0.687 0.785 0.884 0.699 0.848 0.549 0.613 0.820 0.766 0.502
MVGRL 0.669 0.501 0.561 0.518 0.892 0.749 0.574 0.501 0.532 0.526 0.849 0.707
DeepWalk 0.405 0.364 0.366 0.566 0.470 0.465 0.384 0.305 0.290 0.357 0.489 0.397

Inductive

VGAE+(Det) 0.862 0.796 0.752 0.892 0.893 0.921 0.933 0.756 0.798 0.918 0.823 0.819
VGAE+(MC) 0.882 0.763 0.754 0.866 0.886 0.946 0.783 0.753 0.745 0.774 0.892 0.912
GAT 0.685 0.514 0.668 0.720 0.680 0.415 0.479 0.434 0.518 0.542 0.598 0.445
GraphSAGE 0.669 0.490 0.460 0.782 0.488 0.580 0.408 0.470 0.462 0.739 0.529 0.569
GiGaMAE 0.810 0.595 0.604 0.815 0.850 0.680 0.759 0.500 0.648 0.889 0.753 0.500
MVGRL 0.510 0.520 0.457 0.411 0.796 0.650 0.426 0.462 0.417 0.491 0.727 0.609

Table 5.7: AP results for node classification in semi-inductive and inductive settings.

Single Node Queries Joint Node Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers

Semi-inductive

VGAE+(Det) 0.792 0.498 0.487 0.831 0.742 0.687 0.872 0.411 0.451 0.914 0.698 0.638
VGAE+(MC) 0.894 0.606 0.548 0.791 0.801 0.758 0.903 0.450 0.448 0.816 0.758 0.715
GAT 0.529 0.570 0.671 0.709 0.814 0.471 0.644 0.468 0.426 0.658 0.606 0.488
GraphSAGE 0.551 0.416 0.439 0.779 0.598 0.399 0.486 0.435 0.475 0.777 0.476 0.362
GiGaMAE 0.856 0.440 0.457 0.798 0.770 0.569 0.784 0.430 0.451 0.748 0.797 0.490
MVGRL 0.886 0.803 0.653 0.710 0.960 0.816 0.789 0.708 0.604 0.717 0.950 0.739
DeepWalk 0.700 0.632 0.650 0.700 0.850 0.750 0.856 0.605 0.787 0.632 0.851 0.663

Inductive

VGAE+(Det) 0.760 0.411 0.500 0.950 0.785 0.643 0.863 0.594 0.542 0.905 0.628 0.534
VGAE+(MC) 0.855 0.372 0.741 0.794 0.863 0.758 0.935 0.442 0.481 0.791 0.845 0.674
GAT 0.628 0.543 0.470 0.665 0.724 0.498 0.540 0.448 0.461 0.435 0.586 0.434
GraphSAGE 0.486 0.416 0.439 0.777 0.850 0.362 0.351 0.335 0.437 0.771 0.789 0.393
GiGaMAE 0.847 0.406 0.441 0.786 0.779 0.340 0.852 0.189 0.421 0.732 0.793 0.320
MVGRL 0.430 0.786 0.460 0.416 0.743 0.720 0.501 0.735 0.478 0.365 0.801 0.706

Table 5.8: F1-score macro results for node classification in semi-inductive and inductive
settings.

ROC-AUC

For inductive single node classification, VGAE+ achieves the top score on 5 out of 6
datasets. VGAE+(MC) outperforms on 4 datasets (Cora, IMDb, Photo, and Computers)
by almost 0.2 AUC points. GraphSAGE was designed for inductive node classification and
is accordingly a strong baseline, especially on the ACM dataset.

For semi-inductive single node classification, VGAE+ achieves the top score on 4 out
of 6 datasets. VGAE+(MC) outperforms on 2 datasets (Cora and Computers) by almost
0.12 AUC points. VGAE+(Det) outperforms on 4 datasets (CiteSeer and Photo) by almost
0.12 AUC points. The biggest improvement is observed on Cora, with 0.06 AUC points over
GiGaMAE. As with link prediction, single node classification in the semi-inductive setting
is the most extensively researched node classification setting, so I expect the baselines to
perform well.

AP

For the AP metric in inductive single node classification, VGAE+ achieves the top score
on all datasets. VGAE+(MC) outperforms on 3 datasets (Cora, IMDb, and Computers)
by almost 0.26 AP points on Computers. VGAE+(Det) outperforms on 3 datasets (ACM,
CiteSeer, and Photo) by almost 0.2 AP points on ACM.

37

For semi-inductive single node classification, VGAE+ achieves the top score on 5 out
of 6 datasets. VGAE+(MC) outperforms on 2 datasets (Photo and Computers) by almost
0.1 AP points. VGAE+(Det) outperforms on 3 datasets (ACM, IMDb, and CiteSeer) by
almost 0.1 AP points on IMDb.

F1-Score macro

For the F1-Score macro metric in inductive single node classification, VGAE+(MC)
achieves the top score on 5 out of 6 datasets, by almost 0.2 on IMDb.

For semi-inductive single node classification, VGAE+ achieves the top score on 2
out of 6 datasets. VGAE+(Det) on Cora by 0.03 points and VGAE+(MC) on CiteSeer by
0.12 points. On the 4 remaining datasets, GAT outperforms on IMDb by 0.13 points, and
MVGRL outperforms on Photo and Computers by at most 0.16 points.

5.3.2 Joint Node Queries

In these queries, the task is to determine the class of the neighbors of the target node. (See
Figure ??.)

ROC-AUC

For inductive joint node classification, VGAE+(Det) achieves a higher score than the
baseline methods on 4 out of 6 datasets, especially on CiteSeer (at least 0.06 AUC points).
On ACM, the strong node classification baseline MVGRL achieves a higher score. Similarly,
in the semi-inductive joint node classification setting, VGAE+ has a higher score than
the baselines on 4 out of 6 datasets. The improvement is strongest on CiteSeer (0.06 over
GraphSAGE). MVGRL is exceptionally strong in the semi-inductive setting on ACM and
IMDb.

AP

For the AP metric in inductive joint node classification, VGAE+ achieves the top score
on all datasets. VGAE+(Det) outperforms on 4 datasets (Cora, ACM, IMDb, and CiteSeer)
by almost 0.26 AP points on ACM. VGAE+(MC) outperforms on 2 datasets (Photo and
Computers) by almost 0.31 AP points on Computers.

For semi-inductive joint node classification, VGAE+(Det) achieves the top score on
5 out of 6 datasets (all datasets except for Photo) by almost 0.18 AP points on IMDb.
MVGRL outperforms VGAE+ on Photo by only 0.003 AP points.

F1-Score macro

For the F1-Score macro metric in inductive joint node classification, VGAE+ achieves
the top score on 4 out of 6 datasets. VGAE+(MC) outperforms on 2 datasets (Cora and

38

Photo) by almost 0.08 points on Cora. VGAE+(Det) outperforms on 2 datasets (IMDb and
CiteSeer) by almost 0.17 points on CiteSeer. MVGRL outperforms on ACM and Computers
by 0.13 points.

For semi-inductive joint node classification, VGAE+ achieves the top score on 2 out
of 6 datasets (VGAE+(MC) on Cora by 0.05 points and VGAE+(Det) on CiteSeer by 0.13
points), and is competitive on the remaining datasets. DeepWalk outperforms on IMDb by
0.33 points, and MVGRL outperforms on ACM, Photo, and Computers by at most 0.25
points on ACM.

5.4 Subgraph Queries vs. Node Classification and Link Pre-
diction

Reviewing the results of inductive subgraph prediction in terms of link prediction and
node classification, I observe that the high score of VGAE+(MC) on IMDb is due to its
excellent score on joint node classification. On the ACM dataset, VGAE+(MC) achieves
strong subgraph prediction through a high joint link prediction score. The strong AUC
score on Computers is due to both high joint node classification scores and high joint link
prediction scores.

Overall, my experiments provide strong evidence that VGAE+ achieves an excellent
balance between predicting links and node labels across different query types. For single
query types (e.g., link prediction), predictive performance is very competitive with custom
baselines.

5.5 Ablation Study

5.5.1 Objective Function

Table 5.9 examines the importance of the components of our new training objective, Equa-
tion 3.2, for VGAE+. Table 5.9a shows that not reconstructing the node features leads to
worse scores, especially on the IMDb and Computers datasets. This is remarkable since
the neighborhood queries do not contain node features as a target. Table 5.9b shows the
importance of using features and labels in link prediction task. By setting β and γ zeroes,
the objective function will be similar to VGAE objective function, and the results shows are
for link prediction task. This table shows the effect of reconstructing the node features and
node labels on link prediction task. Also Table 5.9c shows that turning off label reconstruc-
tion (γ = 0) and link reconstruction (α = 0) leads to worse scores for node classification
task. The strong performance of VGAE+ highlights the value of using both node features
(node labels and node features) and graph structure (links) as co-training objectives that
improve both node classification and link prediction.

39

Single Neighbor Queries Neighborhood Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers
VGAE+(Det) 0.932 0.751 0.880 0.963 0.947 0.945 0.858 0.797 0.824 0.943 0.885 0.886
(β = 0) 0.749 0.782 0.843 0.879 0.864 0.856 0.719 0.675 0.660 0.715 0.788 0.785

(a) AUC results for β=0

Single Link Queries Joint Link Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers
VGAE+(Det) 0.891 0.963 0.939 0.950 0.936 0.925 0.754 0.954 0.867 0.925 0.857 0.821
(β = 0, γ = 0) (VGAE) 0.874 0.895 0.876 0.927 0.970 0.943 0.742 0.752 0.736 0.898 0.846 0.844

(b) AUC results for β=0 and γ=0; this setting corresponds to the traditional VGAE model.

Single Node Queries Joint Node Queries

Cora ACM IMDb CiteSeer Photo Computers Cora ACM IMDb CiteSeer Photo Computers
VGAE+(Det) 0.974 0.540 0.821 0.976 0.958 0.965 0.961 0.641 0.780 0.961 0.912 0.890
(β = 0, α = 0) 0.798 0.690 0.687 0.801 0.780 0.795 0.907 0.654 0.667 0.775 0.683 0.691

(c) AUC results for β=0 and α=0

Table 5.9: Ablation Study on the training objective 3.2.

5.5.2 Iterative Joint Link Prediction

For the joint link prediction setting, all reported results assume that links are i.i.d. (inde-
pendent and identically distributed), given the node embeddings, so I predict them all at
once. Another approach to joint link prediction is to predict links one by one using the
chain rule with a random ordering. If we assume that we have m target links in our query,
A[u1, v1], ...,A[um, vm] ∈ AY , then instead of P (AY |E), the output will be calculated using
chain rule:

P (AY |E) = P (A[u1, v1]|E) × P (A[u2, v2]|E,A[u1, v1]) × ...×

P (A[um, vm]|E,A[u1, v1], ...,A[um−1, vm−1])
(5.1)

Table 5.10 shows the results for iterative inductive link prediction. As we can see, using
the chain rule and predicting links iteratively usually gives better results (for 5 out of
6 datasets with AUC improvement in the range of 0.01 to 0.06). Although there is an
improvement with this method, it takes a lot of inference time and memory. While I used 100
test nodes for evaluating our model previously, with my available computational resources,
it was only possible to use 10 test nodes with iterative joint link prediction. To give a
sense of the difference, for the densest Computers dataset, sampling 10 node embeddings
takes about 30 times longer than the proposed approach in the thesis (316.03s/query for
VGAE+(iterative) vs. 9.09s/query for VGAE+). Even for ACM, which is a sparse dataset,
sampling 10 node embeddings takes about 5 times longer than the proposed approach in the
thesis (16.23s/query for VGAE+(iterative) vs. 3.02s/query for VGAE+). The time overhead
varies based on the average number of target links for the evaluation dataset. For example,

40

Joint Link Queries

Cora ACM IMDb CiteSeer Photo Computers
VGAE+ 0.761 0.916 0.919 0.937 0.930 0.940
VGAE+(iterative) 0.723 0.979 0.937 0.998 0.965 0.956

Table 5.10: ROC-AUC results for iterative joint link prediction

the average number can be as small as 6 for ACM, which is a sparse graph, and can be as
large as 30 for Computers, which is a dense graph.

41

Chapter 6

Conclusion and Future Work

6.1 Conclusion

A subgraph prediction query asks for the probability of a target subgraph, which is a set of
nodes and links in the graph, given the information from an evidence subgraph. Supporting
inference to answer subgraph queries (SQs) is a new use case for deep Graph Generative
Models (GGMs). Such a query answering system facilitates applying graph prediction in
a production environment where multiple users pose a range of queries to be answered.
In this research, I showed how VGAE+ model can be used to answer SQs in zero-shot
manner, without retraining the model. Bayesian optimization was effective in balancing the
relative importance of modeling links, node features, and node labels in a dataset-dependent
manner. I conducted an empirical evaluation on six benchmark datasets and a range of test
queries. The application of joint prediction from a single VGAE yielded higher accuracy
than baseline methods that predict graph components independently.

6.2 Limitation and Future Works

Limitations. A limitation of this evaluation is that I considered only homogeneous graphs
with a single link type. Deterministic and MC inference can be straightforwardly extended
to knowledge graphs using a relational VGAE model.

Future Work. While the VGAE is a well-established GGM for a single training graph,
other GGMs, especially auto-regressive and diffusion models, are known to have greater
modeling power to capture complex correlation patterns in graphs [23]. Leveraging the
greater expressive power of these GGMs to improve subgraph predictions over VGAE+ is a
fruitful direction for future research, especially if they can be trained on single graph inputs.

A valuable direction for future research is to enhance the model’s ability to differentiate
between links explicitly specified as absent in the query and unspecified links. In the current
study, the model treats absent links as non-existent. This is a simplification that facilitates
leveraging graph neural networks, but potentially leads to lower accuracy for SQs involving

42

absent links. A promising approach would involve representing unspecified links as missing
values in the adjacency matrix, thereby distinguishing them from absent links.

Another promising direction for future work is to design the model to use only a spe-
cific subgraph around the target subgraph instead of the entire input graph as evidence.
While this approach might miss some information, it would be computationally efficient.
Additionally, since most GNNs usually use at most 5-hop neighbors for nodes to generate
embeddings, selecting an appropriate subgraph could still yield good embeddings.

Finally, another valuable direction related to subgraph prediction is to apply inference
from a model to find the most likely subgraph given the evidence.

43

Bibliography

[1] Emily Alsentzer, Samuel Finlayson, Michelle Li, and Marinka Zitnik. Subgraph neural
networks. NeurIPS, 2020.

[2] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive
survey of graph embedding: Problems, techniques, and applications. IEEE transactions
on knowledge and data engineering, 2018.

[3] Pedro Domingos and Daniel Lowd. Markov Logic: An Interface Layer for Artificial
Intelligence. Morgan and Claypool Publishers, 2009.

[4] Faezeh Faez, Yassaman Ommi, Mahdieh Soleymani Baghshah, and Hamid R Rabiee.
Deep graph generators: A survey. IEEE Access, 2021.

[5] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor.
Cypher: An evolving query language for property graphs. ACM, 2018.

[6] Michael Galkin, Zhaocheng Zhu, Hongyu Ren, and Jian Tang. Inductive logical query
answering in knowledge graphs. NeurIPS, 2022.

[7] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.
ACM, 2016.

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. NeurIPS, 2017.

[9] William L Hamilton. Graph representation learning. Morgan & Claypool Publishers,
2020.

[10] Yu Hao, Xin Cao, Yixiang Fang, Xike Xie, and Sibo Wang. Inductive link prediction
for nodes having only attribute information. IJCAI, 2020.

[11] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation
learning on graphs. ICML, 2020.

[12] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph trans-
former. ACM, 2020.

[13] Bert Huang, Angelika Kimmig, Lise Getoor, and Jennifer Golbeck. Probabilistic soft
logic for trust analysis in social networks. International Workshop on StarAI, 2012.

[14] Przemyslaw Kazienko and Tomasz Kajdanowicz. Label-dependent node classification
in the network. Neurocomputing, 2012.

44

[15] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. CoRR, 2013.

[16] Thomas N Kipf and Max Welling. Variational graph auto-encoders. NeurIPS, 2016.

[17] Zhida Li, Ana Laura Gonzalez Rios, and Ljiljana Trajković. Machine learning for
detecting anomalies and intrusions in communication networks. IEEE Journal on
Selected Areas in Communications, 2021.

[18] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton,
David Duvenaud, Raquel Urtasun, and Richard Zemel. Efficient graph generation with
graph recurrent attention networks. NeurIPS, 2019.

[19] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social net-
works. ACM, 2003.

[20] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-
based recommendations on styles and substitutes. ACM, 2015.

[21] Nikhil Mehta, Lawrence Carin Duke, and Piyush Rai. Stochastic blockmodels meet
graph neural networks. ICML, 2019.

[22] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization.
ECML, 2011.

[23] Parmis Naddaf, Erfaneh Mahmoudzaheh Ahmadi Nejad, Kiarash Zahirnia, Manfred
Jaeger, and Oliver Schulte. Joint link prediction via inference from a model. CIKM,
2023.

[24] Fernando Nogueira. Bayesian Optimization: Open source constrained global optimiza-
tion tool for Python, 2014.

[25] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. ACM, 2014.

[26] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF. W3C
Recommendation, 2008.

[27] Ryan A Rossi, Rong Zhou, and Nesreen K Ahmed. Deep inductive graph representation
learning. IEEE, 2018.

[28] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and
Tina Eliassi-Rad. Collective classification in network data. The AI Magazine, 2008.

[29] Yucheng Shi, Yushun Dong, Qiaoyu Tan, Jundong Li, and Ninghao Liu. Gigamae:
Generalizable graph masked autoencoder via collaborative latent space reconstruction.
ACM, 2023.

[30] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small
graphs using variational autoencoders. ICANN, 2018.

[31] Jianheng Tang, Fengrui Hua, Ziqi Gao, Peilin Zhao, and Jia Li. Gadbench: Revisiting
and benchmarking supervised graph anomaly detection. NeurIPS, 2024.

45

[32] Komal Teru, Etienne Denis, and Will Hamilton. Inductive relation prediction by sub-
graph reasoning. ICML, 2020.

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks. ICLR, 2018.

[34] João Vitorino, Isabel Praça, and Eva Maia. Sok: Realistic adversarial attacks and
defenses for intelligent network intrusion detection. Computers & Security, 2023.

[35] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang,
Xing Xie, and Minyi Guo. Graphgan: Graph representation learning with generative
adversarial nets. AAAI, 2018.

[36] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li,
and Zheng Zhang. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

[37] Zongqian Wu, Mengmeng Zhan, Haiqi Zhang, Qimin Luo, and Kun Tang. Mtgcn: A
multi-task approach for node classification and link prediction in graph data. Infor-
mation Processing & Management, 2022.

[38] Shunxin Xiao, Shiping Wang, Yuanfei Dai, and Wenzhong Guo. Graph neural networks
in node classification: survey and evaluation. Machine Vision and Applications, 2022.

[39] Tian Xie, Bin Wang, and C-C Jay Kuo. Graphhop: An enhanced label propagation
method for node classification. IEEE, 2022.

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? ICLR, 2019.

[41] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.
Graph transformer networks. NeurIPS, 2019.

[42] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. GraphSAINT: Graph sampling based inductive learning method. ICLR,
2020.

[43] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks.
NeurIPS, 2018.

[44] Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural
networks. ICLR, 2020.

[45] Zijia Zhang, Yaoming Cai, and Wenyin Gong. Semi-supervised learning with graph
convolutional extreme learning machines. Expert Systems with Applications, 2023.

[46] Xiaojin Zhu Zhuxj, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning
using gaussian fields and harmonic functions. ICML, 2003.

46

Appendix A

Additional Information and
Examples

A.1 Code

You can access the code for VGAE+ in the following GitHub repository.

A.2 Examples For All Queries

In this section, I give some examples of all the query types that have been used in this
research.

A.2.1 Inductive Query Examples

In the inductive setting, the target node u should belong to Vte. For all the links in AY , at
least one node for each link belongs to Vte. Also, at least one node in LY belongs to Vte.

Subgraph Queries

All the reported results for VGAE+ are in this setting (Chapter 5). VGAE+ answers link
prediction tasks and node classification tasks at the same time. The objective function
(Equation 3.2) trains the model to answer link prediction and node classification at the
same time. Section 5.1 shows these joint results. To our knowledge, there is no other model
that answers subgraph queries. Other baselines that I have used to evaluate my model in
Section 5.1 (GAT, GraphSAGE, and GiGaMAE) generate embeddings for one task, either
link prediction or node classification, and are trained separately for each task with different
objective functions. Then, the average of link prediction and node classification ROC-AUC
and AP results are reported.

47

https://github.com/erfmah/Answering_Graph_Queries

(a) Input graph (b) Neighborhood query. (c) The output of the model.

An example of Inductive Neighborhood Query

Input graph Single Neighbor Query The output of the model

An example of Inductive Single Neighbor Query.

Link Queries

Figure ?? shows example of inductive joint link prediction queries, and Figure ?? show
example of inductive single link prediction query that we have used for our link prediction
baselines (SEAL, GAT, GraphSAGE, GiGaMAE, and DEAL) in Section 5.2.

Input graph Joint Link Query. The output of the model.

An example of Inductive Joint Link Query

Node Queries

Figure ?? show examples of inductive joint node classification queries and Figure ?? show
examples of inductive single node classification queries that we have used for our node
classification baselines (GAT, GraphSAGE, GiGaMAE, DeepWalk and MVGRL) in Section
5.3.

48

(a) Input graph Single Link Query The output of the model

An example of Inductive Single Link Query.

Input graph Joint Node Query The output of the model

An example of Inductive Joint Node Query.

A.2.2 Inductive Query Examples

For inductive queries the only difference is that all the target nodes in LY and AY should
belong to Vte. For semi-inductive setting all the target nodes in LY and AY can belong to
Vte or Vtr .

49

(a) Input graph (b) Single Node Query (c) The output of the model

An example of Inductive Single Node Query.

50

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Overview
	Background and Definitions
	Graphs
	Inductive, Semi-inductive and Transductive Training Methods
	Graph Queries
	Variational Auto-Encoders

	Overview of Thesis
	Motivation
	Approach
	Evaluation
	Contributions

	Related Works
	Graph Queries
	Inductive Graph Training
	Graph Generative Models
	Link Prediction
	Node Classification
	Two-Task GNNs
	Subgraph Classification

	Method and Approach
	Problem Statement
	Example of Semi-Inductive Subgraph Queries

	Model Definition
	Augmented VGAE Generative Model
	Implementation

	Subgraph Inference from a VGAE Model
	Inference Models

	Experiments
	Datasets
	Data Preprocessing
	Test Query Design
	Metrics
	Metrics for Subgraph Queries
	Metrics for Link Queries
	Metrics for Node Queries

	Experimental Setup
	Baselines
	Two-Task Methods
	Link Prediction Baselines
	Node Classification Baselines
	Baseline Setup

	Results
	Subgraph Queries
	Single Neighbor Queries
	Neighborhood Queries

	Link Prediction Queries
	Single Link Queries
	Joint Link Queries

	Node Classification Queries
	Single Node Queries
	Joint Node Queries

	Subgraph Queries vs. Node Classification and Link Prediction
	Ablation Study
	Objective Function
	Iterative Joint Link Prediction

	Conclusion and Future Work
	Conclusion
	Limitation and Future Works

	Bibliography
	Appendix Additional Information and Examples
	Code
	Examples For All Queries
	Inductive Query Examples
	Inductive Query Examples

