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Abstract

Life-history traits, such as those determining an organism’s fecundity (the parameter r) and

ability to compete for resources (the parameter K) demonstrate unique eco-evolutionary

feedback loops due to their direct relationship to individual fitness. Classic theory holds

that in a constant environment, evolution will maximise an individual’s competitive ability.

However, many environments undergo seasonal changes which may alter these evolution-

ary pressures. Spatial heterogeneity in seasonal disruptions may result in local adaptation

and spatial polymorphisms of these life-history traits. In this thesis, I consider life-history

evolution in a Lotka-Volterra model with three different types of seasonal perturbations:

fluctuating death rates, fluctuating resource levels, and repeated, sudden crashes in popula-

tion size. Using asymptotic approximations and Floquet analysis on the long-term periodic

solutions, I show that fluctuating resources cannot change the evolutionary outcome, but

that sufficiently harsh population crashes or fluctuating death rates will favour increased fe-

cundity over competitive ability. Finally, I apply both a deterministic impulsive differential

equation model and stochastic simulations to study local adaptation of an island popula-

tion to periodic population crashes in an island-mainland model. I find that local adaptation

favouring r-selected individuals once again arises when conditions are sufficiently harsh, but

not so harsh that the island population cannot be sustained in the absence of migration.

Keywords: life history; local adaptation; eco-evolutionary dynamics; seasonality; r/K se-

lection; population genetics models

iii



Dedication

To my mom, whose passion for science is the reason I am where I am today.

iv



Acknowledgements

First and foremost I would like to start by thanking my supervisor, Ailene MacPherson, for

all of her support over the last two years. An additional thanks must go to Ben Ashby for

his feedback on this thesis. I would also like to express my gratitude to all my lab mates for

their feedback on my presentations and writing, as well as for their support.

A big thanks to all the undergraduate professors who encouraged me to continue on

with my studies. Thank you especially to Daniel Charlebois for giving me my first research

opportunities and to Jay Newby for introducing me to the field of mathematical biology.

J’aimerais aussi remercier Filsan Ahmed Youssouf, dont le cours de calcul est la raison pour

laquelle j’ai fait mon baccalauréat en mathématiques. Or in English, I would also like to

thank Filsan Ahmed Youssouf, whose calculus course is the reason I started my bachelor’s

degree in mathematics.

I also have so much gratitude for all my friends and family. Thank you to everyone in

my office for making such an amazing community here at SFU. Thank you to Elisha and

Kirsten for always being there to pick me up whenever I visited home, both figuratively and

literally from the airport. Thank you to Maddy for her constant support and for pushing

me to become a better writer. Thank you to Josiah for always grounding me in what’s most

important. Thank you to my grandparents, who have done so much to support my education.

And finally, thank you to my parents. You have worked so hard to help me become a person

who could leave and do interesting things, for which I am eternally grateful. I hope you

know that no matter how far I go, I’ll always come back.

v



Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Literature Review 3

2.1 Life-history theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 A framework for modelling life-history evolution . . . . . . . . . . . 3

2.1.2 Choosing a model: discrete vs. continuous time . . . . . . . . . . . . 4

2.1.3 Density-dependent fitness and density-dependent selection . . . . . 7

2.1.4 Life-history trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.5 Quantitative traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Density-dependent selection in temporally-variable environments . . . . . . 10

2.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Evolution in periodic environments . . . . . . . . . . . . . . . . . . 10

2.2.3 Evolution in noisy environments . . . . . . . . . . . . . . . . . . . . 13

vi



2.2.4 Examples of environmental variation . . . . . . . . . . . . . . . . . . 16

2.3 Density-dependent selection in spatially-structured environments . . . . . . 18

2.3.1 Life-history and local adaptation . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Life-history trade-offs during range expansion . . . . . . . . . . . . . 19

2.4 Applications to conservation and management . . . . . . . . . . . . . . . . . 20

3 Single-population life-history evolution under seasonal conditions 21

3.1 Single population model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Seasonal population crashes: an impulsive differential equation approach . 23

3.3 Floquet analysis for continuous disruptions . . . . . . . . . . . . . . . . . . 25

3.4 Continuous seasonal variations in death rates . . . . . . . . . . . . . . . . . 27

3.5 Continuous seasonal variations in resource levels . . . . . . . . . . . . . . . 31

4 Local adaptation to seasonal population crashes 35

4.1 Island-mainland model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Floquet analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Estimating the polymorphic solution . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Calculating local adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Effective population size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Finite population model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Conclusion 46

Bibliography 49

Appendix A Introductory Models 55

A.1 Patterns of density dependence in the logistic growth model . . . . . . . . 55

A.2 Density dependence of viability . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.2.1 Discrete-time model . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.2.2 Continuous-time model . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.3 Polymorphisms in a periodic environment . . . . . . . . . . . . . . . . . . . 59

Appendix B Mathematica analysis of island-mainland model 62

vii



List of Tables

Table 4.1 Birth, death, and migration rates. . . . . . . . . . . . . . . . . . . . . 45

viii



List of Figures

Figure 2.1 Density-dependent selection on r versus K traits. The fit-

nesses of a high-r/low-K A allele and a high-K/low-r a allele as

a function of population density (N). While the absolute fitness of

both traits decreases with increasing N , the high-r allele becomes

steadily less advantageous and eventually deleterious as determined

by its fitness relative to that of the high-K allele. Parameter values

are as follows: rA = 0.8, ra = 0.4, KA = 6000, and Ka = 12 000. . . 4

Figure 2.2 Dynamics of population size and allele frequency in a discrete-

time haploid model. Parameter values are as follows: rA = 0.8,

ra = 0.6, KA = 11 000, and Ka = 12 000, N(0) = 100, p(0) = 0.9.

Allele frequency is of the high-r allele A. . . . . . . . . . . . . . . . 5

Figure 2.3 Single life-cycle for a haploid population with survival. Ni

is the number of individuals with allele i, NT is the total population

size, and K, b, and V represent carrying capacity, birth rate, and

viability respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.4 Selection coefficients for individual life history traits of b/V/K

growth model for a haploid population. Parameter values are

as follows: when only viability differs, VA = 0.5 and Va = 0.8; when

only birth rate differs, bA = 0.5, ba = 0.8, and K = 12 000; when

only carrying capacity differs, KA = 6000, Ka = 12 000, and b = 0.8.

In all cases, allele frequency was p = 0.5. . . . . . . . . . . . . . . . 8

ix



Figure 3.1 Summary of single population results. The general model (top

left) can be varied according to three different traits: the proportion

of individuals removed from the population at the end of a season

(δ); the death rate (d); and the growth limit, or resources available

(Xi). The death rate and growth limit are varied seasonally by incor-

porating a periodic function, ϵh(t), which creates seasons with good

conditions and seasons with harsh conditions. Example functions are

shown in the top right. . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.1 Stability of p̂(t) = 0 under different environmental condi-

tions. Stability is given by the sign of λ in Eq. 4.3. When λ < 0

(grey), then p̂(t) = 0 is stable, hence the high-r A allele is driven

to extinction on the island and no local adaptation occurs. When

λ > 0 (turquoise), then p̂(t) = 0 is unstable, hence the A allele

persists and the island population is locally adapted relative to the

mainland. Stability was calculated across different degrees of envi-

ronmental harshness (δ) and baseline death rates (d). The death rate

was allowed to range from 0 to ba. For a given d, δ values were chosen

to be below the A extinction criterion (black line), the maximum δ

such that a single population of A allele individuals is still viable

(Eq. 3.3). Above this value (white region), the island population is

a sink sustained only by migration from the mainland. A similar

extinction criterion for the a allele is indicated by the dotted line

(Eq. 3.3), indicating the maximum δ such that a single population

of a allele individuals would be viable. The blue line marks the min-

imum value of δ required for selection to favour the high-r allele in

the single population case, as given by Eq. 3.4. Parameters were as

follows: (A) bA = 0.25, ba = 0.2, XA = 500, Xa = 1000, M = 1; (B)

bA = 0.25, ba = 0.2, XA = 5000, Xa = 10000, M = 1. . . . . . . . . 39

x



Figure 4.2 Degree of local adaptation due to seasonal disruptions. Mea-

sure of local adaptation is calculated according to Eq. 4.4. Black lines

mark the point where the p̂ = 0 steady state changes from stable to

unstable, calculated numerically from the deterministic model. For

both the deterministic and stochastic models, local adaptation on the

island is positive at the beginning of the season. Towards the end of

the season, local adaptation becomes negative in less harsh environ-

ments, indicating maladaptation. Parameters: bA = 0.25, ba = 0.2,

XA = 5000, Xa = 10000, M = 1. Stochastic simulations were ini-

tialised with NA = 1000 and Na = 1000, and had a run time of

300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4.3 Product of the selection coefficient and the effective popula-

tion size. For values near or less than 1, selection is considered weak

relative to neutral drift. sNe was not calculated in the parameter re-

gion where the island is a sink (white). Note values are shown on a

log scale. Parameters: bA = 0.25, ba = 0.2, XA = 5000, Xa = 10000,

M = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xi



Chapter 1

Introduction

The fields of ecology and evolution are inextricably linked: ecological pressures mediate

selection on phenotypes according to their relative fit to an environment. How ecology shapes

evolution is critical to informing theoretical and predictive frameworks for understanding

evolutionary processes. Life-history theory aims to understand this link between ecology and

evolution by examining how traits which determine demography—that is, those relating to

reproduction, growth, and mortality—evolve under specific environmental conditions and

how this gives rise to the observed diversity of life history traits across environments and

species [58].

Classic theory holds that in a constant environment, long-term evolution will maximise

competitive ability even at the cost of reproductive ability [39]. However, this may not be

the case in the presence of noisy or seasonal environments. Seasonal disruptions can come

in a variety of forms. A population may undergo sudden, recurring population crashes,

such as a population of pathogens exposed to regular doses of an antimicrobial drug [69].

Alternatively, disruptions may change continuously over time, with good seasons and harsh

seasons due to changing mortality or resource levels [6, 14]. In many cases, populations

exist in multiple environments with different seasonal patterns [12]. This may result in local

adaptation, in which a population adapts to its local environmental conditions, often at the

expense of its success in other environments [5].

Roughgarden (1971) considered seasonal population crashes in the context of overwin-

tering, where there are a limited number of available spaces for hibernation, forcing the

population down to a fixed size after each winter. Using a discrete-time model, they showed
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that such seasonal forcings could be sufficient for high-reproductive strategies to persist in a

population. The goal of this thesis is to expand this theory to a continuous-time framework

and consider additional forms of seasonal disruptions. Additionally, I seek to understand

how local adaptation of life-history traits is shaped by seasonal disruptions by introducing

spatial structure.

In Chapter 2, I give a review of the literature on life-history theory and selection in

temporally-variable and spatially-structured environments. In Chapter 3, I consider evo-

lution of life-history traits in a single population subject to three different seasonal per-

turbations: regular population crashes, periodically-changing death rates, and periodically-

changing resource levels. In Chapter 4, I use both deterministic analysis and stochastic

simulations to study local adaptation of life-history traits to an island experiencing sea-

sonal population crashes. I conclude in Chapter 5 with an overview of my results and a

discussion of limitations and future work.
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Chapter 2

Literature Review

2.1 Life-history theory

2.1.1 A framework for modelling life-history evolution

The framework of r- vs. K- selection has been a foundational concept in the development

of life-history theory. MacArthur and Wilson (1967) first introduced this framework by de-

scribing the colonisation of an island [40]. Initially, resources on the island are abundant

and there is no need for competition, thus organisms with a high rate of reproduction (r-

selected) will begin to take over. However, with time the population will grow, depleting

local resources and increasing competition for these resources. This results in a shift in the

selection exerted on the population as those with a greater competitive ability (K-selected)

will prevail [52]. The theory of r- vs. K- selection is thus one of density-dependent se-

lection, where changes in the population density mediates the direction and strength of

natural selection and therefore evolution [43]. The two life-history strategies show contrast-

ing patterns of density dependence, with the fitness advantage of high rates of reproduction

decreasing with increasing density (negative density-dependence) while the fitness advan-

tage of high competitive ability increases with density (positive density-dependence), as

shown in Figure 2.1 [53].

Anderson (1971), Charlesworth (1971), and Roughgarden (1971) presented some of the

earliest mathematical models of density-dependent selection, which quantified MacArthur

and Wilson’s scenario described above: assuming a constant environment, individuals with

a high competitive ability—that is, a large K—would prevail [2, 8, 53]. This can be seen

in Figure 2.2. For a more in-depth analysis of these patterns of density dependence, see

3
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Figure 2.1: Density-dependent selection on r versus K traits. The fitnesses of a high-r/low-K
A allele and a high-K/low-r a allele as a function of population density (N). While the absolute
fitness of both traits decreases with increasing N , the high-r allele becomes steadily less advantageous
and eventually deleterious as determined by its fitness relative to that of the high-K allele. Parameter
values are as follows: rA = 0.8, ra = 0.4, KA = 6000, and Ka = 12 000.

Appendix A.1. These early observations highlighted how the selective advantages of certain

traits may depend on the environment: ecology influences evolution [52].

2.1.2 Choosing a model: discrete vs. continuous time

An important consideration when modelling density-dependent selection is the choice be-

tween modelling in discrete versus continuous time. Continuous-time life-history models are

appropriate for systems where reproduction among individuals is asynchronously occur-

ring throughout time. Continuous-time models are formulated using differential equations.

Discrete-time models, which are formulated using difference equations, capture systems

with synchronous reproduction and mortality events. Analogous continuous and discrete

models which use the same values for growth, carrying capacity, or other relevant parame-

ters will display similar behaviours, such as having the same equilibria, but can otherwise

differ in their behaviour, reflecting fundamental differences in the underlying biological pro-

cesses [41]. They also differ in the available mathematical analyses and hence their mathe-

matical tractability. Although analogous models will have the same equilibria, the stability

of these equilibria will not necessarily be the same. Discrete models have been shown to be
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Figure 2.2: Dynamics of population size and allele frequency in a discrete-time haploid
model. Parameter values are as follows: rA = 0.8, ra = 0.6, KA = 11 000, and Ka = 12 000,
N(0) = 100, p(0) = 0.9. Allele frequency is of the high-r allele A.

generally less stable than continuous models; while stability in a discrete model will imply

stability in the analogous continuous model, the reverse is not necessarily true [41].

Discrete and continuous models also use different definitions of fitness. Discrete models

use the Wrightian definition of fitness (Wi):

N t+1
i = WiN

t
i .

Here Wi can be interpreted as the number of individuals with genotype i there will be in the

next generation for every one individual having genotype i in the previous generation [49].

These difference equations may be rewritten in terms of the change in the total population

size (N) and in the frequency of a given allele (p). Then the selection coefficient (S) for

that allele is defined by the equation:

pt+1 − pt = Spt(1 − pt).

For a biallelic, haploid population, the discrete selection coefficient for the A allele would

be given by:

SA = WA − Wa

W̄
,
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where:

W̄ = WApt + Wa(1 − pt).

The continuous analogue of Wrightian fitness is Malthusian fitness (mi):

dNi

dt
= miNi.

Malthusian fitness is interpreted as the continuous growth rate of the genotype i pop-

ulation [49]. Once again, the differential equation model can be rewritten as differential

equations for the total population density (N) and allele frequency (p), and the selection

coefficient (S) is defined by:
dp

dt
= Sp(1 − p).

The continuous selection coefficient for the A allele in a biallelic, haploid population is given

by:

SA = mA − ma.

Both Wi or mi may be functions of N (density-dependent), of p (frequency-dependent),

or both. The patterns of density- or frequency-dependence between analogous discrete and

continuous fitnesses (and their corresponding selection coefficients) will often be the same

(see Appendix A.2.2 for example). The relationship between the Wrightian fitness (W ) in a

discrete model and the Malthusian fitness (m) of the analogous continuous model is given

by the logarithmic transformation [10, 49]:

m = ln W.

This nonlinear relationship can result in differences in the behaviour of the discrete model

as opposed to the continuous. However, these differences become less as selection becomes

weaker. In this case, the relationship between m and W becomes approximately linear, and

the behaviour of the analogous discrete and continuous models will more closely resemble

each other [10, 49].

6
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Figure 2.3: Single life-cycle for a haploid population with survival. Ni is the number of
individuals with allele i, NT is the total population size, and K, b, and V represent carrying capacity,
birth rate, and viability respectively.

2.1.3 Density-dependent fitness and density-dependent selection

The terms “r-selection” and “K-selection” are derived from the classic formulation of the

logistic model of population growth in which r is the intrinsic growth rate of the population

and K is its carrying capacity. While this is the most frequently used model of density-

dependent selection, it does not capture the full range of density-(in)dependence acting

on traits. To facilitate a full contrast between positive and negative density-dependent

and density-independent selection let us consider an extension of the classic logistic model

(shown in Figure 2.3) with three life-history traits: birth rate (b), viability (V ), and carrying

capacity (K). Using the life-cycle shown in Figure 2.3, we consider a population that first ex-

periences a growth/reproduction step in which individuals reproduce in a density-dependent

manner as a function of their genotype i according to the classic logistic growth model (with

the growth rate r replaced with a birth rate b). Following this growth phase, individuals

must survive the remainder of the season/year and do so with a genotype-dependent prob-

ability Vi. Incorporating these two steps into a single equation, we have that the number of

individuals carrying allele i after a single time step is given by:

N t+1
i = Vi

[
1 + bi

(
1 − N t

T

Ki

)]
N t

i . (2.1)
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Figure 2.4: Selection coefficients for individual life history traits of b/V/K growth model
for a haploid population. Parameter values are as follows: when only viability differs, VA = 0.5
and Va = 0.8; when only birth rate differs, bA = 0.5, ba = 0.8, and K = 12 000; when only carrying
capacity differs, KA = 6000, Ka = 12 000, and b = 0.8. In all cases, allele frequency was p = 0.5.

where N t
T is the total population size which includes individuals with all possible alleles. A

more detailed description of the model can be found in Appendix A.2.1.

This extension reveals an instance where a trait which confers fitness in a density-

dependent manner does not experience density-dependent selection (shown in Figure 2.4).

Birth rate and carrying capacity display both density-dependent fitness and selection as

in the logistic model, but this is not the case for viability. While fitness is still density-

dependent, when only the viability is allowed to differ between alleles, the selection coeffi-

cient is independent of the population size (see Appendix A.2.1 for proof).

2.1.4 Life-history trade-offs

Much of life-history theory relies on the presence of trade-offs between different life-history

traits [43]. Without trade-offs, long-term evolution would inevitably aim to maximise all

traits which contribute positively to fitness and minimise all traits which contribute neg-

atively [34]. This is a trivial conclusion, and fails to explain the diversity of life-history

strategies observed throughout nature. By introducing trade-offs, the question of which

traits will be maximised by long-term evolution becomes an optimisation problem [58].

As discussed above and in Appendix A.1, despite the prevalence and importance of life-

history trade-offs in other areas of life-history theory, it has been shown that in a simple

8



model of a haploid population experiencing logistic growth in a constant environment, long-

term evolution will always select for the allele with the highest carrying capacity, regardless

of the nature of the trade-off between r and K. This is also the most common outcome

for a diploid population, with the exception of a handful of cases when the heterozygote’s

phenotype exceeds that of both homozygotes (overdominance) [53]. Given that trade-offs

alone are insufficient to explain the coexistence and variation of r vs. K strategies, additional

processes must be included. One possible process is temporal environmental variation, a case

we explore in detail below [34, 53].

Modelling life-history trade-offs is not limited to a trade-off between r and K. In fact

these values can be best understood as emergent properties of traits such as fecundity,

survival, or body size. Such traits will vary throughout an organism’s lifetime and may be

subject to trade-offs between each other: trade-offs which themselves may vary between age

stages [35, 52, 58]. These traits all contribute and respond to population density differently.

They may also respond differently to spatial or temporal variation in the environment,

as may the nature of the trade-offs between them [35, 57]. Thus in studying life history

evolution, one must consider a wide range of trade-offs between different life-history traits,

as well as interactions between these trade-offs with age and environment.

2.1.5 Quantitative traits

The models cited thus far have considered the evolution of a single gene which determines

traits such as a growth rate and carrying capacity and thus the fitness of the individual. One

method for studying population growth and evolution according to a collection of particular

traits which contribute to fitness is by modelling the evolution of phenotypes as opposed

to genotypes. Quantitative genetic models describe the parameters of a growth model as

functions of a list of quantitative traits—such as egg size and egg number in birds—and

analyse the selection pressures on these traits and the evolution of the population as a

whole [32]. As they are based on phenotypes, these models must consider both the genetic

and environmental contributions to the traits. Consideration of trade-offs is also inherently

built into the model, as it must define the matrices of genetic and environmental correlations

between traits, which act as trade-offs [32].
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2.2 Density-dependent selection in temporally-variable envi-
ronments

2.2.1 Motivation

An important driver of genetic diversity is environmental variability, as populations must

respond to the ever-changing evolutionary pressures that arise around them [9, 26, 66]. The

conclusion of traditional population genetic models has been that genetic polymorphisms

can arise from negative frequency-dependent selection but not from temporal environmental

variation alone [71]. However, these models ignore ecological factors such as competition for

resources. When taking these into consideration, it can be shown that stable polymorphisms

can arise in a population [71]. This raises the question of how life-history traits, which

are fundamentally tied to these ecological mechanisms, will evolve under a temporally-

changing environment. Indeed, the evolution of density-dependent traits has been well-

known in ecology to be dependent on changes in the population size caused by changes in

the environment [15, 53].

Environmental variation may occur on a number of time scales and with varying de-

grees of predictability, from rapid, random changes in a noisy environment to slow, periodic

changes in a seasonal environment. The relationship between changing environments and

life-history evolution is also of greater interest as climate change leads to increased environ-

mental variability, with seasonal changes becoming more dramatic and unpredictable and

environmental conditions becoming noisier [13, 56].

2.2.2 Evolution in periodic environments

Periodic environment models describe systems where environmental conditions change ac-

cording to deterministic cycles. These periodic environments can drive periodic population

dynamics, which often lead to density-dependent feedback loops. Thus, an organism’s life

history is closely tied to how it will respond to periodic variations in the environment [9].

Similarly, periodic environments can induce species coexistence or stable polymorphisms

between organisms with different life histories which are each more advantageous during

different seasons [66].
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Recent experimental work with Drosophila melanogaster showed rapid adaptation of in-

dividuals to seasonal changes and supported the important role of seasonality in maintaining

genetic diversity [54]. Observations of D. melanogaster populations provide the most robust

evidence for fluctuating selection as a mechanism of maintaining genetic diversity due to a

lack of long-term observational studies of historical allele-frequency dynamics. However, the

existing studies in other species also support the importance of seasonality and fluctuating

selection [26]. Hence, theoretical studies of this phenomenon may provide valuable insights

that cannot easily be observed experimentally.

Discrete vs. continuous models of periodicity

White and Hastings (2020) describe a variety of methods for modeling seasonality [66].

Models may be discrete, continuous, or incorporate a combination of continuous and dis-

crete elements. Continuous models employ systems of differential equations with parameters

which depend on time in a periodic manner. This can be used to model a system with good

and bad seasons, such as in the Kremer and Klausmeier model described below [31]. A com-

mon strategy for analysing these systems is Floquet theory, which allows for the analysis of

stability around a linearised periodic system [29]. Seasonality can also be incorporated into

a model based on differential equations by introducing a periodic impulse on the population

dynamics. This can be an appropriate way to model a population with continous dynamics

but that exists in an environment with discrete seasonality. Another means of combining

discrete and continuous dynamics is by considering seasons in discrete time while mod-

elling the growth dynamics within a given season in continuous time [66]. Additionally,

models may be entirely discrete, consisting of difference equations such as those used by

Roughgarden (1971) [53].

Models of life-history in periodic environments

Kremer and Klausmeier (2013) modeled continuous seasonal fluctuations to show how sea-

sonality can lead to species coexistence [31]. Their model considers an environment which

experiences a “growing” season and a “not-growing” season, as represented by a periodically-

changing function for resource levels mediating whether or not species experience growth.

Seasonality is controlled by two parameters: the total period of the cycle and the proportion
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of that period that the good season lasts. They also enforced a trade-off between growth

rate (r) and competitive ability (K). This was a species with a high growth rate—hence a

high fitness in the good season—but a lower competitive ability and therefore lower fitness

in the bad season. They demonstrated how coexistence was determined by the nature of

the trade-offs, the speed of evolution, and the length of the period and the proportion of

the length of the good season relative to the bad season. Their results also suggested the

importance of ecological mechanisms such as immigration [31].

Although Kremer and Klausmeier’s model studied species coexistence, the question

of competition between species is conceptually the same as competition between asex-

ual clones [71]. Thus, their conclusions may also be applied to the evolution of such a

population. In diploid populations, however, mating and the nature of the heterozygote’s

phenotype must also be taken into consideration. Roughgarden (1971) developed a discrete

model of life-history evolution in a diploid population which experienced a season of hiber-

nation [53]. In this case, there is a limitation on the size of the population which can survive

the hibernation season. Seasonality led to an increased chance of a polymorphism arising,

particularly in moderate environments. Roughgarden also demonstrated the role of the het-

erozygote’s phenotype in maintaing a polymorphism, as patterns of dominance compared to

heterozygote advantage or disadvantage changed the environmental conditions under which

a stable polymorphism could arise. Analysis of a haploid version of Roughgarden’s model

can be found in Appendix A.3.

To better understand the relationship between age structure and seasonality, Lion

and Gandon (2022) developed a new method for studying life-history evolution of class-

structured populations subject to periodic environmental variation [37]. They first defined

the life cycle of a class-structured population according to a matrix of the transition rates

between classes. These rates were allowed to depend on periodic environmental changes,

including extrinsic factors. Under the assumption of weak selection, they derived an equa-

tion for the selection gradient averaged over the period. This defines an approximation of

the invasion fitness of a mutant in the resident population. Lion and Gandon applied this

approach to a host-pathogen model to confirm previous work that indicates that pathogen

propagule mortality rates have no effect on evolutionary stable virulence. They also ex-
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panded on this to show that in a periodic environment, these mortality rates did have an

effect on selection for pathogen virulence [37].

2.2.3 Evolution in noisy environments

Even more prevalent than seasonal, deterministic variations are random variations which

are inherent to any system. However, while evolutionary processes will always be subject to

some amount of noise, some may be noisier than others and thus less accurately described

by deterministic equations.

Noise—or stochasticity—can arise from a variety of different sources. Some of these are

intrinsic: changes in allele frequencies are subject to stochasticity via genetic drift and ran-

dom variation of birth and death rates among individuals results in demographic stochastic-

ity. These intrinsic sources of stochasticity have the greatest influence in smaller populations,

as they can average out in larger populations. Stochasticity can also come from extrinsic

sources. Variability in the environment can affect allele frequencies and demography [25].

Unlike intrinsic factors, environmental stochasticity can affect small and large populations

equally [33]. It should also be noted that observed stochasticity may be a result not of

stochasticity in the system, but of stochasticity in measurement errors [33]. Here, we shall

focus on environmental stochasticity.

Considering environmental stochasticity through the lens of r- vs. K-selection, Pianka

(1970) noted that K-selection strategies predominated in constant environments, while r-

selection predominated in more variable environments [51]. The prevalence of K-selection

strategies in constant environments is in agreements with early models showing populations

with greater competitive abilities prevail in constant environments (see Figure 2.2), however

quantifying the observation of r-selection in stochastic environments was more challenging.

Leggett and Carscadden (1978) studied one instance of environmental stochasticity and

its relationship to life-history traits in populations of American shad (Alosa sapidissima)

along the Atlantic coast. They observed that the reproductive strategies of the populations

varied with latitude and proposed that this was due to a difference in the amount of envi-

ronmental stochasticity at different latitudes, as northern environments experience greater

variability in water temperatures compared to southern environments [36]. Interestingly, in

contrast to simple model predictions, they found that the different reproductive strategy
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meant that northern populations had lower fecundity (r) compared to southern popula-

tions. This is in opposition to Pianka’s observations, as well as the theoretical predictions

of Lande et al. [34, 35] which will be discussed below. Hence additional explanations, such

as bet hedging, may be necessary to fully describe the observed variation in life-history

traits of this system.

Long-term evolution in stochastic environments

A consequence of carrying capacity always being maximised by evolution in a constant

environment is that changes in the intrinsic growth rate should not have any impact on

evolution. An early theoretical study of the relationship between environmental variability

and the evolution of growth rate was done by Turelli and Petry (1980) [62]. They considered

several discrete-time analogs to the θ-logistic growth equation:

dN

dt
= r

[
1 − (N/K)θ

]
N.

These analogs took the form:

Nt+1 = G
[
(N/K)θ ; r

]
Nt,

where G is a function with r as a parameter. By introducing noise into the function G, they

showed that evolution could select for a larger intrinsic growth rate [62].

Lande et al. (2009) further explored this idea by deriving a quantity that would be max-

imised under long-term evolution in a stochastic environment. They considered a general

model of density-dependent population growth, then added a white noise term to incorpo-

rate environmental stochasticity. When density-dependence takes the form of a θ-logistic

growth model, this gives the equation:

dni

dt
= ri

[
1 −

(
N

Ki

)θ

+ W (t)
]

ni.

Here, N =
∑

i ni is the total population size, ni is the number of individuals with the ith

genotype, ri and Ki are the intrinsic growth rate and carrying capacity of the ith genotype

respectively, and W (t) is white noise [34]. Using this model, Lande et al. concluded that long-
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term evolution under logistic growth would maximise the expected long-term population

size, given by:

E[N ] = (1 − σ2
e/(2r))Kθ, (2.2)

where σ2
e is a value describing the environmental variance. Equation 2.2 shows that under no

constraints, the intrinsic growth rate and carrying capacity should tend toward infinity, while

the environmental variance should tend to zero. By introducing a trade-off between r and

K, they concluded that for highly variable environments, a larger growth rate is favoured

to maximise fitness, while for more constant environments, a higher carrying capacity is

favoured. Equation 2.2 also demonstrates that environmental stochasticity decreases average

fitness.

Age-structured populations in stochastic environments

It must be noted that fecundity (r) and competitive ability (K) are both traits which vary

throughout the life cycle of an organism. For instance, in the life cycle of a typical avian

raptor species, both rates of fecundity and of survival will increase through the age classes,

and reproduction will only occur upon reaching some age of maturity [35]. Additionally, an

organism’s contribution and response to density-dependence can change with age. Between

different age classes, rates of fecundity and survival may respond more or less strongly to

changes in density. Age classes can also contribute differently to population density with

changes in their body mass or metabolic rate. In the case of the avian raptor, all age classes

experience the same degree of density-dependence on their vital rates. This contrasts with

the life cycle of a typical passerine species, where increasing density causes smaller decreases

in fecundity as it ages. In both life histories, older individuals contribute more heavily to

the overall population density [35]. Age structure can also interact with environmental

variance, as the sensitivity of an organism’s vital rates to changes in the environment can

change throughout its life cycle. Avian raptors show decreasing variability in both rates of

fecundity and of survival as they age; in the passerine species the variability of fecundity

remains constant throughout the life cycle, while the variability of survival decreases [35].
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To better understand how density-dependence, environmental stochasticity, and age

structure interact and determine the long-term evolutionary behaviour of a population,

Lande et al. (2017) developed a model for the growth of a density-dependent age structured

population in a stochastic environment. From this they derived a univariate approximation

for this growth to find a quantity which is maximised by long-term evolution. Their results

showed that incorporating age structure into a model of density-dependent selection on a

population in a stochastic environment yields the same conclusion as a model with no age

structure. Additionally, their simulations showed that introducing environmental variance

reduces the expected population size below the carrying capacity, which provides a mecha-

nism for why a larger growth rate may be favoured in highly variable environments [35].

2.2.4 Examples of environmental variation

Temporal variation in environmental conditions can be found in a plethora of systems. To

motivate the study of such variability, I present several examples below.

Tidal disruptions

The seaweed fly Coelopa frigida carries a chromosomal inversion which behaves as a single

locus with two alleles, α and β [44, 45]. Consequently, C. frigida displays three phenotypes:

a homozygote with a large body size and slow maturation (αα), a homozygote with a small

body size and fast maturation (ββ), and an intermediate heterozygote (αβ). The habitat

of C. frigida is subject to periodic disruption by the tide, which causes a spike in mortality

of immature flies. While in constant environment experimental conditions, the K-selected

αα phenotype is favoured, natural populations subject to these seasonal population crashes

contain a much higher proportion of individuals with the more r-selected phenotypes [45].

Winter frost mortality

Winter frosts can also cause seasonal population crashes. The larvae of the yellow dung

fly (Scathophaga stercoraria) are frost-sensitive and must reach the pupal stage before the

frost to survive [60]. Frequent frost events were observed to favour r-selected phenotypes

with fast development times. Mortality was higher for large-bodied flies which have slower

maturation rates, as they were less likely to reach the pupal stage in time to survive.
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Temperature-dependent mortality rates

Seasonal mortality may not always be in the form of sudden deaths, but rather environments

can experience seasons of increased mortality and seasons of decreased mortality. One factor

that can mediate mortality is temperature. The eastern brook trout (Salvelinus fontinalis)

experience greater morality among the youngest age class when temperatures rise [4]. This

results in higher mortality in the summer, and summer temperatures can have an important

impact on population size.

Seasonal predation

Predation patterns can also result in seasonal mortality. This may be due to seasonal pat-

terns in the predator population, or due to changes in coverage protecting prey. For example,

in the Caatinga of northwest Sergipe, Brazil, bird attacks increase during the dry season

because of the loss of protective cover [14].

Antimicrobial drug regimens

Antimicrobial drug treatments can be periodic in nature, as mortality will increase with each

new dose. These periodic environments can change the evolutionary dynamics of popula-

tions [69]. Depending on the drug regimen, these disruptions may be discrete, with sudden

population crashes each time a dose is delivered, or continuous, with fluctuating drug levels

creating periods of high mortality and periods of low mortality.

Precipitation-dependent food availability

Seasonality may also disrupt resource availability. In grasslands, rainfall events influence the

quality of vegetation [6]. High-quality vegetation provides more resources for grasshopper

populations, leading to reduced density-dependent mortality. Conversely, reduced precipi-

tation causes more density-dependent deaths due to a lack of resources.

Resource fluctuations in chemostat experiments

Resource levels may be varied artificially under experimental conditions. In a chemostat

setting, evolution of Escherichia coli under alternating periods of feast and famine yielded
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populations which maximised rapid growth [65]. Evolution did not lead to reduced death

rates or greater capacity for competition for resources.

2.3 Density-dependent selection in spatially-structured en-
vironments

2.3.1 Life-history and local adaptation

In addition to varying through time, environmental conditions can vary across space, which

may result in local adaptation. Local adaptation is the process by which organisms adapt to

their local environment, generally at the cost of reduced fitness in other environments [5].

Not only does this divergent selection across environments play an important role in main-

taining biodiversity, it is the first step in the process of ecological speciation [55]. It is also

an important factor to consider when a population is expanding its range [3, 16]. Divergent

selection is prerequisite for the process of local adaptation; the necessary strength of this

selection depends on the extent of the homogenising effects of gene flow between the diverg-

ing populations [12, 19, 68, 70]. Although local adaptation has been the topic of extensive

study, little is known about the local adaptation of life-history traits.

Gomulkiewicz et al. (1999) modelled local adaptation in a sink population sustained by

immigration [18]. They incorporated density-dependent effects to show that local adapta-

tion was maximised at intermediate levels of immigration. This was due to the fact that

immigration increased density, thus decreasing the overall fitness of the population. The

hindering effects of dispersal on local adaptation may be reduced by temporal variations

in dispersal rates [50]. This can be observed in the dynamics of pea aphids (Acyrthosiphon

pisum) and their parasitoid wasp Aphidius ervi [46]. However, these results do not speak to

the adaptation of density-dependent traits themselves. For this we must look to empirical

observations.

Dittmar and Schemske (2023) used reciprocal transplant field experiments and ma-

nipulative greenhouse experiments to show that temporal variability mediated the fitness

trade-off between strains of the plant Leptosiphon parviflorus growing on serpentine soil or

non-serpentine soil [12]. In serpentine soil, where water-holding capacity is reduced, L. parv-

iflorus has evolved an early-flowering strategy at the cost of competitive ability. This strain
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shows a fitness advantage over the native strain in non-serpentine soil in years of low rain-

fall, but is disadvantaged in years of high rainfall. A similar pattern of local adaptation has

been observed in the common yellow monkeyflower, Mimulus guttatus: in dry soils, early

flowering strategies are favoured, while later flowering and greater competitive ability is

favoured at moist, coastal sites [20].

2.3.2 Life-history trade-offs during range expansion

Density-dependent selection and life-history trade-offs are also influenced by spatial struc-

ture within the context of range expansion [7, 11, 47, 67]. Deforet et al. (2019) demonstrated

this in the context of a trade-off between migration and intrinsic growth rate in bacterial

colonies [11]. They derived an analytical relationship for how much cost a mutant can incur

to its growth rate in favour of higher dispersal before it can no longer invade a resident pop-

ulation. Additionally, they experimentally observed that bacterial populations with higher

dispersal consistently out-competed those with higher growth rates. Theoretical work by

Burton et al. (2010) predicted that evolution will select for higher growth rates and dis-

persal rates during the expansion of a genetically-heterogeneous population, at the cost of

decreased capacity for growth at high densities along the range front [7]. However, simula-

tions also predicted that when the evolving population was forced to compete with a resident

population, selection for growth at higher densities increased. Spatial structure can result

in a unique stochastic phenomenon known as “allele surfing”, where mutations occurring at

the outer boundary of a spatially-expanding population can travel along the advancing front

and become more likely to reach higher frequencies [22, 23, 30, 61]. Urquhart-Cronish et

al. (2024) used a one-dimensional stepping-stone simulation to study surfing of life-history

traits [63]. They found that surfing of alleles associated with competitive ability was more

frequent. Meanwhile, the strong selection for high growth rate along the population edge

reduced surfing for that trait. Hall et al. (2024) proposed a trade-off between local com-

petitive ability and dispersal to explain the growth behaviour of Saccharomyces cerevisiae

mats and showed with simulations that although the high dispersing strain showed a fitness

advantage in longterm growth, the strain with a high competitive ability was able to con-

sistently take advantage of allele surfing events to temporarily establish mutant segments

in a resident population of high dispersers [21].
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2.4 Applications to conservation and management

Life-history strategies, local adaptation, and environmental disruptions are all important

considerations for conservation efforts in the face of climate change. As the climate changes,

environmental disruptions are becoming more frequent: new disruptions arise with increased

environmental stochasticity and preexisting disruptive events are becoming more severe and

less predictable [13, 56]. A species’ life-history will shape how that species responds to such

changes, with trends showing that species with faster life history strategies (more r-selected

species) adapt more successfully to changing environmental conditions compared to species

with slower life history strategies (more K-selected species) [1]. Sæther et al. (1996) proposed

that life histories could broadly be classified in three categories, based on the quality of the

habitats where individuals breed and survive [59]. High-reproductive, or r-selected, species

are associated with high-quality breeding habitats but poor-quality habitats for survival.

Survivor, or K-selected, species are associated with poor-quality breeding habitats but high-

quality habitats for survival. Bet-hedging species are associated with high-quality habitats

for both breeding and survival, and have similar survival rates to survivor species, but

have greater variance in their reproductive output from season to season. As environments

change and species’ ranges shift, it’s critical to understand how species have adapted to

their native habitat and how they may be maladapted to foreign environmental conditions.

If a population is highly locally adapted, then a sudden shift in its habitat or a forced shift

in its range may be catastrophic. An understanding of how local adaptation has occurred

and how future local adaptation in the face of climate change may occur is necessary for

successful conservation efforts [42].
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Chapter 3

Single-population life-history
evolution under seasonal conditions

3.1 Single population model

We begin by considering the evolution of r vs. K life-history traits in a single population.

We model population growth with a logistic model where the population size N is given by

the differential equation:
dN

dt
= bN −

(
d + b

X
N

)
N,

where b is the per-capita birth rate, d is the death rate, and X is the ‘growth limit’ which

determines the carrying capacity (a.k.a. equilibrium) population size K in the long-term:

K = (b − d)X
b

,

We additionally note that the intrinsic growth rate of the population is r = b − d. To model

evolution in this population, we consider the dynamics at a single biallelic, haploid locus

with alleles A and a. We choose parameters such that the allele A confers a lower carrying

capacity (KA < Ka), but a higher birth rate (bA > ba). The death rate (d) remains constant

across both alleles and must be smaller than both birth rates. Hence we have:

0 < d < ba < bA,

(bA − d)XA

bA
= KA < Ka = (ba − d)Xa

ba
.
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Therefore, we call the A allele the “high-r” allele and the a allele the “high-K” allele. Evo-

lution is described by a Lotka-Volterra model of competition between individuals carrying

the high-r A allele and individuals carrying the high-K a allele, as given by the following

system of differential equations:

dNA

dt
= bANA −

(
d + bA

XA
(NA + Na)

)
NA,

dNa

dt
= baNa −

(
d + ba

Xa
(NA + Na)

)
Na,

where NA is the number of individuals carrying the A allele and Na is the number with the

a allele.

It is convenient to re-parametrise these two equations in terms of the frequency of the

A allele, p, and the total population size, N :

p = NA

NA + Na
,

N = NA + Na.

Hence changes in the allele frequency and changes in the total population size can be

described by the following differential equations:

dp

dt
= p(1 − p)

(
bA

(
1 − N

XA

)
− ba

(
1 − N

Xa

))
= f1(p, N) (3.1a)

dN

dt
=
(

bA

(
1 − N

XA

)
p + ba

(
1 − N

Xa

)
(1 − p) − d

)
N = f2(p, N). (3.1b)

Note that Eq. 3.1a can also be written as,

dp

dt
= p(1 − p)S(N),

where S(N) is the selection coefficient given by:

S(N) = bA

(
1 − N

XA

)
− ba

(
1 − N

Xa

)
. (3.2)
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System 3.1 exhibits three equilibria:

N̂ = 0 (extinction)(
p̂, N̂

)
=
(

1,
(bA − d)XA

bA

)
(fixation)(

p̂, N̂
)

=
(

0,
(ba − d)Xa

ba

)
(loss).

Extinction is unstable when bi > d (a condition which is assumed to be met throughout).

Fixation of the A allele is always unstable, while its loss is always stable. This agrees with

classic theory which holds that in a constant environment, the high-K allele will out-compete

the high-r allele and drive it to extinction.

3.2 Seasonal population crashes: an impulsive differential equa-
tion approach

In order to incorporate seasonal disruptions, we first consider a case where the population

undergoes sudden, periodic population crashes. At the end of every season, a proportion δ

of the population is removed. The length of the season is arbitrary, as the birth and death

rates can be scaled. To maintain consistency across all our models, we choose a season length

of 2π. This model can be described by modifying Eqs. 3.1a and 3.1b to get the following

set of impulsive differential equations:

dp

dt
= f1(p, N), t ̸= 2kπ,

dN

dt
= f2(p, N), t ̸= 2kπ, k = 0, 1, 2, . . . ,

p(t) = p(t−), N(t) = (1 − δ) N(t−), t = 2kπ,

where p(t−) and N(t−) are the allele frequency and the population size immediately before

the crash. Note that p(t−) = p(t), so that the population crash does not change the allele

frequency in the population. Hence, there is no selective element to the disruptions. This

model is a particular case of the more general Lotka-Volterra system with impulses studied

by Liu et al. (2007), therefore we can apply their general results to derive results more

specific to our case. By Theorem 5.1 in [38], there is no positive periodic solution with
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coexistence. There are therefore three possible long-term outcomes: extinction, fixation, or

loss. By Lemma 2.1 in [38], if:

ba − d < bA − d < − 1
2π

ln(1 − δ), (3.3)

then the population will go extinct. Otherwise, there are two semi-trivial positive periodic

solutions,
(
0, N̂a

)
and

(
1, N̂A

)
, where where N̂i(t) is the positive periodic solution to:

dNi

dt
= biNi −

(
d + bi

Xi
N

)
Ni, t ̸= 2kπ,

Ni(t) = (1 − δ) Ni(t−), t = 2kπ.

To find the linear stability of each of these solutions we must compute the mean population

over a season:

E(N̂i) = 1
2π

∫ 2π

0
N̂i(t)dt = Xi

bi

(
(bi − d) + 1

2π
ln(1 − δ)

)
.

For the sake of clean notation, we use expectation notation rather than the bar notation

generally used to denote the mean. Using Theorem 4.2 from [38], we can see that the p̂ = 0

case will be linearly stable if:

ba − d > − 1
2π

ln(1 − δ)

bA − d < − 1
2π

ln(1 − δ) + bA

XA
E(N̂i).

Similarly, the p̂ = 1 case will be linearly stable if:

bA − d > − 1
2π

ln(1 − δ)

ba − d < − 1
2π

ln(1 − δ) + ba

Xa
E(N̂i).
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By plugging E(N̂i) into our stability condition and rearranging, we find that the p̂ = 0 case

is stable if:

δ < 1 − exp [−2π(ba − d)]

δ < 1 − exp
[
−2π

(
bAXa(ba − d) − baXA(bA − d)

bAXa − baXA

)]
.

The equilibrium solution p̂ = 1 is stable if:

δ < 1 − exp [−2π(bA − d)]

δ > 1 − exp
[
−2π

(
bAXa(ba − d) − baXA(bA − d)

bAXa − baXA

)]
.

Given the restrictions on our parameters, we have that the above bounds are restricted to

the order:

1−exp
[
−2π

(
bAXa(ba − d) − baXA(bA − d)

bAXa − baXA

)]
< 1−exp [−2π (ba − d)] < 1−exp [−2π (bA − d)] .

Hence we find that the p̂ = 1 case, when the high-r allele overtakes the population, is

linearly stable in the range:

1 − exp
[
−2π

(
bAXa(ba − d) − baXA(bA − d)

bAXa − baXA

)]
< δ < 1 − exp [−2π(bA − d)] . (3.4)

If the magnitude of the population crashes is smaller, then the high-K allele will overtake

the population. If the population crashes are too large, the population will go extinct.

3.3 Floquet analysis for continuous disruptions

In the following two sections, we will consider continuous seasonal changes. The population

dynamics under these conditions can be described by a small, periodic perturbation to the

original system described by Eqs. 3.1a and 3.1b:

dp

dt
= f1(p, N) − ϵg1(p, N)

dN

dt
= f2(p, N) − ϵg2(p, N),
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where ϵ is a small, positive perturbation and gi(p, N) are periodic functions. By incorpo-

rating any periodic perturbation, the system will no longer reach a constant equilibrium.

Rather, we must consider the periodic equilibrium solutions and their stability. To do so,

we apply Floquet analysis [29].

Let
(
p̂, N̂

)
be a periodic solution. Then we consider the behaviour of a small pertur-

bation to this solution: (p(t), N(t)) =
(
p̂ + ξ1(t), N̂ + ξ2(t)

)
. These perturbations may be

written as: ξ1(t)

ξ2(t)

 = Φ(t)

ξ1(0)

ξ2(0)

 ,

where Φ(t) is the matrix satisfying:

dΦ
dt

= A|p=p̂,N=N̂ Φ(t), Φ(0) = I,

and A is the matrix:

A =

 ∂
∂p (f1(p, N) − ϵg1(p, N)) ∂

∂N (f1(p, N) − ϵg1(p, N))
∂
∂p (f2(p, N) − ϵg2(p, N)) ∂

∂N (f2(p, N) − ϵg2(p, N))

 .

Then the Floquet multipliers, ρi, of the system are the eigenvalues of Φ(2π). The periodic

solution
(
p̂, N̂

)
is locally stable if both of its Floquet multipliers satisfy:

|ρi| < 1.

In some cases, it may be easier to look at the Floquet exponents, λi, which are derived from

the Floquet multipliers by:

λi = 1
2π

ln |ρi|.

In order for the periodic solution to be locally stable, these Floquet exponents must be

negative.
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3.4 Continuous seasonal variations in death rates

To model continuous variation in the death rate, we substitute d 7→ d (1 + ϵh(t)), where h(t)

is a periodic function and ϵ ∈ (0, 1) is a small quantity. This restriction of ϵ indicates that

we are considering a death rate that depends weakly on time and ensures that the death

rate is always positive. Without loss of generality, we may assume that h(t) has a period of

2π. For longer or shorter seasons, the birth and death rates can be scaled. This results in

the perturbed problem:

dp

dt
= f1(p, N)

dN

dt
= f2(p, N) − ϵdNh(t).

We could consider a specific periodic function h(t), but as we will show below, the result is

sensitive to the shape of this function. Hence we take a general approach where we express

h(t) as a Fourier series:

h(t) = A0 +
∞∑

n=1
An cos nt + Bn sin nt,

where:

A0 = 1
2π

∫ 2π

0
h(t)dt,

An = 1
π

∫ 2π

0
h(t) cos(nt)dt,

Bn = 1
π

∫ 2π

0
h(t) sin(nt)dt.

The Floquet exponents for this system are:

λ1 = 1
2π

∫ 2π

0

∂

∂N
f2(p(t), N(t)) − ϵdh(t)dt (3.5)

λ2 = 1
2π

∫ 2π

0
(1 − 2p(t)) S (N(t)) dt, (3.6)

where S(N) is the selection coefficient given in Eq. 3.2. We seek that Eqs. 3.5 and 3.6 be

negative to ensure the local stability of the solution.
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We first check the stability conditions for the equilibrium states when the population

goes extinct,
(
p̂, N̂

)
= (0, 0) and

(
p̂, N̂

)
= (1, 0). Given bA > ba, we find Eq. 3.6 is always

positive for
(
p̂, N̂

)
= (0, 0), so this state is always unstable. For

(
p̂, N̂

)
= (1, 0), Eq. 3.6 is

always negative. From Eq. 3.5 we find that the condition for
(
p̂, N̂

)
= (1, 0) to be stable is:

ϵA0 >
bA

d
− 1.

This is our condition for extinction.

To determine which genotype will dominate when the population is not driven to extinc-

tion, we first consider the equilibrium at p̂ = 0, when the r-selected A allele is lost. Recall

that in the unperturbed problem, this is always the stable steady state. To consider the

periodic equilibrium solution for the population size in this case, we take the asymptotic

expansion:

N̂ = N0 + ϵN1 + O(ϵ2),

and plug this into the perturbed equation for population size:

dN

dt
=
(

ba

(
1 − N

Xa

)
− d

)
N − ϵdh(t)N.

At O(1), we arrive at the unperturbed problem. We take the leading order of our expansion

to be the stable steady state, so:

N0 = (ba − d)Xa

ba
.

At O(ϵ), we get the differential equation:

dN1
dt

= −(ba − d)N1 − dN0

[
A0 +

∞∑
n=1

(An cos nt + Bn sin nt)
]

. (3.7)

Since we are looking for a periodic solution, we assume that N1 can be written as a Fourier

series:

N1(t) = a0 +
∞∑

n=1
(an cos nt + bn sin nt) .
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Plugging this into Eq. 3.7 and taking α = −(ba − d) and β = dN0, we find that:

αa0 − βA0 +
∞∑

n=1
((αan − βAn − nbn) cos nt + (αbn − βBn + nan) sin nt) = 0.

This implies that:

αa0 − βA0 = 0,

αan − βAn − nba = 0,

αbn − βBn + nan = 0,

hence:

a0 = β

α
A0,

an = β (αAn + nBn)
α2 + n2 ,

bn = β (αBn − nAn)
α2 + n2 .

Therefore:

N1 = β

α
A0 +

∞∑
n=1

(
β (αAn + nBn)

α2 + n2 cos nt + β (αBn − nAn)
α2 + n2 sin nt

)
,

which gives us the asymptotic expansion of N̂ near the steady state of the unperturbed

problem:

N̂ = N0 + ϵ

[
β

α
A0 +

∞∑
n=1

(
β (αAn + nBn)

α2 + n2 cos nt + β (αBn − nAn)
α2 + n2 sin nt

)]
+ O(ϵ2).

Plugging p̂ = 0 into our first Floquet exponent (Eq. 3.5), we have:

λ1 = 1
2π

∫ 2π

0
ba − d − 2ba

Xa
N̂(t) − ϵdh(t)dt.
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This requires us to compute:

∫ 2π

0
N̂ =

∫ 2π

0
N0 + ϵ

[
β

α
A0 +

∞∑
n=1

(an cos nt + bn sin nt)
]

dt

= 2π

(
N0 + ϵ

β

α
A0

)
+ ϵ

∞∑
n=1

(
an

∫ 2π

0
cos(nt)dt + bn

∫ 2π

0
sin(nt)dt

)
= 2π

(
N0 + ϵ

β

α
A0

)
.

(3.8)

Plugging Eq. 3.8 into our Floquet exponent and recalling that A0 = 1
2π

∫ 2π
0 h(t)dt, we find

that:

λ1 = − [ba − d(1 + ϵA0)] .

This is negative so long as:

ϵA0 <
ba

d
− 1.

It remains to check whether the direction of selection will change due to the seasonal

perturbation. We therefore check the second Floquet exponent (Eq. 3.6). Substituting α =

−(ba − d) and β = dN0 back in and using the result in Eq. 3.8, we find that the second

exponent is negative when the following inequality holds:

ϵA0 <
bAXa(ba − d) − baXA(bA − d)

d(bAXa − baXA) . (3.9)

Since:
bAXa(ba − d) − baXA(bA − d)

d(bAXa − baXA) <
ba

d
− 1,

we see that p̂ = 0 is stable whenever Eq. 3.9 holds.

To consider the stability of p̂ = 1, we follow the same steps and find that the first

Floquet exponent (Eq. 3.5) is negative when:

ϵA0 <
bA

d
− 1,

and the second Floquet exponent (Eq. 3.6) is negative when Eq. 3.9 does not hold. Since:

bAXa(ba − d) − baXA(bA − d)
d(bAXa − baXA) <

bA

d
− 1,
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the p̂ = 1 solution is stable when ϵA0 is between these two values. Thus, the high-r allele

will dominate the population when:

bAXa(ba − d) − baXA(bA − d)
d(bAXa − baXA) < ϵA0 <

bA

d
− 1. (3.10)

In this case, the seasonal perturbations to the death rate are large enough and long enough

to favour high-r strategies, but not so harsh that the population is driven extinct. Note

that as the baseline death rate, d, increases, this window for ϵA0 shifts so that seasonal

perturbations need not be as harsh. We also note that Eq. 3.10 can equivalently be written

as:

1 − exp
[
−2π

(
bAXa(ba − d) − baXA(bA − d)

bAXa − baXA

)]
< 1 − e−2πdϵA0 < 1 − exp [−2π(bA − d)] ,

which is the same inequality as Eq. 3.4, except with δ replaced by 1 − e−2πdϵA0 . This is

the probability of there being a death in 2π time in a Poisson process with a death rate of

dϵA0. Given that dϵA0 is the averaged size of the perturbation to the death rate, this can

be interpreted as the proportion of the population killed due to the perturbed death rate.

Hence δ and 1−e−2πdϵA0 both represent the proportion of the population that dies over the

course of the season above what would be expected from the natural death rate.

3.5 Continuous seasonal variations in resource levels

To model continuous variation in the resource levels, we apply a periodic change to the

carrying capacity by substituting X−1
i 7→ X−1

i (1 + ϵh(t)), where h(t) is a periodic function.

Without loss of generality, we again assume that h(t) has a period of 2π. Rewriting our

functions, we arrive at the perturbed problem:

dp

dt
= f1(p, N) − ϵp(1 − p)

(
bA

XA
− ba

Xa

)
Nh(t)

dN

dt
= f2(p, N) − ϵ

[
p

bA

XA
− (1 − p) ba

Xa

]
N2h(t).
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We express h(t) as a Fourier series as before. Recall that from this we have:

A0 = 1
2π

∫ 2π

0
h(t)dt.

Now the Floquet exponents for this system are:

λ1 = 1
2π

∫ 2π

0

∂

∂N
f2(p(t), N(t)) − ϵ

(
2 bA

XA
p(t) − 2 ba

Xa
(1 − p(t))

)
N(t)h(t)dt, (3.11)

λ2 = 1
2π

∫ 2π

0
(1 − 2p(t))S(N(t)) − ϵ(1 − 2p(t))

(
bA

XA
− ba

Xa

)
N(t)h(t)dt. (3.12)

These must be negative to ensure local stability.

We first check the extinction cases:
(
p̂, N̂

)
= (0, 0) and

(
p̂, N̂

)
= (1, 0). Given bA > ba >

d, Eq. 3.11 is always positive for both extinction cases. Therefore, seasonal perturbations

to the resource levels cannot drive the population extinct.

We next consider the equilibrium at p̂ = 0 when the r-selected A allele is lost. In

the unperturbed problem, this is always the stable steady state. Once again, we take the

asymptotic expansion of N̂(t) and plug this into the perturbed equation for population size:

dN

dt
=
(

ba

(
1 − N

Xa

)
− d

)
N − ϵ

ba

Xa
h(t)N.

At O(1), we have the unperturbed problem and take the leading order of our expansion to

be its stable steady state. At O(ϵ), we get the differential equation:

dN1
dt

=
(

ba − d − 2 ba

Xa
N0

)
N1 − ba

Xa
N0

[
A0 +

∞∑
n=1

(An cos nt + Bn sin nt)
]

. (3.13)

Since we are looking for a periodic solution, we again require that N1 can be written as a

Fourier series:

N1(t) = a0 +
∞∑

n=1
an cos nt + bn sin nt.

Plugging this into Eq. 3.13 and taking α = − (ba − d) and β = (ba − d)N0, we find that:

αa0 − βA0 +
∞∑

n=1
((αan − βAn − nbn) cos nt + (αbn − βBn + nan) sin nt) = 0.
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This implies that:

αa0 − βA0 = 0,

αan − βAn − nbn = 0,

αbn − βBn + nan = 0,

hence:

a0 = β

α
A0,

an = β (αAn + nBn)
α2 + n2 ,

bn = β (αBn − nAn)
α2 + n2 .

Altogether, we have the asymptotic expansion of N̂ near the steady state of the unperturbed

problem:

N̂ = N0 + ϵ

[
β

α
A0 +

∞∑
n=1

(
β (αAn + nBn)

α2 + n2 cos nt + β (αBn − nAn)
α2 + n2 sin nt

)]
+ O(ϵ2).

The integral of this is the same as in Eq. 3.8 from the previous case.

We now plug p̂ = 0 and N̂ into our first Floquet exponent (Eq. 3.11). Dropping all terms

that are O(ϵ2) or smaller and using Eq. 3.8, we get:

λ1 = 1
2π

∫ 2π

0
ba − d − 2 ba

Xa
N̂ + ϵ

(
2 ba

Xa
N0h(t)

)
dt

= − (ba − d) ,

which is always negative as we have already required that d < ba.

Similarly for the second Floquet exponent (Eq. 3.12), we find that:

λ2 = 1
2π

∫ 2π

0
bA − ba

(
bA

XA
− ba

Xa

)
N̂ − ϵ

(
bA

XA
− ba

Xa

)
N0h(t)dt

=
(

bA − ba

(
bA

XA

)
N0

)
= (S(N0)) ,
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dNi

dt
= biNi −

(
d +

N

Xi

)
Ni

Ni(t) = (1− δ)Ni(t
−)

harsh

good

Model

Impulsive

Continuous

Continuous

Trait

δ > 0

d 7→ d (1 + ϵh(t))

X−1
i 7→ X−1

i (1 + ϵh(t))

Condition for r-selection

1− exp [−2πC] < δ < 1− exp [−2π(bA − d)]

1− exp [−2πC] < 1− e−2πdϵA0 < 1− exp [−2π(bA − d)]

None

C =
bAXa(ba − d)− baXA(bA − d)

bAXa − baXA
A0 =

1

2π

2π∫

0

h(t)dt

Figure 3.1: Summary of single population results. The general model (top left) can be varied
according to three different traits: the proportion of individuals removed from the population at the
end of a season (δ); the death rate (d); and the growth limit, or resources available (Xi). The death
rate and growth limit are varied seasonally by incorporating a periodic function, ϵh(t), which creates
seasons with good conditions and seasons with harsh conditions. Example functions are shown in
the top right.

where S(N) is the selection coefficient in the unperturbed environment (Eq. 3.2). Since

we have chosen our parameters to favour the a allele in the unperturbed environment, we

know this value to be negative. Thus we find that the equilibrium at p̂ = 0 is locally stable

regardless of any perturbation to the environment. Carrying out a similar analysis for the

p̂ = 1 case, we find that this case is always locally unstable. Therefore, we conclude that a

perturbation to resource levels in the environment cannot change the evolutionary outcome.
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Chapter 4

Local adaptation to seasonal
population crashes

4.1 Island-mainland model

To study adaptation of a population to local seasonal disruptions, we consider an island-

mainland model where the environment is constant on the mainland and seasonal on the

island. Migration is unidirectional from the mainland to the island. As before, we consider

the evolution of r vs. K life-history strategies determined by a single, haploid, biallelic locus.

Under these assumptions the mainland will consist entirely of high-K (a allele) individuals.

Assuming logistic population growth, the eco-evolutionary dynamics on the island is given

by a system of differential equations for the densities of the high-r, A allele (NA) and the

high-K, a allele (Na). Migration from the mainland introduces a alleles at a constant rate

M :

dNA

dt
= bANA −

(
d + NA + Na

XA

)
NA,

dNa

dt
= baNa −

(
d + NA + Na

Xa

)
Na + M.

As before, we perform a change of variables rewriting this system in terms of the frequency

of the high-r A allele on the island (p) and the total population size (N) on the island:

dp

dt
= p(1 − p)

(
bA

(
1 − N

XA

)
− ba

(
1 − N

Xa

))
− p

M

N
= f̃1(p, N) (4.1)

dN

dt
=
(

bA

(
1 − N

XA

)
p + ba

(
1 − N

Xa

)
(1 − p) − d

)
N + M = f̃2(p, N). (4.2)
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As in section 3.2, we incorporate seasonality by including periodic population crashes where

every 2π units of time the population density is reduced by a proportion δ. These popu-

lation crashes are non-selective, with individuals removed at random such that the allele

frequency remains unchanged. Hence, our island is modelled by the set of impulsive differ-

ential equations:

dp

dt
= f̃1(p, N), t ̸= 2kπ,

dN

dt
= f̃2(p, N), t ̸= 2kπ, k = 0, 1, 2, . . . ,

p(t) = p(t−), N(t) = (1 − δ) N(t−), t = 2kπ.

In contrast to the single population model, the constant influx of a alleles means that

the a allele can never go extinct on the island. Hence, there are only two possible long-term

evolutionary outcomes. Either the A allele goes extinct so that p̂ = 0, or a polymorphism

arises on the island where the two alleles coexist.

4.2 Floquet analysis

We again apply Floquet analysis [29] to study the stability of the periodic solution when

p̂ = 0. In the long-term, this periodic solution must consist of repeated cycles where the

population size grows logistically from an initial size to some maximum immediately before

the crash. To obtain an identical cycle in the next time interval, the population must crash

down to the same initial density as at the beginning of the cycle. Hence we can solve for

this periodic solution by solving for the general solution from time 0 ≤ t ≤ 2π and then

solving for the initial condition N0 that results in the required limit cycle. In this case, N̂(t)

is the solution to:

dN

dt
= baN −

(
d + N

Xa

)
N + M, 0 ≤ t ≤ 2π, N(0) = (1 − δ)N(2π),

which is given by:

N̂(t) =
C2N0

(
1 + eC1t

)
− (2M + (ba − d)N0) Xa

(
1 − eC1t

)
C2 (1 + eC1t) − (2baN0 − Xa(ba − d)) (1 − eC1t) ,
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where:

C1 =
√

4baM + (ba − d)2Xa√
Xa

,

C2 =
√

Xa

√
4baM + (ba − d)2Xa,

and N0 is such that:

N0 = N̂(0) = (1 − δ)N̂(2π),

that is:

N0 = Xa

2

(
1 − d

ba

)(
1 − δ

2

)
− C3

4baC4

+

√
4(1 − δ)baXaMC2

4 + 1
4 ((ba − d)XaC4(−2 + δ) + δC2C3)2

2baC4
,

where:

C3 = eC1π + e−C1π,

C4 = eC1π − e−C1π.

This is non-negative only if C2 ∈ R and eC1π > 1. If C2 ∈ R, then C1 must also be real and

positive, hence eC1π > 1 is automatically true and we need only check C2 ∈ R. This is true

if:

4baM + (ba − d)2Xa ≥ 0,

which is clearly true. Thus N̂ is a biologically-viable solution.

As before (sec. 3.3), to study the stability of a periodic solution
(
p̂, N̂

)
, we consider

the behaviour of a small perturbation to the solution: (p(t), N(t)) =
(
p̂ + ξ1(t), N̂ + ξ2(t)

)
.

These perturbations may be written as:

ξ1(t)

ξ2(t)

 = Φ(t)

ξ1(0)

ξ2(0)

 ,
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where Φ(t) is the matrix satisfying:

dΦ
dt

=

 ∂
∂p f̃1(p, N) ∂

∂N f̃1(p, N)
∂
∂p f̃2(p, N) ∂

∂N f̃2(p, N)


∣∣∣∣∣∣∣
p=p̂,N=N̂

Φ(t), t ̸= 2kπ, k = 0, 1, 2, . . . , Φ(0) = I.

The effect of our impulsive condition is given by:

ξ1(2π)

ξ2(2π)

 =

1 0

0 1 − δ


ξ1(2π−)

ξ2(2π−)

 ,

hence Floquet multipliers are the eigenvalues of:

M =

1 0

0 1 − δ

Φ(2π).

Solving this for the p̂ = 0 solution, we get the two Floquet multipliers:

ρ1 = exp
[∫ 2π

0

(
bA

(
1 − N̂

XA

)
− ba

(
1 − N̂

Xa

)
− M

N̂

)
dt

]

ρ2 = (1 − δ) exp
[∫ 2π

0

(
ba

(
1 − 2 N̂

Xa

)
− d

)
dt

]
.

Numerically, we see that ρ2 is always less than 1, hence we need only check when ρ1 < 1

for stability (see Mathematica file for details). The first Floquet multiplier is less than one

only if the associated Floquet exponent is negative, where the exponent is given by:

λ1 = 1
2π

∫ 2π

0

(
bA

(
1 − N̂

XA

)
− ba

(
1 − N̂

Xa

)
− M

N̂

)
dt. (4.3)

We calculate this value numerically across a range of parameter values (see Mathemat-

ica file for details) and compare the stability results of the island-mainland case to the

minimum degree of environmental harshness (δ) needed for selection to favour the high-r,

a allele in the single population case (Eq. 3.4). We call this value the coexistence criterion,

as δ must at least be greater than this criterion in order for coexistence to occur. Fig. 4.1A

shows that this criterion is not sufficient for coexistence to occur; for smaller carrying capac-

ities, environmental harshness must be a good deal greater due to the constant migration
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Figure 4.1: Stability of p̂(t) = 0 under different environmental conditions. Stability is given
by the sign of λ in Eq. 4.3. When λ < 0 (grey), then p̂(t) = 0 is stable, hence the high-r A allele
is driven to extinction on the island and no local adaptation occurs. When λ > 0 (turquoise), then
p̂(t) = 0 is unstable, hence the A allele persists and the island population is locally adapted relative
to the mainland. Stability was calculated across different degrees of environmental harshness (δ)
and baseline death rates (d). The death rate was allowed to range from 0 to ba. For a given d, δ
values were chosen to be below the A extinction criterion (black line), the maximum δ such that
a single population of A allele individuals is still viable (Eq. 3.3). Above this value (white region),
the island population is a sink sustained only by migration from the mainland. A similar extinction
criterion for the a allele is indicated by the dotted line (Eq. 3.3), indicating the maximum δ such
that a single population of a allele individuals would be viable. The blue line marks the minimum
value of δ required for selection to favour the high-r allele in the single population case, as given by
Eq. 3.4. Parameters were as follows: (A) bA = 0.25, ba = 0.2, XA = 500, Xa = 1000, M = 1; (B)
bA = 0.25, ba = 0.2, XA = 5000, Xa = 10000, M = 1.

of new individuals increasing the overall island population size, thus requiring a harsher

environment to reduce the population sufficiently to favour the high-r allele. We also note

that if the environment is too harsh, the high-K individuals migrating in will out-compete

the dwindling high-r individuals, even before the environment is sufficiently harsh to drive

the high-r alleles to extinction entirely. Thus the window in which a polymorphism persists

and the island becomes locally adapted to favour the high-r allele may be smaller than the

window in which the high-r allele is favoured in a single population model. As carrying

capacity increases (Fig. 4.1B), the parameter region in which coexistence occurs grows to

match the parameter region in which the high-r allele dominates in the single-population

model.
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4.3 Estimating the polymorphic solution

When p̂ = 0 is not stable, coexistence of the two alleles arises so that 0 < p̂ < 1. Since

p(t) = p(t−), a long term periodic solution requires that the allele frequency at the beginning

of the season is equal to the allele frequency at the end of the season. Therefore we assume

the change in allele frequency throughout the season is small, hence:

dp

dt
≈ 0.

Setting Eq. 4.1 equal to zero, we find:

p(N(t)) = bAXaN(N − XA) − baXAN(N − Xa) + XAXaM

bAXaN(N − XA) − baXAN(N − Xa) .

Plugging this in for p, Eq. 4.2 reduces to:

dN

dt
= bAN −

(
d + bA

XA
N

)
N,

which along with our impulse restriction gives us the approximate periodic solution:

N̂(t) = (bA − d)XA

bA

e−2π(bA−d) − (1 − δ)
e−2π(bA−d) − (1 − δ) − δe−(bA−d)t .

Plugging this into Eq. 4.1, we get the following differential equation:

dp

dt
= a1(t)p + a2(t)p2,

where:

a1(t) = (bA − ba) − bAM

(bA − d)XA
+ bAMδe−(bA−d)t

(bA − d)XA

(
e−2π(bA−d) − (1 − δ)

)
−

(bA − d)(bAXa − baXA)
(
e−2π(bA−d) − (1 − δ

)
bAXA

(
e−2π(bA−d) − (1 − δ) − δe−(bA−d)t) ,

a2(t) = −(bA − ba) +
(bA − d)(bAXa − baXA)

(
e−2π(bA−d) − (1 − δ

)
bAXA

(
e−2π(bA−d) − (1 − δ) − δe−(bA−d)t) .
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Using the change of variables [64]:

p(t) = − y′(t)
a2(t)y(t) , y′(0) = −a2(0)p(0), y(0) = 1,

we derive an approximate long-term periodic solution p̂(t) for the polymorphic state:

p̂(t) = Cb(t)
1 − C

∫ t
0 a2(s)b(s)ds

,

where:

b(t) = exp
[∫

a1(t)
]

C = − p̂(0)
b(0) .

To satisfy the requirements of a periodic solution, we require that p̂(0) = p̂(2π) so that:

p̂(0) = b(0) − b(2π)∫ 2π
0 a2(s)b(s)ds

.

This solution cannot be written in closed form and must be computed numerically.

4.4 Calculating local adaptation

While the stability analysis informs when coexistence occurs, it does not describe the extent

of local adaptation on the island. In the case that the A allele persists, the extent of local

adaptation can be quantified using the ‘local vs. foreign’ definition of local adaptation [5]:

∆LF = E[Wii] − Ej [Wij ],

which takes the difference between the mean fitness of island (i) individuals in the island

(i) environment and the mean fitness of all individuals from all populations (j = {island,

mainland}) when transplanted into the home (island) environment [27]. In the case of the

island-mainland model, this becomes:

∆LF = 1
2 (pWA + (1 − p) Wa) − 1

2Wa. (4.4)
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Here the fitness of an allele is given by:

Wi = bi −
(

d + bi

Xi
N

)
.

Since fitness is dependent on the population density in the environment (N) and allele

frequency (p), which both change with time, it is necessary to choose a time when local

adaptation will be measured. We choose to measure the degree of local adaptation on the

island at both the beginning of the season and at the end, just before the crash.

Figure 4.2 shows how locally adapted the island is under different environmental con-

ditions. At the beginning of the season, the island is always positively locally adapted, but

by the end of the season, the degree of local adaptation has decreased across all environ-

ments. When the island conditions are less harsh, the population may even become locally

maladapted (Fig. 4.2). This reflects the density-dependent nature of the selection. As the

season goes on, the population density increases and the high-r individuals become less well-

suited to the environment, resulting in local maladaptation. Therefore, a population crash

is necessary to maintain a low population density and hence allow the high-r individuals to

persist.

4.5 Effective population size

The differential equation model assumes an infinite population size, where evolution is

deterministic. However, a real-world, finite population is subject to stochastic effects: both

evolutionary (genetic drift) and demographic. If selection is sufficiently weak or the effective

population size is sufficiently small, the evolution of a gene may be nearly neutral [28].

Selection is considered weak relative to neutral drift if the product of the selection coefficient

and the effective population size sNe < 1 [48].

The deterministic model above predicts that selection for a higher growth rate is stronger

when environmental conditions are harsher and thus population densities are lower. Conse-

quently, it’s necessary to consider how the small effective population size may counterbalance

the greater selection and lead to an increased influence of genetic drift on the evolution of

the population. When population size fluctuates through time, as in this model, the effective
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Figure 4.2: Degree of local adaptation due to seasonal disruptions. Measure of local adap-
tation is calculated according to Eq. 4.4. Black lines mark the point where the p̂ = 0 steady state
changes from stable to unstable, calculated numerically from the deterministic model. For both the
deterministic and stochastic models, local adaptation on the island is positive at the beginning of
the season. Towards the end of the season, local adaptation becomes negative in less harsh environ-
ments, indicating maladaptation. Parameters: bA = 0.25, ba = 0.2, XA = 5000, Xa = 10000, M = 1.
Stochastic simulations were initialised with NA = 1000 and Na = 1000, and had a run time of 300.
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Figure 4.3: Product of the selection coefficient and the effective population size. For values
near or less than 1, selection is considered weak relative to neutral drift. sNe was not calculated
in the parameter region where the island is a sink (white). Note values are shown on a log scale.
Parameters: bA = 0.25, ba = 0.2, XA = 5000, Xa = 10000, M = 1.

population size is given by the harmonic mean over the course of a single cycle [24]:

Ne = 2π

[∫ 2π

0

1
N̂(t)

]−1

.

The selection coefficient is given by the difference in the fitnesses of the two alleles:

s = WA − Wa

= bA − ba −
(

bA

XA
− ba

Xa

)
Ne.

Figure 4.3 shows that selection is weakest along the areas of transition between coexistence

and loss of the A allele. To understand how stochasticity might change the evolutionary

outcomes in these parameter regions, we implement a finite population model of our island-

mainland system.
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4.6 Finite population model

We translate the dynamics presented in the deterministic case to a stochastic framework

by implementing a Gillespie algorithm with the birth, death, and migration rates found in

Table 4.1 [17]. This allows us to capture not only the stochasticity of genetic drift, but the

effects of demographic stochasticity. At the end of a season, a proportion (δ) of the popu-

lation is removed. Individuals are chosen to be removed at random, with no preference for

one allele over the other. Simulations were performed across 7457 choices of the parameters

δ and d with 50 replicates each.

Table 4.1: Birth, death, and migration rates.

Event Rate
birth of individual i biNi

death of individual i
(
d + bi

Xi
NT

)
Ni

migration in of individual a M

To quantify the local adaptation on the island, we measured the population size and

allele frequency at the beginning and end of the last season of each simulation. We then

used these values to calculate the local adaptation of the island at the beginning and end of

the season, using the same ‘local vs. foreign’ definition (Eq. 4.4) as in the deterministic case.

Figure 4.2 shows that pattern of local adaptation on the island predicted by the deterministic

result is robust to genetic drift. A transient region arises near the boundaries of transition

between coexistence and loss of the high-r, A allele, in which stochasticity allows for the

occasional persistence of the A allele. This results in a small, non-zero average degree of

local adaptation.
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Chapter 5

Conclusion

In this thesis, I have used mathematical modelling and stochastic simulations to study the

evolution of life-history traits under seasonal disruptions. Applying asymptotic analysis and

Floquet analysis to a continuous-time model, I show that higher rates of reproduction can be

favoured over higher competitive ability if the average amount of mortality over the course

of a season reaches an intermediate level. If mortality is too low, higher competitive ability

is favoured just as in a constant environment. If mortality is too high, the population will be

driven to extinction. Notably, the timing of the mortality plays no role in the evolutionary

outcome, with both impulsive population crashes and continuously varying death rates

leading to the same outcomes. Conversely, varying the available resources in the population

cannot result in selection for a high rate of reproduction. Restricting access to resources does

not sufficiently reduce the population density to allow for the success of the high growth

allele.

These theoretical findings align with observations in natural systems. They may explain

why the drought-intolerant strain of L. parviflorus, with its greater competitive ability, is

dominant in non-serpentine soil, despite temporal variability in rainfall [12]. Incorporating

seasonal population crashes into a model of local adaptation to an island environment

relative to a mainland, I show that the conditions for local adaptation to arise are similar

to those necessary for r-selection in a single population. Simulations show that these results

are robust to stochasticity.

The case study of the seaweed fly C. frigida is noteworthy in part because the chromoso-

mal inversion allows a group of genes that confer an r- or K-selected phenotype to be passed
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onto offspring together [44, 45]. Thus the inheritance pattern functionally behaves like that

of a single biallelic locus, as in the model presented here. However such patterns of inheri-

tance are rare; more often r- and K-selection emerges from a combination of phenotypes, all

mediated by multiple genes. The simplifying assumption of a single locus model allows for

better tractability and focuses on the question of what environmental conditions can or can

not lead to broad patterns of r-selection over K-selection. Determining how more complex

genetic architecture or trade-offs between more specific phenotypic traits may complicate

the relationship of r/K selection and seasonality requires more complicated models and em-

pirical work. Notably, a model which allows for a greater variety of phenotypes would show

how intermediate life-history strategies, which are neither entirely r-selected nor entirely

K-selected, might respond to different environmental disruptions.

The models presented here describe the evolution of only one of many possible life-history

trade-offs shaped by density-dependent natural selection. Specifically, the models considered

did not incorporate age structure as would be necessary for modelling to fully capture life-

history evolution, as seasonality and mortality frequently both relate to the life cycle and

age of individuals. A model incorporating age structure would explore questions about

selective pressures on the rate of maturation and the importance of the timing of mortality

relative to the life cycle. Additionally, these models assumed regular seasonality with a

consistent severity. However, a consequence of climate change is irregular seasonality and

more dramatic seasonal swings. As the work of Lande et al. has demonstrated, stochasticity

also serves to shape life-history evolutionary dynamics [34, 35]. Incorporating a degree

of stochasticity into the timing and severity of seasons may change the dynamics shown

here. Alternatively, some environments experience seasons of great stability and seasons of

large disruptions, motivating a model consisting of seasons of environmental stability and

seasons of regular disruption. Both these cases may be of particular interest for stochastic

simulations, where there are transient states in regions of higher or lower mortality (Fig. 4.2)

where dynamics may easily shift in response to greater variability.

The work presented here extends classic life-history theory [40, 53], demonstrating how

the seasonality can (in the case of seasonal mortality) and cannot (in the case of fluctuating

resource abundance) favour the spread of r-selected life-history strategies. I show that r-
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selected life-history traits are not favoured in all seasonal environments, but rather selection

depends on the nature (how seasonality impact populations by changing population size,

resource availability, or mortality rate), timing, and severity of seasonal disruptions. These

results can be useful for understanding life-history evolution in experimental, agricultural,

and natural systems. As anthropogenic climate change has increasingly dramatic impacts

on seasonality and variability, understanding how temporal environmental variation shapes

evolution in single populations as well as local adaptation across spatially-structured en-

vironments is increasingly important. The results and methods presented here establish

a foundation on which this future work on the complex eco-evolutionary consequences of

seasonality on the evolution of density-dependent traits can build.
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Appendix A

Introductory Models

A.1 Patterns of density dependence in the logistic growth
model

Here I present a discrete time logistic model of density-dependent selection on a haploid
population to illustrate the patterns of density dependence of r and K. We consider a single
gene with two possible alleles: A and a. Let NA be the number of individuals with the A
allele and Na be the number of individuals with the a allele. The fitness of each allele is
given by:

Wi(N) = (ri + 1) − ri

Ki
N, (A.1)

where N is the total population size, and ri and Ki are the intrinsic growth rate and carrying
capacity for the given allele. Additionally, we assume the there is a trade-off between the
intrinsic growth rate and the carrying capacity:

rA > ra, KA < Ka.

Note that for small N , the second term in Eq. A.1 is small and therefore a large r confers the
greatest fitness advantage. However as N increases, a large K becomes more advantageous
in order to keep the second term small. The population size Ne when WA(Ne) = Wa(Ne)
is labelled the effective population size [53]. Figure 2.1 in the main text shows that for
population sizes below the effective population size, the high-r allele A has the fitness
advantage, while for population sizes greater than the effective populations size, the high-K
allele has a higher fitness. This density-dependent pattern in fitness translates to density-
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dependence in selection. The selection coefficient for the A allele is given by:

S = WA(N) − Wa(N)
W̄ (N)

=
rA

(
1 − N

KA

)
+ ra

(
1 − N

Ka

)
1 + rA

(
1 − N

KA

)
p + ra

(
1 − N

Ka

)
(1 − p)

.

We see that S is still dependent on N . If rA = ra, then the selection coefficient becomes:

S =
2 − N

(
1

KA
− 1

Ka

)
1 + r

(
1 − N

(
1

KA
p + 1

Ka
(1 − p)

)) .

If KA = Ka, then the selection coefficient is given by:

S =
(rA − ra)

(
1 − N

K

)
1 + r̄

(
1 − N

K

) ,

where r is the mean intrinsic growth rate. Therefore, selection coefficients for both r and K
depend on N . That is, both the intrinsic growth rate and the carrying capacity experience
density-dependent selection.

Using the fitness functions, we can define recursive equations for the frequency of the A
allele, p, and the total population size, N :

pt+1 = pt WA(N t)
W̄ (N t)

, (A.2)

N t+1 = N t
[
W̄ (N t)

]
. (A.3)

Setting ∆p = pt+1 − pt = 0 and ∆N = N t+1 − N t = 0, we find four equilibria:(
p̂1, N̂1

)
= (0, 0),(

p̂2, N̂2
)

= (0, Ka),(
p̂3, N̂3

)
= (1, 0),(

p̂4, N̂4
)

= (1, KA).

Using the Jacobian of pt+1 and N t+1 with respect to pt and N t, we find that the first and
fourth equilibria are unstable and the second and third equilibria are stable. In other words,
in a constant environment, the population will either go extinct or the high-K allele, a, will
fix and the population size will approach the higher carrying capacity, Ka.
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A.2 Density dependence of viability

A.2.1 Discrete-time model

The life cycle for a discrete time b/V/K model of population growth is shown in Figure 2.3
of the main text, where Ni is the number of individuals with allele i, and primes do not
indicate derivatives, but instead the population size after the next step in the cycle. From
Eq. 2.1 in the main text, we can define the allele fitness as:

Wi(N) = Vi

[
1 + bi

(
1 − N

Ki

)]
,

and define the recursive equations for allele frequency and population size the same as
Eq. A.2 and Eq. A.3 respectively.

To examine the selection on viability only, assume that birth rate and carrying capacity are
the same for both alleles. Then the selection coefficient is given by:

SV =
(VA − Va)

[
1 + b

(
1 − N

K

)]
(pVA + (1 − p)Va)

[
1 + b

(
1 − N

K

)]

= VA − Va

V̄
.

This is completely independent of the population size. Contrast this with selection on birth
rate and carrying capacity. Assuming viability and carrying capacity remain constant, the
selection coefficient for birth rate is:

Sb =
V
[
1 + bA

(
1 − N

K

)]
− V

[
1 + ba

(
1 − N

K

)]
V
[
1 + bA

(
1 − N

K

)]
p + V

[
1 + ba

(
1 − N

K

)]
(1 − p)

=
(bA − ba)

(
1 − N

K

)
(
1 − N

K

)
b̄ + 1

.
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Holding viability and birth rate constant, the selection coefficient for the carrying capacity
is:

SK =
V
[
1 + b

(
1 − N

KA

)]
− V

[
1 + b

(
1 − N

Ka

)]
V
[
1 + b

(
1 − N

KA

)]
p + V

[
1 + b

(
1 − N

Ka

)]
(1 − p)

=
b
(

N
Ka

− N
KA

)
(
1 − N

KA
p − N

Ka
(1 − p)

)
b + 1

.

Both of these selection coefficients depend on the population size N . While the fitnesses for
b, V , and K are all density dependent, only selection for b and K are also density-dependent.

A.2.2 Continuous-time model

Now consider the analogous continuous model. Here, rather than considering the viability
V , we will use the death rate d = 1 − V . Since the carrying capacity (K) is defined as
the equilibrium population size, which is changed by the inclusion of a death rate, we will
instead use the variable X, which we call the growth rate. The differential equation for the
change in the population with allele i is:

dNi

dt
= biNi −

(
di + bi

Xi
N

)
Ni. (A.4)

The Malthusian fitness of allele i is given as:

mi = 1
Ni

dNi

dt
= bi −

(
di + bi

Xi
N

)
.

From this, the selection on the A allele in the continuous model is defined by:

S = mA − ma.

As with the discrete model, we first hold b and X constant to determine the selection
coefficient for the death rate:

Sd = b −
(

dA + b

X
N

)
− b +

(
da + b

X
N

)
= −(dA − da).

This is not dependent on N , therefore selection on d, like selection on V , is not density-
dependent. We can also see that selection on b and X will be density-dependent. Selection
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on b in the continuous case is:

Sb = bA −
(

d + bA

X
N

)
− ba +

(
d + ba

X
N

)
=
(

1 − N

X

)
(bA − ba),

and selection on X in the continuous case is:

SX = b −
(

d + b

XA
N

)
− b +

(
d + b

XA
N

)
= b

(
N

Xa
− N

XA

)
.

We can also note that the selection coefficients in the continuous case are the same as the
numerators of the selection coefficients in the discrete case. The difference here comes from
the fact that the selection coefficient in the discrete case divides through by the mean fitness,
whereas the continuous selection coefficient does not.

A.3 Polymorphisms in a periodic environment

Considering a discrete-time model of a diploid population under density-dependent selec-
tion, Roughgarden (1971) demonstrated that in a constant environment, the high-K allele
will always fix when there is full dominance of either the high-K or the high-r allele. The full
dominance cases are functionally the same as the haploid model described in appendix A.1.
Only when the heterozygote had a higher carrying capacity than both homozygotes was it
possible for a polymorphism to arise. When the heterozygote had a smaller carrying capac-
ity than both homozygotes, no polymorphism could arise, but it was possible for the high-r
allele to fix depending on the initial allele frequency. Additionally, Roughgarden demon-
strated that introducing seasonality into the environment increased the range of cases in
which a polymorphism may arise when the heterozygote’s phenotype differs from both ho-
mozygotes. It also made possible a polymorphism in the case of full dominance, an outcome
which cannot be achieved in a constant environment [53].

A haploid version of Roughgarden’s periodic model is shown in Figure A.1. The life cycle
consists of two seasons of growth, followed by a dormant season during which the population
drops to some constant size N0 [53]. The fitness functions are derived from a logistic growth
model:

Wi(N) = (ri + 1) − ri

Ki
N.

This system has three equilibria: p̂ = 0, p̂ = 1, and a polymorphic equilibrium. An equilib-
rium is stable if:

−1 <
dpt+1
dpt

∣∣∣∣
pt=p̂

< 1.

Taking N0 → 0, we find that in extremely harsh environments the equilibrium p̂ = 1 is
stable, so the high-r allele will fix. If we assume that N0 < KA < Ka, then to study the

59



census Nt

pt

growth 1
N ′(t) =

[
W̄ (Nt)

]
Nt

p′
t = WA(Nt)

W̄ (Nt) pt

growth 2

N ′′(t) =
[
W̄ (N ′

t)
]

N ′
t

p′′
t = WA(N ′

t)
W̄ (N ′

t) p′
t

dormant

Nt+1 = N0

pt+1 = p′′
t

Figure A.1: Single life-cycle for a haploid population with two growth seasons and a
dormant season. N represents the total population size, p represents the frequency of the high-
r allele, Wi are the fitness functions of each genotype, and N0 is the fixed population size the
population drops to a every dormant season. Primes do not represent derivatives, but indicate the
next step in the life-cycle.

system’s behaviour in nice environments we take the limit N0 → KA. In this case, the p∗ = 0
equilibrium is stable, so the high-K allele fixes. Therefore a polymorphic equilibrium may
only arise in a moderate environment. Figure A.2 shows the stability of the steady state
p̂ as N0 changes for three different values of Ka, the carrying capacity of the big-K allele.
As the larger carrying capacity increases, the environmental harshness necessary to yield a
polymorphism increases. Similarly, Figure A.3 shows the stability with different values of
rA: as the growth rate of the big-r allele increases, the necessary environmental harshness
decreases. In all cases, the window for a stable polymorphism is small. The majority of
environmental conditions lead to fixation or loss.
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Figure A.2: Stable steady state allele frequencies over a range of environmental harsh-
nesses for three different big-K allele carrying capacities. Parameter values are as follows:
KA = 3500, rA = 0.8, ra = 0.4

Figure A.3: Stable steady state allele frequencies over a range of environmental harsh-
nesses for three different big-r allele growth rates. Parameter values are as follows: KA =
3500, Ka = 5000 ra = 0.6
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Appendix B

Mathematica analysis of
island-mainland model

Description:

Mathematica notebook containing the analysis for the island-mainland model of local adap-
tation of life-history traits. A PDF version of the notebook is also included.

Filename:

Hall_Rebekah_mathematica_notebook.zip

Summit link:

https://summit.sfu.ca/item/38288
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