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Abstract

In the rapidly evolving landscape of cybersecurity, the increased demand for zero trust pro-
tection and the intricate management of digital assets give rise to the urgent need for robust
cyber risk mitigation strategies. Despite significant investments in information security, the
escalating frequency and severity of cyber breaches pose substantial risks to business oper-
ations, with potential large-scale economic impacts. This thesis presents a comprehensive
analysis of data breaches, employing advanced statistical modeling and estimation tech-
niques. An empirical investigation of the Privacy Rights Clearinghouse (PRC) Data Breach
Chronology dataset, including cluster analysis and preliminary data examination, sets the
groundwork for subsequent modeling approaches. A Bayesian negative binomial generalized
linear mixed model is introduced to capture quarterly variation and heterogeneity in cy-
ber incidents frequency. Further, the thesis proposes a zero-inflated mixture and composite
regression model for the loss severity. This model incorporates splicing and finite mixture
techniques to address unique features of data breaches, with the parameter estimation facili-
tated by the expectation-maximization (E-M) algorithm. Building on frequency and severity
models, the research introduces aggregate loss modeling approaches, including simple ag-
gregation and MCMC-based methods. These models offer practical strategies for the cyber
insurance industry. The impact of various deductibles, limits, and reinsurance practices on
loss aggregations is also examined. The findings emphasize the critical importance of accu-
rate cyber risk measurement and prediction for effective risk management and mitigation.
By leveraging advanced statistical models, this research contributes to the development of
more resilient cybersecurity frameworks and informs strategic decision-making in advancing
cyber insurance products.

Keywords: cyber risk aggregation; cyber risk modeling; expectation-maximization (E-M)
algorithm; generalized linear mixed model (GLMM); Markov chain Monte Carlo (MCMC);
mixture composite regression
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Chapter 1

Introduction

Cyber risks never stand still: a secure remote and hybrid work environment continues to
drive investment so demand for zero trust protection for remote workers and organizations
is increasing, and at the same time, multicloud environments increase security risks and
the complexity of managing them. With border-less network thoroughly covered nearly
every terminal in the world, it is crucial to maintain security on digital assets/property and
identify vulnerable data residencies in time. Industries, companies and organizations have
been increasingly suffered by cyber breaches, which have posed serious risks to their business
operations over last decades. According to Gartner (2022), spending on information security
and risk management products and services is forecast to grow 11.3% to reach more than
$188.3 billion in 2023. Given the potential economic impact of a successful large-scale cyber
attack, cybersecurity risks remain the second-most important emerging issue highlighted
by risk experts (AXA, 2019). Beyond traditional technologies, a larger set of risks at the
intersection of technology and society is rapidly emerging. Artificial intelligence (AI) and
big data have led emerging technologies, transforming economic and social structures. The
full-scale implications of cyber threats are yet to be experienced, especially since technology
is rapidly evolving. This emerging risk becomes a big challenge for the impacted industries
and organizations to mitigate and manage the cyber related risks they face and meanwhile
for the insurance companies to manage the cyber insurance risk that is transferred to them.

1



1.1 Background

The increasing trend observed in data breach frequency and associated costs raises the
importance of utilizing cyber insurance for business and organizations to protect themselves
against data breach losses/liabilities. Cryptomining, phishing, trojan and ransomware have
become the biggest cyber threats to businesses lately. A recent industry survey (Rudolph,
2022) indicates that cyber/networks have been listed as number one or two among the top
five notable emerging risks in their 2018-2021 surveys. COVID-19 has compelled businesses
to establish remote workforce and utilize cloud-based platforms. Due to the pandemic,
remote work and digital transformation further increased the average total cost of a data
breach incident. The Federal Bureau of Investigation (FBI) reports a 300% increase in
reported cyber crime activities since the COVID-19 pandemic began. According to IBM
(2020), data breach costs increased from $3.86 to $4.24 million per incident on average in
2021, the highest cost in the 17-year history of the report. Cybersecurity & Infrastructure
Security Agency (CISA, 2022) states that recent cyber attack activities by Russian have
included destructive malware and ransomware operations, which changes the cyber threat
landscape and leads to global supply constraints. Attackers stole $121,000 in bitcoin through
nearly 300 transactions due to a Twitter breach that affected 130 accounts (Leswing, 2020)
resulted in attackers swindling. A ransomware attack paralyzed at least 200 U.S. companies
via Kaseya, a globally used software supplier on July 3, 2021 (BBC News, 2021). It was a
colossal and devastating supply chain attack and has the potential to spread to any size
or scale business through cloud-service providers. A security breach disclosed by Marriott
compromised the data of more than 5.2 million hotel guests (Marriott, 2020). The Equifax
Data Breach, occurred in 2017 at the American credit bureau Equifax, costed up to $425
million in total; it affected 147.9 million consumers (Equifax, 2017). All we have seen shows
that cyber attacks continue to remain a top threat in future armed conflicts, energy shortages
and supplement traditional forms of warfare. The increasing number of large-scale and also
widely publicized security breaches suggests that both the number of security/data breaches
and their severity is increasing.

Regulations and best practices in cyber security hygiene and risk management are chang-
ing due to the rapid increases of frequency and severity of cyberattacks. Several federal
legislation (e.g., Data Security and Breach Notification Act (2015) and Data Accountability
and Trust Act (2019)) have been introduced in the U.S. to enhance the cyber security and
data protection. Prominent legislation like the European Union’s 2018 General Data Pro-
tection Regulation (GDPR)1, California’s 2020 California Consumer Privacy Act (CCPA)2

1General Data Protection Regulation: https://gdpr.eu/

2California Consumer Privacy Act: https://oag.ca.gov/privacy/ccpa
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and Illinois’s 2018 Biometric Information Privacy Act (BIPA)3 have been passed to enforce
severe consequences. To collect, store, process and transfer consumer data, these regulations
all have one thing in common: they require organizations to adhere to specific standards.
The FBI set up an Internet Crime Complaint Center (IC3) (FBI, 2000) in 2000 with a
trustworthy source for information on cyber criminal activities to combat through criminal
and cyber investigative work. In 2020, IC3 received a total of 791,790 cyber crime records
from American public with reported losses exceeding $4.1 billion, which is a 69% increase
in total complaints and about 20% increase in loss amount from 2019. Over the years from
2016 to 2020, IC3 received over two million complaints, reporting nearly $13.3 billion (FBI,
2000) loss. Those complaints address a wide array of Internet scams affecting victims across
the globe.

In addition to reducing vulnerable exposure and increasing technology defence invest-
ment, cyber insurance is a fundamental and wildly applicable tool for organizations to
maintain their enterprise solvency in light of the rise in cybersecurity threats. Cyber in-
surance is a type of insurance intended to product against the financial costs associated
with the failure or compromise of an organization’s information system (Michael A. Bean,
2020). Cyber events incidents include a hacking attack by an external party or malware in-
fection, fraud involving debit and credit cards, and the unintentional disclosure of electronic
records due to human error. Cyber insurance is emerging as an important tool to protect
organizations against future cyber breach losses and its institutional pillars are progressively
evolving and reinforcing one another (Kshetri, 2020). In the 1990s, the earliest form of cyber
liability policies were generated to cover online media or errors in data processing, they then
evolved to cover unauthorized access, network security, data loss and virus-related claims
in the 2000s (ColonyWest, 2023). By analyzing the U.S. cyber insurance market, Xie et al.
(2020) find that professional surplus insurers and insurers with surplus insurer affiliation
demonstrate a competitive advantage in cyber insurance participation.

According to the Council of Insurance Agents & Brokers’ Commercial Property/Casualty
Market Survey (CIAB, 2021), average cyber renewal premium rate increases have deceler-
ated, with a 15% sequential-quarter increase in 4Q22 down considerably from a record 34%
increase in 4Q21. Fitch (2023) estimates that industry statutory direct written premiums
for cyber coverage in standalone and package policies increased by over 50% in 2022 to
$7.2 billion, following 73% premium growth in the prior year. Standalone cyber coverage,
representing approximately 70% of industry premiums, increased by 62% in 2022. Rapid
recent premium growth and a reduction in claims experience in 2022 led to a strong re-
covery in results for the U.S. cyber insurance line following two consecutive years of more
elevated loss ratios. A significant improvement of the direct incurred loss and defense and
cost containment (DCC) expenses ratio drops from 68% to 43% in year 2022 for standalone

3Illinois Biometric Information Privacy Act: https://www.ilga.gov/legislation/ilcs
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cyber coverage. The NAIC report (NAIC, 2020) points out that changes in cyber insurance
loss ratios are not driven by premium growth but by claim frequency and severity growth,
implying the significance of cyber insurance policy designs. Most cyber insurance providers
a core set of coverages and various supplement coverages. With the cyber risk insurance
market is at an inflection point, it provides an opportunity to embrace a paradigm shift.
To safeguard its profitability, the cyber insurance market took four deliberate measures to
combat rising loss ratios: (Farley, 2022): cyber premiums increased across the board, re-
gardless of the industry sector or organization size; many carriers imposed sub-limits and
coinsurance provisions specific to ransomware claims; carriers wanted to limit their expo-
sure by limiting capacity; and almost all carries requested more information regarding data
security control efforts.

1.2 Motivation

As it can be seen from the facts and challenges presented in the last section that industries,
societies, governments as well as the insurance companies face, it is crucial and urgent for
insurance companies develop new and/or strengthen existing insurance products to help
mitigate risks caused by cyber attacks. Given the difficulties in quantifying this emerging
and evolving risk for pricing and risk management due to its discovered and hidden features,
new methodologies and techniques, in addition to standard/traditional actuarial methods,
need to be developed.

Modeling cyber related risks has become an increasingly important research topic in
many disciplines. Eling (2020) presents a comprehensive review of academic literature on
cyber risk and cyber insurance in actuarial science and business related fields including
economics, finance, risk management and insurance. Here, we briefly review recent research
in actuarial science literature on the modeling and analyzing data breach related cyber risks.
Maillart and Sornette (2010) reveal an explosive growth in data breach incidents up to July
2006 and a stable rate thereafter. Wheatley et al. (2016) focus on the so called extreme
risk of personal data breaches by detecting and modeling the maximum breach sizes and
show that the effect of both the frequency and severity of breaches scale is unearthed.
Edwards et al. (2016) find that daily frequency of breaches can be well described by a
negative binomial distribution. Eling and Loperfido (2017) implement frequency analyses
on different levels of breach types and entities through multidimensional scaling and multiple
factor analysis for contingency tables, while Eling and Jung (2018) extend former work by
implementing pair copula construction (PCC) and Gaussian copula to deal with asymmetric
dependence of monthly losses (total number of records breached) in two cross-sectional
settings. Fahrenwaldt et al. (2018) develop a mathematical (network) model of insured
losses incurred from infectious cyber threats and introduce a new polynomial approximation
of claims together with a mean-field approach that allows computing aggregate expected

4



losses and pricing cyber insurance products. Jevtić and Lanchier (2020) propose a structural
model of aggregate cyber loss distribution for small and medium-sized enterprises under the
assumption of a tree-based local area network (LAN) topology. Schnell (2020) shows that the
frequently used actuarial dependence models, such as copulas, and frequency distributions,
such as Poisson distribution, would underestimate the strength of dependence.

What we aim to achieve is to generate complex loss prediction models with high pre-
dictive accuracy by investigating historical incurred breach incidents and related features.
We adopt frequency-severity loss modeling approach, and take the discrete variable for loss
frequencies (the number of cyber data breach incidents) and the continuous variable for loss
amounts (the recorded number of data breached and the associate dollar amount of loss
caused). Those improvements are made to increase prediction accuracy and reduce the bias
of prediction models. It is crucial and urgent for researchers and practitioners to identify
and model cyber risks such as data breaches so as to help insurance companies examine,
pricing and manage their cyber related insurance risks, for which data plays an important
role.

Our research is data-driven based on Privacy Rights Clearinghouse (PRC) Data Breach
Chronology4 database which contains cyber breach incidents between years 2001 and 2022.
The dataset we examine is from Privacy Rights Clearinghouse (PRC) (PRC, 2019). It is
primarily grant-supported and serves individuals in the United States. This repository keeps
records of data breaches that expose individuals to identity theft as well as breaches that
qualify for disclosure under the state laws. Chronology includes the type of breaches, type
of organization, name of company and its physical location, date of incidents and number
of records breached. It is the largest and most extensive dataset that is publicly available
and has been investigated by several research papers from various perspectives.

1.3 Literature Review

In this section, we provide a literature review on three areas, the generalized linear mixed
model (GLMM) for event frequencies, the mixture components spliced regression distri-
bution for loss amounts, and the aggregation of losses or risks. The three parts of review
correspond to the models developed/studied and presented in Chapters 3-5 of this thesis,
respectively.

1.3.1 Generalized Linear Mixed Model

Generalized Linear Mixed Model (GLMM) is a framework that encompasses statistical
approaches to overdispersion, correlated errors, shrinkage estimation, and smoothing of
regression relationships. Given an unobserved vector of random effects, observations are as-

4Data Breach Chronology, https://privacyrights.org/data-breaches
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sumed to be conditionally independent with means that depend on the linear predictor and
conditional variances (Breslow and Clayton, 1993). McCulloch (1997) describes maximum
likelihood algorithms for GLMMs by constructing a Monte Carlo version of the expecta-
tion–maximization (EM) algorithm, proposing a Monte Carlo Newton-Raphson algorithm,
and evaluating and improving the use of importance sampling ideas. Clayton (1996) brings
up Bayesian analysis using GLMMs to tailor statistical methods not to ill-fitting procedures
solely for reasons of computational tractability. Bolker et al. (2009) utilize GLMMs to pro-
vide a more flexible approach for analyzing non-normal data such as counts or proportions
that often defy classical statistical procedures when random effects are presented. GLMM
is one of the most useful structures in modern statistics, allowing many complications to be
handled within linear model framework (McCulloch, 2006).

Generally, a generalized regression model is used to describe within-group heterogene-
ity of observations, and a sampling model is used to describe the group specific regression
parameters. A GLMM can handle those issues by not only accommodating non-normally
distributed responses and specifying a non-linear link function between response mean and
regressors but also allowing group specific correlation in data. In actuarial science liter-
ature, Blough et al. (1999) present a GLMM approach to modeling the second part of
two-part models for medical expenses utilizing extensions of the generalized linear model;
the maximum likelihood method, the generalized quasi-likelihood and the extended quasi-
likelihood are discussed. Scurrah et al. (2000) use Bayesian inference with Gibbs sampling
to fit GLMMs for right-censored survival times in nuclear and extended families for genetic
research which includes age-at-onset and age-at-death data and a variety of other censored
traits. Antonio and Beirlant (2007) use the GLMMs in actuarial statistics for the modeling
of longitudinal data and discuss the model estimation and inference under the Bayesian
framework, in order to offer a solution facing with the fact that actuaries very often have
repeated measurements of longitudinal data. Recently, Jeong et al. (2021) quantify and ex-
plain the contribution of the variability of claims among policyholders through the use of
random effects using generalized linear mixed models, where the aggregate loss is expressed
as a product of the number of claims (frequency) and the average claim amount (severity)
knowing the frequency; they further calibrate the model using a portfolio of auto insur-
ance contracts from a Singapore insurer. The GLMM has also been used in studying the
credibility models; see, for example, Antonio and Beirlant (2007) and Garrido and Zhou
(2009).

We present briefly in Section 1.2 the PRC dataset that drives our study. Below are
notable studies based on this dataset. Edwards et al. (2016) develop Bayesian generalized
linear models to investigate trends in data breaches, and find that the size of data breaches
is well modeled by the log-normal family of distributions and that the daily frequency of
breaches is described by a negative binomial distribution. Eling and Loperfido (2017) inves-
tigate this dataset under the statistical and actuarial framework; multidimensional scaling
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and goodness-of-fit tests are used to analyze the distribution of data breach information,
showing that different types of data breaches need to be modeled as distinct risk categories.
Eling and Jung (2018) propose the copula modeling by separating the dependence into
pairwise non-zero losses and zero loss arrivals for modeling cross-sectional dependence of
data breach losses; copula models are implemented to identify the dependence structure
between monthly loss events (frequency and severity). Carfora and Orlando (2019) propose
an estimation of value at risk (VaR) and tail value at risk (TVaR) on aggregate losses in
dealing with operational risks, and cyber risks in particular. Xu et al. (2018) model hacking
breach incident inter-arrival times and breach sizes by stochastic processes and propose
data-driven time series approaches to model the complex patterns exhibited by the finan-
cial data, showing that the threat of cyber hacks is indeed getting worse in terms of their
frequency, but not in terms of the magnitude of their damage. Recently, Farkas et al. (2021)
present a method for cyber claim analysis based on regression trees to identify criteria for
claim classification and evaluation, and Bessy-Roland et al. (2021) propose a multivariate
Hawkes framework for modeling and predicting cyber attacks frequency and demonstrate
the ability of Hawkes models to capture self-excitation and interactions of data breaches
depending on their type and targets.

Several studies in literature discuss Bayesian inference for GLMMs. Fong et al. (2010)
conclude that Bayesian inference is now practically feasible for GLMMs and provide an at-
tractive alternative to likelihood-based approaches such as penalized quasi-likelihood. Yau
et al. (2003) consider an application of the GLMM approach to the analysis of repeated
insurance claim frequency data in which a conditionally fixed random effect vector is incor-
porated explicitly into the linear predictor to model the inherent correlation, and a motor
insurance data set is used as the basis for simulation to demonstrate the advantages of the
method. While most studies on modeling cyber risk related dependencies in literature are
geared toward cross-sectional dependence using copulas (see, for example, Eling and Jung
(2018) and Schnell (2020), and references therein), our approach models the dependence
between the frequency and severity under the widely known generalized linear framework,
which excels in interpreting the directional effect of features, along with the GLMM that
deals with hierarchical effects and dependent variables using general design matrices (Mc-
Culloch and Searle, 2004). The Bayesian approach and Markov chain Monte Carlo (MCMC)
method are utilized to obtain posterior distributions of parameters of interest. Specifically,
our hierarchical structure of Bayesian NB-GLMM requires Metropolis-Gibbs (M-G) sam-
pling schemes working on regression mean related parameters, and conditional maximum
likelihood estimates of the dispersion parameter.

1.3.2 Mixture Components Spliced Regression Distribution

A growing number of disciplines are exploring and analyzing Cyber related risks. However,
the actuarial cyber risk management is hindered by the need for mature predictive analysis
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approaches for quantifying and predicting risk severity. We review quantitative research
works in actuarial science and describe several research works that focus on loss severity
modeling and predictive analysis. Malavasi et al. (2021) combine regression models based on
the class of Generalized Additive Models for Location Shape and Scale (GAMLSS), which
permits parameters in both the severity and frequency distributions, and a class of ordinal
regressions. Giudici and Raffinetti (2021) work on ordinal cyber risk data and propose a
rank-based statistical model aimed at predicting the severity levels of cyber risks. Shee-
han et al. (2021) propose a conceptual cyber risk classification and assessment framework,
designed to demonstrate the significance of proactive and reactive barriers in reducing com-
panies’ exposure to cyber risk and quantify the risk. Eling and Jung (2022) measure the size
of risk based on the estimation results and show a large degree of heterogeneity across finan-
cial firms. Sun et al. (2021) model hacking data breaches frequency using a hurdle Poisson
model and severity using a non-parametric generalized Pareto distribution (GPD). Farkas
et al. (2021) particularly focus mainly on severe claims by combining a generalized Pareto
modelling and a regression tree approach for severity analysis. Most of these methods pay
special attention to large claims with heavy tail distributions.

Traditional actuarial modelling techniques for heavy-tailed insurance loss data concen-
trate on simple models based on a single parametric distribution that adapts the tail well,
such as generalized linear models (GLMs), regression models and quantile regression (Mc-
Neil, 1997). Buch-Larsen et al. (2005) propose an estimator obtained by transforming the
data set with a modification of the Champernowne cdf and then estimating the density of
the transformed data by use of the classical kernel density estimator. Charpentier and Oulidi
(2010) suggest several nonparametric quantile estimators based on Beta kernel and apply to
transformed data by the generalized Champernowne distribution initially fitted to the data.
Ahn et al. (2012) study the class of Log phase-type (LogPH) distributions as a parametric
alternative in fitting heavy tailed data, which exhibits several advantages over other para-
metric alternatives. The fact that these techniques are based on a single distribution, which
may not be applicable when the behaviour of the tail is inconsistent with the behaviour of
the entire loss distribution, highlights a significant limitation in their ability to accurately
model and predict extreme loss events. It is well known that the actuarial loss distribution
is strongly skewed with heavy tails and consists of small, medium and large claims that
are difficult to fit with a single parametric distribution. The Extreme Value Theory (EVT)
approach, which employs GPD to model excesses over a high threshold (Allen et al., 2013;
Park and Kim, 2016), gains popularity when dealing with heavy-tailed large loss amounts
data.

However, above literature fail to capture the characteristics across the entire loss dis-
tribution range making them unsuitable for use as a global fit distribution (Beirlant et al.,
2004). In order to model the complete loss distribution, it is frequently necessary to obtain
a global fit for the distribution of losses by splicing (Klugman et al., 2012) several distri-
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butions in order to model the complete loss distribution. Several actuarial works proposed
splicing models for the application of risk measures. For financial risk analysis, Reynkens
et al. (2017) suggest a splicing model with a mixed Erlang (ME) distribution for the body
and a Pareto distribution for the tail. Gan and Valdez (2018) suggest a three-component
spliced regression model for fitting insurance loss data and demonstrate that spliced results
outperform the Tweedie loss model regarding tail fitting and prediction accuracy. Lim et al.
(2011) develop a method for organizing all possible sequence motifs into clusters based
on the genomic profile of their positional distribution around splice sites. Poudyal (2021)
propose and develop a method of truncated moments (MTuM) and generalize it for differ-
ent scenarios of loss control mechanism. Blostein and Miljkovic (2019) develop a statistical
methodology for fitting left-truncated loss data by using the G-component finite mixture
model with any combination of Gamma, Lognormal, and Weibull distributions.

The risk portfolio typically contains unobserved heterogeneity in terms of claim severity,
such as workers’ compensation and cyber risk data. Given this reality, researchers typically
employ a mixture approach to capture the multi-modality of the observed loss distribu-
tion. Hathaway (1986) illuminates the relationship of EM for mixture problems by certain
clustering techniques and explains global convergence properties of the algorithm without
direct reference to an incomplete data framework. Diebolt and Robert (1994) present ap-
proximation methods which evaluate the posterior distribution and Bayes estimators by
Gibbs sampling, relying on the missing data structure of the mixture model. Everitt (2013)
indicates the practical details of fitting finite mixture distributions to sample data. Arcidia-
cono and Jones (2003) develop a broad class of estimators for mixture models and show this
sequential estimator can generate large computational savings with little loss of efficiency.
Tzougas et al. (2014) design an optimal Bonus-Malus system in automobile insurance using
finite mixture models. Sattayatham and Talangtam (2012) model an actual motor insur-
ance claim dataset using a mixture Lognormal distribution. Bermúdez and Karlis (2012)
apply a finite mixture of bivariate Poisson regression models to an automobile insurance
claims dataset and insurance ratemaking. Bernardi et al. (2012) propose a finite mixture of
skew-normal distributions that better describes insurance data. Miljkovic and Grün (2016)
suggest a different method for modelling mixture data with heavy tails and skewness in
insurance loss distribution that exhibit multi-modality. Gui et al. (2018) propose an Erlang
loss model using a generalized expectation-maximization (GEM) and clustered method of
moments (CMM) algorithm to fit insurance loss data and calculate quantities of interest
for insurance risk mixture management. Followed by Fung et al. (2019b) propose a class of
logit-weighted reduced mixtures of experts (LRMoE) models for multivariate claim frequen-
cies or severity distributions and perform the estimation and application to correlated claim
frequencies (Fung et al., 2019a). Recently, Fung et al. (2024) develop a novel class of soft
splicing models that bridges the gap between pre-existing methods for handling heavy-tail
phenomenon and multi-modality of a claim severity distribution.

9



1.3.3 Aggregation of Cyber Breaches Risk

Aggregate loss models are used by insurers to segment risk groups, set pure premium, set
reserving fund and optimize extreme loss management. The aggregate loss is the summation
of all random losses that happened to exposure units in a period of a Property and Casu-
alty (P&C) insurance portfolio. Common practice include evaluating stability of selected
variables, grouped levels and interactions using test data, and evaluating model lift and
stability of indications. Data sets from data warehouse and third party vendors are used to
determine final parameters and indicated relativities. In practical, two approaches are com-
monly used in estimating the capital under the Loss Distribution Approach (LDA). First is
the pure premium or loss cost method, which focuses on the loss ratio—the losses incurred
per unit of pure premium—and automatically produces relativities. It is very commonly
used for premium estimations in P&C insurance as it requires only one model to build and
maintain, allows only a binary choice for the inclusion of a variable and implements offsets
easily. The model normally assumes a compound Poisson distribution with gamma claim
sizes, and generalize linear models (GLMs) are used to estimate the mean aggregate loss.
Since the Tweedie distribution allows to parameterise the compound Poisson-gamma distri-
bution as a member of the exponential dispersion family, it enables the estimation of mean
aggregate loss using GLMs directly (Quijano Xacur and Garrido, 2015). In literature, some
improvements and innovative contributions have been made to this approach. Araiza Iturria
et al. (2021) propose a stochastic model which integrates a double generalized linear model
representing both the mean and dispersion of loss ratio distributions, an auto-correlation
structure between loss ratios of development lags and a copula-based regression of risks
model diving the dependence across various business lines. Denuit et al. (2021) propose
auto-calibration in Tweedie-dominance premium calculation model to correct for bias by
adding an extra local GLM step to the analysis, in order to minimize Tweedie deviance.
Clark (2022) suggests the quasi-Negative Binomial (QNB) as an alternative to Tweedie
distribution variance structure to interpret collective risk models in actuarial applications.
Shi (2016) proposes a copula-based multivariate Tweedie regression for modeling the semi-
continuous claims while accommodating the association among different types, which also
allows for dispersion modeling.

Another approach is the frequency-severity method, which needs to estimate the claim
frequency and severity distributions separately and then multiply together relativities pro-
duced by each model. It is easier to communicate, which helps to greater understand busi-
ness, and produces an option to include a variable in either frequency or severity. The
compound loss distribution is a function of both loss frequency and severity. Quijano Xacur
et al. (2011) compare the Tweedie approach against the frequency-severity approach and
show that one important difference between these two methods is the variation of the scale
parameter of the compound Poisson-gamma distribution when it is parameterized as an
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exponential dispersion model. Malavasi et al. (2022) propose a combination of regression
models based on the class of Generalized Additive Models for Location Shape and Scale
(GAMLSS) and a class of ordinal regressions. Denuit and Trufin (2017) bring up a col-
lective approach to loss development by allowing more general severity distributions fitted
to individual observations. Hua (2015) uses tail order of copulas to introduce tail negative
dependence structure between loss frequency and loss severity, which improves the aggre-
gate loss modeling. Frees et al. (2016) synthesize and extend the literature on multivariate
frequency-severity regression modeling with a focus on copulas for modeling the dependence
among outcomes. There is no preference between two approaches. If it is the first-time im-
plementation, frequency and severity models are easier to find the pattern and signal of
previous experience; if it is for model updates, pure premium is good to focus on until
there has been a significant shift in your data. No matter which approach is used to deploy
pipeline, the overall goal is to select a reasonable model that exacts signal out of historical
experience that it is likely to be predictive of the future.

Our research focuses on the second approach: frequency and severity method. In recent
years, more literature explore dependence structure of loss frequency and loss severity.
Garrido et al. (2016) induce the dependence by treating the number of claims as a covariate
in the model for the average claim size, so that pure premium is the product of a marginal
mean frequency, a modified marginal mean severity, and a correction term. Lee and Shi
(2019) propose a dependent modeling framework to jointly examine the two components in
a longitudinal context where the quantity of interest is the predictive distribution. Jeong
et al. (2021) compare the results by Garrido et al. (2016), Tweedie models, and the case of
independence, and then demonstrate a superior model within GLMM framework.

Shi et al. (2015) propose conditional probability and copula approaches to correlate
the number of claims and the average claim size in the conditional component. Chiou and
Fu (2015) model crash frequency and severity, and accommodate spatial and temporal
dependence by specifying a spatiotemporal function.

Most previous work focused on deriving closed form compound loss distribution by
assuming that the frequency distribution has a closed from and the severity distribution
is from the exponential family. The closed-form solutions are hardly obtained for cyber
risk distributions; since the cyber risk has high frequencies and heavy-tailed severities,
various pitfalls come from the existence of convolutions. Monte Carlo method has been
raised to be successfully used for solving this problem. Ispirian et al. (1974) suggest a Monte
Carlo method for calculation of the distribution of the ionization losses of charged particles
passing through thin layers of matter. Septiany et al. (2020) provide the use of Monte Carlo
method for selecting the distribution of claim frequency and claim severity. However, the
following question is left unanswered: are there general and efficient algorithms that estimate
compound loss distribution of non-parametric or dependent frequency and severity models?
We give positive answers to this question by proposing MCMC algorithms to estimate
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compound loss distribution. In those algorithms, we first simulate the number of quarterly
cyber incidents based on selected frequency model with posterior parameters, and then
for each generated incident simulate the corresponding loss amounts (the number of data
breached) based on selected severity model. The aggregation of all the loss amounts gives
the compound loss distribution for that quarter. Our algorithms are designed to work for
either parametric or semi-parametric distribution with closed or non-closed loss aggregation
function.

1.4 Thesis Objectives and Outline

The purpose of the frequency analysis is to provide predictive analytics based on historical
data on cyber incidents frequency aiming to help insurance companies examine, price and
manage their cyber-related insurance risks. This analysis may be used by organizations as a
reference in balancing their prevention costs with premiums according to their entity types
and locations. We make use of related factors from cyber breach data and perform Bayesian
regression techniques under Generalized Linear Mixed Model (GLMM). The key results
of our loss frequency study are the following. Primarily, it is effective to use the complex
NB-GLMM for analyzing the number of data breach incidents with uniquely identified risk
factors such as type of breaches, type of organizations, and their locations. Additionally, it
is practical to include in our model the notable correlation detected between the number
of cyber incidents and the average severity amount (the number of data breached), as
well as the time trend effects impacting the cyber incidents. Furthermore, it is efficient to
use sophisticated estimation techniques for our analysis, including the Bayesian approach,
MCMC method, Gibbs sampling, and Metropolis-Hastings algorithm. Ultimately, using the
frequency-severity technique, it is feasible to use our predictive results for pricing the cyber
insurance products with coverage modifications.

The objective of severity analysis is to generate a model that takes into account excess
of zeros loss, spliced composites and mixture models under a global distribution with cor-
responding sets of covariates. Motivated by cyber risk specific nature, our study aims to fill
these gaps using a finite mixture model (FMM) under a non-linear regression framework
and a three-component splicing model with a zero-inflated component. Our zero-inflated
mixture composite regression model (Zi-MCR) provides notable contributions overall to
the actuarial literature as well as to the industry practice in developing/improving cyber
insurance products. Our key findings reveal significant advancements in modeling cyber
risks. Specifically, a flexible combination of mixture distribution model and splicing model
is developed upon various candidate distributions, such as Gamma, Log-Normal, Weibull,
Burr, Inverse Gaussian, and Pareto, effectively capturing the wide range and heavy-tailed
nature of cyber loss severity. Additionally, we integrate FMM into a Generalized Linear
Model (GLM) to utilize risk characteristics as covariates, allowing for the simultaneous
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estimation of GLM models for different subgroups and addressing individual risk character-
istics. Moreover, we introduce a zero-inflated regression component to our model, enabling
covariates to model the non-zero mixture distribution of the body and the extreme distri-
bution of the tail, and the point mass zero rate, thus creating a comprehensive zero-inflated
mixture and composite regression model with a complete cumulative distribution function.
Finally, we provide a statistically rigorous method to quantify cyber risks under a single
distribution that accounts for heavy tail nature of extreme losses, addressing the limitations
of traditional insurance models that do not consider extreme values. This comprehensive
approach enhances the accuracy and reliability of cyber risk modeling and prediction.

The rest of this thesis is structured as follows. Chapter 2 introduces the PRC chronology
dataset to be studied in this thesis and presents the preliminary data analysis including de-
scriptive statistics of dependent variable and regressors, exploratory analysis of utilized fea-
tures and cluster analysis on geographical information. In Chapter 3, we propose a Bayesian
negative binomial GLMM (NB-GLMM) for the quarterly cyber incidents recorded by PRC
dataset. The quarter specific is one of the variations of random effects explained by the
quarterly hierarchical panel data. Regression models on covariate predictors can capture
variations of within-quarter heterogeneity effects. Moreover, GLMMs outperform the GLM
by reveling features of the random effects distribution and allowing subject-specific pre-
dictions based on measured characteristics and observed values among different groups.
Starting with introducing variable notations and distribution modeling structure in Section
3.1, we present the NB-GLMM for our breach data and the parameter inferences under
Bayesian framework in Section 3.2. Section 3.3 shows the MCMC implementation and in-
ference of the posterior distribution of parameters. The analysis of the PRC cyber breach
chronology dataset using the NB-GLMM proposed is showed in Section 3.4. A simulation
study and cross validation test against testing dataset to assess model performance are
showed in Section 3.5. Finally, in Section 3.6 we discuss model applications and practical
implications in cyber risk mitigation and management.

Chapter 4 presents a zero-inflated mixture and composite regression model (Zi-MCR)
and discusses their application in cyber risk estimations. Section 4.1 reviews the definition
of splicing models and finite mixture models, and propose our unique mixture and com-
posite regression model adjusted by zero-inflated component based on dataset. Next, we
introduce the expectation-maximization (EM) algorithm used to estimate coefficients and
model parameters including E-step, M-step and specifications of some model parameters
in Section 4.2. Followed by details on how to fit and choose from among these models as
well as information about how to assess the goodness of fit of a model demonstrated by
PRC data analysis in Section 4.3. Finally, we discuss applications of our model results from
both the insurers’ and potential insureds’ perspective in Section 4.4. In Chapter 5, based
on the results for our data-driven analysis presented in previous two chapters, we propose
several approaches in generating aggregate losses and implementation strategies that can be
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utilized by the insurance industry. Starting with general notation and modeling structure of
compound loss distribution in Section 5.1, we introduce a simple loss aggregation approach
assuming that the loss frequency and severity are independent and the loss severity is not
random in Section 5.2, and MCMC loss aggregation approach when the loss frequency is
dependent on average loss severity and the loss severity has a specific zero-inflated mixture
component distribution with parameters estimated based on the given data in Section 5.3.
The impact of applying different deductibles, limits and reinsurance practice are discussed
in Section 5.4. Finally, applications of the loss aggregation to current U.S. cyber insurance
market are discussed in Section 5.5. Finally, we provide an overview of key contributions
and innovations, highlighting the novel aspects introduced by this research, and also dis-
cuss the limitations encountered during the study, and outline potential directions for future
research in Section 6.
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Chapter 2

Description and Preliminary
Analysis

In this chapter, we perform an empirical description and data analysis which support and
motivate our data-driven modeling approaches and further analysis and application. Sev-
eral necessary initialization procedures must be investigated. Starting with introducing fre-
quently considered datasets in Section 2.1, we introduce PRC chronology and its statistical
summary and patterns in Section 2.2. Followed by preliminary analysis in Section 2.3, where
we investigate unique features of the dataset through an empirical data analysis and cluster
analysis. Finally in Section 2.4, we discuss statistical challenges resulted from this dataset
that our work is aiming to tackle, at the same time bring up possible improvements and
updates for future work if more informative data is given.
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2.1 Introduction

There are several publicly accessible cyber incidents datasets that are frequently considered
and employed by researchers, such as the Open Security Foundation1 DataLossDB (see, for
example, Zeller and Scherer, 2021; Maillart and Sornette, 2010). Identity Theft Resource
Centre2 (ITRC) (Archer et al., 2012) and Verizon’s Data Breach Investigations Reports3

(DBIR), as well as Privacy Rights Clearinghouse (PRC) Data Breach Chronology (PRC,
2019). Our research is based on PRC data breach dataset which is to be introduced with
details in the next section.

DataLossDB was founded in 2005 as an original data breach tracking project and op-
erated until mid-2015, providing known and reported data loss incidents worldwide. This
breach dataset includes the who, the when and the where, breach types, data type and
data family. Driven by this dataset, Zeller and Scherer (2021) propose a new approach for
modeling cyber risks using marked point processes and identify key covariates required to
model frequency and severity of cyber claims. The resulting model is able to include the
dynamic nature of cyber risk, while capturing accumulation risk in a realistic way. This
paper also provides a comprehensive literature review on cyber risk and cyber insurance
including data-driven studies, as well as data sources on data breaches. In an earlier study,
Maillart and Sornette (2010) investigate some noticeable statistical properties of cyber-risks
based on DataLossDB dataset, which are used to quantify the distribution and time evo-
lution of information risks on the Internet. Their findings help understand the underlying
mechanisms and thus present opportunities for risks mitigate, control, predict and insure
them at a global scale.

ITRC provides superior support to victims at no charge to consumers in the U.S., and
educate consumers, business entities and organizations on best practices for fraud and iden-
tity theft detection, reduction and mitigation. This site keeps data breaches information
including company name, state in the U.S., breach category and number of records ex-
posed when the incident occurs. Based on this dataset, Archer et al. (2012) introduce a
general model describing the identity theft and fraud process including an explanation of
various components that make up this process model and potential crimes resulting from
the criminal activities.

VERIS Community Database (VCDB) represents a broad ranging public effort to gather
cyber security incident reports in a common format. The collection is maintained by the
Verizon RISK Team, and is used by Verizon in its highly publicized annual Data Breach

1The Open Security Foundation DataLossDB, https://www.datalossdbdotorg.wordpress.com/

2Identity Theft Resource Centre Data Breaches, https://www.idtheftcenter.org/category/blog/data-
breaches/

32023 Data Breach Investigations Report, https://www.verizon.com/business/resources/reports/dbir/
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Investigations Reports (DBIR). Seh et al. (2020) conduct an in-depth analysis of healthcare
data breaches based on DBIR and draw inferences from it, and thereby use the findings to
improve healthcare data confidentiality. Liu et al. (2015) characterize the extent of cyber
security incidents referenced by Verizon DBIR and make predictions based on externally
observable properties of an organization’s network.

PRC database records cyber breach incidents between years 2001 and 2022. Most of
the breach data comes from state attorneys general and the U.S. Department of Health
and Human Services. This dataset contains the data breach incidents as well as the num-
ber of records breached due to these breach incidents. The dataset serves as a resource for
researchers and practitioners examining the effect of data breaches on the performance of
insurance companies. Our study is based on the latest available PRC data breach chronol-
ogy downloaded with 9012 breach observations happened in the United States since year
2001. After removed incomplete and inconsistent observations, 8095 incidents including 4161
medical incidents and 3934 non-medical incidents are investigated and analyzed. We restrict
the sample to the time period from 2001 since cyber risk only becomes a serious issue in
the 21st century and the data in the last century are very sparse.

2.2 Data Breach Chronology Database

We have presented in the last section several frequently considered databases from nonprofit
corporations and some studies based on them. Our research is primarily driven and based on
Privacy Rights Clearinghouse (PRC) Data Breach Chronology database. In this section, we
perform an empirical data analysis which supports and motivates our data-driven modeling
approaches and further analysis and applications. Several necessary initialization procedures
are investigated. Starting with the explanatory data analysis, we investigate unique features
of this dataset through an empirical data analysis, followed by a cluster analysis to study
the multidimensional location feature of this dataset.

PRC is a nonprofit organization aiming to provide the most accurate and up-to-date
information, which stimulates research in cyber related loss modeling and prediction, as well
as developing associated insurance products and their premium determination. The PRC
dataset has widely been studied by several research works from various perspectives. For
example, Edwards et al. (2016) develop Bayesian generalized linear models to investigate
trends in data breaches. Their analysis shows that none of the size and the frequency of
data breaches has increased over the past decade, and both are heavy-tailed. Furthermore,
they find that the daily frequency of breaches can be modeled by a negative binomial
distribution, while the size of data breaches can be described by the log-normal family
of distributions. Eling and Loperfido (2017) investigate this dataset under statistical and
actuarial science framework by using multidimensional scaling and goodness-of-fit tests to
analyze the distribution of data breach information. They show that different types of
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data breaches need to be modeled as distinct risk categories and provide useful insights for
actuaries working on the implementation of cyber insurance policies.

The data is recorded under case unit with breach types, business types, incident entities
and their geological location; these variables could be valuable predictors while generating
regression models and making predictions. Table 2.1 shows a sample of data breach incidents
happened in 2018, where the type of cyber event and the victim’s information, such as the
company’s name, type of business, and location, are gathered from breach incidents; see
Table 2.2 for abbreviations used in this table. It is worth mentioning that a breach incident
happened to Epsilon corporation in Texas, Jan 2011 caused the largest number of records
which is 250 millions. Because it contains risk-related characteristics that can be utilized
as rating factors, this information is essential for filing insurance rates, and therefore is
fully utilized in our studies for both the frequency and severity of the data breaches. In
Chapter 3, a generalized linear mixed model (GLMM) is proposed to study the quarterly
frequency (number of incidents) of the data breaches recorded in this PRC database and its
application to the cyber insurance is discussed. In Chapter 4, we are interested in the number
of records breached by each recorded data breach incident collected in PRC database, which
is considered as the severity of the breach caused by cyber breach incidents. We late convert
the breached data record to dollar amount loss in order to get a dollar amount magnitude.

Incident Date Type of Breach Type of Business Location Loss of Records
2018/02/03 CARD BSF California 30
2018/05/26 HACK GOV Washington 1000
2018/06/30 DISC MED Massachusetts 900
2018/09/27 PHYS EDU Florida 1500
2018/10/09 INSD BSR Texas 700
2018/12/05 PORT NGO Ohio 150

Table 2.1: Sample of PRC Chronology

In Chapter 3, we model PRC quarterly counts (the number of data breach incidents)
as a function of breach type, breach entity and location, which can be linear predictors
of target variable via general design matrices. Moreover, we model relationships among
risk exposure characteristics through matrix design by taking all featured combinations
as different risk exposures. In order to lower the dimension of parameter matrix, reduce
the volatility of data and stable the rates overtime, we further combine levels with similar
information into new representative levels of three categorical variables under clustering
analysis (Jain et al., 1999): South, West, Northeast and Midwest (according to U.S. Census
Bureau) under location, external and internal under breach type, and business and non-
business under organization type for non-medical organizations as showed in Table 2.2. Note
that unknown types of breach and business have been eliminated due to their incomplete
information.
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Original Types Combined Levels
MED Healthcare, Medical Providers and Insurance Services Medical
BSF Businesses (Financial and Insurance Services)

BusinessBSO Businesses (Other)
BSR Businesses (Merchant including Online Retail)
EDU Educational Institutions

Non-businessGOV Government or Military
NGO Nonprofits

CARD Fraud Involving Debit and Credit Cards External MaliciousHACK Hacked by an Outside Party or Infected by Malware
INSD Insider

Internal MaliciousPHYS Physical
PORT Portable Device
STAT Stationary Computer Loss Internal NegligentDISC Unintended Disclosure

Table 2.2: Covariate level combinations

As a result, the original case unit basis dataset is manipulated as a hierarchical dataset
with quarterly counts on uniquely identified 16 level combinations. These combinations di-
vided the dataset into three dimensional augmentations. Besides targeting counts variable
and designing covariate matrix described above, it is worth mentioning the following features
of the PRC empirical breach frequency distribution. Figure 2.1 shows the empirical quar-
terly counts between years 2001 and 2018 density performance of non-medical organizations
(left) and medical organizations (right). Frequency counts are aggregated on quarterly in-

Figure 2.1: Histograms on different organizations

terval of specific combination subjects. Both plots reflect the fact that there exists a portion
of zero incidents and the data is dispersed over a wide range. It is noteworthy that, although
density plots for non-medical and medical organizations share overall similarities, the de-
tailed performances between two plots are different showing the cyber related risk nature
differences between the non-medical and medical organizations. For instance, the propor-
tion of zeros is much higher for non-medical organizations and the scale for non-medical
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empirical distributions is more centered. These observations follow the current trending that
medical identity theft and medical data breaches are vividly rising at disproportionate rates
compared with other attacked industries (Rathee, 2020). The NAIC (2020) Cybersecurity
Report points out that healthcare breaches grew by 33.3% higher than the data breach
growth rates from other type of organizations. In addition, frequency distribution of medi-
cal organization shows heavier tails by having more large loss amount breach incidents. All
these suggest that it may be necessary to separately analyze of data breaches happened to
the non-medical organizations and that to the medical organizations.

2.3 Preliminary Analysis of PRC Chronology Data

2.3.1 Descriptive Analysis of Data Breach Chronology

In this subsection we perform exploratory data analysis on breach incident counts (fre-
quency) that helps gain insights into the distribution of our target variable. Table 2.3 dis-
plays summary statistics of the quarterly number of breach incidents that the non-medical
and medical organizations incurred between years 2001 and 2018. The incidents of the medi-
cal subset is more widespread ranging from 0 to 37, whereas that of the non-medical ranges
from 0 to 20 only. Both of them are right skewed with mean greater than median and
the medical subset has a heavier tail and shows overdispersion with a large variance. Both
quarterly count frequencies contain a proportion of zeros which means some characteristic
combinations do not incur breach incidents at these quarters.

Entity Type Minimum Maximum Mean Median Variance Proportion of Zeros
Non-Medical 0 20 2.277 2 6.014 0.267

Medical 0 37 4.762 3 22.274 0.096

Table 2.3: Summary statistics of quarterly frequency counts

With these features, we fit the Poisson, negative binomial (NB), zero-inflated Poisson
and zero-inflated NB distributions to the medical and non-medical counts subdatasets,
respectively. While the Poisson and NB distributions are commonly used in modeling the
claim counts in actuarial field, the NB distribution could be a conservative model choice as
it can handle overdispersion and its zero-inflated version could be appropriate due to the
appearance of heavy zeros observed in the non-medical subdataset. When several models are
available, one can compare the model performance based on statistical likelihood measures;
here we use AIC (Akaike information criterion Bozdogan (1987)). AIC is one of the most
popularly used measures, for these above-mentioned distributions, in order to testify which
distribution preliminarily describes best the breach incident frequencies. It penalizes a model
with larger number of parameters and is defined as

AIC = −2 LogLik + 2p

20



where LogLik denotes the logarithmic maximum value of likelihood function of fitted model
and p is the number of model parameters. A relatively small value of AIC is favorable for
the fitted model.

Table 2.4 shows the AIC values for the distributional models that we fit. Based on

Entity Type Non-Medical Medical
Poisson 7617 5947

Negative Binomial 6739 4552
Zero-inflated Poisson 7165 5657

Zero-inflated Negative Binomial 6941 4555

Table 2.4: AIC values for tested distributions fitting quarterly loss counts

these values, we find that the NB model fits both the medical and non-medical data best.
Our findings actually coincide with the conclusions from several studies of cyber incidents
in literature. For example, Edwards et al. (2016) model the frequency of data breaches with
the NB distribution under Bayesian approach. Joe and Zhu (2005) provide helpful insights,
besides the likelihood metrics, in selecting a better fitting NB distribution for modeling
count data with long right tails. Proceeding along similar lines, we adopt the NB as the
target regression distribution of GLMM model based on natures of PRC dataset, which is
discussed in Chapter 3.

2.3.2 Exploratory Analysis of Data Breach Patterns

As discussed previously in Chapter 1, fitting an adequate loss distribution to the cyber
breach dataset is difficult due to its nature. Here, we conduct an empirical data analysis of
related target and explanatory variables on the PRC data set to demonstrate the necessity
of addressing/accounting for several risk features. A summary statistics of this data set is
provided in Table 2.5.

Number Zero Prop. q0.25 Mean Median q0.75 Maximum
Total 8095 32.90% 1000 1018500 2800 13000 5 × 108

Medical 4161 15.66% 1000 69400 2300 8800 7.88 × 107

Non-medical 3934 51.12% 900 2750400 4700 38900 5 × 108

Table 2.5: Summary statistics of PRC loss records

The first row of Table 2.5 provides summary statistics for the target variable, the “num-
ber of records" breached (loss severity) from a total number of 8095 data breach incidents,
rounded to the nearest 100 units, where qα denotes the empirical α-quantile of positive
losses. We observe from these summary statistics that the number of records has a 32.9%
excess of zeros and a very heavy right tail, given that the sample mean is significantly larger
than the sample median. The heavy tail nature of the data can be revealed by the fact that
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some types of loss such as competitive advantage and reputation damage, can occur infre-
quently but with extreme severity, leading to disproportionately large impacts on the overall
risk profile. The breach incident is recorded as no reported loss or expenses, if there were
no records lost in that incident or damage can not be measured financially. The breached
records range from 0 to 500 million which is difficult to model using one distribution. In
this regard, our analysis of the loss amounts is based on the logarithm of severity in order
to maintain complete low and high loss amounts information.

Figure 2.2: Histograms between medical and non-medical organizations

The PRC data set contains three explanatory variables that can be used as regressors:
breach type, organization type, and company location. The first two variables are docu-
mented to have seven subcategories each, while the location is listed in 50 geographical
states. We modify on their levels, based on their nature and characteristics to reduce factor
dimensions and increase predictive power. Table 2.2 summarizes the combined model inputs
of business and breach types. The level combination of the geographic locations is discussed
and described in Section 2.3.3. After obtaining six combined levels of information regarding
medical, business, non-business, external malicious, internal malicious and internal negli-
gent, we investigate their performance on the target variable and find that those medical and
non-medical organizations behave differently concerning the number of breached records.
It can be observed from last two rows of Table 2.5 the significant differences between the
medical data and the non-medical data, which covers business and non-business types of
organizations as in Table 2.2. Although they all show the similar pattern that processes
point mass of zero, two zero proportions differ notably to the extent of the heavy tail and
maximum amount measured on the non-zero loss amount. In addition, the medical losses
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are more compact compared to non-medical losses. We hence postulate that the underlying
severity distribution features multi-modality; in this sense, a multi-modal distribution or
mixture distribution could be candidates for modeling the overall losses.

The above-mentioned fact can also be observed from Figure 2.2, where both histograms
of logarithmic records breached and incurred by the medical and the non-medical orga-
nizations are displayed. The non-zero severity body part of empirical density of medical
organizations has a peak of around 600 records, and the probability for losses being smaller
than the mode value is relatively low. Meanwhile, the body part density for non-medical
organizations shows a relatively smooth and flat distributional pattern before and after its
mode point and relatively a heavier tail. Compared to financial services industry, which has
spent the last 20 years focusing on cyber security and protection (Bell and Ebert, 2015),
healthcare organizations are not as frequently attacked by cyber related incidents. Medical
organizations form traditionally risk retention groups to mitigate huge liability losses caused
by cyber breaches, making them reluctant to understand, track, report, and manage threats
via open market cyber insurance coverage. Besides, mature incident and vulnerability risk
management processes are lacking in most medical organizations (Williams and Woodward,
2015). Thus, daily threats are not even reported or managed effectively, which explains
the low occurrence of cyber-severity losses of less than 600 breached records. Even though
some of the distributions are already appropriate to model losses with heavy tails, they do
not account for this multi-modality case resulting from data variations observed between
medical and non-medical organizations. In this regard, estimating the moderate loss density
component with a fixed number of mixed components is advantageous.

2.3.3 Cluster analysis

Because the PRC data also contains the geographical location of the victims of cyber at-
tacks, a list of 51 states of U.S. with their latitudes and longitudes serves as the raw data
information. It is a common practice that the number of levels in the geographical rat-
ing factor are to be reduced in order to provide effective risk measurement for insurance
rate-making. For this purpose, we use one of the initialization strategies, cluster analysis
(Roberts, 1997), to do the analysis. Clustering analysis is a newly developed computer-
oriented data analysis which utilizes unsupervised machine learning algorithms to segment
a data set based on similarities between the data points. Hofstetter et al. (2014) clarify
the use of cluster analysis and factor analysis, and provide a guideline to a universal un-
derstanding of the analysis of co-occurrence of risk behaviors. Zheng et al. (2014) apply
K-means cluster analysis to classify the near-crash cases into different driving risk levels in
the vehicle kinetic energy.

We conduct cluster analysis for three reasons. First, it avoids diluting the predictive
power caused by the geographical location factor with 51 levels. Second, when states with
similar characteristics are grouped, implementing rate-making is simpler. Third, it reduces
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the likelihood that the rate for one area is drastically differ from that for its neighbouring
areas. Cluster analysis divides observations into distinct groups so that the observations
within each group are quite similar to one another, as opposed to grouping 51 states into
some official government regions, such as those used by the U.S. Census Bureau and the
Standard Federal Regions. Before clustering, we conduct a cluster analysis using the means
of latitude and longitude in each state as representatives. In this regard, we smooth the
regression coefficients to make them more reasonable and interpretable, given that clustered
groups are based on state average level. Now we have a set of 8095 observations, each with
two features, longitude and latitude, that can be used to identify subgroups. We attempt
to discover geographical heterogeneity structures based on the PRC data set, which is an
unsupervised problem.

Figure 2.3: Average severity level among states

Figure 2.3 represents the geographical heat map information in a two-dimensional space
of longitude and latitude. These are the first two principal components of the data, which
summarize the location information of in total 8095 investigated incidents in terms of two
geographical dimensions. Each small and closed area corresponds to one of the 51 states,
allowing for a visual examination of the average severity level for signs of clustering. There
appear to be multiple groups of clusters with similar colour patterns. Two commonly used
clustering techniques are K-means (Likas et al., 2003) and hierarchical (Johnson, 1967),
which have been widely applied in territory studies for finding patterns and investigating
the underlying geographical structure of the data. This study uses the K-means method
with elbow (Bholowalia and Kumar, 2014) to show the K-means performance and to find an
efficient and effective K. The elbow method is a default standard method for determining the
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(a) Elbow plot for clusters (b) Five geographical clusters

Figure 2.4: Cluster selection

optimal number of clusters for a characteristic process. The K-means clustering algorithm
formalizes finding the best similarity grouping where the variations among observations
within each cluster are as small as possible, and the variation between clusters is significant.
The similarity is measured by the error sum of squares (SSE) (also called squared Euclidean
distance) (Agrawal et al., 1993), one of the most widely used cluster distance criteria:

SSEij =
K∑

k=1
(xki − x̄k·)2 +

K∑
k=1

(xkj − x̄k·)2,

where i and j are two dimensions representing variable combinations and number of quar-
ters, and xk· represents the kth cluster of the K clusters whereas x̄k· represents the mean
distance of group k. We manually conduct a K-means cluster analysis with one to six clus-
ters and calculate the ratio between individual cluster sum of squares and the total sum
of squares for each round. We take this ratio as the y-axis and create an elbow plot as
illustrated in Figure 2.4(a). The plot demonstrates the elbow at K = 5, beyond which the
gains in between cluster’s sums of squares appear to be minimal because the increase in
total sum of squares after K = 5 is greatly shrinking down; therefore five is the best cluster
cut-off point. Figure 2.4(b) depicts the relative geographical location of five clusters, while
Appendix A provides context-specific information about cluster partitioning by state. By
this way, we can identify the geographical segments of cyber severity and classify them
according to similar risk factors.

2.4 Statistical Challenges

PRC chronology focuses on events that occur to legal entities instead of individuals, and
contain two major types of breaches. The first type of incidents is resulted from external
activities such as card fraud and hacking. The second type of incidents is related to internal
operational activities such as insider employees, physical documents and portable device,
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and unintended disclosure. By studying this dataset, we aim to find the general pattern of
cyber risks that is persistent across different sources and categories.

Most significant impacts to the PRC chronology data quality come from Amounts of
Dark Data, Number of Empty Values, and Data Time-to-Value and metrics. Even though
the chronology contains different kinds of fields with information related to breach incidents,
such as address, reporting source and website, the useful fields that contain information
which is not highly correlated or homogeneous are relatively scarce. Excluding the dark fields
that can not be used as signal variable in the model, we narrow down to five meaningful
features in constructing our models, date of breach, number of affected digital records, type
of breaches, type of organizations and geographical location. Since we utilize those features
in generating regression models, the robustness of our models relies heavily on proportion
of non-empty values. After cleaning the data and using the sample after year 2001, we
have only 8095 incidents with known number of record breached, types related features and
location.

Furthermore, we started to explore this dataset in 2019 and have been working on it
since then. Although PRC continued to update their chronology database until 2021, we
decide not to include additional two years sample due to the data quality concerns. As
we have seen, the global COVID-19 pandemic (that was declared by the World Health
Organization on March 11, 2020) has the significant impact to all the industries as we
mentioned previously. Hence, different organizations may face different cyber risks as before,
and incidents happened during the pandemic period may not be observed consistently with
their pre-pandemic patterns.

Last but not least, it is worth mentioning that another limitation coming from the
chronology in actuarial science perspective is that there is no exposure information that
can be measured or indirectly derived from this dataset. This dataset contains more than
10000 breach events that are reported by victims or census institutions, and records are
documented in an incurred and reported basis instead of tracking an amount of entitles’
breach activities within a time period. Thus, there is no classification for risk exposure and
the number of digital assets exposed within a given time period, that we can extract directly
from the data. This results in treating 8095 observations with full exposure within quarterly
modeled period. Therefore, the analysis of risk frequency can be based on quarterly number
of incidents, and risk severity is investigated on individual observation basis.
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Chapter 3

Generalized Linear Mixed Model
for Cyber Loss Frequency Analysis

In this chapter, we propose a Bayesian negative binomial generalized linear mixed model
(NB-GLMM) for the quarterly cyber incidents recorded by PRC dataset. The quarter spe-
cific is one of the variations of random effects explained by the quarterly hierarchical panel
data. Regression models on covariate predictors can capture variations of within-quarter het-
erogeneity effects. Moreover, GLMMs outperform the generalized linear model (GLM) by
reveling features of the random effects distribution and allowing subject-specific predictions
based on measured characteristics and observed values among different groups. Starting
with introducing variable notations and distribution modeling structure in Section 3.1. We
present the NB-GLMM for our breach data and the parameter inferences under Bayesian
framework in Section 3.2. Section 3.3 shows the Markov chain Monte Carlo (MCMC) im-
plementation and inference of the posterior distribution of parameters, followed by analysis
of cyber breach chronology dataset as modeling illustration and application in Section 3.4.
In order to evaluate model robustness, a simulation study and cross validation test against
testing dataset to assess model performance are showed in Section 3.5. Finally, we discuss
model applications and practical implications in cyber risk mitigation and management in
Section 3.6; detailed discussion of aggregated total claim costs and cyber insurance appli-
cations are presented in Chapter 5. The research presented in this chapter, including the
methodology, has been published in Sun and Lu (2022).
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3.1 Notation and Model Formulation

In this section, we first introduce notations before a GLMM (McCulloch, 2006) for mod-
eling the quarterly number of data breaches is formulated for our study. Assume that the
total number of risk combinations is I and the total number of quarters is J . Let Nij be
a random variable representing the number of data breach incidents of ith combination in
jth quarter, where i = 1, 2, . . . , I and j = 1, 2, . . . , J . Let µij be the mean of Nij conditional
on βj and b, where βj = (β1,j , β2,j , ..., βH,j)T is a H-dimensional vector of regression coef-
ficients for the jth quarter, and b = (b1, b2, ..., bG)T is a G-dimensional vector of regression
coefficients. Furthermore, let xij = (x1,ij , x2,ij , ..., xH,ij)T be a H-dimensional vector and
zij = (z1,ij , z2,ij , ..., zG,ij)T be a G-dimensional vector, which are measured covariates for
the ith combination in the jth quarter.

Assume that {Nij , i = 1, 2, . . . , I} are conditionally independent for fixed j with given
βj and b, and follow a distribution with probability density function f(·|βj , b) and mean
µij , i = 1, 2, . . . , I, respectively. Let g(·) be a link function. Then our model can be described
as follows:

Nij |βj , b ∼ f(nij |βj , b), i = 1, 2, . . . , I. j = 1, 2, . . . , J

E[Nij |βj , b] = µij ,

g(µij) = ηij = xT
ijβj + zT

ijb,

βj
i.i.d.∼ N (θ, Σ), j = 1, 2, . . . , J

(3.1)

in which the heterogeneity among the regression coefficients β1, . . . , βJ is described by a
multivariate normal distribution with mean θ and a variance-covariance matrix Σ = (σij)
with σii = σ2

i . Note that random vector variable βj reflects the within group variations
for the jth group (quarter), while the i.i.d. multivariate normal random vector variables
β1, . . . , βJ reflect the between group variations for total of J groups (quarters).

In fact, the model (3.1) can be written as a standard GLMM format (McCulloch, 2006).
Let ηj = (η1j , . . . , ηIj)T , and

Xj =


x1,1j x2,1j · · · xH,1j

x1,2j x2,2j · · · xH,2j

· · · · · · · · · · · ·
x1,Ij x2,Ij · · · xH,Ij

 , Zj =


z1,1j z2,1j · · · zG,1j

z1,2j z2,2j · · · zG,2j

· · · · · · · · · · · ·
z1,Ij z2,Ij · · · zG,Ij

 .

Write βj = θ + uj , where uj is a H-dimensional vector. Then the explanatory variable
structure ηj given in (3.1) can be rewritten as a sum of fixed effects and random effects
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components via the treatment design (Stroup, 2012):

ηj = Xjβj + Zjb

= Mjγ + Xjuj ,

uj
i.i.d.∼ N (0, Σ),

(3.2)

where Mj = [Xj , Zj ] is a I × (H + G) covariate matrix and γ = [θT , bT ]T is a (H + G)-
dimensional vector. Clearly, in (3.2) Mjγ represents the fixed effects component of the
mean vector, while Xjuj represents the random effects component of the mean vector, for
which a multivariate normal distribution with mean 0 and variance-covariance matrix Σ is
assigned to uj for all j. This shows that between group effects and within group effects can
be separated for a given information about the hierarchical data.

As suggested by our empirical study showed in Section 2.3.1, we assume that Nij given
βj and b follows a NB distribution with mean µij and dispersion parameter ξj , and a log
link is used, namely, for i = 1, 2, . . . , I, j = 1, 2, . . . , J and nij = 0, 1, . . .

f(nij |µij , ξj) =
Γ(nij + ξ−1

j )
Γ(ξ−1

j )Γ(nij + 1)

(
1

1 + µijξj

)ξ−1
j
(

µij

ξ−1
j + µij

)nij

, (3.3)

where µij is the mean of Nij as denoted in (3.1) such that ln(µij) = ηij = xT
ijβj + zT

ijb,
and ξj(> 0) is also called the shape parameter used in the variance expression of Nij , which
is µij + ξjµ2

ij . Here we take the type II NB distribution, termed as NB2 (Hilbe, 2011) due
to the quadratic natural of its variance function. The NB2 distribution can be generated
from the Poisson-gamma mixture model and is also a member of exponential family. This
formulation is adopted because it allows the modeling of within group heterogeneity using
a gamma distribution.

In our data breach frequency data analysis, the recorded information from the PRC
dataset on the type of breaches, type of organizations and entity location, when a data
breach incident occurs, are used as covariates. Based on our further exploration and evi-
dence observed on this dataset showed in Section 3.4, we also take into consideration the
variations in average severity (the number of data breaches caused by data breach events)
of each combination and the time trend. We consider the parameters corresponding to type
of breaches, type of organizations, entity location and average severity as both fixed and
random effects, and consider the parameters for time trend as fixed effects. We thus have
H = 6 for xij and βj , and G = 3 for zij and b under cubic polynomial assumption for
the time trend; the corresponding dimension of fixed effects covariates (type of breaches,
type of organization, location, average severity, time trend) in (3.2) is thus nine and that of
random effects covariates (type of breaches, type of organization, location, average severity)
is six. Instead of letting only one covariate contains random effects, we consider that the
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random effects rely on all the risk characteristic features derived from raw factors. Besides
hierarchical structure variations, the time trend effects are considered as fixed effects in the
portion of the mean of GLMM. We then investigate unknown parameters under Bayesian
framework combined with prior and posterior distributions. Finally, we introduce parameter
inferences on hyper parameters using Markov chain Monte Carlo (MCMC) and Metropolis-
Hasting (M-H) algorithms. More details on the GLMM for the PRC frequency dataset are
presented in Section 3.4.

3.2 Estimation Procedures under Bayesian Framework

The GLMM has been specified in Section 3.1. We now in this section consider the in-
ferences about the built-in process that generates the data. There are various ways to
approximate the likelihood used for estimating GLMM parameters, including pseudo and
penalized quasilikelihood (PQL) (see, for example, among others, Schall, 1991; Wolfinger
and O’connell, 1993; Breslow and Clayton, 1993), Laplace approximations (Raudenbush
et al., 2000), Gauss-Hermite quadrature (GHQ) (Pinheiro and Chao, 2006) and MCMC
algorithms (Gilks, 1996). First three methods explicitly integrate over random effects to
compute the likelihood, whereas the MCMC method generates random samples from the
distributions of parameters for fixed and random effects. We adopt the MCMC method in
this study, because it can be easily used in considering multiple random effects on part of ex-
planatory variables for our dataset. MCMC algorithms are normally used under a Bayesian
framework which incorporates prior information based on previous knowledge about the
parameters or specifies uninformative prior distributions to indicate the lack of knowledge.
Parameter estimations are made through the posterior distribution that is computed using
Bayes’ theorem, which is the cornerstone of Bayesian statistics and provides an effective
approach in making inferences (Dempster, 1968).

3.2.1 Prior and posterior distribution

In addition to Bayesian flavor and well posed statistical model, MCMC involves possibly
challenging technical details including choosing appropriate priors and efficient algorithms
for granular problems. The Bayesian approach also requires the specification of prior distri-
butions of all model parameters. Note that in Bayesian GLMM analysis, it normally assumes
that the prior distribution of coefficient vector is multivariate normal distributed and the
variance-covariance matrix is inverse Wishart distributed. Under our model described by
(3.1), the prior distributions for θ and Σ are assumed and their posterior distributions are
discussed in the following.

We first present the prior and posterior distribution of θ assuming that the variance-
covariance matrix Σ is known. Suppose that the mean vector θ is multivariate normal
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distributed with mean vector µ0 and variance-covariance matrix Λ0, that is,

θ ∼ N (µ0, Λ0),

which is actually a conjugate prior distribution of θ, and it is well known that the cor-
responding posterior distribution is also multivariate normal distributed. Following Hoff
(2009), the full conditional (posterior) distribution of θ, given a sample of regression coef-
ficients β1, ..., βJ and Σ, can be easily derived as

[θ | β1, ..., βJ , Σ] ∼ N (µJ , ΛJ), (3.4)

where µJ is the conditional mean vector and ΛJ is the variance-covariance matrix, given by

µJ = (Λ−1
0 + JΣ−1)−1(Λ−1

0 µ0 + JΣ−1β̄),

ΛJ = (Λ−1
0 + JΣ−1)−1,

in which β̄ =
(
(1/J)∑J

j=1 β1j , . . . , (1/J)∑J
j=1 βHj

)T
is a H-dimensional vector average.

We now discuss the prior and posterior distribution of Σ. Having information of Σ helps
in detecting group variance caused by group specific features, especially the relationship be-
tween covariates which could be evaluated with correlation coefficient ρij = σij/

√
σ2

i σ2
j .

In Bayesian statistics, in the context of the multivariate normal distribution, the Wishart
distribution is the semi-conjugate prior to the precision matrix Σ−1 (Chatfield and Collins,
2018), and hence the inverse-Wishart distribution is the semi-conjugate prior distribution
for the variance-covariance matrix Σ. Assume now a conjugate inverse-Wishart prior dis-
tribution for Σ,

Σ ∼ W−1
(
ν0, S−1

0

)
,

where ν0 is a scalar hyper-parameter and S−1
0 is a symmetric H × H positive definite

matrix. Based on (3.1) that regression coefficients βj , j = 1, . . . , J , are multivariate nor-
mal distributed, the conditional posterior distribution of Σ, given a sample of regression
coefficients β1, ..., βJ and θ, can be written as

[Σ | β1, ..., βJ , θ] ∼ W−1
(
ν0 + J, [S0 + Sθ]−1

)
(3.5)

where ν0 + J is the hyper-parameter and [S0 + Sθ]−1 is the covariance matrix, in which Sθ

is the matrix of residual sum of squares with respect to mean vector θ, given by

Sθ =
J∑

j=1
(βj − θ)(βj − θ)T .

Detailed derivations can be found in Hoff (2009).
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3.2.2 Maximum likelihood estimation of dispersion parameter

The maximum likelihood estimation for the dispersion or heterogeneity parameter from a
NB distribution is discussed with details in Piegorsch (1990). Under our GLMM setting, ξj

is the dispersion parameter for jth quarter in (3.3) which scales the population variance.
In our model, the generalized linear regression algorithm on target NB2 distribution with
a log link function leaving heterogeneity parameter to be entered into GLMM model as a
constant (Hilbe, 2011). As it can be seen in the estimation algorithm presented in the next
section, parameter ξ = {ξ1, . . . , ξJ} are estimated outside and subsequently entered into the
GLMM algorithm.

The log-likelihood function from a sample of i.i.d. response variables for jth quarter over
all combinations based on (3.1) is derived as

ℓ(ξj |{nij}, {µij}) =
I∑

i=1

{
nij ln(µij) + nij ln(ξj) −

(
nij + 1

ξj

)
ln (1 + ξjµij)

+ ln Γ
(
nij + ξ−1

j

)
− ln Γ(nij + 1)

}
− I ln Γ

(
ξ−1

j

)
, (3.6)

where j = 1, 2, . . . , J and µij = exp
(
xT

ijβj + zT
ijb
)
. During the M-H approximation process,

βj is generated from a multivariate normal distribution and b is generated under regression
model conditioning on known βj values at each iteration. Together with xij and zij , we can
get the mean parameter µij . Maximum likelihood estimation of ξj can then be obtained by
unidimensional numerical maximization of ℓ(ξj |{nij}, {µij}) given by (3.6). In each iteration,
ξj is recalculated together with θ and Σ from Gibbs sampling. All the newly generated
parameter samples then provide a decision criteria in M-H algorithm.

3.3 Inference with Gibbs Sampler and Metropolis Step

3.3.1 Markov chain Monte Carlo for parameter estimations

In this subsection, we implement Markov chain Monte Carlo (MCMC) methods to explore
and summarize posterior distributions using Bayesian statistics described in Section 3.2.1.
Introduced by Metropolis et al. (1953) and Hastings (1970), MCMC has been a classical and
general method for stochastic process simulations given probability density functions. It has
been widely applied especially under the Bayesian algorithm (Gamerman and Lopes, 2006).
Since it is not always feasible to find analytical expressions under the Bayes theorem for the
posterior distribution of model parameters, Monte Carlo method (Metropolis and Ulam,
1949) has been brought up to estimate features of the posterior or predictive distribution of
interest by using samples drawn from that distribution. One is able to simulate dependent
samples from an irreducible Markov chain and treat stationary numerical approximations as
an empirical distribution. Since M-H algorithm provides dependent chains, iteration samples
require to be large enough in order to be independent.
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In general, generating samples directly from a high dimensional joint distribution is un-
likely possible. It is feasible to sample each parameter from the full conditional distribution
via Gibbs sampler algorithm(Geman and Geman, 1984). As an indirect sampling approach,
Gibbs sampling has become an increasingly popular statistical tool in both applied and the-
oretical research. Casella and George (1992) analytically establish its properties and provide
insights on complicated cases. Smith and Roberts (1993) review the use of the Gibbs sampler
for Bayesian computation and describe the implementation of MCMC simulation methods.

Based on the generalized parameterization scheme for our GLMM given by (3.1) and
(3.3), {θ, Σ, b, ξj} is a set of unknown parameters for jth quarter. The joint posterior
distribution does not have a standard form and hence it is difficult to sample directly from
it. Instead of getting a joint distribution of unknown parameters, we can construct a full
conditional distribution p(θ, Σ, b, ξj |n1, . . . , nJ) by Gibbs sampler under M-H algorithm
giving a MCMC approximation, where nj = {n1j , . . . , nIj} represents a collection of data
for the jth quarter. Iterated samplers from the full conditional distribution of each parameter
generate a dependent sequence that converges to the joint conditional posterior distribution.
The respective full conditional distributions of θ and Σ rely only on β1, ..., βJ as shown in
(3.4) and (3.5) no matter what target distribution for Yij is chosen. Parameter b depends
on the target distribution and is updated using given β1, ..., βJ in each iteration. The
remaining unknown dispersion parameter ξj is affected by the chosen NB-GLMM and its
full conditional distribution, f(nij |µij , ξj), can be obtained once the mean parameter µij

has been generated.
Given a set of starting values {Σ(0), β

(0)
1 , ..., β

(0)
J , b(0)}, the Gibbs sampler generates (s+

1)th set of parameters {θ(s+1), Σ(s+1), ξ
(s+1)
1 , ..., ξ

(s+1)
J } from {θ(s), Σ(s), β

(s)
1 , ..., β

(s)
J , b(s)},

s = 0, 1, . . . . The logic of the Gibbs sampler updating algorithm can be described as follows.

1. Sample θ(s+1) from full conditional distribution (3.4):

(a) compute µ
(s)
J and Λ(s)

J from {Σ(s), β
(s)
1 , ..., β

(s)
J }, where

µ
(s)
J = (Λ−1

0 + J(Σ(s))−1)−1(Λ−1
0 µ0 + J(Σ(s))−1β̄(s)),

Λ(s)
J = (Λ−1

0 + J(Σ(s))−1)−1;

(b) sample θ(s+1) ∼ N
(
µ

(s)
J , Λ(s)

J

)
.

2. Sample Σ(s+1) from full conditional distribution (3.5):

(a) compute S
(s)
θ from {θ(s+1), β

(s)
1 , ..., β

(s)
J }, where

S
(s)
θ =

J∑
j=1

(β(s)
j − θ(s+1))(β(s)

j − θ(s+1))T ;

33



(b) sample Σ(s+1) ∼ W−1
(

ν0 + J,
[
S0 + S

(s)
θ

]−1
)

.

3. Obtain maximum likelihood estimate of ξ(s+1) = {ξ
(s+1)
1 , ..., ξ

(s+1)
J } from the condi-

tional log-likelihood function (3.6), given {β
(s)
1 , ..., β

(s)
J , b(s)}.

Such iterative algorithm constructs a dependent sequence of parameter values whose dis-
tribution converges to the target joint posterior distribution with a sufficiently large number
of iterations. As seen from the algorithm, parameters {θ(s+1), Σ(s+1), ξ(s+1)} are sampled
from the full conditional distributions or estimated from their log-likelihood functions; the
set of parameter values are thus also samples from the joint distribution.

Given that θ and Σ are estimated using conjugate prior distributions, their posterior
distributions can be approximated with Gibbs sampler as described in Section 3.2.1. How-
ever, a conjugate prior distribution on {β1, ..., βJ} is not available due to high dimensions
and full conditional distributions of the parameters do not have a standard form due to
unknown sampling parameters. In this case, M-H algorithm can be a generic method to
approximate the posterior distribution. M-H is named after Nicholas Metropolis (Metropo-
lis et al., 1953) and W.K. Hastings (Hastings, 1970), which is a powerful Markov chain
method to simulate multivariate distributions. Chib and Greenberg (1995) provide a tuto-
rial introduction to the M-H algorithm and show examples on Gibbs sampler, a special case
of the M-H algorithm. In our GLMM model, since the dominating density is not explicitly
available, the M-H algorithm can be used under an acceptance-rejection scheme (Tierney,
1994). In acceptance-rejection step, we can generate candidates using Gibbs sampler from
suitable generating density, and accept or reject observations from proposal distributions
by implementing generation from a uniform distribution. Each step of the Gibbs sampler
generates a proposal from full conditional distribution and then accept it. The Metropolis
step generates proposals from population distribution and accepts them with some probabil-
ity. M-H algorithm combines both approaches and allows arbitrary proposal distributions.
Different from Metropolis’s, acceptance ratio of Metropolis-Hastings is the probability of
generating the current value from proposed to the probability of generating the proposed
value.

For each j ∈ {1, ..., J}, Metropolis step for updating β
(s)
j by proposing a new value β∗

j

from the multivariate normal distribution with the current mean value β
(s)
j and variance-

covariance matrix Σ(s) and accepting or rejecting it with appropriate probability described
below. Then, b(s) is to be updated by newly accepted {β

(s+1)
1 , ..., β

(s+1)
J }.

1. Generate β∗
j ∼ N (β(s)

j , Σ(s)).

2. Compute the acceptance ratio

rj =

[∏I
i=1 f(nij |µ∗

ij , ξj)
]

f(β∗
j |θ(s), Σ(s))[∏I

i=1 f(nij |µ(s)
ij , ξj)

]
f(β(s)

j |θ(s), Σ(s))
,
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where µ∗
ij = exp(xT

ijβ∗
j + zT

ijb(s)) and µ
(s)
ij = exp(xT

ijβ
(s)
j + zT

ijb(s)).

3. Sample u ∼ uniform(0, 1). Set β
(s+1)
j to β∗

j if u < r, or to β
(s)
j if u > r.

4. Update b(s+1), given {β
(s+1)
1 , ..., β

(s+1)
J , n1, ..., nJ}, under our regression model given

by (3.1) using the maximum likelihood algorithm.

In this way, the Gibbs sampler and Metropolis step described above are combined as an
iterative algorithm to generate a Markov chain that can be used to approximate the joint
posterior distribution of {θ, Σ, b, ξ}. As iteration times go large enough so that the auto
correlation effects are reduced, those sets of generated samples can be used to approximate
the joint posterior distribution of all the parameters.

3.4 Analysis of Cyber Breach Chronology Data

Followed by empirical analysis presented in Section 3.2 and GLMM structure proposed in
Section 3.3, we examine the manipulated PRC frequency dataset with unique subjective
combinations. As mentioned in Section 2.2, the medical and non-medical portion (orga-
nization) of the data breach dataset are analyzed separately in our study. Since the only
difference we treat between partitioned medical organization subdataset and non-medical
organization subdataset is whether to include type of organizations as one of the covariates
(we do not further partition medical organizations), we thus focus on the analysis of the
non-medical portion of the PRC dataset with type of organizations factor in the rest of this
chapter.

Quarterly counts of data breaches are modeled as a regression function of breach type,
organization entity, entity location and overall quarterly average severity with specific iden-
tities under NB-GLMM. The effects due to potential trends overtime are also taken into
consideration. We analyze in total 69 quarters (between years 2001 and 2018) of non-medical
data breach incidents data in this section. Recall that in Section 2.3.1 levels of categorical
covariates have been combined so there are 16 uniquely identified combinations (observa-
tions) within the non-medical subdataset. Therefore, among 69 investigated quarters, each
quarter has 16 uniquely identified combinations that represent different cyber risk subjects,
namely, unique type of data breaches, type of organizations and location of the entity that
the breach incident occurs. Each combination can be treated as unique risk features/subjects
corresponded to quarterly counts.

In order to detect the inner relationships between incident frequency and other features,
a box plot is drawn in Figure 3.1 on frequency counts upon uniquely identified categorical
level combinations for all the quarters under observation; it shows 16 boxes with each one
representing the simplified distribution of 69 quarterly counts of that combination plotted
upon uniquely identified level combinations. By examining these 16 distribution patterns
of different combinations, we find that these count distributions differ significantly. For
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example, the 3rd and 8th combinations have higher log values of incident counts compared
to other combinations, whereas the 12th combination has the lowest log median value of
incident counts among all combinations.

Figure 3.1: Quarterly frequency counts on individual categorical combinations

We also observe a correlation between quarterly counts and their corresponding average
severity of combinations. Note that the severity here means the number of data breached
caused by the data breach incident. It is observed that a quarter with high frequency
counts often contains more incidents with a relatively large severity. Figure 3.2a is made up
with scatter points of quarterly frequency (in rhombus) and corresponding average severity
(in circle) showing that the dependence exists between counts and severity for most of
combinations. This suggests that the average quarterly severity may be used as one of the
covariates that impact on the quarterly counts of uniquely identified combinations.

(a) Scaled frequency and severity (b) Polynomial time trend effect

Figure 3.2: Effects decomposition
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Relationships between breach counts and classified characteristic combinations and
severity dependency are significant among quarters. In this regard, we investigate the group
specific variations by treating related covariate coefficients as multivariate normal random
variables centering around a mean showed in (3.1). Coefficients can be decomposed into fixed
effects representing overall magnitude for a given quarter and random effects representing
the quarterly variation among quarters.

Besides within quarter fixed effects and among quarter random effects, there is poten-
tially a time series relationship if we treat quarterly counts in a sequence timely manner.
Figure 3.2b shows breach counts upon total 69 quarters in time sequence. The time series
effect shows a polynomial trend which could be modeled by cubic polynomial time covari-
ates. Cubic time trend is treated with only fixed effects with the remaining systematic noise
being explained by random effects of quarterly variations.

Based on the findings showed above, we choose the following covariate manipulations
for the generalized linear model used in (3.1):

g(µij) = xT
ijβj + zT

ijb =
6∑

l=1
xl,iβl,j +

3∑
k=1

zk,jbk, (3.7)

where {x1,i, x2,i, x3,i} are the non-base level dummy variables of four regions under location
covariate for the ijth count (ith combination in jth quarter), {x4,i} is the non-base level
categories of type of breach for the ijth count, {x5,i} is the non-base level category of
organization type and {x6,i} is the average severity of ith combination, {z1,j , z2,j , z3,j} =
{j, j2, j3} are time, squared time and cubic time terms, measured in quarters. Here the
effect of quarterly average severity is used by a numerical indicator to reveal the dependency
between the frequency and severity. Details on the specific regions, types of data breaches
and types of organizations can be found in Section 2.2. Regarding fix effects and random
effects in (3.2), we assume random effects work on six factors which means Mj (for fixed
effects) are different for different j’s and Xj = X (for random effects) is the same for all
j’s, and uj follows a six-dimensional multivariate normal distribution with mean 0 and
covariate matrix Σ. Such a parameterization allows us not only to consider subject specific
and group specific effects, but also to contain random effects on quarterly related factors
other than time trends. In this subsection, the proposed NB-GLMM is used to analyze
the quarterly data breach incidents recorded by PRC database using the M-G sampling
algorithm under the Bayesian framework as described in Section 3.3.1. As discussed in
Section 3.2.1, a multivariate normal distribution and an inverse-Wishart distribution are
chosen as the prior distributions for θ and Σ, respectively. The starting values of hyper-
parameters of both prior distributions are showed in Table 3.1.

The values for µ0 are set as the mean of negative binomial regression coefficients without
intercept, denoted by β̄GLM, and for ν0 is set as 8, which is the number of parameters p = 6
plus 2. Both Λ0 and S0 are set as the empirical variance-covariance matrix of regression
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Parameter Distribution Starting Value
θ N (µ0, Λ0) µ0 = β̄GLM; Λ0 = ΣβGLM

Σ W−1
(
ν0, S−1

0

)
ν0 = p + 2; S0 = ΣβGLM

Table 3.1: Simulation starting values

coefficients, denoted by ΣβGLM . The starting values of β1, . . . , βJ , b and ξ used in the
MCMC procedure are the negative binomial regression estimates. Total 69 Markov chains
representing 69 quarters are generated at the same time in a matrix form in the model
estimation process with 100, 000 iterations. In order to reduce autocorrelation, a thinning
factor 10 is used. The first 200 iterations are discarded as burn-in samples and the remaining
iterations are used for estimating the model parameters. A trace plot and autocorrelation
function (ACF) are used to verify the proper convergence of simulation runs.

Table 3.2 displays the information about the posterior summary statistics of model
parameters θ and regression coefficients b, including the posterior mean, standard error,
and highest posterior density (HPD) intervals; the posterior means of the elements of the
variance-covariance matrix Σ can be found in Appendix B. The results show that West
region has the largest effects on number of counts per quarter. This may be because major
tech companies are headquartered along the Pacific Coast where valuable gathered data
are stored and shared over Internet. External breach type has a higher impact on breach
frequency possibly because attackers tend to seek some types of benefit from breaching the
victim’s network. Business organizations receive more cyber breaches than non-business or-
ganization, which may be resulted from the reality that business organizations have various
types of valuable information properties than non-business organizations do. As for the in-
fluence of average size, one unit increase in logarithm average severity causes a 0.8437-unit
increase in breach counts on average.

Regressor Symbol Mean Standard Error 95% HPD Interval
South θ1 1.2536 0.0015 0.4053 2.2278
West θ2 2.2002 0.0011 1.4898 2.9617

Northeast θ3 0.7115 0.0011 0.0141 1.3812
Internal θ4 -1.4176 0.0011 -2.0852 -0.8232

Non-Business θ5 -0.2181 0.0011 -0.9858 0.3756
Ave-Size θ6 -0.1699 0.0001 -0.2322 -0.1103
Time1 b1 0.5892 9.0579 × 10−5 0.5355 0.6997
Time2 b2 −1.4591 × 10−2 2.7746 × 10−6 −1.6347 × 10−2 −1.2929 × 10−2

Time3 b3 1.0075 × 10−4 2.4653 × 10−8 8.5920 × 10−5 1.1628 × 10−4

Note: Time1, Time2 and Time3 represent the Time to the power 1, 2 and 3, respectively.

Table 3.2: Posterior summary and interval statistics

For each of the GLMM model parameters, MCMC generates a convergence diagnostic
panel, which includes a trace plot, autocorrelation plot and a kernel density plot. We first
assess if chains have run long enough for reliable estimations by monitoring convergence of
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iterative simulations (Brooks and Gelman, 1998), and then examine these diagnostic plots.
Figures 3.3 and 3.4 show selected diagnostics for the slope coefficients θ4 and b2. Figures
3.3a and 3.3b are trace plots that show the number of iterations on the horizontal axis,
plotted against the value of accepted coefficient of internal breach type θ4 and b2 on the
vertical axis, respectively. Since there are no long term trends in these trace plots and the
mixing is moving efficiently, we can affirm that the MCMC iteration converges. Figures
3.4a and 3.4b display the ACF values (Cowles and Carlin, 1996) of accepted coefficients
θ4 and b2, respectively, at lag k on the vertical axis and k on the horizontal axis. Ideally,
the autocorrelation at any lag should not be statistically significantly different from zero.
It can be seen from the plot that the autocorrelations of θ4 and b2 are not significantly far
from zero and the estimated autocorrelations are within the 95% confidence interval. These
results support the conclusion that our MCMC iterations have converged.

(a) trace plot for θ4 (b) trace plot for b2

Figure 3.3: Trace plots

(a) autocorrelation plot for θ4 (b) autocorrelation plot for b2

Figure 3.4: Autocorrelation plots
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3.5 Simulation Studies

We design a simulation study to verify the accuracy and effectiveness of the parameter esti-
mations and the model predictability. The exploratory data analysis showed in this section
should provide supports for the proposed NB-GLMM model. The simulation model is estab-
lished in accordance with similar assumptions and design scheme of our analytical model.
For demonstration purpose, this simulation study uses the same multivariate normal distri-
bution estimated from Section 3.4. Given the sets of coefficients from multivariate normal
distribution, we can generate target variable counts from generalized linear relationships.
True values of model parameters are taken from Table 3.2 and Appendix B. According to
the hierarchical requirements, we first draw 69 βs from a 6-dimensional multivariate normal
model with mean θ and variance Σ; together with posterior mean of b, they consist 69 sets
of independent quarter coefficients. Multiplying 69 sets of coefficients to the manipulated
covariates using (3.7) leads to 69 logarithm mean of the negative binomial distribution.
Combining those mean parameters with dispersion parameters we estimated previously, we
generate 16 observations on uniquely identified combinations for each quarter, which results
a total of 1104 observations. In this way we make sure that the simulated data follows the
same patterns as experimental data. The new data set of 1104 testees is generated using
the MCMC estimates obtained on the original dataset. Taking these observations as one
dataset, we further generate 100 datasets following the same algorithm. Simulated datasets
are then investigated under the same procedure as presented in Section 3.3. The estimated
hyper-parameters are determined using MCMC and M-H methodologies, as well as maxi-
mum likelihood estimation under Bayesian framework. Here the MCMC analyses utilize the
same prior distributions and the starting values are the same as obtained from the empirical
estimation.

Regressor Parameter True Values Estimated Mean Relative Error
South θ1 1.2536 1.2018 -0.0413
West θ2 2.2002 2.2524 0.0237

Northeast θ3 0.7115 0.7429 0.0442
Int. θ4 -1.4176 -1.5368 0.0841

Non-Bus. θ5 -0.2181 -0.2335 0.0708
Ave-Size θ6 -0.1699 -0.1742 0.0255
Time1 b1 0.5892 0.5809 -0.0141
Time2 b2 −1.4591 × 10−2 −1.4202 × 10−2 -0.0267
Time3 b3 1.0075 × 10−4 0.9913 × 10−4 -0.0161

Note: Time1, Time2 and Time3 represent the Time to the power 1, 2 and 3, respectively.

Table 3.3: Simulation summary results

The estimated posterior means of coefficient parameters and the relative differences
(errors) between the true and estimated values obtained under our modeling and estimation
procedures are displayed in Table 3.3, where the relative error is calculated by dividing
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the difference of the estimated value and its corresponding true value by its true value
(used for simulation). As seen from Table 3.3, differences between the true value and the
estimated posterior means, illustrated by relative errors, are all relatively small. Relative
error is a measure of the precision of an estimated population parameter. It quantifies
the variability or dispersion of the sampling distribution of a statistic, most commonly the
mean (Tibshirani and Efron, 1993). Having small standard errors imply that these estimated
posteriors are all centered compactly around their true values. On the other hand, all the
estimated results from our simulation study have over 99% confidence intervals where the
true values fall into. All these imply that our estimation algorithm is effective and estimation
results are satisfied in terms of their accuracy.

To examine the model predictability and its accuracy under our GLMM settings, we
employ 5-fold cross-validation procedure to have an objective evaluation of the prediction
performance. Cross-validation was first applied when evaluating the use of a linear regres-
sion equation for predicting a criterion variable (Mosier, 1951). It provides a more realistic
estimate of model generalization error by repeating cross-validations based on the same
dataset with large calibration/training samples and small validation/test samples. In par-
ticular, we randomly divide the dataset ten times into five folds; four of them are used
to train the GLMM and remaining one is used to compare its predicted values and actual
ones. The performance of the test datasets should be similar to that of the training datasets.
Our purpose of conducting cross validations is to ensure that our model has not over-fitted
the training dataset and that it performs well on the test dataset. In order to testify our
GLMM prediction accuracy, we also fit our training dataset to Poisson and NB regression
models, respectively. The root mean squared error (RMSE) metric is taken as a summary
fit statistic, which can provide useful information for quantifying how well that our GLMM
fits the dataset. A good performance with a relative low RMSE indicates that our proposed
GLMM is fine-tuned. The RMSE values are calculated by

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

where n is the number of tested observations, yi is the ith actual target value, and ŷi is the
ith predicted value based on trained model.

Table 3.4 gives summary fit statistics for Poisson regression, NB regression and NB-
GLMM on training dataset and test dataset. We first compare training set RMSEs for
model accuracy. The predicted accuracy of three models is compared under same training
set measured by RMSE. The lowest training RMSE value of GLMM implies that it has the
highest prediction level. We then compare GLMM RMSEs between the training set and the
test set to test over-fitting. According to our cross validation results, the training set has
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a mean of 4.6384 RMSE which means that the average deviation between the 69 predicted
quarterly counts and the actual quarterly ones is 4.6384.

A 4.8481 RMSE of the test dataset is close enough to that of the training dataset, which
means that our model is not over-fitted. A higher RMSE of the test dataset is judged as
an improvement in model fit when using the training dataset to build the model. Given the
fact that two RMSEs do not have much difference, there is no evidence showing that our
GLMM is over-fitted. These two relatively low values of RMSE also show that our model,
GLMM, achieves the best model accuracy for frequency counts predictions among other
tested models.

Partition Training Set Test Set
Model Poisson Negative Binomial GLMM GLMM
RMSE 5.1749 5.0516 4.6384 4.8481

Table 3.4: Summary fit statistics

3.6 Discussion

In this section, we discuss the potential applications and practical implications of our mod-
eling results in cyber risk mitigation and management. We have proposed a NB-GLMM
with group-specific fixed effects and among group random effects on some featured vari-
ables including the type of breached, type of organizations and their geographical location
and associated average severity caused by data breaches under these uniquely identified
features. We also consider the impact of the trend over time on the breach frequencies. In
general, this study can increase the awareness that it is important to analyze the growth
trends of cyber incidents frequency among sub-characteristic groups. We discuss below the
impact of our modeling and predictive analytic approaches in relation to cyber risks from
both the perspective of the organization (potential insured) and the insurance company
(insurer), as well as other important stakeholders such as corporate information technology
(IT) and data security officers, and data scientists.

From the perspective of organizations, our results provide quantitative insights to or-
ganizations with different entity types and locations, which encourages firms to adopt new
techniques and technologies in managing risks with respect to the cyber-related risks they
are facing. Gordon and Loeb (2002) present an economic model that can be used to de-
termine the optimal amount to invest to protect a given set of information. The model
takes into consideration the vulnerability of the information to a security breach and the
potential loss it may cause. Given a company’s physical and geographical characteristics,
our NB-GLMM model is able to predict their estimated quarterly data breach frequencies;
by combining the severity model that we propose in Chapter 4 for the data breaches, the
firms can determine whether to accept the risk or to seek out risk transformation in order
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to mitigate risks. Mazzoccoli and Naldi (2020) propose an integrated cyber risk manage-
ment strategy that combines insurance and security investments, and investigate whether it
can be used to reduce overall security expenses. The optimal investment for their proposed
mixed strategy is derived under several insurance policies. This type of risk management
strategies could also include the consideration of the risk over a specified time horizon; our
model can provide an effective predictive guidance for managing cyber risks with respect
to data breach incidents occurred within a quarterly time interval. The organizations could
act based on our findings when they put cyber risk management into practice.

In some cases, managing cyber risks through internal controls would be impractical
or too costly especially when organizations are facing high frequency of breach incidents.
Consequently, organizations may seek insurance coverage as alternative means to transfer
their cyber related risks. Reducing cyber risk exposures by purchasing insurance also takes
advantage of reducing the capital that must be allocated to the cyber risk management.
In general, cyber insurance combined with adequate security system investments should
allow organizations to better manage their cyber-related risks. Young et al. (2016) present a
framework that incorporates insurance industry operating principles to support quantitative
estimates of cyber-related risks and the implementation of mitigation strategies.

From the perspective of insurance companies, besides those incentives from organizations
to increase cyber insurance purchases, our results also encourage insurance companies to
consider how much premiums they should collect because they expect to be paid adequately
to accept the risk. The current pricing of cyber insurance products is based on expert
models rather than on historical data. An empirical approach to identifying and evaluating
potential exposure measure is important but challenging due to the current scarcity of
reliable, representative and publicly available loss experience for cyber insurance. This study
avoids this limitation by illustrating how to utilize available full exposure data to get a
quantitative idea of cyber premium pricing. We present a methodology to rigorously classify
different risk levels of insureds. Our modeling results can ease one of the problems that cyber
risk insurers face, the disparity in premiums with respect to different characteristic groups,
by forecasting the loss frequency on different characteristic segmentations. Geographical
area is one of the most well-established and widely-used rating variables, whereas business
type is considered as one of the primary drivers of cyber claims experience.

Ideally, the cyber insurance rating system should consider various rate components,
such as business type and geographic location in our model, when calculating the overall
premium charged for cyber risks. The portion of the total premium that varies by risk
characteristics, shown as a function of the base rate and rate differentials, is referred to
as a variable premium (Werner and Modlin, 2010). Our work can be directly applied in
setting variable premium factors by using posterior frequency distributions upon different
risk characteristic segments. For example, the premium P under the standard deviation
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premium principle (Tse, 2009) for pricing variable premium is given by

P = E[S] + ϑ
√

Var(S),

where S is the aggregated total loss, and ϑ is the loading factor. To calculate the premium
rate P in this case, the first two moments of the distribution of S need to be determined.
When ϑ is set to be zero, P = E[S] is the base (pure) premium, and together with a given
industry risk loading ϑ, differential premium factors based on risk characteristics can be
determined as a function of the loading factor and the standard deviation of the total loss
amounts.

In addition to the idea of defining risk classes, this study illustrates how to work with
current available data and update the model components and parameters by collected cyber
related data over time. Our model decomposes risk effects on cyber breach frequencies into
fixed effects and random effects based on classified characteristics, average severity and non-
linear time trend effects. Bayesian statistics are particularly useful in simulating from the
posterior distribution of the number of incidents (claims) in a future quarterly based time
period given risk characteristics. Due to the nature of Bayesian methodology, some of the
assumptions, such as the polynomial time trend, and parameters choices might be updated
in the future once suitable data is available. Moreover, individual features of the model can
be refined or replaced to incorporate properties of given internal datasets without changing
the overall model structure. The updates and modifications enable our model to be a precise
predictor for data breach frequencies.

This study develops a statistical model for cyber breach frequencies that considers not
only characteristics such as risk profile, location and industry, but also average loss sizes and
time effects. It provides an effective and comprehensive modeling approach for predictive
analytics due to the consideration of dependent and correlated risk aspects. We believe
that our study makes an important and novel contribution to the actuarial literature in the
sense that our NB-GLMM for cyber breach frequencies considers risk category, company
census, severity dependence and time trend effects together in quantifying and predicting
quarterly number of data breach incidents, a fundamental quantity for appropriately setting
the manual rates.

The study of cyber risks is important for insurance companies in mitigating and manag-
ing their risks given that the functioning of the insurance business is a complex process. In
this view, our study is of practical value for insurance companies, since the consideration of
the most dangerous risks for each business entity will allow forming a relevant information
security for the company. Enterprises need to take several measures in dealing with cyber
risks: operations based on statistical modeling in actuarial analysis process, ensuring the
balance and adequacy of tariffs in pricing process and adjusting premium rates in insurance
marketing. Our research results can be used as a differential indicator on different organi-
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zation types and geographical locations. In addition, our study can also be useful for data
security officers and scientists, and other potential corporate stakeholders for them to better
understand the impact of the cyber risks to business operations.

Another important aspect of this study is the use of the publicly available PRC data
on developing actuarial approaches to quantify cyber loss frequencies. However, the quality
of available data and whether the data represents well cyber risks in general also lead to
a limitation of our study. The fact that firms do not reveal details concerning security
breaches reduces data accuracy, and not voluntarily reporting cyber breaches leads to data
inadequacy. Moreover, Privacy Rights Clearinghouse (PRC) has stopped updating latest
breach incidents since 2019, which causes data inconsistency in a time trend manner. The
availability of high-quality data such as policy or claim database in the future would open up
new research opportunities. Our model is subjective and can be modified to accommodate
the features of new dataset and the purpose of prediction.

Despite the limitations, the proposed NB-GLMM makes a notable methodological contri-
bution to the cyber insurance area as it provides a theoretically sound modeling perspective
in frequency quantification, and provides a practical and statistical framework and approach
for practitioners to customize and update based on their predictive needs. In Chapter 4,
we analyze zero-inflated heavy tailed loss amounts (the number of data breached due to
breach incidents and their corresponding monetary losses incurred) using finite mixture
model and extend the analysis using the extreme value theory. Together with NB-GLMM
frequency predictive model, we can simulate aggregate full insurance losses with given char-
acteristics. Moreover, we will use a numerical approach to test predicted overall quarterly
aggregate claim amounts under different factor combinations in order to make characteri-
zation of premiums. For instance, pure technical insurance premiums can be expressed as a
VaR or TVaR metric and computed from the loss distribution of each risk category. Lastly,
this two-part severity-frequency actuarial quantification method seeks to overcome some of
above-mentioned data limitations such as inadequacy and inconsistency.
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Chapter 4

Zero-inflated mixture and
composite regression model for
Cyber Loss Severity Analysis

After we discuss the loss frequency modeling in Chapter 3, we present in this chapter zero-
inflated mixture and composite regression (Zi-MCR) model for loss severity and discuss
their application in cyber risk analysis. Section 4.1 reviews the definition of splicing models
and finite mixture models, which are the composition of mixture and composite regression
model (MCR), and propose our unique MCR model adjusted by zero-inflated component
based on the distinct feature of the dataset we study. Followed by Section 4.2, we introduce
the expectation-maximization (EM) algorithm to be used to estimate coefficients and model
parameters including E-step, M-step and starting values. We then present details on how
to fit the PRC dataset to the models we propose as well as on how to assess the goodness
of fit of a model in Section 4.3. Finally, we discuss the model application in terms of loss
severity from the insurers’ perspective in Section 4.4.
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4.1 Notation and Modeling

One of the professional responsibilities of actuaries is to study loss distributions (patterns)
based on the data collected. As seen from the empirical data analysis in Chapter 2, the
severity distribution (pattern) of cyber loss records possesses point masses of zero, features
over-dispersion and a relatively long tail nature, and shows different patterns of loss amounts
(the number of data breached) for medical and non-medical organizations, which can hardly
be fitted by a single analytic and parametric distribution. Our dataset also allows us to ex-
amine individual risk characteristics via regression predictors, such as breach type, business
type, and location. Based on these characteristics, we propose a finite mixture model with
three components integrated with a GLM framework to analyze the severity of cyber losses.

4.1.1 Splicing models

The distribution of loss variables, such as bodily injury costs and cyber losses, often fea-
tures long tails. Consequently, when modelling claim sizes to set premiums, calculating risk
measures, and determining capital requirements for solvency regulations, it is frequently
necessary for the actuarial analytic domain to obtain a global fit for loss/risk distributions.
In the literature, a splicing model is also called a composite model, in which multiple light-
tailed distributions for the body and a heavy-tailed distribution for the tail are combined.
The general density form of an m-component spliced distribution can be expressed as

f(y) =



p1f1(y) y ∈ C1,

p2f2(y) y ∈ C2,
...

pmfm(y) y ∈ Cm,

(4.1)

where fi, for i = 1, 2, . . . , m, are legitimate density functions defined on the respective
mutually exclusive and sequentially ordered intervals C1, C2, . . . , Cm with corresponding
positive weights p1, p2, . . . , pm that add up to one, i.e., ∑m

i=1 pi = 1. In this regard, the
density function f given by (4.1) and its corresponding cumulative distribution function F

can be written, for y ∈
⋃m

i=1 Ci, in a compact form as

f(y) =
m∑

i=1
ICi(y)pifi(y), F (y) =

m∑
i=1

ICi(y)

i−1∑
j=1

pj + piFi(y)

 ,

where I is an indicator function with ICi(y) = 1, if y ∈ Ci, otherwise 0, Fi is the corre-
sponding cumulative distribution function of fi in the interval Ci.

Based on the empirical analysis results shown in Table 2.5, we consider a spliced distri-
bution with three components: the first component contains zeros, the second component
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models the middle segment of the amount of loss data, and the third component models
the tail segment. Let Y denote the random variable that represents the jth loss amount, c

is a non-zero loss threshold, and then the pdf of Y can be expressed as

f(y|ζ) =


p1(ζ) y = 0,

p2(ζ) f1(y; ζ1)
F1(c; ζ1)−F1(0+; ζ1) y ∈ (0, c],

[1 − p1(ζ) − p2(ζ)] f2(y; ζ2)
1−F2(c; ζ2) y ∈ (c, ∞),

where f1 and f2 are two density functions with cdf F1 and F2, defined on (0, c] and (c, ∞),
respectively, ζ = (ζT

1 , ζT
2 )T is a set of parameter vector associated with the distributions of

the components F1 and F2. The splicing weights p1 and p2 are functions of ζ and can be
estimated from the proportions of points equal to 0, and falling in the intervals (0, c] and
(c, ∞). The threshold c is a parameter to be estimated from the data which is investigated in
Section 4.2.3. The remaining unknown parameters p1, p2 and ζ can be estimated using the
maximum likelihood estimation (MLE) method by maximizing the log-likelihood function
based on observations y1, y2, . . . , yn, which is given by

log L(ζ)

= log(p1(ζ))
n∑

j=1
I{0}(yj)

+
n∑

j=1
I(0+,c](yj)

[
log(p2(yj ; ζ)) + log f1(yj ; ζ1) − log(F1(c; ζ1) − F1(0+; ζ1))

]

+
n∑

j=1
I(c,∞)(yj) [log(1 − p1(ζ) − p2(ζ)) + log f2(yj ; ζ2) − log(1 − F2(c; ζ2))] .

4.1.2 Finite mixture models

Due to the adaptability in utilizing high-dimensional features, coping with population het-
erogeneity, and achieving multiple interrelated goals, mixture distributions have gained
popularity in recent years. Peel and MacLahlan (2000) provide a thorough discussion of
using the EM algorithm to find maximizers of MLE and the selection of the number of
components in finite mixture models. Let Y1, Y2, . . . , Yn denote a random sample of size n,
and y = (y1, y2, . . . , yn)T is the observed value of random vector. Suppose that Yj follows a
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finite mixture distribution with density function f on R, which can be written in the form1

fM (yj) =
g∑

i=1
πifi(yj), (4.2)

where for i = 1, 2, . . . , g, fi is a density function on R and πi is a non-negative quantity such
that 0 ≤ πi ≤ 1 and ∑g

i=1 πi = 1. The quantities π1, π2, . . . , πg are the mixing proportions or
weights, and f1, f2, . . . , fg are called the component densities of the mixture. We call density
(4.2) as a g-component finite mixture density function and its corresponding distribution
FM as a g-component finite mixture distribution function.

In order to well interpret the mixture models, let Zj be a categorical random vari-
able taking values in {1, 2, . . . , g} with probabilities π1, π2, . . . , πg, respectively, and sup-
pose that the conditional density of Yj given Zj = i is fi(yj) (i = 1, 2, . . . , g) whereas the
unconditional/marginal density is f(yj). Other than that, it is convenient to work with
a g-dimensional component label vector Zj in place of the single categorical variable Zj ,
where the ith element of Zj , Zij = (Zj)i, is defined to be one or zero, according to whether
the component of origin of Yj in the mixture is equal to i or not (i = 1, 2, . . . , g). Thus in
such setting, this categorical random vector Zj can be viewed as following a multinomial
distribution with probabilities π1, π2, . . . , πg; that is,

P{Zj = zj} = π
z1j

1 π
z2j

2 · · · π
zgj
g , (4.3)

according to a multinomial distribution consisting of one draw on g categories with proba-
bilities π1, π2, . . . , πg. We write

Zj ∼ Multg(1, π), Zj ∈ {0, 1}g,

where π = (π1, π2, . . . , πg)T . In the interpretation of a mixture model, Yj is drawn from a
population with g groups, G1, G2, . . . , Gg, with proportions π1, π2, . . . , πg, where the den-
sity of Yj in group Gi is fi(yj). The component-indicator variables zij are used in finding
optimizers under ML estimation via the EM algorithm to be discussed in Section 4.2.

Generally, the components can be any exponential family distribution (Hasselblad,
1969); observations are available from a population known to be a mixture of K sub-
populations. In our study, each subpopulation is not necessarily assumed to have the same
type of distribution, which is one of the most significant departures from previous research.
For a single observation yj , the probability density of the exponential family can be ex-

1In this formulation of the mixture model, the number of components g is considered fixed. In many ap-
plications, the value of g is unknown and inferred from the available data, along with the mixing proportions
and the parameters in the specified forms of the component densities.
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pressed as
f(yj ; θj , ϕ) = exp

{
yjθj − b(θj)

ϕ
+ c(yj , ϕ)

}
, (4.4)

where θj is a natural parameter or canonical parameter, ϕ is the dispersion parameter or
scale parameter2, b(θj) is a known function of θj called cumulant function and c(yj , ϕ) is a
normalizing function, ensuring that (4.4) is a probability function. The mean and variance
of exponential family distributions can be expressed by b(θj) (assuming twice differentiable)
as follows:

E(Yj) = µj = b′(θj), Var(Yj) = ϕ b′′(θj) = ϕV (µj), (4.5)

where the variance of Yj is the product of two terms, the dispersion parameter ϕ and the
variance function V (µj) = b′′(θj), which is usually written in the following form

V (µj) = ∂µj

∂θj
.

Considerations are given to the family of mixtures of GLMs, because many applications
of non-normal mixtures involve components from the exponential family. The GLM is a
statistical framework for unifying several significant exponential family models (Nelder and
Wedderburn, 1972). Under this framework, it is permissible for the mixing proportions and
the component distributions to depend on some associated covariates. In a GLM setting, it
is assumed that

ηj = h(µj) = xT
j β, (4.6)

where h(·) is a monotonic function known as the link function, ηj is the linear predictor,
and µj , the mean of an exponential family distribution f(yj ; θj , ϕ), is a known function of
the canonical parameter θj described in (4.5), g(·) is a known link function that connects
the distribution mean and the linear combination of explanatory variables together.

With the methodologies described above, we propose a finite mixture regression model
where mixture components can be from a same type or different types of parametric family.
Our model employs candidate distributions such as Gamma, Log Normal, Inverse Gaussian,
and Weibull from the exponential family because the loss or severity is typically modelled
using continuous random variables.

4.1.3 Zero-inflated mixture and composite regression models (Zi-MCR)

In this subsection, in order to provide a clear understanding of our combined finite mix-
tures and splicing model, we first introduce our model under a general splicing framework
with three parts spliced densities jointing with weighting probabilities, followed by a de-

2When ϕ is known, the distribution of Yj is one-parameter canonical exponential family member. When
ϕ is unknown, it is often a nuisance parameter and then it is estimated by the method of moments. In most
of GLM theory, the role of ϕ is often treated as an unknown constant but not as a parameter. (Yee, 2015)
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tailed description of finite mixture section of the spliced density part for the moderate loss
amounts.

Let Y be a non-negative claim severity random variable, and let x ∈ Rp be the vector of
covariate information. The density of the zero-inflated mixture composite regression model
written in a spliced form with zero and two densities fM and fT and their corresponding
cumulative distribution functions (CDFs) FM and FT is given by

fY (yj ; α, W, B, ϕ, γ, κ, xj)

= p1(α, xj)1{yj = 0}

+ p2(α, xj) fM (yj ; W, B, ϕ, xj)
FM (c; W, B, ϕ, xj) − FM (0+; W, B, ϕ, xj)1{0 < yj ≤ c}

+ [1 − p1(α, xj) − p2(α, xj)] fT (yj ; γ, κ, xj)
1 − FT (c; γ, κ, xj)1{yj > c},

(4.7)

where {p1, p2} ∈ (0, 1) are the splicing weights, c is the splicing point which is the threshold
separating the moderate and extreme loss values, α is covariate coefficients of zero-inflated
weight, W, B and ϕ are parameter vectors of the density of body fM which is a finite
mixture model, and γ and κ are parameters of the density of tail fT .

In this study, the finite mixture distribution fM is the density of positively defined
continuous distributions with upper truncation at the threshold loss level c, given by

fM (yj ; W, B, ϕ, xj) =
g∑

i=1
πij(W, xj)fi

(
yj ; exp

(
xT

j βi

)
, ϕi

)
(4.8)

where B = (βT
1 , βT

2 , . . . , βT
g )T is regression coefficients, and ϕ = (ϕ1, ϕ2, . . . , ϕg)T is a vector

of fixed dispersion parameters of g distribution components from the exponential family.
The parameter πij is the mixing proportion of the ith function and jth observation which
is a function of xj and commonly modeled by logistic distributions

πij = πi(W, xj) =
exp

(
xT

j ωi

)
1 +∑g−1

h=1 exp
(
xT

j ωh

) , (4.9)

where W = (ωT
1 , . . . , ωT

g−1, ωT
g )T , with ωg = 0, contains the logistic regression coefficients.

Lastly, fT is the tail density function from the exponential family with heavy-tailed perfor-
mance, given by

fT (yj ; γ, κ, xj) = fT

(
yj ; exp

(
xT

j γ
)

, κ
)

= exp
{

yjθj − b(θj)
κ

+ c(yj , κ)
}

,

where exp
(
xT

j γj

)
= θj , the canonical parameter in (4.4), and κ is the dispersion parameter.
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4.2 Parameter Inferences by EM Algorithm

Let Ψ denote the set of vectors representing all the unknown parameters in (4.7) that need
to be estimated, namely,

Ψ = (αT , WT , BT , γT )T . (4.10)

The density of our spliced mixture regression model (4.7) of the jth response variable
Yj , for j = 1, 2, . . . , n, can then be written as follows:

f(yj ; Ψ, xj) = p1j 1{yj = 0} + p2j

∑g
i=1 πijfi(yj ; βij , ϕi, xj)

FM (c; Ψ, xj) − FM (0+; Ψ, xj)1{0 < yj ≤ c}

+ (1 − p1j − p2j ) fT (yj ; γj , κ, , xj)
1 − FT (c; γj , κ, , xj)1{yj > c}.

where, for simplicity of notation, p1j = p1(α, xj), p2j = p2(α, xj) and πij = πi(W, xj)
represents the mixing proportion in (4.12). In this way, the log likelihood for Ψ can be
formed as

logL(Ψ) =
n∑

j=1
log(p1j )1{yj = 0} +

n∑
j=1

{
log(p2j ) + log

( g∑
i=1

πijfi(yj ; βij , ϕi, xj)
)

− log[FM (c; Ψ, xj) − FM (0+; Ψ, xj)]
}

1{0 < yj ≤ c}

+
n∑

j=1

{
log(1 − p1j − p2j ) + logfT (yj ; γj , κ, xj)

− log[1 − FT (c; γj , κ, xj)]
}

1{yj > c}.

The EM algorithm (Dempster et al., 1977) can be applied to obtain the MLE of Ψ in
this spliced mixture regression model. The complete-data log likelihood is given by

logLc(Ψ) =
n∑

j=1
log(p1j )1{yj = 0}

+
n∑

j=1

{
log(p2j ) +

g∑
i=1

zij [log(πij) + logfi(yj ; βij , ϕi)]

− log[FM (c; Ψ) − FM (0+; Ψ)]
}

1{0 < yj ≤ c}

+
n∑

j=1

{
log(1 − p1j − p2j ) + logfT (yj ; γj , κ, xj)] − log(1 − FT (c; γj , κ, xj))

}
1{yj > c}

(4.11)
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where zij denotes the component-indicator variables as defined in (4.3). Note that the
composite probabilities p1 and p2 are to be estimated outside of E-M steps using proportions
of zero for each covariate combination and presented in Section 4.2.3.

4.2.1 E-step

The EM algorithm is applied to this problem by treating the zij as missing data. E (for
expectation) and M (for maximization) are the two iterative steps. Given an observed data
y = {y1, y2, . . . , yn}, we take the conditional expectation of the complete-data log likelihood
(4.11) using the current fit for Ψ. We consider Ψ(0) as an initial value of the iterative
computation. The E-step computes the conditional expectation of logLc(Ψ) given y using
Ψ(0) for Ψ on the first EM algorithm iteration, that is,

Q(Ψ; Ψ(0)) = EΨ(0) [logLc(Ψ)|y],

The expectation operator E has the subscript Ψ(0) to explicitly convey that this expectation
is being effected using Ψ(0) for Ψ. In this manner, the E-step calculates Q(Ψ; Ψ(k)) on the
(k +1)th iteration, where Ψ(k) is the value of Ψ after kth iteration. The E-step requires the
calculation of the current conditional expectation of Zij given the observed data y, which
can be calculated as

EΨ(k)(Zij |y) = PΨ(k){Zij = 1|y} = τij(yj ; Ψ(k)), (4.12)

where for i = 1, 2, . . . , g and j = 1, 2, . . . , n,

τij(yj ; Ψ(k), xj) = π
(k)
ij

fi(yj ; β
(k)
ij , ϕi, xj)

fM (yj ; Ψ(k), xj)

= π
(k)
ij

fi(yj ; β
(k)
ij , ϕi, xj)∑g

h=1 π
(k)
hj fh(yj ; β

(k)
hj , ϕh, xj)

,

where π
(k)
ij = πi(W(k), xj) based on (4.9). The quantity τij(yj ; Ψ(k)) is the posterior proba-

bility that the jth member of the sample with observed value yj belongs to the ith compo-
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nent of the mixture. Taking the conditional expectation of (4.11) using (4.12) gives that

Q(Ψ; Ψ(k)) =
n∑

j=1
log(p1j )1{yj = 0}

+
n∑

j=1

{
log(p2j ) +

g∑
i=1

τij(yj ; Ψ(k), xj)[log(πij) + logfi(yj ; β
(k)
ij , ϕi, xj)]

− log[FM (c; Ψ(k), xj) − FM (0+; Ψ(k), xj)]
}

1{0 < yj ≤ c}

+
n∑

j=1

{
log(1 − p1j − p2j ) + logfT (yj ; γ

(k)
j , κ, xj)

− log(1 − FT (c; γ
(k)
j , κ))

}
1{yj > c}.

We assume FM (0+; Ψ(k)) = 0 in the following derivations, which is generally the case.

4.2.2 M-step

The M-step on the (k+1)th iteration entails solving the following system of three equations:

n∑
j=1

g∑
i=1

∂

∂W

[
τij(yj ; Ψ(k), xj)log(πij)

] ∣∣∣
W=W(k)

1{0 < yj ≤ c} = 0,

n∑
j=1

g∑
i=1

τij(yj ; Ψ(k), xj) ∂

∂B
[logfi(yj ; βij , ϕi, xj) − logFM (c; Ψ, xj)]

∣∣∣
Ψ=Ψ(k)

1{0 < yj ≤ c} = 0,

n∑
j=1

∂

∂γ
[logfT (yj ; γj , κ, xj) − log(1 − FT (c; γj , κ, xj))]

∣∣∣
γj=γ

(k)
j

1{yj > c} = 0.

(4.13)

Recall that πij ’s are functions of W, τij is functions of πij . The first equation in (4.13)
can be solved using a similar algorithm for logistic regression to produce updated estimates
of W(k+1) for the logistic regression coefficients as it represents the probabilities between 0
and 1. Concerning the computation of B and γ and applying the chain rule of McCullagh
and Nelder (2019), the likelihood equation for γ given by the third equation of (4.13),
conditional on yj > c, can be expressed as

n∑
j=1

w(µj)(yj − µj)η′
j(µj)xj = 0, (4.14)
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where µj = exp(γT xj), ηj is the log-link function with format given by (4.6) and w(µj) is
the weight function defined by

w(µj) = 1
[η′

j(µj)]2 V (µj),

where V (µj) represents the variance function of µj presented in Section 4.1.2. It can be seen
that for fixed κ, the likelihood equation for γ is independent of κ.

The equation (4.14) can be solved using iteratively reweighted least squares (IRLS)
(Nelder and Wedderburn, 1972). The adjusted response variable ỹj for the (k+1)th iteration
is given by

ỹ
(k)
j = η

(
µ

(k)
j

)
+
(
yj − µ

(k)
j

)
η′

j

(
µ

(k)
j

)
, j = 1, 2, . . . , n. (4.15)

These n adjusted responses are then regressed on the covariates x1, x2, . . . , xn using weights
w(µ(k)

1 ), w(µ(k)
2 ), . . . , w(µk)

n ). Convergence can be obtained with a sequence of likelihood
values that are bounded above as Dempster (1968) show that a local maximum can be
found if (very weak) conditions that Q(Ψ) is continues in Ψ and component densities of
mixing proportions are specified. This produces an updated estimate γ(k+1) for γ and,
consequently, the updated estimates µ

(k+1)
j for the µj for use in the right-hand side of

(4.15) to update the adjusted responses, and so on. This procedure is repeated until the
variations in the estimates are small enough.

Same as (4.14), the likelihood for B given by the second equation in (4.13), conditional
on 0 < yj ≤ c, can be written as

g∑
i=1

n∑
j=1

τij

(
yj ; Ψ(k), xj

)
w(µij)(yj − µij)η′

i(µij)
[

∂

∂B
ηi(µij)

]
= 0 (4.16)

where µij is the mean of Yj for the ith component, ηi has similar structure as (4.6). Given
that

∂

∂βh
ηi(µij) =

xj , if h = i

0, otherwise
,

equation (4.16) reduces to solving

n∑
j=1

τij

(
yj ; Ψ(k), xj

)
w(µij)(yj − µij)η′

i(µij)xj = 0, (4.17)

separately, for each βi to produce β
(k+1)
i , i = 1, 2, . . . , g. Similar to (4.15), responses

y1, y2, . . . , , yn are fitted with weights τi1(y1; Ψ(k), x1), . . . , τin(yn; Ψ(k), xn) and fixed dis-
persion parameter ϕi. Equation (4.17) can then be solved using the IRLS approach for a
single GLM. The double summation over i and j in (4.16) can be handled by expanding the
response vector to have dimension g × n by replicating each original observation (yj ; xT

j )T
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by g times, with weights τi1(y1; Ψ(k), x1), . . . , τin(yn; Ψ(k), xn), fixed dispersion parameters
ϕ1, ϕ2, . . . , ϕg, and linear predictors xT

j β1, xT
j β2, . . . , xT

j βg.

4.2.3 Specification of Parameters

The splicing probabilities p1 and p2 are estimated outside of E-M steps. Recall that p1(α, c)
p1(α, xj) represents proportion of zero loss incidents with covariates xj , which is also a
function of α and c (see equation (4.7)). After setting a proper splicing point c, p1 can be
defined as a logistics regression model that describes the probability of zero loss incidents
happening as a function of covariates xj and coefficients α, given by

p1(α, xj) = 1
1 + e−xT

j
α

. (4.18)

With the logistic model, estimates of p1 are always between 0 and 1.
Let Y ∗

j be a random variable, with Y ∗
j = 1, if Yj = 0, and Y ∗

j = 0, if Yj > 0, so Y ∗
j is a

Bernoulli random variable. More specifically, assume that

Pr{Y ∗
j = y∗

j |xj} = p1(α, xj)y∗
j (1 − p1(α, xj))1−y∗

j ,

where xj is the covariates of Yj . Clearly, Pr{Y ∗
j = 1|xj} = p1(α, xj), representing the

probability that an observation with risk xj has zero losses, where p1(α, xj) is given by
(4.18). The likelihood function for all the n observations y can be expressed as

L(α; y, x) =
n∏

j=1
p1(α, xj)y∗

j (1 − p1(α, xj))1−y∗
j

=
n∏

j=1

 exT
j α

1 + exT
j

α

y∗
j ( 1

1 + exT
j

α

)1−y∗
j

(4.19)

Since we have in total 36 risk level combinations for covariates and xj must be one of them,
the likelihood function (4.19) can be re-written as

L(α; y, x) =
36∏

i=1

(
exT

i α

1 + exT
i

α

)n0,i
(

1
1 + exT

i
α

)ni−n0,i

where n0,i is the number of observations of zero losses with ith risk combination xi, and ni

is the number of observations with ith risk combination such that ∑36
i=1 ni = n.

The corresponding log likelihood function can be obtained as

ℓ(α; y, x) =
36∑

j=1

[
n0,i · xT

i α − ni log
(
1 + exT

i α
)]

.
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The maximum likelihood estimation of α can be obtained by maximizing the above log
likelihood, which has no closed-form solutions. Therefore, a technique like the iteratively
reweighed least squares can be used to find an estimate of the regression coefficients (O’Leary,
1990).

In order to have the overall distribution to be continuous at the splicing point, we set
at c such that, for the density function,

lim
y→c−

fY (y; α, W, B, ϕ, γ, κ, x) = lim
y→c+

fY (y; α, W, B, ϕ, γ, κ, x)

Using (4.7), we get

p2(α, xj) fM (c; x, B, Φ)
FM (c; x, B, Φ) = [1 − p1(α, xj) − p2(α, xj)] fT (c; x, γ, θ)

1 − FT (c; x, γ, θ) , (4.20)

and by (4.20), we can then determine p2(α, xj) which is given by

p2(α, xj) =
[1 − p1(α, xj)] fT (c;x,γ,θ)

1−FT (c;x,γ,θ)
fM (c;x,B,Φ)
FM (c;x,B,Φ) + fT (c;x,γ,θ)

1−FT (c;x,γ,θ)

.

Dispersion parameters ϕ and κ for fM and fT , respectively, in (4.7) are pre-determined
before E-M steps by the method of moments trained on body part and tail part exclusively.
They are normally estimated by the programming packages.

Until now, we have considered the fitting of a Zi-MCR model with a given value of sever-
ity threshold c value. Typically, where our model is being used to handle overdispersion, the
value of c can be predetermined from data using extreme value analysis or expert opinion
via performing cyber insurance policy limit and similar matters. This is primarily motivated
by estimation stability, which is adopted by Reynkens et al. (2017). Furthermore, conduct-
ing formal tests at any stage of this sequential process is challenging because regularity
conditions for the likelihood ratio test statistic’s typical asymptotic null distribution do not
hold. As the constrained likelihood function needs to be optimized with respect to the nui-
sance parameters of the model, even for the small dimension of the space of parameters of
interest in simple models, the computational burden can be extensive (Peel and MacLahlan,
2000). Observing the trend in the log-likelihood as c is increased from a sequence of severity
levels 1000, 5000, 10000, 50000 and 100000 can provide us with a heuristic for determining
the optimal value of c. When dealing with a data-driven model, this method for selecting a
splicing point makes more sense and is widely used (Gan and Valdez, 2018).

4.3 Analysis of Cyber Breach Chronology Data

In this Section, we illustrate the efficiency of the EM algorithm on estimation by fitting a
Zi-MCR model, as proposed in Section 4.1.3, to the PRC dataset. Furthermore, modeling
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specification and covariates are discussed, and several distribution combinations are tested
to select one with the best performance.

This study is based upon the PRC cyber breach incident data by stratifying the resid-
uals. The training set fine-tunes all candidate models, and their performance and out-of-
sample validation are checked upon the test set. We conduct 5-fold cross-validation and
set 80% as the training data to fit the models. Based on a set of breach observations, the
problem is to estimate whether the unknown parameters can be obtained in the vector
Ψ = (αT , WT , BT , γT )T , as in (4.10). We represent the logarithm rescaled number of loss
records of data breached due to cyber incidents explained in Section 2.3.1 as a target or
dependent random variable Yj , and nine covariates, including intercept, two business levels,
two breach levels, and four location area levels, as described in the Sections 2.3.2 and 2.3.3
as vector coefficients xj , for j = 1, 2, . . . , 9.

Table 4.1 displays the summaries of three categorical variables; the proportion of ze-
ros and differences between the mean values of the categories numerically illustrate their
distribution patterns. These results demonstrate the importance of letting splicing weights
depend on covariates and separately modelling body and tail parts.

Feature Category Proportion of Zeros Non-Zero Mean Total Count

Organizations
Medical 652 (15.7%) 58501 4161

Businesses 1434 (63.0%) 2197387 2275
Non-businesses 577 (34.8%) 174932 1659

Breaches
External Malicious 1125 (44.1%) 1635354 2549
Internal Malicious 775 (31.8%) 462591 2440
Internal Negligent 763 (24.6%) 75805 3106

Territories

Area 1 1064 (35.2%) 390949 3024
Area 2 143 (26.9%) 301578 531
Area 3 449 (27.3%) 666947 1642
Area 4 283 (25.9%) 389733 1093
Area 5 724 (40.1%) 1478791 1805

Table 4.1: Summary of categorical variables

In the PRC dataset, a source of the heterogeneity is mainly from businesses that have
or do not have high prevention defence systems and active cyber risk managing activities,
such as healthcare and financial service organizations. This is explained in Section 2.3.2
by comparing their kernel plots and enterprise features. The body part component may be
viewed as two groups corresponding to whether those incidents happened within medical
organizations. The problem is to estimate the medical and non-medical organization mixture
rate, that is, the mixing proportion π1. Given g = 2, α(k+1) and W(k+1) can be calculated
using binomial error structure with the canonical logit transformation as the link. For
illustrative purposes, we fit several popular distribution combinations on a mixture of body
and heavy tail parts. To measure the overall goodness of fit of those fitted distributions,
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we calculate the Akaike information criterion (AIC) statistics. Table 4.2 reports the global
fit distributions overall AIC values on a given c = 5000 threshold. The fit from Lognormal
and Weibull body mixture and Pareto tail outperforms with the lowest AIC. We conduct
a simulation study based on the entire data set to comprehend further the adaptability of
the model chosen. The procedure is repeated 200 times to ensure a thorough analysis of
the chosen distribution combination. The estimated parameters are summarized in Table
4.3 using the distribution combined with the lowest AIC value, Lognormal-Weibull for the
body part and Pareto for the tail part.

Body Tail AIC Body Tail AIC
Gamma Lognormal Pareto −46.3333 Gamma Lognormal Lognormal −51.5420
Gamma Gamma Pareto −55.8390 Gamma Gamma Lognormal −49.0340

Lognormal Weibull Pareto −56.6044 Lognormal Weibull Lognormal −45.6592
Gamma Weibull Pareto −55.8390 Gamma Weibull Lognormal −47.3896

Table 4.2: Overall goodness-fit

As an example, we express below the explicit density function of our Zi-MCR model
with the lowest AIC; it is given by

fY (yj ; α, W, B, ϕ, γ, κ, xj)

= p1(α, xj)1{yj = 0}

+ p2(α, xj)
∑2

i=1 πij(W, xj)fi

(
yj ; exp

(
βT

i xj

)
, ϕi

)
FM (c; W, β1, β2, ϕ1, ϕ2, xj) 1{0 < yj ≤ c}

+ [1 − p1(α, xj) − p2(α, xj)]
fT

(
yj ; exp

(
γT xj

)
, κ
)

1 − FT (c; γ, κ, xj) 1{yj > c},

(4.21)

where f1 is the Lognormal density function with scale (dispersion) parameter ϕ1 and co-
efficients β1, f2 is Weibull density function with scale parameter ϕ2 and coefficients β2,
fT is type II Pareto density function with scale parameter κ and coefficients γ, and FM

is cumulative distribution function of the mixture of Lognormal and Weibull distributions,
with the following forms, respectively:

f1(yj ; β1, ϕ1) = ϕ1

yj

√
2π

exp

−
ϕ2

1

[
ln(yj) − exp

(
βT

1 xj

)]2
2

 , yj > 0

f2(yj ; β2, ϕ2) = exp
(
βT

2 xj

)
ϕ2 (yjϕ2)exp(βT

2 xj)−1 exp
[
− (yjϕ2)exp(βT

2 xj)] , yj > 0

fT (yj ; γ, κ) = exp(γT xj)κ (1 + yjκ)−[exp(γT xj)+1] , yj > 0,
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Vector Coefficients Estimation Vector Coefficients Estimation

αT

α1 −1.2292

γT

γ1 5.2892
α2 −0.3876 γ2 0.6577
α3 −0.0915 γ3 −0.1476
α4 0.5934 γ4 −0.6063
α5 1.6082 γ5 1.1548
α6 −0.1650 γ6 −0.4896
α7 −0.2233 γ7 0.7618
α8 −0.1999 γ8 1.4402
α9 −0.6482 γ9 1.5340

βT
1

β11 1.1170

βT
2

β21 2.1593
β12 0.9828 β22 0.1305
β13 −0.3131 β23 −0.2645
β14 0.0360 β24 0.0192
β15 0.0404 β25 −0.2291
β16 −0.4804 β26 0.1814
β17 0.4161 β27 0.2837
β18 0.2168 β28 0.2892
β19 0.0734 β29 0.2688

WT

w1 0.1704
ϕ

ϕ1 1.1112
w2 0.9999 ϕ2 0.0167
w3 0.5000 κ κ 1.1765
w4 0.2856
w5 0.1557
w6 0.6757
w7 1.0000
w8 1.0000
w9 0.0027

Table 4.3: Parameter estimations
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and

FM (c; W, β1, β2, ϕ1, ϕ2, xj)

= π1j (W, xj) Φ
(
ϕ1
[
ln(c) − exp(βT

1 xj)
])

+ π2j (W, xj)
(
1 − exp(−cϕ2)exp(βT

2 xj)
)

.

We take three representative risk combinations as illustrative examples and plot their
PDF upon logarithm scale of positive loss severity as shown in Figures 4.1, 4.2 and 4.3. The
limits of Y-axis is scaled down according to the range of density probabilities and vertical
white dots represents the logarithm of splicing point/threshold c, log(5000), with the point
mass at zero (proportion of zeros) excluded in these figures. The vertical white dotted
lines acts as the divider of splicing point with number represents cumulative percentage
of mixture component part. Severe loss of business external malicious breach activities in
South area leads to a heavy right tailed density function and overall huge mean showed
in Figure 4.1. Figure 4.2 shows the density function of non-business internal malicious in
Midwest that has a moderate right tail representing 25% of positive losses. While the density
of medical internal negligent in Northeast, showed in Figure 4.3, performs differently with
majority of low-severity incidents which represent about 91% positive losses, 62.7%3 in
terms of cumulative loss, and thus the density function has a very thin tail. Those results
and findings would be echoed on some level in Chapter 5 loss aggregation analysis.

Figure 4.1: Business-External Malicious-South

362.7% = (1 − 31.3%) × 91.35%, where 31.3% is proportion of zero of this combination.
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Figure 4.2: Nonbusiness-Internal Malicious-Midwest

Figure 4.3: Medical-Internal Negligent-Northeast
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Since the metric is based on data-driven analysis, we can draw a conclusion that the
selected combination, Lognormal-Weibull and Pareto, has the most explanation power of
PRC dataset. If other dataset is given, methodology and algorithm in generating the met-
ric should not change, selected distribution combination would depend on a case by case
basis. In Chapter 5, We illustrate an application of our proposed severity methodology in
examining aggregate cyber losses by combining the frequency modeling approach proposed
in Chapter 3 based on the same dataset.

4.4 Discussion

Once an insurance loss model has been constructed, in addition to applying techniques to
data sets, we must consider numerous modelling-related factors, such as risk management
and pricing decisions (for insurers) or the impact on capital requirements (for enterprises).
Our model and findings provide meaningful insights to risk mitigation and risk transfer
techniques, which benefits not only the individual organization, but also the overall economy.

Cyber risk exists because computer data is valuable to individuals, business, and gov-
ernments; therefore, the data must be protected by organizations that store privileged infor-
mation. Financial firms receive, maintain, and store large amounts of personally identifiable
information. Recent security research (Varonis, 2021) indicates that most businesses have
unprotected data and inadequate cybersecurity practices, making them susceptible to data
loss. As more executives and decision-makers recognize the value and significance of security
investments, cybersecurity budgeting has steadily risen to successfully combat potential dig-
ital property loss. A systemic cyber event could cost multiple times the current risk retention
estimate. As a result of regulatory scrutiny and the need for improved portfolio manage-
ment, businesses conduct scenario modelling and sensitivity tests regularly based on their
changing risk appetite. To reduce cyber risk, organization can adopt threshold limits by
monitoring risk with preset limit based on established risk criteria, trigger will be placed in
threshold has been breached. The objective is to achieve and maintain an acceptable level
of risk at a reasonable cost. Under the leadership of the Chief Risk Officer, companies must
revise their strategies, including changes to their risk appetite and the composition of their
hedge products. Due to some businesses’ nature or responsibilities, increasing risk appetite
or security investments may not be sufficient to achieve the risk management objective.
Such limited reserved retention can have disastrous financial consequences if a data breach
occurs, forcing the organization to absorb the costs associated with internal remediation and
its liability to third parties. In this perspective, cyber insurance has become an effective
alternative or backup tool for managing cyber risk.

Our investigation of large claims and an excess of zeros raises the issue of the insurability
of cyber risks under various feature characteristics. To eliminate the variance caused by
the heavy tail, the non-catastrophic loss can then be used to train a predictive model.
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Reinsurance will kick in if the loss exceeds the company’s tolerance level to ensure that
insurers are not severely impacted. Our model offers an additional perspective on coping
with extreme loss values, such as those caused by cyber attacks. Risk selection is one of
the most crucial processes when designing an insurance product. Since not all customers
are equally attracted to an insurance product, segmenting the risks into distinct groups
is advantageous to prevent adverse selection. To ensure that cyber insurance products are
priced appropriately, we use the results from the Section 4.3 to divide risks into categorizable
segments. In addition, our model can be utilized to perform a preliminary pre-screening of a
prospective client to facilitate rate discrimination and the creation of customized contracts.
This security audit enables the insurer to capitalize on the profit opportunity presented by
the interdependence of cyber risks.

Combining the loss frequency and severity distribution through convolution is a conven-
tional method for estimating the aggregate loss distribution. Given the proposed mixture
and composite severity model, aggregate losses can be estimated through simulations since
our proposed frequency model is semi-parametric with a simulated posterior distribution
without a closed form of distribution. In Chapter 5, We will show the estimation of the
aggregation of cyber losses and discuss the insurance applications.

The financial sector faces cybersecurity risks in their daily operations while insuring
product providers. Insurers receive privacy information such as personal health and finan-
cial situation from both policyholders and claimants. The cost of cyber insurance increased
by an average of 96% in the third quarter of 2021 as organizations faced a daily onslaught
of cyberattacks (McLennan, 2021). To mitigate the premium price increase, policyholders
may increase their retention level. As a result, insurers must improve predictive analysis
and cyber risk models to maintain market share and company solvency. Our model pro-
vides a method for measuring cyber risk severity, and there are multiple ways to extend
this method. As previously stated, all of our results are based on the assumption of equal
exposure, whereas exposure is the most crucial factor in determining the pure premium.
Cyber risk loss exposures are any conditions that present the possibility of financial loss
to an organization from property, net income and liability as a consequence of advanced
technology transmissions, operations, maintenance, development and support. Training the
predictive model under the assumption of equal exposure in a defined time period would
be an important direction for future research once prior experience data with exposure
information is obtained.
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Chapter 5

Cyber Loss Aggregation and
Industry Application

Based on frequency and severity modeling structures studied in Chapters 3 and 4, we em-
ploy their results for our data-driven analysis and propose several approaches in generating
aggregate loss and implementation strategies that can be utilized by insurance industry.
Starting with presenting general form of cyber loss aggregation model and introducing risk
measures in Section 5.1, we introduce simple loss aggregation approach assuming that the
loss frequency and loss severity are independent and severity is not random in Section 5.2,
and Markov chain Monte Carlo (MCMC) loss aggregation approach where the loss fre-
quency is dependent on the average loss severity and the loss severity has its own selected
zero-inflated mixture and composite regression model in Section 5.3. The impact of ap-
plying different deductibles, limits and reinsurance practice are discussed in Section 5.4.
Finally, applications of compound loss aggregation to current U.S. cyber insurance market
are discussed in Section 5.5.
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5.1 Cyber Loss Aggregation Model and Risk Measures

The premium calculation algorithm, known as rate order calculation, is applied to catego-
rize segmentation to derive final premium rates. In order to set competitive premiums and
develop sustainable underwriting plans, insurers extensively use historical loss data to seek
economies of scale and premium balancing. Statistical algorithms and mathematical mod-
elling arguments are used to structure aggregate cyber risks. The purpose of this section
is to describe an aggregate loss model based on the total amount of cyber loss that occurs
in a quarter concerning a group of different risk characteristics and apply this model to
determining increased limit factors (ILFs) based on the underlying data in order to balance
statistical and economic constraints. According to risk theory (Bühlmann, 2007), a collec-
tive risk model with aggregate loss S, which represents the total amount of quarterly loss
due to cyber attacks in our study, can be defined as

S =


N∑

k=1
Yi N > 0,

0 N = 0,

where loss counts (cyber attacks) N and non-negative loss amounts (records/data breached),
Y1, Y2, . . . , YN , are random variables and are assumed independent; that is, N does not rely
on the loss severity. Note that the individual loss amount can be zero with certain probability
in our case (breach happens but no incurred loss) and or be positive, which are assumed
to be independent and identically distributed following a unified distribution including the
point mass at zero.

For this collective risk model, the expected value and variance of the aggregate claims
S are as follows:

E(S) = E(N)E(Y ), (5.1)

Var(S) = E(N)Var(Y ) + Var(N)[E(Y )]2.

Due to the complexity of our proposed statistical model/distribution for the total loss,
in practical applications the following premium calculation principles are typically used as
approximations or references for the determination of the premiums. In our study, where
loading factors are not specified, pure premium creates an example, which can be modified
once loading information is obtained from businesses. Here we list some well-known moment
based premium calculation principles; all these are based on the mean only or both the
mean and the variance of the loss counting random variable N and the loss severity random
variable Y , which can be determined relatively easily.

• Pure Risk Premium
P = E(N)E(Y ); (5.2)
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• Premium with Safety Loading Factor θ

PSL(θ) = (1 + θ)E(N)E(Y ), θ ≥ 0;

• Premium with Variance Loading Factor a

PV (a) = E(N)E(Y ) + a[E(N)Var(Y ) + E(Y )2Var(N)], a ≥ 0;

• Premium with Standard Deviation Loading Factor b

PSD(b) = E(N)E(Y ) + b
√

E(N)Var(Y ) + E(Y )2Var(N), b ≥ 0.

More premium principles are described in Bühlmann (1980), which are applied to a
loss distribution to determine an appropriate premium to charge for the risk. The Risk
Loading factors represent the percentage of insurance premium deducted from the premium
payments to cover policy expenses and the variability of the loss, which act as a cushion
against adverse experience.

In order to utilize the characteristics of the loss distribution for pricing, reserving and risk
management, a well established loss distribution, either parametrically, non-parametrically,
analytically, or by Monte Carlo simulation, is necessary. A risk measure is a functional
mapping of loss distribution to real numbers encapsulating the risk associated with that
loss distribution, which is an important tool in actuarial process.

The Value at Risk (VaR) risk measure in actuarial quantile premium principle is the
loss at a certain probability level, which is specified with a given level α, typically 95% or
99%, denoted by VaRα. More specifically, VaRα represents the loss with probability α will
not be exceeded (Rockafellar and Uryasev, 2002); mathematically, it is defined by

Pr[L ≤ VaRα] = α.

That is, VaRα = F −1
L (α), where FL(x) is the cumulative distribution function of the loss

random variable L. Several insurance risks exhibit a heavier tail than the normal distribu-
tion, and VaR captures these potential losses, which offers a closer approximation of risk
profile.

Since the quantile risk measure does not consider what the loss will be if 1−α worst case
event occurs, it fails to reflect the loss distribution above the quantile. The Conditional
Tail Expectation (CTE), also known as Tail Value at Risk (TVaR) or Expected shortfall
(ES), was proposed to address this problem (Hardy, 2006). Like the VaR, the CTE is defined
using confidence level α as well, denoted by CTEα, which represents the expected loss given
that the loss falls in the worst (1 − α) part of the loss distribution. Mathematically, it can
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be defined, given the α-quantile risk measure VaRα as

CTEα = E[L|L > VaRα].

CTE provides a more precise representation of exceptional events that could pose a threat
to the financial standing of the firm.

Estimates of risk measures such as VaR and CTE can be analyzed using the ag-
gregate loss modeling results at a given risk tolerance level. There are two commonly
used approaches to generate risk measures and related quantities. One is the variance-
covariance/parametric approach, where variance and covariance are estimated using his-
toric data and the target distribution is transformed to a multivariate normal distribution.
It is easy to implement once L is a closed form with pre-defined assumptions. If the case
requires more flexible with subjective judgement and information come into play, Monte
Carlo approach seems to be a proper choice. It uses a simulation process to generate large
enough possible outcomes as long as the probability distribution of risk factors and their
co-movements are defined. This procedure is to be illustrated in Section 5.3.

5.2 Loss Aggregation Under a Simplified Model Setting

The purpose of the case study in this section is to examine the effect of insurance cov-
erage modifications such as deductibles, policy limits and their combinations in insurance
application under a simplified aggregate model. In actuarial literature, a well-known and
particularly practical method, called the frequency-severity method (Friedland, 2010), esti-
mates the insurance costs based on the expected number of claims determined by the claim
frequency model and the average claim cost from the severity model, both developed and
fitted using the relevant historical data. With the same idea, for this case study we use
the frequency model proposed in Chapter 3 and use the empirical average of the severity
with particular risk factors instead of the expected cost of a claim from the model for loss
amounts. Under this simplified model setting, we can nevertheless obtain a distribution for
the quarterly total loss for a specified time period. This approach has several advantages:
changes over time can be monitored and attributed to frequency or severity. For example, we
have showed that cyber loss frequency has a significant polynomial seasonal pattern. As data
accumulated by time, our methodology can be quickly updated to fit model components,
which can be done by training the model again based on our methodologies.

Our ultimate goal is to estimate the monetary loss caused by the cyber attack incidents
and the associated data breaches. In this case study and the severity model proposed in
Chapter 5, the severity/loss refers to the number of data breaches recorded. We then convert
units of loss recorded into their corresponding monetary loss amount using the following
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relationship/rule developed in Jacobs (2014):

ln(dollar amount loss) = 7.68 + 0.76 × ln(loss records breached), (5.3)

where ‘loss records breached’ refers to the number of records impacted. This relationship
has been used in (Eling and Loperfido, 2017) to estimate prices for cyber insurance policies
and to provide useful insights for actuarial applications. Romanosky (2016) develops a more
comprehensive model for cyber incidents that helps better understand the relevant factors
driving costs based on a rich set of data with revenue, lawsuits and breach occurrence infor-
mation. Since the dataset we use for this thesis does not contain such detailed components,
we adopt the relatively simple relationship (5.3) for approximating the monetary loss for
insurance applications.

Align with Chapter 3 and Chapter 4 rationales, the collective risk model for (J + 1)th
quarter aggregate loss SJ+1 under the simplified model setting described above can be
expressed as

SJ+1 =
36∑

i=1

(
Ni,J+1 · Ȳi

)
, (5.4)

where Ni,J+1 is the loss counts (cyber attack incidents) of the ith combination and (J +1)th
quarter, and Ȳi is the average of last three quarterly loss amounts for the ith combination
for i = 1, ..., 36. These 36 combinations are formed based on featured covariate risk levels
of the dataset studied including 3 business types, 3 breach types, and 4 location areas; see
Table 5.2 for detailed descriptions. Aggregated quarterly loss can be obtained by adding
all 36 combinations’ quarterly losses. Our previous loss frequency study reveals there exists
seasonal pattern; consequently a polynomial covariate is included in regression model. The
quarterly loss counts for the (J + 1)th quarter with a specific feature combination can be
predicted by setting polynomial covariate equal to J + 1.

Using the posterior frequency distributions on characteristic segments obtained in Sec-
tion 3.4 based on observations up to the Jth quarter, we can generate a set of total 36
aggregate loss distributions for all the level combinations. By using the frequency-severity
technique described above, the aggregated quarterly loss distribution for the (J +1)th quar-
ter, SJ+1, given by (5.4), can be obtained. We then apply log-log model (5.3) to convert
the number of records breached into its corresponding dollar amount loss.

We illustrate our numerical results by considering only two representative geographical
locations (northeast and west) and two business types (non-business and business). For
each combination of risk factors, we first use the mean values of estimated coefficients of
covariates based on their posterior distributions in NB-GLMM to generate corresponding
frequency distribution. Then the aggregate loss distribution is obtained by treating the
severity of loss as constant which equals to the latest three quarters average loss amounts
(number of data breaches recorded). In this case, the variability of the aggregate loss is
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mainly contributed by frequency variation across different character combinations. In our
case study, while loading factors are not specified, pure premium creates an example, which
can be modified once loading information is obtained from businesses. Table 5.1 displays
the total quarterly dollar amount loss caused by cyber attacks. Estimated loss amount
is calculated according to (5.3) conversion method, in which the "loss records breached"
amount is estimated by the following equation:

Aggregated loss records breached = E(l < S < u),

where l represents "Lower Threshold" and u represents "Upper Threshold" indicated in the
Table, which can be utilized as deductible and policy limit, respectively, in terms of premium
calculation.

Table 5.1: Quarterly aggregate loss in dollar amount.

Location Business Type Lower Threshold Upper Threshold Estimated Loss

Northeast

Business

- - 197,891
10,000 - 188,469

- 10,000,000 197,891
10,000 10,000,000 188,469

Non-Business

- - 2,283,023
10,000 - 2,273,881

- 10,000,000 1,164,335
10,000 10,000,000 1,162,902

West

Business

- - 1,408,541
10,000 - 1,398,568

- 10,000,000 1,264,013
10,000 10,000,000 1,260,245

Non-Business

- - 14,661,661
10,000 - 14,651,699

- 10,000,000 1,680,241
10,000 10,000,000 1,680,149

Based on these results, we have the following informative findings from different per-
spectives.

• There is a significant difference in dollar loss amounts between the Northeast and West
regions, with about seven times larger in both Business and Non-business entities.

• For each respective region, non-business organizations face much higher cyber risks
than business organizations do according to their more than ten times estimated loss
differences in dollar amounts without coverage modification.
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• Whether having a lower threshold makes no big difference in aggregate losses be-
cause nearly a same estimated loss amount with and without the $10, 000 threshold
is observed.

• On the contrary, setting a higher threshold can reduce covered cyber losses gigantically
in non-business organizations compared with that in business organizations.

Those insights are worth considering while setting premium rates and designing insur-
ance products in order to reach an equilibrium covering limited risk by sufficient amount of
premiums. A more comprehensive illustration based on our proposed frequency and severity
models with discussions is provided in Section 5.3. More discussions regarding implemen-
tations of insurance coverage modifications and reinsurance with discussions on different
perspectives can be found in Section 5.4.

5.3 Markov chain Monte Carlo (MCMC) Loss Aggregation

Monte Carlo simulation has been proved to be one of the most efficient approaches to de-
termine the compound loss distribution in aggregating losses when the distributions for
frequency and severity are not in a closed form (Cruz et al., 2015). However, a major chal-
lenge of applying this approach, especially in the Bayesian analysis, is the independent
assumption of the loss frequency and the loss severity. In Section 5.2, we assumed that
the frequency and the severity random variables are not conditional on each other, which
is a simplified case illustration. According to the conclusion of Markov (1906), "Indepen-
dence of quantities does not constitute a necessary condition for the existence of the law
of large numbers". The Law of Large Numbers is a statistical concept that calculates the
average number of events or risks in a sample or population to predict quantities of inter-
est (Ewold, 1991). In order to tackle this limitation, MCMC serves a practical choice in
generating aggregate loss with frequency dependent on severity, as iteration provides the
possibility of simulating sequential samples via chain method. In Chapter 3, we propose
a Bayesian negative binomial generalized linear mixed model (NB-GLMM) for the quar-
terly cyber incidents (frequency), where the average number of data breached (severity)
over the past several quarters is used as one of the regressors. When generating samplers
for the aggregate loss, the sequence of the average severity and frequency can be handled
in a chain-dependent process (Katz, 1977). In this manner, a Markov chain Monte Carlo
algorithm can be formalized to estimate/predict the aggregate loss of our interest.

It is natural to take a Bayesian approach, using our proposed Bayesian NB-GLMM
model for the frequency and combining the zero-inflated mixture and composite regression
model for the severity to simulate and analyze the aggregate loss within a given time period.
The construction of the loss aggregation contains two phases. First phase is to simulate the
loss frequency. The MCMC algorithm is applied in order to obtain a sample from the pos-
terior distribution of frequency parameters. This can be carried out by cycling repeatedly
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through draws of each parameter conditional on the remaining parameters. To accomplish
this, we need to sample from the conditional posterior distribution of each parameter via
Gibbs sampler as described in Section 3.3.1. The stationary distribution of each parameter
coming from this Markov chain finishes this phase by providing the joint posterior frequency
distribution of interest. The second phase focuses on the generating loss amounts based on
the corresponding loss counts simulated. With the same covariates classification and group-
ing, parameters are estimated using EM algorithm by fitting a Zi-MCR model as illustrated
in Section 4.2. The loss severity is estimated by the Lognormal-Weibull and Pareto mix-
ture components model which is approved to be the best fit from data-driven analysis in
Section 4.3. Given a number of loss incidents simulated in phase one, loss severity amounts
can be simulated correspondingly from this distribution. Aggregations of loss amounts thus
constitute a quarterly compound loss distribution. We describe this approach with details
below.

Let DJ denote the set of observations up to the Jth quarter, containing the number
of cyber attack incidents and the number of data breaches (severity) incurred for all I

combinations. Now, given DJ , we are interested in predicting the distribution of Si,J+1, for
i = 1, 2, . . . , I, where Si,J+1 is the aggregate data breaches of the ith combination for the
(J + 1)th quarter and it can be expressed as

Si,J+1 =
Ni,J+1∑

l=1
Yi,l,J+1 , (5.5)

where Ni,J+1 denotes the number of data breach incidents (frequency) of ith combination
happened in (J + 1)th quarter, and Yi,l,J+1 represents its lth loss amount (severity), which
is the number of records breached in the context of cyber data breaches.

The NB-GLMM model for Ni,j under the Bayesian framework is presented in Chapter 3.
For the purpose of this section, we recall the full model for Ni,j and its Bayesian estimation
of the parameters using Gibbs sampler and M-H algorithm. The full model can be described
as follows:

Ni,j |x, z, µi,j , ξj ∼ N B(µi,j , ξj)

log(µi,j) = xT
i,jβj + zT

j b

βj ∼ N (θ, Σ)

θ ∼ N (µ0, Λ0)

Σ ∼ W−1(ν0, S−1
0 ),

in which the heterogeneity among the regression coefficients β1, β2, . . . , βJ is described by
a multivariate normal distribution with mean θ and a variance-covariance matrix Σ.
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In Chapter 4, a zero-inflated mixture and composite regression model is proposed for the
number of data breached (severity); its density function fY (y; α, W, B, ϕ, γ, κ, xi) is given
by (4.7), in which the model parameters are estimated by EM algorithm based on observed
data DJ .

Utilizing a similar approach presented in Baumgartner and Jones (2015), we propose
the following steps to simulate total loss for all the combinations in the (J + 1)th quarter,
Si,J+1, i = 1, 2, . . . , I, given by (5.5), where the parameters for Ni,j are from their posterior
distributions based on past data DJ .

For each of the last K MCMC iterations (we take K = 200), k = 1, 2, . . . , 200, and for
each of the I combinations, i = 1, 2, . . . , I, perform the following steps.

1. Generate β
(k)
J+1 from a multivariate normal distribution based on the kth posterior

parameter set {θ
(k)
J+1, Σ(k)

J+1}, with ξ
(k)
J+1 being input using an averaged values estimated

for previous quarters up to the Jth quarter.

2. Simulate N
(k)
i,J+1, the number of incidents for the ith combination and (J+1)th quarter,

from the frequency distribution based the kth set of posterior parameters for frequency
model, β

(k)
J+1, b

(k)
J+1 and ξ

(k)
J+1.

3. Simulate loss amounts (the number of data breached due to cyber attack incidents)
based on number of incidents simulated in Step 2 from the severity distribution for the
(J +1)th quarter, denoted as Y

(k)
i,l,J+1, l = 1, 2, . . . , N

(k)
i,J+1 and i = 1, 2, . . . , I, using the

estimated parameters αT , WT , BT , γT of severity distribution based on DJ described
in Section 4.3.

4. Calculate S
(k)
1,J+1, S

(k)
2,J+1, . . . , S

(k)
I,J+1, the (J + 1)th quarter aggregate loss amounts for

the respective combination of total I combinations.

In the following we provide some technical/computational notes for the steps stated
above for simulating the total (aggregate) loss amounts.

In Step 1, the values of θ
(k)
J+1 and Σ(k)

J+1 are sampled from their conditional posterior dis-
tributions, which are given by Gibbs sampler algorithm; iteration labeling has been altered
to fit current MCMC process. One can refer to Section 3.3.1 for complete logistics of the
following details:

• Sample θ
(k)
J+1 from full conditional distribution (3.4)

(i) compute µ
(k−1)
J and Λ(k−1)

J from
{

Σ(k−1)
J , β

(k−1)
1 , ..., β

(k−1)
J

}
, where

µ
(k−1)
J = (Λ−1

0 + J(Σ(k−1)
J )−1)−1(Λ−1

0 µ0 + J(Σ(k−1)
J )−1β̄

(k−1)
J ),

Λ(k−1)
J = (Λ−1

0 + J(Σ(k−1)
J )−1)−1;
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(ii) sample θ
(k)
J+1 ∼ N

(
µ

(k−1)
J , Λ(k−1)

J

)
.

• Sample Σ(k)
J+1 from full conditional distribution (3.5)

(i) compute S
(k−1)
θ from {θ

(k)
J+1, β

(k−1)
1 , ..., β

(k−1)
J }, where

S
(k−1)
θ =

J∑
j=1

(
β

(k−1)
j − θ

(k)
J+1)(β(k−1)

j − θ
(k)
J+1

)T
;

(ii) sample Σ(k)
J+1 ∼ W−1

(
ν0 + J,

[
S0 + S

(k−1)
θ

]−1
)

.

The value of ξ
(k)
J+1 is input as the average value 2.547 of previous generated 69 ξjs from

their corresponding quarters calculated by (3.6). As discussed in Section 3.2.2, ξj is the
dispersion parameter for jth quarter and is estimated outside the M-H steps to be entered
into GLMM model as a constant. Figure 5.1 plots the 69 quarters’ estimated dispersion
parameter values, where there is no obvious pattern or trend among those values over time.

Figure 5.1: Proportion of Zeros

In Step 2, the b
(k)
J+1 are assigned as overall mean value from frequency posterior MCMC

analyses in Table 3.2. Per previous GLMM assumption in Section 3.1 that b represents
polynomial time effect coefficients that only related to number of quarter labeling, where
no combination variance being explained.
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Retain last 200 iterated posterior estimations of θ
(k)
J+1 and Σ(k)

J+1, along with ξ
(k)
J+1, in

Step 3, we sample from their corresponding loss frequency posterior distributions given by

f(yi,J+1|µi,J+1, ξJ+1) =
Γ(yi,J+1 + ξ−1

J+1)
Γ(ξ−1

J+1)Γ(yi,J+1 + 1)

(
1

1 + µi,J+1ξJ+1

)ξ−1
J+1

(
µi,J+1ξJ+1

1 + µi,J+1ξJ+1

)yi,J+1

,

where µi,J+1 is the mean of Yi,J+1 such that ln(µi,J+1) = ηi,J+1 = xT
i,J+1βJ+1 + zT

i,J+1b,
xT

i,J+1 and zT
i,J+1 are ith covariate combination, and βJ+1 and b are coefficients for fixed

effect and random effect.
In Step 4, we sample from the conditional loss severity distribution

fY (y; α, W, B, ϕ, γ, κ, x)

= p1(α, x)1{y = 0}

+ p2(α, x) fM (y; W, B, ϕ, x)
FM (c; W, B, ϕ, x) − FM (0+; W, B, ϕ, x)1{0 < y ≤ c}

+ [1 − p1(α, x) − p2(α, x)] fT (y; γ, κ, x)
1 − FT (c; γ, κ, x)1{y > c},

where {p1, p2} ∈ (0, 1) are the splicing weights, c is the splicing point which is the threshold
separating the moderate and extreme loss values, α is covariate coefficients of zero-inflated
weight, W, B and ϕ are parameter vectors of the density of body fM which is a finite
mixture model, and γ and κ are parameters of the density of tail fT . Here we follow the
Section 4.3 result and use the Lognormal-Weibull mixture for the body and Pareto for the
tail of the distribution given by (4.21).

For the total aggregate loss amount of all types of entities and business within the
U.S., repeat above steps by changing coefficients to corresponding covariates related to
particular risk combination and obtain 200 (K = 200) compound loss series for each of the
combinations. When yearly estimates are focused on, repeat iterations for four quarters,
(J + 1)th,..., (J + 4)th, and obtain the yearly estimates by adding up four consecutive
quarters’ simulated compound losses. The metrics can then be obtained accordingly.

When simulating loss frequencies and amounts, a common set of covariates is used with
each risk combination being assumed to have three normal outcomes: three categorical levels
of type of organizations (Medical, Business and Non-business), three categorical levels of
type of breaches (External Malicious, Internal Malicious and Internal Negligent) and four
geographical regions (Northeast, Midwest, South and West). The detailed classifications of
the former two covariates can be found in Table 2.2. These levels can be treated with binary
variable in regression modeling with ‘1’ representing that level in the combination and ‘0’
for the rest of other levels.

Using the algorithms described above, we simulate 200 quarterly aggregate loss amounts
for each of the 36 combinations. Table 5.2 lists summary statistics of MCMC quarterly
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level aggregated number of records (total loss) incurred due to breach incidents. For each
combination of entity, breach type and region, we list its empirical mean and empirical
median. The sample means range from about 400 (B-IN-M) to 24 million (B-EM-S), showing
a significant difference in cyber losses with respect to their risk characteristics. The mean
excesses median for all the risk combinations, indicating positive skewed loss distributions
with a longer or fatter right tail. Furthermore, we name each combination with simplified
labels so that remaining tables remain consistency for reference purpose.

Figures 5.2 and 5.3 show box plots of means and medians of simulated aggregate loss
distribution in entity, type of breach and location perspective. Based on these plots and
results showed in Table 5.2, we have the following observations, which may provide some
practical insights for insurance companies developing their cyber insurance products and
mitigating cyber insurance risks.

1. Regional Disparities: The West region external malicious in business entity demon-
strates the highest amount of loss, with median value reaching 9 million, followed by
South region external malicious with 835, 283 median loss amount in medical entity,
while the Northeast and Midwest regions internal negligent in business entities have
the smallest median values of 348 and 440, respectively.

2. Breach Type Analysis: External malicious type of breach exhibits the significantly
large magnitude in business entity, with median values reaching 9 million in West
region and 110, 441 in Northeast region, compared with that of the other breach
types. Besides, both external and internal malicious types of breach show the notably
large magnitude in medical entity.

3. Business vs. Non-Business Entities: Overall, business entities with external ma-
licious breach type experience higher amount of extreme aggregate loss compared to
that of non-business entities. This is evidenced by the magnitude of the difference
between their means and medians; those of the former are much larger than those of
the latter.

4. Internal Negligent Breaches: While fewer in amount of loss compared to that
of other breach types in general, internal negligent breaches still pose a significant
concern, particularly in the South and West regions. Regular training sessions and
awareness programs can significantly reduce the likelihood of negligence.

5. Medical Sector Vulnerability: The medical sector, particularly in the South and
West regions, experiences substantial breaches across all breach types. For instance,
the median value for external malicious breaches in the South for medical entities is
835, 283, and for internal malicious in the West region, it is 550, 914.
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Entity Breach Region Label Sample Sample Standard
Type Type Mean Median Deviation

Business

Ext-Malicious

Northeast B-EM-N 1,100,169 110,441 654,714
Midwest B-EM-M 19,448,749 21,353 54,158,543
South B-EM-S 23,738,652 22,910 75,234,441
West B-EM-W 16,057,435 9,086,214 21,087,536

Int-Malicious

Northeast B-IM-N 536,250 319,939 687,189
Midwest B-IM-M 8,487 1,570 14,220
South B-IM-S 62,776 7,820 162,452
West B-IM-W 18,511 450 36,216

Int-Negligent

Northeast B-IN-N 119,265 348 278,172
Midwest B-IN-M 4,003 440 8,691
South B-IN-S 19,793 1,879 37,931
West B-IN-W 7,054 2,457 9,520

Non-Bus

Ext-Malicious

Northeast N-EM-N 177,501 18,480 390,888
Midwest N-EM-M 382,931 103,717 542,253
South N-EM-S 272,131 63,000 399,549
West N-EM-W 375,909 75,638 671,970

Int-Malicious

Northeast N-IM-N 29,781 2,064 65,327
Midwest N-IM-M 501,588 41,437 1,241,701
South N-IM-S 117,679 78,842 124,505
West N-IM-W 394,787 104,050 576,395

Int-Negligent

Northeast N-IN-N 31,054 2,598 55,452
Midwest N-IN-M 13,128 3,789 24,467
South N-IN-S 385,358 3,434 1,142,818
West N-IN-W 50,099 13,600 104,845

Medical

Ext-Malicious

Northeast M-EM-N 1,383,445 57,208 3,070,358
Midwest M-EM-M 616,941 98,733 1,330,668
South M-EM-S 1,841,921 835,283 2,091,217
West M-EM-W 2,399,966 425,972 5,372,229

Int-Malicious

Northeast M-IM-N 1,019,424 181,570 1,414,608
Midwest M-IM-M 241,269 231,804 251,349
South M-IM-S 784,253 155,009 1,247,412
West M-IM-W 1,269,604 550,914 2,260,585

Int-Negligent

Northeast M-IN-N 129,417 65,840 164,314
Midwest M-IN-M 162,968 120,613 133,500
South M-IN-S 410,179 141,320 611,705
West M-IN-W 179,202 87,749 243,482

Table 5.2: Aggregation Statistics
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6. Median vs. Mean Analysis: Instances where the mean values are significantly
higher than the median values, as shown in Figure 5.4, indicate that the loss distribu-
tion is right skewed with a heavy tail caused by extreme values. For example, in the
South region, the mean value for external malicious breaches in the business category
is 23, 738, 652, whereas the median value at 22, 910 is nearly 1000 times lower than
the mean value, suggesting the presence of extreme loss amounts.

7. Standard Deviations: The standard deviation is greater than its corresponding
mean for most of the risk combinations. Its significant magnitude relative to the mean
suggests a high degree of variability of aggregate losses, likely driven by the presence
of extreme loss values, which could have a considerable impact on the overall spread
of the losses, such as external malicious activities in business entities in South region
having a standard deviation that is 3.17 times of its mean.

8. Potential Risk Areas: Regions with consistently high mean and median values
across various breach types, such as the West for business entities external malicious,
could be identified as potential high-risk areas requiring closer attention and enhanced
security measures. Further examination of the loss decomposition may be necessary
to determine whether the loss is primarily driven by frequency or severity.

By incorporating numerical results, these insights provide a more detailed understanding
of the breach landscape, allowing for more informed decision-making and targeted risk
mitigation strategies.

Figure 5.2: Compound Distribution Mean Spread

Besides studying the simulated compound loss distributions, we examine the stationary
performance of the MCMC algorithm by looking at overall means range of 100 MCMC
simulations. Table 5.3 lays out 95% intervals of 100 means and the corresponding sample
mean as shown in Table 5.2) for all the risk combinations. By validating that the interval
covers the sample mean effectively, we conclude that the MCMC algorithm used converges
satisfactorily.
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Figure 5.3: Compound Distribution Median Spread

Figure 5.4: Mean Median Comparison
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Label Zeros % Empirical Mean 95% Interval VaR95% CTE95%
B-EM-N 35.7% 1,100,169 (1,089,257, 1,111,081) 3,328,180 6,006,304
B-EM-M 38.4% 19,448,738 (19,279,508, 19,617,997) 76,303,250 150,106,092
B-EM-S 21.4% 23,738,652 (23,396,677, 24,080,621) 92,260,194 250,489,914
B-EM-W 53.9% 16,057,436 (15,881,706, 16,233,165) 36,245,376 53,107,904
B-IM-N 66.8% 536,250 (527,660, 544,834) 974,289 1,505,122
B-IM-M 15.4% 8,486 (8,423, 8,552) 32,506 43,765
B-IM-S 35.3% 62,775 (62,036 63,514) 179,539 546,563
B-IM-W 50.1% 18,512 (18,284, 18,737) 50,347 103,636
B-IN-N 46.2% 119,266 (117,278, 121,252) 351,110 745,718
B-IN-M 36.4% 4,003 (3,941, 4,066) 13,050 23,604
B-IN-S 42.9% 19,793 (19,556, 20,030) 55,886 110,399
B-IN-W 70.1% 7,054 (6,894, 7,212) 11,005 18,163
N-EM-N 16.7% 177,501 (175,546, 179,455) 702,900 1,267,808
N-EM-M 7.7% 382,932 (379,058, 386,804) 1,226,134 1,329,938
N-EM-S 21.4% 272,131 (270,316, 273,947) 1,008,245 1,062,156
N-EM-W 57.1% 375,908 (370,309, 381,509) 852,205 1,712,608
N-IM-N 45.5% 29,781 (29,236, 30,325) 87,091 162,852
N-IM-M 9.3% 501,587 (492,719, 510,457) 2,340,422 3,316,916
N-IM-S 12.7% 117,678 (116,901, 118,457) 296,987 323,067
N-IM-W 27.3% 394,787 (391,18, 398,389) 1,273,052 1,545,840
N-IN-N 53.3% 31,054 (30,657, 31,450) 85,255 147,393
N-IN-M 4.4% 13,128 (12,992, 13,264) 54,572 75,508
N-IN-S 28.6% 385,357 (379,644, 391,073) 1,376,870 3,634,809
N-IN-W 47.2% 50,099 (49,443, 50,753) 118,185 307,356
M-EM-N 26.7% 1,383,445 (1,369,489, 1,397,401) 5,674,011 10,011,968
M-EM-M 30.9% 616,941 (609,548, 624,334) 2,130,852 4,105,648
M-EM-S 23.1% 1,841,920 (1,831,465, 1,852,377) 4,874,641 5,481,983
M-EM-W 27.3% 2,399,966 (2,366,387, 2,433,542) 8,414,694 15,669,185
M-IM-N 30.8% 1,019,425 (1,011,565, 1,027,283) 3,304,454 3,793,125
M-IM-M 14.7% 241,269 (240,222, 242,316) 620,702 858,952
M-IM-S 17.8% 784,253 (780,095, 788,411) 3,038,297 4,347,882
M-IM-W 40.4% 1,269,604 (1,257,046, 1,282,163) 2,921,599 7,229,654
M-IN-N 31.3% 129,417 (128,670, 130,163) 413,678 501,881
M-IN-M 7.1% 162,968 (162,227, 163,709) 340,089 343,315
M-IN-S 14.3% 410,178 (407,630, 412,727) 1,357,308 2,050,971
M-IN-W 42.9% 179,202 (178,188, 180,217) 566,255 781,405

Table 5.3: Risk Measure Statistics

Table 5.3 also shows the proportions of zeros, values at risk at 95% confidence level
(VaR95%) and the conditional tail expectations 95% confidence level (CTE95%) for all 36
risk combinations. While VaR95% represents a quantile for 5% extreme case, the CTE95%

estimates the expected loss if that worst case scenario happens. Upon observing this table’s
magnitude and risk measures, together with Figures 5.5 and 5.6 which are the dislocations
of proportion of zeros and CTE across 36 combinations, we have the following insightful
findings.
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1. Proportion of Zeros

Across entity types, breach types, and regions, we observe varying proportions of zero
incurred loss due to data breaches. Comparing these proportions reveals the combined
risk characteristics that have the highest or lowest frequencies of zero-loss occurrences.

• In the "Business" category, breaches categorized as "Internal Negligent" have the
highest proportion of zeros in the Midwest region (70.1%), followed by breaches
categorized as "Internal Malicious" that have the second highest proportion in
the Northeast region (66.7%).

• In the "Non-Business" category, breaches categorized as "External Malicious"
have the highest proportion of zeros in the West region (57.1%), while breaches
categorized as "Internal Negligent" have the lowest proportion in the Midwest
region (4.4%).

• Compared with "Business" and "Non-business" entities, medical entity has a mod-
erate level of zero loss incurred breaches with proportions ranging from 10% to
40%.

2. Model Performance

In terms of predictability level of a model, the width of 95% MCMC simulated interval
(fourth column) contains its empirical mean (third column) for all the combinations.
It yields a high precise level of and low uncertain estimates.

3. Value at Risk (VaR)

Across different combinations of entity types, breach types, and regions, we observe
varying VaR values at 95% confidence level, indicating differences in potential losses
at this specified confidence level. Comparing VaR values helps identify which combi-
nations have the highest or lowest potential losses.

• In the "Business" category, breaches categorized as "External Malicious" have
much higher VaR95% compared to "Internal Negligent" and "Internal Malicious",
suggesting a greater need for cyber security measures targeting external threats
in business entities.

• In the "Business" category, breaches categorized as "External Malicious" in the
South region have the highest VaR95% (92 million), indicating the greatest ex-
treme loss.

• The breaches categorized as "Internal Negligent" in the West region within the
"Business" category, conversely, have the lowest VaR95%, indicating that 5%
catastrophic loss is no more than 11 thousands.
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4. Conditional Tail Expectation (CTE):

CTE values provide insights into the expected losses beyond the VaR threshold, high-
lighting the potential scale of extreme breach events.

• The business external malicious breaches in the South has the highest CTE95%

of 250 million, indicating the expected losses beyond its VaR95% threshold.
• The CTE95% of 3, 634, 809 for the non-business internal negligent breaches in the

South is significantly higher compared to other regions, suggesting a potentially
higher impact of extreme breach events in South region.

Figure 5.5: Proportion of Zeros

Figure 5.6: Conditional Tail Expectation

5.4 Deductibles, Policy Limits and Reinsurance

This section aims to develop a comprehensive model for estimating insurance losses, pro-
viding a range of deductibles and policy limits based on Loss Elimination Ratios (LER).
It also seeks to calculate insolvency probabilities using linear loading assumption, compute
Increased Limit Factors (ILF), and apply a severity approach to pricing excess-of-loss layers.

82



We use loss severity distribution selected in Chapter 4 to study the effect of insurance
modified coverage of imposing deductibles and policy limits on expected loss cost X for the
(J + 1)th quarter. The LER quantifies the reduction in expected loss for an insurer issuing
a policy with a deductible and/or policy limit, compared to the expected loss for an insurer
offering full-coverage policies.

Let Y be the loss amount incurred. Deductible of a policy, denoted by d, is the loss
retained by the insured, whereas the loss covered by the insurer and paid as claim, denoted
by W , can be expressed as

W = (Y − d)+ =

0, Y < d,

Y − d, Y ≥ d.
(5.6)

Insurer’s LER with deductible d is then defined as

LERd = E[Y ] − E[W ]
E[Y ] = E[Y ∧ d]

E[Y ] ,

where E[Y ∧ d], called the limited expected value, is given by

E[Y ∧ d] =
∫ d

0
yf(y)dy + d

∫ ∞

d
f(y)dy,

and
E[Y ] =

∫ ∞

0
yf(y)dy =

∫ ∞

0
F̄ (y)dy,

where F̄ (y) = 1 − F (y) is called the survival function of cdf F .
Policy limit u is the maximum loss covered by the insurer. The insurer’s payment in

this case, denoted as L, is given by

L = (Y ∧ u) =

Y, Y < u,

u, Y ≥ u.

Similar as deductible, insurer’s LER with a policy limit l can be written as

LERu = E[Y ] − E[L]
E[Y ] = E[Y ] − E[Y ∧ u]

E[Y ] .

To examine the impact of the different values of deductible and the policy limits to
the LERs, we consider two sets of deductible values, d1 = 300 and d2 = 1, 000, and two
policy limits u1 = 25, 000 and u2 = 75, 000. The corresponding LERs are calculated and
displayed in Table 5.4. The amount of deductibles and policy limits are selected for expla-
nation purposes; they could be adjusted upon data structures and specific applications in
practice. In Table 5.4, ∆LERd represents the LER difference between d2 and d1, whereas
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∆LERu represents the LER difference between u1 and u2. Under this setting, ∆LERd could
represents the premium discount if increasing deductible from d1 to d2; similarly, ∆LERl

represents the premium surcharge if increasing limit from u1 to u2. By comparing ∆LERs
among different combinations and cross comparing ∆LERd and ∆LERu, we can draw the
following meaningful findings.

• The combinations having large LERd values mean that they have large scale of low
loss amounts, for instance, having 1, 000 deductible eliminates business entities 96%
of losses caused by internal malicious in Midwest area (B-IM-M).

• For the combinations with both LERd1 and LERd2 being nearly 0, almost all of their
incurred losses are over 1, 000 with no incidents with small loss amounts, so that
whether or not applying deductibles would not eliminate any loss from their original
loss distribution.

• Combinations with large ∆LERd values have a significant amount of loss falls between
300 and 1, 000 levels, for example, nearly 50% of loss is eliminated for business internal
negligent in Midwest (B-IN-M) after increasing deductible from 300 to 1, 000.

• A combination with a large value of LERu indicates that it has nearly no extreme
losses exceed the policy limit level. For example, business internal malicious in Midwest
area (B-IM-M) has both LERu1 and LERu2 being 1, which means that all losses are
eliminated after assigning 25, 000 or 75, 000 policy limits.

• Combinations with nearly 0 LERu values normally have heavy right tail with extreme
loss amounts over the policy limit threshold set, such as business entity external
malicious tend to incur total losses that are greater than 25, 000 for all the regions.

• A combination with a large value of ∆LERu has majority of its extreme loss amounts
fall between u1 and u2 levels. In this case, premium needs to be surcharged in order
to adjust increased aggregate loss amount if the policy limit increases from 25,000 to
75,000.

In the situation that the inflation impacts equally across all the risk geographic groups,
its effects can be digested by adjusting the base rate. The deductibles and policy limits
factor need to be recalculated and the excess loss structure needs to be redesign if there
exists geographic variation in inflation because in this situation evenly offsetting base rate
would not work. The severity distribution needs to be refit to obtain a new sets of coefficients
and LERs, followed with updated deductible and limit factors.

In Section 5.3, we have studied several risk measures for our proposed aggregate loss
model; here we make further analysis of deductible and policy limit factors generation, and
pure premium and reinsurance cost estimation in dollar amount. Pure premium is calcu-
lated based on aggregated loss distribution, where the safety loading factor is set to be 0 for
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Label LERd1 LERd2 ∆LERd LERu2 LERu1 ∆LERu

B-EM-N 0.002 0.118 11.6% 0.012 0.067 5.5%
B-EM-M 0.000 0.002 0.2% 0.000 0.001 0.1%
B-EM-S 0.000 0.000 0.0% 0.000 0.002 0.2%
B-EM-W 0.000 0.000 0.0% 0.002 0.003 0.1%
B-IM-N 0.000 0.000 0.0% 0.047 0.298 25.1%
B-IM-M 0.044 0.960 91.6% 1.000 1.000 0.0%
B-IM-S 0.020 0.129 10.9% 0.201 1.000 79.9%
B-IM-W 0.158 0.631 47.3 % 1.000 1.000 0.0%
B-IN-N 0.006 0.132 12.6% 0.107 1.000 89.3%
B-IN-M 0.249 0.758 50.9% 1.000 1.000 0.0%
B-IN-S 0.177 0.452 27.5% 1.000 1.000 0.0%
B-IN-W 0.000 0.249 24.9% 1.000 1.000 0.0%
N-EM-N 0.002 0.554 55.2% 0.286 0.292 0.6%
N-EM-M 0.002 0.296 29.4% 0.137 0.142 0.5%
N-EM-S 0.002 0.215 21.3% 0.059 0.318 25.9%
N-EM-W 0.000 0.362 36.2% 0.068 0.241 17.3%
N-IM-N 0.022 0.252 23% 1.000 1.000 0.0%
N-IM-M 0.000 0.043 4.3% 0.055 0.066 1.1%
N-IM-S 0.000 0.064 6.4% 0.657 1.000 34.3%
N-IM-W 0.000 0.106 10.6% 0.067 0.194 12.7%
N-IN-N 0.071 0.523 45.2% 1.000 1.000 0.0%
N-IN-M 0.002 0.165 16.3% 1.000 1.000 0.0%
N-IN-S 0.000 0.094 9.4% 0.057 0.057 0.0%
N-IN-W 0.004 0.171 16.7% 0.233 1.000 76.7%
M-EM-N 0.000 0.009 0.9% 0.011 0.091 8.0%
M-EM-M 0.000 0.000 0.0% 0.114 0.114 0.0%
M-EM-S 0.000 0.000 0.0% 0.011 0.063 5.2%
M-EM-W 0.000 0.000 0.0% 0.019 0.080 6.1%
M-IM-N 0.000 0.000 0.0% 0.111 0.111 0.0%
M-IM-M 0.005 0.176 17.1% 0.118 0.703 58.5%
M-IM-S 0.000 0.000 0.0% 0.035 0.175 14%
M-IM-W 0.000 0.000 0.0% 0.022 0.190 16.8%
M-IN-N 0.000 0.000 0.0% 0.378 1.000 62.2%
M-IN-M 0.000 0.000 0.0% 0.343 1.000 65.7%
M-IN-S 0.000 0.000 0.0% 0.086 0.212 12.6%
M-IN-W 0.002 0.036 3.4% 0.373 0.637 26.4%
Note: d1 = 300, d2 = 1000, l1 = 25, 000 , l2 = 75, 000

Table 5.4: Deductibles, Policy Limits and LERs

the purpose of illustrative analysis. Following the common practice across the property and
casualty (P&C) industry for its insurance products rating plan, the incurred loss is capped
at 1 million dollar. The reinsurance cost is calculated by borrowing equation (5.6) and set-
ting d to be 1 million, and then computing its expectation. Surplus ratio is the percentage
of reinsurance cost out of total loss premium (sum of pure premium and reinsurance cost),
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which represents the portion of reinsurer covers exceeding the insurer’s retained limit or
surplus share treaty amount. Table 5.5 displays quarterly estimated dollar amount losses,
pure premiums, reinsurance costs and surplus ratios for different risk combinations. Ac-
cording to Table 5.5, we have the following findings on three perspectives that may provide
insightful guidance for cyber insurance product developments and premium settings.

Comb. Label Estimated Loss Pure Premium Reinsurance Surplus Ratio
1 B-EM-N 39,040 592 1,859 0.76
2 B-EM-M 346,384 312 11,936 0.97
3 B-EM-S 403,039 756 15,071 0.95
4 B-EM-W 299,443 463 6,825 0.94
5 B-IM-N 22,611 853 374 0.30
6 B-IM-M 968 145 64 0.31
7 B-IM-S 4,429 435 304 0.41
8 B-IM-W 1,751 222 100 0.31
9 B-IN-N 7,214 620 244 0.28
10 B-IN-M 547 96 58 0.38
11 B-IN-S 1,842 231 102 0.31
12 B-IN-W 841 131 13 0.09
13 N-EM-N 9,759 410 716 0.64
14 N-EM-M 17,505 879 275 0.24
15 N-EM-S 13,503 808 223 0.22
16 N-EM-W 17,261 588 720 0.55
17 N-IM-N 2,513 289 115 0.28
18 N-IM-M 21,491 302 1,519 0.83
19 N-IM-S 7,141 615 9 0.01
20 N-IM-W 17,916 569 675 0.54
21 N-IN-N 2,594 296 88 0.23
22 N-IN-M 1,348 184 91 0.33
23 N-IN-S 17,590 258 1,648 0.86
24 N-IN-W 3,731 385 170 0.31
25 M-EM-N 46,466 715 2,450 0.77
26 M-EM-M 25,153 779 1,247 0.62
27 M-EM-S 57,757 896 1,445 0.62
28 M-EM-W 70,625 1,197 2,761 0.70
29 M-IM-N 36,843 752 1,195 0.61
30 M-IM-M 12,323 913 24 0.03
31 M-IM-S 30,185 934 1,151 0.55
32 M-IM-W 43,530 1,280 1,409 0.52
33 M-IN-N 7,676 648 60 0.08
34 M-IN-M 9,145 736 4 0.01
35 M-IN-S 18,444 953 479 0.33
36 M-IN-W 9,830 775 109 0.12

Table 5.5: Pure Premium Analysis

Pure Premium
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• The largest pure premiums are often associated with medical entity malicious types
of breaches in West region, where they can reach up to $1,000 per quarter.

• Following closely are medical entities in South region, with pure premiums ranging
from $953 for internal negligent breach type and $934 for internal malicious breach
type.

• Internal negligence in business entities in Midwest and West regions has overall low
pure premium level, with the lowest pure premium $96 in Midwest region, followed
by $131 pure premium per quarter in West region.

Reinsurance Cost

• The largest reinsurance costs are observed for external malicious breaches in business
entities, particularly in South and Midwest regions which are nearly $12,000 and
$15,000 per quarter, respectively.

• Malicious breaches in medical entities also attract thousands of high reinsurance pre-
miums, especially in regions with high healthcare activities such as Northeast and
West.

• Reinsurance premiums for internal negligent breaches in medical entities in Midwest
tend to be the smallest having only $4 per quarter. Besides, the reinsurance cost for
internal malicious breaches in non-business entities in South region is estimated to be
$9 per quarter.

Relativity Comparison

• The reinsurance cost is tremendously higher than the pure premium for business
entities with external malicious breach activities, with over 70% surplus ratio for all
the regions.

• The scale of the reinsurance cost compared to the pure premium for medical entity
external malicious activities is also considerably large with over 60% surplus ratios
for all the regions.

• Medical entity internal breach activities normally have a low scale of reinsurance
cost compared to the pure premium level, especially in Midwest region where the
reinsurance cost portion is less than 5%.

Figure 5.6 further shows the magnitude between pure premium and reinsurance cost,
where we assign combination number from 1 to 36 to represent 36 combinations of entity,
breach type and regions; the corresponding relationship can be referred to Table 5.5 first
and second columns.
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Figure 5.7: Premium Decomposition

Reinsurance arrangements offer primary insurers several key advantages. They enable
insurers to maintain prudent risk levels by transferring significant exposures to another
company. Additionally, they empower insurers to meet client demands for broader coverage
by leveraging the financial resources of a reinsurer. Moreover, primary insurers gain access
to the valuable underwriting expertise, experience, and claims handling capabilities of the
reinsurer. These factors are critical for insurers seeking to expand their operations and mit-
igate loss exposure, particularly in countries with a large number of insurers and limited
resources. Consider XYZ Insurance, which provides cyber insurance to businesses. By part-
nering with ABC Reinsurance, XYZ can transfer a portion of its risk, ensuring financial
stability during major cyber incidents. This allows XYZ to offer broader coverage to clients
while benefiting from ABC’s underwriting and claims management expertise, supporting
growth and risk mitigation.

5.5 Application to Current U.S. Cyber Insurance Develop-
ment

In this section, we discuss the cyber insurance premium development from the model struc-
ture perspective and the product design perspective. Treatments in pricing cyber insurance
products are similar to that for property insurance, which first estimates compound loss
distribution and coefficient factors sequentially based on the relevant data. However, un-
like other property insurance products that have large enough book of policies and records
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accumulated over time, digital property remains a very thin level of repository. Since the
Internet development history is relatively short, histories of data breach incidents and re-
lated losses are not extensive or recorded with low documentation quality. The repositories
of information security breaches do not sufficient enough due to limited years of accumu-
lation and firms’ unwillingness to reveal incurred breach details. The insurance companies
have no standard scoring or actuarial tables to make pricing determinations for cyber risk
policies, which requires necessary methodological innovations and updates. Given this fact,
some of the risk groups have been disqualified under current rating system, our proposed
macro-level modeling approach can solve this problem by enabling modeler to find informa-
tion leakage and improve prediction power. Once advanced risk segmentation models are
developed, information leakage and profit margin can be updated and perfected accordingly.

Utilizing risk characteristics, our model divides homogeneous risks into segments. Then,
product designers can decide whether to implement policy limits or seek reinsurance. It
can be broken down into four steps: establishing the base rate, multiplying risk factors,
applying discount of deductible or surcharge of policy limit modifications, and factoring
in expense retention. The first and second steps lay the groundwork for the entire pricing
process. They are frequently carried out using an experience-based pricing techniques with
preliminary data for analysis. The four steps can be described below.

• Establishing the Base Rate
It calculates a base premium rate for cyber insurance coverage, for example, $1,000
quarterly, based on industry averages and historical data for small to medium-sized
enterprises (SMEs).

• Multiplying Risk Factors
It identifies risk factors such as the type of industry, covered breach types, and ge-
ographical location. For instance, a company in the business sector with some level
of cyber protections in place might receive a risk factor multiplier of 1.21, while a
company in the non-business sector with minimal security might have a multiplier of
1.0 (base level factor). If an SME in retail has a base rate of $1,000, the adjusted
premium for that business company would be $1,000 × 1.2 = $1,200.

• Applying Discounts or Surcharges
It applies adjustments based on policy features. If the business opts for a higher
deductible, such as $1,000, it might receive a discount of 5%, reducing the premium
to $1,200 × 0.95 = $1,140. Conversely, if the business requests higher policy limits, it
might incur a surcharge of 10%, increasing the premium to $1,200 × 1.1 = $1,320.

1A relativity factor for business entities taking non-business entities as base level.
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• Factoring in Expense Retention
It includes an expense retention factor to cover administrative and operational costs.
If the expense retention factor is 5%, it adds $1,200 × 0.05 = $60 to the final premium,
resulting in a total premium of $1,260 for the insured SME.

Our cyber risk loss aggregation results are carried out within a Bayesian framework,
which proves to be a useful and effective prediction tool for estimating future loss among
segmentation with confidence. The calculations for those risk measures in Table 5.3 can
be used for both internal risk management purpose and for regulatory capital, the capital
requirements set by the insurance supervisors, purpose. The quantitative insights of de-
ductibles, limits and reinsurance in Section 5.4 provide relative flexible rate adjustments
information when setting manual rates in premium pricing. Insurance companies are able
to maintain high solvency in the differentiated pricing case compared to the case of non-
differentiated pricing (Pal et al., 2017). Nevertheless, given the high uncertainty of cyber
risk quantification, frequently monitoring external force is necessary.

Besides modeling structure limitation, the amount of cyber insurance product exposures
is accumulating year by year due to the nature that digital assets is a key component of
business operations. In contrast to homeowner insurance that the replacement cost dimin-
ishes over time due to depreciation, the cyber insurance policy determines value by taking
the cost to replace/restore digital assets and the cost increases in time due to inflation of the
value in digital asset ecosystem. Understanding this mosaic is essential, as is the differenti-
ation between cyber risks and general property risks, including their corresponding attack
exposures. It leads to a paradigm shift in the insurance industry, where traditional models
no longer suffice in adequately protecting businesses from the complexities of cyber threats.
The rise in cyber insurance product exposures underscores the growing recognition among
businesses of the need for specialized coverage tailored to the unique challenges posed by
digital assets.

The problem of adverse selections is another factor that needs to be considered when de-
signing cyber risk insurance policies. In the absence of perfect information, the competitive
outcome in markets for insurance may be non-optimal not only compared to the infeasible
optimum that would have occurred if information were perfect but also compared to op-
tima that are feasible (Pauly, 1978). It happens when the insurance purchaser has control
over actions in the present that affect the future state of nature but in which the insurer
cannot directly observe the insured’s actions. For cyber risk insurance, the adverse selection
is mainly about the likelihood of a security breach and the transparency of the amount of
digital assets. For example, an organization that has more hidden exposures of cyber activ-
ities would be more prone to purchase cyber insurance than an organization with average
exposed to cyber risks. In order to tackle this issue, insurers could require an information
security audit before issuing a policy. Another meaningful response to the adverse selection
problem is to utilize our raised methodologies in previous chapters by segmenting high-risk
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users into different risk groups through examining their losses exhibition especially for tail
behaviour, and accurately assigning the premium for those groups. Additional solutions
can be that underwriters require full exposure information of digital assets and require a
waiting period to pass before the policy is effective. Moreover, as the digital landscape con-
tinues to evolve, so do the tactics employed by cybercriminals. This necessitates a proactive
approach to risk management, wherein businesses not only invest in robust cybersecurity
measures but also leverage cyber insurance as a vital component of their risk mitigation
strategy. A cyber insurance policy can provide financial protection against the potential
costs associated with cyber incidents, and it can also facilitate access to resources for in-
cident response, recovery, and post-incident support. Furthermore, the dynamic nature of
cyber risks requires constant reassessment and adaptation of insurance practices. Insurers
must stay abreast of emerging threats and evolving regulatory landscapes to provide com-
prehensive coverage that addresses the evolving needs of businesses. This includes offering
innovative solutions such as cyber risk assessments, threat intelligence, and cybersecurity
training to help businesses enhance their cyber resilience.

In essence, the increasing prominence of cyber insurance signifies a fundamental shift in
how businesses perceive and manage cyber risks. By embracing specialized insurance solu-
tions and adopting a proactive approach to cybersecurity, businesses can navigate the digital
landscape with confidence, knowing they have the necessary safeguards in place to protect
their most valuable assets. Our focus is on the cyber risks quantification and mitigation that
modelers working with digital asset-related insurance products would typically prioritize for
monitoring and analysis. By developing above robust investigations of where the potential
updates and improvements reside, insurers can methodically discern their frameworks best
tailored to address them. Furthermore, this knowledge becomes instrumental in determining
the most fitting risk transfer mechanisms - cyber insurance, paving the way for a future
where the cyber community is both innovative and secure for the everyday user.
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Chapter 6

Conclusion

The thesis first describes the PRC chronology data, including preliminary analysis with
descriptive statistics, exploratory analysis of utilized features, and cluster analysis of geo-
graphical information. It then proposes a Bayesian negative binomial GLMM for quarterly
cyber incidents recorded by the PRC dataset, capturing within-quarter heterogeneity effects
and allowing subject-specific predictions. Following this, a zero-inflated mixture and com-
posite regression model for cyber loss amounts (the number of data breached) is presented,
detailing model fitting, selection, and applications from both insurers’ and insureds’ per-
spectives. The thesis concludes by proposing approaches for generating aggregate losses and
implementing strategies for the insurance industry, and discussing the impact of different
deductibles, limits, and reinsurance practices, with applications to the U.S. cyber insur-
ance market. In this chapter, we conclude this thesis by stating the contributions of our
research, addressing the limitations encountered, and suggesting avenues for future research
to further enhance the field of cyber risk modeling and mitigation.
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The contributions of this thesis to the related research areas can be described as follows.
In modeling the loss frequency, we investigate the use of average severity as one of the
subject-specific covariates via the regression within the generalized linear mixed model
(GLMM); thus, the dependence between the frequency and the severity of cyber risks is
considered. Meanwhile, we model the time trend effects as a group-specific factor in order
to explain the change in data breach incidents over time. Besides examining fixed effects,
we adopt the MCMC method to extract random effects on several different explanatory
variables. We estimate parameters of GLMM under the NB distribution with a non-constant
scale parameter by combining the maximum likelihood estimation with the MCMC method.
We add to the existing literature the implementation of our proposed estimation procedure
in the actuarial context, which may be of interest to other researchers and practitioners in
the related fields. In modeling the loss severity pattern, we propose a zero-inflated mixture
composite regression (Zi-MCR) model (3-components spliced distribution). It features a
flexible finite mixture model (FMM) with different types of distributions modeling the
non-zero body component and an extreme distribution modeling the tail component, and
incorporates the rate of point mass at zero, the FMM and the extreme distribution into
a GLM structure to fully utilize the risk characteristics by treating them as covariates
within the regression framework. Hence, our work enables cyber risks to be completely
quantified under one distribution taking into consideration the zero loss component, and
positive loss amounts with the heavy-tailed nature. Furthermore, our methodologies provide
a meaningful and innovative approach for evaluating aggregate cyber losses, which sets the
ground for estimating feature coefficients and generating premium factors.

Cyber risk loss exposures permeate every facet of an organization’s operations, making
the consequences of a data breach potentially catastrophic. Unlike other kinds of property
and casualty insurance risk that capping incurred losses at a 95% level could effectively
rule out extreme values, the cyber risk has the nature that, even upon the logarithm, the
loss distribution is very heavily skewed to be capped at a bell shaped distribution. The
traditional insurance pricing sets up a policy limit and does not consider extreme losses
when training the model. However, this technique can not be applied to analyze cyber risks
as it is difficult to set such a limit so that cyber losses could be modeled via one single
distribution. We bring up a more statistically rigorous attempt to incorporate excess zeros,
mixture components and heavy tail of cyber losses in a single and statistically consistent
step where other estimation processes, such as covariates dependence, can also be carried
on.

An important aspect of this thesis is the use of the publicly available Privacy Rights
Clearinghouse (PRC) Data Breach Chronology dataset on developing actuarial approaches
to quantify cyber loss frequencies and severities. However, the quality of available data and
whether the data represents well cyber risks in general lead to a limitation of this study.
The fact that firms do not reveal details concerning security breaches reduces data accuracy,
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and not voluntarily reporting cyber breaches leads to data inadequacy. Moreover, PRC has
stopped updating latest breach incidents since 2019, which causes data inconsistency in a
time trend manner. The availability of high-quality data such as policy or claim database
in the future would open up new research opportunities. Our model is subjective and can
be modified to accommodate the features of new dataset and the purpose of prediction.

Despite the limitations, our study of cyber risks based on the frequency-severity ap-
proach is important for insurance companies in mitigating and managing their risks given
that the functioning of the insurance business is a complex process. Enterprises need to
take several measures in dealing with cyber risks: operations based on statistical model-
ing in actuarial analysis process, ensuring the balance and adequacy of tariffs in pricing
process and adjusting premium rates in insurance marketing. Our research results can be
used as a differential indicator on different organization types and geographical locations
for developing cyber insurance products. In addition, our study can also be useful for data
security officers and scientists, and other potential corporate stakeholders for them to better
understand the impact of the cyber risks for business operations.

As previously stated, all of our results are based on the assumption of equal exposure,
whereas exposure is the most crucial factor in determining the pure premium. Cyber risk
loss exposures are any conditions that present the possibility of financial loss to an orga-
nization from property, net income, and liability as a consequence of advanced technology
transmissions, operations, maintenance, development, and support. Training the predictive
model under the assumption of non-level exposure in a defined time period would be an im-
portant direction for future research once prior experience data with exposure information
is obtained. This approach will allow for more accurate and reliable premium calculations by
accounting for variations in exposure levels. Additionally, incorporating dynamic exposure
metrics into the predictive models can further enhance their robustness and applicability
to real-world scenarios. Another promising research direction involves developing a precise
formula to convert value of digital units into dollar amounts, providing an accurate finan-
cial estimate of cyber breach losses. This method could consider factors such as inflation,
the organizational structure and size of different companies, and other economic indicators
to ensure that the financial impacts are appropriately quantified. By addressing these el-
ements, researchers can create more comprehensive models that reflect the true financial
risks associated with cyber breaches.
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Appendix A

Geographical Clusters

This table lists the a set of five clusters that is generated in Section 2.3.3, with data points
distribution information.

Cluster Label Number of Observations States

1 3024 CT, DE, DC, IL, IA, ME, MD, MA, MI, NE,
NH, NJ, NY, OH, PA, RI, SD, VT, WI, WY

2 531 AK, MN, MT, ND, OR, WA
3 1642 AL, AR, FL, GA, ID, LA, MS, OK, SC, TX
4 1093 IN, KS, KY, MO, NC, TN, VA, WV
5 1805 AZ, CA, CO, HI, NV, NM, UT
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Appendix B

Variance-covariance Matrix

The posterior estimation of variance-covariance matrix Σ:

Σ̂ = (σ̂ij) =



0.0893 0.0513 0.0763 0.0041 −0.0002 −0.0061
0.0513 0.1005 0.0641 −0.0126 −0.0097 −0.0072
0.0763 0.0641 0.1166 0.0133 0.0066 −0.0084
0.0041 −0.0126 0.0133 0.0421 0.0115 −0.0008

−0.0002 −0.0097 0.0066 0.0115 0.0199 −0.0003
−0.0061 −0.0072 −0.0084 −0.0008 −0.0003 0.0008


where σ̂ij is the mean of posterior distribution of σij .
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Appendix C

Geographical Regions

The United States Census Bureau, divides the United States into four regions: the Northeast,
the Midwest, the South, and the West. This classification rule is used in our frequency
modeling and loss aggregation in order to reduce the number of scattered geographical
locations.

Region Division States

Northeast New England CT, ME, MA, NH, RI, VT
Middle Atlantic NJ, NY, PA

Midwest East North Central IL, IN, MI, OH, WI
West North Central IA, KS, MN, MO, NE, ND, SD

South
South Atlantic DE, FL, GA, MD, NC, SC, VA DC, WV

East South Central AL, KY, MS, TN
West South Central AR, LA, OK, TX

West Mountain AZ, CO, ID, MT, NV, NM, UT, WY
Pacific Alaska, CA, HI, OR, WA
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