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Abstract 

Integrating cognitive science theories and practical applications, this thesis 

examines the role of visual aids in organizational decision-making, using sweet potato 

packing operations as a motivating case study. The research identifies significant gaps in 

current tools, which often fail to support all stages of decision-making, and proposes 

guidelines to design visual decision-support tools, that are grounded in cognitive science 

theories. These guidelines combine causal diagrams and interactive dashboards to assist 

the decision-making process and minimizes cognitive load by customizing information 

presentation based on user preferences and background, supporting their ability to process 

complex data. Additionally, Toulmin's model of argumentation is incorporated to improve 

the clarity and accountability of decision documentation. The study emphasizes the 

importance of aligning visualization tools with cognitive principles and user needs, aiming 

to enhance decision-making efficiency and effectiveness. The findings have broader 

implications for the design of decision-support tools in various industries, contributing to 

the development of more effective and user-centric visualization tools adaptable to 

dynamic decision-making environments.  

 

Keywords:  Decision-making, visualization, causal reasoning, sensemaking, cognition, 

causal diagrams 
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Chapter 1.  

 

Introduction 

1.1. Context and Importance 

1.1.1. Decisions 

“Should I Stay or Should I Go?” asks the extremely popular song by The Clash. It 

presents the frustration and indecision that often accompany obscure decisions, where the 

cost-to-benefit or action-to-outcome factors are not clear. Our daily lives are made up of 

decisions – those we make ourselves and those made by others that affect us either directly 

or indirectly. Similarly, the functioning of organizations is determined by series of 

decisions, ranging from routine tasks and workflows to significant long-term strategies like 

acquisitions or mergers. These choices collectively shape both personal and organizational 

trajectories (Mariano & Baker, 2024; Steptoe-Warren et al., 2011). 

Decisions are primarily guided by reasoning, which includes synthesizing multiple 

sensory stimuli along with pertinent information accessible to the decision-maker. 

Typically, this sensory data is visually presented, particularly in contexts that require 

scientific reasoning (Gooding, 2006, pp. 689). This visual representation may take the 

relatively simpler form of a list of color-coded checkmarks, or complex visualizations that 

require arduous training. Thus, visual stimuli play a fundamental role in the cognitive 

process by providing a clear and direct medium for conveying complex data, facilitating 

the generation of insights. 

1.1.2. Visual Analytics 

Visual analytics is aimed to support the analytical reasoning process through 

interactive visualizations (Thomas, 2005). However, decision-making often extends 

beyond purely analytical approaches, incorporating expertise (Phillips et al., 2016). The 

flow of information from the visualization to the decision-maker is prone to deviations due 
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to biases, as it involves sense-making – a highly personalized process – influenced by 

numerous factors, such as the decision-maker's expertise (Lee et al., 2016; Salas et al., 

2010; Zytek et al., 2022), motivation (Hagmayer & Sloman, 2009, pp. 34), stress levels 

(Giovanniello et al., 2023; Heereman & Walla, 2011), and the degree of uncertainty or 

ambiguity (Arend, 2022; Nowak & Bartram, 2023). Decision-makers must interpret the 

visualization, align it with their mental models, and through causal reasoning, conduct 

conscious or sub-conscious mental simulations to explore various actions that could lead 

to the desired outcome. This complexity presents significant challenges in decision support 

through visualizations that align with the mental decision processes of decision-makers. 

1.2. Research Gap 

Research on the impact of visual analytics tools and design of visualization tools 

for decision support have predominantly concentrated on the data analytics and 

presentation facets of decision-making, often overlooking the theory behind the perception 

of such visualizations (Park et al., 2022), as well as the crucial temporal (Hagmayer & 

Waldmann, 2002) and procedural dimensions. Furthermore, despite technological 

advances that enable increasingly complex software to aid in decision-making, many 

decision-makers in organizations still report using spreadsheets (Bartram et al., 2022; 

Dimara et al., 2022; Tory et al., 2021) and even perform better with tabular data compared 

to visualizations (Dimara et al., 2017a). This lack of utilization presents a gap in both 

research and practice, concerning the comprehensive support of causal reasoning and 

sensemaking through visualizations (Oral et al., 2024), rather than merely providing 

directive outputs. 

1.3. Thesis Guide 

This thesis aims to bridge this gap through an extensive scoping literature review 

to present and discuss cognitive science concepts that inherently impact decision making, 

followed by a systematic literature review looking into the visualization tools developed 

for decision making that have been published in the past fifteen years. The systematic 

literature review will evaluate their features and propose guidelines for building visual 
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tools that could aid visualization designers in creating more intuitive tools for decision-

makers that consider the end-user’s sense-making as part of the design. 

1.3.1. Research Questions 

This thesis aims to answer the following research questions (RQ1-RQ3) through 

critical literature reviews, that ultimately aim to answer the final, overarching research 

question (RQ4). 

The scoping literature reviews aims to answer the following research questions: 

• RQ1: What types of visualizations or visual tools are typically used for 

decision-making? 

• RQ2: What are the cognitive processes a decision-maker goes through, or are 

relevant, when viewing a visualization and using it to make a decision? 

The systematic literature review aims to answer the following research question: 

• RQ3: What types of visualizations have been developed and published in 

academic journals in the past 15 years, and if so, how do such visualizations 

address the process of decision-making, beyond analytics and data?  

The two literature reviews will be synthesized to develop guidelines that will aim 

to answer the following question: 

• RQ4: What are the opportunities for designing visualizations based on cognitive 

theories and frameworks? 

1.3.2. Objectives 

The goal of this thesis is to synthesize current research findings into  guidelines that 

direct future research and practice on how visualizations can support the decision-making 

process. This thesis shifts focus from the analytics aspect of Visual Analytics to explore 

how humans interpret visualizations within the context of decision-making. It highlights 
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how visual data influences decision-making processes. For visualization designers, the 

thesis introduces a new design process intended to produce visualizations that are clear for 

decision-makers to understand, thereby reducing cognitive load. Additionally, for subject 

matter experts across various fields, the thesis details available methods and explains how 

these can enhance their decision-making flows. 

1.3.3. Research Worldview 

This thesis adopts a pragmatic research worldview, recognizing the importance of 

both practical outcomes and the underlying theoretical framework that guides decision-

making processes. The pragmatic approach is chosen because it allows for the integration 

of various methods and perspectives to address the research questions comprehensively. 

This worldview is particularly suited to the multidisciplinary nature of the thesis, which 

bridges cognitive science, data visualization, and organizational decision-making.  

1.3.4. Methodologies 

Literature Reviews 

The research begins with two comprehensive literature reviews to scope the 

cognitive science theories, typically used visualization tools for decision-making, and a 

systematic literature review to list and analyze recently published visualization tools 

designed to support decision-making. These reviews provide a foundational understanding 

of the current state of knowledge and identify gaps that this thesis aims to address. The 

literature reviews offer insights into the theoretical and practical aspects of visualization 

tools and their role in enhancing decision-making processes. 

Development of Guidelines for Visualization Design 

Based on the insights gained from the literature reviews, guidelines for 

visualization design are introduced, including a dual-screen visualization tool, suggesting 

the use of two separate screens displaying two separate visualizations regarding the 

decision. These guidelines integrate both qualitative and quantitative elements to support 

effective decision-making. It attempts to allow the decision-makers to visualize the entire 
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decision process, manipulate variables, and simulate different scenarios, providing 

immediate feedback on potential outcomes. The guidelines are designed to be user-centric, 

as it aims to focus on user-needs and improve usability. 

1.3.5. Thesis Process Diagram 

The Thesis Process Diagram (Figure 1.1) outlines the structure and flow of research 

questions (RQs) derived from identified motivations, leading to the development of 

guidelines for designing visual decision-support tools. The motivations stem from three 

key areas: Oral et al. (2024) highlighting the lack of tools for the Design and Choice stages 

of decision-making beyond the intelligence phase, Bartram et al. (2022), Tory et al. (2021) 

discussing the complexity and limitations of current visualization tools, and the agriculture 

technology case concerning sweet potato packing operation, emphasizing the need for tools 

that integrate predictive analytics and decision-making. These motivations inform the 

research questions: RQ1 (Chapter 3) examines the types of visualizations or visual tools 

typically used for decision-making; RQ2 (Chapter 4) explores the cognitive processes users 

undergo when using visualizations for decision-making; RQ3 (Chapter 5) investigates how 

visualizations in academic publications have addressed cognitive concepts in agricultural 

decision-making over the past 15 years; and RQ4 (Chapter 6) identifies design 

opportunities for visualization tools by integrating sensemaking and cognitive science 

theories. The guidelines are then divided into three primary components: Dual-Screen 

Visualization (comprising Causal Diagrams for causal reasoning and Data Visualization 

Dashboards for iterative information and knowledge search), Scenario Exploration Support 

(generation and evaluation of alternatives to reduce cognitive load), and Toulmin’s Model 

of Argumentation (providing structure for decision justification, reporting, documentation, 

and reuse). Additional considerations within the guidelines include real-time variable 

input, automated financial simulation, temporal aspects of decision-making, and user-

specific customizability. 
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Figure 1.1 Diagram depicting the processes carried out in this thesis 
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Chapter 2.  

 

Related Work 

This section provides an overview of decision-making, various process models that 

have attempted to capture the decision-making process over the years, and several theories 

behind the mental models and processes of decision-makers. It also introduces the sweet 

potato packing operation decision from the agriculture technology study that our lab 

(Integrated Science Lab) is conducting, under a grant funded by the United States 

Department of Agriculture (USDA). 

2.1. Decision Making 

Decision making typically involves generating and evaluating multiple available 

options based on specific criteria and desired outcomes. Relatively simple decisions do not 

require extensive cognitive effort and can be addressed via prescriptive decision strategies 

(Klein, 1993). However, real-life decisions are often ill-defined, with numerous possible 

actions, outcomes, and intermediating factors, all with intricate associative or causal 

relationships. Pre-defined, prescriptive decision strategies are not effective in addressing 

these “ill-defined” (Klein, 1993, pp. 147), or “wicked” (Rittel & Webber, 1973; Wang & 

Ruhe, 2008, pp. 81) problems. These complex problems and/or decisions may be guided 

or assisted through robust, multimodal, yet easy-to-use tools, which must be built to 

support specific cognitive tasks carried out for various types of decisions. 

2.1.1. Taxonomy of Decisions 

Wang and Ruhe (2008) explored the process in the context of ‘wicked’ planning 

problems and developed a taxonomy of criteria for decision making, (Table 2.1).  
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Table 2.1 Taxonomy of strategies and criteria for decision-making 

Category Strategy Criterion 

Intuitive 
  

 
Arbitrary Based on the most easy or familiar choice 

 
Preference Based on propensity, hobby, tendency, expectation 

 
Common senses Based on axioms and judgments 

Empirical 
  

 
Trial and error Based on exhaustive trial 

 
Experiment Based on experiment results 

 
Experience Based on existing knowledge 

 
Consultant Based on professional consultation 

 
Estimation Based on rough evaluation 

Heuristic 
  

 
Principles Based on scientific theories 

 
Ethics Based on philosophical judgment and belief 

 
Representative Based on common rules of thumb 

 
Availability Based on limited information and local maximum 

 
Anchoring Based on presumption or bias and their justification 

Rational 
  

Static 
  

 
Minimum cost Based on minimizing energy, time, money 

 
Maximum 

benefit 

Based on maximizing gain of usability, functionality, 

reliability  
Maximum utility Based on cost-benefit ratio (certainty, risks, uncertainty) 

Dynamic 
  

 
Interactive 

events 

Based on automata 

 
Games Based on conflict (zero sum, non-zero sum) 

 
Decision grids Based on a series of choices in a decision grid 

Note. Adapted from “The Cognitive Process of Decision Making” by Y. Wang, and G. Ruhe, 

2008, Novel Approaches in Cognitive Informatics and Natural Intelligence, pp. 76 

The authors point out that due to their unpredictable nature, intuitive and empirical 

decisions fall under “human intuitive cognitive psychology” and thus resist explanation 

through rational models (Wang & Ruhe, 2008, pp. 75). Consequently, their study focuses 

on rational decisions and their subcategories, which are distinguished through the use of 

static or dynamic strategies (Wang & Ruhe, 2008, pp. 77). Static decisions, which are 

predominant in organizational settings, are further divided based on the levels of 
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uncertainty involved and the decision-maker's values and attitudes. According to Wang 

and Ruhe, pessimistic or conservative decision-makers often employ Bayesian Theory to 

minimize potential losses, whereas more optimistic decision-makers might use Game 

Theory to maximize potential gains (Wang & Ruhe, 2008, pp. 78), which highlights the 

impact of individual differences (Stanovich & West, 1998).  

While Wang and Ruhe’s (2008) taxonomy of decisions effectively categorize 

strategies and criteria for algorithmic formulation, it also underscores a vital aspect of 

visualization design research. These decision strategies and processes are critical 

considerations when developing visualizations intended to support decision-making. 

Rational decisions in organizations often necessitate the integration of multiple 

perspectives and data from various sources. This data must be considered and analyzed in 

a structured flow that aligns with the decision process. Properly accounting for this flow is 

essential in the design of visualizations to effectively support decision-making efforts. 

2.1.2. Adaptive Decision Strategies 

Investigating how humans make decisions, Gary Klein proposed a dual-process 

model wherein humans engage in rapid decision-making highly dependent on past 

experiences (Klein, 1993, 1998). He introduced the Recognition-Primed Decision (RPD) 

Model to elucidate the human decision-making process under time constraints, suggesting 

that individuals assess situations and act swiftly, leveraging their previous experiences 

(Figure 2.1). According to Klein (1993), operational decisions are typically recognitional, 

shifting to analytical only when justifications are necessary or when data are abstract. 
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Figure 2.1 Recognition-Primed Decision (RPD) Model. 

Source: “Naturalistic Decision Making” by G. Klein, 2008, Human Factors: The Journal of the Human 

Factors and Ergonomics Society, pp. 459 

In the domain of recognitional decision-making, experience enhances the initial and 

immediate analysis — or recognition — of the decision environment, leading to more 

accurate problem representations. Experienced decision-makers are adept at quickly 

constructing one or more potential actions and mentally simulating them to identify at least 

a satisfactory solution (Klein, 1993), which some argue is intuition. Given the constraints 

of time pressure, decision-makers often commit to actions they believe will yield desirable 

outcomes without waiting for a thorough evaluation and analysis of alternatives, a 

phenomenon explained through the Bounded Rationality Theory. This indicates that the 

decision-making process varies depending on the problem's complexity and temporal 
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scope. Notably, while experience generally has a positive impact, it introduces a subjective 

element that can lead to potential biases, a concept further explored by Amos Tversky and 

Daniel Kahneman (Kahneman & Tversky, 1996; Tversky & Kahneman, 1974). 

The distinction between rapid, often subjective decision-making and the deliberate 

evaluation of alternatives has led to frameworks that cover the full spectrum of human 

decision-making (Epstein, 1994; Hammond et al., 1987; Kahneman, 2003a, 2003b; Klein, 

2008; Sloman, 1996), which have found widespread acceptance among the public. 

Hammond et al. (1987) introduced a continuum of intuition and analysis, positioning 

decisions based on the level of available information and time constraints. Sloman (1996) 

continued the discussion around two distinct systems for reasoning, associative and rule-

based. These systems can work simultaneously and complementarily, although the rule-

based system often dominates the other. Kahneman (2003a, 2003b) described System 1 

and System 2 thinking, identifying two distinct cognitive processes that are activated by 

various factors, including the decision-maker's motivation and the temporal scope, as 

discussed by Klein (1993). System 1 involves rapid, almost automatic thinking and is 

developed and solidified over time, while System 2 is engaged in situations that require 

deliberate analytical and logical thinking, resulting in a significantly higher cognitive load 

and a slower process (Kahneman, 2003a, 2003b). System 1 closely mirrors Klein’s 

naturalistic RPD Model (1993), emphasizing quick decisions based on intuition, a 

comparison Klein (2008, pp. 458) himself later affirmed. 

The RPD Model includes the quick generation and evaluation of alternatives, 

though the analysis ends once a satisfactory solution is found—a concept originally termed 

“satisficing” (Simon, 1955). When confronted with ambiguity, complexity, or unclear 

cues, decision-makers may need to mentally simulate various scenarios and evaluate their 

outcomes (Klein, 2008), relying on their expertise or intuition (Hammond et al., 1987). 

This becomes problematic when a decision requires justification, as intuition is rarely 

communicated effectively in logical terms. Consequently, organizations are increasingly 

trying to incorporate data-driven insights within this stage of analysis, where hierarchical 

reporting is essential, as decisions often need to be justified to a superior and lacking a 

data-driven basis for a decision can be problematic. Using rational argumentation methods, 
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such as those proposed by Toulmin (1958), to structure intuitive decisions could facilitate 

such justification processes, even if conducted internally without external reporting. 

When to Optimize? When to Satisfice? 

In their exploration of decision-making under different conditions of certainty and 

uncertainty, Artinger et al. (2022) discuss the critical distinction between two prominent 

approaches in decision theory: optimization and satisficing. This separation is deeply 

rooted in the inherent differences in decision environments as identified by Simon (1955). 

Satisficing refers to the selection of an option that meets a threshold of acceptability rather 

than achieving the optimal outcome, or optimizing. Under conditions of risk, where all 

relevant information is assumed to be known, optimization strategies—anchored in rational 

choice theory—are considered superior, reflecting a constructivist rationality that aims for 

the best outcome based on the data available (Artinger et al., 2022, pp. 626-627). In 

contrast, in environments characterized by uncertainty, where not all variables can be 

known or predicted, satisficing strategies are more relevant.  

Artinger et al. (2022) emphasize the necessity of recognizing the limitations and 

appropriate contexts for applying different decision-making models. They caution against 

broadly categorizing all decision-making scenarios as cases of uncertainty, which can lead 

to overlooking the specific demands and characteristics of each situation. Instead, they 

advocate for a more tailored approach where decision-making strategies are seen as tools 

that are effective, depending on whether the scenario involves clear risks or uncertainties. 

This method promotes adaptability in decision-making, urging practitioners to carefully 

consider the information available and the nature of the problem at hand. By adopting this 

adaptable strategy, organizations can not only manage predictable elements, such as known 

risks and available information, but also remain agile enough to effectively respond to 

unforeseen challenges. These unexpected challenges, such as sudden market shifts or 

technological disruptions, require quick thinking and flexibility, highlighting the value of 

preparedness in both stable and volatile conditions. 
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Second Order Thinking 

Second order thinking, an essential cognitive strategy for adept decision-making, 

becomes particularly relevant in the landscape of recognitional decision-making where 

rapid judgments and mental simulations are prevalent (Nowinska & Pedersen, 2024; 

Sunstein & Ullmann-Margalit, 1999). Second order thinking involves considering not just 

the immediate effects of a decision, but also the series of consequences that follow. This 

form of thinking requires a decision-maker to look beyond obvious outcomes and predict 

the cascading effects of their choices, which often involve complex interdependencies and 

extended temporal scopes. 

Aligning with the cognitive demands of recognitional decision-making, 

experienced decision-makers leverage their deep knowledge and intuition to swiftly 

navigate through complex decisions (Phillips et al., 2016), a notion that extends to the 

navigation of visualizations for decision-making (Pirolli & Card, 2005). However, these 

decisions are sometimes made under significant time pressures and might not always allow 

for the extensive deliberation required to evaluate long-term consequences. Second order 

thinking addresses these gaps by prompting decision-makers to iteratively consider 'what 

then?' scenarios beyond the immediate horizon. This evaluation enhances the depth and 

foresight of their decision-making processes under various constraints. 

Data-Driven Decision-Making 

Businesses are increasingly utilizing data to drive more informed decision-making, 

a strategy that has proven effective. Research by Brynjolfsson and McElheran (2016) 

shows that this approach has increased productivity by 5-6% and has also led to a higher 

market value for companies (Brynjolfsson et al., 2011). This success has prompted further 

investigation into the cognitive mechanisms underlying these processes, drawing more 

researchers to explore how data influences rational and analytical business decisions. 

Data is often perceived as objective, because it comprises numbers, statistics, and 

mathematical elements, creating a sense of solid grounding for rationality and analytical 

reasoning. In business settings, disputes are frequently resolved using findings from data 

analytics, reflecting the trusted nature of data-driven decision-making. However, despite 
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the pervasive use of data and analytics, intuitive judgment, derived from experience and 

expertise, remains a valued component in decision-making across businesses of all sizes, 

even when the decision falls under the rational category of the taxonomy of Wang and 

Ruhe (2008). 

Data-driven decision-making is categorized into five levels by Buijsse et al. (2023), 

which reflect the extent of data and analytics utilized in the decision-making process. These 

levels range from minimal data use at Level 1 to comprehensive utilization at Level 5, 

where data is used to describe, forecast, and optimize decisions. Additionally, 

implementing data analytics in decision-making faces two key barriers (Buijsse et al., 

2023). The first is an individual barrier, where the decision-maker is required to prioritize 

data as the primary input, setting aside personal interpretations and intuition. While this 

approach aims to enhance objectivity and rationality, it paradoxically involves the 

decision-maker's judgment in determining which data are relevant and accurate. It also 

obfuscates how intuition and expertise will be integrated into this process. Moreover, this 

necessity to make personal selections naturally introduces a level of subjectivity into the 

process, which leads to the second barrier. The second barrier, termed the Data Science 

Barrier by the authors, necessitates agreement among decision-makers on the data, 

principles, assumptions, and concepts used in the analytics process (Buijsse et al., 2023). 

It is during this stage that decision-makers justify their – often at least partly subjective – 

reasoning to other decision-makers or stakeholders and take part in what resembles a 

negotiation process to reach an agreement (Lotov et al., 2004, pp. 5). 

Understanding data analytics and data science as the backend of data-driven 

decision-making only represents the “tip of the iceberg” (Berret & Munzner, 2023) as it 

sets the stage for the next crucial step: effectively communicating these analyses and 

findings to decision-makers. This is typically achieved through data visualization, which 

must be clear, accurate, and appropriately tailored to the needs of the decision-making 

process (Kosslyn, 1994). However, given the individual differences between decision-

makers and the processes of decision-making, this is easier said than done. 
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2.2. Visualizations and Decision Making 

Recognizing that visual stimuli significantly influence analytical reasoning 

(Kosslyn, 1994), researchers have posited that visualizing otherwise non-visual stimuli, or 

in some cases visually ineffective stimuli such as large tabular data, could help the 

decision-making process by facilitating reasoning (Canonico et al., 2022; Cardinaels, 2008; 

Park et al., 2022; Smedberg & Bandaru, 2023; Zhu & Chen, 2008). Subsequent studies 

have aimed to validate these hypotheses and explore the cognitive mechanisms involved, 

seeking to better understand how visual representations impact decision-making. 

As articulated by pioneers like Shneiderman (1996), the essence of using 

visualization is to gain insight, not to merely produce pictures. This insight-driven 

approach is critical for discovery, decision-making, and explanation, enabling users to not 

just see data but to understand and interact with it meaningfully. This means providing 

tools that do more than display numbers; they must illuminate relationships and outcomes 

that affect operational decisions. The concept of external cognition explains how 

visualizations assist in bridging the gap between internal cognitive processes and external 

informational structures (Hutchins, 1996). By extending cognition beyond the mind to 

include interactions with visual representations, these tools help manage the complexity 

inherent in decision environments. For instance, through the use of visual knowledge tools, 

which can arrange or manipulate information to reveal patterns (Shneiderman, 1996), users 

can grasp complex operational dynamics at a glance. These tools act as cognitive 

amplifiers, enhancing the ability to monitor large data sets under time pressure, a critical 

capability when managing intricate systems, such as in supply chain logistics. 

According to Oral et al. (2024), decision-makers often go through a three-stage 

process, consisting of Intelligence, Design and Choice, responsible for analyzing 

information, generating, and evaluating available action items, and selecting the best path 

based on certain criteria, respectively. While many visualization tools effectively support 

the Intelligence stage of decision-making by enhancing the identification and analysis of 

information, they often fall short in the Design and Choice stages where decision-makers 

conceptualize and select among alternatives (Oral et al., 2024). This gap underscores the 
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need for tools that not only present data but also facilitate interaction and manipulation to 

support comprehensive decision-making processes. Enhancing the flexibility and visibility 

of these tools could significantly improve their effectiveness, particularly in these later 

stages. By designing interfaces that allow decision-makers to easily alter and experiment 

with displayed information, visualization tools can better support the comprehensive needs 

of decision-making from start to finish. 

Scott McCloud’s exploration of sequential visual storytelling adds another layer to 

understanding complex data through narrative techniques (McCloud, 1994). By structuring 

data presentation in a sequential format that mirrors natural thought progression, 

McCloud’s approach makes intricate data sets more narrative and thus, easier to navigate. 

This method proves particularly beneficial in decision-making contexts where the sequence 

of events or processes must be clearly understood to make informed decisions. By guiding 

the user through a visual journey, these techniques not only clarify the data but also engage 

the user more deeply, making the decision process not only more efficient but also more 

insightful. A similar method could be employed to guide the user through a decision 

process, which is inherently directional and sequential. 

2.2.1. Visual Analytics Process 

The visual analytics process, as initiated by van Wijk (2005), involves creating 

visual representations from data to enable knowledge generation. This process starts with 

initial analytical methods that develop these visualizations, setting users on a cycle of 

deepening their data understanding through continuous visual interaction. This approach 

helps users refine their insights and confirm earlier findings through ongoing engagement 

with the visual data. 

Keim et al. (2008) built on this notion by emphasizing the critical integration of 

human cognitive abilities with computational capabilities within the visualization 

framework (Figure 2.2). The authors advocate for designs that enhance the decision-

making process by allowing both human and computational strengths to be utilized 

effectively (Keim et al., 2008). This is achieved by enabling users to tailor visualizations 

to their specific requirements while ensuring comprehensive visibility of data, facilitating 
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a fluid progression from data analysis to knowledge generation. This interactive and 

iterative feedback loop is pivotal for effective decision-making, illustrating the dynamic 

interaction between user engagement and data visualization (Keim et al., 2008). 

 

Figure 2.2 Visual Data Exploration and Information Mining Loop 
Source: “Visual Analytics: Definition, Process, and Challenges” by D. Keim, G. Andrienko, J-D Fekete, C. 

Gorg, J. Kohlhammer, G. Melancon, 2008, Information Visualization, pp. 156 

Expanding on Keim et al.’s framework, Sacha et al. (2014) offer a modified model 

that distinctly incorporates both computer algorithms and human cognitive. Their model 

outlines three critical loops: exploration, verification, and knowledge generation. The 

exploration loop refers to interaction with visualizations to extract new insights; the 

verification loop involves testing these insights to formulate data-driven hypotheses; and 

the knowledge generation loop focuses on solidifying these insights into actionable 

knowledge. Sacha and colleagues (2014) also suggest that enhancing user interaction with 

visual data can significantly increase the reliability of the conclusions drawn from such 

analytical processes. 

Seeking to deepen the understanding of how visual tools influence decision-

making, Canonico and colleagues (2022) explored the role of knowledge visualization in 

multi-objective decision-making contexts. Their findings are encapsulated in a model of 

the organization decision-making process, depicted in Figure 2.3. This model illustrates 
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the use of visualization tools at two critical points: initially to generate knowledge, and 

subsequently to distribute this knowledge among the decision-making group. This helps 

establish common ground, which is essential for achieving the desired outcome of the 

decision-making process (Canonico et al., 2022, pp. 1088). 

 

Figure 2.3 The knowledge visualization process 
Source: “Visualizing knowledge for decision-making in Lean Production Development settings. Insights 

from the automotive industry” by P. Canonico, E. De Nito, V. Esposito, G. Fattoruso, M. Pezzillo Iacono, 

G Mangia, 2022, Management Decision, 60, pp. 1088 

Although visual analytics has significantly enhanced decision-making processes, 

many users still rely on spreadsheets (Bartram et al., 2022; Tory et al., 2021). One major 

reason for this switch is the difficulty users face in making sense of data through 

visualizations (Bartram et al., 2022). When there is misalignment between the prepared 

visualization tool and the decision-makers’ values, concerns, and criteria for decision 

quality (Yates et al., 2003), the tool is often ignored or underutilized. This disconnect can 

lead to ineffective decisions and wasted employee efforts. Additionally, users need to 

account for decisions and justify them to external stakeholders or senior management, 

which contributes to the continued use of spreadsheets (Bartram et al., 2022, pp. 7). 

Visualizations designed with consideration of users’ sensemaking and cognitive processes 

may help address these issues, making it easier to integrate visual analytics into decision-

making and reduce reliance on spreadsheets. 
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2.3. Case of Decision Making in Sweet Potato Packing 

Under a grant funded by the United States Department of Agriculture (USDA), our 

lab (Integrated Science Lab) at Simon Fraser University (SFU) School of Interactive Arts 

and Technology (SIAT) partnered with two other stakeholders in the United States to 

investigate how sweet potato packers make decisions and whether the Decision Intelligence 

(DI) methodology can facilitate and improve their decision-making process. As part of this 

project, a comprehensive interview session aimed at producing a diagram of the decision 

process of two sweet potato farmers, “Grower A” (GA) and “Mr. iPad” (MI), was 

conducted to better understand the optimization challenges in agricultural operations. This 

qualitative case study focuses on enhancing decision-making processes surrounding the 

matching of harvested produce to market demands. 

The interview consists of interactive dialogue mainly between the two growers and 

a DI expert, who is asking questions in order to depict the growers’ mental model of the 

decision as accurately and thoroughly as possible.  

2.3.1. Problem Definition  

GA and MI have access to multiple fields of sweet potatoes, each containing a 

variety of sizes of sweet potatoes, ranging from Small to Giant. The size distribution of 

each field is unknown, as the growers are forced to make educated guesses based on what 

they see. GA and MI’s operations receive orders from customers, for specific sizes of sweet 

potatoes. For example, a supermarket chain places an order for a certain weight of Small 

and Medium sweet potatoes, given the shoppers preference for those sizes. On the other 

hand, a pet food production facility places an order for Giant sweet potatoes, given the 

lower price per weight. Once a field is harvested and processed, or in other words, washed 

and cleaned, the sweet potatoes must either be sent out to fulfill an order, or be sent to cold 

storage, which is costly. Thus, to eliminate this cost, sweet potato growers typically send 

out higher quality potatoes that are already in cold storage, to fulfill an order of a lower 

quality, incurring a loss in potential revenue. GA and MI must gauge the size distribution 

in each field and based on the orders they have received and potential future orders they 
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estimate, make a decision on which field to harvest and process. Their goal is to maximize 

revenue generated through fulfilling as many orders as possible, while incurring as little 

cold storage costs as possible, at the end of the business day. This creates a critical decision 

point in managing costs and preventing revenue loss by avoiding the unnecessary use of 

cold storage for produce that could be sold directly. This matching problem, a ‘maximum 

utility’ decision as categorized by Wang and Ruhe (2008), requires precise alignment of 

production output (type and volume of processed potatoes) with market demand (incoming 

orders).  

Current Decision-Making Process of GA and MI 

Currently, Grower A (GA) and Mr. iPad (MI) employ a combination of intuitive 

and empirical decision-making strategies, largely relying on their experience and educated 

guesses. These strategies are primarily manual and mental, involving a considerable 

amount of trial and error. For instance, they make educated guesses about the size 

distribution of sweet potatoes in each field and decide which fields to harvest and process 

based on incoming orders and potential future demands. This manual approach, while 

rooted in their expertise and intuition, often lacks precision and can lead to inefficiencies, 

such as unnecessary cold storage costs or missed opportunities to fulfill higher-value 

orders. 

The tools currently in use include spreadsheets for recording data and basic 

predictive analytics for forecasting orders. However, these tools are not fully integrated 

into their decision-making models. The visual tools employed are basic, often limited to 

tabular data representations that fail to capture the complex dynamics and causal 

relationships inherent in their operations. This reliance on spreadsheets and basic predictive 

tools highlights a significant gap in the decision-support systems available to GA and MI, 

which often results in a reliance on their intuition and experience rather than data-driven 

insights. As a result, the decision-making process can be slow, labor-intensive, and prone 

to errors. 
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2.3.2. Identified Themes 

In the conversation, GA underscores their current and critical need to optimize the 

matching of already harvested and stored potatoes to incoming orders, aiming to maximize 

the value derived from each batch of produce. MI contributes with practical insights, again 

emphasizing the importance of accurate predictions about the potential output of each 

storage type to make informed decisions about processing and order fulfillment.  

The growers discuss the necessity of predictive analytics that utilize historical data, 

trend analysis, and seasonal yield information to better forecast incoming orders and align 

them with available stock. Both growers state that a tool designed to help them make more 

informed decisions, ultimately aiming to minimize cold storage cost and maximize the 

revenue generated, would be a meaningful upgrade to their current method of decision 

making, which is largely manual and mental. The insights from GA and MI highlight the 

need for advanced decision-support tools that reduce reliance on intuition by providing 

actionable, data-driven insights, as well as structuring the decision in a logical format, 

thereby improving the economic efficiency of agricultural produce handling. 

• Importance of Predictive Analytics: Both GA and MI emphasized the need 

for accurate predictive analytics to forecast incoming orders and align them 

with available stock and compare different scenarios. 

• Alignment with Growers' Mental Models: The necessity for tools that align 

closely with the growers' mental models was highlighted, as the growers 

requested visual tools that support their decision processes, not rewire them. 

• Reduction of Reliance on Intuition: Another key theme is the reduction of 

reliance on intuition through the provision of actionable, data-driven insights, 

and decision structure that facilitates causal reasoning. 

 

The discussion and elicitation process is crucial for uncovering the mental 

structures of the decision-making process and identifying key variables that may be 

obscure. This enhanced dialogue also sheds light on the decision-making complexities in 

agricultural operations, particularly in optimizing storage and processing to match market 

demands. Although both growers report having some access to predictive analytics tools, 

how those tools are integrated with their decision-making models and presenting the result 

of these analytics tools that remains a challenge. Drawing from cognitive science concepts 



22 

and a deep analysis of visualization tools for decision-making, it is possible to develop 

strategies specifically tailored to enhance the decision-making processes for agricultural 

professionals like GA and MI. By leveraging insights into how cognitive capabilities 

interact with visual tools, these strategies can be designed to address the unique challenges 

GA and MI face in optimizing the matching of harvested sweet potatoes with market 

demand. 

Potential Areas for Improvement 

The existing decision-making practices of GA and MI provide a clear baseline for 

improvement through the introduction of visual decision-support tools that are based on 

cognitive theories. Currently, the process is heavily manual, relying on basic tools and the 

growers' intuition and experience. The introduction of Decision Intelligence (DI) and 

advanced visual tools aims to bridge this gap by providing a structured and systematic 

approach to decision-making. For example, the use of causal diagrams and interactive 

dashboards can help visualize the cause-and-effect relationships and provide actionable 

insights, thereby reducing reliance on intuition and minimizing cognitive load. This 

structured approach can also improve the clarity and accountability of decision 

documentation, aligning with cognitive science theories to support better decision-making 

processes. 

In essence, the goal is to enhance the decision-making efficiency and effectiveness 

by integrating advanced visual tools that support all stages of the decision-making process, 

from information gathering and analysis to decision execution and monitoring. By 

addressing the limitations of the current tools, the proposed guidelines aim to provide GA 

and MI with a more comprehensive and user-centric decision-support system that aligns 

with their cognitive processes and decision-making needs. 
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Chapter 3.  

 

Current Visualization Tools for Decision Making 

What types of visualizations or visual tools are typically used for decision-

making? 

This chapter aims to answer RQ1, by providing an overview of visual tools and 

diagrams designed to support decision-making, such as dashboards and decision trees. 

While these tools significantly contribute to specific aspects of the decision-making 

process, they are often not designed to address the entire process comprehensively and can 

be improved upon (Oral et al., 2024). By examining their strengths and limitations, we can 

identify areas for enhancement and better support holistic decision-making. 

3.1. Dashboards 

Having recognized the role of data visualizations, researchers and designers have 

been exploring optimization strategies for data presentation. Dashboards emerge as a key 

solution, enhancing decision-making in various sectors including business, education, and 

everyday life (Lea & Nah, 2013; Negash & Gray, 2008; Yigitbasoglu & Velcu, 2012). 

Yigitbasoglu and Velcu (2012, pp. 42) describe a dashboard as a “data driven decision 

support system”, while Wexler et al. (2017) prefer a broader definition: “... a visual display 

of data used to monitor conditions and/or facilitate understanding.” 

3.1.1. Types and Purposes of Dashboards 

Several studies on dashboards have suggested the diversity in dashboard definitions 

and their expanded use beyond original intentions leading to widespread adoption across 

different sectors (Sarikaya et al., 2019; Tory et al., 2021). The primary function of 

dashboards in decision-making contexts, according to Sarikaya et al. (2019, pp. 683), is to 

support a range of organizational tasks, although they are also used in non-decision-making 

contexts like education, communication, and social interaction. Sarikaya et al. (2019, pp. 

683), considering the temporal aspects of decisions and the organizational tasks that are 
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supported by dashboards, categorize decision support dashboards into three: strategic, 

offering support to generate insights for long term plans, tactical, assisting decision makers 

test and refine their tactics, and operational, utilized in the implementation and monitoring 

of established procedures with pre-tested and recognized metrics. Figure 3.1 presents 

examples of all three decision support dashboard types, as well as an example of a 

dashboard designed for social communication. 

 

Figure 3.1 Examples of four categories of dashboards. 
Source: “What Do We Talk About When We Talk About Dashboards?” by A. Sarikaya, M. Correll, L. 

Bartram, M. Tory, D. Fisher, 2019, IEEE Transactions on Visualization and Computer Graphics, 25, pp. 

684 

Sarikaya et al. (2019, pp. 683) also discuss two main dashboard types, although in 

broad terms, given the often-blurry lines separating them: visual and functional. Visual 

dashboards are designed to aggregate multiple charts and numbers in a structured manner. 

Functional dashboards, on the other hand, facilitate interaction with the data and are 

dynamic by nature, as their design is driven largely by their purpose. Functional dashboards 
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frequently update the data presented either through external data sources or user interaction 

(Sarikaya et al., 2019, pp. 683), a crucial feature for operational and organizational 

decision-making. 

3.1.2. Use of Dashboards 

Tory et al. (2021) categorized the goals of dashboard users into two: Conversation 

with Data, and Conversation Through and Around Data (pp. 29). Conversation with Data 

is further divided into levels based on purpose: “summarize, monitor, explain, predict, 

compare, lookup, experiment, find anomaly, and audit” (Tory et al., 2021, pp. 29). 

Conversation Through and Around Data includes other parties in the process and are also 

divided into sub-categories based on purpose: “discuss data, circulate, discuss tools, and 

document” (Tory et al., 2021, pp. 29). Tory and colleagues (2021) assert that the second 

category of dashboard use is not sufficiently supported by current dashboard tools, 

suggesting that new tools must facilitate the construction of narratives from the data. 

Tory and colleagues (2021) conducted interviews with real dashboard users, which 

revealed that the linear model of the data analysis pipeline is not reflective of dashboard 

users’ tasks (pp. 33). In fact, they discovered a frequent tendency to switch to spreadsheets 

when building and interacting with dashboards (pp. 33). Dashboard users report using 

spreadsheets tools such as Excel to transform data and build new artifacts, to make better 

sense of the data, citing a certain sense of “materiality” of spreadsheets that offer direct 

interaction with data (Tory et al., 2021, pp. 33), a notion also reported by Dimara et al. 

(2017a) and Bartram et al. (2022).  

Since dashboards are visual tools that display information that has already been 

processed, necessary cleaning and analysis phases are typically carried out before 

presentation. This processed data is then prepared into a visual format by data analysts or 

visualization specialists, making it accessible and interpretable for the end-user. Referred 

to as “encoding”, this step is crucial in conveying information. The effectiveness of a 

dashboard is gauged by its ability to support both the encoding and decoding of information 

swiftly and effectively (Yigitbasoglu and Velcu, 2012, p. 46). Simple visual stimuli, 

differentiated by shapes and colors (Goldstein, 2007; Tufte, 1983, pp. 77), often 
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accompanied by textual stimuli, are often utilized for this purpose, given their facilitative 

nature to even untrained users (Yigitbasoglu & Velcu, 2012, pp. 46). 

Interactivity helps users comprehend the impact of their decisions, making it crucial 

for the interaction to be as natural as possible, as complex interactions can confuse 

untrained users (Sarikaya et al., 2019). Interaction within the dashboard also allows users 

to control visibility of information according to their needs. This feature helps in managing 

the detail of information presented, ensuring it is tailored to suit the user’s specific 

requirements (Yigitbasoglu & Velcu, 2012, p. 53-54). Interaction has also been shown to 

enhance user engagement and improve task performance (Nadj et al., 2020) and decision 

accuracy (Tang et al., 2014). However, as Sarikaya et al. (2019) note, the interaction must 

be well thought out and as aligned with the mental processes of the user as possible, without 

overwhelming the user. 

3.1.3. Challenges in Dashboard Design 

Design challenges for dashboards include accommodating diverse cognitive 

abilities and visualization literacy levels among users (Tory et al., 2021), reflecting on the 

importance of addressing individual differences of target users. A dashboard may be 

designed to serve the entirety of the population or a single individual, depending on its 

purpose. To further specify the intended audience, the “required visualization literacy” 

(Sarikaya et al., 2019, pp. 684) or “data literacy” (Tory et al., 2021, pp. 34) of the audience 

must be considered. Simpler visual tools, like bar or line charts, may be employed to aid 

understanding across a broad audience (Sarikaya et al., 2019, pp. 684). 

The literature on the design and use of dashboards suggests that, although 

dashboards do support monitoring and lookup tasks, their design does not sufficiently 

support sensemaking (Srinavasan et al., 2021, pp. 28) or the construction of narratives for 

scenario-based analysis (Dimara et al., 2022). Other factors that limit the effectiveness of 

dashboards are organizational work practices. As an example, one dashboard user reported 

their colleagues' taking screenshots of dashboards and placing them into decks for sharing 

within the organization, because there wasn’t a more efficient practice or tool (Tory et al., 

2021, pp. 34). 
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It is critical that dashboards maintain balance, providing enough information to 

offer context without overwhelming the user with visual complexity, which increases 

cognitive load (Nowak & Bartram, 2023, pp. 932). In addition, designers of dashboards 

must consider aspects such as the end-user’s individual abilities and preferences, the 

specific tasks they need to perform, their goals, their organization’s size, authority, and 

work practices (Yigitbasoglu & Velcu, 2012, pp. 54). These factors dictate the selection of 

design features that best convey the necessary information to facilitate informed decision-

making. A customizable, tailored approach would optimize the user’s interaction with the 

dashboard, enhancing the likelihood of achieving the desired outcome (Abel et al., 2018). 

3.2. Conceptual and Causal Diagrams 

Conceptual diagrams are vital for structuring and visualizing abstract concepts, 

making complex information more accessible. These diagrams are instrumental in 

organizing information and highlighting the relationships between various elements, 

thereby enhancing understanding, and facilitating knowledge transfer (Ammirato et al., 

2021). 

By employing shapes such as arrows, circles, pyramids, and matrices, and 

integrating text, letters, and numbers, these diagrams effectively organize information and 

illustrate relationships. This comprehensive approach supports both qualitative and 

quantitative analyses, enabling the representation of both simple and complex business 

issues (Eppler & Burkhard, 2004). By breaking down intricate ideas into more manageable 

parts, conceptual diagrams make it easier for individuals to grasp and discuss these 

concepts. This simplification enhances cognitive processing by allowing the brain to focus 

on the core components and their relationships, which promotes better understanding and 

facilitates the transfer of knowledge. Conceptual diagrams are methodical and precise, 

focusing on codifying knowledge while also supporting its creation and sharing, 

distinguishing them from the more flexible and informal nature of sketches (Ammirato et 

al., 2021). 
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Causal diagrams, a specialized type of conceptual diagram, illustrate cause-and-

effect relationships. These diagrams typically include nodes or items connected by lines or 

arrows that indicate how one element impacts another. This visualization technique is 

particularly effective for analyzing complex systems, predicting potential outcomes, and 

aiding in strategic decision-making. By clearly showing the connections and influences 

between different elements, causal diagrams help simplify complex information, making it 

more understandable and actionable. In business management, various forms of causal 

diagrams — such as decision trees, causal loop diagrams, and influence diagrams — are 

employed to organize information and clarify functional relationships within a system. This 

structured approach aids in identifying key issues and understanding the interdependencies 

within a business context, thereby supporting more informed decision-making processes 

(Eppler & Burkhard, 2004, 2007). 

3.2.1. Decision Trees 

Decision Trees, initially discussed as a decision-making tool by John F. Magee in 

1964, are graphical representations of a decision, with connections that mimic the 

branching structure of a tree (Magee, 1964). These tools are prominently used as classifiers 

in machine learning (Kingsford & Salzberg, 2008, pp. 1012), and are also applicable to 

human in-the-loop decision-making processes (de Ville, 2013; Zylberberg, 2021). In a 

decision tree, each node, or question, branches into child nodes, which may lead to 

additional questions or involve specific calculations until a terminal node is reached 

(Shneiderman, 1996, pp. 338-339). This terminal node, also referred to as leaf, represents 

the end of a decision path and typically culminates in one or multiple potential outcomes, 

each weighted according to its likelihood. An illustration of a decision tree can be seen in 

Figure 3.2. 
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Figure 3.2 An example of a Decision Tree. 
Source: “Decision trees: a recent overview” by S. B. Kotsiantis, 2013, pp. 263 

Perhaps the most appealing attribute of decision trees is their inherent simplicity in 

communicating flow and the association between nodes (Kingsford & Salzberg, 2008). 

Often, the nodes within these trees pose straightforward Yes-No questions, creating a 

sequential flow through the successive connections from one node to another. Additionally, 

decision trees are highly versatile, capable of incorporating various types of data and 

analytical methods (Kingsford & Salzberg, 2008). Decision trees are also robust in the 

sense that they accommodate missing data within the decision process, which enhances 

their practicality in real-world scenarios where complete data may not always be available 

(Kingsford & Salzberg, 2008; de Ville, 2013). 

Exploring further into the practical applications of decision trees, various 

researchers have innovated systems to enhance their utility and analytical capabilities. 

Barlow and Neville (2001) described and tested EMTree Results Viewer, displaying how 

decision trees can be used as a complementary visualization in a decision-support tool. 

Teoh and Ma (2003), pondering other use cases for decision trees and considering the task 

of knowledge discovery, developed the system PaintingClass, with the goal of easier 

construction and analysis of decision trees. Building on these frameworks, van den Elzen 
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and van Wijk (2011) developed BaobabView as a new system that views and supports the 

process in three steps, named to reflect the botanical aspect of decision trees: grow, 

optimize, and prune. These advancements underscore the adaptability of decision trees in 

handling complex decision-making processes, serving as a foundation for continuous 

innovation in data visualization and analysis tools. 

Decision trees often succeed in providing a clear visualization of the decision-

making process, allowing users to easily trace the flow and sequence of decisions. This 

clarity is achieved through the use of lines that connect nodes, each representing factors 

that influence the decision process and its potential outcomes. Such a structured layout not 

only facilitates understanding but also aids in identifying the impact of various elements 

within the decision framework. However, despite these strengths, decision trees can 

become overly complex and unwieldy when dealing with large datasets or numerous 

variables. In addition, decision trees do not perfectly align with mental models of decision-

makers, requiring further categorization of nodes that symbolize their role in the process. 

For instance, Klein (1993, pp. 139) reported that decision trees were not useful in depicting 

the rapid decision-making processes of firefighters, citing that their actions resembled 

reactions to extremely dynamic situations more than deliberate generation and evaluation 

of multiple options. This is mostly due to the type of decision, requiring rapid reactions to 

external stimuli. Thus, decision trees do not fully support users’ need to compare and 

contrast alternative decisions. 

3.2.2. Influence Diagrams 

The pursuit of visually representing the structure of decision-making processes also 

led to the development of Influence Diagrams (ID), which highlight the effects of specific 

decisions on potential outcomes. Introduced by Howard and Matheson (2005), who 

suggested that decision trees did not allow representations of more complex problems, 

these diagrams were proposed as a more suitable alternative. Influence Diagrams typically 

visualize dependencies between variables (Howard & Matheson, 2005), a pivotal aspect of 

the decision-making process (Diez et al., 2017; Ford & Hegarty, 1984; Lunenburg, 2010). 
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Influence Diagrams allow for more intricate representations of decision-making 

processes, particularly useful in situations with high degrees of uncertainty (Suzic & 

Wallenius, 2005), and do so by differentiating the process into two levels: qualitative and 

quantitative (Bielza et al., 2010, pp. 354). The qualitative level is visually represented, 

while the quantitative level handles probability calculations and other modeling tasks 

(Bielza et al., 2010, pp. 354). A key feature of the qualitative level is its temporal sequence, 

or “total order” as Bielza and colleagues (2010, pp. 354) refer to it, essential for conveying 

the natural directionality in decision-making (Bielza et al., 2010, pp. 354). An example of 

a simple Influence Diagram is provided below (Figure 3.3): 

 

Figure 3.3  An example of an Influence Diagram 
Source: “Modeling challenges with influence diagrams: Constructing probability and utility models” by C. 

Bielza, M. Gomez, P. P. Shenoy, 2010, Decision Support Systems, 49, pp. 355 

Influence Diagrams consist of decision nodes (labeled D1 and D2 in 3.3), chance 

nodes (labeled A, C, and R in Figure 3.3), and value nodes (labeled v1, v2, and v3 in Figure 

3.3), which collectively assist the decision-making process by highlighting how different 

actions, variables and chance factors interact to influence the overall outcome (Bielza et 

al., 2010, pp. 354-355). These diagrams structure the analysis of decisions by weaving 

together both the direct and probabilistic impacts on outcomes. Additionally, their visual 

format helps map out the connections and flow of information, ensuring that each decision 

is informed by its potential impacts. The interlinked nature of these nodes supports an 

active exploration of various scenarios, making it a powerful tool for navigating decision 

analysis amidst uncertainty. 
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A significant shortcoming of influence diagrams is that they don’t attempt to 

represent the causal structure of a domain (Hagmayer & Meder, 2013, pp. 45), as the 

connections within Influence Diagrams, represented by arcs between nodes, do not 

necessarily indicate causal relationships (Howard & Matheson, 2005). This means that the 

decisions modeled in influence diagrams do not inherently refer to causal interventions, 

limiting their utility in scenarios where understanding the causal dynamics is crucial for 

effective decision-making. 

3.2.3. Sequential Decision Diagrams 

Sequential Decision Diagrams (SDDs) are graphical tools used to depict the 

asymmetries often present in decision-making scenarios, specifically designed to enhance 

the modeling of such complexities within the broader framework Influence Diagrams 

(Bielza et al., 2011). SDDs provide a structured way to visualize how sequential decisions, 

environmental factors, and external influences interconnect to affect final outcomes. These 

diagrams are particularly useful in scenarios where decisions are not isolated but are 

contingent upon previous outcomes and current conditions (Bielza et al., 2011). Similar to 

Influence Diagrams, by employing a graphical layout, SDDs make it easier for decision-

makers to comprehend and navigate through the intricacies of complex systems, ensuring 

that each decision is informed by a clear understanding of its potential impacts. 

An example of an SDD is shown in Figure 3.4, which depicts the SDD for a reactor 

problem described in their study. In the reactor problem example, the SDD methodically 

shows how operational decisions — represented as nodes — affect the reactor’s 

performance and safety, classified under value nodes (Bielza et al., 2011, pp. 231). This 

diagram highlights the influence of various operational and environmental variables, 

providing a clear view of how decisions cascade through the system. By visually 

representing these interactions, the SDD helps identify the most viable decision paths, 

thereby facilitating strategic planning in environments where decisions and their 

consequences are intricately linked. 
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Figure 3.4 An example of a Sequential Decision Diagram 
Source: “A review of representation issues and modeling challenges with influence diagrams” by C. Bielza, 

M. Gomez, P. P. Shenoy, 2011, Omega, pp. 231 

While Sequential Decision Diagrams are valuable for analyzing complex decision-

making sequences, a shortcoming also arises from their detailed focus on sequential and 

asymmetric decision paths (Bielza et al., 2011). This focus can sometimes obscure holistic 

understanding of a decision scenario. This limitation highlights the potential for 

misinterpretation or oversimplification of the decision-making environment, making it 

crucial to integrate these diagrams with other analytical tools to ensure a comprehensive 

analysis. 

3.2.4. Causal Maps 

Visualizing the decision-making processes and the flow of information that guides 

these decisions also led to the development of mapping techniques. The main idea behind 

causal maps was that the relationships between variables and how they interact to influence 

other variables and outcomes required visual representation for easier interpretation and 

collaboration (Montibeller & Belton, 2006). Causal maps originally were developed to 

assist in problem structuring (Montibeller & Belton, 2006) and have been shown to 
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facilitate understanding of problem structures (Huff & Jenkins, 2002; Mingers & 

Rosenhead, 2004). An example is presented in Figure 3.5. 

 

Figure 3.5 An example of a Causal Map 
Source: “Causal maps and the evaluation of decision options—a review” by G. Montibeller and V. Belton, 

2006, Journal of the Operational Research Society 

Montibeller and Belton (2006) propose that causal maps can be effectively utilized 

to evaluate potential options within a decision-making process. Through an examination of 

various cases where causal maps have been employed to assess options, the authors 

highlight that the utility of a causal map hinges on several factors (Montibeller & Belton, 

2006, pp. 789). Primarily, the purpose behind using a causal map is pivotal in determining 

its effectiveness, highlighting the importance of cognitive fit. Some may use causal maps 

to survey a wide array of options, whereas others might apply them to craft a 

comprehensive depiction of the process, delving into every pertinent factor and variable. 

 Building on this premise, the authors advocate for the application of causal maps 

in uncovering novel, previously unconsidered options, and in deliberating on the most 

suitable alternative (Montibeller & Belton, 2006, pp. 790). However, they caution that their 

conclusions are primarily drawn from clinical case studies and may be most pertinent to 

similar contexts, underscoring that while causal maps are valuable for structuring complex 

problems, their adaptability in diverse decision-making scenarios should be further 

explored (Montibeller & Belton, 2006, pp. 790). 
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3.2.5. Decision Mapping 

Decision mapping incorporates a higher level of complexity compared to decision 

trees (Friedler et al., 1995, pp. 1755) by considering additional factors such as external 

influences, stakeholder opinions, and intended outcomes. Bouchart et al. (2002) developed 

a specialized decision mapping methodology for civil engineering, while also outlining its 

potential for broader applications. The authors highlight a gap in existing methods — 

namely, the absence of a comprehensive visual representation of decision-making 

processes that begins with data collection and progresses logically (Bouchart et al., 2002, 

pp. 189). They describe their Decision Mapping Methodology as an evolution of static Data 

Flow Diagrams typically used in Information Technology (IT) systems analysis, which 

they adapt into Information Flow Networks tailored for decision-making scenarios. In these 

networks, nodes represent individual actions and decisions, simplifying the interpretation 

of complex data flows (Bouchart et al., 2002, pp. 190; John et al., 2020). 
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Figure 3.6 An example of a Decision Map (Information Flow Network and 

Thematic Decision Map) 
Source: “Decision mapping: Understanding decision making processes” by F. J. Bouchart, D. J. 

Blackwood, P. W. Jowitt, 2002, Civil Engineering and Environmental Systems, 19, pp. 194 

To enhance this methodology, Bouchart and colleagues propose integrating 

Thematic Decision Maps with Information Flow Networks (Figure 3.6), creating a dual 

system that highlights critical decision points to assist in prioritization and improve the 

overall efficiency of the decision-making process (Bouchart et al., 2002, pp. 193). This 

approach not only addresses external variables and the interests of different stakeholders 

but also enriches the decision-making process with a well-rounded perspective (Bouchart 

et al., 2002, pp. 206). 

However, the complexity introduced by overlaying these two mapping techniques 

can pose significant challenges. Bouchart and colleagues note that this complexity might 
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compromise the visual clarity and interpretability of the diagrams, particularly when 

cognitive differences between analysts and decision-makers are not adequately considered 

(Bouchart et al., 2002, pp. 195). Despite these challenges, decision mapping has been 

successfully applied in various fields; Friedler et al. (1995) demonstrated its utility in 

process synthesis and Comes et al. (2011) validated its effectiveness in managing complex 

decisions under conditions of high uncertainty. The insights derived from these 

applications have paved the way for further innovations in decision-making visualization 

tools, aiming to bolster their robustness and effectiveness. 

3.2.6. Causal Loop Diagrams 

Causal Loop Diagrams (CLDs) are pivotal visual tools that facilitate both 

qualitative and quantitative analysis in decision-making, as evidenced by numerous studies 

(Ammirato et al., 2021; Barnabè, 2011; Bottero et al. 2020; Dai et al., 2013; Iannone et al., 

2015; Kotir et al., 2017; Lin et al., 2020; Prodanovic & Simonovic, 2007; Sendzimir et al., 

2007). Taking a Systems Thinking – or System Dynamics (SD) perspective to decision 

making, the SD methodology typically employs CLDs alongside stock and flow diagrams 

(Figure 3.7) to provide structural insights into the system and represent its dynamic aspects. 

CLDs have been used to support strategic decision making (Barnabè, 2011), given their 

structured graphical representation of causal relationships within a decision process or 

system, as well as the often collaborative, meticulous, and time-consuming elicitation steps 

needed to strategize long-term decisions. 

 

Figure 3.7 General structure of a stock and flow diagram 
Source: “A System Dynamics Model and Analytic Network Process: An Integrated Approach to Investigate 

Urban Resilience” by M. Bottero, G. Datola, E. De Angelis, 2020, Land, 9, pp. 8 
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CLDs are instrumental in fostering causal reasoning by identifying necessary 

feedback loops and understanding their implications on system behavior (Iannone et al., 

2015, pp. 1291; Lin et al., 2020, pp. 77). These diagrams assist in visualizing and 

improving mental models (Barbrook-Johnson & Penn, 2022, pp. 49) and incorporate 

various elements such as variables, delays, stocks, flows, and oriented arches, which 

illustrate positive or negative causal relationships, along with loops that are either self-

reinforcing or self-correcting (Iannone et al., 2015, pp. 1291). Iannone et al. (2015) explore 

and visualize the challenges inherent in the fast-changing fashion industry, highlighting the 

dynamic complexity these systems encapsulate and the critical variables that need to be 

managed for effective system oversight (Figure 3.8). 

 

Figure 3.8 An example of a Causal Loop Diagram depicting a supply chain 

system 
Source: “Modeling Fashion Retail Supply Chain through Causal Loop Diagram” by R. Iannone, G. 

Martino, S. Miranda, S. Riemma, 2015, IFAC-PapersOnLine, 48, pp. 1295 

In another context, Inam and colleagues (2015) explored the application of CLDs 

in soil salinity management to enhance stakeholder engagement while reducing the need 

for large meetings. They proposed a qualitative approach to CLD construction, 
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emphasizing a simplified process that does not require extensive pre-training. The authors 

presented a seven-step process for creating CLDs, beginning with problem definition. 

The process of problem definition in stakeholder engagement begins with defining 

the problem theme, key variables, time horizon, and model boundaries, followed by 

developing reference modes and identifying stakeholder groups (Inam et al., 2015, pp. 

254). Stakeholder analysis is then conducted based on roles such as decision-makers, users, 

and experts, prioritizing them according to their power and interest, which may change 

over time (Inam et al., 2015, pp. 254). Facilitators proceed to conduct interviews with 

potential stakeholders to understand their perspectives on the problem, laying the 

groundwork for constructing Causal Loop Diagrams (CLDs) with each stakeholder (Inam 

et al., 2015, pp. 253-254). These diagrams use color to differentiate variables and feedback 

loops, initially created with simple tools like Post-it notes and a whiteboard. This critical 

step engages stakeholders in deep critical thinking, prompting them to consider both short-

term and long-term policies, evaluate their solutions, and identify potential obstacles 

(Bottero et al., 2020, pp. 18-19; Inam et al., 2015, pp. 254-255). 

Once individual CLDs are created, they are digitized using tools like Vensim DSS 

to accurately represent identified variables and feedback loops (Inam et al., 2015, pp. 256). 

Facilitators synthesize these into a preliminary group CLD, which is then refined in a group 

stakeholder meeting. This meeting, sometimes lasting a full day, aims to finalize the group 

CLD through discussions and negotiations, marking conflicting opinions with question 

marks (Inam et al., 2015, pp. 256). While these qualitative CLDs cannot make quantitative 

inferences, they highlight key points needing further negotiation or research. The process 

concludes with preparing simple thematic sub-models of CLDs to address specific system 

components, such as agricultural, social, environmental, or economic aspects, facilitating 

targeted analysis and decision-making (Inam et al., 2015, pp. 256). The final CLD created 

by merging five sub-systems is presented as an example in Figure 3.9. 
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Figure 3.9 The merged group Causal Loop Diagram from Inam et al. (2015) 
Source: “Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity 

management in agricultural watersheds in developing countries: A case study in the Rechna Doab 

watershed, Pakistan” by A. Inam, J. Adamowski, J. Halbe, S. Prasher, 2015, Journal of Environmental 

Management, 152, pp. 266 

While Causal Loop Diagrams (CLDs) are instrumental in organizing complex 

decision-making processes and providing valuable insights by visually representing system 

interdependencies, they possess several limitations that must be carefully considered 

(Currie et al., 2018, pp. 8; Lin et al., 2020, pp. 96). These diagrams often fail to capture the 

full spectrum of system behaviors and human rationality, leading to potential oversights in 

understanding intricate dynamics (Lin et al., 2020, pp. 96). The challenges extend to the 

static nature of CLDs, which may not adequately accommodate the dynamic changes 

typical in organizations, necessitating frequent updates to maintain relevance (Currie et al., 
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2018, pp. 8). Additionally, the process of parameterizing these models is complicated by 

cognitive constraints like the "curse of dimensionality," where increasing the number of 

dimensions can exponentially increase complexity, further complicating the model (Lin et 

al, 2020, pp. 96). The validity of these diagrams also heavily depends on the available data 

and expert interpretation, which can introduce biases and affect the reliability of the 

outcomes. These factors underscore the need for cautious application and continuous 

evaluation of CLDs in decision-making to mitigate their limitations and enhance their 

effectiveness. 

3.2.7. Causal Decision Diagrams 

Causal Decision Diagrams (CDDs) are a fundamental component of Decision 

Intelligence (DI), a framework increasingly recognized for its ability to bridge the gap 

between the extensive data resources available to organizations and the decision-makers 

who leverage this data for informed, precise decisions.  

Decision Intelligence (DI) 

Emphasized by notable entities like Gartner Incorporated, DI enhances decision-

making processes by integrating data analysis with artificial intelligence to optimize 

outcomes (Gartner Inc., 2023). Dr. Lorien Pratt, a key figure in the development of DI, has 

significantly advanced its application and theoretical underpinnings in modern 

organizational settings (Pratt, 2019; Pratt and Malcolm, 2023; Pratt et al., 2023). A central 

principle of DI, particularly relevant in the context of CDDs, is the emphasis on structuring 

information around the decision to be made rather than the surrounding data, some of which 

may be irrelevant (Pratt, 2019). This approach highlights the importance of CDDs in 

creating a clear visual map of the causal relationships within a decision process, thereby 

simplifying the selection and integration of pertinent data and aiding decision-makers in 

navigating complex decision scenarios more effectively. 

Decision Intelligence has gathered a lot of media and institutional attention given 

its promises to bridging the gap between abundant data, Artificial Intelligence platforms 

and reaching intended outcomes with informed decisions, not assumptions (Haider & 
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Tahseen, 2022). Google hired a Chief Decision Officer, who, in 2018, had already trained 

17,000 employees in how to make better decisions considering Decision Intelligence 

(Byrne, 2018). Furthermore, on multiple occasions, Forbes discussed the potential of 

Decision Intelligence and even deemed it as big a revelation as Artificial Intelligence 

(Bornet, 2022; Emini, 2022). 

Decision Intelligence (DI) offers three distinct levels of support: decision support, 

decision augmentation, and decision automation, each varying in the degree of assistance 

provided by computer or Artificial Intelligence systems (Pratt, 2019). This classification is 

analogous to how data-driven decision-making is categorized by the amount of data 

utilized (Buijsse et al., 2023). Decision support, the foundational level, utilizes basic 

computational tools and software, such as data analytics, to aid decision-makers (Pratt, 

2019). The next level, decision augmentation, introduces more substantial computational 

input, often in the form of predictions and recommendations, enhancing the decision-

maker's capabilities (Pratt, 2019). At the pinnacle, decision automation minimizes human 

input to oversight roles, with both decision-making and execution processes handled by 

artificial intelligence (Pratt, 2019). Recognizing the appropriate level of automation and 

human involvement is crucial, as different situations demand varied approaches. 

Use of Causal Decision Diagrams in DI 

At the core of DI, Causal Decision Diagrams offer a structured approach to 

visualize decision-making processes, incorporating causal reasoning. These diagrams are 

designed to systematically categorize decision-related variables into four main types: 

Actions (Levers), Intermediates, Externals, and Outcomes (Pratt, 2019). Actions, 

sometimes referred to as Levers, are the potential decisions (Pratt. 2019). Intermediates 

and Externals are factors that may affect the final section of the CDD, Outcomes, which 

refer to both intended and unintended outcomes. This is an important distinction, given that 

Decision Intelligence attempts to reveal as many difficult to predict or explicit factors in a 

decision-making process as possible (Pratt, 2019). An example CDD, for a relatively 

simple decision of what type of coffee to buy, is presented in Figure 3.10. 
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Figure 3.10 An example CDD, presenting a coffee-purchasing decision process. 

(The original figure was cropped to only include relevant information) 
Source: “The decision intelligence handbook: practical steps for evidence-based decisions in a complex 

world” by L. Pratt and N. Malcolm, 2023 

The Decision Intelligence (DI) process typically starts with defining the decision 

or problem at hand. Once the parameters and constraints of the decision are established, 

measurable outcomes are specified — for instance, aiming for a 20% increase in profits by 

the end of the year. These discussions often take on a negotiation-like quality (Zaimoglu 

et al., 2023), where potential actions that could influence the desired outcome are identified 

and assessed. Pratt (2019) notes that for the DI process to be effective, the decision-maker 
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must have the necessary authority and resources to implement these actions. If these factors 

are beyond the control of the decision-makers, they should be classified as Externals. 

The structure of the Causal Decision Diagram (CDD) is then outlined, with further 

details refined through continued discussion and deliberation. The four types of nodes —

Actions, Intermediates, Externals, and Outcomes — are connected with lines and arrows 

to indicate directionality and causality. A critical phase involves brainstorming to generate 

and evaluate alternative actions or the impacts of actions, aiming to minimize unintended 

outcomes by clarifying the decision-making process, an extension of Second Order 

Thinking (Sunstein & Ullmann-Margalit, 1999). Pratt (2019) outlines two causal pathways 

within Decision Intelligence: the "why" chain, which traces the sequence from action to 

outcome, and the "how" chain, which maps the reverse direction from outcome back to 

action. These conceptual chains serve as useful tools for decision-makers, especially when 

encountering difficulties in pinpointing additional nodes or factors, enabling them to 

further elaborate on the decision-making trajectory. This step is essential for uncovering 

any previously overlooked actions, impacts, or potential outcomes and typically relies on 

multiple inputs from subject matter experts. The categorization suggested by Pratt (2019) 

helps in mapping out the decision-making landscape more clearly, providing a clear 

structure that aids stakeholders in understanding how various decisions impact 

organizational objectives and the external environment. 

CDDs are particularly notable for their ability to make the causal connections 

within decision processes explicit. By visualizing how different actions can lead to various 

intermediate states and ultimately affect outcomes, these diagrams facilitate a deeper 

understanding of the causal pathways that support strategic decisions. This clarity is crucial 

for effective sensemaking, as it allows decision-makers to navigate complex scenarios by 

tracing the potential effects of their actions through the system. Visual cues, such as shapes 

representing nodes and lines with arrows representing causality and directionality, aid in 

instilling an insightful model of the decision, facilitating interpretation and adoption by the 

user. Moreover, the explicit representation of external factors within CDDs helps in 

anticipating and mitigating risks that could influence the decision outcomes. 
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DI systems are designed to be adaptive, accommodating the specific needs and 

preferences of users. Initially, users may engage these systems for basic visualization of 

decision processes. Over time, they can advance to integrating predictive models and 

eventually automating certain decisions. Pratt (2019) emphasizes that an optimal DI system 

should support iterative use, allowing decisions to be refined based on human feedback 

and the comparison of predicted outcomes with actual results. This iterative capability 

ensures that DI systems remain relevant and effective across various decision-making 

contexts. 

Furthermore, the Intermediates and Externals components of Decision Intelligence 

emphasize the importance of unveiling both overt and covert factors that could impact 

decision-making. This approach mirrors the Decision Mapping methodology developed by 

Bouchart et al. (2002), which underscores the necessity of accounting for all activities and 

data — both seen and unseen — that might sway decisions. The proactive exploration of 

external factors is a growing trend across various decision visualization methodologies, 

reflecting a broader recognition of their critical influence. Addressing these often-

overlooked external factors is crucial because they can significantly shape decision 

outcomes, making their identification and analysis an essential aspect of effective decision-

making strategies. However, Pratt and colleagues (2023) also acknowledge that no model 

is perfectly accurate or complete, emphasizing the inherent uncertainty in decision-making 

processes and, by extension, the intrinsic imperfections of Causal Decision Diagrams 

(CDDs). 

A significant challenge associated with CDDs, and decision diagrams more 

broadly, is their complexity, which can sometimes obstruct their practical utility, especially 

for users without a technical background (Diez et al., 2017, pp. 1-2). As the number of 

decision nodes and their interrelationships increase, the diagrams can become overly 

complex, making it difficult to extract clear insights without advanced analytical tools. This 

complexity can impede the effective communication and operational efficiency that CDDs 

aim to enhance, highlighting the need for careful design and potential simplifications to 

maintain their usability across different user groups. 
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To provide a comprehensive overview of the visualization tools discussed in this 

chapter, the following table summarizes their advantages and disadvantages. 

Table 3.1 Visual diagrams and tools for decision-making discussed in Chapter 3 

Diagram Advantages Disadvantages 

Dashboards 
Effective for monitoring and 

summarizing data. 

Lack of support for construction of 

narratives and reporting. 

Decision Trees 
Provide clear, structured 

pathways for decisions. 

May not indicate causal 

relationships clearly. 

Influence Diagrams 
Visualize dependencies 

between variables effectively. 

Can become unwieldy with large 

datasets. 

Sequential Decision 

Diagrams 

Handle asymmetries in 

decision-making well. 

Can obscure the holistic 

understanding of interconnected 

decisions. 

Causal Maps 

Excellent for structuring 

complex problems and 

identifying relationships. 

May not always be suitable for all 

decision-making scenarios. 

Decision Mapping 

Incorporates external 

variables and stakeholder 

opinions. 

Can become visually complex and 

hard to interpret. 

Causal Loop 

Diagrams 

Useful for understanding 

feedback loops and system 

behavior. 

May require extensive elicitation 

and time-consuming construction. 

Causal Decision 

Diagrams 

Provide a structured way to 

represent decision-making 

processes and their 

outcomes. 
 

Can be complex to construct and 

require detailed elicitation from 

stakeholders. 
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Chapter 4.  

 

Cognitive Science Theories and Concepts 

What are the cognitive processes a user goes through, or are relevant, 

when viewing a visualization and using it to make a decision? 

This chapter aims to answer RQ2 by examining the intersection of cognitive science 

and decision-making processes through a scoping literature review. It delves into various 

theories to understand how decisions are conceptualized, made, and justified within 

cognitive frameworks. These theories provide insights into organizing decision-making 

processes, enabling the design of visualizations that effectively support and enhance 

decision outcomes. 

4.1. Perception 

For a visualization to impact a user’s decision-making process, it must first be 

perceived by the user. Thus, understanding the role of perception in data visualization is 

crucial for enhancing decision-making effectiveness. Perception is fundamentally about 

how the human mind processes visual elements such as shapes, colors, lines, motions, and 

interactions, which are all integral to how decision-makers interpret and interact with visual 

data displays. This process directly influences how visual information is mentally 

structured and understood, facilitating a deeper comprehension of the data presented. 

Early research in fields like Gestalt psychology has significantly influenced the 

development of principles for designing visual decision-making tools. Gestalt psychology 

introduces several key principles that guide our perception (Rock & Palmer, 1990): the law 

of proximity suggests that objects that are close to each other in space are perceived as a 

group, enhancing the organization of information, which can be critical for structuring user 

interfaces that group related data points together effectively. Further principles include the 

law of similarity, which suggests that items that look similar are considered part of the 

same group, useful for categorizing data visually; and the law of closure, where the mind 

completes incomplete figures to form a coherent image. This principle helps users 
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understand complex diagrams more quickly by filling in missing parts, allowing for a 

smoother interaction with the data, ultimately facilitating quicker and more effective 

decision-making processes. 

Building on this foundation, Bertin introduced methods to enhance data 

visualizations by adjusting size, color, and layout, significantly improving the clarity and 

impact of information presentation (Bertin & Berg, 1983). Size, for example, can be 

strategically utilized to highlight significant data trends or highlight outliers, directing the 

decision-maker’s attention to critical information swiftly. Color differentiation not only 

segregates data into clear categories but also reduces the time it takes for users to identify 

relationships or discrepancies within the data, which is vital in environments where quick 

decision-making is essential. The thoughtful arrangement of information through effective 

layout practices helps in maintaining a logical flow, enabling decision-makers to follow 

complex data trails easily. 

Research by Pineo & Ware (2012) illustrates how effective data visualization relies 

on alignment with these perceptual processes. For instance, their study highlights how 

visual elements that mimic natural patterns can enhance the perceptual processing of 

information. This alignment allows users to discern patterns and anomalies more readily 

within complex datasets, enhancing their ability to make informed decisions based on the 

visualization (Pineo & Ware, 2012). The design of these tools, therefore, must consider 

these perceptual traits to optimize how information is presented and processed. 

The interaction between decision-makers and visualizations is inherently dynamic, 

where the perception of the entire display and its individual components occurs 

simultaneously. This dual perception process allows users to discern overarching trends 

and minute details within the same visual frame, thus enabling a comprehensive 

understanding of the data. Rind and colleagues (2013) highlight the importance of this 

aspect by demonstrating how layered visualizations that present data at varying levels of 

detail can enhance decision-making capabilities. These multi-layered visual tools are 

designed to cater to the perceptual strengths of the human mind, allowing decision-makers 

to effortlessly switch between global overviews and granular insights. This flexibility 
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enhances the decision-makers' ability to interpret complex datasets effectively, ensuring 

that both broad patterns and specific anomalies are perceptible and informative (Rind et 

al., 2013). 

The ultimate goal of leveraging perception in visualization design is to enable 

decision-makers to uncover and understand the underlying stories that the data seeks to 

tell. By effectively matching visual properties with perceptual abilities, designers can 

create tools that not only display data but also elucidate the deeper meanings and 

relationships inherent in the data. This approach ensures that decision-makers are not just 

consuming information but are actively engaging with it to derive actionable insights that 

are critical for making informed decisions. 

4.1.1. Sensemaking 

Once perception of the visualization takes place, users try to make sense of it. 

Sensemaking refers to “the deliberate effort to understand events” (Klein et al., 2007). It is 

instrumental for several purposes, such as foreseeing challenges, identifying issues, 

directing the search of information, and facilitating appropriate actions (Klein et al., 2007). 

Humans go through the sensemaking process when presented with visual stimuli and must 

integrate it into their mental model of decision-making (Klein et al., 2006; Lee et al., 2016). 

Data Frame Theory 

Gary Klein and colleagues (2007) introduced Data Frame Theory as a possible 

explanation of humans making sense of data and “adapt to the complex, dynamic, evolving 

situations” (pp. 114). Data Frame Theory posits that data is selected and analyzed based on 

the mental model of the individual, guiding how each variable relates to another (Figure 

4.1). The authors refer to this as the “frame”, which they suggest can take the form of a 

narrative story with temporal elements, a map with distance calculations, or a plan for 

sequential actions (Klein et al., 2007, pp. 118). 
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Figure 4.1 The Data Frame Theory, as presented by Klein et al. (2017) 
Source: “A data-frame theory of sensemaking” by G. Klein, J. K. Phillips, E. L. Rall, D. Peluso, 2007, 

Expertise out of Context: Proceedings of the Sixth International Conference on Naturalistic Decision 

Making, pp. 133 

The Data Frame Theory suggests neither the data nor the frame comes first, they 

interchangeably affect each other: the data helps shape the frame and the frame in turn 

helps filter and analyze the data. In other words, “once the frame becomes clear, so do the 

data” (Klein et al., 2007, pp. 118). When humans are given a novel situation, several key 

variables, at most three or four (Klein & Crandall, 1995) are automatically identified and 

act as “key anchors” (Klein et al., 2007, pp. 122-123). These key anchors are essential in 

constructing the initial frame, through which data is interpreted. 

Once a frame is constructed, abductive reasoning is utilized to make inferences and 

logical deductions. In instances where the frame is insufficient, inaccurate, or 

incomprehensive, it is iteratively readjusted and reapplied. In some cases, multiple frames 

are constructed and compared against one another (Klein et al., 2007, pp. 139), sometimes 

up to three (Klein et al., 2007, pp. 140). The sensemaking process is concluded when the 
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relevant data is identified and the frame is deemed valid, unless the individual believes 

there is potential benefit in continuing (Klein et al., 2007, pp. 126). 

It is also important to note that the number of potential frames available to an 

individual varies vastly given their expertise. Although both experts and novices employ a 

similar sensemaking process designed around finding cause-and-effect relationships 

between identified variables, experts simply have access to more domain knowledge, 

which leads to both a higher number and higher quality of inferences (Klein et al., 2007, 

pp. 127). The sensemaking process may also take different forms based on the domain of 

expertise the individual possesses (Klein et al., 2007, pp. 132; Klein et al., 2017), as well 

as workload, level of fatigue and level of commitment (Klein et al., 2007, pp. 134-135). 

Through the explanation of the Data Frame Theory, Klein and colleagues (2006, 

2007) suggest that sensemaking is a process of iterative framing, making adjustments as 

the individual deems necessary. Without a frame, even the most accurate and appropriately 

analyzed data may not inform an individual to its full extent. Thus, when visualizing data 

or processes for use in decision-making, one must aid the sensemaking process of the 

decision-maker, so that it supports the construction, and readjustment, if necessary, of a 

frame. 

Information Foraging 

Reflecting on the role of visual analytics in decision-making contexts necessitates 

sufficient understanding of the interaction dynamics involved. Here, the sense-making 

model developed by Pirolli and Card (1999) offers a crucial framework for interpreting 

how decision-makers engage with visual systems through iterative refinement processes. 

This dynamic is aptly captured in Pirolli and Card’s (1995) sense-making model, which 

describes an iterative loop of information gathering, synthesis, and conclusion drawing. 

In this model, a user begins with an information-rich environment. The process of 

“foraging” involves navigating through visual data to identify relevant pieces – a principle 

grounded in their initial exploration of how people search for information (Pirolli & Card, 

1995). Once relevant data are identified, the sense-making process transitions to the 

“analysis phase”, where data are organized and interpreted to form insights (Pirolli & Card, 
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1999). This supports the cognitive work of constructing a coherent narrative from the data. 

The ability to customize views and focus on different aspects of the data mirrors the 

model’s description of refining insights through analysis. 

The “decision-making phase” is where synthesized knowledge is applied to form 

conclusions and make informed decisions (Pirolli and Card, 1999). This involves 

presenting the information in ways that align with the decision-making needs. Often 

decision-makers do not carry out a deliberate generation of alternatives to evaluate when 

structuring a problem, most likely due to time constraints and overwhelming amount of 

data (Pirolli & Card, 2005). This challenge may be addressed through visual tools that 

support the generation and comparison of alternative hypotheses and scenarios, offloading 

as much of these representations from the mind to a visual display. Thus, design features 

should facilitate not just the consumption of information but also the application of insights 

in practical decision-making scenarios. 

Incorporating the framework from Pirolli and Card (1995, 1999, 2005) into the 

discussion, it emphasizes the importance of interaction in the cognitive development of 

decision processes. It highlights how effective visual analytics systems are not just about 

data presentation but about fostering an interactive environment where data is not only seen 

but engaged with – enabling users to move through cycles of exploration, insight 

generation, and decision application iteratively (Lee et al., 2016). This approach aligns with 

the broader goals of visual analytics, where the aim is not only to present data but to 

transform it into actionable intelligence through a well-supported cognitive journey. 

Gisting 

Exploring a largely unexplored task within visual analytics, Nowak and Bartram 

define “gisting” as gathering the overall essence of the situation, providing a preview of 

what items or information will be searched, therefore expediting the detection of items of 

interest (2023, pp. 925). Gisting is a crucial cognitive bridge between the observation of 

raw data and the synthesis of information into actionable insights. This process involves 

rapidly extracting the essence or the 'gist' of the data, which is integral to both causal 
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reasoning and decision-making, particularly in environments characterized by complexity, 

uncertainty, or ambiguity. 

Gisting is not merely about summarizing; it is about distilling the core themes or 

patterns from a wealth of information at a glance (Nowak & Bartram, 2023, pp. 925). This 

process relies heavily on the analyst's ability to assimilate and interpret high volumes of 

data swiftly, identifying overarching narratives or key anomalies that inform further 

inquiry or decision-making. It is a higher-order cognitive process that combines elements 

of perception, memory, and attention to filter and focus on what is most relevant from a 

potentially overwhelming stream of data inputs. 

Decision-making processes, particularly under conditions of uncertainty or 

ambiguity, are enhanced by effective gisting. In dynamic decision-making environments, 

where timely responses are crucial, gisting enables decision-makers to quickly get up to 

speed with the situation at hand, as Nowak and Bartram (2023) illustrate with the use of 

visual analytics in avalanche forecasting. This rapid comprehension helps in setting 

priorities and preparing for potential scenarios, forming a basis upon which more detailed 

analyses and informed decisions can be made.  

In the context of causal reasoning, gisting facilitates the formation of initial 

hypotheses or mental models about the relationships within the data. Once the initial gist 

is understood, analysts can dig deeper into the data to validate or refute their initial 

interpretations, refine their models of causation, and explore complex interdependencies 

without the bias of getting lost in minute details initially. For instance, in emergency 

management or business intelligence, understanding the gist of a sudden change in data 

patterns can prompt immediate and necessary actions, such as reallocating resources or 

adjusting strategies in response to an emerging threat or opportunity. 

The importance of gisting in causal reasoning and decision-making necessitates that 

visual analytics tools are designed to support this cognitive process effectively. Nowak and 

Bartram’s work (2023) emphasizes the need for visualizations that support the ambiguous 

nature of sensemaking by encouraging reflection, provoking alternative interpretations, 

and enabling users to quickly and effectively process vast amounts of data to identify 
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critical insights. This approach underlines the necessity for design strategies that include 

the use of visual summaries that highlight key data trends or anomalies, the integration of 

interactive features that allow users to easily drill down from general overviews to specific 

raw data points, and the implementation of adaptive user interfaces that adjust the level of 

detail presented based on the user’s tasks and preferences. 

4.2. Recognition 

After interpreting the graphic elements of displayed patterns, decision-makers 

begin the recognition process by matching these elements with visual memories stored in 

their minds (Ltifi et al., 2020), a comparison fundamental to understanding and interpreting 

the data presented. Zheng et al. (2016) discuss how the recognition process involves not 

just a simple recall but a complex pairing with various appearances of the display, such as 

changes in size, orientation, and lighting (Ltifi et al., 2020), which can significantly affect 

the interpretation of visual data. 

The nature of these representations is such that they can evoke multiple 

interpretations, underscoring the importance of designing visualizations that are clear yet 

flexible enough to be understood under various conditions. Recognizable elements within 

these patterns play a crucial role in enhancing their memorability. According to Borkin et 

al. (2016), the more distinct and easily identifiable these elements are, the more likely they 

are to be remembered by the viewer. For instance, distinct color contrasts or unusual shapes 

can stand out more in the cognitive process, making them more memorable and easier to 

recognize in future contexts. Borkin and colleagues provide examples of how 

visualizations designed with these principles in mind not only aid in immediate recognition 

but also ensure that key information is recalled accurately when needed, thereby supporting 

effective decision-making (Borkin et al., 2016). 

This exploration into the recognition phase highlights the interplay between human 

cognitive capabilities and effective visualization design. Ensuring that visualizations align 

with perceptual and cognitive patterns not only enhances the immediate understanding of 
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data but also supports the long-term retention and recall of critical information, facilitating 

a more informed decision-making process. 

4.3. Reasoning 

4.3.1. Reasoning about Correlation, Causation, Association 

Causal reasoning is a fundamental pillar of human cognition, essential for 

navigating and understanding the complexities of the world. It underlines our ability to 

discover relationships between causes and effects, guiding our predictions, diagnoses, and 

decisions. This cognitive ability allows individuals to plan actions and solve problems by 

leveraging an understanding of cause-effect dynamics (Sloman, 2005; Waldmann, 2017). 

Although philosophers have long studied causal reasoning, offering profound theoretical 

insights, it has also been categorized as merely a facet of broader cognitive abilities like 

logical thinking or associative learning, rather than a distinct domain (Hagmayer & 

Waldmann, 2002; Waldmann & Hagmayer, 2013). 

Alternate Theories of Causality 

Starting all the way from philosopher David Hume, who argued that causal 

relationships are simply illusions we deduce from our observations (Hume, 1748), causality 

and causal reasoning has long been the subject of debate. Associative theories have 

explained such relationships as covariation (Waldmann & Hagmayer, 1992). Dividing 

events into cues and outcomes, these models focus on the temporal nature of these factors 

as the differentiator. However, research over the past two decades has shown that these 

theories fail to include directionality (Waldmann & Holyoak, 1992), which is a critical 

component of causality, as well as explaining the distinction between causal and non-causal 

triggers (Cheng, 1997). 

Logical theories categorize causal reasoning as a sub-category of deductive 

reasoning. Mental Model Theory of Causation (Goldvarg & Johnson-Laird, 2001) assumes 

a deterministic approach to causality and asserts that humans develop mental models of the 

potential relationships between factor elements. Expanding Hume’s perspective (1748), 

these cause-and-effect elements are also differentiated through temporal priority. However, 
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this introduces problems, given that according to Mental Model Theory of Causation, 

causation (A causes B) would be modeled the same as co-occurrence (if A, then B) 

(Waldmann & Hagmayer, 2013). Similar to associative theories, logical theories also fail 

to address causal directionality (Waldmann & Hagmayer, 2013). 

A third group of alternative theories that attempted to explain causal reasoning as 

part of a non-causal framework were probabilistic. Probabilistic theories do refer to cause 

and effect directionality within covariations, although in a strictly statistical manner, 

somewhat paving the way for the development of causal theories (Waldmann & Hagmayer, 

2013). One of the leaders of attempting to condense causal relationships within 

probabilistic theories was H. H. Kelley (1973), who posited that humans go through an 

internal statistical analysis process, reminiscent of an Analysis of Variance (ANOVA), 

helping to infer causal relationships. However, as one may postulate, this internal analysis 

is subject to computational limitations of the human mind, especially given the complexity 

of real-life problems with multiple, often confounding, causes (Waldmann & Hagmayer, 

2013). 

Causal Reasoning in Cognitive Science 

In the realm of cognitive psychology, causal reasoning has emerged as a critical 

area of study, particularly in how it enables humans to predict and influence their 

environments. This competency involves not only understanding the sequences and 

consequences of events but also applying this knowledge to effect change and anticipate 

future outcomes. Historically, while causal reasoning has been a subject of philosophical 

inquiry, its practical implications in everyday human actions — such as how we relate 

actions to outcomes — have only recently been emphasized in psychological research. 

These insights reveal that our interactions with the world are heavily predicated on our 

interpretations of causality, which inform our actions and decisions in profound ways 

(Sloman, 2005; Waldmann, 2017). 

Causal relationships have long been depicted through visual mediums, from 

philosophy (Reichenbach, 1956) to the realms of data mining and artificial intelligence, 

where they form the basis of Bayes net theory (Pearl, 1988, 2009; Spirtes et al., 1993). 
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However, Waldmann and Hagmayer (2013) argue that Bayes net theory is not fully 

applicable to psychology, preferring instead to frame it within a broader "Causal Model" 

context (Figure 4.2). In the graphical representation of causal relationships, the use of 

arrows is critical, as they not only signify causality but also directionality. Additionally, 

the design of these representations must account for human sensitivity to causal power 

(Buehner & May, 2003; Hagmayer et al., 2007) and causal structure (Hagmayer & Meder, 

2013; Rehder, 2003; Rehder & Hastie, 2001), both of which are essential for accurately 

conveying the dynamics of causal interactions. 

 

Figure 4.2 Examples of causal models (common effect, common cause, and 

causal chain model) 
Source: “Causal Reasoning” by M. R. Waldmann and Y. Hagmayer, 2013, The Oxford Handbook of 

Cognitive Psychology 

Waldmann (1996) highlights that causal reasoning often leverages prior knowledge 

in a top-down manner, where hypotheses are formulated based on variables like prior 

experiences, interventions, and the sequence of events. Although the temporal sequence —

where causes precede effects — is traditionally paramount in causal reasoning, prior 

knowledge can sometimes take precedence, potentially overriding chronological 

considerations if it is deemed relevant and reliable (Waldmann & Hagmayer, 2013). This 

integration of prior knowledge, however, presents challenges, as it requires careful 

judgment about when and how to allow this knowledge to supersede observed temporal 

sequences based on confidence in its applicability and efficacy. 

The interplay of prior knowledge with causal reasoning is particularly relevant in 

complex decision-making frameworks, where decisions are not isolated but are part of a 

hierarchical structure of multiple, often simultaneous decisions. Zylberberg et al. (2021) 

investigates this complexity by studying how individuals navigate through hierarchical 
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decision processes. Their research, which combines perceptual decision-making with 

hierarchical and counterfactual reasoning, demonstrates how earlier decisions, and the 

confidence placed in them, significantly influence subsequent choices. This finding 

illustrates the pivotal role of causal reasoning in structuring complex decision-making 

scenarios into a sequence of interlinked decisions, where each step is informed by the 

outcomes and understandings derived from previous ones (Zylberberg et al., 2021). 

4.3.2. Causal Reasoning and Decision Making 

Causal reasoning fundamentally shapes how individuals engage with complicated 

decision-making processes by providing a framework through which to understand and 

manipulate environmental and systemic variables. This cognitive process enables decision-

makers to anticipate outcomes and tailor their strategies, accordingly, making it a critical 

component of effective decision-making across various domains. 

Research by Hagmayer and Sloman (2009) underscores the preference that 

individuals have for causal mechanisms over statistical correlations in decision-making. 

They illustrate that decision-makers not only seek to understand causal relationships but 

also strive to influence outcomes directly by manipulating variables they identify as causal 

agents. This approach to decision-making highlights a cognitive preference towards 

causality, suggesting that decision-makers are proactive agents who utilize causal 

understanding to shape their environment effectively (Hagmayer & Sloman, 2009). Akin 

to Klein’s (Klein, 1993; Klein et al., 2017) perspective, Hagmayer and Sloman (2009, pp. 

34) posit that if an expert possesses sufficient knowledge given the circumstances, the 

causal reasoning process is not required for sensemaking, and actions are taken 

immediately. 

Furthering this perspective, Hagmayer and Meder (2013) explore how causal 

beliefs about the world guide the generation of hypotheses and the planning of actions, 

particularly in settings characterized by uncertainty. Their findings reveal that causal 

knowledge is not passively applied but actively used to construct potential interventions 

and predict their effects, thus enhancing the decision-making process (Hagmayer & Meder, 

2013). This active use of causal reasoning is crucial in environments where outcomes are 
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not immediately apparent, requiring decision-makers to rely on their understanding of 

causal dynamics to navigate uncertainty and achieve desired outcomes. 

The insights provided by these studies enrich our understanding of the pivotal role 

of causal reasoning in decision-making. Understanding the causal structure of a problem 

allows individuals to not only predict consequences more accurately but also adapt their 

strategies to align with evolving conditions. This dynamic approach to decision-making, 

grounded in causal reasoning, offers substantial advantages in complex scenarios where 

outcomes depend on the interplay of multiple factors, and simple correlations do not suffice 

for making informed decisions (Hagmayer & Sloman, 2009; Hagmayer & Meder, 2013). 

By emphasizing the proactive and dynamic utilization of causal knowledge, they highlight 

how integral causal reasoning is to navigating complex decision-making landscapes 

effectively. 

Causal-Explanation-Based Decision-Making Framework 

The Causal-Explanation-Based Decision-Making (CDM) Framework provides a 

comprehensive method for leveraging causal reasoning in complex decision-making 

scenarios, particularly within clinical contexts (Hagmayer & Witteman, 2017). This 

framework systematically incorporates causal analysis to optimize the outcomes of 

interventions. By grounding decision-making in causal reasoning, the framework enhances 

the predictability and effectiveness of interventions, offering a structured pathway through 

the often-chaotic landscape of clinical decision-making. 

The initial steps of the CDM Framework involve a meticulous preparation process 

that sets the stage for informed decision-making. Step one involves deciding whether a 

causal analysis could potentially improve decision outcomes, a determination that is critical 

as it dictates the applicability of the entire framework to the specific decision scenario 

(Hagmayer & Witteman, 2017, pp. 116-119). If a causal analysis is deemed beneficial, step 

two progresses to developing a detailed causal explanation for the identified problem 

(Hagmayer & Witteman, 2017, pp. 119-121). This causal mapping not only aids in 

understanding the problem more thoroughly but also serves as the foundation for 

subsequent interventions. Step three then evaluates the utility of possible interventions that 
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could be applied based on the developed causal explanation (Hagmayer & Witteman, 2017, 

pp. 121-122). This evaluation is crucial as it ensures that any selected intervention is 

backed by a robust causal rationale, thereby increasing the likelihood of its success. 

Step four of the CDM Framework involves the selection and implementation of an 

intervention that has been deemed most suitable based on the thorough causal analysis 

conducted in the preceding steps (Hagmayer & Witteman, 2017, pp. 122-123). This step is 

particularly critical because it encapsulates the decision-making process where 

interventions are not just chosen based on causal efficacy but also on the basis of 

maximizing expected utility (Nozick, 1994). Expected utility in this context refers to the 

comprehensive evaluation of potential outcomes, both positive and negative, weighed by 

their likelihood and the value or impact they hold for the patient or situation. However, it 

is essential to recognize that Expected Utility Theory is not the only framework for 

comprehending decision-making under uncertainty.  

Kahneman and Tversky's (1979) Prospect Theory provides an alternative 

perspective, suggesting that individuals assign different values to gains and losses, 

resulting in decisions that diverge from those anticipated by traditional utility theories. This 

theory emphasizes that individuals are more significantly impacted by losses than by 

equivalent gains, a phenomenon known as "loss aversion." It also explains how the 

perceived probability of outcomes can be distorted by the decision-maker's perception, 

influencing their decisions in risk-laden situations. 

The intervention chosen in Step 4 of the CDM framework must be supported by 

robust causal inferences, ensuring that it is not only actionable and appropriate within the 

specific context but also optimizes the balance between benefits and risks. This 

optimization is crucial, particularly in complex or high-stakes clinical environments where 

the consequences of decisions can significantly impact patient outcomes, or organizations 

where decisions can result in the loss of financial value and therefore, jobs (Mariano & 

Baker, 2024). Furthermore, this step's focus on expected utility emphasizes the need for 

decisions to be made with a deep understanding of their probable impacts, enhancing the 

decision-making process's overall integrity and effectiveness. 
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Following the implementation of the chosen intervention, step five involves a 

critical re-evaluation of the causal model based on the outcomes achieved (Hagmayer & 

Witteman, 2017, pp. 124-125). This reassessment allows for the empirical feedback 

necessary to refine the decision-making process, ensuring that it remains responsive to new 

insights and results. By rigorously assessing and reporting the consequences of the 

intervention, decision-makers can ensure that their actions remain aligned with the latest 

clinical evidence and practice standards, thereby maintaining the dynamic and responsive 

nature of the decision-making process within clinical settings. 

Although causal reasoning and causal theory help describe the process carried out 

by humans when making decisions, they are inherently subject to biases and assumptions. 

Hagmayer and Waldmann (2002) showed that temporal assumptions regarding the cause-

and-effect variables within a system can drastically influence how causal relationships are 

identified and judged, by determining which statistical indicators are deemed appropriate 

for establishing causality. If viewed from an organizational decision-making perspective, 

this results in individual decision processes and mental models that do not align with one 

another. 

This integration of hierarchical decision processes and the strategic use of prior 

knowledge within causal reasoning frameworks underscores the need for tools and 

approaches that can adeptly handle the distinctions of both temporal dynamics and 

experiential insights. It highlights the essential nature of confidence and knowledge in 

shaping the pathways through which decisions unfold, ultimately influencing the efficacy 

and outcomes of the decision-making process. 

4.4. Role of Working Memory in Decision Making 

Working memory, the cognitive system that holds and manipulates information for 

a brief period of time, is fundamentally connected to the concept of cognitive load, which 

signifies the total mental effort required by working memory. Understanding the interplay 

between cognitive load and working memory is fundamental for the design of effective 

visualization tools in decision-making contexts. Cognitive load refers to the total mental 
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effort required to process information within working memory, and it is classified into three 

distinct types: intrinsic, extraneous, and germane (Orru & Longo, 2019; Sweller, 1988; 

Sweller, 2011). Intrinsic load relates to the inherent complexity of the information itself, 

such as predictive sales data, field inventory levels, cold storage inventory, and confirmed 

orders in sweet potato packing. This complexity is usually fixed and cannot be easily 

modified (Sweller, 2011, pp. 57). Extraneous load, however, is generated by the way 

information is presented. Reducing extraneous load through clear, user-centered 

visualizations and by eliminating unnecessary data or processes allows users to process 

information more efficiently (Sweller, 2011, pp. 63). This enables users to concentrate their 

cognitive resources on understanding and analyzing data rather than interpreting its 

presentation, or decoding. Germane load refers to the mental effort invested in processing 

and comprehending information, which can be optimized by designing tools that facilitate 

the creation and automation of cognitive schemas (Paas & Van Merriënboer, 1994; 

Sweller, 2011). Schemas are mental frameworks that help in organizing and interpreting 

information, thereby supporting deeper understanding and learning. Effective visualization 

tools should not only present data clearly, in an attempt to reduce extraneous load, but also 

encourage the development and refinement of these schemas, thereby enhancing users' 

ability to process and retain complex information, enabling more informed and effective 

decision-making (Paas et al., 2003). 

4.4.1. Working Memory and Dual-Process Models 

Addressing the gaps in previous research on how visualizations aid decision-

making, Padilla and colleagues (2018) explored the well-known dual-process model of 

decision-making, bearing similarity to Kahneman’s System 1 and System 2 thinking 

(Morewedge & Kahneman, 2010). This model outlines two distinct types of cognitive 

processes: Type 1 for rapid, simple decisions, and Type 2 for slower, more complex 

decisions (Padilla et al., 2018, pp. 2). While some researchers support this clear distinction, 

others, such as Evans (2008), have argued for the boundaries between these types to be 

more ambiguous (Padilla et al., 2018, pp. 3). A significant contribution from Padilla et al., 

is their proposed model (illustrated in Figure 4.3), which integrates the role of working 

memory and cognitive load in decision-making. According to their findings, Type 1 
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decisions require less working memory due to their simplicity, whereas Type 2 decisions 

consume more working memory resources, due to their complexity (Padilla et al., 2018). 

Furthermore, working memory is essential for keeping track of conceptual questions and 

synthesizing messages from visual stimuli, which directly impacts decision-making and 

behavior (Figure 4.3). This model underscores the importance of considering working 

memory in the design of decision-support visualizations, aiming to enhance their 

effectiveness. 

 

Figure 4.3 The model proposed by Padilla and colleagues (2018), which shows 

how working memory plays a role in visualization decision making 
Source: “Decision making with visualizations: a cognitive framework across disciplines” by L. M. Padilla, 

S. H. Creem-Regehr, M. Hegarty, J. K. Stefanucci, 2018, Cognitive Research: Principles and Implications, 

pp. 5 

In their exploration of working memory's impact on decision-making, Fletcher, 

Marks, and Hine (2011) demonstrate that individuals with higher Working Memory 

Capacity (WMC) exhibit superior performance in tasks that demand logical reasoning and 

syllogistic deductions, showing the impact of WMC utilization on reasoning ability. This 

higher capacity allows them to better retain and manipulate multiple pieces of information 

simultaneously, enhancing their ability to follow complex argument structures and arrive 

at correct conclusions more consistently. Furthermore, these individuals show greater 

resistance to common cognitive biases associated with probabilistic reasoning, such as the 

gambler’s fallacy, where a person might incorrectly assume that past random events affect 

future probabilities (Fletcher et al., 2011). The ability to avoid such biases is crucial in 
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high-stakes decision-making environments where erroneous assumptions can lead to 

significant consequences. These findings illuminate the critical role of working memory in 

the cognitive processes that drive rational decision-making, underscoring the necessity to 

utilize it effectively and not overload it with redundant information (Fletcher et al., 2011). 

In the context of sweet potato packing, both GA and MI need to constantly monitor 

and interpret visual cues from predictive sales data, inventory levels in the fields, cold 

storage inventory, and confirmed current or future orders to make strategic decisions. 

Visualization tools can assist their working memory by allowing them to manage multiple 

scenarios based on metrics such as profit (revenue - cost). By offloading some of the 

cognitive burden involved in tracking these scenarios, these tools free up mental capacity 

for higher-level reasoning and comparison, allowing users to identify potential biases in 

the process. This enables GA and MI to visually compare various strategies and outcomes, 

focusing on in-depth analysis and making more informed decisions to maximize utility. 

4.5. Cognitive Fit Theory 

Cognitive Fit Theory, initially introduced by Vessey and Galletta in the early 1990s 

(Vessey, 1991; Vessey and Galletta, 1991), posits that decision-making effectiveness is 

significantly enhanced when there is a congruence between the information presentation 

format and the cognitive demands of the task (Nuamah et al., 2020). This theory, rooted in 

information processing principles, argues that the quality and speed of decisions are 

optimized when the presentation style aligns with the cognitive processes required by the 

task, a concept known as 'cognitive fit'. Shaft and Vessey (2006) propose that matching 

internal and external representations with the problem-solving task helps create a mental 

representation that improves problem-solving. This framework has gained substantial 

traction in fields like management information systems and decision support systems, 

where the design of optimal interfaces can significantly influence user outcomes. 

The theory classifies tasks into two primary types: spatial and symbolic (Vessey 

and Galletta, 1991, pp. 68-69). Each type benefits differently from the specific modes of 

information representation. Spatial tasks, which involve the visualization and manipulation 
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of spatial information, are better supported by graphical representations that highlight 

relationships through visual means, such as charts and maps. Conversely, symbolic tasks, 

which rely on the processing and understanding of numerical or textual data, are more 

effectively executed with tabular representations where data can be organized and 

examined in a structured format. This classification of task and representation type 

emphasizes the importance of aligning cognitive demands with the appropriate visual aids 

to optimize decision-making efficiency. 

Cognitive Fit Theory aligns closely with established cognitive science paradigms 

by emphasizing the critical role of working memory in decision-making. The theory posits 

that decision-making efficacy is greatly enhanced when the format of information 

presentation is congruent with the cognitive requirements of the task (Vessey and Galletta, 

1991, pp. 65-68). This congruence reduces cognitive load, allowing for a more efficient 

use of working memory. This relationship is particularly relevant to Pirolli and Card’s 

sensemaking model (1995, 1999), which focuses on how individuals organize and process 

information to make sense of complex data. By optimizing the match between task 

demands and information format, Cognitive Fit Theory supports the sensemaking process, 

enabling more effective navigation through information and aiding the decision-maker in 

reaching conclusions with greater clarity and speed. 

Building on Cognitive Fit Theory, Bina et al. (2023) demonstrate how modern 

visualization techniques such as interactive dashboards and augmented reality can optimize 

decision-making by ensuring a cognitive fit between the user and data presentation. They 

detail how dashboards, by clearly distinguishing between data trends and anomalies, 

empower decision-makers to rapidly adjust operational strategies based on real-time 

insights. This alignment of information format with the user's cognitive processes is 

essential, as it significantly reduces cognitive load and leads to faster, more precise 

decisions (Bina et al., 2023). Furthermore, the application of augmented reality in 

visualization overlays complex datasets onto physical environments, enhancing spatial 

context comprehension and matching the data presentation with the decision-maker’s 

innate perceptual abilities. 
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Bina et al. (2023) also explore how certain evolutionary traits, such as the capability 

to recognize faces and emotions quickly, illustrate the benefits of integrating cognitive 

theories in visualization design. The geon theory, which focuses on object recognition 

based on geometric ions, or geons, suggests that simple, easily recognizable shapes form 

the basis of visual perception (Biederman, 1987). Applying this theory to 3-D surface 

graphs, where navigation is dependent on recognizing shapes and patterns, can enhance the 

speed and accuracy of data interpretation. However, the effectiveness of these 

evolutionary-derived capabilities in navigating these visual representations is specific to 

particular tasks. This clear understanding underscores the need to tailor visualization tools 

to specific decision-making contexts, ensuring they align with both the cognitive fit and 

the innate perceptual skills shaped by evolutionary processes. 

It is evident that the Cognitive Fit Theory not only facilitates a deeper 

understanding of how different tasks benefit from tailored visualizations but also highlights 

the practical implications for designing decision support systems. For spatial tasks, 

graphical displays can enhance comprehension and pattern recognition, speeding up the 

decision process by presenting information in a way that is immediately interpretable (Joshi 

et al., 2012). For symbolic tasks, tables facilitate detailed comparison and straightforward 

access to specific data points, thereby supporting thorough analysis and precise decision-

making. This understanding of task-specific information presentation is pivotal in 

developing effective tools for a wide array of decision-making scenarios, ensuring that the 

cognitive resources of the user are optimally employed (Hammond et al., 1987, pp. 767). 

This evolving landscape of visualization tools emphasizes the need for interfaces 

that not only display data but also facilitate understanding of complex information systems. 

This approach ensures that visualization tools are not merely informative but are 

instrumental in enhancing decision-making efficiency and effectiveness. 

4.6. Bounded Rationality Theory 

Bounded rationality is a theory that suggests individuals operate within the 

constraints of limited information, time, and cognitive limitations when making decisions 
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(Hochbaum & Levin, 2006; Lunenburg, 2010; Sent, 2018; Simon, 1955). This theory 

acknowledges that decision-makers often must make quick, yet well-considered choices 

based on their limited understanding of a situation (Arend, 2002). It also indicates that 

individuals employ heuristics to resolve decision problems, thereby underscoring the 

importance of accounting for personal variations in knowledge visualization and decision-

making processes (Hochbaum & Levin, 2006, pp. 161).  

Originating from the work of Herbert A. Simon (1955), bounded rationality 

contests the notion of absolute rationality that is often assumed in models of economic and 

political behavior. Instead of striving for the optimal solution, individuals sometimes settle 

for a satisfactory one that meets their adequacy criteria. This approach reflects the practical 

difficulties individuals face, such as the complexity of the situation and the finite resources 

available for processing information, positing that humans do not carry out a 

comprehensive cost-and-benefit analysis and simply satisfice once an optimal solution is 

identified (Campitelli & Gobert, 2010). Simon's analogy of a pair of scissors, with one 

blade symbolizing human cognitive limitations and the other representing the 

environmental structure, demonstrates how people leverage environmental cues to navigate 

their cognitive constraints (Gigerenzer & Selten, 2002). An everyday example of bounded 

rationality in action is a diner in a restaurant who makes a hasty food choice under the 

pressure of a waiting server, indicating that the decision was influenced more by situational 

constraints than by a thorough evaluation of all available options. 

The theory of bounded rationality is enriched by the exploration of heuristics, which 

individuals rely on to make decisions under uncertainty. Traditional rational choice theory 

suggests that decisions are made through an exhaustive optimization process; however, the 

reality often involves using heuristics that simplify decision-making. Anchoring and 

adjustment is a heuristic where initial information or values serve as an 'anchor', and 

subsequent judgments are adjusted based on this anchor, despite the relevance or additional 

incoming data (Zenko et al., 2016). This can lead to biases if the anchor is based on 

irrelevant information. Similarly, the availability heuristic causes individuals to 

overestimate the probability of events that are more memorable or vivid, while the 
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representativeness heuristic leads to judgments based on how much a scenario resembles a 

typical case, often neglecting important statistical details such as base rates or sample sizes. 

The collaborative research of Daniel Kahneman and Amos Tversky further 

explores the implications of bounded rationality, particularly in the field of psychology 

(Kahneman, 2003a, 2003b; Tversky & Kahneman, 1974, 1986). Unlike Simon, who 

primarily focused on the theoretical aspects of decision-making limitations due to cognitive 

constraints, Kahneman and Tversky provided empirical evidence illustrating specific 

biases and heuristics that people routinely employ. Their work extensively documented 

phenomena such as the framing effect (Tversky & Kahneman, 1986), where the way 

information is presented significantly influences decisions, and loss aversion, where the 

fear of losses predominates over the potential for equivalent gains. By highlighting these 

cognitive biases, Kahneman and Tversky shifted the focus from purely theoretical models 

of decision-making to more practical, observable behaviors that reflect the imperfections 

and irregularities of human reasoning. Their contributions have profoundly influenced not 

only psychology but also economics, leading to the development of behavioral economics, 

which integrates psychological insights into economic theory. 

Understanding bounded rationality is crucial when designing visualizations for 

decision-making. Visual tools must account for human cognitive limits and aim to present 

information in ways that align with mental processes. Effective visualizations can help 

mitigate biases introduced by heuristics like availability and representativeness by clearly 

presenting statistical information and contextual data that might not be immediately 

evident. By accommodating the cognitive styles outlined in bounded rationality theory, 

visualizations can enhance decision-making efficiency and accuracy, making complex 

information more accessible and comprehensible for decision-makers navigating 

complicated scenarios. 

4.7. Toulmin’s Argumentation Model 

Stephen Toulmin's model, introduced in his 1958 work "The Uses of Argument," 

provides a structured framework for evaluating arguments, that reflects real-world 
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complexities, paralleling the Socratic method's rigorous, dialogue-based inquiry. The 

Socratic method enhances understanding through a continuous cycle of probing questions 

that uncover underlying logic, similar to how Toulmin's framework critically examines 

reasoning and context. Both methods emphasize adapting to the situation at hand, 

recognizing that the relevance and standards of reasoning can vary depending on the 

context. 

Continuing this analysis, Toulmin critiques the narrow scope of contemporary 

formal logic (1958), which often fails to capture the subtleties of everyday argumentation. 

He advocates for a contextual approach where the standards of reasoning are tailored to the 

specific issues being addressed, broadening the applicability of logical analysis, and 

aligning it with the practical, real-world application of philosophical inquiry (Figure 4.5). 

This captures the dynamic and varied nature of how arguments are constructed and 

understood in different contexts. The effectiveness of Toulmin’s model has been displayed 

by numerous researchers, both in the general domain of decision making (Fox & Modgil, 

2006; Reed & Rowe, 2005; Rieke & Sillars, 1975), as well fields requiring robust 

justification of decisions (Polacsek et al., 2018), as it allows for standards that reflect the 

complexities of specific contexts. 

Toulmin’s model systematically outlines six components of an argument: claim, 

data, warrant, backing, qualifier, and rebuttal (Bubakr &. Baker, 2020; Rubin & Benbasat, 

2023; pp. 22:4-5; Toulmin, 1958; van Eemeren et al., 2014). The claim in Toulmin's model 

is the primary assertion or conclusion being argued for, supported by data which provides 

the factual basis. The warrant then acts as the logical link that connects this data to the 

claim, establishing the grounds on which the claim is deemed valid. To further solidify the 

warrant, backing is used to clarify the conditions under which the warrant holds, enhancing 

the argument's strength by detailing its operational framework. The qualifier modifies the 

scope of the claim, indicating the degree of certainty and setting boundaries on its general 

applicability, which manages expectations and maintains integrity. Lastly, the rebuttal 

addresses potential objections to the claim, highlighting scenarios where the argument 

might not hold true. The basic structure of Toulmin’s model is presented in Figure 4.4 and 



70 

the representation of an argument in the form of Toulmin’s model is presented in Figure 

4.5. 

 

Figure 4.4 Basic structure of Toulmin’s model of argumentation 
Source: “Using Toulmin's Argumentation Model to Enhance Trust in Analytics-Based Advice Giving 

Systems” by E. Rubin and I. Benbasat, 2023, ACM Transactions on Management Information Systems, 14, 

pp. 22:5 

 

Figure 4.5 Example of an argument represented in Toulmin’s model 
Source: “Toulmin’s Model of Argumentation” by F. H. van Eemeren, B. Gartssen, E. C. W. Krabbe, A. F. 

Henkemans, B. Verheij, J. H. M. Wagemans, 2014, Handbook of Argumentation Theory 

Toulmin's model offers a structured methodology of causal reasoning to trace how 

conclusions are drawn from data, elucidating the underlying assumptions (warrants) and 
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conditions (qualifiers and rebuttals) that justify these conclusions. This detailed breakdown 

enhances transparency, allowing decision-makers and stakeholders to explore the causal 

pathways that lead to certain decisions. Such clarity is crucial for validating the logical 

soundness of decisions, ensuring they are based on solid reasoning and are defensible under 

scrutiny. 

Diagramming these components in Toulmin's model involves using arrows to 

indicate the directionality of support and influence among the argument's elements (Reed 

et al., 2007). These arrows serve as visual cues that guide the viewer through the flow of 

reasoning, from data to claim through warrants, much like how arrows in causal diagrams 

signify the direction of causality. This visual method not only aids in understanding the 

logical structure of the argument but also highlights the relationships between the 

components, making it easier to see how data supports the claim, how warrants justify the 

connection, and how qualifiers and rebuttals modify or challenge the argument’s main 

assertion. 

Despite the effectiveness of this approach in illustrating argument flows and 

structure, early representations of Toulmin’s model in diagrams did not encapsulate nodes 

within circular or square shapes, a practice that helps in collapsing complex information 

into single, easily navigable nodes. Decisions that have a large number of nodes may 

benefit from Shneiderman’s (1996) “overview first, zoom and filter, details on demand” 

mantra. Incorporating especially the “details on demand” mantra into Toulmin’s model of 

argumentation, the nodes could be more effectively identified and arranged if they are 

encapsulated. By containing textual elements within shapes, the visual representation 

conforms to Gestalt principles such as proximity and closure, which suggest that elements 

grouped together within a defined area are perceived as a collective whole, this 

encapsulation may facilitate cognitive processing by reducing the effort needed to interpret 

and navigate between disparate pieces of information, thereby enhancing the overall 

comprehensibility of the argument structure. As such, incorporating these principles into 

diagrammatic representations of Toulmin’s model could further aid in reducing cognitive 

load and improving the clarity and effectiveness of visual argument analysis. 
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To synthesize the cognitive science theories discussed and their relevance to the 

development of guidelines presented in Chapter 6, Table 4.1 outlines each concept, 

provides a brief description, and explains how it informs the design and functionality of 

visualization tools. 
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Table 4.1 Cognitive Science concepts and theories covered in Chapter 4 

Topic Description Implications 

Sensemaking 

Effort to 

understand events 

and integrate them 

into a coherent 

mental model. 

Align visualization tools with users' natural cognitive 

processes, facilitating data interpretation and 

decision-making. 

Data Frame 

Theory 

Organizing and 

interpreting 

information based 

on iterative frames. 

Design visualizations that enable the user to 

iteratively seek patterns, developing or specifying the 

‘frame’ with each iteration. 

Information 

Foraging 

Navigating through 

visual data to 

identify relevant 

pieces, organize 

them into coherent 

insights. 

Guide the design of interactive visualizations to 

enable efficient navigation and retrieval of relevant 

data, enhancing decision efficiency. 

Gisting 

Extracting the 

essence or main 

point of 

information. 

Design visualizations that quickly convey key 

insights, reducing cognitive load and aiding rapid 

decision-making. 

Recognition 

Identifying 

patterns in data 

through matching 

visual elements 

with stored visual 

memories. 

Create visualizations that highlight significant 

patterns, making it easier for users to detect trends 

and anomalies, and make informed decisions. 

Reasoning 

Understanding 

cause-and-effect 

relationships. 

Integrate causal diagrams to help users understand the 

implications of their choices and anticipate outcomes, 

enhancing strategic decision-making. 

Working 

Memory 

Holding and 

manipulating 

information 

temporarily. 

Develop visualizations that allow scenario exploration 

and comparison, offloading this typically-mental 

process. 

Cognitive Fit 

Theory 

Matching 

visualization tools 

to tasks and 

cognitive styles. 

Customize visualization tools to align with specific 

tasks and users’ mental models, improving usability 

and decision-making effectiveness. 

Bounded 

Rationality 

Theory 

Making decisions 

with limited 

information and 

capacity. 

Inform users about the factors considered in decisions 

through a causal diagram prepared through multi-

stakeholder elicitation. 

Toulmin’s 

Argumentation 

Model 

Structuring and 

evaluating 

arguments in 

decision-making. 

Designs tools that support structured argumentation 

and logical reasoning, helping users construct and 

evaluate arguments to justify their decisions. 
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Chapter 5.  

 

Literature Review 

What types of visualizations have been developed and published in 

academic journals in the past 15 years, and how do such visualizations 

address the process of decision-making, beyond analytics and data? 

This chapter outlines the methodology used to answer RQ3 by systematically 

searching, retrieving, and analyzing relevant literature on recently published visualization 

tools. The process includes defining keywords, selecting appropriate databases, applying 

inclusion and exclusion criteria, and conducting a thorough analysis of the filtered 

literature. This structured approach ensures a comprehensive review of the most relevant 

and current visualization tools to understand their effectiveness and potential for 

improvement. 

5.1. Methodology 

5.1.1. Search Criteria 

The main literature search was conducted in April 2024. A second search was 

conducted on June 15, 2024, to include any recently published articles that may be 

pertinent. The main search was conducted on PubMed and Science Direct, and ““decision” 

“visualization tool” “agriculture”” was used as the search prompt, in order to better filter 

the results. 

Given that PubMed and ScienceDirect are not exhaustive databases (Shariff et al., 

2013; Shultz, 2007), secondary searches were conducted on Google Scholar. The following 

keywords were used for the complementary searches: “decision visualization”, 

“organizational decision making”, “technology decision making visual”, “decision 

diagrams”, “causal reasoning decision making”, “causal loop diagram decision”, “causal 

decision diagrams”, “visual decision argumentation”. The following keywords were also 
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initially utilized, however did not result in any relative literature: “causal visual 

expression”, “causal visualization”, “causality visualization”. 

5.1.2. Filtering Process 

Only literature published in English were included, and a filter was set to only 

include literature published in the last 15 years (2009 - 2024). Review papers were 

excluded in both searches. The search on PubMed resulted in a total of 86 papers, whereas 

the ScienceDirect search resulted in 590 papers. Duplicate papers and review papers with 

no new tool or method contributions were excluded. The remaining papers were manually 

filtered, excluding ones that don’t contain a visualization tool for decision-making. 13 

papers, found through the complementary Google Scholar searches, that fit the selection 

criteria and were deemed relevant were included in the analysis. The complementary 

searches were carefully filtered to leave out grey literature, a known shortcoming of Google 

Scholar given its “full-text searching” feature (Shultz, 2007).  

Following the initial scan of the titles of papers, the analysis continued with an 

overview of the Abstracts. From the filtered literature, a secondary selection was conducted 

based on whether a paper presented or discussed a visualization method or tool for 

decision-making. Literature that discussed sense-making from visualizations for decision-

making purposes, as well as visualizations that attempt to capture or support causal 

argumentation were also selected, given they fit the inclusion criteria. Figure 5.1 presents 

the flow diagram of the literature search and filtering process. 
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Figure 5.1 Flow diagram of the literature search, filtering, and results 

5.1.3. Data Coding and Analysis 

The reviewed papers were categorized based on the following variables: 

Relative Field or Industry 

For example: Healthcare, Business, Finance, Agriculture, General 

Data Visualization Used 

For example: scatter plot, line chart, decision tree, Influence Diagram, novel 

visualization (developed by the authors), multiple. 
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Interactivity (Yes/No) 

Definition: Interactivity refers to the degree to which users can manipulate and 

engage with the visualization tool. This includes features that allow users to explore data 

through actions such as clicking, dragging, filtering, and zooming, enabling a dynamic and 

user-driven exploration of information. 

Decision Flow (Yes/No) 

Definition: Decision flow refers to the structured sequence and logic of steps that 

users follow within the visualization tool to arrive at a decision. It involves the 

visualization's ability to guide users through the decision-making process in a coherent and 

logical manner, supporting both linear and non-linear decision pathways. 

Causality (Yes/No) 

Definition: Causality in visualization tools denotes the capability to represent 

cause-and-effect relationships within the data. This includes visual elements that help users 

understand how different variables interact and influence one another, facilitating insights 

into the underlying causal mechanisms that drive observed outcomes. 

Temporality (Yes/No) 

Definition: Temporality involves the inclusion of time-sensitive data or processes 

within the visualization. This aspect ensures that users can view and analyze data over 

different time periods, understanding trends, changes, and the impact of time on various 

data points. 

5.1.4. Methodological Limitations 

The diverse academic fields and subjects covered in these studies, along with the 

varied nature of data visualization tools, made achieving uniformity in methodologies and 

outcome measures challenging. This variability underscores the highly purpose-driven 

nature of visualization tools. The current study sought to identify commonalities among 

these tools by examining key variables, attempting to categorize them as accurately as 

possible. However, it is important to note that these categories often lack distinct 

boundaries. For instance, while one visualization tool may feature highly advanced 
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interactivity, another might only offer basic click interactions. This variability illustrates 

the spectrum of interactivity and other features within visualization tools. 

This review has a specific focus on visualizations that aim to assist the flow of the 

decision-making process, and not visual analytics tools that merely provide outputs that 

direct a decision-maker. Thus, it purposefully overlooks the analytics portion of visual 

analytics, which inherently means the exclusion of studies discussing the data analytics or 

data modelling aspects from the discussion section. Analytics tools are essential for 

decision-making, such as the use of predictive and prescriptive analytics to simulate the 

outcomes of specific actions and optimize resources accordingly (Groot et al., 2012). 

However, given that the purpose of this review is to take on a psychological and cognitive 

perspective of this process, methods specifically designed for data transformation and 

analytics are not considered. 

5.2. Results 

The complete table listing the details of all of the 55 literature identified in the 

literature search is presented in Appendix A – “Results of the systematic literature review” 

(Table A.1). Table 5.1 shows the distribution of the reviewed visualization tools based on 

what specific industry they were designed for, if applicable. Figure 5.2 presents the 

publication frequency of the reviewed literature, and the distribution of the reviewed 

literature based on the four identified criteria (interactivity, decision flow, causality, and 

temporality) is presented in Figure 5.3. 
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Table 5.1 Results of the literature search, categorized by field of study. 

Industry Publications 

agriculture 14 

bioinformatics 1 

city planning 1 

emergency management 1 

environmental 9 

general 9 

healthcare 16 

operations 1 

public health 1 

supply chain 1 

transportation 1 

 

 

 

Figure 5.2 Line chart showing the frequency of the publications 
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Figure 5.3 The distribution of the reviewed literature based on the four identified 

criteria. 

From the 55 reviewed visualization tools, only four satisfied all four criteria that 

we were initially looking for: interactivity, decision flow, causality, and temporality. 

Interaction is without a doubt the most common feature among these visualization tools 

designed for decision making, given that only two out of the 55 did not support continuous 

interaction. Consideration of the temporal aspect of decisions was present in 31 of the 55 

visualization tools, and although some tools’ specific use-cases did not require a temporal 

aspect, there were some that did fail to implement it. Healthcare decision-making tools that 

were mainly designed for diagnostics or patient monitoring were found to be more likely 

to possess temporal features that allowed the user to compare current condition with 

historical data (Forsman et al., 2013; Hargrave et al., 2018; Mandell et al., 2022; Shee et 

al., 2021). 20 of the 55 visualization tools were designed to support causal reasoning, and 

only 8 out of the 55 considered the flow and process of decision making, going beyond the 

presentation and visualization of data (Barnabè, 2011; Diez et al., 2017; Elwyn & Vermunt, 

2020; Hargrave et al., 2018; Hu et al., 2022; Lim et al., 2012; Srinavasan et al., 2021; van 

den Elzen & van Wijk, 2011). These findings further support the research gap identified 

earlier in the thesis. Although all of these visualization tools designed for decision making 
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are inherently complex in one way or another, they largely fall short of addressing the 

perceptual and cognitive needs of decision-makers, as well as facilitating intricate and 

iterative process of reasoning in decision-making. 

The four visualization tools that were found to address all four of these features 

varied in the specific visualizations they employed. For example, OpenMarkov (Diez et 

al., 2017) is an open-source tool that facilitates the creation and evaluation of Markov 

Influence Diagrams through multiple iterations and refinements. One could take inspiration 

from Diez and colleagues (2017) and develop a similar tool for the creation and evaluation 

of more structured causal diagrams for decision-making, such as Causal Loop Diagrams 

(CLD) and Causal Decision Diagrams (CDD). Hu and colleagues (2022) took advantage 

of multiple visualization methods in developing ADAM, such as decision trees and 

geospatial representations of data, to support supply chain optimization decisions. The 

authors suggest that hiding the computational features of the tool, as well as the decision 

trees, behind closed doors allows less-experienced users to be able to utilize the tool more 

effectively (Hu et al., 2022, pp. 7), and instead only present geospatial data to the users. 

Supporting Cognitive Fit Theory, only presenting visual aids that align with the user’s task 

and preferences, in other words, not presenting certain elements of the visualization tool to 

certain users, may increase performance. 

BN IGRT, developed by Hargrave et al. (2022) found Bayesian Networks, matched 

with medical imaging results, to be the best method of visualizing the associative and 

causal relationships in the vast amount of data needed to be processed in medical decision-

making, Hargrave and colleagues (2022) prefer color hue as a differentiator between the 

nodes in the Bayesian Network visualization, as well as using color hue to encode the small 

bar graphs within each node. Lim and colleagues (2012) introduced a new method of 

visualization, which they referred to as “process visualization”, in their paper discussing 

their novel decision-making tool, PSS Board. Although this visualization, which resembles 

a process map incorporated into a table with labeled columns and rows to depict stages in 

the process, is reported to be useful in operational management, it does not integrate data 

to the analyzed process and thus does not address the analytics portion of visual analytics 

in decision-making. This highlights the need for a visualization tool that not only supports 
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the depiction and evaluation of the decision process, along with the essential nodes such as 

actions and outcomes, but also integrates quantitative data that allows either mental or 

computer-based simulation of potential decisions. 
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Chapter 6.  

 

Guidelines for Designing Visual Decision-Support Tools  

This chapter consolidates insights from earlier discussions to construct guidelines, 

designed to enhance the decision-making processes in sweet potato packing, and is meant 

to address RQ4: 

What are the design opportunities (for visualization design) created by 

considering sensemaking and cognitive science theories? 

Understanding how visualization tools can support and enhance decision-making 

processes in sweet potato packing operations is crucial. This chapter synthesizes concepts, 

insights, and findings from previous chapters to explore advanced visualization strategies 

that can support GA and MI by generating and evaluating decision alternatives, 

customizing data presentation, and integrating dual-screen visualization approaches. By 

focusing on improving tool functionality and design, the guidelines support operational 

decisions, such as maximum utility decision (Wang & Ruhe, 2008), for professionals like 

GA and MI. 

As highlighted by Dimara et al. (2022) and Morewedge and Kahneman (2010), 

merely understanding data is insufficient for sound decision-making. Decision-makers 

engage in an evaluative step driven by reasoning, an aspect often overlooked by traditional 

visualization tools that focus predominantly on numeric outputs. These guidelines aim to 

bridge this gap, positing that visualization tools in sweet potato packing must facilitate a 

greater understanding of the causal relationships between potential actions and their 

consequences, ensuring decisions are informed by both immediate data and strategic 

foresight. 

6.1. Dual-Screen Visualization Approach 

The insight generated from this study emphasizes the significance of both causal 

diagrams and dashboards, serving separate yet crucial purposes. Thus, developing a dual-
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screen visualization approach that takes advantage of the strengths of both tools may 

significantly enhance decision-making support tools. Giving users the ability to switch 

between these two types of visualizations — one representing the decision process and its 

factors, and the other visualizing relative data — creates a more robust decision support 

tool. This dual-screen approach accommodates the user’s mental decision-making process, 

leveraging their causal reasoning and sensemaking abilities.  

The findings also highlight the need for visual tools to present these causal 

relationships clearly. Integrating Shneiderman’s (1996) "overview first, zoom and filter, 

details on demand" mantra into the design can facilitate this understanding. Providing an 

initial overview of all fields and orders allows users to grasp the broad context of their 

decision-making environment. The zoom and filter capabilities enable users to focus on 

specific criteria such as size or order date, allowing them to delve into detailed aspects of 

the data that are most pertinent to their decisions. This functionality helps users identify 

and explore the causal relationships between different variables by focusing on specific 

subsets of data while maintaining an understanding of the overall context. This approach 

is particularly useful in complex scenarios where users need to isolate specific factors 

without losing sight of the overall system dynamics. 

6.1.1. Causal Diagram Screen 

Using causal diagrams within these guidelines allows users to visualize the pre-

defined cause-and-effect relationships comprehensively. These diagrams can illustrate how 

changes in order sizes impact storage costs and harvesting decisions, providing a 

comprehensive view of the decision-making landscape. By switching to the causal 

diagram, users can clearly see the cause-and-effect relationships and the impact of various 

factors on their decisions. When users need to "zoom out," they can see the broader causal 

network and understand how higher-level factors interconnect, facilitating a holistic view 

of the system.  
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Elicitation of the Causal Diagram 

The elicitation of these causal diagrams is crucial to their effectiveness. In both 

Causal Loop Diagrams (CLDs) and Causal Decision Diagrams (CDDs), the elicitation 

process is meticulously detailed, highlighting its significance. Typically, this involves 

identifying key stakeholders and conducting interviews with them either individually or in 

groups. These interviews are essential for stakeholders to define problems, identify and 

evaluate potential solutions, and pinpoint critical internal and external factors. Through 

these discussions, stakeholders can decide on individual nodes of the causal diagram. This 

diagram serves as a visual representation of the decision process and its influencing factors, 

providing a valuable reference for decision-makers when exploring scenarios through the 

data visualization dashboard. 

The elicitation process not only helps in gathering comprehensive insights but also 

fosters collaboration among stakeholders. By engaging stakeholders in the development of 

the causal diagram, the process ensures that all relevant perspectives are considered, and 

the resulting diagram accurately reflects the complexities of the decision environment. This 

collaborative approach is vital for creating a decision support tool that is both accurate and 

widely accepted by its users. The causal diagram thus becomes a central component of the 

decision support system, capturing the relationships between different factors and guiding 

decision-makers as they navigate through various scenarios. 

Example of Implementation 

Figure 2.4 presents the decision objective described in the case study, in the 

structure of a Causal Decision Diagram. The two action items represent the choices GA 

and MI have, consisting of either selecting a field for harvesting or directly allocating 

potatoes from cold storage to fulfill incoming orders.  Their goal is to maximize the profit 

generated from their operations, which is typically an equation of maximizing the revenue 

generated through fulfilling as many orders, as accurately as possible, as well as 

minimizing the costs incurred from the use of cold storage. Intermediates represent 

intermediary processes and variables in this decision, which GA and MI have some control 

over, whereas Externals represent external factors over which GA and MI have no say. 
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Lines connecting each node to another related node represent dependencies and 

directionality in the process. Once a decision is presented to the decision-maker in a 

structured diagram that is aligned with their mental decision model, it may allow the 

decision-maker to offload some of the information from their Working Memory Capacity, 

potentially resulting in more capacity to be allocated to reasoning tasks. 

 

Figure 6.1 Causal Decision Diagram of the decision presented in the Case Study 

6.1.2. Data Visualization Dashboard Screen 

Meanwhile, the data visualization dashboard supports the information foraging 

process, where users iteratively seek and use information to make well-informed decisions. 

The dashboard provides detailed quantitative insights, allowing users to drill down into 

specific data points when needed, as well as perform detailed analyses that inform specific 

decision points. This combination ensures that users have a comprehensive understanding 

of both the broader context and the finer details of their decisions. 

This layered approach supports both high-level overviews and detailed 

examinations, enhancing users' ability to analyze and understand complex causal 

relationships within their decision-making processes. By integrating these visual tools, 

users can shift seamlessly between different levels of detail, ensuring that they can both 
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identify key causal factors and understand their broader implications. This dual capability 

is essential for making informed, strategic decisions in dynamic and multifaceted 

environments such as sweet potato packing. 

6.2. Scenario Exploration Support 

6.2.1. Generation of Alternatives 

The findings of this study also highlight the importance of generating a range of 

feasible alternatives to support effective decision-making. When it comes to rapid 

decisions, humans tend to employ what Kahneman (2003a, 2003b) refers to as System 1 

thinking, which does not support conscious generation and evaluation of alternatives. 

However, decisions that have potentially costly consequences require deliberate analysis 

and the identification of possible alternative action items, through causal reasoning.  

Visualization tools can facilitate this process by presenting data in ways that 

highlight possible courses of action, symbolizing cause-and-effect relationships and 

aligning with principles discussed in Cognitive Fit Theory (Vessey & Galletta, 1991). 

Interactive dashboards with capabilities for multiple what-if scenario simulations can be 

particularly useful. For example, tools that simulate the consequences of harvesting a new 

field to fulfill an order based on actual or predicted incoming orders may provide 

immediate visual feedback. This approach allows GA and MI to explore various 

operational scenarios, visually presenting the potential outcomes of different decisions.  

The findings also emphasize the importance of keeping track of these generated 

alternatives and presenting them back to the user in an easily interpretable manner. 

Visualization tools should support iterative exploration by organizing and displaying the 

explored scenarios without adding cognitive load. This can be achieved by categorizing 

scenarios based on key metrics and outcomes, using visual elements such as color-coded 

bars or line graphs to differentiate between various options. By maintaining a clear and 

accessible record of all considered alternatives, users can quickly compare and contrast 

different strategies, enhancing their ability to make informed decisions. This aligns with 

insights from information foraging theory (Pirolli & Card, 1995, 1999, 2005), emphasizing 
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the importance of iterative exploration and structuring information in an easily navigable 

manner to facilitate the iterative exploration. 

6.2.2. Evaluation of Alternatives 

Once alternative viable decision paths have been identified, the decision-maker 

must compare and analyze them. Evaluating generated alternatives based on various 

criteria is essential for effective decision-making. Visualization tools can support this 

evaluation process by providing clear and detailed insights into the implications of each 

alternative. For instance, users can benefit from features that track explored scenarios and 

allow for side-by-side comparisons. Comparing projected revenue and costs of various 

decision paths, considering factors like storage costs incurred at the end of the day and 

shipping timelines, provides a comprehensive view of the trade-offs involved. 

The research highlights the need for effectively monitoring and presenting various 

alternatives to users in a comprehensible format. It is crucial for visualization tools to 

support repeated exploration by systematically arranging and showcasing the scenarios that 

have been examined. Enabling users to save and retrieve different scenarios allows for 

continuous refinement of strategies. This feature not only supports the iterative nature of 

decision-making but also aids in documenting the decision-making process, providing a 

valuable reference for future decisions. 

Furthermore, providing users the flexibility to select which metrics they will 

compare across different scenarios is crucial. This customization ensures that the decision-

making process aligns with the specific priorities and goals of the user. For instance, one 

user might prioritize minimizing costs, while another might focus on maximizing revenue 

or reducing storage time. Allowing users to hierarchically order alternative decision paths 

based on selected metrics can further streamline the evaluation process. By ranking options 

according to the most critical factors, users can quickly identify the most promising 

strategies and make well-informed choices. 

At this stage, decision-makers begin to develop a clearer understanding of which 

alternatives are more favorable. The evaluation process is critical as it ultimately 
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determines which decision will be selected and implemented. Visualization tools play a 

pivotal role by providing a comprehensive view of the potential outcomes, enabling 

decision-makers to compare alternatives based on key metrics. This thorough evaluation 

helps ensure that the chosen decision aligns with strategic goals and operational constraints, 

leading to more effective and informed decision-making. 

6.2.3. Implementation 

Enabling users to save and compare different scenarios allows for a deeper analysis 

of potential outcomes. By implementing a history panel, users can review key metrics for 

each scenario side by side. Implementing this feature involves creating a user interface that 

supports the storage of various scenarios, allowing users to revisit and compare them easily. 

This history panel can be designed to display key metrics such as projected revenue, costs, 

and resource utilization for each saved scenario. Users can interact with these metrics, 

adjusting variables as needed and observing the changes in real-time. 

Real-Time Variable Input 

Real-time variable input can be effectively implemented through the use of 

interactive elements such as drag and drop. For instance, users could have the ability to 

drop draggable box-like assets that represent orders of varying sizes onto input fields, 

which would immediately show the remaining sweet potatoes that need to be sent to 

storage. Stacked horizontal bar charts could be used to represent the distribution of sweet 

potatoes in inventory, and additional charts representing the remaining sweet potatoes after 

an order is fulfilled could be generated, providing the user an idea of the inventory that 

must be sent to cold storage, or sent out in a following order on the same day.  

As users modify these inputs, the system should provide immediate visual 

feedback, updating graphs, charts, or other visual representations to reflect the changes. 

Immediate visual feedback aids understanding and reduces cognitive load by making the 

consequences of each action clear and easy to comprehend. This dynamic interaction 

ensures that users can see the direct impact of their adjustments, facilitating a deeper 

understanding of how each variable influences the overall decision-making process. 
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Automated Financial Simulations 

To quickly calculate and visualize the real-time variable changes during scenario 

exploration, models can be developed to calculate potential revenue and costs based on 

user inputs. In the context of sweet potato packing, users need to decide whether to harvest 

a new field to fulfill an order or utilize sweet potatoes from cold storage. Harvesting a new 

field may incur cold storage costs later on, while using stored sweet potatoes may mean 

sending higher quality sweet potatoes to fulfill an order for a lower quality. For example, 

when GA or MI input data about incoming orders or decide to allocate sweet potatoes from 

either new fields or cold storage, the system can immediately update and display the 

associated revenue and end-of-day cold storage costs. This feature is crucial for 

highlighting the financial trade-offs between different operational strategies. 

Temporal Aspect 

Incorporating a temporal aspect into decision-support tools is also essential for 

providing a complete understanding of the decision-making landscape. Time-related data 

features help decision-makers visualize the impact of their actions over time. To implement 

this feature, the visualization tool can include a "date line" that remains fixed, while time 

progresses toward it. As orders are fulfilled and time passes, the current date moves closer 

to the "date line," visually indicating when sweet potatoes need to be moved to cold storage. 

This line can be color-coded to represent different stages, such as a red line for when sweet 

potatoes exceed the optimal period, incurring cold storage costs. Such visual cues help 

users quickly understand the temporal implications of their decisions. 

For GA and MI, understanding the temporal aspect is crucial. If they cannot ship 

sweet potatoes on the same day they are processed, these potatoes must go into cold 

storage, incurring daily costs. By incorporating a "date line," the tool can show how 

approaching this line leads to increased storage costs, enabling GA and MI to make more 

timely decisions. They can simulate various scenarios, such as delaying an order or 

prioritizing certain shipments, and immediately see the financial implications of these 

choices. This approach helps in reducing cognitive load by making the temporal aspects of 

decisions explicit, allowing for more strategic planning and efficient resource management. 
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In the context of GA and MI, the scenario exploration feature would be particularly 

valuable. By saving and comparing scenarios, they can assess which option is more cost-

effective and aligns better with their operational goals. This approach not only enhances 

decision-making accuracy but also provides a clear record of considered alternatives, 

supporting informed and strategic planning. 

User-Specific Customizability 

The findings of this study also underscore the necessity of user-specific 

customizability of visualization tools. The effectiveness of visualization tools in supporting 

decision-making processes can be significantly enhanced by tailoring them to the specific 

needs and preferences of different users. By offering customizable options, these tools can 

cater to various levels of expertise and task requirements, ensuring that each user can 

effectively engage with and utilize the information presented. 

For example, GA and MI have different backgrounds; GA has a more robust 

understanding of business terms and processes. Tools that can layer historical sales data, 

current market trends, and predictive analytics would potentially enable GA to make 

informed decisions about when to release potatoes from storage to meet market demand 

effectively. GA might prefer a detailed, data-rich interface with multiple filters and utilize 

the causal diagram that depicts the decision process. For GA, features could include 

advanced filters, customizable color schemes, and high data granularity. These tools can 

enable GA to perform in-depth analyses, identify trends, and make strategic decisions 

based on comprehensive data insights. Annotation tools can further aid in documenting 

insights and sharing them with the team. 

On the other hand, MI is a more practice-driven, old-school farmer and packer, and 

might benefit from a simpler, clearer layout that simulates his potential decisions. 

Interfaces designed for MI should emphasize clarity, perhaps through dashboards that 

highlight key operational metrics such as current stock levels, upcoming orders, and 

storage conditions. These interfaces would enable MI to make quick, rapid decisions based 

on clear, visual cues that reduce cognitive load while still allowing access to more detailed 

data if needed. Options could include customizable color schemes and annotation features, 
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ensuring that the tool is accessible and useful to all users, regardless of their background 

or expertise. Simplified visualizations with clear, bold graphics and minimal text can help 

MI quickly grasp essential information without feeling overwhelmed. Features like 

customizable color schemes can also help MI differentiate between key variables, 

enhancing their understanding and engagement with the data. 

6.3. Incorporating Toulmin’s Model of Argumentation 

In organizations, particularly for management, it is crucial that decisions are 

presented logically and transparently. Toulmin's model facilitates this by ensuring that each 

part of the decision-making process is documented and logically connected. This model, 

which emphasizes logical structuring and evidence-based reasoning, ensures that decisions 

are well-supported and clearly communicated. For senior management, this method 

provides a clear, detailed rationale for each decision, supporting better understanding, 

adoption, and implementation across the organization.  

Incorporating Toulmin's model of argumentation within the decision-making 

framework provides a robust structure for documenting and reporting decisions. This 

structure makes it easier to review decisions and as it organizes complex decisions into 

distinct, manageable parts. This methodical breakdown ensures that each aspect of the 

decision is explicitly stated and supported by relevant evidence and reasoning. As a result, 

the decision's logic is clear and transparent. This clarity is crucial in ensuring that all team 

members and senior management are on the same page regarding the rationale behind a 

decision, which enhances communication and reduces misunderstandings. 

Toulmin's model incorporates six key components: Claim, Data, Warrant, Backing, 

Qualifier, and Rebuttal. By structuring decisions using these components, the clarity and 

trackability of decision-making processes are significantly enhanced. For instance, the 

provided figure illustrates a structured argument for designing visualization tools to support 

causal reasoning and sensemaking in decision-making (Figure 6.1). 
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Figure 6.2 The claim – or decision – that visualization tools should be designed to 

support causal reasoning and sensemaking, presented in the structure 

of Toulmin’s Model of Argumentation.  

Trackability is another major benefit of using Toulmin's model. By documenting 

each component of the decision-making process, it becomes straightforward to trace how 

a decision was reached and to review the supporting evidence and reasoning. This 

documentation provides a clear audit trail that can be invaluable for future reference, 

evaluation, and learning. For example, if a decision's outcomes need to be reviewed, the 

organization can look back at the specific data and warrants that led to the initial decision, 

assessing whether the reasoning was sound or if different data might lead to a better 

outcome in the future. 

Furthermore, Toulmin's model helps in systematically addressing potential 

challenges and counterarguments, which enhances the robustness of the decision-making 
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process. By explicitly considering and documenting rebuttals, decision-makers can 

anticipate objections and plan for them, which strengthens the overall decision.  

6.3.1. Implementation 

Implementing Toulmin's model in a visualization tool designed to support decision-

making can be achieved by integrating features that systematically guide users through 

each component of the model. The tool could include a structured interface where users 

input the Claim, Data, Warrant, Backing, Qualifier, and Rebuttal for each decision. For 

example, when entering data, users can attach relevant evidence and supporting documents 

directly into the tool, ensuring that all supporting data is easily accessible and visually 

connected to the claim. Interactive elements such as drag-and-drop functionality for data 

and automated prompts for warrants and backings can help users logically connect their 

evidence to their claims, reinforcing the decision’s rationale. 

Furthermore, the visualization tool can enhance clarity and communication by 

generating visual summaries and reports based on the Toulmin structure. For instance, the 

tool could automatically create flowcharts or mind maps that illustrate the logical flow 

from data to claim, making it easier for senior management to review and understand the 

decision-making process. These visual summaries can highlight key points and potential 

rebuttals, providing a comprehensive overview that facilitates thorough evaluation and 

feedback. By incorporating these features, the tool ensures that all decisions are 

systematically documented and visually communicated, enhancing transparency and 

accountability in the decision-making process. 

Incorporating Toulmin's model in structuring decisions fosters a disciplined, 

transparent, and accountable decision-making process. By ensuring that all essential 

components are considered and documented, this model facilitates clearer communication, 

easier review, and effective learning. It provides systematic structuring, thorough 

documentation, and transparent communication, which improves senior management's 

ability to review, understand, and endorse decisions. Ultimately, this leads to better-

supported decisions and a more resilient decision-making process. By embedding 
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Toulmin's model into their practices, organizations can achieve greater consistency, 

accountability, and effectiveness in decision-making. 

In summary, the integration of advanced visualization strategies can significantly 

enhance decision-making processes in sweet potato packing operations. By implementing 

a dual-screen visualization approach, generating and evaluating alternatives, and utilizing 

Toulmin’s Model of Argumentation to document decisions, these tools can support GA 

and MI in making informed and efficient decisions. 
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Chapter 7.  

 

Conclusion 

This thesis has provided a comprehensive analysis of how visualization tools can 

assist decision-making processes, specifically within the context of a sweet potato packing 

operation. By integrating cognitive science theories and evaluating existing visualization 

tools, this research addresses the critical need for comprehensive tools that facilitate every 

stage of the decision-making process, ensuring a coherent flow and enhancing causal 

reasoning. 

7.1. Discussion and Contributions 

Three literature reviews were conducted to scope the cognitive science theories and 

the typically used visualization tools for decision-making, as well as recently published 

visualization tools designed to support decision-making. The insight generated from the 

reviewed literature overwhelmingly suggests the lack of tools that support all stages of 

decision making, guiding the decision-maker through the process in a flow, assisting causal 

reasoning.  

A key contribution of the guidelines discussed in this thesis is development of a 

dual-screen visualization tool. This suggestion incorporates both qualitative and 

quantitative elements to support effective decision-making. It allows users to visualize the 

entire decision process, manipulate variables, and simulate various scenarios, providing 

immediate feedback on potential outcomes.  

The research also proposes the use of Toulmin's model of argumentation to 

structure and report decisions. This model offers a clear and logical framework that 

enhances the transparency and trackability of decision-making processes. By breaking 

down decisions into components such as claims, data, warrants, backings, qualifiers, and 

rebuttals, Toulmin's model ensures that each part of the decision is well-supported and 
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logically connected. This structured approach facilitates thorough reviews and effective 

communication of decisions to senior management. 

The study also underlines the importance of integrating temporal aspects into 

decision-making tools. The inclusion of features such as a "date line" to track cold storage 

costs helps decision-makers understand the time-sensitive nature of their decisions and 

manage their resources more efficiently. This approach aligns with the findings that 

highlight the need for tools that can handle the dynamic and sequential nature of decision-

making in agricultural operations. 

Moreover, this thesis emphasizes the importance of customizable and user-centered 

interfaces that cater to users with varying levels of expertise and preferences. Customizable 

features ensure that the tool is accessible and useful to all users, regardless of their 

expertise. This adaptability is crucial in ensuring that the tool is not underutilized due to a 

mismatch with user needs and expectations. 

In conclusion, this thesis contributes to the field by providing comprehensive 

reviews and guidelines for designing visual decision-support tools that are based on 

cognitive theories and frameworks, addressing existing gaps in decision-support tools and 

lays the groundwork for future research and development. The implications of this research 

extend beyond the sweet potato packing industry. The principles and guidelines developed 

in this study can be applied to various organizational contexts, where decision-making 

involves complex, dynamic, and time-sensitive variables.  

7.2. Limitations and Future Work 

The use of visualizations in decision making is at times a double-edged sword. 

Although charts or visualizations have been used to facilitate sensemaking and reasoning 

in the context of decision making, they may also misguide users if not designed properly 

or appropriately (Cairo, 2019). For example, misrepresenting the sizes of symbols that 

depict quantitative variables (Cairo, 2019, pp. 53-59) or ineffectively visualizing uncertain 

or missing information (Cairo, 2019, pp. 135-142), may result in misinterpretation of the 

variables’ impact. Charts may also suggest misleading patterns, and thus, a thorough 
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simulation of how the user is expected to interact with the visualization (Cairo, 2019, pp. 

153-169). Thus, if visualizations are not designed with these potential issues in mind, they 

may cause more harm than good in decision-making.  

7.2.1. Limitations of the Guidelines 

One significant limitation of this study is that the proposed guidelines has not 

undergone empirical testing. To address this, future research should begin by developing 

comprehensive evaluation criteria that can accurately measure the effectiveness of the 

suggestions. Additionally, it is crucial to establish a baseline for a control group, which 

will serve as a benchmark for comparison. This comparison will enable researchers to 

assess the impact of the suggestions more precisely. Conducting such comparative analysis 

is essential for validating the guidelines’ utility and identifying areas where it can be further 

refined and improved. This rigorous approach will ensure that the suggestions are robust, 

practical, and capable of enhancing decision-making processes in real-world settings. 

One of the pillars of the presented guidelines is customizability of the interface and 

contents on the visualization tool’s screen. Given the differences in their backgrounds, it is 

proposed that the same decision can be presented differently to GA and MI, depending on 

user background, goals, and preferences. However, such customizations typically occur in 

the design stages, thus it is not always possible for designers to accommodate each and 

every user. This presents a possible technological limitation to the suggested guidelines. 

Future studies could attempt to this through machine learning to better understand user 

preferences and change the interface accordingly, on the go. 

Other limitations may arise from the subjective nature of the human mind. For 

example, biases, namely Confirmation Bias (Pirolli & Card, 2005), may eliminate any 

value gained from a decision support tool if the outcome is inaccurate or leads to 

unintended consequences. Furthermore, decision making processes are often impacted by 

the mental state of the decision maker, such as stress (Giovanniello et al, 2023; Heereman 

& Walla, 2011) and motivation (Eisbach et al, 2023). This is important because the 

effectiveness of the visualizations designed with these guidelines in mind, is inherently 
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dependent on individual factors. Future work could attempt to address this issue by 

developing frameworks on how to diagnose and address such individual factors. 

Finally, the findings also emphasize the importance of iterative user testing to refine 

these interfaces. Incorporating feedback loops to continuously improve the user interface 

ensures that the visualization tools remain relevant and effective over time. Conducting 

user testing with GA and MI to simplify navigation, improve data readability, and ensure 

critical functions are easily accessible may significantly enhance the user experience. 

Another method of refining the visualization tool based on user background and 

preferences could be carried out in real-time, utilizing Large Language Models (LLMs) 

Machine Learning (ML). In this example, users could train the model through supervised 

learning, providing feedback through a LLM chatbot, which later could be switched to an 

unsupervised learning model, depending on whether the desired accuracy is achieved. 

Future studies could look to develop this feature, potentially eliminating the need for 

constant user feedback.  
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Appendix. Results of the Systematic Literature Review 

# Tool Name Industry Authors Year Journal/Venue Database Interactivity Decision 

Flow 

Data Viz Causality Temporal 

1 CloViz-IMDC healthcare Shee et al. 2021 JCO Clin 

Cancer Inform 

PubMed yes no parallel 

coordinate 

plots 

no yes 

2 Sys Viz Tool healthcare Mandell et 

al. 

2022 Annu IEEE Syst 

Conf 

PubMed yes no scatter plot no yes 

3 ClinicalPath healthcare Linhares et 

al. 

2023 IEEE Trans on 

Vis and CG 

PubMed yes no line charts no yes 

4 EHR Viz Tool healthcare Cohen et al 2022 Annals of 

Family 

Medicine 

PubMed no no line charts no yes 

5 Goal Board healthcare Elwyn et al. 2019 Journal of 

Patient 

Experience 

PubMed yes yes diagram yes no 

6 BN IGRT healthcare Hargrave et 

al. 

2018 Int J Med Phy 

Res and Practice 

PubMed yes yes bayesian 

network 

yes yes 

7 Forsman et al healthcare Forsman et 

al. 

2013 Inform Health 

Soc Care 

PubMed yes no line charts no yes 

8 ImputEHR healthcare Zhou & 

Saghapour 

2021 Frontiers in 

Genetics 

PubMed yes no scatter plot no no 

9 Origami plot healthcare Duan et al. 2023 Journal of 

Clinical 

Epidemiology 

PubMed yes no radar chart no no 

10 ISOFAST agriculture Laurent et 

al. 

2020 Research 

Synthesis 

Methods 

PubMed yes no multiple 

(scatter, line) 

yes yes 

11 SPHERE healthcare Foraker et 

al. 

2015 eGEMS PubMed yes no bar chart no yes 

12 Sibyl healthcare Zytek et al. 2021 IEEE Trans on 

Vis and CG 

PubMed yes no multiple 

(scatter, line) 

no no 

13 Leskens et al city planning Leskens et 

al. 

2017 Mitigation 

Adaptation Str 

Glob Change 

PubMed yes no 3d simulation yes yes 
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# Tool Name Industry Authors Year Journal/Venue Database Interactivity Decision 

Flow 

Data Viz Causality Temporal 

14 Pedimap agriculture Rathnayake 

et al. 

2020 Scientific 

Reports 

PubMed yes no multiple 

(scatter, line) 

no yes 

15 ToxPi bioinformatics Reif et al. 2013 Bioinformatics PubMed yes no multiple 

(scatter, line) 

no no 

16 MER 

visualization 

healthcare Waschk et 

al. 

2021 Annu Int Conf 

IEEE Eng Med 

Biol Soc 

PubMed yes no spectogram no yes 

17 Causality 

Explorer 

general Xie et al. 2021 IEEE Trans on 

Vis and CG 

PubMed yes no bar chart yes yes 

18 Janssen et al. healthcare Janssen et 

al. 

2020 Journal of 

Medical Internet 

Research 

PubMed yes no bar chart no no 

19 Knowledge Plot healthcare Brynne et 

al. 

2013 Journal of 

Translational 

Medicine 

PubMed yes no multiple 

(scatter, line) 

yes no 

20 DCPairs general Dimara et 

al. 

2017b EuroVis GoogleS yes no pairs plot no no 

21 WeightLifter general Pajer et al. 2016 IEEE Trans on 

Vis and CG 

GoogleS yes no multiple 

(specto, line, 

bar) 

yes no 

22 Outcome-

Explorer 

general Hoque & 

Mueller 

2021 IEEE Trans on 

Vis and CG 

GoogleS yes no multiple 

(scatter, line) 

yes yes 

23 Kokciyan et al. healthcare Kokciyan et 

al. 

2019 Studies in 

Health 

Technology and 

Informatics 

GoogleS yes no multiple 

(scatter, line) 

no no 

24 BaobabView general van den 

Elzen & 

van Wijk 

2011 IEEE 

Conference on 

VAST 

GoogleS yes yes decision tree yes no 

25 OpenMarkov healthcare Diez et al. 2017 Medical 

Decision 

Making 

GoogleS yes yes influence 

diagram 

yes yes 
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Flow 

Data Viz Causality Temporal 

26 SD-based BSC general Barnabè 2011 International 

Journal of 

Productivity and 

Performance 

Management 

GoogleS yes yes causal loop 

diagram 

yes no 

27 DataBreeze general Srinavasan 

et al 

2021 IEEE Trans on 

Vis and CG 

GoogleS yes yes multiple 

(scatter, line, 

custom) 

no no 

28 Nexus_SDM agriculture Laspiodu et 

al 

2020 Science of the 

Total 

Environment 

SD yes no sankey, chord no yes 

29 Pi-VAT agriculture Deval et al 2022 Journal of 

Hydology 

SD yes no multiple (line, 

bar, custom) 

no yes 

30 MED-GOLD agriculture Terrado et 

al 

2023 Climate 

Services 

SD yes no dashboard 

(with map) 

no yes 

31 Parasol environmental Raseman et 

al 

2019 Environmental 

Modelling & 

Software 

SD yes no parallel 

coordinate 

plots 

no no 

32 SOMERSET-P environmental Guay & 

Waub 

2019 EURO Journal 

on Decision 

Processes 

SD yes no GAIA plot yes no 

33 LandCaRe DSS agriculture Wenkel et 

al 

2013 Journal of 

Environmental 

Management 

SD yes no line charts no yes 

34 Casteletti et al agriculture Casteletti et 

al 

2010 Environmental 

Modelling & 

Software 

SD no no decision map no yes 

35 Kadiyala et al agriculture Kadiyala et 

al 

2015 Science of the 

Total 

Environment 

SD yes no multiple (line, 

bar, 

geospatial) 

no yes 

36 mySense agriculture Morais et al 2019 Computers and 

Electronics in 

Agriculture 

SD yes no line charts no yes 

37 ITALLIC agriculture Onsongo et 

al 

2022 Computers and 

Electronics in 

Agriculture 

SD yes no geospatial no yes 
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# Tool Name Industry Authors Year Journal/Venue Database Interactivity Decision 

Flow 

Data Viz Causality Temporal 

38 ESP-VT environmental Drakou et al 2015 Ecosystem 

Services 

SD yes no geospatial no yes 

39 Hydrographs environmental Cole et al 2023 Computers and 

Chemical 

Engineering 

SD yes no geospatial yes no 

40 ESPRES environmental Udias et al 2020 Science of the 

Total 

Environment 

SD yes no multiple 

(scatter, bar, 

geospatial) 

yes no 

41 ADAM supply chain Hu et al 2022 Computers and 

Chemical 

Engineering 

SD yes yes multiple 

(decision tree, 

geospatial) 

yes yes 

42 rivervis environmental Mao et al 2019 Computers and 

Geosciences 

SD yes no multiple 

(matrix and 

bar) 

no no 

43 Crop Monitor agriculture Becker-

Reshef et al 

2019 Global Food 

Security 

SD yes no multiple 

(geospatial and 

pie) 

no no 

44 CropPhenology agriculture Araya et al 2018 Ecological 

Informatics 

SD yes no geospatial no yes 

45 GeospatialVR environmental Sermet & 

Demir 

2022 Computers and 

Geosciences 

SD yes no geospatial yes yes 

46 SMETool agriculture Jarray et al 2022 Environmental 

Modelling & 

Software 

SD yes no multiple (line 

and geospatial) 

no yes 

47 GVS environmental Cox et al 2013 Journal of 

Hydology 

SD yes no multiple (line 

and geospatial) 

no yes 

48 Knotted-line transportation Zhao et al 2019 Journal of 

Computer 

Languages 

SD yes no "knotted-line" no yes 

49 Lin et al environmental Lin et al 2015 Environmental 

Modelling & 

Software 

SD yes no multiple 

(geospatial and 

pie) 

no yes 

50 PSS Board operations Lim et al 2012 Journal of 

Cleaner 

Production 

SD yes yes "process 

visualization" 

(table) 

yes yes 
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51 Zhang et al emergency 

mgmt 

Zhang et al 2019 International 

Journal of 

Digital Earth 

GoogleS yes no geospatial yes no 

52 FarmDESIGN agriculture Groot et al 2012 Agricultural 

Systems 

GoogleS yes no influence 

diagram 

yes no 

53 GeoVis public health Joshi et al 2012 Technology and 

Health Care 

GoogleS yes no geospatial no no 

54 PaletteViz general Talukder & 

Deb 

2020 IEEE 

Computational 

Intelligence 

Magazine 

GoogleS yes no 3D scatter 

plots 

yes no 

55 moGrams general Trawinski 

et al 

2018 IEEE 

Transactions on 

Cybernetics 

GoogleS yes no decision tree no no 

 


