
Formulating Quadratic Traveling
Salesman Problems for Computation

by

Michelle Spencer

B.A. & Sc., Quest University Canada, 2016

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

©Michelle Spencer 2019
SIMON FRASER UNIVERSITY

Summer 2019

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Michelle Spencer

Degree: Master of Science (Operations Research)

Title: Formulating Quadratic Traveling Salesman
Problems for Computation

Examining Committee: Chair: Mary Catherine Kropinski
Professor

Tamon Stephen
Senior Supervisor
Associate Professor

Tom Archibald
Supervisor
Professor

Ladislav Stacho
Internal Examiner
Associate Professor

Date Defended: August 2, 2019

ii

Abstract

The Traveling Salesman Problem (TSP) is a fundamental combinatorial optimization prob-
lem. Adding costs associated with pairs of edges included in a tour gives the Quadratic
Traveling Salesman Problem (QTSP). This increases modeling power by allowing, for ex-
ample, the inclusion of transfer costs between edges. We consider a general version of this
problem, where costs are attached to all pairs of edges.

We give a brief history of computational solvers, especially in relation to the TSP. For the
QTSP, we consider modifying the structure of the quadratic cost input and linearizing the
quadratic objective function, with detail on how to generate the modifications and lineariza-
tions. We study the impact of these structures on computational efficiency for randomly
generated instances, using the Gurobi solver. We find that by making the quadratic cost
matrix negative semidefinite, we improve solve times, and that solving the problem as a
quadratic minimization problem outperforms linearization approaches.

Keywords: Quadratic Traveling Salesman Problem; integer programming solvers; opti-
mization; linearization

iii

Acknowledgements

I would like to thank my senior supervisor, Dr. Tamon Stephen, for his support and
feedback in the later stages of this research. I appreciate the time he spent reviewing my
work and how I never felt rushed in our meetings. I am also grateful to Dr. Tom Archibald
for his encouragement and assistance, in particular for the first chapter of this work, and
also for his feedback.

I would like to recognize Dr. Ladislav Stacho, my examiner, for his insightful questions
and observations, which improved the thesis. I am also grateful to Dr. Mary Catherine
Kropinski for chairing my defence.

I would like to acknowledge Dr. Abraham Punnen for the framework for the research
in chapters 2, 3 and 4 of this thesis, and for the support in the initial phases of this research.

I would like to thank the other graduate students for their help and company; especially
Aniket Mane, Michael Friesen, Jessica Guo, Shawn Yan, Pooja Pandey and Brad Woods. I
am also grateful to the SFU Mathematics Department for their support.

I would like to thank the BC Ministry of Education Education Economics unit for the
wonderful co-op term. I learned so much, and am grateful for their flexibility and support.

Finally, I would like to acknowledge my friends and family for their unwavering support.
I’d like to thank my cousins for providing moral support as I progressed through the complex
stages of this degree. I am particularly indebted to my cousin Mary and my sister Nicole
for their words of support and advice through this long process.

iv

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Combinatorial Optimization . 1
1.2 Traveling Salesman Problem . 1

1.2.1 Traveling Salesman as an Integer Programming Problem 8
1.3 Computer Solvers for LP/IP Problems . 13

1.3.1 1950s & 1960s . 14
1.3.2 1970s . 15
1.3.3 1980s & 1990s . 15
1.3.4 2000s . 17

1.4 Quadratic Traveling Salesman Problem . 18
1.4.1 Linearizing the Quadratic Objective Function 20

1.5 Contribution . 21
1.5.1 Modifying the Quadratic Matrix . 22
1.5.2 Linearizations . 22

2 Integer Programming Formulations 23
2.1 Traveling Salesman Problem Constraints . 23

2.1.1 Dantzig Subtour Elimination . 23
2.1.2 Miller-Tucker-Zemlin (MTZ) . 24
2.1.3 Desrochers and Laporte (DL) . 25
2.1.4 Single Commodity Flow (SCF) . 26

v

2.1.5 Two Commodity Flow (TCF) . 27
2.1.6 Multi-Commodity Flow (MCF) . 28
2.1.7 Formulation Strength Comparison 29

2.2 Linear Objective Function . 29
2.3 Quadratic Objective Function . 29

3 Modifying the Q Matrix 31
3.1 Symmetric Q . 31
3.2 Upper Triangular Q . 32
3.3 Positive Semi-Definite Q . 32
3.4 Negative Semi-Definite Q . 33
3.5 Node n Removal . 34

3.5.1 Symmetric Node n Removal . 37
3.5.2 Upper Triangular Node n Removal 37

3.6 Computational Experiments . 37
3.6.1 Gurobi Solver . 37
3.6.2 Problem Generation . 38

3.7 QTSP Modifications Results . 39
3.7.1 Quadratic Dantzig Subtour Elimination Formulation 39
3.7.2 Quadratic MTZ Formulation . 42
3.7.3 Quadratic Single Commodity Flow Formulation 45
3.7.4 Choice of M for Enforcing Semidefiniteness 47
3.7.5 Analysis . 48

4 Linearization of the Quadratic Objective Function 52
4.1 Linearizations . 52

4.1.1 MILP Reformulation Using Additional Binary Variables 53
4.1.2 Standard Linearization . 53
4.1.3 The McCormick Envelopes . 54
4.1.4 Base-2 Linearization . 55
4.1.5 Base-10 Linearization . 57

4.2 Formulations . 59
4.3 Computational Experiments . 60
4.4 Linearized QTSP Formulations Results . 60

4.4.1 Linearized Dantzig Formulation Results 61
4.4.2 Linearized MTZ Formulation Results 63
4.4.3 Linearized SCF Formulation Results 66
4.4.4 Analysis . 68

5 Conclusion 73

vi

Bibliography 74

vii

List of Tables

Table 3.1 Quadratic Cost Generation . 38
Table 3.2 Q Dantzig Nonnegative Q Time Values 40
Table 3.3 Q Dantzig Balanced Q Time Values 40
Table 3.4 Q Dantzig Positively Skewed Q Time Values 40
Table 3.5 Q Dantzig Negatively Skewed Q Time Values 41
Table 3.6 Q Dantzig Positive Semi-Definite Q Time Values 41
Table 3.7 Q Dantzig Nonnegative and Positive Semi-Definite Q Time Values . . 41
Table 3.8 Q Dantzig Rank One Q Time Values 42
Table 3.9 Q Dantzig Rank Two Q Time Values 42
Table 3.10 QMTZ Nonnegative Q Time Values 42
Table 3.11 QMTZ Balanced Q Time Values . 43
Table 3.12 QMTZ Positively Skewed Q Time Values 43
Table 3.13 QMTZ Negatively Skewed Q Time Values 43
Table 3.14 QMTZ Positive Semi-Definite Q Time Values 44
Table 3.15 QMTZ Nonnegative and Positive Semi-Definite Q Time Values 44
Table 3.16 QMTZ Rank One Q Time Values . 44
Table 3.17 QMTZ Rank Two Q Time Values . 45
Table 3.18 QSCF Nonnegative Q Time Values 45
Table 3.19 QSCF Balanced Q Time Values . 45
Table 3.20 QSCF Positively Skewed Q Time Values 46
Table 3.21 QSCF Negatively Skewed Q Time Values 46
Table 3.22 QSCF Positive Semi-Definite Q Time Values 46
Table 3.23 QSCF Nonnegative and Positive Semi-Definite Q Time Values 47
Table 3.24 QSCF Rank One Q Time Values . 47
Table 3.25 QSCF Rank Two Q Time Values . 47
Table 3.26 Q Dantzig Plus/Minus M Time Values 48
Table 3.27 Size 8 Time Results Summary . 49
Table 3.28 Size 10 Time Results Summary . 49
Table 3.29 Size 12 Time Results Summary . 51
Table 3.30 Size 12 Solving Summary . 51

Table 4.1 Summary of Linearized Formulations 60

viii

Table 4.2 Linearized Dantzig Nonnegative Q Time Values 61
Table 4.3 Linearized Dantzig Balanced Q Time Values 61
Table 4.4 Linearized Dantzig Positively Skewed Q Time Values 61
Table 4.5 Linearized Dantzig Negatively Skewed Q Time Values 62
Table 4.6 Linearized Dantzig Positive Semidefinite Q Time Values 62
Table 4.7 Linearized Dantzig Nonnegative and Positive Semidefinite Q Time Values 62
Table 4.8 Linearized Dantzig Rank One Q Time Values 63
Table 4.9 Linearized Dantzig Rank Two Q Time Values 63
Table 4.10 Linearized MTZ Nonnegative Q Time Values 63
Table 4.11 Linearized MTZ Balanced Q Time Values 64
Table 4.12 Linearized MTZ Positively Skewed Q Time Values 64
Table 4.13 Linearized MTZ Negatively Skewed Q Time Values 64
Table 4.14 Linearized MTZ Positive Semidefinite Q Time Values 65
Table 4.15 Linearized MTZ Nonnegative and Positive Semidefinite Q Time Values 65
Table 4.16 Linearized MTZ Rank One Q Time Values 65
Table 4.17 Linearized MTZ Rank Two Q Time Values 66
Table 4.18 Linearized SCF Nonnegative Q Time Values 66
Table 4.19 Linearized SCF Balanced Q Time Values 66
Table 4.20 Linearized SCF Positively Skewed Q Time Values 67
Table 4.21 Linearized SCF Negatively Skewed Q Time Values 67
Table 4.22 Linearized SCF Positive Semidefinite Q Time Values 67
Table 4.23 Linearized SCF Nonnegative and Positive Semidefinite Q Time Values 68
Table 4.24 Linearized SCF Rank One Q Time Values 68
Table 4.25 Linearized SCF Rank Two Q Time Values 68
Table 4.26 Size 8 Best Time Linearized Results Summary 69
Table 4.27 Size 10 Best Time Linearized Results Summary 69
Table 4.28 Size 12 Instances Solved Linearized Results Summary 70
Table 4.29 Linear Relaxation Size 12 MTZ Objective Values 71
Table 4.30 Additional variables and constraints size summary 71

ix

List of Figures

Figure 1.1 Nearest neighbour TSP (from [Coo11]) 7
Figure 1.2 Two edge swap TSP (from [Coo11]) 8
Figure 1.3 Graphic representation of an LP/IP problem with cutting planes

(from [Opt]) . 13

Figure 3.1 Visual summary of the average solve times over all trials for the size
10 problem. 50

Figure 4.1 Visual summary of the average solve times over all trials for the size
10 problem. 70

x

Chapter 1

Introduction

1.1 Combinatorial Optimization

The Traveling Salesman Problem (TSP) is a central problem in the field of combinatorial
optimization. In combinatorial optimization, the objective is to minimize (or maximize) an
objective function over a structured discrete set of feasible solutions. Other combinatorial
optimization problems include the assignment, knapsack, set covering, and minimum span-
ning tree problems. Optimization is a key tool in operations research. For more detail on
combinatorial optimization, see [KV18], [Sch03], among others.

1.2 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a combinatorial optimization problem where
the aim is to find the lowest cost route though a given set of nodes that returns to the initial
node, forming a cycle or tour (a path that visits all the points or vertices, without repeating
any vertices, before returning to its origin). It is named after the canvassing salesperson,
whose goal is to visit a certain set of locations efficiently, before returning to their own home
base. The TSP is a fundamental theoretical problem, and as it is NP-hard, it is related to
one of the Clay Institute’s Millennium Prize Problems [Coo11], [Coo06]. While a central
academic problem, the TSP has a variety of uses outside of academia. Companies such as
FedEx and UPS face the TSP daily, as they plan effective routes to deliver packages [Coo11].

We begin by formally defining the TSP. Given a graph G = (V,E), where for each edge
ij ∈ E, let the cost cij be known. For any Hamiltonian cycle H of G, let C(H) = ∑

ij∈H cij

be the total cost. Then the Traveling Salesman Problem is to find the Hamiltonian cycle
– a cycle passing through each vertex exactly once – such that C(H) is minimized. We
provide details on different formulations in a later section. For details on the TSP, we refer

1

to [Coo11], [ABCC07].

Unless otherwise stated, we assume that G is a complete graph, which is to say that all
cities are connected to all other cities. Where G is an incomplete graph, we can transform
the TSP instance into a problem on a complete graph by adding edges with very high costs
in place of the missing edges. No optimal solution would include a high-cost edge unless it
was forced to, as the cost would be far higher than any other edge in the graph. Therefore an
optimal solution that requires the use of one of those edges would indicate that the original
set of cities has no solution. To illustrate, if we had a set of cities in North America, and
a set of cities in Europe, and no method to cross the ocean, the artificial edges connecting
North America and Europe would have to be selected to complete the tour, but no bridge
actually connects the two continents. The inclusion of the high-cost edge indicates that the
original problem has no solution.

We formulate the asymmetric n-city TSP as:

Minimize:
n∑

i=1

n∑
j=1

cijxij (1.1)

Subject to:
n∑

i=1
xij =

n∑
j=1

xij = 1 (1.2)

xij ∈ {0, 1} and xij , {(i, j) : xij = 1} form a tour (1.3)

The objective function (1.1) is the expression we are seeking to minimize by selecting
the least-cost tour through the cities. We guarantee that each city is visited exactly once
with the first set of constraints (1.2). The final set of constraints (1.3) ensures that the
solution is integral, and that the solution forms a tour, which is closed (returns to starting
city). We provide a more detailed description in a later section.

Two versions of the TSP may be considered – symmetric and asymmetric. In the sym-
metric TSP, the underlying graph G is undirected, while for the asymmetric TSP, it is
directed. Referring back to our salesperson example, a city with one-way streets may be
considered a case with asymmetric edge costs. The symmetric TSP can be considered a
special case of the asymmetric TSP, in the sense that any solution to an asymmetric version
of a TSP will be a solution to the symmetric version of the same instance, but the other
direction is not always the case [GP07].

There are different classes of the underlying graph, aside from directed and undirected.
One common class is the metric TSP, where the distances satisfy the triangle inequal-
ity. The triangle inequality is the property where cij + cjk ≥ cik for all i, j, k ∈ V . An

2

example of a symmetric graph satisfying this property would be a planar map of cities,
where you cannot “shortcut” by going through two edges. There are a few ways to sat-
isfy this requirement, such as letting the cost between two cities be the Euclidean distance
(cij =

√
(xi − xj)2 + (yi − yj)2), which measures the straight-line distance, or the Manhat-

tan distance (cij = |xi − xj |+ |yi − yj |), which measures the city-block distance, if laid out
on a grid. This can extend to three or more dimensions as well. Problems of each type can
be generated, such as by randomly generating points, and calculating the distances between
them. We may also use random costs that are not generated by locations for the edges, and
which are not guaranteed to possess any particular property.

Tour edges correspond to pairs (i, j) where xij = 1. In the symmetric TSP, cij = cji for
all (i, j), and we can restrict the objective function to the upper triangular values of C, the
matrix of cost coefficients. If we remove the tour restriction, this problem becomes the rela-
tively simple 2-matching problem, which is solvable in polynomial time. However, requiring
that the solution forms a tour, or cycle, through all the cities, turns it into a notoriously
difficult problem. We want a process, known formally as an algorithm, to find the minimum
cost tour. Algorithms are common tools in mathematics and computer science. An algorithm
is a set of rules or instructions for carrying out a procedure or set of operations. Algorithms
are used extensively in mathematics for situations from long division to more complex prob-
lems, but they are also used in everyday life, such as cooking from a recipe or changing a tire.

The applications of the TSP model go beyond transportation problems, including in ar-
eas such a technology and neuroscience [ABCC07]. Transportation examples include school
bus routes, postal deliveries and field inspections [ABCC07]. Transportation problems are
perhaps the most obvious applications of the TSP, and for good reason – even small improve-
ments to the large-scale transportation problems faced by the postal service can realize large
gains in time and resources spent. The TSP is also used in genome sequencing, computer
chip design, circuit board drilling and aiming telescopes [ABCC07]. Therefore, throughout
this thesis, we may refer to nodes, vertices or cities, but the nodes may represent something
else entirely.

The problem of finding a minimum cost tour or circuit is an old one, though the
name “traveling salesman problem” became widespread in the 1950s, when research on
this problem gained popularity and traveling salespeople were common, especially in the
US [ABCC07]. The general formulation was proposed by George Dantzig, Ray Fulkerson
and Selmer Johnson of the RAND Corporation, in a paper which put forward their minimum
length tour through 49 cities (one in each 48 states in the continental US, plus Washington,
DC) [Coo11][DFJ54]. For more detail on the history and context of the TSP, we refer to

3

[Coo11].

The challenge with finding the lowest-cost tour is that while it is conceptually possible
to enumerate every possible tour through a set of n cities, it is computationally impractical,
requiring (n − 1)! permutations of cities for the asymmetric TSP. One important goal for
the TSP is finding algorithms or heuristics that solve or estimate solutions efficiently. We
use the notion of an efficient algorithm from computational complexity, where an “efficient
algorithm” is one where the time cost of running the algorithm increases polynomially as
the size of the problem increases [Coo11], [Pap03].

We use “big O” notation when categorizing the efficiency of an algorithm, where we
write O(n) and n is the size of the problem [Pap94]. When you compare one example of
polynomial time (e.g. O(n2)) against exponential time (e.g. O(2n)) or factorial time (e.g.
O(n!)), we can easily see that even small increases in n results in very high computational
time requirements for the latter two examples. The time cost is an asymptotic upper bound
of the number of operations required for a problem based on the size of the input. This
notation allows us to quantify the amount of work based on the dominant term of the total
number of elementary operations [KV18]. An algorithm requiring n2 +7n operations and an
algorithm requiring 3n2 operations are both in O(n2), as when n increases, the first term
will dominate. When we say that an algorithm is “in the order of n2” or O(n2), we mean
that the number of steps increases as n2 does, without worrying about the value of the
coefficient on n2 [Pap94].

This definition was introduced by Edmonds [Edm67] in the 1960s, where he described
a “good algorithm” to be one where the “amount of work” required is bounded by a poly-
nomial function of the size of the problem. Therefore it is not enough to have a finite
algorithm, but rather one that is practically feasible [Edm65]. The requirement for practi-
cality brings this issue from theoretical to concrete, and is a distinction that appears to be
significant in practice. Edmonds notes: “finding a finite algorithm is trivial but finding an
algorithm which meets this condition for practical feasibility is not trivial” [Edm65]. He was
considering an algorithm for matroid partitions, however the definition has come to apply
to other combinatorial problems as well, including the TSP. Enumerating all the possible
tour options is a finite algorithm, though it is a great example of one that is not practically
feasible, for even modest values of n.

We say that problems that can be solved in polynomial time are in class “P”, while
those, like the TSP, that can be checked in polynomial time, but perhaps not solved so
easily, are in class “NP”, which stands for “non-deterministic polynomial time” [Coo11],
[Coo06]. When we “check” a solution, we are solving the related decision problem associ-

4

ated with the original optimization problem. A decision problem has a “yes or no” answer,
such as “is a number a even?”, rather than finding a specific solution, such as “what is a
number a divided by two?”. In the example of the TSP, if we are given a solution, it is
possible to check whether or not it goes through every city and has cost less than some
value, but finding that tour and verifying that it is optimal is extremely challenging. The
TSP is known to be NP-hard [GP07].

If the two classes, P and NP, were the same, then every problem that we have deter-
mined is NP will also be in the class P, meaning that we could solve it in polynomial time
provided the right algorithm [Coo06]. Deciding whether P = NP is an open problem in
mathematics, and is one of the seven Millennium Prize Problems put forward by the Clay
Mathematics Institute in 2000 [Coo06]. If is it proven that P = NP, then the impact will be
felt throughout the mathematical world, with consequences not only for solving the TSP
and other combinatorial optimization problems, but also for cryptography and bioinformat-
ics [Coo11]. While there have been proposed proofs for the P = NP problem, they have
not held up to scrutiny, and generally it is believed that P 6= NP. For now, it seems un-
likely that an efficient general algorithm exists for NP-complete problems, and therefore, we
settle for finding better algorithms, which is to say finding those that run in less than the
O(n!) it would take use brute force enumeration to find the solution. In fact, Held and Karp
have developed an exact algorithm that takes O(n22n) operations for solving the TSP, which
while better than O(n!) is still in exponential time, but is not in polynomial time [ABCC07].

There have been a variety of approaches used to tackle the TSP and other integer
problems in practice over the years. In general we might divide the approaches into ex-
act methods, which find a globally optimal solution, and heuristic methods, which do not
guarantee global optimality. Exact methods for the TSP are very challenging due to the
difficulty of the problem. Within inexact methods, we can consider both general heuristics
and approximation algorithms.

One exact method is the “branch-and-bound” method, by which the TSP is split into
smaller sub-problems [ABCC07]. We have to review every branch of the solution tree if we
want to be sure to have found the optimal solution. In the case of the TSP, we may consider
all the possible edges leaving a node i. Of (xi1, xi2, . . . , xin), only one edge is permitted to
be selected. We can then split the problem based on which of those edge is selected, i.e.
one branch is where xi1 = 1, another is where xi2 = 1, and so on [ABCC07]. We can then
compute the tree of possible solutions, by examining different edges. If it is found that the
best possible solution in one subset is worse than the solution from the other subset, or if
the subset does not contain a feasible tour, then we can eliminate that branch, and thus

5

restrict the problem.

Other exact algorithmic approaches include using the minimum spanning tree, as in
the Held-Karp method. We also use cutting planes, where constraints are added or lifted
(modified to make it stronger), so that the linear programming solution is closer to the
integer programming solution [ABCC07]. This method is reviewed in Section 1.2.1. Many
of the early researchers in this field were significantly limited by the available computational
power. These limitations influenced which techniques were used, and which approaches were
attempted [ABCC07], [Bix12].

An independent avenue of research is in heuristic methods, which are not guaranteed to
find optimal solutions, but can still provide “good” tours – tours that are not necessarily
optimal, but have a reasonable cost. In fact, a heuristic solution may even be the optimal
solution, but the methods used do not guarantee this result. This guarantee is what sepa-
rates approximate algorithms from exact ones, however it is possible to estimate the error
on heuristic solutions.

We can categorize heuristics as constructive and non-constructive. In a constructive

heuristic, we begin with an empty solution – no tour – and create a solution based on some
rules. One example of a constructive heuristic is a nearest neighbour algorithm, where,
starting at some initial vertex, you add the nearest city not already visited to the tour.
For symmetric graphs satisfying the triangle inequality, the nearest neighbour algorithm
guarantees a solution that is within 1 + log2(n)/2 of the optimal tour length, however it is
possible to generate asymmetric instances where the nearest neighbour algorithm returns
tours with very high cost [Coo11]. Consider a TSP that visits a city in every state in the
continental US. We may end up crossing the continent more than once to pick up any re-
maining cities, when a more circular tour would be more efficient (see 1.1). This algorithm is
very simple to program, as it is a greedy algorithm, and for the 49-city example, it would be
no worse than four times the optimal solution, [Coo11]. Another approximation algorithm
was developed by Nicos Christofides in 1976. Christofides’ algorithm combines a minimum
spanning tree with a minimum matching of odd vertices, both obtainable in polynomial
time [Coo11]. The result is an approximation that is no worse than 3

2 times the optimal
tour, the best approximation algorithm to date [Coo11].

6

Figure 1.1: Nearest neighbour TSP (from [Coo11])

Non-constructive heuristic methods include local-search algorithms, simulated anneal-
ing and tabu search, and genetic algorithms [ABCC07]. In these methods, there is some
initial solution presented, and the algorithm finds methods to improve the solution.

One example of a local search algorithm is to exchange pairs of edges for a pair of less
costly edges, such as where two paths cross over each other [Coo11]. See Figure 1.2 for an
example.

Simulated annealing is a probability-based algorithm, inspired by heating and cooling
metals. In simulated annealing, we start with a solution, and move to neighbouring solu-
tions, however we accept some moves that worsen the solution with the hope that they will
eventually move us into a better neighbourhood [KGV83]. Initially, we will accept more of
these risky moves, but as the temperature cools, we will accept fewer. In local-search and
simulated annealing, we may find local minima, which are not guaranteed to be globally
optimal. However, as the computational requirements for these types of algorithms are gen-
erally lower, we can run the same problem through multiple times with slight variations,
such as different starting conditions or temperature functions, and select the best outcome.

7

Figure 1.2: Two edge swap TSP (from [Coo11])

One can combine constructive and non-constructive algorithms, such as using the output
of a constructive heuristic as the input for a local search algorithm, and they can be used
very effectively on larger problems that exact solvers are unable to solve, but ultimately
they do not provide the same assurances as exact solvers. One might opt to use a heuristic
solver when finding the best possible solution is not required, and it is more important
that the solution is found quickly. Finding good heuristics is its own research challenge,
where we look at the quality of the solution and the efficiency of the heuristic, and com-
pare using benchmark problems, in a method that parallels the research using exact solvers.

1.2.1 Traveling Salesman as an Integer Programming Problem

A linear programming (LP) problem is one where we are seeking to optimize (often
minimize) a linear objective function subject to linear constraints.The feasible set is the set
of values of x that satisfy the constraints. The feasible set for LP problems forms a convex
polyhedron bounded by the constraints, which turns out to be very helpful in finding the
solution, as any local minimizer will also be a global minimizer [BT97]. A minimizer is a
a solution x that minimizes the objective function. A local minimizer is a solution that
minimizes within a neighbourhood, while a global minimizer extends to the entire problem.

We can represent the TSP as an integer programming (IP) problem or a mixed-integer
linear programming (MILP) problem, where we represent constraints as linear expres-
sions using variables that are either integers only (IP) or integers and continuous variables
(MILP). Linear programming, integer programming and mixed-integer programming have
a long history, and there are a variety of techniques that are used to solve these problems.
MILP problems are common in industrial optimization, where they are used in scheduling,
manufacturing and cellular networks. We generally use the sum form to describe the TSP

8

rather than the vector form throughout this thesis.

Linear programming problems are often stated in the standard vector form [BT97]:

Minimize: cᵀx (1.4)

subject to: Ax = b (1.5)

x ≥ 0 (1.6)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n and x ∈ Rn. x is a vector with components (x1, ..., xn),
with all elements being nonnegative. The equivalent sum form would be:

Minimize:
n∑

i=1
cixi (1.7)

subject to:
m∑

j=1
aijxj = bi ∀ i = 1, . . . , n (1.8)

xi ≥ 0 ∀ i = 1, . . . , n (1.9)

General LPs can include additional inequality constraints and free variables, however
we generally standarize the form to make solving easier. We move to the standard form
by introducing slack variables, and making modifications to the problem so that x is non-
negative. Slack variables transform an inequality constraint into an equality constraint. For
example, let our constraint be 3x1 + 4x2 ≤ 18. A slack variable will absorb the difference
between the left side of the constraint and the right side, and we can replace the inequality
with an equal sign. The constraint becomes 2x1 + 4x2 + s1 = 18 and s1 ≥ 0. In practice,
this does not change the problem, as any values of x1, x2 that satisfy the original constraint
also satisfy the modified constraint. We transform free variables (those that can take on
any value) into nonnegative variables by introducing additional variables. For example, if
xj is free, then we replace it with x+

j − x
−
j , where both x+

j , x
−
j ≥ 0 [BT97]. By the end of

this process, all variables will be nonnegative, and constraints will be of equality type.

For a mixed-integer linear programming problem, some xi are restricted to integer val-
ues, while for integer programming problems, we say that x ∈ Zn. When solving LPs, we
can stop as soon as we find a local minimizer, however this does not always extend to IPs.
Consider a two-dimensional LP. The feasible solutions associated with it will be a convex
polygon, e.g. a triangle, which we could represent on a plane. The feasible set for the IP
associated with it will be all the integer points located inside the polygon. Once one finds
the minimizer of the associated LP, one cannot simply find the nearest integer point and
assume that it will be the optimal solution for the IP, making it much more challenging to

9

solve.

Linear programs are used for minimizing (or maximizing) a continuous expression, sub-
ject to constraints,. Industrial applications frequently have integer restrictions on the vari-
ables, meaning that they must solve the much more difficult MILP. There are many applica-
tions of MILPs beyond the TSP. One early LP is known as the Diet Problem, described by
George Stigler in 1945, as a way to determine the best diet for minimal cost for an “active
man” (such as one serving in the military) [Sti45]. In this problem, the constraints repre-
sent the minimum or maximum values of protein, fat, calories, vitamins and minerals. The
variables will be the different available foods, with their nutritional information included in
the constraints. The objective function minimizes the total cost of the food selected. In this
case we can use a linear programming model, as it is possible to purchase non-integer units
of food (e.g. 1.3kg of flour). The Diet Problem predates many of the LP methods discussed
in this paper, and Stigler himself solved it by eliminating as many foods as possible and
restricting the problem to only the most nutritious, and least-cost items, most of which is
done by preprocessing today.

A common example of an IP is called the Nurse Rostering (or Scheduling) Problem,
where nurses are scheduled to work at a hospital. The constraints will be minimum staffing
requirements, labour laws and union agreements, while the objective function may seek to
minimize overtime, or maximize nurses’ satisfaction. In this case, we must use an IP or
MILP formulation, as a nurse is either assigned to a shift or they are not. These are just
two examples of uses of LP/MILP/IP in the field – there are many more including flight
scheduling, production management and network flow problems.

Linear programming problems are often solved using the simplex method - an algorithm
developed by Dantzig in the 1940s. The simplex algorithm exploits the structure of LP
problems, as, if there exists an optimal solution to an LP, it will be found at the intersec-
tion of n or more constraints, where n is the number of variables. In effect, the simplex
method checks the vertices of polyhedron created by the constraints in a systematic man-
ner, never worsening the solution. While it is possible to generate instances with very high
(exponential) iteration counts, in practice it is a very efficient algorithm (linear in the num-
ber of constraints) [BT97]. Even now, more than 70 years after it was initially developed,
Dantzig’s simplex method is critical to solving LP and MILP problems [Bix12].

10

One way to represent the TSP as an IP problem was described by Dantzig, Fulkerson
and Johnson in 1954 [DFJ54] :

Minimize:
n∑

i=1

n∑
j=1, j 6=i

cijxij (2.25)

subject to:
n∑

j=1, j 6=i

xij = 1 ∀ i = 1, . . . , n (1.10)

n∑
i=1 i 6=j

xij = 1 ∀ j = 1, . . . , n (1.11)

∑
i∈S

∑
j∈S, j 6=i

xij ≤ |S| − 1 ∀ S ⊆ {2, . . . , n}, 2 ≤ |S| ≤ n− 1 (1.12)

xij ∈ {0, 1} ∀ i, j = 1, . . . , n (1.13)

Constraints (1.10) and (1.11) ensure that the tour passes through each city exactly once,
while constraints (1.12) eliminates subtours, and are hence called “subtour elimination
constraints”. There are an exponential number of subtour elimination constraints, making
this form difficult to work with explicitly. The above formulation works for the asymmetric
TSP. To modify it for the symmetric TSP, we can replace constraints (1.10) and (1.11) with

n∑
j=1, j 6=i

xij = 2 ∀ i = 1, . . . , n (1.14)

and replace the subtour elimination constraints (1.12) with

∑
i∈S

∑
j∈S, j>i

xij ≤ |S| − 1 ∀ S ⊆ {2, . . . , n}, 2 ≤ |S| ≤ n− 1 (1.15)

For both asymmetric and symmetric versions of the TSP, we can relax the integer constraint
(1.13) to

0 ≤ xij ≤ 1 ∀ i, j = 1, . . . , n (1.16)

The final constraint, (1.16), relaxes this IP problem into a LP problem (called the LP
relaxation), but this can result in tours with fractional edges. With a fractional result, it is
not clear how to obtain an integral tour, as we can’t half cross an edge – we either traverse
an edge (xij = 1) or we do not (xij = 0). When the results are fractional (e.g. xij = 1

2), we
cannot round to an integer value, as the result may not be a tour. Therefore, while the LP
formulation of the TSP does provide some interesting information, it cannot be relied upon
to solve the TSP as we intend to, with an integral tour.

11

There are a variety of other IP formulations for the TSP, including those that use addi-
tional variables to reduce the number of subtour elimination constraints, such as the MTZ
formulation in 1960 [MTZ60], and the DL and SD formulations [OFF+17]. Other formu-
lations include time-dependent models and commodity flow models. We will detail these
formulations, and others, in Section 2.1.

By relaxing the TSP to an LP, we can use the simplex algorithm to solve it, though it
may not give us a tour that can be carried out, but rather fractional edges. The simplex
method will find solutions at the vertices of the feasible polytope, but many LP formulations
have non-integer vertices. In fact, only special cases of IPs will generate integral solutions
at vertices. For example, if the constraint matrix is integral and the right-hand side is also
integral, (A and b from (1.5)), and A has some specific properties (namely, A is a totally uni-
modular matrix), then the linear system will have an integral minimizer [HK56], [JLN+10].
For more details see [BW05], among others. These special occurrences are interesting, but
we are not so lucky with the TSP.

In the TSP formulation described described by Dantzig, Fulkerson and Johnson, they
use an exponential number of constraints to eliminate subtours, making the constraint poly-
tope difficult to work with, even for small values of n. Further, the resulting formulation is
non-integral, so the simplex algorithm does not find an integer solution. The authors instead
left the subtour elimination constraints out initially, solving the much easier underlying LP,
and adding the subtour elimination constraints on an as-needed basis [ABCC07], [JLN+10].

A similar method was developed by Gomory in the later 1950s, as he developed the cut-
ting plane method for integer programming using the simplex method [JLN+10], [Gom58].
In Gomory’s method, new constraints are generated from the simplex tableau, which cut
off non-integer solutions, and shave down the polytope until an optimal integer solution is
found [JLN+10]. Since the simplex algorithm finds solutions on boundaries of the solution
polytope, the cuts ensure that the solution corners are integral. These additional constraints
will be additional hyperplanes that define the feasible polytope. As a simple example, if af-
ter solving the simplex tableau, one of the rows leaves the constraint as 3x1 +x2 ≤ 17

4 , then
as x1, x2 are integer, we can tighten this constraint to 3x1 + x2 ≤ 4. Gomory presented a
systematic method to use the results of the simplex tableau (the format used to apply the
simplex algorithm) to find and apply these cuts as new constraints [Gom58].

12

Figure 1.3: Graphic representation of an LP/IP problem with cutting planes (from [Opt])

In Figure 1.3, the simplex algorithm checks the vertices of the polyhedron to find the LP
relaxation optimal solution. The points within the polyhedron represent the feasible solu-
tions to the IP problem. In this case, we should select the nearest point to the LP solution as
the IP solution, but in higher dimensions it is not so obvious. While it is something we can
visualize, in multi-dimensional problems, such a visualization is not possible, and further,
we need a way to have a computer “see” the solution. The cutting planes shave off parts of
the LP polyhedron so that the IP solution and the LP solution of the new polyhedron are
the same.

1.3 Computer Solvers for LP/IP Problems

Regardless of the method used, the TSP and other MILP problems present a computa-
tion problem. It is simply too onerous to calculate all the different possible tours, and even
relatively efficient methods require significant storage of information. The same is true of
other IP problems, though thanks to the simplex and related methods, LP problems are
considerably easier to solve. Today it is possible to use out-of-the-box programs such as
Gurobi and CPLEX to solve even large instances of LP and IP problems on home comput-
ers, but in the early days of TSP history, this was not the case. We will review how the
computation methods influenced and aided solving the TSP.

13

https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer

1.3.1 1950s & 1960s

Dantzig and his colleagues at RAND initially used a Card Programmable Calculator
to run the simplex algorithm on LP problems, which took eight hours to run through one
instance of the common Stigler Diet Problem of 71 variables and 26 constraints [Bix12].
Much of the eight hours was spent feeding the cards into the system. However long that
may appear, it was still a huge improvement over the “by-hand” method used previously,
which took 120 man-days on a similar instance [Bix12]. The simplex method was then
programmed on an IBM, allowing it to tackle larger problems, and was released for non-
academic use, specifically in the oil and coal industries [Bix12].

For solving MILP problems, it used an updated algorithm that used a branch-and-bound
method, which was used by Land and Doig in their study of discrete optimization, published
in 1960 [Bix12], [JLN+10], [LD60]. Land and Doig pioneered the branch-and-bound method,
which they used to demonstrate the entire solution tree, with the different feasible solutions
in [LD60]. Their method used 37 steps after the initial solve, on a constraint matrix of size
5 by 21 [LD60].

Often these methods were influenced by the type of computation power available, or
the data storage methods. In some iterations of the MILP solver implementations, the IBM
used only tape storage, which encouraged depth-first searching, rather than breadth-first,
meaning that the algorithm searched down the entire branch of the tree to find a solution,
then back up to find the best previous bound [Bix12]. In the TSP example, we would exam-
ine all tours in which the first branching variable xij = 1, before considering any in which
that edge is not selected. The memory required for breadth-first searching is higher, as you
may need to keep track of several variables at each level, but may have some advantages to
finding solutions that require fewer operations to reach. Land and Doig’s team did not have
access to the same electronic computation, and so used desk calculators, and a combination
of manual programming and printed storage to achieve their result [JLN+10]. This meant
that they could put branches of the tree on pause, and investigate other branches, before
returning to the first, as the data were stored in printed files, meaning that when different
computational resources became available, they had to reconsider how to implement their
algorithm in a way a computer could navigate the data [JLN+10].

During this time, Held and Karp developed a dynamic programming method for the
TSP that brought the theoretical computation time down to n22n, but did not solve a
larger instance of the TSP than had been previously completed [JLN+10]. Dynamic pro-
gramming uses a recursive method that breaks down a larger problem into multiple smaller
problems. Held and Karp’s algorithm found optimal paths in subsets of cities, and recur-

14

sively increased the number of cities in the subgroups [JLN+10]. By the later 1960s, they
had also developed a branch-and-bound method that used minimum-cost spanning trees
and Lagrangian relaxations to solve instances up to 64 cities [JLN+10]. While this method
did still use the branch-and-bound methods, it did not use the cutting plane technique
directly from the LP solvers [Coo11].

1.3.2 1970s

By the 1970s technology had advanced enough to permit different methods of tree
search, and various new methods were introduced, including heuristics in determining
branching variables [Bix12]. Additional computing availability and power also allowed for
new methods, such as using the dual simplex method for LPs [Bix12]. Each LP has an asso-
ciated dual LP, where the problem is transformed such that the variables become associated
with constraints, and vice versa, and the objective switches from a minimization problem to
a maximization problem. This creates a mirror problem that we can now put through the
simplex algorithm. This can be very helpful in some circumstances, since if the dual has an
optimal solution, so does the original (or primal problem), and furthermore, they have the
same cost [BT97]. These results made IP and LP solvers powerful enough to start to solve
major problems, and modifications to coding practices permitted stand-alone LP solvers
to be inserted into other procedures, integrating LP subproblems into larger operations
[Bix12]. IPs were also approached using polyhedral methods, with a great deal of research
advancing the field of polyhedral combinatorics at the time [JLN+10]. In some specific cases
IPs, produce integral polyhedra, which means that all of their extreme points are integral,
and we can use LP methods to solve them, which is one of the links between these two fields.

During this decade, larger and larger instances of the TSP were also being solved,
and in less and less time, including an 80-city instance in less than one minute [Coo11].
This came after a call for a more systematic and organized approach by Gomory in the
1960s [JLN+10]. Methods including using comb-inequalities, which were used in a by-hand
and computer combination to solve a 120-city instance, a combination of cutting plane
and branching-and-bound known as branch-and-cut, used on a small instance, and cutting
planes on a large-scale problem of 318 cities [JLN+10].

1.3.3 1980s & 1990s

In the late 1970s, Khachiyan showed that LPs could be solved in polynomial time
using an ellipsoid method [Bix12], [Kha80]. Methods to that date relied on the simplex
method, which is not guaranteed to have polynomial efficiency, though in practice is typi-
cally efficient. Unfortunately, Khachiyan’s algorithm was not practical, and as a result was

15

not pursued for use in LP solvers [Bix12]. This result still served an important purpose in
furthering research in polyhedral methods in the 1980s, where it was shown that the LP
problem on a polyhedron P is polynomial-time equivalent to the separation problem for P ,
where for some vector x we can show that either x is in the polyhedron P or we can generate
a c such that cᵀy ≤ cᵀx for all y ∈ P [JLN+10]. This insight has implications beyond LP
solvers. Our motivating problem is the TSP, which is solvable in exponential time. If the
TSP can be formulated in a way that a polynomial-time separation algorithm can be used
to solve it, then it’s possible that we will be able to improve on the current solving time
bounds [JLN+10].

As desktop computers became available, researchers began developing solving code that
would run on PCs, first LP solvers as early as 1983, then MILP solvers later on [Bix12].
Computer speeds continued to improve over this time, and there was a sense that the ongo-
ing development of LP solvers had really slowed, and that improvements would come from
the advances in technology rather than from modifying the solving algorithms [Bix12]. In
fact, new methods and algorithms would continue to develop, most notably the dual simplex
method as a general purpose solver, rather than as a function within other solving methods
[Bix12].

Karmarkar built from the ellipsoid method in solving LPs by developing an efficient
interior-point method, which in turn created its own branch of study within LP solvers
[ABCC07], [Kar84]. In interior-point methods, rather than staying on the boundary of the
feasible set, as done in the simplex method, we move through the centre of the polyhedron
and work our way to the edge. As with Khachiyan, Karmarkar’s algorithm was not im-
mediately practical in computer LP solvers, but led to further developments in the field,
including the emergence of log-barrier methods [Bix12]. In barrier methods, we remove con-
straints from the body of the problem and replace them with a penalty in the objective
function, commonly a logarithmic or inverse function. For a simple example, let’s say we
wish to minimize an objective function (cᵀx), subject to some constraints, and we require
x to be nonnegative, that is x ≥ 0. We will now associate a penalty with the nonnegativity
constraints and move them to the objective function. Now we minimize cᵀx− µ∑n

i=1 ln xi,
subject to the original constraints, except for the nonnegativity requirements. It is easy to
see that as x approaches zero, the penalty term, even for small values of µ, will become
very large. We can modify the value of µ to approach the boundary associated with the
constraint. This idea forms the basis for log-barrier algorithms.

By the late 1980s, AT&T developed a commercial LP solver, called the KORBX system,
which used Karmarkar’s interior-point method, but was ultimately not commercially suc-
cessful [Bix12]. AT&T was very excited by the product, and tried to protect their investment

16

by trying to patent Karmarkar’s algorithm [Sha12]. While AT&T published accounts that
the software was able to solve instances of LPs that were previously unsolvable [CHL+89],
other results were not so supportive [Sha12]. Other solvers developed during this time were
the OB1, which used a log-barrier method, IBM’s OSL code and Bixby’s CPLEX LP solver
[Bix12]. These solvers took advantage of the dual-simplex algorithm and improvements in
managing the linear algebra aspects of solving, especially with regard to large, sparse mod-
els [Bix12]. In the simplex method, in each pivot, or move from one corner to another,
many systems of equations must be solved, and so by preprocessing in advance of solving
the system of equations, the solving step can be completed more efficiently [Bix02]. The
result of these advances in solving ability was that by the early 2000s, even large LP prob-
lems were considered solvable by some method, whether primal, dual or barrier, and these
methods were also used in solving MILP and IP problems [Bix12]. MILP solvers continued
to develop over this time frame as well. Initially, improvements in solving time were due
to computers becoming more powerful, and the underlying LP solvers improving, rather
than any significant change in solving algorithms [Bix12]. In the late 1980s and early 1990s,
several MILP solvers were developed for commercial use, including XpressMP and CPLEX,
as well as solving codes developed for research purposes, such as Georgia Tech’s MINTO
code released in 1991 [Bix12].

1.3.4 2000s

In the early 2000s, LPs were again considered a “solved problem” [Bix12]. However,
many of the improvements in LP solvers did not reach the MILP solvers until the late
1990s, and so in 1998, CPLEX saw it’s biggest version-to-version improvement, when it
incorporated the research from the previous few decades [Bix12]. Around this time, more
advanced presolving techniques were included in computer solvers [Bix02]. Presolving algo-
rithms modify the original problem to put it into a better form for solving or identify in-
feasibility. Presolve algorithms remove redundant constraints, improve bounds on variables,
and generally try to tighten the model to reduce the amount of work the branch-and-cut
algorithms later on [Mah10]. One specific example of a presolve method for MILP is to
probe on binary variables [BFG+00]. For example, if when we set a binary variable to 1,
the resulting model is infeasible, we can set that variable to 0 and substitute throughout
the problem. In this example, we have replaced one variable with a constant, shrinking the
size of the problem. Presolving algorithms make the solving algorithms more effective, but
the onus is still on the researcher to provide the solver with the best possible input, as the
presolvers are limited.

Today, a variety of commercial solvers are available for use. These include an LP solver
built into Microsoft Excel, and solvers such as CPLEX and Gurobi that are used through

17

common programming languages like C and Python, or through languages developed for
mathematical modeling, such as AMPL. Commercial math software such as Maple and
Matlab also include LP solvers, and there are some open source solvers as well. CPLEX
was founded in 1988 by Robert Bixby, a prominent scholar in operations research, who
also documented the history of the methods outlined in this section. CPLEX was acquired
by ILOG in 1997, which was later acquired by IBM [Rot]. In 2008, Bixby and two of the
other members, Zonghao Gu and Edward Rothberg, of the CPLEX research and develop-
ment leadership team left CPLEX to found Gurobi Optimization, named after combining
the first two letters of each of the founders’ last names [Rot]. Today’s solvers use all the
methods mentioned above and others, but advances in technology also allow them to run
in parallel, meaning that multiple branches of the tree can be searched simultaneously. In
LP problems, the barrier methods have been more effectively parallelized than the simplex
methods, meaning that they have some advantages in newer computers [Bix12]. The cul-
mination of all of these advances have meant that larger and larger MILP problems are
now solvable, including TSP instances with tens of thousands of nodes [ABCC07]. We are
now able to solve even larger instances to within certain tolerances, that is, the result is not
guaranteed to be optimal. One such example is the star TSP with 526,280,881 nodes, solved
to within 0.796% of an optimal tour [ABCC07]. These very large instances are challenge
problems, but successes at the extreme end of the spectrum have applications down the
line. Improvements in computation and algorithms that permit the solving of exceptional
cases of the TSP also let us solve realistic cases of MILP problems faced by industry today.

1.4 Quadratic Traveling Salesman Problem

We will now examine a specific case of a modern variation of the TSP – the Quadratic
Traveling Salesman Problem. In the Quadratic Traveling Salesman Problem (QTSP), we
associate a cost with each edge (cij) as well as each pair of edges (qij,kl) [FH13]. Therefore,
we are interested in not only which pairs of vertices are connected, but also which pairs
of edges occur in the tour [FH13]. This allows us to model problems where there is a cost
associated with each edge, but also with transitioning between edges, such as the cost of
changing transportation types at that vertex [OFF+17] . The quadratic version of the TSP
in general is not well explored in literature, however there are some results for special cases
of the QTSP. Since there are few results for this model, and there are applications for the
QTSP in real world modeling, we believe that there is motivation to study this formulation
in greater detail.

The Quadratic Traveling Salesman Problem was described by Jäger and Molitor in 2008
as a way to model problems in bioinformatics, specifically the Permuted Variable Length

18

Markov Model [JM08]. This version, named the 2-TSP or “second order TSP”, considered
edges crossed in succession, and they showed that the asymmetric TSP could be reduced
to the asymmetric 2-TSP in polynomial time [JM08]. Their formulation and proposed al-
gorithms rely on the structure of the problem, namely that there are costs associated with
triples of vertices in succession [JM08]. We provide a few examples of other ways to model
the quadratic objective function for the QTSP below.

Since we are concerned with pairs of edges that contribute to tours, we can represent
the QTSP directly in the formulation:

Minimize:
n∑

i=1

n∑
j=1

n∑
k=1

qijkxijxjk +
n∑

i=1

n∑
j=1

cijxij

where qijk represents the quadratic cost associated with edge pairs (i, j) and (j, k), and cij

represents the edge cost [FH13]. The quadratic cost can be interpreted as the cost of the
intersection of (i, j, k), or the cost to transfer from (i, j) to (j, k). This assumes that the
cost for non-adjacent edges is zero [PW17], which is the primary format of the previous
research. We call this form of the QTSP the quadratic adjacent TSP. This particular form
has applications within transportation, where the quadratic costs may represent transfer
costs at a vertex, and robotics, where changing directions is more costly than maintaining
the current direction. In the former, we may consider examples in shipping where there
are costs associated with traversing each edge, and then additional costs when loading or
unloading cargo at a transfer point. The latter is known as the Angular-Metric Traveling
Salesman Problem [OFF+17], and was first discussed by Aggarwal et al. in the late 1990s
[ACK+00].

To formulate the angular-metric TSP, the vertices (v1, . . . , vn) represent points in Eu-
clidean space, and we aim to minimize the sum of angles as the object moves through space
[Fis13], [OFF+17], [ACK+00]. Then, every time we change direction (pass through a ver-
tex), we want to calculate the difference between the previous direction (edge (ij)) and the
current direction (edge (jk)). This becomes the quadratic cost associated with the angle
changes [OFF+17], [Fis13], which are calculated as follows:

q∠ijk := arccos
((

vj − vi

||vj − vi||

)ᵀ(
vk − vj

||vk − vj ||

))

Like in the non-quadratic TSP, there exist symmetric and asymmetric versions of the
QTSP. In the asymmetric QTSP, the cost of the edges depends on the direction of travel,
while in the symmetric, they do not. Studies on the QTSP are far more limited than those

19

on the general TSP. We review some of the recent findings in the next paragraph.

The symmetric version of the quadratic adjacent TSP has been studied by [FH13],
[OFF+17] among others. In [FH13], they focus on the structure of the associated poly-
hedron and lifting subtour elimination constraints to be facet-defining. This results in a
closer polyhedron, which can improve the root relaxation and the resulting search tree. In
[OFF+17], they test an integral approach for computational results, as well as introducing
a mixed-integer linear programming linearization and some theoretical results for the max
angle TSP. Linearizing the quadratic problem allows us to use the results of some of the
other researchers mentioned in this paper, but can increase the problem size (number of
variables and constraints) of the resulting polyhedron is not as close. Rostami and others
studied lower-bounding procedures for the asymmetric quadratic adjacent TSP, as well as
linearization techniques [RMBG16]. Other researchers have investigated specific instances
of the QTSP, such as on Halin graphs [WPS17], or where the cost matrix has a fixed rank
[WP17].

While solvers have come a long way in addressing the linear TSP, the QTSP is much
more computationally challenging, meaning that even small sizes of the QTSP do not solve
optimally within certain time limits. In general, it is not well studied, though certain for-
mulations are important, especially as technology around robotics continues to evolve, and
we try to model more complex transportation scenarios.

1.4.1 Linearizing the Quadratic Objective Function

Linearization, or the transformation from a non-linear function (such as a quadratic
function) to a linear one, allows us to take advantage of proven solving techniques in Mixed
Integer Linear Programming [HM09]. In order to use linear solving techniques, we replace all
instances of products of two binary variables with a linear term, using additional variables
and linear constraints. These additional variables and constraints increase the size of the
problem, however there may be advantages to using linear solving methods over the non-
linear ones. We will explore several linearization techniques and their impacts on solve time.

Linearization is a common technique in quadratic binary optimization problems. The
drawbacks to linearization are that they can produce weak linear relaxation lower bounds,
while simultaneously increasing the problem size through additional constraints and vari-
ables [HM09]. Therefore we are hoping to reduce complexity in the objective function, by
removing the quadratic elements, while increasing the quantity or complexity of the con-
straints and variables. We are interested in seeing whether these techniques can be effective

20

when applied to the QTSP.

Linearization techniques are well established within the field of Operations Research.
The first linearization we study, involving replacing the product of two binary variables
by an additional binary variable, was proposed by several authors in the 1950s and 1960s
[HM09], [Wat67]. This method was described by Watters [Wat67] and applied to a financial
optimization program as an example. This method does lead to additional integer variables,
which can reduce the benefit of linearization [Wat67], [GW74], [Glo75]. By modifying one of
the additional constraints, Glover and Woolsey were able to relax the binary requirement on
the linearization variable, establishing what became known as the “standard linearization”
[GW74]. This is preferred over the original binary replacement as it keeps the number of
integer variables the same as in the unmodified problem [Glo75].

We also study using the McCormick envelopes to surround the quadratic term. This
method was proposed by McCormick in the 1970s as a method to transform mixed integer
non-linear programming problems into convex non-linear programming problems [McC76].
By using this method, one can more easily find globally optimal solutions to non-linear
problems, since the convexity of the transformation ensures that local minima are in fact
global minima [McC76]. We achieve this by finding the convex over- and under-estimates
for the quadratic portion of the objective function, and rely on the binary restriction of xij .

Finally, we examine two methods that replace the quadratic term with the difference
of two integers, relying on the integrality of the quadratic cost matrix. In the two methods
we use integers of base-2 and base-10 in the difference terms. The base-2 expansion was
described by [Wat67], and has been used in mixed integer linear programming problems by
[OM02] and in the QSCP by [Pan18]. We use the same method for the base-10 expansion.
We provide more detail on how to formulate the linearizations in Chapter 4.

Other linearization techniques include a reformulation-linearization method proposed by
Sherali and Adams [SA90], various compact methods studied by Glover and others [Glo75],
[HM09] as well as other techniques proposed by [HM09], [Pan18], among others. We do not
examine these methods in detail.

1.5 Contribution

In this thesis, we review the Traveling Salesman Problem and provide several integer
programming formulations. We examine the generalization to a quadratic objective function
in its most general form, using an integer programming approach, where we use three formu-
lations (the Dantzig subtour elimination method, the Miller-Tucker-Zemlin (MTZ) method

21

and a flow-based formulation) in testing the effects on computation time of modifying the
quadratic cost matrix and linearizations. In particular, we will use a general form of the
QTSP, where there is a quadratic cost associated with any two edges in a tour, rather than
applying the quadratic cost only to adjacent edges, as has been studied by other researchers.

1.5.1 Modifying the Quadratic Matrix

We provide seven modifications of the quadratic cost matrix that transforms the instance
into an equivalent representation. We study the impact of the following: symmetrization,
triangularization, convexification, concavification, node n removal, and symmetrization and
triangularization of the node n removed matrix. We also retain the unmodified quadratic
matrix as a control. Symmetrization and triangularization are common techniques, demon-
strated in [Pan18], [HR70], among others, with applications beyond the QTSP. Convexifi-
cation, or the transformation of a matrix into a positive semi-definite form, has also been
used by [Pan18] and [HR70]. The original method subtracts the minimum eigenvalue of the
quadratic cost matrix (Q) from the diagonal entries of Q [HR70], however we choose to add
a sufficiently large positive value, and keep that value the same for all instances. We then
apply the same method to transform Q into a negative semi-definite form, however we use a
sufficiently large negative number. We apply the method described by [PW17] to transform
Q into a node n-removed matrix, and then apply the symmetrization and triangularization
techniques.

Several of these methods were used in [Pan18] with the aim of comparing their impact
on solving instances of the quadratic set covering problem. The methods described have
been applied to other problems, apart from the node-n removal, which has been applied
to the QTSP, though not for computational experiments. We therefore believe that this
presents an opportunity to test these methods on this quadratic problem.

1.5.2 Linearizations

We test the effect of five linearizations on computation time. We study the impact of
the following: linearization using additional binary variables, standard linearization, Mc-
Cormick envelope linearization, base-2 linearization, and base-10 linearization. Several of
these methods were used by [Pan18], applied to a related combinatorial optimization prob-
lem, the quadratic set covering problem. We do not modify the quadratic matrix, and retain
the quadratic form of the instance as the control. These methods have been applied to other
quadratic problems, but not to this specific form of the QTSP.

22

Chapter 2

Integer Programming Formulations

In this chapter we review some of the popular formulations of the TSP and QTSP, and
their linear relaxations, and provide some comments on their respective sizes. As there are
several ways to describe the constraint set of the TSP, which all use the same objective
functions, we describe the constraints which formulate relaxations of the TSP polytope
in Section 2.1, and the objective functions in Sections 2.2 and 2.3. In all formulations we
assume that there are n cities. We define the following variables:

xij =

1 if the edge connecting (i, j) is selected in the tour

0 otherwise

Therefore, we can represent x ∈ {0, 1}n×n.

2.1 Traveling Salesman Problem Constraints

We begin by describing the different ways to formulate the constraint set. Some for-
mulations introduce additional variables to ensure that the solution forms a tour, while
others can be used to model commodity flows. Some formulations may be more useful to
researchers than others.

2.1.1 Dantzig Subtour Elimination

The general formulation, described by Dantzig, Fulkerson and Johnson in 1954 [DFJ54]
while working at the RAND Corporation is as follows:

subject to:
n∑

j=1, j 6=i

xij = 1 ∀ i = 1, . . . , n (1.10)

n∑
i=1 i 6=j

xij = 1 ∀ j = 1, . . . , n (1.11)

23

∑
i∈S

∑
j∈S, j 6=i

xij ≤ |S| − 1 ∀ S ⊆ {2, . . . , n}, 2 ≤ |S| ≤ n− 1 (1.12)

xij ∈ {0, 1} ∀ i, j = 1, . . . , n (1.13)

Constraints (1.10) and (1.11) ensure that the tour passes through each city exactly once,
while constraint (1.12) eliminates subtours, and are hence called “subtour elimination con-
straints”. Note that there is an exponential number of subtour elimination constraints. The
above formulation works for the asymmetric TSP. To modify it for the symmetric TSP, we
can replace constraints (1.10) and (1.11) with

n∑
j=1, j 6=i

xij = 2 ∀ i = 1, . . . , n (1.14)

and replace the subtour elimination constraints with

∑
i∈S

∑
j∈S, j>i

xij ≤ |S| − 1 ∀ S ⊆ {2, . . . , n}, 2 ≤ |S| ≤ n− 1 (1.15)

For both asymmetric and symmetric versions of the TSP, we can relax the integer constraint
(1.13) to

0 ≤ xij ≤ 1 ∀ i, j = 1, . . . , n (1.16)

The general formulation has 2n−1 + n− 1 constraints, due largely to the subtour elimi-
nation constraints (1.12), and the resulting polyhedron is not integral, so we typically don’t
solve it in this precise form [OW06]. Instead, we use a method called delayed constraint gen-
eration where we solve the initial IP using some constraints (1.10), (1.11), and then add in
the subtour elimination constraints only if they are violated. Specifically, we use a callback
method within Gurobi, where we check the length of the shortest circuit. If the length of
the shortest tour is less than n then Gurobi will add in a subtour elimination constraint
that is violated, and reruns the optimization step. This process is repeated until an optimal
solution of length n is found. This means that it only uses the constraints it needs to add,
which may not be all of them.

2.1.2 Miller-Tucker-Zemlin (MTZ)

The MTZ formulation uses additional continuous variables to prevent subtours. The
additional variables, ui, represent vertex i’s position in the tour. Constraints (1.10) and
(1.11) are retained, however we replace (1.12) with

ui − uj + (n− 1)xij ≤ n− 2 ∀ i, j = 2, . . . , n, i 6= j

24

If the tour does contain a subtour, then constraint (2.1) is violated for the subtour not
containing vertex 1 [GP07]. Constraints (1.10) and (1.11) require that there must be at
least two subtours, thus there must be one not containing vertex 1.

The full asymmetric MTZ formulation is:

subject to:
n∑

j=1, j 6=i

xij = 1 ∀ i = 1, . . . , n (1.10)

n∑
i=1, i 6=j

xij = 1 ∀ j = 1, . . . , n (1.11)

ui − uj + (n− 1)xij ≤ n− 2 ∀ i, j = 2, . . . , n, i 6= j (2.1)

1 ≤ ui ≤ n− 1 ∀ i = 2. . . . , n (2.2)

xij ∈ {0, 1} ∀ i, j = 1, . . . , n (1.13)

Like in the general formulation, we can relax to a linear model by replacing (1.13) with:

0 ≤ xij ≤ 1 ∀ i, j = 1, . . . , n (1.16)

Constraints (2.2) restrict ui, however they are not required and do not affect the LP
bound [ÖAL09]. Without the optional constraints, this formulation has n2 binary variables
and n− 1 continuous variables, and n2 − n+ 2 constraints [OW06]. Constraints (2.2) adds
n− 1 constraints.

2.1.3 Desrochers and Laporte (DL)

We can lift the MTZ subtour elimination constraints (2.1) and (2.2) to the stricter forms:

ui − uj + (n− 1)xij + (n− 3)xji ≤ n− 2 ∀ i, j = 2, . . . , n (2.3)

1 + (n− 3)xi1 +
n∑

j=2
xji ≤ ui ≤ n− 1− (n− 3)x1i −

n∑
j=2

xij ∀ i = 2, . . . , n (2.4)

as found by Desrochers and Laporte [ÖAL09, pg. 639]. This gives us the following formula-
tion:

subject to:
n∑

j=1, j 6=i

xij = 1 ∀ i = 1, . . . , n (1.10)

n∑
i=1, i 6=j

xij = 1 ∀ j = 1, . . . , n (1.11)

25

ui − uj + (n− 1)xij + (n− 3)xji ≤ n− 2 ∀ i, j = 2, . . . , n, i 6= j (2.5)

1 + (n− 3)xi1 +
n∑

j=2
xji ≤ ui ≤ n− 1− (n− 3)x1i −

n∑
j=2

xij ∀ i = 2, . . . , n

(2.6)

xij ∈ {0, 1} ∀ i, j = 1, . . . , n (1.13)

To relax to a linear form, we replace (1.13) with:

0 ≤ xij ≤ 1 ∀ i, j = 1, . . . , n (1.16)

This formulation has n2 binary variables and n − 1 continuous variables, and n2 + 1
constraints, the same number as the full MTZ formulation, however, constraints (2.5) and
(2.6) are facet defining [ÖAL09].

2.1.4 Single Commodity Flow (SCF)

The SCF formulation replaces the subtour elimination constraints with flow constraints
that allow n − 1 units of a single commodity to flow from vertex 1 to all other vertices
[OW06]. We keep constraints (1.10) and (1.11), and introduce new variables

yij = flow along edge (i, j)

The SCF formulation is:

subject to:
n∑

j=1, j 6=i

xij = 1 ∀ i = 1, . . . , n (1.10)

n∑
i=1, i 6=j

xij = 1 ∀ j = 1, . . . , n (1.11)

yij ≤ (n− 1)xij ∀ i, j = 1, . . . , n, i 6= j (2.7)
n∑

j=2
y1j = n− 1 (2.8)

n∑
i=1

yij −
n∑

k=1
yjk = 1 ∀ j = 2, . . . , n (2.9)

yij ≥ 0 ∀ i, j = 1, . . . , n (2.10)

xij ∈ {0, 1} ∀ i, j = 1, . . . , n (1.13)

To relax to a linear form, we replace (1.13) with:

0 ≤ xij ≤ 1 ∀ i, j = 1, . . . , n (1.16)

26

Constraint (2.7) allows the commodity to flow along edge i, j only if the edge is selected
for the tour, while constraints (2.8) and (2.9) restrict the flow between vertices. These
constraints fulfill the subtour elimination requirements [GP07]. We can strengthen (2.7) to:

yij ≤ (n− 2)xij ∀ i, j = 2, . . . , n

since the initial n − 1 flow from vertex 1 is reduced by one after the first stop of the tour,
so all remaining edges must have at most n − 2 units flowing along them [OW06]. This
formulation has n2 + 2n constraints, n2 binary variables and n2 continuous variables.

2.1.5 Two Commodity Flow (TCF)

We can modify the SCF formulation to allow a second commodity type. In this formu-
lation, we allow n− 1 units of commodity y out of vertex 1, and n− 1 units of commodity
z into vertex 1. This gives us the following formulation [GP07, pg.19]:

subject to:
n∑

j=1, j 6=i

xij = 1 ∀ i = 1, . . . , n (1.10)

n∑
i=1, i 6=j

xij = 1 ∀ j = 1, . . . , n (1.11)

n∑
j=1

y1j −
n∑

j=1
yj1 = n− 1 (2.11)

n∑
j=1

yij −
n∑

j=1
yji = −1 ∀ i = 2, . . . , n (2.12)

n∑
j=1

z1j −
n∑

j=1
zj1 = −(n− 1) (2.13)

n∑
j=1

zij −
n∑

j=1
zji = 1 ∀ i = 2, . . . , n (2.14)

n∑
j=1

yij +
n∑

j=1
zji = n− 1 ∀ i = 2, . . . , n (2.15)

yij , zi,j ≥ 0 ∀ i, j = 1, . . . , n (2.16)

yij + zij = (n− 1)xij ∀ i, j = 1, . . . , n (2.17)

xij ∈ {0, 1} ∀ i, j = 1, . . . , n (1.13)

To relax to a linear form, we replace (1.13) with:

0 ≤ xij ≤ 1 ∀ i, j = 1, . . . , n (1.16)

27

This formulation has 3n2 + 5n− 1 constraints, n2 binary variables, and 2n2 continuous
variables.

2.1.6 Multi-Commodity Flow (MCF)

We can extend the flow formulation to include n commodities going to n vertices. We
alter the flow variables to

yk
ij = flow of commodity k along edge i, j

We replace the flow constraints from above to give us the following formulation [OW06]:

subject to:
n∑

j=1, j 6=i

xij = 1 ∀ i = 1, . . . , n (1.10)

n∑
i=1, i 6=j

xij = 1 ∀ j = 1, . . . , n (1.11)

yk
ij ≤ xij ∀ i, j = 1, . . . , n, k = 2, . . . , n (2.18)
n∑

i=1
yk

1i = 1 ∀ k = 2, . . . , n (2.19)

n∑
i=1

yk
i1 = 0 ∀ k = 2, . . . , n (2.20)

n∑
i=1

yk
ik = 1 ∀ k = 2, . . . , n (2.21)

n∑
j=1

yk
kj = 0 ∀ k = 2, . . . , n (2.22)

n∑
i=1

yk
ij −

n∑
i=1

yk
ji = 0 ∀ j, k = 2, . . . , n, j 6= k (2.23)

yk
ij ≥ 0 ∀ i, j, k = 1, . . . , n (2.24)

xij ∈ {0, 1} ∀ i, j = 1, . . . , n (1.13)

To relax to a linear form, we replace (1.13) with:

0 ≤ xij ≤ 1 ∀ i, j = 1, . . . , n (1.16)

Constraints (2.18) allow the flow of any commodity only along edges that are selected
for the tour. Constraints (2.19) and (2.20) allow one unit of each commodity out of vertex
1, and prevent any flow into vertex 1. Constraints (2.21) and (2.22) allow one unit of com-
modity k into vertex k, and prevents any flow of commodity k out of vertex k. Constraints
(2.23) require all other commodities to balance [OW06].

28

This formulation has n3 + 3n − 2 constraints, n2 binary variables and n3 continuous
variables.

2.1.7 Formulation Strength Comparison

Öncan et al. summarized the relationships between the different integer formulations of
the asymmetric TSP in [ÖAL09]. They showed that the MTZ formulation is weaker than
the SCF formulation and that the SCF is weaker than the Dantzig Subtour formulation
[ÖAL09]. As the DL formulation uses lifted MTZ constraints, we see that the DL formulation
is stronger. The projected polyhedron of the MCF formulation is a proper subset of the
projected polyhedron of the SCF, making the MCF a stronger formulation, while the SCF
and TCF formulations are equivalent [ÖAL09].

2.2 Linear Objective Function

The objective of the TSP is to minimize the total cost of the tour. Therefore, we sum
the cost over all edges, and the constraint set (whichever is used) will guarantee that the
edges selected form a tour. We define the following:

cij = cost (or distance) of traversing edge (i, j)

We can represent C ∈ Mn with diagonal entries zero, where Mn is a square matrix of size
n.

The objective function for the linear TSP can be formulated as follows:

Minimize:
n∑

i=1

n∑
j=1
j 6=i

cijxij (2.25)

(2.26)

2.3 Quadratic Objective Function

We will focus on a more general formulation of the asymmetric quadratic TSP of the
objective function, where there is an additional cost associated with any two edges in the
tour, even if the two are not adjacent. Rather than using the four-value index [i, j, k, l], we
will index by edge-pair. The edge-pair set, E, has size n(n−1), to represent all combinations
(i, j), i 6= j. As the cost cii = 0 and we do not permit loops from a vertex to itself, we can
represent the cost matrix C as a vector in Rn(n−1). Note that xii does not exist, and so qii,jj

does not exist for any i, j. Therefore we can represent Q ∈ Mn(n−1). We aim to minimize
the total cost of the tour. This will include the linear cost, which is the cost associated with

29

each edge, and the quadratic cost, which is the cost associated with each pair of edges. We
therefore have two sums – one for the linear cost c and one for the quadratic cost Q. We
formulate the objective function as follows:

Minimize:
∑

ij∈E

∑
kl∈E

qij,klxijxkl +
∑

ij∈E

cijxij (2.27)

We note that the QTSP is NP-hard as it can be considered a generalization of the TSP,
which is NP-hard. We can modify the previous formulations to take into account a quadratic
objective function and edge-pair index.

30

Chapter 3

Modifying the Q Matrix

We consider modifying the cost matrix Q such that the cost of the tour remains un-
changed for all tours, but the structure of the matrix may allow us to solve the QTSP in less
time. We investigate the computational effects of the following equivalent representations:
symmetrization, triangularization, negative semidefiniteness, positive semidefiniteness, node
n removal, and symmetrization and triangularization of the node n removed matrix.

Upper case letters indicate matrices, while lower case letters indicate entries within a
matrix. We use lowercase bold to indicate vectors. We use superscripts (Qm) to indicate
the various modifications we plan to explore, where m is the shorthand for the modification.
For entries within a matrix, we use qm

ij,kl where ij and kl represent the position within the
matrix, and m is the modification.

Let (Q, c) be the initial quadratic and linear costs of a problem instance. We describe
Q in section 2.3. Recall that Q ∈ Mn(n−1), while c ∈ Rn(n−1). Then let f(Q, c,x) be the
QTSP associated with a solution x ∈ {0, 1}n(n−1). Then

f(Q,C,x) :=
∑

ij∈E

∑
kl∈E

qij,klxijxkl +
∑

ij∈E

cijxij

We will modify the cost matrices such that f(Q, c,x) = f(Qm, cm,x) + δm, where δm

is a constant term based on the size of n. We can then say that (Qm, cm) is equivalent to
(Q, c) up to a constant δm. The goal of these modifications is to put (Q, c) into a more
favourable form for solving.

3.1 Symmetric Q

Consider the matrix QS = 1
2(Q + Qᵀ). Entrywise, qS

ij,kl = 1
2(qij,kl + qkl,ij), for all ij, kl

in the edge set E. Given that xijxkl = xklxij , the quadratic cost associated with this tech-
nique is unchanged, and no modifications are required for c, δ. Therefore we claim that

31

f(Q, c,x) = f(QS , c,x), and (QS , c) is equivalent to (Q, c).

3.2 Upper Triangular Q

We define an upper triangular matrix QU where QU = (Q+QT) for the upper triangular
values, and QU = 0 for the lower triangular values. That is,

qU
ij,kl =

qij,kl + qkl,ij if kl > ij

qij,kl if ij = kl

0 otherwise

Given that xijxkl = xklxij , qij,klxijxkl + qkl,ijxklxij = xijxkl(qij,kl + qkl,ij), and f(Q, c, x) =
f(QU , c,x). Therefore, (QU , c) is equivalent to (Q, c).

3.3 Positive Semi-Definite Q

We replace Q with a positive semi-definite matrix by letting QP = Q+MI, where M is
a sufficiently large real number, and I is an n(n − 1) identity matrix. We modify only the
diagonal values of QP , by letting

qP
ij,kl =

qij,kl +M if ij = kl

qij,kl otherwise

Choosing a sufficiently largeM value ensures that all eigenvalues of QP are nonnegative,
and therefore the matrix is positive semi-definite. We can choose a value of M that guar-
antees that the resulting QP is diagonally dominant, as the diagonal entries will be greater
than the absolute sum of the remaining elements of each row, and the diagonal entries are
positive [Bri]. Gershgorin’s Circle Theorem implies that QP has nonnegative eigenvalues,
and thus it is positive semi-definite [Wei], [Ser10]. We provide the full statement of the
theorem from [HJ85]:

Gershgorin’s Circle Theorem. Let A be a complex square n×n matrix. We
define

Ri =
n∑

j=1,j 6=i

|aij |

Then each eigenvalue, λ, will be in at least one of the disks defined by (aii, Ri),
where aii is the centre of the disk and Ri is the radius, such that |λ− aii| ≤ Ri.

We want to choose a value for M that ensures that aii +M is nonnegative, so that the
extreme parts of the disk are nonnegative. Thus it is sufficient to takeM = max{Ri + |aii|},

32

but we may also take it to be larger. We provide more detail on choosing anM in the results
section.

We now show that f(Q, c,x) = f(QP , c,x) + δ and determine the value of δ:

f(QP , c,x) = f(Q+MI, c,x)

=
∑

ij∈E

∑
kl∈E

qij,klxijxkl +
∑

ij∈E

Mxijxij +
∑

ij∈E

cijxij

Since xij ∈ {0, 1}, xijxij = xij

=
∑

ij∈E

∑
kl∈E

qij,klxijxkl +M
∑

ij∈E

xij +
∑

ij∈E

cijxij

Since x forms a tour, ∑ij∈E xij = n, therefore

=
∑

ij∈E

∑
kl∈E

qij,klxijxkl +Mn+
∑

ij∈E

cijxij

f(QP , c,x) = f(Q, c,x) +Mn

Therefore, δ = −Mn and f(Q, c,x) = f(QP , c,x)−Mn, with Mn being a constant. Then
(QP , c) −Mn is equivalent to (Q, c).

3.4 Negative Semi-Definite Q

We replace Q with a negative semi-definite matrix by letting QN = Q−MI, where M
is a sufficiently large number, and I is an n(n − 1) identity matrix. We modify only the
diagonal values of QN , by letting

qN
ij,kl =

qij,kl −M if ij = kl

qij,kl otherwise

We use the same method as above to guarantee that the matrix is diagonally dominant,
however the diagonal entries are now negative, ensuring that the matrix is negative semi-
definite.

We use the process detailed above to show that f(Q, c,x) = f(QN , c,x) + δ and deter-
mine the value of δ:

f(QN , c,x) = f(Q, c,x)−Mn

We then observe that f(Q, c,x) = f(QN , c,x) +Mn, so (QP , c) +Mn is equivalent to
(Q, c).

33

3.5 Node n Removal

In this modification, we replace costs associated with the final node with zeros. We then
capture those costs in the other parts of the Q matrix and c vector, such that given a tour
x, f(Q, c,x) = f(QR, cR,x). Specifically, we use the method described in [PW17]:

qR
ij,kl =

qij,kl − qij,kn − qij,nl − qin,kl + qin,kn

+ qin,nl − qnj,kl + qnj,kn + qnj,nl if i, j, k, l 6= n and either i 6= k or j 6= l

0 otherwise

We define

cR
ij = cij + qR

ij,ij +
n−1∑
k=1

(qij,kn + qij,nk + qkn,ij − qkn,in − qkn,nj + qnk,ij − qnk,in − qnk,nj)

for i 6= j, and where

qR
ij,ij =

qij,ij − qij,in − qij,nj − qin,ij + qin,in + qin,nj − qnj,ij + qnj,in + qnj,nj if i, j 6= n

0 otherwise

We demonstrate the use of this method with an instance of three cities. We first calcu-
late QR. All entries associated with an edge entering or leaving the nth node (in this case
city 2) will be zero. We also let the diagonal values of QR be zero, and add qR

ij,ij to cij .

QR =

01 02 10 12 20 21

01 0 0 qR
01,10 0 0 0

02 0 0 0 0 0 0
10 qR

10,01 0 0 0 0 0
12 0 0 0 0 0 0
20 0 0 0 0 0 0
21 0 0 0 0 0 0

where

qR
01,10 = q01,10 − q01,12 − q01,20 − q02,10 + q02,12 + q02,20 − q21,10 + q21,12 + q21,20

qR
10,01 = q10,01 − q10,02 − q10,21 − q12,01 + q12,02 + q12,21 − q20,01 + q20,02 + q20,21

34

We want to show that the cost associated with a tour is the same for both the modified
and unmodified versions of Q. The cost from QR will be zero, as the pairs associated with
this tour have cost 0 in the matrix, and all those costs are loaded on the linear portion of
the cost structure. We now calculate cR:

cR =

c01

c02

c10

c12

c20

c21

+

cr
01
cr

02
cr

10
cr

12
cr

20
cr

21

where cr

ij = cR
ij − cij , which is to say, the portion of cR associated with the modification.

We now find the values of cr:

cr
01 = qR

01,01 + q01,02 + q01,20 + q02,01 − q02,02 − q02,21 + q20,01 − q20,02 − q20,21

+ q01,12 + q01,21 + q12,01 − q12,02 − q12,21 + q21,01 − q21,02 − q21,21

where qR
01,01 = q01,01 − q01,02 − q01,21 − q02,01 + q02,02 + q02,21 − q21,01 + q21,02 + q21,21

cr
02 = qR

02,02 + q02,02 + q02,20 + q02,02 − q02,02 + q20,02 − q20,02

+ q02,12 + q02,21 + q12,02 − q12,02 + q21,02 − q21,02

where qR
02,02 = 0

cr
12 = qR

12,12 + q12,02 + q12,20 + q02,12 − q02,12 + q20,12 − q20,12

+ q12,12 + q12,21 + q12,12 − q12,12 + q21,12 − q21,12

where qR
12,12 = 0

cr
10 = qR

10,10 + q10,02 + q10,20 + q02,10 − q02,12 − q02,20 + q20,10 − q20,12 − q20,20

+ q10,12 + q10,21 + q12,10 − q12,12 − q12,20 + q21,10 − q21,12 − q21,20

where qR
10,10 = q10,10 − q01,02 − q10,20 − q12,10 + q12,12 + q12,20 − q20,10 + q20,12 + q20,20

cr
20 = qR

20,20 + q20,02 + q20,20 + q02,20 − q02,20 + q20,20 − q20,20

+ q20,12 + q20,21 + q12,20 − q12,20 + q21,20 − q21,20

where qR
20,20 = 0

cr
21 = q21,02 + q21,20 + q02,21 − q02,21 + q20,21 − q20,21

35

+ q21,12 + q21,21 + q12,21 − q12,21 + q21,21 − q21,21

where qR
21,21 = 0

Which simplifies to:

cr
01 = q01,20 + q02,01 + q20,01 − q20,02 − q20,21 + q01,12 − q12,02 − q12,21 + q01,01

cr
02 = q02,02 + q02,20 + q02,12 + q02,21

cr
12 = q12,02 + q12,20 + q12,12 + q12,21

cr
10 = q02,10 − q02,12 − q02,20 + q10,12 + q10,21 + q21,10 − q21,12 − q21,20 + q10,10

cr
20 = q20,02 + q20,20 + q20,12 + q20,21

cr
21 = q21,02 + q21,20 + q21,12 + q21,21

The TSP of size n = 3 has only two tours in the asymmetric case.

T1 =

1
0
0
1
1
0

T2 =

0
1
1
0
0
1

We complete the example using T1. The cost associated with the unmodified Q for T1 will
be:

f(Q, c, T1) =

c01 + c12 + c20 + q01,12 + q12,01 + q20,01 + q01,20 + q12,20 + q20,12 + q01,01 + q12,12 + q20,20

Recall that the quadratic cost associated with QR is zero, as edges 01 and 10 are not
used together. Then the total cost for the quadratic reduced tour will be f(QR, cR, T1) =
cR

01 + cR
12 + cR

20 = cr
01 + cr

12 + cr
20 + c01 + c12 + c20. After summing and cancelling, we can see

that f(Q, c, T1) = f(QR, cR, T1). In this instance, the QR matrix is left with two entries,
and the remainder of the costs are loaded on the cR vector, but in general the format is
that the rows and columns indexed by n are 0s, as are the diagonal elements.

Note that node n removal can be done in conjunction with either making the matrix
symmetric or upper triangular.

36

3.5.1 Symmetric Node n Removal

We make the above modification symmetric by following the procedure outlined for QS .
Therefore, QRS = 1

2(QR + (QR)ᵀ). Then, f(Q, c,x) = f(QRS , cR,x).

3.5.2 Upper Triangular Node n Removal

We modify QR to make it into an upper triangular matrix, following the same procedure
as we did in in QU . Therefore,

qRU
ij,kl =

qR

ij,kl + qR
kl,ij if kl > ij

qR
ij,kl if ij = kl

0 otherwise

Then, f(Q, c,x) = f(QRU , cR,x)

3.6 Computational Experiments

We tested the effect of the modifications and initial quadratic cost matrices on three
quadratic TSP models: the original Dantzig formulation, the MTZ formulation, and the
single commodity flow formulation. All models were written in Python and solved using
Gurobi 8.0.1, on a workstation with the following configuration: 16GB RAM, 64-bit Win-
dows 10 OS, Intel i7-4770 3.40 GHz processor.

The models were coded using GurobiPy, and can be located at the following url:
https://github.com/mrosespencer/QTSP

We include the python models, cost matrices for Q and C, and the code used to generate
the random instances. The experiment files run through the different modifications for each
instance, and outputs data on the time, objective value, Gurobi code and resulting tour.
More details are provided in the github repository.

We address the following question: which modification to the quadratic cost matrix
produces the best time results?

3.6.1 Gurobi Solver

In the introduction, we reviewed the history of computational solvers and some of the
varied methods they use. We choose to use Gurobi for our experimentation, using an aca-
demic license. We do not know precisely how Gurobi is solving the models we submit,
however, for quadratic linear programming problems, Gurobi uses simplex and barrier algo-

37

https://github.com/mrosespencer/QTSP
https://www.gurobi.com/

rithms, and for mixed integer problems, it uses a variety of algorithms, including heuristics,
cutting planes and solution improvement. When we review the results, we see that Gurobi
adds cutting planes and uses a search tree to compare solutions.

3.6.2 Problem Generation

We choose to use randomly generated instances due to the complexity of the QTSP.
There are TSP libraries, such as [tsp], from which problem instances can be retrieved, how-
ever these are currently limited to linear instances of the TSP. Due to the quadratic terms
in the model, the QTSP is more computationally difficult than linear forms of the TSP
[OFF+17]. The smallest TSP in the TSPLIB is size 17, however we found that QTSP codes
did not solve random problems of size 15. We therefore generate test instances ourselves,
with a variety of properties, detailed below. These cost matrices, as well as the code used
to generate them, are available in the github repository associated with this research.

We generate several initial Q matrices for our experimentation, as described in [PP18].
See Table 3.1 for details on quadratic cost generation. We let all values of c be uniformly
randomly set to either 0 or 1 for all formulations. For all random numbers, we use the
randint function within Python. We generated ten of size 8, five of size 10, one of size 12,
and one of size 15. We let the solve time limit be 3 hours for problems of all sizes. We report
the average solve time in seconds for the ten size 8 problems, and the solve time in seconds
for each of the size 10 and 12 problems. Size 15 problems do not solve within the time limit
and are therefore excluded.

Table 3.1: Quadratic Cost Generation
Property of Q Method of generation

1 Non-negative elements Uniformly distributed random integers in range [5, 10]
2 Random and balanced Uniformly distributed random integers in range [-5, 5]
3 Random and positively skewed Uniformly distributed random integers in range [-5, 10]
4 Random and negatively skewed Uniformly distributed random integers in range [-10, 5]
5 Positive semi-definite A random matrix B is generated with elements uniformly distributed

in the range [-5, 5], and Q is set to BBT

6 Non-negative and positive semi-definite A random matrix B is generated with elements uniformly distributed
in the range [5, 10], and Q is set to BBT

7 Rank 1 We let a be a column vector of uniformly random integers in the
range [-10, 10], and b be a row vector of uniformly random integers
in the range [-5, 5]. We set Q to ab

8 Rank 2 We let a1,a2 be column vectors of uniformly random integers in
the range [-10, 10], and b1,b2 be row vectors of uniformly random
integers in the range [-5, 5]. We set Q to a1b1 + a2b2

38

For each characteristic (numbered 1 through 8 in Table 3.1) we generated 100 size 5
problems, 10 size 8 problems, 5 size 10 problems, 5 size 12 problems, and one each of the
larger problems (sizes 15, 20, 25 and 30). We make the same number of C matrices for each
size. All cost data are located in the Github repository in a folder labelled “Cost”.

3.7 QTSP Modifications Results

We now present the results of the computational experiments. We report the time in
seconds to solve to optimality for each of the modifications. In instances where the time limit
of three hours is reached, we replace the time value with “-”. We turn off Gurobi’s Presolve
and PreQLinearize parameters. We use M = 10000 for the PSD and NSD modifications.
We detail how we decided to use this value for M in Section 3.7.4. The modification with
the best solve time is bolded for each Q. We use the following short hand:

S Sym Symmetric
U UT Upper Triangular
P PSD Positive Semi-Definite
N NSD Negative Semi-Definite
R QR Quadratic Reduced (node n removal)
s Sym QR Symmetric Quadratic Reduced
u UT QR Upper Triangular Quadratic Reduced

3.7.1 Quadratic Dantzig Subtour Elimination Formulation

We use the constraints described in Section 2.1.1 and the objective function described in
Section 2.3. We use Gurobi’s addV ar to create the binary and continuous variables, and use
QuadExpr for the quadratic objective function. We add the constraints (1.10) and (1.11)
as described in section 2.1.1, and set a time limit of three hours. We then use a Gurobi
callback function to add in the subtour elimination constraints (1.12) one at a time as they
are violated. To achieve this, we find the shortest length subtour within the tour. If the
length of the shortest subtour is less than n− 1, we add in the subtour constraints that are
violated. This approach is modified from [ECI].

39

Table 3.2: Q Dantzig Nonnegative Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.735 0.726 0.714 0.873 0.245 0.233 0.233 0.236
10 47.0 46.7 45.8 50.2 3.84 11.7 11.7 11.7
10 52.7 52.3 52.7 49.1 3.42 8.51 8.41 8.45
10 50.1 50.0 49.9 52.1 3.89 15.7 15.7 15.6
10 47.0 47.8 47.5 53.9 5.09 10.6 10.5 10.6
10 50.8 50.7 50.8 50.4 4.03 14.3 14.5 14.3
12 - - - - 312 6200 6270 7470

Table 3.3: Q Dantzig Balanced Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR
8 0.731 0.730 0.744 0.700 0.237 0.283 0.280 0.271
10 50.2 49.4 49.2 53.3 7.06 14.7 14.5 14.6
10 52.7 51.3 52.7 49.3 6.91 18.8 18.8 18.7
10 48.9 49.2 49.2 54.1 7.92 20.0 19.7 20.1
10 54.8 54.9 55.2 54.6 7.77 15.0 15.1 15.2
10 50.7 50.8 50.4 51.5 7.48 14.8 14.7 14.6
12 - - - - 1070 - - -

Table 3.4: Q Dantzig Positively Skewed Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.813 0.769 0.780 0.775 0.230 0.267 0.265 0.266
10 60.1 59.5 59.3 56.4 12.4 17.8 17.8 17.9
10 60.9 60.9 61.0 58.5 11.8 18.1 18.1 18.1
10 61.9 61.5 61.9 56.2 9.75 13.8 13.7 13.6
10 57.2 56.2 56.7 58.7 8.42 17.6 17.4 17.5
10 57.6 58.3 58.2 61.6 9.37 13.6 13.7 13.9
12 - - - - 1660 9570 9760 10 500

40

Table 3.5: Q Dantzig Negatively Skewed Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.834 0.808 0.801 0.850 0.724 0.328 0.332 0.329
10 59.2 58.3 57.9 57.7 47.8 18.2 18.2 17.9
10 58.3 59.3 59.1 60.5 48.7 20.6 20.9 20.9
10 62.3 61.4 60.3 62.7 44.1 26.2 26.2 26.2
10 58.7 58.2 58.3 60.1 47.8 34.2 33.8 34.6
10 61.9 61.4 60.8 60.7 48.9 20.9 20.7 21.0
12 - - - - - - - -

Table 3.6: Q Dantzig Positive Semi-Definite Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.779 0.743 0.760 0.701 0.282 0.288 0.290 0.296
10 56.0 55.4 54.2 52.6 10.9 19.4 19.7 19.4
10 51.6 52.0 52.4 55.6 10.3 18.0 18.1 18.1
10 51.4 50.6 50.6 49.6 9.64 16.3 16.4 16.4
10 55.7 55.7 55.6 54.7 10.3 14.7 14.6 14.6
10 46.0 45.5 45.8 45.3 9.28 15.7 15.7 15.9
12 - - - - 6580 - - -

Table 3.7: Q Dantzig Nonnegative and Positive Semi-Definite Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.790 0.774 0.785 0.834 0.369 0.270 0.259 0.260
10 50.7 49.0 49.8 52.3 12.4 15.4 15.5 15.3
10 52.2 52.6 53.0 51.2 13.4 13.8 13.9 13.6
10 50.4 50.4 50.3 53.8 12.3 14.2 14.0 14.1
10 49.6 48.6 48.7 51.0 12.9 11.5 11.2 11.2
10 52.8 51.1 51.2 51.0 13.7 9.93 9.76 9.78
12 - - - - 2640 9130 9490 9890

41

Table 3.8: Q Dantzig Rank One Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.277 0.250 0.263 0.444 0.236 0.200 0.203 0.197
10 13.1 12.6 12.7 24.5 12.0 10.3 10.4 10.2
10 8.16 8.18 8.24 22.2 5.08 7.24 7.29 7.31
10 5.41 5.48 5.47 19.0 6.71 8.17 8.21 8.04
10 9.24 9.22 9.20 19.8 9.54 15.5 15.4 15.8
10 20.3 20.0 20.6 19.5 4.34 4.33 4.86 4.46
12 891 904 911 - 869 1040 1040 1070

Table 3.9: Q Dantzig Rank Two Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.510 0.493 0.499 0.495 0.242 0.261 0.247 0.246
10 14.3 13.8 13.9 28.9 6.02 8.49 8.37 8.23
10 42.0 41.6 41.5 40.4 15.0 13.0 12.9 13.0
10 21.6 21.6 21.6 22.6 4.32 4.01 4.14 4.06
10 13.5 13.5 13.4 36.7 8.51 11.3 11.2 11.4
10 24.2 24.0 24.1 25.8 6.18 10.2 10.4 10.2
12 - - - - 416 3700 3450 3800

3.7.2 Quadratic MTZ Formulation

We use the constraints described in Section 2.1.2 and the objective function described
in Section 2.3. We use Gurobi’s addV ar to create the binary and continuous variables, and
use QuadExpr for the quadratic objective function.

Table 3.10: QMTZ Nonnegative Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.678 0.686 0.706 0.670 0.300 0.305 0.286 0.289
10 39.0 38.8 38.3 38.0 4.71 12.6 13.3 13.0
10 40.5 39.3 40.6 37.4 3.52 9.55 9.98 9.94
10 42.6 44.4 43.4 38.4 3.95 16.7 16.8 16.6
10 37.7 38.9 37.7 39.1 6.05 10.3 10.1 10.1
10 33.8 34.1 34.2 35.2 4.24 12.0 12.1 12.0
12 10 300 - - - 280 2820 3080 2930

42

Table 3.11: QMTZ Balanced Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR
8 0.588 0.603 0.582 0.533 0.272 0.322 0.317 0.327
10 32.9 33.0 32.9 36.8 6.13 12.3 12.3 12.5
10 36.3 36.1 36.6 35.5 6.27 18.1 18.6 18.2
10 36.3 36.5 36.5 37.3 7.62 16.8 16.7 16.6
10 31.8 32.1 32.2 35.4 7.06 14.3 14.5 14.4
10 36.2 36.1 36.2 37.0 6.31 13.1 13.1 13.2
12 7440 7190 7400 7320 522 2290 2410 2390

Table 3.12: QMTZ Positively Skewed Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.567 0.550 0.545 0.606 0.288 0.277 0.278 0.286
10 34.1 35.0 34.1 36.7 11.2 16.2 16.1 16.5
10 34.1 34.6 34.1 35.8 10.9 15.9 15.9 15.9
10 34.8 33.9 34.3 35.5 8.09 12.2 11.8 11.9
10 34.9 35.0 34.9 36.4 7.79 14.6 14.5 14.4
10 36.3 35.8 37.0 35.6 7.42 12.1 12.2 12.0
12 - 7670 8240 8480 697 1530 1520 1610

Table 3.13: QMTZ Negatively Skewed Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.659 0.649 0.633 0.619 0.584 0.349 0.364 0.361
10 38.1 37.5 37.5 37.6 37.7 17.6 17.7 17.6
10 37.5 37.6 37.4 38.5 36.5 17.7 17.6 17.7
10 35.6 35.2 35.9 35.9 36.1 22.0 22.0 22.0
10 34.4 34.8 34.5 37.3 37.2 29.0 29.1 28.9
10 36.9 36.8 37.0 37.8 35.0 18.5 18.3 18.2
12 6680 8850 - - 10 100 4190 4170 4040

43

Table 3.14: QMTZ Positive Semi-Definite Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.580 0.592 0.571 0.557 0.306 0.322 0.320 0.317
10 33.7 33.6 33.7 37.7 10.2 18.3 18.5 17.9
10 36.7 36.9 36.7 37.6 8.86 14.9 14.2 14.1
10 35.8 35.0 35.1 35.5 9.73 14.0 13.5 13.7
10 35.1 35.4 35.1 36.0 8.41 12.6 12.9 12.7
10 35.1 35.2 35.0 35.4 9.87 15.1 15.1 15.3
12 7230 7500 7490 7330 1540 2970 2950 2910

Table 3.15: QMTZ Nonnegative and Positive Semi-Definite Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.680 0.689 0.689 0.650 0.395 0.281 0.292 0.300
10 37.5 37.4 37.5 36.3 13.5 14.9 14.8 14.9
10 40.0 39.9 40.0 34.1 13.5 13.6 13.2 13.1
10 31.8 32.1 31.9 36.4 9.80 13.0 13.0 13.2
10 36.6 36.7 36.5 34.0 11.6 11.9 11.7 11.7
10 38.2 37.9 38.1 35.9 11.9 9.11 9.21 9.04
12 - - - - 845 2390 2360 2490

Table 3.16: QMTZ Rank One Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.272 0.280 0.278 0.455 0.270 0.238 0.233 0.230
10 12.3 12.2 12.2 21.7 11.9 10.1 10.1 10.1
10 8.26 7.67 7.74 19.0 4.95 7.67 7.37 7.45
10 5.44 5.29 5.30 16.3 6.08 7.94 7.94 7.93
10 9.33 9.36 9.32 18.8 9.36 14.8 14.9 15.7
10 18.8 18.2 18.3 18.2 4.14 4.10 4.09 4.14
12 480 481 484 3130 553 630 649 629

44

Table 3.17: QMTZ Rank Two Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.505 0.481 0.493 0.488 0.290 0.253 0.272 0.263
10 11.7 13.5 12.3 22.2 4.47 6.52 6.54 6.39
10 30.4 29.8 29.8 31.4 12.0 11.7 11.4 11.5
10 17.9 18.0 17.8 17.6 3.47 3.92 3.80 3.92
10 12.1 11.9 11.8 25.3 6.61 10.0 10.1 10.0
10 18.9 19.3 19.8 21.8 4.58 8.89 8.60 8.69
12 5580 5340 5410 5370 304 1350 1350 1360

3.7.3 Quadratic Single Commodity Flow Formulation

We use the constraints described in Section 2.1.4 and the objective function described
in Section 2.3. We use Gurobi’s addV ar to create the binary and continuous variables, and
use QuadExpr for the quadratic objective function.

Table 3.18: QSCF Nonnegative Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 1.14 1.10 1.13 1.11 0.377 0.398 0.411 0.400
10 45.6 46.5 45.8 41.5 6.14 16.8 17.2 16.8
10 48.6 48.5 48.8 41.9 5.03 12.2 12.2 12.1
10 49.7 49.5 49.9 43.6 5.45 22.1 22.3 22.4
10 42.3 41.8 42.3 41.6 8.13 14.6 14.7 14.5
10 43.2 42.5 42.2 42.0 5.66 18.3 18.1 18.1
12 - - - - 363 2750 2770 2660

Table 3.19: QSCF Balanced Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR
8 0.974 0.956 0.972 0.965 0.380 0.472 0.467 0.468
10 44.2 44.2 44.2 47.8 8.38 18.8 18.9 19.1
10 42.3 43.5 42.3 47.7 7.24 22.8 22.4 22.3
10 46.7 46.5 46.6 42.8 10.0 22.9 23.0 23.0
10 47.1 47.1 47.2 47.9 10.7 18.5 18.7 18.7
10 42.0 42.2 42.2 41.6 8.89 16.6 16.7 16.8
12 - - - - 629 3350 3290 3290

45

Table 3.20: QSCF Positively Skewed Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 1 1.02 1.00 1 0.358 0.439 0.437 0.425
10 44.4 44.2 44.5 49.5 15.7 20.8 20.9 20.7
10 42.0 41.4 42.5 49.6 13.1 21.6 21.7 21.5
10 44.0 44.1 43.8 48.3 12.0 15.3 15.3 15.3
10 47.7 47.4 47.4 42.9 10.9 20.9 20.5 20.3
10 45.3 45.5 45.4 48.8 10.7 18.0 17.7 18.0
12 - - - - 922 5210 4780 5270

Table 3.21: QSCF Negatively Skewed Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 1.01 1.01 1.01 1.02 0.960 0.543 0.541 0.541
10 47.0 47.4 46.9 43.5 47.2 24.4 24.2 24.2
10 41.5 41.5 41.2 42.8 45.0 24.2 24.3 24.0
10 42.8 43.8 43.1 42.6 47.3 29.5 30.2 30.0
10 42.6 42.9 42.9 41.8 47.4 35.9 36.8 36.6
10 45.4 45.2 45.1 42.9 41.5 23.4 23.4 23.4
12 - - - - - 6710 7310 7200

Table 3.22: QSCF Positive Semi-Definite Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.983 0.962 0.969 0.946 0.416 0.466 0.466 0.469
10 43.5 43.7 44.3 47.9 13.5 24.3 24.2 25.0
10 46.3 46.7 46.6 48.8 11.6 20.7 20.5 20.4
10 43.7 43.6 43.7 47.9 11.3 19.5 19.2 19.6
10 45.3 45.2 45.4 42.3 11.8 16.7 16.6 16.5
10 41.3 41.1 41.3 40.7 14.6 22.5 22.4 22.3
12 - - - - 1500 3730 3710 3670

46

Table 3.23: QSCF Nonnegative and Positive Semi-Definite Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 1.10 1.08 1.07 1.11 0.576 0.422 0.422 0.417
10 45.0 44.0 44.3 42.0 17.8 20.3 20.1 20.6
10 48.8 48.3 48.8 43.7 17.8 20.0 20.1 20.2
10 40.9 40.7 40.8 42.3 14.6 18.1 18.6 18.7
10 48.7 47.6 48.4 42.2 15.8 16.3 16.5 16.3
10 47.4 47.4 47.2 42.6 17.0 14.0 14.1 14.2
12 - - - - 978 2560 2300 2280

Table 3.24: QSCF Rank One Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.382 0.377 0.366 0.691 0.339 0.316 0.336 0.321
10 15.6 15.5 15.4 27.2 14.6 13.1 13.2 13.0
10 10.2 9.88 9.90 24.0 6.34 9.84 10.8 9.89
10 6.99 7.07 7.04 22.9 8.04 10.7 10.6 10.5
10 11.2 11.2 11.2 24.7 13.1 19.5 19.6 19.5
10 25.2 24.9 25.4 21.9 4.99 5.98 5.99 5.80
12 607 603 596 4310 720 830 816 817

Table 3.25: QSCF Rank Two Q Time Values
Size Original Sym UT PSD NSD QR Sym QR UT QR

8 0.706 0.712 0.712 0.748 0.383 0.376 0.376 0.374
10 17.4 17.3 17.3 27.3 5.86 10.3 10.2 10.2
10 36.2 36.5 36.4 37.0 15.6 15.0 15.0 15.2
10 22.9 22.9 22.8 21.7 4.38 5.52 5.44 5.66
10 17.5 17.0 17.0 31.9 8.44 14.5 14.5 14.4
10 26.6 26.4 26.4 24.7 7.34 10.9 10.6 10.7
12 - - - - 404 1920 1960 1850

3.7.4 Choice of M for Enforcing Semidefiniteness

We tested several values of M for modifying Q to be positive semi-definite and negative
semi-definite on one problem. We tested the following values of M : 1000, 10,000, 10n(n−1)
and max(Rij) + max(|qij,ij |) over ij + 10, where Rij = ∑

kl,kl 6=ij |qij,kl|. The first two
values are large positive numbers, while the latter two choices are set to scale with the

47

size of the input. In the final case we test a number just above a bound that enforces
semidefiniteness. We chose one formulation to test these values on: the Dantzig subtour
elimination formulation, balanced values of Q. We provide the time data below for five
problems of size 10. We exclude smaller instances, as there were many instances with similar
times. Instances of size 15 did not solve to optimality, and so we exclude them from this
analysis. The best time result is bolded for each instance.

M1 : 1000

M2 : 10000

M3 : 10n(n− 1)

M4 : max

 ∑
kl,kl 6=ij

|qij,kl|

+ max (|qij,ij |) + 10

Table 3.26: Q Dantzig Plus/Minus M Time Values
Q+MiI Q−MiI

Size M1 M2 M3 M4 Size M1 M2 M3 M4

10 53.386 55.023 70.362 75.007 10 6.889 6.611 9.194 8.002
10 62.822 68.184 62.974 64.864 10 8.695 7.611 8.751 8.82
10 70.547 73.223 70.522 78.239 10 10.319 8.573 10.541 11.005
10 72.479 69.634 58.803 56.657 10 10.293 9.287 10.458 8.296
10 53.264 55.99 56.682 55.158 10 7.24 6.972 6.925 7.251

This experiment suggests that size ofM does not have a large impact on the time results,
or solve larger instances of the QTSP, though it does suggest that making the diagonal more
negative (Q −MI) does present some advantage. We therefore chose M = 10000 for the
experiments in Sections 3.7.1, 3.7.2, and 3.7.3, which is sufficiently large to make up to size
15 problems positive/negative semidefinite for all instances.

3.7.5 Analysis

We review the results based on size, noting that some problems of size 12 did not solve
in the time allotted.

Size 8

The size 8 problems solved quickly for all instances, with occasional tied best times how-
ever the negative semidefinite narrowly performed best, followed by the symmetric quadratic
reduced, then the general quadratic reduced modifications.

48

Table 3.27: Size 8 Time Results Summary
Formulation Original Sym UT PSD NSD QR Sym QR UT QR
Dantzig 0 0 0 0 4 2 2 1
MTZ 0 0 0 0 2 4 1 1
SCF 0 0 0 0 4 1 1 3
Total 0 0 0 0 10 7 4 5

Size 10

The negative semidefinite modification was the best modification for all formulations
and inputs of size 10, with the best time in 85 of 120 experiments. This size did not
produce any tied results. Upper triangular quadratic reduced, symmetric quadratic reduced
and quadratic reduced also produced best times, but on average were slightly slower than
the negative semidefinite modification. The unmodified, symmetric and uppertriangular
modifications did worse overall, and positive semidefinite did worst, though the time average
was only slightly worse than the original, symmetric and UT modifications. The results are
summarized below.

Table 3.28: Size 10 Time Results Summary
Formulation Original Sym UT PSD NSD QR Sym QR UT QR
Dantzig 1 0 1 0 27 3 4 4
MTZ 0 1 1 0 28 0 4 6
SCF 1 0 1 0 30 3 2 3
Total 2 1 3 0 85 6 10 13

49

Figure 3.1: Visual summary of the average solve times over all trials for the size 10 problem.

Visually, we can see that the negative semidefinite modification provides the best times
for nearly all characteristics of Q, with the exception of the negatively skewed Q. In that
instance, the quadratic reduced form performs best, however we see that the NSD modifica-
tion performs much worse. In the rank one and rank two instances, the worse modifications
somewhat catch up to the better performers.

Size 12

The negative semidefinite modification was the best modification for trials of size 12, and
in some instances, permitted us to solve larger sizes of problems than others inside the three
hour time limit. In the Dantzig Subtour Elimination formulation, no modification solved
the negatively skewed input within the three hour time limit. In the same formulation, for
two inputs only the negative semidefinite modification solved within three hours.

50

Table 3.29: Size 12 Time Results Summary
Formulation Original Sym UT PSD NSD QR Sym QR UT QR
Dantzig 0 0 0 0 7 0 0 0
MTZ 1 0 0 0 6 0 0 1
SCF 0 0 1 0 6 1 0 0
Total 1 0 1 0 19 1 0 1

We also summarize which problems solved in three hours. We see that the MTZ formula-
tion solved more problems within the three hours than the Dantzig subtour elimination and
SCF formulations. The negative semidefinite, and the quadratic reduced variations solved
more instances within three hours than the unmodified, symmetric, upper triangular and
positive semidefinite modifications.

Table 3.30: Size 12 Solving Summary
Formulation Original Sym UT PSD NSD QR Sym QR UT QR
Dantzig 1 1 1 0 7 5 5 5
MTZ 7 6 5 5 8 8 8 8
SCF 1 1 1 1 7 7 8 8
Total 9 8 7 6 22 20 21 21

Conclusion

The experiments indicate that negative semidefinite modification was the most effective
among the modifications tested at improving the solve times for the QTSP for the formula-
tions studied. The quadratic reduced method, and its variations also performed well, while
leaving the matrix unmodified, and the upper triangular and symmetric modifications did
not perform as well. Making the matrix positive semidefinite performed worse overall. We
speculate that making the problem convex did not help in finding the points on the feasible
polytope, if the global minimizer was not feasible. The largest problem size that solved in
three hours was 12, and that was not consistent among the modifications, indicating that
modifying the input matrices may permit us to solve larger instances of the QTSP. At the
smaller sizes, the result is less apparent, while at the larger sizes, the negative semidefi-
nite modification stands out as the fastest method, which indicates that it’s unlikely that
running the experiments for longer than three hours would change these results.

51

Chapter 4

Linearization of the Quadratic
Objective Function

We will now detail some methods to linearize the quadratic objective function. These
methods add additional variables and constraints, and may greatly increase the problem
size. However, we will now be optimizing a linear objective function with linear constraints,
resulting in a mixed integer linear program, rather than the nonlinear problem we were try-
ing to solve in the previous chapter. As such, despite the increase in number of constraints
and variables, it is possible we will be able to solve larger problems. In the computational
experiments for this section, we will compare the time results for the different linearized
forms, as well as retaining the original quadratic form for comparison. In effect, we wish to
see if the benefits of linearization outweigh the negatives associated with the larger problem
size.

We provide formulations for five linearizations. Each linearization can be applied to the
TSP constraints (Sections 2.1.1 – 2.1.6) and we replace the quadratic objective function
(Section 2.3) with linearized objective functions. We begin by describing the linearization
techniques, then we describe the experiments.

4.1 Linearizations

In this section we detail five methods to reformulate the QTSP as a MILP with a lin-
ear objective. Each method produces an extended formulation, where additional variables
are added to the model. However, in each formulation, projecting back to the variables
associated with the original formulation (xij), gives the original feasible set. Thus, these
formulations create an equivalent model using additional variables and constraints that still
produces feasible tours with the same objective cost.

52

4.1.1 MILP Reformulation Using Additional Binary Variables

The TSP restricts xij to {0, 1}, which allows us to substitute the product xijxkl = yij,kl,
a new binary variable [HM09].

Minimize:
∑

ij∈E

∑
kl∈E

qij,klyij,kl +
n∑

i=1

n∑
j=1

cijxij (4.1)

We force yij,kl = 1 if both xij = 1 and xkl = 1 and 0 otherwise by including the following
constraints [HM09]:

xij + xkl − yij,kl ≤ 1 ∀ ij ∈ E, kl ∈ E (4.2)

− xij − xkl + 2 yij,kl ≤ 0 ∀ ij ∈ E, kl ∈ E (4.3)

yij,kl ∈ {0, 1} (4.4)

This adds n2(n− 1)2 binary variables, and 3n2(n− 1)2 constraints to the original prob-
lem formulation.

4.1.2 Standard Linearization

We can modify the above formulation by strengthening constraint (4.3) by replacing it
with two separate constraints

yij,kl ≤ xij ∀ ij ∈ E, kl ∈ E (4.5)

yij,kl ≤ xkl ∀ ij ∈ E, kl ∈ E (4.6)

which allows us to relax the binary restriction on yij,kl by replacing (4.4) with yij,kl ≥ 0
[HM09]. We are left with a stronger form of the previous formulation, which is now purely
a linear program. This is known as the standard linearization

Minimize:
∑

ij∈E

∑
kl∈E

qij,klyij,kl +
n∑

i=1

n∑
j=1

cijxij (4.7)

subject to: xij + xkl − yij,kl ≤ 1 ∀ ij ∈ E, kl ∈ E (4.2)

yij,kl ≤ xij ∀ ij ∈ E, kl ∈ E (4.5)

yij,kl ≤ xkl ∀ ij ∈ E, kl ∈ E (4.6)

yij,kl ≥ 0 (4.8)

53

This method adds n2(n− 1)2 continuous variables, and 3n2(n− 1)2 constraints to the orig-
inal formulation.

4.1.3 The McCormick Envelopes

In this linearization, we relax several quadratic terms to a single variable, and bound
that variable by its convex and concave envelopes. For details on McCormick Envelopes we
refer to [Pan18], [McC76].

We begin by defining a bilinear term that we will later replace with a single variable.
We split the products into two parts. We let

∑
kl∈E

qij,klxkl = vij , where vij is a real variable.

This is the first part of the product and we note that we can define bounds, vij ≤ vij ≤ vij

based on the values of qij,kl. We let vij =
∑

kl∈E

max{qij,kl, 0} and vij =
∑

kl∈E

min{qij,kl, 0}.

The second half of the product will then be xij , with bounds 0 ≤ xij ≤ 1. Thus we can find
the McCormick envelopes of the product xijvij , as we know that the product will also be
bounded by the terms’ upper and lower bounds.

We then substitute wij = xijvij and find the bounds on wij by calculating the Mc-
Cormick envelopes by manipulating the bounds on xij and vij :

xij − 0 ≥ 0

1− xij ≥ 0

vij − vij ≥ 0

vij − vij ≥ 0

Since each difference above is nonnegative, their products will also be nonnegative. We now
find the products of multiplying the bounds together to find the bounds on wij

(xij − 0)(vij − vij) ≥ 0

wij − xijvij ≥ 0

(xij − 0)(vij − vij) ≥ 0

xijvij − wij ≥ 0

(1− xij)(vij − vij) ≥ 0

vij − vij − wij + xijvij ≥ 0

54

(1− xij)(vij − vij) ≥ 0

vij − vij − xijvij + wij ≥ 0

We can now simplify the above inequalities into:

wij ≤ xijvij (4.9)

wij ≥ xijvij (4.10)

wij ≤ vij − vij(1− xij) (4.11)

wij ≥ vij − vij(1− xij), (4.12)

Recall that wij = xijvij , and vij =
∑

kl∈E

qij,klxkl. We can now replace the quadratic term

with wij and include the bounds on wij .
The linearization is:

Minimize:
n∑

i=1

n∑
j=1

[cijxij + wij] (4.13)

subject to: wij ≤ xijvij ∀ ij ∈ E (4.9)

wij ≥ xijvij ∀ ij ∈ E (4.10)
n∑

k=1

n∑
l=1

qij,klxkl − wij + xijvij ≥ vij ∀ ij ∈ E (4.11)

n∑
k=1

n∑
l=1

qij,klxkl − wij + xijvij ≤ vij ∀ ij ∈ E (4.12)

This linearization has n(n−1) additional continuous variables, and 4(n(n−1)) constraints.

4.1.4 Base-2 Linearization

In this linearization, we take advantage of the integer properties of Q and replace the
quadratic term with the differences of integers of base 2. As we are using base 2, the variables
associated with each power of 2 will be binary [Wat67]. We follow the procedure outlined
in [Pan18].

We begin by letting ∑kl∈E qij,klxkl = vij , as we did for the McCormick envelopes. As
all entries in Q are integers, vij is also an integer, bounded by vij ≤ vij ≤ vij , where
vij =

∑
kl∈E

max{qij,kl, 0} and vij =
∑

kl∈E

min{qij,kl, 0}. We can now rewrite the objective

55

function and associated constraint as:

Minimize:
n∑

i=1

n∑
j=1

cijxij +
n∑

i=1

n∑
j=1

xijvij

subject to:
∑

kl∈E

qij,klxkl = vij ∀ ij ∈ E

We can now represent vij as the difference of two positive integers vij = t1ij − t2ij , where
0 ≤ t1ij ≤ vij and 0 ≤ t2ij ≤ |vij |. We now expand t1ij , t

2
ij in base 2, so we find the upper

bound for each expansion as:

p1
ij =

blog2(vij)c+ 1 if vij > 0,

0 otherwise

p2
ij =

blog2(|vij |)c+ 1 if vij < 0,

0 otherwise

Therefore, vij = t1ij − t2ij can be represented as:

vij =
p1

ij∑
g=1

2g−1t1ij,g −
p2

ij∑
g=1

2g−1t2ij,g

where t1ij , t2ij are binary variables.

We can now return to the objective function, and replace vij with the difference found
above.

Minimize:
n∑

i=1

n∑
j=1

cijxij +
∑

ij∈E

xij

p1
ij∑

g=1
2g−1t1ij,g −

∑
ij∈E

xij

p2
ij∑

g=1
2g−1t2ij,g

The products xijt
1
ij,g and xijt

2
ij,g are the products of two binary variables, so we can lin-

earize them using the standard linearization. We add new variables y1
ij,g = xijt

1
ij,g and

y2
ij,g = xijt

2
ij,g. We now replace those terms in the objective function, and add the standard

linearization constraints for each product to get the full linearization:

Minimize:
n∑

i=1

n∑
j=1

cijxij +
∑

ij∈E

p1
ij∑

g=1
2g−1y1

ij,g −
∑

ij∈E

p2
ij∑

g=1
2g−1y2

ij,g (4.14)

56

∑
kl∈E

qij,klxkl =
p1

ij∑
g=1

2g−1t1ij,g −
p2

ij∑
g=1

2g−1t2ij,g ∀ ij ∈ E (4.15)

xij + t1ij,g − y1
ij,g ≤ 1 ∀ ij ∈ E, g = 1, . . . , p1

ij (4.16)

y1
ij,g ≤ xij ∀ ij ∈ E, g = 1, . . . , p1

ij (4.17)

y1
ij,g ≤ t1ij,g ∀ ij ∈ E, g = 1, . . . , p1

ij (4.18)

xij + t2ij,g − y2
ij,g ≤ 1 ∀ ij ∈ E, g = 1, . . . , p2

ij (4.19)

y2
ij,g ≤ xij ∀ ij ∈ E, g = 1, . . . , p2

ij (4.20)

y2
ij,g ≤ t2ij,g ∀ ij ∈ E, g = 1, . . . , p2

ij (4.21)

y1
ij,g, y

2
ij,g, t

1
ij,g, t

2
ij,g ∈ {0, 1} ∀ ij, g (4.22)

where (4.16), (4.17), (4.18) are the standard linearization constraints associated with y1
ij,g =

xijt
1
ij,g, and (4.19), (4.20), (4.21) are the standard linearization constraints associated with

y2
ij,g = xijt

2
ij,g.

This linearization adds 2
∑

ij∈E

(p1
ij + p2

ij) binary variables and 5
∑

ij∈E

(p1
ij + p2

ij) + n2 addi-

tional constraints.

4.1.5 Base-10 Linearization

In this linearization, we replace the base 2 from the previous linearization with a base
10. We follow the procedure outlined in [Pan18]. We begin by following the same process
as shown in the base 2 formulation, however, we use base 10.

We let ∑kl∈E qij,klxkl = vij , and vij = t1ij − t2ij . The objective function becomes:

Minimize:
n∑

i=1

n∑
j=1

cijxij +
n∑

i=1

n∑
j=1

xijvij

subject to:
∑

kl∈E

qij,klxkl = vij ∀ ij ∈ E

We find the bounds for the expansion:

p1
ij =

blog10(vij)c+ 1 if vij > 0,

0 otherwise

p2
ij =

blog10(|vij |)c+ 1 if vij < 0,

0 otherwise

57

Therefore, vij = t1ij − t2ij can be represented as:

vij =
p1

ij∑
g=1

10g−1t1ij,g −
p2

ij∑
g=1

10g−1t2ij,g

where t1ij , t2ij are integer variables in {0, 1, . . . , 9}.

We now adjust the objective function:

Minimize:
n∑

i=1

n∑
j=1

cijxij +
∑

ij∈E

xij

p1
ij∑

g=1
10g−1t1ij,g −

∑
ij∈E

xij

p2
ij∑

g=1
10g−1t2ij,g

We will now linearize the products xijt
1
ij,g and xijt

2
ij,g, and since t1ij,g, t

2
ij,g are integer

variables, we will use the McCormick envelopes to linearize. We let r1
ij,g = xijt

1
ij,g and

r2
ij,g = xijt

2
ij,g.

We now calculate the McCormick envelopes. We provide detailed steps for t1ij,g, however
they are identical for t2ij,g. This method is also detailed above. Recall that 0 ≤ xij ≤ 1 and
0 ≤ t1ij,g ≤ 9. Therefore:

xij − 0 ≥ 0

1− xij ≥ 0

t1ij,g − 0 ≥ 0

9− t1ij,g ≥ 0

We can now find the bounds on r1
ij,g by finding the products of the bounds on xij and t1ij,g:

(xij − 0)(t1ij,g − 01) ≥ 0

r1
ij,g ≥ 0

(xij − 0)(9− t1ij,g) ≥ 0

9xij − r1
ij,g ≥ 0

(1− xij)(t1ij,g − 01) ≥ 0

t1ij,g − r1
ij,g ≥ 0

58

(1− xij)(9− t1ij,g) ≥ 0

9− t1ij,g − 9xij + r1
ij,g ≥ 0

We can now simplify the above inequalities into:

r1
ij,g ≥ 0

r1
ij,g ≤ 9xij

r1
ij,g ≤ t1ij,g

t1ij,g + 9xij − r1
ij,g ≤ 9

We are now able to complete the linearization.

Minimize:
n∑

i=1

n∑
j=1

cijxij +
∑

ij∈E

p2
ij∑

g=1
10g−1r1

ij,g −
∑

ij∈E

p2
ij∑

g=1
10g−1r2

ij,g (4.23)

∑
kl∈E

qij,klxkl =
p1

ij∑
g=1

10g−1t1ij,g −
p1

ij∑
g=1

10g−1t2ij,g ∀ ij ∈ E (4.24)

9xij + t1ij,g − r1
ij,g ≤ 9 ∀ ij ∈ E, g = 1, . . . , p1

ij (4.25)

r1
ij,g ≤ 9xij ∀ ij ∈ E, g = 1, . . . , p1

ij (4.26)

r1
ij,g ≤ t1ij,g ∀ ij ∈ E, g = 1, . . . , p1

ij (4.27)

r2
ij,g ≤ 9xij ∀ ij ∈ E, g = 1, . . . , p2

ij (4.28)

r2
ij,g ≤ t2ij,g ∀ ij ∈ E, g = 1, . . . , p2

ij (4.29)

9xij + t2ij,g − r2
ij,g ≤ 9 ∀ ij ∈ E, g = 1, . . . , p2

ij (4.30)

r1
ij,g, r

2
ij,g, t

1
ij,g, t

2
ij,g ∈ {0, 1, . . . , 9} ∀ ij, g (4.31)

This linearization adds 2
∑

ij∈E

(p1
ij +p2

ij) integer variables and 5
∑

ij∈E

(p1
ij +p2

ij)+n2 additional

constraints.

4.2 Formulations

We will apply the linearizations to three TSP formulations: the Dantzig Subtour Elim-
ination, MTZ and SCF formulations. For each formulation, we add the variables and con-
straints associated with each linearization, and replace the quadratic objective function with
the objective achieved by linearizing the quadratic term.

59

Table 4.1: Summary of Linearized Formulations
Dantzig MTZ SCF

Binary Constraints: 2.1.1, 4.1.1
Objective: 4.1

Constraints: 2.1.2, 4.1.1
Objective: 4.1

Constraints: 2.1.4, 4.1.1
Objective: 4.1

Standard Constraints: 2.1.1, 4.1.2
Objective: 4.7

Constraints: 2.1.2, 4.1.2
Objective: 4.7

Constraints: 2.1.4, 4.1.2
Objective: 4.7

McCormick Constraints: 2.1.1, 4.1.3
Objective: 4.13

Constraints: 2.1.2, 4.1.3
Objective: 4.13

Constraints: 2.1.4, 4.1.3
Objective: 4.13

Base 2 Constraints: 2.1.1, 4.1.4
Objective: 4.14

Constraints: 2.1.2, 4.1.4
Objective: 4.14

Constraints: 2.1.4, 4.1.4
Objective: 4.14

Base 10 Constraints: 2.1.1, 4.1.5
Objective: 4.23

Constraints: 2.1.2, 4.1.5
Objective: 4.23

Constraints: 2.1.4, 4.1.5
Objective: 4.23

4.3 Computational Experiments

In these sets of experiments, we address the following questions:

1. Which linearization technique is most efficient for solving QTSP? Is linearization using
one of these techniques more efficient than leaving the QTSP in its quadratic form?

2. Do the different formulations of QTSP have different best linearization techniques?

To asses the impact of the linearization techniques, we repeat the experiments from the
previous section, however we use the unmodified quadratic matrix as the input. We use the
same computer setup as described in Section 3.6. We turn off presolve for all linearizations.
We include the quadratic form as a comparison.

The models were coded using GurobiPy, and can be located at the following url:
https://github.com/mrosespencer/QTSP

For each formulation, we provide a main experiment file which draws on the quadratic
model from the previous section, as well as the linearized forms, found in a subfolder of the
github repository. All cost files are the same as the previous section and can be found on
the site linked above.

4.4 Linearized QTSP Formulations Results

We report time in seconds for each of the five linearizations, as well as the quadratic
form. Where time exceeds the three hour time limit, we indicate with “-”. The best overall
time for each size is indicated with bold font, while the best linearization (if different) is

60

https://github.com/mrosespencer/QTSP

indicated with italicized font. We report average time for 100 trials for size 5, and time for
5 trials of size 10 and one of size 12.

4.4.1 Linearized Dantzig Formulation Results

Table 4.2: Linearized Dantzig Nonnegative Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.714 22.4 11.0 3.32 21.9 5.14
10 48.0 1770 1550 167 702 741
10 58.2 1940 1350 176 648 221
10 56.2 1920 1730 163 644 395
10 52.8 1920 1530 275 694 234
10 57.7 1580 1600 191 658 237
12 - - - - - -

Table 4.3: Linearized Dantzig Balanced Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.702 13.6 12.3 3.58 15.6 11.0
10 46.8 505 1040 250 2090 2250
10 52.1 519 954 224 2460 643
10 49.6 513 1130 280 2470 2080
10 58.7 559 1130 240 2230 660
10 55.0 650 938 232 2470 1310
12 - - - - - -

Table 4.4: Linearized Dantzig Positively Skewed Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.755 8.42 8.90 2.86 14.4 9.28
10 56.8 306 574 129 4130 1300
10 63.0 300 624 149 1090 1920
10 63.7 258 723 131 1220 2510
10 55.3 243 673 104 1440 1150
10 55.9 298 560 153 3890 1020
12 - - - - - -

61

Table 4.5: Linearized Dantzig Negatively Skewed Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.815 25.8 18.0 3.83 23.1 15.3
10 57.9 1410 1380 404 2290 1670
10 65.5 1560 2190 270 2090 780
10 62.9 3100 1680 293 2290 1180
10 67.9 1660 1490 375 2530 1800
10 70.2 1490 1860 319 2910 1130
12 - - - - - -

Table 4.6: Linearized Dantzig Positive Semidefinite Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.734 17.3 9.38 1.84 15.7 10.2
10 53.7 752 705 175 3000 567
10 59.8 697 553 158 4290 1870
10 51.2 681 564 137 6560 605
10 58.8 667 550 171 1850 2250
10 51.7 747 656 171 1480 2550
12 - - - - - -

Table 4.7: Linearized Dantzig Nonnegative and Positive Semidefinite Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.766 27.2 9.92 3.62 10.9 3.28
10 52.4 1910 1790 199 1960 453
10 60.9 1650 1620 510 1090 2020
10 60.6 1970 1290 479 923 1770
10 56.3 1550 1460 173 1820 1770
10 59.9 1610 1430 528 739 1950
12 - - - - - -

62

Table 4.8: Linearized Dantzig Rank One Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.230 8.93 6.42 1.17 13.1 8.52
10 12.0 127 138 36.9 1060 355
10 8.58 163 146 19.3 802 425
10 6.36 105 114 23.1 1260 423
10 9.49 124 220 26.0 826 274
10 20.0 124 115 27.7 1310 646
12 1060 2790 4680 2110 - -

Table 4.9: Linearized Dantzig Rank Two Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.449 9.37 8.71 2.58 18.8 10.0
10 12.0 148 265 80.5 2690 621
10 40.8 372 565 122 1550 674
10 22.0 106 349 35.7 1930 490
10 13.1 174 578 114 2120 708
10 23.5 247 172 57.4 1860 472
12 - 6860 - - - -

4.4.2 Linearized MTZ Formulation Results

Table 4.10: Linearized MTZ Nonnegative Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.645 14.2 7.79 1.59 6.68 2.98
10 38.1 2060 1530 329 999 378
10 40.6 1770 1350 271 911 388
10 42.6 2370 1550 257 585 519
10 37.5 1590 1560 320 878 466
10 36.5 1590 1430 274 915 427
12 - - - - - -

63

Table 4.11: Linearized MTZ Balanced Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.557 13.0 11.4 3.15 11.9 6.05
10 33.1 496 880 303 3750 522
10 36.8 458 715 423 5770 888
10 38.9 571 787 334 4090 495
10 32.6 585 790 383 10 300 510
10 36.9 553 771 378 5160 490
12 - - - - - -

Table 4.12: Linearized MTZ Positively Skewed Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.526 8.29 8.01 1.88 10.4 4.90
10 34.9 287 509 237 1280 1160
10 35.0 333 530 210 1260 1140
10 34.8 257 451 104 1640 978
10 35.7 357 493 229 805 1180
10 43.2 288 468 223 1600 1110
12 - - - - - -

Table 4.13: Linearized MTZ Negatively Skewed Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.623 24.2 16.7 3.27 15.1 14.2
10 37.9 1430 1400 576 3450 1780
10 38.3 3250 1490 492 2540 1350
10 36.2 1520 1390 406 3520 1650
10 35.7 3530 1450 461 4460 1700
10 37.6 3460 1380 492 8190 1580
12 - - - - - -

64

Table 4.14: Linearized MTZ Positive Semidefinite Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.547 13.2 8.92 1.51 14.8 8.58
10 34.7 832 536 148 2720 417
10 38.6 784 584 135 1410 513
10 35.6 605 568 115 2430 511
10 36.2 732 617 132 3600 478
10 35.9 584 519 92.5 2120 478
12 - - - - - -

Table 4.15: Linearized MTZ Nonnegative and Positive Semidefinite Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.651 13.0 7.90 1.73 6.18 2.73
10 38.4 2530 1620 344 2090 288
10 41.0 1960 1510 349 1490 477
10 33.0 2000 1500 351 1240 395
10 37.9 2120 1650 338 1720 466
10 39.2 1540 1500 355 1040 300
12 - - - - - -

Table 4.16: Linearized MTZ Rank One Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.249 8.56 6.11 1.03 11.7 3.84
10 12.5 135 141 49.7 2070 575
10 7.88 123 94.1 19.4 771 496
10 5.72 78.4 92.0 20.3 2600 558
10 9.68 92.5 114 37.3 813 182
10 19.0 116 101 37.5 1960 659
12 582 3650 4770 2440 - -

65

Table 4.17: Linearized MTZ Rank Two Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.455 9.34 8.79 1.65 14.8 6.42
10 11.3 175 192 88.5 5140 1390
10 31.2 224 450 140 4610 489
10 18.5 125 137 32.2 2460 435
10 12.7 167 409 104 1550 473
10 19.5 97.6 161 35.8 1630 451
12 8160 9390 - - - -

4.4.3 Linearized SCF Formulation Results

Table 4.18: Linearized SCF Nonnegative Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 1.11 14.0 9.47 2.46 6.32 2.64
10 46.2 2120 1670 421 665 396
10 48.8 2010 1560 379 983 527
10 50.2 2110 1470 427 545 491
10 42.7 2060 1530 410 732 457
10 42.5 2130 1430 386 1140 328
12 - - - - - -

Table 4.19: Linearized SCF Balanced Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.937 13.5 12.7 2.54 12.3 6.60
10 44.2 558 939 271 1240 457
10 42.9 641 764 265 4520 510
10 46.7 647 1030 162 4900 491
10 48.6 785 1040 327 4160 396
10 42.5 574 853 317 3710 408
12 - - - - - -

66

Table 4.20: Linearized SCF Positively Skewed Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.993 8.82 9.14 2.11 11.1 4.52
10 44.8 360 554 105 1360 1160
10 42.1 396 621 254 957 1170
10 44.5 274 659 186 617 1070
10 48.0 335 566 173 810 1100
10 46.0 307 492 118 1660 1060
12 - - - - - -

Table 4.21: Linearized SCF Negatively Skewed Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.989 25.1 18.8 3.93 13.7 14.4
10 47.0 2900 1450 370 2220 1380
10 42.3 3120 1550 469 3770 1240
10 43.7 3710 1480 441 3220 1410
10 43.5 3920 1850 400 2720 1520
10 45.5 3770 1820 430 4990 1350
12 - - - - - -

Table 4.22: Linearized SCF Positive Semidefinite Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.947 14.1 10.1 1.80 14.2 9.36
10 46.6 898 549 123 1510 417
10 48.7 792 626 128 1300 455
10 45.2 829 440 107 2520 450
10 46.4 886 643 134 1750 537
10 42.7 655 538 124 874 485
12 - - - - - -

67

Table 4.23: Linearized SCF Nonnegative and Positive Semidefinite Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 1.08 13.2 9.35 1.75 6.09 2.72
10 46.9 1950 1680 482 1320 401
10 50.5 2650 1630 514 980 282
10 45.3 2020 1260 233 1150 422
10 50.1 1940 1450 410 1770 284
10 50.1 1600 1620 497 1590 323
12 - - - - - -

Table 4.24: Linearized SCF Rank One Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.346 8.76 6.64 1.17 11.5 3.70
10 16.0 147 144 41.4 1100 578
10 10.3 137 106 21.4 1110 479
10 7.48 103 109 24.1 3240 587
10 11.6 106 111 27.4 844 410
10 26.2 110 157 26.6 1300 831
12 702 4730 6840 2150 - -

Table 4.25: Linearized SCF Rank Two Q Time Values
Size Quadratic Binary Classic McCormick Base 2 Base 10

8 0.679 9.59 9.67 1.92 15.9 6.35
10 18.0 148 207 79.6 4220 1370
10 38.0 230 497 113 2730 446
10 24.2 95.7 150 58.9 2440 849
10 17.2 182 533 87.3 1060 374
10 28.4 102 200 54.0 3570 445
12 - 9490 - - - -

4.4.4 Analysis

The McCormick linearization was the fastest linearization, though the quadratic (non-
linearized) formulation performed best overall. Problems of size 15 did not solve optimally,
so are not included in this analysis. This would indicate that of the five linearizations

68

studied, none provide an advantage over using Gurobi’s quadratic solver. We present the
linearization with the best solve time in the tables below.

Table 4.26: Size 8 Best Time Linearized Results Summary
Formulation Binary Classic McCormick Base 2 Base 10
Dantzig 0 0 7 0 1
MTZ 0 0 8 0 0
SCF 0 0 8 0 0
Total 0 0 23 0 1

Table 4.27: Size 10 Best Time Linearized Results Summary
Formulation Binary Classic McCormick Base 2 Base 10
Dantzig 0 0 40 0 0
MTZ 0 0 38 0 2
SCF 0 0 34 0 6
Total 0 0 112 0 8

69

Figure 4.1: Visual summary of the average solve times over all trials for the size 10 problem.

Very few instances of size 12 solve within three hours. We summarize the number of
instances solved in the table below. There are a few instances where the binary replace-
ment method does solve, while the quadratic formulation does not, these occur in the rank
two classes, which are somewhat more sparse. In general it appears that these linearization
methods are not a good way to solve larger instances of this quadratic TSP.

Table 4.28: Size 12 Instances Solved Linearized Results Summary
Formulation Quadratic Binary Classic McCormick Base 2 Base 10
Dantzig 1 2 1 1 0 0
MTZ 2 2 1 1 0 0
SCF 1 2 1 1 0 0
Total 4 6 3 3 0 0

All linearizations studied required adding variables and constraints to the original for-
mulation. These additional variables and constraints increase the overall size of the problem,
but change the objective function to a linear version. We theorize that these additional vari-

70

ables and constraints do not improve the tightness of the model, and in fact relax it. We
tested this theory by reviewing the linear relaxation of the MTZ TSP formulation. The
relationship between the MTZ, SCF and Dantzig Subtour Elimination models are known
(see Section 2.1.7), so we focus on the relationship between the linear relaxation forms of
the linearized problems.

In the linear relaxation of the models, we replace the integer variables with continuous
variables with the same bounds. We present the linear relaxation objective values for the
size 12 MTZ model.

Table 4.29: Linear Relaxation Size 12 MTZ Objective Values
Characteristic IP Objective Binary Classic McCormick Base 2 Base 10
Balanced −203 −2385 −2154 −2452 −3060 −11 990
Negskew −661 −5879 −5460 −5872 −7000 −11 990
Nonneg 976 0 0 0 0 0
Nonnegpsd 1957 0 0 0 0 0
Posskew 70 −1715 −1509 −1833 −3057 −11 990
PSD −401 −3217 −2864 −3213 −5434 −11 990
Rank1 −2842 −16 040 −11 100 −18 250 −24 560 −120 000
Rank2 −3007 −21 660 −16 390 −24 500 −38 550 −120 000

Table 4.30: Additional variables and constraints size summary
Formulation Additional Variables Additional Constraints
Binary n2(n− 1)2 binary 3n2(n− 1)2

Classic n2(n− 1)2 continuous 3n2(n− 1)2

McCormick n(n− 1) continuous 4n(n− 1)
Base 2 2

∑
ij∈E

(p1
ij + p2

ij) binary 5
∑

ij∈E

(p1
ij + p2

ij) + n2

Base 10 2
∑

ij∈E

(p1
ij + p2

ij) integer 5
∑

ij∈E

(p1
ij + p2

ij) + n2

These models solved very quickly, and the LP optimal solutions suggest that the lin-
earizations provide poor LP relaxations to the quadratic model. The relative speed of the
models appears to depend on the overall size of the linearization and how well the addi-
tional constraints describe the original problem. The McCormick envelopes are the fastest
linearization, in terms of solve time, and is quite small in terms of additional variables and
constraints, but the classic linearization is the tightest.

In conclusion, the quadratic (unmodified) model was faster than the linearized models
tested. This speaks to the strength of the nonlinear solver within Gurobi, though we also
see that the binary replacement method shows some indications that it could be better than

71

the McCormick method at the larger sizes. It is possible that larger instances would see a
different pattern than the smaller instances, however, at this time, the computational time
requirements are too high to complete larger size experiments.

72

Chapter 5

Conclusion

In this thesis, we consider formulating the Quadratic Traveling Salesman Problem for
computational experiments. In particular, we are interested in reformulating the quadratic
cost matrix and quadratic objective function. We begin with some research on the history
of computer solvers for integer programming problems, especially in relation to the Travel-
ing Salesman Problem. We then review IP formulations for the TSP, as well as provide a
variation on the objective function to make the problem quadratic. We then run two sets
of experiments on the QTSP, where we modify the quadratic cost matrix, or modify the
quadratic objective function, to observe the impact that these modifications have on solve
time or size of problems solved to optimality.

We found that modifying the the quadratic matrix to make it negative semidefinite by
subtracting a large value from the diagonal values was the most successful reformulating
strategy, and we are able to solve more problems using this method. Other methods, such
as replacing the quadratic costs associated with the nth node with zeros, and its variations,
were also effective at reducing solve times and solving larger problem sizes. At this point
we don’t have a good explanation for why the NSD formulation works so much better than
the other methods, but in practice this formulation is faster and produces legitimate tours.
Open problems include determining why the NSD modification was worse for negatively
skewed random instances compared to other classes of random instances. The NSD formu-
lation acts as expected and makes the eigenvalues large and negative for this class, however
it does not have any advantage over the quadratic reduced method for this particular class.

We examined five relaxations of the quadratic objective function to a linear function.
These methods did not provide an advantage over leaving the model in its quadratic form
and using the quadratic solver. We suspect that the reasons for this are that the lineariza-
tions provided poor relaxations and greatly expanded the size of the problem. Of the meth-
ods tested, the McCormick envelopes performed best. Open problems in this area includes
developing new methods of linearization for the QTSP that provide better relaxations.

73

Bibliography

[ABCC07] David L. Applegate, Robert Bixby, William Cook, and Vašek Chvátal, The
Traveling Salesman Problem A Computational Study, Princeton Series in Ap-
plied Mathematics, Princeton University Press, Princeton, February 2007.

[ACK+00] A. Aggarwal, D. Coppersmith, S. Khanna, R. Motwani, and B. Schieber, The
Angular-Metric Traveling Salesman Problem, SIAM Journal on Computing 29
(2000), no. 3, 697–711.

[BFG+00] Robert E. Bixby, Mary Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wun-
derling, Mip: Theory and practice – closing the gap, System Modelling and
Optimization (M. J. D. Powell and S. Scholtes, eds.), IFIP – The International
Federation for Information Processing, Springer US, 2000, pp. 19–49.

[Bix02] Robert E. Bixby, Solving Real-World Linear Programs: A Decade and More of
Progress, Operations Research 50 (2002), no. 1, 3–15.

[Bix12] Robert Bixby, A Brief History of Linear and Mixed-Integer Programming Com-
putation, Documenta Mathematica (2012), 107–121.

[Bri] Keith Briggs, Diagonally Dominant Matrix, http://mathworld.wolfram.com/
DiagonallyDominantMatrix.html.

[BT97] Dimitris Bertsimas and John N. Tsitskilis, Introduction to linear optimization,
Athena Scientific series in optimization and neural computation ; 6, Athena
Scientific, Belmont, Massachusetts, 1997.

[BW05] Dimitris Bertsimas and Robert Weismantel, Optimization over integers, Bel-
mont, Mass: Dynamic Ideas, 2005.

[CHL+89] Y. Cheng, D. J. Houck, J. Liu, M. S. Meketon, L. Slutsman, R. J. Vanderbei,
and P. Wang, The AT &T KORBX R©system, AT & T Technical Journal 68
(1989), no. 3, 7–19.

[Coo06] Stephen Cook, The P versus NP Problem, The Millennium Prize Problems
(J. Carlson, A. Jaffe, and A. Wiles, eds.), Clay Mathematics Institute, Cam-
bridge, MA, 2006.

[Coo11] William J. Cook, In Pursuit of the Traveling Salesman: Mathematics at the
Limit of Computation, Princeton University Press, December 2011.

74

http://mathworld.wolfram.com/DiagonallyDominantMatrix.html
http://mathworld.wolfram.com/DiagonallyDominantMatrix.html

[DFJ54] G. Dantzig, R. Fulkerson, and S. Johnson, Solution of a Large-Scale Traveling-
Salesman Problem, Journal of the Operations Research Society of America 2
(1954), 393–410.

[ECI] Emilien Dupont, Chris Maes, and Gurobi Optimization Inc, The Travelling
Salesman Problem with Integer Programming and Gurobi, http://examples.
gurobi.com/traveling-salesman-problem/.

[Edm65] Jack Edmonds, Minimum Partition of a Matroid Into Independent Subsets,
Journal of Research of the National Bureau of Standards 69B (1965), no. 1-2.

[Edm67] , Optimum Branchings, Journal of Research of the National Bureau of
Standards 71B (1967), no. 4.

[FH13] Anja Fischer and Christoph Helmberg, The symmetric quadratic traveling sales-
man problem, Mathematical Programming 142 (2013), 205–254.

[Fis13] Anja Fischer, A Polyhedral Study of Quadratic Traveling Salesman Problems,
PhD, Chemnitz University of Technology, Chemnitz, Germany, April 2013.

[Glo75] Fred Glover, Improved Linear Integer Programming Formulations of Nonlinear
Integer Problems, Management Science 22 (1975), no. 4, 455–460.

[Gom58] Ralph E. Gomory, Outline of an algorithm for integer solutions to linear pro-
grams, Bulletin of the American Mathematical Society 64 (1958), no. 5, 275–
279.

[GP07] Gregory Gutin and Abraham P Punnen (eds.), The Traveling Salesman Problem
and its Variations, Combinatorial Optimization, vol. 12, Springer US, Boston,
2007.

[GW74] Fred Glover and Eugene Woolsey, Converting the 0-1 Polynomial Programming
Problem to a 0-1 Linear Program, Operations Research 22 (1974), no. 1, 180.

[HJ85] Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge University
Press, December 1985.

[HK56] A. J. Hoffman and J. B. Kruskal, Integral Boundary Points of Convex Poly-
hedra, Linear inequalities and related systems (Harold W Kuhn and Albert W
Tucker, eds.), Annals of mathematics studies; no. 38, Princeton University Press,
Princeton, 1956.

[HM09] Pierre Hansen and Christophe Meyer, Improved compact linearizations for the
unconstrained quadratic 0-1 minimization problem, Discrete Applied Mathemat-
ics 157 (2009), 1267–1290.

[HR70] Peter L. Hammer and Abraham A. Rubin, Some remarks on quadratic pro-
gramming with 0-1 variables, RAIRO - Operations Research - Recherche Opéra-
tionnelle 4 (1970), no. V3, 67–79.

75

http://examples.gurobi.com/traveling-salesman-problem/
http://examples.gurobi.com/traveling-salesman-problem/

[JLN+10] Michael Jünger, Thomas Liebling, Denis Naddef, George Nemhauser, William
Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence Wolsey (eds.),
50 Years of Integer Programming 1958–2008: From the Early Years to the State-
of-the-Art, Springer Berlin Heidelberg, 2010.

[JM08] Gerold Jäger and Paul Molitor, Algorithms and Experimental Study for the
Traveling Salesman Problem of Second Order, Combinatorial Optimization and
Applications (Boting Yang, Ding-Zhu Du, and Cao An Wang, eds.), Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2008, pp. 211–224.

[Kar84] N. Karmarkar, A new polynomial-time algorithm for linear programming, ACM,
December 1984, pp. 302–311.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated
Annealing, Science 220 (1983), no. 4598, 671–680.

[Kha80] L. G. Khachiyan, Polynomial algorithms in linear programming, Zh. Vychisl.
Mat. Mat. Fiz 20 (1980), no. 1, 51–68 (Russian).

[KV18] Bernhard Korte and Jens Vygen, Combinatorial Optimization: Theory and Al-
gorithms, Algorithms and Combinatorics, vol. 21, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2018 (eng).

[LD60] A. H. Land and A. G. Doig, An Automatic Method of Solving Discrete Program-
ming Problems, Econometrica 28 (1960), no. 3, 497–520.

[Mah10] Ashutosh Mahajan, Presolving Mixed Integer Linear Programs, Tech. report,
July 2010.

[McC76] Garth P. McCormick, Computability of global solutions to factorable nonconvex
programs: Part I convex underestimating problems, Mathematical Programming
10 (1976), no. 1, 147–175.

[MTZ60] C. E. Miller, A. W. Tucker, and R. A. Zemlin, Integer Programming Formulation
of Traveling Salesman Problems, Journal of the ACM (JACM) 7 (1960), no. 4,
326–329.

[ÖAL09] Temel Öncan, I. Kuban Altinel, and Gilbert Laporte, A comparative analysis
of several asymmetric traveling salesman problem formulations, Computers &
Operations Research 36 (2009), 637–654.

[OFF+17] Aichholzer Oswin, Anja Fischer, Frank Fischer, J. Fabian Meier, Ulrich Pferschy,
Alexander Pilz, and Rostislav Stanek, Minimization and maximization versions
of the quadratic travelling salesman problem, Optimization 66 (2017), 521–546.

[OM02] Jonathan H. Owen and Sanjay Mehrotra, On the Value of Binary Expansions
for General Mixed-Integer Linear Programs, Operations Research 50 (2002),
no. 5, 810–819.

[Opt] Gurobi Optimization, Mixed-Integer Programming (MIP) Basics | Gurobi,
http://www.gurobi.com/resources/getting-started/mip-basics.

76

http://www.gurobi.com/resources/getting-started/mip-basics

[OW06] A. J. Orman and H. Paul Williams, Advances in Computational Management
Science, Optimisation, Econometric and Financial Analysis, A survey of differ-
ent integer programming formulations of the travelling salesman problem (Erri-
cos John Kontoghiorghes and Cristian Gatu, eds.), Springer, Berlin, Heidelberg,
2006, pp. 91–104.

[Pan18] Pooja Pandey, Topics in Binary Optimization Problems, PhD, Simon Fraser
University, Surrey, BC, July 2018.

[Pap94] Christos H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[Pap03] , Computational complexity, Encyclopedia of Computer Science (An-
thony Ralston, Edwin D. Reilly, and David Hemmendinger, eds.), John Wiley
and Sons Ltd., Chichester, UK, 4th ed., January 2003.

[PP18] Abraham P. Punnen and Pooja Pandey, Representations of quadratic combi-
natorial optimization problems: A case study using the quadratic set covering
problem, arXiv:1802.00897 [cs, math] (2018), arXiv: 1802.00897.

[PW17] Abraham P. Punnen and Brad D. Woods, A Characterization of Linearizable
instances of the Quadratic Traveling Salesman Problem, arXiv:1708.07217 [cs]
(2017), arXiv: 1708.07217.

[RMBG16] Borzou Rostami, Federico Malucelli, Pietro Belotti, and Stefano Gualandi,
Lower bounding procedure for the asymmetric quadratic traveling salesman prob-
lem, European Journal of Operational Research 253 (2016), no. 3, 584–592.

[Rot] Edward Rothberg, Gurobi Optimization, https://www.informs.
org/Impact/O.R.-Analytics-Success-Stories/Industry-Profiles/
Gurobi-Optimization.

[SA90] H. Sherali and W. Adams, A Hierarchy of Relaxations between the Continuous
and Convex Hull Representations for Zero-One Programming Problems, SIAM
Journal on Discrete Mathematics 3 (1990), no. 3, 411–430.

[Sch03] A. Schrijver, Combinatorial optimization: polyhedra and efficiency, Algorithms
and combinatorics, no. 24, Springer, Berlin ; New York, 2003 (eng).

[Ser10] Denis Serre, Matrices with Real or Complex Entries, Matrices: Theory and Ap-
plications (S Axler and K.A. Ribet, eds.), Graduate Texts in Mathematics,
Springer New York, New York, NY, 2 ed., 2010, pp. 83–108.

[Sha12] David Shanno, Who Invented the Interior-Point Method?, Documenta Mathe-
matica (2012), 65–73.

[Sti45] George J. Stigler, The Cost of Subsistence, Journal of Farm Economics 27
(1945), no. 2, 303–314.

[tsp] TSPLIB, https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95/.

77

https://www.informs.org/Impact/O.R.-Analytics-Success-Stories/Industry-Profiles/Gurobi-Optimization
https://www.informs.org/Impact/O.R.-Analytics-Success-Stories/Industry-Profiles/Gurobi-Optimization
https://www.informs.org/Impact/O.R.-Analytics-Success-Stories/Industry-Profiles/Gurobi-Optimization
https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

[Wat67] Lawrence J. Watters, Reduction of Integer Polynomial Programming Problems
to Zero-One Linear Programming Problems, Operations Research 15 (1967),
no. 6, 1171–1174.

[Wei] Eric W. Weisstein, Gershgorin Circle Theorem, http://mathworld.wolfram.
com/GershgorinCircleTheorem.html.

[WP17] Brad Woods and Abraham Punnen, A class of exponential neighbourhoods for
the quadratic travelling salesman problem, arXiv:1705.05393 [cs] (2017), arXiv:
1705.05393.

[WPS17] Brad Woods, Abraham Punnen, and Tamon Stephen, A linear time algorithm
for the 3-neighbour Travelling Salesman Problem on a Halin graph and exten-
sions, Discrete Optimization 26 (2017), 163–182.

78

http://mathworld.wolfram.com/GershgorinCircleTheorem.html
http://mathworld.wolfram.com/GershgorinCircleTheorem.html

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Combinatorial Optimization
	Traveling Salesman Problem
	Traveling Salesman as an Integer Programming Problem

	Computer Solvers for LP/IP Problems
	1950s & 1960s
	1970s
	1980s & 1990s
	2000s

	Quadratic Traveling Salesman Problem
	Linearizing the Quadratic Objective Function

	Contribution
	Modifying the Quadratic Matrix
	Linearizations

	Integer Programming Formulations
	Traveling Salesman Problem Constraints
	Dantzig Subtour Elimination
	Miller-Tucker-Zemlin (MTZ)
	Desrochers and Laporte (DL)
	Single Commodity Flow (SCF)
	Two Commodity Flow (TCF)
	Multi-Commodity Flow (MCF)
	Formulation Strength Comparison

	Linear Objective Function
	Quadratic Objective Function

	Modifying the Q Matrix
	Symmetric Q
	Upper Triangular Q
	Positive Semi-Definite Q
	Negative Semi-Definite Q
	Node n Removal
	Symmetric Node n Removal
	Upper Triangular Node n Removal

	Computational Experiments
	Gurobi Solver
	Problem Generation

	QTSP Modifications Results
	Quadratic Dantzig Subtour Elimination Formulation
	Quadratic MTZ Formulation
	Quadratic Single Commodity Flow Formulation
	Choice of M for Enforcing Semidefiniteness
	Analysis

	Linearization of the Quadratic Objective Function
	Linearizations
	MILP Reformulation Using Additional Binary Variables
	Standard Linearization
	The McCormick Envelopes
	Base-2 Linearization
	Base-10 Linearization

	Formulations
	Computational Experiments
	Linearized QTSP Formulations Results
	Linearized Dantzig Formulation Results
	Linearized MTZ Formulation Results
	Linearized SCF Formulation Results
	Analysis

	Conclusion
	Bibliography

