
Cops and Robbers on Geometric
Graphs and Graphs with a Set of

Forbidden Subgraphs
by

Masood Masjoody

M.Sc., Pure Mathematics, University of Tehran
M.Sc., Geotechnical Engineering, Tarbiat Modares University

B.Sc., Civil Engineering, University of Tehran

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
Department of Mathematics

Faculty of Science

c© Masood Masjoody 2019
SIMON FRASER UNIVERSITY

Summer 2019

Copyright in this work rests with the author. Please ensure that any
reproduction or re-use is done in accordance with the relevant national

copyright legislation.



Approval

Name: Masood Masjoody

Degree: Doctor of Philosophy (Mathematics)

Title: Cops and Robbers on Geometric Graphs and
Graphs with a Set of Forbidden Subgraphs

Examining Committee: Chair: Amarpreet Rattan
Associate Professor

Ladislav Stacho
Senior Supervisor
Associate Professor

Bojan Mohar
Co-Supervisor
Professor

Pavol Hell
Supervisor
Professor

Luis Goddyn
Internal Examiner
Professor

Gary MacGillivray
External Examiner
Professor
Department of Mathematics and Statistics
University of Victoria

Date Defended: June 18, 2019

ii



Abstract

In this thesis we study the game of cops and robber on some special class of graphs,
including planar graphs and geometric graphs. Moreover, under some conditions on
graph diameter, we characterize all sets H of graphs with bounded diameter for which
H -free graphs are cop-bounded. Furthermore, we extend our characterization to the
case of cop-bounded classes of graphs defined by a set H of forbidden graphs such
that the components of members of H have bounded diameter.

Keywords: Combinatorial games on graphs, the game of cops and robbers, graph
classes; planar graphs; geometric graphs; forbidden induced subgraphs; generalized
claw; generalized net; cop-bounded
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Chapter 1

Introduction

This thesis concerns the combinatorial game of cops and robbers on graphs. The game
of cops and robbers was introduced by Nowakowski and Wrinkler [12] as a pursuit
game on vertices of a graph with two players, a cop and a robber. Since then, several
variations of the game have been introduced, among which this thesis focuses on the
variation introduced by Aigner and Fromme [1] where one player controls a set of cops
and the other controls a robber. At the start of the game every agent (i.e. a cop or
the robber) occupies a vertex of a graph G with the cops taking positions ahead of
the robber, each agent knows the position of every other agent in the game, and in
each step of the game an agent can choose to either stay in its current position or
move to a neighboring vertex. We assume that the cops and the robber have perfect
knowledge about the game and that they play their best strategies. The game ends
when a cop is put on top of the robber in which case we say that the cops have won
(or the robber has been captured). For the game of cops and robbers on a graph, or a
class of graphs, a major question is to determine the minimum number of cops which
can guarantee to win the game. Since we consider the game of cops and robbers on
finite graphs, that minimum exists and is bounded above by the number of vertices
of the graph on which the game is played. A finite set of cops which guarantee the
capture of the robber are said to have a winning strategy.

Definition 1.0.1. Given a graph G, the minimum number of cops with a winning
strategy on G is called the cop number of G denoted C(G). We call G a copwin graph
if C(G) = 1. A class G of graphs the cop-number of whose members is bounded is siad
to br cop-bounded. We say that G is cop-bounded by k if C(G) ≤ k for every G ∈ G .

Since the cop number of a graph is equal to the sum of the cop numbers of its
components, whenever the game of cops and robbers is concerned, we restrict ourselves
to connected graphs unless specified otherwise.
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Copwin graphs have been characterized by the existence of a specific elimination
ordering among all of their vertices. See [1, 5] for a complete discussion.

A major result about the cop number of classes of graph is by Aigner and Fromme
[1] who showed that on every (connected) planar graph, three cops have a winning
strategy:

Theorem A. C(G) ≤ 3 for every connected planar graph G.

Our contributions in this thesis are on the game of cops and robbers on some
cop-bounded classes of graphs, including planar graphs and geometric graphs, and
also on the game of cops and robbers on classes of graphs defined by a set of forbidden
induced subgraphs. In the later sections, we will list some of the major results in each
of the directions this thesis is concentrating.

1.1 Planar graphs

The original proof of Theorem A presented in [1] was rather complicated and since its
appearance several attempts have been made to reformulate it into a simpler proof.
(See, for instance, the proof given in Bonato and Nowakowski’s book [5].) In Section
2.1 we present a new proof for Theorem A which is simpler than the existing proofs.
Our argument is based on Fáry’s Theorem [7] that states every planar graph has a
straight-line embedding in the plane. Given any straight-line embedding of a planar
graph, we present a 3-cop winning strategy which, unlike the other proofs suggested for
Theorem A, is of an algorithmic nature and provides a more straightforward argument
for Theorem A.

1.2 Geometric graphs

Geometric graphs are intersection graphs of unit disks in the plane and, as such, form
a subclass of string graphs [6]. It has been shown that string graphs are cop-bounded
by 15 [9] and, hence, so are geometric graphs. In [4], authors construct a geometric
graph on 1440 vertices whose cop number is three. Furthermore, they suggest a proof
for the claim that geometric graphs are cop-bounded by nine. In Section 2.2 we show
why the latter argument is incomplete. In Section 2.3, utilizing the operations of clique
substitution (Definition 1.5.4) and k-subdivision (Definition 1.5.5), we present two
constructions for geometric graphs of cop number at least three, either of which can be
used to produce an infinite family of such geometric graphs. We also use our techniques
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to generate a geometric graph of cop number three on 440 vertices, improving the
example provided in [4].

1.3 Classes of graphs defined by a set of forbidden
induced subgraph

It is known that the class of graphs with a forbidden induced subgraph H (also called
H-free graphs) is cop-bounded iff H is a forest of paths [10]. In particular, restricting
H to be connected implies that H-free graphs are cop-bounded iff H is a path. In
Chapter 3 we extend these results. In Theorem 3.4.1 we characterize all sets H of
graphs with bounded diameter such that the class of H -free graphs (Definition 3.1.1)
is cop-bounded, by showing that H -free graphs are cop-bounded if and only if H

contains a path, or contains a generalized claw and a generalized net (Definition
3.2.1). As a special case, this result provides a characterization of all finite sets H of
connected graphs such that the class of H -free graphs is cop-bounded. We also extend
our characterization to sets H of graphs with diameter of components of members of
H bounded (Theorem 3.4.3).

1.4 Structures inspired by the game of cops and
robbers

Inspired by the game of cops and robbers, in Chapter 4 we showed that the set of
connected claw- and bull-free graphs is the union of the set of connected graphs which
are complements of triangle-free graphs, the set of extensions of paths, and the set
of extensions of cycles, where an extension of a graph G is obtained by replacing its
vertices with disjoint cliques and adding all edges between cliques corresponding to
adjacent vertices of G. It turned out that this structure was proposed as a byproduct
of another paper published in 1991 with a strategy for a proof briefly sketched out
[16]. Nevertheless, we found this structure independently and proposed a complete
proof using a substantially different approach.

1.5 General definitions and notation

In this thesis we shall be using standard terminology and notation from [17]. In the
following we list some of the less common ones to be used in this work.

3



Notation.

a. We denote the cardinality of a set A by |A|.

b. We denote the maximum order of an induced cycle in G by `(G) .

c. If u, v are vertices of a graph G, we denote their graph distance in G by dG(u, v).
We occasionally use the notation u↔G v, or simply u↔ v if G is understood
from the context, to mean that u and v are adjacent in G.

d. If u, v are points in the plane, we denote their Euclidean distance by dE(u, v).

e. We shall call a path P on n vertices an n-path and define its length by l(P ) = n−1.

f. Given a walk W : w0, w1, . . . , wk and i, j ∈ [0 ·· k] with i ≤ j, we denote the
subwalk of W from wi to wj by W (wi, wj).

Definition 1.5.1. Let G = (V,E) be a graph. For each v ∈ V we define the open
neighborhood NG(v) of v to be {w ∈ V : vw ∈ E} and the closed neighborhood NG[v]
to be NG(v) ∪ {v}. Also for each V ′⊆V we define

NG[V ′] =
⋃
v∈V ′

NG[v], and NG(V ′) = NG[V ′] \ V ′.

For every subgraph G′ = (V ′, E ′) of G we set NG[G′] := NG[V ′] and NG(G′) = NG(V ′).

Remark. We might drop the subscript G when the graph is understood from the
context.

Definition 1.5.2. A geometric graph is a graph that has a finite set V of points in
the plane with no collinear triples as its vertex set, and the set of all line-segments
between pairs of distinct points in V with Euclidean distance less than or equal to a
positive constant r, called the parameter of the geometric graphs, as its edge set. Two
distinct edges of a geometric graph are said to cross if they have a common interior
point.

Definition 1.5.3. Suppose G and H are graphs. We say that G is H-free if it does
not contain an isomorphic copy of H as an induced subgraph.

Definition 1.5.4. Let G = (V,E) be a graph and v ∈ V (G). The clique substitution
at v is the graph obtain from G by replacing v with a clique of size |NG(v)| and
matching vertices in NG(v) with the vertices of that clique. The clique substitution
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of G, denoted K(G), is the graph obtained from G by sequentially performing clique
substitutions at all vertices of G. We refer to a clique substituted for a vertex of G as
a knot (of K(G)).

Definition 1.5.5. Let G be a graph and k ∈ N. The operation of introducing k
vertices in the interior of every edge of G, making edges of G into internally disjoint
(k + 2)-paths, is called k-subdivision of G.

Definition 1.5.6 (Cone). Let x, y and z be non-collinear points in the plane. We
denote by coneCW(y, x, z) (resp. coneCCW(y, x, z)) the cone with apex x and supporting
rays through y and z and clockwise (resp. counter-clockwise) interior angle from the
supporting ray through y to the supporting ray through z.

(a) (b)

x

y

z

y

x

z

Figure 1.1: (a) coneCW(y, x, z), (b) coneCCW(y, x, z)
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Chapter 2

Cops and Robbers on Geometric
Graphs

2.1 The Game of Cops and Robbers

A game of cops and robbers is a pursuit game on graphs, or a class of graphs, in which
a set of agents called the cops try to get to the same position as another agent, called
the robber. Several variants of such a game has been introduced and studied, such as
fast robber [8], cops and drunk robbers [11], lazy cops and robbers [3], just to name a
few.

Since our focus in this thesis will be on the original variant introduced in [1], which
is played on finite undirected graphs; we shall simply refer to this variant as “the"
game of cops and robbers. Furthermore, a graph in this thesis always means a finite
simple graph. The description of the game is as follows. Let G be a graph and consider
a finite set of cops and a robber which are to play on G. At the beginning of the game
(step 1) each cop will be positioned at a vertex of the graph and then the robber will
be positioned at some vertex. In each of the subsequent steps each agent either moves
to a vertex adjacent to its current position or stays still, with the robber taking its
turn after all of the cops. The cops win in a step i of the game if in that step one
of the cops gets to the vertex where the robber is located. The minimum number of
cops that are guaranteed to capture the robber on G in a finite number of steps is
called the cop number of G and denoted C(G). Observe that the cop number of a
graph is equal to the sum of the cop numbers of its components. Hence, in each of
the results on the cop number of a graph set forth in this chapter we consider the
graph under consideration connected. A graph is said to be k-copwin (k ∈ N) if its
cop number is bounded above by k. We call a 1-copwin graph simply a copwin graph.
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Copwin graphs have been fully characterized as dismantlable graphs [12, 15]. The class
of copwin graphs include all trees:

Proposition 2.1.1 ([5]). Trees are copwin.

Sketch of Proof. Consider the following strategy for the cop: In every step of the game
the cop moves toward the robber along the unique path joining the present position
of the cop to that of the robber. This way, the distance between the robber and the
cop will never increase and will surely decrease when the robber moves toward the
cop or the cop moves toward the robber while the robber is located in a leaf of the
tree. Hence, as T is finite, the cop is sure to successively decrease its distance from
the robber to zero.

Given a class of graphs we call it cop-bounded if there is k ∈ N such that every
graph in the class is k-copwin. For instance, it can be easily seen that the class of
cycles is cop-bounded, for two cops always have the winning strategy of moving toward
the robber from opposite directions. On the other hand, the class of bipartite graphs
is not cop-bounded; a fact that can be established in light of the following result:

Theorem 2.1.2 ([1]). For a graph G with minimum degree δ one has C(G) ≥ δ

provided the girth of G is at least 5.

Theorem 2.1.2 and its variants have been widely used to obtain lower bounds for
the cop number of different classes of graphs and also to show that certain graph
classes are not cop-bounded. For a result of the latter type see [14] where the author
shows that the class of bipartite graphs is cop-unbounded. On the other hand, [1]
provides a property of geodesic paths in graphs (Proposition 2.1.3) that has proven
handy in many situations where finding an upper-bound for the cop number of a graph
or class of graphs is concerned.

Definition 2.1.1. Let P be a path with end vertices u and v.

a. We shall write P = P (u, v) to mean that P is being considered with the
orientation from u to v.

b. For every pair u′, v′ of vertices of P we shall write Q = P (u′, v′) to mean that Q
is the sub-path of P with end vertices u′ and v′ considered with the orientation
from u′ to v′.

c. If P is a subgraph of a graph G such that l(P ) = dG(u, v), then we say that P
is geodesic in G.
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d. If P = P (u, v) is geodesic in G, for every r ∈ V (G) we denote by SP,G(r), or
occasionally SP (r) if G is understood from the context, the shadow in G of r on
P , defined in terms of the graph distance k := dG(r, u) by:

SP,G(r) =

 vk if k ≤ l(P ),
v if k > l(P ),

where vk is the kth vertex of P starting from u.

Remark. With P as in part d. of Definition 2.1.1 and r1 and r2 being two adjacent
vertices of G, SP,G(r1) and SP,G(r2) are either identical or adjacent. In particular, if
the game of cops and robbers is being played on G and at the end of a step i of the
game the robber is at some r ∈ V (G) and a cop, say C, is in SP,G(r), C can keep
occupying the shadow of the position of the robber with respect to P in all steps to
come. When such a condition is met, we simply say that C is shadowing the robber
on P , or P is being 1-guarded by C.

Proposition 2.1.3. [1] Let P = P (u, v) be a geodesic path in a graph G where the
game of cops and robbers is being played. Then any cop C can get to the shadow of the
robber on P in a finite number of steps. Moreover, if the robber steps onto a vertex of
P while being shadowed by C, it will be caught by C in the very next step of the game.

As shown in [1], using Proposition 2.1.3 one can provide a winning strategy for
three cops on any planar graph where the graph under consideration is identified by
any of its planar imbeddings. Here, we provide an alternative proof for this result
based on Proposition 2.1.3 and the following theorem by Fáry:

Theorem 2.1.4 (Fáry’s Theorem). [7] Every simple planar graph has a straight-line
plane representation with no three vertices collinear.

Remark. Even though the proof of Theorem 2.1.5 in this section is developed for a
straight-line embedding of a given planar graph G, the argument essentially works for
any planar embedding of G and the rotation system associated with it. Considering a
straight-line embedding, on the other hand, enables us to simplify the presentation of
the proof, for example by using the simple notion of a cone, given by Definition 1.5.6.

Theorem 2.1.5. [1] Planar graphs are 3-copwin.

Proof. Let G be a planar graph on more than three vertices and identify it with any of
its straight-line plane drawings where no three vertices are collinear. With three cops

8



in play, in the first step of the game we position all of them in the same vertex of the
graph. We consider one of the cops active and the remaining two dormant. After the
robber chooses its first position we will have the following configuration which defines
stage 0 of the game: Let v0 ∈ V (G) and r0 ∈ V (G) \ {v0} be the initial position of the
active cop and the robber, respectively. Set R0 = V (G) and G0 = G. Let R1 be the
set of all vertices of G which are reachable along paths in G from r0 without stepping
onto v0, and set G1 = G[R1].
In general, proceeding from a stage i− 1 (i ∈ N), our strategy is to get, after a finite
number of steps, to stage i with one of the following scenarios:

Ai: There is only one active cop, which is located in a vertex vi ∈ Rj for some
j ∈ [0 ·· i]; the robber is in a vertex ri ∈ Ri \ {vi}; Ri+1 is the set of all vertices
of G which are reachable along paths from ri without stepping onto vi; and we
have Gi+1 := G[Ri+1].

Bi: Two of the cops are active and the remaining one is dormant; there are four
paths Pi = Pi(ai, bi), Qi = Qi(ci, di), Xi = Xi(ai, ci), Yi = Yi(bi, di) that form a
simple closed polygonal curve Γi; there are ki, li ∈ [0 ·· i] such that Pi and Qi are
geodesic and being shadowed in Gki

and Gli , respectively; each of the paths Xi

and Yi has at least one edge; the robber is at a vertex ri ∈ Ri \ V (Γi); Ri+1 is
the set of all vertices reachable along paths from ri without stepping onto Γi;
Ri+1 does not contain any vertex in the neighborhood of an internal vertex of
Xi or Yi; and we have Gi+1 := G[Ri+1].

Observe that the scenario in stage 0 is A0. Moreover, in a stage i of the game with
either scenario the robber cannot leave Ri+1 without being captured by an active cop.
In addition, if |Ri+1| is less than or equal to the number of the dormant cops, then the
simple strategy of saturating Ri+1 will lead to the robber’s capture. Based on these
observations, it suffices to show the following:

Claim 1. Suppose there is a total of 3 cops in play. Let i ∈ N ∪ {0} and suppose
the game is in stage i (with scenario Ai or Bi) such that |Ri+1| is greater than the
number of the dormant cops. Then in a finite number of steps the cops can either
capture the robber or get the game to stage i + 1 (with scenario Ai+1 or Bi+1) such
that Ri+2⊆Ri+1, where the inclusion is proper unless the change of scenarios is from
Bi to Ai+1.
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To prove the claim and, thereby, the theorem we consider the possible cases as
follows:

Case 1: The scenario in stage i is Ai, and vi has only one neighbor x in Ri+1.

Case 2: The scenario in stage i is Ai, and vi has at least two neighbors in Ri+1.

Case 3: The scenario in stage i is Bi, Pi has a unique vertex x with a neighbor in
Ri+1, and Qi has a unique vertex y with a neighbor in Ri+1.

Case 4: The scenario in stage i is Bi, and there is a unique vertex x in V (Pi)∪V (Qi)
with a neighbor in Ri+1.

Case 5: The scenario in stage i is Bi, and one of the paths Pi and Qi has at least
two vertices with a neighbor in Ri+1.

Case 1: In the next step of the game move the active cop from vi to x. Let y 6= x

be the position the robber assumes in the same step. We have y ∈ Ri+1 \ {x} ( Ri+1.
Moreover, since every path from y to vi has to contain x, the set of all vertices
reachable from y without stepping onto x is a subset of Ri+1 \ {x}. Hence, by setting
vi+1 := x and ri+1 := y, we will reach at stage i+1 with scenario Ai+1 and Ri+2 ( Ri+1.

Case 2: Choose distinct vertices x, y ∈ N(vi) ∩ Ri+1, and choose a geodesic path
P = P (x, y) in Gi+1 (Figure 2.1).

vi

P = P (x, y)

x y

Ri+1

Figure 2.1: Case 2: scenario Ai, with |N(vi) ∩Ri+1| ≥ 2
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Then move a dormant cop in stage i so that it reaches the shadow of the robber on
P in Gi+1 in some step of the game. We may assume that the position, say z of the
robber in that step of the game is not in V (P ), for otherwise the game would be
already over. As such, let Q be the 1-path at vi, R be the set of all vertices reachable
from z without stepping onto P or Q, and X and Y be the 2-paths from x to vi and
from y to vi, respectively. Let Γ be the simple closed curve formed by P , Q, X, and
Y . Then by setting ri+1 := z, Xi+1 := X, Yi+1 := Y , Pi+1 := P , and Qi+1 := Q, the
game reaches at stage i+1 with scenario Bi+1 such that Γi+1 = Γ and Ri+2 = R ( Ri+1.

Case 3: Since Γi is closed and according to the definition of Ri+1, one of the two
planar regions with boundary Γi contains all vertices in Ri+1. We name this region Λ.
Consider the neighbors x′ and y′ of x and y along the counter-clockwise orientation of
Γi and assume, without loss of generality, that x′ belongs to the path Pi(ai, x). Set
the symbol σ ∈ {CCW,CW} by putting σ = CCW or σ = CW according as Λ is
bounded or unbounded. (See Figure 2.2 for the case that Λ is bounded.)

ai
bi

ci

di

Xi = Xi(ai, ci) Yi = Yi(bi, di)

Pi = Pi(ai, bi)

Qi = Qi(ci, di)

xx′

y
y′

α

β

Q = Q(α, β)

Λ1

Λ2

Figure 2.2: Case 3: scenario Bi, with each of the paths Pi and Qi having a unique
vertex with a neighbor in Ri+1

Consider α ∈ Ri+1 ∩ N(x) and β ∈ Ri+1 ∩ N(y) such that coneσ(x′, x, α) ∩ (Ri+1 ∩
N(x)) = ∅ and coneσ(y′, y, β)∩(Ri+1∩N(y)) = ∅. Choose a geodesic pathQ = Q(α, β)
in Gi+1 and let Q′ be the path obtained by adjoining xα and yβ to Q. Move the
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dormant cop in stage i so that it reaches the shadow of the robber on Q in Gi+1 in
some step of the game. As in case 2, we may assume the position z the robber assumes
in that step of the game is not in V (Q). Let Λ1 and Λ2 be the two regions which are
obtained by cutting Λ with Q′, so that the boundaries of Λ1 and Λ2 include Xi and
Yi, respectively. Since x and y are the only vertices on Γi with a neighbor in Ri+1,
and no vertex of Ri+1 is adjacent to an internal vertex of Xi or Yi, any path from z

to a vertex of Γi has to contain a vertex of Q′. Hence, by letting R be the set of all
vertices reachable from z without stepping onto V (Q′), we will have

R⊆Ri+1 \ V (Q) ( Ri+1. (2.1)

Without loss of generality assume z is located in Λ1. As such, let P be the 1-path
at y, X be the 2-path from y to β, and Y be the path from y to α obtained by
adjoining αx to the intersection of Γi with the boundary of Λ1. Let Γ be the simple
closed curve formed by P , Q, X, and Y . Move the cop on Pi to y and then make
the cop originally on Qi dormant. Then, by setting ai+1 := y =: bi+1, ci+1 := α,
di+1 := β, Pi+1 := P , Qi+1 := Q(β, α), Xi+1 := X, and Yi+1 := Y , and according
to the defining property of α we will reach at stage i+ 1 with scenario Bi+1. More-
over, by (2.1) and the defining property of α, we will have Ri+2⊆R ( Ri+1, as desired.

Case 4: Suppose, without loss of generality, that x ∈ V (Pi). Move one of the dormant
cops in stage i so that in some step of the game it reaches x and make all the other
cops dormant. Let y 6= x be the position the robber assumes in the same step. As in
case 1, we have y ∈ Ri+1 \ {x} ( Ri+1, and the set of all vertices reachable from y

without stepping onto x is a subset of Ri+1 \ {x}. Hence, by setting vi+1 := x and
ri+1 := y, we will reach at stage i+ 1 with scenario Ai+1 and Ri+2 ( Ri+1.

Case 5: Suppose Pi has at least two vertices with a neighbor in Ri+1, and let x
and y be the first and last such vertices of Pi. Let x′ (resp. y′) be the vertex of Pi
immediately succeeding (resp. preceding) x (resp. y) along Pi. Furthermore, suppose,
without loss of generality, that the orientation of Pi, i.e. from ai to bi, is consistent
with the clockwise orientation of Γi. As in Case 3, let Λ be the planar region with
boundary Γi that contains the vertices in Ri+1. Let {σ, τ} = {CCW,CW} where σ
and τ are determined by putting σ = CW or σ = CCW according as Λ is bounded or
unbounded. Consider α ∈ Ri+1 ∩N(x) and β ∈ Ri+1 ∩N(y) such that all elements of
N(x)∩Ri+1 are in coneσ(x′, x, α) and all elements of N(y)∩Ri+1 are in coneτ (y′, y, β).
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ai

bi

ci
di

Xi = Xi(ai, ci) Yi = Yi(bi, di)

Pi = Pi(ai, bi)

Qi = Qi(ci, di)

Ri+1

x

Figure 2.3: Case 4: scenario Bi, with a unique vertex in V (Pi) ∪ V (Qi) having a
neighbor in Ri+1

Let Q = Q(α, β) be a geodesic path in Gi+1 and let Q′ be the path obtained by
adjoining the edges xα and yβ to Q. As in Case 3, if V (Q) = Ri+1 the dormant cop in
stage i can capture the robber; otherwise, that cop can be moved so that in some step
of the game it reaches the shadow of the robber on Q in Gi+1. Let z be the position
the robber assumes in that step of the game. Let Λ1 and Λ2 be the regions obtained
by cutting Λ with Q′, such that Λ1 is the one whose boundary contains Qi.
Whether z ∈ Λ1 or z ∈ Λ2 we will be able to get to stage i+ 1 as follows:

Case 5a: z ∈ Λ1.
Make the cop on Pi dormant. Let X = X(α, ci) be the path consisting of Xi,

Pi(ai, x), and the edge xα, and let Y = Y (β, di) be the path consisting of Yi, Pi(y, bi),
and the edge yβ. Let R be the set of all vertices of G reachable from z without stepping
onto Qi or Q. According to the defining properties of α and β, R has no vertex in
the neighborhood of x and y. Therefore, R has no vertex in the neighborhood of an
internal vertex of X or Y , and hence is a subset of Ri+1 \ V (Q). By setting ai+1 := α,
bi+1 := β, ci+1 := ci, di+1 := di, Pi+1 := Q, Qi+1 := Qi, Xi+1 := X, and Yi+1 := Y we
will reach at stage i+ 1 with scenario Bi+1 and Ri+2 ( Ri+1.

Case 5b: z ∈ Λ2.
Move the cop on Qi to the shadow of the robber on Pi(x, y) in Gki

, and make
dormant the cop which was active on Pi in stage i. Let X ′′ and Y ′′ be the 2-paths from
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x to α and from y to β, respectively. Then, by setting ai+1 := x, bi+1 := y, ci+1 := α,
di+1 := β, Pi+1 := Pi(x, y), Qi+1 := Q, Xi+1 := X, and Yi+1 := Y we will reach at
stage i+ 1 with scenario Bi+1 and Ri+2 ⊆ (Ri+1 \ V (Qi+1)) ( Ri+1.

ai bi

ci

di

Xi = Xi(ai, ci) Yi = Yi(bi, di)

Pi = Pi(ai, bi)

Qi = Qi(ci, di)

x

x′

y

y′

α
β

Λ1

Λ2

Figure 2.4: Case 5: scenario Bi, with Pi having at least two vertices with a neighbor
in Ri+1

2.2 Cops and Robbers on Geometric Graphs

In this section we discuss the difficulties and pitfalls in trying to extend the idea
of the proof of Theorem 2.1.5 presented in [1] or [5] to the class of (all) geometric
graphs. In view of Proposition 2.1.3, in an instance of the game played on a plane
graph, shadowing the robber on a geodesic path prevents the robber from traversing
any edge that has a point in common with the path. However, the same might not
be true if the game is played on a generic geometric graph. The reason is that in a
geometric graph, by traversing an edge crossing an edge of a 1-guarded geodesic path
the robber does not necessarily end up in the neighborhood of the shadowing cop (See
Fig 2.5). Hence, implementing the shadowing strategy of Definition 2.1.1d does not
always prevent the robber from both stepping onto or crossing an edge of a geodesic
path in a geometric graph. One might hope that using more shadowing cops could
resolve the issue. In that regard, it was shown in [4] that tripling the cops can work
for geodesic paths in geometric graphs (Observation 2.2.1).
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v1

v2 v3

v4

x

y

z

G

Figure 2.5: P := v1v2v3v4 is a geodesic path in a geometric graph G. We have
SP (x) = v4, SP (y) = v3, and SP (z) = v4. While yz crosses edge v2v3 of P , z is not
adjacent to SP (y).

Definition 2.2.1. Let P = P (u, v) be a path oriented from u to v. For every w ∈ V (P )
we denote the immediate predecessor and the immediate successor of w along P by
w−P and w+

P , respectively; setting u−P := u and v+
P := v. If P is a geodesic path in a

graph H on which the game of cops and robbers with at least three cops is being
played, in a step i of the game a group of three cops are said to be 3-guarding P in
H if right before robber’s turn the cops in the group are at w−P , w, w+

P where w is the
shadow of the position of the robber at the end of step i− 1 on P .

Remark. If P is a geodesic path in a graph H where the game of cops and robbers
is being played, any set {C1, C2, C3} of three cops can eventually, i.e. after a finite
number of steps, reach their 3-guarding positions on P . One strategy, for instance,
is to get C1 in u+, and C2 and C3 both in u (phase 1), and then move C2 toward
the present shadow of the position of the robber on P while keeping C1 and C3 in
the immediate predecessor and immediate successor of the position of C2 (phase 2),
until C2 gets to the shadow in some step i of the game. Then, before robber’s move
in step i, cops C1, C2, and C3 will be in their 3-guarding positions on P . Note that
a set of cops 3-guarding a geodesic path P in a step i of the game can retain their
3-guarding positions in all subsequent steps, since the shadows of the robber on P in
two consecutive steps are within distance 1 along P ; a fact that one can easily verify
using geodesicity of P .

Observation 2.2.1. [4] Let P be a geodesic path in a geometric graph G where the
game of cops and robbers is being played. In a finite number of steps any group of
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three cops can be put in the 3-guarding position for P in G. Moreover, if the robber
steps onto P or crosses P while it is being 3-guarded, the robber will be caught in the
next step of the game.

In view of Observation 2.2.1, it was claimed in [4] that “three cops in a geometric
graph play the role of one cop in a planar graph guarding a geodesic path”, based
on which the authors concluded that every geometric graph was 9-copwin. The main
problem with this argument is that in an adaptation of a proof of Theorem 2.1.5 to
get a possible upper bound of nine for the cop number of geometric graphs, one needs
to shrink the present playground, i.e. the subgraph of the original graph to which the
game is restricted, and the latter in general requires the removal of not only some
vertices but also some edges of the present playground. As such, a playground obtained
from a geometric playground (i.e. a playground which is a geometric graph) might not
be always geometric. Therefore, in order for the idea in [4] to work, one would need
to show that geodesic paths in not only geometric graphs but also in subgraphs of
geometric graphs were 3-guardable.

2.3 Constructing Geometric Graphs of Cop Num-
ber Three

A geometric graph can be viewed as a straight-line drawing of a graph in the plane
where two points representing two vertices are adjacent if and only if their Euclidean
distance is less than or equal to a positive parameter r. As such, in accordance with
Definition 1.5.2, we call r the parameter of the geometric graphs. In this setup, ahead
of determining whether a given drawing of a graph is geometric we need to fix r. A
path drawn in the plane as a geometric graph is called a geometric path. Geometric
graphs constitute a proper subclass of string graphs, as the intersection graphs of
strings (or curves) in the plane. It has been shown that C(G) ≤ 15 for every string
graph G [9], but a geometric graph with cop number ≥ 4 is yet to be found. In [4] the
authors provide one geometric graph on 1440 vertices with cop number three. Indeed,
they present a planar graph with girth five and minimum degree 3 as a geometric
graph. That such a graph has cop number three simply follows from Theorem 2.1.2.
In Section 2.4 we improve this result by providing a representation of a graph on 440
vertices and cop number three as a geometric graph (Theorem 2.4.1). Indeed, the
technique utilized in the proof of Theorem 2.4.1 leads to the following general results:
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Theorem 2.3.1. Every planar graph G with maximum degree ∆ ≤ 5 has a subdivision
into a planar geometric graph with cop number C(G) or C(G) + 1.

Theorem 2.3.2. For every planar graph G with maximum degree ∆ ≤ 9, there is a
subdivision of the clique substitution K(G) of G (Definition 1.5.4) having a geometric
representation and cop number at least C(G).

Note that either result can be used to provide geometric graphs of cop number
three. The construction provided in the proof of Theorem 2.3.1 is based on obtaining
a polygonal-curve embedding from a given straight-line embedding of G and then
subdividing the edge-curves, i.e. the polygonal curves representing edges of G, equally
many times such that with an appropriate parameter for the geometric graphs, the
resulting embedding is geometric. The latter, for example, requires that no subdividing
vertex on an edge-curve be adjacent to a vertex belonging to another edge-polygonal
curve. The latter, in particular, requires the angle between any two segments incident
with a vertex of G be greater than π/3. The idea for the construction in the proof of
Theorem 2.3.2 is similar.

2.3.1 Proof of Theorem 2.3.1

Given a planar graph G with ∆(G) ≤ 5, we first identify it with any of its straight-line
embeddings, which exist according to Fáry’s Theorem [7]. Then, if necessary, we
replace the endings of edge-segments with a polygonal curve of at most five segments
in such a way that in the resulting polygonal-curve planar graph the angles between
any pair of consecutive edges at a vertex is greater than π/3 and in every edge-curve,
both of the angles between any two consecutive segments are also greater than π/3 -
see Lemma 2.3.6 for a justification of such adjustments. Finally, we shall show that in
such a polygonal-curve embedding of G all edge-curves can be subdivided into paths
of some fixed length so that the resulting graph is geometric. Thus, we can use the
following lemma to establish Theorem 2.3.1.

Lemma 2.3.3. [10] Let G′ be the subdivision of a graph G obtained by replacing every
edge of G with a path of length l for some fixed l ∈ N. Then,

C(G) ≤ C(G′) ≤ C(G) + 1. (2.2)

Lemma 2.3.4. Let A and B be two points in the plane having Euclidean distance 1,
and let S be the square having AB as a diagonal. Then, given k ∈ N, the parameter r
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of geometric graphs can be set so that for each integer l between 5k+ 1 and 4k2 + 6k+ 1
there exists a geometric path (i.e. a path drawn as a geometric graph) of length l

between A and B having no vertex outside of S.

Proof. Consider the Cartesian coordinate system where A = (0, 0) and B = (1, 0),
and let C = (1/2, 1/2) and D = (1/2,−1/2) be the other corners of S. Given k ∈ N
let

αk = sin−1
(

1
2(2k + 1)2

)
(0 < αk < π/2). (2.3)

Observe that since sum of the squares of (4k + 1)/(4k + 2) and 1/(2(2k + 1)2) is less
than one, we have cosαk > (4k+ 1)/(4k+ 2) and, hence, (2k+ 1) tanαk < 1/(4k+ 1).
We let the parameter of geometric graphs be rk given by

rk =
√

2
4k (1− (2k + 1) tanαk) . (2.4)

As such, we will have

rk >

√
2

4k + 1 . (2.5)

Moreover, we set the vectors

~Xk = 〈cos (π/4− αk), sin(π/4− αk)〉, (2.6)
~Yk = −〈cos (π/4 + αk), sin(π/4 + αk)〉, (2.7)

and let γk be the polygonal curve from A to B consisting of k+1 line-segments parallel
to ~Xk, called ~Xk-segments, each from a point on AD to a point on BC, k line-segments
parallel to ~Yk, called ~Yk-segments, each from a point on BC to a point on AD, and 2k
line-segments of length rk parallel to the directed line-segment from B to C, called flat
segments, such that the initial and terminal segments of γk are ~Xk-segments, and each
of the first k ~Xk-segments in γk is followed by exactly one flat segment which itself
is followed by a ~Yk-segment, and, likewise, each of the Yk-segments in γk is followed
by exactly one flat segment which is itself followed by an ~Xk-segment- see Figures
2.6 and 2.7 for examples. We call any of the k three-segment subcurves of γk starting
with an Xk-segment a dent of γk. By (2.4), we have 2rk <

√
2/2. Moreover, with l

being the common length of Xk-segments and Yk-segments (which can reasonably
be referred to as slant segments) we have l =

√
2/(2 cosαk) < (2k + 1)

√
2/(4k + 1).
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Hence, according to (2.5), we obtain

2rkk <
√

2
2 < l < (2k + 1)rk. (2.8)

e
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e
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e
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e
5

B

D
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A

Figure 2.6: The polygonal curve γ1 consisting of five line segments: e1 and e5 parallel
to X1, e3 parallel to Y1, and e2 and e4 of length r1.
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Figure 2.7: The polygonal curve γ2 consisting of nine line segments: X2-segments
e1, e5, and e9, Y2-segments e3 and e7, and flat-segments e2, e4, e6 and e8 of length r2.
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Consequently, with rk as the parameter of geometric graphs, each of the slant
segments of γk can be subdivided into a geometric path of length 2k + 1. Thereby,
as γk consists of 2k flat segments of length rk and 2k + 1 slant segments, it can be
subdivided into a geometric path of length (2k + 1)2 + 2k = 4k2 + 6k + 1. We shall
denote such a geometric path also by γk. Hence, to complete the proof it suffices to
show the following:

Claim 1. Given any dent D of γk and for each s ∈ [2 ··(4k + 2)], one can delete some
vertices of D and then introduce one or two new vertices inside D to make D into
a geometric path of length s. Moreover, such a change can be made for each of the
dents of γk so that the entire resulting path will stay geometric. In particular, any
integer between 5k + 1 and 4k2 + 6k + 1 can be attained as the length of a geometric
path between A and B having no vertex outside of S.

Proof of Claim 1. Let p0, . . . , p2k+1, q2k+1, q2k, . . . , q0 be the sequence of vertices in
D and let s = 2t + 1 or s = 2t + 2 for some t ∈ [0 ·· k]. Furthermore, let w be the
intersection of the segments ptqt+1 and qtpt+1 and pick points p′ and q′ on the segments
pt+1w and qt+1w such that dE(pt, q′) = dE(qt, p′) > rk and dE(p′, q′) ≤ rk (Figure 2.8).

w

p′ q′

pt+1 qt+1

pt qt

Figure 2.8: Adjusting the length of a dent

Observe that the paths p0, . . . , pt, w, qt, . . . , q0 and p0, . . . , pt, p
′, q′, qt, . . . , q0 are geo-

metric. Hence, to obtain the desired length s it suffices to remove all vertices pi, qi
with i > t from D, and according as s = 2t+ 1 or s = 2t+ 2, add w or both p′ and q′.
Note that the newly added vertices will be at a distance greater than rk from vertices
of γk which are not in D. Hence, all of the dents of γk can be adjusted this way while
keeping the resulting path geometric. Since the last Yk-segment of γk and k of the flat
segments of γk are in no dent and any dent can be reduced to a geometric path of
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any length between 2 and 4k + 2 or kept at the original length of 4k + 3, γk can be
adjusted to a geometric path of any length between 2k + (2k + 1) + k = 5k + 1 and
4k2 + 6k + 1.

Claim 1

The following two technical lemmas will serve to justify that the proposed alterations
of the terminal parts of edges of G in the proof of Theorem 2.3.1 will keep the graph
geometric without adding too many segments.

Lemma 2.3.5. Let O be a vertex of degree at most five in a straight-line plane graph
G. Let H be the collection of all sets H of six distinct rays emanating from O such
that the angle between any consecutive pair of rays in H is π/3. For every H ∈H let
σ(H) be the number of edges of G incident with O making an angle ≤ π/37 with a
ray in H. Then min{σ(H) : H ∈H } = 0.

Proof. Let x = min{σ(H) : H ∈ H }. Note that one can rotate the rays of any
H ∈H to obtain some H ′ ∈H satisfying σ(H ′) ≤ 5− σ(H); hence, x ≤ 2. Consider
some L ∈H with σ(L) = x, and set α = π/18. Note that if an edge incident with O
makes an angle ≤ π/37 with a ray in L, then any of the 10 rotations of H about O
by ±α, ±2α,±3α, ±4α, and ±5α puts that edge in an angular distance greater than
π/37 from any ray in L. According to this observation,

• we have x 6= 2, for otherwise rotating the rays of L by 2α would leave no more
than one edge incident with O within angular distance of π/37 to a ray of H, a
contradiction; and

• we also have x 6= 1, for otherwise if one applies five consecutive rotations of all
rays in L about O by π/18, after each of the rotations at least one new edge has
to be placed within angular distance of π/37 to a ray in L, requiring deg(O) ≥ 6,
a contradiction.

Hence, x = 0.

Lemma 2.3.6. With the assumptions and notation of Lemma 2.3.5, let L ∈H such
that σ(L) = 0; and let H1 and H2 be distinct regular hexagons with center O and
side length l1 and l2 (with l1 > l2) and corners on the rays of L. Then for every edge
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e incident with O one can pick π(e) ∈ {1, 2} and replace the segment of e inside
Hπ(e) with a simple polygonal curve αe consisting of at most four line segments: a line
segment Ce that connects O to a point Qe on the boundary of Hπ(e), together with a
connected portion of the boundary of Hπ(e) comprising at most three line-segments, in
such a way that the following hold (see Figure 2.9 and Figure 2.10):

a. Every segment of each αe is longer than

sπ(e) :=
(

1
2 −
√

3
2 tan(31π/222)

)
lπ(e)(> 0.093lπ(e)). (2.9)

b. After replacing the ending of each e with αe, no two consecutive segments on
the polygonal curve representing e have an angle ≤ π/3.

c. For every pair e, e′ of distinct edges incident with O both angles (clockwise and
counterclockwise) between Ce and Ce′ are greater than π/3. Moreover, the mini-
mum distance between αe and αe′ is at least min{(

√
3/2)(l1− l2), l2, (

√
3/2)s1, δ}

where s1 is given by (2.9), and δ is the minimum distance between e1, . . . , e5

outside the smaller hexagon H2.

Proof. For each i ∈ {1, 2} let the Ai,k (k = 1, . . . , 6) be the corners of Hi , say,
clockwise around O such that for every k, A1,k and A2,k belong to the same ray of L.
We shall establish the lemma in the following extreme cases; the other cases can be
dealt with in a similar fashion.

Case I: deg(O) = 5 and all edges incident with O are between two consecutive rays
in L; in other words, all such edges intersect the same side of Hj (j = 1, 2).

Case II: deg(O) = 5 and no two consecutive rays in L enclose two of the edges
incident with O; in other words, no to edges incident with O cross the same side
of Hj (j = 1, 2).

Let e1, . . . , e5 be the edges incident with O in the clockwise order around O, and for
each i ∈ [1 ·· 5] and j ∈ [1 ·· 2] let Ci,j be the intersection of ei with the boundary of
Hj. We also denote every Qei

simply with Qi.

Handling of Case I: Suppose e1, . . . , e5 cross sides A1,iA2,i of Hi (i = 1, 2). Set
π(e1) = π(e3) = π(e5) = 1 and π(e2) = π(e4) = 2. Also, set Q1, . . . , Q5 as follows:

• Q1 = A1,5
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Figure 2.9: Case I: degG(O) = 5 and all edges incident with O intersect the sides
A1,1A1,2 of H1 and A2,1A2,2 of H2

• Q2: the point on the segment A2,1A2,6 with ](Q2, O,A2,6) = π/37;

• Q3 = C3,1;

• Q4: the point on the segment A2,2A2,3 with ](Q4, O,A2,3) = π/37; and

• Q5: the point on the segment A1,3A1,4 with ](Q5, O,A1,4) = π/38.

Furthermore, from O let αe1 and αe2 be clockwise around H1 and H2 , and αe4 and
αe5 be counterclockwise around H2 and H1. Then, one can easily check that properties
(a)-(c) are satisfied by αei

s.

Handling of Case II: Suppose Ci,1 belongs to the side A1,iA1,i+1 of H1 for each i ∈
[1 ·· 5]. As σ(H1) = 0, we have ](Ci,1, O,A1,i) > π/37 or, equivalently, dE(A1,i, Ci,1) >
s1 for each i ∈ [1 ·· 5], where s1 is given by (2.9). Let

a = min{dE(A1,i, Ci,1)− s1 : i ∈ [1 ·· 5]}.
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Figure 2.10: Replacing the endings in case I with polygonal curves α1, . . . , α5 to
gain the desired properties

Furthermore, to satisfy (a)-(c), for each i ∈ [1 ·· 5] let αi be clockwise around H1 and
pick Qi on the segment CiA1,i such that

dE(Qi, A1,i) = a(i− 1)
5 .

Proof of Theorem 2.3.1. Let α be the minimum angle between pairs of edges of G
with a common endpoint, and choose a > 0 small enough so that

• the (minimum) Euclidean distance between any pair of non-incident edges is
greater than 3a; and

• for every v ∈ V (G), the ball of radius 6a centered at v does not contain any
vertex in V (G) \ {v}.

Fixing a as such, we break up every edge-segment ei = uv of length, say, li into three
parts, an initial part of length 2a starting, say, at u, a middle part of length λia where
λi ∈ bli/ac − 4, and a terminal part ending at v which is (necessarily) of a length
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between 2a and 3a. Suppose λ1 ≤ · · · ≤ λm where m is the number of edges of G. Next,
we apply Lemma 2.3.6 to each vertex of the graph and with regular hexagons of side
lengths a and 1.5a to replace each of the initial and terminal parts of edge-segments
with polygonal curves of at most five segments, one segment outside the hexagon
associated with the edge-ending and up to four more segments, according to Lemma
2.3.6. Note that for each resulting edge polygonal-curve, the endings will consist of at
most 10 segments of a total length less than 15a. Therefore, for each k ∈ N, by using
rka as the parameter of geometric graphs one can replace the endings of each edge
with a total of not more than 10 + 15d1/rke segments, which is bounded above by
10 + 60k, according to (2.5). We choose k ∈ N large enough so that

λ1k
2 ≥ 10 + 60k, λ1(3k2 + 6k + 1) ≥ λm(5k + 1),

and, from (2.9),
rk ≤ min{2 sin(α/2),

√
3/2(0.093)}.

Then according to Lemma 2.3.4, the middle part of every edge polygonal curve can
be replaced with a geometric path of appropriate lengths (between (5k + 1)λi and
4k2 + 6k + 1)λi for each part of an initial (Euclidean) length λia, so that the resulting
graph G′ is a graph obtained from G by replacing edges with paths of the same (graph)
length. Moreover, according to Lemmas 2.3.4 and 2.3.6 and our choices for a and k, G′

is a geometric plane graph. Finally, C(G′) ∈ {C(G), C(G) + 1} according to Lemma
2.3.3.

Corollary 2.3.7. There is an infinite family of geometric graphs of cop number three.

Sketch of proof. Let G be any straight-line embedding of the dodecahedron (or any
other planar graph of cop number three). Applying the construction described in the
proof of Theorem 2.3.1 gives a planar geometric graph G′ with a parameter r, chosen
as in the proof of the theorem. Given any k ∈ N replace every edge e of G′ with a
path of k equal-length segments, without changing the geometry of e. The resulting
plane graph Gk will be a geometric graph with parameter r/k (by construction) and
the cop number of three.

2.3.2 Proof of Theorem 2.3.2

Let G be a planar graph such that ∆(G) ≤ 9, identified with any of its straight-line
embeddings in the plane. We shall show how to construct a subdivision of (a drawing

25



of) K(G) which is geometric and has cop number ≥ C(G), where the latter will be
established using Lemma 2.3.3 alongside the following result:

Lemma 2.3.8. [10] The operation of clique substitution does not decrease the cop
number.

Proof of Theorem 2.3.2 (Sketch). The techniques are similar to those in the proof of
Theorem 2.3.1 and related lemmas. The construction is carried out in two main phases:
Phase I: At each vertex v of G we pick a partition of the plane into cones with
apex v and angle 2π/9, such that one of the edges incident with v lies on one of the
rays of the cones. We also consider four regular 9-gons Πi,v (i ∈ [1 ·· 4]) centered at
v corresponding to the chosen partition of the plane at v, with distinct side lengths
si (independent of v) such that min{si} is substantially less that the shortest edge
in G. Then, for each edge incident with v, we replace its end at v with a polygonal
curve consisting of a portion of the boundary of one of the 9-gons and a segment from
v that lies on one of the rays in the decomposition. This phase is implemented in a
similar fashion to the adjustments of the edge endings in Lemma 2.3.6, except that
with up to nine possible edges incident with v, one needs to use the boundaries of
four, rather than two, polygons.

GeoGebra Calculette Graphique Accueil  Télécharger

Basic Tools

Edit

Media

Measure

Points

Construct

Figure 2.11: A and B are two consecutive vertices of a regular n-gon circumscribed
by the circle of radius r/2 centered at v, and |AA′| = |BB′| = r. We need |A′B′| > r
or, equivalently, n < π/(sin−1(1/3)).

Phase II: We pick the parameter r of the geometric graphs such that r � min{si}
and r � mini 6=j |si − sj|. Then, we subdivide the edges so that the second vertices
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of endings at every vertex form a clique of size degG(v). As such, by removing the
original vertices of G, what we obtain is a drawing of a graph obtained from K(G) by
subdividing edges outside the knots. Finally, using the technique of Lemma 2.3.4 we
can adjust the latter graph to a geometric graph where the edges outsides the knots
are subdivided into an equal number of edges. Note that we need ∆(G) ≤ 9 in order
to make sure that subdividing vertices for different edges incident to a vertex of G do
not lie within distance r from each other (See Figure 2.11).

2.4 A small geometric graph requiring three cops

Theorem 2.4.1. The graph G obtained by subdividing every edge of the dodecahedron
into 15 edges has got cop number 3; moreover, it admits a geometric representation.

Proof. Since the dodecahedron has cop number 3, we have C(G) ∈ {3, 4}, according
to Lemma 2.3.3. But being planar G has cop number ≤ 3. Hence, C(G) = 3.

1010

1010

1010
1010

1010

1010

1010

1010

1010

1010

1010

1010

1010

10101010

DD

CC

EE

GGFF

BB

AA

Figure 2.12: An embedding of the dodecahedron
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To complete the proof, we provide a geometric representation of G derived from
a specific straight-line embedding shown in Figure 2.12. In this embedding, where
number 10 next to some edges refers to their length, we consider five different edge
types represented by AB, AC, CE, DE, and FG. Next, we replace each of these edge
types with appropriate polygonal curves, as shown in Figure 2.13, so that the resultant
graph remains planar and can be made into a geometric graph by introducing 14 new
vertices along each curve.

1.81.8

DD

CC

EE

GGFF

BB

AA

Figure 2.13: Replacing edges in Figure 2.12 with polygonal-curve embedding of the
Dodecahedron

The details of the latter operations are shown in Figure 2.14. One can easily check
that the final embedding is indeed a geometric representation of G with parameter
r = 2.
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(b) Subdividing AC and EF
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(c) Subdividing DE
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(d) Subdividing FG

Figure 2.14: Subdividing the graph obtained as in Figure 2.13
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Chapter 3

Cops and Robbers on Graphs with
Forbidden Induced Subgraphs

In this chapter we study the game of cops and robbers on classes of graphs defined by
a set of forbidden induced subgraphs and aim to characterize such classes which are
cop-bounded.

3.1 Known results

Definition 3.1.1. Let H be a set of graphs. A graph G is called H -free if no graph
in H is an induced subgraph of G. If H is a singleton, say {H}, we shall use {H}-free
and H-free interchangeably.

Our point of departure is the following theorem which characterizes graphs H such
that the class of H-free graphs is cop-bounded.

Theorem 3.1.1 ([10]). The class of H-free graphs has bounded cop number if and
only if every connected component of H is a path.

Theorem 3.1.1 in particular implies that the class of claw-free graphs is not cop-
bounded. In this regard, in Section 3.2 we present some subclasses of claw-free graphs
which are cop-bounded and show winning strategies for some constant number of cops
on each class. Section 3.3 is devoted to presenting a tool (Lemma 3.3.2) that plays a
part in establishing necessary and sufficient conditions on H for the class of H -free
graphs be cop-bounded, in case the diameters of the members of H have a bound, as
presented in Theorem 3.4.1, Section 3.4. In Section 3.4.1 we extend Theorem 3.4.1 to
the case that the diameters of components of members of H have a bound (Theorem
3.4.3). Finally, we study some particular classes of graphs without a generalized claw
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and a generalized net, providing customized winning strategies and better upper
bounds than the general setup used in Theorem 3.4.1.

Notation. Let U and W be disjoint subsets of the vertex set of a graph G. Then we
write U ⇔G W (or simply U ⇔ W if the graph G is understood from the context) to
mean that every vertex in U is adjacent to every vertex in W .

The two operations of clique substitution (Definition 1.5.4) and k-subdivision (Def-
inition 1.5.5) were used in [10] and play a crucial role in the main results of this
chapter as well. The aforementioned operations are specially useful in this chapter,
since according to Lemmas 2.3.3 and 2.3.8 neither can reduce the cop number of a
graph.

In addition, we shall be using the fact that cubic graphs are not cop-bounded:

Theorem 3.1.2. [2] For every k ≥ 3 the class of k-regular graphs is cop-unbounded.

3.2 Cops and Robbers on Some Classes of Claw-
free Graphs

We shall use HC , HB, HN , and HA to denote claw, bull, net, and antenna, as shown
in Figure 3.1.

(a)Claw (HC) (b)Bull (HB) (c)Net (HN ) (d)Antenna(HA)

Figure 3.1: Claw, Bull, Net, and Antenna

Definition 3.2.1. [Generalized claw and net] With n1, n2, n3 ∈ N ∪ {0} and X ∈
{HC , HN}, we denote the graph obtained by replacing the pendent edges in X with
paths of length n1, n2, and n3 by X(n1, n2, n3), calling it a generalized claw or net,
according as X = HC or X = HN . For n ∈ N ∪ {0}, we denote X(n, n, n) simply by
X(n), calling it the n-claw or n-net, according as X = HC or X = HN .

Note that by Theorem 3.1.1, for each X ∈ {HC , HB, HN , HA} the class of X-free
graphs is cop-unbounded. We shall consider the game of cops and robbers on the
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following classes of graphs and for each of them provide an upper bound for the cop
number of its members. Note that we are not particularly interested in optimizing
these upper bounds.

• Cl1 : the class of connected claw- and bull-free graphs;

• Cl2 : the class of connected claw-, net-, and antenna-free graphs;

• Cl3 : the class of connected claw- and net-free graphs.

In what follows we also denote the class of connected claw-free graphs by Cl.

Lemma 3.2.1. Let G be a connected graph of order ≥ 2. Pick any two adjacent
vertices u0 and u1 of G and let U be the set of neighbors of u0 in G − u1. Let H
be the graph obtained from G by removing U . Set N0 = {u0}, and for each i ∈ N
let Ni be the ith neighborhood of u0 in H. In other words, for every i ∈ N ∪ {0} let
Ni = {v ∈ V (H) : dH(u0, v) = i}. Then:

a. If G ∈ Cl and i an integer ≥ 2 any pair of distinct vertices in Ni with a common
neighbor in Ni−1 are adjacent. In particular, N2 is a clique.

b. If G ∈ Cl1 then each Ni is a clique. Moreover, Ni ⇔ Ni−1 for i ≥ 1.

c. If G ∈ Cl2 then every Ni is a clique and contains a vertex that dominates Ni+1.

d. If G ∈ Cl3 each Ni has independence number ≤ 2.

. . .
u1 u2 u3 ulu0

. . .

U

N2 N3 NlN0 N1

Figure 3.2: The structure of the graph H obtained by excluding every but one
neighbor of a vertex u0 ∈ V (G). We have U = NG(u0) \ {u1}, H = G − U , and
u0, u1, . . . , ul is a longest geodesic path in H starting at u0. Each Ni is the bag
corresponding to ui, defined as in Lemma 3.2.1
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Proof. (a) Let i ≥ 2 and u, v be distinct vertices in Ni with a common neighbor
w ∈ Ni−1. By definition, there is a vertex z ∈ Ni−2 such that wz ∈ E(G). As such, one
has zu 6∈ E(G) and zv 6∈ E(G). Therefore, uv ∈ E(G), for otherwise G[{u, v, w, z}]
would be a claw, a contradiction. Furthermore, for every pair x, y of distinct vertices
in N2 one must have xy ∈ E(G), for otherwise G[{u0, u1, x, y}] would be a claw, a
contradiction. Hence, N2 is a clique.
(b) According to (a), the claim holds for i ≤ 2. Proceeding by induction on i, suppose
j ≥ 2 and that the claim holds for all i ∈ [1 ·· j]. If Nj+1 = ∅, the claim vacuously
hold for i = j + 1. Otherwise, for each k ∈ [j − 2 ·· j + 1] choose any xk ∈ Nk. Note
that by (a) it suffices to show that xjxj+1 ∈ E(G). To this end, suppose, toward a
contradiction, that xjxj+1 6∈ E(G). Pick any yj ∈ Nj such that yjxj+1 ∈ E(G). Then,
by the induction hypothesis we have xj−1yj, xjyj ∈ E(G) and xk−1xk ∈ E(G) for each
k ∈ [j − 2 ·· j]. As such, G[{xj−2, xj−1, xj, yj, xj+1}] will be a bull, a contradiction
(Figure 3.3).

Nj Nj+1

xj+1yj

xj

Nj−2 Nj−1

xj−1xj−2

Figure 3.3: Demonstration of the proof of Lemma 3.2.1(b), by induction on i:
We have j ≥ 2 and xk ∈ Nk for each k. Moreover, xj+1xj 6∈ E(G) and yj is any
neighbor of xj+1 in Nj . With this arrangement, if (b) holds for every i ≤ j, the graph
G[{xj−2, xj−1, xj , yj , xj+1}] will be a bull.

(c) According to (a) it suffices to show that every Ni (i ≥ 2) contains a vertex
that dominates Ni+1. We shall proceed by induction on i, noting that this is true
for i ∈ {0, 1} since N0, N1 are singletons. Suppose i ≥ 2 and assume Nk contains a
vertex that dominates Nk+1 whenever k < i. Let z ∈ Ni−2 and z′ ∈ Ni−1 such that
NG(z) ⊇ Ni−1 and NG(z′) ⊇ Ni. Then, assume, toward a contradiction, that no vertex
in Ni is adjacent to all vertices in Ni+1. The latter implies there exist x, y ∈ Ni and
x′, y′ ∈ Ni+1 such that E[G{x, x′, y, y′}] = {xx′, yy′, xy}. But then G[{x, x′, y, y′, z, z′}]
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would be a net or an antenna, according as xy 6∈ E(G) or xy ∈ E(G), a contradiction
(Figure 3.4).

Ni Ni+1

x′

y′

x

y

Ni−2 Ni−1

z′z

Figure 3.4: Demonstration of the proof of Lemma 3.2.1(c), by induction on i. We have
i ≥ 2, and z ∈ Ni−2 and z′ ∈ Ni−1 dominating Ni−1 and Ni, respectively. Moreover,
we have x, y ∈ Ni and x′, y′ ∈ Ni+1 such that E({x, y}, {x′, y′} = {xx′, yy′}. With
this arrangement the graph G[{x, x′, y, y′, z, z′}] will be a net or an antenna.

Ni−1 Ni

x

y

z

x′

y′

z′

Ni−3 Ni−2

ww′

If x′, y′ have a common neigh-
bor w ∈ Ni−1 and if w′ ∈
Ni−3 is adjacent to w then
G[{x, x′, y, y′, w, w′}] is a net.

Ni−1 Ni

x

y

z

x′

y′

z′

Ni−2

x′′

If x′, y′ have no common neighbor
w ∈ Ni−1 then for every neigh-
bor x′′ of x′ in Ni−2 the graph
G[{x, x′, x′′, y′}] is a claw.

Figure 3.5: Demonstration of the proof of Lemma 3.2.1(d), by proceeding toward a
contradiction. Assume i ≥ 3,Ni−1 has independence number ≤ 2, butNi contains three
independent vertices x, y, z with neighbors x′, y′, z′ in Ni−1 such that x′y′ ∈ E(G).

(d) In light of (a) G[Ni] has independence number ≤ 2 whenever i ≤ 2. Proceeding
by induction on i, suppose i ≥ 3 and that G[Ni−1] has independence number ≤ 2.
Toward a contradiction, suppose G[Ni] had independence number ≥ 3. As such, let
{x, y, z} be a set of three independent vertices in Ni. By (a), no two of x, y, z have
a common neighbor in Ni−1. Therefore, there exist distinct vertices x′, y′, z′ ∈ Ni−1

such that E({x, y, z}, {x′, y′, z′}) = {xx′, yy′, zz′}. Moreover, by induction hypothesis,
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|E(G[{x′, y′, z′}])| ≥ 1. Assume, without loss of generality, that x′y′ ∈ E(G). If x′, y′

had a common neighbor w ∈ Ni−2, then for every neighbor w′ of z in Ni−3 the graph
G[{x, x′, y, y′, w, w′}] would be a net, a contradiction. Hence for any neighbor x′′ of x in
Ni−1 one has x′′y′ 6∈ E(G); thereby, G[{x, x′, x′′, y}] has to be a claw, a contradiction.
(See Figure 3.5 for a demonstration of this proof.)

Theorem 3.2.2.

a. If G ∈ Cl1 then G is two-copwin.

b. If G ∈ Cl2 then G is three-copwin.

c. If G ∈ Cl3 then G is five-copwin.

Proof. In each case, we shall put all the cops in hand initially at the same vertex, say,
u0. When the robber takes its first position, say, r, consider a geodesic path P in G
from u0 to r. With u1 being the vertex of P following u0, set U = NG(u0) \ {u1} and,
then, define H and the Ni as in Lemma 3.2.1. Furthermore, let H ′ be the component
of u0 in H. For the entire duration of the game keep one cop, say C1, at u0. This,
forces the robber to stay in H ′ and, hence, to the sets Ni, according to Lemma 3.2.1.
Since H ′ is finite, there is a unique k ∈ N such that Nk 6= ∅ and Nk+1 = ∅.
(a) Let C2 be the other cop in play. By the strategy of moving C2 in H ′ along any
shortest path from N0 to Nk, in (at most) k steps C2 either captures the robber or gets
to an Ni where the robber is located. In the latter case, note that since the robber’s
next position has to be in Ni−1 ∪Ni ∪Ni+1. Moreover, according to Lemma 3.2.1(b),
Ni−1∪Ni∪Ni+1 is a subset of the closed neighborhood of every vertex in Ni, including
the position of C2. Hence, irrespective of the the robber’s next move, C2 will remain
within distance one from the robber. Consequently, C2 will be able to capture the
robber in its very next move.
(b) Let C2, C3 be the other cops in play. According to Lemma 3.2.1(c), there is an
induced path x0, . . . , xk−1 in G from N0 to Nk−1 such that N [xj] ⊇ Nj+1 for each
j ≤ k− 1. Hence, the strategy of moving C2 to xi−1 and C3 to xi in every step i of the
game, either leads to the robber’s capture in no more than k − 1 steps, or to having a
cop in a vertex neighboring the position of the robber on the cops’ turn after exactly
k steps. Hence, either way, the cops can always capture the robber in at most k steps.
(c) Let C2, C3, C4, C5 be the other cops in play. By Lemma 3.2.1(d), for each j ∈ [1 ·· k]
one can choose Aj ⊆Nj such that |Aj| ≤ 2 and N [Aj ]⊆Nj . Now consider the following
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strategy for the cops. Initially, we will have C2, C3 and C4, C5 saturate A0 and A1,
respectively. As such, in order to avoid being captured, the robber has to stay in ⋃k2 Nj .
We proceed in the following recursive fashion. With two groups of two cops saturating
Ai−1 and Ai for some i ≥ 1 and the robber being in ⋃ki+1 Nj, in a finite number of
steps we will move the cops in Ai−1 to Ai+1, while keeping the cops in Ai fixed in their
position. Keeping cops in Ai will force to robber to stay in ⋃ki+1 Nj , since the only way
for the robber to leave ⋃ki+1 Nj is to enter Ni. In addition and for the same reason,
having cops saturating Ai+1 will force the robber further to stay in ⋃ki+1 Nj. Hence,
by following this strategy, the cops can iteratively reduce the robber’s territory and
eventually win.

3.3 Train-chasing the robber

In the game of cops and robbers, initial positioning of the cops will not affect the
existence of a cop-winning strategy. Hence, any vertex of the graph can be chosen as
the common initial position of all of the cops. With this fact under consideration, in
this section we will provide a Lemma for establishing the main results of this thesis,
Theorems 3.4.1, 3.4.3, and the special cases discussed in Section 3.5.
Roughly speaking, Lemma 3.3.2 proposes a tool for placing a train of cops along an
induced path in the graph with a vertex, say, v as an end-point such that the train
of cops blocks the robber from escaping and can be recursively elongated, as long as
enough cops are available, so as to force the robber further and further away from v.
The proof of Lemma 3.3.2 follows essentially from Proposition 3.3.1

Proposition 3.3.1. Consider an instance of the game of cops and robbers on a graph
G. Suppose on the cops’ turn there are at least two cops C1, C2 in a vertex v of the
graph while the robber is in a vertex w. Let P be any (w, v)-geodesic path in G. Let
u be the second last vertex of P and set X = NG(v) \ {u}. Moreover, let H be the
component of v in G−X. Then moving C2 to u and keeping C1 and C2 on v and u
for the rest of the game forces the robber to stay in H.

Proof. The statement follows since the robber can leave H only by moving on a vertex
in X or u, in which case it would be caught by C1 or C2.

We shall use the following definition to formulate the proof of Lemma 3.3.2 based
on Proposition 3.3.1.
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Definition 3.3.1. Let G be a graph and U be the set of all triples (u, v,H) where H
is a connected subgraph of G, and u, v ∈ V (H) with dH(u, v) ≥ 2. A chasing function
for G is a function θ mapping every triple (u, v,H) ∈ U onto a neighbor of u which
belongs to a (u, v)-geodesic path in H.

Lemma 3.3.2. Consider an instance of the game of cops and robber on a graph G.
Let θ be a chasing function for G. Let k ∈ N and suppose on the cops’ turn in step one
there are k cops C1, . . . , Ck in a vertex v1 of the graph while the robber is located in a
vertex w1. Further suppose the robber has and will use a strategy to survive the next k
moves of each of the cops C1, . . . , Ck. Denote the following k−1 robber’s positions with
w2, . . . , wk. Further, recursively define Hi (i ∈ [1 ·· k]) and vi i ∈ [2 ·· k] as follows:

• H1 = G;

• vi+1 = θ(vi, wi, Hi) for each i ∈ [1 ·· k];

• Xi = NHi
(vi) \ {vi+1} for each i ∈ [1 ·· k];

• Hi+1 : the component of v1 in Hi −Xi for each i ∈ [1 ·· k].

Then the following hold:

a. Every Hi is an induced subgraph of G.

b. If uv ∈ E(G) \ E(Hk+1) such that u ∈ V (Hk+1), then v ∈ ⋃k1 Xi.

c. Vertices v1, . . . , vk+1, in that order, induce a path in Hk.

d. The cops can play so than on the cops’ turn in step k every Ci, i ∈ [1 ·· k], is
located in vertex vi.

e. Keeping every Ci in vi for the rest of the game forces the robber to stay in Hk+1.

Proof. All of the parts follow from Proposition 3.3.1 and the fact that every Hi+1 is
an induced subgraph of Hi and, hence, of H1 = G. (See Figure 3.6.)

v1 v2 v3 vi vi+1 = θ(vi, wi, Hi)

wi

X1 X2 X3 Xi

Figure 3.6: Train-chasing the robber according to Lemma 3.3.2
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The first part of the following result was originally shown in [10]. Here, we provide a
simple short proof for a stronger result based on Lemma 3.3.2.

Corollary 3.3.3. For every integer k ≥ 3 the class of Pk-free graphs is cop-bounded
by k − 2 [10]. Indeed, the cops need no more than k − 1 steps to capture the robber
on a Pk-free graph. Moreover, on a Pk-free graph (k ≥ 3) there is a one-active-cop
winning strategy for k − 2 cops.

Remark. See [13] for the definition of the one-active-cop version of the game of cops
and robbers.

Proof. Acoording to Lemma 3.3.2, starting from every vertex v1 a set of k−2 cops can
either capture the robber by the end of step k − 2, or be positioned on k − 2 vertices
that induce a path P in G and restrict the robber to stay in an induced subgraph H
of G that contains P such that the degree of every internal vertex of P in H is 2 and
degH(v1) = 1. In the latter case, since G is Pk-free so will be H; thereby, P will be a
dominating path for H. Hence, the robber will be captured in the very next move of
the cops.

3.4 The main result

In this section we shall prove the following generalization of Theorem 3.1.1 proved in
[10].

Theorem 3.4.1. Let H be a class of graphs such that there is k ∈ N bounding the
diameter of every element in H . Then the class of H -free graphs is cop bounded iff

a. H contains a path, or

b. H contains a generalized claw and a generalized net.

Observe that a graph free of a fixed generalized claw and a fixed generalized net,
will be free of HC(n) and HN(n) for every large enough n. Indeed, one can simply
choose n to be larger than the length of a longest pendant path between the forbidden
generalized claw and generalized net. In that regard, our following result, which is
also of independent interest, plays a large role in establishing Theorem 3.4.1.

Theorem 3.4.2. If H = {HC(n), HN(n)} for some n ∈ N then every H -free graph
G is 4n-copwin.
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Proof. By Lemma 3.3.2 we may assume that we have the cops initially covering all
the vertices of an induced 4n-path P [4] : v1, . . . , v4n and that there is path Q[4] in G
from robber’s position to v4n with a second last vertex α4 such that

(
V
(
Q[4]

)
\ {α4, v4n}

)
∩N

(
P [4]

)
= ∅.

Note that the robber is forced to stay in the component, say G4, of v1 in G −
(N(V (P [4])) \ {α4}).
We define the current robber’s territory by R4 := V (G4) \N [V (P [4]], put the vertices
of P [4] in four disjoint sets of n vertices V1, . . . , V4, such that Vi := {vj : j ∈ [n(i− 1) +
1 ··ni]}, and denote the cops covering Vi by Ci. Since G is H -free, for every w ∈ R4

we must have
N(w) ∩N(V2)⊆N(V1) ∪N(v3) ∪N(v4). (3.1)

For a demonstration see Figure 3.7: If there is an edge wx ∈ E(G) such that w ∈ R4

and x ∈ N(V2) \N(V1 ∪ V3 ∪ V4), then for each path Q from w to α4 through R4 then
vertices of G[(∪4

1Vi) ∪ V (Q) ∪ {x}] contains an induced n-claw or an induced n-net.
By (3.1), cops in C2 can be freed and, hence, moved in the next 3n steps to either

capture the robber or cover another set V5 of n vertices to be augmented with V (P [4])
such that

a. V5 ∩N [V (P [4]] = {α4}, and

b. V1, . . . , V5 form a 5n-path P [5] induced in G4 from v1 to, say, v5n.

v4n
V1 V2 V3 V4

v1

x

w

α4

Q: any path through robber’s territory to α4

Figure 3.7: Demonstration of the inclusion given by (3.1)
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One can define the subsequent robber’s territories Rj, positions of the cops Cj, paths
P [j], Q[j], and vertices αj (j > 4) in the obvious recursive way. Again, as G is H -free,
the following claim is established in a similar way as before:

Claim 1. Let w′ ∈ Rj (j ≥ 4) and suppose we have the sets of cops C1, Cj−1, and Cj

covering V1, Vj−1 and Vj. Then for each i ∈ [2 ··(j − 2)] we have

N(w′) ∩N(Vi)⊆N(V1) ∪N(Vj−1) ∪N(Vj).

With 4n cops in play, Claim 1 allows us to free n cops after a finite number of steps,
and then, in light of Lemma 3.3.2, use them to either capture the robber or augment
the current path, say P [q], with a set Vq+1 of n new vertices. The latter shrinks the
robber’s territory. Hence, 4n cops have a winning strategy on G.

Proof of Theorem 3.4.1. (Necessity.) Note that by Theorem 3.1.2 the class of cubic
graphs is cop-unbounded. Therefore, one can utilize Lemmas 2.3.3 and 2.3.8 to derive
other cop-unbounded classes of graphs from the class of cubic graphs. We consider
two such classes: the class G1 of graphs obtained by k-subdividing the cubic graphs,
and the class G2 obtained by applying clique substitution to the graphs in G1. Observe
that the only possible induced subgraphs of graphs in G1 (resp. G2) with diameter < k

are paths and generalized claws (reps. paths and generalized nets). Since G1 and G2

are both cop-unbounded, in case the class G of H -free graphs is cop-bounded and
H does not contain a path, then H must contain both a generalized claw and a
generalized net.
(Sufficiency.) If H contains a path then we are done, according to Corollary 3.3.3.
Hence, we may assume H contains an HC(n1, n2, n3) and an HN (m1,m2,m3) for some
nj,mj ∈ N ∪ {0}. Let n be the maximum of nj,mj’s. As such, the class of H -free
graphs will be a subclass of the class of {HC(n), HN(n)}-free graphs. But the latter
class is 4n-copwin, according to Theorem 3.4.2; thereby the class of H -free graphs is
also 4n-copwin .

3.4.1 A generalization

In light of Lemma 3.3.2, one can show the following generalization of Theorem 3.4.1,
extending it to the case where the elements of H might be disconnected:
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Theorem 3.4.3. Let H be a class of graphs such that the diameter of every component
of each element in H is bounded by some absolute constant. Then the class of H -free
graphs is cop bounded iff

a. H contains a forest of paths, or

b. H contains two graphs F1, F2 each having at least one degree three vertex such
that every component of F1 is a path or a generalized claw, and every component
of F2 is a path or a generalized net.

Proof. Let k ∈ N be an upper bound for the diameter of every component of a graph in
H . Let G1 and G2 be the cop-unbounded classes of graphs as in the proof of Theorem
3.4.1. Then the only induced subgraphs of G1 with each component of diameter < k

are forests with each component either a path or a generalized claw. Similarly, the only
induced subgraphs of G2 with each component of diameter < k are graphs with each
component either a path or a generalized net. Hence, if no member of H is a forest
of paths, H must contain a forest with at least one degree three vertex having every
component a path or a generalized claw. In addition, H must contain a graph with
maximum degree three, every component of which is a path or a generalized net. This
establishes the necessity of the conditions. For the converse, as in the proof of Theorem
3.4.1 it suffices to assume H is of the form {l · Pn + s · HC(n), l · Pn + t · HN(n)}
where l ∈ N ∪ {0} and n, s, t ∈ N. As such, in light of Lemma 3.3.2 with (n+ 1)l cops
and within as many steps of the game, the cops can either capture the robber or get
positioned to cover all vertices of an (n+ 1)k-path to restrict the robber to a territory
which is {s ·HC(n), t ·HN(n)}-free. Hence, to complete the proof it suffices to show
the following:

Claim 1. Let n ∈ N be fixed. For each pair (s, t) ∈ N2 denote the class of {s ·HC(n), t ·
HN (n)}-free graphs simply by Gs,t. Then Gs,t is cop-bounded by 3(n+1)(s+t−2)+4n.

Proof of Claim 1. Let G ∈ Gs,t. We shall use induction on s + t to show that G is
4(n+ 1)(s+ t− 1)-copwin. The base case s+ t = 2, i.e. when s = t = 1, follows from
Theorem 3.4.1. If s+ t ≥ 3, using 4n cops and starting from any vertex v1, we follow
the strategy and notation described in the proof of Theorem 3.4.2 until capturing the
robber or getting to a path v1, . . . , vkn with cops on V1, Vk−2, Vk−1 ,Vk such that there
is a vertex in robber’s territory which for some 1 < i < k− 1 is adjacent to an element
of

N [Vi] \ (N [V1] ∪N [Vk−1 ∪N [Vk]).
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In the latter case, G must contain an induced graph H which is isomorphic to an
n-claw or an n-net. Note that |V (H)| ∈ {3n, 3(n + 1)}. Moreover, we must have
s ≥ 2 or t ≥ 2 according as H is an n-claw or an n-net. Therefore, using (at most)
3(n + 1) cops to be kept on the vertices of H, one can restrict the robber to a
territory in Gs−1,t (with s ≥ 2) or Gs,t−1 (with t ≥ 2). The new territory will be
3(n+ 1)(s+ t− 2) + 4n-copwin, by the induction hypothesis. Hence, G is copbounded
by 3(n+ 1) + 3(n+ 1)(s+ t− 3) + 4n = 3(n+ 1)(s+ t− 2) + 4n, as desired. Claim 1

3.5 Some special cases

In this section we consider some particular classes of graphs defined by two forbidden
induced subgraphs and provide upper bounds for their cop number. Likewise the
general cases covered in Section 3.4, we shall “spend" a constant number of cops to
saturate the vertices of some induced path in the graph; thereby, reduce the game
to an induced subgraph of the original graph. We then try to show that the unspent
cops suffice to capture the robber in the reduced graph. For the latter task, we often
establish some structural properties for the reduced graph which will be used in
providing a winning strategy for the cops in hands.

3.5.1 Graphs without induced HC(1, 1, n) or HN(0, 0, n)

Theorem 3.5.1. If H = {HC(1, 1, n), HN(0, 0, n)} for some n ∈ N, then the class
of H -free graphs is cop-bounded by n+ 1.

In light of Lemma 3.3.2, it suffices to show the following:

Lemma 3.5.2. Let H be as in Theorem 3.5.1 and G be H -free. Then under the
additional assumptions that

• there exist distinct vertices v0, . . . , vn−1 inducing an n-path in G in that order
such that degG(v0) = 1 and degG(vi) = 2 for each i ∈ [1 ··(n− 1)];

• initially there is a cop C in vn−1; and

• the robber starts from a vertex w ∈ V (G) \NG[{vi : i ∈ [0 ··(n− 1)}],

C has a winning strategy.
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Proof. As in Lemma 3.2.1 set N0 = {v0}, and for each i ∈ N let Ni be the ith
neighborhood of v0 in G. By the structure of G, we have Ni = {vi} for each i ∈
[0 ··(n− 1)}]. Then, as G is H -free and using a basic inductive argument it can be
shown than every Ni with i > n has at most one element; thereby, G is simply a path.
Hence, starting from any vertex C can capture the robber in no more than diam(G)
steps.

3.5.2 Graphs without induced HC(1, 1, n) or HN(1, 1, n)

Theorem 3.5.3. If H = {HC(1, 1, n), HN(1, 1, n)} for some n ∈ N, then the class
of H -free graphs is cop-bounded by n+ 4.

In light of Lemma 3.3.2, it suffices to show the following:

Lemma 3.5.4. Let H be as in Theorem 3.5.3 and G be an H -free graph. Then
under the additional assumptions that

• there exist distinct vertices v0, . . . , vn inducing an (n + 1)-path in G, in that
order, such that degG(v0) = 1 and degG(vi) = 2 for each i ∈ [1 ··(n− 1)];

• all of the cops are initially in v := vn; and

• the robber starts from a vertex in w ∈ V (G) \ {vi : i ∈ [0 ··n]},

four cops C1, . . . , C4 have a winning strategy on G.

Proof. We shall consider different levels of neighborhoods of v in G − {vj : j ∈
[0 ··(n− 1)]}. For each i ∈ N ∪ {0} let Ni be the ith neighborhood of v in G− {vj :
j ∈ [1 ··(n− 1)]}, and let l = max{i : Ni 6= ∅}. As such we will have

V (G) = {vj : j ∈ [0 ··(n− 1)]} ∪
(

l⋃
0
Nj

)
.

Claim 1. For each i we have
α(G[Ni]) ≤ 2. (3.2)

Proof of Claim 1. Since N0 is a singleton, (3.2) holds for i = 0. Moreover, since
NG(v) ⊃ N1, any pair of nonadjacent vertices in N1 together with the vertices of the
(unique) (v, v0)-path in G would induce a (1, 1, n)-claw, a contradiction. Hence, N1
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has to be a clique; in particularα(G[N1]) = 1. Proceeding by induction, let j ≥ 2 and
suppose (3.2) holds for each i ≤ j − 1. Toward a contradiction let {xj, yj, zj} be an
independent set of three vertices in G[Nj]. If two of these vertices, say xj, yj, had a
common neighbor, say x, in Nj−1 then xj, yj together with the first n+ 1 vertices of
any geodesic (x, v0)-path in G would induce a (1, 1, n)-claw in G, again a contradiction.
Hence, there are distinct vertices xj−1, yj−1, zj−1 in Nj−1 such that

EG ({xj, yj, zj}, {xj−1, yj−1, zj−1}) = {xjxj−1, yjyj−1, zjzj−1}. (3.3)

But by induction hypothesis the vertices xj−1, yj−1, zj−1 are not independent. Hence, we
may assume, without loss of generality, that xj−1yj−1 ∈ E(G). Now, if xj−1, yj−1 had a
common neighbor x′ ∈ Nj−2 then xj−1, xj, yj−1, yj together with the first n+ 1 vertices
of any geodesic (x′, v0)-path in G would induce a (1, 1, n)-net in G, a contradiction.
Hence, xj−1, yj−1 have no common neighbor in Nj−2. But then for every neighbor x′′

of xj−1 in Nj−2, the vertices xj−1, xj, yj−1 together with the first n vertices of any
geodesic (x′′, v0)-path in G would induce a (1, 1, n)-claw in G, also a contradiction.
Therefore, we must have α(G[Nj]) ≤ 2, as desired. Claim 1

For each i ≤ l let Ii be an independent set of the maximum cardinality in G[Ni].
According to Claim 1 we have |Ii| ≤ 2 for every i. In particular, one can saturate
every Ii with two cops to force the robber out of Ni and also prevent the robber from
entering Ni. This suggests the following winning strategy for the cops:

Right after the first robber’s turn, we define the location of the cops and the robber
as stage zero of the game. In the next step we keep C1, C2 in v and move C3, C4 to the
single element of I1. After robber’s turn, we define the location of the cops and the
robber as stage one of the game. In general, proceeding from a stage i (i ∈ N) of the
game with two of the cops, say Ci1 , Ci2 , saturating Ii−1 and the other two, say Ci3 , Ci4
saturating Ii, we take a finite number of steps to move Ci1 , Ci2 to saturate Ii+1. Then,
after the robber’s turn we define the locations of the cops and the robber as stage
i+ 1. Note that the strategy described here forces the robber further and further away
from v. But since Nl+1 = ∅, the robber cannot escape the cops beyond stage l. Since
transition between consecutive stages takes only a finite number of steps, this strategy
leads to the capture of the robber in a finite number of steps.

3.5.3 Graphs without induced HC(1, n, n) or HN(0, n, n)

Theorem 3.5.5. If H = {HC(1, n, n), HN(0, n, n)} for some n ∈ N, then the class
of H -free graphs is (2n+ 5)-copwin.
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With all cops initially positioned at a vertex v0 and assuming that the robber can
survive the first n+4 steps of the game, we can place n+4 cops along the vertices of an
induced path P : v0, . . . , vn+4 in G in the sense of Lemma 3.3.2. As such, keeping the
cops in v0, . . . , vn fixed in their position will reduce the game to an induced connected
subgraph of G where no vertex vj (j ∈ [0 ··(n− 1)] has a neighbor outside P . Hence,
it suffices to show that the remaining cops have a winning strategy on the resulting
reduced graph. More precisely, in light of Lemma 3.3.2 it suffices to show the following:

Lemma 3.5.6. Let H be as in Theorem 3.5.5 and G be H -free. Let v0 ∈ V (G),
and suppose Nj := {v ∈ V (G) : dG(v0, v) = j} (j ∈ [0 ·· k]) are all of the nonempty
neighborhood levels of v0 in G, where k ≥ n+ 3. Let v0, . . . , vk, in that order, be the
vertices of a path from N0 to Nk. Additionally, suppose

• degG(v0) = 1 and degG(vi) = 2 for each i ∈ [1 ··n− 1];

• there are n+ 5 cops in play, of which four cops C1, C2, C3, C4 initially saturate
{vn, vn+1, vn+2, vn+3} and the remaining n+ 1 are free; and

• the robber starts from a vertex in V (G) \NG[{vi : i ∈ [0 ··(n+ 3)}].

Then starting from the initial positioning of the cops and the robber, there is a winning
strategy for the cops.

Proof. For each j ∈ [(n+ 2) ·· k] set

Aj =

 {vj−2, vj−1, vj, vj+1} if n+ 2 ≤ j < k,

{vk−2, vk−1, vk} if j = k.
(3.4)

Hence, initially we have C1, C2, C3, C4 saturating An+2 while the robber is initially in
some vertex

wn+2 ∈
k⋃

n+2
Nj \N [An+2].

From this initial configuration, to which we refer to as stage n+2, we move C1, C2, C3, C4

recursively as explained below:

Suppose C1, C2, C3, C4 saturate Al for some l ≥ n+ 2 and the robber is in a vertex
wl ∈

⋃k
l Nl \N [Al] (stage l). Let Bl be the set consisting of every vertex in Nl which

is reachable from wl through some path with no vertex in N [Al]. If Bl = ∅, we shift
the cops saturating Al to saturate Al+1. This forces the robber to be located in a
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vertex wl+1 ∈
⋃k
l+1 Nj \N [Al+1] (stage l + 1). Note that if no stage j with Bj 6= ∅ is

ever reached, this strategy will eventually lead to the robber’s capture by only using
the four cops C1, C2, C3, C4. Hence, we may assume the game is in some stage i (with
C1, C2, C3, C4 saturating Ai and the robber in wi ∈

⋃k
i Nj \N [Ai]) such that

Bi 6= ∅. (3.5)

Note that i is not predetermined and in general depends on how the robber plays.
That is, i is the minimum j with Bj 6= ∅, only for the instance of the game under
consideration. To proceed, pick any yi ∈ Bi and choose vertices yj ∈ Nj , j ∈ {i−3, i−
2, i− 1}, such that yi−3, . . . yi, in that order induce a path in G. Note that as yi ∈ Bi,
we have yi 6∈ N [Ai]; in particular, yi−1 6= vi−1. Hence, as yiyi−1 ∈ E(G) we must have

yi−1 ∈ N(Ai−1), (3.6)

for otherwise Bi−1 would be nonempty, contradicting the choice of i.
We use two of the free cops, say C5, C6 to saturate Q0 := {yi, yi−1}, and denote

by z1 the next position the robber will assume. Keep C1, . . . , C6 in their positions in
Ai ∪Q0 for the rest of the game. This restricts the robber to stay in the component,
say (V1, E1), of wi in

G

[
k⋃
i

Nj \N [Ai ∪Q0]
]
.

Let
G′ = G[V1 ∪Q0].

Claim 1. G′ is connected.

Proof of Claim 1. Since yi−1 ∈ N(Ai−1) and (V1, E1) is connected, every vertex of G′

is in the component of G′ containing yi; i.e. G′ is a connected. Claim 1

Let P be a path of the shortest length from z1 to Q0, (i.e. to a vertex in Q0) and let
q1 be the second last vertex of P . With C being the set of all free cops, in a finite
number of steps we place all members of C in q1.
Suppose, toward a contradiction, that the robber can invariably escape the cops. Then,
in light of Lemma 3.3.2, in the following n− 2 steps the game can be brought to the
following configuration:
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• there are vertices q2, . . . , qn+1 such that q1, . . . qn+1, in that order, induce a path
in the subgraph (V1, E1) of G;

• each of the vertices q1, . . . , qn−1 contains a cop in C ;

• with X = (⋃n−1
1 N({qj})\{q1, . . . , qn+1}, the robber is located in the component,

say G′′, of q1 in (V1, E1)−X.

The rest of our proof is devoted to showing that this configuration forces either an
induced HC(1, n, n) or HN (0, n, n) in G, contradicting the assumptions of the theorem.
Let

j∗ = min{j : vj ∈ Ai−1 & vj ↔ yi−1}.

Note that as j∗ ≥ i− 2, for yi−1 ∈ Ni−1, and i ≥ n+ 2, we have j∗ ≥ n.

Claim 2. |Q0 ∩N(q1)| = 1.

Proof of Claim 2. If Q0⊆N(q1) then G[{vj : j ∈ [j∗ − n + 1 ·· j∗]} ∪ Q0 ∪ {qj : j ∈
[1 ··n+ 1]}] will be an HN(0, n, n). Claim 2

Claim 3. {vi−2, vi−1} 6⊆ N(yi−1).

Proof of Claim 3. If {vi−2, vi−1}⊆N(yi−1) then according as yi−1 ↔ q1 or yi ↔ q1 the
graph

G[{vj : j ∈ [i− n− 2 ·· i− 1]} ∪ {yi−1} ∪ {qj : j ∈ [1 ··n]}]

or the graph

G[{vj : j ∈ [i− n− 2 ·· i− 1]} ∪Q0 ∪ {qj : j ∈ [1 ··n− 1]}]

will be an HN(0, n, n). Claim 3

Claim 4. vi−2 6∈ N(yi−1).

Proof of Claim 4. If vi−2 ↔ yi−1 then by Claim 3 we will have vi−1 6↔ yi−1; thereby,
according as yi−1 ↔ q1 or yi ↔ q1 the graph

G[{vj : j ∈ [i− n− 2 ·· i− 1]} ∪ {yi−1} ∪ {qj : j ∈ [1 ··n− 1]}]

or the graph

G[{vj : j ∈ [i− n− 2 ·· i− 1]} ∪Q0 ∪ {qj : j ∈ [1 ··n− 2}]
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will be an HC(1, n, n). Claim 4

Claim 5. {vi−1, vi} 6⊆ N(yi−1).

Proof of Claim 5. If {vi−1, vi} ⊆ N(yi−1) then according as yi−1 ↔ q1 or yi ↔ q1 the
graph

G[{vj : j ∈ [i− n− 1 ·· i]} ∪ {yi−1} ∪ {qj : j ∈ [1 ··n]}]

or the graph

G[{vj : j ∈ [i− n− 1 ·· i]} ∪Q0 ∪ {qj : j ∈ [1 ··n− 1}]

will be an HN(0, n, n). Claim 5

Claim 6. vi−1 6∈ N(yi−1).

Proof of Claim 6. If vi−1 ↔ yi−1 then by Claim 5 we will have vi 6↔ yi; thereby,
according as yi−1 ↔ q1 or yi ↔ q1 the graph

G[{vj : j ∈ [i− n− 1 ·· i]} ∪ {yi−1} ∪ {qj : j ∈ [1 ··n− 1]}]

or the graph

G[{vj : j ∈ [i− n− 1 ·· i]} ∪Q0 ∪ {qj : j ∈ [1 ··n− 2}]

will be an HC(1, n, n). Claim 6

Claim 7. We have Ai−1 ∩N(yi−1) = {vi}. Moreover, i = k.

Proof of Claim 7. That Ai−1 ∩N(yi−1) = {vi} simply follows from (3.6) and Claims 4
and 6. As such, if i < k then according as yi−1 ↔ q1 or yi ↔ q1 the graph

G[{vj : j ∈ [i− n− 1 ·· i+ 1]} ∪ {yi−1} ∪ {qj : j ∈ [1 ··n− 1]}]

or the graph

G[{vj : j ∈ [i− n− 1 ·· i+ 1]} ∪Q0 ∪ {qj : j ∈ [1 ··n− 2}]

will be an HC(1, n, n). Claim 7

Now consider any path y0, . . . , yk−1, yk from N0 to Nk. (Note that we will have
yj = vj for j ≤ n, but this will not affect our arguments.) By Claim 7, according as
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yk−1 ↔ q1 or yk ↔ q1 the graph

G[{yj : j ∈ [k − n− 1 ·· k − 1]} ∪ {vk} ∪ {qj : j ∈ [1 ··n]}]

or the graph

G[{yj : j ∈ [k − n− 1 ·· k]} ∪ {vk} ∪ {qj : j ∈ [1 ··n− 1}]

will be an HC(1, n, n), a contradiction.
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Chapter 4

The Structure of Claw- and
Bull-free Graphs

In Chapter 3, alongside the general results on cop bounded classes of graphs defined
by a set of forbidden induced subgraphs, we also dealt with some special classes,
including three sub-classes of claw-free graphs in Theorem 3.2.2, together with some
more general special classes in Theorem 3.5.1, Theorem 3.5.3, and Theorem 3.5.5. In
proving an upper bound for the cop number of each of these special classes we based
our argument on presenting some sort of structural properties of the graphs under
consideration. The aim of the current chapter is to show the structure of claw- and
bull-free graphs (Theorem 4.1.1) using a method inspired by the game of cops and
robbers. It should be mentioned that this structure turned out to have been essentially
stated as a byproduct of a research on Hamiltonicity of claw-free graphs published in
1991 with a strategy for a proof briefly sketched out [16]. Nevertheless, we found this
structure independently and provided a complete proof for it which is in line with the
main theme of this thesis.

4.1 Formulation of the main result

Definition 4.1.1 (Expansion). An expansion of a graph G with vertex set V (G) =
{v1, . . . , vn} is any graph H obtained from G by substituting its vertices with disjoint
cliques K [i], i = 1, . . . , n, (called the bags of the expansion) and adding the edges
of the complete bipartite graphs with the partite sets V (K [i]) and V (K [j]) for each
vivj ∈ E(G).

Remark. If G is claw- and bull-free, then according to Lemma 3.2.1, for every u0u1 ∈
E(G) the component of u0 in G− (NG(u0) \ {u1}) is an expansion of a path.
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We shall prove the following theorem on the structure of claw- and bull-free graphs:

Theorem 4.1.1. A connected graph G is claw- and bull-free if and only if it is either

• a connected graph of independence number at most two,

• a graph which is an expansion of a cycle of length at least six, or

• a graph which is an expansions of a path of length at least four.

Remark. Note that graphs of independence number at most two are exactly the graphs
which are complements of triangle-free graphs.

4.2 Proof of the main result

We will consider the separate classes of claw- and bull-free graphs based on the
maximum length of an induced cycle, denoted `(·). In the end, we combine our results
on these classes into a complete proof of Theorem 4.1.1.

4.2.1 The case `(G) ≥ 6.

Lemma 4.2.1. Let G be a claw- and bull-free graph, C an induced cycle of length
k ≥ 4 and x ∈ N(C). Then N(x) contains two consecutive vertices of C. Moreover, if
k ≥ 5 then N(x) contains three consecutive vertices of C.

Proof. Let V (C) = {v1, . . . , vk} and suppose xv1 ∈ V (G). Since G is claw-free, we
must have xv2 ∈ E(G) or xvk ∈ E(G), establishing the first claim. Suppose, without
loss of generality, that xv2 ∈ E(G). Then, in case k ≥ 5 one must have xv3 ∈ E(G) or
xvk ∈ E(G), for otherwise G[{x, v1, v2, v3, vk}] would be a bull. (See Figure 4.1.)

. . .
vk v4

v1

v2

v3

x

Figure 4.1: Consecutive neighbors for vertices in N(C) where C has length ≥ 4
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Lemma 4.2.2. Let G be a connected claw- and bull-free graph, and C an induced
cycle of a length ≥ 4. Then N [C] = V (G).

Proof. Suppose N [C] 6= V (G). Choose a vertex y at distance two from C and a vertex
x ∈ N(C)∩N(y). If N(x)∩V (C) ≥ 3, then there exist two vertices u, v ∈ N(x)∩V (C)
which are not adjacent, in which case {x, y, u, v} induces a claw, a contradiction (See
Figure 4.2). Therefore, according to Lemma 4.2.1, C is a cycle of length 4 such that
N(x)∩ V (C) consists of two consecutive vertices of C. Then for each z ∈ V (C) \N(x)
the graph G[{N(x)∩V (C)}∪{x, y, z}] is a bull, a contradiction. (See Figure 4.3.)

. . .

x

u

y

v

Figure 4.2: Proof of Lemma 4.2.2; the
case |N(x) ∩ V (C)| ≥ 3.

x

u

y

v

z

Figure 4.3: Proof of Lemma 4.2.2; the
case |N(x) ∩ V (C)| = 2.

Lemma 4.2.3. Let G be a connected claw- and bull-free graph and C an induced cycle
of G of length k. If k ≥ 6, then G is an expansion of C.

Proof. Let V (C) = {v1, v2, . . . , vk}. By Lemma 4.2.2 we know that N [C] = V (G) and
every vertex outside of C has at least three neighbours in C.

Claim 1. Let x ∈ V (G) \ V (C). Then |N(x) ∩ V (C)| = 3.

Proof of Claim 1. If |N(x) ∩ V (C)| ≥ 5, then N(x) would contain an independent
set of size three, i.e. G[N [x]] would contain a claw. Hence, proceeding by the way
of contradiction and in light of Lemma 4.2.1 we may assume |N(x) ∩ V (C)| = 4.
As such, without loss of generality we may assume N(x) = {v1, va, vb, vc} where
1 < a < b < c < k. (See Figure 4.4.) Note that 1, a, b, c cannot be consecutive for
otherwise G[{x, v1, v2, v4, vk}] would be bull. Moreover, if a > 2 (resp. c > b+ 1) then
G[{x, v1, va, vc}] (resp. G[{x, v1, vb, vc}]) would be a claw, a contradiction. Hence, one
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x

vk

v1

v2 v3

v4

v5

(a) The case a = 2, b = 3, c = 4

x

vk

v1

v2 va

vb

vc

(b) The case a > 2 (the case c > b+ 1
is similar)

Figure 4.4: Ruling out the case |N(x) ∩ V (C)| = 4 in Claim 1, Lemma 4.2.3, by
considering N(x) = {v1, va, vb, vc} where 1 < a < b < c < k

must have a = 2, b > 3 and c = b+ 1. But then G[{v1, v2, vb, vk, x}] would be a bull, a
contradiction. Claim 1

For the rest of the proof, set Nx := N(x) ∩ V (C) for each x ∈ V (G).

Claim 2. Let x, y be distinct vertices of G such that |Nx ∩Ny| ≥ 2. Then xy ∈ E(G).

Proof of Claim 2. If x ∈ V (C) then y ∈ V (G)\V (C); thereby, according to Lemma 4.2.1,
Ny consists of three consecutive vertices of C. Hence by Claim 1 we have Ny = Nx∪{x}
and; in particular, xy ∈ E(G). Hence, we may assume x, y ∈ V (G) \ V (C). Suppose,
contrary to the claim, that xy /∈ E(G).

Case I: |Nx ∩Ny| = 2.

LetNx = {v1, v2, v3} andNy = {v2, v3, v4}. As such, unless xy ∈ E(G),G[{x, y, v3, v4, v5}]
would be a bull. (See Figure 4.5(a).)
Case II: |Nx ∩Ny| = 3.

In this case, Nx and Ny are the same set, say, {v1, v2, v3}. As such, unless xy ∈ E(G),
G[{x, y, v3, v4}] would be a claw. (See Figure 4.5(b).) Claim 2

For each i ∈ [1 ·· k] set Ci = {x ∈ V (G) : Nx ⊇ Nvi
}. According to Lemma 4.2.1 Cis

partition V (G). Furthermore, in light of Claim 2 it follows that:

• each Ci is a clique,

• E[Ci, Cj ] is a complete bipartite graph if vi and vj are consecutive vertices of C,
and
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• E[Ci, Cj] has no edge if vi and vj are distinct nonconsecutive vertices of C;

from which it follows that G is an expansion of C, as desired.

y

vk

v1

v2 v3

v4

v5

x

(a) The case |Nx ∩Ny| = 2. With
Nx = {v1, v2, v3} and Ny = {v2, v3, v4},
G[{x, y, v3, v4, v5}] would be a bull un-
less xy ∈ E(G).

y

vk

v1

v2 v3

v4

v5

x

(b) The case |Nx ∩Ny| = 3. With
Nx = Ny = {v1, v2, v3}, G[{x, y, v3, v4}]
would be a claw unless xy ∈ E(G).

Figure 4.5: Cases I and II in Claim 2, Lemma 4.2.3

4.2.2 The cases `(G) ∈ {4, 5}.

Lemma 4.2.4. Let G be a claw- and bull-free graph. If `(G) = 4 or 5, then the
maximum size of an independent set of vertices of G is at most 2.

Proof. Let I be a largest independent set in G with |I| ≥ 3.
Case 1: `(G) = 4.
Let C = v1, v2, v3, v4, v1 be an induced cycle in G. Since α(C) = 2, |I ∩ V (C)| ∈

{0, 1, 2}.
Case 1.1: |I ∩ V (C)| = 2.
According to Lemmas 4.2.1 and 4.2.2 every vertex x ∈ I \ V (C) is adjacent to two
consecutive vertices of C. Hence, I ∩ V (C) also has to consist of two consecutive
vertices of C, a contradiction.
Case 1.2: |I ∩ V (C)| = 1.
Let I ∩ V (C) = {v1}, and let x, y be distinct vertices in I \ V (C). Without loss of
generality, suppose v2, v3 ∈ N(x). Note that if v2y ∈ E(G), then G[{v1, v2, x, y}] would
be a claw. Hence, we must have v3, v4 ∈ N(y). But then G[{v1, v2, v3, x, y}] would be
a bull, a contradiction. (See Figure 4.6.)
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x

v1

y

v2

v3v4

Figure 4.6: Case 1.2, Lemma 4.2.4. With {x, y, v1}⊆ I one must have v2y 6∈ E(G);
thereby, {v3, v4}⊆N(y). Then G[{v1, v2, v3, x, y}] will be a bull.

Case 1.3: |I ∩ V (C)| = 0.
Let x, y, z be distinct vertices in I. Since G is claw-free, no vertex of C is adjacent to
all three of x, y, z. Hence, by the pigeonhole principle and Lemmas 4.2.1 and 4.2.2, we
may assume v3 /∈ N(x) and v4 /∈ N(x), which imply xv1, xv2 ∈ E(G). Furthermore,
we may assume v1 /∈ N(y). If in addition v4 /∈ N(y), we would have v2y, v3y ∈ E(G)
in which case G[{v2, v3, v4, x, y}] would be a bull. Hence, v4y ∈ E(G), which in turns
implies v3y ∈ E(G) (according to Lemma 4.2.1). (See Figure 4.7.)

y

v1

x

v2

v3v4

z

Figure 4.7: General situation in Case 1.3, Lemma 4.2.4. With {x, y, z}⊆ I, one may
assume xv3 6∈ E(G), xv4 6∈ E(G), implying xv1, xv2 ∈ E(G). One may further assume
yv1 6∈ E(G). As such, Lemmas 4.2.1 and 4.2.2 imply yv3 ∈ E(G).
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y

v1

x

v2

v3v4

(a) If v4y 6∈ E(G), then yv2 ∈ E(G);
thereby, G[{v2, v3, v4, x, y}] would be a
bull.

y

v1

x

v2

v3v4

z

(b) G[{v1, v4, x, y, z}] would be a bull if
v1z, v4z ∈ E(G).

v1

x

v2

v3v4

z

(c) If v1z ∈ E(G) and v4z 6∈ E(G) then
G[{v1, v4, x, z}] would be a claw.

v1

y

v2

v3v4

z

(d) If v4z ∈ E(G) and v1z 6∈ E(G) then
G[{v1, v4, y, z}] would be a claw.

v1

z

v2

v3v4

x

(e) Since v2z, v3z ∈ E(G) and v4z 6∈
E(G), G[{v2, v3, v4, x, z}] is a bull, a
contradiction.

Figure 4.8: Lemma 4.2.4 with `(G) = 4. From the general situation described in
Figure 4.7 one gets {v3, v4}⊆N(y) and N(z) ∩ V (C) = {v2, v3}, leading to the bull
in (e)
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Now observe that if v1, v4 ∈ N(z) then G[{v1, v4, x, y, z}] would be a bull, and if only
one of v1, v4 is in N(z) then G[{v1, v4, x, z}] or G[{v1, v4, y, z}] would be a claw. Hence,
v1 /∈ N(z) and v4 /∈ N(z); thereby v2, v3 ∈ N(z). But then G[{v2, v3, v4, x, z}] would
be a bull, a contradiction. (See Figure 4.8 for a demonstration of this argument.)
Case 2: `(G) = 5.
Let C = v1, v2, v3, v4, v5, v1 be an induced cycle inG. As in Case 1, we have |I ∩ V (C)| ∈

{0, 1, 2}.
Case 2.1: |I ∩ V (C)| = 2.
By Lemma 4.2.1, every vertex in I \ V (C) is adjacent to three consecutive vertices
of C. Hence, likewise Case 1.1, I has to contain two consecutive vertices of C, a
contradiction.
Case 2.2: |I ∩ V (C)| = 1.
Let I ∩ V (C) = {v1}, and let x, y be distinct vertices in I \ V (C). Without loss of
generality, suppose v2, v3, v4 ∈ N(x). If v2y ∈ E(G), then G[{v1, v2, x, y}] would be a
claw. Hence, N(y)∩ V (C) = {v3, v4, v5}. But then G[{v1, v2, v3, x, y}] would be a bull,
a contradiction. (See Figure 4.9.)

v1

y

v2

v3

v4

x

v5

Figure 4.9: Case 2.2, Lemma 4.2.4. With {x, y, v1}⊆ I and {v2, v3, v4}⊆N(x), one
gets v2y 6∈ E(G), since G is claw-free. But then G[{v1, v2, v3, x, y}] will be a bull, a
contradiction

Case 2.3: |I ∩ V (C)| = 0.
Let x, y, z be distinct vertices in I. Since G is claw-free, no vertex of C is adjacent to all
three of x, y, z. Hence, by the pigeonhole principle and Lemmas 4.2.1 and 4.2.2, we may
assume v4 /∈ N(x) and v5 /∈ N(x), which imply xv1, xv2, xv3 ∈ E(G). Furthermore, we
may assume v1 /∈ N(y); thereby, yv3, yv4 ∈ E(G). But then we must have yv5 ∈ E(G)
for otherwise G[{v3, v4, v5, x, y}] would be a bull. (See Figure 4.10.)
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v1

y

v2

v3

v4

x

v5

Figure 4.10: General situation in Case 2.3, Lemma 4.2.4. With {x, y, z}⊆ I, one
may assume N(x) ∩ V (C) = {v1, v2, v3} and yv1 6∈ E(G), implying that yv5 ∈ E(G).

v1

y

v2

v3

v4

x

v5z

(a) G[{v1, v5, x, y, z}] would be a bull if
v1z, v5z ∈ E(G).

v1

y

v2

v3

v4

x

v5z

(b) If v1z ∈ E(G) and v5z 6∈ E(G) then
G[{v1, v5, x, z}] would be a claw.

v1

y

v2

v3

v4

x

v5z

(c) If v5z ∈ E(G) and v1z 6∈ E(G) then
G[{v1, v5, y, z}] would be a claw.

v1

v2

v3

v4

x

v5

z

(d) Since v3z, v4z ∈ E(G) and v5z 6∈
E(G), G[{v3, v4, v5, x, z}] is a bull, a
contradiction.

Figure 4.11: Lemma 4.2.4 with `(G) = 5. From the general situation described in
Figure 4.10 one gets {v3, v4}⊆N(y) and N(z) ∩ V (C) = {v1, v2, v3}, leading to the
bull in (d).
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If v1, v5 ∈ N(z) then G[{v1, v5, x, y, z}] would be a bull, and if only one of v1, v5 is in
N(z) then G[{v1, v5, x, z}] or G[{v1, v5, y, z}] would be a claw. Hence, v1 /∈ N(z) and
v5 /∈ N(z); thereby v2, v3, v4 ∈ N(z). But then G[{v3, v4, v5, x, z}] would be a bull, a
contradiction. (See Figure 4.11 for a demonstration of this argument.)

4.2.3 The case `(G) ≤ 3 with α(G) ≥ 3

Proposition 4.2.5 and, in multiple occasions, Proposition 4.2.6 will be used in the
proof of Lemma 4.2.7 which is the main result of this subsection.

Proposition 4.2.5. Let G be a claw- and bull-free graph with α(G) ≥ 3 and
diam(G) = 2. Then `(G) ≥ 6.

Proof. Let {α1, α2, α3} be an independent set of vertices in G. Since diam(G) = 2, for
each i ∈ [1 ·· 3] there is a common neighbor wi ∈ V (G) of the αjs for j ∈ [1 ·· 3] \ {i}.
Moreover, for each i ∈ [1 ·· 3] we have wiαi 6∈ E(G), for otherwise G[{α1, α2, α3} ∪
{wi}] would be a claw. We shall show that the 6-cycle C : α1w3α2w1α3w2α1 is
induced; thereby `(G) ≥ 6. To this end, suppose on the contrary that C has a
chord. As such, without loss of generality we may assume w2w3 ∈ E(G). But then
G[{α1, α2, α3, w2, w3}] will be a bull, a contradiction. Hence, C is an induced cycle, as
desired.

w2

α1

w3 α2

w1

α3

Figure 4.12: Cycle C introduced in the proof of Proposition 4.2.5 is induced: If
w2w3 ∈ E(G) then G[{α1, α2, α3, w2, w3}] would be a bull, a contradiction.
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Proposition 4.2.6. Let C : u, v0, v1, . . . , vk, u be a cycle in a graph G with `(G) ≤ 3,
such that v0, v1, . . . , vk is an induced path in G. Then uvi ∈ E(G) for each i ∈ [0 ·· k].

Proof. Suppose, on the contrary that there is j such that uvj 6∈ E(G). Then, setting

a := max{s : s < j & uvs ∈ E(G)},

b := min{s : s > j & uvs ∈ E(G)},

one has b− a ≥ (j + 1)− (j − 1) = 2. Moreover, the vertices {vt : t ∈ ([a ·· b] \ {j})} ∪
{wj, u} induce a cycle C of length b− a− 2, which is greater than or equal to 4. This
contradicts the assumption that `(G) ≤ 3.

The following lemma is the main result of this subsection.

Lemma 4.2.7. Let G be a claw- and bull-free graph with `(G) ≤ 3 and α(G) ≥ 3.
Then:

a. diam(G) ≥ 4; and

b. G is an expansion of a path.

Proof. Let k = diam(G). According to Proposition 4.2.5 we have k ≥ 3. Let v0, vk ∈
V (G) such that dG(v0, vk) = k, and let P = v0, . . . , vk be a geodesic path between
them. Moreover, let U = NG(v0) \ {v1}, set H = G− U and, as in Lemma 3.2.1, let
Nis be the neighborhood levels of v0 in H.

Claim 1. No vertex in U is adjacent to v3 or a vertex in any Ni with 3 < i ≤ k.
Moreover, a vertex of U adjacent to a vertex in some Ni is adjacent to every vertex in
every Nj with j < i.

Proof of Claim 1. If the first part does not hold, then one has dG(v0, vk) < 2 + k− 3 <
k, a contradiction. As for the second part of the claim, consider a vertex u ∈ U

which is adjacent to a vertex wi ∈ Ni and for each j ∈ [0 ··(i − 1)] choose a vertex
wj ∈ Nj. Then, by the definition of the Njs, w0, w1, . . . , wi is an induced path. Since
uw0 = uv0, uwi ∈ E(G), every uwj is an edge of G according to Proposition 4.2.6.
This establishes the second part of the claim. Claim 1

Claim 2. Ni = ∅ for i > k.

Proof of Claim 2. It suffices to show that Nk+1 = ∅. To this end, by the way of contra-
diction suppose Nk+1 6= ∅ and choose a vertex wk+1 ∈ Nk+1. Let Q be a geodesic path
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in G from wk+1 to v0. Considering the fact that dH(wk+1, v0) = k+ 1 > k, we conclude
that Q must contain exactly one vertex, say u, from U . As such, we must also have
uv0 ∈ E(Q), i.e. uv0 must be the last edge of Q. Moreover, since V (Q) \ {u}⊆V (H),
every vertex in V (Q) \ {u} must be in some Nj . Suppose the vertex of Q preceding u
is in Ni and call it wi.
Case I: i > k.
Set w3 = v3 and for each j ∈ ([0 ··(i− 1)] \ {3}) choose wj ∈ Nj . Note that as i k ≥ 3,
the induced path w0, w1, . . . , wi contains v3. Moreover, since uw0 = uv0 ∈ E(G) and
uwi ∈ E(G), we must have uwj ∈ E(G) for each j ∈ [0 ·· i]; in particular, uv3 ∈ E(G).
But the latter contradicts Claim 1. Hence, this case does not happen.
Case II: i ≤ k.
Q will be of the form wk+1wk, . . . , wi, u, v0 where each wj (j ∈ [i ··(k + 1)] is in Nj.
In particular the length of Q, which is bounded above by the diameter k of G, is
k + 3− i. Hence, i ≥ 3. On the other hand, by Claim 1, we must have i < 4 (since u
is not adjacent to v3 ∈ N3). Therefore, i = 3 and, hence, uv1, uv2 ∈ E(G), according
to Claim 1. Moreover, we have uw4 6∈ E(G), by Claim 1, whereas v2w3, w3w4 ∈ E(G)
and v0v2, v0w3, v0w4, v2w4 6∈ E(G). Thus, G[{v0, v2, w3, w4, u}] will be a bull, a contra-
diction.

Claim 2

Claim 3. V (G) = (⋃k1 Ni) ∪ U .

Proof of Claim 3. Contrary to the claim, assume (⋃k1 Ni) ∪ U ( V (G) or, equivalently,
W := N(U) \ (⋃k1 Nj) 6= ∅. Let R be the set of paths of the shortest length from
a vertex in W to vk. Note that every path in R has at least one vertex in common
with U , for otherwise w would be in ⋃k1 Nj, a contradiction. Choose R ∈ R such that
|V (R) ∩ U | is minimum. Furthermore, let w be the initial vertex of R and u the last
vertex of R which is in U . Observe that every vertex of R that follows u is in some Nj

with j ∈ [1 ·· k] and, according to Claim 1, the immediate successor of R is in ⋃3
1 Nj.

Let the latter be wi ∈ Ni. Then, we must have

R(u, vk) =


u,wi, . . . , wk−1, vk if i < k − 1;
u,wk−1, vk if i = k − 1;
u,w3, v3 if i = k = 3;
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where each wj is in Nj and w3 6= v3. (Recall that uv3 6∈ E(G); thereby, in case i = 3
we must have w3 6= v3.) As a result, the length of R(u, vk) is the max{k − i + 1, 2}.
Then. from the facts that

• R has at least one edge more than R(u, vk),

• length of R is bounded above by the diameter k, and

• i ≤ 3,

it follows that i ∈ {2, 3}. In particular, v0wi 6∈ E(G).
Consequently, if i = 2 or i = k = 3 then we must have wu ∈ E(G) (for otherwise

the length of R would be grater than k); hence, G[{w, u, v0, vi}] would be a claw, a
contradiction. Also, G[{w, u, v0, vi}] would be a claw if i = 3, k > 3 and wu ∈ E(G).
Hence, the only case to examine is when i = 3 < k and wu 6∈ E(G). As such, that R
has length ≤ k implies

R =

 w, u′, u, w3, v4 if k = 4;
w, u′, u, w3, . . . , wk−1, vk if k > 4;

Note that we must have u′ ∈ U , for otherwise R(u′, vk), would be in R, contradicting

v1 v2 v3 v4v0

U

N2 N3 N4

u′ u
w3

w

Figure 4.13: Ruling out the case i = 3 < k and wu 6∈ E(G) in the proof of Claim 3,
Lemma 4.2.7. With R(w,wi) = w, u′, u, w3, G[{u′u, v2, v4, w3}] will be a bull.

the choice of R as a path of the shortest length in R. Likewise, we must have
u′w3 6∈ E(G), for otherwise wu′ + u′w3 +R(w3, vk) would be a path in R yet shorter
than R. Furthermore, we must have u′v2 6∈ E(G), for otherwise the path R′ :=
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wu′ + u′v2 + v2w3 + R(w3, vk) would have the same length as R, implying R′ ∈ R,
with the property that

|V (R′) ∩ U | < |V (R) ∩ U | ,

contradicting the choice of R as an element in R with minimum size intersection with
U . But then G[{u′u, v2, v4, w3}] will be a bull, a contradiction. (See Figure 4.13.)
Claim 3

Claim 4. Let U ′ ⊆ U such that any two vertices in U ′ have a common neighbor in
N2. Then U ′ is a clique.

Proof of Claim 4. According to Claim 1 no vertex in U ′ is adjacent to v3. Hence, for
any pair x, y of distinct vertices in U ′ with xy 6∈ E(G), and for every common neighbor
w2 ∈ N2 of x, y the graph G[{x, y, w2, v3}] is a claw. Therefore, U ′ must be a clique.

Claim 4

Claim 5. If there is a vertex u ∈ U such that NG(u) ∩N3 6= ∅ then diam(G) = 3.

Proof of Claim 5. Let u ∈ U and w3 ∈ NG(u) ∩ N3 such that uw3 ∈ E(G). Then,
according to Claim 1 we have w3 6= v3 and uv2 ∈ E(G). If, in addition, diam(G) ≥ 4,
i.e. if N4 6= ∅, then G[{u, v0, v2, w3, v4}] would a bull, a contradiction. Hence, we must
have diam(G) = 3. Claim 5

Claim 6. U ⇔ {v1}.

Proof of Claim 6. Let u ∈ U such that uv1 6∈ E(G). Then, by Claim 1 u is adjacent to
no vertex in an Ni with i > 0; in other words, we have

NG(u)⊆U ∪ {v0}.

Let Q be the set of paths of the shortest length from u to vk. Note that every path in
Q has at least two vertices in U (one of which is of course u), for otherwise one would
have uv0 ∈ Q, implying that l(Q) = l(Q(v0, vk)) + 1 > k, a contradiction. Hence,

|V (Q) ∩ U | ≥ 2 ∀Q ∈ Q.

Choose Q′ ∈ Q such that |V (Q′) ∩ U | is the minimum and let u′ be the last vertex of
Q′ which is in U . Note that

l(Q′(u′, vk)) ≥

 k − 2 if k > 3;
k − 1 if k = 3;

(4.1)
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where the second inequality follows from the fact that u′v3 6∈ E(G). Note that u′ must
be adjacent to some vertex w2 ∈ N2, for otherwise one would have l(Q) > k + 1, a
contradiction. As such, we must have

uu′ 6∈ E(G),

for otherwise G[{u, u′, v1, v3, w2}] would be a bull. (See Figure 4.14.)

v1 v2 v3v0

U

N2

u′u

w2

Figure 4.14: Ruling out the case that |V (Q′) ∩ U | = 1 in the proof of Claim 6,
Lemma 4.2.7. For every w2 ∈ N2 ∩NG(u′′), the graph G[{u, u′, v1, v3, w2}] will be a
bull.

Thus, according to (4.1), we have k > 3. Moreover, there is u′′ ∈ U such that Q(u, u′)
is the path u, u′′, u′, and u′ is followed by a vertex w3 ∈ N3. Note that

u′′w3 6∈ E(G), (4.2)

for otherwise the path from u to vk obtained by augmenting the path u, u′, w3 to
Q′(w3, vk) would be shorter than Q, a contradiction. Moreover, as such, we must have

u′′v2 6∈ E(G), (4.3)

for otherwise the path Q′′ obtained by augmenting the path u, u′′, v2, w3 to Q(w3, vk)
will have the same length as Q′ whereas

|V (Q′′) ∩ U | < |V (Q′) ∩ U | ,

contradicting the choice of Q′. Finally, as shown in Figure 4.15, G[{u′, u′′, v2, v4, w3}]
will be a bull, a contradiction. Hence, U ⇔ {v1}, as desired. Claim 6
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v1 v2 v3 v4v0

U

N2
N3

N4

u′′ u′

w3

u

Figure 4.15: Ruling out the case that |V (Q′) ∩ U | ≥ 2 in the proof of Claim 6,
Lemma 4.2.7. By (4.2) and (4.3) the graph G[{u′, u′′, v2, v4, w3}] will be a bull.

Claim 7. U is a clique.

Proof of Claim 7. Suppose, contrary to the claim, that x, y are distinct vertices in U
such that xy 6∈ E(G). By Claim 6 we have

xv1, yv1 ∈ E(G).

Moreover, we have xv2 ∈ E(G) or yv2 ∈ E(G), for otherwise G[{x, yv1, v2}] would be
a claw. In addition, according to Claim 4, v2 cannot be adjacent to both x and y.
Hence, we may assume

xv2 6∈ E(G) & yv2 ∈ E(G).

But then, G[{x, y, v1, v2, v3] would be a bull, a contradiction. Hence, U is a clique.
Claim 7

(a) By Claim 7 we have |A ∩ U | ≤ 1. Moreover, we have Ni−1 ⇔ Ni for every
i ∈ [1 ·· k]. Hence, as |A| = 3, we must have k ≥ 4.

(b) As k ≥ 4 and according to Claims 1 and 5, no vertex in U is adjacent to a
vertex in any Ni with i ≥ 3. Note that by Claim 6, we have uv1 ∈ E(G) for every u ∈ U .
We shall show that every vertex in U is either adjacent to every vertex in N2 or non-
adjacent to every vertex in N2. To this end, by the way of contradiction, let there be
u ∈ U and s2, t2 ∈ N2 such that us2 ∈ E(G) and ut2 6∈ E(G). Then G[{s2, t2, u, v3, v4}]
will be a bull, a contradiction. (See Figure 4.16.) Therefore, U is the disjoint union of
the sets V0 := {u ∈ U : {u} ⇔ N2} and V1 := {u ∈ U :6 ∃w ∈ N2 : uw ∈ E(G)}, and
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G is the expansion of the path v0, . . . , vk where each vertex vi is replaced by the bag
Mi defined by Mi = Ni ∪ Vi for i = 0, 1 and Mi = Ni for each i ∈ [2 ·· k].

v1 v3v0

N2

u s2

v4

t2

Figure 4.16: proof of part (b) of Lemma 4.2.7; showing that V0 ∩ V1 = ∅: If u ∈ U
and s2, t2 ∈ N2 with us2 ∈ E(G) and ut2 6∈ E(G), then G[{s2, t2, u, v3, v4}] will be a
bull.

4.2.4 Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. It is easy to check that an expansion of a path, that of a cycle,
and the complement of a triangle-free graph are all claw- and bull-free. Conversely, by
Lemmas 4.2.3, 4.2.4, and 4.2.7, every claw- and bull-free graph is either an expansion
of a cycle of length ≥ 3, or the complement of a triangle-free graph, or an expansion
of a path of length ≥ 4.
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