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Abstract

We consider the equations

Ax2 +By3 = Cz3,

where A,B,C are square-free and pairwise co-prime integers. A solution (x, y, z) is called
primitive if it consists of co-prime integers. Adapting earlier work for the equations

x2 + y3 = Cz3,

we show that primitive solutions give rise to integer Klein forms of degree four, with dis-
criminant A3B2C. Whether Klein forms come from primitive solutions is determined by
local conditions. We show that for primes p dividing B, there are exactly four GL2(Qp)-
equivalence classes of Klein forms that are relevant, and that exactly half of those classes
come from Zp-primitive solutions.

We also show that if we set A = 1, then further restricting B,C to square-free and co-prime
integers leaves us with an asymptotically positive proportion of triples.

Keywords: Fermat equations ; Klein forms
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Chapter 1

Introduction

Coined by French mathematicians in 17th century the term Diophantine equations refers
to equations, or systems of equations with rational coefficients, the solutions of which are
sought for in integers or rational numbers. The term refers to Diophantus of Alexandria,
an Alexandrian mathematician of third century AD. He was the author of a series of books
called Arithmetica, in which he dealt with solving algebraic equations.

An important example of the study of Diophantine equations was Pierre de Fermat’s
discovery in number theory. Around 1637, Fermat wrote what is now known as Fermat’s
last therorem in the margin of his copy of Arithmetica, claiming that he has found a "truly
marvelous" (demonstrationem mirabilem) proof for it. The theorem states that the equation
xn + yn = zn has no positive integer solutions, when n > 2.

It took mathematics a very long time to see a proof of this statement. In 1994, Wiles
and Taylor finally finished and corrected Wiles’ initial proof of Fermat’s last theorem, which
heavily uses modern techniques.

Wiles’ proof gave a fresh impetus to this area of mathematical research and generalized
Fermat equations became the focus of serious study. This thesis belongs to this area of
research. We study the forms that generate the primitive (pairwise co-prime) solutions to
the equation

x2 +By3 = Cz3,

where B,C ∈ Z. We also insist that B,C are square-free and co-prime.
In this chapter we introduce the generalized Fermat equations, and give a quick survey

of what is known about them.

1.1 The generalized Fermat equation

A generalized Fermat equation is a ternary equation of the form

Axp +Byq = Czr (1.1)
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where p, q, r ∈ Z≥2 and A,B,C ∈ Z6=0. We define the signature of (1.1) to be the triple
(p, q, r). We say a solution (x, y, z) ∈ Z3 is primitive if it satisfies gcd(x, y, z) = 1. Non-
primitive solutions are often easily constructed. For example, from a + b = c, by multipli-
cation by a33b44c54 we get

(a17b22c27)2 + (a11b15c18)3 = (a3b4c5)11

which produces infinitely many non-primitive solutions to x2 + y3 = z11. For this equation
it is conjectured that no non-trivial primitive solutions exist. This example is mentioned in
[5].

The main characteristics of equation (1.1) are governed by the value of

χ = 1/p+ 1/q + 1/r.

We call this constant the Euler characteristic of equation (1.1).
It happens that we can very aptly classify the behaviour of equation (1.1) by the value

of the characteristic. Depending on the value of its characteristic, we have the following
three cases.

1.1.1 Hyperbolic Case: χ < 1

There is no method known for solving these equations for arbitrary (p, q, r). It seems that
we are currently very far from any satisfactory result in this case. For a survey of the
numerous partial results in this case look at Beukers’ article [2]. The following conjecture
due to Tijdeman and Zagier, belongs to this case.

Conjecture 1.1 (Tijdeman-Zagier). If xp + yq = zr, where p, q, r, x, y and z are positive
integers and p, q, r are all greater than 2, then x, y, z must have a common prime factor.

Number theory enthusiast and banker Andrew Beal initially offered $5000 for a correct
proof. The prize value has been increased several times, and at the time of writing is
US$1,000,000. This conjecture is now known as the Beal prize problem.

In 1995, Darmon and Granville used Faltings’ theorem to prove the following important
theorem.

Theorem 1.2 (Darmon and Granville (1995)). Let A,B,C ∈ Z6=0 and p, q, r ∈ Z≥2 such
that χ < 1. The equation Axp+Byq = Czr has only finitely many co-prime integer solutions.

1.1.2 Euclidean Case: χ = 1

The only possible signatures are (2, 3, 6), (3, 3, 3) and (2, 4, 4). In this case, primitive so-
lutions correspond to rational points on a finite set of genus 1 curves. The corresponding
curves determine whether the equation has zero, finite or infinitely many solutions.
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1.1.3 Spherical Case: χ > 1

In this case the possible signatures are (2, 3, 3), (2, 3, 4), (2, 3, 5) or (2, 2,m) where m ≥ 2.
Here, the equation possibly has infinitely many solutions. Frits Beukers investigated this in
[1].

Theorem 1.3 (Beukers (1998)). Assume A,B,C ∈ Z with ABC 6= 0, and p, q, r ∈ Z≥2.
If χ > 1 then the equation Axp + Byq = Czr has either zero or infinitely many solutions
(x, y, z) in Z with gcd(x, y, z) = 1 and Axp + Byq = Czr. Furthermore, there is a finite
set of triples of binary forms (X,Y, Z) ∈ Q[s, t] such that every primitive integral solution
(x, y, z), can be obtained by specializing one of these triples, that is for one of these triples
(X,Y, Z), there exist s, t ∈ Q such that x = X(s, t), y = Y (s, t) and z = Z(s, t).

Beukers shows that we can take Z(s, t) in the above theorem to be a Klein form of
degree 4, 6, 12 for p = 2, q = 3, and r = 3, 4, 5 respectively, and that the corresponding
X(s, t) and Y (s, t) can be derived from Z(s, t) (see Section 4.1).

For an elementary example of this result consider the Pythagorean equation

X2 + Y 2 = Z2.

This equation has infinitely many solutions and every solution is the integral specialization
of one the following 4 parameterizations

(s2 − t2)2 + (2st)2 = ±(s2 + t2)2

(2st)2 + (s2 − t2)2 = ±(s2 + t2)2.

Beukers’ result does not provide a practical method for actually calculating parameter-
izations. This was done by Edwards in [5]. Before a quick review of Edwards’ results, we
mention two other known instances of spherical equations.

The equation x2 + y3 = z3 with gcd(x, y, z) = 1, was solved by Mordell in his 1969 book
Diophantine equations [10].

The equation x2 + y3 = ±z4 with gcd(x, y, z) = 1, was solved by Zagier and the results
are mentioned in Beukers’ survery article [2].

1.2 Edwards’ method

Edwards developed a unified new approach to solve the equations of the type x2 +y3 = dzr,
where d is an integer and r ∈ {3, 4, 5}. His method solved the hitherto unsolved equation
x2 + y3 = z5. Edwards’ result has its roots in Mordell’s method of solving the equation
x2 + y3 = z3.

Edwards ([5]) proves that a primitive solution to x2 + y3 = zr (with r = 3, 4, 5) can
be obtained from a Klein form of given discriminant and with integer coefficients. We
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adapt that theorem to apply to x2 + By3 = Cz3, with B,C square-free and co-prime (see
Theorem 5.3).

Furthermore, he uses Hermite reduction theory [5, Theorem 11.1.5.] to show that Klein
forms with integer coefficients and bounded discriminant have a reduced representative with
coefficients bounded by an explicit function of the discriminant. That means there are only
finitely many GL2(Z)-equivalence classes of Klein forms of bounded discriminant.

1.3 Results in this Thesis

In this thesis we consider the generalized Fermat equation

x2 +By3 = Cz3, (1.2)

with B,C ∈ Z. We also insist that B,C are square-free and co-prime.

Definition 1.4. A solution (x, y, z) ∈ Z3 to the equation

x2 +By3 = Cz3,

is called primitive if gcd(x, y, z) = 1.

Proposition 1.5. If B and C are square-free and co-prime integer, then a primitive solution
(x, y, z) to the equation

x2 +By3 = Cz3,

satisfies
gcd(x, y) = gcd(x, z) = gcd(y, z) = 1.

Proof. If p | gcd(x, y), then p2 | Cz. Since C is square-free it follows that p | z, which
contradicts gcd(x, y, z) = 1. If p | gcd(y, z) or p | gcd(x, z) we obtain contradictions in a
similar way, hence

gcd(x, y) = gcd(x, z) = gcd(y, z) = 1.

As we show in Section 7, the restriction that B,C are square-free and co-prime leaves
us with a positive asymptotic proportion of all equations. We are ultimately motivated by
describing how often spherical generalized Fermat equations (particularly those of signa-
ture (2, 3, 3)) admit primitive solutions. A concrete way of formulating this question is by
considering

V (M) = {(B,C) ∈ Z : BC 6= 0 and max(|B|, |C|) ≤M},

and
W (M) = {(B,C) ∈ V (M) : x2 +By3 = Cz3 admits a primitive solution}.

4



Question 1.6. Determine the values of

lim sup
M→∞

W (M)
V (M) and lim inf

M→∞

W (M)
V (M) .

Ryan McMahon [9] provides numerical evidence that these values agree and take a value
strictly below 1, i.e., that a positive proportion of generalized Fermat equations of signature
(2, 3, 3) does not admit primitive solutions.

In Lemma 6.3 we show that an integral Klein form produces primitive solutions if and
only if it produces Zp-primitive solutions for all primes p. The main contribution in this
thesis consists of the following two theorems. It establishes the first systematic description
of (some of the) local conditions on Klein forms that produce primitive solutions locally.

A motivation for our results is the following observation. If (x, y, z) is a solution to the
equation

x2 +By3 = Cz3, (1.3)

then (Bx,By, z) is a solution to the equation

x′2 + y′3 = B2Cz′3. (1.4)

Solutions to (1.4) are obtained from Klein forms of discriminant B2C (see [5], Theorem
6.1.1). We look at the forms that parameterize (1.4) and investigate which of them produce
primitive solutions for (1.3).

Theorem 1.7. Let p > 3 be a prime and suppose that f ∈ Zp[s, t] is a Klein form of degree
4, and discriminant p2d, with d ∈ Z×p . Let Q∗p/Q∗p2 = {1, c, p, cp}, where c is a non-square
p-adic unit. Then f is GL2(Zp)-equivalent to one of the following four forms

f1 t(s3 − p2dt3)
f2 t(cs3 − (p2d/c2)t3)
f3 t(ps3 − dt3)
f4 t(pcs3 − (d/c2)t3)

Theorem 1.8. Each of the fi’s above induces a parameterization for an equation

x2 +By3 + Cz3 = 0,

with B2C = p2d, with B,C co-prime and square-free and p | B, but only f3, f4 produce
Zp-primitive solutions.

5



Chapter 2

First Definitions

Let Z denote the ring of rational integers and let p be a prime. We write Zp for the p-adic
completion of Z, and write Qp for its field of fractions. We write

vp : Q∗p → Z

for the associated discrete valuation.

2.1 Definitions

Definition 2.1 (Z-primitive and Zp-primitive solutions). Let p be a prime. We denote the
set of Z-primitive solutions by

D(B,C) = {(x, y, z) ∈ Z3 : x2 +By3 = Cz3 and gcd(x, y, z) = 1},

and the set of Zp-primitive solutions by

Dp(B,C) = {(x, y, z) ∈ Z3
p : x2 +By3 = Cz3 and min{vp(x), vp(y), vp(z)} = 0}.

When the context allows we simply write these sets as D and Dp. When B = 1 we write
D(C) for D(1, C).

Definition 2.2. (Action of GL2(K)). Let K be a ring, and g(x, y) ∈ K[x, y]. The group
GL2(K) acts on g in the following way:

g(x, y) 7→ gM (x, y) = g

(
M

(
x

y

))
= g(ax+ by, cx+ dy)

where

M =
(
a b

c d

)
∈ GL2(K).
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We also consider the action of GL2(K)×GL1(K) on K[x, y] by letting the pair (M,λ) with
M ∈ GL2, and λ ∈ GL1 act via the mapping

g(x, y) 7→ λ2gM (x, y).

Definition 2.3 (Proper Equivalence). Two forms g1, g2 ∈ K[x, y] are called properly equiv-
alent if there is a pair (M,λ) with M ∈ GL2(K), and λ ∈ GL1(K), such that g1 = λ2gM2 .

The reason for insisting that the scalar be a square will become clear later.
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Chapter 3

Invariant Theory

In this chapter we introduce basic concepts from classical invariant theory. The original
reference is an account of the lectures given by Hilbert in 1897 in Göttingen [7], which is
still very readable. For a more modern exposition see [12].

3.1 Definitions

We restrict ourselves to a field K of characteristic zero. We start by defining a binary form
f of degree k:

f = a0x
k + a1x

k−1y + ak−1
2 y2 + · · ·+ aky

k.

We define the degree of a binary form to be its degree in x, y. We usually represent f by
[a0, · · · , ak].

Definition 3.1 (Covariant). Let f = [a0, · · · , ak] be a binary form of degree k. A covariant
of f of order w is a binary form C(f) ∈ K[a0, · · · , ak][x, y] which is separately homogeneous
in both x, y and a0, · · · , ak, satisfying the following identity:

C(f)M = det(M)wC(fM )

for all M =
(
α β

γ δ

)
∈ GL2(K).

Definition 3.2 (Invariant). Let f = [a0, · · · , ak] be a binary form of degree k. An invariant
of f of order w is a homogeneous polynomial I(f), in the variables a0, · · · , ak, satisfying

I(fM ) = det(M)wI(f)

for all M =
(
α β

γ δ

)
∈ GL2(K).
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3.2 Basic Properties

Here we introduce two covariants associated with a binary form f = [a0, · · · , ak][x, y] ∈
K[a0, · · · , ak] of degree k, namely the Hessian and Jacobian covariants

H(f) :=
( 1
k(k − 1)

)2
∣∣∣∣∣fxx fxy

fyx fyy

∣∣∣∣∣ , t(f) := 1
k(k − 2)

∣∣∣∣∣ fx fy

Hx Hy

∣∣∣∣∣ .
It can be verified that H and t are covariants of weights 2 and 3 respectively.

Definition 3.3. (Differential Operators for Invariant Theory). Let x′, y′ be variables.
We define

D := a1
∂

∂a1
+ 2a1

∂

∂a2
+ · · ·+ kak−1

∂

∂ak
,

∆ := ka1
∂

∂a0
+ (k − 1)a2

∂

∂a1
+ · · ·+ ak

∂

∂ak−1
,

Ω := ∂2

∂x∂y′
− ∂2

∂x′∂y
.

Definition 3.4. (Isobaric Property). A polynomial C ∈ K[a0, · · · , ak][x, y] is called
isobaric of weight w, if each term of C has the same weight w, when the coefficient ai is
given the weight i, for i ∈ {0, · · · , k}.

We introduce the transvectant mechanism to construct new covariants from the existing
ones.

Definition 3.5. (Transvectant). Let C1, C2 ∈ K[a0, · · · , ak][x, y]. We define the i-th
transvectant by

(C1, C2)i :=
(((k − i)!

k!

)2
ΩiC1(x, y)C2(x′, y′)

)∣∣∣∣∣
(x′,y′)=(x,y)

.

If C1, C2 are covariants of a base form f , where f is a binary form of degree k, then
(C1, C2) is also a covariant of the base form f . We introduce a sequence of transvectants
that are of special interest to us,

τ2m(f) := 1
2(f, f)2m, τ2m+1(f) := k

k − 2(f, τ2m(f))1.

Lemma 3.6. The H, and t defined above are τ2, and τ3 respectively.
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Proof. We have

τ2(f) = 1
2
(
f, f

)
2

= 1
2
((k − 2)!

k!
)2

Ω2
(
f(x, y), f(x′, y′)

)∣∣∣∣
(x,y)=(x′,y′)

= 1
2
( 1
k(k − 1)

)2( 2∂4

∂2x∂2y′
(f(x, y)f(x′, y′))

− 2 ∂4

∂x′∂y∂y′∂x
(f(x, y)f(x′, y′)

)∣∣∣∣
(x,y)=(x′,y′)

=
( 1
k(k − 1)

)2(
fxxfyy − f2

xy

)
= H(f),

and

τ3(f) =
(
f,H(f)

)
1

=
( k

k − 2
)((k − 1)!

k!
)2

Ω
(
f(x, y),H(f)(x′, y′)

)∣∣∣∣
(x,y)=(x′,y′)

= 1
k(k − 2)

( ∂
∂x
f(x, y) ∂

∂y′
H(f)(x′, y′)

− ∂

∂y
f(x, y) ∂

∂x′
H(f)(x′, y′)

)∣∣∣∣
(x,y)=(x′,y′)

= 1
k(k − 2)

(
fxH(f)y − fyH(f)x

)
= t(f).

Definition 3.7. (I and J invariants for quartics). Let f = [a0, a1, a2, a3, a4] be a quartic
binary form, i.e. a binary form of degree 4. We define two basic invariants for quartics:

I = 12a0a4 − 3a1a3 + a2
2

of degree 2 and isobaric weight 4, and

J = 72a0a2a4 + 9a1a2a3 − 27a0a
2
3 − 27a4a

2
1 − 2a2

2

of degree 3 and isobaric weight 6. The invariant J is known as the catalecticant of f .

We mention a result from classical invariant theory.

Proposition 3.8 ([12], page 40). The degree n invariants of a binary quartic form, form
a vector space whose basis consists of the monomials IrJs where r, s ≥ 0 and 2r + 3s = n.

In particular, I and J are algebraically independent. The discriminant of a quartic ∆
has degree 6 and weight 12, and therefore it must be a linear combination of I3 and J2;

27∆ = 4I3 − J2 (3.1)

10



Chapter 4

Klein forms

Here we introduce Klein forms and their basic properties. In later chapters we will explain
the central role they play in studying the Diophantine equations of our interest.

4.1 Definitions

In [8] Klein inscribes the tetrahedron, octahedron, and icosahedron in the sphere, and
projects it into the extended complex plane. After suitable rotation of the sphere and ho-
mogenization we get the following forms whose roots are the vertices of the corresponding
solids.

As in [5], to each r ∈ {3, 4, 5} we associate a solid: the tetrahedron, the octahedron, and
the icosahedron, respectively. We denote the order of the group of rotational symmetries of
the corresponding solid by N .

Throughout this chapter K will be an arbitrary field, with char(K) 6= 2, 3, 5.

Definition 4.1. In the following tables we fix some notations. We define three polynomials
that define the vertices of the corresponding solid. Let N denote the order of the group of
rotational symmetries of the corresponding solid.

r Solid Form d N

3 Tetrahedron F3 = 4y(x3 + y3) -1 12
4 Octahedron F4 = 36xy(x4 + y4) -3 24
5 Icosahedron F5 = 1728xy(x10 − 11x5y5 − y10) 1 60

r H(Fr)
3 −x4 + 8xy3

4 −36x8 + 504x4y4 − 36y8

5 −20736x20 − 4727808x15y5 − 10243584x10y10 + 4727808x5y15 − 20736t20

11



r t(Fr)/2
3 x6 + 20x3y3 − 8y6

4 216x12 + 7128x8y4 − 7128x4y8 − 216y12

5 2985984x30 − 1558683648x25y5 − 29874769920x20y10 − 29874769920x10y20

+1558683648x5y25 + 2985984y30

We have the following equation, which shows the arithmetic relevance of covariants

(1
2t(Fr)

)2
+ H(Fr)3 + dF rr = 0, (4.1)

where r, Fr,H(Fr), t(Fr), d are stated in the above tables.

Proposition 4.2. Let f ∈ K[a0, · · · , ak][x, y] be a form of total degree n in variables x, y.
Assume f satisfies (1

2t(f)
)2

+ H(f)3 + df r = 0 (4.2)

for some d ∈ K∗, and r ∈ {3, 4, 5}. Let g = λfM where λ ∈ K∗ and M ∈ GL2(K). Then

(1
2t(g)

)2
+ H(g)3 + d′gr = 0

where d′ = λ6−r det(M)−6d.

Proof. Note that t and H are covariants of weight 3 and 2. Hence t2 and H3 are covariants
of weight 6, and both are invariants of order 6− r in the ai, the result follows.

Definition 4.3. (Klein Forms). We define C(r) to be the set of all forms
f ∈ K[a0, · · · , ak][x, y] where f = Fr ◦M for r ∈ {3, 4, 5}, and M ∈ GL2(K̄). A form in
C(r) is called a Klein form. Let f be Klein form satisfying ( t(f)2

2 ) +H(f)3 +df r = 0, we say
that d is the Klein form discriminant of f . We denote all such Klein forms with Cr(d)(K),

Cr(d)(K) =
{
f ∈ C(r)(K) |

(1
2t(f)

)2
+ H(f)3 + df r = 0

}
.

4.2 Classification of Klein forms

Via a classical theorem of Gordon, we can get an equivalent definition of a Klein form,
which is of great help to us.

Theorem 4.4 ([6],page 204). Let K be a field and k an integer greater that 3. Suppose that
one of the following is true.

• char(K) = 0

• k = 4, 6 or 12; and char(K) > k − 4.

12



• char(K) ≥ k2.

Then the fourth transvectant τ4(f) of a form f of order k, is identically zero if and only if
f = Fr ◦M where M ∈ GL2(K).

Now we can completely classify Cr(d).

Theorem 4.5 ([5], Classification of quartic Klein forms). Suppose N, d ∈ K̄∗. If char(K) =
0, then

C3(d)(K̄) = {f ∈ K̄[x, y]4 | τ4(f) = 0, J(f) = 2633d},

C4(d)(K̄) = {f ∈ K̄[x, y]6 | τ4(f) = 0, τ6(f) = −72d},

C5(d)(K̄) = {f ∈ K̄[x, y]12 | τ4(f) = 0, 7τ6(f) = −360d, 7τ12(f) = 3110400d2}.

This theorem basically shows that a quartic form f is a Klein form if and only if τ4(f)
vanishes. Now we take a close look at the 4-th transvectant of a form of degree 4. Writing,

f = [a0, a1, · · · , a4] ∈ K[a0, a1, · · · , a4][x, y],

we see that
12τ4(f) = 12a0a4 − 3a1a3 + a2

2 = I(f).

Hence f is a quartic Klein form if and only if I(f) = 0. We recall from last chapter the
following identity:

27∆ = 4I3 − J2

Hence according to Theorem 4.5 for a quartic Klein form f ∈ Cr(d) we have:

∆(f) = −26d2. (4.3)

Remark 4.6. Here we defined the Klein forms using the associated invariants I and J .
Since this is likely to be confused with the invariant of the associated elliptic curve, from
now on instead of the J-invariant of a Klein form f , we stick to the more convenient Klein
form discriminant d(f), satisfying J(f) = 2633d.
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Chapter 5

Properties of Parameterizations

So far we have obtained a classification of Klein forms of fixed discriminant. Let (x, y, z) ∈ Z3

satisfy the equation
x2 + y3 = dz3.

We want to find a Klein form f such that
(

1
2t(f)(s, t),H(f)(s, t), f(s, t)

)
= (x, y, z) for

some s, t ∈ Z. This motivates our next definition.

Definition 5.1. (Parameterization η(f)). For f ∈ Cr(d)(Q) we define

η(f) =
(1

2t(f),H(f), f
)
.

Note that from Equation (4.1) and Proposition 4.2 it follows that η(f) ∈ Cr(d)(Q).

Any f ∈ C3(d) induces a parameterization η(f), and we get the following map

π : C3(d)→ D(d)

f 7→
(1

2t(f)(1, 0),H(f)(1, 0), f(1, 0)
)
.

We start by proving some nice properties of parameterizations.
In this chapter R is a domain and K is its field of fractions. We assume K is of zero

characteristic.

Proposition 5.2 ([5], Proposition 5.2.5). Suppose d ∈ K∗. If (x, y, z) ∈ K3 \ (0, 0, 0),
satisfies the equation

x2 + y3 = dz3,

then there is a φ ∈ C3(d)(K) with π(φ) = (x, y, z). It is given by

φ =

[z, 0, 6y
z ,

8x
z2 ,
−3y2

z3 ] if z 6= 0

[0, −xy , 0, 0,
−26y2d
x2 ] if z = 0

Proof. Direct calculation gives the result.
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Theorem 5.3. Let A,B,C be square-free integers, such that

gcd(A,B) = gcd(A,C) = gcd(B,C) = 1.

If x, y, z ∈ Z satisfy
Ax2 +By3 = Cz3,

and gcd(x, y) = gcd(x, z) = gcd(y, z) = 1, then there exists a Klein form f ∈ C3(CA3B2)(Z)
such that (t(1, 0)

2A2B
,
H(f)(1, 0)

AB
, f(1, 0)

)
= (x, y, z).

Proof. We observe that (A2Bx,ABy, z) is a solution for the equation

x′2 + y′3 = CA3B2z′3.

Proposition 5.2 gives us f ∈ C3(d)(Q) with π(f) = (A2Bx,ABy, z). First we consider the
case z = 0. Since Ax2 +By3 = 0, and gcd(x, y) = 1, the fact that A and B are square-free
implies that x, y ∈ Z∗, and hence x

y ∈ Z∗. Thus we have

f = [0, −x
y
, 0, 0, −26y2d

x2 ] ∈ C3(CA3B2)(Z).

Now we consider the case where z 6= 0. The existence of f ∈ C3(CA3B2)(Q) is guaranteed
by Proposition 5.2. Let f = [a0, a1, · · · , a4]. Since π(f) = (A2Bx,ABy, z) we have

z = a0,

ABy = (8a0a2 − 3a2
1)/48, (5.1)

A2Bx = (23a2
0a3 − 22a0a1a2 + a3

1)/26. (5.2)

We can act on f by a matrix M =
(

1 −α
0 1

)
, with α ∈ Q. Since det(M) = 1, we have

π(fM ) = π(f) = (A2Bx,ABy, z). By a suitable choice of α we can make sure that a1 takes
any value. We claim that gcd(ABy, z) = 1. Assume p | z, and p | ABy. If p | B, then since
Ax2 +By3 = Cz3, we get that p | Ax2, and hence p | x, which is a contradiction. Similarly,
we can prove p - A, thus we must have p | y, but this implies p | x, which contradicts
the primitivity of (x, y, z). Similarly, we can prove that gcd(A2Bx, z) = 1. Hence ABy is
invertible modulo z3, and we can choose α such that a1 ∈ Z and a1 = −4(A2Bx)(ABy)−1

(mod z3). Observe that since gcd(A2Bx, z) = 1, we get that gcd(a1, z) = 1. We replace f
with fM .

Now we prove that f ∈ C3(CA3B2)(Z). Let S be the multiplicative set generated by z3,
and ZS the localization of Z at S. Since a0 and a1 are in Z, by (5.1) and (5.2) we get that
f ∈ C3(CA3B2)(ZS). If z ∈ Z∗ there is nothing to prove, so we assume z /∈ Z∗.
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We define the valuation v as follows

v : ZS → Z

α 7→ max{n | z−nα ∈ Z}.

From (5.1) and (5.2) we get

a0a2 = (48(ABy) + 3a2
1)

8 =
(48(ABy) + 3(−4(A2Bx)

(ABy) )2)
8 = 6

(
(ABy) + (A2Bx)2

(ABy)2

)
= 6CA

3B2z3

(ABy)2 (mod z3),

a2
0a3 = 26(A2Bx)− 253(CA

2B2z3

(ABy)3 ) + 26 (A2Bx)3

(ABy)3 = −25CA
3B2(A2Bx)z3

(ABy)3 (mod z3).

Recalling a0 = z, we immediately get

v(a0) = 1, v(a1) = 0, v(a2) ≥ 2, v(a3) ≥ 1.
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Chapter 6

The Equation x2 +By3 = Cz3

In this chapter we return to our main objective, namely to understand the Klein forms that
generate the co-prime integer solutions for the equation

x2 +By3 = Cz3, (6.1)

where B,C are non-zero, square-free and co-prime integers.
If we multiply the above equation with B2, we get the following equation

(Bx)2 + (By)3 = B2Cz3. (6.2)

If we look at the Klein forms of discriminant B2C, we can ask the following question:
when does a Klein form of discriminant B2C produces Z-primitive solutions for Equa-
tion (6.1)? In this chapter we answer this question by calculating the equivalence classes of
Klein forms that parameterize Equation (6.2) under different notions of equivalence.

Throughout this chapter B,C are assumed to be square-free integers with gcd(B,C) = 1,
and p | B, where p is a prime not equal to 2, 3. Whenever we talk about primitive solutions
we refer to Equation (6.1), unless otherwise stated.

Definition 6.1. We say that a Klein form f ∈ Q[s, t] produces a primitive solution, or is
Z-productive for the equation

Ax2 +By3 + Cz3,

if for some s, t ∈ Q, the triple
(

t(f)(s,t)
2A2B , H(f)(s,t)

AB , f(s, t)
)
is a Z-primitive solution. Similarly,

we say f is Zp-productive, if for some s, t ∈ Qp, the triple
(

t(f)(s,t)
2A2B , H(f)(s,t)

AB , f(s, t)
)
is a

Zp-primitive solution.

6.1 Local Analysis

In this section we will justify studying Equation (6.1) locally at a prime p. First we prove
a lemma.
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Lemma 6.2 ([9], Lemma 4.1.1). Let X,Y, Z ∈ Q[x, y] be forms of degree n that satisfy
AX2 + BY 3 = CZ3. If there exist sp, tp ∈ Qp, such that

(
X(sp, tp), Y (sp, tp), Z(sp, tp)

)
is

a locally primitive solution at p, then there exists a positive integer kp such that if s, t ∈ Q
with vp(s− sp) ≥ kp and vp(t− tp) ≥ kp then(

X(s, t), Y (s, t), Z(s, t)
)

is also a locally primitive solution at p.

Proof. Let M be a non-negative integer. We write X(s, t) =
∑n
i=1 ais

itn−i. Suppose that

vp(s− sp), vp(t− tp) ≥M.

Hence we get that

s = sp + pMes,

t = tp + pMet,

for some es, et ∈ Qp, with vp(es), vp(et) ≥ 0. It follows that

vp(sitn−i − siptn−ip ) ≥ nM,

for all i. But then

vp(X(s, t)−X(sp, tp)) ≥ min
(
vp(ai) + vp(sitn−i − siptn−ip

)
≥ min{vp(ai)}i + nM (6.3)

Therefore, if vp(X(sp, tp)) = v, and we set M > v −min{vp(ai)}i/n, then by (6.3) we get

vp(X(s, t)−X(sp, tp)) > nv > v = vp(X(sp, tp)).

But this means vp(X(s, t)) = v. For Y and Z we get similar bounds for M . If we take kp to
be the maximum of these bounds, then the result follows.

Theorem 6.3. Let X(s, t), Y (s, t), Z(s, t) ∈ Q[s, t] be forms such that

AX(s, t)2 +BY (s, t)3 = CZ(s, t)3,

where A,B,C are square-free and pairwise co-prime integers. Assume that X(s, t), Y (s, t), Z(s, t)
do not have factors in common as polynomials. If for every p there are sp, tp ∈ Qp such that
min{vp(X(sp, tp)), vp(Y (sp, tp)), vp(Z(sp, tp))} = 0, then there exist a pair s0, t0 ∈ Q such
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that
gcd(X(s0, t0), Y (s0, t0), Z(s0, t0)) = 1.

Proof. If a common factor H would divides both X and Y , then it would divide CZ2 as
well and hence it would divide Z. Hence X(s, t) and Y (s, t) have no common factor. From
this it follows that the resultant R = Res(X(s, t), Y (s, t)) is a nonzero rational number, say
m/n.

Let S be the set of primes that divide mn or the denominator of a coefficient of X,Y or
Z. According to Lemma 6.2, for all primes p ∈ S, there exists kp such that for s, t ∈ Q, if

vp(s− sp) ≥ kpvp(t− tp) ≥ kp,

then at least one of X(s, t), Y (s, t), Z(s, t) is not divisible by p. Let

ep = min{vp(sp), 0}

fp = min{vp(tp), 0},

for all p ∈ S. We write

Ds =
∏
p∈S

p−ep

Dt =
∏
p∈S

p−fp .

Then we get that Dssp, Dttp ∈ Z. Now by Chinese remainder theorem we can find s′, t′ ∈ Z
such that

s′ = Dssp (mod pkp−ep)

t′ = Dttp (mod pkp−fp),

for all p ∈ S. Let s0 = s′/Ds and t0 = t′/Dt. It is easy to see that

s0 − sp = 0 (mod pkp−ep)

t0 − tp = 0 (mod pkp−fp).

Hence we get that vp(s0 − sp) ≥ kp − ep ≥ kp
vp(t0 − tp) ≥ kp − fp ≥ kp.
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Thus we have that

min{vp(X(s0, t0)), vp(Y (s0, t0)), vp(Z(s0, t0))} = 0,

for p ∈ S.
For any prime q /∈ S, if vq(s), vq(t) > 0, then we will have that

X(s/q, t/q) = q− degXX(s, t),

and we see that scaling s and t by 1/q, does not affect primitivity at primes in S. Thus
without loss of generality we can assume that min{vp(s), vp(t)} = 0, for p /∈ S.

It remains to show that

min{vp(X(s, t)), vp(Y (s, t)), vp(Z(s, t))} = 0,

for p /∈ S. Let q /∈ S be a prime. Since q neither divides R, nor it divides the denominator
of any of the coefficients of X,Y and Z, we have that the reductions

X̄(s, t), Ȳ (s, t), Z̄(s, t) ∈ Fq[s, t],

also have nonzero resultant, and hence no common roots. Therefore as long as

min{vq(s), vq(t)} = 0,

both X(s, t) and Y (s, t) are also not divisible by q. This means

min{vq(X(s, t)), vq(Y (s, t)), vq(Z(s, t))} = 0,

for a prime q not in S.

6.2 Elliptic Curves

We are studying Klein forms f ∈ C3(d)(Qp), with vp(d) = 2. We need some machinery
from the theory of elliptic curves. Here we closely follow Cassels ([4], §15). Throughout this
section we assume K = Qp, and R = Zp.

Assume d ∈ Qp such that vp(d) = 2. Let g = x3 − d ∈ Qp[x]. If there exists α ∈ Qp

such that α3 − d = 0, then β = α2/p satisfies x3 − d2/p3, which is Eisenstein, hence g is
irreducible over Qp. We associate an elliptic curve to d in the following way

Ed : y2 = g(x) = x3 − d. (6.4)
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We define the fieldM = Qp[θ] = Qp[x]/(g(x)), where θ is the image of x. We have the norm
map

N : Qp[θ]→ Qp

defined as follows. For α ∈ Qp[θ] we define N(α) to be the determinant of the map

Qp[θ]→ Qp[θ]

ζ 7→ αζ,

considered as a Qp-linear map between Qp-vector spaces. Let M ′ be defined as follows

M ′ = {a ∈ Q∗p[θ] : N(a) ∈ Q∗p
2}.

For an elliptic curve E over Qp, we write E[2] for the two-torsion on E and we write
H1(Qp, E[2]) for its first cohomology group when considered as a group scheme over Qp.
See [13, Chapter 4] for details. The group H1(Qp, E[2]) admits an elementary description in
the following way.

Theorem 6.4 ([14], Corollary 4.2). Let Ed, M and M ′ be defined as above. Then

H1(Qp, Ed[2]) 'M ′
/M∗2.

Definition 6.5. Let C be a genus one curve. We say that π : C → E is a 2-covering of
E if there is an isomorphism φ : C → E defined over K̄, such that the following diagram
commutes

E E

C .

[2]

φ π

Two 2-coverings (C1, π1, φ1) and (C2, π2, φ2) are isomorphic if φ−1
1 ◦ φ2 : C2 → C1 is an

isomorphism over K.

Let f ∈ K[x, y] be a quartic Klein form with Klein form discriminant d. We have the
following syzygy:

t(f)2 = −4H(f)3 − 4df3

If we rewrite this syzygy for a projective curve C with affine equation y2 = f(x, 1), we get

16[t(f)(x, 1)]2 = [−4H(f)(x, 1)]3 − 64dy6,

dividing by 64y6 we obtain

(t(f)(x, 1)
2y3

)2
=
(−H(f)(x, 1)

y2

)3
− d.

21



This equation defines an elliptic curve isomorphic to Ed : y2 = x3 − d.

Theorem 6.6. Let f ∈ C3(d) be a Klein form, and let C be a projective curve defined by
the affine equation C : y2 = f(x, 1). Let Ed : Y 2 = X3 − d be an elliptic curve. The map
π : C → Ed defined by

(x, y) 7→
(−H(f)(x, 1)

y2 ,
t(f)(x, 1)

2y3

)
,

is a 2-covering of Ed.

Proof. First we show that π has degree four. Given (x, 1) on C , we see that (x, 1) satisfies
the quartic equation Xf(x, 1)+H(f)(x, 1), where (X,Y ) are the coordinates of K(Ed), and
y is uniquely determined, y = −Xt(f)(x,1)

2YH(f)(x,1) .
Let E′ = Jac(C) and assume θ : C → E′ is the map from C to its Jacobian, defined by

sending one root of f to infinity and the other three roots to the roots of X3 − d in some
order. Define µ = π ◦ θ−1 : E′ → Ed. Then µ has degree four. It maps 0E′ to 0Ed

, so it is a
group homomorphism ([13], Proposition 3.1). It also maps the four 2-torsion points E′[2] to
0, so ker(µ) = E′[2]. Thus we get Ed ∼= E′/E′[2] = E′. By Corollary 4.11 in [13] we get that
µ = [2]◦α, for some automorphism α of Ed. It follows that π = [2]◦θ, where θ = α◦θ1.

In this way any Klein form induces a 2-covering. We have the following proposition.

Proposition 6.7 ([3], Lemma 2). Two Klein forms with Klein form discriminant d are
properly equivalent if and only if they give rise to the same 2-covering of Ed.

Proof. Let f1 and f2 be two properly equivalent quartics (see Definition 2.3). Hence f1 =
λ2fM2 , for some λ ∈ K∗, and M ∈ GL2(K). Based on Proposition 6.6 we can associate a
2-covering to each Klein form. Let π1 : C1 → Ed be the 2-covering associated to f1, and
π2 : C2 → Ed be the 2-covering associated to f2, where Ci is the projective curve with affine
equation y2 = fi(x, 1) for i = 1, 2. Since H, and t are covariants of weight 2 and 3, we get
that

π1(x, y) =
(−λ4 det(M)2H(f2)(x, 1)

y2 ,
λ6 det(M)3t(f2)(x, 1)

2y3

)
.

Since f1 = λ2fM2 , we get that d1 = λ6 det(M)6d2, where d1 and d2 are the Klein form
discriminants of f1 and f2 respectively. But since d1 = d2 = d, we get that λdet(M) = ζ is
a root of unity. This implies that

π1(x, y) =
(−λ2ζ2H(f2)(x, 1)

y2 ,
λ3ζ3t(f2)(x, 1)

2y3

)
.

We observe that
π2(x, y) =

(−H(f2)(x, 1)
y2 ,

t(f2)(x, 1)
2y3

)
.
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From this it follows that

π1(x, y) = π2
(
x,

y

ζλ

)
.

This shows that π1 and π2 are isomorphic 2-coverings.
Now we prove the converse direction. Since f1 and f2 are both Klein forms with the same

Klein form discriminant, it follows that both curves C : y2 = f1(s, 1), and C ′ : y′2 = f2(s′, 1)
have the same Jacobian curve, namely Ed : y2 = x3 − d (see [3], Lemma 2). Hence there is
a birational map C → C ′ defined over K which maps the points with y = 0 to the points
with y′ = 0. Such a mapping must be linear between s and s′; thus there exists λ ∈ K∗,
and M ∈ GL2(K) such that

f1(s, t) = λfM2 (s′, t′).

From this equality we get that d1 = λ3 det(M)6d2, where d1 and d2 are the Klein form
discriminants of the f1 and f2 respectively. But since d1 = d2 = d, we get that λ = det(M)2.
Let µ = det(M), we see that

f1(s, t) = µ2fM2 (s′, t′).

Hence f1 and f2 are properly equivalent.

For an elliptic curve E there is a standard identification of H1(Qp, E[2]) with the set of
2-coverings of E up to isomorphism.

Theorem 6.8 ([13], Theorem 2.2). There is an isomorphism

H1(Qp, E[2]) ' {2-coverings of E}.

6.3 Classifying Klein forms

In what follows we classify Klein forms in C3(d)(Q), where d ∈ Q∗p and vp(d) = 2. We start
by classifying the forms up to proper equivalence (see Definition 2.3), and after that we refine
our classification to GL2(Qp)-equivalence. Finally, we classify and list GL2(Qp)-equivalence
classes with integral representatives.

6.3.1 Proper Equivalence

Theorem 6.9. Let d ∈ Qp, such that vp(d) 6≡ 0 (mod 3). Up to proper equivalence there is
only one Klein form in C3(d)(Qp), namely f(s, t) = t(s3 − dt3).

Proof. Let M = Qp[θ] = Qp[x]/(f(x)), where f(x) = x3 − d and θ is the image of x. Also
let M ′ = {a ∈ Q∗p[θ] : N(a) ∈ Q∗p2}. Since M is a local field we have

M∗/(M∗)2 = {1, c, p, cp},

23



where c ∈M∗ is a non-square. Since c, p, cp have non-square norms we get that M ′/(M∗)2

is trivial. This together with Theorem 6.4 and Theorem 6.8 implies that Ed admits only the
trivial 2-covering. Now Proposition 6.7 completes the proof.

6.3.2 GL2(Qp)-Equivalence

We first define the notion of GL2-equivalence.

Definition 6.10. Two forms f1, f2 ∈ K[x, y] are GL2(K)-equivalent if there exists M ∈
GL2(K) such that f1 = fM2 .

Assume d ∈ Q∗p, such that vp(d) 6≡ 0 (mod 3). Let f ∈ C3(d)(Qp). Then according to
Theorem 6.9 there exists (λ,M) ∈ Q∗p ×GL2(Qp), such that

f = λ2t(s3 − d0t
3)M .

We have that d(f) = λ6 det(M)6d = d, and hence λ det(M) = 1. Now if λ is a square, say
λ = µ2, multiplication with λ2 can be represented by a matrix N .

N =
(
µ 0
0 µ

)

Then λ2f = fN . Since Q∗p/Q∗p2 ' (Z/2Z)2, for p 6= 2, we have 4 different GL2(Qp)-
equivalence classes. We summarize the above argument in the following proposition.

Proposition 6.11. Let d ∈ Q∗p, such that vp(d) 6≡ 0 (mod 3). Up to GL2(Qp)-equivalence
there are four forms in C3(d)(Qp). Let Q∗p/Q∗p2 = {1, c, p, cp}, where c is a non-square. We
list these forms in the following table.

f1 t(s3 − dt3)
f2 t(cs3 − d/c2t3)
f3 t(ps3 − (d/p2)t3)
f4 t(pcs3 − (d/p2c2)t3)

6.3.3 GL2(Qp) classes with representatives in Zp[x, y]

We have shown in the previous section that there are only four GL2(Qp) classes of forms in
C3(d)(Qp), where vp(d) 6≡ 0 (mod 3). Here we investigate the number of integral represen-
tatives for each of four GL2(Qp)-equivalence classes. First we prove a lemma.

Lemma 6.12. For any M ∈ GLp(Qp), there exists S ∈ SL2(Zp) and U ∈ GL2(Qp), such
that U is upper triangular and M = US.
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Proof. Let M =
(
α β

γ δ

)
∈ GL2(Qp). It is enough to find S ∈ GL2(Zp) such that MS is

upper triangular. If γ = 0 we can take S to be the identity matrix. If γ 6= 0, then there
are co-prime a, b ∈ Zp such that aγ + cδ = 0, and we also can choose b, d ∈ Zp such that

ad− bc = 1. Now we can take S =
(
a b

c d

)
∈ SL2(Zp).

Let g ∈ C3(d)(Qp) where vp(d) 6≡ 0 (mod 3). By Proposition 6.11 there is a matrix
M ∈ GL2(Qp), such that g = fM , where f is one of the four forms stated in the Proposition
6.11. Since all of those four forms have Klein form discriminant d, we get that detM = 1.
According to Lemma 6.12, we obtain M = US where U ∈ GL2(Qp) is triangular, and
S ∈ SL2(Zp). Since detM = 1, it follows that detU = 1. Hence g = fUS , and gS−1 = fU .
Since S−1 ∈ SL2(Zp), we have that fU ∈ C3(d)(Zp). Thus in order to find all the GL2(Qp)-
orbits of C3(d)(Qp) that have representatives in C3(d)(Zp), it is enough to determine the
triangular matrix U ∈ SL2(Qp) for which fUi has coefficients in Zp, where fi is one of the
forms listed in Proposition 6.11. We do this in the following theorem.

Theorem 6.13. Let d ∈ Qp such that vp(d) = 2. Up to GL2(Zp)-equivalence there are four
forms in C3(d)(Zp).

Proof. According to the above argument, any Klein form g ∈ C3(d)(Zp) can be written as
g = fM , where f is one of the four forms in Proposition 6.11, S ∈ GL2(Zp) and M =(

1/a b

0 a

)
, with a, b ∈ Qp. We can assume det(M) = 1, because

d = d(g) = det(M)6d(f) = d.

Hence det(M) is a unit, we assume it to be 1. Without loss of generality we can represent f
as f = t(ws3 + et3) with w, e ∈ Qp, where (w, e) ∈ {(1, d), (c, d/c2), (p, d/p2), (cp, d/c2p2)}.
We observe that vp(e) + 2vp(w) = 2.

By direct calculation we get

fM =
(bw
a3 + b4e

)
s4 +

( w
a2 + 4b3ae

)
s3t+ (6b2a2e)s2t2 + (4ba3e)st3 + (a4e)t4.
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Since we want f to have coefficients in Zp we get the following constraints:

vp(a4e) ≥ 0, (6.5)

vp(4ba3e) ≥ 0, (6.6)

vp(6b2a2e) ≥ 0, (6.7)

vp
( w
a2 + 4b3ae

)
≥ 0, (6.8)

vp
(bw
a3 + b4e

)
≥ 0. (6.9)

From Proposition 6.11 we know that vp(e) is either 0 or 1. In both cases, condition (6.5)
implies that vp(a) ≥ 0. If vp(a) 6= 0, then vp( wa2 ) < 0. Thus condition (6.8) implies that

vp
( w
a2

)
= vp(w)− 2vp(a) = vp(4b3ae) = 3vp(b) + vp(a) + vp(e).

If we substitute vp(e) = 2− 2vp(w) in the above equality, we get that

2 = 3vp(w)− 3vp(b)− 3vp(a),

which is a contradiction. Thus vp(a) = 0. Since vp(e) ≥ 0, condition (6.7) implies that
vp(b) ≥ 0. Hence we see that M ∈ GL2(Zp).

This shows that we have exactly four GL(Qp)-equivalence classes of Klein forms in
C3(d)(Zp).

Theorem 6.14. Let d ∈ Zp with vp(d) = 2. Only half of the GL2(Qp)-equivalence classes
of Klein forms in C3(d)(Zp) produce Zp-primitive solutions for the equation

x2 +By3 = Cz3, (6.10)

where B,C are square-free integers, such that gcd(B,C) = 1, vp(B) = 1, and d = B2C.

Proof. According to Theorem 5.3 all the solutions to (6.10) are produced by Klein forms in
C3(d)(Qp). Since acting via GL2(Zp) does not affect productivity, and we showed that any
Klein form in C3(d)(Zp) is GL2(Qp)-equivalent to one of the forms listed in Proposition 6.11,
without loss of generality we can prove the result for these four forms. Let f = t(ws3 +et3),
be one of the following forms

f1 t(s3 − dt3)
f2 t(cs3 − d/c2t3)
f3 t(ps3 − (d/p2)t3)
f4 t(pcs3 − (d/p2c2)t3)
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We observe that vp(w) = 0, 1, and we have the identity vp(e) + 2vp(w) = 2. We recall

H(f) = 3w2s4 − 24west3,

t(f) = w3s6 + 20(w2e)s3t3 − (8we2)t6.

From Chapter 3, we recall that

(t(f)/2)2 + H(f)3 = df3.

Hence the triple (t(f)/2B,H(f)/B, f) produces a primitive solution for the equation

x2 +By3 = Cz3,

exactly when there exist s0, t0 ∈ Zp for which we have

min{vp(t(f)(s0, t0)/B), vp(H(f)(s0, t0)/B), vp(f(s0, t0))} = 0.

In particular, vp(H(f)(s0, t0)/p) ≥ 0. But that means we have

(3w2s4
0)/p− (24wes0t

3
0)/p ∈ Zp.

If vp(w) = 1, then obviously (3w2s4
0)/p − (24wes0t

3
0)/p ∈ Zp, and if we evaluate the triple

(t(f)/2B,H(f)/B, f) at (1, 0) we get (w3/2B, 3w2/B, 0) which is obviously a primitive
solution. It remains to check the case where vp(w) = 0, which implies vp(e) = 2. For the
sake of contradiction we assume vp(e) = 2. First consider the case where vp(s0) = 0. We
should have

2vp(w) + 4vp(s0)− 1 = vp(w) + vp(e)− 1 + vp(s0) + 3vp(t0),

If we plug 2 = 2vp(w) + vp(e), we get

3vp(w)− 2 = vp(t0)− 3vp(s0).

Since vp(w) = 0, we get that vp(t0) − 3vp(s0) = −2, which immediately rules out the case
vp(s0) = 0. It remains to rule out the case where vp(s0) > 0. In this is case it is easily seen
that

min{vp(t(f)(s0, t0)/p), vp(H(f)(s0, t0)/p), vp(f(s0, t0))} > 0.

We have proved that for the equation

x2 +By3 = Cz3,
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the forms f3, f4 are productive, and the forms f1, f2 are not productive.
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Chapter 7

Density Heuristics

In previous chapters we studied the Diophantine equation

x2 +By3 = Cz3,

where gcd(B,C) = 1, and B,C are square-free integers. In this chapter we first prove that
these equations form a positive proportion of the set of equations with no constraints on
B and C. After that we discuss possible applications of our result. We introduce some
terminology first.

Definition 7.1. Let B be a positive integer. We define the following sets,

E(B) = {(b, c) : |b| ≤ B, |c| ≤ B},

E′(B) = {(b, c) : |b| ≤ B, |c| ≤ B, gcd(b, c) = 1, b and c are square free}.

Theorem 7.2 ([11], Theorem 1). We have

#E′(B) = 4 B2

ζ(2)2

∏
p

(
1− 1

(p+ 1)2

)
+O(B3/2).

Theorem (7.2) implies that the relative density D := #E′(B)
#E(B) is

D = 1
ζ(2)2

∏
p

(
1− 1

(p+ 1)2

)
≈ 0.28674742843447873411

In proving Theorem (7.2) we use the following facts from analytical number theory

∑
d|n

µ(d) =

1 if n = 1

0 otherwise,
(7.1)

φ(n)
n

=
∑
d|n

µ(d)
d

=
∏
p|n

(1− 1
p

). (7.2)
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All of these are standard facts from analytical number theory. A good reference containing
proofs is Tenenbaum [15]. Before stating the proof we prove two lemmas.

Lemma 7.3 ([11], Lemma 1). Let d ≥ 1 be an integer. Let

Sd(x) =
∑
n≤x

(d,n)=1

µ(n)2.

We have
Sd(x) = x

ζ(2)
∏
p|d(1 + 1

p)
+O(2ω(d)√x),

where ω(d) denotes the number of distinct prime divisors of d.

Proof. Let Td(x) denote the number of natural numbers n ≤ x coprime to d. According
to (7.1), and (7.2) we get

Td(x) =
∑
n≤x

(n,d)=1

1 =
∑
n≤x

∑
α|n
α|d

µ(α) =
∑
α|d

µ(α)[x
α

] = φ(d)
d

x+O(2ω(d)), (7.3)

where [x] is the integral part of x. By the inclusion and exclusion principle we obtain

Sd(x) =
∑

m≤
√
x

(d,m)=1

µ(m)Td(
x

m2 ).

Now by (7.3), we deduce

Sd(x) = x
φ(d)
d

∑
m≤
√
x

(d,m)=1

µ(m)
m2 +O(2ω(d)√x).

By completing the sum,

Sd(x) = x
φ(d)
d

∞∑
m=1

(d,m)=1

µ(m)
m2 +O(2ω(d)√x)

Recall the well-known identity

∑
m=1

(d,m)=1

µ(m)
m2 =

∏
p-d

(1− 1
p2 ) = 1

ζ(2)
∏
p|d(1− 1/p2) .

Using this identity and (7.2) the lemma is proved.
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Lemma 7.4 ([11], Lemma 2). We have

∞∑
d≤x

2ω(d)

d3/2 = O(1),
∑
d≤x

2ω(d)
√
d

= O(
√
x log x),

∑
d≤x

4ω(d)

d
= O(log3 x).

7.1 Proof of Theorem 7.2

Note that
#E′(B) = 4

∑
m≤B

∑
n≤B

µ(m)2µ(n)2 ∑
d|m, d|n

µ(d).

By swapping the order of summation, we get

#E′(B) = 4
∑
d≤B

µ(d)
∑
m≤B
d|m

µ(m)2 ∑
n≤B
d|n

µ(n)2. (7.4)

Note that ∑
m≤B
d|m

µ(m)2 = µ(d)2 ∑
k≤B/d
(d,k)=1

µ(k)2 = µ(d)2Sd
(B
d

)
, (7.5)

where the rightmost equality is from Lemma (7.3). By (7.5) and the fact that µ(d) = µ(d)5

we get
#E′(B) = 4

∑
d≤B

µ(d)Sd
(B
d

)2
. (7.6)

According to Lemma (7.3), we get

#E′(B) = 4 B2

ζ(2)2

∑
d≤B

µ(d)
d2∏

p|d(1 + 1/p)2 +O(x3/2 ∑
d≤B

2ω(d)

d3/2 ) +O(x
∑
d≤B

4ω(d)

d
).

By completing the first sum and noting that

∞∑
d=1

µ(d)
d2∏

p|d(1 + 1/p)2) =
∏
p

(
1− 1

(p+ 1)2

)
,

we get

#E′(B) = 4 B2

ζ(2)2

∏
p

(
1− 1

(p+ 1)2

)
+O(B3/2 ∑

d≤B

2ω(d)

d3/2 ) +O(B
∑
d≤B

4ω(d)

d
).

Now the theorem follows from Lemma (7.4).
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7.2 Density Heuristics

In this section we sketch how we envision the results from Chapter 6 might help in deter-
mining the average number of productive Klein forms for equations of the form

x2 +By3 + Cz3 = 0. (7.7)

As we have seen in Theorem 5.3, primitive solutions to (7.7) give rise to quartic Klein
forms in Z[s, t] with Klein form discriminant equal to d = B2C, and we say two primitive
solutions are equivalent if their Klein forms are GL2(Z)-equivalent. The motivation is that
a Klein form gives rise to a parametric solution, and equivalent solutions can be obtained
as specializations of the same parametrization.

As Edwards explains in [5, Chapter 11], each GL2(Z)-equivalence class of Klein forms ad-
mits a Hermite reduced representative. Such representatives have their coefficients bounded
by an explicit function of d. It follows that there are only finitely many equivalence classes of
Klein forms of bounded discriminant, and hence we get an estimate of the average number
of Klein forms per discriminant (as a function of d).

As we have seen in Theorem 6.3, whether a Klein form is productive for a given equation
is determined by local conditions. These translate into congruence conditions on the coef-
ficients of the Klein form, and thus give us local densities for the locally productive Klein
forms in the space of Klein forms with coefficients in Zp.

Our heuristic assumption is that the integral Klein forms distribute approximately uni-
formly over the Zp-equivalence classes. As a consequence, for each Klein form discriminant
d, we expect the proportion of productive Klein forms to be measured by the product of
the relevant local densities. As our results suggest, these local densities would be about 1

2
for each prime dividing B.

It should be possible to make this heuristic rigorous by establishing that the space of
equivalence classes of Klein forms is rational. A further quantitative analysis should make it
possible to make quantitative estimates of the densities and number of equivalence classes
involved. We are hopeful to execute this programme in future work.
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