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Abstract

Molecular machines transduce free energy between different forms throughout all living
organisms. While truly machines in their own right, unlike their macroscopic counterparts
molecular machines are characterized by stochastic fluctuations, overdamped dynamics, and
soft components, and operate far from thermodynamic equilibrium. In addition, information
is a relevant free-energy resource for molecular machines, leading to new modes of opera-
tion for nanoscale engines. Nonequilibrium free energy transduction in molecular machines
is typically studied through the lens of stochastic thermodynamics, which permits analy-
sis of thermodynamic quantities like work, energy, entropy, and information in nanoscale
stochastic systems far from equilibrium.

Many biological and synthetic molecular machines are made up of interacting components
coupled together. While individual machine components have been well studied through
single-molecule experiments and computational modelling, multicomponent molecular ma-
chines are relatively underexplored. Multicomponent machines permit qualitatively new
features that will be explored in this thesis, including internal flows of energy and informa-
tion, and the possibility of simultaneous exposure to different sources of fluctuations.

In this thesis I apply existing and novel tools from stochastic thermodynamics to study
molecular machines, with a special focus on understanding the behaviour of multicompo-
nent molecular machines. The work in this thesis derives fundamental limits, explores model
systems, and develops tools for inference from experimental data, all of which which allow
for novel analysis of molecular machines. Ultimately, these efforts lead to the identification
of design principles which I hope will help to guide future engineering of synthetic nanoma-
chines.

Keywords: molecular machines, stochastic thermodynamics, nonequilibrium, information
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Chapter 1

Introduction

Living organisms operate far from thermodynamic equilibrium [1]. Maintaining this nonequi-
librium state requires a constant input of free energy, which must in turn be converted from
one form to another in order to carry out the different functions necessary for life. At
the cellular level, free-energy conversion is accomplished by molecular machines: nanoscale
protein structures responsible for much of the inner workings of the cell [2].

Biological molecular machines accomplish a wide variety of tasks within cells. Most
living organisms on Earth ultimately derive their energy from the Sun, with high-energy
solar photons being transduced into electrochemical free energy by photosynthetic organisms
using light-harvesting molecular machines such as photosystems I and II [3]. Cells typically
use molecules of adenosine triphosphate (ATP) as their energy currency, which is produced
primarily by ATP synthases made of coupled rotary motors that leverage cross-membrane
proton gradients to synthesize ATP against its chemical-potential gradient [4]. ATP then
powers a host of other molecular machines, including transport motors such as kinesin
and myosin [5], protein synthesis machines such as ribosomes, trans-membrane transporters
such as sodium-potassium pumps, and a wide variety of machinery for DNA replication
and transcription [6]. These molecules are truly machines, taking in energy and using it to
perform useful work (Fig. 1.1a).

While they are indeed machines in their own right, molecular machines inhabit a very
different physical world from the macroscopic machines we interact with in our everyday
lives [2]. First of all, their dynamics are highly overdamped, with frictional drag dominating
over inertia [7]. Second, the energy scales of driving forces and interactions are comparable
to the thermal energy scale kBT ; thus their dynamics are strongly influenced by stochastic
fluctuations from the environment. Third, molecular machines are made up of many soft
protein components, coupled by loose, floppy connections. Finally, their strength of driving
and rapidity of operation are such that they are at all times far from thermodynamic
equilibrium.

Despite these bewildering differences, molecular machines perform remarkably well –
comparable to, and in some cases much better than, their macroscopic counterparts [8]. For
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example, photosystem II, one of the molecular machines responsible for photosynthesis in
plant cells, converts solar energy into electrochemical free energy at an efficiency exceeding
40% [3]. ATP synthase, a molecular machine inside mitochondria, converts the electrical
energy provided by a cross-membrane proton gradient into chemical free energy in the form
of ATP, with an efficiency of 70-90% [9]. The Fo and F1 subunits of ATP synthase are
rotary motors that reach angular speeds of 150 rps [10]. Kinesin, a well-studied molecular
transport motor, achieves velocities of up to 1µm (> 100 body lengths) per second [11].

For nanoscale machines where energy scales are comparable to kBT , information (roughly
speaking, correlated fluctuations) becomes a relevant thermodynamic resource. Molecular
machines can interconvert between information and other types of free energy [12]. Con-
ceptual models have been proposed for physically realizable molecular machines that could
convert information directly into work [13], and recent experiments have realized physi-
cal information-driven engines in laboratory conditions [14–17]. Such artificial information
engines can achieve velocities and power outputs comparable to biological molecular ma-
chines [17]. While this information-transduction mechanism is understood and demonstrated
in both theory and experiment, the question remains: have biological molecular machines
evolved to use information as a thermodynamic resource?

In recent years, it has become possible to design and engineer synthetic molecular ma-
chines de novo [20–24]; however, to date, these human-designed machines perform signifi-
cantly worse than evolved biological molecular machines, for example achieving efficiencies of
free-energy transduction on the order of 10−8 [25]. The practical promise of design principles
to improve engineering of synthetic nanomachines drives the quest to better understand the
inner workings of biological molecular machines. While the scientific community has learned
much about biological molecular machines over the past decades, many questions remain
about the physics underlying their function.

1.1 Paradigmatic Molecular Machines

Biology features a vast cornucopia of molecular machines. The molecular machines that
have been explored most thoroughly through the lens of nonequilibrium thermodynamics
fall into several paradigmatic classes.

1.1.1 Transport motors

Some of the best-studied molecular motors are transport motors (Fig. 1.1a, 2nd panel),
a large family of proteins that includes kinesins, dyneins, and myosins. Transport motors
(also referred to as ‘motor proteins’ or just ‘motors’) are integral components of eukary-
otic cells, with a wide range of functions including transport of large macromolecular cargo
such as vesicles [26], organelles [27], or actin filaments [28], over significant distances [27].
These motors transduce chemical energy, generally in the form of ATP, into net mechanical

2
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Figure 1.1: Molecular machines transduce free energy between different forms at the
nanoscale. a) Examples of biological and synthetic molecular machines and the types of
free energy they transduce: from left to right, ATP synthase, kinesin, photosystem II (all
structures adapted from the Protein Data Bank [18]), and a minimal rotary motor (adapted
from Ref. [19] (CC BY 4.0)). b) Modelling ATP synthase as bipartite, made up of the cou-
pled rotary motors Fo and F1, allows resolution of internal flows of energy and information.
c) Some molecular machines, such as photosystem II, are in contact with multiple sources
of fluctuations, allowing them to effectively act as heat engines.

motion in a preferred direction [2]. Indeed, motor proteins can be thought of and mod-
elled as nanoscale thermodynamic engines, whose behaviour is characterized by stochastic
mechanical and chemical dynamics [29]. Individual transport motors can reach speeds as
high as ∼8 µm/s [30] and make forward progress while pulling against forces on the order
of ∼6 pN [31]. Particularly well-characterized examples include kinesin and dynein motors
pulling vesicles along microtubules [26], and myosin motors pulling on actin filaments to
contract muscle tissue [28].

Motor proteins within cells often work collectively to transport large organelles such as
mitochondria [27, 32], or even chromosomes during mitosis and meiosis [33]. Experimental
determination of the number N of motors attached to a given cargo is generally chal-
lenging; nonetheless, recent studies have successfully measured N by identifying discrete
peaks in a distinctly multimodal velocity distribution [34, 35] for small numbers of motors,
or using more complex techniques such as quantitative immunoblots and immunoelectron
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microscopy [32]. Experimental investigations both in vivo and in vitro have found widely
varying numbers N of motors coupled to a single cargo. In some cases, only a single mo-
tor [36] or a few motors [34] per cargo is observed, but experiments have observed as many
as 200 motors bound to large organelles [32]. Likewise, in actomyosin filaments in muscle tis-
sue, on the order of 100 motors are attached to each actin filament [37]. Collective-transport
systems can also be engineered in vitro [38]; in this setting the number of motors can be
controlled more precisely, for example using DNA scaffolds [39, 40].

1.1.2 Rotary motors

Another critically important class of molecular machines is rotary motors, which feature
rotational degrees of freedom driven by chemical, electrical, or mechanical forces. The family
of rotary motors includes FoF1 ATP synthase (Fig. 1.1a, 1st panel), responsible for the
synthesis of ATP within mitochondria [4]; V-ATPases, which serve as proton pumps across
vacuolar membranes [41]; and the bacterial flagellar motor [42], the machinery underlying
locomotion for many motile species of bacteria.

FoF1−ATP synthase (or just ATP synthase), an important example system in this thesis,
is made up of two coupled rotary motors, Fo and F1, both of which reversibly transduce
electrochemical and mechanical free energy. ATP synthase converts electrochemical energy
from a transmembrane proton gradient into the synthesis of ATP molecules via free-energy
transduction between the Fo and F1 subsystems [4]. Closely related to FoF1-ATP synthase,
VoV1-ATPases are similarly composed of two coupled rotary motors and have recently been
the subject of experimental investigation [43], but have yet to be studied through the lens
of stochastic thermodynamics. The bacterial flagellar motor is likewise made up of multiple
coupled rotary motors: a central rotor, surrounded by a varying number of stators.

1.1.3 Other molecular machines

Most biological free energy ultimately comes from sunlight, which is harvested by light-
harvesting molecular machines such as photosystems I and II (Fig. 1.1a, 3rd panel) in
plant cells and bacteriorhodopsin in many archaea [6]. These molecular machines take in
light energy in the form of solar photons, and transduce it into various different forms of
electrochemical free energy.

Biology also features a wide range of other machine types, including transmembrane
pumps, transporters, and the machinery involved in DNA and RNA transcription, transla-
tion, and repair [6].

Beyond biological molecular machines, chemists and engineers have created a suite of
synthetic molecular machines for various purposes [44]. These are typically inspired by
biological counterparts, but to date remain far simpler and much less functional. Work in this
area has yielded synthetic versions of rotary motors [21, 23] and light-driven machines [23,
45], in addition to pumps, burnt-bridge ratchets [24, 46], and assemblers. Other lines of
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research involve computer simulations of models for synthetic machines, allowing rapid
search of design space [25, 47]. Parallel efforts to improve our understanding of biological
molecular machines strive to uncover design principles to guide these engineering efforts.

1.1.4 Key observation: multicomponent molecular machines are ubiqui-
tous

Like many synthetic molecular machines, biological molecular machines are typically made
up of interacting components coupled together. Examples include ATP synthase (composed
of the coupled Fo and F1 rotary motors [9]), the bacterial flagellar motor (a rotor coupled
to ∼ 10 stators [48]), and assemblies of transport motors such as kinesin (where as many
as hundreds of motors work collectively to pull large cargo [32, 37]). While single-molecule
experiments and computational modelling have combined to yield an impressive under-
standing of how individual parts of molecular machines work in isolation [11, 49, 50], much
less is known about how they interact with other components in their natural context as
part of a larger conglomerate. Multicomponent molecular machines open new possibilities
for free-energy transduction: in addition to exchanging free energy with external reservoirs,
they also feature internal flows of free energy (comprised of energy and information) between
their various coupled components [51]. Different components of multicomponent molecular
machines can exchange energy with different sources of fluctuations (e.g., solar photons, ac-
tive noise), leading in some cases to effective temperature differences across a machine [52]
(Fig. 1.1c).

1.2 Stochastic Thermodynamics

The last 200 years have seen thermodynamics evolve from its infancy in Carnot’s “Reflec-
tions on the motive power of fire” [53] to being the dominant paradigm for studying how
energy moves and is transformed in systems ranging from human-created machines [54] to
large-scale astronomical structures like stars [55] and even the universe itself [56], as well
as small-scale molecular machines operating within living cells [2]. Historically, thermody-
namics was developed to study the behaviour and performance of heat engines. The quest
to design a more efficient steam engine ultimately led to the formulation and refinement of
the first and second laws of thermodynamics.

As free-energy conversion devices, it is natural and appealing to view molecular machines
through the lens of thermodynamics; however, they present a significant challenge for appli-
cation of classical thermodynamics as a result of their far-from-equilibrium operation, few
degrees of freedom, and strongly stochastic dynamics. Motivated by these difficulties, the
field of stochastic thermodynamics has developed over the last 30 years to extend classical
thermodynamics to nanoscale nonequilibrium stochastic systems. Stochastic thermodynam-
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ics provides a concrete framework for quantifying energy, heat, work, and other important
quantities at the level of individual trajectories.

The first wave of important results included a collection of integrated and detailed fluctu-
ation theorems, most notably those of Jarzynski [57] and Crooks [58]. These allowed, for the
first time, direct estimation of equilibrium thermodynamic quantities like free-energy differ-
ences using data from experiments far from equilibrium [59–61]. The newfound tractability
of nonequilibrium processes led to an explosion of work exploring different methods for
obtaining optimal or near-optimal control protocols for probing nanoscale stochastic sys-
tems [62–64].

More recently, interest has turned to bounding and inferring entropy production of
nonequilibrium systems. Results such as the thermodynamic uncertainty relations [65–67]
and Jensen bounds [68, 69] provide lower bounds on entropy production rates of systems
and subsystems in different contexts. In the study of molecular machines, these bounds have
been used to obtain bounds and trade-offs constraining performance [65, 68, 70–72] and for
thermodynamic inference of various efficiency measures [73, 74].

Central to several chapters of this thesis, the development of bipartite stochastic ther-
modynamics has enabled a finer-resolution view of energy and entropy flows into, out
of, and within more complex multicomponent stochastic systems [75, 76]. This formal-
ism has been developed primarily to study two-component molecular machines such as
ATP synthase [74, 77], transport motors pulling cargo [74, 78–80], synthetic molecular
motors [25], and light-driven pumps [45]. Other model systems include information en-
gines [75, 76, 81, 82], cellular sensors [83–85], and coupled quantum dots [75]. This frame-
work constitutes a natural lens through which to study multicomponent molecular machines,
and provides a firm grounding for the study of information thermodynamics in physically
realizable systems.

Studying small-scale systems also reveals the probabilistic nature of the laws of ther-
modynamics. This is illustrated by a famous thought experiment, known as Maxwell’s de-
mon [86]: An intelligent being with microscopic information about the position and velocity
of gas molecules can separate the fast from the slow ones, apparently violating the second
law. “Exorcising” Maxwell’s demon [87] exposed a deep connection between information and
thermodynamics [12], specifically that information about a small fluctuating system can be
exploited to perform useful tasks and that this information has a fundamental cost [12, 88].
Systems that leverage information to extract work are called information engines, and there
are abundant experimental realizations [17, 89–95, 95–99].

1.3 Overview of this thesis

In this thesis I apply existing and novel tools from stochastic thermodynamics to study
molecular machines, with a special focus on understanding the behaviour of multicompo-
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nent molecular machines. At the broadest level my objective is to build a robust physical
theory of biological molecular machines, guided by the following questions, which this thesis
constitutes my efforts to address:

Broad Questions

1. What fundamental limits do the laws of physics impose on the performance of
nanoscale machines, and how close do living organisms come to reaching these
limits?

2. What can we infer about the inner workings of molecular machines from limited
experimental data?

3. What design principles can we learn from biology to facilitate future engineering
of synthetic nanomachines?

Throughout the discussion sections of each chapter of this thesis, boxes of the above
format will highlight key results answering one or more of these questions.

This thesis is organized as follows: Chapter 2 reviews theoretical background that will
be built on throughout the thesis, including bipartite (and multipartite) stochastic thermo-
dynamics, efficiency metrics, and thermodynamic inference. Chapter 3 derives a key family
of inequalities that will be used throughout the thesis, the Jensen bounds. Chapters 4 and
5 explore the dynamics and thermodynamics of collective motor-driven transport systems,
deriving scaling laws and performance trade-offs for a specific model (Chap. 4), and per-
formance bounds and Pareto frontiers for a far more general class of models (Chap. 5). In
Chap. 6 I turn to thermodynamic inference, using the Jensen bounds derived in Chap. 3 to
derive upper and lower bounds on subsystem efficiencies in bipartite molecular machines.
Chapters 7 and 8 consider systems in contact with multiple different sources of fluctuations,
with Chap. 7 examining general bipartite heat engines while Chap. 8 focuses specifically
on light-harvesting molecular machines. Finally, Chapter 9 concludes the thesis by summa-
rizing the main results, highlighting future directions of interest, and providing a broader
perspective.

1.3.1 Contributions

Chapter 1 along with parts of Chapters 2 and 9 are adapted from a review article published
as Ref. [100]. Chapter 3 is adapted from Ref. [69], Chap. 4 from Ref. [80], Chap. 5 from
Ref. [68], Chap. 6 from Ref. [74], and Chapters 7 and 8 from Ref. [52]. I am the sole first
author for Refs. [68, 69, 74, 80, 100], in which I performed the majority of the derivations,
simulations, data analysis, writing, and editing. Ref. [52] was a joint project with Jannik
Ehrich, with whom I am joint first author; we both independently derived the main results,
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and worked together to plan and write the manuscript. The material in Chap. 7 was a full
collaborative effort, while the material in chapter 8 was developed primarily by myself in
response to reviewer feedback on the initial submission of Ref. [52].
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Chapter 2

Theoretical Background

2.1 Motivation and Overview

Classical thermodynamics is primarily concerned with heat engines operating cyclically in
the quasistatic limit, or systems coming to equilibrium with external reservoirs; by contrast,
molecular machines operate far from thermodynamic equilibrium. We are typically inter-
ested in their behaviour in the long-time limit, which is dominated by the steady state. Thus,
modelling molecular machines within the cellular environment requires a thermodynamics
of nonequilibrium steady states.

As a paradigm for molecular machines, consider a nanoscale stochastic system in contact
with an equilibrium thermal reservoir at temperature T (and inverse temperature β ≡
1/(kBT )) with which it can exchange heat, as well as nonequilibrium free-energy reservoirs
with which it can exchange work. Consider FoF1-ATP synthase as a specific example, in
which case the nonequilibrium free-energy reservoirs are the hydrogen-ion gradient across
the mitochondrial membrane and nonequilibrium concentrations of ATP and ADP.

In the sections that follow, and indeed throughout most of this thesis, I focus on systems
that can be described by continuous degrees of freedom. That said, the theory of stochastic
thermodynamics developed throughout this chapter can equivalently be applied to systems
with discrete degrees of freedom, indeed chapters 7 and 8 will feature examples of such
systems. For an overview of stochastic thermodynamics for discrete stochastic systems, I
refer the interested reader to Ref. [51].

2.1.1 Contributions

Parts of this chapter are adapted from a review article published as Ref. [100], authored by
myself and David Sivak.
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2.2 Random Variables, Probability, and Information Theory

Information as a thermodynamic resource is an important theme throughout this thesis.
Information can be quantitatively characterized using tools from information theory [101].
Most centrally, information theory is concerned with quantifying uncertainty in random
variables.

Throughout this thesis, I will refer to random variables with capital letters (e.g., X),
and specific instances of a random variable with lower-case letters (e.g., x). The probability
distribution of a random variable will be denoted p(x), and ensemble averages over p(x) (or
the relevant probability distribution) denoted by angle brackets:

⟨g(x)⟩ ≡
∫

g(x)p(x)dx. (2.1)

Entropy is a concept central to both statistical physics and information theory. For a
single random variable, the Shannon entropy is

S[X] ≡ ⟨− ln p(x)⟩ , (2.2)

while for two variables it is:
S[X, Y ] ≡ ⟨− ln p(x, y)⟩ . (2.3)

For two variables, the relevant distribution is the joint distribution p(x, y). However, the
uncertainty about individual variables can be quantified by the marginal distributions,

p(x) ≡
∫

p(x, y)dy, (2.4a)

p(y) ≡
∫

p(x, y)dx. (2.4b)

Additionally, the dependence of one variable on another can be quantified by the conditional
distributions,

p(x|y) ≡ p(x, y)/p(y), (2.5a)

p(y|x) ≡ p(x, y)/p(x). (2.5b)

These distributions have their own entropies, for example the marginal entropy of X

and conditional entropy of X given Y are

S[X] ≡ ⟨− ln p(x)⟩ , (2.6a)

S[X|Y ] ≡ ⟨− ln p(x|y)⟩ , (2.6b)

and similarly for Y . Here, and elsewhere where there are two random variables under con-
sideration, angle brackets denote averages over the distribution p(x, y).
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For two variables, another important information-theoretic quantity is the mutual in-
formation, which is the difference between the marginal and conditional entropies:

I[X, Y ] ≡ S[X] − S[X|Y ]

= S[Y ] − S[Y |X]

=
〈

ln p(x, y)
p(x)p(y)

〉 (2.7)

The mutual information is a measure of how much the uncertainty about one variable is
reduced by knowledge of the other variable.

The Shannon entropy extends trivially to N variables; for X = {X1, ..., XN }, the Shan-
non entropy is

S[X] ≡ ⟨− ln p(x)⟩ . (2.8)

There is no unique generalization of the mutual information beyond two random variables.
Ref. [102] reviews several of the most commonly used possibilities. For the purpose of this
thesis, the only multivariate information measure considered will be the total correlation,

TC[X] ≡ S[X] −
N∑

i=1
S[Xi]. (2.9)

2.3 Stochastic Thermodynamics for One Degree of Freedom

Consider a stochastic system coupled to a thermal reservoir at temperature T , with contin-
uous state quantified by the random variable X. The particle experiences a potential energy
landscale V (x) and nonconservative force f(x). In the overdamped limit, the dynamics of
the particle are described by the overdamped Langevin equation:

ẋ = 1
ζ

[fnc(x) − ∂xV (x)]︸ ︷︷ ︸
f(x)

+
√

2Dξ(t). (2.10)

Here ζ and D are the friction and diffusion coefficients respectively, and f(x) = fnc(x) −
∂xV (x) is the total force. Finally, ξ(t) denotes Gaussian white noise, which is defined by
the statistical properties

⟨ξ(t)⟩ = 0, (2.11a)〈
ξ(t)ξ(t′)

〉
= δ(t − t′). (2.11b)

The Langevin equation describes individual trajectories, which are stochastic. By con-
trast, the probability distribution p(x, t) evolves deterministically according to the Fokker-
Planck equation:

∂tp(x, t) = −∂xJ(x, t), (2.12)
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for probability flux
J(x, t) = 1

ζ
f(x)p(x, t) − D∂xp(x, t). (2.13)

Most informatively, Langevin dynamics can be described at the level of a probability
distribution over the space of all possible trajectories. This can be done using a stochastic
path-integral formalism [29] which, while mathematically fascinating, will not be used in
this thesis.

As a paradigmatic example, consider a colloidal particle on a ring, with position quan-
tified by x ∈ [0, 2π]. In the absence of a nonconservative force (fnc = 0), the particle should
relax to the equilibrium Boltzmann distribution, which we denote π(x),

lim
t→∞

p(x, t) = π(x) ∝ exp
(−V (x)

kBT

)
. (2.14)

For this to be the case requires
Dζ = kBT. (2.15)

Equation (2.15) is an example of a fluctuation-dissipation theorem (FDT) and was derived
by Einstein in 1905 [103].

If instead fnc ̸= 0, then the system will not reach equilibrium. For a colloidal particle
on a ring, p(x, t) will converge to a nonequilibrium steady state (NESS), where

lim
t→∞

p(x, t) = p(x) ̸= π(x). (2.16)

The goal of stochastic thermodynamics is to build a quantitative thermodynamic de-
scription of microscopic stochastic systems, including first and second laws governing flows
of energy and entropy. To do this, we must first define these quantities.

2.3.1 Energy flows and the first law

In the absence of kinetic energy (since the dynamics are overdamped, momentum does not
persist over significant timescales), the total energy of the particle in microstate x is simply
given by its potential energy,

e(x) = V (x). (2.17)

Suppose the particle moves by an infinitesimally small step dx. Then the energy changes by

de = ∂xV (x) ◦ dx. (2.18)

Here ‘◦’ denotes multiplication in the Stratonovich sence, which is explained in the box
below.
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Stratonovich Discretization and Ensemble Averages When multiplying x-
dependent quantities by changes in x (either dx or ẋ), I use the symbol ◦ to indicate
that the multiplication should be interpreted in the Stratonovich sense. This means
that products like f(x) ◦ dx are discretized in the form

f(x) ◦ dx = f(x) · [x(t + dt/2) − x(t − dt/2)] . (2.19)

Using the Stratonovich convention, rather than its alternative the Itô convention,
ensures that the chain rule of calculus holds as in deterministic calculus. For further
discussion of this technical detail, I refer the interested reader to Ref. [104].
The Stratonovich discretization also makes possible the evaluation of ensemble aver-
ages of the form

Ġ ≡ ⟨g(x) ◦ ẋ⟩p(ẋ,x) . (2.20)

As proven, for example by Ehrich [105], these can be evaluated as

⟨g(x) ◦ ẋ⟩p(ẋ,x) =
〈

g(x)J(x)
p(x)

〉
p(x)

. (2.21)

The work done on the particle by the nonconservative force can also be quantified as

d̄w = fnc(x) ◦ dx. (2.22)

Over the course of the small step dx, energy must be conserved, so the balance of the
infinitesimal energy change and work must equal the heat exchanged by the particle with
its environment. This leads to the natural definition of the heat,

d̄q = −f(x) ◦ dx. (2.23)

With this definition, we recover a first law describing energy balance for an infinitesimal
state change dx,

de = d̄w + d̄q. (2.24)

Integrating this equation over a trajectory, x(·) = {x(t), 0 ≤ t ≤ τ}, yields a first law for
trajectories

e(τ) − e(0) =
∫ τ

0
de[x(t)] (2.25a)

=
∫ τ

0
d̄w[x(t)] +

∫ τ

0
d̄q[x(t)] (2.25b)

= w[x(·)] + q[x(·)]. (2.25c)
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2.3.2 Entropy flows and the second law

With the first law now established, it is time to turn to the second law. First, we must
define entropy. To do this, first consider the entropy of an ensemble of systems, given by
the Shannon entropy (2.2). For a single member of the ensemble, then, defining the state-
dependent entropy as [106]

s(x) = − ln p(x), (2.26)

yields the Shannon entropy when the ensemble average is taken,

S[X] = ⟨s(x)⟩ . (2.27)

Again considering an infinitesimal change in the system state dx, the infinitesimal change
in the entropy of the universe (here and throughout, we measure entropy production in
dimensionless units scaled by Boltzmann’s constant kB per second) is [106]

d̄σ = d̄sr + ds, (2.28)

where sr is the entropy of the reservoir. This follows naturally from considering the entire
universe to comprise nothing but the system and reservoir. Since the reservoir is assumed
to be at equilibrium, the change in its entropy is the heat divided by the temperature,

d̄sr = −d̄q/ (kBT ) . (2.29)

The change in the system entropy is more subtle, but can be derived as follows [106]:

ds = −∂x ln p(x) (2.30a)

= −∂xp(x)
p(x) ◦ dx (2.30b)

= J(x)
Dp(x) ◦ dx − f(x)

kBT
◦ dx (2.30c)

= J(x)
Dp(x) ◦ dx + d̄q/ (kBT ) . (2.30d)

Here in the third line I inserted the Fokker-Planck equation, and in the fourth line I identified
the heat from its definition. Combining the results for d̄sr and ds, I obtain the change in
the entropy of the universe:

d̄σ = J(x)
Dp(x) ◦ dx. (2.31)

Note that d̄σ need not be non-negative! This means that individual trajectories can “break
the second law”, decreasing the entropy of the universe. The next subsection shows how the
second law is recovered from this quagmire.
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2.3.3 Ensemble averages

For molecular machines, as with many other stochastic systems of interest, we are generally
interested in ensemble-averaged rates of energetic and entropic quantities at steady state.

For example, using Eq. (2.21), the ensemble-averaged work rate is

Ẇ =
〈 d̄w

dt

〉
(2.32a)

= ⟨fnc(x) ◦ ẋ⟩p(x,ẋ) (2.32b)

=
〈

fnc(x)J(x)
p(x)

〉
. (2.32c)

Similarly, the heat and energy flows are

Q̇ = −
〈

f(x)J(x)
p(x)

〉
, (2.33a)

Ė =
〈

∂xV (x)J(x)
p(x)

〉
. (2.33b)

Thus, as expected, the first law extends from trajectory-level to ensemble-averaged energy
flows:

Ė = Q̇ + Ẇ . (2.34)

At steady state, the energy is constant, so that Q̇ + Ẇ = 0.
Performing the same ensemble averages yields average rates of change for the system

entropy (S) and entropy of the universe (Σ):

Ṡ = −
〈

∂x ln p(x)J(x)
p(x)

〉
, (2.35a)

Σ̇ =
〈

J(x)2

Dp(x)2

〉
. (2.35b)

Thus the second law at the ensemble level is

Σ̇ = Ṡ − Q̇/ (kBT ) ≥ 0. (2.36)

Here nonnegativity of the entropy production follows from the square inside the ensemble
average.

2.4 Two Degrees of Freedom: Bipartite Systems

As a next step, consider now a system which can be decomposed into two subsystems,
with two stochastic degrees of freedom evolving according to coupled overdamped Langevin
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equations:

ẋ = 1
ζX

[fnc
X (x, y) − ∂xV (x, y)]︸ ︷︷ ︸

fX(x,y)

+
√

2DXξX(t), (2.37a)

ẏ = 1
ζY

[fnc
Y (x, y) − ∂yV (x, y)]︸ ︷︷ ︸

fY (x,y)

+
√

2DY ξY (t). (2.37b)

As in the one-dimensional case, each of the noise terms ξX(t) and ξY (t) satisfy Eqs. (2.11). In
addition, in the sections that follow (and throughout this thesis) I assume that the dynamics
of X and Y are bipartite [75, 107, 108], meaning that each subsystem is in contact with
different thermal reservoirs which may in general be at different temperatures TX and TY .
For Langevin dynamics, this requires the two noise terms to be uncorrelated,

〈
ξX(t)ξY (t′)

〉
= 0, ∀t, t′. (2.38)

Again, I assume the fluctuation-dissipation theorem holds for each subsystem, so that

ζXDX = kBTX , (2.39a)

ζY DY = kBTY . (2.39b)

At the distribution level, these coupled Langevin dynamics are described by a single Fokker-
Planck equation,

∂tp(x, y, t) = −∂xJX(x, y, t) − ∂yJY (x, y, t), (2.40)

for probability fluxes

JX(x, y, t) = 1
ζX

[fnc
X (x, y) − DX∂xV (x, y)] p(x, y, t) − ∂xp(x, y, t), (2.41a)

JY (x, y, t) = 1
ζY

[fnc
Y (x, y) − DY ∂yV (x, y)] p(x, y, t) − ∂yp(x, y, t). (2.41b)

For Fokker-Planck dynamics, the bipartite assumption requires that there are no terms of
the form ∂x∂yp.

2.4.1 Energy flows and first laws

We once again consider the change in system energy e(x, y) = V (x, y) over an infinitesimal
time interval dt, this time with both X and Y changing by respective amounts dx and dy.
The change in energy is

de = ∂xV ◦ dx︸ ︷︷ ︸
deX

+ ∂yV ◦ dy︸ ︷︷ ︸
deY

= fnc
X ◦ dx︸ ︷︷ ︸

d̄wX

+ fnc
Y ◦ dy︸ ︷︷ ︸

d̄wY

− [fnc
X − ∂xV ] ◦ dx︸ ︷︷ ︸

d̄qX

− [fnc
Y − ∂yV ] ◦ dy︸ ︷︷ ︸

d̄qY

.

(2.42)
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Here, we have decomposed the total change in system energy into work and heat contri-
butions from each of the X and Y subsystems. From Eq. (2.42), we can see that more
fine-grained relationships hold between the changes in energy, works, and heats for each of
X and Y :

deX = d̄wX + d̄qX , (2.43a)

deY = d̄wY + d̄qY . (2.43b)

These are the subsystem first laws, here written at the trajectory level.
As in Sec. 2.3, considering rates and taking ensemble averages gives first laws describing

average rates of energy flow for each subsystem:

ĖX = ẆX + Q̇X , (2.44a)

ĖY = ẆY + Q̇Y . (2.44b)

At steady state, the energy is constant, so that any increase in energy due to Y dynamics
must be accompanied by a matching decrease in energy due to X: ĖX = −ĖY . Treating Y

as an external control parameter driving X, we can also think about the energy flow ĖY as
“transduced work” from Y to X [51].

2.4.2 Entropy flows and second laws

As before, the change dσ in the entropy of the universe is the sum of the change in system
energy and change in reservoir entropies,

dσ = ds + dsr (2.45a)

= −∂x ln p(x, y) ◦ dx︸ ︷︷ ︸
dsX

−∂y ln p(x, y) ◦ dy︸ ︷︷ ︸
dsY

+ βX [fnc
X − ∂xV ] ◦ dx︸ ︷︷ ︸

−βX d̄qX

+ βY [fnc
Y − ∂yV ] ◦ dy︸ ︷︷ ︸

−βY d̄qY

.

(2.45b)

Here in the last line I split the entropy changes into contributions due to each of X and
Y . With this splitting, the total entropy production can be decomposed into contributions
from each subsystem, dσ = dσX + dσY , given by

dσX = dsX − βX d̄qX , (2.46a)

dσY = dsY − βY d̄qY . (2.46b)
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For ensemble-averaged rates, this gives

Σ̇Y = ṠX [X, Y ] − βY Q̇Y ≥ 0, (2.47a)

Σ̇X = ṠY [X, Y ] − βXQ̇X ≥ 0. (2.47b)

Here we now find that the subsystem entropy production rates Σ̇X and Σ̇Y are both non-
negative.

2.4.3 Information flow

Using the definition of the mutual information (2.7), the entropy rates ṠX and ṠY can be
decomposed further:

ṠX [X, Y ] = ⟨−∂x ln p(x, y) ◦ ẋ⟩ (2.48a)

=
〈

−∂x ln
[
p(x)p(x, y)

p(x)

]
◦ ẋ

〉
(2.48b)

= ⟨−∂x ln p(x) ◦ ẋ⟩ −
〈

−∂x ln p(x, y)
p(x) ◦ ẋ

〉
(2.48c)

= ⟨−∂x ln p(x) ◦ ẋ⟩ −
〈

−∂x ln p(x, y)
p(x)p(y) ◦ ẋ

〉
(2.48d)

= dtS[X] − İX . (2.48e)

Here dtS[X] is the rate of change of the marginal entropy S[X], and İX is the rate at
which the dynamics of X change the mutual information, which we call the information
flow (alternatively known as the learning rate [109]). ṠY can be decomposed similarly. At
steady state, the marginal entropies S[X] and S[Y ] are constant, so that ṠX = −İX and
ṠY = −İY . Thus, the second laws can be rewritten in terms of the information flow as [75]

Σ̇Y = −βY Q̇Y − İY ≥ 0, (2.49a)

Σ̇X = −βXQ̇X − İX ≥ 0. (2.49b)

As with the energy flow, at steady state the mutual information is constant, so that İX =
−İY .

Compared to the energy flow ĖY , the information flow İY is a more nebulous thermo-
dynamic quantity. The information flow is a component of the total change in system free
energy due to the dynamics of Y , which we call the transduced free energy. At steady state,
Y increases the free energy F = E − kBTS of the system at a rate

ḞY ≡ ĖY − kBTY ṠY (2.50a)

= ĖY + kBTY İY . (2.50b)
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ṠY is the rate at which Y increases the system entropy. At steady state the marginal entropy
S[Y ] = S[X, Y ] + I[X, Y ] − S[X] is constant, so that the entropic part of the transduced
free energy (quantifying changes in joint entropy) is given by the information flow [51].

To gain a better intuition, consider the following alternative definition for the informa-
tion flow:

İY ≡ lim
τ→0

I [X(t), Y (t + τ)] − I [X(t), Y (t)]
τ

. (2.51)

Equation (2.51) shows that the information flow is the rate at which the dynamics of
the Y subsystem increase the mutual information I[X, Y ] between the two subsystems.
This mutual information is a thermodynamic resource, which can be used by, e.g., the
X subsystem: if the X dynamics decrease the mutual information (İX < 0), then the
subsystem second law allows X to entirely convert heat from its environment (Q̇X > 0)
into output work (−ẆX > 0). If only X is observed, it appears to convert heat directly
into work, seemingly a violation of the second law. Only when the information flow is taken
into account, does the validity of the second law become apparent. Thus a useful way of
thinking about the information flow İY is as the capacity of subsystem X to convert heat
into work.

2.4.4 Constraints on bipartite engine setups

These thermodynamic laws constrain the possible flows within bipartite engines. Figure 2.1
illustrates several example operational modes that generate output work −ẆX . One such
example is the conventional engine, where free energy from input work ẆY is transduced
solely in the form of energy flow between the Y and X subsystems. In this case, one subsys-
tem takes in input work, the other produces output work, and both subsystems dissipate
heat to their environments. Alternatively, it is possible to construct a pure information
engine, where free energy is instead exchanged solely via information flow: one subsystem
(here Y ) takes input work, creates mutual information between Y and X, and dissipates
heat −Q̇Y to the environment; the other subsystem then uses the mutual information to
extract heat from the environment, which it then turns into output work −ẆX .

Conventional and information engines represent extremes, each utilizing only one type
of free-energy transduction. More generally, work converters feature both internal energy
and information flows (Fig. 2.1c); we call these hybrid engines. Finally, bipartite machines
with access to different sources of fluctuations can operate as heat engines (Fig. 2.1d),
producing output power by leveraging a temperature difference. As discussed in Sec. 2.4.3,
the directionality of internal information and energy flows is constrained [52].

The conventional and information engines defined here may at first glance bear some
superficial similarities to the power-stroke and Brownian-ratchet archetypes for molecular
motors [110, 111]; however, while the conventional/information engine distinction describes
how free energy is transduced within a multicomponent molecular machine, one version of
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Figure 2.1: Different operational modes of bipartite thermodynamic engines, with their
defining constraints below. a) Conventional engine. b) Information engine. c) Hybrid engine.
d) Heat engine (TY > TX). Arrows show direction of energy and information flows, all
symbols are positive quantities for the operational modes depicted.

the power-stroke/Brownian-ratchet distinction quantifies how free-energy differences and
driving forces are split between forward and reverse rates of specific state transitions [110].
To my knowledge, there is no necessary relationship between conventional engines and such
power-stroke motors, and while pure information engines and Brownian ratchets coincide
under certain conditions [112], there is no known general relationship.

2.4.5 Efficiency metrics for bipartite machines

Work Transducers

Many molecular machines transduce free energy from one form to another, taking in input
work ẆY via one subsystem (Y , without loss of generality), and outputting work −ẆX via
the other subsystem. Examples include the conventional, information, and hybrid engines in
Fig. 2.1. For work transducers, thermodynamic efficiency can be defined in a straightforward
manner as the ratio of output to input work,

ηT ≡ −ẆX

ẆY

≤ 1. (2.52)

The bipartite structure allows us to resolve more fine-grained details of free-energy
transduction within the system. Combining the first (Eq. (2.44a)) and second (Eq. (2.49))
laws of bipartite stochastic thermodynamics at steady state yields two nested inequalities
relating the free-energy inputs and outputs of each subsystem [76, 113]:

ẆY ≥ ĖY + kBT İY ≥ −ẆX . (2.53)

Here the sum of the energy and information flows, the internally transduced free energy
ĖY + kBT İY , acts as a bottleneck between input and output work. This motivates the
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introduction of subsystem efficiencies [52, 76], which quantify the efficiency of free-energy
transduction for each subsystem:

ηY ≡ ĖY + kBT İY

ẆY

≤ 1, (2.54a)

ηX ≡ −ẆX

ĖY + kBT İY

≤ 1. (2.54b)

Their product is the thermodynamic efficiency of the whole system, ηT = ηY ηX . Other sub-
system efficiency definitions have also been proposed to quantify the efficiency of converting
information into heat energy [75].

Transport Motors

Many molecular machines, rather than transducing energy from one form to another, con-
sume free energy to transport cargo from one place to another. Examples include transport
motors such as kinesin pulling a diffusive cargo, and the flagellar motor pushing a cell. For
these kinds of systems, we can think of the motor and cargo as the Y and X subsystems,
respectively. In this case, the output of the motor is motion of the cargo at some average
velocity ⟨vX⟩ against the force of viscous friction, for Stokes flow equal to the friction co-
efficient ζX times the velocity. The average work rate against this viscous friction force is
thus ζX⟨vX⟩2, suggesting the definition of the Stokes efficiency [114]:

ηS ≡ ζX ⟨vX⟩2

ẆY

≤ 1. (2.55)

For transport systems, the motor itself still has a well-defined subsystem efficiency (Eq. (2.54a)),
quantifying how much of the input work is made available to the cargo as transduced free
energy [74].

2.5 Many Degrees of Freedom: Multipartite Systems

While Sec. 2.4 focuses on bipartite systems, many of the main results generalize to multipar-
tite systems with N > 2 degrees of freedom. As with the bipartite assumption, a system is
multipartite when all subsystems are influenced by independent fluctuations, with the same
mathematical consequences as in the bipartite case. Many molecular machines of interest
are well-described as multipartite systems, for example collective transport systems where
anywhere from one to over a hundred transport motors jointly pull a single cargo [68, 80],
or the bacterial flagellar motor where ≈ 10 stators collectively apply torque to turn a single
rotor.

Consider an overdamped stochastic system with N degrees of freedom, denoted x =
{xi}N

i=1, each in contact with a heat bath at temperature Ti. The system is characterized
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by a mobility tensor µ, which is related to the hydrodynamic friction tensor ζ by µ =
ζ−1 [115, 116], as well as a diffusion tensor D. For multipartite systems the mobility, friction,
and diffusion tensors are all diagonal, so that each coordinate is subject to independent
thermal noise [117]. I assume their elements to be independent of time and position. Di, ζi,
and µi denote the coefficients of the ith subsystem.

The system dynamics depend on the forces that influence it; these forces may either
result from a conservative potential V (x, t), or be nonconservative forces fnc(x, t) which do
not arise from a potential. Here I also allow both conservative and nonconservative forces
to in general be time-dependent due to external control. The total force vector acting on
the system is f(x, t) = fnc(x, t) − ∇V (x, t).

The system evolves dynamically according to a multidimensional overdamped Langevin
equation,

ẋ = µf(x, t) + ξ(t), (2.56)

where the random fluctuations ξ(t) have zero mean and correlations satisfying〈
ξ(t)ξ⊤(t′)

〉
= 2D δ(t − t′). (2.57)

I assume the fluctuation-dissipation theorem, so that elements of the diffusion and mobility
tensors are related by [118, 119]

Dii = µii kBTi, (2.58)

for Boltzmann’s constant kB.
These dynamics can equivalently be described at the level of the probability distribution

p(x, t) by a Fokker-Planck equation (FPE):

∂

∂t
p(x, t) = −∇ · J(x, t), (2.59)

with probability flux vector

J(x, t) ≡ µ f(x, t) p(x, t) − D ∇p(x, t). (2.60)

Following the same steps as for bipartite systems, the ensemble-averaged energy flow
rates are

Ėi =
〈

∂V

∂xi

Ji(x, t)
p(x, t)

〉
, (2.61a)

Ẇi =
〈

fnc(x, t)Ji(x, t)
p(x, t)

〉
, (2.61b)

Q̇i =
〈

−f(x, t)Ji(x, t)
p(x, t)

〉
. (2.61c)
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For each subsystem, these flows satisfy a local first law:

Ėi = Ẇi + Q̇i. (2.62)

Each subsystem likewise satisfies a second law [117],

Σ̇i = Ṡi[X] − Q̇i/ (kBTi) ≥ 0, (2.63)

for entropy flow
Ṡi[X] =

〈
− ∂

∂xi
ln p(x, t)Ji(x, t)

p(x, t)

〉
, (2.64)

and entropy production rate

Σ̇i = D−1
i

〈[
Ji(x, t)
p(x, t)

]2〉
. (2.65)

Due to the multipartite assumption, the total entropy production rate is simply the sum of
all subsystem entropy production rates [117],

Σ̇ =
N∑

i=1
Σ̇i. (2.66)

As for bipartite systems, the system entropy rate ṠX [X] can be decomposed into a
marginal entropy term and an information-theoretic term,

ṠX [X] =
〈

− ∂

∂xi
ln p(x, t)Ji(x, t)

p(x, t)

〉
(2.67a)

=
〈

− d
dxi

ln pXi(xi, t)Ji(x, t)
p(x, t)

〉
−
〈

∂

∂xi
ln p(x, t)

ΠN
j=1pXj (xj , t)

Ji(x, t)
p(x, t)

〉
(2.67b)

= dtS[Xi] − İi. (2.67c)

Here the information flow İi is the rate at which the dynamics of the i’th subsystem change
the total correlation (Eq. (2.9)), which is one possible multivariate generalization of the
mutual information. The subsystem second laws then become

Σ̇i = dtSXi [Xi] − Q̇i/ (kBTi) − İi ≥ 0 (2.68)

The appearance in the second law of the total correlation shows that it is the correct
multivariate generalization of the mutual information as a thermodynamic resource.

While for bipartite systems the energy and information flows can be described as flows
from one system to another, this description is much less straightforward for multipartite
systems. In general such a description can only be assigned when the graph describing
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interactions between subsystems is a tree [120]. This is the case for the collective transport
system considered in Chap. 4, where each of N motors can only interact with the sole cargo,
and thus the energy flows for each motor can be considered flows from motor to cargo.
Otherwise, in this thesis I will avoid delving into these fraught accounting considerations,
and leave it for future work.

2.6 Other Generalizations

While my focus in this thesis is on analysis of single molecular machines, or single collections
of linked machines, when large collections are considered together they can be modeled using
deterministic chemical reaction networks, with state concentrations replacing state proba-
bilities as the relevant variables. Nonequilibrium steady-state thermodynamics can still be
formulated for chemical reaction networks [121], and when these networks are bipartite the
energy and information flows can be defined as for single molecular machines [112]. This
formalism has frequently been used to study the thermodynamics of synthetic molecular
machines [25, 45].

Efforts have also been made to extend certain results to systems lacking the bipartite
structure [52, 69, 122]. I will derive certain results for non-bipartite/multipartite systems
in chapters 3 and 8.

2.7 Bipartite Models for Molecular Machines

To give some context for how others have used stochastic thermodynamics to study mul-
ticomponent molecular machines, here I highlight several examples of bipartite models for
molecular machines including ATP synthase, kinesin, and a synthetic rotary motor (see
Fig. 2.2). The lens of bipartite stochastic thermodynamics leads to new kinds of analysis in
these systems.

The coupled rotary motors of ATP synthase constitute a textbook example of a bipartite
molecular machine. The rotational degrees of freedom in ATP synthase, the c-ring in Fo

and the γ-shaft in F1, can be modelled using overdamped Langevin equations coupled by
a rotationally symmetric joint potential energy [77, 113, 123]. One of the most notable
findings [77] is that output power depends non-monotonically on the coupling strength
between Fo and F1. While efficiency is highest for tight coupling, the output power is
maximized at intermediate coupling strength (Fig. 2.2a). This somewhat counterintuitive
result can be understood by considering the dominant transition paths (inchworming and
slippage) during coupled rotation of the two motors [77]: at low coupling strength the motors
are decoupled, while at high coupling strength they can only rotate in lockstep; intermediate
coupling strength allows enough flexibility for Fo and F1 to separately cross their respective
energy barriers (inchworming) while keeping slippage minimal.
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İchem

Jmech

Figure 2.2: Insights from analysis of the energy and information flows in simple models
of molecular machines. a) Energy and information flows for Fo and F1 in ATP synthase,
as functions of the coupling energy βEcouple, from the model considered in Ref. [113]. b)
Energy and information flows from the chemical and mechanical components of the kinesin
motor model studied in Ref. [124], as functions of the opposing force F . c) Chemical-work
consumption, information flow, and mechanical flux in a model, as functions of the fuelling
gating, for the synthetic rotary motor studied in Ref. [19]. Gray vertical line indicates
experimental conditions. Panel a) adapted with permission from Ref. [113]; copyrighted by
the American Physical Society. Inset schematic and code for c) adapted from Ref. [19] (CC
BY 4.0).

Exploring a more detailed picture of energy and information flows sheds further light on
the inner workings of ATP synthase. Figure 2.2a shows the input and output work rates ẆFo

and −ẆF1 , along with the energy and information flows ĖFo and İF1 . As with the output
power, the transduced free energy and energy flow from Fo to F1 are both maximized at
intermediate coupling, along with the information flow. This information flow from F1 to
Fo allows Fo to decrease the heat it dissipates to the environment, thereby increasing the
energy transduced to F1 [113]. This model of ATP synthase is an example of a hybrid engine.

Reference [124] considered flows of energy and information between the heads of indi-
vidual kinesin and myosin motors, as well as changes in energy and information due to
contributions from chemical and mechanical dynamics. Figure 2.2b illustrates the thermo-
dynamics of kinesin stepping. Shown are the input chemical work rate Ẇchem, the output
mechanical work rate −Ẇmech, and the changes due to the chemical dynamics in the in-
ternal energy, Ėchem, and the mutual information (of the chemical states of the motor’s
two heads), İchem. This model shows significant information flow for small opposing forces,
with information constituting an important part of the transduced free energy when output
power is maximized. This internal information flow is interpreted as a quantitative measure
of “gating”, an allosteric interaction mediated by mechanical strain between motor heads
where the chemical state of one head regulates the stepping kinetics of the other head [125].
Gating is believed to increase both processivity [126] and the stall force [127]. This model
of kinesin is another example of a hybrid engine.
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The first nanoscale autonomous chemically fueled molecular motor [21] was analyzed
from a thermodynamic standpoint in Ref. [25]. This rotary motor (Fig. 1.1a fourth panel)
consists of two interlocking molecular rings with two “docking stations” where motion of
the smaller ring is alternately blocked or permitted by binding/unbinding of chemical fuel.
The motor was modelled as bipartite, with coupled chemical and mechanical degrees of free-
dom. In this case, the experimentally synthesized molecular motor was shown to operate
as an information ratchet, with free energy transduced entirely via information flow İchem

(Fig. 2.2c). While this motor is strikingly less efficient than biological molecular machines,
with the chemical subsystem’s efficiency on the order of 10−8, an exploration in parameter
space around the physically realized model allowed the authors to determine design princi-
ples for future improvements. For example, by adjusting the “fuelling gating” (the ratio of
two rate constants, quantifying attachment bias of the chemical fuel), the mechanical flux
Jmech can be increased at constant chemical input work Ẇchem (Fig. 2.2c). This increase in
performance occurs via a corresponding increase in the information flow, and thus the sub-
system efficiency (Eq. (2.54a)) of free-energy transduction from the chemical to mechanical
subsystems. This synthetic molecular machine is an example of an information engine.

2.8 Thermodynamic Inference

Many thermodynamic quantities of interest, for example efficiencies and internal energy
and information flows, are difficult to quantify experimentally. Calculating these quanti-
ties generally requires full knowledge of the joint nonequilibrium probability distribution
governing the relevant degrees of freedom, along with knowledge of all conservative and
nonconservative forces acting on the system. Such information is typically beyond our cur-
rent ability to measure for systems as complex as biological molecular machines, and can be
difficult to compute even for numerical simulations of model systems. As such, we turn to
thermodynamic inference: the study, development, and application of mathematical tools
to infer hidden thermodynamic properties from quantities that can be observed experimen-
tally [128].

Thermodynamic inference is often accomplished via the use of bounds on entropy pro-
duction. One generic example is bounding the steady-state thermodynamic efficiency of an
isothermal molecular machine converting between different forms of work. Typical single-
molecule experiments probe motor proteins working against applied load forces, and measure
the output work rate Ẇout but not the input work rate Ẇin. In this case, a lower bound
Σ̇LB on the entropy production rate leads to an upper bound on the thermodynamic effi-
ciency, ηT ≤ 1/

(
1 + Σ̇LB/Ẇout

)
. An important goal in stochastic thermodynamics is then

to derive entropy production bounds, calculable from available data, which can be inserted
into relationships such as these.
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2.8.1 Thermodynamic uncertainty relations

A widely used entropy production bound emerging from stochastic thermodynamics is the
family of thermodynamic uncertainty relations (TURs) [67]. These inequalities relate en-
tropy production to the means and variances of time-integrated dynamic or thermodynamic
currents. TURs typically take the form

Στ ≥ 2 ⟨Jτ ⟩
Var (Jτ ) , (2.69)

where Στ is the entropy production over a time interval τ , and Jτ is any suitably defined
current. In the short-time limit, bounds on the entropy production rate are obtained.

An immediate application of the TUR, first demonstrated in Ref. [73], is inferring the
efficiencies of molecular transport motors from measurements of their average velocity ⟨v⟩
and effective diffusivity

Deff ≡ lim
t→∞

〈
∆x2〉− ⟨∆x⟩2

2t
. (2.70)

In particular, the thermodynamic efficiency (Eq. (2.52)) of a motor pulling against a con-
stant load force f , and the Stokes efficiency (Eq. (2.55)) of a motor pulling a diffusive cargo
(with diffusion coefficient Dc) against viscous drag, are upper bounded by

ηT ≤
(

1 + ⟨v⟩
βDefffload

)−1
, (2.71a)

ηS ≤ Deff
Dc

. (2.71b)

The TUR can also be used to quantitatively assess the performance of molecular ma-
chines, by measuring how close their true entropy production rate comes to saturating the
bound. This has been done, for example, for a simulated artificial molecular motor, reveal-
ing significant deviation from the bound [72]. Investigating the source of these inefficiencies
can uncover design principles for improving performance.

Beyond the canonical form of the TUR (Eq. (2.69)), other related bounds include TUR-
type bounds on subsystem entropy production rates valid at short times [129], and a pair
of bipartite TUR bounds for subsystem entropy production rates that hold more gener-
ally [130].

2.8.2 Other bounds on entropy production

While the TUR has seen applications towards inference for molecular machines, many other
bounds on entropy production have been derived through the formalism of stochastic ther-
modynamics. Most prominently, these include a collection of thermodynamic speed lim-
its [131–134] that lower bound the entropy production in terms of the time taken to move
a system from one probability distribution to another.
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While constraints on entropy production typically provide lower bounds, Dechant [135]
recently derived an upper bound on the entropy production rate of a stochastic system,
Σ̇ ≤ β

〈
f⊤

ncµfnc
〉
, in terms of an ensemble-averaged norm of the non-conservative forces

fnc. Intuitively, the magnitude of nonconservative forces limits how far from equilibrium the
system can be driven, thus limiting the entropy production rate. Combined with previously
derived lower bounds on entropy production, upper bounds hold promise for more precise
inference.

Entropy production can also be inferred directly, for example using the Variance Sum
Rule (VSR) [136, 137], which requires measurements of the second time derivative of the
variance of position displacement along with the variance of the forces acting on the system.
While the VSR has yet to be applied to the study of molecular machines, I believe it has
significant potential as an inference tool.

In the next chapter, I will derive a new entropy production bound that will prove
invaluable for studying multicomponent molecular machines.
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Chapter 3

Jensen Bound on the Entropy
Production Rate for
Multicomponent Stochastic
Systems

Bounding and estimating entropy production has long been an important goal of nonequilib-
rium thermodynamics. I derive a lower bound on the total and subsystem entropy production
rates of continuous stochastic systems. I first derive this ‘Jensen bound’ for multipartite
overdamped Langevin dynamics, then consider several extensions, allowing for position-
dependent diffusion coefficients, underdamped dynamics, and non-multipartite overdamped
dynamics.

3.1 Introduction

Bounds on entropy production are useful tools in thermodynamics, placing constraints on
the space of physically realizable systems and processes. For an example, we need look
no further than the second law itself. The second law was famously used by Carnot to
bound the efficiency of heat engines [53], leading to improved steam-engine designs with
greater efficiencies. Entropy-production bounds likewise serve as tools for thermodynamic
inference [128], where observations of a system’s dynamical behaviour are used to constrain
hidden thermodynamic details.

The last decade has seen a flurry of entropy-production bounds derived through the
framework of stochastic thermodynamics [29], the most well-known being the thermody-
namic uncertainty relation (TUR). First conjectured in Ref. [65] and later proven more
generally in Ref. [66], the TUR encompasses a family of relations bounding entropy produc-
tion using fluctuations of observable currents (Ref. [67] reviews recent developments). Im-
portant applications include bounding and inferring the efficiency of motor proteins from ex-
perimental data [73]. Other stochastic-thermodynamic entropy-production bounds include
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geometrical bounds based on the Wasserstein distance [134] and various thermodynamic
speed limits [131–133].

In this chapter, I derive a new lower bound on entropy production rates for multi-
component stochastic systems which I call the Jensen bound, providing a general derivation
for continuous stochastic systems with multiple degrees of freedom. In particular, I focus
on four main objectives. I first derive the Jensen bound in full generality for multipar-
tite overdamped Langevin dynamics, allowing for external control, different temperatures,
and different mean coordinate rates of change. I then establish three additional extensions
to the Jensen bound: inhomogeneous diffusion coefficients, underdamped dynamics, and
non-multipartite overdamped dynamics. I also explore the relationship between the Jensen
bound and the TUR, showing explicitly how for some classes of systems the Jensen bound
can be derived from short-time limits of different TUR formulations.

3.1.1 Contributions

This chapter is adapted from an article published as Ref. [69], authored by myself and David
Sivak.

3.2 Multipartite overdamped Langevin dynamics

Consider a multipartite stochastic system with N degrees of freedom evolving according
to overdamped Langevin dynamics, as characterized in Sec. 2.5. As shown in Sec. 2.5, the
entropy production rate of the ith subsystem is

Σ̇i = D−1
i

〈[
Ji(x, t)
p(x, t)

]2〉
. (3.1)

The total entropy production rate is the sum of all subsystem entropy production rates,

Σ̇ =
N∑

i=1
Σ̇i. (3.2)

Given the functional form of Eq. (3.1), Jensen’s inequality [138] dictates that〈[
Ji(x, t)
p(x, t)

]2〉
≥
〈

Ji(x, t)
p(x, t)

〉2
. (3.3)

On the righthand side I identify the mean rate of change ⟨ẋi⟩ of the ith coordinate, which
is equal to the ensemble-average of the probability current divided by the probability dis-
tribution [29]:

⟨ẋi⟩ =
〈

Ji(x, t)
p(x, t)

〉
. (3.4)
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Two inequalities follow from this, respectively constraining the partial and total entropy
production rates:

Σ̇i ≥ D−1
i ⟨ẋi⟩2, (3.5a)

Σ̇ ≥
N∑

i=1
D−1

i ⟨ẋi⟩2. (3.5b)

I call Eq. (3.5a) the subsystem Jensen bound and Eq. (3.5b) the total Jensen bound. These
can equivalently be written in terms of friction coefficients rather than diffusion coefficients.

Note that this derivation allows for time-dependent forces, different subsystem tem-
peratures, and different mean coordinate rates of change. In the following sections, I will
generalize the Jensen bound in three different directions to allow for position-dependent
diffusion coefficients, underdamped dynamics, and non-multipartite dynamics.

3.3 Position-dependent diffusion coefficients

Suppose now that the system has position-dependent diffusion coefficients, such that Di =
Di(x). By the fluctuation-dissipation theorem (2.58), the mobility and friction coefficients
thus also depend on position. The entropy production rate for the ith subsystem is then [139]

Σ̇i =
〈

Di(x)−1
[

Ji(x, t)
p(x, t)

]2〉
. (3.6)

To bound this quantity, I use the Cauchy-Schwarz inequality, which applied to the covariance
of two random variables X and Y gives [140]

⟨XY ⟩2 ≤
〈
X2
〉〈

Y 2
〉

. (3.7)

Specializing to X = Ji(x, t)/[
√

Di(x)p(x, t)] and Y =
√

Di(x) then gives

〈
Ji(x, t)
p(x, t)

〉2
≤
〈

Di(x)−1
[

Ji(x, t)
p(x, t)

]2〉
⟨Di(x)⟩ . (3.8)

Identifying the entropy production rate Σ̇i (3.6) on the righthand side and mean coordinate
rate of change ⟨ẋi⟩ (3.4) on the left hand side, dividing both sides by ⟨Di(x)⟩ then yields
the subsystem Jensen bound

Σ̇i ≥ ⟨Di(x)⟩−1⟨ẋi⟩2, (3.9)

where the constant diffusion coefficient of Eq. (3.5a) has been replaced by the steady-state
average diffusion coefficient ⟨Di(x)⟩. Summing the subsystem Jensen bounds for all N
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subsystems then yields the total Jensen bound:

Σ̇ ≥
N∑

i=1
⟨Di(x)⟩−1⟨ẋi⟩2. (3.10)

While these expressions require knowledge of the nonequilibrium probability distribution to
evaluate the quantities ⟨Di(x)⟩, the entropy production rates can be further lower bounded
using the maximum values of the diffusion coefficients,

Dmax
i ≡ max {Di(x) : x ∈ dom(x)} . (3.11)

Here dom(x) is the domain of x over which the function Di(x) is defined. Since Dmax
i ≥

Di(x) for all x ∈ dom(x), we have

Σ̇i ≥ (Dmax
i )−1 ⟨ẋi⟩2, (3.12a)

Σ̇ ≥
N∑

i=1
(Dmax

i )−1 ⟨ẋi⟩2. (3.12b)

3.4 Alternative derivation from the short-time TUR

The subsystem Jensen bounds (3.5a) and (3.9) can also be derived from the short-time ther-
modynamic uncertainty relation. In Ref. [129], it was shown that for overdamped Langevin
dynamics the entropy production rate of the ith subsystem is lower bounded by

Σ̇i ≥ 2 ⟨jdi
⟩2

Var (jdi
) dt

, (3.13)

for any current
jdi

dt = di(x, t) ◦ dxi(t) (3.14)

in the limit as dt → 0. Setting di(x, t) = 1 and computing the mean and variance of the
short-time current following the methods of Ref. [129] gives ⟨jdi

⟩ = ⟨ẋi⟩ and Var
(
jτ

di

)
dt =

2 ⟨Di⟩. Inserting these identities into the short-time TUR (3.13) yields

Σ̇i ≥ ⟨Di(x)⟩−1⟨ẋi⟩2. (3.15)

This is identical to the subsystem Jensen bound for multipartite overdamped Langevin
dynamics with position-dependent diffusion coefficients (3.9), and simplifies to Eq. (3.5a)
for constant diffusion coefficients.
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3.5 Underdamped Langevin dynamics

I now turn to underdamped Langevin dynamics, for which the equations of motion are [141]

ẋ = v, (3.16a)

mv̇ = −ζv + f(x, t) + ξ(t). (3.16b)

Here the random noise ξ(t) directly affects the velocity dynamics rather than position
dynamics. ξ(t) is Gaussian and satisfies

⟨ξ(t)⟩ = 0, (3.17a)〈
ξi(t)ξj(t′)

〉
= 2kBTi ζij δij δ(t − t′). (3.17b)

The entropy production rate is [141, 142]

Σ̇ =
∑
i=1

〈
m2

i

Tiζi

[
J irr

vi
(x, v, t)

p(x, v, t)

]2〉
︸ ︷︷ ︸

Σ̇i

,
(3.18)

for irreversible current

J irr
vi

(x, v, t) = 1
mi

(
−ζivi − kBTiζi

mi

∂

∂vi

)
p(x, v, t). (3.19)

In this section, angle brackets denote ensemble averages over the joint probability distribu-
tion p(x, v, t) of positions and velocities at time t.

Following Ref. [143], the velocity is vi = νi(x) + vi − νi(x) for local mean velocity

νi(x) ≡
∫

vi p(vi|x) dvi, (3.20)

and the entropy production rate can be decomposed into the sum of two non-negative terms:

Σ̇ =
N∑

i=1
D−1

i

〈
νi(x)2

〉
+

N∑
i=1

D−1
i

〈[
vi − νi(x) + kBTi

mi

∂

∂vi

ln p(v, x, t)
]2〉

. (3.21)

Here I used the fluctuation-dissipation relation (2.58) to rewrite friction coefficients in terms
of diffusion coefficients.

Since both terms are non-negative, the first term is itself a lower bound for the entropy
production. Applying Jensen’s inequality to the first term yields subsystem and total Jensen

33



bounds for underdamped Langevin dynamics:

Σ̇i ≥ D−1
i ⟨vi⟩2, (3.22a)

Σ̇ ≥
N∑

i=1
D−1

i ⟨vi⟩2. (3.22b)

3.6 Non-multipartite dynamics

The derivations thus far have relied on the assumption of multipartite dynamics, namely
that the friction (ζ), mobility (µ), and diffusion (D) tensors are all diagonal. I now turn to
the case where the multipartite assumption breaks down such that µ, ζ, and D may have
non-zero off-diagonal elements. Let us restrict our attention to the isothermal case where
all fluctuations arise from coupling to heat baths at temperature T , and to the case where
all diffusion, friction, and mobility coefficients are constant. Crucially, I still assume the
multidimensional fluctuation-dissipation theorem

ζ−1 = µ = D/(kBT ). (3.23)

Without the multipartite assumption, defining the rate of entropy production becomes much
less straightforward. While Ref. [118] sketches a derivation of the eventual result, Eq. (3.30),
the next two subsections provide a full derivation for pedagogical purposes. Starting from
the definition of total entropy production as a sum of changes in internal entropy (scaled
by kB) and heat dissipated to external baths [106],

Σ̇ ≡ Ṡ − Q̇/ (kBT ) , (3.24)

I then proceed to evaluate the two terms Ṡ and Q̇.

3.6.1 Defining the heat flow

Non-multipartite dynamics pose significant difficulties for identifying heat flows. In the
previous sections I assumed one-to-one interactions between system components and heat
baths. This is incompatible with non-multipartite dynamics, so a given system component
can now be subjected to fluctuations from distinct sources. It is for this reason that to make
headway I assume a single temperature T , since this allows us to ascribe all fluctuations to
a single global heat bath.

To define the heat flow, start with the rate of change Ė of the energy, which can be
decomposed into a sum of two contributions that can be identified as rates of work and
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heat:

Ė = d

dt
⟨V (x, t)⟩ (3.25a)

=
∫

dx p(x, t) ∂

∂t
V (x, t) +

∫
dx V (x, t) ∂

∂t
p(x, t) (3.25b)

=
∫

dx p(x, t) ∂

∂t
V (x, t) +

〈
fnc(x, t)⊤ ◦ ẋ

〉
︸ ︷︷ ︸

Ẇ

+
∫

dx V (x, t) ∂

∂t
p(x, t) −

〈
fnc(x, t)⊤ ◦ ẋ

〉
︸ ︷︷ ︸

Q̇

. (3.25c)

Inserting the Fokker-Planck equation (2.59) and integrating the heat term by parts gives
the standard definition of heat for multipartite dynamics:

Q̇ = −
〈
f(x, t)⊤J(x, t)/p(x, t)

〉
. (3.26)

3.6.2 Defining the entropy production rate

I now compute the mean rate of change of system entropy, using the FPE (2.59) following
the approach of Ref. [106], as

Ṡ ≡ d
dt

〈
− ln p(x, t)

〉
(3.27a)

=
〈

−∂tp(x, t)
p(x, t) − ∇⊤p(x, t)

p(x, t) ◦ ẋ

〉
(3.27b)

=
〈

−∇⊤p(x, t)
p(x, t) ◦ ẋ

〉
. (3.27c)

In the third line the first term has been integrated out, since probability conservation
imposes

∫
∂tp(x, t)dx = 0.

This expression can be simplified further using the definition of the probability flux
vector (2.60), rearranged to read

−∇⊤p(x, t) = − 1
kBT

f(x, t)⊤p(x, t) +
(
D−1

)⊤
J(x, t)⊤, (3.28)

which yields

Ṡ = − 1
kBT

〈
f(x, t)⊤ ◦ ẋ

〉
+
〈

J(x, t)⊤

p(x, t)
(
D−1

)⊤
◦ ẋ

〉
(3.29a)

= − 1
kBT

〈
f(x, t)⊤ J(x, t)

p(x, t)

〉
+
〈

J(x, t)⊤D−1 J(x, t)
p(x, t)2

〉
. (3.29b)
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In the last line I replaced the ensemble-averaged Stratonovich multiplication by ẋ with
ensemble-averaged multiplication by the local mean velocity J(x, t)/p(x, t) [29], and re-
placed

(
D−1)⊤ with D−1 since the quadratic form in the second term is unchanged by

taking the transpose of the matrix.
Finally, defining the total rate of entropy production as the sum of heat dissipated to

the bath and system entropy change,

Σ̇ ≡ Ṡ − Q̇/ (kBT ) (3.30a)

=
〈

J(x, t)⊤D−1 J(x, t)
p(x, t)2

〉
. (3.30b)

This agrees with the result derived in Ref. [118] and the result reported in Ref. [119]. Unlike
in the case of multipartite dynamics discussed previously, for non-multipartite dynamics it
is not generally possible to define non-negative entropy production rates at the subsystem
level [122].

3.6.3 Jensen lower bound

While more complicated than the multipartite case, the functional form for the entropy
production rate obtained in Eq. (3.30) is still amenable to lower-bounding via Jensen’s
inequality. For the second law (Σ̇ ≥ 0) to hold for any flux vector J , the inverse of the
diffusion matrix D−1 (or equivalently the friction matrix ζ = (βD)−1) must be positive
semidefinite, a standard assumption for multi-dimensional friction matrices in stochastic
dynamics [116, 119, 144]. Note that the expression inside the angle brackets in Eq. (3.30b)
is a quadratic form in the vector J(x, t)/p(x, t) [145]. When D−1 is positive semidefinite,
the quadratic form is a convex function of J(x, t)/p(x, t). Thus Jensen’s inequality yields
a general lower bound on the entropy production rate:

Σ̇ =
〈

J(x, t)⊤D−1 J(x, t)
p(x, t)2

〉
(3.31a)

≥
〈

J(x, t)
p(x, t)

〉⊤
D−1

〈
J(x, t)
p(x, t)

〉
(3.31b)

= ⟨ẋ⟩⊤ D−1 ⟨ẋ⟩ . (3.31c)

The result is a generalized Jensen bound depending only on the diffusion matrix and mean
rates of change of the N coordinates. This reduces to Eq. (3.5b) for multipartite dynamics
when the diffusion matrix (or equivalently the friction matrix) is diagonal.
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When all system components have the same mean velocity v, as is the case for collective-
transport systems [68, 80], Eq. (3.31c) significantly simplifies to

Σ̇ ≥ ⟨v⟩2∑
i,j

D−1
ij . (3.32)

When the sum of all off-diagonal terms is non-negative, this can be further lower-bounded
by the total Jensen bound for multipartite dynamics,

Σ̇ ≥ ⟨v⟩2
N∑

i=1
D−1

ii . (3.33)

3.6.4 Alternate derivation from the multidimensional TUR

It is also possible to derive Eq. (3.31c) by taking a short-time limit of the multidimensional
TUR. As derived in Ref. [146], the multidimensional TUR bounds the total entropy pro-
duction rate of a system obeying overdamped Langevin dynamics without requiring the
multipartite assumption:

Σ =
∫ tf

0
Σ̇ dt ≥ 2 ⟨jd⟩⊤ C−1 ⟨jd⟩ . (3.34)

Here jd is a time-integrated current of the form

jd =
∫ tf

0
d(x, t)⊤ ◦ ẋ dt (3.35)

for any function d(x, t), and C is the covariance matrix for the current jd, defined as

Cik = ⟨jdi
jdk

⟩ − ⟨jdi
⟩ ⟨jdk

⟩ . (3.36)

In the limit tf = dt → 0, we recover Σ = Σ̇ dt and

jd dt = d(x, t)⊤ ◦ dx(t). (3.37)

Setting di(x, t) = 1 for all i yields ⟨jd⟩ = ⟨ẋ⟩, and Cikdt = 2Dik. Thus we recover the Jensen
bound for non-multipartite dynamics, Eq. (3.31c), so long as the diffusion coefficients are
constant.

3.7 Discussion

In this chapter I derived Jensen bounds on both subsystem and total entropy production
rates for multipartite overdamped Langevin dynamics (Eqs. (3.5a) and (3.5b)). I also de-
rived extensions in several directions, allowing for position-dependent diffusion coefficients
(Eqs. (3.9) and (3.10)), multipartite underdamped dynamics (Eqs. (3.22a) and (3.22b)),
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and non-multipartite overdamped dynamics (Eq. (3.31c)). These results make the Jensen
bound applicable to a wide class of stochastic systems. I will apply the Jensen bound to
study molecular machines in later chapters, using Eq. (3.5b) to derive performance bounds
in chapter 5, and Eq. (3.5a) to perform inference in chapter 6.

Fundamental Limit: The Jensen bound quantifies a minimum entropic cost for
motion against viscous friction. Moreover this entropic cost comes at the subsystem
level.

In all cases, the Jensen bound lower-bounds the entropy production rate of a continuous
stochastic system in terms of only bare diffusion coefficients and mean rates of change of
the system’s degrees of freedom. These quantities can all be estimated from trajectory data:
diffusion coefficients can be inferred using statistical methods [147, 148], and mean rates of
change can be computed directly by taking time- or ensemble-averages. In all of the results
in this chapter, the diffusion coefficients can be replaced by friction coefficients using the
fluctuation-dissipation relation (2.58).

As a further application, note that the Jensen bound can be used to estimate entropy
production rates in systems where they cannot be calculated exactly. Explicitly calculating
the entropy production rate of a stochastic system requires knowledge of the full nonequilib-
rium probability distribution along with all of the conservative and non-conservative forces
acting on the system. These are all in general difficult to measure or compute for systems
with many degrees of freedom. The Jensen bound, however, is much more straightforward
to compute from data, provided the friction/diffusion coefficients are previously known or
can be measured: mean coordinate rates of change can be computed from far less data than
would be required to compute the full nonequilibrium probability distribution.

Inference Tool: The Jensen bound can be used to estimate subsystem and total
entropy production rates from only measurements of average coordinate rates of
change and friction coefficients.

It is natural to ask how the Jensen bound relates to the thermodynamic uncertainty
relation (TUR), of which there are both short-time [129] and long-time [66] formulations. I
showed in Sec. 3.4 and 3.6.4 that the subsystem and total Jensen bounds for overdamped
Langevin dynamics can be derived from short-time TURs, meaning that the Jensen bound
will generally be equal to or looser than the short-time TUR for optimal choices of cur-
rent. Chapter 5 compares the Jensen bound to the long-time TUR [66] for a numerically
simulated model of collective motor-driven transport, finding that there is no general hi-
erarchy between the two bounds: either can be tighter, depending on the regime explored,
with the long-time TUR tighter when current fluctuations are small, and the Jensen bound
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tighter otherwise. Chapter 5 also shows that the Jensen bound is always saturated for linear
collective-transport systems.

For applications to experimental data, the main difference in the utilities of these dif-
ferent entropy production bounds arises from the different information required to compute
them. The TUR and its multidimensional generalizations [130, 146, 149, 150] generally re-
quire measurements of variances and covariances of currents, but do not require detailed
knowledge (e.g., friction/diffusion coefficients, conservative and nonconservative forces) re-
garding the equations of motion from which those dynamics arise. By contrast, the Jensen
bound requires measurements of mean coordinate rates of change and knowledge of the fric-
tion/diffusion coefficients characterizing the system. While the TUR can make use of any
currents in the system (including heat or energy currents), the Jensen bound only holds for
coordinate rates of change. Ultimately the choice of which bounds to use should be made
through considerations of what information and experimental data are available to the user.
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Chapter 4

Performance Scaling and Trade-offs
for Collective Motor-Driven
Transport

Motor-driven intracellular transport of organelles, vesicles, and other molecular cargo is a
highly collective process. An individual cargo is often pulled by a team of transport motors,
with numbers ranging from only a few to several hundred. This chapter explores the behaviour
of these systems using a stochastic model for transport of molecular cargo by an arbitrary
number N of motors obeying linear Langevin dynamics, finding analytic solutions for the
N -dependence of the velocity, precision of forward progress, energy flows between different
system components, and efficiency. In two opposing regimes, I show that these properties
obey simple scaling laws with N . Finally, I explore trade-offs between performance metrics
as N is varied, providing insight into how different numbers of motors might be well-matched
to distinct contexts where different performance metrics are prioritized.

4.1 Introduction

Motor proteins within cells often work collectively to transport large organelles such as
mitochondria [27, 32], or even chromosomes during mitosis and meiosis [33]. Experimental
determination of the number N of motors attached to a given cargo is generally chal-
lenging; nonetheless, recent studies have successfully measured N by identifying discrete
peaks in a distinctly multimodal velocity distribution [34, 35] for small numbers of motors,
or using more complex techniques such as quantitative immunoblots and immunoelectron
microscopy [32]. Experimental investigations both in vivo and in vitro have found widely
varying numbers N of motors coupled to a single cargo. In some cases, only a single mo-
tor [36] or a few motors [34] per cargo is observed, but experiments have observed as many
as 200 motors bound to large organelles [32]. Likewise, in actomyosin filaments in muscle tis-
sue, on the order of 100 motors are attached to each actin filament [37]. Collective-transport
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systems can also be engineered in vitro [38]; in this setting the number of motors can be
controlled more precisely, for example using DNA scaffolds [39, 40].

Simple phenomenological models for transport-motor dynamics (such as the classical lin-
ear force-velocity relationship [36, 151]) have been extended to multiple motors, for example
by assuming equal load-sharing [34, 35]. These models provide a good first approximation to
the dynamics of multi-motor systems, and can be extended to include, for example, motor
binding and unbinding kinetics [152, 153]. These types of models assume that the motors
pull against a constant force, rather than the stochastic frictional drag that would occur for
a loosely coupled diffusive cargo. However, analysis of transport by single motors has shown
that pulling a diffusing cargo and pulling against a constant force lead to qualitatively differ-
ent transport behaviour [78, 79]. Researchers have proposed and explored several dynamical
models for transport of diffusive cargo by multiple motors [154–159]. These approaches rely
primarily on numerical simulation, and as such are limited by computational resources to
exploring systems with relatively small numbers of motors.

In studying intracellular transport, an important goal is to understand how systems can
be tuned to improve performance. Relevant performance metrics vary based on the context,
but may include cargo velocity, rate of chemical energy consumption, transport efficiency,
and precision [2]. The dependence of these and other performance metrics on the number
of motors is of clear interest, and has not yet been systematically investigated.

In this chapter, I introduce a simple, thermodynamically consistent, stochastic model
for the collective transport of diffusive molecular cargo by an arbitrary number N of motors.
This model has a key advantage over other recent theoretical and computational approaches:
it is analytically tractable for arbitrary N , allowing us to explore system behaviour over
many orders of magnitude of motor numbers. I derive N -dependent expressions for sev-
eral performance metrics, and explicitly calculate all thermodynamic energy flows between
different system components and thermal and chemical reservoirs. This allows us to derive
simple analytic expressions for efficiency both of the whole system and of individual motors.
In two opposing regimes I identify simple scaling laws that characterize the N -dependence of
these properties. Finally, I derive fundamental trade-offs among these performance metrics,
thereby pointing to design principles for collective motor-driven transport.

4.1.1 Contributions

This chapter is adapted from an article published as Ref. [80], authored by myself and David
Sivak.

4.2 Model and Theory

Consider a diffusive cargo coupled to N identical transport motors, with motion resolved
in one dimension. Each motor interacts only with the cargo via a molecular linker, and is
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characterized by a mechanochemical cycle through which it transduces chemical power into
directed forward motion. The cargo undergoes Brownian motion subject to coupling forces
from each motor via the respective linker. Figure 4.1 illustrates the system.

x1

xc

x2 x3
fchem fchem fchem

Figure 4.1: Collective-transport system comprising a single diffusive cargo coupled to N
(here N = 3) motor proteins moving along a linear substrate. xc indicates the cargo position,
and xi the position of the ith motor. Each motor experiences chemical driving force fchem.

This chapter focuses on the limiting regime in which the time evolution of the system
is independent of the initial conditions, its steady state. Mathematically, the relevant limit
is that the time greatly exceeds the system’s longest relaxation time (t ≫ τrelax). I assume
that this limit exists, and that in the steady state, system properties such as the velocity,
efficiency, energy flows and entropy production all have well-defined constant average values.
The specific model introduced below satisfies these assumptions.

4.2.1 Model

The cargo and motors are modelled as overdamped Brownian particles diffusing (with re-
spective diffusivities Dc and Dm) in a potential landscape. xc and xi describe the positions
of the cargo and ith motor. For mathematical simplicity the cargo is treated as a single
point, but the model describes equally well (through a linear change of variables) motors
attached at different points to a rigid cargo. The system is isothermal and in contact with a
thermal reservoir at inverse temperature β ≡ (kBT )−1. I assume that both cargo and motor
dynamics satisfy the fluctuation-dissipation relation: the friction coefficients for the cargo
(ζc) and motors (ζm) are related to their respective diffusivities by βζcDc = 1 = βζmDm.

Each motor is subject to chemical driving due to nonequilibrium environmental concen-
trations of molecules, often ATP, ADP, and phosphate, and further experiences an under-
lying periodic energy landscape due to interactions with the substrate it walks along. To
simplify the analysis, I assume that the scale of this energy landscape (the heights of the
barriers separating meta-stable states) are small compared to the magnitude of the chemical
driving. This leads to the motors experiencing a flat, downward-sloping energy landscape,
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which can be thought of as a constant force fchem propelling each motor in a preferred di-
rection. I further assume tight coupling between chemical-energy consumption and forward
motor motion.

Each linker coupling one motor to the cargo is modelled as a Hookean spring with zero
rest length, dominated by the along-filament displacement, thus with interaction potential
Ui(xc, xi) = 1

2κ(xi − xc)2. This is a common assumption in modelling approaches [79, 157]
and experimentally well-supported for kinesin linkers [160].

This model system dynamically evolves according to N+1 coupled overdamped Langevin
equations,

ẋc = βDcκ
N∑

i=1
(xi − xc) + ηc, (4.1a)

ẋi = βDm [fchem − κ(xi − xc)] + ηi, i = 1, . . . , N. (4.1b)

These are assumed to be multipartite as defined in Sec. 2.5.
The single-motor dynamics (4.1b) produce average motion equivalent to the linear force-

velocity relation typically observed experimentally for kinesin motors under constant forces
less than their stall force [36, 151] (where most of the analysis takes place),

⟨v⟩ = vmax

(
1 − f

fs

)
, (4.2)

for stall force fs = fchem, maximum velocity vmax = βDmfchem, and force f = κ⟨xi − xc⟩
acting on the motor.

4.2.2 Parameter estimates

Experimentally, kinesin linkers are well-approximated as Hookean springs with a zero rest
length and a spring constant ∼0.5 pN/nm [160]. Similar behaviour has been observed
for the linkers of myosin V motors, which have an estimated spring constant of 0.2 −
0.4 pN/nm [161].

The chemical driving force fchem can be estimated in two ways. By noting the equivalence
in Eq. (4.2) of fchem with the single-motor stall force, experimental estimates of single-motor
stall forces can be used to estimate the chemical driving force. Kinesin motors have stall
forces on the order of 5−8 pN [49], while myosin motors stall at forces as high as 15 pN [162].

Likewise, due to tight coupling between chemical energy consumption and mechani-
cal motion [11, 49], fchem can also be thought of as a free-energy dissipation per unit
distance. Kinesin, for example, hydrolyzes one molecule of ATP (a reaction with a free-
energy change ∆µATP ≈ 15 − 30 kBT [163]) for every forward step (d ≈ 8 nm). At 298 K,
1 kBT = 4.114 pN nm, resulting in a chemical driving force fchem = ∆µATP/d ≈ 8 − 15 pN,
in line with the previous estimate.
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I estimate the motor diffusivity using vmax = βfsDm. For kinesin-1 the maximum veloc-
ity is vmax ≈ 1 − 2 µm/s and the stall force is fs ≈ 6 − 8 pN [31], while for myosin V, vmax ≈
8 nm/s [30] and fs ≈ 10−15 pN [37]. This suggests that in both cases Dm = O(10−3) µm2/s.
Alternatively, using experimental estimates of rate constants for forward and reverse steps
yields an estimate for kinesin-1 motor diffusivity of Dm ≈ 4 × 10−3 µm2/s [164].

Cargo diffusivity can vary by orders of magnitude depending on the type of molecular
cargo. As one example, diffusivity of vesicles (with radii on the order of 300 nm) in neurons
is estimated to be of order 10−3 µm2/s [165]. Other measurements of vesicles and vesicle-
sized beads in cytoplasm have found diffusivities on the order of 10−4 − 10−2 µm2/s [166].
Larger cargo such as organelles, for example mitochondria which have diameters as large
as 2µm, will have even smaller diffusivities. Thus for intracellular transport of vesicles and
organelles we expect Dc/Dm ∈ [10−3, 1].

4.3 Results

4.3.1 Solution

Equations (4.1) constitute a linear system of coupled Langevin equations, and as such are in
general analytically solvable, with solution a multivariate Gaussian. Thus it suffices to solve
for the mean vector and covariance matrix of the whole system, the components of which
satisfy a set of coupled linear ordinary differential equations [167, Section 3.2]. Since the N

motors dynamically evolve according to identical stochastic equations (4.1b), their marginal
position distributions are identical. As a result, there are only two unique means (⟨xi⟩ and
⟨xc⟩) and four unique covariances (Cov(xc, xc), Cov(xc, xi), Cov(xi, xi), and Cov(xi, xj), all
of which vary with time. This symmetry permits exact solution for arbitrary N . Starting
from initial conditions xc = xi = 0 at t = 0, at steady state (t ≫ τrelax) the mean cargo
position and motor positions are

⟨xc⟩ = ⟨v⟩t − Nfchem
κ

D2
eff

DmDc
, (4.3a)

⟨xi⟩ = ⟨v⟩t + fchem
κ

(
Deff
Dc

)2
, (4.3b)

and the covariances are

Cov(xc, xc) = 2Defft + N

βκ

(
Deff
Dm

)2
, (4.4a)

Cov(xc, xi) = 2Defft − 1
βκ

D2
eff

DmDc
, (4.4b)

Cov(xi, xj) = 2Defft + 1
βκ

[
δij − D2

eff
Dm

(
N

Dm
+ 2

Dc

)]
, (4.4c)
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for Kronecker delta function δij . Here ⟨v⟩ and Deff are the mean velocity and effective
diffusion coefficient, which will be defined and evaluated in the following section.

Note that different initial conditions would produce different time-independent constant
terms in (4.3) and (4.4); however for large times (in the steady-state limit) the constant
terms are negligible compared to the terms linear in t. Regardless of initial conditions, the
difference between the constant terms in (4.3)a and b will always be the mean value of the
separation distance, ⟨∆xi⟩.

The distributions of {xi(t)}N
i=1 and xc(t) are time-dependent, so we change to a set of

N variables, ∆xi(t) = xi(t) − xc(t), that at steady state converge to a time-independent
joint distribution, a multivariate Gaussian with means and covariances

⟨∆xi⟩ = fchem
κ

(
1 + N

Dc
Dm

)−1
, (4.5a)

Cov(∆xi, ∆xj) = 1
βκ

δij . (4.5b)

This time-independent distribution is sufficient to compute many steady-state properties of
interest.

The off-diagonal entries of the stationary covariance matrix, Cov(∆xi, ∆xj) for i ̸=
j, are zero: fluctuations in the relative position of one motor are uncorrelated with the
relative positions of the other motors. I do not expect this particular result to generalize;
for example, collective-transport models with discrete motor motion [157] have found non-
zero off-diagonal covariances at small N . Regardless, the results presented below depend
only on diagonal terms and are independent of off-diagonal covariances.

The system relaxation time is τrelax = [βκ(Dm + NDc)]−1. The earlier parameter ranges
and estimates yield a maximum value of about 0.02 s (taking κ = 0.2 pN/nm, T = 298 K,
Dm = 10−3 µm2/s, Dc = 10−4 µm2/s, and N = 1). Using more typical values of these
parameters (for example κ = 0.5 pN/nm, Dm = 4 × 10−3 µm2/s, Dc = 10−3 µm2/s, and
N = 10) gives a much smaller estimate τrelax ≈ 5×10−4 s. A relaxation time of τrelax = 0.02 s
corresponds to a distance of at most 40 nm for kinesin motors at maximum velocity. Given
the short distance over which relaxation to steady state occurs, and the high processivity
of motor-driven transport systems (kinesin can travel up to several micrometers before
detaching [168]), this chapter focuses exclusively on the steady state.

The dimensionless parameter combination NDc/Dm appears in Eq. (4.5a) and in many
of the results shown later on, constituting a key quantity for understanding the system
behaviour. For intracellular transport of vesicles or organelles the diffusivity ratio Dc/Dm

is typically ∼ 10−3 −100, depending on the size of the cargo. Since N can range from one to
several hundred, the explorations in this chapter focus on the range NDc/Dm ∈ [10−3, 103].
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4.3.2 Scaling behaviour

Dynamical properties

At steady state, the cargo and each motor have equal velocity, ⟨vc⟩ ≡ limt→∞⟨xc(t) −
xc(0)⟩/t = limt→∞⟨xi(t) − xi(0)⟩/t ≡ ⟨vm⟩ ≡ ⟨v⟩. Evaluating this limit yields a simple
expression for the N -dependent mean system velocity:

⟨v⟩ = vmax

(
1 + Dm

NDc

)−1
. (4.6)

For N ≪ Dm/Dc, the mean velocity grows linearly with N , so adding more motors propor-
tionally increases the system velocity. As N grows much larger than Dm/Dc, however, the
steady-state velocity asymptotically approaches maximum velocity vmax = βDmfchem (the
mean velocity of an uncoupled motor) as ⟨v⟩ ≈ vmax [1 − Dm/(NDc)]. Thus no matter how
many motors are coupled to the cargo, the mean velocity of the aggregate motor-cargo sys-
tem never exceeds that of an unladen motor. This mean velocity (as well as the maximum
velocity) scales linearly with the chemical driving force fchem. Figure 4.2a shows normalized
velocity ⟨v⟩/vmax as a function of N .

While ⟨v⟩ gives the average motion, the model (like all transport at the cellular level) is
inherently stochastic. As such, the average velocity is not sufficient to fully describe system
behaviour, even at steady state. The effective cargo diffusivity Deff quantifies the rate at
which the variance of forward progress grows at steady state:

Deff ≡ lim
t→∞

⟨x2
c⟩ − ⟨xc⟩2

2t
(4.7a)

=
( 1

Dc
+ N

Dm

)−1
. (4.7b)

Here Eq. (4.7b) is the result obtained for this model. This expression can be understood by
noting that the effective friction coefficient for the system, ζeff = 1/βDeff , is simply the sum
of the friction coefficients for the motors and cargo. This interpretation is consistent with
a recent theoretical study of collective transport of a diffusive cargo using discrete motor
dynamics, which similarly found that the contribution from the motors to the effective
friction coefficient of the system scales linearly with the number N of motors for the small
range explored [169]. Previous work using a simpler phenomenological model also suggested
that the effective friction coefficient of a collection of motors should be proportional to
N [170].

Figure 4.2a shows Deff as a function of N . While the velocity increases with the number
of motors, the effective diffusivity decreases, indicating that a larger number of motors
tightens the distribution of cargo-transport distances. Writing the mean velocity as ⟨v⟩ =
βDeffNfchem reveals that the effective dynamics of the system are simply those of a single
diffusive particle (with diffusivity Deff) under a constant driving force Nfchem.
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Figure 4.2: a) Scaled velocity ⟨v⟩/vmax (Eq. (4.6)) and effective diffusivity Deff/Dc
(Eq. (4.7)) (equal for this model to the efficiency η ≡ ηM = ηS (Eq. (4.14))) as functions
of the number N of motors scaled by the diffusivity ratio Dm/Dc. b) Ensemble-averaged
energy flows ẆMi (Eq. (4.10)), ĖMi→C (Eq. (4.11)), Q̇Mi (Eq. (4.12)), and Q̇C (Eq. (4.13))
as functions of N scaled by Dc/Dm. All energy flows are normalized by the chemical power
consumption Ẇ max

Mi
= fchemvmax of a single motor at maximum velocity. For Q̇C I use

Dc/Dm = 1/10; all other energy flows depend solely on the quantity NDc/Dm.

The system stochasticity can alternatively be quantified by the coefficient of variation
θ [171] or the Fano factor ϕ [79]. The coefficient of variation (CV) of cargo position is

θ ≡
√

⟨x2
c⟩ − ⟨xc⟩2

⟨xc⟩
(4.8a)

=
√

2
( 1

Dc
+ N

Dm

)
Dc

NDm

1
βfchem

t−1/2. (4.8b)

For small N ≪ Dm/Dc the coefficient of variation scales as N−1, while for large N ≫
Dm/Dc, θ ∝ N−1/2. Thus this measure of the variation in forward progress can be made
arbitrarily small with sufficiently large NDc/Dm, but with diminishing returns for larger
N .
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The steady-state Fano factor is

ϕ ≡ ⟨x2
c⟩ − ⟨xc⟩2

⟨xc⟩
= 2

Nβfchem
. (4.9)

Similarly to Deff , ϕ decreases (and hence the precision increases) with the number of motors,
scaling as ϕ ∝ N−1. Here adding motors decreases the variance of forward progress while
increasing the velocity, leading to a Fano factor that decreases with N . For N = 1 motor,
Eq. (4.9) recovers the Fano factor previously calculated in the limit of low cargo diffusivity
for a single motor [79].

The addition of motors can be thought of as having an “averaging” effect on the dynam-
ics. The precision (as quantified by θ or ϕ) also increases with the chemical driving force
fchem on each motor. Figure 4.3 shows the N -dependence of the three stochasticity metrics:
the effective diffusivity Deff (Eq. (4.7)), the coefficient of variation θ (Eq. (4.8)), and the
Fano factor ϕ (Eq. (4.9)).
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Figure 4.3: N -dependence of the performance metrics used to quantify stochasticity: the
effective diffusivity Deff/Dc, the coefficient of variation θ∗ = θβfchem

√
t/Dc, and the Fano

factor ϕ∗ = βfchem(Dm/Dc)ϕ; all in dimensionless units.

Thermodynamic properties

It is also possible to exactly calculate steady-state ensemble averages of all energy flows
into and out of each subsystem. Transport systems are highly processive, so we focus on
average energy flows, ignoring higher moments that are less salient at long durations. The
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mean chemical power to each motor is

βẆMi = NDc

(
1 + N

Dc
Dm

)−1
(βfchem)2 (4.10a)

= βfchem⟨v⟩. (4.10b)

Here the energy flows are multiplied by the inverse temperature β so that quantities have
units of s−1. In keeping with the assumption of tight mechanochemical coupling, the power
consumption is simply the chemical driving force multiplied by the motor velocity. Since
the motors are identical, the total chemical power consumption is simply Pchem = NẆMi .
Likewise, the average rate of energy flow from each motor to the cargo is

βĖMi→C = NDc

(
1 + N

Dc
Dm

)−2
(βfchem)2 (4.11a)

= ⟨v⟩2

NDc
. (4.11b)

The total energy flow ∑
i ĖMi→C = ⟨v⟩2/Dc from the motors to the cargo increases mono-

tonically with N and reaches a finite maximum value. ĖMi→C for a single motor is non-
monotonic in N , as shown in Fig. 4.2b. In particular, ĖMi→C ∝ N for N ≪ Dm/Dc and
∝ N−1 for N ≫ Dm/Dc. This is because for large N , when the cargo reaches maximum
velocity and thus a constant rate of heat dissipation, the sum ∑

i ĖMi→C = −Q̇C must
reach a constant value as well. Dividing this nearly constant total energy flow among an
increasing number of motors means that ĖMi→C decreases. Thus the energy flow from each
individual motor to the cargo is maximized at an intermediate N∗ = Dm/Dc.

The average heat flow into each motor is

βQ̇Mi = −N2 D2
c

Dm

(
1 + N

Dc
Dm

)−2
(βfchem)2 (4.12a)

= −⟨v⟩2

Dm
, (4.12b)

and the heat flow into the cargo is

βQ̇C = −N2Dc

(
1 + N

Dc
Dm

)−2
(βfchem)2 (4.13a)

= −⟨v⟩2

Dc
. (4.13b)

The subsystem-specific heat flows are, on average, given by the friction coefficient (e.g.
ζc = 1/βDc for the cargo) multiplied by the mean velocity squared, the result we would
expect for the frictional energy dissipation of an overdamped particle moving at constant
velocity ⟨v⟩. The sum of the heat flows over all N +1 subsystems represents the total energy
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dissipation of the system at steady state; all of the chemical energy consumed by the motors
is either dissipated directly by the motors as heat (due to loose coupling to the cargo) or
transduced into mechanical work on the cargo which is then dissipated by the cargo as heat.

Figure 4.2b shows how these four steady-state energy flows depend on the number N

of motors, manifesting two regimes. For N ≪ Dm/Dc, the heats −Q̇Mi and −Q̇C scale as
N2, while the chemical power ẆMi to each motor and the power ĖMi→C from each motor
to the cargo scale linearly with N . For N ≫ Dm/Dc, the chemical power to each motor
as well as the two heats asymptotically approach constants. For sufficiently large N , each
motor’s heat roughly equals its chemical power consumption, as the energy flow per motor
transferred through the coupling decays as N−1.

All energy flows display the same quadratic dependence on the chemical driving force.
This is reminiscent of linear irreversible thermodynamics, where rates of entropy production
(and thus heat dissipation) are quadratic in the thermodynamic driving forces [172]. This is
true for this system on average due to the linearity of Eqs. (4.1)a-b, even with the inherent
stochasticity.

The steady-state energy flows (4.10)-(4.13) are all independent of the coupling strength
κ, despite the steady-state distributions for the separation distances ∆xi depending strongly
on κ. To understand this initially surprising result, consider the average force an individual
motor pulls against, κ⟨∆xi⟩, for separation distance ∆xi ≡ xi − xc. Equation (4.5a) shows
that ⟨∆xi⟩ ∝ 1/κ, so the mean force on the motor is independent of the coupling strength.
Since the motor velocity is also independent of the coupling strength, the mean power
output of each motor (roughly the mean velocity multiplied by the mean opposing force)
is independent as well. The power consumption P→Mi is likewise independent of κ for the
same reason. From the first laws (2.62), the system only has three independent energy flows,
so the other energy flows must thus also be independent of κ.

I consider several different metrics of steady-state energetic efficiency. Since the system
does not perform any thermodynamic work as output, and the input power Pchem is always
positive, the full system’s thermodynamic efficiency is zero; however, the thermodynamic
efficiency ηM ≡ ĖMi→C/ẆMi of each motor subsystem is positive. The Stokes efficiency,
given by Eq. (5.3), is also positive. This system has equal Stokes efficiency and motor
efficiency:

ηM = ηS =
(

1 + N
Dc
Dm

)−1
. (4.14)

Figure 4.2a shows efficiency as a function of N : for small NDc/Dm, the efficiency is ≈
1 − NDc/Dm, while for NDc/Dm ≫ 1 the efficiency scales as N−1. For a given diffusivity
ratio Dc/Dm, the efficiency for any N is upper bounded by ηmax = (1 + Dc/Dm)−1 since N

is lower bounded by unity. Thus, for example, a system with Dc = Dm can achieve at most
50% efficiency. This efficiency can be re-written in terms of the system’s effective diffusivity
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as
ηM = ηS = Deff

Dc
, (4.15)

which exactly saturates an upper bound proven for the Stokes efficiency of transport by a
single motor [73].

Table 4.1 summarizes the scaling with N of key performance metrics in the two limiting
regimes.

Table 4.1: Performance metrics’ asymptotic scaling with N .

Metric N ≪ Dm/Dc N ≫ Dm/Dc

⟨v⟩ ∝ N ≈ vmax [1 − Dm/(NDc)]

θ ∝ N−1 ∝ N−1/2

Ẇchem ∝ N2 ∝ N

ηS/M ≈ 1 − NDc/Dm ∝ N−1

4.3.3 Performance trade-offs

The previous section outlined the separate N -dependence of different performance metrics;
however, these quantities are not independent, instead posing trade-offs parameterized by
N . Examining the trade-offs between all pairs of dynamical and thermodynamic properties
from Table 4.1 shows that several pairs of desirable properties cannot be simultaneously
attained.

The mean transport velocity and the total chemical power consumption of the motors
are related by

Ẇchem

Ẇ max
Mi

= Dm
Dc

(⟨v⟩/vmax)2

1 − ⟨v⟩/vmax
. (4.16)

Figure 4.4a illustrates this trade-off as N is varied, for several different diffusivity ratios. For
N ≪ Dm/Dc, the total chemical input power scales as the square of the average velocity
⟨v⟩. At N = Dm/Dc the velocity is half its maximum; beyond this velocity the required
chemical power skyrockets, scaling as Ẇchem ∝ (vmax − ⟨v⟩)−1 for N ≫ Dm/Dc.

The total power consumption and coefficient of variation (4.8) are inversely related,

Ẇchem = (2/t)θ−2, (4.17)

for all N and Dc/Dm. Figure 4.4b illustrates this trade-off, which features scaling behaviour
consistent across the regimes of large and small N . Arbitrarily high precision (low θ) can
be achieved in this collective-transport system, but at the cost of power consumption that
increases without bound.
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Ẇ

c
h
e
m
/
Ẇ
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Ẇ

m
a
x

M
i

(2, 1/2)

10−1 100 101

Dm
Dc

θ∗

0

1/2

1

(2, 1/2)

a)

c)

b)

d)

Figure 4.4: Trade-offs between a) scaled chemical power consumption Ẇchem/Ẇ max
Mi

and
scaled mean velocity ⟨v⟩/vmax, b) Ẇchem/Ẇ max

Mi
and scaled coefficient of variation θ∗ =

θvmax
√

t/Dc, c) efficiency ηS = ηM and ⟨v⟩/vmax, and d) ηS = ηM and θ∗, as the number
N of motors is varied, for different diffusivity ratios Dc/Dm. Stars: N = Dm/Dc. Circles:
maximum efficiencies for respective diffusivity ratios, ηmax = (1 + Dc/Dm)−1, realized for
N = 1. Insets in a), b), and d) show that scaling the power consumption and coefficient
of variation by factors of Dc/Dm collapses the curves for different diffusivity ratios onto
single master curves. Numbers in parentheses indicate coordinates of black stars (where
NDc/Dm = 1). All curves terminate at points where N = 1, so there is always an integer
number of motors.

Comparing (4.6) and (4.14), the efficiency and scaled velocity obey a simple relation:

ηS/M + ⟨v⟩
vmax

= 1, (4.18)

where ηS/M can be either the Stokes or motor efficiency, since they are equal for this system.
Fig 4.4c shows this trade-off. The collective-transport system cannot simultaneously achieve
high efficiency and near-maximum velocity. Further, depending on the diffusivity ratio only
certain efficiencies are achievable: those with ηS/M ≤ ηmax = (1 + Dc/Dm)−1. Notably, 50%
efficiency and half-maximal velocity can always be achieved at N = Dm/Dc.

Finally consider the trade-off between efficiency and precision (quantified by coefficient
of variation θ),

θ vmax

√
t

2Dc
=

√
ηS/M

1 − ηS/M
. (4.19)
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Figure 4.4d shows that high efficiency and high precision (low CV) are not simultaneously
achievable. This suggests that to maximize efficiency systems must exploit thermal fluctua-
tions, leading to a decrease in precision. Note that the transition from near-zero to near-unit
efficiency occurs over a small range of CVs around N = Dm/Dc.

Insets in Figs 4.4a, b, and d show that scaling the power consumption and coefficient of
variation by factors of the diffusivity ratio Dc/Dm collapses the separate curves for distinct
Dc/Dm onto single master curves. Thus the qualitative nature of the trade-offs described
here are independent of the relative diffusivities of the motors and cargo.

These performance trade-offs suggest that collective-transport systems where different
performance metrics are prioritized should have different numbers of motors if N can be
adjusted to tune performance. For systems in which maximum velocity and high precision
are preferred, optimization would drive systems towards the N ≫ Dm/Dc regime. This
would however come with the cost of high power consumption and decreased efficiency. If
instead highly efficient directed transport on a small power budget is favoured, then optimal
systems would have N ≪ Dm/Dc at the cost of slow and imprecise transport.

4.4 Generalizations of the model

4.4.1 Adding energy barriers

Many of this chapter’s results extend to more general models of motor dynamics. To show
this, consider a more complex model which relaxes the assumption that the chemical driving
force is much larger than the scale of the motor’s energy landscape. We add to each motor
a periodic potential-energy landscape of the form V (xi) = (1/2)E‡ cos (2πxi/ℓ), where E‡

is the height of the energy barriers between successive meta-stable states (local energy
minima), and ℓ is the period. Each motor’s dynamics satisfy

ẋi = βDm [fchem − κ(xi − xc) − fmax sin(2πxi/ℓ)] + ηi, (4.20)

where fmax = πE‡/ℓ is the maximum conservative force arising from the periodic potential.
(Note that the motor energy landscapes here are parameterized differently from Ref. [80] to
ensure consistency with Ref. [68]; the results of Fig. 4.5 are unchanged.) The cargo motion
still obeys Eq. (4.1a). This continuous model, inspired by similar models of other molecular
machines [77, 78], produces motor dynamics qualitatively similar to commonly used discrete-
step models [155, 157]. In the limit as fmax/fchem → 0, this system is identical to the
analytically tractable system (described by Eq. (4.1)) centrally featured in this chapter.

While these new equations of motion cannot be solved analytically, we can numerically
simulate the dynamics of this system, by integrating the N+1 Langevin equations for a given
value of N . Obtaining full time-dependent probability distributions through simulation
is computationally intractable for large N , so we compute only properties that depend
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solely on the average system dynamics. Figure 4.5 shows for this more complex model the
scaling with N of the mean velocity ⟨v⟩, chemical power consumption Ẇchem, and Stokes
efficiency ηS, for a variety of barrier heights. (Calculating the coefficient of variation for
large N is computationally intractable.) The scaling laws in the limiting regimes of large
and small N (outlined in Table 1) still accurately reflect the limiting scaling behaviour
for this generalization. As a direct result of the scaling laws generalizing, the performance
trade-offs [Figs. 4.4a and c] also apply more generally, at least qualitatively: even under
more general motor dynamics, desirable pairs of properties such as high velocity and high
efficiency or high velocity and low power consumption remain mutually exclusive.

4.4.2 Motor binding/unbinding

So far, I have treated the number N of active motors per cargo as fixed, although in real
transport systems motor proteins are constantly binding and unbinding to both the cargo
and the substrate. The estimate τrelax < 0.02 s of the system’s relaxation time (Sec. 4.3.1) is
much shorter than estimates of 0.2 − 1 s for the motor binding and unbinding timescales of
kinesin on microtubules [152]. Due to this timescale separation, the system can be treated as
always in dynamical steady state at fixed N even when motors bind and unbind over longer
timescales. Thus the steady-state results should still hold for temporally varying N . The
convexity of these properties with respect to N determines the sign of the error resulting
from computing steady-state quantities at a single average motor number ⟨N⟩ instead of
considering a full distribution p(N). For example, mean velocity is a concave function of N ,
so when N varies ⟨v (⟨N⟩)⟩ overestimates the mean velocity ⟨v(N)⟩. By contrast, the total
power consumption is convex, so ⟨Ẇchem(N)⟩ ≥ Ẇchem (⟨N⟩).

To confirm this intuition, I use a simple stochastic dynamical model of motor bind-
ing/unbinding based on Ref. [152] to estimate the error due to treating N as constant. The
motor number N undergoes a random walk, with rates

N → N + 1 : k+
N = k+

0 (Nmax − N), (4.21a)

N → N − 1 : k−
N = k−

0 N. (4.21b)

Here k+
0 and k−

0 are base rates of binding and unbinding for each motor, and Nmax is the
maximum number of motors that can bind a given cargo. The distribution p(N) satisfies
the master equation

∂

∂t
p(N) = k−

N+1p(N + 1) + k+
N−1p(N − 1) − (k+

N + k−
N )p(N) , (4.22)

with reflecting boundaries at N = 1 and N = Nmax. (We set a reflecting boundary at N = 1
rather than N = 0 because we are interested only in the behaviour of the system when there
are motors attached.)
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Ẇ
ch

em
/Ẇ
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Figure 4.5: Scaling of a) the scaled mean velocity ⟨v⟩/vmax, b) the Stokes efficiency ηS,
and c) the scaled chemical power consumption Ẇchem/P max

→Mi
, as a function of the motor

number N scaled by the diffusivity ratio Dm/Dc. We simulate N ∈ [1, 2, 3, . . . , 1000] for
several different ratios fmax/fchem of the maximum conservative force to the chemical driving
force. fmax/fchem = 0 (solid blue) recovers the analytically tractable model. Black curves
indicate the scaling laws from Table 4.1 in the small-N (dotted) and large-N (dashed)
limits. Parameters: fchem = 10, κ = 1, Dc = 0.03Dm; in dimensionless units chosen so that
Dm = κ = ℓ = 1.

The master equation (4.22) with these boundary conditions has a time-independent
steady-state solution. To simplify the analysis I take the limit Nmax → ∞ and k+

0 → 0 such
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that Nmaxk+
0 /k−

0 = λ is fixed. The steady-state solution is then

p(N) = λN

N !(eλ − 1) , (4.23)

defined for N ≥ 1. This is a zero-truncated Poisson distribution [173], with mean

⟨N⟩ = λ

1 − e−λ
. (4.24)

This distribution can then be used to calculate mean values of different steady-state
properties of the transport system, averaged over p(N). In particular, I estimate the error
involved in assuming the system is well described by a constant (rather than fluctuating)
number of motors, taking the mean velocity as an example.

For a given average number ⟨N⟩ of motors, we compare the mean velocity (4.6) evaluated
at fixed N = ⟨N⟩ to the velocity instead averaged over the distribution p(N) with the
parameter λ chosen so that ∑∞

N=1 Np(N) = ⟨N⟩. The error in mean velocity incurred by
assuming fixed N is

ϵ ≡

〈
v
(
⟨N⟩p(N)

)〉
ss

− ⟨⟨v(N)⟩ss⟩p(N)

⟨⟨v(N)⟩ss⟩p(N)
, (4.25)

where ⟨·⟩ss denotes an ensemble average over the system dynamics at fixed N , and ⟨·⟩p(N)

denotes an average over the probability distribution p(N).
Figure 4.6 shows this error over a range of different values of ⟨N⟩ and Dc/Dm. The error

resulting from assuming a fixed number of motors is less than 7%, and with other quantities
suffering similar magnitudes of error. Note that the error is maximized for small ⟨N⟩, and
for ⟨N⟩Dc/Dm ≈ 1.

4.5 Discussion

In this chapter, I introduced a simple model for collective intracellular transport by an arbi-
trary number of transport motors. This model is stochastic, thermodynamically consistent,
and can be solved analytically for arbitrary motor number N . Using this model, I derived
analytic expressions for several steady-state properties, including dynamic properties such
as mean velocity, effective diffusivity, and precision, as well as thermodynamic quantities
such as power, heat, and efficiency. I found qualitatively different N -dependence for these
quantities in the two opposing regimes of high and low N (compared to the motor-cargo
diffusivity ratio Dm/Dc), summarized by simple scaling laws (Table 4.1). The model should
best reflect the physics of motors whose energy-landscape features are smaller in scale than
the magnitude of their chemical driving, however the numerical explorations in Sec 4.4.1
suggest that many of this chapter’s results generalize well beyond this regime.
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Figure 4.6: Error (4.25) in mean velocity between fluctuating (described by Eq. (4.23))
and constant motor number, both with equal mean motor number ⟨N⟩, as a function of
⟨N⟩Dc/Dm. Vertical gray dotted line indicates ⟨N⟩Dc/Dm = 1.

I also examined trade-offs between several performance metrics that are expected to
be generally important for real transport systems: many pairs of desirable properties, for
example high velocity and high efficiency, are mutually exclusive in these systems. The
trade-off between efficiency and velocity (Fig. 4.4c) has also been explored theoretically in
other types of molecular machines [174, 175]. The incompatibility of high velocity and high
efficiency seems to be a general feature of these types of systems, and has also been seen
experimentally for myosin motors [30]. These findings are reminiscent of the thermodynamic
uncertainty relation [67], which lower bounds the product of uncertainty and entropy pro-
duction. At steady state the system saturates this bound, which may be a universal feature
of linear systems with only one driving force [65] or systems described by Gaussian probabil-
ity distributions [176]. This suggests that the performance trade-offs (especially Fig. 4.4b)
may in fact be Pareto frontiers [177] for more general collective-transport systems. Chapter 5
proves this hypothesis for a broad class of systems.

The performance trade-offs derived in Sec. 4.3.3 point to insights about optimization in
collective-transport systems, as adjusting the number of motors per cargo can tune perfor-
mance. This could be achieved, for example, by manipulating the motor concentration [178],
adjusting the number of possible binding sites on the cargo [179], or using extra structural
assemblies such as DNA scaffolds [39]. Depending on the regime the system inhabits, as
determined by the dimensionless quantity NDc/Dm, systems can either achieve fast and
precise but energetically costly transport (N ≫ Dm/Dc), or efficient but slow and imprecise
transport (N ≪ Dm/Dc). Ultimately, real systems have likely evolved to prioritize complex
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combinations of the performance metrics considered here and others not considered, how-
ever estimating NDc/Dm for in vivo systems may provide insight into which performance
metrics are most important in specific systems.

Design Principle: The number N of motors in a collective transport system can be
tuned to optimize different performance metrics of interest. N ≫ Dm/Dc maximizes
velocity and precision at the cost of high power consumption and decreased efficiency,
while N ≪ Dm/Dc maximizes efficiency but leads to slow and imprecise transport.

Few experiments have measured exact numbers of motors in collective-transport sys-
tems; nonetheless, motor numbers have indeed been measured, for example by identifying
discrete peaks in a distinctly multimodal velocity distribution. Using this technique to study
transport of beads by kinesin motors, Refs. [34, 35] found a mean velocity roughly propor-
tional to the number of motors, consistent with my predictions for the small-N regime; the
bead diameter and solution viscosity indicate that these experiments had N < Dc/Dm.
Similar experimental investigations have also found velocity to be a concave function of N ,
qualitatively consistent with my predictions [180]. Other experiments have varied the con-
centration of motor proteins in solution, a rough proxy for the number of motors per cargo.
Kinesin motors attached to a substrate while transporting long microtubules [181, 182] pro-
duce velocity that is a concave function of motor concentration, as this chapter predicts;
similar results have been found for myosin motors pulling actin filaments [37].

Using models similar to ours, but with discrete steps rather than continuous motor
dynamics, Refs. [154] and [157] found a similar monotonic and concave functional depen-
dence of the mean velocity ⟨v⟩ on motor number N , although their findings are restricted
to relatively small N . Likewise, Ref. [157] also found Deff ∝ 1/N for the greatest N they
investigated. Another recent study [158] found that the total load capacity, or effective stall
force, is N times the stall force for a single motor. The model can easily incorporate a
constant external force fext pulling the cargo in the opposite direction of the chemical force
driving the motors. This simply requires adding a term −βDcfext to the left side of (4.1a),
preserving analytic solubility of the dynamical equations. The mean velocity in this case is

⟨v⟩fext = ⟨v⟩0

(
1 − fext

Nfchem

)
, (4.26)

where ⟨v⟩0 is the mean velocity for fext = 0 given by Eq. (4.6). From this we identify the
stall force fs = Nfchem which scales linearly with the number of motors, independent of the
diffusivity ratio.

The model also ignores other possibly relevant effects such as motor-motor interactions
and discretization of motor steps. Depending on the time- and lengthscales of resolution,
motor proteins like kinesin can be thought of as taking discrete steps [183], in contrast to the
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continuous motion assumed here. Nevertheless, treating the motor dynamics as continuous
should be valid as long as the relaxation timescale for the motors is sufficiently separated
from that of the cargo (either much larger or much smaller) so that the steady-state sepa-
ration distance distribution (4.5) converges to the resulting steady-state distribution. This
assumption is valid for both N ≫ Dm/Dc and N ≪ Dm/Dc, but may break down for
N ≈ Dm/Dc, where system behaviour may be more sensitive to the exact motor dynamics.
Interactions between motors may become relevant under certain conditions. Computational
studies indicate the possibility of long-range cooperative interactions between kinesin mo-
tors through microtubules [184] as well as crowding effects such as traffic jams when large
numbers of motors are present [185]. While this chapter has not incorporated these effects,
generalizing the results using model-agnostic considerations from the theory of stochastic
thermodynamics is a promising future direction. In the next chapter I will consider a more
general class of collective transport models.
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Chapter 5

Dynamic and Thermodynamic
Bounds for Collective
Motor-Driven Transport

Molecular motors work collectively to transport cargo within cells, with anywhere from one
to several hundred motors towing a single cargo. For a broad class of collective-transport
systems, I use the Jensen lower bound for the entropy production rate to derive constraints
on performance. This implies new bounds on the velocity, efficiency, and precision of general
transport systems and a set of analytic Pareto frontiers for identical motors. In a specific
model, I identify conditions for saturation of these Pareto frontiers.

5.1 Introduction

Many specific models of transport systems have been explored, including deterministic phe-
nomenological models [34, 35, 152], discrete stochastic models [79, 157, 158], and continuous
stochastic models like the one in the last chapter [80, 155]. A common goal of these inves-
tigations has been to determine how various parameters (such as coupling strength, stall
force, diffusivity, and number of motors) tune the performance of these systems. Perfor-
mance metrics of interest include dynamical quantities such as velocity and precision, and
thermodynamic quantities like efficiency and power consumption [2]. While the behaviour of
specific model systems has been explored, considerably less is known about the fundamental
performance limits for transport systems in general, agnostic of model details.

The behaviour of transport systems is restricted by two fundamental thermodynamic
limitations. First and foremost, they must obey the second law of thermodynamics, the
most useful form in these contexts stating that at steady state the ensemble-averaged rate
of global entropy production cannot be negative [29]. Second, the recently established Ther-
modynamic Uncertainty Relation (TUR) [65–67] lower bounds products of the entropy pro-
duction rate and uncertainties in various currents at steady state. These key inequalities
have been used to derive bounds on various performance metrics, for example efficiency [73].
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In this chapter, I consider the thermodynamics of motor-driven intracellular transport
in far more generality than in Chap. 4. I apply the Jensen bound, derived in chapter 3, and
the TUR to derive a set of bounds on performance metrics such as velocity, efficiency, and
precision. These bounds constrain emergent properties of collective systems for arbitrary
numbers of motors of any directionality, using only bare properties of individual subsys-
tems. This theory holds for a broad class of collective-transport systems, independent of
any model-specific interaction potentials or spatially inhomogeneous energy landscapes. For
identical motors, I then derive analytic expressions for several Pareto frontiers constraining
combinations of performance metrics. Finally, I simulate an example system to illustrate
these bounds and conditions sufficient for their saturation.

5.1.1 Contributions

This chapter is adapted from an article published as Ref. [68], authored by myself and David
Sivak.

5.2 Theory and model

As in Chapter 4, consider N transport motors coupled to a diffusing molecular cargo, all
moving in one dimension. Each motor interacts with the cargo via a molecular linker, and is
characterized by a mechanochemical cycle through which it transduces chemical power into
directed forward motion. The cargo undergoes overdamped Brownian motion (with bare
diffusivity Dc) constrained by interactions with each motor (with its own bare diffusivity
Di).

Each motor in isolation experiences a constant chemical driving force fi, along with a
spatially periodic potential-energy landscape arising due to interactions with the substrate
it walks along (e.g., microtubules for kinesin). This may include features such as metastable
states and energy barriers. (Multiple cargos are trivially incorporated as motors with no
chemical driving force, fi = 0.) I assume that each motor tightly couples its chemical
and mechanical degrees of freedom, consistent with experiments on kinesin and myosin
motors [11, 49, 186]. Motors and cargo are coupled via the total potential energy V (x)
for the vector x ≡ {xc, x1, ..., xi, ..., xN } of cargo position xc and motor positions {xi}N

i=1.
This potential describes, e.g., the molecular linkers attaching each motor to the cargo and
attractive or repulsive interactions between motors. The dynamics of this model are given
by the multipartite overdamped Langevin and Fokker-Planck equations, Eqs. (2.56) and
(2.59) from Sec. 2.5.

In the steady-state limit the subsystems (cargo and motors) must stay together, i.e.,
the relative coordinates xi −xc reach time-independent distributions at steady state so that
each subsystem has the same mean velocity, ⟨v⟩ ≡ ⟨ẋc⟩ = ⟨ẋi⟩. In terms of the potential
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V (x), this requires that all subsystems are coupled and at long distances any repulsive
interactions are dominated by attraction.

5.2.1 Performance metrics

I consider several performance metrics for collective-transport systems, all of which were
introduced in chapter 4. These include the mean velocity:

⟨v⟩ =
〈

Jc(x, t)
P (x, t)

〉
(5.1a)

=
〈

Ji(x, t)
P (x, t)

〉
, (5.1b)

the average rate of total chemical-energy consumption by the N motors:

Ẇchem ≡
N∑

i=1
⟨fiẋi⟩ (5.2a)

=
N∑

i=1
fi⟨v⟩, (5.2b)

the Stokes efficiency:

ηS ≡ ζc⟨v⟩2

Ẇchem
, (5.3)

the effective diffusivity (4.7), and the precision (quantified by the coefficient of variation):

θ ≡
√

⟨δx2
c⟩

⟨xc⟩
. (5.4)

Here ⟨δx2
c⟩ is the variance of the cargo position xc.

From Sec. 2.5, the average rates of dimensionless entropy production for each subsystem
are [117]

Σ̇i = 1
Di

〈[
Ji(x, t)
P (x, t)

]2〉
≥ 0 (5.5a)

Σ̇c = 1
Dc

〈[
Jc(x, t)
P (x, t)

]2〉
≥ 0. (5.5b)

The total entropy production rate is their sum, Σ̇ = Σ̇c + ∑N
i=1 Σ̇i. For a diffusive cargo

with no external forces, the entropy production equals the total chemical power:

Σ̇ = βẆchem. (5.6)
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5.3 Bounds for general systems

Applying the Jensen bounds to this system yields three inequalities constraining the partial
and total entropy production rates:

Σ̇i ≥ 1
Di

⟨v⟩2, (5.7a)

Σ̇c ≥ 1
Dc

⟨v⟩2, (5.7b)

Σ̇ ≥ 1
Dbare

⟨v⟩2. (5.7c)

Here Dbare is the “bare collective diffusivity”, the inverse of the total friction coefficient from
summing the individual friction coefficients (inversely proportional to bare diffusivities) of
each subsystem:

Dbare ≡
(

1
Dc

+
N∑

i=1

1
Di

)−1

. (5.8)

Physically, Dbare is the effective diffusivity under a potential that depends only on relative
subsystem positions.

Equation (5.7c) constitutes a general, model-independent, lower bound (non-negative
and thus tighter than the second law (5.5)) on the entropy production required for a
collective-transport system with N motors to maintain mean velocity ⟨v⟩.

The collective-transport system is also constrained by the long-time limit of the ther-
modynamic uncertainty relation (TUR) [65–67], whose most useful form for this system
is

Σ̇t
⟨δx2

c⟩
⟨xc⟩2 ≥ 2. (5.9)

Identifying ⟨v⟩ = ⟨xc⟩/t and Deff (4.7) recasts this inequality as

Σ̇ ≥ 1
Deff

⟨v⟩2, (5.10)

which has the same form as the Jensen bound (5.7c). Equations (5.7c) and (5.10) thus
constitute two bounds on the entropy production. In general, either of these bounds can
be tighter. Even for a single particle in a tilted sinusoidal potential, either Dbare < Deff

or Dbare > Deff is possible, depending on the ratio of the barrier height to the driving
force [187].

Substituting (5.6) and the Stokes efficiency (5.3) into (5.7c) gives an upper bound on
ηS:

ηS ≤ Dbare
Dc

. (5.11)
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This is similar, but not equivalent, to a previous bound [73]: ηS ≤ Deff/Dc. Like the Jensen
bound (5.7c) and TUR (5.10), either of these two bounds can be tighter in different cir-
cumstances.

Likewise, substituting (5.6) and Ẇchem = ftot⟨v⟩ (for total force ftot = ∑N
i=1 fi which I

assume without loss of generality to be non-negative) into (5.7c) yields an upper bound on
the average velocity:

⟨v⟩ ≤ βDbareftot. (5.12)

Finally, substituting (5.6) and the coefficient of variation (5.4) into the TUR (5.9) and
employing the velocity inequality (5.12) gives an upper bound on the precision through a
lower bound on the coefficient of variation:

θ ≥ 1
βftot

√
2

Dbaret
(5.13)

These three bounds (5.11)-(5.13) constitute this chapter’s second major result, constrain-
ing global system properties using only properties (Dbare, Dc, and ftot) of each individual
subsystem in isolation.

5.4 Identical motors

I illustrate the utility of these performance bounds with the special case where transport
motors are identical, each with diffusivity Dm and driving force fchem. This reflects many
biological systems of interest, such as identical kinesin motors towing a large vesicle, or
identical myosin motors pulling an actin filament. The Jensen bound (5.7c) becomes

Σ̇ ≥
( 1

Dc
+ N

Dm

)
⟨v⟩2. (5.14)

The general performance bounds (5.11-5.13) can be rewritten in terms of more natural
variables as

ηS ≤
(

1 + NDc
Dm

)−1
, (5.15a)

⟨v⟩ ≤ βNDcfchem

(
1 + NDc

Dm

)−1
, (5.15b)

θ ≥ 1
βNfchem

√
2

Dct

(
1 + NDc

Dm

)1/2
. (5.15c)

Since NDc/Dm > 0, a looser upper bound on the mean velocity is

vmax = βDmfchem, (5.16)
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the mean velocity of a single motor in a flat potential subject to constant force fchem.
Likewise, since N ≥ 1, the Stokes efficiency has a looser upper bound of (1 + Dc/Dm)−1.

Combining (5.15a) with (5.15b) gives a Pareto frontier between the Stokes efficiency
and scaled mean velocity:

ηS + ⟨v⟩
vmax

≤ 1. (5.17)

Similarly, combining (5.14) and (5.12) gives

Ẇchem

Ẇ max
i

≥ Dm
Dc

(⟨v⟩/vmax)2

1 − ⟨v⟩/vmax
, (5.18)

a Pareto frontier constraining velocity and power consumption. Here Ẇ max
i = fchemvmax

is the mean power consumption of a single motor at maximum velocity. These two Pareto
frontiers follow solely from the Jensen bound (5.7c); the TUR (5.9) alone gives a Pareto
frontier for power consumption and precision:

βẆchemθ2 ≥ 2. (5.19)

5.4.1 External force on cargo

So far, the cargo has only encountered resistance from viscous drag; similar considerations
also constrain performance for an additional external force fext on the cargo, in the direction
opposite to fchem. The entropy production rate is then

Σ̇ = β(Nfchem − fext)⟨v⟩

≥
( 1

Dc
+ N

Dm

)
⟨v⟩2,

(5.20)

Here, thermodynamic efficiency ηT ≡ fext/(Nfchem) is positive. Applying the Jensen bound
leads to a Pareto frontier for thermodynamic efficiency and mean velocity:

ηT + Dm
NDbare

⟨v⟩
vmax

≤ 1. (5.21)

Since Dm/ NDbare ≥ 1, a looser bound analogous to (5.17) is

ηT + ⟨v⟩
vmax

≤ 1. (5.22)

5.5 Example system

Consider an example with tunable parameters that can saturate the derived bounds. Each
motor has periodic potential Vi(xi) = 1

2E‡ cos (2πxi/ℓ) with barrier height E‡, period ℓ,
and maximum conservative force fmax = E‡/(2ℓ). Each motor is linked to the cargo by a
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Figure 5.1: Motor and cargo trajectories for the example system with N = 2 motors, for
different fmax/fchem. Dark curves: cargo; lighter curves: two motors. Dashed grey horizontal
lines: local minima of motor potential energy. The start times of different trajectories are
staggered for clarity. Position and time are respectively scaled by ℓ and τ = ℓ2/Dm. Param-
eters used are βfchemℓ = 15, βκℓ2 = 7, and Dc/Dm = 1/30. Copyrighted by the American
Physical Society [68].

Hookean spring with spring constant κ and zero rest length [160], Ui(xc, xi) = 1
2κ(xi − xc)2.

The motors do not directly interact. The total system potential is thus

V (x) =
N∑

i=1

[1
2E‡ cos (2πxi/ℓ) + 1

2κ(xi − xc)2
]

. (5.23)

Equating the Kramers rate [188] for a single uncoupled motor hopping between ad-
jacent landscape minima with experimentally measured rates for kinesin-1 motors [164]
(Appendix A.2 gives details) yields fmax/fchem ≈ 0.4, which sets the scale of the parameter
sweep.

Figure 5.1 illustrates that for N = 2 motors the dynamics change significantly as the
barrier height increases. For fmax/fchem ≪ 1, the motors move continuously, while for
fmax/fchem ≳ 1 the motors hop between distinct states.

Figure 5.2 shows for N = 2 motors the trade-off between Stokes efficiency and velocity
due to parametric variation of the diffusivity ratio Dc/Dm, for different barrier heights.
When the motors face no barriers (fmax/fchem = 0), the system exactly saturates the
Pareto frontier (5.17). As fmax/fchem increases, the performance trade-off degrades, falling
increasingly far from the Pareto frontier.

While the ηS – ⟨v⟩ curve is linear for fmax/fchem = 0, as fmax/fchem increases it becomes
increasingly convex. This suggests that for large energy barriers high efficiency or high
velocity are more easily achieved than a compromise between the two. As expected, the

66



0 0.2 0.4 0.6 0.8 1

〈v〉/vmax

0

0.2

0.4

0.6

0.8

1

η S

fmax/fchem

0

0.2

0.4

0.6

0.8

1.2

1.6

Figure 5.2: Trade-off between Stokes efficiency ηS and scaled velocity ⟨v⟩/vmax in the ex-
ample system with N = 2 motors, plotted parametrically for Dc/Dm = 10−3 −103. Colours:
different fmax. Black dotted line: Pareto frontier (5.17). Stars: single uncoupled motor. Other
parameters same as Fig. 5.1. Copyrighted by the American Physical Society [68].

velocity in the NDc/Dm → ∞ limit is exactly that of a single uncoupled motor on the
same energy landscape, while the Stokes efficiency is zero. In the limit as NDc/Dm → 0,
the velocity approaches zero and the Stokes efficiency approaches unity.

Figure 5.3 shows the trade-off between power consumption and velocity due to paramet-
ric variation of the motor number N and barrier heights. Since this Pareto frontier (5.18)
depends on Dc/Dm, that ratio is held constant. Computational constraints limit simula-
tions to small N . When the motors face no barriers (fmax/fchem = 0), the system exactly
saturates the Pareto frontier (5.18). As fmax/fchem increases, the performance trade-off
degrades, falling increasingly far from the Pareto frontier.

5.6 Comparison of entropy production bounds

Figure 5.4 shows the entropy production rate of the specific model considered, along with
the different lower bounds discussed: the Jensen bound (5.7c), TUR (5.10), and second law
(Σ̇ ≥ 0). The Jensen bound is generally the tightest constraint for my best estimates of
reasonable model parameters in kinesin-vesicle systems.

More generally, the Jensen bound is tighter whenever Deff > Dbare. I numerically explore
the ratio Deff/Dbare over a 2D region of parameter space in Fig. 5.5, expanding around my
best estimates of βκℓ2 ≈ 7 and fmax/fchem ≈ 0.4−0.8 for kinesin motors pulling vesicles, and
find that Deff > Dbare (the Jensen bound is tighter) over a wide range of coupling strengths
and barrier heights. For sufficiently large energy barriers and motor-cargo coupling, however,
Deff < Dbare and thus the TUR is tighter. This is consistent with a previous study of coupled
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Figure 5.3: Trade-off between power consumption Ẇchem and scaled velocity ⟨v⟩/vmax in
the example system, plotted parametrically for N = {1, 2, 4, 8, 16, 32} and different fmax
(colours). Black dotted curve: Pareto frontier (5.18). Other parameters same as Fig. 5.1:
βfchemℓ = 15, βκℓ2 = 7, and Dc/Dm = 1/30. Uncertainties are smaller than the widths of
the points. Copyrighted by the American Physical Society [68].

Brownian particles diffusing in a single periodic potential [189]. At high coupling strengths,
subsystems can only cross energy barriers simultaneously [77], making forward progress only
with much larger fluctuations whose rarity leads to decreased effective diffusivity. Likewise,
high energy barriers could lead to phenomena like hindered diffusion, which lowers the
effective diffusivity [190]. (Recall that any details of interactions with other subsystems or
the substrate only affect Deff , with Dbare uniquely determined by the diffusion coefficients
of the components making up the system.)

5.7 Comparison with experiments

Figure 5.6 shows experimental measurements of velocity and efficiency for myosin motors
in several different animal tissues from Ref. [30]. For maximum velocity vmax = 12 µm/s (to
my knowledge, the highest observed in animal muscle tissue [191]), the predicted Pareto
frontier (5.22) indeed bounds the experimentally observed performance. The assumption
of a global vmax across many different species is reasonable so long as the difference be-
tween species-specific myosin motors comes predominantly from different potentials V (x)
as opposed to differences in the chemical driving force and bare diffusivity.
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Figure 5.4: Comparison of model entropy production with various lower bounds. Entropy
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solid curve), the Jensen bound (5.7c) (black dotted), the TUR (5.10) (gray dashed), and
the second law (red dot-dashed), each as a function of fmax/fchem. Uncertainties are smaller
than the widths of the curves. Parameters are N = 2 motors, βfchemℓ = 15, βκℓ2 = 7, and
Dc/Dm = 1/3. Copyrighted by the American Physical Society [68].

Figure 5.6 also shows experimental data for kinesin motors pulling diffusive cargo from
Ref. [34], which measured average velocity for single transport motors (motor number in-
ferred from multimodal velocity distributions) pulling vesicles, as a function of the vesi-
cle diameter. Cargo diffusivity Dc is estimated from the measured diameter using the
Stokes-Einstein relation [103] and reported measurements of temperature and viscosity,
while Dm is fit to the theoretical prediction ⟨v⟩/vmax = (1 + Dm/Dc)−1 from Chap. 4, with
vmax = 2 µm/s (the maximum velocity observed in Ref. [34]). This analysis also assumes
kinesin tightly couples mechanical motion with chemical energy consumption [11] so that
Ẇchem = ⟨v⟩∆µATP/d, for step size d = 8 nm and ∆µATP = 15 kBT [163, Chapters 3 and
4].

For both myosin and kinesin, Fig. 5.6 shows that the predicted Pareto frontier (5.22)
indeed bounds the experimentally observed performance. Consistently, theoretical studies
of the trade-off between efficiency and velocity in other types of molecular machines have
found that high velocity and high efficiency are mutually exclusive [174, 175].

69



0.0 0.5 1.0 1.5 2.0

fmax/fchem

1

10

102

103

104

Ø
∑
`2

DeÆ/Dbare

0.02

0.05

0.1

0.2

0.5

1

2

5

10

20

50

kinesin + vesicles:

Figure 5.5: The ratio Deff/Dbare between the effective diffusivity and the bare collective
diffusivity, as a function of dimensionless coupling strength βκℓ2 and fmax/fchem. Parameters
are N = 2 motors, βfchemℓ = 15, and Dc/Dm = 1/3. Standard errors of the mean are each
∼1-5%. Copyrighted by the American Physical Society [68].

5.8 Discussion

For motor-driven intracellular transport systems, the Jensen bound lower bounds the en-
tropy production rate of a collective-transport system. This bound can be tighter or looser
than the thermodynamic uncertainty relation (5.10), depending on the relative magnitudes
of the bare collective diffusivity Dbare and the effective diffusivity Deff . Due to its depen-
dence solely on parameters and averaged quantities, the Jensen bound is much easier to
compute than the TUR which depends on Deff (a function of the variance, which requires
more data to accurately estimate), provided that diffusion coefficients and driving forces
are known for each subsystem in isolation.

Once these properties are known for a given set of subsystems, the Jensen bound is easily
computed for any collective system assembled from a combination of such modular compo-
nents. The TUR by contrast does not take advantage of information about the subsystems
composing a collective system, and must be computed de novo for every such combination
by measuring emergent properties of the collective system. This makes the Jensen bound
particularly well suited for collective motor-driven transport systems, which are assembled
out of parts (cargo and motors) that can be identified and studied in isolation.
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Figure 5.6: Myosin motors across various animals, and kinesin motors pulling different-
sized cargo, obey the theoretical Pareto frontier. Red points: experimental measurements
of efficiency ηT and velocity ⟨v⟩ for myosin motors from different animal species [30]. Blue
points: measured velocity and calculated Stokes efficiency for kinesin motors pulling diffusive
cargo based on data from Ref. [34]. Dotted line: predicted Pareto frontier (5.22). Copyrighted
by the American Physical Society [68].

Using the Jensen bound and the TUR, I have derived several bounds on performance
metrics such as velocity, efficiency, and precision, as well as three analytic expressions for
Pareto frontiers when motors are identical. These bounds, which restrict emergent proper-
ties of collective systems, depend only on properties of each of arbitrarily many subsystems
in isolation. These results hold quite generally, for arbitrarily many motors (of any direction-
ality) and cargos. The system’s joint potential V (x) is only required to keep the components
of the system together at steady state, but may in general capture phenomena not included
in the example, such as non-Hookean motor-cargo linkers, motor-motor interactions, or
more complex periodic energy landscapes.

Fundamental Limits: Eqs. (5.12), (5.11), and (5.13) provide bounds on individual
performance metrics for general collective-transport systems, while Eqs. (5.17) and
(5.18) describe Pareto frontiers for systems with identical motors.

Numerical investigations show that the performance bounds and Pareto frontiers derived
in this chapter are attainable for systems with no energy barriers. This is unsurprising, as

71



it is well known that decreasing energy barriers (catalysis) speeds up a chemical reaction
without affecting the energetics. All the bounds and frontiers are saturated for a model with
only quadratic couplings between the cargo and each motor. This system, whose dynamics
and thermodynamics have been solved analytically [80], is Pareto optimal for the class of
systems considered here. More generally, the Jensen bound (5.7c) is always saturated for
linear systems within the class of models considered here (Appendix. A.1 provides proof).
The simulations focus on N = 2 motors due to computational constraints, however the
derived bounds hold for arbitrarily large N ; indeed, their utility is most significant for
N ≫ 1, where direct simulation is computationally intractable.

Design Principle: Performance of a collective transport system can be maximized
by making the overall potential energy landscape as close as possible to quadratic.

While the results of this chapter apply to a broad class of systems, they do rely on three
key assumptions: 1) all components of the transport system stay together, achieving at
long times the same mean velocity; 2) the dynamics are multipartite, such that the entropy
production can be split into subsystem-specific contributions [117]; and 3) motor motion
is tightly coupled to chemical-energy consumption. Multipartite dynamics are a standard
assumption in stochastic thermodynamics [75, 117, 192], generally necessary to analyze the
behaviour of multi-component systems. Experiments on kinesin [11, 49] and myosin [186]
motors do support tight coupling between the mechanical and chemical degrees of freedom;
nonetheless, futile cycles and backsteps have been observed to occur infrequently [193], and
are beyond the scope of this analysis. I speculate that such phenomena can only degrade
the performance metrics discussed, but generalizing these results to looser mechanochemical
coupling will be an important future direction.
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Chapter 6

Inferring Subsystem Efficiencies in
Bipartite Molecular Machines

Molecular machines composed of coupled subsystems transduce free energy between different
external reservoirs, in the process internally transducing energy and information. While
subsystem efficiencies of these molecular machines have been measured in isolation, less is
known about how they behave in their natural setting when coupled together and acting in
concert. Here I derive upper and lower bounds on the subsystem efficiencies of a bipartite
molecular machine. I demonstrate their utility by estimating the efficiencies of the Fo and
F1 subunits of ATP synthase and that of kinesin pulling a diffusive cargo.

6.1 Introduction

In addition to transducing free energy between different forms [2], a molecular machine
can also transduce free energy within itself, between internally coupled components [13,
194]. FoF1−ATP synthase and transport motors like kinesin pulling diffusive cargo are two
paradigmatic examples. Synthetic molecular machines are likewise often assembled from two
or more components [21, 22]. To facilitate future design of synthetic molecular machines,
it is critical to understand how components of a multicomponent molecular machine work
both in isolation and together to transduce free energy.

Subsystems of bipartite molecular machines, such as the F1 subunit [195], have been
studied in isolation to determine their efficiency. Less, however, is known about how these
subsystems perform when coupled together, as when performing their functions inside of
biological organisms. For example, while experiments that measure motor efficiency typi-
cally apply a constant force, modelling efforts have shown that transport motors perform
differently when pulling a diffusive cargo [78, 79]. Understanding molecular machines thus
requires estimates of subsystem efficiencies within bipartite machines, in addition to their
efficiencies in isolation.
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In this chapter, I detail a new method to derive upper and lower bounds on the ther-
modynamic efficiencies of bipartite subsystems from any bounds on subsystem entropy
production rates. As an example, I apply the recently proven Jensen lower bounds [68],
which do not depend on detailed internal interactions, making them easy to compute even
from limited data. I illustrate the utility of these bounds using experimental measurements
to infer the efficiencies of Fo and F1 when coupled together, as well as the efficiency of a
kinesin motor while pulling a diffusive vesicular cargo. Ultimately this method allows for
measurements of the efficiencies of subsystems in their natural settings, something inacces-
sible when studying them in isolation.

6.1.1 Contributions

This chapter is adapted from an article published as Ref. [74], authored by myself and David
Sivak.

6.2 Bounds on subsystem efficiencies

The subsystem first (2.44a) and second laws (2.49) can be rearranged to provide two equal-
ities for the transduced free energy,

Σ̇X − βẆX = βĖY + İY = βẆY − Σ̇Y . (6.1)

Applying to Eq. (6.1) any lower bounds Σ̇LB
X ≤ Σ̇X and Σ̇LB

Y ≤ Σ̇Y on the subsystem entropy
production rates yields upper and lower bounds on the transduced free energy:

Σ̇LB
X − βẆX ≤ βĖY + İY ≤ βẆY − Σ̇LB

Y . (6.2)

Dividing Eq. (6.2) by ẆY yields upper and lower bounds on Y ’s efficiency:

ηT

(
1 + Σ̇LB

X

−βẆX

)
≤ ηY ≤ 1 − Σ̇LB

Y

βẆY

. (6.3)

Likewise, multiplying the reciprocal of Eq. 6.2 by −ẆX yields upper and lower bounds on
X’s efficiency:

ηT

(
1 − Σ̇LB

Y

βẆY

)−1

≤ ηX ≤
(

1 + Σ̇LB
X

−βẆX

)−1

. (6.4)

The two inequalities (6.3) and (6.4) constitute the most general form of the subystem ef-
ficiency bounds, providing a recipe to derive bounds on subsystem efficiencies using the
interactions of subsystems with their environments and lower bounds on their entropy pro-
duction rates. These inequalities are valid for any lower bounds Σ̇LB

X and Σ̇LB
Y , and are also

valid for discrete degrees of freedom.
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Inserting the subsystem second laws Σ̇LB
X = 0 = Σ̇LB

Y into Eqs. (6.3) and (6.4) yields
ηT ≤ ηX/Y ≤ 1. Beyond the second law, however, the recently derived Jensen bound [68]
gives tighter lower bounds for the overdamped bipartite Langevin dynamics considered here:

βζX⟨ẋ⟩2 ≤ Σ̇X , (6.5a)

βζY ⟨ẏ⟩2 ≤ Σ̇Y . (6.5b)

⟨ẋ⟩ and ⟨ẏ⟩ are the steady-state average rates of change of the coordinates X and Y .
Inserting these Jensen bounds into Eqs. (6.3) and (6.4) gives

ηT

(
1 + ζX⟨ẋ⟩2

−ẆX

)
≤ ηY ≤ 1 − ζY ⟨ẏ⟩2

ẆY

, (6.6a)

ηT

(
1 − ζY ⟨ẏ⟩2

ẆY

)−1

≤ ηX ≤
(

1 + ζX⟨ẋ⟩2

−ẆX

)−1

. (6.6b)

This is a specific, immediately applicable version of Eqs. (6.3) and (6.4). Equations (6.6)
bound internal energetic flows through subsystems, in terms of the experimentally accessi-
ble quantities ζX , ζY , ⟨ẋ⟩, ⟨ẏ⟩, ẆX , and ẆY (recall that ηT = −ẆX/ẆY ). These quantities
solely depend on and characterize the interactions of the two subsystems with their envi-
ronments; applying the bounds Eqs. (6.6a) and (6.6b) does not require any knowledge of
the details of the coupling between subsystems.

Molecular machines that transduce free energy into directed motion rather than into
stored free energy will often produce no output work (ẆX = 0, and thus also ηX = 0 = ηT).
It is then desirable to reformulate Eq. (6.6a) in a way that incorporates the Stokes efficiency
and does not include division by ẆX . Substituting the definition of ηT, and identifying
ηS (2.55), Eq. (6.6a) can be expressed as

ηT + (1 − ηT)ηS ≤ ηY ≤ 1 − (1 − ηT) ζY ⟨ẏ⟩
ζX⟨ẋ⟩

ηS. (6.7)

When ẆX = 0 (and thus ηT = 0), this bound significantly simplifies to

ηS ≤ ηY ≤ 1 − ζY ⟨ẏ⟩
ζX⟨ẋ⟩

ηS. (6.8)

6.3 Subsystem efficiencies in ATP synthase

I now apply Eqs. (6.6a) and (6.6b) to the molecular machine ATP synthase. The two
coordinates Y and X correspond roughly to the rotational states of the c-ring inside the Fo

subsystem and the γ-shaft inside the F1 subsystem, respectively [77].
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Lacking experimental data on ATP synthesis and proton translocation rates, I assume
that the Fo and F1 subsystems tightly couple [196] rotary motion with proton transloca-
tion [197] and ATP synthesis [195], respectively. The external work rates are then Ẇo =
∆µH+⟨Jo⟩ and Ẇ1 = ∆µATP⟨J1⟩, for the two subsystems’ respective average rotation rates
⟨Jo⟩ and ⟨J1⟩ and chemical driving forces ∆µH+ and ∆µATP. This recasts the subsystem
efficiency bounds (6.6a) and (6.6b) as

ηT

(
1 − ζ1⟨J1⟩

∆µATP

)
≤ ηo ≤ 1 − ζo⟨Jo⟩

∆µH+
, (6.9a)

ηT

(
1 − ζo⟨Jo⟩

∆µH+

)−1
≤ η1 ≤

(
1 − ζ1⟨J1⟩

∆µATP

)−1
. (6.9b)

The six quantities composing the above bounds can be estimated from experimental data
and theoretical calculations. Consider the bovine mitochondria, where many of the relevant
quantities have been determined experimentally for ATP synthase far from stall. The chem-
ical driving forces are estimated as ∆µATP ≈ −7.5 kBT/rad and ∆µH+ ≈ 8.3 kBT/rad [9].
ATP can be synthesized at a rate of up to 440 molecules/second [10], and F1 has been ob-
served rotating at speeds of ⟨J1⟩ ≈ 100 rot/s [198]. Accordingly, I estimate the rotational flux
to be ⟨J1⟩ ∈ [100, 150] rot/s. Ref. [9] found 0.65 ≤ ηT ≤ 1, so I take ⟨J1⟩ ≤ ⟨Jo⟩ ≤ 1.4⟨J1⟩.
The friction coefficient of the γ-shaft rotating within the F1 subsystem has been estimated to
be of order 1.5×10−2 pN·nm·s/rad2 [199]. Accordingly, I take ζ1 ∈ [0.01, 0.03] pN·nm·s/rad2.
Calculations of the rotational friction coefficients in Stokes flow [123] suggest ζo ≈ ζ1/2, so
I take ζo ∈ [0.005, 0.015] pN · nm · s/rad2.

Figure 6.1 illustrates the joint range of subsystem efficiencies ηo and η1 inferred from the
bounds (6.9). This significantly constrains the possible subsystem efficiencies within ATP
synthase, to ηo ≈ 0.5 - 0.85 and η1 ≈ 0.7 - 0.85. Note that the size and location of the inferred
region are somewhat sensitive to the parameter estimates; more precise measurements of
physical parameters would allow for tighter thermodynamic inference. Because of the func-
tional form of the Jensen bound, the inferred region is also smaller for higher friction and
higher coordinate rates of change.

6.4 Efficiency of a transport motor pulling a diffusive cargo

Taking Y and X to be the respective one-dimensional positions along a microtubule of
a transport motor and its cargo, Eq. (6.8) allows estimation of the motor efficiency ηM,
quantifying the free-energetic efficiency of a motor pulling against the fluctuating force
arising from the motion of the diffusive cargo. Since a coupled motor and cargo have equal
average velocity [68], ⟨ẋ⟩ = ⟨ẏ⟩ = ⟨v⟩, Eq. (6.8) further simplifies to

ηS ≤ ηM ≤ 1 − Dc
Dm

ηS . (6.10)
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Figure 6.1: Inferred subsystem efficiencies ηo for Fo (the Y subsystem) and η1 for F1 (the
X subsystem) in FoF1−ATP synthase. Red horizontal and vertical lines: minimum possible
values of the lower bounds (6.9) on η1 and ηo, respectively, that are consistent with the
estimated parameter ranges detailed in the main text. Green horizontal and vertical lines:
maximum possible values of the two upper bounds (6.9). Red and green dashed curves:
minimum and maximum possible values of the product ηo · η1 = ηT given my parameter
estimates. Purple region: efficiencies satisfying all bounds. Copyrighted by the American
Physical Society [74].

Here the friction coefficients of Eq. (6.8) have been replaced with diffusion coefficients (using
the fluctuation-dissipation relation [29]) which are more natural for the motor-cargo system.

Estimating ηM requires measurements of the diffusion coefficients Dc and Dm, the aver-
age velocity ⟨v⟩, and the chemical power consumption ẆM by the motor. Ref. [34] provides
experimental measurements of average velocity for single transport motors (motor num-
ber inferred from multimodal velocity distributions) pulling vesicles, as a function of the
vesicle diameter. Cargo diffusivity Dc is estimated from the measured diameter using the
Stokes-Einstein relation [103] and reported measurements of temperature and viscosity. I
estimate Dm by fitting the resulting ⟨v⟩ as a function of Dc to the theoretical prediction
⟨v⟩/vmax = (1 + Dm/Dc)−1 [80] with vmax = 2 µm/s (the maximum velocity observed in
Ref. [34]). Finally, I assume the transport motor tightly couples mechanical motion with
chemical energy consumption [11] so that ẆM = ⟨v⟩∆µATP/d, for step size d = 8 nm and
∆µATP = 15 kBT [163, Chapters 3 and 4].

Figure 6.2 shows the upper and lower bounds on ηM (6.10) inferred from the above
estimates and experimental data. This method for the first time significantly constrains
ηM, suggesting it decreases from ∼0.85 to ∼0.75 as Dc increases from 2 µm2/s to 5.5 µm2/s
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(corresponding to vesicle diameters from 1.1 µm to 0.4 µm). These estimates are consistent
with my earlier theoretical prediction from Chap. 4, ηM = (1 + Dc/Dm)−1, which falls
entirely within the inferred region of Fig. 6.2.
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Figure 6.2: Upper and lower bounds (6.10) on the motor efficiency computed from experi-
mental data for a single transport motor (the Y subsystem) pulling a diffusive cargo (the X
subsystem) [34]. For each paired velocity and cargo diameter from Ref. [34], red and green
points respectively denote lower and upper bounds (Eq. (6.10)) on the motor efficiency, with
error bars showing experimental error propagated through Eq. (6.10). Purple dashed curve:
nonlinear best-fit curve separating the upper and lower bounds computed using a nonlinear
support vector machine [200]. Purple shaded region: corresponding confidence interval. Blue
dot-dashed line: theoretical prediction from Chap. 4. Copyrighted by the American Physical
Society [74].

While the cargo does not have a thermodynamic efficiency since it does not provide
output work, it is nonetheless possible to define an efficiency metric for the cargo subsystem.
Similar to the definition of the Stokes efficiency in Chap. 2, considering the output of the
cargo as work against a viscous friction force suggests the definition of the Stokes subsystem
efficiency:

ηC ≡ ζc ⟨v⟩2

ĖM + kBT İM
. (6.11)

ηC quantifies the efficiency at which the cargo dynamics transduce free energy from the
motor into work against viscous friction.

Applying the Jensen bound to the subsystem second law for the cargo yields the upper
bound ηC ≤ 1, making this a well-defined efficiency metric. Similarly, applying the Jensen
bound to the motor second law yields a lower bound on ηC. Thus like the other subsystem
efficiencies considered in this chapter, the cargo Stokes subsystem efficiency is constrained
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by upper and lower bounds:

ηS

(
1 − ⟨v⟩ d

Dmβ∆µATP

)−1
≤ ηC ≤ 1. (6.12)

As with FoF1-ATP synthase, it is now possible to plot simultaneous constraints on the
motor and cargo subsystem efficiencies, which I do in Fig. 6.3, again based on experimental
data from Ref. [34]. Here I take averages over all data points shown in Fig. 6.2 to obtain
estimates for Dc and ⟨v⟩.
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Figure 6.3: Inferred subsystem efficiencies ηM for kinesin (the Y subsystem) and ηC for
its diffusive cargo (the X subsystem). Red horizontal and vertical lines: minimum possible
values of the lower bounds (6.10) and (6.12) on ηM and ηC, respectively, that are consistent
with the estimated parameters detailed in the main text. Green horizontal and vertical lines:
maximum possible values of the two upper bounds (6.10) and (6.12). Red and green dashed
curves: minimum and maximum possible values of the product ηM ·ηC = ηS given parameter
estimates. Purple region: efficiencies satisfying all bounds. Blue point: theoretical prediction
from Chap. 4. Copyrighted by the American Physical Society [74].

6.5 Discussion

I derived general lower and upper bounds on the efficiencies of two subsystems composing
a bipartite molecular machine in their natural setting, as opposed to in isolation as in
typical single-molecule experiments. The measurable quantities required to compute the
bounds depend only on the interactions of each molecular machine with its environment;
details of the coupling between subsystems need not be understood. Quantifying subsystem
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efficiencies allows us to determine where free energy is lost in multi-component systems,
which will ultimately be critical for the future engineering of synthetic molecular machines.

Inference Tool: Subsystem efficiency bounds enable simultaneous inference of the
efficiencies of both parts of a bipartite molecular machine in their natural, coupled
context.

The respective efficiencies inferred for Fo and F1, ηo ≈ 50 - 85% and η1 ≈ 70 - 85%,
are somewhat lower than the measured efficiency of isolated F1 hydrolyzing ATP, which is
nearly 100% [50]. The Fo subunit efficiency has likewise been estimated at over 90% [9]. My
findings suggest that the Fo and F1 subsystems have different efficiencies acting in concert
than when they operate in isolation. One possible reason could be non-tight mechanical
coupling between Fo and F1 under physiological conditions; such a “floppy” connection
imperfectly transfers energy (increasing dissipation) but can improve operational speed [77]
and allows for information flows [113].

Experimental [201] and theoretical [202] investigations of kinesin motors pulling against
constant forces suggest motor efficiencies of 40 - 60%.The inferred range of 70 - 90% is slightly
higher, suggesting that transport motors may attain higher efficiencies when pulling against
the variable load produced by a diffusive cargo, their main function within cells.

It is important to note conceptual differences between previous subsystem efficiencies
and those inferred in this chapter. Conventional single-molecule experiments measuring
subsystem efficiency (such as Ref. [50]) typically consider transduction to and from de-
terministic external reservoirs, hence preclude information flows and are limited to work.
The subsystem efficiencies (Eqs. (2.54a) and (2.54b)) consider transduction to and from
a strongly coupled stochastic subsystem, naturally including information transmission and
hence encompassing all free-energy transduction. In contrast with conventional experimen-
tal efficiencies that study isolated subsystems in artificial environments, the subsystem
efficiencies describe their behaviour in their natural, coupled, in vivo context.

The main results are derived here for X and Y subsystems fully characterized by one-
dimensional degrees of freedom, but are more general. The x and y coordinates will in
most cases be coarse-grained over many internal degrees of freedom; such a coarse-graining
underestimates the true entropy production [117, 203], so the efficiency bounds would loosen
but remain valid because they derive from lower bounds on the entropy production rates.

Finally, while I employed the Jensen bound (6.5) to derive lower bounds for Σ̇X and Σ̇Y

and thus derive Eqs. (6.6a) and (6.6b), this framework is far more general. Any set of lower or
upper bounds on Σ̇X and Σ̇Y could be inserted into Eq. (6.1) to obtain different subsystem
efficiency bounds. Promising examples include the recently derived bipartite TUR [130].
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Chapter 7

Information Arbitrage in Bipartite
Heat Engines

Heat engines and information engines have each historically served as motivating examples
for the development of thermodynamics. While these two types of systems are typically
thought of as two separate kinds of machines, recent empirical studies of specific systems
have hinted at possible connections between the two. Inspired by molecular machines in
the cellular environment, which in many cases have separate components in contact with
distinct sources of fluctuations, we study bipartite heat engines. We show that a bipartite heat
engine can only produce net output work by acting as an information engine. Conversely,
information engines can only extract more work than the work consumed to power them if
they have access to different sources of fluctuations, i.e., act as heat engines. We illustrate
these findings first through an analogy to economics and a cyclically controlled 2D ideal gas.
We then explore two analytically tractable model systems in more detail: a Brownian-gyrator
heat engine which we show can be reinterpreted as a feedback-cooling information engine,
and a quantum-dot information engine which can be reinterpreted as a thermoelectric heat
engine. These results suggest design principles for both heat engines and information engines
at the nanoscale, and ultimately imply constraints on how free-energy transduction is carried
out in biological molecular machines.

7.1 Introduction

In contrast to the classical thermodynamic arena of heat engines operating between different
temperatures, biological processes are typically assumed to be isothermal, with fluctuations
often treated as homogeneous and isotropic. However, recent experimental and theoretical
developments have shed light on possible departures from uniform fluctuations. For example,
experiments suggest the mitochondrial temperature could be as much as 10K hotter than the
rest of the cell [204–207]. This temperature difference could conceivably be accessed by the
molecular machine ATP synthase which straddles the mitochondrial membrane. As another
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example, light-harvesting machines like photosystem II [3] are driven out of equilibrium by
solar photons. These light-induced reactions can be treated as coupling to a heat bath at
the temperature of the photon source [45, 208, 209]. Lastly, the cellular interior supports
a host of active fluctuations [210–213] powered by metabolic activity via the motion of
large cytosolic components, for example enzymes and related complexes [214, 215] or the
cytoskeletal network [216].

Such biological systems are typically composed of interacting degrees of freedom, which
may thus be separately influenced by fluctuations of different strengths. The theory of
bipartite stochastic thermodynamics [75, 107, 108] describes energy and entropy balance
at the level of individual subsystems, and allows for quantification of internal energy and
information flows [51] between coupled subsystems. In such setups, different sources of fluc-
tuations can be leveraged to improve performance. For example, active fluctuations speed
in vitro kinesin operation [217] and enzymatic catalysis [218], and temperature differences
increase output work in a model for ATP synthase [219]. These effects are reminiscent of
classical heat engines that alternately couple to different reservoirs at distinct temperatures.
However, microscopic biological systems differ in that they are composed of interacting sub-
systems which each experience fluctuations from different sources. This motivates the study
of two-component heat engines in which each part interacts with a heat bath at a different
temperature. We call such systems bipartite heat engines.

Nanoscale stochastic systems can also use information as a thermodynamic resource
to behave as information engines. Information engines fundamentally require a setup with
two components: a controller and a controlled system. Information can then serve as a
thermodynamic resource to make the controlled system, when considered on its own, do
something seemingly forbidden by the second law, e.g., convert heat entirely into work.
This comes at the controller’s expense because the apparent second-law violation entails
an energetic cost [82]—through Landauer’s principle [88]—for performing feedback control
and erasing previously acquired information.

Because of their interacting components and the relevance of (thermal) fluctuations, it
is natural to ask whether molecular machines behave as information engines. Assuming a
bipartite setup permits quantification of the information thermodynamics of such systems
analogously to their energetics [220], by calculating an information flow [51, 67, 221] one
can quantify the extent to which information is transduced through a composite system’s
dynamics. This setup has been used to bound the dissipation of molecular sensors [83–85]
and study the role information plays in bipartite molecular machines [25, 74, 113, 124, 194,
219].

It has recently been suggested that information engines designed to leverage nonequi-
librium fluctuations [222–224] can greatly outperform their purely thermally driven coun-
terparts. Output power can even surpass minimum control costs, rendering the information
engine an energy harvester that operates between two reservoirs, the equilibrium thermal
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fluctuations affecting the controller and the nonequilibrium fluctuations affecting the con-
trolled system. This setup is suggestively similar to that of a bipartite heat engine with a
“cold” and a “hot” subsystem. In fact, like heat engines, such information engines are con-
strained by the Carnot bound, hinting at connections between the two engine types [225–
228].

This chapter elucidates a connection between heat engines exploiting the flow of heat
from hot to cold, and information engines implementing Maxwell-demon-like exploitation of
fluctuations. To broaden the perspective, I illustrate that bipartite heat engines, where two
engine components are each in contact with distinct reservoirs at different temperatures,
can indeed be understood as information engines, and vice versa. To operate as a heat
engine and extract energy from the temperature difference, the two components need to
work together by exchanging entropy—in the form of information. This cooperation can be
understood as an information engine in which the “colder” component acts as a controller
that exploits the fluctuations of the “hotter” component. I illustrate these core findings using
an analogy from economics, followed by a simple example consisting of a Carnot cycle on a
2D ideal gas with anisotropic temperature which is revealed to be a disguised information
engine.

Building on the theory of bipartite stochastic thermodynamics, I derive the information
flow arbitrage relation (Eq. (7.14)): an inequality bounding the output work of a bipartite
heat engine by the product of the temperature difference between the two reservoirs and an
internal information flow between the two subsystems. This result shows that a bipartite
heat engine can only achieve net output work by supporting an information flow between its
two subsystems, thus acting as an information engine. Conversely, a bipartite information
engine can only produce more work than the energy cost required to run the controller when
it operates between two temperatures, thus acting as a heat engine. This shift in perspec-
tive helps to establish the information engine as a useful mechanism for work extraction,
and implies that any bipartite heat engine must implicitly contain this information-engine
mechanism: Maxwell’s demon lies at the heart of many real-world heat engines.

7.1.1 Contributions

This chapter is adapted from an article published as Ref. [52], authored by myself, Jan-
nik Ehrich, and David Sivak. Jannik and I share joint first-authorship; we both indepen-
dently derived the main results of this chapter, and worked together to plan and write the
manuscript.

7.2 Heat engines are entropy arbitrageurs

Fundamentally, heat engines trade energy with heat reservoirs. They receive a certain
amount of energy in the form of heat from the hot reservoir, and give a lesser amount
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Figure 7.1: Heat engine as entropy arbitrageur. (a) Energy (green filled arrows) and entropy
(unfilled arrows) flows in an ideal heat engine operating between a hot (TX = 2) and a cold
(TY = 1) reservoir. (b) Arbitrage analogy from economics. The heat engine is an arbitrageur
buying sheep (entropy reduction) for a low price and selling sheep (entropy increase) for a
higher price at a different market, pocketing the difference in money (energy).

of heat to the cold reservoir, withdrawing the energy difference as output work. Since en-
ergy is conserved, the work extracted is equal to the difference in heats.

Flows of another quantity, entropy, determine how input heat can be split among output
work and output heat. The input heat from the hot reservoir comes with an increase in the
entropy of the heat engine, with the ratio of energy to entropy bounded by the temperature
of the reservoir (multiplied by Boltzmann’s constant kB). Because of the lower temperature
of the cold reservoir, getting rid of the entropy only requires giving off a smaller amount of
heat.

The greater the temperature difference, the less of the input energy needs to flow to
the cold reservoir to maintain entropy balance, and thus the more energy can be extracted.
Figure 7.1(a) illustrates the energy and entropy flows in a heat engine in contact with two
heat reservoirs at temperature TX = 2 and TY = 1, respectively. For simplicity, we stick to
a temperature ratio of TX/TY = 2 throughout this chapter. We take the convention that
work and heat flows into the system are positive.

The analysis invites an analogy from economics: When in two markets the prices for the
same good differ, a market participant can make risk-free profit by buying from one market
at a lower price and selling at another market for a higher price, pocketing the difference.
This practice is arbitrage [229] and people engaging in it are arbitrageurs. The heat engine
described above is such an arbitrageur: It “buys” a reduction in entropy from the cold
reservoir for a smaller amount of energy and “sells” an equal entropy increase to the hot
reservoir for a larger amount of energy, pocketing the difference. Inspired by [230], we depict
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the analogy with an arbitrageur trading sheep at different markets in Fig. 7.1(b). In this
analogy money corresponds to energy, while sheep correspond to entropy reduction—since
by the second law entropy cannot spontaneously decrease, decreasing entropy most cost
something.

Trading sheep this way drives prices in the two markets, through the forces of supply
and demand, toward equality, known as an arbitrage equilibrium; aptly named, since in the
thermodynamic context the heat flow through the engine eventually leads to an intermediate
temperature in the reservoirs and a global thermodynamic equilibrium. Just as processes in
nature evolve towards an equilibrium, so do economic forces impel market participants to
engage in arbitrage, pushing the market towards equilibrium. This analogy between heat
engines and market arbitrage is not new [231, 232] and, though different from the approach
here, has even been used in the context of an information engine [233].

We consider the analogy particularly illuminating because in the same way in which
a trader cannot increase the number of sheep by making them out of thin air (except by
spending money) the second law forbids decreasing entropy (except by spending energy to
do so). Hence, in both cases optimal efficiency is achieved by conserving the traded good.
Inefficiencies in thermodynamic engines are expressed by unnecessary entropy production
that increases the amount of heat that needs to be dissipated to break even. Similarly, if
the arbitrageur somehow loses some sheep between the markets without compensation, they
sell fewer sheep and make a smaller profit.

7.2.1 Bipartite heat engines: information arbitrage

Not all engines are in simultaneous or alternating contact—as in conventional Carnot
analysis—with two heat reservoirs. Instead, some engines are composed of distinct sub-
systems that are each in permanent contact with a different reservoir at a given tempera-
ture. Macroscopic examples include thermoelectric devices, where two coupled junctions in
contact with different temperatures collectively achieve work output [234]. Microscopic ex-
amples include the molecular machines mentioned in the Introduction, which are made up of
different components that can be exposed to different sources of fluctuations from temper-
ature gradients [204–207], hot thermal radiation [45], or active fluctuations [210, 211, 214–
217].

Motivated by these examples, I now consider bipartite heat engines, where two sub-
systems each interact with only one reservoir at a distinct temperature. Collectively, the
subsystems can act as a heat engine, conducting heat from hot to cold and producing work
output. Figure 7.2(a) depicts such a setup: The larger input heat QX is entirely converted
to output work −WX , while the smaller input work WY is entirely converted to output heat
−QY . Comparing with Fig. 7.1(a), −W = −WX −WY > 0, i.e., net output work is positive.

The setup portrayed in Fig. 7.2(a) does not require a flow of energy through the machine
because heat and work are converted locally in each subsystem; however, the machine re-
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Figure 7.2: Ideal bipartite heat engines and their economic analogs. (a) Energy (green filled
arrows) and entropy (unfilled arrows) flows. The flow of entropy between engine components
X and Y is conventionally identified as an information flow (in the opposite direction). In
(a), X and Y cannot exchange energy, so Y requires external input work. (b) Arbitrage
analogy of (a): Two market participants must work together to realize the arbitrage scheme,
requiring a flow of sheep from the lower-priced to the higher-priced market as well as a flow
of money from the higher-priced market to the lower-priced market. (c) Same as (a) but
with X and Y each extracting work. (d) Arbitrage analogy of (c).

quires a flow of entropy from the hot subsystem to the cold subsystem. In stochastic thermo-
dynamics, entropy transduction between components is called information flow [51, 75, 221].
Section 7.3 gives a precise mathematical statement of information flow, but for now we make
do with an intuitive explanation: In information theory, mutual information measures the
mutual dependence between two variables. Information flow measures how much each sub-
system tends to increase or decrease the mutual information between their statistical states.
By the equivalence of information-theoretic (Shannon) entropy and thermodynamic entropy,
subsystems may exchange thermodynamic entropy with each other by altering their mutual
information.

This flow of information is the hallmark of an information engine or Maxwell demon,
which achieves conversion of heat to work using information, in apparent violation of the
second law. In this setup we immediately see that the apparent paradox results from only
focusing on the X-subsystem in Fig. 7.2(a), which indeed transforms input heat to output
work, and ignoring the Y -subsystem, which dissipates input work as output heat.

We can also understand the necessity of a flow of entropy in terms of the previous
arbitrage analogy, Fig. 7.2(b): Because each trader only has access to one market, they
need to work together to make a net profit. Since they cannot produce new sheep (no
decreasing entropy), a necessary requirement for their arbitrage scheme to work is that
sheep are transported from the market with the lower exchange rate to that with the higher
exchange rate.
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Figure 7.3: Heat engine using a two-dimensional ideal gas in contact with heat baths act-
ing in different directions. (a) Illustration of thermodynamic cycle. Small arrows indicate
respective pressures in X and Y directions. Central inset: thermodynamic diagram showing
presence/absence and directionalities of all energy, entropy, and information flows over the
course of one cycle. (b) p − V diagram indicating the pressures on the mobile partitions (p)
and volumes (V ) for each step in the cycle. (c) Corresponding T − S diagram. In (b) and
(c), red and blue curves denote isotherms at TX and TY , respectively, while black dashed
lines denote isochores (or equivalently adiabats).

Finally, bipartite heat engines may differ in which subsystem is capable of extracting
work. For example, if the Y-subsystem has no access to a work source, the machine must
transduce work from the hot to the cold side to “pay for” reducing its entropy by releasing
heat to the cold reservoir. In terms of the analogy, in this case money must be transferred
from one market participant to the other. Of course, multiple different schemes of money
transfer could be set up. For example, the two arbitrageurs could equally share profits, as
illustrated in Figs. 7.2(c) and (d). Notice, however, that regardless of the details of the
energy (money) extraction, entropy (sheep) must be transported from hot to cold reservoirs
(lower- to higher-exchange-rate markets).

7.2.2 Example: Carnot cycle for 2D ideal gas

If bipartite heat engines necessitate an information flow to generate net output power,
one should be able to interpret a given bipartite heat engine in terms of an equivalent
information engine. This section illustrates this principle in a slight modification of a well-
known thermodynamic process. Consider a 2D ideal gas, depicted in Fig. 7.3(a), in which the
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position and momentum coordinates in the vertical direction are assumed to not interact
with those in the horizontal direction, and the coordinates in the two directions are in
contact with different thermal reservoirs at respective temperatures TX and TY < TX .
This idealized setup could be achieved, for example, with a monatomic gas cooled to low
temperature in a container with perfectly elastic walls held at different temperatures. In the
following, we show how such a setup is harnessed to execute the thermodynamic cycle of a
heat engine. Then, in Sec. 7.2.3 we interpret the thermodynamic process in terms of the well-
known Szilard engine. Similar systems have been proposed and analyzed previously [227,
228, 235], but without considering connections between the two engine types.

The gas is confined to a square container of side length L and exerts different pressures
pX and pY on the vertical and horizontal container walls, respectively. The ideal-gas law
then gives relationships between the pressures pX and pY (defined as forces per unit length),
container volume V = L2, and temperatures:

pXV = NkBTX (7.1a)

pY V = NkBTY , (7.1b)

where N is the number of molecules.
Now consider the following thermodynamic process, depicted in Fig. 7.3(a):

Init. The container is partitioned vertically into equal volumes.

1 → 2 The gas is reversibly compressed in the Y -direction to half the volume, compressing
from the top on the left side and from the bottom on the right. This compression
creates a horizontal partition separating the top and bottom of the container.

2 → 3 The two parts of the horizontal partition are now fixed in place, while the vertical
partition is split into two mobile parts which can move horizontally.

3 → 4 The gas is reversibly expanded to the original volume.

4 → 1 The horizontal partition is removed and instantaneously replaced with the vertical
partition.

Figure 7.3(b) shows the p−V diagram using at each step the relevant pressure pX or
pY . The cycle contains two isothermal steps and two isochoric (constant volume) steps.
The latter correspond to swapping the partition and thereby swapping which pressure is
relevant for the gas expansion or contraction. As illustrated in Fig. 7.3(c), this instantaneous
swapping of the container partitions is not only isochoric but also adiabatic since no heat
is exchanged with the heat baths. This is possible because the engine essentially has two
working media at different fixed temperatures: the X and Y components of the ideal gas.

During the isochoric steps (2→3 and 4→1), no heat is exchanged with the baths, and the
compression (1→2) and expansion (3→4) steps are isothermal at respective temperatures
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TY and TX . Hence the work done on the gas during compression is W1→2 = NkBTY ln 2 and
during expansion is W3→4 = −NkBTX ln 2. Heat flows into the gas during the expansion,
Q3→4 = NkBTX ln 2, and out of the gas during compression, Q1→2 = −NkBTY ln 2. Hence,
in one cycle the heat engine outputs net work

−W1→2 − W3→4 = NkB (TX − TY ) ln 2 (7.2)

at Carnot efficiency

η = −W1→2 − W3→4
Q3→4

= 1 − TY

TX
. (7.3)

7.2.3 Szilard engine in disguise

There is an information engine hidden in this heat engine. Imagine only having access to
the X-position of each gas molecule during the cycle: In step 2→3 the container is divided
and each gas molecule is either left or right of the partition. In step 3→4 input heat drives
an isothermal expansion, and work is extracted from the gas as the piston is moved across
the correct respective empty half of the container (appearing to act on hidden knowledge
of the system state): It seems as if heat is entirely converted into work. However, with full
access to the state space we recognize that this expansion step, seemingly requiring hidden
knowledge, is preceded by a compression step that correlates each molecule’s Y position
with its X position, and the expansion step utilizes the Y position as a memory to execute
the expansion into the correct half.

Imagining this process with a single molecule, we obtain the famous Szilard engine [236,
237], arguably the simplest information engine used to illustrate the Maxwell-demon para-
dox [87]. For the Szilard engine, the paradox is resolved by explicitly accounting for the
memory degree of freedom and using Landauer’s principle [88] to show that information
erasure carries a thermodynamic cost. In analogy to this, we analyze the information ther-
modynamics [12] of the interplay between the X and Y components of the gas.

In the initial, uncompressed state the N -molecule gas has joint entropy

S1[X, Y ] = N ln V + N

2 ln TX + N

2 ln TY , (7.4)

up to constants irrelevant to the analysis. (Note that while we appear to take logarithms of
dimensional quantities, this is because we have omitted additional constant factors [238].)
Using the container’s side length L (and hence volume V = L2), the joint entropy is

S1[X, Y ] = S1[X] + S1[Y ] , (7.5a)
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for marginal entropies

S1[X] = N ln L + N

2 ln TX (7.5b)

S1[Y ] = N ln L + N

2 ln TY . (7.5c)

Initially, at equilibrium without any coupling, the subsystems X and Y are independent
and hence they have zero mutual information: I1[X; Y ] = S1[X] + S1[Y ] − S1[X, Y ] = 0.

The compression step 1→2 does not change the one-dimensional phase space available
to each individual component. Consequently, the marginal entropies remain unchanged:
S2[X] = S1[X] and S2[Y ] = S1[Y ]. Nonetheless, the joint entropy has been reduced by
N ln 2, since the (joint) phase-space volume available to each molecule has been halved.
Since the joint entropy has been reduced while holding the marginal entropies constant,
mutual information has been introduced between the components:

S2[X, Y ] = S2[X] + S2[Y ] − I2[X; Y ] (7.6a)

= S1[X, Y ] − N ln 2 , (7.6b)

and hence

I2[X; Y ] = N ln 2 . (7.7)

This can be thought of as using a binary memory variable Y to encode each molecule’s
coarse-grained X-position: whether it is left or right of the divider. Therefore each molecule’s
coarse-grained Y -position (above or below the divider) acts as a memory of each molecule’s
coarse-grained X-position. Reducing entropy incurs a thermodynamic cost, expressed by
the work done (or equivalently the heat flow) in this step,

W1→2 = −Q1→2 = kBTY I2[X; Y ] . (7.8)

Hence the work W1→2 produces mutual information I2[X; Y ].
Swapping the mobilities of the partitions leaves the entropy unaffected: S3[X; Y ] =

S2[X, Y ]. The expansion step 3→4 returns the engine back to the initial state and thus

S4[X, Y ] = S1[X, Y ] = S1[X] + S1[Y ] . (7.9)

Therefore, the expansion “uses up” the previously created mutual information I2[X; Y ] to
do work:

W3→4 = −kBTXI2[X; Y ] . (7.10)
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From this point of view, the engine cycle consists of a measurement step 1→2 creating
information, and feedback step 3→4 exploiting that information. Thereby the Y -component
of the gas acts as the controller and memory of an information engine whose working
substance is the X-component of the gas.

7.3 Bipartite stochastic thermodynamics and information-
flow arbitrage relation

We now mathematically formalize the above ideas to demonstrate that any bipartite heat
engine must utilize information to achieve positive output power. Specifically, we derive an
inequality that bounds the output power of a bipartite heat engine by its information flow.

With the subsystems X and Y in contact with heat baths at different temperatures TX

and TY , the subsystem second laws (Eqs. (2.47)) are:

Σ̇X = dtS[X] − βXQ̇X − İX ≥ 0, (7.11a)

Σ̇Y = dtS[Y ] − βY Q̇Y − İY ≥ 0. (7.11b)

In addition to the second laws (7.11), bipartite systems also satisfy a first law describing
energy balance:

Ẇ + Q̇X + Q̇Y = dtE. (7.12)

Here E is the internal energy of the system, and Ẇ is the rate of work into the system,
which in general may include contributions from both nonconservative driving forces and
changes in potential energy due to varying external control parameters.

7.3.1 Nonequilibrium steady states

We now consider the special case of autonomous systems not subject to time-dependent
external control. At nonequilibrium steady state (NESS), the first and second laws combine
to yield two inequalities constraining sums of the external work rates, the transduced power
(energy flow), and the information flow:

Σ̇X = βXẆX + βXĖY + İY ≥ 0 , (7.13a)

Σ̇Y = βY ẆY − βY ĖY − İY ≥ 0 . (7.13b)

Multiplying Eqs. (7.13) by kB and the respective subsystem temperatures TX and TY ,
summing the two equations, and rearranging yields an upper bound on the total output
power in terms of the temperature difference and the information flow:

−Ẇ = −ẆX − ẆY ≤ kB(TX − TY )İY . (7.14)
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We call this result the information-flow arbitrage relation (IFAR), and it holds significant
implications for the functioning of bipartite heat engines. It makes precise the notion, de-
scribed in Sec. 7.2.1 through analogy to economic arbitrage, that information flows are
necessary; to achieve net output work (−Ẇ > 0), there must be a flow of information
between the two subsystems. Moreover, it must be the colder subsystem whose dynam-
ics increase correlations (and thus the hotter subsystem whose dynamics reduce them): if
TX > TY , then a functional heat engine must have İY > 0 (and thus İX < 0).

In addition to showing that bipartite heat engines require information flows, the IFAR
also provides a necessary condition for information engines to achieve net output power
−Ẇ > 0: a positive information flow İY is not sufficient; a temperature difference is also
required. Only then does the controller at TY “pay” less energy to create correlations than
the controlled system at TX > TY extracts by consuming those correlations. This reflects a
fundamental connection between information engines and bipartite heat engines: to achieve
net output power, an information engine must leverage fluctuations of different strengths
(e.g., a temperature difference, which is the driving force for a heat engine), while a bipartite
heat engine must contain an information flow (the hallmark of an information engine).

While the IFAR bounds the net output power −Ẇ , with dimensions of energy divided
by time, this output power is spread across two different temperatures. These different tem-
peratures constitute different conversion rates between energy and entropy, and so the two
output powers −ẆX and −ẆY are each measured relative to different thermal backgrounds.
We can take these different “exchange rates” into account by considering the sum of the
two output powers scaled by their respective temperatures, −βXẆX − βY ẆY . Similar to
the derivation of the IFAR, summing Eqs. (7.13) and rearranging yields

−βXẆX − βY ẆY ≤ (βX − βY )ĖY , (7.15)

which we call the transduced-power arbitrage relation (TPAR). The TPAR states that to
obtain a positive sum of scaled output powers, the hot (X) subsystem must transduce work
to the cold (Y ) subsystem so that ĖY < 0.

An intriguing possible configuration of a bipartite heat engine is one where net output
work is extracted from both subsystems (both ẆX < 0 and ẆY < 0), as illustrated in
Fig. 7.2(c). (We will show an explicit example of such a heat engine in section 7.4.1.)
Combining the IFAR (7.14) and TPAR (7.15) shows that extracting net output work from
both subsystems is only possible for specific directions of the internal energy and information
flows. In particular, transduced work must flow from hot to cold (ĖY < 0) while information
must flow from cold to hot (İY > 0).
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7.3.2 Interpretation in terms of environmental potentials

For an alternative interpretation of these results, consider the thermodynamics from the
perspective of the environment, comprised of two reservoirs at TX and TY respectively. These
reservoirs are assumed to be at equilibrium, so each have well-defined energies (UX and UY )
and entropies (SX and SY ). From these state functions we can construct thermodynamic
potentials for the environment, for example the Helmholtz free energy

F ≡ UX − kBTXSX + UY − kBTY SY , (7.16)

and free entropy (also known as the Massieu potential [238])

Φ ≡ SX − βXUX + SY − βY UY . (7.17)

Since the reservoirs interact (and thus exchange energy and entropy) only with their re-
spectively coupled subsystems, the rates of change of their energies and entropies are
U̇X = −ẆX − Q̇X and ṠX = −βXQ̇X , and likewise for U̇Y and ṠY . We can then com-
pute the steady-state rates of change of the two environmental potentials:

Ḟ = −ẆX − ẆY , (7.18a)

Φ̇ = βXẆX + βY ẆY . (7.18b)

We then substitute these definitions into the left hand sides of the IFAR (7.14) and TPAR (7.15)
to reformulate them in terms of rates of change of environmental potentials:

Ḟ ≤ kB(TX − TY )İY , (7.19a)

−Φ̇ ≤ (βX − βY )ĖY . (7.19b)

These reformulations lead to a new interpretation with a pleasing symmetry. The IFAR
states that the rate at which the system can leverage a temperature difference to increase
the free energy of the environment is limited by the rate of internal information (entropy)
transduction, while conversely the TPAR states that the rate at which the system can
decrease the free entropy of the environment is limited by the rate of internal energy trans-
duction.

Intuitively, these results follow from the definitions of environmental free energy (7.16)
and free entropy (7.17). Since the energetic terms of the free energy (7.16) are not modulated
by temperature, and at steady state their sum must remain constant, it follows that F can
only be increased by moving entropy from the hotter reservoir to the colder one. The
reservoirs only interact indirectly via the system, which must then serve as a conduit for
the entropy flow, which we call an information flow. Thus environmental free energy can
only increase if the system supports an internal information flow.
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Conversely, the entropic terms of the free entropy (7.17) are not modulated by temper-
ature, and at steady state cannot decrease (by the second law), so it follows that Φ can
only be decreased by moving energy from the hotter reservoir to the colder one. As with
entropy, energy can only be exchanged using the system as a conduit. Thus decreasing the
environmental free entropy requires an internal energy flow, i.e., a transduced power from
hot to cold.

This interpretation of the two arbitrage relations is intimately connected with the eco-
nomics analogy outlined earlier in Sec. 7.2. A bipartite heat engine which increases the
free energy of the environment corresponds to a pair of arbitrageurs who cooperate to ex-
tract net money from two markets with different exchange rates; as illustrated in Fig. 7.2
this is only possible when the two arbitrageurs exchange sheep (i.e., when the heat engine
supports an information flow). Conversely, decreasing the free entropy of the environment
corresponds to the arbitrageurs obtaining a net return of sheep, which in turn requires
them to exchange money with each other (corresponding to the two subsystems supporting
a transduced power).

7.3.3 Connection to Carnot bound

The IFAR (7.14) relates the output work of a bipartite heat engine to the information
flow and temperature difference. The output work of a heat engine operating between two
reservoirs was famously first upper-bounded by Carnot [53], in terms of the temperature
ratio and the input heat. Because in a bipartite heat engine, each of the two reservoirs is
coupled to a distinct individual subsystem, the input heat from the “hot” reservoir can only
flow into the “hot” subsystem X. Then, the Carnot bound for heat engines at steady state
is derived from the global first law,

Ẇ + Q̇X + Q̇Y = dtE (7.20)

(with dtE = 0), and the global second law,

Σ̇ = −βXQ̇X − βY Q̇Y ≥ 0. (7.21)

This is simply a sum of the two subsystem-specific second laws (7.11). Rearranging Eq. (7.21)
to get an upper bound on Q̇Y and inserting into Eq. (7.20) yields the Carnot bound on the
ouput power of a heat engine:

−Ẇ ≤
(

1 − TY

TX

)
Q̇X . (7.22)

The Carnot bound essentially states that in a heat engine input heat limits output work,
with a proportionality constant dependent on the temperature ratio.
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Now notice that we have Q̇X ≥ 0, i.e., heat flows into subsystem X (which, recall, is
coupled to only one reservoir), something seemingly forbidden by the second law and the
hallmark of a Maxwell demon [239–242]. Under steady-state conditions, the second law
for the X subsystem (7.11a) can be rewritten to bound the achievable input heat by the
information flow,

Q̇X ≤ kBTX İY . (7.23)

Inserting this inequality into the Carnot bound yields the information-flow arbitrage rela-
tion:

Carnot︷ ︸︸ ︷
− Ẇ ≤

(
1 − TY

TX

)
Q̇X ≤ kB(TX − TY )İY︸ ︷︷ ︸
2nd Law for X︸ ︷︷ ︸

IFAR

. (7.24)

Thus we find that the IFAR is in general looser than the Carnot bound on heat-engine
output work. Nonetheless, IFAR broadens the perspective by showing that working bipartite
heat engines necessarily require an information flow. Note also that IFAR is saturated for
heat engines at equilibrium (where output work vanishes), as is the Carnot bound [243].

7.3.4 Periodic driving

While biological systems of interest operate autonomously and are typically in nonequilib-
rium steady states, many human-engineered systems (e.g., classical heat engines and the
2D ideal gas considered in Sec. 7.2.2) are controlled by periodic driving protocols. Likewise,
experimental [17, 89–99] and theoretical models [228, 244–248] of information engines typ-
ically use repeated feedback loops [220, 249–254] which comprise measurement, feedback,
and relaxation steps. These setups can also be understood in terms of a periodic driving
protocol that achieves the desired feedback [82]. Information engines with access to a tem-
perature difference [227, 228] or nonequilibrium fluctuations that only affect their working
medium and not their controller [222–224] can have positive net work output. Here we show
that the IFAR (7.14) also holds for this class of systems.

For bipartite systems in periodic steady states, the IFAR is derived analogously to
systems at NESS. We take as a starting point the instantaneous second laws (7.11), and
integrate over the cycle time τ to yield their cyclic counterparts:

ΣX = ∆S[X] − βXQX − ∆IX ≥ 0, (7.25a)

ΣY = ∆S[Y ] − βY QY − ∆IY ≥ 0. (7.25b)

Here QX ≡
∫ τ

0 Q̇X(t) dt, ΣX ≡
∫ τ

0 Σ̇X(t)dt, ∆S[X] ≡ Sτ [X] − S0[X], and ∆IX ≡
∫ τ

0 İXdt,
with analogous definitions holding for flows due to Y . Likewise, the global first law also
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integrates to yield
W + QX + QY = ∆E, (7.26)

where W ≡
∫ τ

0 Ẇdt and ∆E ≡ E(τ) − E(0).
For systems at periodic steady states, we require that all state variables are identical at

the beginning and end of the cycle. Specifically these are the mean internal energy [∆E =
E(τ) − E(0) = 0], the two marginal entropies (∆S[X] = Sτ [X] − S0[X] = 0 and ∆S[Y ] =
Sτ [Y ] − S0[Y ] = 0), and the mutual information (∆IX + ∆IY = Iτ [X; Y ] − I0[X; Y ] = 0).
Using these invariants to simplify the first (7.26) and second laws (7.25), we derive the IFAR
for periodically driven systems:

−W ≤ kB(TX − TY )∆IY . (7.27)

The TPAR (7.15) does not extend as easily to periodic steady states, since in the presence
of external control, defining external work at the subsystem level requires a more nuanced
analysis beyond the scope of this thesis.

7.3.5 Revisiting the 2D ideal-gas engine

Having derived the IFAR for periodically driven systems, we return to the 2D ideal-gas
engine in Sec. 7.2.2 to illustrate this relation.

Intuitively, the total Y -information flow over one cycle should be given in terms of
the information acquired during the compression (1 → 2) step, when the molecules’ Y -
coordinates change. To see why this is indeed true, consider first the coarse-grained variables
X̄i := sgn(Xi) and Ȳ i := sgn(Y i) that respectively indicate whether a given molecule i

is left or right of and above or below the box’s center. The gas molecules’ coordinates are
in equilibrium hence the conditional probability of the specific position given the coarse-
grained position is uniform and factorizes,

p(Xi, Y i|X̄i, Ȳ i) = p(Xi|X̄i) p(Y i|Ȳ i). (7.28)

This implies for the conditional entropy of the specific position given the coarse-grained
position, S[Xi, Y i|X̄i, Ȳ i] = S[Xi|X̄i] + S[Y i|Ȳ i] . Therefore, the mutual information
between the coordinates Xi and Y i equals the mutual information between the coarse-
grained coordinates X̄i and Ȳ i,

I[Xi; Y i] = S[Xi] + S[Y i] − S[Xi, Y i] (7.29a)

= S[Xi, X̄i] + S[Y i, Ȳ i] − S[Xi, Y i, X̄i, Ȳ i] (7.29b)

= S[X̄i] + S[Ȳ i] − S[X̄i, Ȳ i] + S[Xi|X̄i] + S[Y i|Ȳ i] − S[Xi, Y i|X̄i, Ȳ i]︸ ︷︷ ︸
=0

(7.29c)

= I[X̄i; Ȳ i] , (7.29d)
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where to get (7.29b) we used the fact that once a molecule’s true position (Xi, Y i) is known,
the coarse-grained position (X̄i, Ȳ i) is redundant information. From Eqs. (7.29), it follows
that to calculate information flow, we can replace all mutual information terms by their
coarse-grained counterparts.

The total Y -information flow is

∆IY =
∫ 2

1
dt İY +

∫ 4

3
dt İY (7.30a)

=
∫ 2

1
dt lim

dt→0

I[X̄(t + dt); Ȳ (t + dt)] − I[X̄(t); Ȳ (t)]
dt

+
∫ 4

3
dt lim

dt→0

I[X̄(t); Ȳ (t)] − I[X̄(t); Ȳ (t)]
dt

(7.30b)

= I2[X̄; Ȳ ] − I1[X̄; Ȳ ]︸ ︷︷ ︸
=0

= I2[X; Y ] , (7.30c)

where I2[X; Y ] is the mutual information between the molecules’ X and Y coordinates after
compression, see Eq. (7.7). To get Eq. (7.30b) we used the definition of the Y-information
flow (2.51) and the fact that X̄i(t + dt) = X̄i(t) in step 1 → 2 and Ȳ i(t + dt) = Ȳ i(t) in
step 3 → 4, i.e., during compression (expansion) the coarse-grained X(Y )-coordinate does
not change. Similarly,

∆IX = I4[X̄; Ȳ ] − I3[X̄; Ȳ ] = −I2[X; Y ] = −∆IY . (7.31)

With the total net output work in Eq. (7.2) and the mutual information I2[X; Y ] =
N ln 2 (7.7), we verify that the IFAR (7.27) holds as an equality, which can be attributed
to the fact that all steps in the cycle are carried out reversibly.

7.4 Model systems: Brownian gyrator and double quantum
dot

Using the theory of bipartite stochastic thermodynamics outlined above, we now analyze ex-
plicit nonequilibrium models to illustrate the main results: we consider the Brownian-gyrator
heat engine [255] modified to incorporate nonconservative driving forces, and a double quan-
tum dot which constitutes a simple model for an autonomous information engine. These
models are analytically tractable, allowing us to show explicitly that the Brownian gyrator
must use information flow to achieve net output power, and the quantum-dot information
engine must act as a heat engine to deliver positive output power.

7.4.1 Brownian-gyrator heat engine

Consider the Brownian gyrator, a microscopic, stochastic model for a steady-state heat
engine depicted in Fig. 7.4(a). First introduced in a slightly different form by Filliger and
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Reimann [255], the Brownian gyrator has since been studied extensively both in its origi-
nal formulation [221, 256–259] along with a plethora of different extensions including the
addition of conservative [260, 261] or nonconservative [262, 263] external forces, higher-
order potentials [264], underdamped dynamics [265], as well as non-Markovian [266] and
active [267] fluctuations. The dynamics of the Brownian gyrator can also be mapped di-
rectly onto electric-circuit models with resistors subject to Johnson noise from different
heat baths; this equivalent system and several extensions have been thoroughly studied
both theoretically and experimentally [268–272]. The Brownian gyrator has also been real-
ized experimentally as an overdamped particle with electromagentically induced anisotropic
fluctuations [273, 274].

This formulation of the Brownian gyrator, illustrated in Fig. 7.4(a), is equivalent to
that presented in Ref. [262], a bipartite system with two degrees of freedom X and Y whose
dynamics evolve according to the coupled overdamped Langevin equations

ẋ = ay − ∂xV (x, y) +
√

2 ηX(t), (7.32a)

ẏ = g [−ax − ∂yV (x, y)] +
√

2gτ ηY (t). (7.32b)

Here ηX(t) and ηY (t) are uncorrelated Gaussian white noise sources with ⟨ηX(t)ηX(t′)⟩ =
δ(t − t′) and similarly for ηY (t), g is the ratio of the two mobility coefficients, τ ≡ TY /TX

is the temperature ratio, and the potential is

V (x, y) = 1
2x2 + 1

2y2 + 1
2κ(x − y)2, (7.33)

for coupling strength κ between X and Y . Furthermore, fX(x, y) = ay and fY (x, y) = −ax

are nonconservative forces of strength a that, on their own, induce a rotation of the system
in the x−y plane. All quantities are dimensionless. The nonconservative forces were not
present in the original formulation of the Brownian gyrator [255], and have been added
here as in Ref. [262] so that work can be input to or extracted from the Brownian gyrator
in a thermodynamically consistent manner. Such nonconservative forces can be incorpo-
rated into electrical implementations of the gyrator through, for example, a non-reciprocal
capacitor [272].

The coupled Langevin equations (7.32) are linear, so the stationary joint probability
distribution for X and Y can be solved analytically [167], from which the ensemble-averaged
energy and information flows can be computed analytically from their definitions [74] using
Maple [275] (plotted in Fig. 7.4).

Figure 7.4(b) illustrates the energy and information flows in the Brownian gyrator. In
the regime of heat-engine operation, when 0 < a < κ(1 − τ)/(1 + τ), both subsystems (X
and Y ) output work at positive rates (ẆX < 0 and ẆY < 0). This is powered by a flow
of heat into the hotter X subsystem (Q̇X > 0), which by the second law then requires a
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Figure 7.4: Dynamics and thermodynamics of the Brownian gyrator. (a) Schematic diagram.
Gray closed curves denote isopotential contours; light green arrows show the nonconservative
force field; red-blue circle denotes the 2D Brownian particle; blue and red arcs denote
different-strength fluctuations in different directions. (b) Energy and information flows. (c)
Thermodynamic diagram showing directionality of energy, entropy, and information flows
for a = 2.5 (black dashed vertical line in (b)). (d,e) Verification of the two arbitrage relations,
IFAR (7.14) (d) and TPAR (7.15) (e). (f) Energy and information flows in the feedback-
cooling information-engine interpretation. Inset: schematic, with nonconservative force from
controller indicated by green arrow. (g) Thermodynamic diagram showing directionality
of energy, entropy, and information flows for a = 2.5 (black dashed vertical line in (f)).
Throughout, κ = 15, τ = 1/2, and g = 1.

net flow of heat out of the cooler Y subsystem (Q̇Y < 0). As required by the arbitrage
relations (7.14) and (7.15), the information flow and transduced power are both non-zero,
with information flowing from cold to hot (İX < 0) and transduced work flowing from hot
to cold (ĖX > 0). This thermodynamic setup is shown in Fig. 7.4(c).

For κ(1 − τ)/(1 + τ) < a < κ, the Brownian gyrator operates as a heat pump, with net
input work into both subsystems (ẆX > 0 and ẆY > 0) powering the flow of heat from cold
to hot (Q̇Y > 0 and Q̇X < 0). Here the information flow goes from hot to cold (İX > 0),
a condition which follows directly from the second law applied to bipartite heat pumps.
For −κ < a < 0 the Brownian gyrator is a dud, with input work into both subsystems
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accompanying a flow of heat from hot to cold. Finally for |a| > κ, the setup is again a dud
(albeit of a different sort), with input work into both subsystems resulting in heat flows
into both reservoirs.

Figures 7.4(d) and (e) explicitly confirm the two arbitrage relations in this system. We
find that the inequalities are tighter when the system is near equilibrium. For the Brownian
gyrator this is at stall, where all energy and information flows vanish, for a = κ(1−τ)/(1+τ).

If, as we claim, information flow along with a temperature difference is what drives the
net power output in the Brownian gyrator, we should be able to find the information engine
hidden in this setup. To do this, we rescale the variable X such that x′ ≡ x(κ − a)/(1 + κ),
and define the parameters κ′ ≡ 1 + κ, tm ≡ 1/[g(1 + κ)], σ2 ≡ 2τ/[g(1 + κ)2], and a′ ≡
(a2 − κ2)/(1 + κ).

The resulting dynamics are equivalent to the feedback-cooling information-engine model
studied by Horowitz and Sandberg [81], with the controlled system consisting of the position
x′ of an overdamped Brownian particle in a quadratic trap with strength κ and the controller
y monitoring the dynamics of the system:

ẋ′ = −κ′x′ − a′y + ξX′ , (7.34a)

tmẏ = −y + x′ + ξY , (7.34b)

The noise terms ξX and ξY correspond to independent Gaussian white noise with respective
variances 2TX and σ2, a′ is the feedback gain, and tm is a time constant by which Y can be
considered to low-pass filter noisy measurements of X with measurement noise σ2.

In addition to rescaling the X variable and redefining the various parameters, we also
adjust our interpretation of the sources of the forces acting on the two subsystems. In keeping
with the interpretation of Ref. [81], we take V (x′, y) = 1

2κ′(x′)2 to be the conservative
potential, and fX(x′, y) = −a′y and fY (x′, y) = x′ − y to be the nonconservative forces.
This change in perspective from the original Brownian-gyrator interpretation can be thought
of as a gauge transformation, as considered in Ref. [276]. The information flow is unchanged
by rescaling one of the variables (because the mutual information itself is invariant under
variable rescaling [277]), so we identify the information flow within the Brownian gyrator
as the same information flow found within the feedback-cooling information engine.

Figure 7.4(f) shows the thermodynamics of the feedback-cooling information engine, as
quantified by the energy and information flows. The heat and information flows are un-
changed from those of the Brownian gyrator, but the input, output, and transduced powers
are modified. In particular, since there is no potential energy coupling the controller to
the particle, the transduced power ĖX is always zero. For a′ < κ′(1 − τ)/(1 + τ), output
work is extracted from the particle (ẆX < 0), while input work is required to run the
controller (ẆY > 0). The three thermodynamic regimes highlighted for the Brownian gy-
rator in Fig. 7.4(b) correspond to matching regimes for the information engine depicted in
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Fig. 7.4(f). In particular, the heat-engine regime corresponds to a feedback-cooling infor-
mation engine that extracts more power than is required to power it, while the dud regime
corresponds to an information engine that consumes more energy than it extracts. Finally,
the heat-pump regime corresponds to a feedback refrigerator, where the controller Y is
cooled through feedback on the hotter system X ′.

7.4.2 Double-quantum-dot information engine

The above treatment of the Brownian gyrator focused on interpreting a bipartite heat engine
as an information engine. This section illustrates the converse, showing that an established
model of an autonomous information engine can only deliver positive total output power if
the controller and feedback-controlled system are at different temperatures, thus rendering
the system a bipartite heat engine.

Consider a single quantum dot X in contact with two reservoirs (leads) at temperature
TX and with chemical potentials µℓ for the left lead and µr for the right lead [Fig. 7.5(a)
inset]. Electrons can jump between either reservoir and the quantum dot, which can be
either empty (x = 0) or filled (x = 1). The rates satisfy detailed balance with their respective
thermal reservoirs:

k10
ℓ = Γℓ

X

e−βXµℓ + 1 , k01
ℓ = Γℓ

X e−βXµℓ

e−βXµℓ + 1 (7.35a)

k10
r = Γr

X

e−βXµr + 1 , k01
r = Γr

X e−βXµr

e−βXµr + 1 (7.35b)

where Γℓ
X/2 and Γr

X/2 are bare rate constants, i.e., the rate constants at equilibrium (when
µℓ = 0 = µr). Here and throughout, the superscript “10” denotes the transition from state
0 to state 1, with “01” denoting the reverse transition. Note that in this subsection the
symbol W with a subscript and a superscript denotes a transition rate, not to be confused
with Ẇ with a subscript that throughout this thesis denotes power.

The average current of electrons flowing from the left lead is Jℓ ≡ k10
ℓ p0 − k01

ℓ p1, where
p0 and p1 are the respective stationary probabilities for the dot being empty and filled.
Similarly, Jr ≡ k01

r p1 − k10
r p0. Solving the system of equations consisting of the definitions

of Jℓ and Jr, the steady-state equality Jℓ = Jr = J , and normalization p0 + p1 = 1, yields
p0, p1, and J as functions of the chemical potentials µℓ and µr, temperature TX , and bare
rate constants Γr

X and Γℓ
X . These then allow us to calculate the steady-state power from

the quantum dot to the reservoirs,

−ẆX ≡ J (µr − µℓ) . (7.36)

This power is equal to the heat flow from the thermal reservoir due to the conduction of
electrons through the quantum dot. Figure 7.5(a) depicts this power as a function of the
chemical potential µr for fixed µℓ, TX , and Γℓ,r

X .
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Figure 7.5: Thermodynamics of the quantum-dot information engine. (a) Output power
−ẆX by a single quantum dot in simultaneous contact with two reservoirs at temperature
TX = 2 and respective chemical potentials µℓ = 5 and µr, as a function of µr, for Γℓ

X =
Γr

X = 1. Inset: transition rates for electrons hopping into and out of the quantum dot. (b)
When measurement with error ϵ and feedback are added, −ẆX > 0 is possible, indicating
that electrons are pumped against their natural gradient. (c) State diagram and possible
transitions for the double-quantum-dot model. (d) Output power −ẆX , transduced power
ĖY , and information flow İY in the double quantum dot for the same parameters as in (a)
and (b), and ϵ = 0.2, TY = 1, ΓY = 103. (e) Same plot but for TY = 2. (f) Thermodynamic
diagram showing directionalities of energy, entropy, and information flows for µr = 3 and
TY = 1 [gray dashed vertical line in (d)]. Throughout: faint vertical orange line indicates
µℓ.

“Maxwell-demon feedback” [278] can be used to pump electrons from right to left, against
the chemical-potential gradient. Like Maxwell’s original demon [86] that implements feed-
back by opening and closing a trap door between two gas volumes, this feedback only
modifies the bare transition rates, not the energy levels. We assume that the state of the
quantum dot is continuously measured by an auxiliary measurement device that modifies
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the bare rates ΓX such that Γℓ
X = 0 when the dot is measured empty and Γr

X = 0 when the
dot is measured filled [Fig. 7.5(b) inset].

The measurement has an error probability ϵ with which it erroneously measures the
opposite state. Then the net flux from left to right is

J = k10
ℓ p0ϵ − k01

ℓ p1(1 − ϵ) (7.37a)

= k01
r p1ϵ − k10

r p0(1 − ϵ). (7.37b)

Solving this equation with normalization p0 + p1 = 1 yields the steady-state occupation
probabilities and the flux as functions of µℓ, µr, TX , and ϵ. Equation (7.36) then gives
the steady-state output power −ẆX [Fig. 7.5(b)]. For ϵ < 1/2, this power can become
positive, indicating that the quantum dot delivers net power to the reservoirs. This output
power stems from the heat due to thermal fluctuations that spontaneously fill the dot
with an electron from the right reservoir. The feedback then rectifies these fluctuations by
preferentially allowing the electron to flow into the left reservoir.

The quantum dot and the feedback mechanism together constitute a Maxwell-demon
setup or information engine. However, we have yet to specify the physical mechanism of the
controller. As pointed out in previous works [75, 239, 279–282], a second capacitively coupled
quantum dot can serve as the controller for this information engine. Consider the single-level
quantum dot Y that is coupled to a reservoir with chemical potential µY and temperature
TY . Somewhat counterintuitively, a filled Y (y = 0) can encode the measurement of an
empty X (x = 0) and an empty Y (y = 1) can encode the measurement of a filled X

(x = 1). The capacitive interaction between the dots results in a potential energy U when
both dots are filled. Otherwise, the potential energy vanishes.

Figure 7.5(c) depicts the transition rates between the four different configurations of the
double quantum dot. The transition rates into and out of the X-dot are

kxx′
y =

k̃xx′
r , y = 0 (filled)

kxx′
ℓ , y = 1 (empty) ,

(7.38)

where x and x′ are the states of X with x ̸= x′, kxx′
ℓ is given by Eq. (7.35a), and

k̃10
r = Γr

X

e−βX(µr−U) + 1
, (7.39a)

k̃01
r = Γr

X e−βX(µr−U)

e−βX(µr−U) + 1
(7.39b)

correspond to the rates in Eq. (7.35b), modified by the potential energy U due to the
interaction with the other quantum dot Y . Equation (7.38) implies that the X-dot couples
to different reservoirs depending on the state of the Y -dot. This is a special case of the
treatment in, e.g., Refs. [75, 239] in which the bare rates Γℓ

X and Γr
X are modified through a
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Y -dependent density of states. This model thus corresponds to an idealized double-quantum-
dot information engine with only one global cycle and no local cycles [75].

To implement the measurement, the Y -transitions are governed by

k0
01 = ΓY

e−βY µY + 1 , k0
10 = ΓY e−βY µY

e−βY µY + 1 (7.40a)

k1
01 = ΓY

e−βY (µY −U) + 1
, k1

10 = ΓY e−βY (µY −U)

e−βY (µY −U) + 1
(7.40b)

where U = 2µY and µY = kBTY ln [(1 − ϵ)/ϵ] are chosen such that

k0
01

k0
10

= k1
10

k1
01

= 1 − ϵ

ϵ
, (7.41)

and hence the measurement-error probability is ϵ. Setting ΓY ≫ Γr,ℓ
X ensures that Y quickly

relaxes into a local equilibrium distribution corresponding to the desired measurement dis-
tribution.

The net current of electrons from the left to right leads is determined by solving

J = k10
ℓ p01 − k01

ℓ p11 = W 1
01p11 − k1

10p10

= k̃01
r p10 − k̃10

r p00 = W 0
10p00 − k0

01p01 (7.42a)

along with normalization p00 + p10 + p10 + p11 = 1 constraining the probability pxy to find
the joint system in state (x, y). Figure 7.5(d) shows the net power (7.36) done on X by the
two X-reservoirs.

Importantly, the output power −ẆX differs from the case where the controller does not
require power [see, for example, the ϵ=0.2 curve in Fig. 7.5(b)]. Specifically, positive output
power (−ẆX > 0) is only possible for 2 ≲ µr ≲ 5. This is because power is required to run
the controller Y , which itself is not directly driven by a chemical-potential difference since it
has access to only one reservoir, and thus ẆY = J (µY −µY ) = 0. As depicted in Fig. 7.5(f),
the power to run the controller Y is diverted from the output power as transduced power
−ĖY [Fig. 7.5(d), green curve]. The blue curve in Fig. 7.5(d) shows the information flow
İY , with which we can verify the IFAR (7.14),

−ẆX − ẆY︸︷︷︸
=0

≤ (TX − TY )︸ ︷︷ ︸
=1

İY . (7.43)

Finally, Fig. 7.5(e) shows output power −ẆX and transduced power ĖY when both
quantum dots are at equal temperature (TY = TX = 2), so the RHS of (7.43) vanishes
and −ẆX ≤ 0. In this case so much power −ĖY is diverted that no positive output power
can be generated. This illustrates that the double-quantum-dot information engine can
only deliver positive output power when the controller is at a lower temperature than the
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feedback-controlled system, i.e., when the joint system operates as a bipartite heat engine,
as predicted by the information-flow arbitrage relation (7.14).

7.5 Discussion

This chapter illustrates that functioning bipartite heat engines must transmit information
(i.e., a reduction in entropy) between subsystems in contact with heat reservoirs at different
temperatures in order to produce net output work, through a process analogous to economic
arbitrage. This implies that they are also information engines, in the sense that they sustain
an information flow that powers an apparent violation of the second law. This implies that
the field of information thermodynamics [12] applies to real-world heat engines.

These findings directly imply design principles for nanoscale systems, like molecular
machines, operating in environments with inhomogeneous or anisotropic fluctuations. When
these systems are composed of different parts each in contact with different strengths of
fluctuations, maximizing output power requires these components to operate collectively
and exchange entropy in the form of information flows. This leads to “Maxwell-demon”
behaviour, where one component extracts heat from its environment in apparent, but not
true, violation of the second law. Thus Maxwell’s demon may well lie hidden within biological
molecular machines which have evolved to take advantage of different sources of fluctuations
in the cellular environment.

Conversely, this chapter also illustrates that information engines can deliver positive net
output power when controller and controlled system are at different temperatures. This fact
was explored in Refs. [227, 228], where the ratio of the temperatures of the work medium and
memory parameterizes optimal information-processing strategies in variants of the Szilard
engine. It is also implicit in the analysis of Ref. [224], where an information engine delivers
net power derived from active fluctuations that mimic the effect of a larger temperature.

Fundamental Limit: The net output work of a bipartite heat engine or information
engine is limited by the product of the information flow and temperature difference.
Design Principle: A bipartite heat engine with maximal output power should be
designed to function like an information engine.

This framework helps to demystify information engines by providing a change in per-
spective that illustrates they are variants of heat engines, in which the entropy reduction
step is “outsourced” to an auxiliary controller or memory. Ignoring this auxiliary system
leads to an apparent second-law violation, highlighting the importance of accounting for
the thermodynamic costs of the controller’s entropy reduction. The joint setup of controller
and controlled system can only deliver positive net output work when the controller is at
a lower temperature, thereby giving a heat engine that delivers net power by exchanging
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heat with two reservoirs at different temperatures. While previous theoretical analyses have
hinted at this connection for specific systems [225–228], the results here are far broader,
encompassing fully general mathematical proofs and intuitive explanations.

In addition to proving the main results using the theory of bipartite stochastic thermo-
dynamics, I also illustrated them intuitively using an analogy to economics – providing a
qualitative argument accessible without reference to stochastic thermodynamics. The con-
cept of arbitrage lends itself well to understanding both classical and bipartite heat engines:
the temperature of a heat bath can be thought of as the “exchange rate” between energy
and entropy. By “trading” energy and entropy with different baths (“markets”), a heat
engine can perform “arbitrage” to produce net output work (“profit”). Such a scheme re-
quires moving energy and entropy from one bath to another, leading to the requirements
for information flows and transduced power respectively quantified by the IFAR (7.14) and
TPAR (7.15). The usefulness of this analogy should not be surprising; after all, thermody-
namics is fundamentally the science of accounting for energy and entropy. Other analogies
have likewise been drawn between stochastic thermodynamics and economics [283, 284];
exploring such analogies further, for example at a more quantitative level, could lead to
deeper insights into both fields.

As shown in Sec. 7.3.2, the main results of this chapter [the IFAR (7.14) and TPAR (7.15)]
can be reinterpreted as constraining changes in thermodynamic potentials of the environ-
ment encompassing the two thermal reservoirs. Since the reservoirs by assumption are at
equilibrium, and do not directly support correlations or interactions with each other, it
is straightforward to define their free energies (Helmholtz potentials) and free entropies
(Massieu potentials) even when doing so for the system itself is not possible due to its
nonequilibrium state and contact with multiple temperatures. These thermodynamic po-
tentials are particularly useful, allowing for a qualitative understanding of the main results
without the more involved theoretical machinery of stochastic thermodynamics; such an
approach may prove useful for considering other nonequilibrium systems for which thermo-
dynamic potentials cannot easily be defined.

Beyond elucidating design principles, the information-flow and transduced-power arbi-
trage relations (IFAR and TPAR) are also powerful tools for thermodynamic inference [128].
Using the IFAR (7.14), observing net output power (Ẇ < 0) from a bipartite system im-
mediately implies the existence of both a temperature difference and an information flow,
whose sign is further implied if the ordering of the two temperatures is also known. Through
TPAR (7.15), the existence and directionality of internally transduced power can likewise
be inferred in autonomous systems at steady state. Chapter 8 showcases applications of the
arbitrage relations for inference.

Finally, step back to consider macroscopic heat engines in simultaneous contact with two
heat baths at different temperatures, for example thermoelectric devices. Since none of the
theoretical results in Sec. 7.3 are built on assumptions about system size, the conclusions
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should still hold for macroscopic systems. This then raises the obvious question of where
the information flow predicted by the IFAR can be found in, for example, a thermoelectric
generator. I conjecture that the information flow is encoded in the statistics of electron po-
sitions and momenta [285]. A first step could be to consider small-scale systems which allow
exact counting of electrons in a thermoelectric device. For larger thermoelectric devices,
the electron positions and momenta are aggregated into correlations of voltage and current
fluctuations across the two junctions in contact with different temperatures. Measurement
of voltage and current fluctuations would be analogous to measuring the pressure in each
quadrant of the two-dimensional ideal-gas Carnot engine in Sec. 7.2.2, which aggregates the
statistics of the N gas molecules. The information flow in the engine could be extracted
from pressure measurements in each quadrant with fine temporal resolution. It would be
interesting to verify these predictions experimentally, namely measuring current and voltage
correlations in a thermoelectric device, and thus quantifying the predicted information flow.
Such a result would complement recent theoretical predictions of macroscopic information
flows [285, 286], and serve to illustrate that core concepts from stochastic thermodynam-
ics such as information flows have real relevance in macroscopic systems, far beyond the
nanoscale regime in which they were originally formulated.
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Chapter 8

Information Arbitrage in
Light-Harvesting Molecular
Machines

Light-harvesting machines such as photosystem II and bacteriorhodopsin are in contact
with both the thermal reservoir of the cellular interior, and blackbody radiation from the sun
which can be treated as a thermal reservoir at a much higher temperature. I show that these
molecular machines can be thought of as heat engines, leveraging differences in fluctuations
to produce useful output work. The arbitrage relations derived in the previous chapter imply
constraints on energy and information flows in bipartite heat engines; in this chapter I
generalize those results, and highlight applications to thermodynamic inference by inferring
information flows in photosystem II and bacteriorhodopsin.

8.1 Introduction

One example given to motivate the study of bipartite heat engines in the previous chapter
was light-harvesting molecular machines like photosystem II [3] and bacteriorhodopsin [287].
These machines are driven out of equilibrium by high-energy solar photons, and the light-
induced reactions can be treated as coupling to a heat bath at the temperature of the
photon source [45, 208, 209]. In this chapter (Secs. 8.2 and 8.3) I will provide theoretical
background for this counterintuitive claim, first giving a general argument based on the
statistical mechanics of blackbody radiation, then examining in detail a simple example
system.

The arbitrage relations introduced in the previous chapter have significant applications
for thermodynamic inference, with light-harvesting molecular machines constituting a nat-
ural example. Since light-harvesting molecular machines cannot always be modelled as bi-
partite, Sec. 8.4 derives a general result called the entropy arbitrage relation (EAR) which
holds for stochastic systems in contact with two thermal reservoirs without requiring the
bipartite assumption. This allows for more general application of arbitrage relations to
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light-harvesting molecular machines. Section 8.5 then applies the arbitrage relations to in-
fer information flows in photosystem II and bacteriorhodopsin, verifying these predictions
by comparing with published models.

8.1.1 Contributions

Parts of this chapter (Secs. 8.4 and 8.5) are adapted from an article published as Ref. [52], au-
thored by myself, Jannik Ehrich, and David Sivak. Jannik and I share joint first-authorship;
while the material in Chap. 7 was a full collaborative effort, the material in this chapter was
developed primarily by myself in response to reviewer feedback on the initial submission of
Ref. [52]. Sections 8.2 and 8.3 are new, unpublished material.

8.2 Thermodynamics of Blackbody Radiation

The idea that light-energy can be thought of as heat from a radiation reservoir is highly
counterintuitive, so I begin by sketching a proof for why energy exchanged with blackbody
radiation or monochromatic radiation can be considered heat exchanged with a thermal
reservoir at the temperature of the blackbody.

Suppose that a thermodynamic system can interact with photons of frequency ν that
are at equilibrium with a blackbody at temperature Trad, which also acts as a radiostat
holding the photon number density constant. Following Ref. [209], the thermal radiation
has number density (per unit volume) given by

nν = fν

eℏων/kBTrad − 1
, (8.1a)

where fν = 2ω2
ν/πc3 is the density of states.

The total energy density of photons at frequency ν is Uν = nνℏων , which leads to a
marginal energy change due to emission/absorption of a single photon of

uν = ∂Uν

∂nν
= ℏων (8.2)

as expected. Again following Ref. [209], the entropy density of photons at frequency ν is

Sν = [(fν + nν) ln(fν + nν) − nν ln nν − fν ln fν ] . (8.3)
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The marginal entropy change due to emission/absorption of a single photon is then

sν = ∂Sν

∂nν
(8.4a)

= ln
(

fν + nν

nν

)
(8.4b)

= ℏων

kBTrad
(8.4c)

= uν

kBTrad
. (8.4d)

Eq. (8.4d) is the crux of the argument, showing that the change in entropy of the radi-
ation reservoir due to emission/absorption of a photon (i.e., the heat exchanged between
the system and reservoir) is equal to the energy of the photon divided by the blackbody
temperature. Thus energy the system exchanges with the radiation reservoir can be treated
as heat exchanged with a thermal reservoir at temperature Trad.

Note that this argument holds also for systems interacting with monochromatic light,
photons at a single frequency ν. This is because the energy and entropy exchanged with the
radiation reservoir depend only on the number density of photons with frequency ν, not the
rest of the intensity spectrum. Thus monochromatic radiation at a given frequency can be
treated as a thermal reservoir at the temperature required to sustain the blackbody distri-
bution corresponding to the observed intensity at frequency ν. In this way light-harvesting
molecular machines, which interact with only specific wavelengths of light, can be treated
as bipartite heat engines.

It is tempting to consider lasers, common laboratory sources of monochromatic light, as
thermal reservoirs in this context; however, lasers are subject to added complications due
to coherence as well as the unidirectional nature of the emitted light. A careful treatment
of the thermodynamics of lasers is outside the scope of this thesis.

8.3 Illustrative Example

The thermodynamics of light-induced reactions are best illustrated with a simple example
system, depicted in Fig. 8.1. Consider a molecule with two states, labeled X = 0 and X = 1,
characterized by an energy difference ∆E = E1 − E0. Suppose the molecule can transition
between these states via two different mechanisms: a light-induced pathway mediated by
interactions with photons of frequency ν, and a chemical pathway. To simplify the analysis,
let the energy gap be equal to the energy of a photon with frequency ν, so that ∆E = ℏων .
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Figure 8.1: Schematic illustrating the photophysical and thermochemical transitions in the
simple example system.

The molecule can undergo the following elementary light-induced transitions between
states [288]:

X0 + γν −→ X1, (8.5a)

X1 −→ X0 + γν , (8.5b)

X1 + γν −→ X0 + 2γν . (8.5c)

These photophysical processes correspond respectively to absorption, spontaneous emission,
and stimulated emission, and occur at respective rates kanν , ke, and ksenν . Here nν is the
number density of photons with frequency ν. Assuming the light is blackbody radiation,
the rates of the different photophysical processes must obey [288]

kse = ka, (8.6a)

ke = kafν . (8.6b)

The molecule can also undergo the following chemical transitions, in contact with a
thermal bath at temperature T :

X0 + ATP −→ X1 + ADP + Pi, (8.7a)

X1 + ADP + Pi −→ X0 + ATP. (8.7b)

Here the non-photo-induced transitions between molecular states are coupled to hydroly-
sis/catalysis of ATP, occurring at respective rates k+ and k−. The concentrations of ATP,
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ADP, and Pi are held fixed, with the ATP hydrolysis reaction having constant chemical
potential ∆µ. To ensure thermodynamic consistency, these thermochemical transition rates
are related by generalized detailed balance:

k+
k−

= exp [(∆µ − ℏων) /kBT ] . (8.8)

8.3.1 Master equation and steady state

The photophysical and thermochemical processes lead to transitions from X = 0 to X = 1
at respective net rates

Jrad = kanνp0 − kafνp1 − kanνp1, (8.9a)

Jchem = k+p0 − k−p1. (8.9b)

Thus the dynamics of the system are captured by the master equation

∂tp1 = −∂tp0 = Jrad + Jchem. (8.10)

This master equation is easily solved, yielding steady-state probabilities

p0 = k− + kafν + kanν

k+ + k− + ka(2nν + fν) , (8.11a)

p1 = k+ + kanν

k+ + k− + ka(2nν + fν) . (8.11b)

8.3.2 Thermodynamics

First laws

I begin with the thermodynamics of the thermochemical transitions. The heat and chemical
work rates (both defined to be positive when into the system) and change in system energy
due to thermochemical transitions are

Q̇ = Jchem(ℏων − ∆µ), (8.12a)

Ẇchem = Jchem∆µ, (8.12b)

Ėchem = Jchemℏων . (8.12c)

Combined, these rates give a first law for thermochemical processes:

Ėchem = Q̇ + Ẇchem. (8.13)
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Consider also the energetics of the photophysical transitions. The energy flow rate into
the system from the photons is

U̇rad = Jradℏων (8.14a)

= Ėrad. (8.14b)

The second line shows that the energy flow into the system from the blackbody reservoir is
equal to the change Ėrad in system energy due to the photophysical transitions.

Combining these statements yields a global first law describing energy conservation at
the system level:

dtE = Ėchem + Ėrad (8.15a)

= Q̇ + Ẇchem + U̇rad. (8.15b)

Global second law

Next consider the total entropy production rate due to the system dynamics, which is a
sum of the time derivative of the system Shannon entropy, the rate of change in entropy of
the thermal reservoir (Ṡbath), and the rate of change in entropy of the blackbody radiation
(Ṡrad):

Σ̇ = dtSsys + Ṡbath + Ṡrad (8.16a)

= (Jrad + Jchem) ln p0
p1

− Q̇

kBT
− Jradsν . (8.16b)

The last term, −Jradsν , represents the rate of change of the blackbody radiation entropy
due to absorption and emission of photons. Recalling the earlier result for sν for blackbody
radiation at temperature Trad, this term can be rewritten as

Ṡrad = −Jradsν (8.17a)

= −Jrad
ℏων

kBTrad
(8.17b)

= − U̇rad
kBTrad

. (8.17c)

Again, this illustrates that the energy exchanged between the system and the thermal
radiation can be treated as heat exchanged with a bath at temperature Trad.

Second-law decomposition

The entropy production rate can be further decomposed into contributions due to each
distinct transition mechanism. Defining the rates of system entropy change due to the
photophysical (Ṡrad) and thermochemical (Ṡchem) transitions, it is then possible to define
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entropy production rates for each transition mechanism:

Σ̇rad = Ṡrad − U̇rad
kBTrad

, (8.18a)

Σ̇chem = Ṡchem − Q̇

kBT
. (8.18b)

Using these definitions, it is straightforward to show that these entropy production rates
are both non-negative. For the photophysical transitions,

Σ̇rad = Ṡrad − U̇rad
kBTrad

(8.19a)

= Jrad ln p0
p1

− Jrad
uν

kBTrad
(8.19b)

= Jrad ln p0
p1

− Jrad ln
(

fν + nν

nν

)
(8.19c)

= Jrad

[
ln p0

p1
− ln

(
kafν + kanν

kanν

)]
(8.19d)

= Jrad ln
(

kanνp0
kafνp1 + kanνp1

)
(8.19e)

= (kanνp0 − kafνp1 − kanνp1) ln
(

kanνp0
kafνp1 + kanνp1

)
. (8.19f)

Here in Eq. (8.19c) I used Eq. (8.4d) to relate uν to nν and fν . The two multiplicative
terms in the last line always have the same sign, so their product must be nonnegative. An
analogous argument follows for Σ̇chem, so that the system satisfies two sub-second laws:

Σ̇rad = Ṡrad − U̇rad
kBTrad

≥ 0, (8.20a)

Σ̇chem = Ṡchem − Q̇

kBT
≥ 0. (8.20b)

Combining these inequalities with the transition-specific first laws and assuming steady
state so that dtE = 0 = dtS, I derive an analog to the IFAR for this system,

−Ẇchem ≤ kB(Trad − T )Ṡrad. (8.21)

In the next section I will derive a far more general form of this result.
Figure 8.2 shows how this inequality constrains the chemical output work, as well as

how it compares to the Carnot bound if this system is treated as a classical heat engine.

8.4 Generalized Entropy Arbitrage

Chapter 7 focused on bipartite heat engines composed of two distinct subsystems each in
contact with a different thermal reservoir. In some cases however, it may not be possible to
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−Ẇchem

kB(Trad − T )Ṡrad
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Figure 8.2: Verification of the entropy arbitrage relation (EAR) and Carnot bound on output
work in the simple photochemical system considered in Sec. 8.3. Parameters are β∆µ = 6,
βℏων = 10, fν = 1, ka = 1000/s, and k− = 1/s.

resolve distinct degrees of freedom corresponding to different subsystems, while still being
able to ascribe the rates of different transitions to coupling with distinct reservoirs. An
example would be a system described by a discrete set of states {zi}, whose dynamics
follow the master equation

∂

∂t
pi =

∑
j

[(
kA

ij + kB
ij

)
pj −

(
kA

ji + kB
ji

)
pi

]
, (8.22)

for transition rates kA
ij and kB

ij respectively coupled to distinct thermal reservoirs A and B

with respective temperatures TA and TB. The system considered in Sec. 8.3 constitutes one
example. Another example is bacteriorhodopsin, a light-harvesting molecular machine found
in certain microorganisms which has recently been analyzed through the lens of stochastic
thermodynamics [289], and is typically modelled using a set of discrete states, with only a
single transition mediated by light [287].

8.4.1 Decomposing the second law without the bipartite structure

Consider a stochastic system Z with a discrete set of states {zi}, coupled to two distinct
thermal reservoirs A and B, whose dynamics follows the master equation

∂

∂t
pi =

∑
j

[(
kA

ij + kB
ij

)
pj −

(
kA

ji + kB
ji

)
pi

]
. (8.23)

Here kA
ij and kB

ij denote transition rates respectively coupled to the two distinct thermal
reservoirs A and B at respective temperatures TA and TB.
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The total entropy production rate, encompassing changes dtS[Z] of the system Shannon
entropy and heat flows Q̇A and Q̇B from the respective thermal reservoirs, is

Σ̇ =
∑
i>j

[(
kA

ij + kB
ij

)
pj −

(
kA

ji + kB
ji

)
pi

]
ln pj

pi︸ ︷︷ ︸
dtS[Z]

+
∑
i>j

[
kA

ijpj − kA
jipi

]
ln

kA
ij

kA
ji︸ ︷︷ ︸

−Q̇A/kBTA

+
∑
i>j

[
kB

ijpj − kB
jipi

]
ln

kB
ij

kB
ji︸ ︷︷ ︸

−Q̇B/kBTB

.

(8.24)

This decomposition is similar to the analysis of Ref. [203], which similarly identifies entropy
production contributions due to different reservoirs. By splitting the system entropy change
into contributions due to transitions respectively coupled to the A and B reservoirs,

dtS[Z] =
∑
i>j

[
kA

ijpj − kA
jipi

]
ln pj

pi︸ ︷︷ ︸
ṠA

+
∑
i>j

[
kB

ijpj − kB
jipi

]
ln pj

pi︸ ︷︷ ︸
ṠB

, (8.25)

the total entropy production rate can be decomposed into respective contributions due to
the A and B reservoirs:

Σ̇ = ṠA − Q̇A

kBTA︸ ︷︷ ︸
Σ̇A

+ ṠB − Q̇B

kBTB︸ ︷︷ ︸
Σ̇B

. (8.26)

As in the bipartite case, here Σ̇A and Σ̇B are both nonnegative:

Σ̇A = ṠA − Q̇A

kBTA
(8.27a)

=
∑
i>j

(
kA

ijpj − kA
jipi

)
ln pj

pi
+
∑
i>j

(
kA

ijpj − kA
jipi

)
ln

kA
ij

kA
ji

(8.27b)

=
∑
i>j

(
kA

ijpj − kA
jipi

)
ln

kA
ijpj

kA
jipi

(8.27c)

≥ 0. (8.27d)

The inequality in the last line follows from noting that the difference and log-ratio must
have the same sign, so that their product cannot be negative. The same logic holds for the
entropy production rate due to transitions coupled to the B reservoir, so that

Σ̇B = ṠB − Q̇B

kBTB
≥ 0. (8.28)
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8.4.2 Entropy arbitrage relation

At steady state the system entropy is constant, so 0 = dtS = ṠA + ṠB. Combining this with
the reservoir-specific second laws and the steady-state first law −Ẇ = Q̇A + Q̇B, I derive
an IFAR-like result:

−Ẇ ≤ kB(TA − TB)ṠA. (8.29)

We call this generalized result the entropy arbitrage relation (EAR), which holds for nonequi-
librium systems in contact with two thermal reservoirs, without requiring the bipartite
structure. When the system is bipartite, such that it can be decomposed into two subsys-
tems each in contact with a unique reservoir (as detailed in Sec. 7.3), then the entropy rate
ṠA is equivalently the information flow from one subsystem to the other. Thus the IFAR
emerges as the bipartite specialization of the EAR.

This inequality can be recast in terms of an information rate by considering the self-
information I[Z; Z] = S[Z] [101, Sec. 2.4], so that

−Ẇ ≤ kB(TA − TB)İA. (8.30)

The information rate İA is the rate at which the transitions coupled to the A reservoir
change the self-information I[Z; Z]. We call this quantity an information rate (rather than
a flow) because it cannot always be considered a flow of information from one part of the
system to another.

8.5 Inferring information flows in light-harvesting molecular
machines

I now turn to applying the arbitrage relations for inference, both qualitative and quantita-
tive.

Using the IFAR (7.14), observing net output power (Ẇ < 0) from a bipartite system
immediately implies the existence of both a temperature difference and an information flow,
whose sign is further implied if the ordering of the two temperatures is also known. Through
TPAR (7.15), the existence and directionality of internally transduced power can likewise
be inferred in autonomous systems at steady state. More quantitatively, each of the IFAR,
TPAR, and EAR (8.30) can be rearranged to yield a bound on internal flows of energy or
information, requiring only knowledge of (often experimentally tractable) input and output
works and the two reservoir temperatures. Using the IFAR and TPAR respectively, the
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information and energy flows inside a bipartite heat engine are bounded by

İY ≥ −Ẇ

kB(TX − TY ) , (8.31a)

ĖX ≥ −ẆX/TX − ẆY /TY

1/TY − 1/TX
. (8.31b)

I will illustrate this application by inferring the existence and magnitude of the infor-
mation rate inside photosystem II, one of the molecular machines responsible for photo-
synthesis in plant cells. Photosystem II is in contact with the ambient cellular environ-
ment (TY ≈ 300K) as well as hot solar radiation emitted from the surface of the sun at
≈ 5800K [290]. Its dynamics include light-induced electronic transitions of the P680 complex
(coupled to a high-temperature thermal reservoir at TX ≤ 5800K) and water-splitting chem-
ical reactions of the oxygen-evolving complex (OEC) [3] coupled to the lower-temperature
thermal reservoir at TY . While models of photosystem-II dynamics differ on whether the dy-
namics of P680 and OEC satisfy the bipartite assumption [291–293], they uniformly ascribe
each transition to a particular reservoir. Estimating the mean output work from the free-
energy change ≈ 237 kJ/mol [294] and net reaction rate ≈ 350 /s [295], I infer a minimum
information rate of ≈ 7 bit/reaction (or equivalently ≈ 2000 bit/s) inside photosystem II. In
general this is an information rate due to the dynamics of light-induced transitions, how-
ever under the more restrictive bipartite assumptions of IFAR this is more specifically an
information flow between the OEC and P680 (the rate is the same, only the interpretation
differs).

While available experimental data for photosystem II is insufficient to directly quantify
information flows due to photochemical dynamics, detailed stochastic models for the reac-
tion dynamics have been constructed and fit to experimental data. A popular such model,
Lazár and Jablonsky’s Scheme 4 [293] (which can be described by a 24-state master equation
of the form Eq. (8.22), detailed in Ref. [293, Appendix A.3], with the A and B reservoirs
corresponding respectively to solar blackbody radiation, and to the ambient thermal bath of
the cellular environment) incorporates both photophysical dynamics of the P680 complex
and chemical dynamics of the OEC. This model is not bipartite, but uniquely identifies
transitions as coupled to either photon absorption/emission or chemical reaction dynamics.
Note that this model violates the assumption of thermodynamic consistency: several model
transitions are irreversible. In this experimentally parameterized stochastic model for pho-
tosystem II dynamics, calculations yield an information rate of ≈ 9 bit/reaction, above but
remarkably close to the model-agnostic lower bound.

In addition to photosystem II, arbitrage relations can be applied to other light-harvesting
molecular machines like bacteriorhodopsin, which uses free energy from sunlight to pump
protons across membranes in diverse species of archaea. The reaction dynamics and thermo-
dynamics of bacteriorhodopsin are well understood [287, 296], and while the reaction cycle
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is not bipartite, models nonetheless uniquely couple transitions to either solar photons
(TX ≤ 5800K as in photosystem II) or the ambient cellular environment (TY ≈ 293K). Us-
ing a typical output work rate of ≈ 6.1 kBTcell/cycle [289], the EAR predicts an information
rate with magnitude ≳ 0.5 bit/cycle. Using the observed cycle time of ∼ 11.5 cycles/s, this is
an information rate of ∼ 5 bit/s. Solving the master equation for the 7-state model used in
Ref. [289] (detailed in Ref. [289, SI Sec. IIA]), I compute an information rate of 2 bit/cycle,
in agreement with the model-agnostic prediction and comparable to but somewhat lower
than that found in photosystem II.

8.6 Discussion

I demonstrated in this chapter that the arbitrage relations (IFAR, TPAR, and EAR) are
powerful tools for thermodynamic inference [128]. In particular, using only information
about temperatures and external work rates, these arbitrage relations can be used to infer
the existence and magnitude of internal energy and information flows within molecular ma-
chines. I illustrated this potential for model-agnostic inference in Sec. 8.5 by estimating the
magnitude of information flow in the molecular machine photosystem II, which Secs. 8.2 and
8.3 argued can be considered a bipartite heat engine coupled to both photons at the high
temperature of the solar blackbody spectrum and chemical reactions at the much cooler
ambient cellular temperature. The resulting prediction, a lower bound on the information
flow of ≈ 7 bits per reaction cycle (≈ 2000 bit/s), is validated by computation of the informa-
tion rate (≈ 9 bits per reaction cycle) in an experimentally parameterized stochastic model
of the photosystem II reaction cycle [293]. These results are similarly applied to infer a
significant information rate (≈ 5 bit/s) in another light-harvesting molecular machine, bac-
teriorhodopsin, which is likewise verified through computational modelling. The magnitude
of information rates found in these light-harvesting molecular machines is striking when
compared to other biological information rates like that underlying bacterial chemotaxis,
estimated at 0.03 bit/s [297], and those found in biochemical signalling networks, on the
order of bits per hour [298]. It would be interesting to explore systematic variation of this
information rate across different classes of molecular machines.

Inference Tool: The IFAR (7.14) and TPAR (7.15) can be used to bound internal
energy and information flows in molecular machines well-described as bipartite heat
engines, like photosystem II.

This chapter also provides a pedagogical introduction to the stochastic thermodynamics
of molecular machines with light-induced reactions. I hope this introduction will prove useful
in providing intuition for future work in this area, as light-harvesting molecular machines
are a relatively underexplored area of application for stochastic thermodynamics.
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Chapter 9

Conclusion

This thesis explored the dynamics and thermodynamics of muticomponent molecular ma-
chines through the lens of stochastic thermodynamics. I leveraged existing theoretical tools
and developed new ones in order to uncover fundamental limits, infer experimentally inac-
cessible thermodynamic quantities, and ultimately learn design principles.

Chapter 2 reviewed the theoretical developments central to this thesis, including the
thermodynamics of nonequilibrium steady states, bipartite stochastic thermodynamics, and
thermodynamic inference. While traditional analyses consider free-energy flows into and
out of a machine, the bipartite formalism provides a finer-grained view. Decomposing the
machine into multiple coupled components resolves internal details – internal flows of energy
and information that enable the machine’s function.

Chapter 3 detailed the derivation of a key theoretical tool used throughout this thesis, the
Jensen bounds. These bounds constrain both subsystem and total entropy production rates
for multicomponent stochastic systems—key thermodynamic quantities that are typically
experimentally inaccessible—in terms of measurable quantities like friction coefficients and
mean coordinate rates of change. The Jensen bounds are used throughout this thesis to
derive fundamental limits, and for thermodynamic inference.

Chapters 4 and 5 focused on collective motor-driven transport, a paradigmatic example
of multicomponent assemblies of molecular machines. I first delved into a specific model
(chapter 4), which permitted analytic solution for arbitrary numbers N of motors. Exam-
ining the behaviour of this model reveals scaling laws describing how various performance
metrics of interest depend on N , and performance trade-offs that guide the choice of N .
While derived explicitly for a simple analytically tractable model, these general findings
are robust to complications like rough energy landscapes and motor binding/unbinding dy-
namics. Chapter 5 then considered a far more general class of collective transport models,
using the Jensen bound to derive performance bounds and Pareto frontiers that constrain all
systems independent of details like interactions between motors, cargo, and their substrates.

I focused on thermodynamic inference in chapter 6, using the subsystem Jensen bounds
to derive both upper and lower bounds on subsystem efficiencies in bipartite molecular
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machines. I used these bounds to infer the efficiencies of Fo and F1 in ATP synthase and of
a kinesin motor pulling a diffusive cargo from limited experimental data. These efficiency
metrics had never previously been measured or calculated in the machines’ coupled, in vivo
contexts.

Finally, chapters 7 and 8 considered molecular machines in contact with multiple sources
of fluctuations. I showed in chapter 7 that machines in such a context can act as heat en-
gines, extracting energy from a difference in fluctuations to produce net output work, only
by transducing information internally between their components. Conversely, an informa-
tion engine can only output more work than consumed to power it if it has access to an
(effective) temperature difference. These ideas can be understood through a powerful anal-
ogy to economics, and shed new light on commonly studied model systems. I then used
inequalities derived in chapter 7 for thermodynamic inference in chapter 8, obtaining the
first quantitative estimates of information flows in light-harvesting molecular machines.

The box below highlights what I believe to be some of the key takeaways from the work
contained in this thesis, phrased as answers to the motivating questions from chapter 1 in
terms of fundamental limits, inference tools, and design principles. In the final sections of
this chapter, I highlight what I believe to be important future directions to build on this
work towards the goal of continuing to address these driving questions.
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What fundamental limits do the laws of physics impose on the perfor-
mance of nanoscale machines?

1. The Jensen bound quantifies a minimum entropic cost for motion against vis-
cous friction. Most fundamentally, this entropic cost comes at the subsystem
level.

2. Eqs. (5.11), (5.12), and (5.13) provide bounds on individual performance met-
rics for general collective-transport systems, while Eqs. (5.17) and (5.18) de-
scribe Pareto frontiers for systems with identical motors.

3. The net output work of a bipartite heat engine or information engine is limited
by the product of the information flow and temperature difference.

What can we infer about the inner workings of molecular machines from
limited experimental data?

1. The Jensen bound can be used to estimate subsystem and total entropy pro-
duction rates from only measurements of average coordinate rates of change
and friction coefficients.

2. Subsystem efficiency upper and lower bounds allow inference of subsystem ef-
ficiencies in their natural coupled context from limited experimental data.

3. The IFAR (7.14) and TPAR (7.15) can be used to bound internal energy and in-
formation flows in molecular machines well-described as bipartite heat engines,
such as photosystem II.

What design principles can we learn from biology to facilitate future en-
gineering of synthetic nanomachines?

1. The number N of motors in a collective transport system can be tuned to opti-
mize different performance metrics of interest. N ≫ Dm/Dc maximizes velocity
and precision at the cost of high power consumption and decreased efficiency,
while N ≪ Dm/Dc maximizes efficiency but leads to slow and imprecise trans-
port.

2. Performance of a collective transport system can be maximized by making the
potential energy landscape as close as possible to quadratic.

3. A bipartite heat engine that extracts useful work from different sources of fluc-
tuations must be designed to operate as an information engine.
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9.1 Comparing Free-Energy Transduction Strategies in Dis-
tinct Machines

Recall Fig. 2.1 in Chap. 2, which illustrated several different possible operational modes for
bipartite engines. I believe an intriguing question going forward, which I have only begun
to address in this thesis, is to determine what operational modes are used by biological
molecular machines in different contexts.

While internal energy and information flows and other thermodynamic quantities (in-
cluding various measures of efficiency) can be computed from simulations of stochastic
models for molecular machines, directly measuring these quantities in experiment is much
more difficult, and frequently intractable for current techniques: experimental determina-
tion of such quantities currently requires thermodynamic inference [128]. Throughout this
thesis, I have developed novel techniques for inferring thermodynamic quantities using the
Jensen bounds and arbitrage relations.

Combining results from chapters 6 and 8 on thermodynamic inference allows us to sketch
out a map of constraints on operational modes used by different biological molecular ma-
chines. Figure 9.1 shows inferred energy and information flows in ATP synthase, kinesin,
and photosystem II. The Y and X subsystems correspond respectively to Fo and F1 (ATP
synthase), kinesin and its diffusive cargo (kinesin), and the P680 and OEC subunits (pho-
tosystem II), assigned such that X is in contact with the cellular heat bath at Tcell and
free energy flows from Y to X, hence ĖY + kBTcellİY ≥ 0 (demarcated by the grey hatched
“forbidden” region).

Mathematically, for ATP synthase and kinesin, Fig. 9.1 plots upper and lower bounds
on the transduced free energy, the sum of the internal energy and information flows:

βζX⟨ẋ⟩2 − βẆX ≤ βĖY + İY ≤ βẆY − βζY ⟨ẏ⟩2. (9.1)

For photosystem II, Fig. 9.1 plots inequalities constraining the internal energy flow in terms
of the information flow, temperatures, and output work, obtained by rearranging Eqs. (7.13)
with ẆY = 0:

−βXẆX − İY ≤ βXĖY ≤ − TY

TX
İY . (9.2)

These upper and lower bounds on ĖY intersect at İY equal to the IFAR lower bound. The
parameters used are the same as the estimates discussed in Chaps. 6 and 8.

Figure 9.1 shows regions for heat, conventional, hybrid, and information engines, along
with inferred constraints on flows inside select molecular machines. For photosystem II, the
arbitrage relations constrain its internal thermodynamics to the heat-engine regime, while
for ATP synthase and kinesin, constraints from the subsystem Jensen bounds leave open
all four different operational modes as possibilities. Figure 9.1 also clearly illustrates how
these machines differ in the magnitude of internal free-energy transduction (quantitatively,

123



Photosystem II

ATP Synthase

Kinesin

Conventional
Engine

Information
Engine

Hybrid
Engine

Heat
Engine

Figure 9.1: Physical constraints on internal energy flows (relative to the thermal energy
at cellular temperature Tcell) and information flows (in units of nats [101]) in molecular
machines. Gray hatched region indicates negative free energy transduction ĖY +kBTcellİY <
0. Black circle: equilibrium (ĖY = 0 = İY ). Light shaded regions show operational modes
of heat, conventional, hybrid, and information engines (clockwise). Darker shaded regions
show constraints on energy and information flows in the molecular machines photosystem
II, ATP synthase, and kinesin.

distance from the bounding line where ĖY +kBTcellİY = 0): photosystem II supports signif-
icantly more internal free-energy transduction per cycle than ATP synthase, which in turn
out-transduces kinesin by a similar margin.

I hope to see future work add further constraints and other molecular machines to this
figure. To accomplish this, future work should develop more and better tools for thermo-
dynamic inference. While work to date, outlined in Sec. 2.8, has yielded constraints on the
internal details of specific biological machines, these results are insufficient to determine
the operational modes used in isothermal machines like kinesin and ATP synthase. Tighter
bounds and alternative methods are needed to improve both the precision and accuracy of
estimates. Likewise, future work should bring these inference tools to bear on other molec-
ular machines beyond those that have been studied thus far. Exploring the internal details
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of different classes of molecular machines with improved inference tools will more system-
atically identify the free-energy transduction strategies used by different classes of evolved
biological molecular machines (see Fig. 9.1) in different contexts, allowing identification of
patterns and extraction of design principles for engineering synthetic molecular machines.

These efforts would also be aided by efforts to experimentally measure quantities that
can be used for thermodynamic inference (Sec. 2.8), both making new measurements and
improving the precision of existing ones. These include friction coefficients and rates of
change for continuous degrees of freedom (e.g., angular coordinates in rotary motors), free-
energetic driving forces, and variances in measured fluxes. Such measurements will enable
inference-driven exploration of understudied and novel molecular machines and improve
inference of the workhorse examples highlighted in this thesis.

Ultimately we should measure internal energy and information flows directly to test
our theoretical predictions. Cutting-edge experiments are tantalizingly close to achieving
the ability to track multiple degrees of freedom simultaneously with high spatiotemporal
resolution. For example, dual-color MINFLUX shows significant promise [299], allowing
simultaneous tracking of both heads of a kinesin motor. As this data becomes available,
theorists should develop and benchmark different methods for computing thermodynamic
quantities from noisy, limited data. In the longer term, as measurement techniques improve
and data becomes increasingly plentiful and precise, computational resources should be
built for rapid, efficient, and tractable analysis.

9.2 Leveraging Active Fluctuations

Chapters 7 and 8 explored the stochastic thermodynamics of molecular machines in con-
tact with thermal reservoirs at different temperatures, which can give rise to different types
of fluctuations acting on different parts of a multicomponent molecular machine. As men-
tioned in Chap. 7, biology features a wide range of active fluctuations [210–213]. While
active fluctuations can in some cases be modeled as thermal fluctuations at a higher tem-
perature, this is certainly not always the case, since they can have significant spatiotemporal
correlations [210].

A general theory has yet to be developed for thermodynamic engines leveraging active
fluctuations; nevertheless, explorations of specific systems have led to insights. Outside of
molecular machines, recent work has shown that information can be used to leverage active
fluctuations to produce useful work in active heat engines [300], active matter [301], and
microorganisms swimming through turbulent flows [302]. Of particular interest, Ref. [300]
derives a second-law-like inequality for active engines which, similar to the IFAR, bounds
output work in terms of information-theoretic flows (albeit not directly related to the in-
formation flow considered in this thesis).
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For molecular machines, active fluctuations as a resource remain relatively unexplored.
Intriguing experiments and computation have shown that certain types of active noise can
speed up kinesin operation when pulling a diffusive cargo against high load forces [217]. In
future work, I hope to determine thermodynamic constraints on molecular machines with
access to active fluctuations. I strongly suspect that an IFAR-like relationship will limit
work extraction from active fluctuations in terms of information flow. Another important
question will be to determine whether other molecular machines can similarly leverage active
noise to improve their performance.

9.3 Other Future Directions

Many of the key results in this thesis rely on the Jensen bound (derived in Chap. 3), which
only applies to stochastic systems with continuous dynamics. Discrete master-equation
dynamics, the other main class of models for nanoscale stochastic processes, represent a
formidable challenge for applying the Jensen bound. Since they do not feature bare fric-
tion/diffusion coefficients, or continuously varying coordinates whose mean rate of change
can be measured, discrete dynamics are currently beyond the scope of the arguments pre-
sented here. Nevertheless, many discrete models of classical physical processes are really
coarse-grained approximations of some underlying continuous dynamics, which would them-
selves obey the Jensen bound as derived in this article. Based on this, it seems likely that a
discrete generalization of the Jensen bound is possible. The derivation of the Jensen bound
also breaks for velocity-dependent forces (like those arising from magnetic fields), which are
also known to break the TUR in some cases [303], or non-thermal sources of fluctuations
like active noise [210, 211].

In this thesis, I primarily considered molecular machines that could either plausibly be
modelled as bipartite, or multicomponent assemblies of many identical molecular machines.
Many other molecular machines of significant biophysical interest, however, do not invite
such a simple decomposition. For example, the bacterial flagellar motor is composed of > 10
coupled components (rotor, stators, hook, etc...), while the ribosome is thought to comprise
O(100) components [6]. As such, future theoretical work should seek to solidify and expand
the framework of multipartite stochastic thermodynamics beyond the first and second laws
described in Sec. 2.5, for example towards multipartite generalizations of subsystem efficien-
cies. While for bipartite systems the internal energy and information flows can be described
as flowing from one subsystem to another, in a multipartite system such an interpreta-
tion is much less straightforward to make except in special cases where the subsystems are
sparsely connected (such as the collective-transport system considered in Chap. 4). Going
from a single system to a bipartite one introduces the possibility of internal energy and
information flows; it is natural to wonder what new qualitative features arise when systems
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are decomposed further. I expect the topology of the graph describing interactions between
components to play an important role.

The information flow discussed throughout this thesis is at this point fairly well un-
derstood mathematically, but still somewhat mysterious from the standpoint of physical
intuition. For example, chapter 8 inferred ≳ 7 bits information flow per reaction cycle
in photosystem II. How should we interpret the magnitude of this information flow? The
information flow can be interpreted in terms of measurement and feedback [82], but the
connection to an autonomous molecular machine could be sharpened. Future work should
develop intuition for the magnitude of information flows, perhaps drawing on connections
between stochastic thermodynamics and computation [304].

Biological and synthetic molecular machines are characterized by their nanoscale size,
stochastic degrees of freedom, and energy scales comparable to the thermal energy kBT .
As a result of these features information can be a relevant free-energy resource, showcased
by the importance of information flows in internal free-energy transduction. An intrigu-
ing question is to what extent molecular machines which rely on information flows can be
scaled up in size. Existing work has explored how information flows scale with system size in
electronic systems [285, 286], and shown that macroscopic heat engines can be constructed
using information flow [52]. Other work has likewise shown that biological organisms can
leverage fluctuations in their environments at larger scales than the cellular interior. Bac-
teria [302] and birds [305] leverage nonequilibrium fluid flows for locomotion, and humans
are known to do the same, for example in sailing, which requires collecting information
about the prevailing winds. Future work should explore how features like internal energy
and information flows might behave as molecular machines are scaled up in size towards
the macroscopic regime.

9.4 Final Remark

Molecular machines feature centrally in free-energy transduction across biology, with multi-
component machines constituting many of the most prominent examples. Biological molec-
ular machines have been tuned by billions of years of evolution, achieving remarkable per-
formance that in many cases exceeds the best that human engineering has to offer. With
the goal of learning from biology, this thesis has explored the stochastic thermodynamics of
multicomponent molecular machines. This work derived fundamental limits, inferred hidden
properties, and ultimately uncovered design principles for general nanomachines. While we
have learned much, ultimately this work only begins to scratch the surface of understanding
the intricate machinery hidden inside every living organism. I hope this thesis will serve
as a launchpad for further study of free-energy transduction by biological molecular ma-
chines, and that the results within will prove useful in guiding efforts to engineer synthetic
nanomachines.
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Appendix A

Supplementary Material for
Chapter 5

A.1 Linear systems saturate the Jensen bound

Here I prove that a collective-transport system with only linear forces saturates the Jensen
bound on entropy production (5.7c). Consider a linear system composed of N +1 subsystems
with positions denoted {x1, ..., xN+1}, for the first N subsystems the motors, and the last
the cargo, so xN+1 ≡ xc and DN+1 ≡ Dc. The system has constant force vector f and
potential

V (x) = V0 +
N∑

i=1

N+1∑
j=i+1

κij(xi − xj)2. (A.1)

I neglect linear terms in the potential since they can be incorporated into the constant
forces, and do not allow terms of the form kix

2
i that depend on the absolute position of one

subsystem, since they preclude the existence of a nonequilibrium steady state. The cargo
may in general be subject to a non-zero external force, fN+1 ≡ fext.

The dynamics of this system are most simply written in Langevin form as

ẋ = βD [f − Ax] + ξ(t). (A.2)

Here D is the diffusivity matrix which, under the assumption of multipartite dynamics, is
diagonal with entries Dij = Diδij , for Kroneker delta-function δij . The matrix A satisfies
Aij = ∂xi∂xj V (x), and the vector-valued random noise η(t) has zero mean and covariance
matrix 〈

ξ(t) ξ⊤(t′)
〉

= 2Dδ(t − t′). (A.3)
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The solution is a multivariate Gaussian distribution with mean vector m and covariance
matrix C = ⟨xx⊤ − mm⊤⟩ satisfying the differential equations [167, Section 3.2]

ṁ = βD [f − Am] , (A.4a)

Ċ = −βD
[
AC + A⊤C

]
+ 2D. (A.4b)

By definition A and C are symmetric, so A = A⊤, C = C⊤, and C−1 =
(
C−1)⊤.

The entropy production rate for the ith subsystem is [117]:

Σ̇i = 1
Di

〈(
Ji(x, t)
P (x, t)

)2〉
(A.5a)

= 1
Di

〈
1

P (x, t)2

(
βDifiP (x, t) − βDi(Ax)iP (x, t) − Di

∂

∂xi
P (x, t)

)2〉
(A.5b)

= 1
Di

〈(
βDifi − βDi(Ax)i − Di

∂

∂xi
ln P (x, t)

)2〉
(A.5c)

= 1
Di

〈
(βDifi)2 − 2(βDi)2fi(Ax)i + (βDi(Ax)i)2︸ ︷︷ ︸

1

(A.5d)

−2β(Di)2 [fi − (Ax)i]
∂

∂xi
ln P (x, t)︸ ︷︷ ︸

2

+D2
i

[
∂

∂xi
ln P (x, t)

]2

︸ ︷︷ ︸
3

〉
.

For clarity, I separately evaluate the three terms in this lengthy expression.

The first term is
1

Di

〈
(βDifi)2 − 2(βDi)2fi(Ax)i + (βDi(Ax)i)2

〉
= (βDi)2

Di

[
f2

i − 2fi(Am)i +
〈
(Ax)2

i

〉]
(A.6a)

= (βDi)2

Di

[
f2

i − 2fi(Am)i +
〈
Axx⊤A

〉
ii

]
(A.6b)

= (βDi)2

Di

[
f2

i − 2fi(Am)i +
(
Amm⊤A

)
ii

+ (ACA)ii

]
(A.6c)

= 1
Di

[
(βDi)2 (fi − (Am)i)2

]
+ β2Di(ACA)ii (A.6d)

= (ṁi)2

Di
+ β2Di(ACA)ii (A.6e)

= ⟨v⟩2

Di
+ βDi (A)ii . (A.6f)

In the last line I took the steady-state limit so that ṁi = ⟨v⟩. I further assumed that in the
steady-state limit each term in the covariance matrix is linear in t:

C = ut + v, (A.7)
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where both u and v must be symmetric. This linearity in t is necessary to obtain a con-
stant effective diffusivity in the steady-state limit. The differential equation (A.4b) for the
covariance then simplifies to

u = −2βDAut − 2βDAv + 2D. (A.8a)

Since the left-hand side is independent of t, the right-hand side must be as well. For this to
be true for general D, we must have Au = 0. I then evaluate the rightmost term in (A.6e):

ACA = β−1A − 1
2β−1D−1ĊA (A.9a)

= β−1A − 1
2β−1D−1uA (A.9b)

= β−1A − 1
2β−1D−1 (Au)⊤ (A.9c)

= β−1A. (A.9d)

The second term in (A.5d) is

1
Di

〈
−2β(Di)2 [fi − (Ax)i]

∂

∂xi
ln P (x, t)

〉
= −2βD2

i

Di

〈
[fi − (Ax)i]

∂

∂xi

(
−1

2(x − m)⊤C−1(x − m)
)〉

(A.10a)

= −2βD2
i

Di

〈
[fi − (Ax)i]

(
−1

2
[
(x − m)⊤C−1

]
i
− 1

2
[
C−1(x − m)

]
i

)〉
(A.10b)

= 2βDi

〈
[fi − (Ax)i]

(
C−1(x − m)

)
i

〉
(A.10c)

= 2βDifi

〈(
C−1(x − m)

)
i

〉
− 2βDi

〈
Ax

(
C−1(x − m)

)
i

〉
(A.10d)

= −2βDi

〈(
Ax(x − m)⊤C−1

)
ii

〉
(A.10e)

= −2βDi

〈(
ACC−1

)
ii

〉
(A.10f)

= −2βDi (A)ii . (A.10g)

151



Finally, the third term in (A.5d) is

1
Di

〈
D2

i

[
∂

∂xi
ln P (x, t)

]2〉
= Di

〈[
−1

2
∂

∂xi

(
(x − m)⊤C−1(x − m)

)]2〉
(A.11a)

= Di

〈(
C−1(x − m)

)2

i

〉
(A.11b)

= Di

〈(
C−1(x − m)(x − m)⊤C−1

)
ii

〉
(A.11c)

= Di

(
C−1

〈
(x − m)(x − m)⊤

〉
C−1

)
ii

(A.11d)

= Di

(
C−1CC−1

)
ii

(A.11e)

= Di

(
C−1

)
ii

(A.11f)

= βDi(A)ii. (A.11g)

To derive the last line I used

C−1 = AA−1C−1A−1A (A.12a)
= A (ACA)−1 A (A.12b)

= A
(
β−1A

)−1
A (A.12c)

= βAA−1A (A.12d)
= βA. (A.12e)

Summing the three terms (A.6f), (A.10g), and (A.11g), the entropy production rate of the
ith subsystem is

Σ̇i = 1
Di

⟨v⟩2 + βDi (A)ii − 2βDi (A)ii + βDi (A)ii (A.13a)

= 1
Di

⟨v⟩2. (A.13b)

Thus the total rate of entropy production is

Σ̇ =
N+1∑
i=1

Σ̇i

=
(

N+1∑
i=1

1
Di

)
⟨v⟩2

=
(

1
Dc

+
N∑

i=1

1
Di

)
⟨v⟩2

= ⟨v⟩2

Dbare
,

(A.14)

exactly saturating the Jensen bound (5.7c).

152



A.2 Barrier heights for kinesin motors

Here I use experimental data to estimate the heights of energy barriers separating metastable
states for kinesin motors. Recall from (5.23) that the ith motor has a periodic potential
Vi(xi) = 1

2E‡ cos (2πxi/ℓ) with barrier height E‡, period ℓ, and maximum conservative force
fmax = E‡/(2ℓ). The Kramers rate [188] for an uncoupled motor hopping forward from one
energy minimum to the next is

k+ = βDm
2π

√√√√∣∣∣∣∣∂2Vi

∂x2
i

∣∣∣∣∣
xi=a

·
∣∣∣∣∣∂2Vi

∂x2
i

∣∣∣∣∣
xi=b

e−βE+
b (A.15a)

≈ πβDmE‡

ℓ2 e−βE+
b , (A.15b)

where a is the position of the bottom of the current potential minimum and b is the position
of the peak of the energy barrier to the right. The effective barrier height is E+

b = E‡ −
fchemℓ/2. Note that the cosine potential has second derivative of approximate magnitude
2π2E‡/ℓ2 at both minima and peaks (points a and b) for fmax larger than fchem.

Likewise, the rate for the motor hopping backward to the previous minimum is

k− = πβDmE‡

ℓ2 e−βE−
b , (A.16)

where this time the effective barrier height is E−
b = E‡ + fchemℓ/2.

Analysis of experimental data [306] yields step rates for kinesin of k+ = 133.0/s and k− =
0.2/s [164], and step size ℓ = 8.2 nm. Combining these with previous estimates of the motor
diffusivity Dm ≈ O(10−3) µm2/s [79, 80], solving the two equations (A.15b) and (A.16) for
the two remaining parameters yields estimates fchemℓ ≈ 7 kBT and E‡ = 2fmaxℓ ≈ 6 kBT .
Accordingly, fmax/fchem ≈ 0.4 sets the scale for numerical investigations.
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