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Abstract

In many real-world randomized controlled trials (RCTs), noncompliance behaviour often
occurs and can greatly complicate assessing the intervention efficacy. Furthermore, multiple
outcomes are usually employed to measure underlying complex traits when evaluating the
performance of multifaceted behaviour interventions for chronic disease (e.g., arthritis). Sta-
tistical procedures ignoring treatment noncompliance and the correlations among multiple
outcomes can lead to biased estimates of treatment efficacy and a significant loss of power
to detect treatment efficacy. This dissertation aims at developing novel statistical method-
ologies to evaluate the efficacy of multifaceted behaviour interventions while addressing
noncompliance issues and correlated multiple outcomes simultaneously.

To deal with noncompliance issues, a principal stratification approach is employed to esti-
mate complier average causal effects. To address the correlated multiple trial outcomes, this
dissertation proposed novel methodologies based on mixed-effects regression models and the
latent-factor approach. The first work proposes a multivariate longitudinal potential out-
come model based on a hierarchical random-effects approach stratified on latent compliance
types under all-or-none compliance. The second work proposes a latent-factor multivariate
complier average causal effects (MCACE) model for multidimensional longitudinal outcomes
with principal strata of compliance types. Under the model, high dimensional outcomes are
reduced to low dimensional latent factors, leading to a parsimonious and efficient test of
overall CACEs on multiple endpoints, mitigating the multiple testing issues associated with
multidimensional endpoints. The third work considers partial compliance and extends to
multivariate CACE estimation under the framework of partial compliance. Comprehensive
simulation studies demonstrate the validity of the proposal methods and large gains in the
estimation efficiency (several-fold increase in statistical power to detect CACEs compared
to existing methods). The application of these proposed methodologies to assess the efficacy
of a multifaceted behaviour intervention (Arthritis Health Journal) in a longitudinal trial
conducted at Arthritis Research Canada yields novel findings not discovered previously.

Keywords: Causal inference; Principal stratification; Potential outcome model; Multi-level
model; Treatment effects estimation
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Chapter 1

Introduction

1.1 Background

When evaluating causal effects of new interventions, randomized controlled trials (RCTs)
are widely used as a gold standard. However, in real-world RCTs, noncompliance behaviour
usually occurs since participants may not comply with their initial assignments due to incon-
venience or possible side effects. Noncompliance behaviour can greatly challenge assessing
the treatment efficacy of the new intervention. There are several approaches commonly
employed in real-world RCTs. Intention-to-treat (ITT) analysis compares the outcomes of
participants who were assigned to the intervention group with the outcomes of participants
assigned to the control group. Thus, ITT analysis focuses on the use/program effective-
ness, the effect of treatment assigned. Although the policymakers are interested in the
use/program effectiveness, patients and health care providers are more interested in the
method effectiveness/intervention efficacy, the effect of treatment received. Use effective-
ness depends on patients’ compliance behaviour and may change when patients have more
knowledge about the intervention later, while method effectiveness is independent of pa-
tients’ compliance behaviour and informs what can be expected when patients adhere to the
treatment strictly. Typically, ITT analysis tends to give conservative estimates of method
effectiveness under noncompliance (Sheiner & Rubin 1995). Alternatively, the other com-
monly used approach, as-treated (AT) analysis, compares outcomes of participants based
on the actual receipt of the treatment. Under noncompliance, AT analysis violates the ran-
domization assumption and also provides biased estimates for method effectiveness (Sheiner
& Rubin 1995, Hernán & Hernández-Díaz 2012).

To overcome the noncompliance issue and obtain unbiased estimates of intervention ef-
ficacy, a complier-average causal effect (CACE) approach has been proposed and deals with
the noncompliance issue by analyzing the outcomes of a subgroup consisting of compliers
who always comply with their initial assignments (Sommer & Zeger 1991, Angrist et al. 1996,
Imbens & Rubin 1997, Hirano et al. 2000). Under CACE analysis, the entire population
is divided into four groups: compliers, never-takers, always-takers and defiers. Compliers
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always comply with their initial assignments. Never-takers never take the treatment regard-
less of their assignments. Always-takers always take the treatment no matter which group
they are assigned to. Defiers always take the opposite action of their initial assignments.
Participants are categorized into these groups based on their compliance behaviour under
any possible assignments. The definitions for the four groups are discussed in detail in the
following chapters. CACE analysis discusses all-or-none compliance where patients either
take the treatment or do not take the treatment. In reality, participants may take a portion
of the treatment which is referred to as partial compliance. In addition to discussing the
all-or-none compliance, partial compliance is also discussed in this dissertation.

For chronic diseases, multifaceted behaviour interventions are usually developed to help
patients manage their diseases. To assess the efficacy of multifaceted tools, multiple out-
comes are often employed to measure complex traits of such behaviour interventions. A com-
mon approach to dealing with correlated multiple outcomes is to conduct univariate anal-
yses which analyze these outcomes individually. However, ignoring the correlations among
multiple outcomes could cause a loss of power to detect the treatment efficacy of the multi-
faceted tool. Furthermore, conducting hypothesis testing for each outcome individually can
lead to multiple testing issues. These limitations raise the other challenge which is how to
incorporate correlations among outcome measures across all time points when estimating
intervention efficacy. In this dissertation, we aim to develop new methodologies to improve
the efficiency of estimating the intervention efficacy while addressing the noncompliance
issue and correlated outcome measures simultaneously.

1.2 Motivating Example

1.2.1 Arthritis Health Journal Study

To treat chronic diseases, long-term treatment and management are required. Especially,
self-management is critical for patients to achieve clinical remission of chronic diseases.
Self-management refers to the ability to participate in various activities, such as complying
with treatment regimes, and seeking doctors’ help when the target is not met. Although
self-management is important when treating chronic diseases, it’s hard for patients to keep
engaged in self-management activities due to busy daily schedules or fluctuating health
conditions. In practice, for rheumatoid arthritis (RA) patients starting RA treatment, the
adherence rates for using disease-modifying anti-rheumatic drugs (DMARDs) are only 30%
(Van Den Bemt et al. 2012) despite the DMARDs has been proven to be efficient to treat RA
(Choi et al. 2002). Due to the difficulty of managing chronic disease efficiently, researchers
developed a multifaceted tool to help patients enhance their self-management abilities.

Arthritis Health Journal (AHJ), a multifaceted behaviour intervention, is developed by
Dr. Diane Lacaille to improve rheumatoid arthritis (RA) patients’ self-management ability.
AHJ is an online tool and consists of six components: symptom and exercise log, disease
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activity, mood assessment, medical information, goals and action plan and health reports.
It is designed to help patients monitor and manage their diseases. Specifically, the AHJ tool
benefits RA patients in terms of the "Treat to Target" approach. By actively monitoring
their disease and communicating with doctors when the target is not achieved, the treatment
plan can be adjusted accordingly by patients themselves or doctors.

To assess the use of AHJ online tool, a longitudinal clinical trial was conducted at
Arthritis Research Canada. Researchers recruited participants from the Mary Pack Arthritis
Program. Eligible participants must be eighteen years old or older, are diagnosed with
rheumatoid arthritis, are currently under the medical care of rheumatologists, and have the
ability to get access to the Internet. In the AHJ study, 94 participants were assigned to two
groups randomly. 45 patients were in the first group provided with the access to AHJ tool
immediately, while 49 participants were assigned to the second group and had to wait for
six months before getting access to the tool. In this dissertation, we focused on the datasets
collected during the first six months. Therefore, the first group is treated as the treatment
group, and the second group is considered as the control group receiving usual care.

In the clinical trial, patients were evaluated by online questionnaires every three months.
At baseline, online questionnaires collected information about demographics and disease
information.

1. Disease duration: having RA for more than two years is recorded as the late disease.
Otherwise, the disease duration is reported as early disease.

2. Disease activity: high disease activity is recorded if there is high RAPID4 value. low
disease activity is observed if there are remission, and moderate/low RAPID4 value.

3. Gender: male or female.

4. Age: patients are classified into two categories based on whether they are older than
or equal to 54.5 years old.

The follow-up questionnaires collected information on six quantities, as well as the fre-
quency of using the tool at each evaluation time. Six quantities are average scores calculated
based on several items.

1. Effective consumer 17 scale: the average score of 17 items about how participants
manage their disease on a 0 to 100 scale with 100 indicating “most confident”.

2. Manage symptoms scale: the average score of 5 items about how patients manage
their symptoms on a 0 to 10 scale with 10 indicating “totally confident”.

3. Manage disease in general scale: the average score of 5 items about how patients
manage their disease in general on 0 to 10 scale with 10 indicating “totally confident”.
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4. Communicate with physician scale: the average score of 3 items about patients’
confidence in communicating with their rheumatologists on a 0 to 10 scale with 10
indicating “totally confident”.

5. Partners in health scale: the average score of 11 items about patients’ knowledge
of disease and treatment on a 0 to 80 scale with 80 indicating “poor self-management”.

6. Satisfaction with various aspects of medical care: the average score of 8 items
about their satisfaction with various aspects of medical care on a 0 to 10 scale with
10 indicating “completely satisfied”.

Six quantities were rescaled on the 0 to 100 scale for better comparisons. When conducting
data analysis, we also adjusted the direction of the fifth outcome so that higher values
represent better outcomes for all six outcomes.

1.2.2 Research Aims

It’s worth noting that six quantities are collected longitudinally to measure complex un-
derlying constructs of the AHJ online tool. Six quantities are designed to jointly evaluate
the performance of the tool in terms of enhancing patients’ self-management ability. Ad-
ditionally, these outcomes can also be used to measure several underlying constructs (e.g.,
self-efficacy in disease management and the effectiveness in shared decision-making). In addi-
tion to determining whether the AHJ online tool enhances patients’ overall self-management
ability, making statistical inference on these underlying constructs is also of great interest.

Furthermore, we are interested in predicting participants’ compliance behaviour based
on their baseline characteristics. Since the follow-up questionnaires provide information
on the frequency of using the online tool at each evaluation time, compliance behaviour
can be studied under all-or-none compliance and partial compliance. When handling the
noncompliance under all-or-none compliance, dichotomization is employed through a chosen
cut-off value to convert continuously-measured compliance to binary compliance. Under the
framework of partial compliance, we determine the compliance behaviour by calculating
a ratio of the times of using the tool to the number of days during the follow-up period.
Details about determining compliance behaviour can be found in the following chapters.

Our goals in this dissertation are summarized as follows:

1. Capturing the correlations among multivariate longitudinal outcomes to improve the
estimation efficiency when evaluating the treatment efficacy of the new intervention.

2. Making statistical inference on complex underlying constructs (e.g., self-efficacy and
interaction with caregivers).

3. Handling noncompliance behaviour under the framework of principal stratification
(all-or-none compliance and partial compliance).
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1.3 Literature Review

Noncompliance issue often occurs in randomized controlled trials involving human subjects.
Early literature includes work by Imbens & Angrist (1994) who employed the instrumental
variable (IV) approach to estimate local average treatment effects (LATEs) and discussed its
application in an RCT with noncompliance. Baker & Lindeman (1994) derived a likelihood-
based approach to estimate the treatment effect within a subgroup in a paired availability
design. Angrist et al. (1996) showed that instrumental variables estimand can be employed to
estimate causal effects for compliers under some assumptions within the Rubin Causal Model
(Holland 1986) when imperfect compliance is presented. Imbens & Rubin (1997) developed
a Bayesian framework to estimate causal effects in RCTs with noncompliance. Under some
assumptions, they showed that their approach outperformed standard IV estimand and
other existing methods previously in terms of estimating complier-average causal effects.

Following the work by Angrist et al. (1996) and Imbens & Rubin (1997), Hirano et al.
(2000) developed an extended framework to study the causal effects in encouragement de-
signs with noncompliance. Their approach allows for considering the pretreatment covari-
ates, and conducting sensitivity analysis when exclusion restrictions are violated. Yau &
Little (2001) extended the work by Imbens & Rubin (1997) to estimate complier-average
causal effects for longitudinal data with noncompliance and missing data. Additionally, some
works focus on developing new methodologies to deal with time-varying noncompliance. Lin
et al. (2008) proposed a nested latent class model to deal with time-varying noncompliance
by formulating time-invariant superclasses based on longitudinal compliance patterns. Gao
et al. (2014) extended the work by Lin et al. (2008) and proposed a Markovian approach
to estimate complier-average causal effects at each follow-up time point. However, these
works mentioned above are interested in estimating causal effects from univariate outcomes
in RCTs with noncompliance.

In real-world RCTs evaluating multifaceted behaviour interventions, multiple outcomes
are often employed. In practice, there are some approaches to deal with multiple outcomes.
One method to handle multiple outcomes is to estimate causal effects for each outcome
individually. However, univariate analysis fails to provide an overall causal effect of the new
intervention in an RCT. Moreover, univariate analysis leads to multiple testing issues and
a loss of power to detect treatment efficacy due to the ignorance of the correlations among
multiple outcomes. The other method is the dimensionality reduction approach. The di-
mensionality of multivariate outcomes can be reduced by choosing a function (e.g., sum or
mean) of responses. Furthermore, principal component analysis (Everitt & Hothorn 2011)
can be another way to achieve the reduction of dimensionality. However, principal compo-
nent analysis may lead to the difficulty of interpretation of the results since one outcome
may contribute to two or more components. A more elaborate way to deal with multiple
outcomes is conducting factor analysis (Everitt & Hothorn 2011), which leads to a cleaner
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interpretation by applying factor rotation techniques. Similar to the factor analysis, Roy &
Lin (2000) proposed a latent variable model and introduced a latent variable representing
an underlying outcome of major interest characterized by multivariate outcomes measured
repeatedly. An et al. (2013) generalized the framework in Roy & Lin (2000) and developed
a model allowing for more than one factor.

However, there is limited literature studying causal effects from multivariate outcomes in
RCTs with noncompliance. Specifically, most work estimated CACE by jointly considering
two outcomes in a cross-sectional setting. Jo & Muthén (2001) jointly modeled two major
outcomes to increase the precision of identifying compliance type and the power to detect
CACEs on the outcome of primary interest in a cross-sectional setting. Mealli & Pacini
(2013) employed a secondary outcome to tighten nonparametric bounds for CACEs on the
primary outcome on which the exclusion restriction may not hold. Mattei et al. (2013) also
showed that a secondary outcome can improve the inference on the primary outcome under
a Bayesian approach in a cross-sectional setting. In this dissertation, we are interested in
developing novel methodologies to estimate CACEs from longitudinal multivariate outcomes
in RCTs with noncompliance.

Instead of considering binary compliance (all-or-none compliance), partial compliance
is common in RCTs where participants may take a portion of the assigned treatment.
Jin & Rubin (2008) extended the principal stratification framework (Frangakis & Rubin
2002) to formulate new principal stratum defined on combinations of continuous potential
intermediate variables ranging from 0 to 1. Bartolucci & Grilli (2011) generalized the work of
Jin & Rubin (2008) by allowing for more flexibility in specifying the conditional distribution
of potential outcomes given compliances. Meanwhile, they modeled the drug compliance and
placebo compliance by a Plackett copula. However, the recent literature focuses on partial
compliance in RCTs in a cross-sectional setting. In the following chapters, we are interested
in extending the methods regarding partial compliance mentioned above to a more general
RCT setting where multivariate longitudinal outcomes are measured.

1.4 Outline

To assess the treatment efficacy efficiently for longitudinal RCTs where multivariate out-
comes and noncompliance are presented, we developed novel approaches in the remainder
of the dissertation.

In Chapter 2, we proposed a multivariate longitudinal potential outcome model with
stratification on latent compliance types under all-or-none compliance. The model was pro-
posed based on a hierarchical random-effects approach, and assessed an overall complier-
average causal effect (CACE) by combining all information among multiple outcomes across
all visits. The proposed methodology and its application in the AHJ study in this chapter
led to one publication in the journal Statistics in Medicine (Guo et al. 2022). In Chapter 3,
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a latent-factor multivariate complier-average causal effect (MCACE) model with principal
strata of compliance types is developed to study underlying constructs measured by multiple
outcomes. In addition to assessing an overall CACE by considering only one latent factor,
the proposed model allows us to make statistical inference on more than one underlying
constructs through corresponding latent factors. Instead of dealing with all-or-none compli-
ance, chapter 4 extended the hierarchical random-effects approach to a partial compliance
setting where a continuously-measured compliance behaviour is considered. Throughout the
dissertation, simulation studies are conducted to demonstrate the validity and the improve-
ment in the estimation efficiency of the proposed methodologies. We also applied these
novel approaches to the AHJ data and produced some interesting results not discovered
previously. Finally, a discussion is given in chapter 5.
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Chapter 2

Assessing Complier Average Causal
Effects from Longitudinal Trials
with Multiple Endpoints and
Treatment Noncompliance

2.1 Introduction

Randomized controlled trials (RCTs) are the gold standard for evaluating treatment effects.
However, noncompliance often occurs and can greatly complicate assessing treatment effects.
Intention-to-treat (ITT) analysis preserves randomization and is the main method to report
trial results (Lee et al. 1991, Meier 1991). However, ITT analysis estimates the effect of
assigning treatment and targets program effectiveness. While program effectiveness is often
of interest to policymakers, patients and their health decision-makers are more interested
in intervention efficacy that informs what to expect when patients comply with treatment
(Sheiner & Rubin 1995, Steele et al. 2015). Generally, the ITT gives conservative estimates
of intervention efficacy (Sheiner & Rubin 1995). The alternative as-treated (AT) approach
compares outcomes based on actually received treatments. The AT estimate violates the
randomization assumption and can be confounded by unobserved factors correlated with
compliance behaviors. Thus AT is subject to selection bias as an estimate of intervention
efficacy and should not be used without first evaluating the size of potential bias (Xie &
Heitjan 2004).

An appealing alternative is to estimate the complier average causal effect (CACE) via
the method of latent class instrumental variables (Baker et al. 2016) that can properly
adjust for post-randomization compliance status when estimating treatment effects. Under
noncompliance, the principal strata are (partially) unobserved compliance types (compli-
ers, always-takers, never-takers and defiers) determined by the joint potential compliance
behaviors under both control and treatment groups (Imbens & Angrist 1994, Baker &
Lindeman 1994). These compliance types are predetermined before randomization, which
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permits one to define causal effects within subpopulations partitioned by compliance types.
Imbens & Angrist (1994) and Baker & Lindeman (1994) showed how to estimate the av-
erage treatment effects for the subpopulation who would comply regardless of treatment
assignment. Patients and their treatment decision makers are typically interested in know-
ing the expected treatment effect when taking the treatment. The CACE is considered as
more relevant for such patient-oriented treatment effects, as compared with the program
effectiveness targeted by ITT (Steele et al. 2015).

In this chapter, we propose a multivariate longitudinal potential outcome model with
principal strata for latent compliance types to efficiently assess multivariate CACEs (MCACE)
in longitudinal RCTs with multiple endpoints. Real-world RCTs evaluating multifaceted in-
terventions often employ longitudinal designs and multiple endpoints. In such trials, limited
sample sizes, low compliance rates or small to moderate effect sizes on endpoints can signif-
icantly reduce the power to detect CACE. This work is motivated by a longitudinal RCT
conducted at Arthritis Research Canada to evaluate the effectiveness of a behavioral inter-
vention, the Arthritis Health Journal (AHJ) (Lacaille et al. 2015). AHJ is an online tool that
enables patients with rheumatoid arthritis to monitor their disease activity. Six health end-
points were collected longitudinally, measuring multifaceted aspects of managing disease,
symptoms, knowledge etc. A preliminary evaluation using ITT analysis for each endpoint
separately reported no significant treatment effects on all endpoints (Lacaille et al. 2015)
with full results presented in Table 2.4 in Supplemental Information (section 2.6). However,
a substantial number of participants did not use the intervention, or used it rarely, which
can render ITT estimates too conservative for evaluating the patient-oriented intervention
effect. The low compliance rate combined with the limited sample size (n = 94) and mod-
erate effect size expected from using AHJ motivated us to seek the most efficient analysis
to estimate CACEs by combining data across multiple endpoints and visits.

The literature demonstrating the benefits of pooling information across multiple end-
points in RCTs has largely focused on perfect compliance. One exception is Jo & Muthén
(2001) who considered CACE estimation with multiple correlated endpoints to increase the
power to detect intervention effects for cross-sectional data. Mealli & Pacini (2013) and Mat-
tei et al. (2013) showed a secondary outcome can be exploited to sharpen the nonparametric
bound and Bayesian inference of CACE of the primary endpoint in the cross-sectional set-
ting. Yau & Little (2001) and Jo & Muthén (2001) developed methods for CACE estimation
with longitudinal measurements of single endpoint subject to noncompliance and attrition,
demonstrating the benefits of longitudinal data for CACE estimation, including increased
power, better handling of missing data and estimation of growth trends. We extend these
prior works to longitudinal RCTs with multiple endpoints and treatment noncompliance.

Our MCACE model consists of a sub-model for the unobserved compliance types and
a hierarchical random-effects potential outcome sub-model for longitudinal measurements
of multiple endpoints within each compliance type. Unlike univariate CACE (UCACE)
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analysis that analyzes each endpoint separately, under MCACE each subject has a single
estimate of class membership of compliance type which permits more accurate estimation
of the unobserved subject-specific compliance types. By combining data from all endpoints
and longitudinal trajectories, MCACE model maximizes the information used to estimate
CACE. A global likelihood ratio test is used to test the null hypothesis of no treatment
effect on all endpoints. We compared MCACE analysis with UCACE analysis in simulation
studies. Results show a significant increase in the estimation efficiency with the MCACE
model, including up to 50% reduction in standard errors of CACE estimates and a 1-fold
increase in the power to detect CACE. Finally, we apply the proposed MCACE model to
the AHJ data. With MCACE model, we detect a significant overall treatment effect using
the global likelihood ratio test and identify statistically significant CACEs on two out of
six endpoints. In contrast, the less powerful UCACE analysis cannot detect any significant
treatment effects.

Next in Section 2.2, we describe the proposed model and its estimation and infer-
ence. Section 2.3 describes a simulation study that compares the MCACE method with
the UCACE method in terms of the point estimate, nominal rate and width of confidence
intervals and power of hypothesis testing. Finally, we apply the proposed MCACE model
and UCACE model to the AHJ data in Section 2.4, followed by a discussion in Section 2.5.

2.2 Notation and Model

Let Ai indicate the ith subject’s treatment assignment, where i = 1, · · · , N . Ai = 1 (or 0)
if subject i is assigned to the treatment (or placebo). Let Di be the indicator of the receipt
of the treatment. Di equals to 1 (or 0) if subject i receives the treatment (or placebo). Let
A and D be N-dimensional vectors with the ith elements equal to Ai and Di. We consider
K endpoints measured over time on each of N participants. For CACE analysis, we define
two types of potential outcomes, the secondary potential outcome Di(A) and the primary
potential outcome Yijk(A,D(A)). Di(A) is the potential treatment received by subject
i when subjects are randomized to A. Yijk(A,D(A)) is the potential outcome value for
the kth outcome at occasion j for subject i under treatment assignment A and treatment
received D(A), where i = 1, · · · , N, j = 0, · · · , J and k = 1, · · · , K. Let Yi(A,D) be the
vector of K ∗ (J + 1) potential outcomes for subject i given A and D(A). Let Y (A,D)
denote the vector of potential outcomes collecting all the Yijk(A,D(A)) over i, j, k.

2.2.1 Assumptions for Complier Average Causal Effect Analysis

Our analysis makes two assumptions which are often invoked for causal inference in RCTs.
The stable unit treatment value assumption (SUTVA (Rubin 1978, 1980, 1990)) requires no
interference between subjects and no multiple versions of treatments. In AHJ study, SUTVA
is plausible because the online tool was the same for all participants who independently
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accessed and used the online tool with minimum expected interference. SUTVA allows
us to write Yi(A,D) and Di(A) as Yi(Ai, Di) and Di(Ai). The second assumption is
random assignment, which assumes that given observed baseline variables, Ai is independent
of potential outcomes Yi(A,D) and Di(A). This assumption is satisfied in RCTs since
treatments were randomly assigned to study participants.

In our analysis of CACEs in the AHJ data, we make two additional assumptions. The
third assumption is no access to the treatment in the control group. This assumption holds in
many placebo-controlled trials, including the AHJ study in which participants in the control
group would not have access to the online tool during the 6 months after randomization.
Following Imbens & Rubin (1997), we denote Ci, the compliance behavior of participant i,
as:

Ci =


c (complier), if Di(a) = a, for a = 0, 1,

n (never-taker), if Di(a) = 0, for a = 0, 1,

a (always-taker), if Di(a) = 1, for a = 0, 1,

d (defier), if Di(a) = 1 − a, for a = 0, 1.

When held, the third assumption excludes defiers and always-takers. As a result, the com-
pliance status (complier .vs. never-taker) is known for participants in the treatment group
but remains unknown for those in the control group. The fourth assumption is exclusion
restriction (Imbens & Angrist 1994, Baker & Lindeman 1994). Under the assumption,
Y (A,D) = Y (A′

, D) ∀A,A
′ and ∀D, and thus Y (A,D) can be written as Y (D). In

the AHJ study, this implies never-takers’ outcomes were the same regardless of treatment
assignment. Because compliance behavior Ci is based on the potential outcomes of Di(Ai),
Ci is unaffected by the treatment assignment and thus behaves like a baseline variable. One
can perform treatment effect evaluation within each compliance strata if Ci was observed
for each participant. However, because Ci is only partially observed, the fourth assump-
tion can be exploited to sharpen the estimation of the compliance-strata-specific treatment
effects (Imbens & Rubin 1997). Under the above set of assumptions, CACE is shown to
be identifiable with likelihood-based inference (Baker & Lindeman 1994, Imbens & Rubin
1997).

2.2.2 Models for Outcomes and Compliance

We consider modeling the joint distribution of two types of potential outcomes: the potential
values of multiple endpoints after being assigned to control and treatment (Y (D(0)),Y (D(1)))
and the potential treatment received (D(0),D(1)), given the randomization A and co-
variates W . For notation convenience, we denote Y (D(l)) by Y l, Yi(Di(l)) by Yil and
Yijk(Di(l)) by Y l

ijk, l ∈ {0, 1} denoting potential assignment to control and treatment, re-
spectively. Because the potential outcomes (D(0),D(1)) are one-to-one functions of the
compliance behavior C, we can equivalently model the joint distribution of (Y 0,Y 1,C),
which is then expressed as the product of the conditional distribution (Y 0,Y 1) given the
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(latent) compliance type C and the distribution of C. When modeling the conditional dis-
tribution (Y 0,Y 1) given the compliance type C, we employ a hierarchical random-effects
potential outcome model for longitudinal measurements of multiple endpoints within each
compliance type. This hierarchical model has two levels with the first level specifying a
within-subjects model for potential outcomes given subject- and endpoint-specific random
effects blmik, and the second level specifying a between-subjects model for blmik. The distri-
bution of C is specified based on a logistic regression model. To guide model development,
we depict the main structure of the proposed MCACE model in Figure 2.1 with nodes to
be fully defined in the following two subsections. We first describe the two-level sub-model
for potential outcomes Y l given partially observed compliance type C. Then we introduce
the sub-model for the compliance type C given baseline covariates W .

Figure 2.1: Illustration of the structure of the MCACE model.

The sub-model for Y l | C

Let m denote the unique value of compliance type, m ∈ {c, n}. We assume the following
potential outcome model for multiple endpoints within the compliance type m:

Y l
i | (Ci = m,Xi) ∼ N (µlmi, Σl

mi) (2.1)

where Y l
i = (Y l

i01, · · · , Y l
i0K , Y l

i11, · · · , Y l
i1K , · · · , Y l

iJ1, · · · , Y l
iJK), and Xi is the vector of ex-

planatory variables for the potential outcomes. The above model assumes Yi0 and Yi1 are
independent conditional on compliance type and covariates. This is justified because Yobs,i =
AiY

1
i +(1−Ai)Y 0

i and thus Yobs,i|Ci,Xi ∼ N (Aiµ
1
mi+(1−Ai)µ0

mi, AiΣ1
mi +(1−Ai)Σ0

mi),
meaning that the likelihood function of the observed data does not depend on the correla-
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tion between potential outcomes Y 0
i and Y 1

i . Therefore, the correlation between potential
outcomes Y 0

i and Y 1
i becomes unimportant under likelihood-based methods (Page 181 in

Chapter 8 in Imbens & Rubin (2015), Hirano et al. (2000)). Even with the modeling simpli-
fication, for multivariate longitudinal data, it is still very challenging to specify a sensible
structure for Σl

mi. For a general unstructured covariance matrix, Σl
mi is a (J+1)K×(J+1)K

covariance matrix with
(

(J + 1)K + 1
2

)
parameters. When K = 6 and J = 2, the number

of unique parameters needed to be estimated in Σl
mi will be 171. Such parameter pro-

liferation can be a severe issue because the limited sample sizes compounded by the low
compliance rates in many practical RCTs lead to an insufficient number of compliers that do
not afford enough degree of freedom to estimate a general covariance matrix. To reduce the
number of nuisance parameters in Σl

mi, we employ the hierarchical random-effects modeling
approach (Laird & Ware 1982) that captures the potentially complex variance structure
by explicitly modeling individual heterogeneity in longitudinal trajectories of multiple out-
comes.

The hierarchical random-effects model is also known as the multi-level model. The level-
1 part of our multi-level model specifies the following within-subjects model for the potential
outcome for the kth endpoint at occasion j for individual i under treatment assignment l,
given the participant i’s compliance type m and random effects blmik:

Y l
ijk|(Ci = m, blmik,Zij) = Zij

Tblmik + ϵl
mijk. (2.2)

In Eqn 2.2, Zij contains an intercept and time-varying covariates, such as the time
tij and higher-order terms of tij to capture potentially non-linear time trends in the po-
tential outcomes. Let ϵlmij = (ϵl

mij1, · · · , ϵl
mijK)T and ϵlmij

iid∼ N (0, Φm), where Φm =
diag(σ2

m1, · · · , σ2
mK). We assume ϵ1

mij is independent of ϵ0
mij . The level-2 model specifies

the between-subjects model for the individual-specific random effects blmik.

blmik = βm0k + βm1kDi(l) + vlmi, (2.3)

where βm0k is the vector containing population average regression coefficients for subjects
with compliance type m, assigned to treatment l and actually received the control; βm1k

represents the population average changes in these regression coefficients when these sub-
jects actually received the treatment; vlmi is the deviation of subject i’s coefficients from the
population mean. Here we assume that vlmi is a mean zero Gaussian variable with variance
Σmv. We also assume that v1

mi is independent of v0
mi, vlmi and ϵlmi are independent, where

ϵlmi = (ϵlmi0
T

, · · · , ϵlmiJ
T )T .

Combining the above two-level models for all k endpoints at all time points, we can
obtain one overall model for the potential outcomes for individual i with compliance type
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m as

Y l
i |(Ci = m,vmi,Xi) = (Xi,l ⊗ IK)βm +

(
Ziv

l
mi

)
⊗ 1K + ϵlmi,

where Y l
i = {Y l

ijk : j = 0, · · · , J ; k = 1, · · · , K}, βm = {βmpqk : p = 0, · · · , P ; q =
0, · · · , Q; k = 1, · · · , K}, where P and Q depend on the forms of Eqns 2.2 and 2.3: (P + 1)
equals the dimension of random effects in level-1 model; Q equals the number of predictors
in level-2 model and could be greater than 1 if more predictors are included in the level-2
model. Xi,l and Zi are design matrices for fixed effects and random effects respectively.
Besides, Xi,l is a (J +1) by R matrix where R equals the number of fixed effects coefficients
in Eqn 2.3. Zi is a (J + 1) by H matrix where H equals the dimension of random effects in
Eqn 2.3.

By combining random effects and residual error terms, we obtain the marginal distribu-
tion for {Y l

i |Ci = m} in Eqn 2.1 as

Yi
l|Ci = m,Xi ∼ MV Nβm,ψm(µlmi, Σmi), (2.4)

where µlmi = (Xi,l ⊗ IK)βm, Σmi = (ZiΣmvZT
i ) ⊗ (1K1T

K) + Vm; Vm = var(ϵlmi) =
diag(Φm0, Φm1, · · · , ΦmJ), Φm0 = Φm1 = · · · = ΦmJ = Φm; ψm = (σmvT , σ2

m1, · · · , σ2
mK)T ,

σmv is the vector of unique parameters in Σmv, the variance-covariance matrix of random
effects vlmi.

An illustrative example For illustration purpose, consider the following level-1 model
with a quadratic function of time since baseline:

Y l
ijk|(Ci = m, blmik, Zij) = bl

m0ik + bl
m1iktij + bl

m2ikt2
ij + ϵl

mijk, (2.5)

with the following level-2 (between-subjects) models are as below,

bl
m0ik = βm00k + βm01kDi(l) + vl

m0i,

bl
m1ik = βm10k + βm11kDi(l) + vl

m1i, (2.6)

bl
m2ik = βm20k + βm21kDi(l) + vl

m2i,

where vlmi = (vl
m0i, vl

m1i, vl
m2i)T iid∼ N (0, Σmv) , Σmv =


σ2

vm0 σvm0vm1 σvm0vm2

σvm0vm1 σ2
vm1 σvm1vm2

σvm0vm2 σvm1vm2 σ2
vm2

 .

The matrix form of the model for the kth outcome of individual i is

Y l
ik | (Ci = m) = Xi,l ∗ βmk + Zi ∗ vlmi + ϵlmik, (2.7)
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where ylik = (yl
i0k, yl

i1k, · · · , yl
iJk)T , βmk = (βm00k, βm10k, βm20k, βm01k, βm11k, βm21k)T , vlmi =

(vl
m0i, vl

m1i, vl
m2i)T , ϵlmik = (ϵl

mi0k, ϵl
mi1k, · · · , ϵl

miJk)T . Specifically,

Xi,l =


1 0 0 Di(l) 0 0
1 ti1 t2

i1 Di(l) ti1 ∗ Di(l) t2
i1 ∗ Di(l)

...
...

...
...

...
...

1 tiJ t2
iJ Di(l) tiJ ∗ Di(l) t2

iJ ∗ Di(l)

 , Zi = Z =


1 0 0
1 ti1 t2

i1
...

...
...

1 tiJ t2
iJ

 .

When the errors ϵl
mijk are independent of each other over i, j, k, the correlations among

endpoints at the same or different times are induced by the shared random effects vlmi.
Correlations among longitudinal repeated measurements for the same endpoint are induced
by the random effects vlmi as shown in Eqn 2.7. In Eqn 2.6, blmik for different endpoints
contains the same vlmi, which induces the correlations among different endpoints. The cor-
relations for all endpoints at all time points within the same subject induced by the random
effects vlmi could also be seen by examining the specific form of Σmi in Eqn 2.4, in which
Σmi = (ZiΣmvZT

i ) ⊗ (1K1T
K) + Vm. A combination of flexible specifications of design matrix

Zi and variance-covariance matrix Σmv for random-effects vlmi and Vm for residuals can
generate complex forms of Σmi. For example, variance-covariance matrix and correlation
matrix of repeated measures are allowed to differ across endpoints in Σmi.

Based on the above Xi,l and Zi, we can obtain the marginal distribution using Eqn
2.4. Compared with specifying a general variance matrix for Σmi, this model reduces the

number of nuisance parameters from
(

(J + 1)K + 1
2

)
down to K + 6. If J = 2 and K = 6,

then the number of nuisance covariance parameters dropped from 171 to 12.

Principal causal effects Principal causal effects (PCE) are defined as the ITT effects of
the treatment within subpopulations defined by compliance type. In many RCTs including
the AHJ study, subjects were followed up at equal time intervals (tij = tj). Our interest is
the visit-specific PCEs for compliers, which are:

ITTc,jk = E(Y 1
ijk − Y 0

ijk|Ci = c) (2.8)

For the above illustrative example with the level-1 and level-2 model specified in Eqns
2.5 and 2.6, respectively, we have yl

ijk|(Ci = m) = βm00k +βm10ktj +βm20kt2
j +βm01kDi(l)+

βm11kDi(l)tj + βm21kDi(l)t2
j + vl

m0i + vl
m1itj + vl

m2it
2
j + ϵl

mijk. For participants, the mean
response for the kth outcome at visit j is:

E(y1
ijk|Ci = c) = βc00k + βc10ktj + βc20kt2

j + βc01k + βc11ktj + βc21kt2
j ,

E(y0
ijk|Ci = c) = βc00k + βc10ktj + βc20kt2

j ,

E(y1
ijk|Ci = n) = E(y0

ijk|Ci = n) = βn00k + βn10ktj + βn20kt2
j .
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Therefore, ITTc,jk = E(y1
ijk|Ci = c) − E(y0

ijk|Ci = c) = βc01k + βc11ktj + βc21kt2
j , ITTn,jk =

E(y1
ijk|Ci = n) − E(y0

ijk|Ci = n) = 0. ITTc,jk and ITTn,jk estimate the effect of treat-
ment assignment for compliers and never-takers respectively. For compliers, the treatment
received is the same as the treatment assigned. Thus, ITTc,jk also estimates the complier
average causal effect of the treatment received. On the other hand, ITTn,jk compares po-
tential outcomes which result from actually receiving the control regardless of treatment
assignment. Thus ITTn,jk always equals zero under the exclusion restriction assumption.
Under the randomization assumption, there should be no difference in outcomes at baseline
for compliers between two groups. Thus, we expect that βc01k be zero, and βc11k and βc21k

jointly determine the CACE for the kth outcome. The CACE is null for the kth outcome if
both βc11k and βc21k equal zero.

Model for compliance status C

Given the baseline covariates W , we can model the probability of being a complier using a
logistic regression model as

pci = Pr(Ci = c|Wi = wi,α) = exp(wi
′
α)

1 + exp(wi′α) . (2.9)

As noted before, compliance status (complier or never-taker) is observed for participants
assigned to the treatment group, but is unobserved for those in the control group. Therefore,
the compliance model Eqn 2.9 can not be estimated directly on the entire sample.

Finally, when K = 1, the multivariate CACE (MCACE) model proposed above reduces
to the univariate CACE (UCACE) model, which is akin to Yau & Little (2001). One can
apply UCACE to analyze each endpoint separately. Unlike MCACE, the UCACE method
ignores and does not pool the information from multiple correlated endpoints to sharpen
the estimation of compliance status and CACE.

2.2.3 Estimation and Inference

Let Yobs,i = aiY
1
i + (1 − ai)Y 0

i , di = Dobs,i = Di(ai). We denote Yobs as the vector of
observed outcomes collecting all the Yobs,i over i and Dobs as a N × 1 vector with the ith

element equal to di. In our case, there are three combinations for (ai, di): (1,1), (1,0) and
(0,0). We use S(1, 1), S(1, 0) and S(0, 0) to indicate the subsets of units exhibiting each
pattern of (ai, di). In our case where the population only includes compliers and never-takers,
S(1, 1) and S(1, 0) include the compliers and never-takers, respectively, in the treatment
group and S(0, 0) represents a mixture of compliers and never takers in the control group.
Let π = (βc,βn,ψc,ψn,α) denote the vector collecting all model parameters andX denote
the vector collecting all Xi over i, the likelihood function based on observed data for all
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participants in the study is

L(π;Yobs,Dobs,Aobs | W ,X) = L11 × L10 × L00

where

L11 =
∏

{i∈S(1,1)}
pci

1

(2π)
(J+1)K

2 |Σc|
1
2

exp
{

−1
2
(
yobs,i − µ1

ci

)T
Σ−1

c

(
yobs,i − µ1

ci

)}
,

L10 =
∏

{i∈S(1,0)}
(1 − pci)

1

(2π)
(J+1)K

2 |Σn|
1
2

exp
{

−1
2
(
yobs,i − µ1

ni

)T
Σ−1

n

(
yobs,i − µ1

ni

)}
,

L00 =
∏

{i∈S(0,0)}

[
pci

1

(2π)
(J+1)K

2 |Σc|
1
2

exp
{

−1
2
(
yobs,i − µ0

ci

)T
Σ−1

c

(
yobs,i − µ0

ci

)}

+(1 − pci)
1

(2π)
(J+1)K

2 |Σn|
1
2

exp
{

−1
2
(
yobs,i − µ0

ni

)T
Σ−1

n

(
yobs,i − µ0

ni

)}]
.

The maximum likelihood estimates (MLEs) of model parameters can be obtained by
maximizing the observed data log-likelihood function via the Quasi-Newton algorithm for
function optimization. The starting values are chosen based on the result from univariate
ITT analysis conducted for six outcomes separately. Multiple different starting values are
tried to ensure the algorithm converges to the same result. The variance of the estimates
can be obtained via the inverse Hessian matrix of the log-likelihood function evaluated at
the MLEs. The estimates of PCEs in Eqn 2.8 can be obtained by plugging in the MLE
model parameter estimates with the standard errors of PCE estimates obtained using the
delta method.

2.3 Simulation Study

We compare the MCACE model proposed above with the alternative approach of fitting
separate univariate CACE (UCACE) models in their performance of treatment effect esti-
mation and inference with longitudinal observations of multiple study endpoints. Our com-
parison evaluates the consistency and variability of CACE estimates, width and coverage
rate of confidence intervals as well as the power of hypothesis testing for CACE.

2.3.1 Description of Data Generation

We simulated data from the MCACE model as specified in Eqns 2.5, 2.6 and 2.9 with six
endpoints (K = 6) at three time points (J = 2) for n individuals, where n = 100, 200
or 500. To simplify the simulation setting, the model is set as a random-intercept and
fixed-slope model, which means bl

m2ik = 0 in Eqn 2.5, vc1i = 0 in Eqn 2.6 and the level-2
model only include the first two rows in Eqn 2.6. We further set βc01k = 0 (i.e., no baseline
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difference between two randomized arms). The compliance status model (Eqn 2.9) includes
only intercept, i.e., pci = pc.

Under the above linear trend model, βc11k informs the complier average causal effect
on the kth endpoint, which is of primary interest. Recall βc11 = (βc111, · · · , βc116)T . For
ease in result presentation, we set βc11 as a vector of the same value in the simulation.
When evaluating the consistency and efficiency of the MLEs and confidence intervals of
βc11, we choose the common value as 0, 1.5 and 3. However, the treatment effect size for
each endpoint also depends on the variance of the endpoint, thus differs across endpoints
because variances vary over endpoints (section 2.6.1 in Supplemental Information (section
2.6)). True values of other parameters in the multi-level MCACE model are informed by
the AHJ data and can be found in section 2.6.1 in Supplemental Information (section 2.6).
Last, we simulated compliance status from a Bernoulli distribution with pc = 0.3. A detailed
description of the data generating process can be found in section 2.6.1 in Supplemental
Information (section 2.6).

2.3.2 Simulation Results

Because the complier average causal effect is of our primary interest, we focus on the results
for the CACE effects captured by {βc11k}.

Point estimate

Figure 2.2 shows the sample means, sample standard deviations of estimates and asymp-
totic standard error estimates for βc11k’s from fitting the MCACE model (red lines) and
multiple UCACE models (green lines) under different sample sizes (listed as column head-
ings) and different effect sizes (listed as row headings). The dashed lines indicate the true
values in different settings. These results are obtained based on 500 repetitions. Table 2.5
in Supplemental Information (section 2.6) presents the same result in a tabular format.

For both MCACE and multiple UCACE models, the sample means of estimates are
close to the corresponding true values. This verifies the consistency of MLEs. Figure 2.2
also shows that the sample standard deviations of the estimates from the MCACE model
are almost half of that yielded by multiple UCACE models. Therefore, we conclude that
the MCACE model significantly improves the estimation efficiency compared with UCACE
analyses. Furthermore, the means of standard error estimates (red narrow bars) produced
by the Fisher information are almost identical to the true standard deviations (red wide
bars) of the MCACE estimates. When performing the UCACE analysis of each endpoint
separately, most means of standard error estimates (green narrow bars) produced by the
Fisher information are noticeably smaller than their true values (green wide bars) when
the sample size equals 100. However, as sample size increases, the means of standard error
estimates produced by the Fisher information become closer to their true values. This is
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Figure 2.2: Means ± standard deviations (wide bar) of MCACE and UCACE estimates of
βc11k as well as ± mean of standard error estimates (narrow bar) computed from the Fisher
information matrix of the MCACE model and UCACE model over 500 replications.

expected because the standard error estimator produced by the Fisher information approx-
imates the true standard deviation well when the sample size is large enough, and may
perform poorly when the sample size is small. We do not observe inaccurate estimation of
standard errors from the MCACE model because the MCACE model analyzes six outcomes
simultaneously and gets estimates based on larger datasets.

Confidence interval

In the MCACE model, under appropriate regularity conditions, the MLE of βc11 has asymp-
totic normality, for n → ∞,

√
n(β̂c11 −βc11) d→ MV N(0, [I(βc11)]−1), where I(βc11) is the

Fisher information. Based on the asymptotic normality, we are able to calculate simultane-
ous confidence intervals and use Bonferroni correction to ensure that the probability of all
confidence intervals containing their true values is no less than 1−α. For βc11k, we could get
a confidence interval as t

′
kβ̂c11 ±c

√
t

′
k([In(β̂c11)]−1)tk, where tk is a six-dimensional column

vector with the kth element being 1 and all other elements being 0, and In(β̂c11) is Fisher
information for n independent units and is estimated by the inverse Hessian matrix of the
log-likelihood for the sample of n units. When conducting UCACE analysis, the confidence
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intervals are constructed as β̂c11k ± c
√

1/In(β̂c11k), where β̂c11k and In(β̂c11k) are obtained
from UCACE analysis on the kth endpoint only and are generally different from those cal-
culated from MCACE. For both MCACE model and UCACE model, c is the critical value
and is set as Z1−α/(2k) based on Bonferroni correction.

Figure 2.3.a shows the distribution of the length of 95% confidence intervals based on
500 simulated datasets. For both MCACE model and UCACE models, the average length
of the 95% confidence intervals decreases and the distributions of the length become more
concentrated as sample size increases. With the same sample size, the confidence intervals
from MCACE model are shorter than those from UCACE models.
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Figure 2.3: Plot 2.3.a describes the distribution of the length of 95% confidence intervals;
plot 2.3.b shows coverage rate of 95% confidence intervals, and the dashed line corresponds
to the value of 0.95. The results from both figures are based on 500 repetitions.
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Figure 2.3.b plots the coverage rates of confidence intervals from the MCACE model and
multiple UCACE models. The coverage rate is calculated as the proportion of times that all
six confidence intervals include their corresponding true values simultaneously. We observe
that the coverage rates calculated from the MCACE model are higher than those from
the multiple UCACE models and are closer to the nominal 95% rate. However, as sample
size increases, the coverage rates from UCACE models improves and get closer to the 95%
nominal rate. Similar with the point estimate, the improvement in UCACE performance
as sample size increases can be explained by the asymptotic property of the MLE which
requires large sample sizes for MLEs to perform well. MCACE model makes inference by
analyzing six outcomes at one time, which makes use of more information from a larger
number of observations. Thus the coverage rates from MCACE are closer to the nominal
95% rate and perform well for the number of subjects as small as 100.

Statistical power

We also compare the statistical power of the MCACE model with that of multiple UCACE
models. Power is the probability of rejecting the null hypothesis when the null hypothesis
is false. When conducting power analysis for MCACE model, we consider the global null
hypothesis as H0 : βc11k = 0 for all k, and calculate the proportion of times of rejecting the
null hypothesis among 500 simulated data sets. The likelihood ratio statistic is

λ = −2(lreduced|π̂r
− lfull|π̂f

),

where l is the log-likelihood, π̂r and π̂f are the MLEs of model parameters obtained from the
reduced model and the full model, respectively. The full model consists of all parameters and
reduced model sets βc11k = 0 for all k. Under H0, the test statistic λ follows asymptotically
a chi-square distribution with a degree of freedom K. Because UCACE model analyzes each
endpoint separately, UCACE analysis does not offer a single global test for H0 : βc11k = 0
for all k, as MCACE analysis does. Thus, when conducting the power analysis of multiple
UCACE models, we analyze and conduct a likelihood-ratio test of zero complier average
causal effects for each endpoint separately with Bonferroni’s adjustment for multiple tests
to control the overall Type-I error rate at 0.05, which means if any of these K hypotheses
is rejected at the significance level 0.05/6 ≈ 0.008, we conclude the CACE is present for at
least one endpoint. Because of high efficiency of MCACE estimation and conservativeness
of Bonferonni’s adjustment, we expect the Bonferroni’s adjustment for multiple testing
employed in UCACE analysis can have substantially inflated Type-II error rates (i.e., low
power), as compared with the global likelihood test available in MCACE analysis.

Figure 2.4 plots the power curves under different sample sizes. To ease the result pre-
sentation, we set the values of βc11k to be the same across k and vary from 0 to 15 when
simulating data. When βc11k’s values are equal to 0, the value of the power function is the
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Type I error rate. We observe that Type I errors for MCACE from the three plots are
around 0.05, which means the global likelihood ratio test provided by MCACE controls
Type I error rate well in our simulation settings. It’s worth noticing that the Type I error
under UCACE models when sample size equals 100 equals 0.06, which is a little higher than
0.05. This is consistent with our earlier results where standard error estimator tends to give
inaccurate estimates under UCACE models when sample size is small. As the sample size
increases, the power reaches 1 for both the MCACE model and multiple UCACE models.
However, the power curves of the MCACE model consistently have a steeper slope than the
corresponding power curves of multiple UCACE models and reach to 1 sooner as the effect
size increases. The increase in study power can be substantial. For example, when βc11k = 5
and n = 100, the power can be increased from 0.46 when using multiple UCACE analysis
to 0.90 when conducting the MCACE analysis. Thus, MCACE model can lead to a 100%
increase in the power to reject the null compared with the separate UCACE analysis.
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Figure 2.4: Power analysis, based on 500 simulated datasets.

Overall, the simulation results demonstrate that MCACE model outperforms multiple
UCACE models in terms of the efficiency of point estimates for CACE, nominal rate and
width of confidence intervals and the power of hypothesis testing.

2.4 Application

2.4.1 Study Description and Preliminary Analysis

In this section, we apply the proposed model to estimate the CACE of Arthritis Health
Journal (AHJ). The study is a randomized controlled trial comparing the AHJ with the
usual care in managing rheumatoid arthritis (RA). AHJ is a patient-centered online tool to
help patients track symptoms, monitor disease activity and develop action plans (Lacaille
et al. 2015). By helping RA patients better monitor their disease activity, this tool aims
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to facilitate the treat to target approach by providing early signs when the disease is not
controlled.

A total of 94 patients were randomly assigned to two groups. Patients in the first group
(n = 45) were provided with online access to AHJ (the intervention) immediately; patients
in the second group (n = 49) received usual care (control) for 6 months at which time point
they were provided with online access to AHJ. We illustrate the proposed methodology us-
ing 6-month data of the study, during which period the second group served as the control
to the intervention. When they began the intervention, participants were provided with
online access to the AHJ and were asked to use it for 6 months. They were evaluated every
three months using a self-administered questionnaire. The baseline questionnaires collected
information about the demographics and disease information. The follow-up questionnaires
evaluated the frequency of using the tool, satisfaction with care, self-management, con-
sumer effectiveness and health status. The study has the following 6 endpoints on which
to evaluate the treatment effects of using AHJ : effective consumer 17 scale, the over-
all score of questions about how patients manage their disease on a 0 to 100 scale with
100 indicating “most confident”; manage symptoms scale, the overall score of questions
about how patients manage their symptoms on a 0 to 10 scale with 10 indicates “totally
confident”; manage disease in general scale, the overall score of questions about how
patients manage their disease in general on 0 to 10 scale with 10 indicates “totally confi-
dent”; communicate with physician scale, the overall score of patients’ confidence in
communicating with their rheumatologists on a 0 to 10 scale with 10 indicates “totally con-
fident”; partners in health scale, the overall score of patients’ knowledge of disease and
treatment on a 0 to 80 scale with 80 indicates “poor self-management”; satisfaction with
various aspects of medical care, the overall score of their satisfaction with the content
and format of the tool on a 0 to 10 scale with 10 indicates “completely satisfied”. Because
these six endpoints are of different scales, we rescaled them all on the 0 to 100 scale. For the
fifth endpoint, a higher value represents a worse outcome. We thus redefine the endpoint
as 100 minus the original value so that a higher value represents a better outcome for all
endpoints.

Figure 2.5 plots the means and standard errors of means for six endpoints by treatment
arm and visit. We observe that the AHJ intervention group (green lines) had comparable
baseline values for all endpoints as the control group (red lines) and that the AHJ group
appeared to have higher average values than the control group consistently for all endpoints
at the two post-intervention visits. However, the standard error bars are wide. Analyzing
these endpoints separately showed none of the group differences at the sixth month was
statistically significant (full results are available in Table 2.4 in Supplemental Information
(Lacaille et al. 2015)). This suggests examining multiple endpoints simultaneously in order
to pool similar treatment effects across endpoints to increase study power. Furthermore,
many in the intervention group rarely used the AHJ for a variety of reasons. Consequently,
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the program effectiveness estimated by the ITT analysis can be substantially smaller than
the treatment efficacy, the latter of which is often of more interest to patients and caregivers.
Figure 2.5 also plots the raw statistics for the compliers in the treatment group. These
compliers consist of patients who used the AHJ at least one time per month on average
within six months after randomized to the intervention group. We observe that the upward
trends in endpoint measurements for compliers in the treatment group (blue lines) appear to
be larger than those for the overall treatment group, especially for the fourth, fifth and sixth
endpoints. Overall, the moderate sample size, low compliance rate and moderate beneficial
treatment effect sizes across multiple endpoints motivated us to perform a multivariate
longitudinal analysis of treatment efficacy. Such analysis aims to maximize the power to
detect the overall treatment efficacy by pooling CACE estimation across all endpoints over
longitudinal measurement occasions.
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Figure 2.5: Means and standard errors for means in the treatment group, control group and
the compliers in the treatment group for each of the six endpoints.

Our CACE analysis also considers the following baseline covariates: Disease Duration:
an indicator variable for early disease (having RA for no more than two years); Disease
Activity: an indicator variable for high disease activity (high RAPID4 values) with the
reference level including remission and moderate/low RAPID4 values; Gender: an indicator
variable for male; Age: an indicator variable for older than the median age (54.5). These
baseline variables are well balanced between the intervention and control groups (Table
2.1). In contrast, the compliers in the intervention group had longer RA duration, higher
disease activity, and were younger and all-female (Table 2.1). Table 2.1 also reports the
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missing data patterns. There were a moderate number of dropouts and a small amount of
intermittent missingness in both treatment arms. Our CACE analysis employs the likelihood
approach, which has the benefit of yielding valid inference under the more general missing
data mechanism (missing at random) than missing completely at random. Interestingly,
there were no dropouts or intermittent missingness for the compliers, another indication of
inherent differences between the subgroup of compliers and the overall study population.
Thus the conventional AT analysis that directly compares the compliers in the treatment
group with those untreated will be confounded by these inherent differences and be biased
for treatment efficacy. The CACE analysis overcomes this limitation of the AT analysis.

2.4.2 MCACE Analysis

We analyzed the AHJ data using the method proposed in Section 2.2. Figure 2.5 suggests the
possibility of quadratic time trends for the study endpoints for the compliers in treatment,
which motivated us to start with a quadratic time trend in the submodel (Eqns 2.5 and
2.6) for our MCACE analysis. This submodel corresponds to a saturated time effect model
for three visits. For the submodel of compliance status (Eqn 2.9), disease duration, disease
activity, gender and age were included in W to estimate the probability of being a complier.
Using likelihood ratio tests and AIC statistics, we conducted model selection to select a
parsimonious and reasonable model (see Table 2.7 in Supplemental Information (section
2.6)) and chose MCACE.M7 as our best model for MCACE analysis. The estimation results
from the model MCACE.M7 are presented in Table 2.8 in Supplemental Information (section
2.6). In model MCACE.M7, the fixed effects parameters on quadratic trends for compliers
(βc20k and βc21k) and never takers (βn20k) were all no different from zero and were thus
dropped while keeping the random effects of quadratic trends for both two compliance
strata (σ2

vc2 ̸= 0 and σ2
vn2 ̸= 0 ). Besides, based on the likelihood ratio test, the set of βc01k

parameters were no different from zero, which is expected in an RCT.
As a comparison, we also conducted the UCACE analysis by performing CACE esti-

mation for the endpoints one by one. The model specification for each endpoint was the
same as that in the model MCACE.M7, but unlike MCACE, the UCACE analysis ignored
the correlations among endpoints. Thus, the UCACE analysis did not borrow information
across multiple endpoints as MCACE did, when attempting to identify compliers from the
never-takers in the control group which consists of a mixture distribution of these two
subgroups of patients. Consequently, we expect a reduced power to detect the presence of
treatment efficacy for UCACE as compared with MCACE. The estimates of the 6-month
treatment efficacy (2β̂c11k) from both UCACE and MCACE analysis are reported in Table
2.2, where βc11k represents average treatment difference at the 3rd month in the kth out-
come for compliers in treatment group. We observe the treatment efficacy estimates from
the MCACE model are different from those from multiple UCACE models. The UCACE
analysis shows that half of the estimates point to a harmful treatment effect in UCACE
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models, although none of them is statistically significant. However, in the MCACE model,
all estimates except the one for the 3rd endpoint point to beneficial treatment effects. This
observation that MCACE model and UCACE models give different directions of treatment
effects is possible because of the large variability of these estimates. Consistent with the
results from simulation studies, the standard errors from MCACE analysis are smaller than
those from UCACE analysis except for the first two endpoints. As noted in the simulation
study, the standard error estimator via the Fisher information gives inaccurate estimates
in UCACE when sample size is as small as 100. Therefore, it is likely that the true stan-
dard deviations from the MCACE analysis are all no greater than those from the UCACE
analysis for all endpoints.
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Table 2.2 also reports estimation results from ITT analysis and AT analysis. Both ITT
and AT analyses employ hierarchical random-effects models with fixed-effects linear time
trends for all longitudinal endpoints that pool information across endpoints. However, un-
like the MCACE model, they do not model the partially observed compliance behavior.
Instead, they compare the outcome trajectories between either the treatment assigned for
ITT analysis or treatment received in AT analysis (section 2.6.2 in Supplemental Informa-
tion (section 2.6)). Thus ITT and AT analyses generally do not yield consistent estimates for
treatment efficacy as MCACE and UCACE do. Table 2.2 shows appreciable differences be-
tween estimates from MCACE and ITT, especially for endpoints 4 and 6 while AT estimates
are relatively closer to those from MCACE.

We next move to the hypothesis testing of treatment effects on the six endpoints in
the AHJ study. A hypothesis-testing strategy to control an inflated Type I error rate in
RCTs with multiple endpoints is to first conduct a global test of no treatment effects for
all endpoints and proceed to examine the individual endpoint if the global test rejects the
null hypothesis of no treatment effects for all endpoints. For this purpose, we conduct mul-
tivariate Wald global tests of treatment differences for MCACE, ITT and AT. The UCACE
analysis does not provide such a global test since it analyzes each endpoint separately. The
null hypothesis for the global test in MCACE analysis is that population mean differences
between treatment received among compliers are zeros for all six endpoints simultaneously
(i.e., βc11k = 0 for k = 1, · · · , 6) whereas the global null hypothesis for ITT and AT is the
population mean differences between treatment assigned for ITT and treatment received
for AT are zeros for all endpoints (i.e., β11k = 0 for k = 1, · · · , 6), respectively. The last
row in Table 2.2 reports the p-values from the global test for MCACE, ITT and AT. Both
MCACE and AT analysis rejected the global null hypothesis (p-value < 0.05) while ITT
failed to reject the global null hypothesis.

Given that MCACE rejected the global null hypothesis, we conclude that there were non-
zero CACEs for at least one endpoint and move to examine which endpoints have non-zero
CACEs. We apply a Wald test for each endpoint separately with Bonferroni correction that
sets the threshold value for statistical significance at 0.05/6=0.0083 for each test. We observe
that MCACE analysis found statistically significant beneficial CACEs of using AHJ on the
fourth endpoint (communication with a physician) and the sixth endpoint (satisfaction with
medical care). In comparison, UCACE analysis failed to detect a treatment effect for any
endpoint with a threshold value of 0.0083. We attribute the lack of power to detect treatment
effects in UCACE to its loss of estimation efficiency because of its ignoring correlations
among endpoints. Although AT analysis also rejects the global null hypothesis and finds
statistical significance for endpoint 6 at the level of 0.0083, we note that its test result
and the AT estimates for individual endpoints are confounded by subjects’ nonrandom
compliance behavior and thus are generally biased for treatment efficacy.
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We now turn to the estimation results of the compliance model. In the compliance model
(Eqn 2.9), W includes disease duration, disease activity, gender and age at baseline with
corresponding regression coefficients reported as α1 to α4 in Table 2.8 in Supplemental
Information (section 2.6). All these baseline variables are binary variables. The intercept
estimate α̂0 = −0.970 indicates that a female patient under 54.5 years old with more than
two years’ disease and low disease activity had a probability of 0.27 to be a complier. Recall
that there is no male in compliers in the treatment group (Table 2.1). Thus we expect a
large coefficient estimate for gender: indeed α̂3 = −16.744 in Table 2.8 in Supplemental In-
formation (section 2.6). In this case, the coefficients of other baseline variables represent the
independent effects of these variables on the probability of being a complier in females only.
For example, α̂2 = 1.053 (p-value=0.140) implies that a female patient with high disease ac-
tivity is more likely to be a complier than a female patient with low disease activity, holding
other predictors constant. Overall these coefficient estimates seem to suggest that, within
female participants, patients who are younger with longer disease duration and high disease
activity were more likely to be a complier. Although only the coefficient estimate for disease
activity approaches statistical significance, such analysis could be useful for understanding
the characteristics of compliers and for predicting the compliance of participants.

Based on the compliance model, we calculate the probability of being compliers for
participants in the control group. Table 2.3 reports the average probability of being com-
pliers for participants in the control group from MCACE and UCACE models. UCACE
analysis yields six different fitted compliance models and the average probability of being
compliers in the control group ranges from 0.29 to 0.36. However, MCACE model is able
to pool the information across all endpoints to provide one fitted compliance model. The
improved accuracy in identifying compliers helps MCACE achieve higher accuracy in CACE
estimation.

Table 2.3: Average probability of being a complier for control group
Treatment group Control group

Proportion of Aver.prob. from UCACE Aver.prob. from MCACE
compliers 1 2 3 4 5 6

0.333 0.329 0.336 0.289 0.357 0.352 0.360 0.311

2.4.3 Alternative Analysis

One issue different from the CACE analysis of multiple endpoints (our primary focus here)
is the definition of compliers, which may not be clear-cut in all RCTs with treatment non-
compliance. In the AHJ study, the expected benefit of AHJ is mainly the increased patient
general self-awareness. Use of the AHJ tool is expected to lead to patients’ increased realiza-
tion of uncontrolled symptoms, increased understanding of the patterns in how their disease
worked or the connection between symptoms (e.g., pain) and day-to-day life events (e.g.,
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sleep and medications), as well as more efficient and effective rheumatology consultation
during visits to doctors. Regular use of the AHJ is needed to achieve the anticipated ben-
efits of the tool, and it is believed that this requires a minimum of monthly usage of AHJ.
Hence the analysis so far defines the compliers as those who would use the AHJ at least
once per month on average during the study period if assigned to the treatment group. The
definition implies never-takers in intervention group includes patients who used the AHJ
too rarely (less than once per month on average) to experience treatment effect. Although
the implication seems to be reasonable, the difference between never-takers in treatment
group and never-takers in control group reduces the plausibility of the exclusion restriction
assumption.

One approach to increasing the plausibility of exclusion restriction is to relax the defi-
nition of compliers. We conduct the following analyses using two alternative definitions of
compliers. The first alternative definition (A1) defines compliers as patients who would use
the AHJ at least once within six months if assigned to treatment group. With this defi-
nition, never-takers in both groups did not use the AHJ and the assumption of exclusion
restriction is more plausible. The tradeoff is to mis-classify those patients who used AHJ
rarely as compliers and consequently dilute the CACEs. The second alternative (A2) defines
compliers as patients who would use the AHJ at least three times in the 6-month period
after being assigned to treatment group. The estimation results using the two alternative
definitions of compliers are reported in Table 2.9 in Supplemental Information (section 2.6).
The last row in Table 2.9 in Supplemental Information (section 2.6) reports the p-values
from the multivariate Wald global tests of overall treatment differences across all six end-
points from MCACE analysis. The p-values for the global tests are 0.119 using definition
A1, 0.010 using definition A2 and 0.008 as reported in Table 2.2 using the original definition
of compliers. The finding is consistent with the expectation that the CACEs could be di-
luted by the less strict definition of compliers, albeit with increased plausibility of exclusion
restriction. However, regardless of the definition used to classify compliers, we find that the
p-values for the global test from MCACE analysis are all smaller than the overall p-value
of 0.294 from the ITT analysis reported in Table 2.2.

2.5 Discussion

CACE is considered as more relevant for patient-oriented treatment effects of interest for
RCTs under noncompliance. We propose a multivariate longitudinal potential outcome
model with principal strata for latent compliance types to make inferences for CACE in
longitudinal studies with multiple endpoints and treatment noncompliance. The method
combines all data from correlated endpoints and over all longitudinal visits, and can sub-
stantially improve the estimation efficiency in RCTs with low compliance rate and moderate
effect sizes on correlated endpoints. Simulation studies show significantly higher estimation
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efficiency for MCACE as compared with the UCACE analysis, including up to 50% smaller
standard errors of CACE estimates. In the power analysis, we evaluate a single overall test of
the null hypothesis of no treatment effect under the MCACE model, which produces a 1-fold
increase in the power of rejecting the null hypothesis compared with the UCACE analysis.
These results demonstrate the potential of the proposed MCACE method to improve the
efficiency and accuracy of evaluating comparative effectiveness and to reduce financial and
time costs of conducting patient-oriented research.

We apply the proposed MCACE model, multiple UCACE models, multivariate ITT and
AT models to the study of Arthritis Health Journal. Examining the overall p-value in Table
2.2, both MCACE analysis and AT analysis show the presence of a significant overall treat-
ment effect while ITT analysis does not. However, AT analysis violates the randomization
assumption and its p-value is not reliable. Besides, under Bonferroni correction, none of the
p-values for the CACE estimates of individual endpoints from the UCACE analysis exhibits
statistically significant treatment effects, whereas the MCACE finds significant CACEs for
two out of six endpoints. These findings demonstrate the impact that the efficient MCACE
procedure can make in real-world RCTs.

In our level-1 model, we assume diagonal matrices for Vc and Vn, the variance-covariance
matrix for the residuals given the random effects and compliance type, which means the
correlations among six outcomes and all time points are attributed to random effects and
compliance types. This assumption could be relaxed by specifying a structure for Φm (e.g.,
compound symmetric or auto-regressive). Our MCACE assumes the potential outcomes
given the compliance type follow multivariate normal distributions. The parametric dis-
tributional assumption permits efficient estimation of CACE estimates at the expense of
potential model misspecifications. Future work can relax this assumption. One approach is
to consider more flexible distributions, such as the multivariate t-distribution.

The assumption of exclusion restriction is often invoked to sharpen the CACE estima-
tion. The definition of compliers may not be clear in all RCTs with treatment noncompliance
and may involve a trade-off between the plausibility of exclusion restriction and the accu-
racy in classifying compliers. Instead of considering all-or-none compliance, extending the
proposed methodology to continuously-measured partial compliance could be considered,
which avoids the need to define a dichotomized compliance measure. A major challenge in
the partial compliance approach is to find reasonable assumptions for model identification
(Baker et al. 2016). Besides, with multiple endpoints, the exclusion restriction assumption
may be more plausible for some of these endpoints than the remaining ones. Although it is
not the focus of this chapter, the proposed method can be extended to relax the assumption
of exclusion restriction for all endpoints.
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2.6 Supplemental Information

2.6.1 Simulation Setting

True values for the parameters of compliers and never-takers are set as below:

βc00 = (βc001, . . . , βc006)T = (67, 56, 64, 66, −30, 54)T ,

βc10 = (βc101, · · · , βc106)T = (1, 1, 3, −1, 3, 3)T ,

βn00 = (βn001, . . . , βn006)T = (78, 63, 70, 88, −20, 82)T ,

βn10 = (βn101, · · · , βn106)T = (0.2, 0.4, 0.8, −1.4, −0.4, −0.9)T ,

ψc = (σ2
vc0 , σ2

c1, · · · , σ2
c6)T = (e5.5, e4, e5, e5, e6, e5, e5)T ,

ψn = (σ2
vn0 , σvn0vn1 , σ2

vn1 , σ2
n1, · · · , σ2

n6)T = (124, 8, 8, 12, e4, e5, e5, e4, e4, e4).

We assigned half individuals to the treatment group and the other half to the control
group. The assignments of individuals were recorded in the vector Aobs where Aobs,i = 1
when ith participant was assigned to the treatment group and Aobs,i = 0 when ith subject
was assigned to the control group. We used Dobs to record the actual receipt of treatment
and set Dobs,i = 0 when Aobs,i = 0. Dobs,i ∼ Bin(1, pc) when Aobs,i = 1.

Based on the three combinations of (Aobs,i, Dobs,i), we could divide the population into
three groups : S(1, 1), S(1, 0), S(0, 0). Then the response yi was generated as below,

1. if i ∈ S(1, 1), then generated yi from normal distribution with mean µci and variance
Σci. Given the true value for parameters, µci and Σci could be calculated based on
Eqn 2.4.

2. if i ∈ S(1, 0), then generated yi from normal distribution with mean µni and variance
Σni. µni and Σni could be calculated based on Eqn 2.4.

3. if i ∈ S(0, 0), we generated ui from Bernoulli distribution, ui ∼ Bin(1, pc). If ui ≤ pc,
then generated yi from normal distribution with mean µci and variance Σci. Other-
wise, generated yi from normal distribution with mean µni and variance Σni.

In this simulation, we recorded time T as 0, 1, 2 and the dataset was formed as {(Aobs, Dobs,T ,yi)}.

2.6.2 Intention-to-treat Analysis & As-treated Analysis

When conducting the ITT analysis, we consider level-1 model as

Yijk = g(tij ; bik) + ϵijk.

For exposition simplicity, we set g(tij ; bik) as a linear function and g(tij ; bik) = b0ik +b1iktij .
Let ϵi = (ϵi0T , ϵi1

T , · · · , ϵiJ
T )T , ϵij = (ϵij1, ϵij2, · · · , ϵijK)T . We assume ϵij

iid∼ N (0, Φ) in
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level 1 model, where Φ = diag(σ2
1, · · · , σ2

K). And the level-2 models are considered as

b0ik = β00k + β01kAobs,i + v0i,

b1ik = β10k + β11kAobs,i + v1i,

where vi =
(

v0i

v1i

)
iid∼ N (0, Σv) , Σv =

[
σ2

v0 σv0v1

σv0v1 σ2
v1

]
.

And we assume ϵi and vi are independent of each other. In this model, β00k represents
the average baseline measurement in the kth outcome for individuals in control group. β10k

implies the average improvement in the kth outcome for individuals in the control group.
β01k expresses the average baseline difference in the kth outcome for individuals in the
treatment group. β11k expresses the average improvement difference in the kth outcome for
individuals in the treatment group. The random effects v0i indicate individual deviation
from average intercept and v1i represents individual deviation from average improvement.
Among these parameters, β11k is of our primary interest, which is the intention to treat
effect.

The level-1 model and level-2 models can be combined as

Yijk = β00k + β10ktij + β01kAobs,i + β11kAobs,itij + v0i + v1itij + ϵijk.

It’s easy to derive the matrix form of the model for kth outcome of individual i as below,


Yi0k

Yi1k

...
YiJk

 = X⋆
i ∗


β00k

β10k

β01k

β11k

+ Z1 ∗
(

v0i

v1i

)
+


ϵi0k

ϵi1k

...
ϵiJk

 ,

where

X⋆
i =


1 0 Aobs,i 0
1 1 Aobs,i Aobs,i

...
...

...
...

1 J Aobs,i J ∗ Aobs,i

 , Z1 =


1 0
1 1
...

...
1 J

 .

By using X⋆
i and Z1 to denote the design matrix of fixed effects and random effects

respectively, we could rewrite the model as

Yi = (X⋆
i ⊗ IK)β +

(
Z1

(
v0i

v1i

))
⊗ 1K + ϵi,
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where β = (β001, · · · , β00K , β101, · · · , β10K , β011, · · · , β01K , β111, · · · , β11K)T , Yi = (Yi01, · · · , Yi0K ,

Yi11, · · · , Yi1K , · · · , YiJ1, · · · , YiJK)T , ϵi = (ϵi0T , · · · , ϵiJ
T )T .

Therefore, the marginal distribution for Yi can be expressed as

f(yi|Aobs,T ;β,ψ) ∼ MV N(µi, Σ),

where µi = (X⋆
i ⊗IK)β, Σi = Σ = (Z1ΣvZT

1 )⊗(1K1T
K)+V,V = var(ϵi) = diag(Φ0, Φ1, · · · , ΦJ),

and Φ0 = Φ1 = · · · = ΦJ = Φ = diag(σ2
1, · · · , σ2

K).
In this model, we denote ψ = (σ2

v0 , σv0v1 , σ2
v1 , σ2

1, · · · , σ2
K)T . It’s easy to know that the

likelihood function is

L(β,ψ;yobs|Aobs,T ) =
N∏

i=1
(2π)− (J+1)K

2 |Σ|−
1
2 exp

(
−1

2(yi − µi)TΣ−1(yi − µi)
)

.

Unlike ITT analysis, AT analysis compares the outcome based on the actual receipt
of treatment ignoring the initial assignment of the treatment. Therefore, when conducting
as-treated analysis, we only need to replace Aobs,i with Dobs,i in level-2 models and all other
steps remain the same.

2.6.3 Tables

Table 2.4: A preliminary ITT analysis for each endpoint separately
Endpoint est se p-value

1∗ 1.949 1.921 0.312
2† 2.305 3.099 0.459
3∗ -1.511 2.590 0.560
4∗ 6.479 3.335 0.054
5∗ -0.434 2.614 0.868
6∗ 4.268 3.388 0.210

∗ The results are based on linear mixed-effects models with linear time trends and random
intercepts. Based on the likelihood ratio test, there is no group difference at baseline.
† The results for the second endpoint are based on a mixed-effects regression model with
linear time trend, random intercept and trend. Based on the likelihood ratio test, there is
no group difference at baseline.
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Table 2.5: Estimation of CACE parameters with simulated data from Multivariate CACE
model and univariate CACE models, based on 500 repetitions

Sample Size (n) βc111 βc112 βc113 βc114 βc115 βc116

True value : βc11k ≡ 0
100 sm† 0.096(0.135)∗ -0.003(-0.144) -0.107(0.520) -0.028(-0.004) -0.010(0.268) -0.132(-0.144)

sse‡ 1.599(3.074) 2.339(4.688) 2.337(4.960) 3.508(4.694) 2.218(3.800) 2.160(3.188)
sm‡

se 1.525(2.629) 2.210(4.129) 2.208(4.092) 3.444(4.510) 2.211(3.588) 2.218(3.197)

200 sm 0.099(0.066) 0.038(0.021) -0.025(0.175) -0.020(0.001) 0.056(0.221) 0.074(0.045)
sse 1.129(2.370) 1.534(3.390) 1.558(3.525) 2.471(3.260) 1.568(2.508) 1.566(2.189)

smse 1.075(1.959) 1.569(3.200) 1.562(3.243) 2.429(3.170) 1.560(2.506) 1.569(2.253)

500 sm 0.035(0.129) -0.017(0.134) -0.014(0.053) -0.123(-0.150) -0.063(0.011) -0.012(-0.067)
sse 0.677(1.353) 1.002(2.211) 1.017(2.292) 1.603(1.952) 0.983(1.615) 1.013(1.411)

smse 0.676(1.276) 0.982(2.108) 0.985(2.145) 1.525(1.978) 0.980(1.578) 0.984(1.410)

True value : βc11k ≡ 1.5
100 sm 1.477(1.536) 1.570(1.741) 1.582(1.506) 1.359(1.503) 1.316(1.277) 1.509(1.634)

sse 1.472(2.898) 2.394(4.904) 2.313(4.661) 3.498(4.659) 2.183(3.766) 2.333(3.397)
smse 1.510(2.584) 2.198(4.085) 2.179(4.051) 3.434(4.476) 2.198(3.529) 2.190(3.186)

200 sm 1.462(1.523) 1.452(1.320) 1.509(1.593) 1.537(1.661) 1.529(1.573) 1.445(1.474)
sse 1.063(2.328) 1.539(3.603) 1.543(3.614) 2.525(3.441) 1.519(2.626) 1.726(2.363)

smse 1.069(1.920) 1.558(3.177) 1.556(3.198) 2.419(3.154) 1.553(2.502) 1.559(2.245)

500 sm 1.515(1.453) 1.480(1.379) 1.524(1.575) 1.513(1.484) 1.480(1.537) 1.573(1.557)
sse 0.693(1.400) 0.953(2.191) 0.959(2.344) 1.616(2.026) 0.971(1.595) 0.975(1.464)

smse 0.678(1.274) 0.984(2.122) 0.985(2.111) 1.534(1.991) 0.986(1.580) 0.986(1.411)

True value : βc11k ≡ 3
100 sm 3.039(3.061) 3.028(2.856) 2.852(3.319) 2.866(3.217) 2.974(3.132) 2.877(2.860)

sse 1.611(3.250) 2.275(4.779) 2.360(4.717) 3.408(4.798) 2.306(4.002) 2.232(3.483)
smse 1.526(2.619) 2.234(4.140) 2.222(4.197) 3.465(4.587) 2.232(3.580) 2.233(3.206)

200 sm 2.878(2.796) 3.108(2.909) 3.001(3.035) 3.049(3.197) 3.023(3.041) 3.056(3.188)
sse 1.131(2.495) 1.588(3.533) 1.515(3.493) 2.454(3.044) 1.616(2.698) 1.599(2.305)

smse 1.065(1.955) 1.555(3.120) 1.561(3.184) 2.403(3.135) 1.550(2.499) 1.558(2.234)

500 sm 2.998(2.986) 2.987(2.992) 2.987(3.056) 3.006(3.011) 2.990(2.903) 2.965(3.006)
sse 0.665(1.365) 1.009(2.161) 1.015(2.485) 1.574(1.968) 0.985(1.556) 0.992(1.441)

smse 0.676(1.272) 0.981(2.103) 0.982(2.143) 1.526(1.980) 0.981(1.571) 0.982(1.407)

∗ Values in brackets are from multiple univariate models
†sm : sample mean of estimates
‡sse : sample standard deviation of estimates
‡smse : sample mean of standard error estimates by the Fisher information
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Table 2.8: Estimation results from the selected MCACE model (MCACE.M7), which
dropped βn20k, βc20k,βc01k, βc21k from Eqn 2.6

parameter estimates standard error p-value test p-value parameter estimates standard error p-value
Outcome model
βc001 72.175 3.237 < .0001 βn001 78.133 1.761 < .0001
βc002 60.424 3.682 < .0001 βn002 63.090 2.308 < .0001
βc003 69.013 3.740 < .0001 βn003 70.390 1.962 < .0001
βc004 70.305 4.317 < .0001 βn004 87.842 1.805 < .0001
βc005 74.379 3.837 < .0001 βn005 79.268 1.809 < .0001
βc006 58.256 4.058 < .0001 βn006 82.036 1.881 < .0001
βc101 0.433 0.914 0.635 βn101 0.696 0.832 0.403
βc102 0.472 1.996 0.813 βn102 0.610 1.495 0.683
βc103 2.334 1.979 0.238 βn103 1.575 1.100 0.152
βc104 -2.992 2.908 0.303 βn104 -0.700 0.927 0.450
βc105 2.668 1.999 0.182 βn105 0.334 0.854 0.696
βc106 1.852 2.519 0.462 βn106 -0.430 0.992 0.665
βc111 0.162 1.138 0.887
βc112 0.853 2.190 0.697
βc113 -2.002 2.190 0.360 βc11k ≡ 0 0.008
βc114 8.877 3.164 0.005
βc115 0.917 2.188 0.675
βc116 7.823 2.728 0.004
σ2

vc0 341.694 97.758 σ2
vn0 139.366 27.324

σvc0vc1 -171.396 72.372 σvn0vn1 19.144 28.298
σvc0vc2 80.965 34.253 σvn0vn2 -10.082 12.462
σ2

vc1 185.752 73.594 σ2
vn1 157.379 48.094

σvc1vc2 -89.273 35.055 σvn1vn2 -61.735 20.373
σ2

vc2 42.915 16.956 σ2
vn2 25.718 8.955

σ2
c1 21.716 7.001 σ2

n1 48.846 7.020
σ2

c2 140.149 25.671 σ2
n2 219.260 25.840

σ2
c3 139.854 24.370 σ2

n3 106.465 13.253
σ2

c4 311.166 49.846 σ2
n4 66.773 8.822

σ2
c5 140.818 23.675 σ2

n5 51.095 7.267
σ2

c6 233.662 37.813 σ2
n6 80.106 10.439

Compliance model∗
α∗

0 -0.970 0.714 0.175
α∗

1 -1.907 1.118 0.088
α∗

2 1.053 0.714 0.140
α∗

3 -16.744 2190.414 0.994
α∗

4 -0.670 0.509 0.188
−logL(59 parameter) 5848.05

∗ These α parameters in the compliance model correspond to intercept, coefficients for disease duration, disease activity, gender and age.
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Chapter 3

A Latent-factor MCACE Model for
Multidimensional Outcomes and
Treatment Noncompliance

3.1 Introduction

Randomized controlled trials (RCTs) are the preferred study design to assess intervention
effects for healthcare policy decision makings. In many real-world RCTs, however, indi-
viduals randomized to an intervention group often do not comply with the assigned treat-
ment. This is especially the case while evaluating complex interventions such as behavioural
interventions. With treatment noncompliance, standard intention-to-treat (ITT) analysis
typically provides conservative estimates of intervention efficacy (Sheiner & Rubin 1995).
To overcome the limitation of ITT analysis, the complier average causal effect (CACE),
the principal causal effect (PCE) within the stratum of compliers, has been developed to
estimate the intervention efficacy for the subpopulation who would comply regardless of
assigned treatment (Baker & Lindeman 1994, Imbens & Angrist 1994, Imbens & Rubin
1997). CACE has been considered as patient-oriented intervention effects of interest under
treatment noncompliance (Steele et al. 2015).

Furthermore, real-world RCTs evaluating multifaceted interventions often employ multi-
ple study outcomes (also known as endpoints) to measure a limited set of underlying latent
constructs, such as psychological traits, mental health status, quality of life, self-efficacy,
knowledge, and attitudes. Multifaceted interventions contain multiple components designed
to impact a set of underlying constructs (e.g., self-efficacy in disease management and ef-
fectiveness in shared decision-making), each of which is measured by a number of study
outcomes. Frequently, these multiple study outcomes are collected longitudinally on study
participants, yielding multidimensional longitudinal outcomes. Evaluating CACEs for each
outcome separately can suffer from the problems of multiple testing, a significant loss of
statistical power, lacking of the ability to directly answer main scientific questions of treat-
ment efficacy on the underlying constructs, and the difficulty in interpreting potentially
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conflicting results among individual outcomes. To overcome these limitations, this chapter
develops a latent factor model for parsimonious CACE estimation of intervention effects in
RCTs with multidimensional longitudinal outcomes and treatment noncompliance.

The application motivating this work is the Arthritis Health Journal (AHJ) study, an
RCT comparing the AHJ (intervention group) with the usual care (control group) in man-
aging rheumatoid arthritis (RA) (Lacaille et al. 2015, Guo et al. 2022). As there has been
no cure for RA, to achieve optimal health outcomes, people with RA need to engage in ef-
ficient self-management and effective collaboration with their healthcare providers (Barlow
et al. 2002, Tam et al. 2019). AHJ is a patient-centered online tool designed to improve
self-efficacy in disease management and shared decision-making for RA patients. By help-
ing RA patients better monitor their disease activity and collaborate with their healthcare
providers, this tool aims to facilitate the treat-to-target approach by providing early signs
when the disease is not controlled. In the RCT, RA patients randomized to the AHJ were
provided with online access to the AHJ after randomization and were asked to use it for 6
months, while those randomized to the control group did not have access to the AHJ during
the 6-month period.

The primary objective of this study is to evaluate the treatment efficacy of the AHJ
tool on underlying constructs (e.g., patients’ self-efficacy in disease management and the
effectiveness in shared decision-making). To effectively capture these complex underlying
constructs, the AHJ study employed a total of six study endpoints (effective consumer 17
scale, manage symptom scale, manage disease in general scale, partners in health scale,
communicate with physician scale, and satisfaction with medical care) measured using self-
reported questionnaires administered at baseline, 3 months and 6 months after baseline.
Besides study endpoints, the baseline questionnaires collected demographic and disease in-
formation, and the follow-up questionnaires administered at 3 and 6 months also evaluated
the frequency of using the AHJ online tool. Like many other real-world RCTs, treatment
noncompliance occurred in the AHJ study, and a significant number of study participants
randomized to the AHJ did not use, or used it rarely, during the study period. A sec-
ondary objective of this study is to investigate predictors of compliance behaviour of study
participants.

In the presence of such treatment noncompliance, the traditional ITT analysis or the as-
treated analysis can yield biased estimates of the intervention effects of interest. To achieve
our primary objective, an attractive alternative is evaluating the effect of an intervention
on the outcomes, adjusting properly for the treatment noncompliance using the principal
stratification (PS) approach. In the context of treatment noncompliance, proper analysis
adjusts for the principal strata corresponding to compliance types formed by the joint po-
tential compliance behaviours under both control and intervention. As such defined, the
values of principal strata are unaffected by the treatment assignment and behave like a
baseline categorical variable. Thus, one can define the causal effects within each subpopula-
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tion determined by the compliance types. An intervention effect estimand of great interest
is the CACE, the intervention effects in the subpopulation of compliers who would comply
regardless of treatment assigned (Baker & Lindeman 1994, Imbens & Rubin 1997).

Estimating CACEs for AHJ requires handling multidimensional longitudinal outcomes,
which raises several statistical issues. One issue is the multiple endpoints. These endpoints
measure different aspects about a small set of underlying constructs. Estimating CACE de-
mands proper statistical methods that can jointly consider all the endpoints and properly
combine information from these correlated multiple endpoints for efficient and interpretable
treatment effect estimation. Furthermore, statistical methods permitting parsimonious test-
ing of CACEs and mitigating the multiple testing issues in the presence of multiple endpoints
are desired. Finally, these methods must account for the longitudinal correlations among
repeated measures and cross-sectional correlations among multiple endpoints.

One approach is to estimate CACE for each endpoint separately. This approach is
straightforward to apply. However, without considering the correlations across multiple
outcomes, the method is inefficient and can significantly reduce the study power to de-
tect intervention effects. Besides the multiple testing issues associated with analyzing these
endpoints individually, the results can be difficult to interpret because of lacking direct con-
nection with the underlying constructs of main interest and potentially conflicting results
among individual endpoints. To improve the efficiency of CACE estimation in the pres-
ence of treatment noncompliance, most works focus on modelling two outcomes jointly in a
cross-sectional setting. Jo & Muthén (2001) employed a secondary outcome to increase the
precision of identifying compliance class and the power to detect intervention effects on the
primary outcome. Mattei et al. (2013) proposed a Bayesian approach to exploit bivariate
outcomes to sharpen inferences for weakly identified models within principal strata in the
cross-sectional setting. Mealli & Pacini (2013) showed a secondary outcome helps tighten
the nonparametric bounds of CACE. An exception is Guo et al. (2022) who considered
the CACE estimation for multidimensional longitudinal outcomes in RCTs with treatment
noncompliance and showed that jointly modeling of multiple study endpoints significantly
improves the precision of estimating CACE and the power to detect CACE for individual
endpoints. However, none of these methods is designed to exploit the underlying constructs
targeted in RCTs of multifaceted interventions, including the AHJ study. Therefore, these
methods can suffer from multiple testing issues in the presence of multiple endpoints and
may yield less interpretable results.

In this chapter, we introduce a latent-factor multivariate CACE (MCACE) model that
exploits underlying constructs for parsimonious CACE estimation in RCTs with multidi-
mensional longitudinal outcomes and treatment noncompliance. Within each (potentially
unobserved) compliance type, a latent-factor hierarchical regression model is used to con-
nect longitudinally measured multiple endpoints with latent factors representing underlying
constructs. Then, separate linear mixed-effects models are used to model these latent fac-
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tors and the principal causal effects on the latent factors. Compared with analyzing the
causal effects of multiple endpoints individually, latent factors can capture the correlations
across multiple outcomes. Inference based on latent factors makes more efficient use of in-
formation from all sources than making inference using data on each individual endpoint
separately. Thus, efficiency and power will be increased by introducing latent factors. As
compared with alternative joint CACE estimation approaches (Jo & Muthén 2001, Mattei
et al. 2013, Mealli & Pacini 2013, Guo et al. 2022), our proposed approach exploits un-
derlying constructs, thereby increasing the interpretability of results and reducing multiple
testing issues with multiple endpoints. Unlike data reduction techniques using pre-specified
functions of individual endpoints (e.g., sum or weighted average) or variable reduction meth-
ods such as principal components analysis, our approach derives the underlying constructs
and factor loading using all data on multidimensional outcomes at all time points, yielding
results that can be more interpretable and efficient.

We apply the proposed approach to evaluate the treatment efficacy of the AHJ online
tool. Model comparison selects two underlying constructs (patients’ self-efficacy and inter-
actions with their caregivers), permitting parsimonious and more powerful tests of CACEs
on the low-dimensional latent constructs as compared with the CACE analysis on the six
outcomes separately. In particular, using the proposed model, we can detect significant
and beneficial CACEs of AHJ, adjusting for multiple testing issues, on both latent con-
structs that are scientifically relevant. The findings differ importantly from those using the
alternative joint CACE modeling approach that jointly models all six study endpoints di-
rectly without considering the underlying constructs. Specifically, in the joint CACE model
proposed in Guo et al. (2022), after rejecting the null hypothesis of no CACE for all six
endpoints using a global test, one has to examine CACEs for the six endpoints separately
to determine the location (which endpoint?) and direction (beneficial or harmful?) of in-
tervention effects. Statistically significant CACEs were found in only two out of six study
endpoints after multiple testing adjustments, leading to less efficient and less clear inter-
pretation of the RCT data compared with using the method proposed in this chapter.

We describe the methodology in Section 3.2. Section 3.3 describes the simulation studies,
which demonstrate the performance and advantages of the proposed model. We then apply
the method to the AHJ data in Section 3.4. Finally, a discussion is given in Section 3.5.

3.2 Methodology

3.2.1 Notation and Assumptions

Let Ai indicate the ith subject’s group assignment, i = 1, · · · , N . Participants are randomly
assigned to the intervention group (Ai = 1) or the control group (Ai = 0). Let Di(Ai)
indicate the receipt of the treatment if the ith individual was assigned to group Ai. In the
AHJ study, we define Di(Ai = 1) = 1 when subject i would use the tool at least one time
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per month on average within six months after being assigned to the intervention group, and
define Di(Ai = 1) = 0 if otherwise (Guo et al. 2022). Let A and D denote N-dimensional
vectors of Ai and Di, respectively. Two types of potential outcomes can be defined. Di(A) is
the potential treatment received by subject i when subjects are randomized to A. Assuming
K endpoints were observed over time for each individual in the study, Yijk(A,D) is the
potential outcome for the kth endpoint collected at the jth time point for individual i under
treatment assignment A and treatment receipt D, where j = 0, 1, · · · , J and k = 1, · · · , K.
In the AHJ study, j = {0, 1, 2} for the baseline, third month and sixth month, respectively,
and K = 6 for the six endpoints collected every three month for each participant. Let
Yi(A,D) denote the vector of K ∗ (J +1) potential outcomes for subject i under treatment
assignment A and treatment receipt D.

Table 3.1 summarizes the key assumptions made for the identification of the latent-factor
MCACE model in the study. Below we first discuss Assumptions 1 to 4 with the remaining
ones to be described later in the development of the latent-factor MCACE model.

Assumption 1. Stable Unit Treatment Value Assumption (SUTVA, Rubin 1978, 1980,
1990).

The SUTVA assumption assumes no interference and no multiple versions of treatment.
The former one implies the potential outcomes of an individual are not influenced by possible
treatment assignments of others. The latter one assumes each individual receives exactly the
same version of the treatment. The SUTVA assumption helps define the unit-level causal
effect and allows us to simplify Yi(A,D) and Di(A) as Yi(Ai, Di) and Di(Ai). SUTVA is
satisfied in the AHJ study because participants get access to exactly the same AHJ tool
independently.

Assumption 2. Random assignment.

This assumption implies the assignment Ai is independent of potential outcomes Yi(Ai, Di)
and Di(Ai) given all observed baseline variables. The randomization assumption is satisfied
in RCTs because RCTs randomly assign participants to the intervention and control groups.

Assumption 3. Patients in the control group do not have access to the treatment.

In the AHJ study, participants assigned to the control group had no access to the AHJ
online tool during the first six-month period, and Assumption 3 is satisfied. Since Di(Ai) is a
binary variable, the combination of potential outcomes (Di(1), Di(0)) defines four possible
compliance patterns: compliers (1, 0), never-takers (0, 0), always-takers (1, 1) and defiers
(0, 1). Under Assumption 3, Di(0) = 0 for all individuals which ruled out defiers and always-
takers. Compliers (1, 0) and never-takers (0, 0) can be distinguished in the treatment group
because Di(1) is observable in the treatment arm. However, compliers and never-takers can
not be distinguished in the control group since Di(1) is not observable for the individuals
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assigned to the control group. Let Ci be the compliance type of the participant i, Ci ∈ {c, n}
where c denotes compliers and n denotes never-takers. Ci is observable in the treatment
group and unknown in the control group.

In other RCTs where controls can take the treatment, Assumption 3 does not hold,
and the monotonicity assumption is often invoked to rule out certain compliance types. For
example, Hirano et al. (2000) employs the monotonicity assumption (Di(1) ≥ Di(0)) to rule
out defiers for model identification and makes inference based on the population consisting
of compliers, never-takers and always-takers. Our proposed method is general and can be
extended to these situations when Assumption 3 is relaxed.

Assumption 4. Exclusion restriction (Imbens & Angrist 1994, Baker & Lindeman 1994).

Assumption 4 implies Y (A,D) = Y (A′
, D) ∀A,A

′ and ∀D, which implies Y (A,D) =
Y (D). This means that there is no difference in potential outcomes between treatment and
control groups for never-takers.

Table 3.1: Assumptions for the identification of latent-factor MCACE model
Assumptions Statements

1: Stable Unit Treatment
Value Assumption

No interference and no multiple versions of
treatment.

2: Random assignment Assignments are independent of potential out-
comes given all observed baseline variables.

3: No access to the treatment
in the control group

Rule out defiers and always-takers.

4: Exclusion restriction Y (A,D) = Y (D)

5: Conditional independence Potential outcomes are conditionally indepen-
dent given latent factors Ua

mij .

6: Stability of factor loading
matrix Λ

Λ is constant over time and across different com-
pliance patterns.

7: Rotation restriction Restrictions are imposed on matrix Λ to fix
its rotation under both confirmatory and ex-
ploratory analyses.

8: Scale restriction xaqij and zqij do not include intercepts and
ϵa
qmij ∼ N(0, 1).

44



3.2.2 Models

In this section, we propose a latent factor model with principal strata for partially observed
compliance types under the potential outcome framework. In the AHJ study, follow-up
questionnaires employ multiple endpoints to measure the underlying constructs (factors):
patients’ self-efficacy and satisfaction with health professional care and communication.
These latent factors are of primary interest in the study, but cannot be directly observed.
Instead, multiple endpoints are used to measure these latent factors, which capture the
interdependence of those multiple endpoints. Thus, it is of scientific interest to directly
estimate the causal effect of the intervention on the latent factors.

To achieve the above goal, we introduce the latent factor Ua
i when modeling the joint

distribution of potential treatment received (Di(0), Di(1)) and potential outcomes of multi-
ple endpoints (Y 0

i ,Y 1
i ), where Y a

i denotes the potential outcome Y i(Di(Ai = a)), a = 0, 1.
Specifically, we model (Y 0

i ,Y 1
i ) | Ci,U

a
i in which the compliance type Ci has one-to-one

correspondence to (Di(0), Di(1)), and the latent factor Ua
i captures the interdependence

of multiple endpoints induced by sharing a common set of latent factors in Ua
i within the

compliance type Ci. We then model the conditional distribution Ua
i | Ci, which captures

the CACEs on the latent factors in Ua
i . Finally, the compliance behavior Ci is modelled by

using a logistic regression model. The diagram in Figure 3.1 outlines the model structure
with modeling details described below.

Model for Y a
i | Ci,U

a
i

Let Y a
ij = (Y a

ij1, · · · , Y a
ijK)T . The level-1 part of our multi-level model specifies the

relationship between Y a
ij and the latent factors Ua

mij given the compliance type Ci = m as

Y a
ij

∣∣∣ (Ci = m,Ua
mij , b

a
mi) = λm0 + ΛUa

mij + bami + eamij , (3.1)

where m ∈ {c, n} denotes the unique value of compliance type; Ua
mij = (Ua

1mij , · · · , Ua
Qmij)T

are Q (Q ≪ K) latent factors for subject i at time j with group assignment a and compliance
type m; Λ is a K by Q matrix of regression coefficients with λkq at the kth row and qth

column, which does not change over time and across different compliance patterns; λm0 =
(λm01, · · · , λm0K)T is the average baseline measurements for subjects in control group under
the compliance type m; bami = (ba

mi1, · · · , ba
miK)T with ba

mik representing the kth outcome’s
random intercept. In the above level-1 model, the latent factorsUa

mij = (Ua
1mij , · · · , Ua

Qmij)T

capture the variability and interdependence among the K responses at each time point j.
For the kth endpoint, ba

mik captures the correlation across longitudinal measurements of
ya

ijk over time. We assume ba
mik follows a normal distribution with mean 0 and variance

ξmk and ba
mik ⊥⊥ ba

mih, k ̸= h. Finally, the error term eamij = (ea
mij1, · · · , ea

mijK)T with
ea

mijk distributed independently as N(0, τ2
mk), ea

mijk ⊥⊥ ea
mijh for k ̸= h. We further assume

e0
mijk ⊥⊥ e1

mijk, b0
mik ⊥⊥ b1

mik and ea
mijk ⊥⊥ ba

mik.
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Figure 3.1: Illustration of the structure of the latent-factor MCACE model with principal
strata for latent compliance types.

The level-1 model makes the following key assumptions for model identification. First,
the potential outcomes are conditionally independent given the latent factors Ua

mij (As-
sumption 5 in Table 3.1), which means ba

mik (k = 1, · · · , K) are independent. At time j, the
cross-sectional correlation among the potential outcomes ya

ijk (k = 1, · · · , K) is induced by
the common latent factors Ua

mij . Second, the correlation between the potential outcomes
and latent factors, Λ, remains the same over time and across different compliance patterns
(Assumption 6 in Table 3.1), which is required for the sake of identifiability. For any or-
thogonal matrix T that satisfies TT

′ = T
′
T = I, ΛUa

mij = ΛTT
′
Ua
mij = Λ∗Ua∗

mij where
Λ∗ = ΛT and Ua∗

mij = T
′
Ua
mij . Since there are infinite possible orthogonal matrices, Λ can

be rotated to Λ∗ in infinite ways. Therefore, we need to enforce some restrictions to fix the
rotation of matrix Λ (Assumption 7 in Table 3.1). In confirmatory analysis, the structure
of matrix Λ is specified based on the scientific relationships between potential outcomes
and latent factors, which imposes sufficient constraints to fix the rotation of the matrix
Λ. In exploratory analysis, we do not make any assumptions about the latent structure of
potential outcomes except that we set λkq = 0, q > k (An et al. 2013).

Model for Ua
i | Ci.
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In the level-2 model, we assume a linear mixed-effects model to study the longitudinal
latent factors Ua

qmij , q = 1, · · · , Q, for individuals with compliance type m,

Ua
qmij

∣∣∣ (Ci = m,vaqmi) = xaqijβqm + zqijvaqmi + ϵa
qmij , (3.2)

where xaqij and zqij are vectors of covariates for fixed effects and random effects for the
qth latent factor respectively. The vector of covariates (xaqij) could include time trends, the
receipt of the treatment, baseline characteristics (demographic information, disease severity,
etc), while zqij is a subset of xaqij . βqm and vaqmi are vectors of fixed-effect parameters and
random-effect parameters for the qth latent factor, respectively. Within the latent princi-
pal stratum (Ci = m), the treatment received is either deterministic (for never-takers) or
randomized (for compliers) (Imbens & Rubin 2015). This means the treatment receipt is
uncorrelated with the error term ϵa

qmij in Equation 3.2, permitting CACE estimation us-
ing standard regression methods if Ci is fully observed. The challenge is that the principal
stratum is unobserved for individuals randomized to the control group. Therefore, although
compliers are observed in the treatment group (Di(Ai = 1) = 1), these compliers alone do
not permit CACE estimation. Furthermore, comparing compliers and noncompliers in the
treatment group typically yields biased treatment effect estimation since they come from
different principal strata and so are not comparable because of the self-selection nature of
compliance.

In the level-2 model, the random effects vaqmi are used to model the correlation of
repeated measurements of the qth latent factor Ua

qmij . We assume vaqmi ∼ N(0, Σqv) and
vaqmi ⊥⊥ vahmi, q ̸= h. Furthermore, ϵ1

qmij ⊥⊥ ϵ0
qmij , v1

qmi ⊥⊥ v0
qmi and ϵa

qmij ⊥⊥ vaqmi. To
ensure the model identifiability, we make the following assumptions (Assumption 8 in Table
3.1). Since the level-1 part of our multi-level model already includes intercepts (λm0 =
(λm01, · · · , λm0K)T ) and individual-specific random intercepts (bami = (ba

mi1, · · · , ba
miK)T ),

xaqij and zqij do not include intercepts so that the model can be identified. Furthermore,
we also assume ϵa

qmij ∼ N(0, 1) which fixes the scale of the latent factor Ua
qmij for the sake

of identifiability.
We are interested in the principal causal effects (PCEs) on the latent factors Ua

qmij(q =
1, · · · , Q) because these latent factors correspond to the underlying constructs. The PCE
on the qth latent factor Ua

qmij within the compliance pattern m is defined as

E(U1
qmij |Ci = m) − E(U0

qmij |Ci = m) = x1
qijβqm − x0

qijβqm (3.3)

In Eqn 3.3, the terms including random effects vaqmi and error term ϵa
qmij disappear because

the expectations of these terms equal 0 as explained above. To study the causal effect
of assignment Ai on latent factors among compliers, the PCE is obtained by comparing
the expectation of qth latent factor U1

qcij for compliers in the treatment group with the
expectation of qth latent factor U0

qcij for compliers in the control group.
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Here we note that treatment assignment Ai does not influence potential outcomes Yi(D)
directly under Assumption 4. Since the latent factor Ua

i captures the characteristics of
potential outcomes Yi(D), treatment assignment Ai does not influence latent factor Ua

i

directly either.
Using the matrix notation, models (3.1) and (3.2) can be succinctly written as

Y a
i

∣∣∣ (Ci = m,Ua
mi) = λm0 ⊗ 1J+1 + (Λ ⊗ IJ+1)Ua

mi + bami ⊗ 1J+1 + eami,

Ua
mi = Xi,aβm + Ziv

a
mi + ϵami (3.4)

where Y a
i = {Y a

ijk : j = 0, · · · , J ; k = 1, · · · , K}, eami = {ea
mijk : j = 0, · · · , J ; k =

1, · · · , K}, Ua
mi = {Ua

qmij : q = 1, · · · , Q; j = 0, · · · , J}, βm = {βqmpr : p = 0, · · · , P ; r =
0, · · · , R}, where P and R depend on the forms of model (3.2). vami = (va1mi

T , · · · ,vaQmi
T )T .

Xi,a and Zi are design matrices for fixed effects and random effects in the model for Ua
mi.

ϵami = {ϵa
qmij : q = 1, · · · , Q; j = 0, · · · , J}.

After combining the above level-1 model and level-2 model, an overall model for the
potential outcomes for individual i with compliance type m can be obtained as

Y a
i

∣∣∣ (Ci = m,vami, b
a
mi) = λm0 ⊗ 1J+1 + (Λ ⊗ IJ+1)(Xi,aβm)

+ (Λ ⊗ IJ+1)(Ziv
a
mi + ϵami) + bami ⊗ 1J+1 + eami

By combining random effects and error terms in both the level-1 model and level-2 model,
the marginal distribution for {Y a

i

∣∣∣Ci = m} can be obtained as

Yi
a
∣∣∣Ci = m,Xi ∼ MV Nβm,λm0,λ,σv ,ψm(µami, Σmi) (3.5)

where µami = λm0 ⊗ 1J+1 + (Λ ⊗ IJ+1)(Xi,aβm), Σmi = (Λ ⊗ IJ+1)ZiΣv[(Λ ⊗ IJ+1)Zi]T +
(Λ ⊗ IJ+1)(Λ ⊗ IJ+1)T + diag(ξm1, · · · , ξmK) ⊗ (1J+11T

J+1) + diag(τ2
m1, · · · , τ2

mK) ⊗ IJ+1.
Σv is the variance-covariance matrix of random effects vami and σv is the collection of
unique parameters in Σv. λ is the collection of all the elements in matrix Λ. ψm =
(ξm1, · · · , ξmK , τ2

m1, · · · , τ2
mK)T .

Here we assume potential outcomes Y 1
ij and Y 0

ij are independent given compliance type,
covariates and parameters. Because we never observe both Y 1

ij and Y 0
ij at the same time,

the likelihood function of the observed data does not depend on the correlation between
potential outcomes. Thus, the correlation between potential outcomes is unimportant under
the likelihood-based approach (see Page 181 in Chapter 8 of Imbens & Rubin 2015, Hirano
et al. 2000).

Model for compliance type Ci.
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For the probability of being a complier, we use a logistic regression model

pci = Pr(Ci = c
∣∣∣ Wi = wi,η) = exp(wi

′
η)

1 + exp(wi′η) , (3.6)

where Wi is the collection of baseline covariates for individual i and η is the collection of
coefficients for corresponding covariates.

3.2.3 Inference

Based on Aobs and Dobs, there are three possible observed patterns of (ai, di): (1, 1), (1, 0),
(0, 0). Let S(1, 1), S(1, 0) and S(0, 0) denote the subsets of units exhibiting each pattern sep-
arately. This implies S(1, 1) and S(1, 0) include the compliers and never-takers, respectively,
in the treatment group and S(0, 0) represents a mixture of compliers and never-takers in the
control group. Let π = (βc,βn,λ,λc0,λn0,σv,ψc,ψn,η), the likelihood function based on
observed data for all participants in the study is

L(π;Yobs,Dobs,Aobs
∣∣∣ X)

=
∏

i

∫∫∫∫
f(y1

i ,y0
i

∣∣∣U1
mi,U

0
mi, Di(1), Di(0),Xi;λ,λc0,λn0,ψc,ψn)

f(U1
mi,U

0
mi

∣∣∣Di(1), Di(0),Xi;βc,βn,σv)f(Di(1), Di(0)
∣∣∣Wi;η)d U1

mid U
0
mid Y

mis
i d Dmis

i

=
∏

i

∫∫
f(y1

i ,y0
i

∣∣∣Di(1), Di(0),Xi;βc,βn,λ,λc0,λn0,σv,ψc,ψn)

f(Di(1), Di(0)
∣∣∣Wi;η)d Y mis

i d Dmis
i

= L11 × L10 × L00
(3.7)

where

L11 =
∏

{i∈S(1,1)}
pci

1

(2π)
J(K+1)

2 |Σci|
1
2

exp
{

−1
2
(
yobs,i − µ1

ci

)T
Σ−1

ci

(
yobs,i − µ1

ci

)}

L10 =
∏

{i∈S(1,0)}
(1 − pci)

1

(2π)
J(K+1)

2 |Σni|
1
2

exp
{

−1
2
(
yobs,i − µ1

ni

)T
Σ−1

ni

(
yobs,i − µ1

ni

)}

L00 =
∏

{i∈S(0,0)}

[
pci

1

(2π)
J(K+1)

2 |Σci|
1
2

exp
{

−1
2
(
yobs,i − µ0

ci

)T
Σ−1

ci

(
yobs,i − µ0

ci

)}

+ (1 − pci)
1

(2π)
J(K+1)

2 |Σni|
1
2

exp
{

−1
2
(
yobs,i − µ0

ni

)T
Σ−1

ni

(
yobs,i − µ0

ni

)}]
,

µami and Σmi are defined as shown in Eqn 3.5. By combing the level-1 model and level-2
model, we obtain the above closed-form simplified marginal likelihood that integrates out the
latent factors Ua

mi. That is, in the likelihood function (Eqn 3.7), the second equality holds
by applying the conclusion shown in Eqn 3.5. The observed data log-likelihood function can
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be maximized using the Quasi-Newton algorithm implemented in the R function optim(),
which yields the maximum likelihood estimates (MLEs) of model parameters. The variance
of the estimates can be obtained via the inverse Hessian matrix of the log-likelihood function
evaluated at the MLEs.

3.3 Simulation Study

In this section, we conduct simulation studies to examine the performance of the model
proposed in Section 3.2. When generating the simulated dataset, we consider the following
level-1 model with two (Q = 2) latent factors (Ua

1mij and Ua
2mij):

ya
ijk

∣∣∣ (Ci = m, Ua
1mij , Ua

2mij , ba
mik) = λm0k + λk1Ua

1mij + λk2Ua
2mij + ba

mik + ea
mijk, (3.8)

with the following level-2 model for the qth latent factor Ua
qmij :

Ua
qmij = βqm10tij + βqm20t2

ij + βqm01Di(a) + βqm11Di(a)tij + βqm21Di(a)t2
ij + va

qm1itij + ϵa
qmij

(3.9)
where the index of latent factor q = 1 or 2. For these two latent factors, we assume that
the covariates for fixed effects include the linear time trend (tij), quadratic time trend (t2

ij),
treatment receipt Di(a), and the interactions between the receipt of treatment and these
time trends (Di(a)tij and Di(a)t2

ij). Specifically, the term βqm01Di(a) captures the mean
baseline differences in the qth latent factor within compliance type m between the treatment
group and the control group. For a randomized controlled trial, the baseline difference within
compliance type m between treatment group and control group is expected to be negligible
for two factors. Therefore, we set βqm01 = 0 for q = 1 or 2 in the simulation studies. To
simplify the simulation setting and for the comparison convenience, we did not incorporate
additional baseline covariates in the level-2 model. The covariates for random effects va

qm1i

contain linear trend only. For the sake of identification, the intercept and random intercept
are removed as these parameters already appear in the level-1 model (Assumption 8 in Table
3.1). When generating the compliance status Ci in Eqn 3.6, we do not include covariates
and set pci = pc = 0.3. True values of other parameters for fixed effects, random effects and
the error terms are listed in section 3.6.1 in Supplemental Information.

In the simulation study, six outcomes were simulated at three time points for each
individual based on the model in Eqns 3.8 and 3.9. For the factor loading matrix Λ, we set
the first, second, third and fifth outcomes to load on the first factor and the remaining two
outcomes to load on the second factor in the process of generating the data. This means
the fourth element and the sixth element of the first column and the first three elements
and the fifth element of the second column of the factor loading matrix (Λ) are fixed at 0
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as shown below:

Λ =



λ11 0
λ21 0
λ31 0
0 λ42

λ51 0
0 λ62


. (3.10)

Under the setting, we conducted two simulation studies to examine the identification of
the proposed model. In the first simulation study, we focus on confirmatory analysis, which
means the structure of the factor loading matrix Λ is known before conducting the data
analysis. This occurs when researchers have the knowledge of which outcomes load on a
specific factor, although the factor loading values are unknown and need to be estimated.

In the second simulation study, we focus on exploratory analysis. Under exploratory
analysis, we assume no prior knowledge of which outcomes load on each factor. To fix the
rotation of the matrix Λ, we imposed the restriction of λkq = 0, q > k as noted above. That
is, the exploratory factor analysis fixes λ12 to be 0 as shown in Eqn 3.11.

Λ =



λ11 0
λ21 λ22

λ31 λ32

λ41 λ42

λ51 λ52

λ61 λ62


. (3.11)

When estimating the parameters in the factor loading matrix Λ in Eqns 3.10 and 3.11,
one element in each column should be restricted to being positive so that parameters can
be completely identifiable. Here we assume λ11 and λ62 are positive. Otherwise, considering
−Λ and −Ua

mij gives the same value of the likelihood function.
Based on Eqn 3.9, the principal causal effects (PCEs) on latent factors Ua

qmij (q = 1, 2)
within compliance pattern Ci = c are

E(U1
qcij |Ci = c) − E(U0

qcij |Ci = c) = βqc01 + βqc11tij + βqc21t2
ij

Because βqc01 = 0 for q = 1, 2 in the simulation setting, βqc11 and βqc21 jointly capture the
PCEs. Thus, we evaluate the performance of the proposed procedure for estimating βqc11 and
βqc21. In addition, we evaluate the estimation accuracy of the elements in the factor loading
matrix (i.e., λk1, λk2). Table 3.2 and Table 3.3 report the results related to parameters
βqc11 and βqc21 for the confirmatory analysis and exploratory analysis, respectively. In both
tables, results are obtained based on 500 repetitions when sample size equals 500. We observe
sample means of parameter estimates are close to their corresponding true values. Sample
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means of standard error estimates obtained by using the Fisher information are close to
their corresponding sample standard deviations of estimates. This means model parameters
can be recovered very well under both confirmatory analysis and exploratory analysis.

Table 3.2: Estimation accuracy under confirmatory analysis based on 500 repetitions when
sample size equals 500

Parameter True value Sample mean sse† (sm‡
se)

Treatment effect
β1c11 0.5 0.506 0.482 (0.480)
β1c21 -1 -1.009 0.224 (0.214)
β2c11 -1 -0.996 0.810 (0.765)
β2c21 1 1.016 0.388 (0.363)

Factor loading matrix Λ
λ11 7 6.956 0.270 (0.269)
λ21 3 2.988 0.135 (0.134)
λ31 8 7.963 0.301 (0.302)
λ41 0 - -
λ51 8 7.954 0.294 (0.293)
λ61 0 - -
λ12 0 - -
λ22 0 - -
λ32 0 - -
λ42 6 5.926 0.531 (0.533)
λ52 0 - -
λ62 5 4.930 0.423 (0.423)

†sse: sample standard deviation of estimates
‡smse: sample mean of standard error estimates obtained
based on the Fisher information

Table 3.2 and Table 3.3 also show the estimation results for the 2-factor loading matrix.
For both confirmatory and exploratory analysis, the sample means of the estimates for the
entries in the loading matrix are close to their corresponding true values and sample means
of their standard error estimates obtained by using the Fisher information approximate
their corresponding sample standard deviations of estimates. In exploratory analysis, since
we impose less restriction on Λ and only restrict λkq = 0 when q > k to fix the rotation of
the factor loading matrix Λ, the matrix Λ produced based on this restriction may be hard to
interpret. In this case, factor rotation techniques are often used to improve interpretability of
the factor loading matrix. There are two types of rotation: orthogonal rotation and oblique
rotation (Everitt & Hothorn 2011). Orthogonal rotation creates uncorrelated rotated factors,
while oblique rotation allows correlated factors. For orthogonal rotation, varimax rotation
is commonly used. For oblique rotation, oblimin and promax rotation are commonly used.
Usually, we wish to find a rotation matrix which ensures each endpoint has a high loading on
only one latent factor. These rotation techniques can be applied to achieve a simple structure
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Table 3.3: Estimation accuracy under exploratory analysis based on 500 repetitions when
sample size equals 500

Parameter True value Sample mean sse† (sm‡
se)

Treatment effect
β1c11 0.5 0.505 0.481 (0.481)
β1c21 -1 -1.008 0.224 (0.215)
β2c11 -1 -0.997 0.808 (0.766)
β2c21 1 1.017 0.388 (0.367)

Factor loading matrix Λ
λ11 7 6.959 0.270 (0.258)
λ21 3 2.988 0.135 (0.133)
λ31 8 7.963 0.303 (0.290)
λ41 0 -0.003 0.293 (0.294)
λ51 8 7.954 0.293 (0.285)
λ61 0 0.006 0.259 (0.264)
λ12 0 - -
λ22 0 0.002 0.108 (0.103)
λ32 0 -0.004 0.152 (0.160)
λ42 6 5.923 0.533 (0.506)
λ52 0 -0.010 0.141 (0.149)
λ62 5 4.927 0.423 (0.414)

†sse: sample standard deviation of estimates
‡smse: sample mean of standard error estimates obtained
based on the Fisher information.

which allows the rotated matrix to be more interpretable. In our simulation study, we have
applied varimax rotation of the estimated loading matrix in the exploratory analysis.

It’s worth noting the benefits of confirmatory analysis where the structure of factor load-
ing matrix is known. Compared to exploratory analysis (Table 3.3), the means of standard
error estimates (smse) for non-zero components in Λ are noticeably closer to the corre-
sponding sample standard deviations of estimates (sse) under confirmatory analysis (Table
3.2). Specifically, the differences between smse and sse are all around 0.001 in Table 3.2,
while the differences are around 0.01 on average in Table 3.3. Interestingly, the variability
of non-zero components in Λ (sse) are comparable between confirmatory analysis (Table
3.2) and exploratory analysis (Table 3.3). This suggests the restriction of λ12 = 0 imposed
in exploratory analysis is adequate to identify the factor structure.

We further conducted a power analysis to compare the latent-factor multivariate CACE
analysis to univariate CACE analysis in terms of statistical power to detect intervention
effects on multiple study endpoints. Instead of analyzing multiple endpoints jointly as
conducted in latent-factor multivariate CACE analysis, univariate CACE analysis is con-
ducted for each endpoint separately. Thus, univariate CACE analysis ignores the potential
correlation among multiple outcomes collected simultaneously. We describe in detail the
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model specification for the univariate CACE analysis in Supplemental Information (section
3.6). The data is generated as described above except for comparison convenience, we set
βqc21 = 0 for q = 1, 2 (Eqn 3.9). Both the latent-factor multivariate CACE analysis and
the univariate CACE analysis include tij , t2

ij and Di(a)tij as predictors in the model. For
compliers, the coefficient for Di(a)tij is the difference in outcomes between the treatment
group and the control group, which captures the CACE in univariate CACE analysis. In the
latent-factor MCACE analysis, one single global likelihood ratio test is conducted. The null
hypothesis for the global test is βqc11 = 0 for q = 1, 2, which means there are no treatment
effects for both latent factors among compliers. For univariate CACE analysis, the null
hypothesis is that the coefficient of the predictor Di(a)tij equals 0 for a specific outcome,
which implies no treatment effect is detected for this outcome. Therefore, in univariate
CACE analysis, six likelihood ratio tests are conducted for each outcome because these out-
comes are analyzed separately. Because power is defined as the probability of rejecting the
null hypothesis when the null hypothesis is false, we calculate the proportion of rejecting
the null hypothesis over 500 simulated datasets. The significance level for the single global
test of the null hypothesis of no intervention effects on both latent factors is set as 0.05 for
latent-factor multivariate CACE analysis. For univariate CACE analysis, the significance
level for each individual test is adjusted as 0.05/K, where K = 6 because there are 6 tests.
This adjustment is based on the Bonferroni correction so that the overall familywise Type
I error rate can be well controlled at the 0.05 level with multiple testing. When calculating
the power for univariate analysis, we reject the null hypothesis if treatment effect is detected
for at least one outcome at the significance level 0.05/6.

Figure 3.2 shows power curves for the latent-factor multivariate CACE model and uni-
variate CACE analysis when sample size equals 500. To ease the result presentation, we
set the values of βqc11 across q to be the same and the common value varies from 0 to 5.
When βqc11 = 0 for any q, the probability of rejecting the null hypotheses is the Type I
error rate. We observe the Type I error rates are around 0.05 for both the latent-factor mul-
tivariate CACE model and the univariate CACE model (Figure 3.2), which means Type I
error rates are controlled well under both models. As the value of βqc11 increases, we observe
that the power for the latent-factor multivariate CACE model (the solid line in Figure 3.2)
approaches 1 much faster than that for the univariate CACE model (the dashed line in
Figure 3.2). The power gain by the latent-factor multivariate CACE model relative to the
univariate CACE model can be substantial. For instance, the power increases from 0.25 un-
der the univariate CACE analysis to 0.97 under the latent-factor multivariate CACE model
when βqc11 = 1. Therefore, multivariate CACE analysis based on the latent-factor MCACE
model outperforms univariate CACE analysis in terms of statistical power for hypothesis
testing. This difference is due to correlations across multiple endpoints being ignored by
univariate CACE analysis, while the latent-factor multivariate CACE analysis captures the
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correlations across endpoints by latent factors. Therefore, under the latent-factor MCACE
model, more information is used when making inference, which increases the study power.
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Figure 3.2: Power analysis, based on 500 simulated datasets.

3.4 Application

We applied the proposed model to the Arthritis Health Journal (AHJ) study. AHJ is a
patient-centered online tool for rheumatoid arthritis (RA) patients to better manage their
disease by actively monitoring their symptoms and tracking disease activity. A total of 94
participants were recruited and randomly assigned to the treatment group (n=45) and the
control group (n=49). Patients in the treatment group received access to the AHJ tool
immediately, while patients in the control group had to wait for six months before getting
access to the AHJ tool. The primary analysis of the study focused on the data from the
first six months. Some participants randomized to the treatment group may not use the
tool or use it rarely which leads to noncompliance behavior. The discussions with doctors
and patients suggest that using the tool once per month is necessary to produce effects.
Therefore, compliers are defined as patients who would use the tool at least one time per
month on average if assigned to the treatment group (Guo et al. 2022).

Participants are evaluated by online questionnaires every 3 months (baseline, the third
month, the sixth month). Baseline questionnaires collected information about demographics
(age, gender, education) and disease information. Follow-up questionnaires evaluated the
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frequency of using the tool, consumer effectiveness attributes, self-efficacy and satisfaction
with care. In this study, six endpoints are collected to evaluate the treatment efficacy of AHJ
tool on underlying constructs (e.g., self-efficacy and satisfaction with care): 1. effective
consumer 17 scale, the average score of 17 items about how participants manage their
disease on a 0 to 100 scale with 100 indicating “most confident”; 2. manage symptoms
scale, the average score of 5 items about how patients manage their symptoms on a 0 to
10 scale with 10 indicating “totally confident”; 3. manage disease in general scale, the
average score of 5 items about how patients manage their disease in general on a 0 to 10 scale
with 10 indicating “totally confident”; 4. communicate with physician scale, the average
score of 3 items about patients’ confidence in communicating with their rheumatologists on
a 0 to 10 scale with 10 indicating “totally confident”; 5. partners in health scale, the
average score of 11 items about patients’ knowledge of disease and treatment on a 0 to 80
scale with 80 indicating “poor self-management”; 6. satisfaction with various aspects of
medical care, the average score of 8 items about their satisfaction with various aspects of
medical care on a 0 to 10 scale with 10 indicating “completely satisfied”. All six endpoints are
the averages of several individual items and as a result take continuous values. Six outcomes
are rescaled to a 0 to 100 scale so that these endpoints have comparable variances. The
direction of the fifth outcome is also adjusted so that a higher value represents a beneficial
result for all these six endpoints. The rescaling of outcomes eases the interpretation of
estimation results but does not influence statistical inference.

Furthermore, although the number of participants is only moderately large (n=94),
six outcomes were collected at three time points for participants in this study. Therefore,
there are eighteen individual-level outcomes in the study. Under the MCACE model, all
these observations (six outcomes across three time points per person) are considered jointly.
Therefore, the total number of observations used to estimate the model is much larger than
the number of study participants.

The interest in this study is to (1) evaluate the effectiveness of the AHJ tool on un-
derlying constructs (e.g., patients’ self-efficacy in disease management and the effectiveness
in shared decision-making); and (2) determine how covariates predict the compliance be-
havior. The characteristics of six endpoints suggest some possible latent structures. First,
because the six endpoints capture different perspectives of the effect of using the tool, it
can be a good starting point to consider one latent factor only. Under this assumption, all
six endpoints load on only one latent factor, which captures the overall treatment effect.
Thus, we can test whether the AHJ helps patients manage their disease or not based on the
common latent factor.

Alternatively, the design of these six endpoints suggests the other more plausible struc-
ture which involves two latent factors. Substantively, in the AHJ study, effective consumer
17 scale (the 1st endpoint), manage symptoms scale (the 2nd endpoint), manage disease
in general scale (the 3rd endpoint), and partners in health scale (the 5th endpoint) were
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3. Manage disease in general scale 5. Partners in health scale

1. Effective consumer 17 scale 2. Manage symptoms scale
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Figure 3.3: Plot 3.3.a shows outcome means of the compliers in the treatment group for
the 1st, 2nd, 3rd and 5th endpoints; plot 3.3.b shows outcome means for the 4th and 6th
endpoints.

used to measure self-efficacy. Interaction with health care providers was measured by the
communicate with physician scale (the 4th endpoint) and satisfaction with various aspects
of medical care (the 6th endpoint). The two-group structure of these endpoints based on
their substantive meanings is consistent with the trends shown in Figure 3.3, which justifies
a model with two latent constructs. Figure 3.3.a shows the outcome means in the compliers
in the treatment group for the first three endpoints and the fifth endpoint. Figure 3.3.b
shows the outcome means for the fourth and sixth endpoints. We observe that the outcome
trajectories over time for the compliers in the treatment group are similar among endpoints
within each of the two panels (3.3.a and 3.3.b) of Figure 3.3. It’s worth noting that the
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trends for the fourth and sixth endpoints are almost identical in Figure 3.3.b. In Figure
3.3.a, the trends are similar among outcomes except for the second one. However, the sec-
ond outcome is still grouped into the Figure 3.3.a because it is closely related to self-efficacy
conceptually.

Specifically, in a confirmatory factor analysis, the fourth and sixth outcomes can be
grouped together to indicate one latent construct that measures the participants’ knowledge
and the ability to interact with healthcare providers. The remaining endpoints are grouped
to indicate the other latent construct that measures self-efficacy in disease management.
Therefore, the first three endpoints and fifth endpoint load on the first latent factor, while
the fourth and sixth endpoints load on the second latent factor. When considering two
latent factors, the level-1 model is specified as Eqn 3.1 where Q = 2 and K = 6. The level-2
model is specified as Eqn 3.2 where quadratic time trends are included (shown in Eqn 3.12
below). Within the level-2 model, we set the baseline difference between compliers in the
treatment group and compliers in the control group to be null (βqc01 = 0 for q = 1 or 2 in
Eqn 3.12) since this is a randomized controlled trial. Furthermore, the random effects for
the second latent factor are removed (va

2m1i = 0 and va
2m2i = 0 for m = c or n in Eqn 3.12)

based on the likelihood ratio test (Berkhof & Snijders 2001).

Ua
qmij = βqm10tij+βqm20t2

ij+βqm01Di(a)+βqm11Di(a)tij+βqm21Di(a)t2
ij+va

qm1itij+va
qm2it

2
ij+ϵa

qmij

(3.12)
The compliance model is specified as stated in Eqn 3.6. The compliance model (Eqn 3.6)
includes four binary baseline covariates: Early disease (1 indicates early disease (0-2 years)
and 0 indicates late disease (≥ 2 years)), High disease activity (1 indicates high disease
activity (high RAPID4 values) and 0 indicates low disease activity (remission, moderate/low
RAPID4 values)), Male (1 indicates male and 0 indicates female), Older age (1 indicates
above the median age (54.5) and 0 otherwise).

Additionally, we also conducted a model selection to determine whether it is necessary
to consider a model with three factors or not. Since the outcome trend for the 2nd outcome
(manage symptoms scale) is different from mean trends for other outcomes in Figure 3.3.a,
the 1st, 3rd and 5th outcomes are grouped together to represent the underlying construct,
self-efficacy in disease management; the 2nd outcome is grouped separately to indicate a new
underlying construct representing itself. Similar to the two-group structure, the remaining
outcomes (4th and 6th outcomes) are grouped together to indicate the underlying construct,
interaction with health care providers. Therefore, the first, third, and fifth outcomes load
on the first latent factor, the second outcome loads on the second latent factor and the
remaining outcomes load on the third factor. Table 3.4 lists the maximums of the log-
likelihood functions and the AIC values for models with different number of factors. It
turns out that the model with two latent factors gives the minimum AIC value. Therefore,
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it’s sufficient to incorporate two factors and unnecessary to consider an additional factor in
our model.

Table 3.4: Model selection
Number of factors logL AIC

1 -5915.344 11942.69
2 -5897.497 11918.99
3 -5892.786 11921.57

Table 3.5 presents the estimation results obtained under the model assuming two latent
factors. The potential outcomes are positively correlated with two latent factors based on
the positive estimates of matrix Λ. Because two latent factors are involved, the complier
average causal effect on each latent factor at the sixth month is

E(U1
qmi2|m = c) − E(U0

qmi2|m = c) = βqc11 ∗ 2 + βqc21 ∗ 4 (3.13)

Eqn 3.13 is obtained based on Eqn 3.12 when j = 2 and tij = 2. According to Table
3.5, the CACEs on the first and second latent factors are 1.392 (SE = 0.632) and 1.745
(SE = 0.660), respectively. Corresponding P-values are 0.028 and 0.008, respectively, based
on Wald test. Because the estimates of CACEs for these two latent factors are positive
and P-values are significant, these results suggest the AHJ had beneficial causal effects on
both self-efficacy and interaction with health care among RA patients who comply with the
assigned treatments.

We are also interested in identifying RA patients who are more likely to be a complier.
Table 3.6 reports estimation results of the compliance model under the scenario where two
latent factors are considered. The coefficients for all covariates except high disease activity
are negative. In addition, the coefficients for early disease and high disease activity are
statistically significant. The P-value of the coefficient for older age approaches statistically
significance. Overall, the estimation results suggest that younger female patients with longer
disease duration and high disease activity were more likely to be compliers.

3.5 Discussion

The proposed model introduced latent factors which capture the underlying constructs driv-
ing multiple endpoints measured over time, and yield parsimonious estimation of CACEs on
these latent constructs in the presence of treatment noncompliance. Results from simulation
studies show the model proposed can be identified, and all true values of model parameters
are recovered well. Besides, compared with univariate CACE analysis, the power analysis
shows a substantial gain in the study power under the latent-factor multivariate CACE
model. In the application section, we first conducted a model selection and fixed the num-
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Table 3.5: Estimates and standard errors for causal treatment effects in the AHJ study
Two latent factors

Fixed effects estimation∗

Parameter Estimate SE P-value
β1c11 2.772 1.204 0.021
β1c21 -1.038 0.529 0.050
β2c11 1.900 1.176 0.106
β2c21 -0.514 0.582 0.377
Treatment effect estimation at the sixth month

Estimate SE P-value
CACE†

1 1.392 0.632 0.028
CACE†

2 1.745 0.660 0.008
Estimation of factor loading matrix Λ

Parameter Estimate SE
λ11 7.918 0.683
λ21 2.698 0.557
λ31 9.067 0.674
λ41 - -
λ51 8.553 0.722
λ61 - -
λ12 - -
λ22 - -
λ32 - -
λ42 6.524 1.202
λ52 - -
λ62 6.638 1.236

∗: Fixed effects estimation section only shows parameters
related to treatment effect estimation.
†: CACE1 represents CACE for the first factor, self-efficacy;
CACE2 represents CACE for the second factor, interaction
with health care providers.

ber of factors at 2. Then we employed the confirmatory analysis and the endpoints are
partitioned into two groups based on their characteristics. The first latent factor represents
self-efficacy and the second latent factor measures interaction with healthcare providers.
For both latent factors, we detected beneficial CACEs. Compared with the findings of Guo
et al. (2022), who detected a global CACE over six endpoints, one advantage of the model
proposed here is that we are able to determine the direction of treatment effect (beneficial or
not) on the latent factor. Specifically, the analysis here shows that the CACEs on two latent
factors are beneficial in the application. Furthermore, compared with conducting hypothesis
testing for each endpoint individually, our global testing approach is more efficient by com-
bining information over correlated outcomes corresponding to certain underlying construct
across all time points and avoiding multiple testing issues which occur if treatment effect
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Table 3.6: Estimation results of compliance model
Two latent factors

Covariates Estimate Standard error P-value
Intercept -0.825 0.614 0.179
Early disease -2.389 1.121 0.033
High disease activity 1.420 0.643 0.027
Male -0.888 0.877 0.311
Older age -0.938 0.488 0.054

Note: Early disease = 1 if early disease (0-2 years) and = 0 if late disease (≥ 2 years)), high disease
activity = 1 if high disease activity (high RAPID4 values) and = 0 if low disease activity

(remission, moderate/low RAPID4 values)), Male = 1 if male and = 0 if female, Older age = 1 if
above the median age (54.5) and = 0 if otherwise.

is tested on each endpoint individually. Thus, our analysis is able to directly answer the
main scientific questions addressed by this RCT and yields novel findings not discovered
previously. The compliance behavior also can be predicted based on the logistic regression
model. The analysis shows that younger female patients with longer disease duration and
high disease activity were more likely to be a complier.

There are also some limitations. In the methodology proposed, we only discuss the con-
tinuous responses and assume the responses conditioned on compliance type and covariates
follow the multivariate normal distribution. In the future, other distribution assumptions
can be considered. Additionally, in real-world RCTs, we may encounter categorical or mixed-
type responses. This is beyond the scope of this chapter but future investigation can consider
extending the proposed method to discrete and mixed-type responses.

3.6 Supplemental Information

3.6.1 Simulation Setting

In simulation studies, true values for parameters in Eqns 3.8 and 3.9 are listed as below:
λc0 = (58, 60, 61, 59, 60, 58)T ,
λn0 = (79, 88, 79, 87, 82, 88)T ,

Λ =



7 0
3 0
8 0
0 6
8 0
0 5


,

βc = (β1c10, β1c20, β1c11, β1c21, β2c10, β2c20, β2c11, β2c21)T = (−3, 1, 0.5, −1, 2, −1, −1, 1)T ,
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βn = (β1n10, β1n20, β1n11, β1n21, β2n10, β2n20, β2n11, β2n21)T = (−3, 2, 0, 0, −2, 1, 0, 0)T ,
var(va

1m1i) = exp(1), var(va
2m1i) = exp(1.5),

ψc = (ξc1, · · · , ξc6, τ2
c1, · · · , τ2

c6)T = (exp(3), exp(5), exp(3), exp(4), exp(3), exp(4), exp(4),
exp(4), exp(4), exp(5), exp(4), exp(5))T ,

ψn = (ξn1, · · · , ξn6, τ2
n1, · · · , τ2

n6)T = (exp(3), exp(4), exp(3), exp(4), exp(3.5), exp(3),
exp(5), exp(4), exp(5), exp(4), exp(4), exp(5))T .

Univariate CACE analysis

Under univariate CACE analysis, covariance pattern models with an unstructured variance-
covariance structure are applied on individual outcome. For individual endpoint, the model
for Y a

ij , ith patient’s measurement at time point j within compliance type m when assigned
to group a, is specified as below:

Y a
ij

∣∣(Ci = m) = βm0 + βm1tij + βm2t2
ij + βm3Di(a)tij + ϵa

mij

where m = c or n. Since Di(a) = 0 for never-takers, βn3 ≡ 0. Let ϵami = (ϵa
mi0, ϵa

mi1, · · · , ϵa
miJ)T ,

we assume ϵ1
mi ⊥⊥ ϵ0

mi and ϵami ∼ N(0, Σm) where Σm has an unstructured variance-
covariance structure. Because the variance-covariance matrix in the latent-factor MCACE
model is complicated, here covariance pattern models with an unstructured variance-covariance
matrix are employed to avoid model misspecification when conducting univariate CACE
analysis.

Σm =


σm11 σm12 σm13 · · · σm1J

σm21 σm22 σm23 · · · σm2J

...
...

...
...

...
σmJ1 σmJ2 σmJ3 · · · σmJJ

 (3.14)

In Eqn 3.14, σmjj′ = σmj′ j because variance-covariance matrix is symmetric.
We also use the logistic regression to model compliance patterns as shown in Eqn 3.6.

Similar to multivariate analysis, we did not consider covariates and pci = pc = 0.3.
We assume individuals are followed up at the same fixed time points, which means

tij = tj . The complier average causal effect for individual outcome is

E(Y 1
ij − Y 0

ij |Ci = c) = βc3tj ,

which is captured by the coefficient of Di(a)tij .

3.6.2 Tables

Table 3.7 reports the estimates and standard errors when all outcomes load on the same
latent factor. In this case, we only consider one latent factor (q = Q = 1) in Eqn 3.1 (level-
1 model). Besides, β1c01 in Eqn 3.12 (level-2 model) is also set to be 0 because this is a
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randomized controlled trial. The estimates of parameters in Λ are positive, which implies the
potential outcomes ya

ijk given compliance type m are positively correlated with the latent
factor Ua

1mij . Because we are interested in the overall CACE captured by the latent factor,
the complier average causal effect on the common latent factor at the sixth month is

E(U1
1mi2|m = c) − E(U0

1mi2|m = c) = β1c11 ∗ 2 + β1c21 ∗ 4. (3.15)

The complier average causal effect on the common latent factor is estimated to be 1.447 (SE
= 0.636, p-value = 0.023, Table 3.7). Therefore, the latent-factor MCACE model detects an
overall significant beneficial CACE of using the AHJ based on the common latent factor.

Table 3.8 reports the estimation results of the compliance model when one latent factor is
considered. Similar to the situation where two latent factors are considered, the coefficients
for all covariates except high disease activity are negative. Additionally, the coefficients for
early disease, high disease activity and older age are statistically significant. Finally, we
concluded that the estimation results suggested that younger female patients with longer
disease duration and high disease activity were more likely to be compliers.

Table 3.7: Estimates and standard errors for causal treatment effects in the AHJ study
One latent factor only

Fixed effects estimation∗

Parameter Estimate SE P-value
β1c11 2.818 1.195 0.018
β1c21 -1.047 0.525 0.046
Treatment effect estimation at the sixth month

Estimate SE P-value
CACE†

1 1.447 0.636 0.023
Estimation of factor loading matrix Λ

Parameter Estimate SE
λ11 8.192 0.084
λ21 3.074 0.571
λ31 9.302 0.680
λ41 2.972 0.666
λ51 8.967 0.737
λ61 2.872 0.648

∗: Fixed effects estimation section only shows parameters
related to treatment effect estimation.
†: CACE1 represents overall CACE for six outcomes when
considering one latent factor only.
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Table 3.8: Estimation results of compliance model
One latent factor

Covariates Estimate Standard error P-value
Intercept -0.799 0.614 0.193
Early disease -2.362 1.121 0.035
High disease activity 1.365 0.641 0.033
Male -1.009 0.871 0.246
Older age -0.956 0.484 0.048

Note: Early disease = 1 if early disease (0-2 years) and = 0 if late disease (≥ 2 years)), high disease
activity = 1 if high disease activity (high RAPID4 values) and = 0 if low disease activity

(remission, moderate/low RAPID4 values)), Male = 1 if male and = 0 if female, Older age = 1 if
above the median age (54.5) and = 0 if otherwise.
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Chapter 4

Estimating Causal Effects Under
Partial Compliance and
Multivariate Endpoints

4.1 Introduction

In real-world randomized controlled trials (RCTs), participants who are randomly assigned
to the treatment group may not take the full amount of the assigned treatment. This non-
compliance issue is common and can greatly complicate statistical inference when assessing
the treatment efficacy of new interventions. The intention-to-treat (ITT) approach focuses
on estimating the effect of treatment assignments, which typically provides conservative
estimates of the treatment efficacy (Sheiner & Rubin 1995). An alternative approach, as-
treated (AT) analysis compares the outcomes by treatment actually receipt. AT analysis
violates the randomization assumption and can produce significant biases in estimating
treatment efficacy in RCTs with noncompliance.

To deal with the noncompliance issue, we employed a principal stratification approach
(Frangakis & Rubin 2002) within the potential outcome framework. The principal stratifica-
tion approach works by evaluating the treatment effect within a certain stratum defined on
the combination of potential values of partially observed intermediate outcome variables,
which are usually measured after treatment assignments. Under all-or-none compliance
where patients are assumed to either take the treatment or do not take the treatment, a
bivariate indicator of the treatment receipt is treated as the intermediate variable. The po-
tential values of the treatment receipt in the intervention group and the control group jointly
determine the compliance status of participants. In the case of all-or-none compliance, the
whole population can be classified into four groups: compliers, never-takers, always-takers
and defiers. Compliers comply with their initial assignments. Never-takers never take the
treatment no matter which group they are assigned to. Always-takers always take the treat-
ment and defiers always do the opposite of their initial assignments. The treatment effects
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between compliers in the treatment group and compliers in the control group are known as
complier-average causal effects (CACEs).

However, in many RCTs, patients may take a fraction of the treatment assigned instead
of taking the full amount due to the side effects or inconvenience. This is usually described as
partial compliance. Under partial compliance, a continuous variable measuring the portion
of the treatment taken by a patient is treated as the intermediate variable. Similar to the
all-or-none compliance, this intermediate variable is partially observed and the combination
of potential values of the variable in the treatment and control group jointly determines
the compliance status of certain individual. Then principal causal effects can be evaluated
within certain stratum stratified on subjects’ compliance status.

This chapter is motivated by the Arthritis Health Journal (AHJ) study conducted at
Arthritis Research Canada (PI: Diane Lacaille). The AHJ is a patient-centred online tool
designed to enhance patients’ self-management ability by helping patients monitor disease
status and generate action plans. Participants are assigned to the intervention group and the
usual care group randomly. They are evaluated every three months using a self-administered
questionnaire. We focused on the data collected during the first six months. Since multiple
outcomes are usually employed to evaluate the treatment efficacy of multifaceted interven-
tions (e.g, AHJ tool), the follow-up questionnaires collect six health outcomes to evaluate
the effectiveness of the AHJ tool.

Furthermore, the follow-up questionnaires also include questions about the frequency
of using the tool, which can be used to define the compliance status. Guo et al. (2022)
assumes all-or-none compliance and considers compliers and never-takers only. Always-
takers and defiers are ruled out because patients in the control group do not have access
to the intervention in the AHJ study. Compliers are defined as patients who use the tool
at least once per month on average over six months when assigned to the treatment group.
However, this dichotomization can cause a loss of information when modeling compliance
behaviour. To overcome the limitation, we consider partial compliance in this chapter and
define the compliance status based on the frequency rate. The frequency rate is calculated
as the ratio of the times of using the tool to the number of days of the follow-up period.
In the intervention group, the frequency rate of each participant is observable because
patients have access to the tool. However, the frequency rate is unobservable for individuals
in the control group since we never know how they will behave if they are assigned to the
intervention group. Similar to all-or-none compliance, the frequency rate can be treated
as the baseline characteristic of the participant and is used to form the principal stratum.
Principal causal effects are evaluated within participants in a certain stratum based on the
possible values of the frequency rate.

Much of existing research focuses on all-or-none compliance (Angrist et al. 1996, Imbens
& Rubin 1997, Hirano et al. 2000, Yau & Little 2001, Gao et al. 2014) or categorical multi-
level compliance (e.g., no compliance, partial compliance, and full compliance) (Sanders
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et al. 2021, Shrier et al. 2018). In the RCTs involving partial adherence, continuous partial
compliance is preferred since the discretization to discrete/categorical compliance can cause
a loss of information. Jin & Rubin (2008) considered continuous partial compliance when
analyzing the Lipid Research Clinics Coronary Primary Prevention Trial (LRC-CPPT), a
placebo-controlled randomized controlled trial reported by Efron & Feldman (1991). Within
the principal stratification approach, they proposed an extended partial compliance frame-
work where drug compliance and placebo compliance are treated as continuous and jointly
determine the principal stratum. The Beta distribution is chosen to model placebo compli-
ance and drug compliance given placebo compliance separately. Linear regression models
are employed to link the cross-sectional potential outcomes and drug and placebo compli-
ance. Bartolucci & Grilli (2011) reanalyzed the data in Efron & Feldman (1991). Instead
of specifying the marginal distribution of the continuous partial compliance directly, they
modeled the joint distribution of the drug compliance and placebo compliance through a
Plackett copula. Besides, they generalized the linear regression models for cross-sectional
potential outcomes in Jin & Rubin (2008) by considering interaction terms between drug
compliance and placebo compliance and heteroscedasticity for potential outcomes. Schwartz
et al. (2011) utilized a Dirichlet process mixture (DPM) model to capture the possible com-
plex structure of the joint distribution of drug compliance and placebo compliance. The
DPM model permits a flexible nonparametric way to model the principal strata conditional
on covariates and allows for better interpretation due to the byproduct of clustering. They
also illustrated their approach in the data from Efron & Feldman (1991).

Our work is different from the research presented above in several ways. Firstly, multiple
endpoints are collected at several time points in the AHJ study. To capture the correlations
among multiple endpoints across all time points, a hierarchical random-effects approach
is employed to model the primary potential outcomes given principal strata. Secondly,
although Beta distribution is also considered to model continuously-measured partial com-
pliance which is similar to Jin & Rubin (2008), we utilized the Beta regression model which
allows for covariates so that compliance behavior can be predicted based on the baseline
covariates. Thirdly, we only need to consider the compliance behaviour of using the new
intervention (intervention compliance) in the AHJ study. Therefore, the principal strata are
determined by the potential outcomes of intervention compliance only. We also conducted
a simulation study to validate the performance of the model proposed. After applying the
proposed model to the AHJ data, the findings are consistent with that in Guo et al. (2022)
who analyzed the AHJ data by assuming binary compliance. However, this chapter detected
a much smaller overall p-value when examining if there is an overall treatment effect by
combining information from all outcomes. This is possibly caused by less information being
lost under partial compliance.

This chapter is organized as follows. Section 4.2 introduces the motivating example.
Section 4.3 describes the models for principal strata and primary potential outcomes given
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principal strata. Section 4.4 presents the simulation study to demonstrate the performance
of the model proposed. Then the proposed model is applied to the AHJ data in Section 4.5.
Lastly, a brief discussion is given in Section 4.6.

4.2 Motivating Application

Self-management is crucial for rheumatoid arthritis (RA) patients. RA patients could benefit
substantially by being actively engaged in disease management since closely monitoring
symptoms and treatment use could help them determine their current disease status and
seek medical attention timely. However, it’s not easy to manage disease well for patients
with chronic disease (e.g., rheumatoid arthritis). Unstable symptoms during a long period
make it hard for patients to follow treatment regimes strictly. Therefore, there is a strong
demand to develop a multifaceted tool to enhance RA patients’ self-management ability.

Arthritis Health Journal (AHJ) is a multifaceted tool developed to foster the active
involvement of RA patients in monitoring their disease activity so that early warnings can
be provided when targets are not being achieved. A randomized controlled trial is designed
to evaluate the effectiveness of the behavioral intervention (AHJ). Among 94 participants,
45 patients were randomized to the intervention group where they received the intervention
immediately, whereas 49 patients were asked to wait for six months before being provided
access to the AHJ tool. This chapter focuses on the first 6-month data of the study, which im-
plies the second group received usual care and thus served as the control group. RA patients
enrolled in the study were evaluated every 3 months using self-administered questionnaires.
Demographics and disease information were collected in the baseline questionnaires. The
three- and six-month questionnaires collected information about six endpoints including
effective consumer 17 scale, manage symptoms scale, manage disease in general scale, com-
municate with physician scale, partners in health scale and satisfaction with various aspects
of medical care. For ease of comparison, six outcomes were rescaled to the same scale (0 to
100) and higher values represented better results.

Follow-up questionnaires collected information on how frequently the tool was used
by patients. Instead of considering compliers and noncompliers in the case of all-or-none
compliance, continuously-measured partial compliance is considered here. Let Ai denote
treatment assignment for patient i, where i = 1, · · · , N . Ai = T if subject i was randomized
to the intervention group and Ai = C if the subject was assigned to the control group.
We define Di(A) to be the frequency rate of using the AHJ for patient i if subjects are
randomized to group A, where A represents the collection of all subjects’ assignments. For
the definition of Di(A), the frequency rate is calculated by dividing the number of times
of using the tool over six months by 180 days. Therefore, Di(A) is a continuous variable
with a value ranging from 0 to 1. Under the principal stratification framework (Frangakis &
Rubin 2002), the population is classified into different strata based on the combination of
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potential values of intermediate variable Di(A). We define potential outcomes combination
Si = [Di(T ), Di(C)] as the principal stratum where patient i belongs. In the case of all-or-
none compliance where Di(A) = 1 or 0, there are four principal strata: compliers, never-
takers, always-takers and defiers. Then the principal causal effects are evaluated within each
principal stratum. Similarly, when dealing with continuously-measured partial compliance,
principal causal effects are assessed within the principal stratum Si = [Di(T ), Di(C)] when
Di(A) is a continuous variable whose value ranges from 0 to 1. Specifically, patients in
the control group don’t have access to the AHJ, which implies Di(C) = 0. Therefore, the
principal stratum can be simplified as Si = [Di(T ), 0]. Specifically, Di(T ) is observable for
participants assigned to the treatment group, but is unknown for patients in the control
group.

Since six outcomes are collected over time for each individual, let Yijk(A) denote the
primary potential outcome value of kth endpoint at jth time point for ith individual, where
k = 1, · · · , K, j = 0, · · · , J . Under the setting of the AHJ study, K = 6 and J = 2.

4.3 Model

Let Y i(A) denote the vector of all primary potential outcome values for individual i across
all endpoints and time points. We use D and Y (A) to indicate vectors collecting potential
values of Di(A) and Y i(A) for all patients, respectively.

To specify the complete data distribution, we make the following assumptions. First, two
standard assumptions are made in our analysis. Ignorable treatment assignment assump-
tion (Rubin 1978) assumes that the assignment mechanism is independent of all potential
outcomes, conditional on observable baseline covariates. This assumption is satisfied in our
setting (RCTs) since patients are randomly assigned to two groups. Under the ignorable
treatment assignment assumption, there is no need to model the assignment mechanism
separately. Stable unit treatment value assumption (SUTVA) (Rubin 1980) consists of two
components: no interference and no multiple versions of the treatment. SUTVA is reason-
able in the AHJ study because each patient gets access to the same version of AHJ tool
independently, which ensures that one patient’s potential outcomes will not be affected by
other patients’ assignments. Thus, potential outcomes Di(A) and Y i(A) can be written
as Di(Ai) and Y i(Ai), respectively. Considering randomization A, potential treatment re-
ceived D and primary potential outcomes Y (A), the complete data distribution is given
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by

f(A,D,Y (T ),Y (C)) = f(A)f(D,Y (T ),Y (C))

=
N∏

i=1
f(Ai)f(Di(T ), Di(C),Y i(T ),Y i(C))

=
N∏

i=1
f(Ai)f(Si)f(Yi(T ),Yi(C)|Si)

=
N∏

i=1
f(Ai)f(Di(T ))f(Yi(T )|Di(T ))f(Yi(C)|Di(T ))

(4.1)

Here f() represents a density function generally. The equalities in Eqn 4.1 also imply
two additional assumptions. As patients in the control group were asked to wait for six
months before being provided access to the AHJ tool and we focused on the data collected
in the first six months, the third assumption assumes patients in the control group do not
have access to the treatment (Di(C) = 0). Therefore, Si = [Di(T ), Di(C)] = [Di(T ), 0]. We
model Di(T ) directly instead of modeling Si, the principal stratum for individual i. The
fourth assumption is Y i(T ) is independent of Y i(C) given Si. We make this assumption
since Y i(T ) and Y i(C) are never jointly observed for patient i and the likelihood function
based on observed data does not depend on the correlations between Y i(T ) and Y i(C).
Furthermore, we made an exclusion restriction assumption, which means the effect of the
treatment assignment on primary potential outcomes must be passed through the treatment
receipt.

4.3.1 Models

Modeling principal stratum Si

As mentioned earlier, the principal stratum Si is completely determined by the potential
intervention compliance Di(T ) with a value between 0 and 1. We employed a Beta regression
model to model Di(T ). The density of the Beta distribution can be rewritten as Eqn 4.2 in
terms of intervention compliance Di(T )’s expectation µDi and precision parameter ϕ.

f(Di(T ); µDi, ϕ) = Γ(ϕ)
Γ(µDiϕ)Γ((1 − µDi)ϕ)Di(T )µDiϕ−1(1−Di(T ))(1−µDi)ϕ−1, 0 < Di(T ) < 1,

(4.2)
where µDi ∈ (0, 1) and ϕ > 0. Then a logit link function is chosen to link ith subject’s
covariates Wi and mean µDi:

log( µDi

1 − µDi
) = Wi

Tα (4.3)

where α is the vector collecting all coefficients of corresponding covariatesWi. Equivalently,
Di(T ) follows a Beta distribution with parameters pDi and qDi, where pDi = µDiϕ and
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qDi = (1−µDi)ϕ. If covariates Wi only includes an intercept, then µDi ≡ µD, which implies
pDi = pD and qDi = qD.

Modeling primary potential outcomes Y i(Ai) given principal stratum Si

We employ a hierarchical random-effects approach to model the primary potential out-
comes Y i(Ai) given principal stratum Si. Since the principal stratum Si is uniquely de-
termined by the secondary potential outcome Di(T ), equivalently, we model the primary
potential outcomes Y i(Ai) given the secondary potential outcome Di(T ). The potential
outcome for intervention group Y i(T ) and potential outcome for control group Y i(C) are
modelled separately and assumed to be independent. For notational convenience, we use
Y ai and Yaijk to denote Y i(Ai) and Yijk(Ai) where Ai = a (a = T or C). The hierarchical
random-effects approach includes two stages. Stage 1 specifies a within-subjects model for
Yaijk representing the ith patient’s primary potential outcome of kth endpoint at time point
j when randomized to group a.

Yaijk|(Di(T ), baik,Zij) = Zij
Tbaik + ϵaijk, (4.4)

where Zij is a vector incorporating time-varying covariates. baik is a vector collecting all
coefficients of time-varying covariates Zij for kth endpoint of ith individual under group
a. We assume ϵaijk ∼ N(0, σ2

ak) and ϵT ijk ⊥⊥ ϵCijk. Besides, ϵaijk’s are assumed to be
independent over time and across multiple endpoints.

Stage 2 specifies between-subjects models for parameters baik related to a specific indi-
vidual i when randomized to group a.

baik = β0k + βa1kDi(T ) + vai, (4.5)

β0k consists of population average regression coefficients for subjects who would not receive
any level of treatment if assigned to the intervention group. Under the exclusion restriction
assumption, we assume patients who would not receive any level of the treatment in both
the intervention group and control group share the same set of population average regres-
sion coefficients, β0k. βa1k represents the population average change in these regression
coefficients for subjects who belong to stratum Si = [Di(T ), 0] if assigned to group a. vai

is a vector of random effects representing individual i’s deviation from population average
coefficients in group a. vai is assumed to follow a multivariate normal distribution with
mean 0 and variance-covariance matrix Σva. We also assume vT i ⊥⊥ vCi and random effects
in vai are independent from error terms ϵaijk’s in stage 1 model for a = T or C.

4.3.2 Principal Causal Effect in Stratum S

We extend the definition of principal causal effect (PCE) in Jin & Rubin (2008) to a longi-
tudinal setting where multivariate outcomes are collected at each time point. The PCE for
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kth outcome at jth time point in stratum S is defined as

PCEjk(S) = E[YT ijk − YCijk | S], (4.6)

which is the average causal effect for patients in stratum S. To obtain the PCE in stratum
S, E(YT ijk) and E(YCijk) are required and can be derived from Eqns 4.4 and 4.5. By
combining two stages (Eqns 4.4 and 4.5), Y ai|Si, the potential outcomes for individual i

within principal stratum Si (Si = [Di(T ), 0]) can be expressed as

Y ai|(Si,vai) = (Xi ⊗ IK)βa +
(

Zivai

)
⊗ 1K + ϵai (4.7)

where Y ai = {Yaijk : i = 1, · · · , N ; j = 0, · · · , J ; k = 1, · · · , K}, βa = {βapqk : p =
0, · · · , P ; q = 0, · · · , Q; k = 1, · · · , K}, where P and Q depend on the forms of two stages.
Here we assume βT p0k = βCp0k = βp0k since individuals in both the intervention group
and control group share the same set of coefficients β0k in Eqn 4.5 under the exclusion
restriction assumption. ϵai = (ϵai0T , · · · , ϵaiJ

T )T , where ϵaij = (ϵaij1, · · · , ϵaijK)T . Design
matrices for fixed effects and random effects are represented by Xi and Zi, respectively.

Based on Eqn 4.7, the conditional distribution of potential outcomes Y ai given principal
strata Si is

Y ai|Si ∼ MV Nβa,ψa
(µai, Σai), (4.8)

where the expectation µai = (Xi ⊗ IK)βa and variance Σai = (ZiΣvaZT
i ) ⊗ (1K1T

K) +
diag(Φa0, Φa1, · · · , ΦaJ), where Φa0 = Φa1 = · · · = ΦaJ = Φa = diag(σ2

a1, · · · , σ2
aK). In Eqn

4.8, ψa is a vector collecting all unique parameters in Σva and Φa.
Therefore, the PCE for patients within stratum S can be expressed as

PCE(S) = E(Y T i − Y Ci|S)

= (Xi ⊗ IK)βT − (Xi ⊗ IK)βC .
(4.9)

Next, we use an example to illustrate the principal causal effect for kth outcome at jth

time point in stratum S. Specifically, stage 1 of the hierarchical random-effects model in
Eqn 4.4 is specified as

Yaijk | Di(T ) = ba0ik + ba1iktij + ϵaijk. (4.10)

Stage 2 of the model proposed in Eqn 4.5 is given by

baoik = β00k + βa01kDi(T ) + va0i,

ba1ik = β10k + βa11kDi(T ) + va1i.
(4.11)
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Based on Eqns 4.10 and 4.11, we obtain

Yaijk | Di(T ) = β00k + β10ktij + βa01kDi(T ) + βa11kDi(T )tij + va0i + va1itij + ϵaijk. (4.12)

Thus, the conditional expectation of the primary potential outcome Yaijk given Di(T ) can
be written as a linear function of Di(T ) in the illustrative example:

E(Yaijk | Di(T )) = β00k + β10ktij + βa01kDi(T ) + βa11kDi(T )tij . (4.13)

Since the expectations of error terms in stage 1 and random effects in stage 2 are 0, the
conditional expectation of Yaijk given Di(T ) can be expressed as a linear combination of
fixed effects only. In many real-world randomized controlled trials, participants are followed
up at the same time points, which implies tij = tj . Then the principal causal effect for kth

outcome at time point j for patients within stratum S is

PCEjk(S) = E(YT ijk | Di(T )) − E(YCijk | Di(T ))

= (βT 01k − βC01k)Di(T ) + (βT 11k − βC11k)Di(T )tj

(4.14)

Because participants are assigned to two groups randomly, it’s reasonable to assume that
there is no difference at baseline between the intervention group and the control group for
patients who would take the level of active treatment Di(T ) if randomized to the treatment
group. Since the difference between parameters βT 01k and βC01k captures the baseline differ-
ence, normally βT 01k = βC01k under randomization and the difference between parameters
βT 11k and βC11k characterizes the principal causal effect of our primary interest.

Besides, a matrix form of potential outcomes for kth endpoint can be derived from Eqn
4.12. Let Y aik = (Yai0k, Yai1k, · · · , YaiJk)T ,

Y aik = Xi ×


β00k

β10k

βa01k

βa11k

+ Zi ×
(

va0i

va1i

)
+ ϵaik (4.15)

where ϵaik = (ϵai0k, ϵai1k, · · · , ϵaiJk)T . Xi and Zi are specified as

Xi =


1 0 Di(T ) 0
1 ti1 Di(T ) ti1 ∗ Di(T )
...

...
...

...
1 tiJ Di(T ) tiJ ∗ Di(T )

 , Zi = Z =


1 0
1 ti1
...

...
1 tiJ

 , (4.16)

which are the exact forms of Xi and Zi in Eqn 4.7 when the model is given by Eqns 4.10
and 4.11.
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4.3.3 Estimation

For a specific individual in group Aobs,i, Y obs,i = Y i(Aobs,i) and Y mis,i = Y i(Amis,i) where
Amis,i indicates the group where this individual was not assigned. Di(T ) is observable for
participants assigned to group T but is missing for participants assigned to group C. Here
we use Dmis,i to denote missing Di(T ). Let π = (βT ,βC ,ψT ,ψC ,α), the likelihood function
based on observed data for all participants in the study is

L(π;Yobs,Dobs,Aobs | W ) =
N∏

i=1

∫∫
f(Ai)f(Di(T ))f(Yi(T )|Di(T ))f(Yi(C)|Di(T ))dY mis,idDmis,i

=
∏

i∈{Ai=T }
f(Di(T ))f(Yi(T )|Di(T ))

×
∏

i∈{Ai=C}

∫
f(Di(T ))f(Yi(C)|Di(T ))dDi(T )

= L1 × L0

(4.17)

where

L1 =
∏

i∈{Ai=T }

Γ(ϕ)
Γ(µDiϕ)Γ((1 − µDi)ϕ)Di(T )µDiϕ−1(1 − Di(T ))(1−µDi)ϕ−1

1

(2π)
(J+1)K

2 |ΣT i|
1
2

exp
{

−1
2 (yobs,i − µT i)T (ΣT i)−1 (yobs,i − µT i)

}

L0 =
∏

i∈{Ai=C}

∫ 1

0

Γ(ϕ)
Γ(µDiϕ)Γ((1 − µDi)ϕ)Di(T )µDiϕ−1(1 − Di(T ))(1−µDi)ϕ−1

1

(2π)
(J+1)K

2 |ΣCi|
1
2

exp
{

−1
2 (yobs,i − µCi)T (ΣCi)−1 (yobs,i − µCi)

}
dDi

(4.18)
The likelihood function in Eqn 4.17 includes two parts. L1 is the likelihood function for the
treatment group where both Di(T ) and Y i(T ) are observed. L0 is the likelihood function
for the control group where Y i(C) is observed while Di(T ) is missing. Therefore, Di(T )
needs to be integrated out in L0. Since Eqns 4.2 and 4.8 give the distribution of Di(T ) and
the conditional distribution of Y i(Ai = a) given principal stratum Si, we could obtain the
specific form of the likelihood functions L0 and L1 as shown in Eqn 4.18.

The integral in the likelihood function L0 can be computed by using the "integrate"
function in R. We obtained the maximum likelihood estimates (MLEs) by maximizing the
whole log-likelihood function of observed data via “optim" function. The corresponding
standard errors can be obtained by evaluating the inverse Hessian matrix at the MLEs.
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4.4 Simulation Study

We conducted a simulation study to validate the performance of the model proposed. Six
endpoints (K = 6) are simulated at three time points (J = 2) for 500 individuals. The
intervention compliance Di(T ) is modelled under the Beta regression model as specified
in Eqns 4.2 and 4.3. To simplify the setting of our simulation, we assume Wi includes
an intercept only in Eqn 4.3 and Di(T ) ∼ Beta(pD, qD). The model for Y i(Ai) given the
principal stratum Si includes a linear trend in stage 1 (Eqn 4.10) and a random intercept
only in stage 2, which means va1i = 0 for a = T or C. Besides, under the randomization
assumption, we also assume there is no baseline difference between the treatment group
and control group for individuals within principal stratum Si = [Di(T ), 0], which implies
βT 01k = βC01k. Therefore, PCEjk(S) = (βT 11k − βC11k)Di(T )tj because βT 01k − βC01k = 0
in Eqn 4.14.

Table 4.1 summarizes the estimation accuracy for the parameters (βT 11k and βC11k)
related to PCEs and parameters (pD and qD) for the Beta distribution. The results in Table
4.1 are obtained based on 1000 simulated datasets. Table 4.1 presents sample means, sample
standard deviations of estimates and sample means of standard error estimates calculated
using the Fisher information for parameters of our primary interest. The sample means
are nearly equal to their corresponding true values. Besides, the sample means of standard
error estimates obtained using the Fisher information are also close to their corresponding
sample standard deviations of estimates.

4.5 Application to the AHJ Study

In this section, we apply the proposed model to the AHJ data. As defined in Section 4.2,
Di(A) is the frequency rate of using the AHJ during a six-month period for individual i when
randomized to group A. In the AHJ study, Di(C) always equals 0 as patients in the control
group do not have access to the AHJ tool. The potential outcome Di(T ) is observable for
patient i randomized to the intervention group, but is latent for participant i randomized
to the control group. The frequency rate of using the AHJ tool is obtained based on the
information collected in the follow-up questionnaires and is calculated as the ratio of the
times of using the tool to the total number of days they were followed up. Intervention
compliance Di(T ) is modeled under the Beta regression model specified in Eqns 4.2 and
4.3. Four binary covariates are included in the Beta regression: disease duration (1 = early
disease, 0 = late disease), disease activity (1 = high RAPID4 values, 0 = moderate/low
RAPID4 values), gender (1 = male, 0 = female) and age (1 = above 54.50 years old, 0 =
below 54.50 years old).

Table 4.2 provides the summary statistics for baseline variables and missing data pat-
terns for six outcomes during the follow-up period. One outlier has been excluded from the
treatment group due to extremely large Di(T ). Similar to Table 1 in Guo et al. (2022), the
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Table 4.1: Estimation accuracy under the model proposed (based on 1000 repetitions when
sample size equals 500)

Parameter True value Sample mean sse† (sm‡
se)

Parameters related to Treatment effect
βT 111 2 1.952 2.132 (2.035)
βT 112 3 2.947 2.059 (1.977)
βT 113 2 1.984 2.115 (2.040)
βT 114 2 1.959 3.258 (3.038)
βT 115 3 3.015 2.056 (1.987)
βT 116 5 4.948 3.327 (3.248)

βC111 1 0.909 2.490 (2.451)
βC112 2 1.928 2.273 (2.190)
βC113 1 1.009 2.443 (2.456)
βC114 1 0.908 3.523 (3.204)
βC115 2 1.942 2.313 (2.203)
βC116 3 2.928 3.688 (3.584)

Beta distribution
pD 0.693 0.703 0.085 (0.084)
qD 1.609 1.618 0.090 (0.090)

†sse: sample standard deviation of estimates
‡smse: sample mean of standard error estimates calculated based on

the Fisher information

baseline covariates remain favourably balanced between the treatment group and the con-
trol group. In the intervention group, 9 patients dropped out of the study after participating
in the baseline questionnaire. Since no follow-up information on these nine dropouts is ob-
served, their compliance behavior Di(T ) is also latent. When dealing with the likelihood
function in terms of nine dropouts in the treatment group, Di(T ) needs to be integrated
out, just as we did in the likelihood function of participants in the control group. We note
that there is a slight amount of intermittent missingness (001 and 010) in the intervention
group. For intermittent missing participants in the treatment group, Di(T ) is calculated as
the ratio of the times of using the tool to 90 days since they were observed for three months.
We assume data is missing at random and employed the likelihood-based approach which
can provide valid inference under the less strict missing mechanism (missing at random)
than missing completely at random if the analysis is done appropriately.

Next, we need to determine the relationship (e.g., linear or quadratic) between individ-
ual coefficients baik for the kth endpoint and intervention compliance Di(T ) in Eqn 4.5.
Since Di(T ) is only observable in the treatment group, we focused on the measurements
for individuals in the treatment group and conducted descriptive statistics. For individual
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Table 4.2: Summary statistics of baseline covariates and missing data patterns
Usual care group Intervention group

(N = 49) (N = 44)
Covariates n(%) n(%)

Disease Duration (Early) 6 (12.2) 5 (11.4)
Disease Activity (High) 38 (77.6) 32 (72.7)

Gender (Male) 5 (10.2) 6 (13.6)
Age (> 54.5) 25 (51.0) 22 (50.0)

Missing data pattern†
000 41 (83.7) 32 (72.7)
011 2 (4.1) 9 (20.5)
001 5 (10.2) 1 (2.3)
010 1 (2.0) 2 (4.5)

† 0 and 1 indicate presence and absence, respectively. The 3-digit indicator displays the
missing status for endpoints at baseline, the third and sixth month.

outcomes in the treatment group, a mixed-effects regression model with a linear time trend,
random intercepts and slopes is employed. By using “PROC MIXED" in SAS, we obtained
empirical Bayes estimates of subjects’ intercepts and slopes. Figure 4.1 shows the plot of
individual intercepts versus intervention compliance Di(T ) for each endpoint. Figure 4.2
presents the plot of individual slopes versus Di(T ). For each outcome within each plot, the
data is fit under generalized additive models (GAM) which provide tests to see if the trends
can be captured by linear functions. The null hypothesis is there is no non-linearity. Using
the R function gam(), p-values are calculated and provided. In Figure 4.1, we did not ob-
serve any significant p-values which means the relationships between individual intercepts
and Di(T ) are linear. We can also assume linear relationships between individual slopes
and Di(T ) for all six endpoints since no significant p-values were observed in Figure 4.2.
Therefore, in stage 2 (Eqn 4.11), linear relationships are specified between subject-specific
parameters baik and Di(T ). We also assume Zij includes an intercept term and a linear
time trend tij in stage 1 (Eqn 4.10) when modelling primary potential outcomes Y i(Ai)
given the principal stratum Si. Under Eqns 4.10 and 4.11, the principal causal effect for kth

endpoint within individuals who would use the AHJ tool Di(T ) of the six-month period is
expressed as Eqn 4.14. Under the randomization assumption, we assume βT 01k = βC01k and
the principal causal effect for kth endpoint at time point j given intervention compliance
Di(T ) is (βT 11k − βC11k)Di(T )tj .

Table 4.3 presents the estimates, standard errors and corresponding p-values for βT 11k −
βC11k (k = 1, · · · , 6), which captures principal causal effects. Firstly, we examine the P-value
for each outcome individually. The null hypothesis is there is no treatment difference for a
specific outcome. P-values (4th column) for six endpoints are obtained based on the Wald
test. Since there are six hypothesis tests for six outcomes, Type I error will inflate if the
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Figure 4.1: Plot of individual intercepts versus the intervention compliance Di(T ). Estimates
for individual intercepts are obtained based on the empirical Bayes approach. If the P-value
is larger than 0.05, then there is not non-linearity.

significance cut-off value is not adjusted. To avoid this multiple testing issue, we apply the
Bonferroni correction and the significance threshold is set as 0.05/6 = 0.008. By comparing
p-values (column 4) for six outcomes in Table 4.3 with 0.008, we noticed the difference
between βT 11k and βC11k is significant for the fourth endpoint (communicate with physician
scale) and sixth endpoint (satisfaction with various aspects of medical care). In addition,
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Figure 4.2: Plot of individual slopes versus the intervention compliance Di(T ). Estimates
for individual slopes are obtained based on the empirical Bayes approach. If the P-value is
larger than 0.05, then there is not non-linearity.

the significant differences (βT 11k −βC11k) for these two outcomes are positive, which implies
the principal causal effects detected from the fourth and sixth outcomes are beneficial
since higher values represent better results. Then we conducted a global hypothesis test to
examine six endpoints simultaneously. Under the multivariate Wald test, the null hypothesis
is there are no principal causal effects for all six outcomes simultaneously. The overall p-
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value is 0.0001, which is highly significant compared with the significance level 0.05. The
finding from Table 4.3 is consistent with the conclusion obtained in Chapter 2 (Guo et al.
2022), which employs the MCACE model to analyze the same AHJ dataset under all-or-none
compliance. It’s worth noting that the overall p-value detected under partial compliance is
much lower than that (overall p-value = 0.008) in Chapter 2 (Guo et al. 2022). This is
possibly caused by considering continuous partial compliance since dichotomization to all-
or-none compliance or discretization to categorical compliance measures results in a loss of
information.

Table 4.3: Parameters related to principal causal effects
βT 11k − βC11k Estimate Standard error P-value Overall p-value
βT 111 − βC111 10.414 14.150 0.462

0.0001

βT 112 − βC112 17.395 22.415 0.438
βT 113 − βC113 -14.675 17.089 0.390
βT 114 − βC114 88.226 22.597 < .0001
βT 115 − βC115 -2.037 17.900 0.909
βT 116 − βC116 65.878 22.783 0.004

Figure 4.3 displays principal causal effects versus intervention compliance Di(T ) in the
sixth month for each endpoint. The principal causal effects (solid lines in Figure 4.3) in
the sixth month and corresponding confidence intervals (dashed lines in Figure 4.3) are
calculated based on the estimates and standard errors in Table 4.3. The critical values of
the corresponding confidence intervals are chosen under the significance level 0.008 (adjusted
based on Bonferroni correction). Consistent with Table 4.3, the confidence intervals for the
fourth and sixth endpoints in Figure 4.3 are above 0. Thus, the principal causal effects at the
sixth month for the fourth and sixth endpoints are beneficial and significant. The confidence
intervals for the first, second, third and fifth endpoints contained zero. Therefore, there are
no statistically significant principal causal effects in the sixth month for these outcomes.

Table 4.4 shows the estimation results for α in the Beta regression model (Eqn 4.3).
The estimate for intercept term is −3.264, which indicates that the mean response (µDi)
regarding intervention compliance for younger female participants with longer disease dura-
tion and low disease activity is 0.037 (e−3.264/(1 + e−3.264)). We noticed that the estimates
for the coefficients of disease duration and gender are negative. This suggests that the mean
response µDi is negatively correlated with disease duration and gender. Similarly, the mean
response is positively related to disease activity and age since corresponding estimates are
positive. As the covariates in Table 4.4 are binary variables, we conclude that older female
patients with high disease activity and longer disease duration tend to use the AHJ tool
more frequently (higher mean response µDi) if they are randomized to the intervention
group.
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Figure 4.3: Principal causal effects at the sixth month. The solid lines are principal causal
effects varying with Di at the sixth month. The dashed lines are corresponding confidence
intervals with adjusted critical values based on Bonferroni correction.

Table 4.4: Estimation results for the Beta regression
Covariates Estimate Standard error P-value
Intercept -3.264 0.234 < .0001

Disease duration -0.244 0.339 0.473
Disease activity 0.315 0.233 0.176

Gender -0.402 0.386 0.297
Age 0.066 0.168 0.694

Note: disease duration = 1 if early disease and = 0 if late disease, disease activity = 1 if there are
high RAPID4 values and = 0 if there are moderate/low RAPID4 values, gender = 1 if male and 0

if female, age = 1 if above 54.50 years old and = 0 if below 54.50 years old
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4.6 Discussion

Under the framework of principal stratification proposed by Frangakis & Rubin (2002),
principal strata can be formed based on the potential values of an intermediate outcome
variable Di(A). In the AHJ study, Di(A) is defined as the frequency rate of subject i’s AHJ
tool uses within the follow-up period when randomized to group A. When patients in the
control group do not have access to the behaviour intervention which implies Di(C) ≡ 0,
the principal stratum is uniquely determined by the partially observed variable Di(T ).
Instead of considering Di(T ) = 0 or 1 under all-or-none compliance, we consider partial
compliance where Di(T ) is a continuous variable ranging from 0 to 1. A Beta regression
model is employed to model the intervention compliance Di(T ) so that covariates could be
considered to help predict the intervention compliance. When modeling primary potential
outcomes Y i(Ai) given the principal stratum defined by Di(T ), we proposed a multivariate
hierarchical random-effects approach to model multidimensional potential outcomes in the
treatment group Y i(T ) and potential outcomes in the control group Y i(C) separately. The
proposed model can address partial compliance properly and account for the correlations
across multiple endpoints over all time points by introducing random effects in stage 2 in
the hierarchical random-effects approach. Furthermore, the principal causal effects within
stratum S defined by Di(T ) can be easily obtained under our approach.

After verifying the performance of the proposed model in the simulation study, we apply
the model to the AHJ data. We detected significant beneficial principal causal effects for
the fourth and sixth outcomes after adjusting the multiple testing issues. Moreover, when
examining whether there are principal causal effects or not for all six endpoints simultane-
ously, we noticed that the overall p-value for all six outcomes is highly significant, which
implies AHJ tool did help participants manage their disease very well. This finding is consis-
tent with the conclusion obtained in Chapter 2 (Guo et al. 2022) which analyzed the same
dataset based on a similar hierarchical random-effects approach under all-or-none compli-
ance. It’s notable that the overall p-value is much smaller in the case of partial compliance
compared with all-or-none compliance since the dichotomization in all-or-none compliance
can lead to loss of information. Besides, the estimation results (Table 4.4) from the Beta re-
gression model establishes the bridge between compliance behavior and baseline covariates.
Although none of the covariates is significant at the 5% level, this analysis is still useful if
we want to study the compliance behavior of patients based on baseline characteristics in
other similar studies.

The proposed model can be extended to other situations. Firstly, intervention compli-
ance is considered as a continuously-measured variable and is modelled through the Beta
regression model. If the intervention compliance is treated as count data, Poisson distribu-
tion can be applied instead. Secondly, instead of considering the receipt of the intervention
only, real-world RCTs may involve a placebo in the control group. For example, the Efron-
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Feldman data analyzed by Jin & Rubin (2008) is from a placebo-controlled double-blind
randomized controlled trial, where patients in the control group have access to the placebo.
If we define di(C) as the potential amount of the placebo received by subject i if assigned
to the control group, our model can be easily extended to incorporate di(C) into Eqn 4.5
as a predictor. Lastly, it maybe restrictive to assume the error terms in Eqn 4.4 and ran-
dom effects in Eqn 4.5 follow multivariate normal distributions. Other distributions can be
considered to increase the applicability of the method.
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Chapter 5

Final Discussion

In real-world longitudinal randomized controlled trials (RCTs), noncompliance issue often
occurs and multiple outcomes are commonly used to measure complex traits when evaluat-
ing multifaceted behaviour interventions. To assess the treatment efficacy of such behaviour
intervention efficiently, it’s important to tackle the noncompliance issue properly and con-
sider the correlations among multivariate outcomes. This dissertation focuses on developing
novel statistical methodologies with improved efficiency to estimate treatment efficacy while
addressing these two challenges simultaneously.

Throughout the dissertation, we deal with the noncompliance issue within the principal
stratification framework proposed by Frangakis & Rubin (2002). Both all-or-none compli-
ance (binary compliance) and partial compliance (continuously-measured compliance) are
discussed here. Under all-or-none compliance, the whole population is divided into four
groups: compliers, never-takers, always-takers and defiers. Chapters 2 and 3 considered all-
or-none compliance and aimed at estimating CACEs, the causal treatment effects among
compliers in the population. Chapter 4 considered partial compliance and focused on esti-
mating causal effects within principal strata defined by combinations of continuous potential
intermediate outcomes.

When dealing with multiple outcomes, we employed a hierarchical random-effects ap-
proach and a latent-factor approach. Under the hierarchical random-effects approach, chap-
ter 2 developed a multivariate longitudinal potential outcome model stratified on latent
compliance types under all-or-none compliance. The random effects in the model combined
all information for multiple outcomes across all visits. Chapter 4 extended the hierarchical
random-effects approach to estimating causal effects under a partial compliance setting. By
introducing latent factors, the latent-factor MCACE model proposed in Chapter 3 leads to
dimensionality reduction. Under the model in Chapter 3, high-dimensional outcomes are
reduced to low-dimensional latent factors. These latent factors represent underlying con-
structs measured by high-dimensional outcomes. This allows us to make statistical inference
on latent factors (underlying constructs) directly.
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In each chapter, simulation studies are conducted to demonstrate the validity and eval-
uate the performance of these developed novel methodologies. In Chapter 2, compared with
univariate complier-average causal effect analysis, the multivariate longitudinal potential
outcome model shows a significant gain in the estimation efficiency, including up to 50%
reduction in standard errors of CACE estimates and a one-fold increase in the power to de-
tect the CACE. Furthermore, the simulation study in Chapter 3 shows there is a four-fold
increase in the power to detect CACE under the latent-factor MCACE model compared
with existing univariate CACE analysis. These simulation studies demonstrate that these
proposed models can lead to a significant improvement in the estimation efficiency for treat-
ment efficacy in longitudinal RCTs with noncompliance and multiple outcomes.

After applying the proposed methodologies to the AHJ data, some novel findings are
presented. In Chapter 2, after Bonferroni correction, the multivariate longitudinal poten-
tial outcome model detects beneficial CACEs on the fourth outcome (communicate with a
physician) and the sixth outcome (satisfaction with medical care), while univariate CACE
analysis fails to detect CACEs on any outcomes. It’s worth noting that the multivariate lon-
gitudinal potential outcome model detects an overall CACE by giving a significant overall
p-value, 0.008. However, the direction of the overall CACE is undetermined. We still need
to examine each outcome individually to interpret treatment effects, which leads to multiple
testing issues. To overcome these limitations, chapter 3 introduces latent factors which repre-
sent underlying constructs measured by multiple outcomes. By making statistical inference
on these latent factors directly, the directions of treatment effects on underlying constructs
can be determined and multiple testing issues can be mitigated. Specifically, the applica-
tion in Chapter 3 considers two underlying constructs (self-efficacy and interactions with
caregivers). And we found significant and beneficial CACEs on both underlying constructs.
In Chapter 4, we analyzed the AHJ data under a hierarchical random-effects approach in
the partial compliance setting. Compared with Chapter 2 which analyzes the same dataset
under a similar approach in the binary compliance setting, a smaller overall p-value is de-
tected in Chapter 4. This verifies the rationale that considering partial compliance makes
use of more information than considering all-or-none compliance since dichotomization in
binary compliance can cause a loss of information.

In this dissertation, we assume that potential outcomes within certain principal strata
follow multivariate normal distributions. To avoid possible model misspecification brought
by prespecifying the multivariate normal distribution, future work may relax this assump-
tion by considering other distributions, such as the multivariate t-distribution. Furthermore,
the proposed methodologies mentioned above focus on studying continuous potential out-
comes. One possible future extension of current work is to consider discrete and mixed-type
responses. In addition, although we only illustrate these proposed methodologies in AHJ
data, these models developed in this dissertation can be applied broadly to other similar
longitudinal RCTs with noncompliance and multiple outcomes.
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