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Abstract

Structured prediction in machine learning focuses on mapping a sequence of inputs to a
sequence of outputs within a vast output space, with interconnected predictions, offering
simplicity and speed while enhancing contextual understanding in NLP tasks.

In this dissertation, we revisit the applicability of structured prediction in modern, intri-
cate NLP applications. We introduce a structured prediction-based approach for extracting
linguistic knowledge from pre-trained encoder-only language models, and demonstrate the
effectiveness of the extracted knowledge in enhancing translation quality of encoder-decoder
models.

We showcase the efficacy of well-designed, simple structured prediction-based sequence la-
belling in handling complex entity linking with large entity vocabularies. Our proposed
method, SpEL, not only simplifies and accelerates the process but also achieves state-of-
the-art results on a prominent entity linking benchmark dataset.

Furthermore, we investigate Entity Retrieval, the application of our structured prediction-
based entity linking framework as an alternative strategy to prevalent dense retrieval meth-
ods in retrieval-augmented question answering, particularly for factual questions about the
real world. Our research underscores structured prediction as a compelling approach for
modelling complex NLP tasks, particularly when prioritizing computational efficiency and
high accuracy.

We conclude the dissertation with a review of additional contributions that either diverge
from the primary focus or involve shared authorship, even if they pertain to the central
theme of the dissertation.

Keywords: Structured Prediction, Entity Linking, Neural Machine Translation, Retrieval-
Augmented Question Answering, Pretrained Language Modelling
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Chapter 1

Introduction

Natural Language Processing (NLP) is a specialized field of artificial intelligence that fo-
cuses on understanding, manipulating, and generating language across various modalities,
including text, speech, and even artificial languages like source code. Over the years, NLP
has flourished, yielding a plethora of useful applications such as text classification, sentiment
analysis, machine translation, question answering, and speech recognition.

In today’s data-driven world, where vast amounts of unstructured text data are gener-
ated daily, NLP plays a crucial role in extracting insights, automating processes, and en-
hancing user experiences (Shah et al., 2023). Its relevance lies in its ability to analyze and
comprehend human language at scale, facilitating applications in various domains such as
customer service (Mashaabi et al., 2022), healthcare (Sezgin et al., 2023), finance (Schlaub-
itz, 2021), management (Kang et al., 2020), and education (Alqahtani et al., 2023). NLP
enables organizations to derive valuable insights from textual data, improve decision-making
processes, and create personalized experiences for users. As such, NLP continues to be in-
dispensable in unlocking the potential of the vast amounts of text data available in today’s
digital age.

NLP has undergone several waves of technological advancement, progressing from spe-
cialized task-specific models to task-agnostic feature learners, transferable task solvers ad-
dressing various NLP tasks, and eventually evolving into general-purpose task solvers,
broadening its application domain to encompass real-world tasks that were once beyond
its reach in the early years of statistical NLP (Zhao et al., 2023). A consistent trend across
these waves has been the refinement of NLP solutions, resulting in increased accuracy and
utility, albeit accompanied by the growth in size and complexity.

The introduction and widespread adoption of GPT (OpenAI, 2023), Claude1, and Gem-
ini (Team et al., 2023) represent a pinnacle in this progression, enabling the creation of
large, general-purpose conversational chatbots that have benefited diverse user groups2.
However, these advancements are not without challenges. The significant investment re-

1https://www.anthropic.com/news/claude-3-family, accessed on May 9, 2024.

2Unfortunately, speakers of low-resource languages have not equally benefited from these advanced tech-
nologies.
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quired for hardware, along with the environmental impact of their energy consumption,
raises concerns about global warming (Patterson et al., 2021). Additionally, accessibility
issues, both in terms of cost and infrastructure, limit the availability of these models to
marginalized communities and research labs, prompting a need for model simplification and
democratization to ensure universal access. This imperative is heightened when considering
scaling laws (Kaplan et al., 2020b) and the trajectory of NLP solutions, exacerbating the
aforementioned challenges.

This dissertation is one practical step towards the mentioned objectives. We leverage
advanced NLP techniques to demonstrate the feasibility of enhancing performance and ac-
curacy while prioritizing model simplification. Among all possible simplification frameworks,
we focus on Structured Prediction (Section 2.4) and emphasize the extensive reuse of pre-
trained models (Section 2.2) and the creation of such reusable models when unavailable
for specific tasks. While our approach exemplifies one pathway to simplification, it is not
exhaustive; rather, it serves as a paradigm for the community to integrate simplification
and efficient design considerations. Our contributions aim to inspire a broader commitment
to advancing both accuracy and efficiency simultaneously within the field.

1.1 Summary of Contributions

The dissertation makes primary contributions in the following directions:

• Improving neural machine translation by employing a structured prediction-based
method to extract linguistic knowledge from pre-trained encoder-only language mod-
els. This approach utilizes structured prediction to extract valuable linguistic informa-
tion from pre-trained models, enhancing translation performance without additional
data or computational overhead in training the translation model or in inference.

• Designing a simple yet effective structured prediction-based entity linking approach
capable of handling large entity vocabularies. Amidst the trend towards complex,
large-scale generator-style models, our method demonstrates the potential of struc-
tured prediction using pre-trained language models to achieve state-of-the-art entity
linking results.

• Improving retrieval-augmented question answering through our proposed struc-
tured prediction-based entity linking approach. While retrieval-augmentation is com-
monly employed to enhance question answering systems, we demonstrate the efficacy
of entity linking as a powerful alternative to solely retrieval-based methods, particu-
larly in entity-centric question scenarios.

1.2 Dissertation Outline

The chapters in this dissertation are organized as follows:

Chapter 2 provides relevant background information encompassing classic and pre-trained
language models as well as structured prediction. We comprehensively discuss

3



bidirectional and causal language models, alongside recent advancements in
large language models.

Chapter 3 discusses our proposed approach of employing structured prediction to ex-
tract linguistic knowledge from pre-trained language models and integrating
them into the encoder-decoder translation models. The chapter reproduces
results which we have originally published in (Shavarani and Sarkar, 2021).
The associated github repository for this project is accessible at https:

//github.com/sfu-natlang/SFUTranslate.

Chapter 4 provides our innovative structured prediction-based entity linking frame-
work. We carefully examine three key challenges encountered in traditional
structured prediction-based models and present our novel solutions, leading
to the development of our cutting-edge entity linking model, SpEL. By rig-
orously evaluating SpEL within a renowned entity linking framework, we
demonstrate its superior performance against strong generative and non-
generative entity linking models. The chapter reproduces results which we
have originally published in (Shavarani and Sarkar, 2023). The associated
github repository for this project is accessible at https://github.com/

shavarani/SpEL.

Chapter 5 studies an application of our structured prediction-based entity linking frame-
work for Entity Retrieval, our proposed retrieval strategy for enhancing
retrieval-augmented question answering systems. Through empirical anal-
ysis, we show that Entity Retrieval outperforms conventional dense retrieval
methodologies for entity-centric questions, all the while simplifying the task
by reducing it to entity linking coupled with the retrieval of the initial sen-
tences from corresponding knowledge base articles. The chapter reproduces
results which we have originally published in (Shavarani and Sarkar, 2024).
The associated github repository for this project is accessible at https:

//github.com/shavarani/EntityRetrieval.

Chapter 6 reviews additional contributions that either diverge from the primary fo-
cus or involve shared authorship, even if they follow the central theme of
the dissertation. In this chapter, we present our findings from benchmark-
ing multi-lingual multi-class classification of Wikipedia using our created
SHINRA-5LDS dataset. Subsequently, we present the benchmarking re-
sults for recent entity linking systems in availability or absence of a specific
resource known as candidate sets (Section 4.2).

Chapter 7 concludes the dissertation through a comprehensive summary of the key
findings and contributions, and discusses future directions.

4
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Chapter 2

Background

In this chapter, we delve into the essential background information that forms the founda-
tion of this dissertation. We begin with a concise discussion on language modeling, a crucial
component in both our proposed and enhanced frameworks. This discussion swiftly tran-
sitions into an exploration of pre-trained language models, highlighting their two distinct
types: bidirectional and causal language models. In each category, we spotlight some ex-
emplary pre-trained models. Next, we discuss large language models, which predominantly
align with the structure of causal language models, yet bear significant differences. A se-
lection of commonly adopted large language models will also be discussed. Subsequently,
we shift our attention to information extraction and structured prediction, focusing on the
latter as a specific technique employed for information extraction. Our aim is for this chap-
ter to provide sufficient context to understand how the integration of structured prediction
and pre-trained language models can advance the primary objective of this dissertation:
enhancing NLP performance while advocating for simplicity in design.

2.1 Language Modelling

Language modeling has been a captivating challenge for several decades (Shannon, 1951).
The primary objective of language modeling is to predict the most likely word that follows
a given context, considering a specific language L, such as English or French; enabling
computers to comprehend and generate coherent and contextually appropriate language.

A language model M (Equation 2.1) is a probabilistic function that assigns a probability
distribution over a sequence of words w1, w2, . . . , wn in language L; aiming to capture the
likelihood of observing a particular sequence of words within the language.

Formally, given a sequence of words w1, w2, . . . , wn, the language model M computes
the probability of the entire sequence P (w1, w2, . . . , wn) as the product of the conditional
probabilities of each word in the sequence, conditioned on the preceding words:

P (w1, w2, . . . , wn) =
n∏

i=1
P (wi|w1, w2, . . . , wi−1) (2.1)

The task of a language model is to estimate these conditional probabilities based on
a given training dataset of language samples. By learning the patterns and relationships
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between words in the training data, the language model can then generate new sequences
of words or predict the likelihood of unseen sequences in L.

Language models are versatile and can operate at different levels of granularity, including
character-level, word-level, and phrase-level. At the character-level, the model predicts the
next character based on the preceding characters, while at the word-level, it predicts the
next word given the previous words. For certain tasks involving fixed expressions, phrase-
level modeling can also be utilized. The adaptability of language models to various levels of
granularity enables them to be tailored to specific downstream language processing tasks.

The work of Bengio et al. (2000) stands as one of the pioneering efforts in proposing
the use of neural networks for language modeling. Moreover, the introduction of recurrent
neural network-based language models (Mikolov et al., 2010) and dense embedding vectors
(Mikolov et al., 2013; Pennington et al., 2014) played a crucial role in revolutionizing the
architectural design of language models. Prior to these breakthroughs, language models
were constructed based on collecting n-gram frequencies from corpora. However, the ad-
vancements in recurrent neural network-based models and dense embedding vectors shifted
the paradigm from traditional n-gram techniques to the utilization of deep neural net-
works (Hinton et al., 2012) for calculating probability distributions. This transition to deep
learning methods empowered language models to capture more complex language patterns
and semantic relationships, leading to significant advancements in various natural language
processing tasks.

Initially, dense word embedding vectors were trained as fixed representations, serving as
replacements for their string representations. This approach aimed to capture the semantic
meaning of words by encoding them into continuous vector spaces. However, a limitation
of early dense word embeddings was that they treated polysemous words, such as “bank”
with multiple meanings (e.g., a financial institution and a riverbank), as having the same
vector representation. As a result, the context and different meanings associated with such
words were not fully captured, leading to potential ambiguity in downstream NLP tasks.

Contextualized word representations (McCann et al., 2017; Peters et al., 2018) represent
a significant advancement over fixed word embedding representations. Unlike traditional
fixed embeddings, contextualized word representations tailor dense vectors for each word
based on the context words they appear with, allowing for a more nuanced and context-aware
understanding of word meanings. The ELMo model (Peters et al., 2018) was among the
pioneers in this area, suggesting the expansion of word representations from one vector to a
set of vectors output from different layers of a deep neural network, utilizing a multi-layered
bidirectional LSTM (Hochreiter and Schmidhuber, 1997; Graves and Schmidhuber, 2005).
This approach led to improved language understanding and paved the way for subsequent
contextual word representation models.
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Figure 2.1: Transformer Architecture (from Vaswani et al., 2017).
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2.2 Pre-trained Language Models (PLMs)

Seven years ago, Vaswani et al. (2017) published a seminal paper aimed at revolutionizing
sequence-to-sequence mapping tasks such as translation. In contrast to LSTMs, their pro-
posed architecture, Transformer (Figure 2.1), dispensed with recurrence for encoding input
sequences. This facilitated parallelization during training, leading to enhanced precision and
faster training. Additionally, it facilitated non-autoregressive transformation in sequence-
to-sequence modeling (e.g. Schmidt et al., 2022), which was unattainable with recurrent
networks. The emphasis on the multi-head attention module in Transformers also endowed
them with greater efficiency in capturing long-range dependencies.

Subsequent research explored the potential of the Transformer architecture, showcasing
the language modeling prowess of both encoder and decoder individually (Radford et al.,
2018; Devlin et al., 2019). These investigations confirmed that a stack of transformer layers
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can function as potent linguistic feature extractors when pre-trained1 on sufficiently large
monolingual datasets. Shortly thereafter, pre-training became a prevalent strategy for craft-
ing versatile base language models, ushering in a paradigm shift towards pipelines comprised
of fine-tuned iterations of these models to facilitate various language processing tasks.

At this juncture, two primary threads of base models emerged: one emphasizing lan-
guage processing, which presupposed access to the entire input and employed bidirectional
encoding for each input token, resulting in Bidirectional Language Models; and the other
focusing on language generation, which assumed the autoregressive nature of next-token
prediction, giving rise to Causal Language Models. We will now delve into each thread in
greater detail.

2.2.1 Bidirectional Language Models

The lineage of encoder-only Transformer architectures commenced with the work of Devlin
et al. (2019), introducing BERT (Bidirectional Encoder Representations from Transform-
ers). BERT-style models were principally trained to create transferable NLP task solvers
capable of addressing multiple NLP tasks with minimal fine-tuning. Architecturally, aside
from harnessing the non-recurrent Transformer framework, which bolstered BERT’s com-
putational efficiency compared to its LSTM-based predecessors, pre-training BERT on large
textual corpora endowed the model with a profound linguistic expertise, encompassing in-
tricate language patterns and semantics. This pre-training regimen facilitated BERT in cap-
turing contextual nuances comprehensively. The simplicity of BERT fine-tuning, achieved
by appending an affine transformation layer atop BERT’s contextual representations, en-
abled seamless adaptation for classification tasks. This fine-tuning versatility, coupled with
its adeptness in capturing bidirectional contextual cues, ensured its impressive performance
across diverse NLP tasks, catalyzing novel research directions and inspiring the development
of numerous state-of-the-art models and applications in NLP.

The pre-training methodology for BERT was both straightforward and remarkably ef-
fective. It entailed presenting an extensive corpus of text to the model, containing sentences
with masked words. The model’s objective was to predict a probability distribution for each
masked token, indicating the most probable replacement word from its entire vocabulary.
This pursuit, known as masked language modeling, marked a significant departure from
preceding language models that predicted the next word in a sentence. BERT’s masked
language modeling objective facilitated a broader linguistic comprehension by exploring
unseen contexts and completing sentences with missing words. This approach proved piv-
otal in augmenting BERT’s language understanding capabilities and setting it apart from
antecedent models.

1Pre-training was a prevalent technique predating Transformers and was frequently employed in gener-
ating dense embedding vectors (Mikolov et al., 2013; Pennington et al., 2014).
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While BERT represented a watershed moment in natural language processing, it was not
without its limitations. Subsequent research endeavors focused on refining and enhancing
BERT’s performance across various dimensions. These endeavors aimed to improve both
the model’s accuracy and its computational efficiency. The pursuit of these optimizations
was pivotal in rendering pre-trained language models more accessible and viable for real-
world applications, while also propelling the frontier of state-of-the-art performance in NLP
tasks. These iterative enhancements built upon BERT’s foundational framework have led
to a dynamic landscape of language models, fueling ongoing progress and innovation in the
field of natural language processing.

Below, we provide insights into some notable members of the extended BERT family.
It is worth noting that BERT is available in two sizes: base (with 110 million parameters)
and large (with 340 million parameters), and extensions of BERT typically maintain this
structure by offering models of corresponding size unless if the extension specifically targets
optimizing the model size.

• RoBERTa (Liu et al., 2019) introduced larger batch sizes, dynamic masking, and
longer training duration to achieve improved performance over BERT.

• ERNIE (Zhang et al., 2019) integrated external knowledge sources during pre-training
to enhance BERT’s understanding of domain-specific and factual information.

• DistilBERT (Sanh et al., 2019) distilled the knowledge from BERT into a smaller,
more efficient architecture while retaining its performance to facilitate deployment in
resource-constrained environments.

• ALBERT (Lan et al., 2020) addressed BERT’s computational inefficiencies by imple-
menting parameter-sharing techniques, achieving comparable performance with sig-
nificantly reduced model size and computational cost.

• ELECTRA (Clark et al., 2020) introduced a novel pre-training objective called re-
placed token detection, which improved training efficiency while maintaining perfor-
mance comparable to BERT.

• Longformer (Beltagy et al., 2020) adapted the self-attention mechanism to effi-
ciently handle longer sequences, making it suitable for processing documents and
other lengthy text inputs.

• Reformer (Kitaev et al., 2020) introduced reversible layers and locality-sensitive
hashing techniques to enable efficient processing of long sequences while reducing
memory consumption.

• DeBERTa (He et al., 2021) incorporated disentangled attention and enhanced de-
coding mechanisms to enhance BERT’s contextual understanding and generation ca-
pabilities.
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2.2.2 Causal Language Models

While BERT rose to prominence in the early stages following the advent of the Transformer
architecture, GPT (Generative Pre-Training; Radford et al., 2018) introduced an alter-
native approach by employing pre-training with a decoder-only Transformer architecture,
albeit without resorting to masked language modeling. Instead, GPT continued to refine
the conventional next-word prediction (sentence completion) paradigm, akin to earlier lan-
guage models. In contrast to BERT’s emphasis on task-specific fine-tuning, GPT proposed
to address various NLP tasks, including classification, entailment, sentence similarity, and
question answering, through the sentence completion objective. This strategy necessitated
multiple iterations of GPT models to match the performance of BERT-style models, but
it succeeded in garnering significant attention and interest within the NLP community at
the time of composing this chapter. Despite charting a divergent course from BERT, GPT’s
adaptability in tackling a spectrum of NLP tasks stands as a noteworthy accomplishment,
solidifying its status as a significant contender in the realm of language models.

A critical point of comparison between BERT-style models and GPT-style models lies
in their approach to contextual understanding and generation in inference. BERT, with its
bidirectional encoding and focus on fine-tuning, excels in tasks requiring a comprehensive
understanding of input context and precise classification, making it well-suited for tasks like
sentiment analysis and named entity recognition (Section 2.3). In contrast, GPT, with its au-
toregressive nature and emphasis on sentence completion, exhibits a strength in generating
coherent and contextually appropriate text2, making it particularly adept in tasks like text
generation and dialogue systems. This distinction underscores the importance of considering
task-specific requirements and objectives when selecting between these two paradigms.

Below, we provide insights into some of the early pre-trained causal language models.

• GPT-1 (Radford et al., 2018) introduced the concept of autoregressive language mod-
eling at scale, demonstrating impressive results in generating coherent and contextu-
ally relevant text across various domains. However, it faced limitations in capturing
long-range dependencies due to its unidirectional architecture, prompting subsequent
iterations to explore solutions for enhanced context understanding.

• GPT-2 (Radford et al., 2019) represented a significant leap in scale and performance,
boasting a larger model size and dataset, which resulted in more fluent and diverse text
generation capabilities. Despite its success, concerns were raised about the potential
misuse of GPT-2 for generating misleading or harmful content, leading to a phased
release strategy by its creators3.

2For this reason, they are also referred to as generative language models.

3This strategy influenced subsequent iterations, wherein model weights were not publicly released, and
access was restricted to APIs.
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2.2.3 Large Language Models

Decoder-only Transformer-based language models underwent significant advancements with
GPT-3 (Brown et al., 2020), which advocated scaling the model parameters by 10 times more
than previous dense language models, reaching 175 billion parameters4. GPT-3 catalyzed a
series of studies that focused on enlarging the parameter size of the model beyond what was
previously considered feasible, while also leveraging larger training datasets in accordance
with the scaling laws of neural language modeling (Kaplan et al., 2020a).

Large language Models (LLMs), like their predecessor causal language models, relied on
the next token prediction objective for training. However, they underwent instruction tuning
(Ouyang et al., 2022) and human preference alignment (Bai et al., 2022), rendering them
much more adept than mere sentence completion tools. As we compose this dissertation,
the term ‘large’ in large language models refers to the parameter size of the neural language
model, which can reach approximately one trillion parameters5. These models are exceed-
ingly costly to train, but their development is motivated by their remarkable capabilities,
as they are typically trained on vast datasets comprising natural language and source code.

These models fall into two categories: closed-source (developed and maintained by in-
dustrial companies like OpenAI, Meta, Google, Amazon, etc.) and open-source (publicly
available or open weight). Closed-source large language models typically offer access via
API, with costs based on the number of input and output tokens exchanged. Despite their
expense, they often boast ongoing enhancements, leading to better performance. However,
challenges arise from the lack of transparency regarding their parameter size, internal archi-
tecture, and training data specifics, complicating the attribution of performance successes or
failures, often relying on speculative inference rather than empirical validation in research.
Below, we review a few such language models.

• GPT-3 (Brown et al., 2020) continues the GPT lineage by introducing the concept of
large language models, boasting a 175-billion parameter model, ten times larger than
its predecessors.

– GPT-3.5 representes a significant milestone in the evolution of large language
models, and introduces enhancements to the architecture and training methodol-
ogy, potentially surpassing GPT-3’s parameter count and refining its performance
across various natural language understanding tasks. Commonly, when mention-

4Although this approach significantly improved the representational capabilities of large language models
compared to both causal and bidirectional language models, it also led to higher computational costs, thereby
intensifying research budget constraints.

5For a chronological overview of large language models exceeding 10 billion parameters, readers are
directed to (Zhao et al., 2023).
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ing GPT-3, it implicitly refers to GPT-3.5 due to its widespread adoption and
improved capabilities.

• GPT-4 (OpenAI, 2023) is the last member of the GPT lineage (at the time of writing
this dissertation) with undisclosed specifications. However, considering the scale of
GPT-3, it is reasonable to speculate that GPT-4 exceeds 200 billion parameters, with
discussions hinting at a potential implementation as a mixture of experts model6.

• Claude7, developed by Anthropic, is another closed-source large language model
known for its robust performance and innovative training techniques, although specific
details regarding its architecture and parameter count remain undisclosed.

• Gemini (Team et al., 2023) is a multimodal large language model from Google Deep-
Mind in three variants: Ultra (largest), Pro, and Nano (smallest), positioned as a
contender against GPT-4.

Open-source large language models are publicly available for download and local execu-
tion. Such models are quite easy to fine-tune using parameter efficient fine-tuning techniques
(e.g. Hu et al., 2021). Below, we review a few such language models.

• LLaMA-1 (Touvron et al., 2023a) was initially offered in 6.7B, 13B, 32.5B, and 65.2B
parameter sizes, each varying in the number of heads in the multi-head attention mech-
anism: 32, 40, 52, and 64, respectively, contrasting with the original Transformer’s 8
heads. It diverged from the conventional Transformer design through its utilization of
a modified multi-head attention mechanism known as grouped multi-query attention
(Ainslie et al., 2023). As well, LLaMA employed token representations with dimen-
sions tailored to its model size, as exemplified by the 6B model’s 4096-dimensional
tokens, expanding to 5120 dimensions for the 13B model, 6656 for the 32.5B variant,
and 8192 for the largest 65.2B model, in contrast to the fixed 512-dimensional token
representation in the original Transformer architecture. Lastly, LLaMA used a con-
text length of 2048 tokens, and distinguished itself by employing dynamic rather than
static input embeddings, which were learned during the training process.

• LLaMA-2 (Touvron et al., 2023b), available in 7B, 13B, and 70B size, extended the
context length to 4096 tokens, double that of LLaMA-1, and benefited from more
robust training, having been pre-trained on 40% more data. Furthermore, the in-
corporation of reinforcement learning from human feedback (RLHF; Christiano et al.,
2017; Bai et al., 2022) in fine-tuning LLaMA-2’s chat models enhanced alignment with
human expectations, improving the quality and relevance of generated responses.

6Referenced from https://en.wikipedia.org/wiki/GPT-4#Background, accessed on May 9, 2024.

7https://www.anthropic.com/news/claude-3-family, accessed on May 9, 2024.
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• LLaMA-38, the latest member of the LLaMA lineage (at the time of writing this
dissertation), introduces 8B, 70B and 400B sized models, and increases the maximum
context window size to 8192 tokens while training on a substantially larger dataset
of 15 trillion tokens, emphasizing quality and incorporating diverse language data
beyond English. The training of LLaMA-3 surpasses conventional practices by training
approximately 75 times beyond the Chinchilla (Hoffmann et al., 2022) compute optimal
point for an 8B model, resulting in a highly capable yet comparatively smaller model.

• Mixtral-8x7B (Jiang et al., 2024) represents a novel approach to large language
modeling, utilizing a sparse mixture of 8 expert models within its architecture. Despite
its name suggesting a 56 billion parameter model, Mixtral-8x7B contains 46.7 billion
parameters, with shared modules such as self-attention among its expert sub-networks.
This sparse activation scheme enables efficient inference, with only 2 experts active
at any given time, resulting in faster performance on consumer hardware compared
to models of similar size. Mixtral’s design encourages computational and parameter
efficiency while promoting specialized feature learning for diverse inputs, leading to
improved generalization and performance across various tasks, including multilingual
and coding domains.

2.3 Information Extraction

Information Extraction (Cowie and Lehnert, 1996; Grishman, 2019) focuses on extracting
structured information from unstructured text, serving as a means for transforming raw
text into actionable knowledge, thereby enhancing language comprehension and reasoning
capabilities. This process operates on documents that follow similar templates but diverge
in content, enabling automatic extraction of relevant facts. PLUM (Probabilistic Language
Understanding Model; Ayuso et al., 1992) was one of the early applications contributing to
the birth of information extraction.

A spectrum of tasks falls under information extraction. Among these, we highlight a
number of key tasks:

• Named Entity Recognition (NER; Tjong Kim Sang and De Meulder, 2003; Nadeau
and Sekine, 2007; Lample et al., 2016; Wang et al., 2021, 2023): Identifying and
classifying entities mentioned in the text, such as names of persons, organizations,
locations, dates, and numerical expressions.

• Entity Linking (Hoffart et al., 2011; Kolitsas et al., 2018; Shavarani and Sarkar,
2023): Extending the scope of NER to identify and classify any entity referenced in text
by associating it with entries in a knowledge base. Unlike NER, which typically deals

8https://llama.meta.com/llama3/.
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with a limited number of classes, entity linking entails matching entities to hundreds
of thousands of entries in the knowledge base. In Section 4.2, we get into more details
and provide a complete literature review on recent entity linking contributions.

• Relation Extraction (Miller et al., 1998; Zelenko et al., 2003; Miwa and Bansal,
2016; Ma et al., 2023): Determining the relationships between entities mentioned in
the text, such as MergerBetween(company1, company2, date) from news articles
reporting corporate mergers.

• Event Extraction (Grishman et al., 2005; Ji and Grishman, 2008; Wang et al., 2022;
Huang et al., 2023): Identifying and extracting events or activities described in the
text, along with relevant attributes such as time, location, and outcome.

• Coreference Resolution (Carter, 1987; Ng, 2010; Poesio et al., 2023): Resolving
references to the same entity across the text, ensuring consistency and accuracy in
the extracted information.

• Template Filling (Sundheim, 1991; Du et al., 2021): Populating predefined templates
with information extracted from the text, where each template represents a specific
structure or pattern of information.

The task of Part-of-Speech tagging involves attributing grammatical categories, including
nouns, verbs, adjectives, and more, to each word within a sentence. While not directly clas-
sified under information extraction, it has proven beneficial to various language processing
tasks, including information extraction (e.g. Suzuki et al., 2018; Ali et al., 2021, inter alia).
Its applicability in information extraction roots in two primary factors: first, both tasks
can be represented as sequence tagging, and second, when integrated, they can mutually
benefit from transfer learning. As an example, the recognition of nouns in part-of-speech
tagging may contribute to the identification of named entities in NER. In the next section,
we focus on sequence labeling which serves as a central theme throughout this dissertation,
and explore structured prediction as our approach to modeling sequence labeling tasks.

2.4 Structured Prediction

Structured prediction is a machine learning task focused on mapping a sequence of inputs
x1, ..., xn to a corresponding sequence of outputs y1, ..., yn across an expansive output space,
wherein each prediction is interconnected with others. Earlier studies in the literature uti-
lized techniques such as HMM (Rabiner, 1989), CRF (Lafferty et al., 2001), and structured
perceptron (Collins, 2002) to model language processing tasks through structured predic-
tion (Dev et al., 2021). Subsequent to the emergence of pre-trained language models, a novel
paradigm for structured prediction arose, wherein an encoder-only Transformer-based lan-
guage model was employed for feature extraction, while a linear layer atop it facilitated
the mapping of these extracted features into the output space (Figure 2.2). The inherent
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Figure 2.2: A generic structured prediction model.

Encoder-only Transformer (e.g. BERT)

Linear Transformation
encoder hidden size × Class size of Y

x1 x2 ... xn−1 xn

y1 y2 ... yn−1 yn

capture of inter-label connectivity was posited to occur through the multi-head attention
modules embedded within the language model.

BERT proposed employing this architecture for NER as an example, and soon various
sequence labeling extensions such as part-of-speech tagging (Figure 2.3) were proposed. This
method was compelling due to its amalgamation of the ease of utilizing a potent pre-trained
model as a feature extractor with its linguistic comprehension accuracy, particularly evident
in scenarios featuring ambiguity, as illustrated by the prediction of the verb part-of-speech
for the word “flies” which could also be construed as a noun when considered in isolation,
regardless of its surrounding predictions in Figure 2.3.

Figure 2.3: Example application of structured prediction for part-of-speech tagging.

Encoder-only Transformer (e.g. BERT)

Linear Transformation
encoder hidden size × Number of POS tags

Time flies like an arrow

NN VBZ IN DT NN

Structured prediction is broadly applicable across numerous natural language process-
ing tasks, such as named entity recognition (Wang et al., 2021), relation extraction (Han
et al., 2019; Wang et al., 2022), event extraction (Li et al., 2013), coreference resolution
(Liu et al., 2022), dependency parsing (Zhou et al., 2015), and semantic parsing (Xiao
et al., 2016). In this dissertation, we focus on the utilization of structured prediction in
modeling complex language processing tasks including machine translation, entity linking
and question answering, with particular emphasis on compute efficiency while striving for
enhanced accuracy in results.
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Part II

Contributions
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Chapter 3

Structured Prediction for Machine Translation

In this chapter, we study the application of structured prediction (Section 2.4) to improve
the linguistic knowledge in neural machine translation. Notably, this chapter reproduces
results which we have originally published in (Shavarani and Sarkar, 2021).

3.1 Motivation

Probing studies into large contextual word embeddings such as BERT have shown that
these deep multi-layer models essentially reconstruct the traditional NLP pipeline captur-
ing syntax and semantics (Jawahar et al., 2019); information such as part-of-speech tags,
constituents, dependencies, semantic roles, coreference resolution information (Tenney et al.,
2019a,b) and subject-verb agreement information can be reconstructed from BERT embed-
dings (Goldberg, 2019). We wish to extract the relevant pieces of linguistic information
related to various levels of syntax from BERT in the form of dense vectors and then use
these vectors as linguistic “experts” that machine translation models can consult during
translation.

But can syntax help improving machine translation? Linzen et al. (2016); Kuncoro et al.
(2018); Sundararaman et al. (2019) have reported that learning grammatical structure of
sentences can lead to higher levels of performance in NLP models. In particular, Sennrich
and Haddow (2016) show that augmenting translation models with explicit linguistic anno-
tations improves translation quality.

In this direction, Sundararaman et al. (2019) identify part-of-speech, case, and subword
position1 as essential linguistic information to improve the quality of both BERT and the
translation model. They extract each linguistic feature using the Viterbi output of separate
models, embed the extracted linguistic information (similar to trained word embeddings)
and append these vectors to the token embeddings.

We approach this problem from the novel perspective of extracting linguistic information
encoded in BERT using a structured prediction framework and injecting such information
into the translation model.

1A subword is a tokenization unit smaller than a word and larger than a character, aiding Transformer
models in segmenting unknown words into recognizable units for processing. See (Sennrich et al., 2016) for
more details of an example such segmentation.
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3.2 Neural Machine Translation with BERT

Machine translation is the problem of transforming an input utterance sequence X in source
language lf into another utterance sequence Y (possibly with varying length) in target lan-
guage le. Machine translation models search among all possible sequences in target language
to find the most probable sequence based on the probability distribution of Equation 3.1.

P (y|X, y ∈ le) =
|max len|∏

i=0
p(yi|X, y0, ..., yi−1) (3.1)

Neural machine translation (NMT) tries to model the probability distribution p(y|X)
using neural networks by taking advantage of deep learning techniques. Transformers are
encoder-decoder architectures that are commonly used for translation tasks. In Transform-
ers, the input (in one-hot format) is passed through N layers of encoder and N layers of
decoder. In each layer, the layer input passes through multiple attention heads (h heads;
each considered a specialist in a different sentence-level linguistic attribute) and then gets
transformed to the input for the next layer using a two layer feed-forward perceptron module
with input size of dmodel and hidden layer size of dff. The final probability distribution p(y|X)
is generated using an affine transformation applied to the output of the last feed-forward
module in the N th decoder layer.

Effective application of BERT in machine translation has been studied in a number of
recent research projects. Clinchant et al. (2019) replace the encoder token embeddings of the
Transformer model with BERT contextual embeddings. They also experiment with initial-
izing all the encoder layers of the translation model with BERT parameters, in which case
they report results on both freezing and fine-tuning the encoder parameters during train-
ing. In their experiments, BERT embeddings can help with noisy inputs to the translation
model, but otherwise do not help improving translation performance.

Imamura and Sumita (2019) suggest that replacing the encoder layer with BERT em-
beddings and fine-tuning BERT while training the decoder leads to a catastrophic forgetting
phenomenon where useful information in BERT is lost due to the magnitude and number of
updates necessary for training the translation decoder and fine-tuning BERT. They present
a two-step optimization regime in which the first step freezes the BERT parameters and
trains only the decoder while the next step fine-tunes the encoder (BERT) and the de-
coder at the same time. Yang et al. (2020) also try to address the catastrophic forgetting
phenomenon by thinking of BERT as a teacher for the encoder of the neural translation
model (student network). They propose a dynamic switching gate implemented as a linear
combination of the encoded embeddings from BERT and the encoder of the translation
model. Zhang et al. (2021) adopt a similar approach, employing a three-phase optimiza-
tion strategy that gradually unfreezes model parameters to address catastrophic forgetting
during fine-tuning.
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Weng et al. (2019) use multiple multi-layer perceptron (MLP) modules to combine the
information from different layers of BERT into the translation model. To make the most out
of the fused information, they also alter the translation model training objective to contain
auxiliary knowledge distillation (Hinton et al., 2015) parts concerned with the information
coming from the language model. Zhu et al. (2020) inject BERT into all layers of the
translation model rather than only the input embeddings. Their model uses an attention
module to dynamically control how each layer interacts with the representations. In both
of these works, the training of the Transformer for translation becomes quite brittle and is
prone to diverge to local optima.

3.3 Linguistic Aspect Extraction from BERT

Since BERT contextual embeddings contain a variety of information (linguistic and non-
linguistic), extraction of relevant information plays an important role in further improve-
ment of the downstream tasks. In the rest of this section, we define aspect vectors as single-
purpose dense vectors of extracted linguistic information from BERT, discuss how aspect
vectors can be extracted using structured prediction, and explain how to integrate aspect
vectors into the translation model.

3.3.1 Aspect Vectors

To start the information extraction process, we must first select a limited (desired) set
of linguistic attributes to identify in BERT embeddings. This attribute set can contain a
number of linguistic aspects (e.g. part-of-speech). Each linguistic aspect itself will be defined
over a possible aspect tag set (e.g. the set of {NOUN, ADJ, ...} in part-of-speech). We show
a linguistic attribute set with A, show a generic aspect with a and point to its relative tag
set with ta.

We choose our linguistic attribute set (A) as Sundararaman et al. (2019) suggest, how-
ever, we replace ‘case’ with ‘word-shape’2 since we believe the complete shape of the word
is much more informative specially in subword settings. In addition, we consider a two-level
hierarchy in part-of-speech tags to benefit from both higher accuracy in exploring the syn-
tactic search space and lower model confusion in cases where the fine-grained tags are not
helpful. Therefore, we consider coarse-grained and fine-grained part-of-speech (CPOS and
FPOS), word-shape (WSH), and subword position3 (SWP) to form our experimental lin-
guistic attribute set (A). Other linguistic attributes such as dependency parses, sentiment,
or the key information of the source text (Hu et al., 2023) could be considered as aspects
in our model but we leave them for future work.

2Representing capitalization (changing alphabet to x or X), punctuation, and digits (changing digits to
d). As an example for word-shape, the subword ##arxiv. in the token ‘myarxiv.org’ will turn to ##xxxxx..

3Encoding the word with one of the three labels “Begin”, “Inside”, or “Single”.
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Given the definition of a linguistic aspect and inspired by the information bottleneck
idea (Tishby and Zaslavsky, 2015), we define an aspect vector as a single-purpose dense
vector extracted from BERT and containing information about a certain linguistic aspect
of a particular (subword) token in the input sequence. Aspect vectors can be interpreted as
feature values equivalent to a specific key (aspect).

3.3.2 Aspect Vector Extraction

For each embedding vector E and linguistic aspect a, we define Ma as an aspect-extraction
function where ea = Ma(E) is a single-purpose dense vector containing maximum aspect
information and minimum irrelevant other information. Figure 3.1 demonstrates a number
of such aspect extraction functions besides each other.

Figure 3.1: Aspect extraction from the BERT embedding of the subword _uar in the German sen-
tence: Bucht die besten Hostels in Ouarzazate über Hostelsclub (with English translation:
Book the best hostels in Ouarzazate via Hostelsclub).

BERT Embedding

CPOS FPOS WSH SWP left-over

Bucht die besten Host _els in O _uar _za _za _te über Host _els _club

We ensure the aspect encoding power of ea by retrieving its equivalent tag in ta using a
classifier. The aspect prediction loss for a linguistic attribute set A of size n can be calculated
as the average cross entropy loss (LCE) between the classifier prediction and the expected
aspect tags for each aspect (Equation 3.2). Figure 3.2 depicts the relation of the extracted
vectors and the aspect classifiers.

La = 1
n

|n|∑
i=0

Li
CE (3.2)

We also ensure information integrity4 of ea by concatenating all the aspects (in ad-
dition to a “left-over” aspect equivalent to all the other non-interesting information) and
reconstructing the original embedding vector E from them5 in reconstruction vector R. The
reconstruction loss (Lr) for the extracted aspect vectors can be calculated as the euclidean
distance of the reconstruction vector R and the original embedding vector E (Equation
3.3). Figure 3.3 demonstrates this embedding reconstruction process.

4We don’t expect Ma to change the information inside E but rather to extract the relevant information.

5This idea is analogous to stack-propagation (Zhang and Weiss, 2016) in which propagating the informa-
tion loss for two tasks helps improving the quality of the encoded representations.
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Figure 3.2: The extracted aspect vectors pass through the aspect classifiers to assure high correlation
between the extracted information and the expected aspect tags.

BERT Embedding

CPOS FPOS WSH SWP left-over

Bucht die besten Host _els in O _uar _za _za _te über Host _els _club

WSH
Classifier

SWP
Classifier

FPOS
Classifier

CPOS
Classifier

Lr = ||R − E||2 (3.3)

Figure 3.3: An auto-encoder structure ensures the integrity of the information relayed through
extracted aspect information.

BERT Embedding

CPOS FPOS WSH SWP left-over

Reconstructed BERT Embedding

Bucht die besten Host _els in O _uar _za _za _te über Host _els _club

In addition, since our aspect extractor is similar in architecture to a multi-head attention
module (with a difference in the fact that we know for what exactly each head will be
responsible), to prevent learning redundant representations (Michel et al., 2019), we add the
average euclidean similarity (Ls) of each pair of aspect vectors to the training loss function
(Equation 3.4). Figure 3.4 demonstrates the aspect vector pairs considered in calculation of
the dissimilarity training objective.

Ls = 1 −

 1
n(n− 1)

|n|∑
i=0

|n|∑
j ̸=i=0

||ei − ej ||2
 (3.4)

The aspect extractor will be trained over the accumulation of the three mentioned loss
components (Equation 3.5).
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Figure 3.4: Each pair of aspect vectors (except the left-over aspect) contributes in calculation of the
dissimilarity training objective.

BERT Embedding

CPOS FPOS WSH SWP left-over

Reconstructed BERT Embedding

Bucht die besten Host _els in O _uar _za _za _te über Host _els _club

Lfe = La + Lr + Ls (3.5)

As another important point, a BERT model has multiple encoder layers as well as an
embedding layer. Choosing the proper layer which contains all of our desired aspects is not
simply possible since different layers specialize in different linguistic aspects (Jawahar et al.,
2019; Tenney et al., 2019a).

Therefore, as Peters et al. (2018) suggest, we define BERT embedding vector E as a
weighted sum of all BERT layers (of size ℓ) using Equation 3.6 where α weights are learnable
parameters and will be trained along with the other aspect extractor parameters.

E =
ℓ∑

j=0
αjEBERT

j (3.6)

3.3.3 Integrating Aspect Vectors into the Translation Model

Once the aspect vectors are created, we discard the classifiers and the reconstruction layers
and place the encoder part of our trained aspect extractor (the mapping from BERT em-
beddings to aspect vectors) in an input integration module designed to augment the neural
translation model input with aspect vectors6.

6We use the same BERT subword model to provide our translation model with subword tokens.
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Figure 3.5: Integration of Extracted Aspect Vectors into the machine translation framework. The
right hand side part of this figure is taken from Vaswani et al. (2017).

Positional
Encoding

Positional
Encoding

Input
Embedding

Output
Embedding

OutputsInputs

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Feed
Forward

MultiHead
Attention

MultiHead
Attention

Feed
Forward

Masked
MultiHead
Attention

Softmax

Linear

Output
Probabilities

N× N×

MLP

cat

TokenEmbsLingEmbs

Dimension Transformation

Linguistic
Embedding

Linguistic
Embedding

Token
Bert Embedding

CPOS FPOS WSH SWP

The integration module (constructed using a two layer perceptron network) receives
the concatenated aspect vectors (we call this concatenated vector a linguistic embedding7)
and the token embedding (inherited from the Transformer model), and maps the linguistic
embedding into a vector of the same size as the token embedding. Then, it projects the
concatenation of both embeddings to a vector with the same size as the token embedding
of the original Transformer model8. Figure 3.5 illustrates the process, wherein the linguistic
embedding module functions as a structured prediction-based unit that maps each subword
in the input to a dense vector representing its extracted linguistic embedding. Each aspect
vector extracted in this module encapsulates the corresponding aspect information for the
subword, taking into account the adjacent subwords’ aspect content.

3.4 Experiments and Results

In this section, we initially examine our designed aspect extractor and report its classifica-
tion accuracy scores. Next, we integrate the extracted aspect vectors into the translation

7This embedding vector can be similar to what a factor token contains in Factored-NMT (Garcia-Martinez
et al., 2016) with a difference that it is generated in the space of linguistic aspects and does not need an
embedding layer.

8This step is necessary to prevent any change in other parts of the model which would make comparison
of the results unfair due to effects on the number of parameters and the learning capability of the model.
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framework as explained in Section 3.3.3 and study the effects of integrated vectors on the
performance of the models.

3.4.1 Data

We choose three German (which has explicit and nuanced linguistic features) to English
datasets in different data sizes9 to examine our proposed framework.

Multi30k10 (M30k; our small dataset) contains a multilingual set of image descriptions
in German, English and French. For this reason, we also consider experimenting on German
to French as our second small dataset. The M30k data contains 29K training sentences,
1014 validation sentences (val) and 1000 test sentences (test2016).

IWSLT11 (our medium sized dataset; Cettolo et al., 2012) contains sentences that are
quite different from M30k since they are composed from the transcriptions of TED talks
as well as dialogues and lectures12. The IWSLT data contains 208K training sentences, 888
validation sentences (dev2010) and multiple test sets (tst2010 to tst2015 with 1568, 1433,
1700, 993, 1305, and 1080 sentences, respectively).

WMT13 (our large dataset with 4.5M training sentences) contains sentences from the
proceedings of the European Parliament as well as web crawled news articles. We remove
0.05% of the training data (2290 sentences; lines with numbers divisible by 2000) and use
it as the validation set (we call it wmt_val) and take newstest data from 2014 to 2019 as
our test sets (with 3003, 2169, 2999, 3004, 2998 and 1997 sentences, respectively).

We remove train data sentences longer than 100 words and uncase and normalize both
side sentences using MosesPunctNormalizer14 before tokenization. The reference side of
the test data remains unaltered in all the steps of our experiments.

3.4.2 Linguistic Aspect Vector Extraction

In this section, we examine our linguistic aspect extractor training procedure and analyze
the quality of the extracted aspect vectors.

9In this chapter, we categorize dataset sizes into three groups: small, medium, and large. We define small
as a dataset with tens of thousands of parallel sentences, medium as one with hundreds of thousands, and
large as a dataset with millions of parallel sentences.

10AKA Flickr30K provided in task 1 of WMT17 multimodal machine translation.

112017 was the last year that the data for this task got updated.

12While the talks are quite polished, they still contain many verbal structures and sometimes even sounds
(e.g. “Imagine an engine going clack, clack, clack, clack, clack, clack, clack.”).

13Europarl+CommonCrawl+NewsCommentary. please note that in the later years this training set re-
mained the same, but ParaCrawl data was added to it. We do not use ParaCrawl data since it is quite noisy
and we aim to limit the effects of uncontrolled variables in our training data.

14https://github.com/alvations/sacremoses/.
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Subword Level Word Level

CPOS FPOS WSH SWP #tokens CPOS FPOS WSH #tokens

M30k 96.88 96.18 99.79 99.93 16096 97.95 97.34 99.74 12823
IWSLT 92.69 90.48 99.73 97.14 22687 94.84 93.07 99.69 19039
WMT 92.64 91.60 97.74 98.94 70139 94.86 94.01 97.38 55135

Table 3.1: F-1 scores acquired after training the aspect extractor on German side of parallel data
and passing the validation sets of each data set through trained aspect extractors. The #tokens
column shows the number of tokens in the validation set.

We use the SpaCy German tagger model to acquire our intended linguistic aspect labels.
Since SpaCy is trained on word-level while BERT is trained on subword level, we align the
sequences using a heuristic divide-and-conquer monotonic alignment algorithm which finds
the parts of the two sequences that are certainly equal and aligns the parts in between using
recursive calls to itself. The fine-grained part-of-speech tagger in SpaCy15 is pre-trained on
TIGER Corpus (Smith et al., 2003) and inherits its 55 fine-grained tags from TIGER
treebank. The coarse-grained SpaCy part-of-speech tagger has been trained by defining
a direct mapping from 55 tags of the TIGER treebank to the 16 tags in the Universal
Dependencies v2 POS tag set16.

We use a 12-layer German pre-trained BERT base model for encoding the source sen-
tences in aspect extractors. We use an uncased model as our translation model performs
on lowercased data and the results are recased using the Moses recaser so that the results
are cased BLEU scores comparable to other systems. We pass the BERT-encoded source
sentences through a single perceptron middle layer of size 1000. We divide the output of
this layer to ‘number of aspects + 1 ’ splits to form our desired aspect vectors (of size 200).

We implement our aspect extractors using pytorch and initialize them using Xavier
initialization (Glorot and Bengio, 2010). We perform backpropagation using SGD (initial
learning rate of 0.05, momentum value of 0.9, gradient clip norm of 5.0). To cope with
inequality in the frequency of the different tags in each aspect tag set (ta; Section 3.3.1),
we practice weighted backpropagation with weights proportional to the inverse frequency of
each tag. We decay learning rate with a factor of 0.9 when the loss value stops improving.

We train three different aspect extractors, one for each dataset and feed in the source
sentences of the dataset to our model in batches of size 32 for 3 epochs. Table 3.1 shows F-1
scores of classifying the validation set data using different aspect vectors after training the
aspect extractors on the train set sentences. Please note that for calculating the word-level
scores, in cases of disagreement between different subword tokens, the subword prediction
of the first subword token has been counted as the prediction for the word label.

15At the time, SpaCy reported 96.52% accuracy for this model.

16https://universaldependencies.org/v2/postags.html.
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We also validate our trained (on M30k, IWSLT, and WMT) aspect extractors against
the manual annotations of TIGER treebank with which the SpaCy fine-grained part-of-
speech tagger has been trained. We train an extra aspect extractor using the train set of
TIGER corpus and test all four trained aspect extractors against TIGER data test set17.
This experiment evaluates the absolute power of our structured prediction based aspect
extractors in performing the aspect classification task. Please note that our goal in this
experiment is not to achieve the state-of-the-art fine-grained part-of-speech tagging results
as our aspect extractors receive their input from BERT and do not directly access the
tagged input sentences. Table 3.2 contains the results of comparison between predictions of
different aspect extractor classifiers and TIGER gold labels.

Aspect Extractor
Training Data FPOS SWP

M30k 79.39 90.63
IWSLT 77.80 88.34
WMT 82.13 91.42
TIGER 84.64 92.64

Table 3.2: F-1 scores of fine-grained part-of-speech prediction of TIGER corpus test data (BERT
encoded) fed to each of the trained aspect classifiers. The scores are calculated over a total of 7516
subword tokens in 358 test sentences of TIGER. Extractors trained on M30k, IWSLT, and WMT
have not been provided with any part of TIGER before evaluation.

Uniqueness of Information in Linguistic Aspect Vectors. Considering the high
F-scores for each aspect category in each dataset (Table 3.1), we can conclude that our
aspect extractor maximizes the relevant information extraction from BERT embeddings.
The loss in Equation 3.4 maximizes the distance between aspect vectors. To test whether
this leads to a diverse set of aspect vectors, each specialized to their own linguistic attributes,
we consider each aspect category a, after training the aspect extractors. We take each of
the other extracted aspect vectors a′ (except the “left-over” vector) and use each of them to
train a new classifier that predicts the right class for category a based on aspect vector a′.
This will test the correlation between the information in aspect vectors a′ and the tags in
category a. If the classification scores for this counterfactual test are high then our model has
failed in fine-tuning each aspect vector to predict a particular linguistic aspect. We compare
the classification scores to a trivial baseline: always predict the most frequent class. Table
3.3 shows the results of this counterfactual test on the aspect extractor trained on TIGER
data. We can see that the average F-1 scores are very low when we use counterfactual aspect
vectors to predict a linguistic aspect on which it was not fine-tuned (e.g. use aspect vector

17We use german_tiger_test_gs.conll in the version of TIGER released in 2006 CoNLL Shared Task -
Ten Languages.
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TIGER test Subword Level

CPOS FPOS WSH SWP

most frequent
class NOUN NN xxxx single

percentage
in total 27.12 27.07 39.07 59.92

average
classification F-1 1.89 0.23 12.20 42.97

#tokens 7516 × 3 = 22548
Table 3.3: Classification scores of each aspect classifier when fed with other extracted aspect vectors.
We expect the F-1 scores to be low so we can conclude that our aspect extractor truly excludes
irrelevant information from each vector.

Dataset WMT IWSLT M30k

N 6 6 4
dmodel 512 256 256
dff 2048 512 512
h 8 4 4
opt factor 1 2 1
opt warmup 4000 8000 2000
grad accumulation 8 2 1
batch size∗ 4096 4096 2560
epochs 7 20 20

Table 3.4: The Transformer model settings for each dataset given the training data size. “N” is the
number of layers in both encoder and decoder. Please see Section 3.2 for more information about
model parameters.
∗The maximum number of subword tokens per batch.

trained on part-of-speech to predict word shape). This shows that our training method
fine-tunes each aspect vector to its linguistic task.

To validate the loss in Equation 3.3, we calculate the average euclidean distance of
the aspect extractor reconstructed vectors and the original BERT embedding vectors18 for
M30k German to English dataset. We unit normalize each of the vectors for a score in [0, 1].
The average euclidean distance value of 0.1863 tells us that the reconstruction component
of the aspect extractor is capable of reconstructing vectors that are close to the original
embedding vectors.
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a) M30k German to English German to French

val test2016 #param runtime val test2016 #param runtime

Vaswani et al. (2017) 39.63 38.35 9.5 M 84 min 31.07 30.29 9.4 M 93 min
Sundararaman et al. (2019) 40.03 38.32 13.9 M 514 min 32.55 32.71 13.6 M 504 min
Clinchant et al. (2019)

(BERT Freeze)
40.07 39.73 9.1 M 99 min 33.83 33.15 9.0 M 104 min

Shavarani and Sarkar (2021)
+M30k asp. vectors

40.47 40.19 10.1 M 104 min 34.45 34.42 9.9 M 108 min

Shavarani and Sarkar (2021)
+WMT asp. vectors

38.72 41.53 10.1 M 102 min 34.73 34.28 9.9 M 118 min

b) IWSLT dev2010 tst2010 tst2011 tst2012 tst2013 tst2014 tst2015 #param runtime

Vaswani et al. (2017) 27.69 27.93 31.88 28.15 29.59 25.66 26.76 18.4 M 172 min
Sundararaman et al. (2019) 29.53 29.67 33.11 29.42 30.89 27.09 27.78 28.9 M 1418 min
Clinchant et al. (2019)

(BERT Freeze)
30.31 30.00 34.20 30.04 31.26 27.50 27.88 18.0 M 212 min

Shavarani and Sarkar (2021)
+IWSLT asp. vectors

29.03 29.17 33.42 29.58 30.63 26.86 27.83 18.9 M 214 min

Shavarani and Sarkar (2021)
+WMT asp. vectors

31.22 30.82 34.79 30.29 32.34 27.71 28.40 18.9 M 211 min

c) WMT wmt_val nt2014 nt2015 nt2016 nt2017 nt2018 nt2019 #param runtime

Vaswani et al. (2017) 28.96 26.91 26.93 31.42 28.07 33.56 29.77 68.7 M 35 h
Sundararaman et al. (2019) 28.56 27.80 26.93 30.44 28.63 33.87 30.48 93.8 M 258 h
Clinchant et al. (2019)

(BERT Freeze)
28.63 27.54 27.15 31.69 28.30 33.89 31.48 69.1 M 33 h

Shavarani and Sarkar (2021)
+WMT asp. vectors

28.98 28.05 27.58 32.29 29.07 34.74 31.48 70.3 M 46 h

Table 3.5: Evaluated cased Bleu score (calculated using mteval-v14.pl script) results on M30k,
IWSLT, and WMT datasets. #param represents the number of trainable parameters (size of BERT
model parameters [110.5M] has not been added to the model size for the aspect augmented and bert-
freeze models since BERT is not trained in these settings). runtime is the total time the training
script has ran and includes time taken for reading the data and training the model from scratch
(iterating over the instances for all the epochs).
All the baseline results are achieved using our re-implementation of the mentioned papers.
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3.4.3 Linguistic Aspect Integrated Machine Translation

After confirming the adequacy and uniqueness of linguistic information in aspect vectors,
we integrate the encoder part of aspect extractors into the translation model and perform
translation experiments on M30k, IWSLT, and WMT datasets.

We implement our baseline Transformer model using the guidelines suggested by Rush
(2018) in our translation toolkit SFUTranslate19 and extend it for implementing the aspect-
augmented model as well as the syntax-infused Transformer and Transformer with bert-
freeze input setting. Table 3.4 provides the configuration settings for each of the datasets
used in our experiments.

We use the pre-trained WordPiece20 (Schuster and Nakajima, 2012) tokenizer pack-
aged and shipped with BERT (containing 31,102 subword tokens for German language)
to tokenize the source side data, and tokenize the target side data with MosesTokenizer21

followed by the same WordPiece tokenizer model, trained on the target data, to split the
target tokens into subword tokens. We set the target side WordPiece vocabulary size to
30,000 subwords for English and French. Our models share the vocabulary and embedding
modules of both source and target (Press and Wolf, 2017) since both source and target are
trained in subword space. The shared vocabulary sizes of M30k (German to English), M30k
(German to French), IWSLT, and WMT are 16645, 16074, 40807, 47940, respectively.

We generate target sentences using beam search with beam size 4 and length normal-
ization factor (Wu et al., 2016) of 0.6. We merge the WordPiece tokens in the generated
sentences (a post-processing step to create words) and use MosesDetokenizer22 to detok-
enize the generated outputs. We use Moses recaser23 to produce cased translation outputs.
We use a single GeForce GTX 1080 GPU for M30k experiments and a single Titan RTX
GPU for IWSLT and WMT experiments.

For all models, we set positional encoding max length to 4096, dropout to 0.1, loss
prediction smoothing to 0.1, and initialize the models using Xavier initialization. We train all
models using NoamOpt optimizer (Rush, 2018) and perform the gradient accumulation trick
(Ott et al., 2018) with one update per a number of batches (Table 3.4; grad accumulation)
to simulate larger batch sizes on a single GPU.

18Average results of Equation 3.3 for all the tokens in the train set.

19https://github.com/sfu-natlang/SFUTranslate.

20https://github.com/huggingface/tokenizers.

21https://github.com/alvations/sacremoses.

22https://github.com/alvations/sacremoses.

23https://github.com/moses-smt/mosesdecoder.
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a) M30k German to English German to French
val test2016 val test2016

Vaswani et al. 2017 37.20 36.56 53.22 52.58
Sundararaman et al. 2019 38.14 37.13 54.18 54.37
Clinchant et al. 2019

(BERT Freeze)
38.44 37.42 55.10 54.50

Aspect Augmented
+M30k asp. vectors

39.22 38.17 56.21 56.40

Aspect Augmented
+WMT asp. vectors

38.90 38.57 56.12 55.98

b) IWSLT dev2010 tst2010 tst2011 tst2012 tst2013 tst2014 tst2015

Vaswani et al. 2017 31.82 31.99 34.57 32.65 32.49 30.65 31.13
Sundararaman et al. 2019 32.91 32.95 35.35 33.10 33.17 31.32 31.90
Clinchant et al. 2019

(BERT Freeze)
33.34 32.78 35.42 33.12 33.20 31.22 31.45

Aspect Augmented
+IWSLT asp. vectors

32.86 32.86 35.38 33.43 33.23 31.37 31.87

Aspect Augmented
+WMT asp. vectors

33.78 33.56 36.14 33.51 33.98 31.86 32.37

c) WMT wmt_val nt2014 nt2015 nt2016 nt2017 nt2018 nt2019

Vaswani et al. 2017 30.65 33.80 33.70 37.10 34.44 37.81 36.05
Sundararaman et al. 2019 29.23 31.57 31.61 34.05 31.87 35.18 33.60
Clinchant et al. 2019

(BERT Freeze)
30.39 33.46 33.20 36.13 33.73 37.24 35.68

Aspect Augmented
+WMT asp. vectors

30.61 33.97 33.99 37.01 34.71 38.17 36.48

Table 3.6: Evaluated METEOR score results on M30k, IWSLT, and WMT datasets.

We compare our model to three baselines : (1) the vanilla Transformer model which
does not use any external source of information, (2) the syntax-infused Transformer model
of Sundararaman et al. (2019) which explicitly embeds linguistic aspect labels and concate-
nates their embedding to the token embedding, (3) the Transformer model with bert-freeze
input setting (Clinchant et al., 2019) which replaces the source embedding tokens of the
Transformer architecture with output embeddings of the pre-trained BERT model.

During each training trial, we perform 9 validation set evaluation steps, one after visiting
each 10% of the data. In each step, the validation set is translated with the current state
of the model (at the time of evaluation) and the generated sentences are detokenized and
compared to the validation set reference data to produce sentence-level Bleu (Lin and
Och, 2004) scores. The best scoring model throughout training is selected as the model
with which the test set(s) are translated.

For M30k and IWSLT data sets, we train two separate models, one using the aspect
vectors trained on the source side of its own training data (in-domain) and the other using
the aspect vectors trained on the source side of WMT data (out-of-domain). We use cased
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Bleu (evaluated with the standard mteval-v14.pl script) and METEOR (Denkowski and
Lavie, 2014) to compare different models. Tables 3.5 and 3.6 show the results of evaluating
the models trained with different mentioned settings.

The evaluation results show that taking advantage of aspect vectors improves the ac-
curacy of translating German to both English and French in M30k as well as German to
English in IWSLT and WMT. Also, in majority of the cases WMT-trained aspect vectors
have pushed the model to produce more accurate results since they contain more general-
ized information. Based on these results, we conjecture that aspect vectors trained on large
out-of-domain data can be helpful in low-resource settings but we leave the examination of
this idea for future work.

Aside from performance, our model is approximately 5 times faster than syntax-infused
translation model while demanding fewer trainable parameters. Although it is not as fast as
bert-freeze model in large dataset settings (because of the size of computations required for
calculating the linguistic embedding), it is comparable in speed to bert-freeze in medium
and small data scale settings.

For smaller datasets (containing a few hundred thousand sentence pairs or less), the
broader perspective of BERT knowledge is helpful in limiting the search space for the
model. So using our technique, the translation model receives more information regarding
the general use cases of (locally) rare words. Linguistic aspect vectors also help the model
better understand less familiar (in comparison to what is frequent in its limited size training
data) syntactic structures in input sentences. This is why we believe aspect vectors can be
helpful in low-resource settings.

Improving models with large amounts of data (with several million sentence pairs) is
a challenging task. The best practice in training neural translation models is to initialize
the embedding module with small random values and let the model search through the
parameter space to find the optimal parameter settings. Extracted aspect vectors, as an
external source of monolingual knowledge on the source side, are a more reasonable starting
point for large models than random initialization. Integrating aspect vectors thus helps these
models find a better path towards the optimal point(s) and increases the chances of the
model ending up in a more desirable point in search space.

Tables 3.7 and 3.8 demonstrate some examples of cases where aspect vectors have been
useful in improving the translation quality.

3.5 Summary and Future Research

In this chapter, we proposed a simple method of employing structured prediction to extract
linguistic information from BERT and integrate them into machine translation framework.
We showed that the linguistic aspect vectors provide the translation models with out-of-
domain knowledge, improving not only the translation quality but also the model’s ability
to handle out-of-vocabulary words.
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Source Ihm werde weiterhin vorgeworfen, unerlaubt geheime Informationen weitergegeben ...
Reference He is still accused of passing on secret information without authorisation.

Vaswani et al. 2017 He has also been accused of having illegally passed on secret information.
Clinchant et al. 2019 He continues to be accused of fraudulently passing on secret information.

Sundararaman et al. 2019 He is also accused of having pass unauthorised secret information on.
Aspect Augmented NMT He is still accused of passing on illegal secret information.

Source Auto und Traktor krachen zusammen: Frau stirbt bei schrecklichem Unfall
Reference Car and tractor crash together: woman dies in terrible accident

Vaswani et al. 2017 Car and traktor cranes together: women die in the event of a terrible accident.
Clinchant et al. 2019 Cars and tractors are killing women in the event of a terrible accident.

Sundararaman et al. 2019 Auto and tractor are blowing together: woman dies when the terrible accident occurs.
Aspect Augmented NMT Car and tractor crash together: woman dies in terrible accidents.

Table 3.7: Examples of improved translation quality of WMT data where part-of-speech aspect
vectors have helped the model choose better words both syntactically and semantically.

Source Bucht die besten Hostels in Ouarzazate über Hostelsclub.
Reference Book the best hostels in Ouarzazate with Hostelsclub.

Vaswani et al. 2017 Book the best hostels in ouarzazazate with Hostelsclub.
Clinchant et al. 2019 Book the best hostels in Ouarzate with Hostelsclub.

Sundararaman et al. 2019 Book the best hostels in ouarzazazate with Hostelsclub.
Aspect Augmented NMT Book the best hostels in Ouarzazate with Hostelsclub.

Source Die Deutsche Bahn will im kommenden Jahr die Kinzigtal-Bahnstrecke verbessern.
Reference The Deutsche Bahn hopes to improve the Kinzigtal railway line in the coming year.

Vaswani et al. 2017 The German Railway wants to improve the Kinzig valley railway line next year.
Clinchant et al. 2019 Christian Deutsche Bahn intends to improve the Kinzig valley railway next year.

Sundararaman et al. 2019 The German Railway wants to improve the kinziggia railway line next year.
Aspect Augmented NMT Deutsche Bahn wants to improve the Kinzig valley railway in the coming year.

Table 3.8: Examples of improved translation quality of WMT data where word-shape and subword
position aspect vectors have helped the model choose a better sequence of subwords when it faces
out-of-vocabulary tokens.

Future research may focus on reimagining the integration module as a multi-head at-
tention module, attending on different linguistic aspects of the current subword or subword
tokens of a single word. Expanding the range of linguistic aspects, particularly incorpo-
rating syntactic dependencies and morphology, and investigating how aspect vector size
influences translation quality are promising avenues for exploration. Additionally, assessing
the efficacy of aspect vectors trained on large out-of-domain data in low-resource settings
and examining the applicability of linguistic aspect vectors in domains beyond machine
translation warrant further investigation.
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Chapter 4

Structured Prediction for Entity Linking

In this chapter, we study the application of structured prediction (Section 2.4) to refine
entity linking. Notably, this chapter reproduces results which we have originally published
in (Shavarani and Sarkar, 2023).

4.1 Motivation

Entity linking can be modelled as sequence tagging using structured prediction (subword
token multi-label classification), where a pre-trained Transformer model is utilized to encode
each input subword token into a multi-layer context-aware dense vector representation. A
classifier head fine-tunes each token representation to predict the entity for each subword
token. The ideal performance of such an architecture would lead to the performance demon-
strated in Figure 4.1.

Figure 4.1: The expected structured prediction based entity linking output for example sentence:
“Barack Obama wrote A Promised Land.”

Barack Obama wrote A Promised Land.

Bar ack ĠObama Ġwrote ĠA ĠProm ised ĠLand .
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However, adopting conventional approaches (e.g. Broscheit, 2019) for implementing the
standard structured prediction-based entity linking architecture may yield suboptimal out-
comes. Figure 4.2 illustrates a potential outcome that could arise from the implementation
of the aforementioned architecture.
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Figure 4.2: Example output of structured prediction-based entity linking in practice. The results
may diverge significantly from the anticipated outcome.
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Due to the large number of possible entities and issues with consistency of entity predic-
tion across multiple subword tokens, structured prediction for entity linking (surprisingly)
has not been studied in-depth. In this dissertation, we propose to re-examine the effective-
ness of structured prediction for entity linking in the hopes of providing the models that
are both more accurate and faster in inference.

In the rest of this chapter, we first delve into the factors contributing to poor performance
in conventional structured prediction-based entity linking approaches. Subsequently, we
propose our novel approach aimed at mitigating these issues. We conclude this chapter by
presenting experimental results and a performance analysis of our proposed approach.

4.2 Entity Linking Literature

Knowledge bases, such as Wikipedia and Yago (Pellissier Tanon et al., 2020), are valuable
resources that facilitate structured information extraction from textual data. Entity Link-
ing (Shen et al., 2014) involves identifying text spans (mentions) and disambiguating the
concept or knowledge base entry to which the mention is linked.
Entity linking can be viewed as three interlinked tasks (Broscheit, 2019; Poerner et al.,
2020; van Hulst et al., 2020; Shavarani and Sarkar, 2023):

(1) Mention Detection (Nadeau and Sekine, 2007) to scan the raw text and identify the
potential spans that may contain entity links.

(2) Candidate Generation (e.g. Fang et al., 2020) to match each potential span with a
number of potential entity records in the knowledge base.
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(3) Mention Disambiguation1 (Ratinov et al., 2011; Yamada et al., 2022) to select one of
the potential entity records for each detected mention.

An end-to-end entity linking system does all three tasks and links text spans to concepts.
The system can either have independently modelled components (Piccinno and Ferragina,
2014; van Hulst et al., 2020) or jointly modelled components (Hoffart et al., 2011; Kolitsas
et al., 2018; De Cao et al., 2021a).

Recent entity linking models use pre-trained representation learning methods that are
based on Transformer architecture. These methods commonly utilize bidirectional language
models like BERT (Section 2.2.1) or causal language models such as GPT (Section 2.2.2),
which are then fine-tuned on specific entity linking training datasets. In a number of such
techniques, entity linking is framed as another well-studied problem, and the best solution
for that task is applied.

Autoregressive encoder-decoder sequence-to-sequence translation is one such approach.
De Cao et al. (2021b) consider the input text as the source for translation and the text is
annotated with Wikimedia markup containing the mention spans and the entity for each
mention2. Instead of mapping the entity identifiers into a single id (this is the default in many
techniques), their model generates the entity label in a token-by-token basis (it generates
the Wikipedia URL one token at a time). The generation process follows a constrained
decoding schema that prevents the model from producing invalid entity URLs.

De Cao et al. (2021a) use a BERT-style bidirectional model fine-tuned to identify po-
tential spans (mention detection) by learning spans using a begin probability and an end
probability for each subword in the input text. For each potential span, they use a generative
LSTM-based language model to generate the entity identifiers (token-by-token), and limit
the generation process to pre-defined candidate sets. We show that despite being interesting,
token-by-token generation of entity identifiers is not necessary for the best performance in
entity linking models.

Mrini et al. (2022) frame entity linking as a sequence-to-sequence translation task using
BART (Lewis et al., 2020a). They duplicate the BART decoder three times to fine-tune the
model in a multi-task setting. The two additional decoder modules are trained using aux-
iliary objectives of mention detection and re-ranking. While this training method increases
the model size during training, they mitigate increased model size and speed at inference
time by excluding the auxiliary decoder modules and employing sampling and re-ranking
techniques on the generated target sequences.

1Until a few years ago (Shen et al., 2014), the task of Entity Linking was considered equivalent to Named
Entity Disambiguation (NED) where it takes as input the identified named entities from the Named Entity
Recognition task.

2The process of converting plain text into text containing Wiki markup is referred to as Text Wikification
(Mihalcea and Csomai, 2007).
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Zhang et al. (2022) use Question Answering as a way to frame the entity linking task.
They suggest a two-step entity linking model in which they use a fine-tuned Transformer-
based BLINK (Wu et al., 2020) model to find all the potential entity records that might
exist in the text and then utilize a fine-tuned question answering ELECTRA model (Section
2.2.1) to identify the matching occurrences of the potential entities discovered in the first
step. This approach obtains high accuracy, however it is very resource intensive and inference
speed is slow.

Broscheit (2019) proposes a very simple entity linking model which places a classification
head on top of BERT and directly classifies each token representation using a softmax over
all the entities known to the model.

Other techniques focus on enhancing the entity linking knowledge in BERT (or one of
its variants) and utilize one or more such knowledge-enhanced models to perform the task of
entity linking. Peters et al. (2019) inject Wikipedia and Wordnet information into the last
few layers of BERT, Poerner et al. (2020) inject pre-trained Wikipedia2Vec (Yamada et al.,
2016) entity embeddings into the input layer of the language model while freezing the rest
of its parameters, and Martins et al. (2019) leverage a Stack-LSTM (Dyer et al., 2015) NER
model to enhance entity linking performance using multi-task learning to improve entity
linking.

Kolitsas et al. (2018) jointly model mention detection and mention disambiguation us-
ing an LSTM-based architecture while reusing the candidate sets created by Ganea and
Hofmann (2017) as a replacement for the candidate generation step, and Kannan Ravi
et al. (2021) follow a similar framework while modeling each of mention detection and
mention disambiguation using separate BERT models. Feng et al. (2022) compute entity
embeddings (instead of using pre-trained ones) using the average of the subword embed-
dings of the candidates and compare them to the average of the subword embeddings for
the potential span (training a Siamese network; Bromley et al., 1993). Févry et al. (2020)
investigate pre-training strategies specifically tailored for Transformer models to perform
entity linking, diverging from the conventional use of pre-trained models. And, van Hulst
et al. (2020) propose a modular configuration that composes mention detection, candidate
generation, and mention disambiguation in a pipeline approach, incorporating the most
promising components from prior research.

Candidate Sets

Formally, entity linking receives a passage (p) containing words w1, ..., wn and produces
a list containing ℓ span annotations. Each span annotation is expected to be a triplet of
the form (span start, span end, entity identifier). The span start and span end values are
expected to be character positions on the original passage p, and the entity identifier values
are selected from a predefined vocabulary of entities (e.g. there would be approximately
6.5 million entities to choose from when entity linking to Wikipedia). The massive entity
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vocabulary size increases the model’s hardware requirements and in cases renders the task
intractable.

To solve the entity vocabulary size problem, a common approach is to limit it to K

most frequent entities in the knowledge base3. This vocabulary can be simply considered
as the fixed candidate set for linking each mention to the knowledge base. Where no more
information is available, the model will have to choose one entity from this set.

The selected fixed candidate set may lack many of the expected entity annotations at
inference. Consequently, even if the model is highly capable, it may perform poorly during
inference due to its inability to suggest the expected entities. Recognizing this challenge,
there is a consensus among existing literature (Kolitsas et al., 2018; Broscheit, 2019; Peters
et al., 2019; Poerner et al., 2020) to augment the fixed candidate set by including the
expected entities necessary for inference.

An alternative is to use mention-specific candidate sets (Kolitsas et al., 2018; Peters
et al., 2019; Kannan Ravi et al., 2021; De Cao et al., 2021b,a). Mention-specific candidate
sets can be divided into two groups:

(1) context-agnostic mention-specific sets which are usually generated over large amounts
of annotated text and try to model the probability of each mention span to all possi-
ble entity identifiers without assuming a specific context in which the mention would
appear. KB+Yago (Ganea and Hofmann, 2017) contains candidate sets for approxi-
mately 200K mentions created over the entire English Wikipedia combined with the
Yago dictionary of Hoffart et al. (2011).

(2) context-aware mention-specific sets can be constructed if there is a method for iden-
tifying mentions and a set of candidates for those mentions. For example, Pershina
et al. (2015) have built such candidate sets, called PPRforNED. Such lists have been
primarily suggested for the task of entity disambiguation where the mention is pro-
vided in the input. As gold mentions are not available for real-world use cases of entity
linking, this type of candidate sets have fallen out of favor.

Mention-specific candidate sets consist of many entity identifiers and the correct entity
identifier is not guaranteed to exist given the mention span.

4.3 Conventional Structured Prediction-based Entity Linking Challenges

In our preliminary experiments, we identified three primary factors that contribute to the
poor performance of conventional structured prediction-based entity linking approaches.
This section comprehensively examines each factor, and Section 4.4 outlines the solutions
to these challenges, leading to the presentation of our state-of-the-art Structured Prediction
for Entity Linking model.

3For Wikipedia, we can define an entity frequency as the number of times a title is hyperlinked in the
other pages.
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Figure 4.3: The two fine-tuning steps proposed in prior research to adjust the pre-trained language
model for structured prediction-based entity linking. Step 1: General knowledge fine-tuning, Step 2:
Domain specific fine-tuning.

Step 1 Step 2

1st Challenge. Conventional approaches presuppose knowledge of span boundaries
during fine-tuning, which are absent during inference.

As depicted in Figure 4.3, prior research proposes a two-step fine-tuning process. In
the first step, the model acquires a broad understanding of entity knowledge from a large
corpus of entity-annotated text, such as Wikipedia. The second step involves adjusting the
entity-knowledgeable language model to align with the in-domain data distribution, such
as news articles from Reuters news agency4.

To discuss this challenge, we consider the sentence “On April 9, Tech hired coaching

veteran and ESPN analyst Nell Fortner” as an illustrative example, featuring four en-
tities: coaching linking to Coach_(basketball), veteran linking to Veteran, ESPN linking
to ESPN_Radio, and analyst linking to Sports_analyst. It is important to note that while
Nell Fortner is a person’s name, it lacks a corresponding link in our hypothetical knowl-
edge base, and thus remains unannotated with a knowledge base link.

In our examination of the two-step fine-tuning process, we discovered that during train-
ing, input sentence tokenization occurs in chunks, ensuring that each chunk either represents
an entity or contains no entities. This approach facilitates the separate modeling of mention
spans, aiding the model in recognizing span boundaries, albeit without explicitly model-
ing the probabilities of span beginnings or endings. This results in the following tokenized
sentence, where a noticeable outcome is the distinct modeling of the space character (rep-
resented with Ġ in the example) preceding entity spans.

ĠOn ĠApril Ġ9 , ĠTech Ġhired Ġ co aching Ġ ve ter an Ġand Ġ ESPN
Ġ an alyst ĠN ell ĠFort ner

However, during inference, this chunk-based tokenization approach is inapplicable, as entity
spans for unseen sentences are unknown. Consequently, a tokenization mismatch arises,
potentially compromising the model’s performance during inference, as depicted in the

4https://www.reuters.com/.
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following tokenized sentence where the same sentence is tokenized regardless of mention
spans.

ĠOn ĠApril Ġ9 , ĠTech Ġhired Ġcoaching Ġveteran Ġand ĠESPN Ġanalyst
ĠN ell ĠFort ner

The discrepancy in span tokenization, particularly regarding spans containing entity
links, significantly undermines the entity linking performance of the structured prediction
framework. Such observations might prompt the conclusion that structured prediction is
ill-suited for this task. In Section 4.4, we will propose a mention-agnostic extension to step
1 fine-tuning to address this issue.

2nd Challenge. Structured prediction classifies tokens independently, disregarding neigh-
boring predictions. A crucial observation is that structured prediction may overlook neigh-
boring predictions when determining a label for the current token. Consequently, our prior
assumption, that pre-trained language models inherently capture the inter-connectivity be-
tween output labels, proves inadequate for this task. To address this limitation, we require a
more robust condition that reinforces inter-connectivity at both the word and phrase levels.
In Section 4.4, we will propose a context sensitive prediction aggregation strategy to address
this issue.

3rd Challenge. The output vocabulary is excessively large, occasionally encompassing
redirect titles. The model encounters numerous entity annotations with specific surface form
spans. For instance, in the example of Figure 4.2, we had Barack Obama, which could cor-
respond to both Barack_Obama and Presidency_of_Barack_Obama, among other entities.
While in-domain fine-tuning enables the neural representations of the model to align with
the in-domain data, typically, the output space remains untuned. In Section 4.5, we will
propose shrinking the in-domain output space to a desired fixed candidate set of entities to
address this issue.

4.4 SpEL: State-of-the-art Structured Prediction for Entity Linking

In this section, we address the challenges outlined in Section 4.3, and develop our state-of-
the-art Structured Prediction for Entity Linking model.

Formally, for a sequence of subwords S = {s1, s2, ..., sn}5, we employ RoBERTa (Section
2.2.1), in both base and large sizes, as our underlying model M to encode S into H ∈
Rn×d where d is the hidden representation dimension of M . Each representation hi ∈ H,
i ∈ 1, . . . , n is then transformed into a distribution over the fixed candidate set (Section 4.2)
of size KB using a transformation matrix W ∈ Rd×KB. This results in Pi = hiW , where Pi

represents the probability distribution for the ith subword in the input sequence.

5When feeding a long text in training and inference, we split the text into smaller overlapping chunks.
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When we set up fine-tuning for this task, we use hard negative mining (Gillick et al.,
2019) to find the most probable incorrect predictions in the batch6. In each fine-tuning step,
we update the network based on the subword classification probabilities of the hard negative
examples as well as the expected prediction. To increase inference speed, the classification
head does not normalize the predicted scores.

We employ binary cross-entropy with logits (Equation 4.1) as our loss function7, which
is calculated over many factors. Let N represent the total number of selected examples
(ψ) comprising the one positive example corresponding to the expected prediction and the
negative examples. Additionally, ai,j takes a value of 1 when the jth member of ψ correctly
points to the entity identifier for subword si, pi,j denotes model’s predicted score for linking
the jth member of the selected examples to the ith subword, and σ is the sigmoid function,
which maps the scores to [0, 1].

Li = − 1
N

N∑
j=1

[
ai,j · log

(
σ(pi,j)

)
+ (1 − ai,j) · log

(
1 − σ(pi,j)

)]
(4.1)

During inference we collect the top k predictions for each subword i based on the pre-
dicted probabilities in Pi. We then collect subwords that belong to the same word into a
single group, which we call the word annotation. For each word annotation, we generate
an aggregated entity identifier prediction set by taking the union of the entity identifiers
predicted for the subwords. We then compute the weighted average of the prediction prob-
abilities for each entity identifier to obtain the word-level probability score over entities.
Consecutive word-level entity labels when they refer to the same concept are joined into a
single mention span over that phrase.

When a mention-specific candidate set is available, and the mention surface form matches
one of the mentions in the candidate set, we filter out any predictions from the phrase an-
notation that are not present in the candidate set, regardless of their probability8. The final
prediction for an entity span is generated based on the most probable prediction in the
phrase annotations, excluding the ones annotated with O (which means the phrase is not an
entity). As an additional post-processing cleanup step, we reject phrase annotations that
span over a single punctuation subword (e.g. a single period or comma) or a single function
(sub)word (e.g. and, by, ...). In such cases, we manually override the model’s prediction to
O.

This context sensitive prediction aggregation strategy leads to improved performance
and enhances prediction results in inference. Our strategy ensures that annotation spans do

6We add random negative examples in addition to hard negatives to make sure we get to 5K negative
examples for each batch when fine-tuning on CoNLL/AIDA and 10K negatives for general fine-tuning.

7We choose this loss function to ensure comparability with previous studies.

8The presence of a mention-specific candidate set is not a prerequisite for our model to be effective.
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not begin or end inside a word9, and the conflicts between the subword predictions within
a word are resolved by the average prediction probability for each entity identifier.

This simpler method to ensure label consistency does better than using a CRF layer.
Although our experiments show that a CRF layer does not improve our model, our readers
can think of the suggested strategy as a domain-tailored, non-parametric, and rule-driven
version of a CRF layer which guides the model to unify the predicted subword-level entity
predictions considering the local context. Based on our experiments (Table 4.2), although
we do not explicitly model Mention Detection (as predicting the span start and span end
probability scores or separate BIO tags) for each subword in inference time, we observe a
high in-domain accuracy in distinguishing O spans from non-O spans in predictions as a
result of using the context sensitive prediction aggregation strategy.

Our modelling framework, SpEL (Figure 4.4), stands for Structured Prediction for Entity
Linking10.

Fine-tuning Procedure. Heinzerling and Inui (2021) argue that pre-trained language
models can produce better representations when they are first fine-tuned on a much larger
entity-linked training data (almost like a further pre-training step) and then subsequently
fine-tuned for the entity-linking task. Following conventional methods (Figure 4.3), we per-
form such a multi-step fine-tuning procedure: first fine-tuning on a large dataset encompass-
ing general knowledge on the set of linked concepts and then fine-tuning on an in-domain
dataset specific to the target domain over which we aim to perform entity linking.

In the first step (general knowledge fine-tuning), we fine-tune the pre-trained language
model using text that includes links to the knowledge base (in our experiments, we use a
large subset of English Wikipedia11).

As discussed in Section 4.3, entity linking can benefit from tokenization that is aware
of mentions, by using special space character subword tokens before and after each span
linked to an entity. This approach aids the model in identifying the starting and ending
subwords of entity mention spans (Broscheit, 2019). However, this imposes a mismatch in
the distributions of the data in fine-tuning compared to inference, where the model does
not have access to the entity mentions to perform the customized tokenization. To address
this issue, as a subsequent fine-tuning step, we iterate again through the large entity-linked
dataset which is re-tokenized without the knowledge of the mention spans.

In the third and last fine-tuning step (domain specific fine-tuning), we refocus the
model’s attention to the in-domain dataset annotated with a fixed candidate set which

9For instance, in the word U.S., if in the U.S part, the subwords have high likelihood for the concept The
United States and the ending . refers to an O, the conflict is resolved so that the entire word U.S. is linked
to The United States.

10https://github.com/shavarani/SpEL.

11Limited to the articles that contain some presence of the entities in our selected fixed candidate set.
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Figure 4.5: The three fine-tuning steps proposed to tune the pre-trained language model for SpEL.
Step 1: Mention-aware general knowledge fine-tuning, Step 2: Mention-agnostic general knowledge
fine-tuning, Step 3: Domain specific fine-tuning.

Step 1 Step 2 Step 3

usually is a subset of all the knowledge base entities that the model has observed in the
previous two fine-tuning steps. Similar to the second fine-tuning step, we tokenize the in-
domain dataset without the knowledge of the mention spans. Figure 4.5 demonstrates this
three step fine-tuning procedure.

4.5 Experiments and Results

In this section, we discuss the data employed to fine-tune SpEL, our experimental setup,
and SpEL performance evaluation experiments.

4.5.1 Data

For our experiments, we focus on Wikipedia as the knowledge base and we use the following
datasets for the fine-tuning steps mentioned in Section 4.4.

Wikipedia. We use the August 20, 2023 dump of Wikipedia (with approximately 238K
documents), and we use the script from Broscheit (2019) to handle incomplete annotations,
perform mention-aware customized tokenization, and compute the average probability of
linking to no entity (called the Nil probability) for the 1000 most frequent entities. The Nil
probability is used to modify the Wikipedia training data annotations in such a way that the
chance of linking a surface form referring to a frequent entity to O is almost 0. We construct
the Wikipedia fixed candidate set using the union of the 500K most frequent mentions in
the Wikipedia dump and the fixed candidate set of AIDA and the test datasets. We split
the content of Wikipedia pages into chunks consisting of 254 subwords with a 20 subword
overlap between consecutive chunks. After the split, our dataset contains 3,055,221 training
instances with 1000 instances for validation. We also create a mention-agnostic re-tokenized
version of this dataset with the same exact mentions to perform the second step of general
knowledge fine-tuning as explained above.

AIDA (Hoffart et al., 2011) contains manual Wikipedia annotations for 1393 Reuters
news stories originally published for the CoNLL-2003 Named Entity Recognition Shared
Task (Tjong Kim Sang and De Meulder, 2003). The training and validation data is taken
from the news articles published in the end of August 1996. The test data has been taken
from the news stories published in December 1996. The train, testa, and testb splits of
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AIDA contain 946, 216, and 231 documents, respectively. It has a fixed candidate set size of
5600 (including O tag) and for evaluation on the AIDA test sets, we shrink the classification
head in the model to these 5600 candidates and disregard the rest of the 500K candidates12.

4.5.2 Evaluation Using GERBIL

The GERBIL platform (Röder et al., 2018) is an evaluation toolkit (publicly available online)
that eliminates any mistakes and allows for a fair comparison between methods. However,
GERBIL is a Java toolkit, while most of modern entity linking work is done in Python.
GERBIL developers recommend using SpotWrapNifWS4Test13 (a middleware tool written
in Java) to connect Python entity linkers to GERBIL. Because of the complexity of this
setup, we have not been able to directly evaluate some of the earlier publications due to
software version mismatches and communication errors between Python and Java. This is a
drawback that discourages researchers from using GERBIL. To address this issue, we provide
a Python equivalent of SpotWrapNifWS4Test to encourage entity linking researchers to use
GERBIL for fair repeatable comparisons. We evaluate all SpEL models using GERBIL in
the A2KB experiment type, and report InKB strong annotation matching scores for entity
linking. Only five of the publications to which we compare use GERBIL, however, all report
InKB strong Micro-F1 scores allowing a direct comparison to our work.

4.5.3 Setup

For the first general knowledge fine-tuning step (Section 4.4), as a warm-up to full fine-
tuning, we freeze the entire RoBERTa model and only modify the classification head
parameters on top of the encoder. We fine-tune with this configuration for 3 epochs and
subsequently continue with fine-tuning all model parameters. We stop the fine-tuning pro-
cess in this phase when the subword-level entity linking F1 score on the validation set shows
no improvement for 2 consecutive epochs. Following this, we proceed to the second phase
of full fine-tuning, where we adjust all model parameters using the mention-agnostic re-
tokenized Wikipedia fine-tuning data. Just like phase one, we stop this phase based on the
same criteria. We implement SpEL using pytorch, utilize Adam optimizer with a learning
rate of 5e−5 to fine-tune the encoder parameters, and use SparseAdam optimizer with a
learning rate of 0.01 to fine-tune the classification head. We run fine-tuning phases one and
two on the large subset of Wikipedia using two Nvidia Titan RTX GPUs.

For the last phase of fine-tuning on the AIDA dataset (Section 4.4), we freeze the first
four layers of the encoder (including the embedding layer) as well as the shrunk classification
head parameters, and we fine-tune the rest of the model parameters for 30 epochs (over the

12Another implementation idea can revolve around multiplying the predicted output vector into a mask
vector that masks all the candidates not in the expected 5600 entities.

13https://github.com/dice-group/gerbil/tree/SpotWrapNifWS4Test/.
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train part of AIDA dataset). We run this step using one Nvidia 1060 with 6 GBs of GPU
memory, and accumulate gradients for 4 batches before updating model parameters.

van Hulst et al. (2020) report better results using an older Wikipedia dump from 2014
compared to the dump from 2019. One possible explanation for this finding is that the 2014
dump contains Wikipedia entries with page identifiers that are more closely aligned with
the annotated data. Over time, page identifiers in Wikipedia have undergone changes, and
some of the older identifiers used in annotating test datasets may now function as redirect
links. To tackle this issue, researchers such as Broscheit (2019) and Yamada et al. (2020,
2022) have considered redirect link normalization. We follow the same approach and use
the collection of Wikipedia redirect links14 to find all the redirect pairs (u, v) where u is
not in our fixed candidate set and v is in the set. In inference, whenever SpEL predicts u,
we automatically replace it with v.

4.6 SpEL Performance on AIDA

In this section, we conduct experiments to evaluate the performance of both SpEL-base
and SpEL-large (referring to the size of the underlying RoBERTa model) in different con-
figurations concerning the use of candidate sets (Section 4.2), and report our experimental
results over the AIDA test datasets in Table 4.1.

In the first configuration, we examine our model without any mention-specific candidate
sets. Our results show a minimum of 5.3 Micro-F1 score improvement in AIDA test sets
compared to (Broscheit, 2019) while significantly reducing the required parameter size on
GPU by fourfold, resulting in a 7.2 times increase in inference speed in base case.

Next, we run SpEL in three other configurations: (1) utilizing the KB+Yago (Ganea
and Hofmann, 2017) context-agnostic candidate set, (2) employing the PPRforNED (Per-
shina et al., 2015) context-aware candidate set, and (3) adapting PPRforNED to aggregate
the candidate information for each mention surface form, resulting in a context-agnostic
candidate set, excluding context-specific information.

Candidate sets help reject many over-generated spans. If a mention’s candidate set
is empty, the mention span is excluded from further consideration. While this approach
typically leads to improved precision and subsequent enhancement in F1 score, instances
may arise where the model correctly predicts mentions that are not encompassed within
the candidate sets. This can lead to lower recall in the evaluation. The observed Micro-F1
score drop when employing KB+Yago candidate sets compared to the scenario where no
mention-specific candidate set is utilized, can be attributed to these cases.

SpEL-large using context-aware candidate sets achieves the highest boost, reporting 2.1
and 2.3 Micro-F1 scores improvement over testa and testb sets of AIDA, respectively, and
establishes a new state-of-the-art for AIDA dataset. It is noteworthy to consider that the

14http://downloads.dbpedia.org/2016-10/core-i18n/en/redirects_en.ttl.bz2.
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Approach EL Micro-F1 #params
on GPU

speed
sec/doctesta testb

Hoffart et al. (2011) (Linear) 72.4 72.8 - -
Kolitsas et al. (2018) (LSTM) 89.4 82.4 330.7M 0.097
Broscheit (2019) (BERT) 86.0 79.3 495.1M 0.613
Peters et al. (2019) (BERT) 82.1 73.7 - -
Martins et al. (2019) (Stack-LSTM) 85.2 81.9 - -
van Hulst et al. (2020) (LSTM) 83.3 82.4 19.0M 0.337
Févry et al. (2020) (Transformer) 79.7 76.7 - -
Poerner et al. (2020) (BERT) 90.8 85.0 131.1M -
Kannan Ravi et al. (2021) (BERT) - 83.1 - -
De Cao et al. (2021b) (BART) 90.1 83.7 406.3M 40.969
De Cao et al. (2021a) (RoBERTa+LSTM)

(no mention-specific candidate set) 61.9 49.4 124.8M 0.268
(using PPRforNED candidate set) 90.1 85.5 124.8M 0.194

Mrini et al. (2022) (BART) - 85.7 (train) 811.5M
(test) 406.2M -

Zhang et al. (2022) (BLINK+ELECTRA) 86.8 85.8 1004.3M -
Feng et al. (2022) (BERT) 87.6 86.3 157.3M -
Xiao et al. (2023) (LLAMA-7B) - 80.6 70000.0M -

SpEL-base (no mention-specific candidate set) 91.3 85.5 128.9M 0.084
SpEL-base (KB+Yago candidate set) 90.6 85.7 128.9M 0.158
SpEL-base (PPRforNED candidate set)

context-agnostic 91.7 86.8 128.9M 0.156
context-aware 92.7 88.1 128.9M 0.156

SpEL-large (no mention-specific candidate set) 91.6 85.8 361.1M 0.273
SpEL-large (KB+Yago candidate set) 90.8 85.7 361.1M 0.267
SpEL-large (PPRforNED candidate set)

context-agnostic 92.0 87.3 361.1M 0.268
context-aware 92.9 88.6 361.1M 0.267

Table 4.1: Entity Linking evaluation results of SpEL compared to that of the literature over AIDA
test sets.
#params on GPU only considers the total number of parameters that will directly effect the cost of
GPU acquisition and does not reflect upon the total amount of data loaded into/from main memory
and disk.

proposed model by Zhang et al. (2022) demands significant computational resources, includ-
ing tens of gigabytes of RAM and over 7 and 2.7 times the number of parameters on GPU
compared to SpEL-base and SpEL-large, respectively. Despite these resource-intensive re-
quirements, SpEL outperforms (Zhang et al., 2022). The comparison between our results
and that of De Cao et al. (2021a,b) demonstrates that generating entity descriptions (which
can share lexical information with the mention text) is not necessary even for high accuracy
Wikipedia entity linking. Our approach can be easily extended to ontologies without textual
concept descriptions, while methods that generate entity descriptions cannot.
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Approach
MD Micro Scores

testa testb

P R F1 P R F1

De Cao et al., 2021a (using PPRforNED c. set) 93.9 96.7 95.2 92.2 94.8 93.5

SpEL-base (no mention-specific c. set) 94.6 94.4 94.5 92.5 90.1 91.2
SpEL-base (using PPRforNED c. set - context-agnostic) 98.3 91.6 94.8 98.3 86.4 92.0
SpEL-base (using PPRforNED c. set - context-aware) 99.4 90.9 95.0 99.4 84.9 91.6

Table 4.2: Mention Detection evaluation results of SpEL in comparison to the work of De Cao
et al. (2021a) using their released evaluation code (from utils.py). As De Cao et al. (2021a) use
PPRforNED candidate sets, we only compare the SpEL results calculated using these candidate
sets.

Lastly, in Table 4.2, we compare SpEL-base, which utilizes the context sensitive predic-
tion aggregation strategy to convert subword-level predicted entity identifiers into span-level
predictions, to the model proposed by De Cao et al. (2021a). The latter model explicitly
models the start and end positions of the spans for mention detection. We employ the evalu-
ation script released by De Cao et al. (2021a) for our assessment. The results confirm that,
despite not using BIO tags or explicitly modeling span boundaries, SpEL demonstrates
strong performance in mention detection, with a high level of accuracy. Its near-perfect
precision scores indicate its ability to minimize over-generated predictions, contributing to
its state-of-the-art entity linking performance.

4.7 Comparison to Large Language Models

Large generative language models (Section 2.2.3) are effective zero shot and few shot learners
(Brown et al., 2020) at many NLP tasks. We evaluate GPT-3.5 and GPT-4 for the task
of entity linking using various prompts. For GPT-4, we consider both zero-shot and few-
shot settings and we provide the few-shot prompts following the chain-of-thought (CoT;
Wei et al., 2022) prompting technique. We frame the problem for the generative language
model as in (De Cao et al., 2021b) to perform Wikification and produce markup around
the mentions.

Table 4.3 compares the GPT evaluation results to that of SpEL. For a fair comparison,
we consider the evaluation results without any mention-specific candidate sets. Currently
the results are worse15 than the state-of-the-art and using GPT-4 is more expensive. Further
research into few-shot in-context learning on GPT-4 is likely to improve these results since
LLMs have extensive knowledge about entities but cannot directly reason about specific
Wikipedia URLs16.

15Even considering the retrieval-augmented setting in (Xiao et al., 2023) which retrieves 100 related
documents to each article and feeds them along with their annotations to the model when entity linking.

16Cho et al. (2022) employ GPT for entity linking by implementing a process that involves a sequence of
summarization and multiple-choice queries to GPT. However, we have found this approach to be rather costly.
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Approach EL Micro-F1 US$ for
1000 docstesta testb

GPT-3.5 (zero-shot) 47.3 52.9 4.22
GPT-4.0 (zero-shot) 40.4 54.1 42.17
GPT-4.0 (few-shot w/ CoT) 62.4 66.2 59.37
Xiao et al. (2023, GPT-3-ICL) - 60.7 -
Xiao et al. (2023, RAG-top100) - 80.6 -

SpEL-base 91.3 85.5 2.28
SpEL-large 91.6 85.8 2.64

Table 4.3: Comparison of the performance of SpEL (in no mention-specific candidate set setting)
to zero and few shot GPT-3.5-turbo-16k (accessed on June 16, 2023) and GPT-4-0613 (for the
best performing prompts we attempted; accessed on August 24, 2023). For few-shot experiments we
constructed the prompt using the chain-of-thought (CoT) method of Wei et al. (2022).

We emphasize the importance of the prompt in the performance of generative models.
We examined multiple prompts with varying degrees of task explanation, both short and
long. Our best-performing zero-shot prompt was:

You are a Wikipedia annotator. Annotate the Wikipedia entities in the

following paragraph, and produce the output in markup using the <mark>

element and the data-entity attribute:

In each query, we added the AIDA document received from GERBIL after the prompt and
passed it to GPT. In the few-shot experiments, we followed the same procedure as zero-
shot, testing various prompts. Our best-performing few-shot CoT prompt using the example
document “EU rejects German call to boycott British lamb” follows.

Document: "EU rejects German call to boycott British lamb."

Answer: <p> <chain-of-thought> Considering EU, German, and British

are shown in the text together with the word boycott, this is a polit-

ical document. I should annotate EU with "European Union", German with

the country "Germany", and British with the country "United Kingdom".

I make sure I do not mistake Wikipedia identifiers with entity type

identifiers, for example I choose "United Kingdom" instead of the inc-

orrect general entity type "country". I make sure to annotate all ent-

ities even if there is a large number of entities. </chain-of-thought>

<result> <mark data-entity="European Union"> EU </mark> rejects <mark

data-entity="Germany"> German </mark> call to boycott <mark data-enti-

ty="United Kingdom"> British</mark> lamb.</result></p>

Furthermore, it necessitates prior knowledge of the target mention to condition the summary accordingly.
Additionally, it relies on a set of candidates generated through heuristics which undermines the feasibility
of utilizing GPT for end-to-end entity linking.
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Adding more examples in this prompt did not significantly improve performance but
substantially increased the prompting cost to GPT-4. We maintained the same configura-
tions and setups for the few-shot experiments as in the zero-shot experiments.

We analyzed the validation set results and observed consistent patterns that shed light
on the challenges posed by generative language models in entity linking. One notable ob-
servation was the presence of annotations from a mixture of knowledge bases and domains,
indicating that the model possesses an excessive amount of knowledge, leading to distrac-
tions in the annotation process focused on entity linking over Wikipedia. With this regards,
we observed a lack of stability in the model’s output even when setting the temperature pa-
rameter to 0. Despite using the same prompt, the model occasionally confused entity linking
with NER and reported mentions annotated with NER tags such as Person or Location.
In our experiments, we removed all predicted spans with such tags and did not consider
them in evaluation.

Furthermore, due to the nature of generative models, there were instances where the
model failed to generate the complete entity, resulting in incomplete predictions (for example
it generated Leicestershire instead of the full entity identifier Leicestershire County

Cricket Club or Pohang instead of Pohang Steelers). In these instances, if an exact
match to an entity in the knowledge base was not found, we collected all entities in the fixed
candidate set that included the full prediction from the generative language model. In this
collection, we randomly selected one of those mentions and reported it back to GERBIL
instead of the original incomplete prediction generated by the model.

4.8 Practicality of the Fixed Candidate Sets

A valid concern regarding SpEL pertains to the construction of the fixed candidate set and
its practicality in real-world scenarios, where the testing data may not be predetermined,
making it challenging when attempting to assemble a subset of knowledge base entries for
this purpose. As mentioned in Section 4.2, it is possible to construct this set based on the
expected entities that SpEL should detect. In this section, we take a more flexible approach,
and consider the entire set of 500K general fine-tuning entities as the fixed candidate set.

Furthermore, taking inspiration from Liu and Ritter (2023) regarding the extended
existence of the CoNLL-2003 dataset, and consequently the AIDA dataset, for over two
decades, we acknowledge the potential concern of adaptive overfitting. In response, we
used their newly annotated NER test set of 131 Reuters news articles published between
December 5th and 7th, 2020. We meticulously linked the named entity mentions in this test
set to their corresponding Wikipedia pages, using the same linking procedure employed in
the original AIDA dataset. Our new entity linking test set, AIDA/testc17, has 1,160 unique

17https://github.com/shavarani/SpEL/blob/main/resources/data/aida_testc.ttl.
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Approach EL Micro-F1

testa testb testc

Sp
E

L-
ba

se no mention-specific candidate set 89.6 82.3 73.7
KB+Yago candidate set 89.5 83.2 57.2
PPRforNED candidate set

context-agnostic 90.8 84.7 45.9
context-aware 91.8 86.1 -

Sp
E

L-
la

rg
e no mention-specific candidate set 89.7 82.2 77.5

KB+Yago candidate set 89.8 82.8 59.4
PPRforNED candidate set

context-agnostic 91.5 85.2 46.9
context-aware 92.0 86.3 -

Table 4.4: Entity Linking evaluation results of SpEL with a fixed candidate set size of 500K over
AIDA test sets. Since the context-aware candidate sets require a mechanism for generating/looking
up the candidate set during inference, we do not evaluate testc in this setting.

Wikipedia identifiers, spanning over 3,777 mentions and encompassing a total of 46,456
words.

We re-evaluate SpEL across all four settings outlined in Section 4.6 using the 500K
entity output vocabulary and over all three AIDA test sets: testa, testb, and testc. We
report our findings in Table 4.4. Examining the results shows that our newly created testc

presents a new challenge for entity linking because the currently available candidate sets
prove unhelpful and, in fact, detrimental to entity linking. The SpEL-large results for testa

and testb show that SpEL with an unconstrained fixed candidate set size still matches the
performance of the best model published before SpEL (with fixed candidate sets).

Section 6.2 will provide a unified examination of the recent entity linking methods on
the newly annotated testc, and studies their performance in absence of candidate sets.

4.9 SpEL Performance on Out-of-domain Data

A few of the publications listed in Table 4.1 recommend assessing entity linking models on
out-of-domain testing datasets. These datasets typically lack associated training sets and
are often annotated with entity links to variations or subsets of the DBpedia (Auer et al.,
2007) knowledge base. Out-of-domain annotation typically operates under the assumption
that the knowledge base entry identifiers remain consistent between in-domain and out-of-
domain scenarios. While this assumption may hold true to a certain extent, as DBpedia’s
primary focus has been on information extraction from Wikipedia, it’s important to note
that the temporal evolution of both knowledge bases has introduced discrepancies. These
datasets, which are between 9 to 17 years old at the time of writing this dissertation, have
been affected by temporal changes, and the two knowledge bases are not always perfectly
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Approach MSNBC Derczynski KORE N3 Reuters N3 RSS OKE2015 OKE2016

Hoffart et al. (2011)† 65.1 32.6 55.4 46.4 42.4 63.1 0.0
Kolitsas et al. (2018) 72.4 34.1 35.2 50.3 38.2 61.9 52.7
van Hulst et al. (2020) 74.4 41.2 61.6 49.7 34.3 64.8 58.8
De Cao et al. (2021b) 73.7 54.1 60.7 46.7 40.3 56.1 50.0
Zhang et al. (2022) 72.1 52.9 64.5 54.1 41.9 61.1 51.3

SpEL-base 64.5 50.7 48.7 47.9 41.9 55.9 57.4
SpEL-large 63.1 59.1 53.7 47.1 44.4 59.5 56.6

Oracle‡ 93.2 91.4 99.6 99.7 98.0 88.2 91.4

Table 4.5: Comparison of SpEL (with a fixed candidate set size of 500k) evaluation results with the
literature on out-of-domain datasets. The best score is shown as bold and the second best is shown
as underlined.
†Results from (Kolitsas et al., 2018 - Table 2).
‡The “Oracle” results are calculated through feeding the gold annotations of each dataset to GER-
BIL, and depict the In-KB annotation quality of each dataset.

aligned. The following offers a concise overview of some of the most commonly utilized
out-of-domain datasets for evaluation:

MSNBC (Cucerzan, 2007) contains 20 MSNBC news stories (annotated with Wikipedia)
from different categories including Health, Technology, Sports, etc.

KORE (Hoffart et al., 2012) contains 50 sentences annotated with DBpedia and chosen
from five domains: celebrities, music, business, sports, and politics. It was created to examine
the disambiguation functionality in the older entity disambiguation models.

N3 Reuters and N3 RSS (Röder et al., 2014) contain mentions referring to persons,
places and organizations (DBpedia annotations). The Reuters dataset contains 128 news
stories from Reuters news agency and the RSS dataset contains 500 RSS feed messages from
worldwide newspapers (in English).

Derczynski (Derczynski et al., 2015) contains 182 tweets annotated with DBpedia
knowledge base entities.

OKE challenge 2015 and 2016 evaluation sets (Nuzzolese et al., 2015) contain 101
and 55 sentences from Wikipedia articles (reporting biographies of scholars), respectively,
annotated using a mixture of annotations from DBpedia and the OKE entity identifiers.

We provided the out-of-domain data sets to SpEL, using a fixed candidate set of 500K
entities, and compared its performance against other methods that have reported results
on these datasets. The comparative results can be found in Table 4.5.

Please note that SpEL’s tokenization procedure does not allow the generation of anno-
tations that start or end within a single word (separated by space characters). For instance,
in SpEL, the token washington-based is considered a single word, whereas out-of-domain
datasets contain several annotations that commence or conclude within a single word. Ad-
ditionally, each dataset necessitates a specific redirect normalization schema; for example,
China is annotated as People’s_Republic_of_China in KORE, but in N3 RSS, it is an-
notated as China.
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Nevertheless, SpEL-large delivers the best results on two out of seven and the second-
best result on one out of seven test sets. It doesn’t significantly underperform the other
models in terms of performance on the remaining four test sets.

4.10 Summary and Future Research

In this chapter, we introduced several improvements to a structured prediction approach
for entity linking. Our experimental results on the AIDA dataset show that our proposed
improvements to the structured prediction model for entity linking can achieve state-of-the-
art results using a commonly used evaluation toolkit providing head to head numbers for
competing methods on the same dataset. We showed that our approach has the best F1-
score on this task compared to the state-of-the-art on this dataset. SpEL is more compute
efficient with many fewer parameters and it is also much faster at inference time, providing
faster throughput, compared to previous methods.

Future research may expand the scope of our investigations by exploring additional entity
linking datasets spanning diverse domains, including medical NLP. Moreover, investigating
the potential of multilingual applications of structured prediction for entity linking presents
intriguing research pathways, examining the advantages of cross-lingual concept projec-
tion and leveraging multilingual representation learning for our entity knowledge tuned
language models. Furthermore, the evolution of SpEL to accommodate zero-shot entity
linking emerges as a promising domain for future exploration and advancement.
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Chapter 5

SpEL for Answering Entity-Centric Questions

In this chapter, we further study the application of our proposed structured prediction
based entity linking framework (Section 4.4) in the context of retrieval-augmented question
answering. Notably, this chapter reproduces results which we have originally published in
(Shavarani and Sarkar, 2024).

5.1 Motivation

Information retrieval has significantly enhanced the factual reliability of LLM generated
responses (Shuster et al., 2021) in question answering (Zhu et al., 2021; Zhang et al., 2023).
This improvement is particularly notable in a research area known as retrieval-augmented
generation (RAG; Lewis et al., 2020b; Izacard and Grave, 2021a; Singh et al., 2021). RAG
systems typically employ the Retriever-Reader architecture (Chen et al., 2017), with re-
trievers being either sparse (Peng et al., 2023), dense (Karpukhin et al., 2020), or a hybrid
(Glass et al., 2022). The reader, which is a generative language model (e.g., GPT-3), con-
ditions its generated answers on the documents deemed relevant by the retriever. Recent
RAG methodologies exploit the in-context learning capabilities of LLMs to incorporate the
retrieved documents into the prompt (Shi et al., 2023; Peng et al., 2023; Yu et al., 2023).

Kandpal et al. (2023) demonstrate that retrieval-augmentation improves LLMs’ perfor-
mance in answering entity-centric questions that seek factual information about real-world
entities1. They show that this technique is particularly helpful for questions about rare
entities, which appear infrequently in LLM training and fine-tuning data.

But is there a correlation between the quality of the retrieved documents and the gen-
erated response quality? Sciavolino et al. (2021) demonstrate that dense retrievers retrieve
less relevant documents for answering entity-centric questions than simpler sparse retriev-
ers. Additionally, Cuconasu et al. (2024) show that the presence of irrelevant documents
leads to worse answers.

In the rest of this chapter, we introduce Entity Retrieval (Figure 5.1b). This method
leverages salient entities in the question to lookup knowledge base (e.g., Wikipedia) articles

1Entity-centric questions typically have answers that are concise single words or short phrases. These
answers often reference or directly stem from a knowledge base entity (Ranjan and Balabantaray, 2016).
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Figure 5.1: Entity Retrieval simplifies the process of obtaining augmentation documents by replacing
the need to search through large indexed passages with a straightforward lookup.
(a) Retrieval-augmented QA with Dense Retrieval

21 Million Passages

Sparse/Dense
Retrieval

Q LLM A

(b) Retrieval-augmented QA with Entity Retrieval

Q Identify
Entities

Lookup
Entity

Articles
Fetch First
W Words

ALLM

corresponding to each entity and uses the first W words of these articles as augmentation
documents for the question passed to the LLM. To evaluate the effectiveness of Entity
Retrieval, we compare its retrieval performance against several passage retrieval techniques
(both dense and sparse) using two entity-centric question-answering datasets. Additionally,
we explore the application of entity linking, utilizing both the salient entity annotations
of the questions and those identified using our proposed SpEL framework, for the Entity
Retrieval method.

5.2 Retrieval for Retrieval-Augmentation

Retrieval-augmentation (Lewis et al., 2020b) is a method of converting Closed-book question
answering2 (Roberts et al., 2020) into extractive question answering (Abney et al., 2000;
Rajpurkar et al., 2016), where the answers can be directly extracted from the retrieved
documents. Even in cases that the documents do not contain the exact answer for extraction,
they can function as a form of short-term memory recall and serve as potent indicators to
help the model remember portions of its training data beneficial in answering the question3.
Despite the abundance of effective retrieval techniques for retrieval-augmented question
answering in existing literature (Zhan et al., 2020a,b; Yamada et al., 2021; Izacard et al.,
2022; Santhanam et al., 2022; Ni et al., 2022, inter alia.), this section will concentrate on a
select few methods4 utilized to study answering entity-centric questions in this chapter.

2Closed-book QA focuses on answering questions without additional context during inference, while zero-
shot QA targets answering questions on unseen topics without fine-tuning or access to examples from those
topics during training.

3Although a careless selection of the documents may lead to distractions that worsen model performance
(Cuconasu et al., 2024).

4We selected the methods supported by pyserini.io for the similarity between the underlying modules,
minimizing discrepancies across different implementations.
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BM25 (Robertson et al., 1994, 2009) is a probabilistic retrieval method that ranks
documents based on the frequency of query terms appearing in each document, adjusted
by the length of the document and overall term frequency in the collection. It operates in
the sparse vector space, relying on precomputed term frequencies and inverse document
frequencies to retrieve documents based on keyword matching.

DPR (Dense Passage Retrieval; Karpukhin et al., 2020) leverages a bi-encoder architec-
ture, wherein the initial encoder processes the question and the subsequent encoder handles
the passages to be retrieved. The similarity scores between the two encoded representations
are computed using a dot product. Typically, the encoded representations of the second
encoder are fixed and indexed in FAISS (Johnson et al., 2019; Douze et al., 2024), while
the first encoder is optimized to maximize the dot product scores based on positive and
negative examples.

ANCE (Xiong et al., 2021) is another dense retrieval technique similar to DPR5. It
employs an encoder to transform both the questions and passages into dense representations.
These representations are compared using dot product similarity. The key distinction from
DPR is that ANCE uses hard negatives generated by periodically updating the passage
embeddings during training, which helps the model learn more discriminative features,
thereby enhancing retrieval performance over time.

5.3 Entity Retrieval for Question Answering

While quite powerful, most retrieval-augmented systems are notably time and resource-
intensive, necessitating the storage of extensive lookup indices and the need to attend to
all retrieved documents to generate a response (see Section 5.4.7). This attribute renders
such methods less desirable, particularly given the drive to run LLMs locally and on mobile
phones (Alizadeh et al., 2023).

Entity recognition has been an integral component of statistical question answering sys-
tems (Aghaebrahimian and Jurčíček, 2016; Li et al., 2021; Adebisi et al., 2022). Additionally,
the extensively studied field of Knowledge Base Question Answering (KBQA; Cui et al.,
2017; Tan et al., 2023; Li et al., 2023) has underscored the significance of entity information
from knowledge bases in question answering (Salnikov et al., 2023). A traditional neural
question answering pipeline may contain entity detection, entity linking, relation predic-
tion, and evidence integration (Mohammed et al., 2018; Lukovnikov et al., 2019), where
entity detection can employ LSTM-based or BERT-based encoders. Inspired by this body
of work, we investigate the relevance of retrieval based on entity information as an alter-
native strategy to the proposed retrieval methods of Section 5.2, especially for answering
entity-centric questions with LLMs.

5We have also implemented DKRR (Izacard and Grave, 2021b), however, due to its significantly poorer
performance compared to other methods, we exclude it from our analysis.
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Figure 5.2: The answer to Who is the composer of The Swan Lake ballet? can be found in the
first paragraph of Swan Lake Wikipedia article.

Our proposed method Entity Retrieval, leverages the salient entities within the questions
to identify and retrieve their corresponding knowledge base articles. We will then use the
first W words of these articles as the documents augmenting entity-centric questions when
prompting LLMs. Figure 5.1 presents a schematic comparison between Entity Retrieval and
dense retrieval methods in identifying retrieval documents to enhance question answering
with LLMs, and Figure 5.2 provides an intuitive example to motivate the effectiveness of
Entity Retrieval.

5.4 Experiments and Analysis

In this section, we provide our experimental setup followed by the presentation and analysis
of our results.

5.4.1 Setup

We focus on Wikipedia as the knowledge base and utilize the pre-existing BM25, DPR, and
ANCE retrieval indexes in Pyserini6 (Lin et al., 2021). These indexes, follow established
practices (Chen et al., 2017; Karpukhin et al., 2020) and segments the articles into non-
overlapping text blocks of 100 words, resulting in 21,015,300 passages. For dense retrievers,
the passages are processed with a pre-trained context encoder, generating fixed embedding
vectors stored in a FAISS index (Douze et al., 2024). Our experimental entity-centric ques-
tions are encoded using the question encoder, and the top k relevant passages to the encoded
question are retrieved from the FAISS index. For BM25 sparse retriever, the passages are
stored in a Lucene index and the questions are keyword matched to this index.

As outlined in Section 5.3, the document retrieval process will require loading the entire
index (as well as the question encoder for dense retrieval) into memory which entails signifi-
cant time and memory consumption. To address this challenge, following Ram et al. (2023),

6http://pyserini.io/.
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we treat document retrieval as a pre-processing step, caching the most relevant passages for
each question before conducting the question answering experiments.

For Entity Retrieval, similar to BM25, DPR, and ANCE, we maintain document lengths
at 100 words. However, our approach diverges in sourcing documents: rather than drawing
from a large index of 21 million passages, we employ the salient entities within the question
and retrieve their corresponding Wikipedia articles, which we then truncate to the initial
100 words7. Nonetheless, to explore the impact of document size, beyond the standard
100-word segment aligned with comparable methods, we investigate Entity Retrieval across
varied lengths, including the first 50, 300, and 1000 words from the retrieved Wikipedia
articles.

We conduct our retrieval-augmented question answering experiments using LLaMA-3
model, and in all such experiments8, we prevent it from generating sequences longer than
10 subwords.

We do not use any training question-answer pairs in the prompts of our models9. In
other words, aside from a simple instruction for answering the question, in the Closed-book
setting, the prompt solely comprises the question, while in the retrieval-augmented settings
using BM25, DPR, and ANCE, it includes the pre-fetched retrieved documents from the
corresponding retrieval index along with the question. Similarly, for the Entity Retrieval
settings, the prompt consists of the first W words of the Wikipedia pages corresponding to
the salient entities in the question. We follow Ram et al. (2023) for question normalization
and prompt formulation.

5.4.2 Data

We use the following datasets in our experiments:
EntityQuestions (Sciavolino et al., 2021) is created by collecting 24 common relations

(e.g., ‘author of’ and ‘located in’) and transforming fact triples (subject, relation, object)
that contain these relations, into natural language questions using predefined templates.
The dataset comprises 176,560 train, 22,068 dev, and 22,075 test question-answer pairs. To
expedite our analytical experiments in this chapter, given the extensive size of the dev and
test sets, we constrain the question-answer pairs in these subsets to those featuring salient
entities within the top 500K most linked Wikipedia pages, as suggested in Chapter 4. Thus,
the dev and test subsets of EntityQuestions considered in our experiments consist of 4,710
and 4,741 questions, respectively.

7The first sentences of Wikipedia articles have been demonstrated to be effective for document classifi-
cation (Section 6.1) as well as question answering (Choi et al., 2018).

8We run our experiments on one server containing 2 RTX A6000s with 49GB GPU memory each.

9Further exploration into few-shot experimental setups involving additional (context, question, answer)
in-context examples is left for future investigation.
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FactoidQA10 (Smith et al., 2008) contains 2,203 hand crafted question-answer pairs
derived from Wikipedia articles, with each pair accompanied by its corresponding Wikipedia
source article included in the dataset.

StrategyQA11 (Geva et al., 2021) is a complex boolean question answering dataset,
constructed by presenting individual terms from Wikipedia to annotators. Its questions
contain references to more than one Wikipedia entity, and necessitate implicit reasoning
for binary (Yes/No) responses. The dataset comprises 5,111 answered questions initially
intended for training question answering systems, with the system later tested on test set
questions with unreleased answers. This training set is split into two subsets, based on
the perceived challenge of questions by adversarial annotation models (Dua et al., 2019),
resulting in train and train_filtered subsets containing 2,290 and 2,821 questions, re-
spectively.

5.4.3 Evaluation

We evaluate the performance of the retrieval methods using the following metrics:

• nDCG@k (normalized Discounted Cumulative Gain at rank k; Järvelin and Kekäläi-
nen, 2002) evaluates the quality of a ranking system by considering both the relevance
and the position of documents in the top k results. Mathematically, it is represented
as

nDCG@k =
∑k

i=1
2ri −1

log2(i+1)∑|RELk|
i=1

2ri −1
log2(i+1)

Where, ri denotes the relevance score of a document for a question, with relevance
score ri = 1 if the document contains a normalized form of the expected answer to
the question, and ri = 0, otherwise. And, RELk refers to a subset of the retrieved
documents that contain a normalized form of the expected answer. nDCG@k scores
range between 0 and 1, where a score of 1 signifies an optimal ranking with the most
relevant documents positioned at the top.

• MRR (Mean Reciprocal Rank; Voorhees and Harman, 1999) is the average of the
reciprocal ranks of the first relevant document for each question. Mathematically, it
is represented as

MRR = 1
|Q|

|Q|∑
i=1

1
ri

where |Q| represents the total number of questions and ri denotes the rank of the first
relevant document for the i-th question.

10https://www.cs.cmu.edu/~ark/QA-data/data/Question_Answer_Dataset_v1.2.tar.gz.

11https://allenai.org/data/strategyqa.
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• Top-k Retrieval Accuracy, as reported by Sciavolino et al. (2021), is calculated as
the number of questions with at least one relevant document in the top k retrieved
documents divided by the total number of questions in the dataset.

We evaluate the performance of the retrieval-augmented question-answering models with
each retrieval method as follows:

• For FactoidQA and EntityQuestions datasets, we use OpenQA-eval (Kamalloo et al.,
2023) scripts to evaluate model performance, and report exact match (EM) and F1
scores by comparing expected answers to normalized model responses.

• For StrategyQA, we present accuracy scores by comparing model responses to the
expected boolean answers in the dataset. As well, to assess model comprehension of
the task, we count the number of answers that deviate from Yes or No and report this
count in a distinct column labeled “Inv #” for each experiment.

5.4.4 Entity Retrieval Performance using Question Entity Annotations

We begin our analysis by comparing Entity Retrieval performance to BM25, DPR, and
ANCE. For this experiment, we calculate nDCG with various retrieved document sets of
size k = 1, 2, 3, 4, 5, 20, and 100 documents. We use the entity annotations provided with the
questions from FactoidQA and the dev set of EntityQuestions to fetch their corresponding
Wikipedia articles, excluding StrategyQA from our analysis as it does not include entity
annotations. On average, FactoidQA and EntityQuestions datasets contain one salient entity
per question.

To evaluate the effect of document length, we compare Entity Retrieval with the first
100 words (equivalent to the size of documents returned by BM25, DPR, and ANCE; noted
as ER100w) and also consider the first 50, 300, and 1000 words of the retrieved Wikipedia
articles (noted as ER50w, ER300w, and ER1000w). An Entity Retrieval document with 300
words has the same word count as three documents returned by BM25 or DPR.

Figure 5.3 presents the computed nDCG@k scores across varying document sizes, high-
lighting the superior performance of Entity Retrieval over other retrieval methods in the
context of the entity-centric datasets under study. Notably, ER1000w, which corresponds
to ten BM25 retrieved passages in terms of word count, exhibits a retrieval performance on
par with 100 retrieved documents in FactoidQA and surpasses BM25, the top-performing
retriever on EntityQuestions, by 25%. This impressive performance by Entity Retrieval can
be attributed to its ability to retrieve fewer, yet more relevant, documents. This observa-
tion aligns with the conclusion drawn by Cuconasu et al. (2024), which emphasizes that
the retrieval of irrelevant documents can negatively impact performance. Entity Retrieval
effectively minimizes the retrieval of such documents. Further insights can be gleaned from
the comparison of nDCG scores along the x-axis of the plots in Figure 5.3. As the number of
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Figure 5.3: nDCG@k scores comparing the quality of BM25, DPR, ANCE, and Entity Retrieval by
considering both the relevance and the position of documents in the top k retrieved passages for
each question.
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retrieved documents increases, the likelihood of retrieving irrelevant documents also rises,
leading to a decline in retrieval performance when moving from 1 to 5 retrieved documents.

Table 5.1 showcases the calculated MRR scores, emphasizing the quicker attainment
of relevant retrieval documents in Entity Retrieval compared to other retrieval methods.
Concurrently, Figure 5.4 illustrates the impact of incrementing the number of retrieved
documents on the expansion of the expected answers’ coverage for the EntityQuestions dev
subset.

FactoidQA EntityQuestions (dev)

BM25 0.245 0.522
DPR 0.209 0.456
ANCE 0.222 0.536

ER50w 0.097 0.435
ER100w 0.131 0.516
ER300w 0.185 0.610
ER1000w 0.272 0.695

Table 5.1: MRR scores comparing the retrieval quality of BM25, DPR, ANCE, and Entity Retrieval
through the average of the reciprocal ranks of the first relevant document for each question.

While it may be appealing to consider 100 or more documents to simultaneously enhance
both nDCG and Retrieval Accuracy, it is important to note that 100 retrieved documents
would comprise 10,000 words. This could potentially overwhelm the model with excessive
noise (irrelevant documents), and as well, could make it extremely costly to execute retrieval-
augmented question answering, especially when the cost of API calls is calculated per token.
We would need at least 10,000 tokens (optimistically, assuming each word equates to only
one token) in addition to the tokens in the question. These factors suggest that retrieving
a few documents for each question is more beneficial.
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Figure 5.4: Retrieval Accuracy scores showcasing the correlation between the number of retrieved
documents and the expected answers’ coverage in EntityQuestions (dev) subset.
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Taking these considerations into account, along with the nDCG@k, MRR, and Retrieval
Accuracy results from this section, we gain a comprehensive understanding of the trade-
off between the quality of the retrieved documents, which diminishes as we consider more
documents, and the answer coverage, which increases as the model has a higher chance
of encountering the right document with the correct hint for the answer. Consequently,
we opt for k = 4 as a default, and we will always retrieve the top-4 documents in our
retrieval-augmented question answering experiments.

5.4.5 Retrieval-Augmented Question Answering

Next, we shift our focus to study the effectiveness of our proposed Entity Retrieval method
compared to other retrieval methods in enhancing the quality of responses to entity-centric
questions. In this section, we examine three distinct scenarios: (1) the Closed-book setting,
where we use “Answer these questions:” as the task instruction, followed by the question,
(2) the Retrieval-Augmented setting, where we use retrieved documents as a basis, followed
by “Based on these texts, answer these questions:”, and then the question, and (3)
the Entity Retrieval with question entity annotations, which uses the same prompt as the
retrieval-augmented setting. The only difference lies in the documents retrieved, as we have
previously discussed.

The initial eight rows of Table 5.2 present the results of our experiments using LLaMA-3
(8B) model. Upon examining these results, it is evident that ER100w, the most analogous
Entity Retrieval setting to other retrieval methods, outperforms in terms of both EM and
F1 scores. This setting returns 100-word documents as the other retrieval methods. Fur-
thermore, our dense retrieval results align with the observations of Sciavolino et al. (2021),
asserting that entity-centric questions indeed challenge dense retrievers. Although the BM25
method proves successful in enhancing the results compared to the Closed-book setting, it is
noteworthy that even Entity Retrieval with the initial 50 words of the articles corresponding
to the salient entities within questions yields superior results. This is particularly significant
when compared to other retrieval methods which necessitate indexing the entire knowledge
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LLaMA-3
(8B)⋆

FactoidQA EntityQuestions

dev test

EM F1 EM F1 EM F1

Closed-book 30.7±0.1 39.3±0.0 22.7±0.5 37.8±1.0 22.8±0.1 38.1±0.6

Retrieval-Augmented QA

BM25 32.2±1.1 42.4±0.2 23.8±0.3 38.6±0.8 23.3±0.0 38.5±0.1
DPR 29.4±1.0 38.5±1.2 22.0±0.1 36.2±0.2 20.5±0.4 35.3±0.6
ANCE 30.5±0.4 40.0±0.4 23.1±0.7 37.9±0.6 22.7±0.7 37.9±0.9

Entity Retrieval w/ Question Entity Annotations

ER50w 34.2±0.7 43.5±0.6 24.9±0.2 41.2±0.0 23.9±0.5 41.0±0.1
ER100w 33.6±0.5 42.8±0.5 26.2±0.0 42.8±0.1 25.7±0.1 42.4±0.0
ER300w 33.7±1.4 43.0±1.7 26.2±0.4 42.8±0.0 25.3±1.0 42.4±1.1
ER1000w 35.1±0.4 44.9±0.7 25.2±0.4 41.9±0.6 24.5±0.9 41.3±0.6

Entity Retrieval w/ SpEL Identified Entity Annotations

ERSp50w 29.7±0.3 38.6±0.7 24.3±0.2 39.2±0.1 24.0±0.1 39.7±0.0
ERSp100w 28.3±0.9 37.4±1.2 25.0±0.4 40.1±0.3 24.2±0.2 39.8±0.1
ERSp300w 26.8±0.6 35.6±0.7 24.4±0.0 39.7±0.1 24.6±0.3 40.2±0.5
ERSp1000w 21.3±0.5 30.4±0.8 24.4±0.1 39.7±0.1 23.0±0.7 39.2±0.7

Table 5.2: Question answering efficacy comparison between Closed-book and Retrieval-augmentation
using BM25, DPR, ANCE, and Entity Retrieval. EM refers to the exact match between predicted
and expected answers, disregarding punctuation and articles (a, an, the).
⋆ Results represent the average of two runs, accompanied by a margin of error based on a 99%
confidence interval.

base on disk and loading the index into memory; a process required in inference time where
caching is not an option.

5.4.6 Entity Retrieval in absence of Question Entity Annotations

In this section, we concentrate on the most crucial component of the Entity Retrieval
method: the salient entities within entity-centric questions. We explore a scenario where
the entities are not explicitly provided in the question, suggesting the use of an entity link-
ing method to extract these entities. Ideally, we would like to evaluate all recent entity
linking methods to identify the most effective one. However, due to time and budget lim-
itations, we depend on the findings of Section 6.2 to choose an entity linking method. In
this section, we examine the latest entity linking methods in terms of performance against
unseen data and find SpEL as the top performer. Consequently, we investigate Entity Re-
trieval using entities identified with SpEL, while reserving the examination of other entity
linking techniques for Entity Retrieval for future research.

We maintain the Entity Retrieval settings as before, defining ERSp50w, ERSp100w,
ERSp300w, and ERSp1000w for performing entity linking with SpEL, then retrieving the
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Question Who performed Alexis Colby? What is the capital of Seine-Saint-Denis?
Answer Joan Collins Bobigny

Closed-Book Diana Ross Paris
BM25 Linda Evans Saint-Denis
DPR Alexis Cohen Saint-Denis
ANCE Nicollette Sheridan performed Alexis Colby. Saint-Denis
ERSp100w Joan Collins Bobigny

Question Where did John Snetzler die? Where was Brigita Bukovec born?
Answer Schaffhausen Ljubljana

Closed-Book He died in London, England, in 178 Brigita Bukovec was born in Slovenia
BM25 John Snetzler died in London. Slovenia
DPR John Snetzler died in London in Slovakia
ANCE in England Rîbnit,a
ERSp100w Schaffhausen Ljubljana

Table 5.3: Example questions from EntityQuestions (dev) to demonstrate the performance of Entity
Retrieval in comparison to the other retrieval methods.

Wikipedia articles corresponding to the SpEL identified entities, and using the first 50,
100, 300, and 1000 words of these articles as documents to augment the question when
prompting the LLM.

Passing the questions from our datasets to SpEL for analysis, we find that it generates a
maximum of 8, 3, and 4 annotations for FactoidQA, EntityQuestions, and StrategyQA, re-
spectively. On average, it produces 0.8, 0.7, and 1.1 annotations per question for these same
datasets. SpEL successfully identifies and links entities in 56.5% of FactoidQA questions
(1244/2203), 66.0% of EntityQuestions (dev) questions (3108/4710), 65.3% of EntityQues-
tions (test) questions (3095/4741), 75.8% of StrategyQA (train) questions (1735/2290), and
74.2% of StrategyQA (train_filtered) questions (2094/2821).

The final four rows of Table 5.2 showcase the comparative results of utilizing entities
identified by SpEL for Entity Retrieval. Given that one-third of EntityQuestions and ap-
proximately half of FactoidQA lack identified annotations, the exact match scores reveal
that Entity Retrieval performs robustly and surpasses BM25, the top-performing competi-
tor retrieval method, for the entity-centric question-answering datasets under examination.
This underscores the potential of Entity Retrieval within this paradigm. In addition, the
disparity between the results with and without question entity annotations strongly indi-
cates the necessity for further research in the Entity Linking domain, which could enhance
entity-centric question answering as a downstream task. Table 5.3 provides some example
questions where Entity Retrieval has led to better answers.

Table 5.4 presents a comparison of the performance of Entity Retrieval using SpEL
identified entities against other retrieval methods on the StrategyQA dataset. The results
clearly demonstrate the superior performance of Entity Retrieval over the top-performing
retrieval methods as shown in Table 5.2. It is important to note that the 100-word setting
(ERSp100w) is the most analogous to other retrieval methods, given that the size of their
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LLaMA-3
(8B)⋆

train train_filtered

Acc. Inv # Acc. Inv #

BM25 43.8±0.1 601±4 49.1±1.0 679±7
ANCE 47.0±1.2 550±15 51.8±1.0 637±42

ERSp50w 49.7±1.2 378±34 56.2±1.3 417±31
ERSp100w 50.5±2.0 367±21 56.6±0.5 389±1
ERSp300w 46.2±1.9 508±22 53.9±1.9 538±14
ERSp1000w 40.2±0.4 778±3 43.2±0.3 924±13

Table 5.4: Comparison of Entity Retrieval using SpEL identified entities to the best-performing
dense and sparse retrieval methods of Table 5.2 on the StrategyQA dataset. Given the expected
boolean results for StrategyQA questions, we restricted LLaMA-3 to generate only one token. Acc.
indicates the fraction of answers that correctly match the expected Yes or No responses in the
dataset, while Inv # represents the count of labels that are neither Yes nor No, but another invalid
answer.
⋆ Results represent the average of two runs, accompanied by a margin of error based on a 99%
confidence interval.

retrieved documents is also 100 words. Interestingly, the results from the 1000-word setting
suggest that longer documents do not necessarily enhance the model’s recall. In fact, beyond
a certain length, the model may become overwhelmed by the sheer volume of noise, leading
to confusion. Lastly, the invalid count values suggest that Entity Retrieval is more effective
in assisting the model to comprehend the boolean nature of expected responses, eliminating
the need to rely on retrieval from millions of passages.

5.4.7 Real-time Efficiency Analysis

Our analysis thus far has primarily focused on the retrieval performance, without consid-
eration for the time and memory efficiency; crucial factors in retrieval method selection. In
this section, we shift our focus to these aspects.

We begin by replacing the pre-built cache with the original retrieval modules that were
used in creating the retrieval cache document sets. We load the indexes and the necessary
models for fetching the retrieval documents. We then record the peak main memory re-
quirement of each method during the experiment. It is important to note that all retrieval
methods primarily rely on main memory, with minimal differences in GPU memory require-
ments. Therefore, we report an average GPU memory requirement of 35GB for the LLaMA-3
(8B) setting and exclude it from our results table. We then feed all 2,203 FactoidQA ques-
tions into the BM25, ANCE, and Entity Retrieval (using SpEL identified entities) to fetch
the top-4 documents. We report the total time taken to generate answers to all the ques-
tions. Additionally, we keep track of all the pre-built models and indexes that each method
requires for download and storage. We report the total size of all downloaded files to disk.

Table 5.5 presents our findings on time and memory requirements. It is evident that
ANCE requires significantly more time to fetch and provide documents, six times more disk
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Total
Time

Disk
Storage

Main
Memory

BM25 45min 11GB 2.3GB
ANCE 960min 61.5GB 64.2GB
ERSp100w 34min 9.4GB 6.3GB

Table 5.5: Comparison of the required resources for each retrieval method in real-time execution.
The reported total time values exclude the time taken to load the indexes and models, focusing
solely on the time used to answer the questions.

space to store its indexes, and over ten times higher main memory demands to load its
dense representations12. In contrast, BM25 and Entity Retrieval are more resource-friendly.
Notably, Entity Retrieval is 25% faster than BM25 in response generation while demanding
the total memory and disk space of a standard personal computer. Future research can be
directed towards reducing the memory requirements of Entity Retrieval; a direction which
we find quit promising.

5.5 Related Studies

Similar to our work, Kandpal et al. (2023) investigate the impact of salient entities on
question answering, and propose constructing oracle retrieval documents as the 300-word
segment surrounding the ground-truth answer from the Wikipedia page that contains the
answer (entity name). Our approach leverages salient entities from questions without di-
rectly involving answers. Additionally, they primarily use entities to classify questions into
those concerning frequent knowledge base entries versus those about rare entries on the
long-tail, whereas our approach assigns a more substantial role to entities, treating them as
pointers guiding the retrieval of relevant documents to augment questions.

Sciavolino et al. (2021) compare DPR and BM25 retrievers for entity-centric questions,
and demonstrate that DPR greatly underperforms BM25. They attribute this to dense
retrievers’ difficulty with infrequent entities, which are less represented in training data. In
contrast, BM25’s frequency-based retrieval is not sensitive to entity frequency. We take a
parallel approach and propose a simple yet effective method that leverages salient entities
in the question for identifying augmentation documents.

5.6 Summary and Future Research

In this chapter, we focused on retrieval-augmented question answering, and explored vari-
ous retrieval methods that rely on the similarity between the question and the content of
the passages to be retrieved. We introduced a novel approach, Entity Retrieval, which devi-
ates from the conventional text similarity measure to identify relevant passages. Instead, it
capitalizes on the salient entities within the question to identify retrieval documents. Our

12Our empirical results demonstrate that DPR follows the same trend.
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findings indicate that our proposed method is not only more accurate but also faster in the
context of entity-centric question answering.

Future research could delve into the application of Entity Retrieval in few-shot question
answering, and examine the impact of different entity linking models on Entity Retrieval.
Additionally, future studies could investigate the feasibility of considering all entities with a
high degree of surface form overlap with linked entities to obtain augmentation documents.
This could potentially address any ambiguities in identified entity links.
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Chapter 6

Other Contributions

In this chapter, we discuss other contributions that either diverge from the primary focus
of the dissertation or involve shared authorship, even if they pertain to the central theme
of the dissertation. Each section will isolate the topic for discussion and provide references
to their original publications.

6.1 Multi-class Multilingual Classification of Wikipedia Articles Using
Extended Named Entity Tag Set

This section reproduces results which we have originally published in (Shavarani and Sekine,
2020).

Wikipedia serves as a valuable repository of global knowledge. Establishing an inter-
connected taxonomy within Wikipedia entities requires significant organizational efforts.
Sekine et al. (2018b) propose structuring Wikipedia articles to include recognized entities
and associated attributes, facilitating interlinking between attributes. The initial step in-
volves categorizing entities into predefined classes and validating the results through human
annotation, a crucial aspect in ensuring the accuracy of the knowledge base.

Over the years, numerous attempts have been made to categorize Wikipedia articles
into various sets typically comprising 3 to 15 class types (Toral and Munoz, 2006; Watan-
abe et al., 2007; Dakka and Cucerzan, 2008; Chang et al., 2009; Tardif et al., 2009). However,
such classification schemes offer limited utility when utilized as training data for question an-
swering systems due to the lack of detailed information within the extracted knowledge base.
Conversely, broader categorization sets like Cyc-Taxonomy (Lenat, 1995), Yago-Taxonomy
(Suchanek et al., 2007), or Wikipedia’s taxonomy of categories (Schönhofen, 2009) present
challenges for classifying Wikipedia articles as the tags lack verifiability for annotators.
Moreover, these taxonomies, often lacking a hierarchical tree structure, complicate the ver-
ification process, especially for articles covering multiple topics.

Addressing these challenges, the Extended Named Entities Hierarchy (ENE; Sekine
et al., 2002) emerges as a promising tag set, offering 200 fine-grained categories tailored
for Wikipedia articles. Higashinaka et al. (2012) pioneer the utilization of this extended
tag set as output labels for categorizing Wikipedia pages, employing a hand-extracted fea-
ture set to convert pages into model-compatible input vectors. Building upon this, Suzuki
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et al. (2016) augment the input features with trained vectors representing links between
Wikipedia pages, proposing a more intricate model for mapping articles to labels, albeit
without exploring the multilingual aspect of Wikipedia articles.

The work described in this section builds upon Sekine et al. (2018a)’s efforts, where
linguists were employed as annotators and trained on the ENE tag set to annotate each
article with up to 6 different ENE classes. We leverage Wikipedia language links to create
a multi-lingual Wikipedia classification dataset. Subsequent subsections detail the dataset
creation process, multi-lingual feature selection methods, model descriptions, experimental
setup, and classification results, benchmarked against existing methodologies proposed by
Higashinaka et al. (2012) and Suzuki et al. (2016).

6.1.1 Dataset Collection and Annotation

Sekine et al. (2018a) curated an annotated dataset containing 782,517 Japanese Wikipedia
articles spanning various domains, encompassing 175 out of 200 ENE labels. The selection
criteria omitted certain categories due to a lack of qualifying articles at the time. Arti-
cles were sourced from Japanese Wikipedia, requiring a minimum of 5 hyperlinks from
other Wikipedia articles. Annotators, predominantly possessing post-secondary degrees in
linguistics, were tasked with assigning up to 6 labels from the suggested 200 ENE labels.
Although inter-annotator agreement data is unavailable, the quality of annotations was val-
idated through random sampling and assessment by proficient annotators. This dataset is
accessible for the SHINRA2020-ML classification task1.

We restricted our analysis to a subset of annotated articles, aligning with recommenda-
tion from Suzuki et al. (2016), which stipulated a minimum of 100 hyperlinks per article.
This criterion yielded 118,635 Japanese Wikipedia articles, annotated with 164 out of 200
ENE labels, with a maximum of 5 annotations per article. To expand our dataset, we gath-
ered the content corresponding to the same article titles from English, French, German, and
Farsi Wikipedia. Leveraging Wikipedia language links, which connect articles on identical
entities across languages, we accessed the May 20, 2018 snapshot of Wikipedia in all five lan-
guages. We applied the labels assigned to the Japanese articles to their counterparts in the
other languages, capitalizing on the language-agnostic nature of ENEs and the consistent
content across pages.

To initiate our language link exploration, we constructed a comprehensive graph of
language links encompassing all (wikipedia_id, language) pairs, facilitating connections
between articles across the five languages. Additionally, we accounted for Wikipedia redirect
links in our exploration to accommodate instances where language links direct to redirect
pages in other languages. Utilizing this language links graph, we organized Entities by group-

1http://shinra-project.info/shinra2020ml/.
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Language Documents Classes Average Max Ann.

Articles/Class Ann./Article Count

Japanese 118,635 164 742.5 1.0357 5
English 52,445 159 339.9 1.0357 5
French 34,432 156 227.2 1.0346 5
German 29,808 154 198.6 1.0306 5
Farsi 14,058 148 97.7 1.0335 5

Table 6.1: Statistics about the collected Shinra 5-Language Categorization Dataset.

ing various (wikipedia_id, language) pairs that denote the same subject. Subsequently, we
assigned the ENE labels to articles across different languages, ensuring consistent labeling.

We created the Shinra 5-Language Categorization Dataset (SHINRA-5LDS2) as a
comprehensive collection of multilingual, multi-labeled Wikipedia articles. This dataset
facilitates benchmarking on multi-labeled Japanese, English, French, German, and Farsi
Wikipedia categorization using various methodologies proposed by researchers. Table 6.1
presents statistics detailing the total number of annotated articles in each language, the to-
tal count of ENE classes with at least one annotated article, the average number of articles
per class, and the average number of annotations per article provided by annotators.

6.1.2 Feature Selection and Models

For benchmarking purposes, we reviewed existing models proposed for multi-class catego-
rization of Wikipedia articles and opted for methodologies suggested by Higashinaka et al.
(2012) and Suzuki et al. (2016), both of which advocate for classifying articles using ENE
tag set. Additionally, to assess the efficacy of hierarchical structures in classifier training
with ENEs, we included models proposed by Wehrmann et al. (2018) in our analysis.

Feature Selection. Ensuring a fair comparison among the models necessitates stan-
dardized inputs across all methodologies. To achieve this, we amalgamated feature selection
methods advocated in previous studies (Wang and Manning, 2012; Higashinaka et al., 2012;
Suzuki et al., 2016), forming a unified set of features. However, due to the multilingual con-
text of our task, certain features such as Last one/two/three characters in the headings
or titles and Last character type (Hiragana/Katakana/Kanji/Other) had to be excluded
from the union. Figure 6.1 provides an overview of the final unified schema delineating the
categorization features for Wikipedia articles in the SHINRA-5LDS.

Binary Logistic Regression. Higashinaka et al. (2012) proposed using a set of distinct
Binary Logistic Regression Classifier models to distinguish the contribution of extracted fea-

2https://huggingface.co/datasets/shavarani/SHINRA-5LDS; the articles in this repository are up-
dated to contain the Wikipedia content from April 2024, and Table 6.1 reflects on the statistics on this
updated version.
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Figure 6.1: Unified categorization feature extraction schema from Wikipedia articles.
Content-Based Features

token uni/bigrams; char uni/bigrams; and token part-of-speech uni/bigrams of the title

token uni/bigrams of the first sentence

token uni/bigrams of the category titles

token unigrams of the wiki-link anchors

token unigrams of the titles of outgoing linked wiki-pages

token unigrams of the heading lines

“_” merged template name tokens concatenated with each key name in the template

last token part-of-speech tagged as noun in the title / the first sentence

Article Vector Features

D dimensional dense vector embedding of the wiki-links representing each article in
other wikipedia pages; created with Word2Vec skip-gram model exactly as mentioned
in (Suzuki et al., 2016)

tures to the final selected class. We adopt this approach to assess the classification difficulty
level of our dataset using a simple model.

Multi-task Regression. Suzuki et al. (2016) proposed aggregating separate Logistic
Regression Classifier models into a 2-Layer Perceptron Neural Network (referred to as Multi-
task Regression), aiming to enhance information capture for more confident assignment of
ENE classes to articles. Their study concludes that Multi-task Regression effectively learns
feature-label correlations compared to separate logistic regression models or isolated 2-Layer
Perceptron Networks. We implement their model and explore its performance further by
augmenting it with an additional layer in our benchmark experiments.

Hierarchical Multi-Label Classification Networks. To explore the information
contained within the Hierarchy of ENEs, we propose utilizing Hierarchical Multi-Label Clas-
sification Networks (HMCN). Wehrmann et al. (2018) outline two distinct configurations for
HMCNs, both employing a top-down approach for predicting the label hierarchy. The first
configuration, HMCN Feed-forward (HMCN-F), utilizes dedicated segments of the network
for predicting each hierarchy level, while HMCN Recurrent (HMCN-R) iteratively incor-
porates previous top layer predictions into subsequent lower-level predictions. We employ
both HMCN-R and HMCN-F to investigate the impact of model compression on hierarchy
prediction during testing.
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Model Japanese English German French Farsi

Binary Logistic Regression 71.2 74.5 69.4 67.8 73.1
Multi-task Regression (2L)† 78.8 78.3 81.5 80.0 78.0
Multi-task Regression (3L) 77.6 81.0 79.9 83.5 82.5
HMCN-F 71.7 73.5 70.6 71.9 76.0
HMCN-R 61.5 63.7 63.2 64.7 70.3

Table 6.2: 5-fold cross validation classification accuracy of the predicted labels for the fine-grained
labels in SHINRA-5LDS dataset.
† While we aimed to maintain settings comparable to their model, a fair comparison between our
results and theirs is unfair due to disparities in dataset size and class numbers between our experi-
ments and theirs.

Training and Evaluation. For multi-label classification, we pass the predicted mem-
bership distributions through a Sigmoid layer and assign a label to the article if the resulting
probability, post-Sigmoid transformation, exceeds 0.5.

Evaluation is based on the micro-averaged precision (Sorower, 2010) of the predicted
labels in the last level of hierarchy. To mitigate the influence of more frequent classes
during training, we use weighted gradient back-propagation (He and Garcia, 2009). The
weight for each article is calculated as w = N∑N

n=1 c(ln)
, where N represents the number of

labels assigned to the article (capped at 6), and c(ln) counts the total number of training
set articles associated with label ln. The loss function employed for training all models is
the Binary Cross Entropy loss, averaged across all possible classes, to ensure comparability
with previous work.

6.1.3 Experiments and Results

We implemented all models outlined in Section 6.1.2 using pytorch. For part-of-speech
tagging, as well as article normalization and tokenization, we used the Hazm3 Toolkit for
Farsi, the Mecab Toolkit (Kudo, 2006) for Japanese, and the TreeTagger4 Toolkit for En-
glish, French, and German.

Across all experiments, we employed the Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 1e−3 and applied gradient clipping (Pascanu et al., 2013) at 5.0. Network
parameters were initialized randomly between (−0.1, 0.1), and training utilized mini-batches
of size 32 over 30,000 steps (batches) of randomly shuffled training instances. The hidden
layer size for all models was set to 3845. Evaluation was conducted via 5-fold cross-validation,

3https://github.com/sobhe/hazm.

4https://github.com/miotto/treetagger-python.

5Larger hidden layer sizes were explored but yielded marginal differences in results, thus not impacting
our experiment analysis.
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allocating 80% of the data for training, and 20% for testing. Additionally, classes with a
frequency less than 20 in the dataset were excluded from training/testing.

Table 6.2 illustrates the micro-averaged precision of article classification in SHINRA-
5LDS dataset. Initial results indicate the dataset’s complexity, as evidenced by the Binary
Logistic Regression model’s modest accuracy. Notably, Japanese exhibits lower scores, sug-
gesting heightened classification difficulty across all models.

Furthermore, the consistent outperformance of non-hierarchical models over hierarchi-
cal ones suggests that leaf-node ENEs contain sufficient information for classification, and
hierarchy may introduce ambiguity. The overall precision scores highlight current model
limitations with larger, more complex annotated article sets.

6.2 Unified Examination of Entity Linking in Absence of Candidate Sets

This section reproduces results which we have originally published in (Ong, Shavarani, and
Sarkar, 2024).

Unified evaluation of the different entity linking systems with respect to the applica-
tion of candidate sets (Section 4.2) should play a crucial role in a better understanding
of the strengths and weaknesses of each system. This will give the research community
and commercial deployments better ways to select the most suitable system based on their
needs while providing them a platform to identify avenues for enhancement. In this sec-
tion, we unify the evaluation setup for the systems using GERBIL (Röder et al., 2018)
and gerbil_connect (Section 4.5.2), and black-box evaluate the systems over the same
benchmark dataset CoNLL/AIDA (Hoffart et al., 2011) which allows us to abstract away
their internal model structure and decoding algorithms. Next, we discuss the importance
of the pre-built candidate sets (Section 4.2) for obtaining good results on benchmarks in
entity linking. However, candidate sets are not always available, and the literature lacks a
systematic evaluation of the entity linking systems in absence of the candidate sets. To fill
this gap, we suggest an experimental setup to replace them with a feasible set; the entire
in-domain vocabulary of the benchmark dataset. Please note that our focus in these exper-
iments is not to re-implement each technique, but rather to evaluate the resilience of the
entity linking systems in absence of the carefully hand-crafted candidate sets. Lastly, we
examine the adaptability of the entity linking systems in the literature to unseen test data
using the novel AIDA/testc dataset (Section 4.8) which contains new annotations on news
stories in 2020 with 924 novel entities.

6.2.1 Unified Black-Box Evaluation

We benchmark the recent entity linking systems, unchanged and as provided originally by
their authors. In these experiments, we intend to examine the suitability of these systems
as off-the-shelf systems which can be integrated in future downstream applications.

In the evaluation procedure, GERBIL will provide the testing documents to gerbil_con

nect and receives the entity annotations in the format of (begin character, end character,
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Micro-F1 Difference

testa testb testc testa testb

Kolitsas et al. (2018) 89.50 82.44 65.75 +0.10 +0.04
Peters et al. (2019)

KnowBert-Wiki 76.74 71.68 54.12 -3.46 -2.72
KnowBert-W+W 77.19 71.69 53.92 -4.91 -2.01

Poerner et al. (2020) 89.40 84.83 65.93 -1.40 -0.17
van Hulst et al. (2020)

Wiki 2014 83.30 82.53 71.69 - -0.77
Wiki 2019 79.64 80.10 73.54 - -0.40

De Cao et al. (2021b) 90.09 82.78 75.60 - -0.92
De Cao et al. (2021a) 87.29 85.65 47.54 - +0.15
Zhang et al. (2022) 86.81 84.30 72.55 - -1.50
Feng et al. (2022) 87.64 86.49 65.05 - +0.19
SpEL-large-500K (no cnds.) 89.72 82.25 77.54 +0.02 +0.05
SpEL-large-500K (Kb+Yago) 89.89 82.88 59.50 +0.09 +0.08
SpEL-large-500K (PPRforNED) 91.58 85.22 46.98 +0.08 +0.02

Table 6.3: Comparison of recent entity linking systems within the unified black-box testing frame-
work of GERBIL + gerbil_connect. Difference column reports the difference between our unified
evaluation environment and the originally reported numbers. We have assessed all models twice for
consistency. Except for (De Cao et al., 2021b), all models yielded identical scores, while De Cao
et al. (2021b) showed a low variance of 0.08 in the results. Thus, the results mirror those reported
by GERBIL, with the exception of (De Cao et al., 2021b), which is averaged over two runs.

entity annotation) from gerbil_connect. We implement gerbil_connect tailored to each
entity linking system so that it can transform the evaluation documents to readable inputs
for each system. Specifically, we (1) utilize NLTK’s word tokenizer6 to transform raw non-
tokenized evaluation sets into their expected CoNLL tokenized format for the models that
depend on reading from AIDA test files (Peters et al., 2019; Poerner et al., 2020; Feng et al.,
2022), (2) simulate long text splitting and result merging strategies for the models with input
length constraints (Peters et al., 2019; Poerner et al., 2020; Feng et al., 2022; De Cao et al.,
2021b), (3) implement a subword token id to character id conversion for the models that
output annotations as tokenized subword ids (Peters et al., 2019; Poerner et al., 2020; Feng
et al., 2022), and (4) provide the external data sources such as the pre-built candidate sets
to the model initializers where necessary (De Cao et al., 2021b,a). Empirically, running
the models without adding these techniques significantly hurts performance. Removing the
tokenization step alone can drop the model performance by up to 20 Micro-F1 points.

At the end, gerbil_connect translates the produced annotations in each system back
to the unified annotation format, understandable for GERBIL. We train the models that
are not released by the authors (Poerner et al., 2020; Feng et al., 2022), using their own

6https://www.nltk.org/api/nltk.tokenize.html.
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released source code, and do not consider the models which we were not able to acquire
their training source code or were not able to get their training scripts to converge (Martins
et al., 2019; Févry et al., 2020; Mrini et al., 2022; Kannan Ravi et al., 2021; Broscheit, 2019;
Xiao et al., 2023). We use CoNLL/AIDA evaluation sets testa and testb - reported by
all entity linking systems tested in different evaluation frameworks - as well as the newly
annotated AIDA/testc evaluation set. The results tables show the GERBIL InKB Micro-
F1 evaluation results.

Table 6.3 presents the unified black-box evaluation results. The necessary unification
adjustments mentioned above and the evaluation format has caused some evaluation scores
to deviate from their original reported results. However, we have tried to control for this
as much as possible. The Difference columns in Table 6.3 reflects on the mentioned score
deviations.

In our experiments, we found that (Peters et al., 2019) suffered the most, with an
approximate loss of 5% when comparing our results to the originally reported scores. The
rest of the models were hit by at most 2%, confirming the reliability of our framework for
further analysis. testc is a more challenging evaluation set which contains novel entities that
typically hurt model recall. Our experimental results confirm that the structured prediction-
based SpEL model is the best performing entity linker. Additionally, we observed that
following SpEL, generative entity linking models outperformed other non-generative models
on testc.

6.2.2 Candidate Set Ablations

Candidate sets are an integral part of entity linking systems, many of which assume the
presence of good quality sets to perform well. Although this assumption holds when linking
to English Wikipedia, it does not necessarily hold when considering other ontologies (e.g.
UMLS; Bodenreider, 2004) and languages other than English7.

We ablate the mention-specific candidate sets from the entity linking systems to study
their performance in absence of the hand-crafted candidate sets. For our experiments, we
select the candidate-set-independent setting of the models in any system that provides such
a setting. For the other systems that require a candidate set, and we cannot remove the
candidate set dependence, we return the entire in-domain mention vocabulary of AIDA (the
in-domain fixed candidate set in Section 4.5) as the replacement for the required candidate
sets (5600 entities including the ‘O’ entity). Where applicable, we add priors such that each
candidate has an equal probability.

Table 6.4 demonstrates the evaluation results of the models after considering the candida
te-independent version of the models, or the candidate set expansion. We also experimented
with removing candidate sets altogether, but the models that appear in Table 6.3, and

7See Botha et al. (2020) for more discussion.
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Micro-F1

testa testb testc

a)

De Cao et al. (2021b) 85.15 78.98 75.62
De Cao et al. (2021a) 62.00 49.51 37.05
Zhang et al. (2022) 86.81 84.30 72.55
SpEL-large-500K 89.72 82.25 77.54

b) Poerner et al. (2020) 22.81 18.81 17.56
Feng et al. (2022) 35.00 32.58 27.48

Table 6.4: Comparison of entity linking systems after a) running the model with no access to hand-
crafted candidate sets b) modifying the model to consider the entire AIDA in-domain vocabulary as
the candidate set.

do not appear in Table 6.4 failed without candidate sets. These results demonstrate that
most entity linking systems are too intertwined with their candidate sets and without this
additional data resource, the systems do not produce useful results and are too brittle to
be used in real-world production deployments.

Table 6.4 results prove that generation-based systems are more resilient against candi-
date sets. Nonetheless, without given candidate sets, (De Cao et al., 2021b) and (De Cao
et al., 2021a) lose approximately 5% and 20-30% of their best performance, respectively.
SpEL - a non-generation-based system, designed without dependence on candidate sets and
only using these resources to improve performance - suffers the least and loses only 2% of
its best performance without candidate sets.

The largest performance drop in our experiments correlates with using mention-entity
similarity methods for entity disambiguation, where a representation of the mention and
entity are compared to determine the most relevant entity. In these systems, models that
generate mention representations by combining candidate entity representations see their
performance decreased to 20%-35%, while models that generate mention representations by
combining the word or token representations within or surrounding the mention perform
too poorly to be present in Table 6.4. SpEL and (De Cao et al., 2021b) only show an
approximate 2% drop in performance, showing that they can easily handle a larger set of
candidate entities.

The larger candidate sets lead to longer inference times. The run time for (Feng et al.,
2022; Kolitsas et al., 2018; Poerner et al., 2020; Peters et al., 2019) that compare the
mentions to each entity in the candidate set increases by 90x, 50x, 25x, and 10x, respectively.
(van Hulst et al., 2020) does not follow this trend since it selects the 30 candidate entities
with the highest prior before performing entity disambiguation.

Error Analysis. We store the produced annotations from each system reported in Table
6.3 (w/ candidate sets) and Table 6.4 (w/o candidate sets), and compare their produced
annotations with the expected annotations of AIDA/testa (4791 annotations). For models
with multiple reported settings, we select the setting correlated to best performance on
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Figure 6.2: Entity linking error distribution in four categories of over-generated (gray, vertical),
under-generated (red, horizontal), incorrect entity (teal, north east) and incorrect mention (blue,
north west) before candidate set ablations (left) and after the ablations (right). The y-axis is the
error analysis ratio as described below.
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AIDA/testc as it represents the most generalization-capable setting for unseen in-domain
documents.

We count the number of annotations in four error categories of over-generated, under-
generated, incorrect mention and incorrect entity, and divide each by the total number of
gold annotations. Figure 6.2 presents the calculated error analysis ratios. Over-generation
refers to annotations predicted by the model and not in the gold set. Under-generation
refers to annotations in the gold set but not predicted by the model. Incorrect entity refers
to annotations where the model linked to the wrong entity. Incorrect mention refers to
annotations where the span’s start or end is incorrect.

Before ablation of candidate sets (Figure 6.2-left), (van Hulst et al., 2020) has the highest
rate of over-generation followed by (Zhang et al., 2022), while (Peters et al., 2019) shows
the lowest over-generation rate. On the other hand, (Peters et al., 2019) has the highest
under-generation ratio establishing itself as a conservative entity linking system.

Comparing the performance of entity systems with and without candidate sets, the
biggest increase is seen in incorrect entity prediction ratios, confirming the dependence of
entity linking systems to candidate sets. (Poerner et al., 2020) sees the biggest increase
in incorrect entity predictions followed by (Feng et al., 2022). While (Zhang et al., 2022)
and SpEL report the smallest rate increase in this category as these methods are less
dependent on candidate sets. (Feng et al., 2022) on the other hand shows an increase
in under-generation signaling the effect of candidate sets in prediction confidence for this
system.

Figure 6.3 illustrates the disparities in precision and recall pre- and post-ablation of
candidate sets for the models outlined in Table 6.4. Our findings reveal that candidate sets

76



Figure 6.3: Entity linking micro precision (blue, north east) and recall (red, north west) score differ-
ences over testa between model’s original configuration and candidate set ablation configuration.
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significantly enhance precision and recall. With the exception of (Zhang et al., 2022), which
generates candidates in real-time, the other systems show that without candidate sets there
is a substantial decrease in precision and recall, exceeding 60% for (Poerner et al., 2020).

6.3 Additional Co-authored Contributions in Machine Translation

In addition to the five publications discussed in earlier chapters and sections of the disserta-
tion, this section discusses three other co-authored peer-reviewed publications in the course
of the PhD program. The following outlines each publication and reviews their respective
contributions.

• Translation-based Supervision for Policy Generation in Simultaneous Neu-
ral Machine Translation (Alinejad, Shavarani, and Sarkar, 2021) where we in-
troduced a novel supervised learning approach for optimizing simultaneous machine
translation, aiming to reduce average lagging in target token production while main-
taining translation quality. By comparing the translations in simultaneous setting with
full-sentence translations during training to generate oracle action sequences, the pro-
posed method offered a more trainable alternative to heuristic methods, leading to
improved translation quality and reduced average lagging in simultaneous translation.

• Top-down Tree Structured Decoding with Syntactic Connections for Neu-
ral Machine Translation and Parsing (Gū, Shavarani, and Sarkar, 2018) where we
presented Seq2DRNN, a novel translation model with syntax-aware decoding through
a top-down tree-structured approach. This model enhanced translation quality by
leveraging constituency parsing instead of dependency parsing, and demonstrated im-
proved fluency and reordering in translations compared to sequential and other con-
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temporary syntax-based translation models, while also exhibiting competitive parsing
accuracy simultaneously.

• Simultaneous Translation using Optimized Segmentation (Siahbani, Shavarani,
Alinejad, and Sarkar, 2018) where we introduced an automatic simultaneous trans-
lation framework by integrating a segmentation model with an incremental decoding
algorithm, resulting in improved translation accuracy and reduced delay. Leveraging
annotated data for sentence segmentation proposed by Oda et al. (2014), our approach
achieved high translation quality close to offline systems while minimizing production
delay, surpassing other simultaneous translation systems in both translation quality
and latency.
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Part III

Summary
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Chapter 7

Conclusion and Future Directions

In this dissertation, we presented three contributions focused on using structured prediction
to achieve computationally efficient and highly accurate NLP solutions. While targeting
diverse complex tasks, our primary aim was to demonstrate the potential for performance
enhancement and accuracy improvement, with emphasis on simplification. We highlighted
the utilization of pre-trained models and the development of reusable models when task-
specific options are lacking. Our approach offers a pathway to simplification but is not
comprehensive; rather, it is a direction for the community to integrate simplification and
efficiency considerations into their designs.

We summarize this dissertation as the following:

• In our first contribution, we demonstrated the relevance of structured prediction in
extracting useful linguistic knowledge from BERT and integrating them into neural
machine translation framework. We showed that the extracted information provide
the translation models with out-of-domain knowledge which not only improves the
translation quality but also helps the model to better deal with out-of-vocabulary
words. While fine-tuning was common during the project’s execution, a key insight
from this contribution was that in cases, simpler information extraction techniques
may yield superior results, surpassing fine-tuning all model parameters.

• In our next contribution, we introduced several improvements to a structured predic-
tion approach for entity linking leading to SpEL, our proposed entity linking frame-
work. Our experiments on the AIDA dataset demonstrated that SpEL yield state-
of-the-art performance, as evidenced by head-to-head comparisons with competing
methods using a commonly used evaluation toolkit. A key insight from our approach
is the feasibility of designing models with superior performance in entity linking while
prioritizing computational efficiency and reducing model parameter count to enhance
throughput.

• In our last contribution, we proposed Entity Retrieval, an application of our structured
prediction-based entity linking framework aimed at enhancing retrieval-augmented
question answering systems. Our results demonstrate that Entity Retrieval offers a
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promising alternative to dense retrieval for augmenting entity-centric questions in
prompting LLMs. A key insight from this contribution is that a simplified and efficient
design not only benefits the primary task but also extends advantages to downstream
tasks by improving both speed and accuracy.

Lastly, we discuss potential future directions for the work presented in this dissertation:

• Structured prediction holds significant untapped potential in the domain of LLMs.
As highlighted by Liu et al. (2023), LLMs may struggle with ambiguity, prioritizing
immediate token prediction tasks over contextual nuances. While acknowledging the
remarkable language understanding abilities of LLMs, research suggests that their
effectiveness can be substantially enhanced with additional support in navigating am-
biguity, as exemplified by our proposed Entity Retrieval method. Conceptually akin
to operating systems, LLMs require complementary software to fully leverage their
capabilities. Through structured prediction, cost-effective and efficient software so-
lutions can be devised to empower these potent operating systems, enabling them
to integrate effortlessly with various language processing models such as named en-
tity recognition, part-of-speech tagging, entity linking and alike, thereby enhancing
language comprehension in response generation.

• Structured prediction offers the potential to cultivate cost-effective yet robust models
tailored to specialized domains such as healthcare. For instance, entity-centric ques-
tion answering, as explored in Chapter 5, has played a crucial role in disseminating
public knowledge during the COVID-19 pandemic, where human resources were lim-
ited (Kumar et al., 2023; Indriati et al., 2024). A promising avenue for future research
within this dissertation could involve adapting the proposed methodologies to the field
of medical NLP (e.g. Sezgin et al., 2023).

• Structured prediction-based modeling offers particular benefits in low-resource set-
tings and languages lacking ample training data. Such an approach holds promise
for future exploration, as demonstrated by our linguistic information augmentation
method outlined in Chapter 3.

81



Bibliography

Steven Abney, Michael Collins, and Amit Singhal. Answer extraction. In Sixth Applied Nat-
ural Language Processing Conference, pages 296–301, Seattle, Washington, USA, April
2000. Association for Computational Linguistics. doi: 10.3115/974147.974188. URL
https://aclanthology.org/A00-1041.

Emmanuel Adebisi, Bolanle Adefowoke Ojokoh, and Folasade Olubusola Isinkaye. An open
domain factoid qa framework with improved validation techniques. International Journal
of Information Science and Management (IJISM), 20(1), 2022. URL https://ijism.
isc.ac/article_698358_5bbe2ff065b2c5c80582fa168e9cc58c.pdf.

Ahmad Aghaebrahimian and Filip Jurčíček. Open-domain factoid question answering via
knowledge graph search. In Mohit Iyyer, He He, Jordan Boyd-Graber, and Hal Daumé III,
editors, Proceedings of the Workshop on Human-Computer Question Answering, pages
22–28, San Diego, California, June 2016. Association for Computational Linguistics. doi:
10.18653/v1/W16-0104. URL https://aclanthology.org/W16-0104.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and
Sumit Sanghai. GQA: Training generalized multi-query transformer models from multi-
head checkpoints. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pages 4895–
4901, Singapore, December 2023. Association for Computational Linguistics. doi: 10.
18653/v1/2023.emnlp-main.298. URL https://aclanthology.org/2023.emnlp-main.
298.

Wazir Ali, Rajesh Kumar, Yong Dai, Jay Kumar, and Saifullah Tumrani. Neural joint
model for part-of-speech tagging and entity extraction. In Proceedings of the 2021 13th
International Conference on Machine Learning and Computing, pages 239–245, 2021.
URL https://drive.google.com/file/d/1zjY4B7iMEKmmEzOknVQPpTZ2JGXCl-vs.

Ashkan Alinejad, Hassan S. Shavarani, and Anoop Sarkar. Translation-based super-
vision for policy generation in simultaneous neural machine translation. In Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pages 1734–1744, Online and Punta Cana, Dominican Republic, November 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.130. URL
https://aclanthology.org/2021.emnlp-main.130.

Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik Cho,
Carlo C Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. Llm in a
flash: Efficient large language model inference with limited memory. arXiv preprint
arXiv:2312.11514, 2023. URL https://arxiv.org/pdf/2312.11514.pdf.

82

https://aclanthology.org/A00-1041
https://ijism.isc.ac/article_698358_5bbe2ff065b2c5c80582fa168e9cc58c.pdf
https://ijism.isc.ac/article_698358_5bbe2ff065b2c5c80582fa168e9cc58c.pdf
https://aclanthology.org/W16-0104
https://aclanthology.org/2023.emnlp-main.298
https://aclanthology.org/2023.emnlp-main.298
https://drive.google.com/file/d/1zjY4B7iMEKmmEzOknVQPpTZ2JGXCl-vs
https://aclanthology.org/2021.emnlp-main.130
https://arxiv.org/pdf/2312.11514.pdf


Tariq Alqahtani, Hisham A Badreldin, Mohammed Alrashed, Abdulrahman I Alshaya, Sa-
har S Alghamdi, Khalid bin Saleh, Shuroug A Alowais, Omar A Alshaya, Ishrat Rahman,
Majed S Al Yami, et al. The emergent role of artificial intelligence, natural learning pro-
cessing, and large language models in higher education and research. Research in Social
and Administrative Pharmacy, 2023. URL https://www.sciencedirect.com/science/
article/pii/S1551741123002802.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. Dbpedia: A nucleus for a web of open data. In international seman-
tic web conference, pages 722–735. Springer, 2007. URL https://link.springer.com/
chapter/10.1007/978-3-540-76298-0_52.

Damaris Ayuso, Sean Boisen, Heidi Fox, Herb Gish, Robert Ingria, and Ralph Weischedel.
BBN: Description of the PLUM system as used for MUC-4. In Fourth Message Under-
standing Conference (MUC-4): Proceedings of a Conference Held in McLean, Virginia,
June 16-18, 1992, 1992. URL https://aclanthology.org/M92-1024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful
and harmless assistant with reinforcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022. URL https://arxiv.org/pdf/2204.05862.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document trans-
former. arXiv:2004.05150, 2020.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilis-
tic language model. Advances in neural information processing systems, 13,
2000. URL https://proceedings.neurips.cc/paper_files/paper/2000/file/
728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf.

Olivier Bodenreider. The unified medical language system (umls): integrating biomedi-
cal terminology. Nucleic acids research, 32(suppl_1):D267–D270, 2004. URL https:
//pubmed.ncbi.nlm.nih.gov/14681409/.

Jan A. Botha, Zifei Shan, and Daniel Gillick. Entity Linking in 100 Languages. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages 7833–7845,
Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.630. URL https://aclanthology.org/2020.emnlp-main.630.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature
verification using a" siamese" time delay neural network. Advances in neural informa-
tion processing systems, 6, 1993. URL https://proceedings.neurips.cc/paper/1993/
file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf.

Samuel Broscheit. Investigating entity knowledge in BERT with simple neural end-to-end
entity linking. In Proceedings of the 23rd Conference on Computational Natural Language
Learning (CoNLL), pages 677–685, Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/K19-1063. URL https://aclanthology.
org/K19-1063.

83

https://www.sciencedirect.com/science/article/pii/S1551741123002802
https://www.sciencedirect.com/science/article/pii/S1551741123002802
https://link.springer.com/chapter/10.1007/978-3-540-76298-0_52
https://link.springer.com/chapter/10.1007/978-3-540-76298-0_52
https://aclanthology.org/M92-1024
https://arxiv.org/pdf/2204.05862
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://pubmed.ncbi.nlm.nih.gov/14681409/
https://pubmed.ncbi.nlm.nih.gov/14681409/
https://aclanthology.org/2020.emnlp-main.630
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://aclanthology.org/K19-1063
https://aclanthology.org/K19-1063


Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

David Carter. Interpreting anaphors in natural language texts. Halsted Press, 1987. URL
https://aclanthology.org/J90-1006.pdf.

Mauro Cettolo, Christian Girardi, and Marcello Federico. Wit3: Web inventory of tran-
scribed and translated talks. In Proceedings of the 16th Conference of the European Asso-
ciation for Machine Translation (EAMT), pages 261–268, Trento, Italy, may 2012. URL
https://cris.fbk.eu/retrieve/handle/11582/104409/4358/WIT3-EAMT2012.pdf.

Joseph Chang, Richard Tzong-Han Tsai, and Jason S Chang. Wikisense: Supersense tag-
ging of wikipedia named entities based wordnet. In Proceedings of the 23rd Pacific Asia
Conference on Language, Information and Computation, Volume 1, volume 1, 2009.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer
open-domain questions. In Regina Barzilay and Min-Yen Kan, editors, Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1870–1879, Vancouver, Canada, July 2017. Association for Computational
Linguistics. doi: 10.18653/v1/P17-1171. URL https://aclanthology.org/P17-1171.

Young Min Cho, Li Zhang, and Chris Callison-Burch. Unsupervised entity linking with
guided summarization and multiple-choice selection. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language Processing, pages 9394–9401, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.emnlp-main.638. URL https://aclanthology.org/2022.
emnlp-main.638.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and
Luke Zettlemoyer. QuAC: Question answering in context. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 2174–2184, Brussels, Belgium,
October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/
D18-1241. URL https://aclanthology.org/D18-1241.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf.

84

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/J90-1006.pdf
https://cris.fbk.eu/retrieve/handle/11582/104409/4358/WIT3-EAMT2012.pdf
https://aclanthology.org/P17-1171
https://aclanthology.org/2022.emnlp-main.638
https://aclanthology.org/2022.emnlp-main.638
https://aclanthology.org/D18-1241
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf


Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. Electra:
Pre-training text encoders as discriminators rather than generators. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=r1xMH1BtvB.

Stephane Clinchant, Kweon Woo Jung, and Vassilina Nikoulina. On the use of BERT for
neural machine translation. In Proceedings of the 3rd Workshop on Neural Generation and
Translation, pages 108–117, Hong Kong, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-5611. URL https://www.aclweb.org/anthology/
D19-5611.

Michael Collins. Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms. In Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2002), pages 1–8. Asso-
ciation for Computational Linguistics, July 2002. doi: 10.3115/1118693.1118694. URL
https://www.aclweb.org/anthology/W02-1001.

Jim Cowie and Wendy Lehnert. Information extraction. Communications of the ACM, 39
(1):80–91, 1996. URL https://dl.acm.org/doi/pdf/10.1145/234173.234209.

Silviu Cucerzan. Large-scale named entity disambiguation based on Wikipedia data. In
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 708–
716, Prague, Czech Republic, June 2007. Association for Computational Linguistics. URL
https://aclanthology.org/D07-1074.

Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare Campag-
nano, Yoelle Maarek, Nicola Tonellotto, and Fabrizio Silvestri. The power of noise:
Redefining retrieval for rag systems. arXiv preprint arXiv:2401.14887, 2024. URL
https://arxiv.org/pdf/2401.14887.

Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu Song, Seung-won Hwang, and Wei
Wang. Kbqa: Learning question answering over qa corpora and knowledge bases. Pro-
ceedings of the VLDB Endowment, 10(5), 2017. URL https://www.vldb.org/pvldb/
vol10/p565-cui.pdf.

Wisam Dakka and Silviu Cucerzan. Augmenting wikipedia with named entity tags. In
Proceedings of the Third International Joint Conference on Natural Language Processing:
Volume-I, 2008.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Highly parallel autoregressive entity linking
with discriminative correction. In Proceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 7662–7669, Online and Punta Cana, Dominican
Republic, November 2021a. Association for Computational Linguistics. doi: 10.18653/v1/
2021.emnlp-main.604. URL https://aclanthology.org/2021.emnlp-main.604.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity
retrieval. In International Conference on Learning Representations, 01 2021b. URL
https://openreview.net/forum?id=5k8F6UU39V.

85

https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://www.aclweb.org/anthology/D19-5611
https://www.aclweb.org/anthology/D19-5611
https://www.aclweb.org/anthology/W02-1001
https://dl.acm.org/doi/pdf/10.1145/234173.234209
https://aclanthology.org/D07-1074
https://arxiv.org/pdf/2401.14887
https://www.vldb.org/pvldb/vol10/p565-cui.pdf
https://www.vldb.org/pvldb/vol10/p565-cui.pdf
https://aclanthology.org/2021.emnlp-main.604
https://openreview.net/forum?id=5k8F6UU39V


Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation evalu-
ation for any target language. In Proceedings of the EACL 2014 Workshop on Statistical
Machine Translation, 2014.

Leon Derczynski, Diana Maynard, Giuseppe Rizzo, Marieke Van Erp, Genevieve Gor-
rell, Raphaël Troncy, Johann Petrak, and Kalina Bontcheva. Analysis of named entity
recognition and linking for tweets. Information Processing & Management, 51(2):32–49,
2015. URL https://giusepperizzo.github.io/publications/Derczynski_Manyard_
Rizzo-IPM2014.pdf.

Chauhan Dev, Naman Biyani, Nirmal P Suthar, Prashant Kumar, and Priyanshu Agarwal.
Structured prediction in nlp–a survey. arXiv preprint arXiv:2110.02057, 2021. URL
https://arxiv.org/pdf/2110.02057v1.pdf.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1423. URL https://www.aclweb.org/anthology/N19-1423.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library.
arXiv preprint arXiv:2401.08281, 2024. URL https://arxiv.org/pdf/2401.08281.
pdf.

Xinya Du, Alexander Rush, and Claire Cardie. Template filling with generative transform-
ers. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur,
Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou,
editors, Proceedings of the 2021 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages 909–914,
Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.70. URL https://aclanthology.org/2021.naacl-main.70.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt
Gardner. DROP: A reading comprehension benchmark requiring discrete reasoning over
paragraphs. In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 2368–2378, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1246. URL https://aclanthology.org/N19-1246.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith.
Transition-based dependency parsing with stack long short-term memory. In Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 334–343, Beijing, China, July 2015. Association for Computational Lin-
guistics. doi: 10.3115/v1/P15-1033. URL https://aclanthology.org/P15-1033.

86

https://giusepperizzo.github.io/publications/Derczynski_Manyard_Rizzo-IPM2014.pdf
https://giusepperizzo.github.io/publications/Derczynski_Manyard_Rizzo-IPM2014.pdf
https://arxiv.org/pdf/2110.02057v1.pdf
https://www.aclweb.org/anthology/N19-1423
https://arxiv.org/pdf/2401.08281.pdf
https://arxiv.org/pdf/2401.08281.pdf
https://aclanthology.org/2021.naacl-main.70
https://aclanthology.org/N19-1246
https://aclanthology.org/P15-1033


Zheng Fang, Yanan Cao, Ren Li, Zhenyu Zhang, Yanbing Liu, and Shi Wang. High qual-
ity candidate generation and sequential graph attention network for entity linking. In
Proceedings of The Web Conference 2020, pages 640–650, 2020.

Yukun Feng, Amir Fayazi, Abhinav Rastogi, and Manabu Okumura. Efficient entity em-
bedding construction from type knowledge for BERT. In Findings of the Association
for Computational Linguistics: AACL-IJCNLP 2022, pages 1–10, Online only, November
2022. Association for Computational Linguistics. URL https://aclanthology.org/
2022.findings-aacl.1.

Thibault Févry, Nicholas FitzGerald, Livio Baldini Soares, and Tom Kwiatkowski. Empirical
evaluation of pretraining strategies for supervised entity linking. In Automated Knowl-
edge Base Construction, 2020. doi: 10.24432/C59G6S. URL https://openreview.net/
forum?id=iHXV8UGYyL.

Octavian-Eugen Ganea and Thomas Hofmann. Deep joint entity disambiguation with
local neural attention. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2619–2629, Copenhagen, Denmark, September
2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1277. URL
https://aclanthology.org/D17-1277.

Mercedes Garcia-Martinez, Loic Barrault, and Fethi Bougares. Factored neural ma-
chine translation architectures. In HAL archives ouvertes, 2016. URL https://hal.
archives-ouvertes.fr/hal-01433161/document.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did
aristotle use a laptop? a question answering benchmark with implicit reasoning strategies.
Transactions of the Association for Computational Linguistics, 9:346–361, 2021. doi:
10.1162/tacl_a_00370. URL https://aclanthology.org/2021.tacl-1.21.

Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessandro Presta, Jason Baldridge, Eugene
Ie, and Diego Garcia-Olano. Learning dense representations for entity retrieval. In Pro-
ceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL),
pages 528–537, Hong Kong, China, November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/K19-1049. URL https://aclanthology.org/K19-1049.

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Ankita Naik, Pengshan
Cai, and Alfio Gliozzo. Re2G: Retrieve, rerank, generate. In Marine Carpuat, Marie-
Catherine de Marneffe, and Ivan Vladimir Meza Ruiz, editors, Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 2701–2715, Seattle, United States, July
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.194.
URL https://aclanthology.org/2022.naacl-main.194.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010. URL http://proceedings.mlr.press/
v9/glorot10a/glorot10a.pdf.

87

https://aclanthology.org/2022.findings-aacl.1
https://aclanthology.org/2022.findings-aacl.1
https://openreview.net/forum?id=iHXV8UGYyL
https://openreview.net/forum?id=iHXV8UGYyL
https://aclanthology.org/D17-1277
https://hal.archives-ouvertes.fr/hal-01433161/document
https://hal.archives-ouvertes.fr/hal-01433161/document
https://aclanthology.org/2021.tacl-1.21
https://aclanthology.org/K19-1049
https://aclanthology.org/2022.naacl-main.194
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf


Yoav Goldberg. Assessing bert’s syntactic abilities. Computation and Language Research
Repository, arXiv:1901.05287, 2019. URL http://arxiv.org/abs/1901.05287. version
1.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional
lstm networks. In Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., volume 4, pages 2047–2052. IEEE, 2005. URL https://mediatum.ub.
tum.de/doc/1290193/document.pdf.

Ralph Grishman. Twenty-five years of information extraction. Natural Language Engineer-
ing, 25(6):677–692, 2019. doi: 10.1017/S1351324919000512. URL https://doi.org/10.
1017/S1351324919000512.

Ralph Grishman, David Westbrook, and Adam Meyers. Nyu’s english ace 2005 system
description. Ace, 5(2), 2005.
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