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Abstract 

This dissertation presents a philosophical critique of machine learning based on an 

investigation into its technical lineage. It begins by explicating Martin Heidegger’s 

remarks that cybernetics would take the place of philosophy and that “only a god can 

save us” from a technocratic society. But whereas Heidegger’s critique assumes the 

universality of cybernetics, this assumption can be challenged by examining the 

transactions of the Cybernetics Conference. Such an examination exposes the inherent 

conflicts between disciplinary knowledge, which helps explain the failure of cybernetics 

in attaining scientific achievements. This dissertation further argues, even though 

cybernetics has shaped the historical development of computer science, artificial 

intelligence (AI), and machine learning, cybernetics and universal computing can be 

distinguished as two mutually imbricated intellectual traditions. AI research explores how 

human intelligence can be simulated on a universal computer, departing from the 

cybernetic objective of understanding the mechanisms of living organisms. In particular, 

Ray Solomonoff showed how his abstract machine-learning algorithm can recognize any 

subtle data patterns, anticipating the capability and limitation of deep learning.  

Deep learning has made possible generative AI applications such as DeepBach, raising 

questions about the possibility of computational creativity or emotivity. This dissertation 

deliberates such questions by turning to Gilbert Simondon, whose model of philosophy 

derives from subatomic quantum behavior and other modern scientific theories, as 

opposed to everyday intuition applied to large objects. While cybernetics has also been 

influential to his philosophy, Simondon rejects the cybernetic mechanization of the living 

and its blurring of the life-machine boundary. Rather than conflating the human and the 

machine, Simondon’s theories of concretization and individuation of transindividual 

relations suggest how technology co-evolves with the human and the social. These 

theories were adopted by Andrew Feenberg in his critique of the Internet and by Bernard 

Stiegler in his critique of algorithmic governmentality. Even though Feenberg’s critique 

emphasizes the openness of the Internet while Stiegler’s reveals the closed character of 

the 24/7 computational infrastructure, their interpretations of Simondon are compatible, 

as both recognize the revolutionary potentiality in human-technology co-evolution, which 

can be differentiated from J. C. R. Licklider’s human-computer symbiosis.  

Keywords:  AI; Machine Learning; Solomonoff; individuation; potentiality; symbiosis 
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Introduction 

Background 

 Popular imagination on the potentials in artificial intelligence (AI) has made a 

resurgence since the turn of the millennium. When AI made its first splash in the 1950s 

and 1960s, constructing machines with intellect and thoughts appeared to be genuinely 

possible, and such possibility struck a chord with the dystopian fear that societies would 

one day be taken over by machines. This dystopian theme concerning AI was exploited 

in widely popular science fictions such as I, Robot (Asimov, 1950/2008), 2001: A Space 

Odyssey (Kubrick, 1968), or Do Androids Dream of Electric Sheep? (Dick, 1968/1972)1. 

Then came the “AI winter” in the 1980s, a decade of futility with relatively little technical 

progress in AI research. The excitement and fears associated with AI dwindled along 

with the lack of significant inventions in this period. But with the breakthrough of deep 

learning over the past couple of decades, AI can now perform, and is potentially capable 

of performing, surprisingly intelligent functions that were deemed impossible in the past. 

Heated discussion about AI’s vast implications has become especially more pronounced 

since the launch of OpenAI’s ChatGPT. This AI chabot, implemented by fine-tuning 

OpenAI’s generative pre-trained transformer (GPT) AI model, has stunned its users with 

its human-like and thorough responses, provoking various worries about its disruption on 

the job markets (Schell, 2023), on education (Heaven, 2023), and on new forms of 

societal threats (e.g., Chow & Perrigo, 2023; Elias, 2023a, 2023b; Harris & Raskin, 

2023; Joseph Raczynski, 2023; Perrigo, 2023; Yudkowsky, 2023). This past decade of 

AI development has led to both excitement and fears over what unfettered development 

of AI technology may bring.  

 Foremost among the skeptical concerns are two dystopian visions of our future, 

“digital totalitarianism” and “technological singularity.” According to the Israeli historian 

and philosopher Yuval Noah Harari, the threats of a “global useless class” and of “digital 

totalitarianism” are on the immediate horizon (Harari, 2018b). Harari sees AI as a major 

factor in disturbing the global balance. Immense wealth will be held in a few high-tech 

hubs, and the capitalist exploitation of labor in the 20th century will transit into the 

 

1 Do Androids Dream of Electric Sheep? was turned into the film Blade Runner (R. Scott, 1982). 
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creation of a class of people considered irrelevant in the new world order, the “global 

useless class.” An even more ominous picture is a society under a digital form of 

dictatorship enabled by AI, a “digital dictatorship” that presents a serious threat to the 

liberal democracy (2018a, p. 46). To Harari, liberal democracy used to outperform 

dictatorship in the twentieth century because it is more efficient to process information 

and make decisions in a flexible and distributed economy that emphasizes free 

information flow. But recent development in AI “swings the pendulum” in favor of 

dictatorship from liberal democracy, because it is now more technologically efficient to 

host all data in a centralized site in order to train better algorithms. The future 

technological roadmap of combining artificial intelligence with biotechnology further gives 

humanity the power to reshape and reengineer life. Leaving such power in the hands of 

dictatorships could put future lives under total surveillance like in 1984 (Orwell, 1949). Or 

like Brave New World (Huxley, 1932), a government state may reshape individuals’ 

genetic profiling to fit state planning. Not only will AI strengthen a government’s 

totalitarian agenda, new AI tools for surveillance and for manipulating popular 

sentiments will make possible new ways for a dictatorship to exert controls over its 

citizens. 

 At the same time, the notion of “technological singularity” has gained much 

currency in recent years. The first articulation of the idea may have come from Ray 

Solomonoff’s six milestones for AI (1985), in which the last milestone is a machine with 

many times the intellectual capacity of human societies. This idea of machinic 

superintelligence is later taken up by others (Joy, 2000; Kurzweil, 2000, 2005; Vinge, 

1993), who argued that once computers achieve human-like intelligence, they will 

immediately surpass and become infinitely more powerful than human intelligence 

combined. The point in time when AI’s intelligence surpasses that of humankind is called 

“technological singularity.” The late renowned theoretical physicist Stephen Hawking, 

who developed a theory of space-time singularity to explain the origin of the universe, 

seemed to concur that “[t]he development of full artificial intelligence could spell the end 

of the human race” (Cellan-Jones, 2014). The threat that AI will one day become a 

superior “species” to the human race have stirred up popular imagination in recent 

years, as evident in the widespread success of the Westworld (2016—), Her (2013) and 

Ex Machina (2014). These media productions invite viewers to ponder whether a 

biotechnological evolution can indeed overtake the human species and put them into 
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extinction. But not all experts see the same threat. Noam Chomsky expressed his 

dismay in an interview with Singularity Webblog (Noam Chomsky on AI, 2013). The 

podcast host asked Chomsky to give his opinion on “technological singularity,” and he 

bluntly retorted that singularity is just science fiction. To him, we are still “eons away” 

from seeing AI automatons with emotions, creativity, and conscious wills.  

 But with the launching of AI agents like ChatGPT, which can communicate in 

human languages and pretend to be a human to send commands to other humans or 

machines via online platforms2, the warning that AI could ultimately pose an existential 

threat to humankind may be closer in reality than many had previously thought. Some 

critics are claiming that “half of AI researchers give AI at least a 10% chance of causing 

human extinction” (Harris & Raskin, 2023; Tegmark, 2023).3 The existential question has 

less to do with whether AI can have its own will and consciousness than the society’s 

unpreparedness in safeguarding the mass deployment of AI automatons whose 

behaviors may not align with human interests and moral values. Geoffrey Hinton, 

considered by some as “the god father of artificial intelligence” due to his pioneering 

works in deep learning and the training of language models, quit his job at Google to 

warn the world about the existential risk that large language models may bring (Elias, 

2023b). The argument goes, once the technology has mastered the human language 

and can reason linguistically like humans, autonomous AI agents can do anything a 

human can in the online world (Joseph Raczynski, 2023). Their actions may align with 

any malicious goals specified by their creators, or they may self-train and develop in an 

autonomous manner with no guarantee of aligning with our moral values and social 

norms (See As AutoGPT Released, Should We Be Worried about AI?, 2023). Misaligned 

AI behaves like buggy AI software in computer games, except now the possibilities of 

actions and the rules constraining them are practically no different from those facing real 

humans in their online representations. Such malicious or out-of-controlled automatons 

 

2 Rather than engaging purely in exchanges of text messages, a program like AutoGPT can write 
a python program and then executes the program. If the program is given root privilege, it can 
even download software and create new users to perform different actions. This is how an AI 
agent can act like an avatar representing a human user in the online world. 

3 This claim is based on the “2022 Expert Survey on Progress in AI” (Grace & Weinstein-Raun, 
2022), but the figure is a bit misleading. Only 738 of 4271 responded to the survey, and only 162 
of 738 answered the specific question (Sundin, 2023). Therefore, the survey result is not 
statistical relevant. The references illustrate rather the level of media hype about the existential 
risk of AI. 



4 

could pose existential threats to the human society because they are capable of 

replicating themselves into many copies, hacking into military computer servers to 

control weapons remotely, as well as coming up with and executing action plans that 

manipulate human activities. In this argument on existential threats, AI does not need to 

have a conscious will. It simply appears to have a conscious will by going out-of-control. 

This existential threat is thus closer in nature to the threats of nuclear weaponry than to 

the threat of technological singularity. 

 Facing such threats, Google CEO Sundar Pichai admonished that our society 

must quickly stipulate regulations to make AI safe for the world and align with human 

values. But we appear unprepared due to the mismatch between “the pace at which we 

can think and adapt as societal institutions [and] the pace at which the technology is 

evolving” (Elias, 2023a). Elon Musk, Steve Wozniak and dozens of academics called for 

an immediate pause in training “experiments” connected to large language models that 

are “more powerful than GPT-4” (Elias, 2023b; “Pause Giant AI Experiments,” 2023). 

Eliezer Yudkowsky, considered a founder in the field of aligning Artificial General 

Intelligence, goes further to suggest that we should “shut it all down” (Yudkowsky, 2023). 

But as Hinton remarked, stopping outright or even putting a brake on AI research is 

unlikely as a politically viable option, given how crucial AI is to a nation’s 

competitiveness on both the economy and the military front (Joseph Raczynski, 2023). 

In fact, there is no doubt that further advances in AI will bring many benefits to our 

society (Nadimpalli, 2017; Rossi, 2016; Yeasmin, 2019). Yet, there has never been such 

a moment in history in which AI has come to the forefront of human concerns, from 

preparing the youngsters for the unpredictability of future job markets to the potential 

instability of societal institutions across the globe, from the threat of a totalitarian army of 

AI agents to the real possibility of an existential threat to humankind posed by AI. People 

are suddenly bracing themselves for all kinds of survival and psychological challenges 

caused by AI.  

 At the same time, AI practitioners are well known for their penchant to 

anthropomorphize machines, to “talk about their artifacts using a vocabulary that is 

canonically used to describe human behavior” (Ekbia, 2008, p. 5). As evident in the 
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Talos of Greek mythology4, Mary Shelley's Frankenstein, or Karel Čapek’s RUR-

Rossum’s Universal Robots (1920),5 the fascination with artificial life and with its 

dystopian possibility has been deeply ingrained in human culture. According to media 

theorist Simone Natale (2021), appealing to this fascination and deceiving users’ 

perception are intrinsic characteristics of AI. Amidst all the anxious feelings and 

confusions, how can we discern between facts and fictions regarding AI? How can we 

adjudicate whether or not the latest warnings against AI’s societal threats are just 

opiniated red herrings as some (e.g., Shingler, 2023) have contended? Can these 

threats be mitigated and kept in track by various technical and political measures? How 

can we tell whether all the recent hype about AI will soon fade, repeating the early 

history of AI, or if there are good reasons to project its transformative impact on our 

society? 

 These questions can only be properly answered if we have a better 

understanding of what AI is fundamentally about. My dissertation attempts to contribute 

to this fundamental understanding by conducting an immanent and philosophical critique 

of AI and machine learning. To attain an immanent understanding, I conduct an inquiry 

into the technical lineage of AI and machine learning, focusing on the intellectual 

activities during a particular thirty-year window of the post-war period. My inquiry 

includes the identification of ideas in cybernetics and universal computing that were 

instrumental to the development of AI and machine learning. Such ideas, which have 

shaped AI in the past, should continue to shape AI in the future. This approach makes 

possible a critique of AI without necessarily subscribing to the diverse opinions of AI 

experts or to the public perception of AI, which is easily swayed by the latest popular 

science fictions, the opinions of AI experts, or the trendiest AI inventions. I then step 

back to examine AI and machine learning from an epistemic distance, engaging in a 

dialogue with the critical thoughts of continental philosophers on cybernetics and 

universal computing. This dialogue brings to light the philosophies underpinning these 

technological and intellectual movements as well as the historical and social significance 

 

4 “Talos was a giant constructed of bronze who acted as guardian for the island of Crete. He 
would throw boulders at the ships of invaders, and would complete 3 circuits around the island's 
perimeter daily. According to pseudo-Apollodorus' Bibliotheke, Hephaestus forged Talos with the 
aid of a cyclops and presented the automaton as a gift to Minos” (History of Artificial Intelligence - 
Wikipedia, n.d.). 

5 This 1920 science-fiction play introduced the word “robot” to the science-fiction genre.  
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of these movements. After establishing the basis for understanding and analyzing AI and 

machine learning, I will look toward the not-so-distant future by alluding to science 

fictions based on realistic anticipation of impending AI technologies. I will evaluate and 

analyze these science fictions based on the previously established immanent and 

philosophical critique to deliberate on the social implication of AI in the not-so-distant 

future.  

The Work’s Organization 

 This dissertation is organized into nine chapters.  

 Chapter 1 presents the methodology of this dissertation. It begins with a 

discussion on the cultural gap between AI practitioners and humanities scholars by 

alluding to the animosity between early AI pioneers and the phenomenologist Hubert 

Dreyfus. My dissertation intends to move past this dichotomy between the technical 

culture and the humanities, combining a critical philosophical inquiry of AI with an 

immanent understanding about the potentials of machine learning. This immanent 

understanding can be attained by unraveling the interwoven strands of thought and 

clarifying the mutual influences between cybernetics, universal computing, AI and 

machine learning. This clarification can help elucidate the various threads of ideas 

associated with these fields. An investigation into computational theories can also 

contribute to this immanent understanding of AI. Of particular interest are the formal 

proofs that circumscribe the limits and potentials of machine learning, which is a subfield 

of AI responsible for all its recent advances. At the same time, for a critical inquiry of AI, 

a certain epistemic distance is needed. Hence my critique draws on continental 

philosophy more so than on analytic philosophy. This chapter further explains why, 

among the continental philosophers, Martin Heidegger and Gilbert Simondon are 

particularly significant for a social critique on AI technologies. My final analysis on the 

future of AI will be conducted based on this immanent understanding and critical 

philosophy, with the site of the analysis being science fictions written based on realistic 

projections of AI technology.  

 Chapter 2 attempts to explicate Heidegger’s alarming claim that the emergence 

of cybernetics as a fundamental science in the mid-twentieth century marked the 

completion and the end of philosophy, and that only a god can save humanity from the 
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resulting technocratic society. This dystopian view on the completion and the end of 

metaphysics in cybernetics can only be fully understood by reading his reflections on the 

historical development of the will of representational thinking, which culminates in the 

extreme form of Nietzsche’s will to power as the technological will to will. This 

technological will to will is the essence of modern technology, which forces the 

calculation and arrangement of everything for technology itself. Heidegger’s reflections 

on cybernetics and the technological will to will has been considered by some as a 

critique of techno-posthumanism and technological singularity. The epitome of a 

supreme technological will is artificial general intelligence with a conscious will of its 

own. But despite his remark that only a god can save us, Heidegger’s later works mark 

his attempt to articulate how a salvation from modern technology may come about. 

According to Bret W. Davis in Heidegger and the Will: On the Way to Gelassenheit 

(2007), Heidegger went from the articulation of a “proper will” to a “non-willing” as a 

fundamental attunement of letting beings be, which serves as the alternative to the 

willfully positing of beings in cybernetic calculation and arrangement. For Heidegger, the 

extreme epoch at the end of the first beginning of the history of Western metaphysics is 

ironically the tipping point for an other beginning of the history of being marked by 

“letting beings be.” While this eschatology of the transition from the epoch of the will 

cannot be “willed” by human beings, we may nonetheless participate in this transition 

between epochs. Heidegger’s epochal eschatology seems particularly influential to 

Bernard Stiegler’s critique of automatic societies.  

 Chapters 3 to 5 belong together. They examine AI from an immanent perspective 

by studying its history and its computational theories. In these chapters, I will explore the 

historical relations between the early history of AI, the cybernetics movement, and the 

early history of computing during the post-war period. In addition, I will explain the 

significance of computational theory on machine learning established in this period. 

Chapter 3 traces the genealogy of AI and challenges the commonly-held notion about 

the universality of cybernetics. Social critics, including Heidegger, characterize 

cybernetics as universal, as a fundamental science in its control of all beings. This 

characterization makes cybernetics an easy target for critique, but is far from conclusive 

if we directly examine the actual conversations that took place between the participants 

of the Macy Cybernetics Conferences. These conversations reveal the strife between 

conference participants due to incompatible assumptions held by different knowledge 
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disciplines. The conferences and the movement were meagrely held together by themes 

such as negative feedbacks, homeostasis, or the blurring of boundary between humans 

and machines. All the participants share the desire to discover the mechanisms behind 

animal, human, and social behaviour and replicate these mechanisms in machines, but 

the various cybernetics themes cannot unify the diverse and conflictual scientific 

approaches between heterogeneous disciplines. They can only bring them into 

conversation. In the end, cybernetics ended in a historical failure with few lasting 

scientific or technical achievements. Nonetheless, bringing multiple disciplines into 

conversation did serve as the impetus for new research ideas. In this chapter, I take the 

stance that cybernetics and the computers as calculating machines belong to two 

distinct intellectual traditions that mutually influence each other. By intellectual tradition, I 

am referring to the evolving body of thoughts, ideas, and approaches that are passed 

down within the scientific community over time. Accordingly, the birth of AI can be 

attributed to the clash of ideas between the mainstream research of computing 

machines and the cybernetic idea of blurring the boundary between man and machines. 

 Chapter 4 continues this historical inquiry of AI by tracing the genealogy of 

machine learning. I argue that, in comparison to the rest of the discipline in AI and in 

computer sciences, machine learning inherits more directly from cybernetics. At the 

same time, machine learning, as a subfield of AI and computing, is distinguishable from 

the learning in cybernetic machines and in automata studies. This chapter depicts the 

electromechanical designs of cybernetic learning devices such as Claude Shannon’s 

maze-solving mechanical mouse or W. Ross Ashby’s Homeostat, and explains how 

these devices were designed to imitate the learning mechanisms in living organisms. In 

comparison, imitating living mechanisms has no place in machine-learning, which is 

concerned with abstract algorithms typically implemented in software. Like the rest of the 

field in AI and in computing, these abstract algorithms exploit the universality of a 

universal computer. I will argue how this prioritization of abstraction over imitation is 

evident in Alan Turing’s papers on machine intelligence, in Arthur Samuel’s checkers-

playing machine, and in Ray Solomonoff’s formal proofs on the limitations and potentials 

of machine learning. 

 Chapter 5 explains Solomonoff’s formal proofs on algorithmic probability and the 

significance of the proofs on deep learning. It draws a parallel between the universality in 

Turing’s proof on the universal Turing machine (UTM) and that in Solomonoff’s proofs. It 
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argues, in much the same way that the Church-Turing thesis gives an extreme outer limit 

of what it is possible to compute, Solomonoff’s Algorithmic Probability gives an extreme 

outer limit on training a universal machine to discover regularities in a body of data. This 

chapter outlines the different philosophies and theories that contributed to his 

conceptualization of Algorithmic Probability. The outline helps us understand the core 

ideas of the abstract machine-learning model in Solomonoff’s technical papers and how 

this model converges inductively with true probability. This convergence implies that one 

can always improve a machine-learning model by increasing the model’s complexities 

and by training it with more data. This principle of convergence is essentially the basis 

for big data and deep learning. This chapter goes on to argue that the deep learning 

model satisfies the properties of the abstract machine-learning model in Solomonoff’s 

Algorithmic Probability because the neural network in deep learning can compute any 

function like the UTM in Solomonoff’s model. Acquiring an intuitive grasp of Solomonoff’s 

proofs can help us verify the claim, often made by computer scientists, that AI 

empowered by deep learning can detect incredibly subtle patterns within large quantities 

of data. 

 Chapters 6 to 8 engage in a philosophical discussion on the social implication of 

cybernetics and AI. Chapter 6 presents an alternate perspective of cybernetics from 

Heidegger’s dystopian critique of its universality. By alluding to Norbert Wiener’s 

autobiography and to Gilbert Simondon’s philosophies, the chapter argues that 

cybernetics is characterized not only by a reductionism of the living into mechanization 

and automation, but also by a philosophy of openness and complexity. This view aligns 

with our earlier discussion in Chapter 3 about the conflictual approaches held by early 

cyberneticians belonging to different scientific disciplines. In his endeavor to 

revolutionize scientific exploration, Wiener sought to theorize irregularities and 

complexities that escape the closed system of traditional scientific method. This attempt 

to theorize irregularities and complexities led to his conceptualization of cybernetics 

feedbacks and homeostasis. The chapter then introduces Simondon’s theories of 

individuation and concretization while pointing out how these theories are associated 

with cybernetics. Simondon’s philosophy is both an appropriation of cybernetics 

concepts such as negative feedbacks or information, and a critical response to 

cybernetics’ mechanization of the living and its blurring of boundary between life and 
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machine. The chapter draws from this critical response to discuss whether AI can be 

creative and exhibit life-like quality. 

 The openness of Simondon’s philosophy of individuation is not purely technical. It 

theorizes how humans and technology can co-evolve by transcending conflicts and 

tensions. This open horizon and transcendence are only plausible due to the inherent 

potentiality in such tensions. Chapter 7 investigates further potentiality in Simondon’s 

philosophy. Whereas Aristotle’s model of potentiality was life, Simondon’s model of 

potentiality was based on modern physical sciences. Quantum theories and solid-state 

physics explain observations that violate classical logic and the common sense of 

everyday life, and Simondon sees the necessity of a new philosophy that accompanies 

these seemingly non-sensical theories about the physical world. To attain a non-

mathematical understanding of these twentieth-century scientific theories, this chapter 

draws from the explanations by Nobel laureate Richard Feynman, who is well-known for 

his knack of giving intuitive explanation behind the complex mathematical theories in 

physics. The understanding of quantum theories and solid-state physics can enlighten 

our interpretation of Simondon’s concept of pre-individual reality. This enlightened 

interpretation would in turn reveal the significance of the figure-and-ground paradigm to 

Simondon’s critique of technological alienation and why concretization is the means to 

overcome such alienation. 

 Chapter 8 compares and analyzes how Bernard Stiegler and Andrew Feenberg 

interpret and further develop Simondon’s philosophy. The idea of concretizing the 

technical and the social has been raised by both Stiegler and Feenberg, but they have 

seemingly come to the opposite conclusions. Influenced by Heidegger’s dystopian 

critique of cybernetics, Stiegler argues that a social world concretized into the global 

computational and information system would turn into the standing-reserves of a closed 

technical system. He points out that the channeling between social critiques and 

technical innovation is a necessary condition for the transductive operation of 

concretization and transindividuation, but this channel is being decimated by algorithmic 

governmentality. Feenberg, on the other hand, identifies the potentiality of transcending 

incumbent contradictions and stagnations in resistant social movements, in which the 

social and the technical undergo the transductive operation of concretization. This 

chapter argues, their seemingly opposite conclusion comes from the dual character of 

concretization as pathways to both openness and closedness, and the different 
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emphases in Feenberg and in Stiegler reflect the former’s focus on past social 

movements, which strengthened the channeling between social critiques and technical 

innovation, and the latter’s forward-looking perspective of how algorithmic 

governmentality is decimating this channel. In this regard, the two thinkers hold a 

consistent interpretation of Simondon’s philosophies in their respective social theories. 

 Leveraging the historical perspective and the philosophical arguments put forth in 

the preceding chapters, Chapter 9 examines whether advances in AI empowered by 

deep learning would necessarily bring about an automatic society that numbs 

individuals’ capacity for social critiques, or if there can be alternatives for AI to co-evolve 

with the human and our society. The chapter addresses this question by identifying 

automation and symbiosis as two competing visions for computing research, and 

deliberates human-AI symbiosis as an alternative vision to AI automation. It argues that 

AI has no meaning outside the human context, and it is indeed possible that human 

societies may opt for an increasingly meaningless world under AI automation. But it is 

equally possible that societies may opt for an alternate path of sociotechnical 

development in which humans will evolve symbiotically with AI rather than becoming 

marginalized due to AI automation. To project how human-AI symbiosis may play out in 

real life, I draw from the science-fictions and the analysis of AI technologies in Kai-Fu 

Lee’s and Qiufan Chen’s AI 2041 (2021). The short stories in AI 2041 anticipate a future 

technological society built upon the principle of human-AI symbiosis and portray 

imaginary lifeworlds that allow readers to experience and to reflect on human-AI 

symbiosis. They exhibit how symbiotic relationship can exhibit a kind of creative 

openness, which seems to fulfill Simondon’s vision of an open calculating machine with 

indeterminacy and programmability. Nevertheless, most stories in AI 2041 took place in 

a society under surveillance capitalism or where AI technologies belonged to the social 

elites, illustrating that humans and AI can co-evolve symbiotically even when AI 

technologies remain alienated from the people. In this regard, the computer scientists’ 

vision of human-AI symbiosis falls short of the revolutionary potentiality of Simondon’s 

philosophy, which envisions not only an open machine but an open horizon of techno-

cultural formation. His concept of pre-individual reality goes beyond the technical 

possibilities of human-computer symbiosis and posits that the human and the computing 

technology share a reality that is greater than whatever they appear to be. This 
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implicates the always presence of potentiality for a historical unfolding of sociotechnical 

changes that transcend existing circumstances. 
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Chapter 1.  
 
Methodology 

1.1. Overview 

 This study conducts an inquiry into the technical lineage of machine learning, an 

investigation into formal proofs about its potentials, and a philosophical critique based on 

this immanent understanding. Toward the end of the 20th century, machine learning 

consolidated as a subfield of AI by drawing widely from algorithms across many fields of 

industry practice, including pattern recognition, signal processing, clustering, and 

computationally focused statistics (Wiggins & Jones, 2023, p. 181), and it has been the 

main driver behind recent advances in AI. Many are anticipating a proliferation of AI-

related inventions that will have significant social consequences, both from a 

socioeconomic perspective (e.g., loss of jobs) and from the perspective of how human-

machine interactions will be altered. This sentiment may be a consequence of the recent 

development in AI technologies, which include AI chatbots that manipulate political 

sentiment in the online world as well as the increasing ease of fine-tuning and 

customizing trained foundation models to generate models with domain-specific 

knowledge.6 With such impending changes on the immediate horizon, traditional 

methodology in empirical research may be hard-pressed to keep pace with the social 

changes effected by new AI technologies. Conducting surveys and interviews helps 

reveal the locally situated perspective of the users. Such research is invaluable because 

the meaning of technology is inherently tied to the specific context of its deployment, but 

the efficacy of such research is limited to situations associated with technologies that 

have already been deployed. In anticipation of substantial social implications from AI 

inventions over the coming years, I want to conduct a critique of machine learning with a 

methodology that looks forward into the future.  

 My approach in this dissertation is to examine the basic ideas that have shaped 

AI in the past, as these same ideas should continue to shape AI in the future. It is 

 

6 For instance, see the Accelerate Foundation Models Research Program in Microsoft Research 
(https://www.microsoft.com/en-us/research/academic-program/accelerate-foundation-models-
research-fall-2023/). 
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therefore crucial to immerse ourselves into the perspective of the early AI pioneers, the 

technical lineage that led to the birth of AI, and the rational basis behind their uncanny 

and bold claims. Critics of AI are prone to be befuddled by these claims without critically 

engaging with the formal proofs that lend support to these claims. The consequence is 

the conundrum of the two cultures7, the culture of the intellectuals in humanities who 

imagine and criticize AI with free rein, and the technical culture cultivated in another silo, 

disregarding the voices of those outside the field as technically naive. To conduct an 

immanent critique, I want to become as knowledgeable as the AI practitioners about the 

fundamental ideas behind the functionalities of AI. Thus I investigate into the intellectual 

activities of the scientific community during the post-war period, since the field of AI is 

born out of a group of researchers grappling with a mixture of ideas from cybernetics 

and from universal computing during this period. This investigation ought to yield a 

technical understanding of AI through the lens of the experts in the field, which serves to 

either affirm or discredit controversial claims that have been communicated about AI. 

 After achieving an immanent understanding, I will step back to critically engage 

with the ideas that have shaped AI during this post-war period.8 This critical engagement 

will be conducted philosophically. Between the traditions of analytic philosophy and 

continental philosophy, the former is closely associated with computational theories9 

whereas the latter brings a more critical perspective of technology. Hence continental 

philosophy appears to be more suitable for the purpose of a critical engagement with AI. 

Among the continental philosophers, this dissertation focuses on Martin Heidegger and 

Gilbert Simondon, a philosopher of Being and a philosopher of becoming. Heidegger’s 

philosophy of Being led to his dystopian critique of a technocratic cybernetic society. He 

put forth the most influential critique of modern technology and was also the most vocal 

about the threats to humanity posed by cybernetics, which was instrumental to the 

development of AI and machine learning.10 He famously claimed that cybernetics 

 

7 The idea reiterates the thesis of The Two Cultures (Snow, 1959/1993). 

8 The combination of an immanent understanding and an epistemic distance is somewhat similar 
to Pamela McCorduck’s description of the type of person who can make the best predictions 
about AI: “[T]he best predictions of the distant future probably come from people who’ve been 
deeply immersed in the creation of such a technology, who are aware of its profoundest 
consequences, and who are then maybe slightly removed” (2004, p. 400). 

9 See Section 5.3 for the influences of Carnap’s analytic philosophy on Solomonoff. 

10 See Chapter 3 and Chapter 4. 
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represents the culmination of the history of philosophy and that only a god can save us 

from the enframing of this technocratic society. According to some scholars, AI is the 

ultimate embodiment of Heidegger’s dystopian critique of modern technology.11 But as I 

will explain in Section 3.2, Heidegger’s philosophical critique of cybernetics is based on 

a superficial understanding of cybernetics. In contrast, Simondon developed a 

philosophy of becoming by appropriating key ideas from cybernetics (see Chapter 6). 

His works exemplify how an immanent understanding of science and technology could 

serve as the basis of a critical philosophical inquiry of technology. In fact, they represent 

an important precedent for how I approach the immanent critique of machine learning. 

 The remainder of this chapter presents the methodology of this dissertation in 

greater detail. I begin with a literary review on the field of philosophy of technology, 

surveying the major works to provide the intellectual context for the philosophical 

discussion on Heidegger and Simondon. One of these philosophers, Hubert Dreyfus, 

was actively communicating with the AI community, but their mutual animosity is a telling 

story about the cultural gap widening between AI practitioners and humanities 

scholars.12 I will provide an account on how this animosity developed and argue that the 

two sides could have come to a consensus if they could understand the reasoning of the 

opposite side. In my dissertation, I intend to move past this dichotomy, combining a 

critical philosophical inquiry of AI with an immanent understanding about the potentials 

of machine learning. I then explain why my project focuses on the intellectual activities 

during the thirty-year window of the post-war period, why continental philosophy is more 

suitable than analytic philosophy for conducting a critical inquiry of AI, and why the 

works of Heidegger and Simondon would be significant for a critique on AI. Toward the 

end of this chapter, I turn my attention from the past to the future and explain why my 

project will analyze science fictions that are written based on realistic projections of AI 

technologies.  

 

11 See Section 2.4. 

12 A majority of the early AI pioneers see Dreyfus as their nemesis. But as I will argue in Section 
1.4, Dreyfus’s critique genuinely exposes the limitation of symbolic AI but not AI in general. As the 
formalism of symbolic AI was the dominant approach at the time of his writing, Dreyfus was 
advocating a different direction for AI research. There are indeed researchers in the field of AI, 
such as Terry Winograd and Philip E. Agre, who were inspired by Dreyfus' critique of AI. 
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1.2. Literary Review of Philosophy of Technology  

 The immanent and philosophical critique of machine learning consists of the 

technological perspective and the philosophical perspective. The technological 

perspective focuses on the technical lineage and the computational theories of AI and 

machine learning. The philosophical perspective is situated within the tradition of 

philosophy of technology. This section provides the intellectual context to the 

philosophical discussion in this dissertation by surveying the significant works within this 

tradition. 

 The foundational text for philosophy of technology is Heidegger’s essay “The 

Question Concerning Technology” (1953), as many later critiques of technology build on 

top of ideas from this essay. Heidegger contends that the sociotechnical world under 

modern technology has essentially become a closed system. He departs from the 

instrumental definition that sees technology as a means to an end, and argues that 

technology is “the realm of revealing, i.e., of truth” (1977a, p. 12). Whereas pre-modern 

technology reveals by “bringing-forth” a particular mode of living, in the sense of poiesis, 

modern technology reveals by “challenging” nature to the unreasonable demand of 

extraction and storage as technological resources (1977a, p. 14). This “challenging” 

mode of revealing becomes the horizon that both restrains and enables truth (1977a, p. 

33). The harmony between pre-modern technology and nature is lost, and the world is 

now characterized by the teleological drive toward “enframing” all natural and human 

beings into “standing-reserves” (1977a, p. 17).  

 In this essay, Heidegger refers to the chalice to explain the causality in Greek 

thought and how modern technology deviates from it. We can trace the example of the 

chalice to Heidegger’s discussion of craftwork in Being and Time (1927/2010). In this 

earlier text, Heidegger uses Dasein, meaning “there being” or “existence” in German, in 

lieu of the subject to express the unity between I and the world, and formulates the 

concepts of readiness-to-hand, presence-at-hand, and thrownness to distinguish the 

reality of everyday life from the domain of modern science. Readiness-to-hand describes 

the way Dasein unreflectively uses tools like a hammer, whereas presence-at-hand 

denotes how Dasein reflects upon the world as objectively present things. Ever since 

Descartes, the subject-object divide dominates the common-sense view of how the 

human mind and the actual world out there correspond to two isolated realities. Owing to 
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this duality, objective analyses of the modern scientific discourse have become the 

dominant mode for making meanings and truths. Heidegger is neither satisfied with 

Descartes’ dualism nor the unified theories of a purely subjective or objective reality (i.e., 

idealism or materialism) since Descartes. Rather, he addresses the subject-object 

antinomy by distinguishing beings that are ready-to-hand and those that are present-at-

hand. He argues that seeing the world only in the mode of present-at-hand makes us 

blind to ready-to-hand relations, under which Dasein is “thrown” into a world of open 

possibilities that escape the formal present-at-hand analysis. In The Question 

Concerning Technology, Heidegger argues that people in the modern epoch are also 

“thrown” into a world where their understanding of the world is “enframed” as present-at-

hand objects, as “standing-reserves,” and their everyday life is “challenged” to conform 

to formal scientific “truths.” 

 Heidegger’s ontological critique of technology has been influential for prominent 

philosophers of technology in the latter half of 20th century. Among them are Don Ihde, 

Hubert Dreyfus, Albert Borgmann, and Herbert Marcuse. As Peter-Paul Verbeek (2006) 

explains, Don Ihde’s analysis of human-technology relation in Technology and the 

Lifeworld (1990) is based on Heidegger’s analysis of tools in the everyday relations 

between humans and their world. Ihde distinguishes three types of human-technology 

relations: the embodiment relation, the alterity relation, and the background relation. 

When people use technology in an embodiment relation or in a background relation, 

technology typically withdraws from people’s attention. Hence Heidegger’s readiness-to-

hand, also characterized by the withdrawal of the tools, is the basis for Ihde’s 

embodiment and background relation. In an alterity relation, technology emerges as the 

focus of attention, either when it breaks down or when it becomes a fetish of human 

desire. In either case, it does not facilitate a ready-to-hand relation between the user and 

the world. Technology appears as an objectively present being, and is therefore present-

at-hand. This is how Ihde’s “phenomenology of things” is influenced by Heidegger’s 

distinction between readiness-to-hand and presence-at-hand. 

 Just like Ihde, Hubert Dreyfus in What Computers Can’t Do (1972), which I will 

further discuss in Sections 1.3 and 1.4, derives his central argument from Heidegger’s 

concepts of readiness-to-hand and presence-at-hand. Terry Winograd and Fernando 

Flores further develop Dreyfus’s ideas in Understanding Computers and Cognition 

(1986). According to these authors, computers can only solve problems that are scoped 



18 

within a clearly defined domain of possibilities, but they can never replace humans in 

encountering a lifeworld of contingencies and infinite possibilities. As such, terms such 

as “expert systems” and “decision support systems” are often misleading, as true 

experts in life are distinguished by intuitions that cannot be formalized. A doctor’s 

experience allows a shrewd discernment between a heart attack or chest pain due to 

stress, and a programmer guru can fix mysterious bugs in software development that 

nobody else can.13 

 Borgmann puts forth another Heideggerian argument in Technology and the 

Character of Contemporary Life (1988). He formulates the “device paradigm” that 

distinguishes between technological devices and what he calls “focal things.” 

Technological devices tend to reduce everyday life practices to a simplified form of a 

means to an end, as exemplified by microwave ovens as a means to cook fast food. The 

reduced form of living masks meanings in everyday life that are traditionally enriched by 

focal things such as a dining table. Such focal things set the stage for actions of care 

and concern, such as preparing for a meal and inviting friends over for dinner, that 

Borgmann calls “focal practices.” In the contemporary society, focal things and practices 

become increasingly marginalized, as the device paradigm is the dominant mode of 

living. Focal things and practices are derived from the concepts of readiness-to-hand, 

thrownness and care in Heidegger’s analysis. Similar to Heidegger, Borgmann sees the 

path toward liberation in the recovery of a “free” relation to technology. This “free” 

relation can be achieved by a way of living that prioritizes focal things and practices over 

the device paradigm. 

 In a Heideggerian critique, the path toward liberation typically involves changes 

in the way we live rather than in technology itself. This type of critique is often criticized 

as conservative and deterministic. In contrast, Marxism postulates how technology can 

be transformed into tools for liberation rather than for the reification of human lives. 

Herbert Marcuse is both a Marxist and a former student of Heidegger. According to 

Andrew Feenberg in Heidegger and Marcuse (2005), Marcuse’s One-Dimensional Man 

 

13 As I will explain in Section 1.4, the target of this phenomenological critique is symbolic AI. On 
machine learning and deep learning, a critique on the limitation of AI implemented by formalized 
rules is not applicable. See Sections 1.6 and 9.2 for discussions and examples on how AI 
empowered by deep learning is on the verge of replacing the functional roles played by doctors 
and software programmers. 
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(1964) indeed reiterates Heidegger’s idea of a closed sociotechnical system under 

modern technology. But whereas Heidegger’s critique is ontological, in the sense that 

the essence of technology is “enframing,” Marcuse formulates a social critique. He 

identifies capitalism as the root of the closed form of rationality in the modern epoch. 

This apparent minor tweak to Heidegger’s critique leads to an altogether different 

argument on how the human milieu may be liberated from the “enframing” of technology. 

The technological rationality that precludes values and meanings inherent in everyday 

life can be transformed into a liberated technological rationality with an aesthetic 

sensibility. This transformed aesthetic rationality can serve as the basis for a new 

science. As Feenberg points out (2005), Marcuse is vague on what constitutes this new 

science. His argument is much more appropriate for a transformed technology that 

encodes aesthetic values into its design, such as industrial machines that take 

environmental protection into account.  

 Marcuse is also a member of the Frankfurt School, and their Western Marxist 

tradition can be traced to Lukács’ History and Class Consciousness (2013). Lukács sees 

the potential emancipation of the proletariat not only as a social phenomenon, but also 

as a philosophical resolution to the subject-object antinomy. It is in the praxis that the 

subjective reality and objective reality become one, and this unity is only achievable 

through the proletariat. Lukács contends that the “basic structure of reification can be 

found in all the social forms of modern capitalism (e.g. bureaucracy.),” but “this structure 

can only be made fully conscious in the work-situation of the proletarian” (2013, p. 172). 

The fetishism of the commodity reifies the lives of both the bourgeoisie and the 

proletariat, turning them into things that operate under abstract commodity relations in 

capitalism. But even though a worker is reified and dehumanized, “his humanity and his 

soul are not changed into commodities” (2013, p. 172). In contrast, a bureaucrat is 

reified even in thoughts and feelings. As Feenberg explains in The Philosophy of Praxis 

(2014), Marcuse generally agrees with Lukács’ thesis on praxis as the resolution of 

antinomy, but for him, the site of praxis is not the revolution of the proletariat, but the 

revolution that transcends modern science and technology. 

 In Marcuse’s attempt to formulate a new science and technology, he refers to Du 

mode d’existence des objets techniques (1958) by Gilbert Simondon. Just like Marcuse 

who refutes Heidegger’s ontological claim, Simondon does not see technology as a 

threat in essence to the human culture. Instead, he identifies the source of technological 
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alienation in the “opposition drawn between culture and technics, between man and 

machine” (Simondon 2016, 15–16). This man-machine opposition is akin to the subject-

object antinomy that concerns Heidegger and Lukács. In parallel to how the concept of 

readiness-to-hand and the philosophy of praxis resolve the antinomy, Simondon 

formulates the theory of “concretization” to address the man-machine opposition.14 

Accordingly, technology does not evolve purely according to physical laws or in 

conformance to the subjective wills of designers or users, such as in slavery to the 

capitalist agenda. Rather, there is a certain nondeterministic logic that guides the co-

evolution of man and machine. Technology evolves when elegant designs simplify its 

internal structure and its external interface with the milieu, which includes both the 

human and the natural milieu. This simplification makes the technology more concrete in 

the technical sense that it is more likely to survive than to be eliminated over time. The 

process of concretization is not purely subjective because elegant designs must take 

material constraints into consideration. But it is not deterministic either, as there is a 

manifold of possible paths that a technical evolution may take. Simondon theorizes the 

open co-evolution of man and machine in extension to his philosophy of individuation in 

L’individuation à la lumière des notions de forme et d’information (1964/2005). Building 

on Bergson’s Creative Evolution (1922), Simondon draws on the latest scientific 

discoveries in physics and biology of his time to formulate a material basis for the 

perpetual evolution of new forms. He identifies internal conflicts and contradictions as 

the sources of potentiality that empowers such open evolution. He then extends this 

theory of openness to work out a critique of modern psychology and social theory, and 

subsequently, to develop his philosophy of technology. 

 But Simondon was not the first to expound the concept of openness in technical 

design. This concept is also inherent in Karl Marx’s proposal of socialist technology in 

Grundrisse (1993). Marx argues that labour can become “attractive work, the individual's 

self-realization” under the right condition (1993, p. 611). This condition can be attained 

through a socialist transformation of the process of production. Workers under this 

transformed process will no longer be reduced to the status of a natural object. Rather, 

they can exert themselves as subjects who engage in “activities regulating all the forces 

of nature.” No longer reified, subjects can realize their potentiality through the serious 

 

14 I will deliberate on the philosophical significance of this concept of concretization in Chapter 8. 
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activities of labour. Hence Simondon’s philosophy of openness is coherent with the 

theories of open technology in the Western Marxism lineage, which we can trace from 

Marx to Lukacs to Marcuse. These Marxists assert that technology does not necessarily 

determine the human milieu, but ought to evolve openly with it. They refute the 

technological determinism of Orthodox Marxism, which sees technology as the base that 

determines the superstructure of culture and social institutions. In comparison, social 

construction of technology (SCOT) also shares this refutation of technological 

determinism. They argue that the social meaning of any technology is not determined by 

its designers, but rather depends on the subjective interpretation of its users. Social 

constructivists such as Bijker (1987) conduct empirical and historical studies of technical 

artifacts such as the bicycle. These studies serve to bring us down to earth, from an 

abstract, macro discourse about technologies to the examination of the actors involved 

in shaping the design of particular technical artifacts. They attempt to show that there is 

no teleological essence to the evolution of technology, thus rejecting Heidegger’s 

ontological critique of technology, and aim at illustrating the complex relations between 

actors behind each technical design. 

 The empirical research that employs the methodology of SCOT and ANT focus 

on disproving technological determinism and typically shy away from giving critical 

perspectives with much social significances. Ideology is a banned word in the SCOT and 

ANT research community. But the concept of absolute historicism in Marxism, in which 

truths are seen to be a product of history, is closely akin to social construction. It is in 

fact possible to combine the SCOT analysis and the Marxist critical theory, as Andrew 

Feenberg has done so in his various works (1995, 1999, 2002, 2017a). Following 

Marcuse, Feenberg argues that social values can be encoded in technology, which he 

calls “technical codes.” The social adoption of a technology often comes from the implicit 

acceptance of these embedded technical codes as norms. When social actors 

participate in the negotiation of how a technology should develop, they bring their beliefs 

and values into such a process. Thus the negotiation is in fact a site of political 

contestation between different beliefs and values. The social construction of technology 

is the social determination of values and norms. In other words, technical systems, like 

social policies and institutions, are manifestation of power by the influential actors who 

shape technical development. 
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 The above thinkers of technology are concerned with the dilemma that modern 

technology seems to both enhance the quality of living and suffocate the freedom of 

everyday life. Some of them identify the source of this dilemma in the subject-object 

antinomy. Others address the dilemma by distinguishing an open co-evolution of human 

and technology from technological determinism. Among these thinkers, Hubert Dreyfus 

was most active in his engagement with the computing and AI community. But their 

dialogues turned out to be far from cordial, and Dreyfus became AI’s renowned 

archenemy due to their hostile and disrespectful interactions over the years. 

1.3. Artificial Intelligence Needs a Good Dreyfus?  

The discord of the two cultures between humanities and sciences is among the 

sharpest in the hostility between phenomenologist Hubert Dreyfus and AI practitioners. 

Dreyfus’ paper Alchemy and Artificial Intelligence (1965) and his book What Computers 

Can’t Do (1972) ridicule the grandiose predictions of AI researchers by comparing their 

wishful thinking to the misguided attempts of the alchemists. This alchemist metaphor 

surely antagonized the AI community, who in response scolded Dreyfus’ ignorance 

about AI and computing. For instance, Edward Feigenbaum made the following 

comment about Dreyfus:  

What artificial intelligence needs is a good Dreyfus. … I can think of … one, 
maybe two philosophers who have the grasp of what AI and computing are 
all about, and also know philosophy. … But Dreyfus bludgeons us over the 
head with stuff he’s misunderstood and is obsolete anyway—and every 
time you confront him with one more intelligent program, he says, “I never 
said a computer couldn’t do that.” And what does he offer us instead? 
Phenomenology! That ball of fluff! That cotton candy! (McCorduck, 2004, 
pp. 229–230) 

Feigenbaum, along with other AI researchers, disapproved Dreyfus’ critique on two 

accounts. The first reflects their disapproval of the phenomenological method. A “good 

Dreyfus” would presumably be an analytic philosopher who can further develop Carnap’s 

digitalized representation of the universe or works on moral axiomatization of AI ethics. 

The second chastises Dreyfus’ inability to “grasp what AI and computing are all about.” 

When a critique of technology fails to recognize the potential capabilities of a technology 

due to its present limitations, the technical community would feel indignant and reject the 

critique as technically naïve. For them, engaging a meaningful dialogue with Dreyfus 
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was impossible due to Dreyfus’ premeditated stance against AI.15 This view is 

epitomized by an anecdote recalled by Arthur Samuel (1974). Samuel was invited by 

Dreyfus to give a guest lecture at a philosophy class. He was surprised by the invitation 

and felt certain that Dreyfus did this with the sole purpose of humiliating him in front of 

the class: “[Dreyfus] thought he could shoot down all my arguments very well, and that 

he undoubtedly had his students primed to ask me questions” (Samuel, 1974). Samuel 

worked hard at anticipating every potential challenge that could be thrown at him. In his 

view, he was able to anticipate all the challenging questions and quickly gave concise 

answer to every question, taking pleasure at the sight of Dreyfus getting visibly upset.16 

 But as AI research endured what becomes known as the “AI Winter”, it appeared 

that Dreyfus got the last laugh in the end. In What Computers Still Can’t Do (1992), 

Dreyfus all but declared victory in his feud with the AI community:  

This edition of What Computers Can't Do marks not only a change of 
publisher and a slight change of title; it also marks a change of status. The 
book now offers not a controversial position in an ongoing debate but a 
view of a bygone period of history. For now that the twentieth century is 

 

15 In an interview by Pamela McCorduck, Samuel reflected on Dreyfus’ philosophical differences 
with the AI community: “I think the trouble with [Dreyfus] is that he has certain philosophical 
beliefs and a person is entitled to your philosophical beliefs. We all have them, you have to have 
them in the real world. You have to have heuristics to live and some of the heuristics are these 
philosophical beliefs. What we’re trying to do goes counter to his philosophical beliefs, and so, he 
tries to defend his philosophical beliefs by arguments, which I think are rather invalid. But he’s so 
convinced that he’s right, that he fails, or refuses to see his errors in his argument. Well, you just 
have to give up arguing with a person like that. It’s like arguing about religion, you just don’t argue 
about religion, because it’s a matter of philosophical beliefs, and if a person has strong 
philosophical beliefs, he will only accept facts that fit his belief and he will always try to find 
devious explanation for apparent facts which contradict his beliefs. … I have a firm philosophical 
belief that a computer can do anything intellectual, in contrast with emotional, that a human mind 
can do, if we understand the process enough to write a program to do it. When people can solve 
a problem, it’s an existence proof that it can be solved on a computer for me. That’s my 
philosophical bent and if you present facts that invalidate that, I argue against them” (Samuel, 
1974, pp. 34–35). 

16 Here is how Samuel told the story: “I’ve had a lot of talks with Hubert Dreyfus. I’ve had some 
very interesting experiences with him. He taught a course over at Berkeley and he invited me to 
come over and lecture to his course, which I was sort of surprised. I got to thinking about it, and I 
decided the reason he did that was, he thought he could shoot down all my arguments very well, 
and that he undoubtedly had his students primed to ask me questions. I really worked for his talk. 
I really worked hard thinking up all the things that I thought they would ask me and getting very 
glib, good and concise answers to these things and thought them through. They asked just 
almost every question, just down the line down the list and I had a pat answer and he was really 
upset about this and instead of getting me on the defensive, I got him on the defensive 
completely and I was really pleased about it. He has never invited me over since” (Samuel, 1974, 
pp. 33–34). 
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drawing to a close, it is becoming clear that one of the great dreams of the 
century is ending too. Almost half a century ago computer pioneer Alan 
Turing suggested that a high-speed digital computer, programmed with 
rules and facts, might exhibit intelligent behavior. Thus was born the field 
later called artificial intelligence (AI). After fifty years of effort, however, it is 
now clear to all but a few diehards that this attempt to produce general 
intelligence has failed. (Dreyfus, 1992, p. ix)  

Today, AI enthusiasts reading Dreyfus’s premature “victory” statement would likely feel 

vindicated by the breakthrough of deep learning in AI research. For Dreyfus, the major 

roadblock in AI research used to be the lack of progress in pattern recognition: “It is not 

surprising, but all the more discouraging, that further progress in game playing, problem 

solving, and language translation awaits a breakthrough in pattern recognition research” 

(1965, p. 46). But it is the function of recognizing data patterns that deep learning excels 

at. Equipped with this pattern recognition capability, AI has become effective at language 

translation or in the game of Go, which is an ancient Chinese board game characterized 

by “virtually illimitable complexity” (Koch, 2016) and requires “true intelligence, wisdom, 

and Zen-like intellectual refinement” (K.-F. Lee & Chen, 2021, p. 7).17 Such recent 

technical achievements attest to the verdict that Dreyfus had failed to grasp what AI or 

computing is all about. He had no appreciation of the computational theories that 

articulate what computing technology is potentially capable of doing, and Dreyfus was 

proven wrong time and again over his skepticism of what computers can do. Indeed, 

back in 1967, Dreyfus lost a chess match to the MacHack program two years after he 

remarked that “[s]till no chess program can play even amateur chess” (1965, p. 10). The 

AI community certainly took pleasure at this humiliating defeat. In the bulletin of the 

Special Interest Group in Artificial Intelligence of the Association for Computing 

Machinery, the results of the game were printed “with a headline drawn from ‘Alchemy 

and Artificial Intelligence’—A Ten-Year-Old Can Beat the Machine— Dreyfus—and a 

subheadline that read, But The Machine Can Beat Dreyfus” (McCorduck, 2004, p. 232) 

Even though, as Dreyfus tried to clarify, his remark did not discount the ultimate 

possibility of a computer program playing reasonable chess, it is difficult to believe his 

clarification when, throughout “Alchemy and Artificial Intelligence,” Dreyfus emphasizes 

 

17 As Kai-Fu Lee explains the significance of AlphaGo defeating the human Go champion in the 
Google DeepMind Challenge Match, “Go is a board game more complex than chess by one 
million trillion trillion trillion trillion times. Also, in contrast to chess, the game of Go is believed by 
its millions of enthusiastic fans to require true intelligence, wisdom, and Zen-like intellectual 
refinement” (K.-F. Lee & Chen, 2021, pp. 7–8). See also “How the Computer Beat the Go Master” 
(Koch, 2016). 
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the repeated failed attempts by AI researchers at developing chess programs and raises 

doubts that the method of symbolic AI would ever yield a computer program capable of 

playing a good match of chess. 

To the early AI pioneers, Dreyfus’ stubborn disdain against AI is akin to religious 

beliefs.18 From their perspective, AI and alchemy cannot be more different. Whereas 

alchemy was grounded in a misguided mythology, the potentials of computing 

technology and AI are grounded in formal mathematical proofs. The logical foundation 

behind the limits and potentials of computing technology is the proof of universality of a 

Turing machine, and this proof was later extended by Ray Solomonoff to machine 

learning. The criticism of AI as a legacy of age-old human fantasy of anthropomorphism 

ignores the logical foundation of this “algorithmic” fantasy. Indeed, Dreyfus failed to 

recognize the potential of Solomonoff’s mathematical theory of inductive inference, 

dismissing his theory as irrelevant on the ground of not having “a single example of 

actual progress,” which to Dreyfus was a clear sign of stagnation in this line of research 

(Dreyfus, 1992, pp. 149–150). As I will explain in Chapter 5, Solomonoff’s theory lends a 

theoretical credence to the vast potentials of machine learning. To be fair, at the time of 

Dreyfus’ writing, Solomonoff’s works remained in obscurity even among the AI 

researchers and did not garner the attention they deserve until the past couple of 

decades (see Section 1.5). Nonetheless, as this historical anecdote on Dreyfus 

demonstrates, a criticism on the computer’s potential capability, based on what it can or 

cannot do today, likely cannot withstand the test of time. 

1.4. Redeeming Dreyfus as the Prophetic Critic of AI 

Dreyfus’ bold claims and his agitating polemics certainly stirred up enmity and 

invited criticisms from the early AI pioneers, who were themselves guilty of enticing 

Dreyfus’ animated hyperboles with their grandiose predictions about AI. In most people’s 

eyes, “Dreyfus is persuaded that in the end artificial intelligence will never work” 

(McCorduck, 2004, p. 212). But a more careful reading of Dreyfus’ critique would 

indicate that his critique was far from technically naïve as some of his critics had 

 

18 See footnote 15. 
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proclaimed.19 Even though Dreyfus’ critique on Solomonoff was based on the lack of 

evidential success in applying his theory of inductive inference, his phenomenological 

critique did expose the theoretical limitations of symbolic AI based on formalizable rules. 

In Dreyfus’ central argument, humans use fringe consciousness in a pragmatic global 

context to recognize patterns in a way that both reduces and tolerates ambiguity. It is 

impossible to simulate this human ability with AI implemented by symbolic manipulation 

and formalizable rules, which was the dominant approach to AI research at the time of 

his writing. Accordingly, “the research program based on the assumption that human 

beings produce intelligence using facts and rules has reached a dead end” (Dreyfus, 

1992, p. ix). So, the polemic of alchemy remains justifiable today because its only target 

of criticism was the method of symbolic AI, which is associated with “the belief that 

actions are governed by fixed values,” “the notion that skills can be formalized,” and “that 

one can have a theory of practical activity” (1992, p. 280). Dreyfus was contending that 

such a line of research would necessarily lead to stagnation, just like the fate of 

alchemy, and AI researchers ought to turn their attention to “fascinating new areas for 

basic research, notably the development and programming of machines capable of 

global and indeterminate forms of information processing” (1965, p. 84). “Indeterminate 

forms of information processing” is in fact the trademark of machine learning today! 

Rather than framing Dreyfus as the quintessential archenemy of AI research, he can 

easily be redeemed as the prophetic critic whose advocacy of “indeterminate forms of 

information processing” has finally been fulfilled by the recent innovations in machine 

learning and deep learning!20  

 

19 Here is how Dreyfus recounts the type of criticisms he received on “Alchemy and Artificial 
Intelligence”: "[T]he year following the publication of my first investigation of work in artificial 
intelligence, the RAND Corporation held a meeting of experts in computer science to discuss, 
among other topics, my report. Only an ‘expurgated’ transcript of this meeting has been released 
to the public, but even there the tone of paranoia which pervaded the discussion is present on 
almost every page. My report is called ‘sinister,’ ‘dishonest,’ ‘hilariously funny,’ and an ''incredible 
misrepresentation of history. When, at one point, Dr. J. C. R. Licklider, then of IBM, tried to come 
to the defense of my conclusion that work should be done on man-machine cooperation, 
Seymour Papert of M.I.T. responded: ‘I protest vehemently against crediting Dreyfus with any 
good. To state that you can associate yourself with one of his conclusions is unprincipled. 
Dreyfus' concept of coupling men with machines is based on thorough misunderstanding of the 
problems and has nothing in common with any good statement that might go by the same words’” 
(1992, pp. 86–87)  

20 His conclusion that AI research should be done on man-machine cooperation and symbiosis, 
which was defended by J. C. R. Licklider (Dreyfus, 1992, p. 87), is also a reasonable argument 
that I will further take up on later in this Chapter 9. 
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 From this perspective, if the early AI pioneers could have toned down their overly 

optimistic predictions and if Dreyfus could be more cordial in his criticisms, it ought not 

be difficult for the two sides to arrive at mutual understanding and consensual 

agreement about the future of AI. Still, it is in fact a common practice that technologists 

routinely make exaggerated claims when they are under pressure to seek out research 

funding. If so, why would a philosopher like Dreyfus find the exaggerated claims about AI 

particularly disturbing? The answer seems to lie in certain characteristics unique to AI in 

comparison to other fields of technology research. As some critics have point out, there 

is a deceptive nature about AI from its very inception (Natale, 2021; Weizenbaum, 

1976). There is a fine line between the computer science concept of abstraction, which 

translates between functional usage and implementation details, and the deceptiveness 

in AI, which elicits perceptive and emotive human responses that attribute non-existent 

capabilities to an AI program. This intrinsic deceptiveness was first noted by Joseph 

Weizenbaum on the effect his chatbot ELIZA had on his secretary who was testing the 

program. When Weizenbaum barged into the lab and interrupted the testing process, his 

secretary became visibly upset, as if Weizenbaum had disturbed her intimate 

conversation with a friend. “Chatting” with ELIZA aroused her emotional attachment 

even though she was well aware of the many hard-coded responses in this chatbot. 

From this incident, Weizenbaum realized that “extremely short exposures to a relatively 

simple computer program could induce powerful delusional thinking in quite normal 

people” (1976).21 

 Simone Natale (2021) pushes Weizenbaum’s astute insight further, arguing that 

the power to induce delusional thinking has been central to AI’s functioning throughout 

the history of its development: 

AI technologies entail forms of deception that are perhaps less evident and 
straightforward but deeply impact societies. We should regard deception 
not just as a possible way to employ AI but as a constitutive element of 
these technologies. Deception is as central to AI’s functioning as the 
circuits, software, and data that make it run. … [S]ince the beginning of the 
computer age, researchers and developers have explored the ways users 
are led to believe that computers are intelligent. (Natale, 2021, p. 2) 

 

21 Douglas Hofstadter calls this the ELIZA effect (1995), and Hamid R. Ekbia calls this the 
attribution fallacy (2008). 
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Natale documented historical anecdotes to support his claim about the centrality of 

deceptiveness in AI research. These anecdotes demonstrate how AI “researchers and 

developers have explored the ways users are led to believe that computers are 

intelligent.” Such deceptiveness indeed enticed early AI researchers to exaggerate the 

level of machine intelligence in their AI projects (see McCorduck, 2004, pp. 357–358). 

 At the same time, while it is fair to say that deception is “a constitutive element” 

of AI technologies,” Natale probably goes too far in claiming that deception is central to 

AI. He argues that the Turing test reveals “the centrality of the human perspective” 

(2021, p. 31) and “the relationship between AI and deception” (2021, p. 32). For him, 

“[t]he playful deception of the Turing test, in this sense, further corroborates [his] claim 

that AI should be placed within the longer trajectory of deceitful media that incorporate 

banal deception into their functioning” (2021, p. 32). The early AI pioneers would likely 

have rejected this view of the Turing Test. They regarded Turing’s seminal paper 

“Computing Machinery and Intelligence” (1950), which describes the Turing test, as the 

foundational pillar of the AI field. For them, the central question of “Computing Machinery 

and Intelligence” is, if a Turing machine can perform any describable function according 

to the proof of its universality, to what extent can it perform functions that humans would 

consider as intelligent? The paper explores the universality of Turing machine by 

conjecturing a paradigm shift on what intelligence is about and what kind of intelligence 

is a Turing machine capable of.  

 Rather than devoting their efforts to deceptive tricks, AI practitioners often see 

themselves as the creator of a new kind of intelligence, which may surpass human 

intelligence in certain aspects while lacking in other areas. Their ultimate goal is to 

create computing agents with general artificial intelligence, which is the ability to 

understand or learn any intellectual task that a human being can perform (Shevlin et al., 

2019). In the eyes of AI enthusiasts, this aspiration is analogous to the quest for the holy 

grail. This quest is evident in Solomonoff’s paper “The Time Scale of Artificial 

Intelligence: Reflections on Social Effects” (1985), which discusses six future milestones 

of AI. For instance, the fourth milestone is the ability to “read almost any English text and 

incorporate most of the material into its data base,” which we seem to have achieved 

today with large language models such as OpenAI’s generative pre-trained transformer 

(GPT). The fifth milestone is “a machine with a general problem-solving capacity near 

that of a human,” and the final milestone is “a machine with a capacity many times that 
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of the computer science community,” which is later referred to as technological 

singularity. The critique of deceitful media only touches upon the tricks and hacks that 

make a program look human, but the AI community would consider these tricks as only 

peripheral activities complementing their core research, just as car accessories are 

considered peripheral functions in a car design.  

 How can we gauge whether an expert is giving a rationally sound projection 

based on actual potentials of the technology, or giving an unfounded speculation beyond 

its potential affordances? Are the last two milestones in “The Time Scale of Artificial 

Intelligence” more wishful thinking than expert projections with rational ground? Before 

rashly brushing them off as pure fantasy, we should note that the fourth milestone did 

not seem achievable at the turn of the century but is here with us today. In fact, 

throughout the history of computing, the sentiment on AI’s potential capabilities has gone 

through cycles of optimism and pessimism, from the initial excitement on machines that 

exhibit aspects of human intelligence in the late 1970s and early 1980s (McCorduck, 

2004, p. 417), to the stagnation in research and development during the so-called “AI 

winter” in the late 1980s (McCorduck, 2004, p. 418), then to the renewed optimism over 

the past decade due to the breakthrough in deep learning. According to AI expert Kai-Fu 

Lee22, deep learning is the one and only breakthrough over the history of AI (K.-F. Lee & 

Chen, 2021, p. 536). Even though neural network is an old technology, it is only in recent 

years that deep learning, which uses massive amount of data to train neural networks 

with many layers, achieves its revolutionary status. As Lee describes, “[d]eep learning 

supercharged excitement in AI in 2016 when it powered AlphaGo’s stunning victory over 

a human competitor in Go, Asia’s most popular intellectual board game. After that 

headline-grabbing turn, deep learning became a prominent part of most commercial AI 

applications” (K.-F. Lee & Chen, 2021, p. 44). The supercharged excitement led to 

rejuvenated speculations about the potentials of AI. For some people, AI can one day 

attain human-level consciousness, while for others AI is no more than a collection of 

sophisticated tools serving human or social interests. From practical utilities to machines 

 

22 Lee is one of the most influential people in the field of Artificial Intelligence (Paz, 2020). He has 
been involved in AI research and product development at Apple, Microsoft, and Google, and 
managed $3 billion in technology investment as the CEO and the president of Sinovation 
Ventures (K.-F. Lee & Chen, 2021, p. 12). 
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with emotions and consciousness, there is a wide range of opinions on what AI can 

eventually become one day.  

 With such fuzziness in speculating about potential AI technologies, a succinct 

critique of AI ought to address this dilemma concerning the speculative potentials of AI. 

It is tempting to disregard all future prognosis about AI and directly examine the social 

implication of the technology in its immediate, current state. But speculative prognosis 

has a role in shaping the imagination of our future society as well as the actual designs 

of inventive technologies. There is in fact a collection of scholarly literature on the 

positive implication of speculative designs (Appadurai, 2013; de La Bellacasa, 2017; 

Dunne & Raby, 2013; Lupton & Watson, 2022). If we want to critically examine 

speculations about the future of AI, it would be best to avoid the same breakdown 

between Dreyfus and the AI community. In this regard, we want to stand in the shoes of 

AI experts and conduct an immanent critique. This does not mean that the predictions of 

AI experts should be taken for granted. What we can do instead, is to study AI by 

examining its technical lineage and by investigating the computational theories that 

establish the rational basis of AI’s vast potentials. Our assumption is, the fundamental 

ideas that have shaped AI in the past will continue to shape AI in the future. Therefore, a 

philosophical critique of these ideas, uncovered in AI’s technical lineage, will continue to 

be relevant in the foreseeable future of AI.23 

1.5. An Immanent and Critical Inquiry  

 Attaining knowledge about a person’s past can often help us appreciate the 

formation of her or his character. This is also true for the relation between a technology 

and its technical lineage. In this regard, researching the genealogy of machine learning 

is paramount to our objective of recognizing the ideas associated with machine learning. 

Over the functionalist history of this AI subfield, machine-learning techniques have 

evolved from the linear learning method with nice statistical properties before 1980s, to 

the non-linear decision trees and neural networks without the clean mathematical 

properties of linear methods during the 1980s, to the non-linear functions like support 

 

23 In a way, Dreyfus’s approach is similar, but his argument was primarily an assessment about 
the potentials and limitations of symbolic AI, whereas we are assessing the potentials and 
limitations of machine learning, which Dreyfus briefly brushed aside due to its lack of pragmatic 
result in the time of his writing.  
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vector machines that have nice statistical properties in the 1990s.24 But my project is not 

concerned with such a functionalist history, but with a technical lineage that traces the 

heritage of fundamental ideas in machine learning.25 I want to explore the fundamentals 

of machine learning by examining what came before machine learning that shapes this 

field of technical research and how machine learning can be differentiated from this 

heritage. I also want to demarcate what machine learning can do based on formally 

proven computational theories. These intentions direct my attention to the vibrant 

scientific research activities in the thirty-year period during and after World War II, 

drawing together interrelated threads of intellectual movements between cybernetics, the 

early development of computing, and the birth of AI.  

 As a participant of the Macy Cybernetics Conference remarked, cybernetics “is a 

term that means all things to some men and nothing to many” (Grey-Walter, 1953/2003, 

p. 689). Critiques of cybernetics as an overarching social phenomenon under which all 

fields of knowledge will become branches of science include those of Heidegger (see 

Chapter 2), which views cybernetics as a universal science, and Bernard Dionysius 

Geoghegan’s (2023), whose archival research suggests that the post-cybernetic 

technocratic reforms and scientific administration in France had huge implications for the 

rise of French social theory in the 1960s. Alternatively, we may view cybernetics more 

narrowly as a technical field, as a vague collection of technical concepts such as 

feedbacks or homeostasis, prior to examining the philosophical significance of such 

concepts. This is in fact the approach taken up by Simondon in his philosophical 

formulation (see Chapter 6). Following Simondon, my dissertation adopts this narrower, 

 

24 For an account of such a functionalist history of machine learning, see How Data Happened 
(Wiggins & Jones, 2023, Chapter 9), The Master Algorithm (Domingos, 2015), or The Deep 
Learning Revolution (Sejnowski, 2018). 

25 I adopted the term “technical lineage” from On The Mode of Existence of Technical Objects 
(Simondon, 1958/2016, pp. 44–48). In the section “Absolute origins of the technical lineage,” 
Simondon illustrates what he means by technical lineage with the example of the diode, whose 
“absolute beginning [resides] in the association of this condition of irreversibility of the electrodes 
and of this phenomenon of transfer of electric charges through a vacuum: it is a technical 
essence that is created” (1958/2016, pp. 44–45), and “[a] technical essence can be recognized 
by the fact that it remains stable across the evolving lineage, and not only stable, but also 
productive of structures and functions through internal development and progressive saturation” 
(1958/2016, p. 46). Thus technical essence is analogous to the “crystalline germ” in Simondon’s 
theory of individuation (see Sections 6.3 and 7.3 on the theory of individuation). My exploration of 
fundamental ideas behind machine learning is similar to Simondon’s approach for identifying 
technical essence. 
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more technically-oriented perspective of cybernetics when examining the relationship 

between cybernetics and machine learning. 

There are plenty of scholarly literature on the history of cybernetics (e.g., Dupuy, 

2000; Geoghegan, 2023; Hayles, 1999; Mindell, 2002), computing (Aspray, 1990; e.g., 

Bardini, 2000; Bowden, 1953; Campbell-Kelly & Aspray, 2004; Turner, 2008), and AI 

(Cordeschi, 2011; e.g., Edwards, 1997; MacKenzie, 2004; McCorduck, 2004; Natale, 

2021). These historical narratives provide holistic perspectives that identify institutions, 

people, and events behind the gradual emergence of these technical fields and shed 

light on the interwoven strands of ideas between them. For instance, David A. Mindell 

(2002) problematized the histories of computing that see the rise of computers first as 

logic machines before taking on cybernetic characteristics (2002, p. 10). He instead 

emphasizes the material substrate of the history of computing, reattaching computers to 

the problems and techniques, engineers and industries from which they sprang (2002, 

pp. 306, 317). He traces the history of control systems, including all kinds of feedbacks 

in circuitry designs that predate cybernetics. This history, which also documents the 

redeployment of telephony relays for the construction of digital relay computers, “reveals 

modern computing as part of a larger story of technology and culture, rather than the 

product of a discontinuous break between old and new” (2002, p. 317). In another 

historical account that sheds light on the genealogy of AI, Roberto Cordeschi (2011) 

explores the various historical stages “in the discovery of the artificial, both before and 

after the advent of cybernetics” (2011, p. 241). These stages include the study of living 

organisms as chemical machines, the origin of connectionism in the neurological 

hypothesis, and the association between behaviorist psychology and the robot 

approach.  

The above accounts provide important historical context for my dissertation. 

Nonetheless, my focus in this dissertation is to trace the technical lineages of 

fundamental ideas that machine learning inherits from cybernetics. I am also less 

interested in the evolution of the modern computers and their hardware components, 

and more in abstract concepts and algorithms of machine learning, even though abstract 

programming is only possible due to hardware innovation that separates customization 

and programming from the mechanical limitations of hardware design (Mindell, 2002, p. 

307). In addition, with the way cybernetics and computing overlapped and mutually 

influenced each other’s development, historical accounts such as Mindell’s typically 
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place a greater emphasis on the complex history of interwoven relations between the 

two fields. Nonetheless, I will try to clarify their mutual influences by unraveling the 

interwoven strands of thought to elucidate the various threads of ideas associated with 

these unique technical fields in Chapter 3 and Chapter 4. The elucidation would be 

helpful for the later philosophical critique of sociotechnical potentiality associated with 

machine learning developed in Chapter 9.  

 With the birth of AI, pioneers of machine learning were exploring how a universal 

computer can be made to “learn.” While Arthur Samuel was involved in developing 

software that exhibit this dimension of “learning,” the burden of Ray Solomonoff was to 

come up with formal mathematical proofs on what machine learning is theoretically 

capable of “learning.” Solomonoff’s theoretical works did not garner the recognition they 

deserve in the AI community until the past couple of decades, as deep learning 

propelled machine learning to the forefront of AI research. But for the critical scholars in 

humanities, Solomonoff remains a relatively unknown figure, as the mathematical nature 

of his works makes them incomprehensible for non-mathematicians, which ironically 

include many AI practitioners working in the industry. The implications of Solomonoff’s 

theory have been diffused into the AI community as common-sense knowledge. But 

some AI practitioners may exaggerate their claims about the potential capability of 

machine learning. Hence the pre-requisite of a critical inquiry of machine learning is to 

understand the potentials and limitations of machine learning based on Solomonoff’s 

formal proofs. In Chapter 5, I will attempt to explain the reasoning of his algorithms and 

proofs in more-or-less everyday language. This explanation would contribute 

significantly to moving past the dichotomy between humanities and computer science, 

and to the bridging of computational theory and the rest of computer science. Scholars 

of humanities can collaborate with AI experts to formulate critiques on machine learning, 

without succumbing to the same antagonism between Dreyfus and early AI pioneers. 

The understanding would allow AI practitioners to understand the rationality and the 

boundary of their bold claims.  

 According to Solomonoff, the analytic philosophy of Rudolf Carnap had been 

very influential to his works (see Chapter 5). In general, analytic philosophy introduces 

two perspectives about AI. First, it fundamentally aligns with AI, as it contributes to the 

epistemology of AI. Carnap’s writing on the logical foundations of probability and his 

view that the entire universe can be represented digitally have had direct implications on 
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the epistemology and the algorithmic modelling of AI pioneers such as Solomonoff. In 

other words, the digital and probabilistic representation of the world in computing and AI 

is derived from Carnap’s analytic philosophy. Second is an axiomatic study of ethics or 

moral philosophy, which is “the discipline concerned with what is morally good and bad 

and morally right and wrong. The term is also applied to any system or theory of moral 

values or principles” (Ethics | Definition, History, Examples, Types, Philosophy, & Facts | 

Britannica, 2023). For instance, “The Global Landscape of AI Ethics Guidelines” (Jobin 

et al., 2019) reviews 84 ethics guideline for AI and find 11 clusters of principles: 

transparency, justice and fairness, non-maleficence, responsibility, privacy, beneficence, 

freedom and autonomy, trust, sustainability, dignity, solidarity. Luciano Floridi and Josh 

Cowls analyze forty-seven principles from a variety of sources (e.g., Future of Life 

Institute, 2017; Lords, 2018; Partnership on AI, n.d.; The Declaration - Montreal 

Responsible AI, 2017; Shahriari & Shahriari, 2017) and propose an ethical framework 

based on the six sets of principles for AI: beneficence, non-maleficence, autonomy and 

justice, and explicability.  

 In this dissertation, I want to explore beyond the realm of analytic philosophy to 

formulate my critique of AI, which draws on philosophy of technology, particularly the 

works of two continental philosophers in Heidegger and Simondon. Despite the 

dismissal of phenomenology as “cotton candy” by representatives of the AI community 

(see Section 1.3), continental philosophy, which includes phenomenology and critical 

theory, can contribute to a critical inquiry about AI. This branch of philosophy explores 

an alternate form of rationality beyond the scientific rationality that has become the 

dominant form of rationality over the past few centuries. In the context of computing and 

AI, the digital representation of the universe and the representation of our lifeworld in 

categorical fragments are not commeasurable with the phenomenological lifeworld in 

Heidegger’s philosophy.26 Continental philosophy typically questions the implications of 

this digital epistemology on humanity and society. It does not align with AI like Carnap’s 

analytic philosophy. And unlike the principle-based AI ethicists, continental philosophers 

focus their attention on human-technology relations. They are typically interested in 

preserving the human agency in a world dominated by technology, theorizing concepts 

 

26 As Heidegger and Carnap are acquaintances whose philosophies are in disagreement 
(Dresser, 2020), digging deeper into their philosophical differences (Friedman, 1996, 2000; 
Nelson, 2013; Stone, 2017) may further enrich our critique of AI, but again such an effort is 
beyond the scope of this dissertation. 



35 

such as enframing, reification, and alienation.27 Due to its epistemic distance with AI, 

continental philosophy can be critical of AI in ways that analytic philosophy cannot.  

During the post-war period of technical advances, continental philosophers were 

alarmed by the positivism associated with such advances and formulated social critiques 

directed against the closed form of industrial technology and the iron cage of 

technocracy. Whether it be Heidegger’s enframing of modern technology, Lukács’ 

reification, or Marcuse’s technological rationality, their critiques appear to be influenced 

by how humans were affected by the industrial technology such as the assembly line or 

by the systematization of bureaucracy. But as cybernetics and universal computing 

appeared to revolutionize technological development, these emerging technologies in 

the mid-twentieth century were afforded with the flexibility, adaptability, and 

contingencies of living organisms. This reframing of technology from inflexible to 

customizable or personalized machines has an ambivalent implication on how one may 

critique technology. One the one hand, with the blurring of the boundary between the 

living and the machine, humanity may become further entrenched in an overarching 

technological system. The appearance of flexibility and personalization in technology 

further co-opts human individuals to adopt and accept their ways of living within an 

overarching technological system. It is in this sense that, in Heidegger’s philosophy, 

cybernetics represents the final stage of modern technology, as the fundamental science 

that brings the materialistic embodiment, and therefore the culmination and the end, of 

western metaphysics.28 On the other hand, a person interacting with a cybernetic 

machine is less restrictive than interacting with industrial machinery, and the added 

 

27 This is similar to the view of Yuk Hui. For Hui, “[t]he fundamental question [in Heidegger’s 
philosophy] is the regrounding of technology. We have to emphasize that this is not to add an 
ethics to AI or robotics, since we won’t be able to change the technological tendency by just 
adding more values. Instead we have to provide new frameworks for future technological 
developments so that a new geopolitics can emerge …” (2019, sec. 44). He further argues, ““[W]e 
cannot ground morality on analytics, unless we believe in the kind of axiomatization we hear 
coming from the ethics of technology today. However, when we talk about the ethics of 
technology, we have already presupposed a specific kind of subject of knowledge and reasoning 
and assumed a certain normativity. Instead of axiomatizing the moral, we will have to go back to 
different modes of knowing which have yet to be taken into consideration by engineers and 
scholars working on artificial intelligence” (Hui, 2021, p. 353). His primary concern is human-
technology relations and alienation: “[A] theoretical attempt to bring forward an ethics against 
anthropocentrism … will fail if it does not take the trajectory that we are going to outline—that is to 
say, the study of the human-machine relation—into account. … [Our project] seeks, at every 
opportunity, to allow spirit to exercise its freedom without producing the alienation of the soul” 
(2019, sec. 6). 

28 For more on this, see Section 2.2. 
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flexibilities facilitates a more open and therefore healthier human-technology relation. 

This positive take seems to align with the progressive aim of critical theory to transform 

science and technology so that people can be liberated from reification or the one-

dimensionality of technological rationality. Simondon was the only continental 

philosopher scientifically and technologically savvy enough to deliberate this openness 

of cybernetics. He basically developed his entire philosophy by appropriating a number 

of cybernetics concepts around his theories on openness and potentiality. He 

reproached the dystopian critiques of technology contemporary to his time, like those by 

Heidegger.29 Instead, he aimed at overcoming the antagonism between culture and 

technology. By drawing on his wide breath of knowledge on sciences (such as solid-

state chemistry, quantum physics, biological evolution), and technologies (from 

mechanical engineering to electrical engineering to cybernetics), he brought together 

this technical perspective with a philosophy of individuation in order to explain how 

humans and technics co-evolve.  

In fact, Simondon’s writing exemplifies how one may conduct an immanent 

critique of technology. Simondon’s critique is immanent in the way he often goes into 

scientific and technical details to identify their positive potentials and their negative 

aspects. As I will demonstrate in Chapter 6 and Chapter 7, his philosophical works ought 

to be read in parallel with the technological and scientific development of his days, which 

include cybernetics, quantum theory, and solid-state physics. These two chapters 

explore the implications of these fields for Simondon’s philosophy at a level of detail 

beyond the existing commentaries of his works. At the same time, Simondon’s writing 

brings a critical philosophical perspective of his immanent understanding of technology. 

His philosophical critique of Aristotle’s hylemorphism, together with his immanent 

understanding of technology, serve as the basis for his conceptualization of his 

philosophy of individuation. In this regard, Simondon’s immanent and philosophical 

critique of technology serves as a model for the critique of machine learning in this 

dissertation. 

 The difference between the Heideggerian critique and critical theory of 

technology resurfaces in the recent works of Bernard Stiegler and Andrew Feenberg. 

 

29 The more positive outlook for technology in Simondon is echoed in the critical theory and 
technical politics of Herbert Marcuse (1964, 2000) and Andrew Feenberg (1995, 1999, 2002, 
2014, 2017b), and Langdon Winner (1978, 1993, 2010; Winner et al., 1997). 
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Both philosophers have grappled with the thoughts of Heidegger and Simondon to 

formulate their theories on contemporary technics, and their works share many common 

traits and converge in key ideas. These commonalities include the inseparability of the 

human and technics, the enframing of lifeworld by sociotechnical ensembles or 

technosystems, and the possibility of emancipation from within the technosystems rather 

than advocating a reversal to pre-modern technics.30 Both philosophers have also further 

developed Simondon’s project of overcoming the antagonism between culture and 

technics. Nevertheless, their philosophies set out from a different point of departure: 

Stiegler from an anthropological elaboration on Heidegger’s thesis on cybernetics and 

Feenberg from an endeavor to continue Marcuse’s incomplete project of left-wing 

technical politics. This difference is clearly revealed in their approaches to emancipation. 

Stiegler’s “doubly epolkhal doubling” (Stiegler, 2016, p. 12) is an appropriation of 

Heidegger’s salvation via an epochal change of collective awareness on the 

technological enframing of humanity. Human effort has limited contribution to this 

epochal change of collective awareness about the enframing essence of technology. In 

contrast, Feenberg’s philosophy of praxis is realized in the technical politics of social 

movement. Human effort plays a primary role in bringing about the collective awareness 

and resistance against technological rationality. As I will further elaborate in Chapter 8, 

despite their similar interpretations about Heidegger’s phenomenology and Simondon’s 

theory of individuation, they emphasize different aspects on the theory and appear to 

draw opposite conclusions about the possible social implications and outlook of 

computing technologies. 

 To recap, clarifying the relationship between cybernetics and computing as well 

as understanding the theoretical potentials of machine learning can help us appropriate 

past philosophical reflections on cybernetics for our formulation of a critique on machine 

learning. Because machine learning has inherited ideas from cybernetics, we want to 

grapple with the philosophical significance of cybernetics through the writings of 

Heidegger and Simondon. Unlike analytic philosophers, these continental philosophers 

 

30 On the idea of emancipation from within technology, Feenberg uses the term “gestalt switch” 
(Feenberg, 2002, p. 16), which comes from Don Ihde’s Technology and the Lifeworld (1990): 
“Any larger gestalt switch in sensibilities will have to occur from within technological cultures” 
(1990, p. 200). Stiegler develops a similar concept in “pharmacology” in Automatic Society 
(2016), which connotes the sense of drugs both for medication and for poisoning. So even though 
technology may appear to be poisoning society at the moment, the healing from such poisoning 
will also come in the form of technology as medication. 
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of technology theorize a critical perspective beyond scientific and technological 

rationality. And because Stiegler and Feenberg have further developed the philosophies 

of Heidegger and Simondon in their deliberations of the dystopian dimension as well as 

the liberative potentiality of modern technology, we will also refer to their works to 

develop a philosophical framework for a social critique of AI and machine learning. 

1.6. Situated knowledge from an Imaginary Future  

Turning our attention from the past and the present to the future, the dichotomy 

of the two cultures between the AI community and the intellectuals in the humanities, 

which we discussed in Sections 1.3 and 1.4, becomes even more pronounced over the 

wide spectrum of speculations about the future of AI. This dichotomy is clearly 

manifested in the confusion between rational projection based on scientific facts and 

futuristic imagination as a mixed bag of scientific-based interpolations coupled with pure 

speculations. Looking from the outside, technology critics in the humanities tend to be 

skeptical of the bold proclamations made by AI experts about the future of AI. But for 

those inside the circle of AI practitioners, they see themselves as someone in a 

privileged position, witnessing first-hand the latest advances in AI research that make 

certain proclamations seem justifiable. My approach is to take the claims and the visions 

of AI experts seriously but also critically, adjudicating and evaluating some of these 

proclamations by drawing on the aforementioned immanent critique of AI and machine 

learning, which includes a historical inquiry into the cybernetics movement and the early 

history of AI, an investigation into computational theories on the potentials of machine 

learning, and a critique of human-technology relation based on continental philosophy.  

At the same time, if the scholars in technology studies are correct about the co-

production of the social and the technical, about how the meaning of technology arises 

and evolves in relation to the specific cultural context of its deployment, then my project 

needs to take into account the situated knowledge that arises over the feedback reaction 

between technology and localized culture. There have certainly been ample empirical 

works on surveillance capitalism, algorithmic governance, autonomous driving, or other 

types of technosystem empowered by machine learning. Indeed, by studying the way 

machine learning shapes people’s lives today, we can identify the immediate problems, 

such as discrimination, that are caused by the actual implementations of machine 

learning. But such identification only serves the formulation of a negative critique but 
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cannot offer suggestions of changes from within the technological culture, of changes in 

technical design rather than in policies, of how a gestalt switch31 may come about. 

Hence in my final analysis, I want to go beyond the predictions by AI experts on the 

future of AI technology. My plan is to examine science fictions on AI, which would 

presumably allow readers to immerse into a lifeworld to attain a holistic perspective of a 

future society populated with impending AI technologies. 

Nevertheless, not all science fictions are written with insiders’ knowledge about 

where the future of AI is heading. Science fiction about conscious AI androids with 

superhuman quality, like those in the Westworld TV series, would not meet the criteria of 

imagining a future world based on realistic AI. One book that meets such criteria is Kai-

Fu Lee’s and Qiufan Chen’s AI 2041 (2021). This book combines storytelling with 

technical insights to bring to life a world proliferated with futuristic applications of AI. It is 

composed of a number of short stories written by Chen, each story followed by Lee’s 

analysis of the visionary technologies that shape the story as well as his anticipation of 

the technology roadmaps over the coming years. Riding on Lee’s industry exposure, the 

authors distinguish their writing from other science fictions by claiming that the AI 

technologies anticipated in the book are based on prototypes already working in 

research labs around the world. They “avoid making speculative predictions about 

fundamental breakthroughs and rely mostly on applying and extrapolating the future of 

existing technologies,” with the conviction that “even with few or no breakthroughs, AI is 

still poised to make a profound impact on our society” (2021, p. 12). Presumably, AI 

2041 helps readers “imagine the future of the world and our society in twenty years’ time 

… to tell the ‘real’ AI story … This book is based on realistic AI” (2021, p. 11).32  

 

31 See footnote 30 for the definition of gestalt switch. 

32 According to Lee and Chen, people often exaggerate predictions that “miss the complete 
picture” (2021, p. 10) because they typically rely on three sources to learn about AI: science 
fiction, news and influential people (2021, p. 10). Science fiction books and TV shows often depict 
super intelligent androids turned evil; media reports tend to neglect incremental advances and 
focus on the negatives, such as misinformation and deep fakes or autonomous vehicles killing 
pedestrians; the predictions of “thought leaders,” who are not experts in AI technology, often “lack 
scientific rigor” (2021, p. 10). In contrast to these sources, AI 2041 is a project that attempts to 
“balance [social] concerns with exposure to the full picture and potential of this crucially important 
technology” (2021, p. 10). As Kai-Fu Lee explains, “Believers in singularity argue that 
exponentially improving technologies will lead to superintelligence. I agree that AI computational 
prowess has indeed increased exponentially, but exponentially faster computing power alone 
does not lead to qualitatively better AI. To deliver qualitatively better AI, new scientific 
breakthroughs like deep learning are also needed. Suppose we had all the computing power 
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Given that my exploration concerns the future of machine learning, the science 

fictions of AI 2041, presumably based on a realistic projection of AI technologies, 

become the site for my deliberation on the situated knowledge of future localized 

scenarios. These are the case studies that provide a realistic anticipation of the near 

future of AI technologies coupled with an imagination of how such technologies interact 

with our lifeworld. These case studies can desublimate our abstract discussions into a 

deliberation of life experiences. To get a sense of the imaginary lifeworld portrayed in AI 

2041, I provide a survey of selected stories here, summarizing their storylines as well as 

the AI technologies associated with them. Toward the end of this dissertation, I will draw 

from and critically examine these stories, using them as the lifeworld context for the 

formulation of my philosophical critique on machine learning.  

 The story “The Golden Elephant” is about a deep-learning enabled insurance 

program called the Golden Elephant, which gives monetary incentives to those who 

allow the program to tap into their personal data stream. The program would make 

different recommendations about how to live well, and would penalize the insured 

participants if they engage in activities deemed as threatening to their well-being. For 

instance, an overweight boy eating more sweets would endanger his health, and an 

immediate hike would be reflected in the family’s insurance premium for failing to stop 

the boy from eating. The kick of the story is how the Golden Elephant attempted to 

dissuade a girl from falling in love with a boy who belongs to a different caste, and how 

the young couple managed to break away from the confinement of the presumably 

intelligent insurance technosystem.  

 “Twin Sparrows” explores the potential advances in human-computer symbiosis 

with the availability of virtual companions. The AI companions in the story can converse 

fluently in human language, and can also act as smart AI teachers “camouflaged as 

virtual cartoonlike friends” (2021, p. 98). These cartoon like figures would appear on a 

person’s glasses in an XR (Extended Reality) overlay. In the story, a pair of twins had 

 
today but no deep learning; then the whole AI industry would be non-existent. To achieve 
superintelligence in the future, we absolutely need more scientific breakthroughs” (K.-F. Lee & 
Chen, 2021, p. 536). Even though we cannot discard the possibility of future scientific 
breakthroughs, it is still pointless to formulate critiques on wild speculations that may never 
happen or are, as Noam Chomsky remarks, eons away from happening (Socrates, 2013). 
Nevertheless, it is possible to anticipate the impending changes based on the existing state of 
technologies without major breakthroughs, while assuming the highly plausible increase in 
computational power. 



41 

lost touch with one another, but they eventually yearned for a re-encounter with each 

other due to their telepathic-like visions. As the story later reveals, these visions via the 

XR glasses were not truly telepathic, but were generated by their AI buddies, whose 

underlying code had been secretly embedded with a communication protocol between 

them. This protocol was programmed by an IT staff of the orphanage that took care of 

the twins during their childhood.  

 “Contactless Love” explores how COVID-19 has accelerated trends in new drug 

discovery, precision medicine, and robotic surgery, all enhanced by AI (2021, p. 164). 

One of “AI’s greatest achievement for science to date” is its ability to determine protein 

folding, which is an essential step in drug discovery (2021, p. 206). Wearable devices 

can help AI correlate the statistics from monitoring heart rate, blood pressure, and other 

vital statistics for early detection and precise medical treatment. Rather than training AI 

from expert medical knowledge, AI is now being “trained directly from real patient-

treatment-and-outcome data” (2021, p. 203). Lee also anticipates that fully autonomous 

robotic surgeries will increasingly account for the majority of procedures (2021, pp. 206–

207), and “diagnostic AI will exceed all but the best doctors in twenty years,” with this 

trend first being felt in radiology, pathology and diagnostic ophthalmology (2021, p. 208). 

Eventually, human doctors will be “transformed into something akin to compassionate 

caregivers and medical communicators” (2021, p. 206). 

 “The Holy Driver” imagines a society in the midst of transitioning from human 

drivers to autonomous driving by AI. Due to AI’s inherent limitations, young talented 

gamers were recruited for mysterious projects of game playing. As it turns out, the 

gamers were actually saving the lives of real people from natural disasters or acts of 

terrorism. Their car racing games, immersed in virtual reality, were live replicates of 

situations somewhere in the real world, with actual cars being remotely controlled by 

these gamers in real-time. As Lee explains, even when autonomous driving is mature to 

the point where no human is required for any roads and environments, and become 

safer than vehicles with human drivers in standard situations, there are still problems 

that “could potentially confused the AI, including natural disasters or acts of terrorism” 

(2021, p. 316). Human-level dexterity is required in these scenarios, and “the best 

solution would be to bring an expert human into the car and take over” (2021, p. 316). 
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 The story “Quantum Genocide” gives us a glimpse on the potential impact of 

quantum computing and AI-enabled autonomous weapons. The villain of the story is a 

computer scientist who turned mad after his wife and daughter died from a wildfire. He 

blamed the entire human race for this climate-change related personal tragedy, and 

embarked on a revenge plot against all of humanity. The story illustrates how quantum 

computing “could turbocharge AI and computing” (2021, p. 324), and how the race for 

quantum supremacy can have huge political significance in the not-so-distant future. 

Computational power will be the determining factor on who wins the cyberwarfare and 

the technical arm-race, in which swarms of AI drones will become the most lethal 

assassins. The story also raises our awareness on the existential crisis associated with 

autonomous weapons whose prowess “largely comes from the speed and precision from 

not having a human in the loop” (2021, p. 390). 

  “The Job Savior” explores what will happen to human jobs when AI seeps into 

more industries and makes human tasks redundant. It describes the emergence of a 

new industry, job reallocation firms, which are called on to retrain and reassign displaced 

workers. The job reallocation firms often need to repeatedly face the same workers 

finding themselves out of jobs again and again. Due to new advancements in AI, their 

reassigned jobs would be supplanted by AI after only a handful of years. This story 

reveals the authors’ belief that “artificial intelligence can perform many tasks better than 

people can, at essentially zero cost” (2021, p. 429). Due to AI’s edge over humans “in its 

ability to detect incredibly subtle patterns within large quantities of data” (2021, p. 430), 

the authors anticipate that “AI will be doing everything from underwriting our loans to 

building our homes, and even hiring and firing us” (2021, p. 429).  

 In all these stories, Lee and Chen confine their imagination to their realistic 

prognosis of AI-related inventions. As Lee explains, there are three human capabilities 

where AI falls short of today and will likely struggle to master even in twenty years. First 

is creativity: “AI cannot create, conceptualize, or plan strategically. While AI is great at 

optimizing for a narrow objective, it is unable to choose its own goals or to think 

creatively” (2021, p. 435). Its second limitation is empathy: “AI cannot feel or interact 

with feelings like empathy and compassion … [it] cannot make another person feel 

understood and cared for” (2021, p. 435). Third is dexterity: “AI can’t deal with unknown 

and unstructured spaces, especially ones that it hasn’t observed” (2021, p. 435), as is 

the case with autonomous driving. In contrast to techno-posthumanism and 
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technological singularity, Lee and Chan envision that “humans will work symbiotically 

with AI, with AI performing quantitative analysis, optimization, and routine work, while we 

humans contribute our creativity, critical thinking, and passion” (2021, p. 11). This 

symbiotic relationship is most evident in the “Twin Sparrows,” where AI companions are 

consigned meanings by their human buddies; they are not standalone software agents 

with consciousness. In this sense, the stories in AI 2041 are distinct from popular 

science fictions such as the movies Her, Ex Machina, or the Westworld TV series, in 

which highly intelligent androids are portrayed as creative, affectionate, and capable of 

attaining self-consciousness. We will come back to analyze this symbiotic partnership 

between AI and human’s creativity, dexterity, and empathy toward the end of this 

dissertation in Chapter 9. 

1.7. Summary 

This chapter presents my overall approach in formulating an immanent critique of 

AI. It begins with a survey of the field of philosophy of technology. The hostility between 

one of these philosophers, Hubert Dreyfus, and the early AI pioneers marks the 

beginning of the cultural gap between humanities and the AI community. This hostility 

attests to the importance of attaining an immanent understanding of machine learning. 

While Dreyfus was astute in pointing out the limitations of the early formalist approach of 

symbolic AI, his polemics and seemingly hostile stance against AI camouflage his 

prudent recommendation for AI research that addresses contextual regularity not 

governed by formalizable rules.33 Moreover, he overlooked the significance of 

Solomonoff’s theoretical works and thus failed to grasp the full potential of machine 

learning in addressing context regularity and pattern recognition.  

While a critique that fails to grasp the true potentials of AI would easily be 

rejected as technically naïve by AI experts, these experts often make bold claims about 

the potentials of AI based on their exposure to state-of-the-art AI research rather than on 

rigorous arguments that substantiate their claims. The technical community may spread 

among themselves the implication of important computational theories, such as the 

 

33 “We shall now try to show not only that human behavior can be regular without being governed 
by formalizable rules, but, further, that it has to be, because a total system of rules whose 
application to all possible eventualities is determined in advance makes no sense” (Dreyfus, 
1992, p. 257). 
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formal proofs of Solomonoff, without understanding or referring to the proofs. To attain 

an immanent understanding, my project involves a reading of Solomonoff’s 

computational theories on machine learning. In addition, because ideas from the 

cybernetics movement and from universal computing have been instrumental to the birth 

and development of AI, unraveling the interwoven strands of thought and the mutual 

influences between cybernetics, computing, AI, and machine learning can help elucidate 

the various threads of ideas associated with these fields. Such ideas, which have 

fundamentally shaped AI in the past, should continue to shape AI in the future. 

This immanent understanding ought to be accompanied by a critical perspective 

that stands at a certain epistemic distance from AI. Since AI adopts its digital 

epistemology from Carnap’s analytic philosophy, continental philosophy would appear to 

be more appropriate for a critical inquiry of AI than analytic philosophy. The AI ethics in 

analytic philosophy is concerned with a principle-based ethical framework for AI, but this 

framework tends to evaluate AI categorically from within rather than holistically from a 

critical distance. In comparison, continental philosophy is chiefly concerned with a 

critique of human-technology relation at a sophistication beyond the category of 

autonomy. During the post-war period, philosophers from both phenomenology and 

critical theory were targeting their critiques on modern industrial technology. The 

assembly line or bureaucratic systematization were turning human subjects into 

resources or standing reserves in supportive of the overarching technological system. 

But as cybernetics and universal computing emerged during the post-war period, 

technology is reframed from inflexible to customizable or personalized machines. This 

reframing has an ambivalent implication on technology. On the one hand, critics such as 

Heidegger are alarmed by humanity becoming further entrenched in an overarching 

technological system. On the other hand, the new-found flexibility in technology appears 

to facilitate a more open and therefore healthier human-technology relation. This positive 

take seems to align with the progressive aim of critical theory to transform science and 

technology so that people can be liberated from the domination of an overarching 

sociotechnical system. This is why critical theorist like Marcuse or Feenberg found 

appeals in Simondon’s works. Unlike most philosophers, Simondon was very 

knowledgeable in the latest development of science and technology at his time. He 

developed his philosophy of openness by appropriating cybernetics concepts and his 

model of potentiality from modern physics such as quantum theory. By thoroughly 
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engaging with cybernetics and other branches of sciences, Simondon’s works also 

exemplify how one may conduct an immanent critique of science and technology. The 

ontological critique of Heidegger and the progressive critique of critical theory represent 

the different points of departure for the philosophy of Stiegler and that of Feenberg. 

Despite sharing common interpretations of Heidegger and Simondon, they came away 

with different approaches to bringing emancipation from technological domination. Like 

Heidegger, Stiegler does not see human efforts as sufficient in bringing about an 

epochal change in collective awareness about the essence of technology. For Feenberg, 

human efforts via technical politics play a significant role in bringing about the change in 

collective awareness on the technological domination of humans. 

Turning our attention from the past and the present to the future, the dichotomy 

of the two cultures between science and humanities becomes even more pronounced 

when it comes to speculations about the future of AI. While AI practitioners may 

exaggerate their claims or implement deception as inherent characteristics of AI, 

technology critics outside the field of AI may not be knowledgeable enough about the 

latest advances in AI, which often take place in research labs a few years before they 

are released to the public (as is the case of large language models over the past few 

years). My approach is to take the claims and the visions of AI experts seriously but also 

critically, adjudicating and evaluating some of these claims by drawing on the previously 

established immanent and philosophical critique of AI and machine learning. But rather 

than addressing literature that directly predicts the future of AI, I elect to analyze science 

fiction written based on realistic projections of AI. This would allow my project to account 

for the situated knowledge that arises over feedbacks between localized culture and 

technologies yet to exist. 

 As an addendum, with all the anxious reaction about the possibility of students’ 

papers being written by ChatGPT, I decide to experiment with a somewhat playful ploy 

for the rest of the chapters in this dissertation. I will begin each chapter with a question-

and-answer dialogue with ChatGPT. This scheme has the dual purpose of introducing a 

key topic or concept related to that chapter, and to confirm that the chapter’s content has 

more substance than what this AI chatbot can generate. The ironic twist is the implicit 

critique that ChatGPT, in spite of the virality of its popular reception and reports of its 

multi-facet skills such as passing the Google Coding Interview for entry-level software 
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engineers (Bhaimiya, 2023), cannot yet generate a PhD dissertation that makes original 

academic contributions. 
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Chapter 2.  
 
Cybernetics and the Technological Will to Will 

Me:  what does Nietzsche mean by will to power? 

ChatGPT:  The "will to power" is a central concept in the philosophy of 

Friedrich Nietzsche, who describes it as the basic drive behind 

all human behavior, thought, and action. It refers to the 

instinctual urge to increase one's own power and control over 

one's environment, both internally through self-mastery, and 

externally through domination over others. The "will to 

power" is not just a desire for power in a conventional sense, 

but a deep-seated striving for excellence and self-

overcoming. It is a fundamental aspect of the human 

condition and, according to Nietzsche, an essential part of life 

and growth. 

Me: what does heidegger mean by "technological will to will"? 

ChatGPT: The "technological will to will" is a phrase used by Martin 

Heidegger to describe the way in which modern technology 

shapes and influences our understanding of the world and our 

relationship to it. Heidegger saw technology not simply as a 

tool for achieving practical goals, but as a way of revealing 

and shaping the world that is essentially bound up with our 

own will to power. 

According to Heidegger, the technological will to will is 

characterized by a drive to control and dominate the world, to 

turn everything into a resource for our own use, and to see 

everything in terms of efficiency and productivity. He argues 

that this way of thinking and being is a direct result of the 

modern understanding of technology as a means to an end, 

rather than as an end in itself. Heidegger argues that this 

view of technology leads to a fragmented and alienation view 

of the world, where we no longer see the interconnectedness 

of things, but only see them as means to our own ends. 

2.1. Overview 

 In an interview given by Martin Heidegger to Rudolf Augstein and Georg Wolff for 

Der Spiegel magazine (Alter & Caputo, 1976) on September 23, 1966, Heidegger 

lamented that “everything is functioning and that the functioning drives us more and 

more to even further functioning, and that technology tears men loose from the earth and 
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uproots them” (1976, p. 277). This world movement brings about “an absolutely 

technological state” to the point that “[o]nly a god can save us” (1976, p. 277). He was 

then asked “what or who takes the place of philosophy” as that which shapes the horizon 

for effecting changes in the western world, and he answered with a single word: 

“Cybernetics” (1976, p. 279). This answer highlights the significance of cybernetics for 

the late Heidegger, not just as a fundamental science but as the impetus behind a 

technocratic world movement that enframes humanity in a technical state. As Yuk Hui 

remarks, Heidegger claims that the emergence of cybernetics in the mid-twentieth 

century marked the completion and end of philosophy (Lovink, 2019). Heidegger 

presents his argument on cybernetics in a lecture given in 1964, entitled “The End of 

Philosophy and the Task of Thinking” (2002). In the lecture, he contends that philosophy 

as Western Metaphysics, which “thinks beings as being in the manner of 

representational thinking which gives reasons” (2002, p. 56), is coming to completion in 

the development of the empirical sciences of man “determined and guided by the new 

fundamental sciences which is called cybernetics” (2002, p. 58). This view on the 

completion and end of metaphysics in cybernetics is already implicit in “Overcoming 

Metaphysics” (Heidegger, 1973b), a collection of notes from the years 1936 and 1946. 

The notes contain his reflections on the historical development of the will of 

representational thinking, culminating in the extreme form of Nietzsche’s will to power as 

the technological will to will. This “will to will forces the calculation and arrangement of 

everything for itself as the basic forms of appearance, only, however, for the 

unconditionally protractible guarantee of itself” (Heidegger, 1973b, p. 93). 

 Through wrestling with the will of representational thinking in western 

metaphysics, Heidegger concludes that cybernetics supplants western philosophy to the 

point that only a god can save us. Due to this much-maligned remark about a god, many 

critics are more than ready to discard Heidegger’s critique of technology because human 

agency seems to play no role in shaping technology under his overzealous dystopian 

determinism. But his brief responses in the interview are in fact only the simplified 

conclusions of his elaborated philosophical expositions from his later writings. Therefore, 

to fully understand Heidegger’s responses, it is imperative to interpret them in light of his 

extended philosophical works. We ought to break down the abstractness of his claims 

and immerse deeply into his thoughts. Doing so can help clarify what Heidegger means 
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by the phrase “only a god can save us,” in what sense would cybernetics take the place 

of philosophy, and what he means by the “technological will to will.” 

 In this chapter, we will address these questions by reading “The End of 

Philosophy and the Task of Thinking” (Heidegger, 2002) and by navigating Heidegger’s 

critical reflections on Nietzsche’s will to power and on the technological will to will. There 

are ample commentaries on Heidegger’s interpretations of Nietzsche. Among them, this 

chapter draws on Bret W. Davis’s Heidegger and the Will: On the Way to Gelassenheit 

(2007), which I find most comprehensive and illuminating for the purpose of 

understanding Heidegger’s argument on the history of metaphysics as the history of the 

will. Davis shows us the development of Heidegger’s thoughts across his life time, 

marked by the “turn” during his lectures and writings on Nietzsche. Heidegger went from 

the articulation of a “proper will” to a “non-willing” as a fundamental (dis)attunement of 

letting beings be, of releasement-toward-things (Gelassenheit zu den Dingen), which 

serves as the alternative to the willfully positing of beings in cybernetic calculation and 

arrangement. For Heidegger, the extreme epoch at the end of the first beginning of the 

history of Western metaphysics is ironically the tipping point for an other beginning of the 

history of being marked by the Gelassenheit of “letting beings be.” This eschatology of 

the transition from the epoch of the will cannot be “willed” by human beings, but we may 

nonetheless participate in this transition between epochs.  

 Heidegger’s reflections on cybernetics and the technological will to will has been 

taken up by Michael E. Zimmerman (2016), who interpolates what Heidegger might have 

said on the techno-posthumanism that Ray Kurzweil proposed in The Singularity is Near 

(2005). For Zimmerman, “Heidegger would say that techno-posthumanism is the latest 

and perhaps most dangerous phase in the era of techno-industrial nihilism” (2016, p. 

101), and “[s]uper AI would be, in effect, the ultimate ontical embodiment of what 

Heidegger—drawing on Nietzsche—calls the Will to Will” (2016, p. 101). This notion of 

techno-posthumanism seems prevalent in the writing of Stiegler and Hui, whose works 

repeatedly bring up the posthumanist ideology in a Heideggerian sense. Hence this 

reading of Heidegger would serve our dialogues with Stiegler in later chapters. 

 In the following, I will first elaborate on why cybernetics marks the completion 

and the end of philosophy for Heidegger. I will then go into Heidegger’s interpretation of 

Nietzsche’s will to power, the history of metaphysics as the history of the will, and the 
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technological will to will. This paves way for a discussion on how Heidegger’s critique on 

technology can illuminate us on techno-posthumanism. I will conclude by reflecting on 

Heidegger’s Gelassenheit and his eschatology of an other beginning. 

2.2. Cybernetics as the End of Philosophy 

 In “The End of Philosophy and the Task of Thinking” (2002), Heidegger wrote, 

“[p]hilosophy is metaphysics. Metaphysics thinks being as a whole—the world, man, 

God—with respect to Being, with respect to the belonging together of beings in Being” 

(2002, p. 56). Etymologically, the prefix “meta-” in metaphysics means “beyond” or 

“after.” Metaphysics presumes the existence of some reality beyond the physical reality 

and contemplates about this “meta-physical” reality that cannot be observed with our 

senses. This presumption originates in Plato, as is evident in the allegory of the Plato’s 

cave, and western philosophy since Plato has been an ongoing dialogue about this 

metaphysical reality. Rather than empirically examining “what is present,” as in physics, 

metaphysics contemplates “what is present” in terms of the reality beyond our senses. 

 In Heidegger, “what is present” is referred to as “beings,” and the reality beyond 

our senses is contemplated in his thoughts on the “Being of beings.” What does 

Heidegger mean by the “Being of beings?” We can find his clarifications in “Metaphysics 

as History of Being” (1973a):  

"Being" means that beings are, and are not nonexistent. "Being" names 
this "That" as the decisiveness of the insurrection against nothingness. 
Such decisiveness emanating from Being at first arrives in beings, and here 
adequately, too. In these beings Being appears. So decisively has Being 
allotted beings to itself (in Being) that this does not need to be thought 
expressly. Beings give adequate information about Being. (1973a, p. 1) 

“Being” is the overcoming of nothingness in the presencing of beings. It is the horizon for 

beings to be revealed. In his writing, Heidegger adopts the terms “beings” and “Being” 

from early Greek philosophers. He uses “beings” instead of “subjects” or “objects” to 

recover our thoughts on “what is present” prior to the subject-object split of beings since 

René Descartes (1973c, p. 69). He elects the term “Being”34 over “the God of onto-

theology” in order not to “remain bound to a history of metaphysics as onto-theology 

 

34 For philologists, “Being” in Greek implies deity. 
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(Davis, 2007, p. 124). As Bret W. Davis explains, “Heidegger’s god(s) is no more the 

almighty Creator of heaven and earth than it (they) is an eternal being of self-presence” 

(2007, p. 249). Thus “insurrection against nothingness” does not result from the God of 

creation, but rather emanates from Being, which is an abstract philosophical construct 

representing the ground from which beings become present. As the ground of beings, 

Being is prone to be taken for granted,35 as water is to fish. Nevertheless, “beings give 

adequate information about Being,” and the Being of beings shows itself as the ground 

of beings: “For since the beginning of philosophy and with that beginning, the Being of 

beings has showed itself as the ground. … As the ground, Being brings beings to their 

actual presencing” (2002, p. 56). Because Being “showed itself as the ground” that 

brings beings “to their actual presencing,” it is possible to contemplate about Being by 

philosophizing beings. Metaphysics reflects on what are beyond our immediate senses 

of the world by “represent[ing] [what is present] in terms of its ground as something 

grounded” (2002, p. 56). Hence, metaphysics only reasons in representational thought. It 

“thinks beings as being in the manner of representational thinking which gives reasons” 

(2002, pp. 55–56). Heidegger gives some examples of such representational thinking 

about the “ground” in the recent history of metaphysics:  

In accordance with the actual kind of presence, the ground has the 
character of grounding as the ontic causation of the real, as the 
transcendental making possible of the objectivity of objects, as the 
dialectical mediation of the movement of the absolute Spirit, of the historical 
process of production, as the will to power positing values. (2002, p. 56)  

Each of these examples—the instrumentalization of modern sciences, Kantian 

transcendentalism, Hegel’s dialectic of the Spirit, Nietzsche’s will to power leading to the 

revaluation of all values—has served as the ground for how beings are revealed. Every 

epoch can be roughly characterized by such a “ground” or horizon, which determines the 

presencing of beings and their relations, “the belonging together of beings” (2002, p. 56), 

including Dasein’s relation to beings. 

 Heidegger traces the origin of representational thought to the beginning of 

metaphysics. In “Overcoming Metaphysics” (1973b), he wrote, “[m]etaphysics has 

distinguished for ages between what beings are and that beings are, or are not” (1973b, 

p. 2). “What beings are” belongs to the question of essence, and “that beings are” 

 

35 More accurately, it is the thatness of Being that is taken for granted (Heidegger, 1973a, p. 11). 
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belongs to the question of existence. Essence “means … that which, for example, the 

tree as tree, as something growing, living, as treelike, is without any regard to the 

question whether and that this or that tree ‘exists’” (1973b, p. 2). Essence is concerned 

with “whatness,” which “encourages the predominance of looking at what beings are” 

and is therefore characterized by “the precedence of beings” (1973a, p. 11). Existence is 

concerned with “thatness,” which “establish[es] that beings are” whereby “the essence of 

Being is assumed as self-evident” (1973a, p. 11). Both “the precedence of beings and 

the assumed self-evidence of Being, characterize metaphysics” (1973a, p. 11). Being is 

“the unity of whatness and thatness” (1973a, p. 11).  

 The connection and distinction between essence and existence can be 

established historically “with the thinking of Aristotle, who first brought the distinction to a 

concept” and with “Plato’s thinking … that prepared that distinction” (1973b, p. 4). 

Heidegger argues, this distinction actually marks the beginning of metaphysics: “Being is 

divided into whatness and thatness. The history of Being as metaphysics begins with 

this distinction and its preparation” (1973b, p. 2). In other words, Being is not divided into 

whatness and thatness prior to the beginning of metaphysics. This distinction marks the 

beginning of metaphysics, and because the determination of this distinction is “an event 

in the history of Being” (1973b, p. 4) through which “the beginning of metaphysics is 

revealed” (1973b, p. 2), the distinction is inherent in metaphysics, which “can never of 

itself come to a knowledge of this distinction” (1973b, p. 3). Throughout the history of 

western philosophy, the distinction between whatness and thatness, which originates in 

the beginning of metaphysics, have undergone changing forms: “Throughout the whole 

history of philosophy, Plato's thinking remains decisive in changing forms. Metaphysics 

is Platonism” (2002, p. 57). For Heidegger, the changing forms of Plato’s thinking 

witnesses the decline on the unconcealment (aletheia) of Being, as Being increasingly 

withdraws itself into self-concealment (Heidegger, 1973b, pp. 85–86). Over this 

increasing withdrawal, the unity of whatness and thatness can no longer be recovered, 

and the extremity of whatness over thatness is manifested in the self-grounding 

subjectivity of the modern man, to whom “things can only appear as representations 

(Vorstellungen)” (Davis, 2007, p. xxx).  

 As Bret W. Davis remarks, “[i]t has often been remarked that Heidegger’s history 

of being resembles a kind of inversion of Hegel’s history of Spirit. Whereas Hegel sees 

the movement of history as one of progress toward Spirit’s self-realization, Heidegger’s 
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history of being would, on this account, tell the story of a decline of the West” (Davis, 

2007, p. 157). While the pre-Socratic Greeks “were presumably attuned in wonder 

amidst the unconcealment (aletheia) of being,” the abstract and universal concepts in 

metaphysics, through which beings are represented, gradually curtail the potentiality of 

beings by making them subservient to the will of representational thought, effecting the 

withdrawal of Being into self-concealment. For Heidegger, this withdrawal of Being 

culminates in the epoch of modern technology, “where humans have complete forgotten 

or been abandoned by being in their frenzy of willful domination of the world” (Davis, 

2007, p. 158), where all beings are reduced to “standing-reserves” and exploited as 

means to technological goals. 

 Heidegger sees this willful domination of the world through sciences and 

technology as the final stage of the historical development of metaphysics. He claims 

that, with the emergence of cybernetics, “philosophy is ending in the present age” (2002, 

p. 58). “[T]he end” in this context should be understood “a completion” that is “the 

gathering into the most extreme possibilities” (2002, p. 57). In the most extreme 

possibilities of whatness over thatness, in an epoch that things can only appear as 

representations, “philosophy turns into the empirical science of man … the scientific 

discovery of the individual areas of beings” (2002, p. 57). This “development of 

philosophy into the independent sciences … is the legitimate completion of philosophy” 

(2002, p. 58). All these sciences would “soon be determined and guided by the new 

fundamental science which is called cybernetics” (2002, p. 58). As the scientific attitude 

takes on this technological character of cybernetics, the “sciences are now taking over 

as their own task … the ontologies of various regions of being (nature, history, law, art)” 

(2002, p. 58). Since cybernetics reduces all beings to information, it transduces the 

management of labour, language, and arts into activities represented in systems and 

exchanges of information. In this sense, “technology more definitely characterizes and 

regulates the appearance of the totality of the world and the position of man in it” (2002, 

p. 58). As a result, “[t]he end of philosophy proves to be the triumph of the manipulable 

arrangement of a scientific-technological world and of the social order proper to this 

world” (2002, p. 59). In this final stage of metaphysics, “the operational and model 

character of representational-calculative thinking becomes dominant” (2002, p. 59). 

 Ever since Plato, our thoughts have been split into the physical realm and the 

metaphysical realm. Sciences used to be the branches of knowledge responsible for 
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understanding the physical realm, or the ontical beings. Western philosophy is 

metaphysics, which attempts to theorize the totality of the world and how Dasein relates 

to this totality. Metaphysics used to play the role of making sense about the totality of our 

world. Philosophy over the course of its history has tried to present, in part, “the 

ontologies of various regions of being,” with a coverage that includes nature, history, 

law, and art. This position of philosophy is now taken up by cybernetics, which is now 

the new “ground,” the technological “clearing,” for beings to appear. Within a cybernetic 

system, all beings can be represented as information. Indeed, if we look at our physical 

reality today, digitalization has become pervasive in almost every area of living, to the 

point that digital profiles generated from big data can serve the horizon for human 

decisions and actions.36 What Heidegger saw in cybernetics is more than just a powerful 

methodology for technology innovation, but a “ground” that shapes how people make 

sense about everything in our world. This view seems remarkably prescient in light of the 

latest development in technology, from big data and machine learning to the Internet of 

things. 

2.3. The History of Metaphysics as the History of the Will 

 According to Bret W. Davis, it is possible to see how Heidegger articulates the 

history of metaphysics as the history of the will by surveying his entire corpus over his 

lifetime. He traces the path of Heidegger’s thoughts on the history of being in Heidegger 

and the Will: On the Way to Gelassenheit (2007). The book points out how Heidegger 

confronts the problem of the will throughout his works, implicitly in his early writing such 

as Being and Time, and more explicitly in his mature writing since his lectures on 

Nietzsche’s will to power. Davis draws the following conclusion after a comprehensive 

inquiry of Heidegger’s corpus: “Heidegger reads the history of metaphysics as a series 

of epochs linked together by a narrative of the rise of willful subjectivity, a story that 

culminates in the technological ‘will to will’” (Davis, 2007, p. xxiv). Accordingly, to grasp 

Heidegger’s critique of the essence of modern technology, one needs to first understand 

his critique of the “technological will to will” and what he means by “will” and “will to will.” 

 In his lectures on Nietzsche’s will to power, Heidegger states, “[w]illing itself is 

mastery over [something], which reaches out beyond itself; will is intrinsically power. And 

 

36 See Stiegler’s concept of tertiary protention (2011, 2016). 
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power is willing that is constant in itself. Will is power; power is will” (Heidegger, 1991, p. 

41). Heidegger rejects the common notion that the will is a faculty of the subject. In the 

western philosophical tradition, “we tend to understand the will as a ‘faculty of the 

subject,’ to be distinguished from ‘thinking’ or ‘feeling’” (2007, p. 5). The will, then, would 

be on the same level as thinking or feeling. But this is not the will that Heidegger is 

concerned with. He explains, “[b]y the word ‘will’ I mean, in fact, not a faculty of the soul, 

but rather … that wherein the essence of the soul, spirit, reason, love, and life are 

grounded” (Davis, 2007, p. 6; Heidegger, 2007, p. 78). The will is that wherein being and 

thinking are grounded. Heidegger directs us to think through “the very ontology which 

sets up a subject who stands over against a world of objects, to which it then reaches 

out by means of faculties, powers of representational thought and volitional action, is 

itself determined by a willful manner of being and thinking” (Davis, 2007, p. 6). His 

project is “to show that traditional (especially modern) thinking, as representing, is a kind 

of willing” (Davis, 2007, p. 5) as “[t]o think is to will, and to will is to think” (Heidegger, 

1969, p. 59).  

 According to Davis, the earlier Heidegger sees this will as “the fundamental 

attunement of the subject who seeks to dominate the world” (Davis, 2007, p. 8), and 

attunement is the presupposition for our thinking, doing, letting (Davis, 2007, p. 7). A 

willful fundamental attunement sets up and distorts the horizon for a subject to relate to a 

world of objects. It “first determines the ontology wherein a subject is open to a world of 

objects in such a manner that the ‘open to’ of this relation is distorted (constricted) into 

the representation of objects present-at-hand” (Davis, 2007, p. 8). The later Heidegger 

takes this one step further (Davis, 2007, p. 8), claiming that “the being of beings appears 

as will” to modern metaphysics (1968, pp. 91–92). He contends, “[t]he will in this willing 

does not mean here a capacity of the human soul . . . ; the word ‘willing’ here designates 

the Being of beings as a whole. Every single being and all beings as a whole have their 

essential powers in and through the will” (Heidegger, 1968, p. 91). As Davis explains, 

according to Heidegger’s “mature being-historical thought[,] … being is revealed-in-

(extreme)-concealment as will in the epoch of modernity” (Davis, 2007, p. xxx), and the 

will is “the name of the being of beings in the epoch of modernity” (2007, p. 8).  

 To gain a better understanding on how the will, as the being of beings, 

determines the distortion of the “open-to” relation between a subject and a world of 

objects, it is necessary to explicate the interconnectedness of representation and will. 
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Heidegger claims that “thinking, understood in the traditional way, as re-presenting is a 

kind of willing” (Heidegger, 1969, p. 58). As Davis explains, “Heidegger claims that the 

Western tradition has in fact reduced knowing to a matter of willing. Knowing has 

become a matter of subjective representation wherein the world is reduced to the sum 

total of objects for the representing subject” (2007, p. 174). Instead of letting beings be, 

that is, letting whatever presencing in the world be themselves, or act and speak for 

themselves, the western tradition splits beings into the subject-object duality. Knowledge 

becomes a matter of how objects out there can be represented in the thoughts and 

languages for the subject. What precisely is representation? “Representation, or as 

Heidegger sometimes hyphenates the German term, Vor-stellung, is a matter of ‘setting 

before,’ placing an object (Gegenstand) in the position of standing over against (gegen) 

the subject, and ultimately at the disposal of his will” (Davis, 2007, p. 174). 

Representation thus involves the subject reaching out beyond itself, setting the excess 

before itself, and incorporating the excess back into the domain of the subject. Willing is 

“being master out beyond oneself” (Heidegger, 1991, p. 63), and “in willing we know 

ourselves as out beyond ourselves; we sense of mastery over [something], somehow 

achieved” (Heidegger, 1991, p. 52). Since willing is a matter of the subject “exceeding 

ourselves only to bring this excess back into the self” (Davis, 2007, p. 9),37 

representation is a matter of placing an object ultimately at the disposal of the subject’s 

will.  

 As Davis further explains, representational thought conceals the openness of 

beings by commanding how beings can appear. 

The subject of representation places himself in the center of beings, or 
even under them as their ground. Representing is not an open 
receptiveness to the self-showing of beings, nor is it an ‘engaged letting’ 
things show themselves from themselves; it is a constitutive knowing (Kant) 
that commands the very terms in which beings can appear (2007, pp. 174–
175).  

This is most evident in Kant’s transcendentalism, in which transcendental categories are 

the necessary conditions for intuiting the objects from our senses. Rather than letting 

beings be, our representational thoughts, such as Kant’s categories, willfully dictate “the 

very terms in which beings can appear.” But this will of representation subsists, not only 

 

37 Davis uses the term “ecstatic-incorporation” to denote this double-sided or “duplicitous” 
character of will (2007, p. 9). 



57 

in Kant, but throughout the history of metaphysics: “The progressive emergence of the 

will in correlation to the increasing withdrawal of being thus provides a marked aspect of 

continuity to the history of metaphysics” (Davis, 2007, p. 158). The will to encapsulate 

the totality of our world into the representational thought of some philosophical system is 

present throughout the historical progression of western metaphysics, in which 

representational thought increasingly takes away the openness of being in our world.  

 The origin of this will can be traced to the Socratic philosophers, as “it is in 

Aristotle that Heidegger finds the origin of the concept of the will” (Davis, 2007, p. 160).  

Willing is a kind of desiring and striving. The Greeks call it orexis . . . But 
will, as striving, is not blind compulsion. What is desired and striven for is 
represented as such along with the compulsion . . . What does Aristotle 
teach concerning the will? The tenth chapter of Book 3 [of De anima] deals 
with orexis, desiring. Here Aristotle says (433a 15ff.): “. . . on the basis of 
[what the desire aims at,] the considering intellect as such determines itself; 
. . . for what is desired in the desiring moves, and the intellect, 
representation, moves only because it represents to itself what is desired 
in the desiring.” . . . (Heidegger, 1991, pp. 54–56) 

In Aristotle, the intellect and representational thought moves because of the movement 

of the will. Heidegger asserts, “Aristotle’s conception of the will becomes definitive for all 

Western thought” (1991, p. 56).38 This conception of the will subsists in the Reformation 

as well as in Descartes, F. W. J. von Schelling, and Hegel. After the Reformation, 

“Rectitudo appetitus rationalis, the correctness of will, the striving for correctness, is the 

basic form of the will in its willing … The doctrine of justification, and indeed as the 

question of certainty of salvation, becomes the center of evangelical theology” 

(Heidegger, 1992b, p. 51). Consequentially, the Reformation brings about a theology 

centered around “the self-certainty of the ego cogito, reducing the religious sphere to the 

domain of the subject and the will” (Heidegger, 1973c, p. 67). This transformation is 

completed in Descartes’s cogito ergo sum: “Descartes’s metaphysics completes the 

transformations of truth to certainty, knowing to representation, and the world to an 

object for the representing subject,” and his metaphysics “marks a decisive point in the 

 

38 “In the Middle Ages voluntas is interpreted as appetitus intellectuals, i.e., orexis dianoētikē, the 
desiring which is proper to intellectual representation. For Leibniz agere, doing, is perceptio and 
appetitus in one; perceptio is idea, representation. For Kant the will is that faculty of desire which 
works according to concepts, which is to say, in such a way that what is willed, as something 
represented in general, is itself determinative of action” (Heidegger, 1991, p. 56). 
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rise of the will as ecstatic-incorporation” (Davis, 2007, p. 168).39 Heidegger then 

associates the will with the spirit in German Idealism of Schelling and Hegel. In 

Schelling, the divine will of love is “the force that unites the will of the ground and the will 

of understanding in their proper ordering” (Davis, 2007, p. 110).40 In Hegel’s 

Phenomenology of Spirit, “absolute subjectivity as absolute self-appearing 

representation (thinking) is itself the being of beings” (Heidegger, 1993, p. 223). In the 

absolute subjectivity of the Spirit, “reason is will, here it is reason as representation 

(idea) that nonetheless decides the beingness of beings” (Heidegger, 1993, p. 223). 

 The last metaphysician, for Heidegger, is Nietzsche, who “characterizes his 

philosophy as reversed Platonism” (Heidegger, 2002, p. 57). In Nietzsche, the being of 

beings is determined by the will to power. “Truths” in western metaphysics are actually 

values established by the will to power. They are terms that are subjected to the 

“revaluations of all values.” Nietzsche thus put will over reason, body over mind, the 

sensuous over the supersensuous. There is nothing to “being” in Nietzsche’s philosophy 

“because this concept itself is nothing but an immanently posited value” (Davis, 2007, p. 

186). There is only the will to power “for the preservation and enhancement of life” 

(2007, p. 186). But for Heidegger, “Nietzsche remains within the domain of the terms he 

inverts” (2007, p. 186). His overturning of metaphysics is still a metaphysics, albeit an 

inverted one: “The essence of absolute subjectivity first reaches its fulfillment in such 

inverted empowering of the will. . . . Will to power is therefore both absolute and—

because inverted—consummate subjectivity” (Heidegger, 1993, p. 225). Thus rather 

than liberating from traditional metaphysical oppositions and the will behind them, 

Nietzsche brings the history of the metaphysics as the progression of the will to its final 

and ultimate possibility, giving “consummate expression to the descensional progression 

of the history of metaphysics toward a delimitation of the being of beings as the will to 

power” (Davis, 2007, p. 186). 

 

39 See footnote 37 on the meaning of “ecstatic-incorporation.” 

40 Heidegger elaborates, “[a]s the will of love, spirit is the will to what is set in opposition. This will 
wills the will of the ground and wills this will of the ground as the counter-will to the will of the 
understanding. As love, spirit wills the opposing unity of these two wills” (Heidegger, 1985, p. 
128). 
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 This metaphysics of the will to power, by bringing the progression of the will to its 

ultimate possibility, also brings nihilism to its consummated realization. What is nihilism? 

Davis explains, 

The “essence of nihilism,” according to Heidegger, “is the history in which 
there is nothing to being itself” (Heidegger, 1993, p. 201). Nihilism is 
precisely the history of an increasing centralization of the subject (and his 
willful positing of values) who forgets that “beings are thanks to being,” that 
is, thanks to a granting which first opens a clearing for beings to appear. 
(Davis, 2007, p. 152) 

Heidegger points out the irony in Nietzsche’s effort to shake free from the western 

tradition: “It is precisely in the positing of new values from the will to power, by which and 

through which Nietzsche believes he will overcome nihilism, that nihilism proper first 

proclaims that there is nothing to being itself, which has now become a value” 

(Heidegger, 1993, p. 203). As such, Nietzsche’s metaphysics “is not an overcoming of 

nihilism. It is the ultimate entanglement in nihilism” (1993, p. 203). It becomes “the 

fulfillment of nihilism proper, because it is the metaphysics of the will to power” (1993, p. 

204).  

2.4. The Technological Will to Will 

 The metaphysics of will to power, having completed the history of the western 

metaphysics, “finally reveals itself as the technological will to will” (Davis, 2007, p. 146). 

Willing is constantly associated with an insatiability to be more: “Every willing is a willing 

to be more. Power itself only is inasmuch as, and as long as, it remains a willing to be 

more power” (Heidegger, 1991, p. 60). The will is “insatiable, ever expanding” (Davis, 

2007, p. 11). The “will to will” refers to a will that constantly expands its control as it 

reaches out to the world in order to reduce this world to the domain of the will. It is the 

extreme form of the will to power, and what it strives after is not something that it lacks 

and desires, but simply an expansion of the domain in which the will commands. 

The will is not a desiring, and not a mere striving after something, but rather, 
willing is in itself a commanding … Commanding, which is to be sharply 
distinguished from the mere ordering about of others, is self-conquest and 
is more difficult than obeying. … What the will wills it does not merely strive 
after as something it does not yet have. What the will wills it has already. 
For the will wills its will. Its will is what it has willed. The will wills itself. 
(Heidegger, 1977b, p. 77).  
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In short, “will to power is will to will, which is to say, willing is a self-willing” (Heidegger, 

1991, p. 37). Heidegger further contends, this will to will is the essence of technology. 

Initially, “in the rise of the modern metaphysics of will things are progressively reduced to 

objects of human will and representation” (Davis, 2007, p. 178). But eventually, “in the 

extreme epoch of technology even this egocentric dualism threatens to give way to a 

uniform ordering about of both non-human and human beings as standing-reserve” 

(2007, p. 178). The technological will to will expands its domain of commanding over 

non-human and human beings alike. It “ultimately threatens to strip humans of their 

freedom, reducing them to another cog in the wheel of machination” (Davis, 2007, p. 

121). 

 Commanding over the human and non-human world becomes possible with 

cybernetics, a fundamental science that shifts the paradigm of all physical and human 

sciences to that of information. As Heidegger recognizes, “[i]n the cybernetically 

represented world, the difference between automatic machines and living things 

disappears. It becomes neutralized by the undifferentiated process of information” 

(Heidegger, 1983, p. 142; Davis, 2007, p. 178). Every aspect of a human or non-human 

being can be represented as information, which is subjected to calculability and control. 

The cybernetics movement is a method that “makes possible a completely uniform and 

in this sense universal calculability, in other words the controllability of the lifeless and 

the living world. In this uniformity of the cybernetic world, man too gets installed 

[eingewiesen]” (Heidegger, 1983, p. 142; Davis, 2007, p. 178). Hence, cybernetics can 

be regarded as the “extreme form of modern technology” and the ultimate expression for 

the technological will to will (Davis, 2007, p. 178):  

 For Michael E. Zimmerman (2016, p. 106), Heidegger’s late reflections on 

cybernetics were prescient as the technological will to will anticipates the techno-

posthumanist construct of the super AI: “In coming decades, so Heidegger surmised, the 

Will to Power will allow and even demand that humans generate what today is depicted 

as autonomous, super AI” (2016, p. 106). Zimmerman adopts the terms transhumanism 

and techno-posthumanism from Ray Kurzweil (2005).41 The central goal of 

transhumanism or transitional humanism is enhancing the human (Zimmerman, 2016, p. 

 

41 Note that techno-posthumanism is a form of posthumanism that points to something very 
different from the philosophical-literary posthumanism developed by thinkers such as Jacques 
Derrida and Michel Foucault (Zimmerman, p. 98-99). 
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98). Kurzweil predicts that transhumanism will progress toward techno-posthumanism in 

the not-too-distant future, when “transhumans will merge with super AI, which may 

evoke from ordinary humans the awe formerly associated with encountering the gods” 

(Zimmerman, 2016, p. 98). In Kurzweil’s futuristic vision, the human species will 

transition into an evolving humankind equipped with possibilities and capabilities that 

were traditionally accorded only to a deity (Zimmerman, 2016, p. 98). Thus virtual 

immortality, omniscience, or mastery over nature are all recurrent themes in the 

discourse on techno-posthumanism (2016, p. 98). In fact, a “central motivation for 

transhumanism and techno-posthumanism is to avoid death” (2016, p. 98). According to 

the predictions by Kurzweil and other techno-posthumanists, within relatively short time, 

AI will be able to redesign itself such that “AI will be billions of times more intelligent than 

human beings” (Zimmerman, 2016, p. 98). What Kurzweil calls the Singularity is the 

moment when AI surpasses human intelligence. 

 Zimmerman develops his critique of transhumanism and techno-posthumanism 

by drawing from Heidegger’s writing on the essence of modern technology and the 

technological will to will. He tries to project Heidegger’s perspective on techno-

posthumanism as if he were still alive today: 

Heidegger would say that techno-posthumanism is the latest and perhaps 
most dangerous phase in the era of techno-industrial nihilism. In this era, 
all beings—including human beings—reveal themselves primarily as raw 
material for the purpose of enhancing power for its own sake, not for the 
sake of some identifiable human end. (2016, p. 101) 

Techno-posthumanism could be the most dangerous phase of modern technology, 

whose essence is the enframing of all beings under the technological will to will. This 

phase began with cybernetics, which “seems to be late-Heidegger’s operational term for 

‘enframing’ (Gestell)” (2016, p. 102). Cybernetics is destined to bring about the 

materialization of the essence of technology, the technological will to will, which 

ultimately finds its nihilistic materialization in the super AI: “super AI would continually 

enhance itself, becoming ever-more powerful, perhaps as an end in itself. Super AI 

would be, in effect, the ultimate ontical embodiment of what Heidegger—drawing on 

Nietzsche—calls the Will to Will” (Zimmerman, 2016, p. 101). It follows that “[t]he 

metaphysics of the Will to Will is discernible in Kurzweil’s prediction that an artificial 

intelligent computer will redesign itself, so that it can become far more intelligent than all 

human beings collectively” (2016, p. 104). 
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 As Davis comments, “technology no longer centers on the striving power of the 

self-interested subject (Davis, 2007, p. 179). The essence of modern technology, for 

Heidegger, is revealed in the insatiable expansion of the technological system to 

command over both the lifeless and the living world. In the age of cybernetics, this 

essence mobilizes nearly all contemporary technical activities. As we will see in later 

chapters, this totalizing critique on the universal calculability of cybernetics is very 

influential on the thoughts of Stiegler and Yuk Hui. The abstract critique of the essence 

of technology, of the technological will to will, also contradicts the Marxist critique that 

centers on the striving of power by the capitalist class. We will come back to this 

contradiction in Chapter 8 and deliberate whether Marcuse’s technological rationality, on 

which Feenberg’s technical politics is based, is a sufficient Marxist response to the age 

of cybernetics. 

2.5. Heidegger’s Eschatology 

 One common criticism that Heidegger faces over his critique of modern 

technology concerns its implied notion that humanity is helpless against the domination 

of technological system, to the point that “only a god can save us.” But according to 

Davis, this criticism is not entirely accurate, as Heidegger has in fact laid a path forward 

for others to follow in their intellectual pursuits.42 Drawing analogy from Christian 

eschatology, Heidegger makes conjectures about a new other beginning after which the 

world and its technology will develop after breaking free from the domain of the will. 

Paradoxically, this new other beginning is only possible after humanity has reached the 

extreme epoch of the technological will to will:  

 [It] is precisely in this extreme danger that the innermost indestructible 
belongingness of man within granting may come to light, provided that we, 
for our part, begin to pay heed to the essence of technology. 

Thus the essential unfolding of technology harbors in itself what we 
least suspect, the possible rise of the saving power. (Heidegger, 1953, p. 
337) 

This move follows the Christian narrative about the Second Coming of Jesus Christ: The 

coming to an end of our world brings forth the new Heavenly Kingdom. It is also 

 

42 Among the notable ones are Herbert Dreyfus (1965, 1972, 1992), Albert Borgmann (1988), and 
Bernard Stiegler. 
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reminiscent of the Marxist theory about the inevitable collapse of capitalism when the 

proletariat becomes conscious of the alienated condition of their class, prompting 

resistance and rebellion. Heidegger’s eschatology of salvation from technological 

domination results neither from divine intervention nor from class consciousness. 

Rather, it involves an epochal change of collective awareness about the true condition of 

humanity, that is, the openness of its lifeworld has been taken away by its increasing 

dependence on technology. Thus “the danger is, when seen as the danger, at once the 

growth of that-which-saves” (Davis, 2007, p. 182). This epochal change can be partially 

attributed to human actions or political projects, but is in general unpredictable as to how 

and when it may come about. 

 To see how this epochal change of a new other beginning is possible for 

Heidegger, we must recognize his differentiation between technology and the essence of 

technology. Heidegger is well aware that technology and our lifeworld are inseparable, 

that technology as human-fabricated nature makes up the very texture of our lifeworld 

and has always been defining for what it means to be human. Thus he wrote, 

It would be foolish to attack technology blindly. It would be shortsighted to 
want to condemn it as the work of the devil. We depend on technical 
devices; they even challenge us to ever greater advances. But suddenly 
and unaware we find ourselves so firmly shackled to these devices that we 
fall into bondage to them. (Heidegger, 1969, pp. 53–54) 

What needs to be addressed is not technology per se, but the relation of bondage that 

creeps into our dealing with technology. This is what he means in the following passage 

from “The Question Concerning Technology” (1953): “What is dangerous is not 

technology. Technology is not demonic. . . . The essence of technology, as a destining 

of revealing, is the danger” (Heidegger, 1953, p. 333). Therefore, “Heidegger’s critique is 

not aimed at technological devices themselves, but at the way of revealing/concealing 

which they embody” (Davis, 2007, p. 183). Technological devices embody the way all 

beings are revealed as standing-reserves for technology’s ever expanding will of 

mastery, a will that is not tangible but nonetheless manifests itself through the beings in 

the modern epoch. Therefore, the devices in themselves are not necessarily “demonic” 

and may possibly be salvaged from the technological will to will.  

 To prevent falling into bondage to technology, Heidegger proposes a proper use 

of technical devices such that we can keep ourselves free from them, a particular 
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technological mentality of letting beings be. This way, technology would not exhaust 

natural resources as standing-reserves for the ever-expanding technological will to will, 

nor would it affect our most inner core as human beings:  

We can use technical devices, and yet with proper use also keep ourselves 
free of them, so that we may let go of them at any time . . . let them alone 
as something which does not affect our most inner and proper [essence]. . 
. . We let technical devices enter our daily life, and at the same time leave 
them outside. . . . I would call this comportment toward technology, which 
expresses “yes” at the same time as “no,” by an old word: releasement 
toward things [die Gelassenheit zu den Dingen]. (Heidegger, 1969, p. 54, 
1992a, pp. 22–23) 

This comportment toward technology, die Gelassenheit zu den Dingen, “is not only a 

releasement from willful technological manipulation; it is also a releasement into a more 

attentive engagement in letting things be” (Davis, 2007, p. 184). For Heidegger, the 

epochal change of salvation from technological domination involves a collective turn in 

humanity toward Gelassenheit. This collective turn would subvert the perpetual 

concealment of being over the history of the will, leading to an epoch of openness of 

letting beings be. 

 In Heidegger’s theory, even though this collective turn in humanity is not 

realizable purely through humans’ actions, humans can nonetheless play a role in 

bringing upon a new beginning of the post-metaphysical West. The role they play is to 

reveal the concealed essence of modern technology (an endeavour that Heidegger is 

leading the charge) and subsequently to adopt a attunement of non-willing [Nicht-

Wollen] toward being. The non-willing comportments of “releasement towards things 

[Gelassenheit zu den Dinged] and openness to the mystery … do not simply befall us 

accidentally [Sie sind nichts Zu-fälliges],” but rather “through “persistent, courageous 

thinking [einem unablässigen herzhaften Denken]” (Heidegger, 1969, p. 56, 1992a, p. 

25). Gelassenheit is a concept adopted from the medieval Christian mystic and German 

theologian Meister Eckhart. Roughly speaking, Heidegger adopts the Christian tradition 

of deferring the self-will to the Divine Will. But deferred willing still belongs to the domain 

of willing. Moreover, deferred-willing can easily be turned into a kind of covert-willing in 

which spokespersons for the divinities would exhibit their will to power. Thus the late-

Heidegger is concerned with weaning from any trace of willing in order to subvert the will 

to power and the will to will as the Being of beings in the modern epoch. He 
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contemplates on a non-willing [Nicht-Wollen] comportment toward all beings. Heidegger 

defines non-willing as follows: 

Nicht-Wollen means, accordingly: [1] willing to renounce willing [willentlich 
dem Wollen absagen]. And the term means, further: [2] what remains 
strictly outside any kind of will [was schlechthin ausserhalb jeder Art von 
Willen bleibt]. (Heidegger, 1969, p. 59, 1992a, p. 30) 

To move toward a comportment of non-willing, humanity first needs to assertively 

renounce willing in all their activities, but this assertiveness is also a kind of willing. So 

we need to take this one step further by entering into a non-willing state in which we 

simply live, think, and act in a mode of openness, without willing and without reacting 

against willful domination. This second step seems paradoxical and is most tricky, and 

Davis suggests that it is ultimately only “by way of a leap (Sprung) that one could move 

from the domain of the will into the region of non-willing, even if a painstaking ‘twisting 

free’ is needed to prepare for this leap” (2007, p. 188). He further elaborates, “[n]on 

willing, in the most radical sense of other than willing, could only be reached by way of 

undergoing an arduous twisting through a paradoxical willing non-willing. Nicht-Wollen is 

for us today, if not always, inherently ambiguous. It is both an ascetic weaning from, and 

a way of being other than, willing” (2007, p. 203). 

2.6. Conclusion 

 In this chapter, we began with Heidegger’s remarks in Der Spiegel magazine that 

cybernetics would take the place of philosophy as the horizon of effecting changes in the 

western world, and that only a god can save humanity from the total domination of 

technology. With the help of the commentaries by Davis and Zimmerman, we proceeded 

to explain Heidegger’s remarks by surveying his corpus over his lifetime. We discussed 

how the problem of the will is central to Heidegger’s critique of the essence of modern 

technology. This essence is the Ge-stell, typically translated as “enframing”, as stell in 

German means frame or position. In Davis’ exegesis, the “‘positing’ (Setzen) or 

‘positioning’ (Stellen) character of the will, which represents (vor-stellt) its objects as 

means to its own securing and enhancing of power, is at the heart of what Heidegger 

problematizes as the Ge-stell of technology” (Davis, 2007, p. 151). Within this 

technological Ge-stell, everything, both the living and the non-living, is posited, 

positioned, and represented in accordance to an abstract, invisible will in the insatiable 
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expansion of technology. Cybernetics is the ultimate ontical embodiment of this essence. 

This fundamental science would supersede the traditional role played by philosophy in 

its provision of a ground, a horizon, for determining how beings are revealed. Dasein, 

being thrown into a world of beings, can only make sense of this world and the beings-

in-relations by associating them with meanings based on some representational system. 

Philosophy and religion used to be man’s attempts to come up with representational 

systems to grant meanings and sanity to people’s lives. These attempts in the West has 

yielded a history of metaphysics that progressively conceals beings, which become 

increasingly subservient to will to power and ultimately to the technological will to will. As 

Zimmerman points out, the futuristic imagination of super AI and Singularity, proposed 

by techno-posthumanists such as Kurzweil, could become the most dangerous phase in 

the epoch of technological will to will. 

 This ontological critique of modern technology seems to suggest that humanity is 

helpless within technological Gestell. Any attempt to shake free from the technological 

will to will would paradoxically come back as the new dominating will, as in the case of 

Nietzsche’s will to power. Heidegger seems to confirm this helpless sentiment with his 

comment that “only a god can save us.” But as Davis shows us in his explication of 

Gelassenheit, Heidegger did point to a path forward by articulating a fundamental 

attunement of “releasement towards things” [Gelassenheit zu den Dinged]. So while 

humanity cannot, by its own will, bring upon a new beginning of non-willing, this new 

epoch actually becomes possible when humanity enters into the abyss of technological 

nihilism. Finding themselves in this abyss would bring about an awakening to people on 

how they are becoming standing-reserves for the sake of technology. The emanation of 

such awakening signals a new epoch of non-willing. While we can only wait for this 

awakening and let this happen historically, there is hope that the awakening may be 

happening already, presumably in Heidegger’s own philosophy but also in other non-

positivistic critiques since Heidegger. Thus Heidegger’s statement that “only a god can 

save us” can be interpreted as a hopeful rather than a hopeless vision of our future 

world. 
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 Yet, critics of Heidegger find his spiritual approach overly passive and abstract.43 

Can we formulate a critique of the current state of technology, in particular big data and 

machine learning, that suggests a more down-to-earth approach in steering the direction 

of research and development for these technologies? This entails the possibility of a 

“new science” that Marcuse proposes and Feenberg further develops in his technical 

politics. There may be an unresolvable tension between the assertiveness of technical 

politics and the passiveness of Heidegger’s non-willing Gelassenheit, but they do share 

the common goal of letting things be. In their critiques of technology, both Marcuse and 

Feenberg refer to Gilbert Simondon, a philosopher who refutes a dystopian critique of 

technology and one who deliberates on how humans can engage in a positive 

relationship with technology.44 Simondon’s philosophy is also of particular relevance to 

our discussion because it was developed as a response to the cybernetics movement. 

This dissertation deliberates on the significance of cybernetics to Simondon’s philosophy 

and the implication of his philosophy on artificial intelligence and machine learning from 

Chapter 6 to Chapter 9. But before engaging in this philosophical inquiry, it would be 

helpful to first look into how cybernetics is related to artificial intelligence (Chapter 3) and 

to machine learning (Chapter 4), as well as to examine the potential affordance and 

limitation of machine learning and deep learning (Chapter 5). 

 

43 Feenberg talks about such critics, including Marcuse, in Transforming Technology (2002, p. 7) 
and in The Ruthless Critique of Everything Existing (2023, p. 28). Feenberg himself is sceptical of 
Heidegger’s approach as it provides no pathway to an emancipating technical politics. For more, 
see Feenberg’s Heidegger and Marcuse (2005, pp. 21–45), Technosystem (2017a, pp. 140–148). 

44 One key question for forging such a positive relationship is where the potentiality for changes 
may originate from. Heidegger attempts to overcome western metaphysics in his critique of the 
will. But this is not to say that he rejects any notion of reality beyond the empirical. He 
acknowledges both an essence of technology and an essence of man, which is “the innermost 
indestructible belongingness of man within granting” (Heidegger, 1953, p. 337). This essence of 
man is not reducible to an alienated will, and “[i]t is precisely this intimation of an ‘innermost,’ 
‘indestructible’ and ‘free essence’ of man, which exceeds the modern historical delimitation of his 
essence as will, that would enable a human participation in the transition to an other beginning of 
non-willing” (Davis, 2007, p. 213). Such writing on “essence” reflects a non-empirical notion of 
potentiality. In this sense, Heidegger’s essence is comparable to Simondon’s theory of pre-
individuality. As I will explain in Chapter 7, Simondon formulates his theory of pre-individual reality 
by identifying potentiality in the obscure zones of reality that is intrinsically beyond the 
deterministic predictions of empirical sciences. 
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Chapter 3.  
 
The Genealogy of AI: Questioning the Universality of 
Cybernetics 

Me what do people mean by the universality of cybernetics? 

ChatGPT:  The universality of cybernetics refers to the idea that the 

principles and concepts of cybernetics can be applied to a 

wide range of systems, across different disciplines and 

domains. Cybernetics is concerned with the study of control 

and communication in systems, whether they are mechanical, 

biological, social, or cognitive. This broad focus allows 

cybernetics to be applicable to a diverse range of systems, 

from individual organisms to complex organizations. 

The universality of cybernetics is often attributed to its 

interdisciplinary nature. Cybernetics draws on concepts and 

methods from a variety of fields, including engineering, 

mathematics, biology, psychology, and sociology. This cross-

disciplinary approach allows cybernetics to provide a 

framework for understanding and designing systems that 

involve feedback, control, and communication.The "will to 

power" is a central concept in the philosophy of Friedrich 

Nietzsche, who describes it as the basic drive behind all 

human behavior, thought, and action. It refers to the 

instinctual urge to increase one's own power and control over 

one's environment, both internally through self-mastery, and 

externally through domination over others. The "will to 

power" is not just a desire for power in a conventional sense, 

but a deep-seated striving for excellence and self-

overcoming. It is a fundamental aspect of the human 

condition and, according to Nietzsche, an essential part of life 

and growth. 

3.1. Overview 

 In the previous chapter, I present Heidegger’s critique of cybernetics as the 

completion of metaphysics and culmination of the technological will to will. He sees 

cybernetics as a fundamental science that grounds all other sciences, with all beings 

reduced to systems and exchanges of information, subject to the control of human wills 

or some abstract technological will. This critique on the universality of cybernetics has 

indeed been taken up by others (see Bowker, 2008; Dupuy, 2000; Hayles, 1999; Pias, 
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2003b). Characterizing cybernetics as universal in its control of all beings makes it an 

easy target for social criticism, but is this characterization true to the historical 

development of cybernetics and the implication it has left us with? Much has been 

written about the universality of the cybernetics movement (e.g. Bowker, 2008; Hayles, 

1999; Hui, 2019), but social and philosophical critiques have a tendency of taking a 

bird’s-eye view without getting into the nitty-gritty of the actual technical discussions. To 

get a true sense about what went on in the movement, it would be most direct to 

examine the actual conversations that took place between the scientists who 

participated in the Macy Cybernetics Conferences. 

 The Macy Cybernetics Conferences, held from 1946 to 1953, was the the 

marquee event for the cybernetics movement. A few key themes in these cybernetics 

meetings were intriguing to the leading experts across different disciplines. These 

themes are (1) negative feedbacks that makes possible controls in a dynamic 

environment, (2) the possibility to represent all living and non-living beings as 

information, and (3) the blurring of boundaries between the human and the non-human, 

between the living and non-living. Participants included top neurologists, psychiatrists, 

biologists, mathematicians, physicists as well as early pioneers of computing such as 

John von Neumann and Claude Shannon. Nevertheless, if we examine the actual 

conversations at the conferences, the exchanges among the participants were filled with 

strife and disagreement due to the inherent contradictions between long-held 

assumptions within each field of knowledge. Many quit in frustration. These anecdotal 

accounts show that scientific research in reality cannot be reduced to some clean and 

simple theory of universality, thus problematizing the social and philosophical critique of 

cybernetics as a universal discipline of all disciplines.45  

As Jean-Pierre Dupuy remarked, far from being a stunning success, “cybernetics 

ended in failure. It was a historical failure, one that was all the more bitter as its 

advertised ambitions were enormous” (2000, p. 15).46 In retrospect, it is difficult to gauge 

 

45 In this problematization of the critique of universality in cybernetics, I am attempting to engage 
the critical literature on cybernetics (from Chapter 2) with the perspective of technological 
research, resulting in a dialectical analysis that is both critical and immanent. This dialectical 
approach will resurface later when I discuss Simondon’s philosophy (Chapter 6 to Chapter 8) and 
the social implication of machine learning (Chapter 9). 

46 Dupuy explains, “[t]hose who dedicate themselves to this purpose today may find it useful to 
immerse themselves once again in these pioneering debates. If any further reason is needed to 
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the success of the Macy Conferences because they are simply meetup events that 

gathered together researchers who had been working on independent research projects 

across different knowledge domains. Nevertheless, the interdisciplinary effort did 

facilitate exchanges between different fields. The overlapping of multi-disciplinary 

knowledge could serve as the impetus for new research ideas. As I will show, the birth of 

AI can be attributed to the clash of ideas between the mainstream research of computer 

as calculating machines and the cybernetic idea of blurring the boundary between man 

and machines. 

In this chapter, I begin by digging into the published transactions of the Macy 

Cybernetics Conferences and other historical documents. The disjointed conversations 

in these transactions cast doubt on the critical notion that universality characterizes 

cybernetics. These conference transactions, which give a glimpse into the cybernetics 

movement, suggests irresolvable tensions and contradictions between respective 

disciplinary assumptions. Yet, as I will argue, it is precisely the clashes of seemingly 

unrelated knowledge domains that brought forth innovations in various knowledge fields. 

Thus, after questioning the universality of cybernetics, I will trace the historical origin of 

the computer from the universal Turing machine (UTM) to the Analytic Machine 

designed for mass calculation by Charles Babbage in the 19th century. I then elaborate 

on how ideas in cybernetics have been influential to the historical appropriation of the 

calculating computing machine into modern-day computing with many other purposes. 

Of particular relevance to this dissertation is the historical emergence of AI, which can 

be seen as a crossbreeding between the origination of computers as calculating 

machines with the cybernetic theme of boundary-crossing between humans and 

machines. I will describe the early history of AI to see how the field branched out of 

research in cybernetics, and explain the adoption of both ideas in cybernetics and the 

design principles of computer sciences in AI research. 

 
convince them of this, it would be the following, which is only apparently paradoxical: cybernetics 
ended in failure. It was a historical failure, one that was all the more bitter as its advertised 
ambitions were enormous; a conceptual failure, all the less comprehensible in view of the fact 
that it had marshaled very great intellectual advantages on its side; and, finally, if we consider all 
that is owed to it and that has gone unacknowledged, it was perhaps an unjust failure as well” 
(2000, p. 15). 
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3.2. Questioning the Universality of Cybernetics 

 Cybernetician Gregory Bateson once claim that “cybernetics is the biggest bite 

out of the fruit of the Tree of Knowledge that mankind has taken in the last 2000 years” 

(1987, p. 481). But this view on the vast implication of cybernetics on the development of 

science and technology is far from unanimous. Warren McCulloch, who served as the 

chair for most of the conferences, is more reserved in his judgement of cybernetics. He 

seems to echo Bateson’s “Tree of Knowledge” appraisal, noting that cybernetics “has 

been a challenge to logic and to mathematics, an inspiration to neurophysiology and to 

the theory of automata, including artificial intelligence, and bionics or robotology” 

(1974/2004, p. 360), but he also surmised that “[t]o the social sciences it is still mere 

suspiration” (1974/2004, p. 360). In fact, being a challenge and an inspiration to many 

fields seems to be a far cry from the “biggest bite of the fruit of the Tree of Knowledge” 

over the last two thousand years. Is cybernetics truly a fundamental science that 

grounds all sciences, or merely an inspiration to the development of many fields? As I 

will contend, the narrative about the universality of cybernetics is a problematic 

discourse from a technical perspective. Thus attributing the totality of a technocratic 

worldview to cybernetics is a philosophical or social proposition that understates the 

actual conflicts between disciplinary knowledge and assumptions are effaced. 

Nonetheless, key ideas from the cybernetics movement have turned out to be influential 

to the continual development in computing research.  

 There are many who ascribe the character of universality to the cybernetics 

movement. The Macy conferences “began chiefly because Norbert Wiener and his 

friends in mathematics, communication engineering, and physiology, had shown the 

applicability of the notions of inverse feedback to all problems of regulation, 

homeostasis, and goal directed activity from steam engines to human societies” 

(McCulloch, 1953/2003b, p. 719). Geoffrey C. Bowker identified an ideal of universality 

behind this interdisciplinary mandate of cybernetics. The “cybernetic thesis that purpose 

could be formed in machines by feedback” unifies physical, biological, chemical, and 

social sciences, and this ideal of universality devours all disciplines in sciences and 

humanities into its own abstract form, reducing the vast and complex material reality into 

a controllable abstraction (Bowker, 2008, p. 77). Much has been written on this 

universality of the cybernetics thesis (Bowker, 2008; Dupuy, 2000; Hayles, 1999; Pias, 



72 

2003b).47 In Claude Pias’ review on cybernetics, this widespread applicability led to the 

goal of formulating a general theory based on “the principles of the current computer 

generation, the latest developments of neurophysiology, and finally a vague ‘humanistic’ 

combination of psychiatry, anthropology, and sociology” (Pias, 2003b, p. 11). The 

American research conducted in the early 1940s—Pitts and McCulloch’s artificial 

neuron, Shannon’s information theory, and the behavioral theory of feedback by Wiener, 

Bigelow, and Rosenblueth—were combined at the Macy conferences into a single, 

“universal theory of digital machines, a stochastic theory of the symbolic, and a non-

deterministic yet teleological theory of feedback … that could then claim validity for living 

organisms as well as machines, for economic theory” (Pias, 2003b, p. 15). This way of 

framing cybernetics turns it into an agent for technocratic totality, which fits nicely into a 

dystopian discourse about technology, from Heidegger’s enframing and Herbert 

Marcuse’s technological rationality to Ray Kurzweil’s technological singularity. When 

cybernetics becomes synonymous with a science-centric worldview that advocates for 

the use of scientific methodology in studying humans and societies, scholars such as 

Bernard Dionysius Geoghegan (2023) can attribute scientific administration and 

technocratic reforms to cybernetics. But by taking a closer look at the Macy conferences, 

this framing of cybernetics as an ideology of universality would appear contradictory to 

the interdisciplinary conflicts in cybernetics, which become apparent when we examine 

the field from a technical perspective.  

 It is widely recognized that the two most influential leaders of the cybernetics 

movement were Norbert Wiener and Warren McCulloch. Wiener was the mercurial, 

charismatic genius. He was well known for his bizarre practice of jumping into a 

discussion with an ingenious comment while he had been asleep and snoring throughout 

(Kubie, 1951/2003, p. 416; McCulloch, 1974/2004, p. 355). After the publication of his 

best seller Cybernetics in 1948, he only sparingly attended the Macy conferences and 

gradually faded out from the interdisciplinary activities (McCulloch, 1974/2004, pp. 358–

359). McCulloch was the conference chair who hosted all the meetings and steadfastly 

smoothed out disputes among representatives from different backgrounds. There were 

mainly three groups of people: one group consisted of the physicists and 

mathematicians; the second group was made up of anthropologists and psychiatrists; 

 

47 For Dupuy, it is the mechanization of the mind; for Hayles, it is posthuman—the 
reconceptualization of what the human is.  
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the third group were “simple people who had a lot of loose intuition and no discipline to 

what they were doing” (Brand, 1976/2004, p. 303). Chairing meetings with such diverse 

backgrounds was no easy feat. A number of years later, McCulloch gave a vivid 

description on the intensity in those meetings: “The first five meetings were intolerable. 

Some participants left in tears, never to return. We tried some sessions with and some 

without recording, but nothing was printable. The smoke, the noise, the smell of battle 

are not printable” (McCulloch, 1974/2004, p. 356).  

 Participants from various fields had difficulties relating with each other because 

each field upheld a unique set of implicit assumptions. The discrepancies in these 

assumptions would lead to clashes in arguments. For instance, Bigelow expressed that 

“[t]here has been quite a tendency in these meetings to assume that the mathematical 

methods of the physical sciences are necessarily those appropriate for most of the other 

sciences and other fields, but there are cases where this may not be true” (Kubie, 

1952/2003, p. 591). McCulloch indicated that “this group has been guilty of a certain 

irreverence with respect to the subconscious or the unconscious” (McCulloch, 

1953/2003a, p. 687). In one of the rare instances where members from different 

backgrounds managed to engage in a fruitful exchange, the medical director of the 

Josiah Macy Jr. Foundation Frank Fremont-Smith remarked: “This is the thing I have 

been waiting for since I started this conference group: that we who think in 

mathematical, physical, and engineering terms would come to grips in a genuine way 

with the people who think and talk in symbolic unconscious terms. There is a tendency 

to intolerance on both sides which should be avoided” (Kubie, 1950/2003, p. 318). 

 The discussions in the conferences were loosely tied together by some common 

themes or keywords. The published transactions are interspersed with terms like 

“machinery,” “automata,” “human machine,” “code,” “symbols,” or “abstractions.” 

Nonetheless, members of each field appropriated the meanings of these keywords to fit 

their own implicit assumptions. For instance, many variations of feedbacks were 

discussed throughout the conferences. In some instances, the conceptualizations could 

be quite remote from the type of feedbacks as exemplified by Wiener’s guided missiles. 

Heinz von Forester discussed the presence of “feedback between writing and speaking” 

(Shannon, 1950/2003, p. 262). Jerome B. Wiesner identified feedback in how people 

react to humor: “One does not laugh hard where there is not the possibility of feedback. 

If you are listening to the radio by yourself or reading a book, you will chuckle, whereas 
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the same stimulus, in a group, may evoke enormous laughter” (Bateson, 1952/2003, p. 

557). It almost seems as if participants felt pressured to adopt some notion of feedback 

into their works in order to fit in the general discourse of the conferences.  

 Throughout the conferences, different terms always seemed open for 

interpretations and might cause confusion or miscommunication. Participants often felt 

confused if “analogue” meant “analogy” or if it meant the opposite of “digital” in a given 

context. There were heated discussions on vastly different classes of symbols that share 

common attributes: “symbols” in linguistics, “symbols” of the unconscious in 

psychoanalytic, and “symbols” in the abstraction of computing machines. Some of the 

most intense dialogues involved how to define “information” and “communication.” The 

probabilistic and statistical definitions in Shannon’s information theory were foreign to 

psychiatrists and biologists. In one of his presentations, Herbert G. Birch gave his 

version of “communication” from biology, placing much emphasis on anticipation and 

expectation: “[T]rue communication, in my sense at any rate – not necessarily in the 

sense of the communications engineer or in the sense of the physicist, but in the sense 

of a student of animal behavior – would be represented by this kind of level of 

interdependent communication that has direction, that involves the process of 

anticipation, and that involves the process of conventionalization of sound” (Birch, 

1951/2003, p. 464). Birch illustrated such communications between organisms by 

describing a scallop’s reaction when a starfish being placed near it. Due to some 

chemical stimuli coming from the starfish, the scallop would immediately flee. In such 

examples, “the organism that is now sending has an expectation. It anticipates a 

behavior upon the part of the other organism” (1951/2003, p. 464).48 In general, it was 

nearly impossible for conference participants to standardize the definitions of cybernetic 

terms.  

 Coming into consensus on how to define a single term posted enough of a 

challenge, let alone a unified, general theory across all knowledge disciplines. In fact, 

they were so far away from a unified theory that even the umbrella term, “cybernetics,” 

was filled with ambivalent meanings. As one of the conference participants blurted out: 

“Cybernetics is a term that means all things to some men and nothing to many” (Grey-

 

48 As I will explain later on, this biological view on information has much affinity with Simondon’s 
theory of information. 
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Walter, 1953/2003, p. 689). Despite the difficulties to keep everyone in sync, conference 

participants nevertheless found their involvement very fruitful. One of them, Margaret 

Mead, felt that “it was the most interesting conference” she had ever attended because 

“nobody knew how to manage this [sic] things yet” (Brand, 1976/2004, p. 303). Without 

coming into agreement on basic assumptions, ideas from other fields could still be 

inspirational and adaptable to one’s own research. As Heinz von Foerster reflected on 

his experience in the Macy conferences,  

the thing that is shared is not simply a belief that the different disciplines 
ought to understand each other better, nor a body of shared material to 
which different methods of analysis are brought together, nor a single 
problem towards the solution of which the members are bending their 
differentiated and united efforts, but rather … an experiment with a set of 
conceptual models which seem to be useful right across the board and 
which themselves provide a medium of communication also – when 
shared. (Pias, 2003b, pp. 14–15) 

Cybernetics was, from its very beginnings, “less a disciplinary science than a general 

methodology of action” (Pias, 2003b, p. 23).  

 It should be evident by now that there is no concise definition of cybernetics, and 

the interdisciplinary effort and communication seem neither perfect nor impactful. Is 

cybernetics then simply a buzzword for capturing all the transformational development in 

science and technology since the middle of the 20th century? Did cybernetics leave 

meagre influences on other knowledge disciplines, or was its influence of any 

significance? As I will try to show next, the significance of cybernetics comes in the new 

direction it provides for scientific research, and particularly research in AI and computing. 

Prior to cybernetics, technics is primarily concerned with the provision of tools or 

instruments, whose goals are to assist humans in their physical, mental, or social 

activities. In cybernetics, machines are given the same ontological status as living and 

organic beings, and technical research under its influence has been steered toward the 

design of complex systems and experimentation on relating such systems to human 

users. This paradigm shift is evident in the early development of computers, in which the 

original dominant image of a calculating machine gave way to the image of an intelligent 

machine. 
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3.3. The Origin of Computers as Calculating Machine49 

 Looking up the etymology of “computer,” this word was originally reserved for 

people who helped the government undertake the preparation of mathematical table in 

early 1800s (Bowden, 1953, p. 247).50 A hundred and fifty years later, what we call 

computers today were more often referred to as “calculating machines,” “computing 

machines,” “digital computers,” or “automatic computers” in order to distinguish them 

from “human computers.” In Faster than Thoughts (1953), B. V. Bowden often qualified 

computers with “humans” or “digital” to distinguish between the two. For instance, he 

would write, “[a] human computer working at his desk needs a calculating machine, 

reference books of tables, pen and paper with which to record the intermediate results in 

his calculations, and instructions as to how to proceed” (1953, p. 26). Here, “a human 

computer” is the person whereas the “calculating machine” may refer to a computer or a 

calculator. When he neglected to add the qualifier, readers today may find it confusing. 

That is the case when he wrote “hiring a fast computer” (1953, p. 232). He meant hiring 

a person, but readers today would first think of a machine before re-interpreting 

“computer” as a person in order to make sense of the word “hiring.” 

 In this context, the original conception of a universal computer was designed for 

automating the process of mass calculation. The first universal computer was 

conceptualized by Charles Babbage. He proposed a mechanical general-purpose 

computer that “would be able to perform any calculation whatsoever” (Bowden, 1953, p. 

10). But he never managed to construct this machine. It was not until around a hundred 

years later when Alan Turing among others were able to design and build an actual 

general-purpose computer. The early calculating machines were huge, complicated 

machines, as was the case with the E.N.I.A.C. built at the Moore School of Electrical 

Engineering in the University of Pennsylvania in 1946. Bowden provides a snapshot of 

what computing machines signified to the general public in the 1950s: “During the last 

year or two most people must have heard of the remarkable devices often called 

 

49 The purpose of this section is to highlight the original conception of a computer as a calculating 
machine. Due to the universality of the Turing machine, the conception of a computer evolves 
throughout its history. For more, see historical accounts on the evolving hardware in its early days 
(Aspray, 1990; Mindell, 2002) on the transition into an information machine (Campbell-Kelly & 
Aspray, 2004), and on the transition into a personal device under the influence of cybernetics 
(Bardini, 2000; e.g., Bowker, 2008; Turner, 2008). See also further discussion in Section 3.4. 

50 For more, see When Computers Were Humans (2005) by David Alan Grier. 
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‘Electronic Brains’” (1953, p. vii), and these high-speed electronic brains “were all 

designed originally to solve scientific problems; they will do as much arithmetic in a week 

as most men can do in a lifetime” (1953, p. 246). Apparently in the 1950s, the public 

perceptions of a calculating machine was an electronic brain that replaces human brain 

for performing arithmetic and scientific computations in high speed (hence the book’s 

title Faster than Thoughts).  

 In Bowden’s view, the promise of computing machines came from their potential 

to improve efficiency in numerous social activities. Computing machines were seen as 

the harbingers of “a second Industrial Revolution” (1953, p. x), as superior upgrades 

over the automata in factory assembly line. Instead of replacing manual chores, 

computing machines were on the verge of supplanting works that used to be performed 

by the human mind. In addition to playing an important role in scientific research (1953, 

p. 130), Bowden talked about their potential in replacing human calculations in 

governments and civil organizations (1953, p. 240), in providing solutions to commercial 

and business problems (1953, pp. 258–259), in predicting economic behavior and 

therefore the economy (1953, pp. 280–281), or in solving difficult dynamic problems in 

astronomy (1953, p. 317). In his opinion, “[t]he vast majority of commercially important 

problems can be solved perfectly well by a machine … and the same is true of many 

important problems in science and engineering” (1953, p. 96).  

 In its early history, computing seemed appealing due to its promise in improving 

institutional efficiency across domains, from academia to businesses to governments. At 

the same time, Bowden had little faith in the transformative potentials of computing 

machines. For instance, he doubted that computing machines could even play a game of 

chess well, given how badly the Manchester machine fared against a human opponent 

(1953, p. 93). But over the course of history, the evolution of computing was not shaped 

by this tunnel vision restricted to institutional efficacy. Instead, its actual historical 

trajectory was marked by its encounter with ideas from the cybernetics movement, and 

such encounter played a prominent role in branching computing research into multiple 
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subfields.51 To see how this turn initially came to pass, we need to situate the early 

development of the universal computer in the context of the cybernetics movement.  

3.4. The Influence of Cybernetics on the Development of 
Computers 

 In this section, I would like to emphasize the distinction between the two 

intellectual traditions while clarifying that, over the history of computing, the key ideas of 

cybernetics did influence the direction of computer research. The distinction is important 

to avoid possibly confusing the universality of computing as the university of cybernetics. 

In the following, I will first explain the claim of universality for the Turing machine and 

assert that universality of the Turing machine ought not be mixed up with the 

interdisciplinary mosaic of the cybernetics movement. I then contend, it is due to the 

universality of computing that many ideas in cybernetics can be adopted in efforts to 

innovate the functionality of computers. Such innovations convert the original imaginary 

of an all-powerful calculating machine, capable of performing any computation that could 

be done by a human mathematician, into an intelligent machine capable of much more 

than mass calculation.  

 Prior to the cybernetics movement,52 Alonzo Church and Alan Turing, working 

independently, each put forward the claim that the class of functions they defined, 

Church’s lambda-calculus53 and the Turing machine54, “coincide with the informally 

defined class of effectively computable functions” (Cutland, 1980, p. 67). In other words, 

their claim, typically referred to as the Church-Turing Thesis, implies that a Turing 

machine, if given unlimited memory and time, “can do anything that could be described 

as ‘rule of thumb’ or ‘purely mechanical’,” that it can perform “every rule-of thumb 

 

51 According to Warren S. McCulloch, the Macy conferences “has been … an inspiration to 
neurophysiology and to the theory of automata, including artificial intelligence, and bionics or 
robotology” (1970, 360). 

52 This is based on McCulloch’s account, according to which cybernetics “was born in 1943” 
(1974/2004, p. 360). There are however different opinions as to when the movement actually 
begins, such as the account by David A. Mindell in Between human and machine: feedback, 
control, and computing before cybernetics (2002). 

53 Alonzo Church introduced the mathematical logic of lambda-calculus in “An Unsolvable 
Problem of Elementary Number Theory” (1936). 

54 Alan Turing first described the Turing machine in "On Computable Numbers, with an 
Application to the Entscheidungsproblem" (1936). 
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process” one can conjecture (A. Turing, 1948, p. 7). In “A Note on Universal Turing 

Machine” from Automata studies (W. R. Ashby et al., 1956/1972), M. D. Davis further 

highlights the universality implied by the Church-Turing thesis: “it is possible to construct 

a definite computing machine U which is universal in the sense that any computation 

whatever, can be performed on U” (W. R. Ashby et al., 1956/1972, p. 167). It is worth 

noting that the Church-Turing thesis is only a thesis, “not a theorem which is susceptible 

to mathematical proof; it has the status of a claim or belief which must be substantiated 

by evidence” (Cutland, 1980, p. 67 emphasis in original). When Turing claimed that the 

thesis is “sufficiently well established” (A. Turing, 1948, p. 7), he was likely referring to 

the evidence that “[n]o one has ever found a function that would be accepted as 

computable in the informal sense, that does not belong to [the class of functions defined 

by Church and by Turing]” (Cutland, 1980, p. 67).55 

The computation performed on a Turing machine can be another Turing 

machine. A universal Turing machine (UTM) is a specific type of Turing machine 

designed to simulate the behavior of any other Turing machine. In a modern-day 

computer, a software program can be considered as a Turing machine whereas the 

computer with its operating system can be considered a UTM. In The Emotion Machine 

(2006), Minsky gives a succinct synopsis of Turing’s idea: “[Turing] showed how to make 

a machine that can inspect a description of any other machine—and then interpret that 

description as rules for doing just what that other machine would do” (Minsky, 2006, p. 

255). By switching among those different descriptions, “that same machine can, step by 

step, do all that those other machines can do” (Minsky, 2006, p. 256). The UTM is the 

predecessor of the Von Neumann architecture and other designs that are more memory 

and performance efficient (A. Turing, 1948, p. 7), which in turn serve as the prototypes 

for the design of modern-day computers.  

 Many critiques concerning the universality of cybernetics seem to mix up the 

universality of Turing machine with the loose interdisciplinary couplings over the 

cybernetic themes of feedbacks, homeostasis, and the blurring of boundary between the 

living and the machine.56 While, as Yuk Hui (2019) has pointed out, the Turing machine 

 

55 For more on Church-Turing thesis, see Chapter 3 in Michael Sipser’s Introduction to the theory 
of computation (2013): 

56 The confusion or conflation of cybernetics and universal computing is evident in prominent 
works in software studies (e.g., Chun, 2013; Galloway, 2006). 
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has a design of recursivity similar to a cybernetic feedback loop, the universality of 

computing can be traced to Babbage’s design of his Analytic Machine and is formally 

and mathematically proven by Turing. It is because of this universality that today’s 

computing devices can “arrange our appointments, edit our texts, or help us send 

messages to our friends” (Minsky, 2006, p. 256). But such applications already reflect an 

appropriation of a computer from the original imaginary of calculating machine. We have 

witnessed this appropriation both in the business realm and in the personal realm. 

Businesses such as IBM turned the calculating machine into an information processing 

machine (Campbell-Kelly & Aspray, 2004). In the personal realm, it is the encounter with 

cybernetics that appropriates computers from performing calculations or information 

processing to today’s personal devices. According to Thierry Bardini in Bootstrapping 

(2000), “the writings of Ashby, Wiener, and others on cybernetics deeply influenced 

Engelbart, then in his maturing years, just as they influenced many computer scientists 

in the 1950’s and 1960’s” (2000, p. 11). For instance, it is widely recognized that the 

invention of Windows and personal computing originate from Douglas Engelbart’s 

Augmentation of the Human Intellect project. This project takes a “bootstrapping” 

approach of “iterative and co-adaptive learning,” the basis of which “is the cybernetic 

notion of positive feedback in the research process” (2000, pp. 24–25). This approach 

adapts J. C. R. Licklider’s idea of “man-computer symbiosis,” which was inspired by the 

symbiosis of humans and machines in cybernetics (Bardini, 2000, p. 20). Bardini also 

notes that “[c]ybernetic concepts, methods, and metaphors gained a huge popularity” 

(2000, p. 11). One of the popular adaptation of cybernetics is the cyberpunk genre of 

science fiction, and William Gibson’s vision of cyberspace in Neuromancer (2010) 

became the prominent metaphor for identifying online computer network. 

3.5. Disentangling the relation between AI and Cybernetics 

 By tracing the early history of AI, it also seems evident that AI branched out of 

cybernetics. John McCarthy organized the Dartmouth summer workshop and coined the 

name “artificial intelligence” for this field of research to differentiate his research interest 

from the automata studies of the cybernetics movement. Participants invited to the 

workshop acknowledged the inspiration of Turing’s papers on machine intelligence 

rather than cybernetics. Despite the differentiation, it is easy to see that the cybernetic 

idea of blurring human-machine boundary has left its legacy in the conceptualization of 
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AI. In addition, given the time of his writing, it is arguable that Turing also wrote his 

papers on machine intelligence under this influence of cybernetics. In the following, I will 

present the historical account on the Dartmouth summer workshop, Turing’s 

reconceptualization of the UTM from a calculating machine to a machine with 

intelligence, and the discussion on the mechanization of the brain in the Macy 

Cybernetics meetings. These accounts will help us identify the similarities between AI 

and cybernetics as well as their differences. In particular, cybernetics emphasizes 

scientific understanding about biological mechanisms in the living and the artificial 

replication of biological mechanisms in machines. AI research, on the other hand, 

prioritizes the appearance of intelligence in machines, the abstraction of performing 

intelligent functions, over artificial replications of actual biological processes. 

 The Dartmouth Summer Research Project on Artificial Intelligence, which 

gathered together early AI pioneers in the summer of 1956, is widely recognized as the 

founding event of AI research (“Dartmouth Workshop,” 2022). This event grew out of the 

reaction of John McCarthy against the work on automata theory in cybernetics. 

McCarthy, the initiator and organizer of the Dartmouth summer workshop, was originally 

one of the co-editors for the publication of Automata Studies (W. R. Ashby et al., 

1956/1972). But he became frustrated with the type of submissions they received for the 

publication, as none of them resembled the exciting paths of research laid out by Alan 

Turing on machine intelligence (1948, 1950). It was in large part due to this 

dissatisfaction that McCarthy felt the necessity to organize the Dartmouth summer 

project, which focuses on the nouvelle and exciting works on machine intelligence 

distinct from the cybernetic project of automata studies. Whereas automata studies 

investigate the parallel between designing machines and the organizational principles of 

biological entities, between machines and human anatomy, the new category of 

research focuses on exploring how machines can imitate and exhibit human-level 

intelligence. Leaving behind his works with Claude Shannon on Automata Studies, 

McCarthy organized a two-month, ten-man study of artificial intelligence carried out at 

Dartmouth College. In the workshop, he coined the term “artificial intelligence” to 

distinguish this new field from automata theory, which was only concerned with 

“mathematical principles underlying the operation of electromechanical systems,” but 

“not about the relation of language to intelligence, or the ability of machines to play 

games” (McCorduck, 2004, p. 145). 
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 McCarthy and other participants in the Dartmouth workshop have all 

acknowledged the influence of Turing’s two papers on machine intelligence on their 

research in AI. Both papers were written at around the time of the Macy Cybernetics 

Conferences from 1946 to 1953, and the first was written in the same year as Norbert 

Wiener’s publication of Cybernetics (1948/2007), a decade or so after he conceived of 

the UTM. So even though the papers have no direct reference to cybernetics, it would 

seem highly probable that Turing was aware of the intellectual current of cybernetics and 

incorporated ideas from the movement when he speculated on the true potential of the 

UTM. In particular, his “imitation game,” commonly known as the Turing Test, is likely 

influenced by the cybernetic theme of breaking down the rigid boundary between the 

human and the machine.  

 For Turing, the vast potentials of this universality remained largely unexplored 

during the early history of digital computing. Digital computers were initially deployed as 

immediate substitutions of human computers, as machines capable of performing 

mathematical calculations faster and more accurately than their human counterparts. 

Early applications of digital computers include the decryption of Nazi’s secret 

communication during World War II, solving complex equations for quantum physics 

researchers, or the processing of numerical data in bank ledgers. But in “Intelligent 

Machinery” (1948), Turing “[proposed] to investigate the question as to whether it is 

possible for machinery to show intelligent behavior,” even though its impossibility is 

“usually assumed without argument” (1948, p. 3). Rather than trying to “replace all the 

parts of [a man] by machinery,” which “seems to be altogether too slow and 

impracticable,” Turing “proposed to try and see what can be done with a ‘brain’ which is 

more or less without a body providing,” directing the research focus to suitable branches 

of thought such as chess, poker, or translation of languages, along with cryptography 

and mathematics (1948, p. 13). In “Machine Intelligence” (1950), Turing further 

problematizes the question on intelligence by reframing the question in terms of what he 

calls the “imitation game” (1950, p. 1), or what people today call the Turing Test. This 

hypothetical game involves three players: an interrogator, a human, and a digital 

computer. The interrogator is in one room, the person and the computer in another 

room. The interrogator can pose questions to either the human or the computer, and 

would win the game by correctly discerning which is the human and which is the 

computer. But the game is not so easy because the computer would simulate human 
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behavior to thwart attempts by the interrogator to discern between the two, hence the 

name “imitation game.” This game illustrates how Turing wants to redefine intelligence: 

A machine can be said to possess human-level intelligence as long as people cannot tell 

how its behavior is different from human behavior, regardless of the causes that lead to 

such behavior.57 

 The cybernetic counterpart to destabilizing the meaning of intelligence is the idea 

that human brains are biological machines and can be substituted by artificial brains, not 

unlike how our heart can be replaced, at least temporarily, by an artificial heart. Such a 

controversial idea was a major topic of debate in the Macy conferences. For instance, 

Ralph W. Gerard asserts, “to say, as the public press says, that therefore these 

machines are brains, and that our brains are nothing but calculating machines, is 

presumptuous” (Gerard, 1950/2003, p. 172). Donald M. MacKay speculated the 

possibility of simulating consciousness with a probabilistic mechanism (1951/2003). In 

his presentation of information theory, MacKay suggested that “[c]onsciousness … —if I 

dare stick my neck out—might be introduced in this way: We might say that the point of 

area »of conscious attention« in the field of view—in a field of data—is the point or area 

under active symbolic replication, or evocative of (internal) response” (1951/2003, p. 

494). He believed that “one could go a very long way toward simulating what appears to 

be the ordinary conscious behavior of human beings” by “[devising] a probabilistic 

mechanism with the same mobility, and so on, as Homo sapiens, if one would have to 

go in for mechanisms in protoplasm instead of mechanisms in copper” (1951/2003, p. 

495). John von Neumann continues this line of thought in Autonomous Studies (W. R. 

Ashby et al., 1956/1972), where he talked about the possibility of a UTM mimicking the 

human intuition: “[I]f our automata are furnished with an unlimited memory — for 

example, an infinite tape, and scanners connected to afferent organs, along with suitable 

efferent organs to perform motor operations and/or print on the tape - the logic of 

constructable machines becomes precisely equivalent to intuitionlistic logic” (1956/1972, 

p. 50). 

 

57 Over the years, the Turing test has been widely challenged and criticized. For instance, John 
Searle’s Chinese room argument implements a version of the Turing Test to show that the test is 
insufficient to detect the presence of consciousness, even if the room can behave or function like 
a conscious mind. Here, I will not dwell on the philosophical debate on whether or not a machine 
can truly think like a human being. I simply want to highlight how influential Turing’s thesis had 
been for the AI pioneers who met at the Dartmouth Summer workshop. 
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 Between the conference participants, there seems to be a tension between those 

who want to build electronic brains or artificial organs, and those who want to build 

machines as models of living organisms in order to study their scientific properties. It is a 

tension between an engineer’s aspiration and a scientist’s quest for knowledge. 

According to “A Note by the Editors” for the Eighth Cybernetics Conference, the eventual 

consensus of the conference participants was to prioritize scientific knowledge over 

functioning machines: 

We [participants of the Macy conferences] all know that we ought to study 
the organism, and not the computers, if we wish to understand the 
organism. … But the computing robot provides us with analogues that are 
helpful as far as they seem to hold, and no less helpful whenever they break 
down. To find out in what ways a nervous system (or a social group) differs 
from our man-made analogues requires experiment. These experiments 
would not have been considered if the analogue had not been proposed, 
and new observations on biological and social systems result from an 
empirical demonstration of the shortcomings of our models. (von Foerster 
et al., 1951/2003, pp. 346–347) 

Along the same line, Pitts suggested that the purpose of constructing machines is to 

model after mechanisms of biological organs or of the nervous system, and these 

models serve two functions: 

First they want to demonstrate that thus and such a function … can in fact 
be done by some mechanism. This is an extremely important educational 
task, since certainly the vast majority of the world would refuse to accept 
for a moment the assumption that what they regard as specifically 
psychological functions can be done by any mechanism whatsoever; … 
The second function of modelmakers is to find models that throw a light, 
either directly in the sense of making a mechanism out of components as 
much like what we know about the neurons as possible, so that we can 
perhaps form direct suggestions as to how in fact the brain does something, 
or else indirectly, by means of elements which have certain of the formal 
properties … (Gerard, 1950/2003, p. 649)  

The first function is to demonstrate that certain psychological functions can be achieved 

through mechanisms. This function is important because, to many people, psychological 

functions are unique to humans and cannot be replicated by machines. The second 

function is to shed light on how the brain functions, either by directly mimicking the 

structure of neurons or by using elements that have similar properties.  

 It is in this sense that cybernetics research and automata studies differ from 

research on artificial intelligence. The primary goal of cybernetics is to discover the 
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mechanisms behind the “human machine.” The possibility to construct machines that 

replicate the “human machine” was regarded as both a consequence of and an 

instrument for this discovery. It assumes a symmetric view of the mechanisms between 

the living and the non-living. In contrast, AI is a field that favours simulation of (human) 

behavior over the imitation of mechanisms. It values an algorithm that generates an 

appearance of intelligence even if the algorithm has no matching biological or 

physiological processes.58 This emphasis on abstraction and encapsulation comes from 

computer sciences, as the two concepts are fundamental design principles in hardware 

and software architecture.59 In Chapter 4, we will further explore this distinction between 

the cybernetic machine that learns and the abstract machine-learning models in AI. 

3.6. Summary 

 In this chapter, I question the critique of universality of cybernetics by 

distinguishing between a macro-social perspective that attribute the emergence of our 

technocratic society to the cybernetics movement, and a technical perspective that 

recognizes the irresolvable conflicts between disciplines loosely tied by cybernetic 

concepts like feedbacks or homeostasis. I first problematize the notion of universality in 

cybernetics by reading the actual conversations that took place at the Macy Cybernetics 

Conferences. The conversations reveal irresolvable conflicts and tensions between 

conference participants, mainly due to the inherent conflicts in the presumptions held by 

various disciplines. The interdisciplinary meetings were loosely held together by a few 

key themes, such as feedbacks or homeostasis, which could be interpreted in a variety 

of ways between the conference participants. The loose ties would not have been 

 

58 This view on the relationship between cybernetics and AI is coherent with Roberto Cordeschi’s 
synopsis in The Discovery of the Artificial (2011): “The fundamental insight of cybernetics, i.e. the 
proposal of a unified study of organisms and machines, was inherited, starting in the mid-1950s, 
by AI (Artificial Intelligence). However, AI proposed a different simulative methodology. To put it 
quite generally, this methodology used computer programs to reproduce performances which, if 
observed in human beings, would be regarded as intelligent” (2011, p. xi). 

59 In The Closed World (1997), Paul N. Edwards makes a similar point: “Instead of modeling 
brains in computer hardware—the central goal of cybernetics—AI sought to mimic minds in 
software. This move from biological to symbolic models has usually been interpreted as an abrupt 
intellectual break, a sudden shift in orientation from process to function” (1997, p. 239). But 
Edwards’ emphasis is placed on the contrast between the physical (brain, biological, hardware) 
and the virtual (mind, symbolic, software), whereas my account emphasizes the cyberneticists’ 
goal in finding parallels between the biological and the machine (both software and hardware), in 
contrast to researchers in artificial intelligence who see little value in such parallels.  
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possible without a scientific discourse that already assumes a mechanistic worldview. 

Scientists shared the exploratory aim of trying to discover the mechanisms behind 

animal, human, and social behaviour. 

 I then trace the history of computing and of the UTM to Babbage’s Analytic 

Machine, which was originally designed to replace the mass calculation by a factory of 

human computers. As we can see in Bowden’s Faster than Thought (1953), this 

perception of the computer as a super calculator was the prevalent technological 

imaginary during the 1950s. But already, the intellectual current of cybernetics is already 

steering the research direction of computing to other directions, among them, the 

human-computer symbiosis in Licklider’s and Engelbart’s research that led to the 

invention of windows and personal computing, as well as the research on artificial 

intelligence. 

 Particularly relevant to this dissertation is the relation between cybernetics and 

artificial intelligence. We can see traces of cybernetics themes in Turing’s papers on 

machine intelligence, in which he proposes the “imitation test” to destabilize the meaning 

of intelligence, traditionally regarded as a unique human quality. The transactions of the 

Macy conferences also reveal a similar challenge to the traditional boundary between 

the human and the machine, discussing the mechanistic understanding of the human 

brain and the possibility of replicating these mechanisms in a machine. Nonetheless, 

cybernetics emphasizes scientific understanding that reveals actual biological 

mechanisms over functionable technological designs. Conversely, AI research is only 

concerned with the simulation of human behaviour, and values abstract algorithms even 

if they have no resemblance to the mechanisms that sciences reveal in the human body 

or the nervous system. This reflects the design principles of abstraction and 

encapsulation commonly found in computer hardware or software architecture. 

 Machine learning, a subfield of AI, also bears this complex relationship to 

cybernetics. In fact, machine learning has closer ties to cybernetics than the rest of the 

discipline in AI and in computer sciences. Machine learning adopts the semantic change 

of the word “learning” in cybernetics, and there are strong resemblances between 

machine learning in AI and the cybernetic learning machines, such as Claude Shannon’s 

maze-solving electromechanical mouse or Ross Ashby’s Homeostat. Nonetheless, 

machine learning in AI does not rely on scientific knowledge of biological or physiological 
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mechanism, but rather, explores and attempts to find the best abstract algorithms that 

can be programmed on a UTM. It eventually evolves into a field of knowledge about 

algorithms and statistical/probabilistic proofs on predictive models based on pattern 

recognition. I will further elaborate on this genealogy of machine learning in the following 

chapter. 
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Chapter 4.  
 
The Genealogy of Machine Learning: From Learning 
in Cybernetics to Machine Learning in AI 

Me is there any relationship between machine learning and 

cybernetics? 

ChatGPT:  Yes, there is a relationship between machine learning and 

cybernetics. Cybernetics is the study of control and 

communication in systems, whether they are mechanical, 

biological, or social. Machine learning, on the other hand, is a 

subfield of artificial intelligence that involves building 

algorithms and models that can learn and make predictions or 

decisions based on data. 

Both machine learning and cybernetics are concerned with 

systems that can adapt and learn from their environment. 

Cybernetics provides a theoretical framework for 

understanding and designing systems that can control 

themselves, while machine learning provides practical tools 

for building these systems. In particular, machine learning 

algorithms can be used to design control systems that can 

adapt and improve based on feedback from their 

environment. 

4.1. Overview 

 Back in Chapter 3, I contended that the emergence of AI comes from the 

encounter of two intellectual traditions. One is associated with the universal computing 

machine that was originally designed to replace the factory of human computers who 

collectively compute arithmetic. The other is associated with the themes of feedback and 

boundary-crossing of the cybernetics movement. One of the major topics discussed in 

the Dartmouth summer workshop on AI is machine learning. This research direction, led 

by Arthur Samuel and Ray Solomonoff, actually inherits more directly from cybernetics 

than the rest of the discipline in AI and in computer sciences. Prior to the Dartmouth 

meeting, cyberneticians had been exploring whether and how a machine can “learn,” as 

evident in the transactions of the Macy conferences and in the publication of Automata 

Studies (1956/1972). Turing’s papers on machine intelligence, which also present a 

lengthy discussion on how a universal Turing machine can be made to “learn,” was 
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arguably written under the influence of the cybernetics movement, In fact, the very name 

“machine learning” seems to imply this cybernetic heritage.  

 At the same time, machine learning, as a subfield of AI, is distinguishable from 

the learning in cybernetic machines and in automata studies. Research on machine 

learning over the past half-century has primarily developed software-based algorithms, 

unlike the electromechanical designs of cybernetic learning devices such as Claude 

Shannon’s maze-solving mechanical mouse or W. Ross Ashby’s Homeostat. These 

devices were designed to replicate the learning mechanisms in living organisms. In 

contrast, machine-learning rides on the mathematical properties of the universal Turing 

machine. It is by realizing the implication of this universality that Solomonoff came up 

with the proofs on algorithmic probability and universal inductive inference. These proofs 

confirm that machine learning is capable of recognizing any subtle patterns that exist in 

a sea of data, establishing that the primary affordance of machine learning is pattern 

recognition.  

 We will come back to Solomonoff’s proofs in Chapter 5. This chapter attempts to 

elucidate the legacy of learning machines in cybernetics on the AI subfield of machine 

learning as well as the way machine learning departs from cybernetics. Going back to 

the transactions of the Macy Cybernetics Conferences, I will show how the discussion on 

Norbert Wiener’s guided missiles and statistical predictors, Shannon’s maze-solving 

device and that on Ashby’s Homeostat engage in the negotiation of what “learning” can 

mean in the context of machines. The resulting semantic change in “learning” was 

adopted by the AI subfield of machine learning, which has also developed a statistical 

framework of training models based on cybernetic feedbacks and homeostasis. 

Nevertheless, just like symbolic AI, which was the dominant approach to implementing 

AI in its early days, machine learning is concerned with formulating abstract knowledge 

on computer algorithms and mathematical proofs about these algorithms. Unlike 

cybernetics, these algorithms do not necessarily imitate the mechanistic knowledge of 

the actual human body or the nervous system. Such an emphasis on abstract algorithms 

is evident in Turing’s papers on machine intelligence, in Samuel’s checkers-playing 

machine, and in Solomonoff’s theories. 
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4.2. The Mechanistic “Learning” of Cybernetic Feedbacks 

 The idea of building machines that can “learn” by adapting to environmental 

feedbacks was widely discussed in the Macy Cybernetics Conferences. Participants 

across different scientific disciplines would compare the type of learning observed in 

humans or in animals with the mechanistic “learning” in cybernetic systems, which can 

be achieved by implementing feedback loops in a system design. Such systems would 

give the appearance of “learning” when their internal parameters are tuned in response 

to feedbacks from their environment. By generalizing “learning” as a feedback 

phenomenon for both the living and the machine, and by redefining “adaptation” as the 

characteristic of a system capable of self-reorganization based on feedbacks from its 

environment, the cyberneticians were implicitly suggesting semantic changes in the 

words “learning” and “adaptation,” further problematizing the boundary between the 

living and the machine. In particular, the systems invented by three cyberneticians show 

off this twist in the semantic of “learning” and became the focal points of discussion 

during the Macy conferences. In the following, I will first depict Norbert Wiener’s 

invention of guided missiles and his subsequent project of statistical-based predictors. 

These systems are prototypes of artificial “learning” based on negative feedbacks. I then 

present Claude Shannons’s maze-solving electromechanical “mouse” and W. Ross 

Ashby’s Homeostat to illustrate how other cyberneticians have adopted Wiener’s method 

of negative feedbacks in their learning and adaptation machines.  

 The design framework of artificial “learning” typically involves a feedback loop 

between a device’s input, output, and memory storage. In fact, the first archetype of a 

feedback system, Wiener’s guided missile, can also be perceived as a learning system. 

During World War II, Wiener was designing missiles that could be guided into the future 

position of an enemy airplane. These “goal-seeking” missiles “predict the future position 

of a moving target (at time of impact) by extrapolation from its earlier positions during 

pursuit” (von Foerster et al., 1951/2003, p. 345). Extrapolation refers to how “the missile 

measures the angle between its direction and the target it’s seeking” (Brand, 1976/2004, 

p. 302). The missile uses this measurement to continuously correct its path. Making 

predictions in a targeted manner based on feedbacks of behavioral patterns is in fact the 

hallmark of Wiener’s cybernetics as exhibited by his guided missiles. The missile is 
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learning, in real-time, the pattern of how its target moves, and by recognizing this 

pattern, it can make reasonable predictions about the future positions of the target. 

 Wiener is a mathematician, and his research has primarily been statistical. Such 

works have led to his insight regarding the possibility of Big Data. At the Second 

Cybernetics Conference in 1946, Wiener explained the intuition that more data would 

always yield better predictions. Without going into rigorous mathematical proofs, he 

stated that “from any time series it was possible to compute a best prediction, that the 

more data were available the better became a prediction” (McCulloch, 1947/2004, p. 

341). From this intuition, Wiener deduced that “wherever sociologists or social 

anthropologists were able to collect time series which need be no more than 

enumerations of decisions at specified times, it would be possible to discover causal 

sequences in human conduct” (McCulloch, 1947/2004, p. 341). This theoretical 

possibility of Big Data, however, was deemed impossible in practice at the time due to 

lack of data and computational resources.60  

 Wiener’s statistical works are also precursors to the statistical framework in 

machine learning. At the Sixth Cybernetics Conference held in 1949, Wiener declared 

that he had been preoccupied with building a statistical predictor “which will actually 

examine its own statistical experience and do its circuit in accordance with the statistical 

experience if the data changes in character and will change itself to suit the new 

statistics and data” (Pias, 1949/2003, p. 158). This predictor would “go through the 

computing motion, compute the auto-correlation and the entire set of patterns for 

prediction theory … continually changing its pattern of prediction if there is any change in 

the statistical pattern of the data” (Stroud, 1949/2003, p. 43). The machine would 

compare predicted error with the actual error, and “when the difference between the 

actual error and the predicted error got beyond a certain percentage—it would repeat 

itself, re-examine itself statistically” (Stroud, 1949/2003, p. 44). By iteratively measuring 

the accuracy of outputs and then reconfiguring parameters, Wiener’s statistical predictor 

employs an algorithm similar to today’s machine-learning algorithms. In a typical 

 

60 In Warren S. McCulloch’s summary of the beginning of cybernetics, he presents Wiener’s view 
that, even though there are cybernetic problems in the study of social behavior, we “lack 
sufficiently long runs of uncorrupted data to apply mathematical tools” (McCulloch, 1974/2004, p. 
359). Today, insufficient data is no longer an issue in a society where a large portion of social 
interactions occurs on the surveillance Internet. Wiener’s improbable idea of discovering causal 
relations in social behavior has now become a practical reality. 
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machine learning technique, cost functions are computed to model learning problems, 

and optimization schemes such as gradient descent would iteratively tune models’ 

parameters with the goal of minimizing the cost.  

 In “A Note by the Editors” for the Eighth Cybernetics Conference, Heinz von 

Foerster et al. note that “the appearance of ‘purpose’ in [complex electronic devices’] 

behaviour (a feedback over the target!) has intrigued the theorists and prompted the 

construction of such likeable robots as Shannon’s electronic rat …” (1951/2003, pp. 

345–346). Claude Shannon is renowned for his theoretical contributions to information 

theory. But he also played a significant role in the research on automata, which consist 

of both theoretical and engineering works for building automated machines. One such 

machine is the maze-solving electromechanical mouse called “Theseus.” Built in 1950, 

Theseus is probably the first artificial learning device of its kind (Bell Labs Advances 

Intelligent Networks, 2012). It is a mechanical mouse controlled by an electronic relay 

circuit that controls driving motors through a feedback loop with its sensing finger 

(Shannon, 1951/2003, p. 477). It can move around a labyrinth of 25 squares with flexible 

maze configurations, which can be modified by rearranging movable partitions. Theseus 

can be placed anywhere and, by trial-and-error, finds its ways toward the goal. If it has 

travelled through the maze, the electromechanical circuit would retain the “memory” of 

the maze configuration, allowing it to go directly toward the goal next time around. If 

Theseus is placed in a square that it has not explored, or if partitions have been 

reconfigured, it would search its way by trial-and-error to a known location and then 

proceed directly toward the goal. 

 Shannon presented his electromechanical mouse at the Eighth Cybernetics 

Conference because he believed that other conference participants might be interested 

in “its connection with the problems of trial-and-error learning, forgetting and feedback 

systems” (Shannon, 1951/2003, p. 474). Theseus was designed with a large number of 

feedback loops, the most prominent one being the feedback “from the sensing finger 

through the circuit to the driving motors and back to the sensing finger, by 

electromechanical motion of the motors” (1951/2003, p. 477). Its ability to learn is 

captured in another feedback loop, one between the electromechanical mouse’s 

memory, its driving motor, and its sensing finger. The device “is capable of remembering 

one of four possible directions: north, east, south, or west” for each square in the maze 
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(1951/2003, p. 476). The feedback of this memory into the device’s strategy to directly 

reach the goal is what makes Theseus an artificial learning device.  

 

Figure 1: Claude Shannon and its electromechanical mouse (Bell Lab, n.d.). 

 It is commonly acknowledged that “[n]egative feedback is a central homeostatic 

and cybernetic concept, referring to how an organism or system automatically opposes 

any change imposed upon it” (Rodolfo, 2000). The homeostat, invented by W. Ross 

Ashby, is another cybernetic system designed to learn from feedbacks. It is a 

mechanical apparatus that could regain stability entirely on its own in adaptation to a 

dynamically changing environment. It models after the biological notion of homeostasis 

in living organisms and was designed for a single purpose: When disturbances are 

introduced into the system, the device would automatically reconfigure itself to stabilize 

the effects of the disturbances. Cyberneticians adopted this biological notion and 

converted it into a technological notion such that homeostasis can be modelled in 

machines.  

 

Figure 2: W. Ross Ashby's Homeostat (M. A. Ashby on behalf of the Estate of W. Ross, 1948) 
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 Ashby completed the construction of the homeostat in 1948, in the same year 

when the intellectual current of cybernetics was christened by Wiener with his 

publication of Cybernetics (1948/2007). Wiener’s book gives a brief overview on the 

mechanistic understanding of homeostatic processes by alluding to the feedback 

systems of living organisms (see 1948/2007, pp. 114–115). He emphasizes the 

importance of homeostasis in cybernetics, suggesting that “[a]ny complete textbook on 

cybernetics should contain a thorough detailed discussion of homeostatic processes” 

(1948/2007, p. 115). But as an introductory survey into cybernetics, his book has only 

provided “an introduction to the subject [rather] than a compendious treatise” 

(1948/2007, p. 115). The task of writing this “compendious treatise” fell on Ashby, who 

explains the cybernetic notion of homeostasis and describes his design of the homeostat 

in the article “Design for a Brain” (1948) and later in a book under the same title 

(1952/1960). In the same year his book was published, he gave a demo of the 

homeostat at the Nineth Cybernetics Conference. In the demo, he explained the 

difference between the feedbacks in Wiener’s guided missiles and those in the 

homeostat. Even though the homeostat and Wiener’s guided missiles are both feedback 

systems, they can be distinguished in the way the system changes: “During learning, the 

organism must change, but this change is not to be confused with the change that it 

undergoes during its small corrective movements” (W. R. Ashby, 1952/2003a, p. 610). 

Instead of undergoing small corrective movements like Wiener’s guided missiles, the 

homeostat imitates the self-regulating process of homeostasis, the way an organism 

adapts to its environment by reorganizing its internal structure. Thus Ashby “consider[s] 

the organism … as a mechanism which faces a hostile and difficult world and has as its 

fundamental task keeping itself alive” (1952/2003a, p. 593). He was interested in 

discovering the mechanisms that can bring an equilibrium between internal organization 

and external environment for “keeping itself alive,” and considered the environment as “a 

transducer, as an operator that converts whatever action comes from the organism into 

some effect that goes back to the organism” (1952/2003a, p. 594). Because an organism 

needs to survive by “developing an adaptive reaction to any one of an almost unlimited 

number of environments” (1952/2003a, p. 595), the organism needs to have an internal 

structure that is most flexible and adaptable to environmental changes. It needs to 

switch between internal structures when faced with a new environment. Thus “[t]he 

fundamental problem [of learning] is one of organization, of finding the appropriate 

switching-pattern” (1952/2003a, p. 595). Herhardt von Bonin identifies the same 
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adaptive self-reorganization in animals’ behaviour: “the animal appears to break down 

the environment into certain patterns which seem to develop in its mind. Something goes 

on in its brain and then that structures the environment. It perceives the environment in a 

certain pattern, set by its brain, so that it can deal with it” (1952/2003a, p. 603). 

 For Ashby, the significance of the homeostat is not limited to proving the 

feasibility of building a cybernetic machine with homeostatic processes. The homeostat 

can actually serve as a prototype for an artificial brain. In the article “Design for a Brain” 

(1948), he speculated that a perfected homeostat is capable of playing chess “with a 

subtlety and depth of strategy beyond that of the man who designed it.” Time magazine 

concurs, describing the homeostat as “the closest thing to a synthetic brain so far 

designed by man” (“Science: The Thinking Machine,” 1949). A few years later, Ashby 

developed this idea more comprehensively in the book Design for a Brain (1952/1960). 

In the preface of the book, Ashby gives the reasons behind why the homeostat can be 

considered a model for the brain:  

The book is not a treatise on all cerebral mechanisms but a proposed 
solution of a specific problem: the origin of the nervous system's unique 
ability to produce adaptive behaviour. The work has as basis the fact that 
the nervous system behaves adaptively and the hypothesis that it is 
essentially mechanistic; it proceeds on the assumption that these two data 
are not irreconcilable. It attempts to deduce from the observed facts what 
sort of a mechanism it must be that behaves so differently from any 
machine made so far. (1952/1960, p. v) 

Among the different cerebral mechanisms, Ashby focuses on the mechanism that is 

unique to the nervous system: its ability to produce adaptive behaviour. His goal is to 

discover the mechanism behind this adaptive behaviour, and the discovery would allow 

him to build a machine that is unlike any machine before, a machine that is capable of 

behaving like the nervous system and the human brain. Thus the homeostat was built to 

replicate and to demonstrate the mechanisms behind the cerebral mechanisms that 

produce adaptive behaviour in living organisms (1952/1960, p. 99). 

 In another meeting at the Ninth Cybernetics Conference, Ashby presented more 

insights on the homeostatic processes of cerebral mechanisms in his presentation on 

“Mechanical Chess Player” (1952/2003b). Without having constructed an actual device, 

Ashby presented his homeostatic design of a mechanical chess player that “learns” from 

its environment based on pattern recognition. He characterized “learning” as the ability 



96 

to “develop better criteria of judgement than the designer himself can produce” (W. R. 

Ashby, 1952/2003b, p. 651). This ability can be developed through “corrective feedback 

that is operated by results” (W. R. Ashby, 1952/2003b, p. 652). Ashby applied this 

concept of learning automaton to the design of a mechanical chess-player. This design 

has less to do with typical search algorithms (such as “minimax algorithm” or “alpha-beta 

pruning”) than with the recognition of layout patterns of chess pieces on a chess board. 

The idea occurred to Ashby when he came upon Capablanca’s Chess Fundamentals, 

where he “found many sentences each of which gave clear advice in a general way 

without making any specific analysis on specific squares” (W. R. Ashby, 1952/2003b, p. 

653). This made Ashby realize that the growth in recognizing patterns on a chess board 

is how a beginner develops into an experienced chess player. In analogy, a mechanical 

chess player can be a homeostatic system that continually improves its strategies based 

on corrective feedbacks with its environment, which is simply the layout patterns of the 

chess pieces on a chess board. Thus Ashby’s conceptual design of a mechanical chess 

player exemplifies an evolving homeostatic system that adapts and learns by 

recognizing patterns in its environment. 

4.3. The Controversy of Semantic Change in “Learning” 

 From Wiener’s guided missiles to Shannon’s mechanical mouse to Ashby’s 

homeostatic devices, these feedback-based systems can dynamically reach certain 

goals by modifying their internal states. During the Cybernetics meetings, participants 

deliberated on whether the appearance of purposes in artificial systems can be 

considered as a form of learning. The semantic maneuver would subvert the traditional 

understanding of learning as a capability that belongs solely to the living. While the 

conference participants failed to reach any consensus on the matter, the semantic 

change in the word “learning” is taken up later when the term “machine learning” was 

coined for the field of study concerned with the training of computers with data to 

improve their performance over time without being explicitly programmed (Samuel, 

1959). The coining of "machine learning" would presumably help differentiate this field 

from other areas of computer science and AI. 

 In the Cybernetics meetings, scientists and scholars from different disciplines 

shared their disciplinary perspective on various forms of “learning.” For instance, the 

developmental psychologist Herbert Birch was interested in  
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[w]hat kind of learning is necessary for an organism to generalize, to 
abstract from concrete experience, certain gestural relations which are 
relevant to these experiences? So we have, then, the problem of the study 
of the evolution of intelligence in organisms; that is to say, the study of the 
development of modifiability. (Birch, 1951/2003, p. 464)  

Learning in this biological context is less associated with goal-directed predictions and 

more associated with the phylogenetic or ontogenetic evolution of intelligence in 

organisms (see Birch, 1951/2003, pp. 463, 471). Phylogenetic evolution is concerned 

with the improved adaptability of a species to its environment across generations. 

Ontogenetic evolution is concerned with the growth of an individual through its 

experience. Both kinds of evolutions involve feedback interactions between the organism 

or species with its environment. In order to survive, it must maintain a relatively stable 

equilibrium over these feedback loops. 

 Maintaining stable equilibrium involves the notion of homeostasis, but it is 

debatable whether adaptations alone would necessarily lead to either ontogenetic or 

phylogenetic evolution, or any other form of learning. During the conferences, Ashby 

often got into arguments with other participants on whether the adaptability of the 

homeostat ought to be classified as a genuine form of learning. Julian Bigelow, who co-

authored with Wiener and Arturo Rosenblueth one of the founding papers on 

cybernetics, "Behavior, Purpose and Teleology" (Rosenblueth et al., 1943), was one of 

those uncomfortable with the mechanistic notion of learning. He challenged Ashby, “[t]he 

machine [homeostat] finds a solution, I grant you … I merely wonder why finding a 

solution necessarily implies that it learns anything” (W. R. Ashby, 1952/2003a, p. 615). 

This led to a heated debate on the semantic modification of the word “learning” (see W. 

R. Ashby, 1952/2003a, pp. 615–616). J. Z. Young expressed that “[t]he essence of 

learning is that the system that has been through a procedure has different properties 

than those it had before” (W. R. Ashby, 1952/2003a, p. 615). Jerome B. Wiesner felt that 

a mechanism is learning “if on the next trial the searching is not completely random” (W. 

R. Ashby, 1952/2003a, p. 616). After listening to these attempts to qualify learning 

mechanistically, Bigelow still found it “difficult here to associate this way of finding a 

solution with the word learning” (W. R. Ashby, 1952/2003a, p. 616).  

 As with many topics discussed in the Cybernetics conferences, participants were 

unable to arrive at a consensus in this debate. What we are witnessing, though, is the 

historical process of destabilizing the traditional meaning of “learning” in the proposal of 
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a mechanistic notion of learning.61 This mechanistic notion was later adopted by the 

particular branch of computer science and AI called machine learning. Machine learning 

today, as a subfield of AI, has adopted the semantic changes of “learning” that patterns 

after the ontogenetic or phylogenetic evolution of intelligence in organisms. Many 

systems embedded with machine-learning component would continually adapt and 

reconfigure internal parameters based on new input signals from their environments, in 

the same way as Ashby’s homeostat adapts to its environment by recognizing data 

patterns. The legacy of cybernetics on machine learning is undeniable. At the same 

time, along with other areas in AI research, machine learning departs from cybernetics in 

its methodology. Samuel introduced the field as the studies “concerned with the 

programming of a digital computer to behave in a way which, if done by human beings or 

animals, would be described as involving the process of learning” (1959). As I will 

elaborate next, works in machine learning explore the potentials of universal computing 

to implement mechanistic learning. These works typically come up with abstract 

algorithms that are unrelated to actual biological or physiological processes in living 

beings. 

4.4. Differentiating Machine Learning from Learning in 
Cybernetics 

 As I remarked back in Chapter 3, AI emerged from the encounter of universal 

computers with the intellectual current of cybernetics. Negotiating a new connotation of 

“learning” in machines is among the legacies left behind by cybernetics, taken up by AI 

research in the machine-learning subfield. Between learning in cybernetic machines and 

machine learning in AI, there is a subtle difference in their respective focus. Cybernetics 

devotes efforts in designing and building learning machines that are similar to living 

organisms. It upholds an approach that treats the living and the non-living symmetrically. 

In contrast, AI is a field that does not favour imitation over abstract simulation. It values 

 

61 In On the Origins of Cognitive Science: The Mechanization of the Mind (2000), Jean-Pierre 
Dupuy argues that cybernetics represents not the anthropomorphization of the machine but the 
mechanization of the human. Accordingly, the early cyberneticians intended to construct a 
materialist and mechanistic science of mental behavior, and this construction was influential to 
the birth of cognitive science. At the time, cognitivism was a movement in psychology in response 
to behaviorism, which identifies thinking as a behavior and neglects to explain cognition. This shift 
from behaviorism to cognitivism has affected the design of computer-assisted learning (CAL) 
(Hartley, 2006). 
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an algorithm that generates an appearance of intelligence even if the algorithm has no 

matching biological or physiological processes. As a subfield of AI, machine learning 

sets their vision on creating a computing agent capable of human-like intelligence. It has 

evolved from the imitation of physiological knowledge of nervous systems to the abstract 

knowledge of machine-learning algorithms (e.g., gradient descent, support vector 

machine, kernel method, or the mathematical properties of the neural network62). The 

ability of a machine to “learn” from data is both a necessary trait of a super-intelligent 

computer and a possible path for creating computers that can attain super intelligence.  

 Since its inception at the Dartmouth summer workshop, AI research has turned 

away from the cybernetic approach, in which the human body and its nervous system 

would be investigated under the lens of mechanisms that can be replicated in a machine 

construction. Instead, AI research explores the potential of the universal computer in 

simulating human intelligence. The dominant approach in its early days was symbolic AI, 

which is “based on high-level symbolic (human-readable) representations of problems, 

logic and search” (“Symbolic Artificial Intelligence,” 2022). According to Grace 

Solomonoff, the wife of Ray Solomonoff, the Dartmouth summer workshop was at least 

partially responsible for the turn toward symbolic AI (2019, p. 16). Over the course of the 

Dartmouth summer workshop, Ray Solomonoff convinced Marvin Minsky to turn his 

research focus from the mechanical imitation of the brain (the neural network) to 

symbolic representation (McCorduck, 2004, p. 101; G. Solomonoff, 2019, p. 23). With 

their goal of building machines that can appear intelligent, it would seem much more 

feasible to achieve this goal with symbolic representations programmed in software. 

Symbolic AI became the de-facto method for AI research after Herbert A. Simon, J. C. 

Shaw, and Allen Newell demonstrated their General Problem Solver in 1957. The 

General Problem Solver is a computer program designed to solve problems in a general 

way rather than being limited to a specific domain. It can find solutions to mathematical 

problems such as algebraic equations, solve puzzles such as Sudoku puzzles, or 

generate plans for complex tasks such as assembling a machine. With its tangible 

success, General Problem Solver sparked much popular enthusiasm in AI during the 

1960s and 1970s. Since then, symbolic AI has been used to design and build 

 

62 I will further explain how the neural network has transitioned from a modeling of a body’s 
nervous system to an abstract model for mathematical proofs in Chapter 5 when I discuss the 
implication of Ray Solomonoff’s Algorithmic Probability. 
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“knowledge-based systems (in particular, expert systems), symbolic mathematics, 

automated theorem provers, ontologies, the semantic web, and automated planning and 

scheduling systems” (“Symbolic Artificial Intelligence,” 2022).  

 In comparison with symbolic AI, machine learning brings a different approach to 

developing machine intelligence. It differs from symbolic AI in the conviction that the 

machines can be “programmed” by data better than by programming-by-hand, and that 

in the long run, machine learning can attain a higher level of machine intelligence than 

symbolic AI. This scheme of machines “learning” from data, along with the statistical and 

probabilistic nature of machine-learning, are all inherited from cybernetics research. 

Comparing to symbolic AI, cybernetics has been much more influential to the technical 

knowledge developed for machine learning. At the same time, like symbolic AI, machine 

learning departs from the cybernetic approach, exploring the potential of universal 

computers rather than designing machines that replicate biological or physiological 

processes. Thus most machine-learning techniques can be distinguished from the 

mechanistic replications of such processes in cybernetic machines.  

 Already in Turing’s “Intelligent Machinery” (1948), we can see the seed of 

computer-based machine learning taking shape in his proposed design of software 

programs capable of “learning.” In the first part of this paper, Turing deliberates on how 

to build intelligent machines “designed for a definite purpose” (1948, p. 113), which is 

basically the approach of symbolic AI. Halfway through his paper, Turing begins to 

describe an alternate approach, the construction of “unorganized machines,” which are 

“largely random in their construction” as they are made up “in a comparatively 

unsystematic way from some kind of standard components” (1948, p. 9). In Section 1.4, I 

explain how Dreyfus’ critique was primarily targeted at the formalist approach symbolic 

AI and advocated a research direction on “the forms of ‘information processing’ essential 

in dealing with our nonformal world” (Dreyfus, 1992, p. 216). Apparently, Dreyfus was 

not aware of the non-formalist, unsystematic approach that Turing already outlined in the 

second half of his seminal paper on machine intelligence. This “comparative 

unsystematic” approach anticipates later works in machine learning, which has today 

proven to be a form of information processing capable of dealing with much of our 

nonformal world. It leaves open the possibility of interference, which if applied 

appropriately can “[mimick] education” of a learning machine (1948, p. 14). This design 

is analogous to “the cortex of the infant,” which “is an unorganized machine, which can 
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be organized by suitable interfering training” (1948, p. 16). One can therefore 

“experiment with unorganized machines admitting definite types of interference and try 

to organize them, e.g., to modify them into universal machines” (1948, p. 17). Turing 

then suggests, just as “the training of the human child depends largely on a system of 

rewards and punishments … it ought to be possible to carry through the organizing with 

only two interfering inputs, one for ‘pleasure’ or ‘reward’ (R) and the other for ‘pain’ or 

‘punishment’ (P)” (1948, p. 17). This scheme is now known as supervised learning in 

machine learning. The “organization of a machine into a universal machine” (1948, p. 

17), in today’s technical language, would be the training of a machine-learning model 

into a specific computer program with well-defined behavior.  

 In contrast to cybernetics research, bringing up child-like learning in a discourse 

of machine intelligence is metaphorical for Turing. This metaphorical discourse is 

reiterated in “Computer Machinery and Intelligence” (1950). Framing the discussion in 

the context of the imitation game, Turing asks whether the machine imitating the human 

can be a program simulating the child’s mind, taught through an education process, 

rather than a program simulating the adult’s mind (1950, p. 20). In this paradigm, Turing 

accurately predicts an intrinsic opacity of reasoning in machine learning, a characteristic 

that many social critics today find most concerning:63 “Most of the programmes which we 

can put into the machine will result in its doing something that we cannot make sense of 

at all … Intelligent behavior presumably consists in a departure from the completely 

disciplined behavior involved in computation” (1950, p. 21).64 

 Arguably, early researchers on machine learning took the lead from Turing’s 

papers and continued developing his ideas in their research. One of them was Arthur 

Samuel, a key participant in the Dartmouth Summer Project. He completed his 

construction of a checker-playing machine that is commonly recognized as the first 

successful application of machine learning. This program could improve its gameplay 

after many rounds of playing to eventually reach the level of an average human player. 

Minsky remarked that Samuel’s checkers-playing program was “at present the 

outstanding example of a game-playing program that matches average human activity” 

 

63 See Berghoff et al., 2021, pp. 17–18; Brown et al., 2021, p. 5; Carabantes, 2020; Chan, 2021; 
Fainman, 2019; E. Lee et al., 2021; Müller, 2021; Watson, 2021; Zednik & Boelsen, 2021. 

64 This opacity of machine reasoning is exemplified in Ray Solomonoff’s algorithmic probability, 
which we will further discuss in Chapter 5. 
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(1961). Samuel’s original proposal in 1947 was to build a good, “intelligent” checkers-

playing machine, but not a self-learning machine (McCorduck, 2004, pp. 173–180). He 

was exploring different optimization heuristics65 to achieve this goal, and the heuristics 

that worked out best was the “success-reinforcement decision model,” which allowed the 

machine to improve its checkers-playing ability by simply playing against itself to the 

point of rivaling average human ability, without relying on pre-programmed strategies.66 

 Another pioneer of machine learning is Ray Solomonoff, whose works have been 

theoretical throughout his life, devoting his entire career to the computational theories 

and mathematical proofs on machine-learning models. Unlike Samuel, he was less 

interested in optimizing heuristics for building an actual functioning machine than in 

exploring a general theory for machine learning. He developed mathematical proofs on 

the potentials and the limits of what an “unorganized machine” on a universal computer 

can learn. For many years, machine learning has subsisted as a niche, marginal subfield 

of AI research due to the lack of real-world applications for businesses and consumers. 

While Dreyfus quickly dismissed Solomonoff’s mathematical theory of inductive 

inference as a desperate and futile attempt at the self-improvement and learning of 

computers (Dreyfus, 1992, pp. 149–150), Solomonoff’s theoretical works in the 1960s 

had already indicated the vast potentials of machine learning. The significance of his 

works only started to garner more attention after the recent breakthrough in deep 

learning, which has led to a proliferation of big data applications.67 Understanding 

Solomonoff’s proofs will in fact help us grasp the potentials and limits in deep learning. 

 

65 A blind search procedure, such as a depth-first search or breath-first search, explores each 
choice without considering the type of problem being addressed. A heuristically informed search 
can improve its search efficiency “if there is a way to order the choices so that the most promising 
are explored earliest” (Winston, 2000, p. 70). For instance, a greedy search (best-first search) 
always selects the path that appears most promising at the moment. At each step, it uses a 
heuristic function to choose the most promising node to expand and explore (Winston, 2000, p. 
75).  

66 In his seminal paper “Some Studies in Machine Learning Using the Game of Checkers” 
(Samuel, 1959), Samuel identifies two general approaches to the problem of machine learning. 
One is the Neural-Net approach, which can lead to the development of general-purpose 
machines but “we have a long way to go before we can obtain practical devices,” because the 
size of the artificial neural network, functionable at the time, was much smaller than “the size of 
neural nets used by animals.” Thus he took the second approach, which is a special purpose 
program that can run more efficiently and is “capable of realization” at his time. 

67 As Solomonoff reflects in the 2005 Midwest NKS (A New Kind of Science) Conference (Adrian 
German, 2018), his works did not draw much attention when they were first published, and then 
all of a sudden, there has been a huge amount of interest in his works since the turn of the 
century. 
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Therefore, formulating a realistic critique of AI and machine learning would necessitate 

an understanding of Solomonoff’s proofs, which I will present and discuss in the 

following chapter. 

4.5. Summary 

 This chapter traces through the nuances in articulating the relations between 

machine learning and cybernetics. The original notion that machines can “learn” can be 

attributed to the respective research by Wiener, Shannon, and Ashby. Wiener’s guided 

missiles can be perceived as machines capable of learning the flying patterns of aerial 

targets and predict where they may be at a specific point in time. His concept of negative 

feedback is the basic scheme for training a machine-learning model today. Shannon’s 

electromechanical mouse can learn from past mistakes in solving a maze such that 

subsequent trials will take less time. Ashby’s homeostat learns from environmental 

feedbacks to maintain homeostatic stability. All these cybernetic inventions, capable of 

learning in their own way, are predecessors to machine learning in AI. 

 Yet, just as AI can be differentiated from cybernetics in its emphasis on 

simulation and abstraction over scientific knowledge and replications of living 

mechanisms, the same is true for machine learning. We can already see this 

differentiation in Turing’s two papers on machine intelligence, which proposes the design 

of “unorganized machines” to explore the possibility of “learning” in a universal Turing 

machine. The differentiation is also evident in Samuel’s checkers-playing program, 

widely recognized as the first machine-learning program that runs on a universal 

computer. To develop the checkers-playing program, Samuel was experimenting with 

heuristics that have nothing to do with actual biological or physiological processes. 

Solomonoff’s proofs on Algorithmic Probability and universal inductive inference are also 

unrelated to scientific knowledge about mechanisms in a living body. These proofs on 

the theoretical limitation of using a universal computer to discover data patterns did not 

garner much attention during the early days of AI, but in recent years, with the advent of 

big data and deep learning, people have begun to recognize their significance to the 

research direction of machine learning. In the next chapter, I will attempt to explain 

Solomonoff’s proofs without going into the formal mathematics of the original proofs. I 

will then show why these proofs are relevant to deep learning and why they anticipate 

the practice of big data. 
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Chapter 5.  
 
What Machine Learning Can Learn 

Me Can you explain the math behind the convergence of 

algorithmic probability? 

ChatGPT:  The convergence of algorithmic probability refers to the 

property that the algorithmic probability of a sequence 

converges to the true probability of the sequence as the 

length of the sequence increases. 

The algorithmic probability of a sequence is defined as the 

sum of the probabilities of all binary strings that generate the 

sequence, where the probability of a binary string is 

determined by its length and the number of strings of that 

length. 

5.1. Overview 

 In the preceding chapter, I argue that cybernetics is the precursor for machine 

learning, which departs from cybernetics in its emphasis on abstract computer 

algorithms over the symmetry of mechanisms between living organisms and machines. 

Among the pioneering works on machine learning from its early days, Ray Solomonoff’s 

theories on Algorithmic Probability and universal inductive inference have the most 

significance with regard to the field’s recent development. His proofs are formulated in 

formal mathematical treatises, thus difficult to grasp for anyone not well-versed in 

probability calculus. Nevertheless, without grasping the central ideas of these proofs, it is 

difficult to develop a realistic projection of what AI empowered by deep learning is 

capable of. Acquiring an intuitive grasp of these proofs can help us verify Kai-Fu Lee’s 

claim that AI, with the breakthrough in deep learning, has become better than humans 

“in its ability to detect incredibly subtle patterns within large quantities of data” (K.-F. Lee 

& Chen, 2021, p. 430), and that this capability will continue to improve over the coming 

decades. Lee’s claim has been made primarily based on what he has seen in research 

laboratories and start-up ventures around the world. With his privilege position in the 

field, he certainly has an authoritative voice on the matter. But from the point of view of 

those who have not been exposed to the cutting-edge development in AI, it is difficult to 

gauge whether Lee’s opinions on AI’s future capabilities are overly optimistic or not. As I 
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will explain in this chapter, grasping the intuition behind Solomonoff’s proofs can indeed 

attest to Lee’s claims and opinions. 

 This verification can help dispel critiques of AI based either on unrealistic 

projections of its potential or on a lack of appreciation of what it will soon be capable of 

doing. We ought to differentiate the enthusiasm of AI researchers from the fascination 

with artificial life that has been deeply ingrained in human culture, from the Talos in 

Greek mythology68 to Mary Shelley's Frankenstein in the 19th century. AI researchers are 

not just fabricating stories but trying to engineer concrete realities, constrained by the 

affordances of existing technologies. They have to face the uncertainty of wasting their 

research careers away on projects that yield no practical result. Yet, they have remained 

enthusiastic over their projects on machine intelligence because their vision is supported 

by computational theories that have been articulated in formal, mathematical proofs. 

This is true for early AI pioneers, whose conviction in their research largely came from 

their understanding about the universal Turing machine (UTM) and the Church-Turing 

thesis. This is also true for researchers in machine learning today, as AI’s capability to 

discover any subtle patterns in data has gained credence within the AI community from 

formal computational theories articulated in mathematical proofs. These proofs were 

formulated a long time ago by Ray Solomonoff, who conceptualized the model of 

Algorithmic Probability and proved mathematically that, given the right circumstances, 

this model would inductively converge to the true probability behind an actual stochastic 

process in the real world. 

 In Section 3.4, I elaborated on the Church-Turing thesis and how Alan Turing’s 

seminal papers on machine intelligence (1948, 1950) inspired a generation of AI 

pioneers. This chapter draws a parallel between the Church-Turing thesis and 

Solomonoff’s Algorithmic Probability. In much the same way that a UTM can theoretically 

solve any describable problem, Solomonoff developed an algorithm for a UTM capable 

of discovering all regularities in a body of data. This chapter surveys the intellectual 

background of Solomonoff and explains how different philosophies and theories 

contribute to his conceptualization of Algorithmic Probability. It then extracts the core 

ideas from Solomonoff’s technical papers into everyday language to explicate his model 

of Algorithmic Probability and how this model anticipates the recent breakthrough in 

 

68 See footnote 4 in Introduction. 
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deep learning and big data. Besides offering high-level explanations of Solomonoff’s 

works, this chapter goes into more technically advanced discussion in Section 5.5, which 

illustrates possible applications of Algorithmic Probability to problems typically 

addressed in machine learning, such as image classification. Understanding this 

technical discussion requires basic knowledge of machine learning, and Section 5.2 

presents the general framework of how machine learning operates today. As Sections 

5.2 and 5.5 presuppose familiarity with algorithmic thinking and some basic knowledge 

of algebra, readers not well-versed with such a technical mindset may elect to skip these 

two sections and they should still be able to understand the central ideas behind 

Algorithmic Probability and its significance from reading other sections. 

5.2. A Crash Course on Machine Learning 

 Gaining some basic knowledge about the way machine learning operates can 

help us appreciate the significance of Solomonoff’s theories. As machine-learning 

experts Michael Jordan and Tom Mitchell explain, “machine learning algorithms can be 

viewed as searching through a large space of candidate programs, guided by training 

experience, to find a program that optimizes the performance metric” (2015). To illustrate 

what this explanation means, I will go through two applications of machine learning: 

housing price prediction and image classification.69  

Let us begin with the application of machine learning to housing price prediction. 

Suppose we want to come up with a computer program that predicts the market price of 

a house in Vancouver. One possible way of modeling this real estate market is to 

hypothetically assume the size of a house as linearly correlated to its market price. 

Given a historical dataset of sizes and prices of houses sold in Vancouver, we can plot 

the data as crosses on a graph with the vertical axis denoting the price and horizontal 

axis denoting the size (see Figure 3). We can then model the relationship between sizes 

and prices as a straight line through the crosses. There can be many possible such 

lines, some fitting the data better than others. Each possible line through the crosses is 

called a “hypothesis,” and all such possible lines constitute the “hypothesis space.” In 

general, a machine learning hypothesis is “a candidate model that approximates a target 

 

69 The examples are adapted from Andrew Ng’s course on machine learning. (See 
https://youtube.com/playlist?list=PLoR5VjrKytrCv-Vxnhp5UyS1UjZsXP0Kj) 

https://youtube.com/playlist?list=PLoR5VjrKytrCv-Vxnhp5UyS1UjZsXP0Kj
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function for mapping inputs to outputs” (Brownlee, 2019). This definition is derived from 

a scientific hypothesis, which can be defined as “a provisional explanation for 

observations that is falsifiable” (Brownlee, 2019), and from a statistical hypothesis, which 

is “an explanation about the relationship between data populations that is interpreted 

probabilistically” (Brownlee, 2019). 70 The so-called learning for a machine learning 

algorithm “involves navigating the chosen space of hypothesis toward the best or a good 

enough hypothesis that best approximates the target function” (Brownlee, 2019). It is “a 

search through the space of possible hypotheses for one that will perform well, even on 

new examples beyond the training set” (Brownlee, 2019).  

 

Figure 3: Plotting the data on a “size” vs “price” graph. 

Figure 4 shows what happens when a machine learning algorithm tunes its 

parameters to find an optimal solution. Each line in the three graphs is a particular 

hypothesis of how we may predict the price based on the size of the house. It can be 

expressed as a linear function between the price and the size of a house, 𝑃𝑟𝑖𝑐𝑒 =  𝜃0 +

𝜃1  ×  𝑆𝑖𝑧𝑒. A machine learning algorithm automatically finds the optimal solution by 

minimizing the gaps between the actual data and the predicted data based on the 

hypotheses (see Figure 5). Then, through a method called “gradient descent,” a 

machine-learning algorithm would iteratively update the 𝜃0 and 𝜃1 parameters, thus 

gradually moving the hypothesis closer to the optimal hypothesis. For instance, the 

parameters (𝜃0, 𝜃1) may begin at (900, −0.4), then updated to (−300, 1.2) after one 

iteration, then to (100, 0.4) after a second iteration. The implication of such tuning of 

parameters is illustrated in Figure 4. The algorithm starts with a hypothesis of 𝑃𝑟𝑖𝑐𝑒 =

 −0.4 ×  𝑆𝑖𝑧𝑒 + 900 (the graph on the left), then changes to the second hypothesis of 

𝑃𝑟𝑖𝑐𝑒 =  1.2 ×  𝑆𝑖𝑧𝑒 − 300 (the graph in the middle), before finally moving to the third 

 

70 The article “What is a Hypothesis in Machine Learning?” (Brownlee, 2019) elaborates on the 
relations and distinctions between these three definitions of hypothesis. 
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and optimal hypothesis in 𝑃𝑟𝑖𝑐𝑒 =  0.4 ×  𝑆𝑖𝑧𝑒 + 100 (the graph on the right). In general, 

a machine-learning algorithm iteratively updates its parameters to reduce to total error 

between the hypothesis and the actual data in a way that approaches an optimal 

hypothesis. 

This simple linear model can be made more complex by factoring in more 

variables (e.g., the age of the construction, the number of bedrooms, the number of 

bathrooms, the quality of schools in the neighborhood, etc.), or by making it a non-linear 

polynomial (e.g., 𝑃𝑟𝑖𝑐𝑒 =  𝑎 + 𝑏 × 𝑆𝑖𝑧𝑒 + 𝑐 × 𝑆𝑖𝑧𝑒2 + 𝑑 × 𝑆𝑖𝑧𝑒3). In general, the more 

complex the model, the easier it is to minimize the distance between actual data and the 

hypothesis because curves rather than straight lines can be drawn to fit through the data 

(see Figure 6). But the model may not predict well if it does not capture some actual 

pattern or rationale behind the training data. To affirm that the model can predict well, a 

data scientist can test the performance of a hypothesis by computing the total sum of 

errors for new data examples that do not belong to the training set. 

 

Figure 4: Different hypotheses in a linear regression model 

 

Figure 5: Accumulated differences between actual data and predicted data based on hypothesis. 
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Figure 6: A non-linear regression model that fits the data better but would not predict well. 

  

Figure 7: Image as a matrix of pixels71 

Now, let us look at a more complex example, a machine-learning model that 

identifies images that contain cats. Suppose we have a training set with half a million 

images of cats and half a million images with no cat. We want the machine-learning 

algorithm to find a candidate program that, for most of the images in the training set, 

correctly classifies whether they contain cats or not. To translate this problem into a 

machine-learning problem, each image is first converted into a matrix of pixels, which is 

essentially a grouping of three numbers ranging from 0 to 255 (See Figure 7). A program 

cannot “see” an image as it appears to human eyes. It can only process a digital 

representation of an image as a vector of numbers. What we want is a program that 

 

71 The image in this figure is taken from the web (Shirodkar, n.d.). 
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takes a training set of numeric vectors as inputs and yields correct results of 1’s (for 

images with cats) and 0’s (for images with no cat) (See Figure 8). Suppose “Candidate 

Program A” and “Candidate Program B” are tested against a collection of data examples 

different from those used to train the programs, and “Candidate Program A” is correct for 

99% of the cases and “Candidate Program B” is correct for only 65% of the cases. Then 

we would deem “Candidate Program A” as the better hypothesis. A machine learning 

algorithm would presumably iterate through different candidate programs from the 

hypothesis space of a chosen model, such as an artificial neural network or a support 

vector machine and pick out the candidate program that classifies more correctly than 

others. One hypothesis that can be correct 100% of the time is a program with a million 

if-statements (see Figure 9), but this program would be unable to test whether a new 

image contains a cat because it has not uncovered any underlying regularities or 

patterns about the pixels that represent a cat image. Hence, an ideal candidate program 

is both accurate on classifying the training data and has a relatively simple logic, 

because a simpler logic implies a better generalization about the underlying pattern of 

pixels that corresponds to cat images.  

 
Figure 8: Training a machine-learning model to recognize pictures of cats.72 

 

72 The images in this figure are taken from the web (Allen, n.d.; Forest, 2016; Influenza in Cats | 
CDC, 2024; Roberts, n.d.; Shirodkar, 2023; Zielinski, 2020). 
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The linear regression model is not suitable for modelling a classification problem. 

Instead, a data scientist would likely choose between logistic regression, support vector 

machine or artificial neural network as the machine-learning model to be trained. Each 

model represents a certain class of candidate programs. Between these three models, 

the time to train (i.e., the time to find a candidate program with good performance) and 

the accuracy of the selected candidate programs (i.e., the accuracy of the trained 

machine-learning models) in recognizing cat images would be different. For instance, for 

simple classification problems, it takes more time to train a neural network than a logistic 

regression model. But for image classification, in which the number of input features is 

very large because each pixel is mapped to one feature, training an artificial neural 

network would be more efficient than training a logistic regression model. 

 
Figure 9: Hardcoding a Correct Program 

Having some basic knowledge about artificial neural network would be helpful for 

understanding the rest of this chapter. A neural network is a key component in the 

transformer model designed for natural language processing such as language 

translation.73  Such problems, as Dreyfus pointed out, are beyond the affordance of 

symbolic AI based on formalizable rules (see Sections 1.3 and 1.4). The design of an 

artificial neural network is originally motivated by the goal of building machines that 

mimic the biological model of a brain. In this model, a brain consists of many 

 

73 An overview of the transformer model is presented in the Appendix. 
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interconnected neurons. Each neuron is a brain cell, which has a few input wires called 

dentrites and a single output wire called axon. If the sum of the signals accumulated 

from the dentrites crosses certain threshold, the neuron would fire a signal to other 

neurons through its axon. For instance, when a needle pricks your skin, the nerves on 

your skin would transmit signals to the dentrites of specific neurons in your brain, 

triggering them to fire signals along their axons that would ultimately lead to bodily 

movements. Modelling this behavior, an artificial neuron is a computational unit that 

takes in several inputs through input wires, performs some computations, and sends the 

computed result through its output wire to other artificial neurons (see Figure 10). The 

computation performed by an artificial neuron is typically the sigmoid function, which 

returns a number close to 1 if the weighted sum of the input values is above certain 

threshold.74 An artificial neural network is simply a network of interconnected artificial 

neurons, which are usually called “network nodes.” It is possible to connect network 

nodes in many ways, but in a typical neural network architecture, the nodes are 

arranged in layers. For instance, Figure 11 shows a network with four layers. The first 

layer, the input layer, has 3 nodes. The input to the model would be a vector of 3 

numbers, with each number passed to one of the nodes on the input layer. Each of 

Layer 2 and Layer 3 has 5 nodes. The output layer has four nodes, meaning that the 

output of this neural network is an output vector with four numbers. In general, a neural 

network with more layers and nodes is more complex and can achieve better 

optimization metrics. The trade-off is that a complex neural network needs to be trained 

with massive amount of data to predict well for real-life data, and such a training 

operation takes a long time to complete. 

 

74 Referring to the sigmoid function in Figure 10, the effect of the function can be explained as 
follows: (1) If the variable (𝑧 in the above diagram) is a large enough number, the function would 

return a number close to 1. In the above diagram, if 𝑧 is greater than 4, the sigmoid function 
would return 0.99 or greater. (2) If the variable (𝑧 in the above diagram) is a small enough 

number, the function would return a number close to 0. In the above diagram, if 𝑧 is less than -4, 
the sigmoid function would return 0.01 or smaller. 



113 

 

Figure 10: An artificial neuron 

 

Figure 11: A typical neural network architecture 

The examples of housing price prediction and cat image classification illustrate 

how a real-life problem can be represented as numerical inputs to a machine-learning 

model that can be automatically tuned to generate some expected outputs (see Figure 

12). The training data would be a collection of such inputs and expected outputs. Once 

data scientists have come up with such an abstract representation of a real-life problem 

and collected the training data based on this representation, training a machine-learning 

model is simply a matter of “searching through a large space of candidate programs" 

and find one that “optimizes the performance metrics” (Jordan & Mitchell, 2015). 

Performance metrics is typically optimized by minimizing the differences between the 

outputs generated by the machine-learning model and the expected outputs based on 

the training data.  
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Figure 12 A Generic Framework for Machine-Learning Model 

But what gave the computer scientists and AI researchers the confidence that 

massive amount of data combined with ever more powerful CPU’s (central processing 

units) would make it possible to train machine-learning models that optimize 

performance metrics? Researchers in computational theories play a key role of 

substantiating speculative hunches with formal theoretical proofs. As I will explain next, 

prior to the recent empirical successes in deep learning, the concepts of big data and 

deep learning have already been mathematically proven by Ray Solomonoff in the early 

days of AI research. 

5.3. The Intellectual Background for Solomonoff’s theories 
in Machine Learning 

 In the introduction to Ray Solomonoff 85th Memorial Conference, David L. Dowe 

hails Solomonoff as “the original pioneer, in the early 1960s, of the use of (universal) 

Turing machines (using algorithmic information theory and Algorithmic Probability) for 

prediction problems in statistics, machine learning, econometrics and data mining” 

(Dowe, 2013, p. 2). In this section, I will describe what led to Solomonoff’s discovery of 

Algorithmic Probability. I first explain the influence of Rudolf Carnap on Solomonoff, 

particularly the philosopher’s multiple definitions of probability and his view that the 

entire universe can be represented digitally. I then bring up the historical anecdote 

between John McCarthy and Solomonoff at the Dartmouth summer workshop, in which 

Solomonoff discovered that inverting a Turing machine is the key to address the 

deficiency in Carnap’s system of probability.  

 Solomonoff describes his “voyage” toward discovering this algorithmic method in 

the paper “The Discovery of Algorithmic Probability” (1997). Algorithmic Probability is a 

method that provides a measure of the inherent randomness of a sequence of symbols. 

The method defines the “prior probability” assigned to the sequence and uses Bayes’ 

Theorem to find the probability of a particular continuation of the sequence. “Prior 
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probability,” also interchangeably called “a-priori probability,” is the technical term for the 

unconditional probability used in Bayes’ theorem. It represents the probability of a 

hypothesis before any condition, such as the collection of data, is taken into account. As 

an undergraduate at the University of Chicago, Solomonoff was studying philosophy 

from Carnap, who at the time “was working on a general theory of probability as much as 

[he] was” (R. J. Solomonoff, 1997, p. 6). Solomonoff got two important ideas from 

Carnap: (1) multiple definitions of the term probability, and (2) a “long sequence of 

symbols"75 as “a description of the entire universe” (R. J. Solomonoff, 1997, p. 6). From 

Carnap, “[t]he best known was the frequency concept of probability,” but there is another 

definition of probability, which is “the degree of confidence one had in a hypothesis with 

respect to a certain body of data” (R. J. Solomonoff, 1997, p. 6). For instance, if you are 

to pick a ball out of a bag of 500 blue balls and 9500 red balls, the prior probability of 

picking out a blue ball is 5 percent. But suppose you have no prior knowledge about the 

bag of balls. If you have picked out a sample of 100 balls, 8 being blue and 92 being red, 

the frequency of a blue ball in this sample is 8%. We may estimate that the next ball you 

pick has a probability of 8% being a blue ball. This frequency interpretation of probability 

is subjective because it is based on observations conducted subjectively. It is an 

approximation of the prior probability, but there is a significant gap between 8% and 5%. 

Nevertheless, the more balls you pick out, the closer is the probability estimation to the 

prior probability, and correspondingly, the greater is the degree of confidence or 

confirmation in your hypothesis.  

 As Anna Longo explained in Le jeu de l‘induction (2022), Carnap wanted to 

evaluate the logical implication between the results of a repeated experiment (the 

frequencies observed) and the probability of future observations. This measure depends 

on the strength of the implication between the premises and the consequences of a 

probabilistic inference, in particular the logical relationship between the proposition that 

describes the evidence collected and the predictive hypothesis (Longo, 2022, pp. 24–

25).76 For instance, if a dice is made up of malleable material like paper, the shape of 

 

75 As I will explain in Section 5.4, a symbol in this long sequence, for Carnap and for Solomonoff, 
can be anything from an integer (in a number sequence) to an English word (in a sentence) to an 
image of a cat (in a corpus of cat images).  

76 “Rudolf Carnap propose d’évaluer l’implication logique entre une proposition portant sur les 
résultats d’une expérience répétée (les fréquences observées) et celle qui exprime la probabilité 
des observations futures. L'induction devient ainsi une question de quantification du degré de 
confirmation des hypothèses sur la base de leur implication logique. Il est important de souligner 
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this paper dice would become malformed after repeated experiments. Unlike throwing a 

well-formed dice, the frequency observed in repeatedly throwing this dice would not 

approach the probability of 1 6⁄  as the predictive hypothesis. This illustrates why the 

probability of future observations cannot always be inferred from the frequency 

observed. Carnap thus aims to determine the degree of confirmation of a hypothesis by 

considering it as an inference whose validity can be established based on the axioms of 

inductive logic. Consequently, scientific theories are propositions that can ideally be 

deduced analytically from a number of atomic statements that relate to fundamental 

empirical data.77 Carnap’s inductive logic presumably makes it possible to calculate the 

degree of objective belief that can be attributed to any inductive hypothesis (Longo, 

2022, p. 25).78 As Longo explains, Carnap’s attempt to analytically deduce true 

propositions from basic axioms is problematic because it would be impossible to explain 

how we manage to establish these first definitions without falling into an infinite 

regression (Longo, 2022, p. 26).79 After conceding the impossibility of fixing the axioms 

 
la distinction fondamentale de Carnap entre l’estimation de la probabilité d’un événement selon 

une hypothèse, définie probabilité 2, et la probabilité de l’hypothèse prédictive, ou probabilité 

1, cette dernière mesure son degré de confirmation. La probabilité 2 se calcule à partir des 
fréquences observées par répétition d’une expérience scientifique, et est une prédiction de la 
probabilité des observations futures. En revanche, la mesure de la probabilité 1 dépend de la 
force de l’implication entre les prémisses et les conséquences d’une inférence probabiliste, 
notamment la relation logique entre la proposition qui décrit les éléments de preuve collectés et 
l’hypothèse prédictive” (Longo, 2022, pp. 24–25). 

77 In Carnap’s framework, atomic statements are basic statements or propositions that cannot be 
further decomposable into simpler statements. They represent the fundamental building blocks of 
knowledge and are often used as the starting point for logical reasoning. In the context of 
inductive logic, atomic statements are treated as basic statements or propositions about which 
probabilities can be assigned. Carnap’s axioms allow us to reason about the probabilities of 
atomic statements and make inferences based on available evidence. Using the axioms, we can 
combine atomic statements and their probabilities to derive logical conclusions about more 
complex statements, such as compound statements or hypotheses (see Protocol Sentence | 
Logic, Meaning & Truth | Britannica, n.d.; Rudolf Carnap > C. Inductive Logic (Stanford 
Encyclopedia of Philosophy), n.d.). 

78 “Carnap vise ainsi à déterminer le degré de confirmation d’une hypothèse en la considérant 
comme une inférence dont la validité peut être établie en s’appuyant sur les axiomes de la 
logique inductive. En conséquence, les théories scientifiques sont des propositions qu’on peut 
idéalement déduire de façon analytique à partir d’un certain nombre d’énoncés atomiques qui 
portent sur les données empiriques fondamentales. Lorsqu’une théorie confirmée est une 
inférence nécessairement vraie, en revanche, une hypothèse probable est admissible, mais 
partiellement impliquée par les observations disponibles. La logique inductive de Carnap était 
ainsi censée permettre de calculer de façon précise le degré de croyance objective à attribuer à 
toute hypothèse inductive” (Longo, 2022, p. 25). 

79 “D’après Quine, il serait cependant impossible d’expliquer comment l’on arrive à établir ces 
définitions premières sans tomber dans une régression infinie, et les paradoxes qu’elle entraîne” 
(Longo, 2022, p. 26). 
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of a universal language of empirical sciences, Carnap admits a plurality of conventional 

logics relating to the various fields of scientific enterprise (Longo, 2022, p. 25).80  

As explained in “The Discovery of Algorithmic Probability” (1997), Solomonoff 

wanted to overcome the difficulties associated with Carnap’s plurality of conventional 

logics, and this theoretical endeavor eventually led to his invention of Algorithmic 

Probability. On the one hand, he adopted Carnap’s representation of the universe as a 

long sequence of symbols. He was also influenced by how Carnap “was able to assign a 

priori probabilities to any possible string of symbols that might represent the universe” 

and derived the degree of confirmation from these a priori probabilities using Bayes’ 

Theorem (R. J. Solomonoff, 1997, pp. 6–7).81 On the other hand, he found Carnap’s 

method of computing prior probabilities unreasonable because the “probability 

distribution depended very much on just what language was used to describe the 

universe,” rather than directly on the data (1997, p. 7).  

Solomonoff’s was working on overcoming the weaknesses in Carnap’s method 

when he attended the Dartmouth summer workshop. It was from a casual conversation 

with John McCarthy that Solomonoff discovers Algorithmic Probability, which reframes 

Carnap’s probabilistic universe into a theory based on UTM. During one of the sessions 

in the Dartmouth summer workshop, McCarthy was giving a talk on the thesis that “all 

mathematical problems could be formulated as problems of inverting Turing machines” 

(R. J. Solomonoff, 1997, p. 8).82 It occurred to Solomonoff that McCarthy’s thesis might 

 

80 “Dans la première édition de The Logical Foundations of Probability, Carnap était persuadé 
qu’il était possible de calculer le degré de confirmation de théories différentes par une fonction 
unique à partir des axiomes de la logique inductive. Cependant, une fois établie l’impossibilité de 
fixer les axiomes d’un langage universel des sciences empiriques, il admet alors une pluralité de 
logiques conventionnelles relatives aux divers champs de l’entreprise scientifique” (Longo, 2022, 
p. 25). 

81 Solomonoff’s abstract description of Carnap’s model becomes clearer with an understanding of 
Algorithmic Probability (see Section 5.4). For instance, consider a corpus of digital images 
organized in a long sequence. Carnap’s model would assign to each image in the long sequence 
an a-priori probability, which may indicate the chance that there is a figure of a cat in the image. 
Using Bayes’ Theorem, these a-priori probabilities can be used to compute the conditional 
probability that there is also a figure of a cat in a new image, given the observations already 
made on the images from the corpus. The computed conditional probability is in fact the degree 
of confirmation. 

82 We can define a Turing Machine as a function 𝑀 that takes in an input string 𝑝 and produces 

an output string 𝑠. In other words, we are given the machine 𝑀 and an input string 𝑝, and the two 

combines to give an output string 𝑠. Formally, this can be represented as 𝑀(𝑝)  =  𝑠. Conversely, 
inverting a Turing machine can be defined as follows: We are given a machine M and a desired 
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solve his induction problem. He asked McCarthy, “Suppose you are given a long 

sequence of symbols describing events in the real world. How can you extrapolate that 

sequence” (R. J. Solomonoff, 1997, p. 8)? McCarthy’s response confirmed Solomonoff’s 

intuition: “Suppose we were wandering about in an old house, and we suddenly opened 

a door to a room and in that room was a computer that was printing out your sequence. 

Eventually it came to the end of the sequence and was about to print the next symbol. 

Wouldn’t you bet that it would be correct” (R. J. Solomonoff, 1997, p. 8)? In other words, 

if there exists a program on a UTM that can accurately predict your sequence, it must 

have identified the logical function for generating the sequence.83 This logical function 

can then be used to predict what comes after the sequence. Finding this logical function 

can be treated as a problem of inverting a Turing machine in which the logical function is 

represented as an input string to the Turing machine. This conversation with McCarthy 

marks the moment of eureka for Solomonoff and led to his discovery of Algorithmic 

Probability, an algorithmic method that provides “a useful estimate of a sequence’s true 

probability of being outputted by” a Turing machine (Campbell, 2013). This application of 

UTM allows Solomonoff to turn Carnap’s philosophical model of prior probability 

distribution into an actual computing algorithm without stipulating language-dependent 

axioms. In the next section, I will bypass the mathematical details in the formal proof by 

Solomonoff and explain how the pseudo algorithm of Algorithmic Probability can identify 

all the subtle patterns in massive amount of data. 

5.4. An High-Level Explanation of Solomonoff’s Algorithmic 
Probability 

 Solomonoff’s seminal papers on Algorithmic Probability and universal inductive 

inference are primarily mathematical and would elude the minds of those who are not 

well-versed in the mathematical reasoning of conditional probability. Nevertheless, if his 

reasoning can be described in non-mathematical everyday language, those outside the 

discipline of computational theory of machine learning can gain a better sense about the 

 
output string 𝑠, and the problem is to find a string p such that 𝑀(𝑝)  =  𝑠. (R. J. Solomonoff, 1997, 
p. 8). 

83 It is of course possible that the logical function is simply the printing out of the exact same 
sequence, in which case the prediction would likely be false. This is where the introduction of 
Occam Razor comes in, as the shortest and simplest program would be preferred over long and 
complicated programs. 
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significance of his works. The understanding resulted from this endeavour is especially 

crucial today with the advent of deep learning and big data, whose vast potentials and 

scope of capability can be anticipated by Solomonoff’s proofs.  

Solomonoff invented Algorithmic Probability by combining Carnap’s ideas and 

inverting Turing machines with Epicurus's principle of multiple explanations and Occam 

Razor (Li & Vitányi, 2008, p. 347). He first describes the algorithm in “A Preliminary 

Report on a General Theory of Inductive Inference” (1960). As he explains, the goal of 

the algorithm is “concerned primarily with the problem of extrapolation of a very general 

time series, whose members may be numbers or non-numerical objects, or mixtures of 

these” (1960, p. 1). Following Carnap, this “very general time series” can be represented 

as “a very long sequence of symbols,” which may be “a passage of English text, or a 

long mathematical derivation” (R. J. Solomonoff, 1960, p. 1). In other words, the goal is 

to uncover any underlying regularities or patterns behind a time series of symbols. If 

each symbol is an English word, the underlying regularities would be the English 

grammar (R. J. Solomonoff, 1997, p. 12). If each symbol is some digital image of a cat, 

the underlying regularities would be the distinction of pixels unique to images of cats. 

Solomonoff models this problem of extraction with a universal Turing machine that takes 

“any finite string of 0’s and 1’s as acceptable input” and produces a sequence of 

symbols as output. Solomonoff defines such an input bitstring as a description of the 

output sequence of symbols with respect to the UTM, and “[i]n general, any regularity in 

a corpus may be utilized to write a shorter description of that corpus” (R. J. Solomonoff, 

1964, p. 8).84 

Whereas Carnap attempts to derive a “true” and “absolute” prior probability of a 

sequence, Solomonoff avoids the same pitfall by inventing an algorithm that is only 

concerned with relative probabilities. Algorithmic Probability is a particular framework 

that defines how each sequence is assigned a certain a-priori probability. Each assigned 

probability can be viewed as a measure on the inherent randomness of the sequence. A 

sequence with a higher assigned probability is more likely to contain patterns and 

regularities in the sequence. The exact value of the probability assigned to each 

sequence is not very meaningful. But the relative difference in probabilities is sufficient 

 

84 Section 5.5 explains why “any regularity in a corpus may be utilized to write a shorter 
description of that corpus.” 



120 

for Solomonoff to calculate the probabilities of particular continuations of the sequence, 

where the continuation is generated based on patterns or regularities identified in the 

sequence. This framework allows Solomonoff to use Bayes’ Theorem to prove that the 

continuation of a sequence would converge with the stochastic function of an underlying 

phenomenon if more and more data are collected to extend the length of the sequence. 

As Longo explains, by relying on relative probabilities in his proof, Solomonoff implicitly 

assumes Bayesian subjectivism, which allows him to overcome the main issue with 

Carnap’s project: the impossibility of establishing an ideal language to measure the 

probability of hypotheses in a perfectly objective way (2022, pp. 48–49).85 

Formally, Solomonoff defines Algorithmic Probability as the sum of the 

probabilities for all inputs that can produce the target output on the UTM. The probability 

of generating every specific program is 2−𝑛𝑖 where 𝑛𝑖 is the number of bits in 𝑖𝑡ℎ 

program, and Algorithmic Probability is equal to ∑ 2−𝑛𝑖∞
𝑖=1 . Since the program with the 

shortest length will have a probability several magnitudes higher than the other 

programs (e.g., a program with eight fewer bits is already 28 = 256 times less likely), the 

Algorithmic Probability is approximately the probability of the shortest program. Because 

a shorter program is likely simpler than a longer program, Solomonoff’s algorithm also 

satisfies Occam’s Razor, which states that “all things equal, explanations that posit fewer 

entities, or fewer kinds of entities, are to be preferred to explanations that posit more.”86  

The mathematical proof that Algorithmic Probability would converge to the 

probability of some underlying stochastic function came a number of years after the 

invention of the algorithm. At a keynote given at the Midwest NKS (A New Kind of 

Science) Conference in 2005 (Adrian German, 2018), Solomonoff shared his reflections 

on his early works. When he first introduced Algorithmic Probability in “A Preliminary 

Report on a General Theory of Inductive Inference” (1960) and in “A Formal Theory of 

Inductive Inference” (1964), he felt satisfied with the intuition behind Algorithmic 

 

85 “C’est le subjectivisme bayésien qui permet à Solomonoff – contrairement à son professeur 
Rudolf Carnap – de ne pas se soucier de l’impossibilité d’établir un langage idéal permettant de 
mesurer la probabilité des hypothèses d’une manière parfaitement objective. Il considère ainsi le 
choix du langage de programmation comme impliquant une évaluation subjective de la probabilité 
des hypothèses à tester, tout en sachant que les estimations devraient converger vers des 
valeurs similaires grâce au processus de conditionnalisation. La formule de Bayes permet de 
sélectionner la prédiction à laquelle revient le degré supérieur de confiance, et ce 
indépendamment du langage de programmation” (Longo, 2022, p. 49).  

86 See www.britannica.com/topic/Occams-razor.  

http://www.britannica.com/topic/Occams-razor
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Probability, but was not completely certain that it is correct. A few years later, around 

1968, he discovered a mathematical measure to confirm this intuition. This mathematical 

proof was not published until almost a decade later, in the papers “Inductive Inference 

Theory — A Unified Approach to Problems in Pattern Recognition and Artificial 

Intelligence” (1975) and “Complexity-Based Induction Systems: Comparison and 

Convergence Theorems” (1978).  

In the proof, Solomonoff first assumes that the sequence has been generated by 

some stochastic probability function. He then asks, what is the conditional probability 

that the next bit is 0 or 1, given the sequence we have now? Algorithmic Probability, as 

the probability that his algorithm would assign to the next output being 1, would be 

different from the true conditional probability, as computable by some underlying 

stochastic function, that the next output bit is 1. Using Bayes’ Theorem, Solomonoff 

develops his proof that the conditional probability computed by Algorithmic Probability 

converges with the conditional probability of the next bit output by the stochastic 

probability function. What Solomonoff manages to prove is the following. Suppose the 

output sequence has 𝑚 symbols. We can calculate the deviation between the conditional 

probability of the second bit given the first bit, computed by Algorithmic Probability, and 

the true conditional probability of the same condition. We can then do the same for the 

conditional probabilities of the third bit given the second bit, and the fourth bit given the 

third bit, and so on. Solomonoff proves that the expected value of the sum square of all 

such deviations is always less than some constant, even as 𝑚 increases toward 

infinity87. In other words, if we can keep taking more observations (thus increasing 𝑚), 

 

87 The mathematical proof itself is a manipulation of mathematical logic that cannot be explained 
in layman terms. But it may be helpful to examine what he means by the expected value and the 
formula of his proofs. As Solomonoff describe, the expected value is based on “a model of 
induction … in which all possible induction models are formally considered. The predictions of 
each possible induction model are used in a weighted sum to obtain predictions that are at least 
as "good" (in a certain stated sense) as any of the component induction models” (1964, p. 17). 

Formally, the formula of the expected value is: 

 

𝐸 (∑(𝛿′𝑖 − 𝛿𝑖)
2

𝑚

𝑖=1

) = ∑ (𝑃( 𝐴(𝑚)𝑘 ))

2𝑚

𝑘=1

∑( 𝛿′𝑖
𝑘 − 𝛿𝑖

𝑘 )
2

𝑚

𝑖=1

≤ 𝑏 ln √2 

 



122 

eventually the expected value will plateau toward a constant. Therefore, the deviation 

between Algorithmic Probability and the true probability becomes increasingly negligible. 

This proves mathematically that Algorithmic Probability converges very rapidly to the 

true probability as the number of observations increases (R. J. Solomonoff, 1975, p. 5). 

 The most significant property of Solomonoff’s Algorithmic Probability is its 

completeness. As Solomonoff concludes from his theoretical modelling and 

mathematical proofs, Algorithmic Probability  

is the only induction system we know of that is ‘complete.’ By this we mean 
that if there is any describable regularity in a body of data, Algorithmic 
Probability is guaranteed to discover it using a relatively small sample of 
the data. It is the only probability evaluation method known to be complete. 
(1997, p. 21).  

This algorithm takes every possible hypothesis into consideration, including all scientific 

laws and hypotheses scientists have made to date. Hence he claims, his model  

is at least as good as any other model of the universe in accounting for the 
sequence in question. Other models may devise mechanistic explanations 
of the sequence in terms of the known laws of science, or they may devise 
empirical mechanisms that optimumly [sic] approximate the behavior and 
observations of the man within certain limits. Most of the models that we 
use to explain the universe around us are based upon laws and informal 
stochastic relations that are the result of induction using much data that we 
or others have observed. The induction methods used in the present paper 
are meant to bypass the explicit formulation of scientific laws, and use the 
data of the past directly to make inductive inferences about specific future 
events. (R. J. Solomonoff, 1964, p. 16) 

 

Here 𝐸 is the expected value with respect to 𝑃. 𝐴(𝑚)𝑘  is the 𝑘𝑡ℎ sequence of length 𝑚. 

There are just 2𝑚 of them. 𝛿′𝑖
𝑘  and 𝛿𝑖

𝑘  are the conditional probabilities for the 𝑖𝑡ℎ bit of 

𝐴(𝑚)𝑘  for 𝑃𝑀 and 𝑃, respectively. 

The expected value of the mean square error between the conditional probabilities is less 

than 
𝑏

𝑚
ln √2. (R. J. Solomonoff, 1975, p. 5) 

 

The means, we would consider every possible output sequence of length 𝑚 (2𝑚 possibilities in 
total). These output sequences cover all the possible output sequences as we move inductively 
from 𝑚 = 1, 𝑚 = 2, and so on to compute the conditional probabilities for each output sequence. 
For every possible output sequence, we compute the square of the deviation between the two 
conditional probabilities, one computed by Solomonoff’s model, the other being the true 
conditional probability). We then account for all possible output sequences by summing up all 
these square differences, weighted by the probability (the true one assigned by the stochastic 
function) for each possible output sequence. 
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Therefore, in theory, Algorithmic Probability can replace the scientific method for 

discovering physical laws from observations. For instance, if the expected output 

sequence corresponds to observations on the speed and acceleration of free-falling 

objects on earth, the algorithm would yield some program that takes into consideration 

the law of gravity along with other variable factors such as friction or air resistance. The 

program would in fact make better predictions than calculations based on formal 

scientific laws, which would necessarily oversimplify the body of data and fail to detect 

subtle regularities.  

 A second most important property of Algorithmic Probability is its incomputability. 

It is not computable because of the infamous halting problem associated with universal 

machines. Some of the randomly generated inputs may turn out to be programs (e.g., an 

infinite “while” loop) that never halt to yield an output. As Solomonoff explains, “any 

computable probability measure cannot be complete” because “there have to be 

regularities that are invisible to” any probability evaluation method (1997, p. 21).To 

address this halting problem, Solomonoff suggests that in practice we can approximate 

the Algorithmic Probability by setting a time limit to the running of every program on the 

universal machine. Relaxing the time limit would increase the precision of the 

approximation. Even though there is always the possibility of rejecting an ideal program 

that requires more time to yield an output, this approximation should be useful in 

practice, just like the mathematical approximations in computing √2 or 𝜋 (2006, p. 6).  

 While the relaxation of the time limit for running each program would expand the 

coverage of possible hypotheses, collecting more data for the output sequence would 

help narrow down possible hypotheses by invalidating those incompatible with new 

observations. Eventually, if the time limit is set large enough for programs to run, and if 

enough observations have been made, the algorithm should have considered most of 

the possible hypotheses, which are also narrowed down to the ones that best fit the 

data.  

5.5. More technical details on Algorithmic Probability 

The previous section attempts to explain Algorithmic Probability in everyday 

language that skip over technical details. Careful readers may wonder, why would 

descriptions utilizing regularities be necessarily shorter than descriptions without taking 
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regularities into account? In addition, how can algorithmic probability be useful to 

address a typical machine learning problem, such as image classification? This section 

attempts to address these questions, but doing so necessarily involve technical 

sophistication in my arguments. Readers without the necessary technical background 

may elect to skip this section, as these are peripheral questions to the understanding of 

algorithmic probability. 

To see why descriptions utilizing regularities would be shorter, consider the 

example as shown in Figure 13 and Figure 14. The output sequence consists of three 

symbols: “ABCABCABCABCABC,” “GRYGRYGRYGRY,” and “KKWKKWKKW.” In 

general, we may assume that the input description bitstring follows a format where it 

begins with a software program and is subsequently followed by a series of input strings 

intended for that program. As shown in Figure 13, if no regularity is uncovered, the 

program would simply reprint the entire string it receives as its input. The length of the 

overall input description would be the length of the program plus the length of 

“ABCABCABCABCABC,” “GRYGRYGRYGRY,” and “KKWKKWKKW,” which is equaled 

3 × 12 = 36. If the regularity of reprinting three letters four times is considered, the 

length of the overall input description would be the length of the program plus the length 

of “ABC,” “GRY,” and “KKW,” which is equaled to 3 × 3 = 9. For a very long output 

sequence, the length of the program would be negligible and the input description that 

takes regularity into consideration would be four times shorter.  

 

Figure 13: A plain input description of output sequence 
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Figure 14: A generalized input description of output sequence 

This example illustrates why “any regularity in a corpus may be utilized to write a 

shorter description of that corpus.” It can also illustrate why a very long output sequence 

can rule out many invalid hypotheses about its underlying regularities. For instance, if 

the next symbol of the target output sequence is “BCADFEGBCADFEG,” then the 

regularity identified by the program in Figure 14 would no longer be valid. It is evident 

that extending the output sequence with more symbols can rule out some of the 

generalized descriptions of shorter output sequences. Therefore, a very long output 

sequence of symbols can rule out many invalid assumptions about the sequence’s 

underlying regularities. 

We can also use the above algorithm to identify regularities in a sequence of 

complex objects such as digital images, which are essentially vectors of pixels. Consider 

the problem of recognizing cat images described in Section 5.2. Suppose we have 

collected a corpus of cat images. The expected output of the UTM would be a long 

sequence of cat images from the corpus. If no regularity can be identified, the input 

description could simply be a sequence of digital representations (vectors of pixels) that 

correspond to the cat images in the output sequence, just like the hardcoding solution in 

Figure 9. In this case, the length of the input description would be about the same as 

that of the output sequence. But if some underlying regularities can be uncovered, for 

instance the identification of a round face, two triangular shaped ears, and whiskers, the 

description of each image can become simpler by combining this general description 

with a shorter description specific to each image in the output sequence. The overall 

input description of the output cat images would be shorter if it is generalized with 

patterns shared by the images. To pursue this line of reasoning further, if there are more 
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than one underlying patterns in the output sequence, the program that identifies all the 

patterns would yield the shortest description in comparison to programs that identify a 

subset of such patterns. Thus, the goal of finding a minimal, shortest description of an 

output sequence of symbols is equivalent to the goal of discovering all the underlying 

regularities in the output sequence. 

 Now, each input description, as a concatenation of a software program and a 

sequence of input strings, can be represented digitally as a long binary string of 0’s and 

1’s. So, given a randomizer that generates a random sequence of 0’s and 1’s, it is 

possible that this randomizer may generate the digital representation of a particular input 

description. The probability that this randomizer would generate a particular input 

description would be (1
2⁄ )𝐿𝑑𝑒𝑠𝑐, where 𝐿𝑑𝑒𝑠𝑐 is the length of the input description. In 

Algorithmic Probability, a randomizer would iteratively generate 0 or 1 as input to the 

UTM. If at some point, the machine halts and produces an output that does not match 

the expected output sequence of symbols, the UTM would be reset. The next bit 

generated by the randomizer would be treated as the first bit of a new input sequence. 

After many iterations, many binary input strings would be generated. Most of these input 

strings will not yield meaningful outputs on the UTM, but some may turn out to be 

runnable software programs. And because of the universality of a UTM, equipped with 

the property that any describable procedure can be written as a program on a universal 

machine, it is possible to express every possible function that describes the regularity of 

a sequence of symbols as an input to the UTM. If we assume no time constraint and run 

the algorithm long enough, there is a good chance that the randomizer would eventually 

generate a bitstring that matches the input description with minimal length. In this 

method, Solomonoff has adopted Epicurus principle of multiple explanations (Li & 

Vitányi, 2008, p. 347), which states that all possible hypotheses ought to be considered 

before narrowing them down to the simplest and most likely explanation.  
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Figure 15: A minimal description of cat image as a concatenation of a program with input strings88 

This algorithm can be applied to solve the problem of automatic image 

classification. For instance, given a digital image, can a machine tell whether this image 

contains a cat or not? In Algorithmic Probability, this becomes a question of whether a 

new image shares the same regularities that are identified by the minimal-length 

description about an output sequence of images. As mentioned earlier, the format of this 

minimal-length input bitstring can be a software program followed by a sequence of 

inputs that correspond to the output sequence of images. We want to compute the 

conditional probability for a UTM to generate the new image, if the machine has already 

processed an input bitstring that corresponds to a minimal description of the output 

sequence. This is therefore a question of inductive inference. For example, suppose we 

have collected a corpus of cat images. We are then given a new image and asked to test 

whether or not this image contains a cat. We can run the algorithm in Algorithmic 

Probability for a few days and discover some minimal-length input description about a 

very long sequence of cat images drawn from the collected corpus. We can think of this 

minimal-length input description as a program concatenated with a sequence of specific 

input strings (see Figure 15). We can test whether an image contains a cat by answering 

the following question: If the randomizer generates another random bitstring as inputs to 

 

88 The images in this figure are taken from the web (Forest, 2016; Influenza in Cats | CDC, 2024; 
Zielinski, 2020) 
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the UTM, what would be the probability that the UTM would generate the new image 

being tested (see Figure 16)? 

 

Figure 16: How to use Algorithmic Probability to test whether an image contains a cat. 

 

Figure 17: A longer input string is required to generate a dog image89 

To see why, suppose we have an image of a dog and wants to test whether this 

is an image of a cat. Suppose further that the input strings 𝛼1, 𝛼2, 𝛼3 … 𝛼𝑖 on Figure 15 

have an average length of 𝐿𝛼. For the next output symbol to be the image being tested 

(the dog image), the algorithm comes up with an input string 𝛾1, which has a length of 

 

89 The image in this figure is taken from the web (Shirodkar, 2023). 
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𝐿𝛾1
. Not all patterns found in images of cats are shared by images of dogs, which also 

exhibit dog-specific attributes. Therefore, we would expect that 𝐿𝛾1
≫ 𝐿𝛼  because 𝛾1 

needs the additional bits to describe dog-specific attributes (see Figure 17). The 

conditional probability that a randomized input would generate the dog image as the next 

symbol of an output sequence of cat images, given that we have come up with a minimal 

description on the sequence of cat images, would be (1
2⁄ )

𝐿𝛾1 . This conditional 

probability is much smaller relative to the conditional probability for a randomizer to 

generate a cat image, which should be relatively close to (1
2⁄ )

𝐿𝛼
. Therefore, if we want 

to test whether or not a given image contains a cat, Algorithmic Probability can be used 

to compute the probability that a randomized input string would generate the given 

image, under the condition of having found a minimal description for a corpus of cat 

images as the output sequence to a UTM. We can then determine whether this image 

contains a cat based on whether this computed probability is close to (1
2⁄ )

𝐿𝛼
.  

5.6. The Implication of Algorithmic Probability on Deep 
Learning 

 According to Solomonoff, Algorithm Probability has been applied to genetic 

algorithms (2011, p. 5) and other optimization problems (1997, p. 17). But most 

significantly, it “can serve as a kind of ‘Gold Standard’ for induction systems” (1997, p. 

22). That means, if time is not our concern and if computational resources are unlimited, 

this algorithmic model can find close to the best hypotheses for a body of data by 

collecting more data and by enlarging the scope of possible explanations (e.g., by 

increasing the time limit of computation for each hypothesis). In the following, I will 

explain why the argument for “Gold Standard” of Algorithmic Probability is equally 

applicable to a deep neural network, thus anticipating the eventual breakthrough in big 

data and deep learning.  

 In his Coursera lectures on machine learning, Andrew Ng explains how more 

data can drive the performance of machine-learning models.90 The idea is to first 

increase the complexity of a model. This can be done by increasing the number of 

 

90 See Lecture 17 of Andrew Ng’s Coursera lectures on machine learning (Ng, 2017)  



130 

polynomial terms in a linear or logistic regression model, or by increasing the number of 

layers and nodes in a neural network91. In fact, deep learning is simply the training of a 

super complex neural network with lots of layers and nodes. Today, the number of 

hidden layers and nodes in a deep neural network may be in the thousands, millions, or 

even more. For instance, GPT-3 (GPT stands for “generative pre-trained transformers”) 

92, released by OpenAI in 2020, produced a gigantic model with 175 billion parameters 

(K.-F. Lee & Chen, 2021, p. 152). Google Brain, released one year later, is a language 

model with 1.75 trillion parameters (2021, p. 158). This number will only keep on 

increasing. Such complex models must be trained with a massive amount of data to 

make good predictions.93 The more complex the model, the more data is required.  

 As I will try to explain, deep learning and big data were already anticipated in 

Solomonoff’s Algorithmic Probability. Deep learning is a subfield of machine learning that 

focuses on training complex neural networks that are configured with many layers and 

nodes. The initial version of GPT model (GPT-1) has 12 layers, each containing 768 

hidden units, and a total of 117 million parameters (Radford et al., 2018). GPT-2 has 48 

layers, 1536 hidden nodes, and a total of 1.5 billion parameters (Radford et al., 2019). 

The latest version, GPT-3, has 175 billion parameters (T. B. Brown et al., 2020). The 

origin of artificial neural network can be traced to the Pitts-McCulloch artificial 

neuron/perceptron, which is a mathematical model that imitates the function of a 

biological neuron.94 Warren S. McCulloch came up with the idea of artificial neuron and 

Walter Pitts “got it in proper form” by specifying an abstract schematics of an 

“impoverished” neuron in proper mathematical notations (McCulloch, 1974/2004, p. 

 

91 See Section 5.2 for the explanation on why the complexity of neural network is determined by 
the number of network nodes and layers. 

92 GPT is the engine behind the ChatGPT that is trending in popularity. 

93 Managing the bias-variance trade-off is a well-known diagnostic for debugging and tuning the 
performance of a learning algorithm. This diagnostic also underlies the rationale of big data 
analysis. For a low-bias, high-variance model, collecting more data for training can drive down the 
variance because more non-skewed training data allows a wider coverage of all possible 
patterns. If you have a massive training set with billions of data examples that basically exhaust 
all possible varieties, fitting a complex learning algorithm to this massive data set could also 
generalize well and make good predictions. The caveat is, you must choose a set of features that 
has sufficient information to predict accurately, such as recognizing whether or not a picture 
contains a car. Thus, if massive datasets are available, a typical strategy is to first choose a 
complex learning algorithm. 

94 See Section 5.2 for a brief introduction on how an artificial neuron imitates the biological model 
of a neuron. 
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353). By mimicking the functionality of a biological neuron, a perceptron with properly 

assigned weight, or a combination of these perceptions, can function as different logic 

gates (AND gates, OR gates, NOT gates, etc.).95 As a Turing machine can be built with 

logic gates connecting to one another,96 it can also be built as a network of artificial 

neurons. In “A Logical Calculus of the Ideas Immanent in Nervous Activity” (1943), 

McCulloch and Pitts came up with the mathematical proof that “a net made of threshold 

devices, formal neurons, can compute those and only those numbers that a Turing 

machine can compute with a finite tape” (McCulloch, 1974/2004, p. 353). Hence it is 

mathematically proven that any Turing machine can be implemented as a neural 

network. 

Nonetheless, questions remain whether it is possible to train such a complex 

neural network with data. When Marvin Minsky and Seymour Papert wrote the book 

Perceptrons (1969/1972), it was generally believed at the time that no learning algorithm 

for multilayer network was possible (Hertz et al., 1999, p. 7; Sejnowski, 2018, p. 79). 

Their book demonstrates the limitation of a single layer neural network, raising doubts 

about the practicality of research into neural network. As a result, most of the computer 

science community left the neural network paradigm for almost twenty years (Hertz et 

al., 1999, p. 7). But the tide began to turn during the mid-1980s. David Ackley, Gregory 

Hinton, and Terrence Sejnowski invented a learning algorithm for multilayer network, 

which is described in their paper “A Learning Algorithm for Boltzmann Machines” (1985). 

Shortly after, Hinton, along with David Rumelhart and R. J. Williams, introduced the 

backpropagation learning algorithm for training multilayer neural network in “Learning 

Internal Representations by Error-Propagation” (1986). Backpropagation is now the 

method of choice for training deep neural networks. More recent technical literature has 

explored the question of Turing completeness of various neural network architectures. 

As Jorge Pérez, Javier Marinkovi, and Pablo Barceló explain in “On the Turing 

Completeness of Modern Neural Network Architectures” (2019), a “key requirement” for 

any “neural network architectures capable of learning algorithms from examples … is to 

 

95 See Lecture 8 of Andrew Ng’s Coursera lectures on machine learning (Ng, 2017)  

96 See Michael Sipser’s Introduction to the theory of computation (2013): “We can also simulate 
theoretical models, such as Turing machines, with the theoretical counterpart to digital circuits, 
called Boolean circuits,” which is “a collection of gates and inputs connected by wires. Cycles 
aren’t permitted. Gates take three forms: AND gates, OR gates, and NOT gates …” (Sipser, 
2013, pp. 379–380)  
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have the capacity of implementing arbitrary algorithms, that is, to be Turing complete.” 

Forms of neural network architectures proven to be Turing complete includes recurrent 

neural network (Siegelmann & Sontag, 1992) and the transformer model (Pérez et al., 

2019). 

Recall that the UTM in Algorithmic Probability can be substituted by any universal 

computer. Since a neural network can compute any function like a Turing machine, it 

can play the role of the Turing machine in Algorithmic Probability.97 Increasing the 

complexity of a neural network is effectively the same as relaxing the time limit in the 

algorithm of Algorithmic Probability. When we increase the number of layers and nodes 

in an artificial neural network, we are essentially expanding the number of hypotheses 

under consideration. And in the same way that more data would narrow down the 

possible hypotheses in Algorithmic Probability, massive amount of data is required to 

tune the billion or trillion of parameters in a deep neural network to discard false 

hypotheses. The versioning of GPT exemplifies how deep learning may progress toward 

the completeness of Algorithmic Probability. For every new version, OpenAI would 

collect additional data to train GPT and design a larger neural network architecture to 

cover as many hypotheses as possible, given the size of the training data and the 

available computational power. Collecting more data, increasing the complexity of neural 

networks, and fabricating more powerful processor chips could result in deep learning 

models that approach the completeness of Algorithmic Probability.98 

 In Chapter 4, I brought up Turing’s foresight that machine reasoning of 

“unorganized machines” could escape human understanding. Solomonoff’s proofs also 

anticipates the opacity of complex machine-learning models in deep learning. Because 

his induction methods cover all possible hypotheses, “the proposed model is optimum 

with respect to all other conceivable models, many of which have not yet been 

 

97 By framing the neural network as a UTM in Algorithmic Probability, the design of a neural 
network is no longer concerned with replicating the actual physiological understanding of how the 
brain works, which AI and machine learning have no interest in. 

98 The “big data” theory has presumably been confirmed empirically in a study at Microsoft by 
Michele Banko and Eric Brill (2001). They examine the relationship between the choice of 
machine learning algorithms and the training set sizes, and the result shows that all algorithms, 
each of which can be made arbitrary complex, would yield similar performances. This result led to 
Andrew Ng’s claim in his lecture: “it’s not who has the best algorithm that wins. It’s who has the 
most data.” Nevertheless, an artificial neural network can be universal like a computer whereas 
other models cannot. So only neural network can be made to approach the completeness of 
Algorithmic Probability. 
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discovered” (1964, p. 17). Not only would his methods uncover new models, but they 

“are meant to bypass the explicit formulation of scientific laws, and use the data of the 

past directly to make inductive inferences about specific future events” (1964, p. 16). In 

other words, the optimal models are directly derived from the data themselves without 

introducing scientific knowledge or human reasoning. The data-driven models are 

sequences of bits that turn out to be the best software programs for generating the 

output sequence of symbols, and these software programs may be inexplicable in 

human reasoning. The opacity of these random bits anticipates the opacity of those 

billions and trillions of nodes in a deep neural network99, as both encapsulate a machine-

level reasoning beyond human-scale understanding.  

 The significance of Solomonoff’s proof to machine learning parallels the Church-

Turing thesis discussed earlier in Section 3.4. Just as the Church-Turing thesis gives an 

extreme outer limit of what it is possible to compute, Solomonoff’s Algorithmic Probability 

gives an extreme outer limit on the subtle regularities that machine learning can identify 

in a large data collection. As I have argued, Algorithmic Probability is based on a 

machine-learning model that can always be improved upon by expanding the 

consideration of possible hypotheses and by eliminating invalid hypotheses with more 

data. This design scheme has been adopted in deep learning and big data, and the 

proof of “completeness” can be appropriated to explain the prowess of deep learning. In 

addition, Algorithmic Probability exhibits an opacity of machine-level reasoning that also 

characterizes deep learning. Both are associated with machine-level reasoning that can 

surpass human-scale reasoning for identifying subtle patterns in a body of data. With the 

way Algorithmic Probability anticipates deep learning, Solomonoff deserves the 

recognition of being “a pioneer scientist ahead of his time whose work was worthy of 

more than a Turing Award” (Dowe, 2013, p. 2). 

 

99 We can think of the hidden nodes in a neural network as sub-features that contribute to the 
predictive probability. Training a neural network would generate weights or parameters 
associated with each node over many iterations of back propagations. In the case of a neural 
network with only a hundred nodes, it is somewhat possible to confer meanings to these weights 
and nodes. Such a small neural network can be trained to recognize handwritten digits from one 
to ten, and a data scientist may inspect the weight of each node and try to guess how certain 
nodes may be associated with certain pen strokes, for instance, a straight line down here, a slant 
there (see Burrell, 2016: 6–7). But these are, at best, just educated guesses. When there are 
trillion of nodes, it is not possible for a human to explain the reasoning behind the model’s 
predictions. Yet, these predictions could be better than any mechanism built based by a human. 
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5.7. Conclusion 

 This chapter explains the algorithm behind Solomonoff’s Algorithmic Probability 

and why his proofs serve as the theoretical justification for machine learning and deep 

learning. As I have argued, early AI pioneers were inspired by Turing’s papers on 

machine intelligence, and they justified their vision of AI by referring to the proof of 

universality in Turing machines. In the latest breakthrough in deep learning, the 

predictions of AI experts have their basis in the theoretical works by Solomonoff. In this 

chapter, I have outlined an explanation of Solomonoff’s model of Algorithmic Probability, 

which encompasses the basic principles of deep learning and big data. These principles 

are: (1) make the model as complex as possible in order to cover a vast number of 

possible hypotheses, (2) train this model with massive amount of data to eliminate 

invalid hypotheses, and (3) train the model directly from data and acknowledge the 

opacity of machine-level reasoning.  

 In other words, the works that Dreyfus discarded (see Section 1.3) have turned 

out to be foundational for the breakthrough in deep learning.100 Solomonoff’s Algorithmic 

Probability and his proof of universal inductive inference support Kai-Fu Lee’s claim that 

deep learning can recognize subtle patterns in data better than humans can. But this 

claim ought to be stated more concisely as follows: for any data pattern, there exists an 

algorithm that can recognize the pattern given no limit on computational power and 

training time. Realistically, there is always a limit to the available computational power 

and training time. Under such constraints, which change all the time, the job of AI 

practitioners is to explore what practical applications can be implemented, identifying 

new ways to design how to represent a real-world problem as numerical inputs and 

expected outputs to a machine-learning model. In other words, while there is the 

potential for deep learning to recognize any subtle pattern, there is no guarantee that it 

can recognize specific patterns in a given dataset under existing constraints in 

processing power and performance expectation. Such a project demands the continual 

experimentations of AI practitioners to produce workable AI models for any given 

constraints. Nonetheless, Solomonoff’s proofs provide a rational ground for hope in such 

 

100 We ought not fault Dreyfus for missing out on the significance of Solomonoff’s works though, 
since machine learning, and in particular, neural network, is disregarded as irrelevant until 
recently. 
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a research direction, much like the significance of the Church-Turing thesis for imagining 

what a computer can do. 

At the same time, as long as AI research is exploring the potential of machine 

learning or deep learning, any claim about AI beyond pattern recognition capability 

should be questioned and challenged. This potential for deep learning to recognize any 

subtle data patterns demarcates any realistic projection of future development in AI. 

Qiufan Chen’s storytelling in AI 2041 imaginatively illustrate how our world may be 

transformed by such projections of future AI. The examples in AI 2041, along with recent 

AI inventions such as ChatGPT, demonstrate the vast potentials in applying the pattern 

recognition capability of deep learning. They also beg the question on the limit of AI, 

given that it is capable of learning from any data patterns. In fact, long before Ray 

Kurzwell wrote on the idea of Singularity (2005), Solomonoff already discussed the 

possibility of “a machine with a capacity many times that of the computer science 

community” as the final milestone of AI (1985). For him, if AI is capable of learning from 

all kinds of patterns, there seems to be virtually no limit to its intellectual capacity. 

Nonetheless, it is also difficult to fathom how AI can imitate the contingent development 

of knowledge and personality in human history. As mentioned in Chapter 1, Kai-Fu Lee 

points to three areas—creativity, empathy, and dexterity—where AI falls short of today. 

Yet some AI enthusiasts may still protest, what is creativity? Is creativity not simply 

randomness inserted into the regeneration of patterns that are deemed acceptable, such 

as the patterns in musical forms or in painting?  

Such questions on the limitation of AI’s potential demands a philosophical 

critique, which will be the subject of the following chapters. In the next chapter, I will turn 

to the philosophy of Gilbert Simondon, which conceives of a reality beyond the realm of 

digital algorithms. His works were formulated as a response to the philosophy of 

openness in cybernetics as advocated by Wiener, Wiener discusses his philosophy in I 

Am a Mathematician, The Later Life of a Prodigy (1956/1989). The autobiography 

describes his discomfort with the complete and closed system of logic in modern 

science, and his penchant to comprehend the disordered dynamicity between complex 

environments. Over the past three chapters, I have complicated the relationship between 

early developments in computation and the cybernetics movement.101 I believe it is 

 

101 It is noteworthy that Turing himself never participated in the Macy Cybernetics Conferences. 
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better to narrate them as two distinct movements that mutually influence one another. It 

is true that on several occasions, the history of computing is marked by innovations that 

appropriate ideas from the intellectual current of cybernetics, as evident in the 

conceptualization of human-computer symbiosis, cyberspace, or machine learning. 

Nevertheless, decoupling the two intertwining movements can lead to the realization that 

the philosophy of cybernetics is not necessarily tied to computing or to the analytic 

philosophy that grounds the historical development of computing. By conceptually 

separating computer from cybernetics, we can gain clarity on the target of the critique of 

universality. The target of the critique ought not be the cybernetics movement, which is 

an interdisciplinary mosaic filled with mutually conflicting assumptions, united loosely by 

the theme of feedbacks, homeostasis, and the blurring of human-machine boundary. 

The target ought to be the universality in Turing’s proof of the UTM, in Solomonoff’s 

proof on Algorithmic Probability, and in Carnap’s representation of the universe as a long 

sequence of symbols. The decoupling of cybernetics and computing allows us to 

appreciate the philosophy of openness behind cybernetics. As I will contend next, 

Simondon took this philosophy of cybernetics as the point of departure for his 

philosophical formulation, which led to his theories of individuation, concretization, and 

transduction. 
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Chapter 6.  
 
Cybernetics and the Philosophy of Simondon 

Me Is there any creativity in DeepBach? 

ChatGPT:  The question of whether there is creativity in DeepBach, or 

any other computer program, is a complex and debated topic 

in the field of artificial intelligence and computational 

creativity. 

From one perspective, creativity is often considered a 

uniquely human trait that involves novel and valuable outputs 

that are generated through a combination of knowledge, 

intuition, and imagination. Some argue that it is not possible 

for a machine to be truly creative because it lacks the 

subjective experience and consciousness that humans 

possess. 

However, others argue that creativity can be defined more 

broadly as the ability to generate novel and useful outputs 

that are valued by humans. From this perspective, a machine 

such as DeepBach could be considered creative if it produces 

music that is novel, high-quality, and aesthetically pleasing to 

humans. 

In the case of DeepBach, it is designed to generate new 

music that is similar in style to Bach's chorales, but is not a 

direct copy of existing pieces. The model has been shown to 

produce new and interesting variations of Bach's music that 

are stylistically consistent and can be considered musically 

coherent by experts. Therefore, some researchers argue that 

DeepBach is an example of computational creativity. 

6.1. Overview 

 In the preceding chapter, I presented Solomonoff’s Algorithmic Probability as an 

algorithm capable of discovering any subtle patterns in a large amount of data, 

anticipating the eventual breakthrough in big data and deep learning. A generic 

machine-learning algorithm, like Solomonoff’s algorithm, would search through a large 

space of candidate programs and select the program that generates the data patterns 

shared by its training data. While this program can be applied to solve many pattern 

recognition problems, an even more straightforward application is the re-generation of 
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data patterns in new forms. Thus, a machine-learning model trained to recognize the 

patterns in Bach’s musical style is also a program that can re-generate new 

compositions imitating Bach’s musical style. Indeed, among all the applications of deep 

learning, the production of artistic works using generative AI conjures up the impression 

that AI is capable of genuinely creative production, from graphics design to commercial 

music to even authoring a book102. This prompts the question: Would AI, empowered by 

deep learning, be capable of being genuinely creative? At this moment, the so-called 

creativity of generative AI is simply randomized regeneration of certain patterns. But if 

we operationalize human creativity as the ability to draw connections between 

background information that appears unrelated, creativity would then be a special case 

of the fringe consciousness that serves as the basis of Dreyfus’ critique of symbolic AI 

(see Section 1.4). With deep learning capable of automatic language translation, which 

Dreyfus used as an example of fringe consciousness, would it also be possible to train 

an AI model with patterns of creativity such that AI becomes capable of creatively 

discovering relations from different aspects of life? To deliberate on this question about 

computational creativity, I now turn to the works of Gilbert Simondon, who formulated his 

philosophy of openness from Bergson’s Creative Evolution (1922) and from the open 

character of cybernetics. 

Simondon was a relatively inconspicuous French philosopher during his times, 

and his works have only begun to garner recognition among scholars in recent decades 

(Feenberg, 2017a, p. 66). Plenty of commentaries have since come out, explaining his 

philosophical concepts while acknowledging their significance as a critical response to 

cybernetics. They mostly give the impression that Simondon is critical of cybernetics.103 

 

102 E.g., ChatGPT is the author of a book in recently published in Korea (Hwang, 2023). 

103 Cecile Malaspina also points out that “many commentators will be quick to point out that 
Simondon is critical of cybernetics and information theory” (2019). Here are some examples. In 
“Governing progress: From cybernetic homeostasis to Simondon’s politics of metastability” 
(2022), Andrew Bardin writes, “[f]ollowing Gilbert Simondon, we take the cybernetic notion of 
dynamic stability (‘homeostasis’) as paradigmatic of the hyper-modern condition” and “[t]he 
connection we establish between cybernetics and neoliberalism will eventually allow us to use 
Simondon’s theory against both.” In “Being with Technique–Technique as being-with: The 
technological communities of Gilbert Simondon” (2019), Susanna Lindberg writes, “Simondon 
thinks that Norbert Wiener’s cybernetics is too limited a theory because it examines automats 
[sic] too exclusively as if they were entirely closed systems.” In Gilbert Simondon and the 
Philosophy of the Transindividual (2013), Muriel Combes emphasizes Simondon’s resistance to 
cybernetics: “Simondon does indeed use the term "feedback," but because of his resistance to 
cybernetics, and because I see something very different at work in his philosophy than in theories 
of autopoiesis” (2013, p. 118). 
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Nevertheless, according to Pascal Chabot, Simondon was “[i]nspired as much by Ionian 

physiology as by cybernetics” (2013, p. 1).104 He was in fact 

among the first to bring cybernetics to France. He read Wiener’s writings 
as soon as they were published. Simondon shared Wiener’s enthusiasm 
for a transdisciplinary theory organized around mutually agreed-upon 
concepts. He described phenomena using operational terms and adopted 
the vocabulary of the cyberneticists, with recurring references to 
communication, control, relations, functions, actions and reactions. (2013, 
p. 53) 

As I will explain in this chapter, if we read Simondon’s works in parallel with Wiener’s 

Cybernetics (1948/2007) or with the transactions of the Macy Cybernetics Conferences 

(Pias, 2003a), it becomes apparent that Simondon was not only critical of cybernetics 

but also appreciative of key ideas in cybernetics, to the extent that he incorporated and 

appropriated these ideas in his philosophical inquiry.105 Many key philosophical concepts 

in Simondon can be viewed as derivatives of ideas from cybernetics. For instance, it is 

possible to identify associations between recurrent causality and negative feedback, 

between concretization and homeostasis, between individuation and ontogenesis or 

phylogenesis, and between transduction and the communication of chemicals between 

biological entities.106  

 Hence, while Simondon and Heidegger both offered critiques of cybernetics, the 

critique of Simondon has a different character from that of Heidegger, who abhorred the 

 

104 Yuk Hui makes a similar point: “The richness of the discussions in cybernetics are rarely taken 
into account of understanding Simondon, the Simondonian scholars seem to emphasize how 
different is Simondon from the cyberneticians without looking into the legacy” (2011). 

105 Andrew Iliadis makes aware the importance to engage with the sciences and cybernetics to 
interpret Simondon: “What Deleuze did not point out, and what many English readers of 
Simondon have heretofore failed to pick up on, is that in articulating this new philosophy 
Simondon was simultaneously engaged in conversation with some of the most technically 
advanced scientists, engineers, and mathematicians of the twentieth century. Any real 
understanding of Simondon’s approach to individuation – most central of all Simondonian 
concepts – must acknowledge the privileged position that Simondon gave to notions from within 
engineering, physics, and especially cybernetics in his original ontology” (2013, p. 1). Note that, 
whereas Iliadis engages in a discussion of information ontology in Simondon’s concept of 
individuation, this chapter and the next are concerned with other theories in cybernetics and in 
modern physics. 

106 Note that Chabot never further identifies Simondon’s associations with cybernetics at this level 
of details. He does note that Simondon celebrates the new relationship between people and 
machines invented by cybernetics: “Cybernetics invented a new relationship between people and 
machines. Simondon celebrates this. He demonstrates that information technologies represent a 
real step forward: they allow for the successful coupling of human and machine” (2013, p. 71). 
We will come back to this relationship in Chapter 6. 



140 

totalizing and universal implication of cybernetics.107 As I will further argue, Simondon’s 

writing captures the ethos of cybernetics: the bringing together of knowledge domains 

with contradictory assumptions, and the resulting sociotechnical innovations that 

transcend the inherent contradictions and incompatibilities. According to Simondon in 

“Cybernétique et philosophie” (1953/2016a) and “Épistémologie de la cybernétique” 

(1953/2016b), people often confuse information theory with cybernetics (1953/2016a, 

para. 17).108 In fact, information theory is only a branch of cybernetics (1953/2016b, 

para. 7).109 What initiated the cybernetics movement was this recurrence of the effects of 

activity on activity, which is called reaction, feedback, or internal resonance 

(1953/2016a, para. 17).110 In contrast to information theory, the philosophy behind this 

notion of feedback in the cybernetics movement, as outlined by Norbert Wiener, is 

suggestive of a possible trajectory of co-evolution between the human, the social, and 

technology. Simondon further develops this co-evolution in his philosophy of 

individuation.  

 Therefore, in contrast to Heidegger’s critique, Simondon is only partially critical of 

cybernetics, particularly on the reduction of communication into one of digital information 

and on the mechanization of the living beings that fits the symmetric approach to life and 

machines in cybernetics. His critical reflection of cybernetics actually spawns out of his 

philosophical formulation that is primarily inspired by cybernetics, along with all the 

breakthroughs in scientific discoveries leading up to his time. This association with 

cybernetics becomes even clearer when we examine Wiener’s reflections on his 

exposure to philosophy that eventually led to his exploration of cybernetics. This 

philosophy embraces the themes of openness and complexity in opposition to the closed 

 

107 See Chapter 2 on the discussion on Heidegger’s critique of cybernetics. 

108 “Cette psychanalyse défensive, qui fait le bilan du mythe et de la réalité dans la cybernétique 
pour la réduire à une théorie de l’information, confond l’amour populaire pour le robot et la 
technologie des systèmes holiques. Un robot n’a rien de cybernétique” (1953/2016a, para. 17). 

109 “Toutes les définitions qui ont été données jusqu’à ce jour de la Cybernétique désignent les 
cybernétiques particulières, réciproques de telle ou telle science structurale, plutôt que la 
Cybernétique universelle. L’étude de la quantité d’information est une branche de la 
Cybernétique, comme l’étude des mécanismes téléologiques, ou encore celle des relations 
d’asservissement et de commande” (1953/2016b, para. 7). 

110 “Cette récurrence des effets de l’activité sur l’activité se nomme réaction, feed-back, ou 
résonance interne. Avec la réaction commence le système cybernétique” (1953/2016a, para. 17). 
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system of traditional sciences, and such themes were later taken up by Simondon in his 

philosophical inquiry. 

 In the following, I will summarize Wiener’s philosophy of cybernetics and its 

emphasis on the themes of openness and complexity. I will then introduce Simondon’s 

theories of individuation and concretization while pointing out how these theories are 

associated with cybernetics. Two key concepts that Simondon adapts from cybernetics 

are “recurrence of causality” and “transduction.” Somewhat ironically, these concepts, 

derived from cybernetics, also form the basis for Simondon’s critical responses to 

cybernetics’ mechanization of the living and its blurring of boundary between life and 

machine. I will conclude by revisiting the question of whether AI can be creative and 

exhibit life-like quality in light of Simondon’s critique. 

6.2. Wiener’s Philosophy of Cybernetics 

 Earlier in Chapter 3, I argued that the intellectual current of cybernetics is filled 

with contradictions and conflicts between disciplines. These incompatible disciplines 

were loosely held together by common themes such as negative feedbacks and 

homeostasis, whose interdisciplinary implications were summarized by Wiener in 

Cybernetics (1948/2007).111 As I will explain below, behind these cybernetics ideas is an 

approach to scientific exploration that seeks to theorize irregularities and complexities 

that escape the closed system of traditional scientific method. 

 Originally trained as a philosopher before becoming a mathematician, Wiener 

reflected on the philosophy of cybernetics in his autobiography Norbert Wiener—A Life 

in Cybernetics (1956/2018): “The whole background of my ideas on cybernetics lies in 

the record of my earlier work” (1956/2018, p. 459). In his earlier work, Wiener repudiates 

the closed system of logic in modern scientific method and expresses respects for 

irregularities, complexities, and open systems: 

Because I had studied harmonic analysis and had been aware that the 
problem of continuous spectra drives us back on the consideration of 

 

111 According to David A. Mindell in Between human and machine: feedback, control, and 
computing before cybernetics (2002), Wiener’s publication reflects more a summary of the 
discussion from the meetings he attended at the Macy Cybernetics Conference than his own 
ideas. Mindell’s book also documents a long history of technical designs related feedback and 
homeostasis. 
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functions and curves too irregular to belong to the classical repertory of 
analysis, I formed a new respect for the irregular and a new concept of the 
essential irregularity of the universe. Because I had worked in the closest 
possible way with physicists and engineers, I knew that our data can never 
be precise. … 

 It is no coincidence that my first childish essay into philosophy, 
written when I was in high school and not yet eleven years old, was called 
“The Theory of Ignorance.” Even at that time I was already struck with the 
impossibility of originating a perfectly tight theory with the aid of so loose a 
mechanism as the human mind. And when I studied with Bertrand Russell, 
I could not bring myself to believe in the existence of a closed set of 
postulates for all logic, leaving no room for any arbitrariness in the system 
defined by them. Here, without the justification of their superb technique, I 
foresaw something of the critique of Russell which was later to be carried 
out by Gödel and his followers, who have given real grounds for the denial 
of the existence of any single closed logic following in a closed and rigid 
way from a body of stated rules. 

 To me, logic and learning and all mental activity have always been 
incomprehensible as a complete and closed picture and have been 
understandable only as a process by which man puts himself en rapport 
with his environment. (Wiener, 1956/2018, pp. 459–460) 

Wiener raises the issue that “essential irregularity of the universe” escapes “the classical 

repertory of analysis.” Scientific hypotheses stipulated in formal mathematical functions 

of classical analysis cannot account for irregularities. In addition, these hypotheses are 

formulated to account for data measured by physicists and engineers, and such data 

“can never be precise.” This is essentially consistent with the arguments made in 

Thomas Kuhn’s The Structure of Scientific Revolution (1962/1996) and later in science 

and technology studies (STS). The modern scientific project generalizes from 

observations of objects in a closed system. These objects have been extracted from 

their contexts and isolated from changes in their environment. The resulting abstract 

knowledge has little to say about the real and concrete world which is made up of 

complex relations between open environments. The science of closed systems, such as 

experimental and theoretical physics, does not take account “nature’s overwhelming 

tendency to disorder” (Wiener, 1956/2018, p. 460), and “[t]hese were the ideas [he] 

wished to synthesize in [his] book on cybernetics” (1956/2018, p. 460). Rather than 

seeking a unified theory, the holy grail of modern scientific pursuits, Wiener took Gödel’s 

incompleteness theorem as his point of departure. His aim was to bring new 

understanding about the disordered dynamicity of the interactions and communications 
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between complex environments.112 In other words, Wiener’s cybernetics was an attempt 

to revolutionize modern sciences, turning them from the study of closed systems of 

orders into the study of open systems of disorders. By shifting the focus of scientific 

studies to open systems, in which there is no assumption of a fixed and controlled 

environment, Wiener derived the notions of negative feedbacks, which, as mentioned 

earlier, initiated the cybernetics movement according to Simondon.  

 Feedbacks as purposeful active behavior in a disordered, open environment 

characterize cybernetics. Up to this point, Simondon would agree with the general 

direction of cybernetics as the scientific study of complex phenomena. But whereas 

Simondon identified such complexity as the point of departure for his philosophy of 

openness, scientists such as McCulloch took the cybernetics movement into another 

direction. Cyberneticians believed that their field can overcome the philosophical dualism 

and reductionism in the modern epoch. The result would be the universalization across 

different fields. As McCulloch concludes in “The Beginning of Cybernetics” (1974/2004), 

cybernetics “is ready to officiate at the expiration of philosophical Dualism and 

Reductionalism … Our world is again one, and so are we” (1974/2004, p. 360). Relating 

the inner milieu with the outer milieu in a feedback loop, would resolve the subject-object 

dualism, and the focus of disordered and open environment would address the 

reductionism of the classical analysis in modern science. To cyberneticians like 

McCulloch, the new science of cybernetics has a deeper philosophical implication 

behind the technical prototypes and inventions: the implication of unifying a disjointed 

world into one world, between subject and object, between isolated knowledge 

disciplines, between humans and machines.  

 So, it is quite possible that Heidegger’s statement, that cybernetics would take 

the place of philosophy,113 originates from the scientists’ opinion about the universality of 

cybernetics. But this speculation in fact takes a conceptual leap from the notion of 

feedback as a generic mechanism across boundaries and between milieux, to the belief 

that all beings can be universally mechanized as processes in feedback loops. Hence, 

as I have argued in Chapter 3, this belief about the universality of cybernetics could 

 

112 Note that references to Gödel’s incompleteness theorem often come up in the transactions of 
the Macy conferences. 

113 See Chapter 2 on the discussion on Heidegger’s critique of cybernetics. 
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never be carried out in practice due to the inherent contradictions between disciplinary 

knowledge. It is true that feedbacks can be found everywhere, but no knowledge 

discipline is reducible to feedback processes. With his breadth of knowledge in sciences 

and technologies, Simondon was likely aware of the untruth in the unfounded claim that 

cybernetics is a universal science. Therefore, unlike Heidegger who finds in cybernetics 

the materialization of the technological will due to its universality, Simondon’s philosophy 

rebuts the very claims that lend support to the universality of cybernetics. This includes 

the claim that the human and the machine are both made up of processes of information 

and are therefore essentially the same. At the same time, Simondon was appreciative of 

the genuine insights behind the theorizing of irregularities and disorderly systems across 

multiple milieux in cybernetics. As I will explain in the remainder of this chapter, the 

philosophy of Simondon can be viewed as a further development of the thoughts on 

complexities that were preliminarily explored in cybernetics. 

6.3. Cybernetics and Simondon’s Philosophy of 
Individuation 

 Simondon’s most prominent philosophical works are L’individuation à la lumière 

des notions de forme et d’information (1964/2005; hereafter ILNFI) and Du mode 

d’existence des objets techniques (1958/1989; hereafter MEOT). ILNFI is the main 

thesis of Simondon’s doctoral dissertation. It was originally published in two parts, the 

first part on the ontogenesis and phylogenesis of physical and biological beings, the 

second part on the growth of individual psyches and the development of social 

collectives. L'individu et sa génèse physico-biologique was published in 1964, whereas 

L'individuation psychique et collective remained unpublished until 1989. MEOT, his 

earliest publication, is the complementary thesis, but was immediately turned into 

publication after his doctoral defence in 1958.114 Building on Henri Bergson’s Creative 

Evolution (1922), Simondon develops his philosophy of individuation in ILNFI, and 

extends this philosophy to his analysis of technology in MEOT, in which he provides a 

theory on sociotechnical innovation with his theory of concretization. His writing alludes 

to an eclectic source of knowledge and examples drawn from various fields in science 

 

114 On a side note, ILNFI did not appeal to a wide readership until it was brought up by Gilles 
Deleuze and then later by Bernard Stiegler in their works. In contrast, MEOT was immediately 
well-received by a broad audience after publication (Feenberg, 2017a, p. 66; “Gilbert Simondon,” 
2023). 



145 

and technology. This multidisciplinary discourse gives the impression that Simondon is 

responding to the discussions at the Cybernetics conferences. In this section, I will 

present an overview of the philosophy of individuation in ILNFI and allude to its 

conceptual connections with cybernetics. I will then discuss MEOT and his theory of 

concretization in the next section. 

 In ILNFI, the latest scientific discoveries in physics and biology serve as the 

material basis for problematizing the traditional notion of individual and individuation, 

leading to his theorizing on the perpetual evolution of new forms (individuation), which 

has its source of potentiality in conflicts and contradictions (pre-individuality). These 

theories come with the implicit assumption that classical philosophy was formulated 

without the awareness of phenomena observable today via more advanced scientific 

instruments. A prototypical example is the matter-form paradigm derived from the brick 

formation (Simondon, 1964/2020, pp. 21–54).115 Initially, a brick maker would begin the 

process by filling a wooden mould with clay. Under the matter-form paradigm, clay is a 

malleable, formless substance, which requires the wooden mould to give it the form of a 

brick. Simondon argues that the wooden mould is not a pure form, but material that 

requires technical treatment to become hardened and to assume the appearance of a 

form. Neither is this clay purely indeterminate matter. Rather it is processed material with 

molecular properties that determine its porosity and density. When heated, compressed 

clay would expand and press up against the wooden mould, which acts as an opposing 

force to the expansion. Thus it is not the form of the mould, but this exchange of force 

and energy that produces the hardened form of clay.  

 This limitation of matter-form paradigm persists in our understanding not of only 

clay and brick, but also of “many events of formation, genesis, and composition in the 

living world and the psychical domain” (1964/2020, p. 21). These facts include the 

different forms that matter may take under different phases in crystallization (1964/2020, 

pp. 68–87), as well as the obfuscated boundaries of individuality in many physical and 

living beings, from quantum mechanics (1964/2020, pp. 135–148) to the society of bees 

and ants (1964/2020, p. 337) to the colonies of corals (1964/2020, pp. 180, 208).116 

 

115 More specifically, the target of the matter-form critique is the philosophical theory by Aristotle 
called hylemorphism. 

116 I will elaborate on the obscure zones of quantum theory and crystallization for the deliberation 
of pre-individuality in Chapter 7. 



146 

Each of these examples operates in some “obscure zone” outside the matter-form 

paradigm and problematizes the notion of a complete and coherent individual. The 

matter-form paradigm requires a “reduction of the entire spectrum of reality,” which 

includes these obscure zones, to “its extreme terms considered as matter and form” 

(1964/2020, p. 351). These obfuscated boundaries of individuality seems reminiscent of 

the cybernetic notion of boundary-crossing across milieux. But rather than 

deconstructing the boundary between the human and the machine,117 Simondon 

identifies the “obscure zone” as the reservoir of potentiality prior to the formation of 

individuals, in such a way that individuals are inherently associated in relations to one 

another and to the environment that engender the individuation. Thus in Simondon’s 

philosophy, beings are inherently in relation. 

 Simondon emphasizes this inherent relationality in his philosophy of 

individuation, which was formulated to overcome the matter-form paradigm. The process 

of crystallization serves as a paradigmatic model for individuation and consequentially, 

for the relationality between individuals and milieux. A super-saturated solution contains 

more solute than the equilibrium solubility allows. It remains in an amorphous state until 

it is inseminated with a crystalline germ. Crystalline structures would then begin to form 

in extension of the crystalline germ. As long as the region of the newly constituted 

structure is in contact with the solution, the activity will continue to propagate. Analogous 

to the actual events in crystallization, an individuation undergoes  

a physical, biological, mental, or social operation through which an activity 
propagates incrementally within a domain by basing this propagation on a 
structuration of the domain operated from one region to another: each 
structural region serves as a principle and model, as an initiator for 
constituting the following region, such that a modification thereby extends 
progressively throughout this structuring operation. (Simondon, 1964/2020, 
p. 13) 

Simondon uses the term “transduction” to denote the discharge of pre-individual 

potential energy that would bring about the appearance of form-taking (Garelli, 

1964/2020, pp. xxii–xxiii). The potential energy of a supersaturated solution comes from 

the relations between fields of extreme tension, from the incompatibility between an 

overdose of solutes and the equilibrium solubility of the solution. What Simondon calls 

 

117 For instance, as Donna Haraway did in “A Cybernetic Manifesto: Science, Technology, and 
Socialist-Feminism in the Late Twentieth Century” (1991). 
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the state of disparation refers to the incompatibility causing the extreme tension between 

two disparate realities. The crystalline germ, which is essentially a very small lattice 

structure118, introduces a new dimension to this state of disparation, prompting ions to 

latch onto this lattice structure to achieve a more optimal energetic state. In other words, 

the small crystal structure introduces a new kind of order that resolves the extreme 

tension between solutes and equilibrium solubility. Simondon uses the analogy of vision 

to illustrate how introducing a third dimension brings about the resolution of disparation 

(1964/2020, pp. 15, 229–230). Two incommensurable two-dimensional planes are 

conjugated into the projection of a single three-dimensional space. Discrepancies 

between the two-dimensional spaces hold positive potentials for the visualization of a 

three-dimensional space. Therefore, apparently negative aspects have the potentiality to 

become positives, and a paradigm shift can actualize such potentiality. In this analogy, 

the lattice structure of a crystal corresponds to the third dimension that brings resolution 

to the incompatibilities between the disparate regimes of supersaturation and equilibrium 

solubility. 

 On the surface, the crystalline example is a prototype for understanding 

ontogenesis. Describing ontogenesis as mechanical processes appears to be one of the 

main branches in the cybernetics movement. As discussed in Section 4.3, when 

cyberneticians deliberated on the meaning of “learning” in the context of machines, they 

also brought up the ontogenetic evolution of intelligence in organisms. Nevertheless, 

since the individuation of crystallization involves the operation of transduction that 

actualizes potentiality, the example of crystallization is as much about ontogenesis as it 

is about the potentiality of pre-individual reality:  

individuation appears, on the one hand, as ontogenesis and, on the other 
hand, as an operation of a pre-individual reality that not only produces the 
individual, the model of substance, but also produces the energy or the field 
associated with the individual; only the associated field-individual pairing 
accounts for the level of pre-individual reality. (1964/2020, p. 160) 

Rather than mechanizing ontogenesis, Simondon attributes the growth of an organism to 

the potentiality originating from a reality prior to the forming of the individual. In the case 

 

118 See Section 7.3 for an elaboration about the atomic and molecular activities involved in 
crystallization. 
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of crystallization, this “pre-individual” reality is the metastable crystalline solution.119 In 

general, the “pre-individual reality” is the primordial unity that has undertaken a phase-

shift into an individual and an associated field of potential energy. Until the potential 

energy is exhausted, the individual can continue to individuate, to transition to another 

phase. For instance, the liquid phase continually transitions to the solid phase during the 

process of crystallization. The field of potential energy is filled with unresolved tension, 

and individuation is the continual phase shifting of an individual to resolve the tension in 

a preceding phase. These tensions remain unresolved until the exhaustion of the 

potential energy. 

 Transduction and pre-individuality are the basis for Simondon’s theory on the 

relationship between different levels of individuations: 

Logically, [transduction] can be used as the basis of a new type of 
analogical paradigmatism in order to pass from physical individuation to 
organic individuation, from organic individuation to psychical individuation, 
and from psychical individuation to the subjective and objective 
transindividual, all of which defines the plan of this research. (Simondon, 
1964/2020, p. 14) 

Accordingly, the metastable milieu for organic individuation carries a remnant of pre-

individual potentiality from physical individuation, and this potentiality is transduced into 

a process of organization and integration, which engenders organic individuals that can 

be differentiated from other individuals. This remnant of pre-individual potentiality from 

physical individuation is transduced to bring about organic individuation, and the same 

type of operation transduces organic individuation to psychical individuation, and 

psychical individuation to collective individuation, in which “the collective … is a 

transindividual reality” (1964/2020, p. 179). Simondon uses the term “transindividual” to 

denote “across beings” (1964/2020, p. 344), and the rapport of beings in transindividual 

reality is the basis behind human language and communication (1964/2020, p. 345).120 

 

119 Grasping the physics behind crystalline lattices can clarify Simondon’s concept of pre-
individuality, which I will discuss in Chapter 7. 

120 A more thorough discussion on Simondon’s theory of transindividuality and its implication on 
signification and language is provided in Section 8.3. 
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6.4. From Cybernetics to Concretization and Transduction 

 While the philosophy of individuation is Simondon’s main focus of ILNFI, his 

theory of concretization for re-establishing the rapport between technics and the natural 

or social milieu is the key formulation of MEOT.121 In Chapter 3, I explained how the 

cybernetic notions of feedbacks and homeostasis are abstract schemes for mechanizing 

relations between heterogeneous milieux. Simondon also worked on characterizing the 

relation between heterogeneous domains, but he wanted to do so without succumbing to 

the cybernetic project of mechanization and automation. This effort led to his formulation 

of concretization. 

 In the most straightforward sense, concretization is a theory of how technical 

objects evolve, of how elegant and inventive designs can eliminate redundant functions 

and reduce complexities. Technical design is often a matter of attenuating complexity 

because upgrading a technical system would easily lead to an increase of complexity, 

eventually high enough to cause system breakdowns.122 Efforts to enhance a complex 

technical object may come to a dead end unless its modules and their relations are 

redesigned to become simple enough for further expansion and development. Thus, 

when a technical object evolves, its new design needs to become more “concrete” than 

older generations, with a reduction in complexities. As a technical system becomes 

concrete, it is “tending toward internal coherence, toward a closure of the system of 

causes and effects that exert themselves in a circular fashion within its bounds” 

(1958/2016, p. 49). In a deeper philosophical sense, Simondon’s formulation of 

concretization in MEOT is derived from his analysis on the ontogenesis and homeostasis 

of the living in ILNFI. Analogous to how heterogeneous milieux tend toward equilibrium 

in homeostasis, a concretizing technical system tends toward internal coherence 

between multiple technical or natural milieux. This internal coherence comes from the 

“closure of the system of causes and effects that exert themselves in a circular fashion” 

(1958/2016, p. 49). Simondon calls this closure “recurrent causality” or “recurrence of 

causality,” a term that he uses in both ILNFI and MEOT.  

 

121 As I will discuss in Chapter 7, Simondon puts forth a figure-and-ground paradigm, in which 
technics are the figures and the natural or social milieu is the ground. 

122 This is what Simondon means when he talks about pushing a technical evolution toward a 
“fatal hypertely” (1958/2016, p. 58). 



150 

In ILNFI, recurrent causality takes on a general, non-technical meaning, 

indicating how two processes mutually and recurrently cause changes to each other. 

This recurrence is analogous to the notion of cybernetic feedbacks, as both establish a 

two-way communication channel between milieux. In fact, Simondon uses the term 

feedback as synonymous with the term “recurrent causality” in “Cybernétique et 

philosophie” (see 1953/2016a, para. 17). But whereas cybernetic feedbacks denote a 

recurrent flow of information, “recurrence of causality” refers to a recurrence of mutual 

causation between two or more milieux. This paves the way for Simondon’s 

differentiation between the biological notion of homeostasis in the living beings and the 

cybernetic notion of homeostasis. This difference is explained in ILNFI: “homeostasis is 

related to external conditions of transduction due to which the being utilizes the 

equivalence in external conditions as safeguards for its own stability and its internal 

transduction” (1964/2020, p. 172). Whereas Ashby’s homeostat tends toward equilibrium 

over feedbacks, homeostasis in the living being serves as both “safeguards for its own 

stability and its internal transduction [emphasis added].” In a transductive operation, the 

external milieu causes the transformation of the internal milieu, whose reactions in turn 

cause the external milieu to transform in a “recurrence of causality.” Therefore, 

“recurrence of causality” denotes both a process of integration and a process of 

differentiation. It is a process of integration because the operation brings a coupling 

stability between milieux. It is a process of differentiation because the operation brings 

respective changes to the milieux. This is what Simondon means when he wrote, “[l]ife 

would therefore be conditioned by the recurrence of causality due to which a process of 

integration and a process of differentiation can receive a coupling while remaining 

distinct in their structures” (1964/2020, p. 173).  

Concretization incorporates this understanding of recurrent causality in 

homeostasis. A concretizing technical system “tend[s] toward a closure of the system of 

causes and effects that exert themselves in a circular fashion within its bounds” 

(1958/2016, p. 49). Recurrent causality effects mutually structural changes between 

technical elements or between these elements and their associated milieu, which 

Simondon defines as a simultaneously technical and natural milieu. This associated 

milieu is “a milieu that the technical object creates itself and that conditions it, just as it is 

conditioned by it” (1958/2016, p. 59), in a recurrence of causality. But concretization also 

differs from homeostasis in the same way that “[t]he ontogenesis of the living being 
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cannot be conceived from the notion of homeostasis alone, or by self-regulation of a 

perpetuated metastable equilibrium” (1964/2020, p. 204). According to Simondon’s 

analysis of ontogenesis in ILNFI, there is “an inner problematic of being” in the living 

being: 

[t]he state of a living being is like a problem to be solved, of which the 
individual becomes the solution through successive assemblages of 
structures and functions. The young individuated being could be 
considered as a system as a carrier of information, in the form of pairs of 
antithetical elements, linked by the precarious unity of the individuated 
being whose internal resonance creates a cohesion. (1964/2020, p. 204)  

The development in ontogenesis “could then appear as the successive inventions of 

functions and structures that solve, step by step, the internal problem carried as a 

message by the individual” (1964/2020, p. 204). These “successive inventions of 

functions and structures that solve … the internal problem” in the living, as described in 

ILNFI, are appropriated to the technical realm by Simondon in MEOT. Concretization is 

the technical correspondence to ontogenesis of the living, as a technical system evolves 

by new inventions of functions and structures that resolve the disparations between 

system modules. Thus a concretizing technical system tends toward an internal 

coherence over successive inventions of technical “organs” that resolve the “inner 

problematic” of a technical being. 

In MEOT, Simondon alludes to Jean-Claude Guimbal’s invention of a 

hydroelectric generator to illustrate the concretization of a technical system, the creation 

of an associated milieu, and the recurrence of causality. Prior to the Guimbal’s invention, 

it was unthinkable to insert an electric generator into a penstock, which is a conduit or 

pipe for conducting water in a hydroelectric power plant. A generator was too large to be 

lodged into the conduit of a penstock because it needs to be wrapped around by an 

outer layer that addresses the problems of electrical insulation and water-tightness (i.e., 

impermeability to water). Guimbal’s invention makes it possible to reduce to the size of a 

hydroelectric power plant. As Andrew Iliadis explains, “it is due to Guimbal’s genius in 

realizing that the [generator] could be cooled in water that this concretization could 

occur, since it is by virtue of the automatic water cooling that the [generator] could be 

built much smaller" (2015, p. 91).123 According to Simondon, Guimbal invented a very 

 

123 The original quote from Iliadis’ article is: “it is due to Guimbal’s genius in realizing that the 
turbine could be cooled in water that this concretization could occur, since it is by virtue of the 
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small generator contained in a crankcase filled with pressurized oil. The oil serves to 

insulate the generator from electricity and prevents the seepage of water into the 

crankcase through the shaft packings because the pressure of the oil is greater than the 

pressure of the water outside the box. If this generator is put in open air, it would be 

destroyed due to overheating. It is only when the generator is placed in the conduit with 

the water turbine that the problem of overheating is resolved, as the oil in the generator 

would transfer the generated heat from its winding to its crankcase where the heat would 

dissipate by the cooling of the water. Thus “the insertion of the generator into the conduit 

renders itself possible by simultaneously authorizing the energetic cooling by water” 

(Simondon, 1958/2016, p. 57 emphasis in original).  

This design illustrates the recurrent causality between technical objects and the 

very condition that makes possible their existence. Or as Yuk Hui puts it, a technical 

object in recurrent causality contributes to the condition that makes possible its 

existence: “it is situated in a system and in reciprocal relations with other parts; it adapts 

itself to the system while at the same time modifying the system, which in turn conditions 

its further mode of operation; it becomes its own condition through the feedback of the 

whole organic system” (2019, sec. 32). Over the recursive relations between technical 

objects and their technical milieu, concretization is “conditioned by an invention that 

presupposes the problem to be resolved” (Simondon, 1958/2016, p. 57 emphasis in 

original). It is 

a process that conditions the birth of a milieu rather than being conditioned 
by an already given milieu; it is conditioned by a milieu that only exists 
virtually before invention; there is invention because there is a leap that 
takes place and is justified by means of the relation that it brings about 
within the milieu that it creates: the condition of possibility of this turbo-
generator couple is its realization; … One could say that a concretizing 
invention realizes a techno-geographic milieu (in this case the oil and water 
in turbulence), which in turn is a condition of possibility of the technical 
object’s functioning. The technical object is thus its own condition, as a 
condition of existence of this mixed milieu which is simultaneously both 
technical and geographical. (1958/2016, p. 58 emphasis in original) 

If an engineer experiments with every imaginable technique to reduce the size of an 

electric generator as a pre-condition for putting the generator into a penstock, she or he 

 
automatic water cooling that the turbine could be built much smaller" (2015, p. 91). But it is 
actually the generator, not the turbine, that could be cooled in water and could be built much 
smaller. 
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would never arrive at the elegant invention of using the condition inside the penstock to 

resolve the sizing problem. Therefore, straight-line thinking, either deductively or 

inductively, cannot lead to the inventive realization of simultaneous mutual conditioning 

between technical elements and a technical-geographical milieu that is yet to exist. 

Every invention of a technical object involves a transductive realization of a new techno-

geographical milieu in which technical elements are put in relations with each other and 

with physical entities from nature. To Simondon, “[t]he only technical objects that can be 

said to have been invented, strictly speaking, are those that require an associated milieu 

in order to be viable” (1958/2016, p. 59). 

The recurrent causality in concretization resolves the “inner problematic” in a 

transductive operation, bringing the contradictions in one frame of reference into a 

harmonious relation using another frame of reference. This inventive character of 

transduction, fully developed in the formulation of concretization in MEOT, has already 

been anticipated in ILNFI: “In the domain of knowledge, [transduction] defines the 

veritable measure of invention, which is neither inductive nor deductive, but transductive, 

i.e., corresponds to a discovery of the dimensions according to which a problematic can 

be defined” (1964/2020, p. 14). A genuine invention is transductive, discovering new 

dimensions that transduce contradictory tensions into mutually supporting structures in a 

recurrence of causality. Contrary to induction,  

transduction is a discovery of dimensions whose system makes the 
dimensions of each of the terms communicate, such that the complete 
reality of each of the terms of the domain can become organized into newly 
discovered structures without loss or reduction; resolving transduction 
operates the inversion of the negative into the positive … (1964/2020, p. 
15 emphasis in original) 

This transduction here, as defined in ILNFI, is generic for physical, biological, mental and 

social operations. But if we read this definition in the context of technical knowledge and 

invention, it precisely maps his definition of concretization in MEOT. In fact, the 

concretizing character of transduction is evident in the following passage in ILNFI:  

[T]ransduction is characterized by the fact that the result of this operation 
is a concrete fabric including all the initial terms; the resulting system is 
made of that which has become concrete and includes the whole concrete; 
the transductive order conserves the concrete and is characterized by the 
conservation of information, whereas induction requires a loss of 
information … (1964/2020, p. 15 emphasis in original) 
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Transduction is an operation that would result in a “system … which has become 

concrete.” In other words, concretization is simply transduction recontextualized in the 

domain of technical knowledge. In concretization, the “initial terms” would correspond to 

the scientific representations based on which technical schema can be conceptualized, 

and the concretizing system is the site for the actual behavior of the technical elements 

towards each other and with the associated milieu. The coming together of all the “initial 

terms” in a single move would result in a system that has become concrete. In MEOT, 

we can also find passages on concretization that are reminiscent of the explanation of 

transduction in ILNFI. Simondon explains in MEOT, “[c]oncretization gives the technical 

object an intermediate place between the natural object and scientific representation” 

(1958/2016, p. 49). The “intermediate place” represents the gap between abstract 

scientific representations and a technical object that tends toward the concreteness of a 

natural object. This gap is a specific kind of “obscure zone of reality” in the transductive 

operation of individuation. 

6.5. Differentiating Life from Machine 

 Transduction is the crucial concept in Simondon’s critique of information theory 

and in his argument for distinguishing the living from the machine. He adapted the 

concept from the transduction in engineering and in biology, and we can find discussions 

on transduction in the transactions of the Macy Cybernetics Conferences. In this section, 

I will present the various meanings of transduction as explained by the conference 

participants, and how Simondon’s conceptualization can be seen as a derivative of these 

meanings. Among these meanings is the biological notion of communication that elicits 

effects and reactions between the two ends, which grounds Simondon’s critique of the 

notion of information in information theory. The elicitation of mutual effects lead to 

discovery or invention of biological organs in a process of self-organization that resolve 

problematics and tensions in organic growth. Simondon contends that an automaton, be 

it mechanical or informational, is not capable of such discovery or inventions.  

 The term “transduction” originates from science and technology and was brought 

up a number of times at the Macy conferences. During a discussion on memory and 

recalls, Norbert Wiener raised the idea of a mechanical recorder acting as a transducer 

capable of transcoding personal activities into recordable information (Pias, 1949/2003, 

p. 126). John Stroud followed up Wiener’s explanation with an example of transduction: 



155 

An earphone is a device capable of transducing electromagnetic energies into sound 

waves (Pias, 1949/2003, p. 127).124 In another meeting, Claude Shannon alludes to the 

transducer in his discussion of message translation between languages: “Physically we 

can think of a transducer which operates on the message to produce a translation of the 

message” (1950/2003, p. 271). In all these explanations, transduction refers to some 

form of mode conversion between activities, energies, and information.  

 In addition to mode conversion, Simondon’s concept of transduction also 

encompasses an operational notion of information, which is analogous to the biological 

communication as described by Herbert G. Birch and by W. Ross Ashby at other 

Cybernetics meetings. Birch defines biological communication “as the effect of the 

behavior of one organism upon the behavior of another organism” (Birch 1951, p.447). 

For example, “[i]f a starfish is placed in the environment of a scallop, it rather quickly 

elicits a flight reaction on the part of the scallop” (Birch, 1951/2003, p. 447).125 While 

Birch did not identify this communication as “transduction,” Ashby employs the term to 

represent the biological communication in homeostasis. A homeostatic environment is “a 

transducer, as an operator that converts whatever action comes from the organism into 

some effect that goes back to the organism” (W. R. Ashby, 1952/2003a, p. 594). This 

notion of transduction as communication that elicits behavioral change is taken up by 

Simondon, for whom the operation of transduction “allows for signal of information to 

pass, but this passage, instead of being a simple conveyance of information, is 

integration or differentiation” (Simondon, 1964/2020, p. 171).  

 The distinction between the signal of information “as a simple conveyance of 

information” and as the seed that sparks activities of “integration or differentiation” is 

pivotal to Simondon’s critique of information theory. When “the living being evaluates its 

own action,” this evaluation cannot be reduced to a “simple consciousness of the 

discrepancy between the end and the result, and thus to a simple signal” (Simondon, 

1964/2020, p. 172). A living being is one that undergoes transduction in both its interface 

to the external milieu and within its interiority where sub-individuals (e.g., cells within a 

 

124 “Stroud: A typical transducer is an earphone. On one side you are putting in energies, 
pressure systems, and on the other side you are getting out some representation of it but in 
voltage. What comes out on the other side is supposed to represent what goes in but not 
necessarily in the same system of energy value, etc., but it has got to be a good representation” 
(Pias, 1949/2003, p. 127). 

125 This example was discussed earlier in Section 3.2. 
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body) may incessantly merge and split: “The heterogeneous transductive characteristics 

only appear in the margins of this physical reality; on the contrary, interiority and 

exteriority are everywhere in the living being” (1964/2020, p. 172). In organic activities, 

the process of integrating sub-individuals into individuals (i.e., individuation) is followed 

by the process of differentiating the integrated unit from other individuals, and this loop 

would recurrently take place, inducing structural changes in individuals.  

 This argument identifies the limitation of Norbert Wiener’s notion of negative 

feedbacks and of Ashby’s design of the homeostat. A cybernetic automaton, such as 

Ashby’s homeostat, cannot be a model for the living, for 

the automaton can only adapt in a manner convergent with a set of 
conditions by increasingly reducing the gap that exists between its action 
and its predetermined end; but it does not prevent [sic] and does not 
discover ends during its action, for it does not carry any veritable 
transduction since transduction is the expansion of an initially very 
restricted domain that increasingly takes on size and structure; biological 
species are endowed with this capacity of transduction due to which they 
can indefinitely expand. (Simondon, 1964/2020, p. 172)126  

An automaton, built on cybernetic principles, cannot invent and discover its own goals, 

which have already been predetermined by its designers. Nor does it have the capacity 

to grow or reproduce organically, begetting an organization that has no continuity from 

the automaton’s existing structure. Ashby’s homeostat does not exhibit the “quantum 

nature of discontinuous action” (1964/2020, p. 172) that allows for the process of self-

organization in organic growth. Life, in contrast, is “this mixture of continuous and 

discontinuous that is manifested in the regulative qualities which serve as a rapport 

between integration and differentiation” (1964/2020, p. 172). This opposition between 

the “quantum nature of discontinuous action” and “the continuous nature of the 

constructive knowledge of synthesis” (1964/2020, p. 172), this “mixture of the continuous 

and discontinuous” (1964/2020, p. 172), is the obscure, intermediate zone of activity. 

The “continuous” in the context of organic individuation seems to mean the safeguarding 

of stability and equilibrium that are essential for the survival of a living being.127 The 

 

126 The word “prevent” is mistranslated in Individuation in Light of Notions of Form and 
Information (1964/2020, p. 172). It should be “invented.”  

127 “From this point of view, it would be interesting to consider superior animal forms as arising 
from the neotenization of the inferior species in which the stage of individual life corresponds to 
the function of amplificative reproduction, whereas the stage of life in colonies corresponds to the 
continuous, homeostatic aspect. In superior species, individuals are the ones that live in society: 
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“discontinuous” is the “inventive” nature of growth in life, the transductive activities that 

do not logically proceed from the existing state and structure of the vital individual, but 

rather involves unpredictability and choices, whether that be the choices of nature or of a 

living subject. Life cannot be reduced to just the “continuous, homeostatic aspect” 

(Simondon, 1964/2020, p. 390). Instead, it is actually “conditioned by the recurrence of 

causality” between the continuous and the discontinuous (1964/2020, p. 173), between 

stability and inventive creativity. 

6.6. Conclusion 

 In this chapter, I have argued that Simondon’s philosophy is both inspired by the 

ideas in cybernetics and, at the same time, a critique of cybernetics. As Yuk Hui 

explains, there are “two images” of cybernetics: “One is reductionist … The other is non-

reductionist, in the sense of Simondon’s general allagmatic, which seeks genesis 

beyond any form of technological determinism” (Hui, 2019, sec. 44). Simondon 

developed the theories of individuation and concretization, as well as the concepts of 

recurrent causality and transduction, from the cybernetics ideas such as ontogenesis, 

feedback, and homeostasis. These theories and concepts embrace the themes of 

openness and complexity, which are shared by Wiener’s approach to scientific discovery 

to account for the irregularities that escape the closed system of classical analysis. At 

the same time, these theories and concepts are formulated to overcome the mechanistic 

thinking in cybernetics. Contrary to the cybernetic approach to treat ontogenesis as 

mechanical processes, individuation is both an operation of ontogenesis and an 

operation of pre-individuality, which makes creation and invention possible in the living. 

Cybernetic feedback, as a recurrence of information flow, is reconceptualized as the 

“recurrence of causality,” which indicates how two processes mutually and recurrently 

cause changes to each other. The term takes on the specific meaning of “an invention 

that presupposes the problem to be resolved” in technological concretization (Simondon, 

1958/2016, p. 57 emphasis in original). Concretization is a theory about such inventive 

resolution of tensions and conflicts between technical milieux, which may be artificial or 

natural. It is analogous to the biological concept of homeostasis, as both are concerned 

with the resolution of tensions between milieux. But concretization is also an 

 
the two stages and the two manners of being becoming simultaneous.” (Simondon, 1964/2020, p. 
390) 
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appropriation of ontogenesis, as both take on successive inventions and assemblages of 

structures and functions that solve, step by step, the internal problematic of an individual 

(1964/2020, p. 204). Such inventions of structures, whether in a living organism or in 

technical evolution, is neither deductive nor inductive, but transductive. Transduction is 

the crucial concept in distinguishing the living from the machine. Simondon adopts the 

term from its usage in sciences, which may convey the conversion between modes 

(activities, energies, or information) or a kind of biological communication. Unlike the 

communication in information theory, biological communication in living organisms elicits 

reactions and changes in one another. This concept of transduction becomes the basis 

for Simondon in how to differentiate life from machine. A machine such as Ashby’s 

homeostat “does not carry any veritable transduction” whereas “biological species are 

endowed with this capacity of transduction” (1964/2020, p. 172). A machine built on 

cybernetic principles cannot invent and discover its own goals. 

 This critique of cybernetic machines seems particularly relevant to the question 

posed at the beginning of this chapter on whether AI can be creative. According to 

ChatGPT (see the beginning of this chapter), some people argue that “creativity can be 

defined more broadly as the ability to generate novel and useful outputs that are valued 

by humans. From this perspective, a machine such as DeepBach could be considered 

creative if it produces music that is novel, high-quality, and aesthetically pleasing to 

humans.” In short, these people argue that AI can be considered creative because it can 

serve as a creative or aesthetic function for its users. But does this functional view of 

creativity necessarily imply that AI, empowered by deep learning, is capable of being 

creative and emotive? An argument built on Simondon’s philosophy would refute any 

such a claim. As discussed in Chapter 5, AI empowered by deep learning can be 

characterized either as a pattern recognition engine with superhuman ability, or as an 

inductive algorithm based on the exhaustive search of complex hypotheses coupled with 

the elimination of false hypotheses with massive amount of data. Taking Simondon’s 

philosophy as our basis, the question of AI’s creativity can be rephrased as follows: Can 

the affordance of pattern recognition, or the training algorithm based on inductive logic, 

be reconceived as a transductive operation that can result in successive invention of 

new structures and functions to resolve sociotechnical tensions or problematics? While 

the examples of DeepFake or DeepBach, built using specific types of deep neural 

networks (e.g., Generative Adversarial Network (GAN), Recurrent Neural Network 



159 

(RNN), or Long Short-Term Memory (LSTM) Network), can successively generate new 

pictorial or musical structures, these structures are generated inductively, repeating 

patterns observed from the past with stochastic variations. These algorithms are not 

transductive, as they are not capable of inventing and creating new structures that 

convert contradictions into resolutions of the inner problematic in a technical or 

sociotechnical system. They can discover patterns and regenerate data embedded with 

such patterns, but they cannot create and invent like living organisms, which according 

to Simondon’s philosophy undergoes transduction in both its interface to the external 

milieu and within its interiority.  

 Suppose we collect data on all kinds of creative acts and supervise machine 

learning to discover patterns of creativity. Could the model be trained to identify creative 

patterns like Simondon’s transduction and concretization in technical inventions? Human 

creativity seems to involve subconscious acts capable of drawing relations from 

background information absorbed through fringe consciousness, and deep learning has 

been proven to be effective in replicating the function of fringe consciousness in 

applications such as language translation or autonomous driving. If deep learning AI can 

address Hubert Dreyfus’ critique of fringe consciousness (see Section 1.4), what stops it 

from recognizing patterns of creativity? This argument is problematic on two fronts. First, 

transduction involves a creative introduction of a new perspective or a dimension of 

reality that is constructed from conflictual objects. Such an undiscovered dimension 

could not be uncovered in prior patterns. Second, it would be difficult to fathom the 

possibility of repetitive patterns that correlate this new dimension with the vast varieties 

of conflictual relations. For Simondon, it is the potentiality from pre-individuality between 

human imagination and the objects that make transduction, concretization, and recurrent 

causality possible. A machine learning model is a pattern-recognizing engine and does 

not share this pre-individuality. An AI enthusiast may then question, can a software 

program be written to exhaustively go through every object in the world and stops when 

it finds a combination in which components’ conflicts are resolved like in concretization? 

First, this program would be unrelated to machine learning; it is a program written to 

realize Simondon’s theories. Second, like the halting problem, the program does not 

know when to stop. It does not know when a certain combination is elegant enough that 

it should stop searching, even if it can recognize an elegant combination. Third, the 
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search space is so large for every attempt to invent (𝑂(𝑁𝑚)128 where 𝑁 is the total 

number of beings in the universe and 𝑚 is the number of components being put 

together) that it is practically impossible to produce any meaningful result. 

 The question of AI’s emotivity, posed at the end of last chapter, can be 

addressed in a similar argument, as Simondon also applies his philosophy of 

individuation to understand human psyches. AI empowered by deep learning can 

certainly appear to behave emotionally, since such behavior can be implemented by 

generating the appropriate emotional reaction to many possible circumstances. It is 

capable of sentiment analysis, recognizing the feeling behind a facial or linguistic 

expression and regenerating the pattern of appropriate reactions to such expressions. 

But a robot or a computer simulation capable of imitating the emotional behavior of a 

human being ought not be characterized as an emotional being. In Simondon’s 

philosophy, a person experiences emotion or affect because of the unresolved 

intensities from different levels of individuations, and affective intensities are resolved in 

the transductive operation of psychic individuation.129 Such transductive operation is not 

commensurable with the deductive and inductive operation in machine-learning 

algorithms. A computer program like DeepBach can imitate the musical style of Johann 

Sebastian Bach in music generation, but it cannot compose new forms of music in 

response to a changing political and social environment. It is not capable of inventing 

like Arnold Schoenberg’s twelve-tones techniques, or composing music that react to 

political suppression like the anti-Stalin messages in Dmitri Shostakovich’s 

symphonies130. Therefore, however impressive AI applications such as DeepBach or 

ChatGPT may appear to their users, they are no more than engines with the technical 

affordances of pattern recognition and of stochastic regeneration of discovered patterns.  

 Even in the argument that “DeepBach could be considered creative if it produces 

music that is novel, high-quality, and aesthetically pleasing to humans,” the function of 

regenerating musical patterns may appear creative and emotive only through the 

 

128 𝑂(𝑁) is the notation commonly used in computer science to denote the “order of N.” If an 

algorithm is in the order of 𝑁𝑚, which can be written as 𝑂(𝑁𝑚), it means that the algorithm takes 
exponentially longer time to process. 

129 I elaborated this point in my paper “The Dilemma of Openness in Social Robot” (2019). See 
also David Scott’s Gilbert Simondon’s Psychic and Collective Individuation (2014). 

130 This is the view adopted by the documentary film The War Symphonies: Shostakovich Against 
Stalin (Weinstein, 1997). 
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appreciation of a human listener. In general, technical inventions or sociotechnical 

innovations can acquire the meaning of creativity or emotionality only with the human as 

its counterpart. In Simondon’s philosophy, the potentiality of creativeness and the 

intensities of affect originate from the pre-individual reality shared between the human 

and its sociotechnical milieu. This concept of pre-individuality, which basically means the 

reservoir of potentials that will not be exhausted (Hui, 2019, sec. 35), is characterized by 

some as speculative ontology (Seibt & Rodogno, 2019). But this seemingly speculative 

concept has its physical basis from Simondon’s understanding of quantum physics and 

crystallization. As I will explain in the next chapter, the discontinuities in the atomic and 

quantum realm become the physical basis for Simondon’s paradigm of discontinuous 

figures and continuous ground, and this figure-and-ground paradigm is significant to his 

conceptualization of recurrent causality, transduction and concretization. 
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Chapter 7.  
 
The Potentiality of Pre-Individual Reality 

Me Can you explain how Simondon's concept of pre-individuality 

is tied to quantum theory? 

ChatGPT:  Simondon's concept of pre-individuality is tied to quantum 

theory in several ways. First, Simondon's concept of pre-

individuality is rooted in the idea that entities in the world, 

including technological objects, are not pre-existing but 

instead emerge through a process of individuation. Similarly, 

in quantum theory, particles and systems are not seen as 

pre-existing entities that interact with each other but instead 

are seen as emergent entities that come into being through a 

process of interaction with their environment. 

Simondon's concept of pre-individuality is also tied to 

quantum theory through the idea of entanglement. In 

quantum theory, particles can become entangled, meaning 

that the properties of one particle become dependent on the 

properties of another particle, regardless of their distance 

from each other. Similarly, in Simondon's philosophy, pre-

individual entities are not yet fully differentiated, meaning 

that they are dependent on and entangled with other entities 

in their environment. 

Furthermore, Simondon's concept of pre-individuality is tied 

to quantum theory through the idea of superposition. In 

quantum theory, particles can exist in a state of 

superposition, meaning that they exist in multiple states 

simultaneously. Similarly, in Simondon's philosophy, pre-

individual entities exist in a state of potentiality, meaning that 

they have the capacity to become differentiated and 

actualized in multiple ways. 

Overall, Simondon's concept of pre-individuality is tied to 

quantum theory through the ideas of emergence, 

entanglement, and superposition. Both concepts suggest that 

entities in the world are not pre-existing but instead emerge 

through a process of interaction with their environment and 

that they exist in a state of potentiality or superposition 

before becoming fully differentiated. 
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7.1. Introduction 

 In the last chapter, I described in what ways Simondon’s philosophy was inspired 

by cybernetics and explained how it may overcome the problem of mechanizing life in 

cybernetics. The differentiation between Simondon’s philosophy and cybernetics served 

as our basis for differentiating computational creativity from the creativity of the living, 

which Simondon theorizes in the notions of concretization for technical inventions and of 

transduction for physical, biological, psychic, and collective individuation. But critics may 

question, are all these philosophical concepts simply the product of his own 

speculations? Indeed, there are people who would characterize Simondon’s theories as 

speculative ontology (e.g., Seibt & Rodogno, 2019). But as I will contend in this chapter, 

Simondon’s theories actually find their basis in the scientific theories of physical 

phenomena, which have become radically different since the discoveries and theoretical 

breakthroughs during the 19th and 20th century. Whereas Aristotle’s model of potentiality 

was life (Feenberg, 2023, p. 85), Simondon’s model of potentiality was based on modern 

physical sciences. Quantum theories explain observations obtained via more advanced 

scientific instruments that can capture behavior of waves and subatomic particles, while 

solid-state physics describes the 3-dimensional propagation of a molecular lattice in 

crystallization. These twentieth-century scientific theories attempt to explain 

observations that violate classical logic and the common sense of everyday life. Rather 

than disregarding scientific breakthroughs as epistemologically problematic,131 

Simondon sees the necessity of a new philosophy that is consistent with these 

seemingly non-sensical theories about the physical world. 

 This is why, as Andrew Iliadias has suggested, it is imperative to interpret 

Simondon by understanding the relations between his philosophical concepts and the 

various theories in modern sciences: 

What Deleuze did not point out, and what many English readers of 
Simondon have heretofore failed to pick up on, is that in articulating this 
new philosophy Simondon was simultaneously engaged in conversation 
with some of the most technically advanced scientists, engineers, and 
mathematicians of the twentieth century. Any real understanding of 
Simondon’s approach to individuation – most central of all Simondonian 
concepts – must acknowledge the privileged position that Simondon gave 

 

131 I am referring to the strong programme in the sociology of scientific knowledge. 
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to notions from within engineering, physics, and especially cybernetics in 
his original ontology. (2013, p. 1) 

I have explored the significance of cybernetics and engineering (such as a concise 

understanding of the Guimbal engine) in the last chapter. In this chapter, I will look into 

the extensive passages on quantum physics and crystallization in ILNFI. Doing so will 

substantiate my contention that Simondon’s philosophy is not any more speculative than 

Aristotle. Simondon simply treats the peculiar and mysterious subatomic behavior as 

seriously as the way Aristotle treats ordinary experience and human intuition applied to 

large objects.  

These passages on advanced physics, however, seem to assume that readers 

are knowledgeable in quantum theories and solid-state physics. Readers with no 

background knowledge of these theories would find them incomprehensible. By not 

taking these passages seriously, readers would unknowingly turn Simondon’s modeling 

of physical phenomena into a fascinating but unfounded speculative philosophy. Yet, 

hope is not all lost for people who have not studied particle physics in university. It is 

possible to develop an intuitive understanding of the uncanny subatomic behavior and of 

the molecular/atomic activities in crystallization without going into complex mathematics 

equations.132 To do so, I will draw from the explanations in The Feynman Lectures on 

Physics (Feynman et al., 2011), which is a physics textbook based on lectures given by 

Richard Feynman to undergraduate students from 1961 to 1963. Feynman is a Nobel 

laureate who has sometimes been called "The Great Explainer" (LeVine, 2010), and is 

well-known for his knack of giving intuitive explanation behind the complex mathematical 

theories in physics. These lectures came after Simondon’s defence of his doctoral 

dissertation in 1958, which was later turned into the publications of MEOT and ILNFI. So 

clearly, his knowledge of physics in ILNFI did not come from Feynman’s lectures. 

Nevertheless, an intuitive grasp of quantum theory and of crystalline lattices through 

these lectures can enlighten our interpretation of Simondon’s theory of individuation and 

his notion of pre-individual reality.  

 This enlightened interpretation would reveal the significance of the figure-and-

ground paradigm for Simondon’s critique of technological alienation and why 

 

132 I am also not interested in the latest advances in these fields, as the goal is to simply 
understand Simondon. 
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concretization is the means to overcome such alienation. Simondon’s theory of physical 

individuation and pre-individual reality are attempts to make sense of the quantum 

behavior of subatomic particles and of the crystalline activities in the molecular and 

atomic realm.133 In ILNFI, Simondon talks about quantum mechanics and wave 

mechanics as two ways of expressing pre-individuality: 

Perhaps it would be in this sense that we could see the convergence of 
these two new theories, that of quanta and that of wave mechanics …; they 
could be envisioned as two ways of expressing the pre-individual through 
the different manifestations in which it intervenes as pre-individual. Below 
the continuous and the discontinuous, there is the quantic and the 
metastable complementary (the more than unity), which is the true pre-
individual” (Simondon, 1964/2020, p. 6). 

Acquiring such intuitions is essential to the understanding of the pre-individual reality as 

the being “below” the continuous and the discontinuous in the observable behavior of 

electrons and of crystallization, and how the “charge of pre-individual reality” are 

transduced to bring about the formation, structuration, and organization of individuals. 

Simondon portrays the discontinuous and the continuous in a figure-and-ground 

paradigm, the discontinuous being the figure and the continuous being the ground. He 

then proposes that relations between the discontinuous and the continuous, at all levels 

of individuation, subsist in a recurrence of causality between the figure and the ground. 

As I will explain in this chapter, technological alienation for Simondon is a consequence 

of the blockage between the figure and the ground that would inhibit the operation of 

individuation, and concretization is a scheme that can possibly overcome technological 

alienation. 

 In the following, I will begin by presenting an intuitive explanation of quantum 

theory and crystallization based on The Feynman Lectures on Physics. I will then 

describe the significance of this understanding for Simondon’s conceptualization of pre-

individuality. This can help us see why recurrent causality is about the relation between 

the discontinuous and the continuous, and consequentially, between the figure and the 

ground. I will further elaborate on Simondon’s idea that technological alienation comes 

 

133 His elaboration on vital and biological individuation are just as important, but it is much easier 
to understand for non-biologist. In ILNFI, he brings up biological entities such as sea anemone to 
problematize the notion of individual due to the unclear boundaries and couplings of many 
biological entities. Because of its comprehensibility, I will not explain Simondon’s theory on vital 
individuation in this dissertation.  
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from the blockage between the figure and the ground, and on how concretization is the 

means for overcoming this alienation. 

7.2. Quantum Mechanics 

 Simondon’s philosophy is difficult to understand due to the vagueness of his 

abstract concepts that can be too open to interpretations. Understanding his detailed 

scientific and technical illustrations can clarify his intended meanings, but readers not 

well-trained in advanced physics cannot gain much from his writing on quantum theory 

and wave-particle duality. Yet, the uncanny behavior of subatomic activities, 

counterintuitive and contrary to our everyday experience of large objects, is also what 

necessitates a philosophy distinct from the classical system of logic for Simondon. This 

classical system was formulated by ancient thinkers who only had direct experiences 

with the physics of large objects. Simondon attempted to formulate a philosophy distinct 

from classical philosophy by taking new scientific discoveries on subatomic activities into 

account. 

 As mentioned earlier, in our endeavor to understand Simondon’s passage on 

quantum mechanics, we will cross-read Simondon with The Feynman Lectures on 

Physics (Feynman et al., 2011). As Feynman explains,  

Because atomic behavior is so unlike ordinary experience, it is very difficult 
to get used to, and it appears peculiar and mysterious to everyone—both 
to the novice and to the experienced physicist. Even the experts do not 
understand it the way they would like to, and it is perfectly reasonable that 
they should not, because all of direct, human experience and of human 
intuition applies to large objects. We know how large objects will act, but 
things on a small scale just do not act that way. So we have to learn about 
them in a sort of abstract or imaginative fashion and not by connection with 
our direct experience. (Feynman et al., 2011, bk. III, Chapter 1-1) 

Feynman then illustrates the peculiar and mysterious subatomic behavior in a “thought 

experiment,”134 showing how electrons may behave like particles, like waves, like both, 

or like neither. In this thought experiment, there is an electron gun and a movable 

electron detector, which can move up and down along the backstop (see Figure 20). The 

 

134 A “thought experiment” is a hypothetical experiment in which “we know the results 
that would be obtained because there are many experiments that have been done” (Feynman et 
al., 2011, bk. III, Chapter 1-4). 
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detector, which can be a Geiger counter connected to a loudspeaker, would produce a 

“click” sound upon each arrival of an electron. With the detector at different positions, the 

rate at which the clicks appear is faster or slower, but the size (loudness) of each click is 

always the same. There are no “half-clicks.” And if two separate detectors are placed at 

the backstop, only one of them would click but never both at the same time. We can 

therefore conclude that “[e]lectrons always arrive in identical lumps” and behave like 

particles (Feynman et al., 2011, bk. III, Chaper 1-2), and would expect the behavior of an 

electron gun emitting electrons to be just like that of a machine gun shooting a stream of 

bullets (See Figure 18). 

Now, as we can see in Figure 20, there are two holes in the wall that allow 

electrons to go through, and we can observe the probability distribution of where the 

electrons may land with either hole open or both holes open. What is peculiar here is 

that this probability distribution is similar to the probability distribution in a set-up with a 

“wave source,” such as a speaker generating sound waves (see Figure 19), and different 

from the probability distribution if the set-up has a “particle source,” such as guns 

shooting bullets (see Figure 18). With guns shooting bullets, the probability distribution 

with both holes opened is equal to the sum of the probability distributions with either hole 

opened (see 𝑃12 in Figure 18). With a wave source, this is not the case as there are 

interferences when the waves through the two holes arrive at the detectors “out of 

phase” (e.g., with a phase difference of pi), and the waves would “interfere destructively” 

(see 𝐼12 in Figure 19). With an electron gun as the source, the probability distribution 

also exhibits wave-like interference when both holes are opened (see 𝑃12
′  in Figure 20), 

even though each electron appears to be an individual corpuscle like bullets, based on 

the unity of each “click” sound produced via the Geiger counter. Feynman thus gives the 

following conclusion: “The electrons arrive in lumps, like particles, and the probability of 

arrival of these lumps is distributed like the distribution of intensity of a wave. It is in this 

sense that an electron behaves ‘sometimes like a particle and sometimes like a wave’” 

(Feynman et al., 2011, bk. III, Chapter 1-5). 
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Figure 18: Interference experiment with bullets135 

 To further determine whether electrons behave more like particles or more like 

waves, Feynman examines the proposition that “each electron either goes through hole 

1 or it goes through hole 2” (Feynman et al., 2011, bk. III, Chapter 1.5). If this proposition 

is true, then the number of electrons that arrive at a particular point on the backstop 

should be equal to the number arriving via hole 1 plus the number arriving via hole 2, 

and the probability distribution with both holes opened should not exhibit wave-like 

interference. But since we already know about the wave-like interference, then the 

proposition must be false. To confirm this logical deduction experimentally, we can place 

a very strong light source behind the wall and between the two holes, as shown in Figure 

21, such that when an electron passes by, it would scatter some light to our eyes. So if 

an electron goes through hole 1, then a flash of light would come in the vicinity near hole 

1. If it goes through hole 2, then a flash of light would come in the vicinity near hole 2. 

Running the experiment with this light-source set-up, we would see that “every time that 

we hear a ‘click’ from our electron detector (at the backstop), we also see a flash of 

light either near hole 1 or near hole 2, but never both at once” (Feynman et al., 2011, bk. 

III, Chapter 1.4)! To our surprise, contrary to our deductive reasoning, the proposition 

 

135 Figure 18 to Figure 21 are adopted from The Feynman Lectures on Physics (Feynman et al., 
2011, bk. III, Chapter 1). 

   

       
        

 
  

  

   

         
            

  

 

 



169 

that electrons go through either hole 1 or hole 2 is actually true according to our 

experiment. Now, in order to find out what is wrong with this deductive reasoning, we 

can measure the probability distribution as before, counting the number of electron 

arrivals at each position on the backstop, except that this time we also keep track of 

which hole each electron has gone through. So we can get a probability distribution for 

electrons going through hole 1 (𝑃1
′ in Figure 21), which would look the same as the 

probability distribution when hole 2 is blocked off as in Figure 20 (𝑃1). And we can get a 

probability distribution for electrons going through hole 2 (𝑃2
′ in Figure 21), which would 

look the same as the probability distribution when hole 1 is blocked off (𝑃2). We can also 

get the total probability distribution (𝑃12
′  in Figure 21) by counting the total number of 

electrons arriving at each position. And strangely enough, the total probability distribution 

is now equal the sum of the probability distribution for electrons going through hole 1 and 

that for electrons going through hole 2 (𝑃12
′ = 𝑃1

′ + 𝑃2
′). In this experimental set-up with 

the light source, there is actually no sign of interference! 

 Thus it appears that the act of looking at electrons, via the light source, would 

change their behavior, such that they would behave completely like particles. Could it be 

the light source that disturb their behavior? What happens if we adjust the light source, 

making it dimmer or adjusting the wavelength? Would it reduce the disturbance by the 

light source on the electrons? We can also try this out experimentally, and it turns out 

that, by dimming the light source, some electrons can be seen while others may pass by 

the hole unseen (that is when “clicks” are heard with no “flash of light” near either holes). 

Only those electrons that we can see would fall onto a particle-like probability 

distribution, whereas those that escape our eyes would fall onto a wave-like probability 

distribution. Therefore, “it is impossible to arrange the light in such a way that one can 

tell which hole the electron went through, and at the same time not disturb the pattern” 

(Feynman et al., 2011, Chapter III 1-6). This is Heisenberg’s uncertainty principle, and 

“[n]o one has ever found (or even thought of) a way around the uncertainty principle. So 

we must assume that it describes a basic characteristic of nature” (Feynman et al., 2011, 

Chapter III 1-6). 
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Figure 19: Interference experiment with water waves 

 

Figure 20: Interference experiment with electrons 
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Figure 21: A different electron experiment 

 To sum it up, electrons behave like individual particles when they are observed 

via the Geiger detector, which converts or “transduces” its lump of energy into audible 

sound wave. These same electrons exhibit wave-like behavior when the “clicks” are 

counted to generate a probability density curve representing where they may land on the 

backstop. So they exhibit both particle-like behavior and wave-like behavior. But when a 

light source is added, allowing human eyes to trace the route that each electron passes 

through, from the electron gun through a hole to the backstop, the probability distribution 

of where electrons land is like that of large particles. 

 This type of uncanny behavior in the subatomic world, which is peculiar and 

mysterious because our intuitions are based on direct experience with the physics of 

large objects, became for Simondon a “new path for grasping the reality of the individual” 

(1964/2020, p. 136). This new path “opens up with quantum theory, whose power of 

transductivity is so great that it allows for the establishment of a viable relation between 

an inductive physics of the discontinuous and a deductive energetic theory of the 

continuous” (1964/2020, p. 136). The word “transductivity” is appropriated from science 

and technology,136 and the term was also frequently employed by participants of the 

 

136 See footnote 124. 
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Cybernetics Conference.137 Simondon appropriates this scientific and technical term to 

his philosophy to account for phenomena that cannot be explained by direct causal 

relation. Such phenomena signify the reversal of the law of entropy, giving rise to the 

formation of individuals or organized structures without any direct, visible causes. In 

Simondon’s philosophy, negentropic phenomena138 are the result of transduction, an 

operation where the pre-individual charge, from a mode of reality prior to the becoming 

of the individuals (hence called pre-individual reality), is transduced to bring about the 

formation of individuals or organized structures. 

 We can use Simondon’s concepts of transduction and pre-individual reality to 

explain the uncanny behavior of the electrons in Feynman’s “thought” experiment. When 

electrons are observed with the Geiger counter, we can say that they are transduced 

from the form of waves to the form of particles. When electrons are observed with the 

light source, the disturbance caused by the energy field of the light source transduces 

electrons from the form of waves to the form of particles. It appears that, when electrons 

are observed by whatever means, they are transduced from the continuous form of 

waves into the discontinuous form of individual particles. From this, Simondon concludes 

that between the discontinuous and continuous forms of reality exists some obscure, 

intermediate zone of reality where transductive activities operate. The physics of 

particles and of waves in large objects fails to explain the subatomic world because 

particles and waves are only “extreme terms” that overlook this intermediate zone of 

reality. This intermediate zone is analogous to the one in the process of brickmaking, in 

which form and matter are only extreme terms that do not account for the intermediate 

zone of chemical reactions in the formed matter of clay and the material form of the 

mould.139  

 

137 See Sections 4.2 and 6.5. 

138 The term “negentropy” is coined by Bernard Stiegler. Negentropy reverses the second law of 
thermodynamics, which states that “the total entropy of a system either increases or remains 
constant in any spontaneous process; it never decreases” (Urone et al., 2020, Chapters 12–3). 
Note that Stiegler often uses this term “negentropy” while Simondon never uses it. 

139 Pascal Chabot gives a succinct summary of how Simondon critiques hylemorphism with the 
example of brickmaking in The Philosophy of Simondon (2013, pp. 75–78) 
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 For Simondon, the uncanny behavior of particle-wave duality of electrons can be 

explained with the theory of transduction in an intermediate zone of reality. This 

understanding helps us interpret the meaning of the following passage in ILNFI:  

In the end, we could ask ourselves whether or not, instead of being capable 
of entering into the framework of an indeterministic physics or that of 
deterministic physics, we should consider the theory of singularities as the 
foundation for a new representation of the real that encompasses these 
two as particular cases and that should be called the theory of transductive 
time or the theory of the phases of being. This definition of a new manner 
of thinking becoming, which calls for determinism and indeterminism as 
borderline cases, applies to other domains of reality than that of elementary 
corpuscle … (1964/2020, p. 154) 

The framework of a “deterministic physics” likely denotes the Newtonian mechanics that 

can predict the behavior of particles, while the framework of an “indeterministic physics” 

likely denotes Maxwell’s waves theory. For Simondon, both are “borderline cases” that 

do not apply to the domain of “elementary corpuscle,” a domain of reality that can be 

accounted for by “a new representation of the real that encompasses these two as 

particular cases,” and this new representation “should be called the theory of 

transductive time or the theory of the phases of being.” 

7.3. Crystallization 

 As with his writing on quantum theory, Simondon wants to bring into relation the 

discontinuous and the continuous in the process of crystallization. Many commentaries 

of Simondon present crystallization as a prototypical example of his philosophy of 

individuation, but their accounts are lacking in explaining the discontinuities that 

Simondon emphasizes in the process of crystallization.140 Some details in the scientific 

knowledge about crystals are significant for understanding Simondon but are easy to 

overlook. In this section, I will describe the scientific details and then examine the 

parallel between the continuous, the discontinuous, and the intermediate zone of reality 

in crystallization and the preceding account of transduction in subatomic activities.  

 Crystal is a type of solid material with a repetitive pattern of atoms or molecules 

in a 3-dimensional lattice. This pattern is formed when atoms do not move around very 

 

140 For instance, neither Chabot (2013) nor Combes (2013) elaborate much about what Simondon 
means by discontinuities in crystallization.  



174 

much and arrange themselves in a configuration with as low an energy as possible 

(Feynman et al., 2011, bk. II, Chapter 30-1). So the process of crystallization involves 

the realignment of atoms or molecules, binding themselves to a crystalline lattice and 

propagating its 3-dimensional pattern. A seed crystal is simply a small piece of a crystal 

or polycrystal material of the same material, constituted of a miniature base pattern that 

can be expanded, like a wallpaper (See Figure 22). The physical properties of a crystal 

vary depending on the kind of bonds between the atoms or molecules that make up the 

lattice. In a diamond, the carbon atoms have covalent bonds in all four directions to the 

nearest neighbors, and the crystal is very hard to break. A sugar crystal and paraffin are 

molecular crystals with weak attractions between molecules. So sugar crystals are easy 

to break. In metals, the bonding is of an entirely different kind, as the bonding is not 

between adjacent atoms. Each atom contributes an electron to a universal pool of 

electrons, and the positive ions reside in the sea of negative electrons, which holds the 

ions together like some kind of glue (Feynman et al., 2011, Chapters 30–1).  

 

Figure 22: A repeating pattern in two dimensions141 

 A couple of characteristics of crystalline lattice are particularly relevant to our 

understanding of Simondon. First, there is a physical discontinuity between the 

molecules in the lattice. They are not touching one another, and unlike chemicals that 

are held more strongly by ionic bonds or covalent bonds, crystals can be held together 

by “nonbonded interactions” (Dlott, 2003, Chapter 3.2). According to Simondon, the  

individuation that we will characterize through the example of the crystal 
cannot exist without an elementary discontinuity on a more restricted scale; 
it takes an edifice of atoms to constitute a crystalline lattice, and this 

 

141 The figure is adopted from The Feynman Lectures on Physics (Feynman et al., 2011, bk. II, 
Chapter 30-1). 
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structuration would be very difficult to conceive without an elementary 
discontinuity. (1964/2020, p. 90) 

The “elementary discontinuity on a more restricted scale” likely refers to the “non-

bonded” interactions through which crystalline molecules or atoms may be held together. 

Second, crystallization is a process that reorganizes an amorphous milieu of molecules 

(the metastable solution). The process is therefore negentropic. The introduction of a 

crystalline germ, which is basically a lattice of molecules in a smaller scale, supplies the 

pattern for the process of crystallization. In this process, specific molecules in a 

supersaturated crystalline solution will bind themselves to the lattice, propagating the 

repeated pattern of the germ.  

 This scientific knowledge of crystals as lattices and their propagation of repeating 

patterns is helpful for understanding Simondon’s writing on the individuation of crystals: 

the structural germ must bring with it a structure corresponding to the 
crystalline system in which the amorphous substance can crystallize; the 
crystalline germ does not have the same chemical nature as the 
amorphous crystallizable substance, but there must be an identity between 
the two crystalline systems in order for the apprehension of the potential 
energy contained in the amorphous substance to be carried out. … The 
individuation of a system essentially results from the meeting of a mainly 
structural condition and a mainly energetic condition (1964/2020, p. 80).  

Transduction results from the encounter of a structural condition (the repeated patterns 

in lattices) with an energetic condition (supersaturated crystalline solution142). This 

encounter brings about the reorganization of molecules in the growth of a crystalline 

lattice. The potential energy for such a reorganization has always been latent in the 

energetic condition in the “amorphous crystallizable substance,” but it would remain 

latent until its encounter with a structural germ that shares “an identity” with it. This 

shared identity presumably implies that the chemical constituents of the crystalline seeds 

is the solute that exceeds the concentration specified by the solubility in a 

supersaturated solution. The encounter between the two extreme conditions transduces 

the latent energy in the supersaturated solution to bring about the reorganization of ions 

or molecules that bind themselves onto the crystalline lattice.  

 

142 A solution is supersaturated when the concentration of a solute exceeds the concentration 
specified by the solubility. This metastable state may be brought back to equilibrium by forcing 
the excess of solute to separate from the solution (“Supersaturation,” 2022). 
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 Simondon further explains, “[t]his supposes that individuation exists on an 

intermediate level between the order of magnitude of the particulate elements and that of 

the molar ensemble of the complete system” (1964/2020, p. 94). Accordingly, there are 

two orders of magnitude, or two disparate domains of reality. One domain of reality is the 

order of the particulate elements. The other domain of reality is the order of the solid 

crystal such as diamonds, sugar, or metals. Individuation is an operation at the 

intermediate level between the two orders of magnitude, where the discontinuous 

interacts with the continuous: “[I]ndividuation is initiated on the level at which the 

discontinuous of the singular molecule is capable … of modulating an energy whose 

support is already a part of the continuum in the population of randomly arranged 

molecules” (1964/2020, p. 94). Transduction is then an operation at this intermediate 

level where an energy of the continuum is modulated by singular molecules to form the 

“molar ensemble.” In this process, “the tension between incompatible—as yet 

unrelated—dimensions of being” is transduced into another form of energy, one that 

“[integrates] disparity and difference into a coordinated system” (“A Short List of Gilbert 

Simondon’s Vocabulary,” 2007). 

7.4. Recurrent Causality – Figure and Ground 

 In both the uncanny behavior of electrons and in the edifice of molecules or 

atoms in crystalline lattices, Simondon identifies an intermediate level of activities 

between the discontinuous (subatomic particles or atoms and molecules constituting a 

crystal) and the continuous (waves or supersaturated solution). He models this relation 

between the discontinuous and the continuous at all levels of individuation as a 

recurrence of causality between the figure (discontinuous) and the ground (continuous). 

In vital individuation, the appearance of differentiated organic individuals corresponds to 

the appearance of discontinuous figures, and the continuum of physical and living milieu 

from which emerge the figures corresponds to the metastable ground. Simondon then 

extends this concept of recurrent causality to his analysis of technology.  

 In this figure-and-ground paradigm, the technical objects are the figures, whereas 

the natural, psychic, or the social milieu serve as the ground of metastable continuum. 

“[Psychic ground] is the milieu associated with a systematics of forms that institutes 

relations of recurrent causality between these forms and that which causes recastings of 

the system of forms taken as an ensemble” (1958/2016, p. 61). When it is free from 
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alienation, the psychic ground of affective intensities never stops channelling the energy 

that would cause the “recastings of the system of forms,” which belong to the psychic 

ground themselves. When the channels of this recurrence of causality between 

structural forms of the figure and the energetic potentials of the ground are blocked or 

“short-circuited,”143 the ground becomes alienated from the figures: “Alienation is the 

break between ground and forms in psychic life: the associated milieu no longer 

regulates the dynamism of forms” (1958/2016, p. 61). In the realm of technology, forms 

in psychic life can be associated with the technical schemas, which then subsist 

physically as technical objects or mentally as schemas within human psyches. In 

technological alienation, the dynamisms of technical schemas are no longer regulated by 

the psychic or natural milieu. Therefore, technological alienation can be subverted if the 

broken channel between ground and forms can be re-established, allowing the 

associated milieu of psychic ground or the ground of nature to “[regulate] the dynamism 

of forms,” which is the same as the dynamism of technical schemas.  

 Understanding Simondon’s recurrence of causality as a feedback loop between 

figure and ground further reveals the essence of Simondon’s critique of Wiener’s 

cybernetics. In this critique, cybernetics advocates a theory of automata built on 

feedback loops while excluding the ground of pre-individual charge from the milieu. 

Automatons cannot individuate and are lifeless in themselves, because their goal-

oriented recursivity, a negative feedback loop that aims to reduce the distance between 

the current state and its final target, is based on pure mathematical and algorithmic 

operations that preclude any relations with a pre-individual ground of random, 

amorphous continuum filled with tensions, randomness, and disparations. When human 

activities are primarily conducted in systems made up of automatons, participating 

humans would be alienated from the ground of natural, psychic, or social milieu.144  

 

143 The term “short-circuited” is used by Antoinette Rouvroy and Thomas Berns (2013) as well as 
by Stiegler (2016) in their Simondonian critique of algorithmic governance and a society 
proliferated with automations. 

144 Yuk Hui also identifies with this crux of the problem with modern technology as one about the 
figure of technology detached from the ground, or becoming the ground itself: “As Schelling 
attempted to show, evil emerges when the figure is taking over the ground (again like Figure-
Ground in Gestalt psychology), when the self-will takes over the universal will; seeking a solution 
in the self-will is an affirmation of the perversion of the ground, the perpetual loss of the universal 
will” (Hui, 2019, sec. 7). Hui’s attempt to combat this “perversion of the ground” led to his 
conceptualization of cosmotechnics, which draws on non-western technics from different 
indigenous cultures in order to escape from the enframing of the calculable: “However, when 
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 Even though our contemporary digital milieu is becoming increasingly automated, 

to the extent that it is seemingly taking over the status of the ground in people’s lives145, 

the ground with pre-individual charge will always subsist as long as there remains a 

world of nature, of human lives, and of social lives. If Simondon is correct that the source 

of alienation is the broken channel between the figure and the ground filled with pre-

individual potentials, our approach to oppose alienation can come in the form of re-

establishing the rapport between technics and the metastable milieu of physical nature, 

human psyches, and the collectives of transindividual relations. 

7.5. Conclusion 

 In this chapter, I have drawn from the lecture series on physics by Richard 

Feynman, “the Great explainer,” to present non-mathematical explanations on the 

behavior of subatomic activities in quantum mechanics and the molecular and atomic 

behavior in the formation of crystalline lattices. Feynman’s thought experiment illustrates 

how electrons can behave sometimes like particles and sometimes like waves, 

depending on the experimental set-up. If there is no attempt in the set-up to observe 

which of the two holes the electrons go through, the electrons would behave like wave. If 

there are attempts to observe which of the two holes they go through, via the Geiger 

counter or the light source, the electrons would behave like particles. In Simondon’s 

philosophy, the Geiger counter or the light source transduces electrons from the form of 

waves to the form of particles, from a continuous form to a discontinuous form. These 

transductive activities operate in an obscure, intermediate zone of pre-individual reality, 

in which particles and waves are the extreme forms.  

 I then explain the process of crystallization at a molecular level, which Simondon 

also theorizes as transductive activities in an intermediate zone of pre-individual reality. 

Crystallization is a process that reorganizes an amorphous milieu of molecules in a 

 
technology detaches itself from this balance of figure/ground and becomes its own ground, as 
well as the ground of other domains, we will have to resituate it in a new episteme and transform 
it from within according to different epistemologies. This is also the reason for which we must 
search for the ground of technology. This was also my motivation in developing the concept of 
cosmotechnics as an attempt to open up the question of technology: We don’t have only one 
technology (as figure) and one cosmology (as ground), but rather multiple cosmotechnics 
containing different dynamics between the moral and the cosmos” (Hui, 2019, sec. 38). 

145 See the footnote 144 on how Hui identifies the problem of computational technology as the 
perversion of the figure taking over the ground. 
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metastable solution. A crystalline germ is a small lattice of atoms or molecules in a 

particular configuration, and when it is introduced to an amorphous milieu of molecules, 

its configuration will serve as the pattern for the growth of the lattice. Randomly arranged 

molecules will be re-organized around the small lattice, propagating its growth outward 

by repeating the pattern of the germ’s molecular configuration. The structure of 

molecules will consequentially become a large crystalline lattice. In ILNFI, Simondon 

describes this operation as the discontinuous molecules transductively modulating the 

energy from the continuum of randomly arranged molecules. 

 The paradigm of transducing the continuous into the formation of the 

discontinuous turns out to be fundamental to Simondon’s concept of recurrent causality. 

He models the transductive relations between the continuous and the discontinuous as a 

recurrence of causality between the figure and the ground. This figure-and-ground 

paradigm is applicable to his thoughts on vital (biological) individuation as well as to his 

analysis of technology. Technical schemas are the figures, whereas the natural, psychic, 

or the social milieu is the ground of metastable continuum. Freed from alienation, the 

psychic ground of affective intensities would channel the energy for the transductive 

invention of new technology. Simondon theorizes technological invention in analogy to 

the transduction of electrons from waves into particles, or in analogy to the transduction 

of crystalline solution that brings about the appearance of crystals. Technological 

alienation is the result of a break between the figure of technical schemas and the 

ground of the natural, psychic, or the social milieu. Re-establishing the broken channel 

can therefore subvert technological alienation.  

As mentioned in Chapter 6, the concept of recurrent causality is both an 

appropriation and a critique of cybernetics feedbacks. They share the aim of exploring 

the openness and the complexity in disorderly systems across heterogeneous 

environments. At the same time, cybernetics feedbacks operate purely as some 

technical schemas, which are designed to integrate the contingency in nature and in 

humans as technical modules that can be controlled.146 In this framework of cybernetics 

feedback, the figure of technical schemas remains detached from the ground of nature 

and humans. Because deep learning AI operates within this framework, it also cannot 

 

146 See Yuk Hui’s Recursivity and Contingency (2019).  
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gain access to the pre-individual charge of the ground of nature and humans.147 If our 

world becomes proliferated with AI automatons as many anticipate, people will 

increasingly suffer from technological alienation. Such a world would appear to fulfill 

Heidegger’s prophecy of “an absolutely technological state” brought about by the world 

movement of cybernetics (See Chapter 2). Nevertheless, if we adopt Simondon’s theory 

of figure-and-ground in recurrent causality, subverting this technological alienation would 

be possible if AI research can move forward in a way that establishes a channel 

between the technical figure of AI and the ground of natural, psychic, and social milieux. 

In the last two pages of MEOT, Simondon outlines how concretization can re-

establish the rapport between technics and the metastable milieu of physical nature, 

human psyches, and collectives of transindividual relations, but the passage is brief and 

vague. Nevertheless, both Andrew Feenberg and Bernard Stiegler have respectively 

appropriated and further developed Simondon’s theories of concretization and 

individuation in their social theories and their critiques of technology. Their attempts to 

turn Simondon’s theories into critical social theories will be the focus of the next chapter. 

 

147 This also lends further support to my argument in Chapter 6 that deep learning AI is incapable 
of creativity or emotivity. 
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Chapter 8.  
 
The Open and Closed Character of Concretization 

Me Is concretization a theory of openness or a theory of closed 

system? 

ChatGPT:  Concretization, as developed by Simondon, can be seen as a 

theory of openness rather than a theory of closed system. 

Concretization refers to the process by which a technical 

object becomes concrete, that is, the process by which it is 

transformed from an abstract, potential state to a concrete, 

actual state. This process involves the integration of various 

technical, social, and cultural factors into a coherent system. 

Simondon's theory of concretization emphasizes the 

importance of understanding the technical object as an open 

system that is shaped by a variety of factors beyond its initial 

design or function. The process of concretization involves the 

integration of these factors into a coherent system, which can 

then be further developed and adapted to new contexts and 

situations. This openness to adaptation and development is 

an essential aspect of Simondon's theory of concretization. 

Furthermore, Simondon's concept of concretization is closely 

tied to his broader philosophical framework, which 

emphasizes the importance of understanding the world as a 

process of becoming rather than a fixed, closed system. 

Simondon's philosophy emphasizes the idea that entities in 

the world are not pre-existing but instead emerge through a 

process of individuation, which is an open, dynamic process 

that allows for the emergence of new entities and new 

possibilities. 

8.1. Introduction 

 In the previous chapter, I explained the physical basis behind Simondon’s 

concept of pre-individual reality, and how this leads to his portrayal of the relations 

between beings in a figure-and-ground paradigm, in which the ground is the pre-

individual reality and the source of potentiality for organic growth. Technological 

alienation is a consequence of the short-circuiting between the figure and the ground. As 

I will further explain in this chapter, concretization and transindividuation are the 
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schemes to overcome this short-circuiting in technological alienation, as Simondon hints 

at toward the end of MEOT. 

 The idea of concretizing the technical and the social has been raised by both 

Bernard Stiegler and Andrew Feenberg, but they have seemingly come to the opposite 

conclusions. Influenced by Heidegger’s dystopian critique of cybernetics, Stiegler argues 

that a social world concretized into the global computational and information system 

would turn into the resources, the standing-reserves, of a closed technical system. 

Feenberg, on the other hand, identifies the potentiality of transcending incumbent 

contradictions and stagnations when the social and the technical undergo the 

transductive operation of concretization. This identification matches Simondon’s belief 

that concretization can overcome technological alienation and can possibly address 

Steigler’s concern about the short-circuiting of transindividuation in automatic societies. 

As I will argue, these two views are analogous to two different perspectives of how a 

technical object evolves: the tendency toward robustness and stability after 

concretization, and the creativity in designs that transcend internal contradictions 

between modules and milieux. Stiegler’s interpretation of Simondon simply points out 

that channeling between social critiques and sociotechnical innovation is a necessary 

condition for the transductive operation of concretization, and that this channel is being 

undermined by algorithmic governmentality. This forward-looking perspective stands in 

contrast to Feenberg’s view on the past regarding how social movements have 

strengthened this channel of critiques. In this regard, they hold a consistent 

interpretation of Simondon’s theories. 

 In the following, I begin by comparing the charge of pre-individual reality in 

Simondon to the Hegelian notion of potentiality that is influential in the critical theory of 

Marcuse and Feenberg. This parallel lends support to Feenberg’s appropriation of 

Simondon’s philosophy in his critical theory of technology. I then describe Feenberg’s 

attempt to creatively apply Simondon’s concept of concretization to his technical politics 

of resistant social movement. I argue that this attempt fulfills Simondon’s original 

intention for concretization to overcome the chasm between culture and technics, but he 

only briefly sketches out this scheme toward the end of MEOT. For both Feenberg and 

Simondon, concretization is associated with a character of openness, as technology can 

evolve by virtue of inventors’ creative imagination that follows a transductive logic, as 

opposed to incremental enhancements that follow deductive logic, or to the inductive 
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logic in machine learning or any pattern recognition algorithm. I then explain Stiegler’s 

re-interpretation of Simondon’s concretization that takes into account the recent 

development of algorithmic governmentality and 24/7 capitalism. I will explain that 

Stiegler already identifies a closed character of technical concretization in his early 

writing, on how concretization leads to industrial standardization that cuts down the 

range of technical elements. In his later critique of automatic society and algorithmic 

governmentality, he considers the possibility of concretizing the technical with the human 

and the social, just like Feenberg, but his writing emphasizes the closed character of 

concretization under the totalitarian character of algorithmic governmentality. In his re-

interpretation of Simondon’s concepts, social institutions and their tertiary retentional 

systems are like the metastable supersaturated solution in crystallization, the 

introduction of new technology acts like the crystalline germ, and the psychic and 

collective individuation is analogous to the process of crystallization. As the 

transindividuation in algorithmic governmentality is automatized, psychic individuation no 

longer participates in collective individuation. The operation of critique and production of 

knowledge, an operation that corresponds to the open character of concretization 

emphasized by Feenberg, would be eliminated. I will conclude by explaining the dual 

character of concretization as pathways to both openness and closedness in technical 

lineages, and how the different emphases in Feenberg and in Stiegler reflect their 

different opinions on the extent to which the channel of social critique is bolstered by the 

technical politics of resistant movement or undermined by algorithmic governmentality 

and 24/7 capitalism. 

8.2. Simondon’s Pre-individuality and Hegel’s Potentiality 

 Feenberg studied philosophy under Herbert Marcuse and is deeply influenced by 

Marcuse’s philosophy of praxis. But he is also enamoured with Simondon’s philosophy 

and has extensively referred to the theories of concretization and individuation in his own 

critical theory of technology.148 He finds Simondon’s philosophy compatible with his 

Marcusian critical theory, as both emphasize that philosophy should be concerned with 

practical human activities, that things and humans are fundamentally relational, and that 

 

148 For example, see Transforming Technology (Feenberg, 2002, pp. 186–188), and 
Technosystem (Feenberg, 2017a, pp. 66–85). Marcuse also draws from Simondon in his 
proposal of a “new science” (Marcuse, 1964, p. 237). 
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there is a potentiality for changes in the conflictual relations within a thing and between 

the thing and its environment. As I will explain in this section, this compatibility originates 

from the parallels between the Simondonian concept of pre-individual charge and the 

Hegelian notion of potentiality from which Marcuse developed his “two-dimensional” 

ontology (Feenberg, 2023, p. 84).  

 In philosophy, the term “potentiality” generally refers to any "possibility" that a 

thing can be said to have, whereas “actuality” refers to a possibility becoming real in the 

fullest sense (Durrant, 2015). Simondon rarely uses the term “potentiality” in ILNFI. 

Instead, he frequently employs scientific terms such as “potential energy” or “charge.” 

Thus, when he talks about the potentials associated with the pre-individual reality, he 

uses the phrase “charge of pre-individual reality” or “pre-individual charge,” which 

conjures up the electric charges in a battery, electrodes, or capacitors. From the 

following passage, it appears that his choice of words is made with careful consideration 

to distinguish potentiality as a simple possibility from the “real” potential energy in 

sciences: 

Gestalt theory attributes to the totality simultaneously the characteristics of 
a field and those of an organism; however, the field exists before form-
taking, and the organism exists afterwards. Form-taking, envisioned as an 
operation of transductively propagated modulation, makes the real pass 
from the metastable state to the stable state and replaces a field 
configuration with an organism configuration. As a corollary, the energetic 
theory, such as we present it, of the operation of form-taking does not 
employ the notion of virtuality that is presupposed by the concept of good 
form; the potential, conceived as a potential energy, is real, for it expresses 
the reality of a metastable state and its energetic situation. Potentiality is 
not a simple possibility; it is not reduced to a virtuality, which is less than 
being and existence. (Simondon, 1964/2020, p. 710) 

For Aristotle, “a thing that exists potentially does not exist in actuality, but the potential 

does exist” (“Actuality and Potentiality in Aristotle’s Philosophy | UPSC Notes,” n.d.). By 

distinguishing between potentiality and actuality, potentiality for Aristotle is a virtual 

possibility. Simondon argues that the good form in Gestalt theory, while it “attributes to 

the totality simultaneously the characteristics of a field and those of an organism,” also 

presupposes the notion of virtuality because “the field exists before form-taking, and the 

organism exists afterwards.” Whereas the good form in Gestalt theory is the stabilized 

and fixed form, the good form for Simondon is charged with energetic potential rich in 
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energetic potential (Garelli, 1964/2020, p. xxiii), “charged with potentials actually existing 

as potentials, i.e., as an energy of a metastable system” (1964/2005, p. 352).  

 In his latest book on Marcuse, The Ruthless Critique of Everything Existing 

(2023), Andrew Feenberg also deliberates on potentiality as real possibility as opposed 

to formal possibility by referring to Kant, Hegel, and Aristotle. He alludes to the contrast 

between real possibility with formal or logical possibility in Immanuel Kant’s Critique of 

Pure Reason. Kant’s formal possibility refers to the fact that “[t]he human mind can 

construct imaginary objects that are incompatible with possible experience. Such objects 

are merely formal possibilities that cannot be realized” (Feenberg, 2023, p. 81). In 

contrast, “[r]eal possibility refers to possible objects that conform with the essential 

properties of experience. This type of possibility is a subset of the infinite variety of 

imaginable entities” (2023, p. 81). Whereas Kant’s concept of real possibility has its 

basis in experience, Hegel appropriates this concept such that “it is no longer defined by 

the properties of experience in general. Instead, real possibility now relates to the logic 

of the thing itself of which it is the possibility” (2023, p. 81). Hegel got the idea of “the 

logic of the thing itself” from Aristotle’s notion of potentiality. As Feenberg explains, “[i]t 

was Aristotle who first proposed a notion of potentiality. Substances have an essence 

which persists through change. This essence inhabits the substance and organizes it in 

a coherent whole” (2023, p. 85). Beneath the changes and developmental growth of a 

thing lies an unchanging essence or form that maintains its organization and coherence. 

This essence in substance models after living things: “Aristotle’s model of potentiality 

was life. Living things realize a potential contained within themselves as they act and 

develop” (2023, p. 85). Aristotle’s notion of potentiality assumes that the thing is 

substantial, that it is “a self-contained ‘substance’ with an inner essence that is only 

accidentally related to its appearance and other things” (2023, p. 87). Hegel “saves 

Aristotle’s central idea: potentiality is not an extrinsic goal imposed on the thing but 

belongs to the nature of the thing itself” (2023, p. 87), but he overthrows the Aristotelian 

substance and his “version of essence [that] maintains the thing as what it is” (2023, p. 

87). In Hegel’s conceptualization of potentiality, “things are not, they become, and they 

do so through the interaction of their appearances and their environment, their inner and 

outer relations” (2023, p. 87). He underscores the conflicts and tensions of organisms 

and their milieux “that allows for the unfolding of essence, the development of 

potentiality into the actuality” (2023, p. 87). 
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 To Feenberg, Hegel’s notion of potentiality is “the basis for Marcuse’s 

interpretation of the historical dialectic” (2023, p. 81). In Marcuse as well as in Hegel, 

“[t]he environment is not a harmonious resting place for life but a scene of conflict and 

struggle. But the fact of struggle is not ultimate. In overcoming the challenge of 

development, life absorbs the environment and the associated antagonism into itself. 

This is the process of realizing potentialities” (2023, p. 87). Marcuse sees two 

dimensions in a thing: a first dimension of its empirically given form and a second 

dimension of potentiality (2023, p. 85). His works “transcends philosophy in social 

theory” (2023, p. 88) by identifying this second dimension of potentiality as that which 

“transcends the given and opens the world to dialectical comprehension and 

revolutionary transformation” (2023, p. 84). 

 With this understanding of Hegel’s notion of potentiality, we can see its similarity 

with Simondon’s philosophy. There are parallels between Hegel’s dissolution of 

independent Aristotelian essence in substance that maintains the thing as what it is, and 

Simondon’s rejection of the form-matter paradigm in Aristotle’s hylomorphism. 

Crystallization and sea anemones exhibit a mode of existence that cannot be associated 

with an unchanging form or essence. The becoming in individuation and concretization is 

thoroughly relational, as is the unfolding of essence in Hegel where the overcoming of 

conflicts and tensions in inner and outer relations allows the actualization of potentiality. 

The tensions and conflicts in the charge of pre-individual reality corresponds to the 

dialectic tensions and contradictions in Hegel’s potentiality. And just as Hegel’s notion of 

potentiality is taken up by Marcuse in the latter’s social theory, Simondon’s theory of 

individuation and concretization can also be appropriated to the social realm. As I will 

show in the remainder of this chapter, attempts were indeed made by Feenberg to adopt 

Simondon’s philosophy in his technical politics, and by Bernard Stiegler in his analysis of 

algorithmic governmentality.149 

 

149 While there are similarities between Simondon’s concept of pre-individuality and Hegel’s 
notion of potentiality, Simondon pinpoints the difference between his concepts of individuation 
and transduction from Hegel’s dialectics in ILNFI: “In this research, [Transduction] is called upon 
to play a role that dialectics could not play, for the study of the operation of individuation does not 
seem to correspond to the appearance of the negative as a second stage, but to an immanence 
of the negative within the initial condition through the ambivalent form of tension and 
incompatibility” (1964/2020, pp. 14–15 emphasis in original). Thus the key difference between 
individuation and dialectics is the “immanence of the negative” in the former and “the appearance 
of the negative as a second stage” in the latter. He then reiterates, “just like dialectics, 
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8.3. Concretizing the Social in Simondon and Feenberg 

 As explained in the last chapter, concretization is a theory about technical 

lineage in its most straightforward sense, but at a deeper level of understanding, it is a 

theory about how heterogeneous systems arrive at a state of coherence by establishing 

recurrences of causality between them. In this deeper philosophical sense, 

concretization can be a theory about a techno-geographic system as in the case of the 

Guimbal engine, which can be viewed as a technical system associated with the natural 

milieu of the oil and water turbulence. Concretization is an operation that can re-

establish the rapport between technics and the geographic milieu, the former being the 

figures and the latter being the ground.  

 If the ground can be the geographic milieu under a recurrence of causality of 

concretization, can the ground also be the social milieu? Simondon did not elaborate 

much about the possibility of technical objects concretizing with the social world. But he 

did give a very abstract and vague picture of this possibility. On the last two pages of 

MEOT, Simondon discusses technical concretization as a “genetic method” that can be 

applied to “the study of the situation and role of technical thought in the whole 

[l'ensemble] of thought" (1958/2016, p. 247). This is because “technical objects cannot 

be considered as absolute realities and as existing by themselves” but “[t]heir 

technicity can be understood only through the integration of the activity of a human user 

or the functioning of a technical ensemble” (1958/2016, p. 246). Simondon never 

elaborates on how concretization can be the “genetic method” for how human activities 

can be concretized with technical inventions. As Andrew Feenberg and Gilbert Hottois 

have remarked, Simondon “remained vague on the political implications of his argument” 

(Feenberg 2016). But we can actually find such elaboration in the chapter “Concretizing 

Simondon and Constructivism” in Technosystem (Feenberg, 2017a, pp. 66–85). This 

book chapter attempts to reformulate “Marcuse’s aspiration for harmony between human 

 
transduction conserves and integrates the opposed aspects; unlike dialectics, transduction does 
not suppose the existence of a preliminary time as the framework in which the genesis unfurls, 
since time itself is a solution, a dimension of the discovered systematic: time emerges from the 
pre-individual just like the other dimensions according to which individuation effectuates itself” 
(1964/2020, pp. 15–16 emphasis in original). As Simondon further elaborates, “the synthesis [in 
dialectics] more or less envelops the thesis and antithesis by overcoming contradiction; the 
synthesis is therefore hierarchically, logically, and ontologically superior to the terms it joins 
together. Conversely, the relation obtained at the end of a rigorous transduction maintains the 
characteristic asymmetry of the terms” (1964/2020, p. 111 emphasis in original). 
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beings and nature … in a more empirically concrete form with the help of Simondon’s 

theory of concretization” (Feenberg, 2017a, p. 69). By “concretizing” two seemingly 

incompatible theories, that of science and technology studies (STS) and that of 

Simondon’s concretization, Feenberg paints a clearer picture of how technology can be 

integrated, not only to geographical nature, as Simondon illustrates in MEOT, but also to 

human nature: 

The theory of concretization explains how human and environmental 
contexts understood as associated milieux can be incorporated into design 
without loss of efficiency. This is not an outcome dictated by technological 
imperatives, but concretizing designs can in principle take account of these 
contexts as they do many others. Technology can thus be integrated to 
nature and to human nature. Struggles for environmentally sound 
technology, free expression on the Internet, and work that is humane, 
democratic, and safe are not extrinsic impositions on a pure technical 
essence but respond to the tendency of technical development to innovate 
synergisms of natural, human, and technical dimensions. They reveal the 
potentials awaiting realization. (Feenberg, 2017a, pp. 83–84) 

According to Feenberg, the concretization of technology with the natural environment 

and human nature has been evident in the technical politics in the past few decades. 

The positive development in safeguarding our natural environment and individuals’ rights 

follows the tendency to synergize the seemingly conflicting demands between the 

natural, human, and technical dimensions. It disproves that technical efficiency is 

necessarily in opposition to the needs of nature and of humans. This synergetic 

tendency follows the same principle as Simondon’s concretization, as the “potentials 

awaiting realization” in a particular human or social milieu are transduced through its 

encounter with some emergent technical dimensions, resulting in a new sociotechnical 

ensemble. In this sense, by concretizing constructivism with Simondon, Feenberg has 

perhaps completed what Simondon ultimately wanted to achieve in ILNFI and MEOT, 

that is, philosophizing the “veritable complementary relationship” between man and 

machine (Simondon, 1964/2020, p. 425). The concretization that transduces man and 

machine into complementary relationship follows the same paradigm as the transduction 

between wave and corpuscle or that between the discontinuous crystalline lattice and 

continuous metastable crystalline solution. 

 In MEOT, Simondon tries to illustrate his vision of man-machine relationship with 

the supervisory role of a technician in regulating and looking after “the relation of the 

machine with the elements and the ensemble” (1958/2016, p. 78). But if we look at the 
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entirety of his works, the technician example does not do justice to the inventive aspect 

of human participation and the resulting change in structures. In contrast, the democratic 

participation in technical evolution, from environmental social movement to the role of 

hackers in early history of computing and in free software movement, are much better 

illustrations of how the re-establishment of channels between figures (technology) and 

ground (nature, the psychic, and the social milieu) can liberate our society from 

technological alienation. They illustrate what Simondon calls transindividual relationship: 

[A]bove the social community of work and beyond the inter-individual relationship 

not supported by an operational activity, a mental and practical universe of 

technicity establishes itself, in which human beings communicate through what 

they invent. The technical object taken according to its essence, which is to say 

the technical object insofar as it has been invented, thought and willed, and taken 

up [assumé] by a human subject, becomes the medium [le support] and symbol 

of this relationship, which we would like to name transindividual. (1958/2016, p. 

252)  

A transindividual relationship refers to an intersubjectivity in the mental and practical 

universe of technicity. The most obvious example of transindividuality is associated with 

language and communication, which Simondon discusses in ILNFI: 

When the original charge of nature borne by individual beings cannot be 
structured and organized, there can be no form in the being for 
accommodating the form contributed by signals. To receive an information 
is in fact for the subject to carry out within itself an individuation that creates 
the collective rapport with the being from which the signal arises. To 
discover the signification of the message that stems from one being or 
several beings is to form a collective with them and individuate through the 
group individuation with them. There is no difference between discovering 
a signification and existing collectively with the being relative to which the 
signification is discovered, since signification is not of the being but 
between beings, or rather across beings: it is transindividual. (1964/2020, 
p. 344) 

In this passage, Simondon explains how signals and information are meaningless by 

themselves. Language, on its own, is only an “an instrument of expression, the 

conveyance of information, but it does not create significations. Signification is a rapport 

of beings; signification is relational, collective, transindividual …” (1964/2020, p. 345). 

Signification, or meaning, emerges when the receiver of signals undergoes an 
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individuation that put her or him in relation with the sender. This rapport across beings is 

a transindividual relation. In MEOT, Simondon generalizes transindividual relationship to 

the intersubjectivity in the mental and practical universe of technicity. Just like language, 

intersubjective relations are established over the invention and adoption of a technical 

object as the means to communication between human beings. Under this model of 

transindividuality, “[a]n inter-human relation … is thus created through the intermediary 

of the technical object” (1958/2016, p. 254). A human-technology relation is never one 

between a single individual with the technical object, but between a community via the 

technical object: 

The relation with the technical object cannot become adequate individual by 

individual, except in very rare and isolated cases; it can establish itself only to the 

extent that it will succeed in making this inter-individual collective reality, which 

we name transindividual, exist, because it creates a coupling between the 

inventive and organizational capacities of several subjects. (1958/2016, pp. 257–

258) 

What distinguishes a transindividual relationship from a technocratic society, in which 

forms of technology act as instruments of social control, is the channeling of energy from 

the natural and social milieu that plays a regulatory role on the evolution of these forms. 

While the voices of nature and the voices of human subjects are muted in a technocratic 

society, they are the sources of inventive schema in the individuation of technical objects 

and transindividual relationship. 

8.4. Concretizing the Social in Stiegler 

 In the first volume of Technics and Time (1998) and in Automatic Society (2016), 

Bernard Stiegler also examines how the technical milieu may be concretized with the 

social milieu, but his conclusion is much less optimistic than Feenberg’s analysis. 

Stiegler identifies the contemporary epoch as the latest stage of proletarianization in 

hypercapitalism. In this stage, the grammatization of Dasein’s temporality and protention 

makes possible the industrial reproduction of human behavior, which is concretized into 

a sociotechnical milieu governed predominantly by algorithms. Here, Simondon’s 

concretization is employed as a process that exacerbates the alienation of humanity, 

whose psyches and mental faculties are subjected to the control of algorithmic 
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governance and surveillance capitalism. Yet, following Heidegger’s eschatology in which 

salvation may come via an epochal change of collective awareness about the true 

condition of humanity (see Chapter 2), Stiegler perceives technology as primordially 

pharmacological, as both poison and cure, and the thinkers of our age are called to 

identify its poisonous character and participate in the invention of cure from within the 

realm of technology.150 

 In Nanjing Lectures (2016-2019) (2020), Stiegler reflects on his transition of 

thoughts on Simondon’s concretization from his early writing on Technics and Time to 

his late writing on Automatic Society. 

When in the first volume of Technics and Time I discussed On the Mode of 
Existence of Technical Objects, I tried to show that the concretization of the 
industrial machine is effected (as the combustion engine, the electric 
locomotive or the turbine of the tidal power plant) when the latter must leave 
the purely technical milieu in order to form, with the natural milieu, a 
‘techno-geographical associated milieu’, generated by the object itself, in 
the course of what Simondon calls its ‘naturalization’. In Automatic Society, 
Volume 1, however, I argue that it is precisely in becoming a human (and 
not only physical) techno-geographical associated milieu … that this 
commodified retentional milieu, perpetually provoking, activating and 
calculating arrangements of retentions and protentions, leads to the 
psychic and social disintegration of retentions and protentions. (2020, pp. 
316–317)  

According to this passage, the first volume of Technics and Time explains the forming of 

a ‘techno-geographical associated milieu’ as a necessary operation in the concretization 

of the industrial machine, without contemplating the possibility of an associated milieu 

that is human or social. But Stiegler does in fact deliberate on the social implication of 

technical evolution (which can be interpreted as technical concretization) by identifying 

the power of technical system over other systems in industrial society: 

Industrialization is the affirmation of technological necessity. It is the sign 
of the immense power of the technical object over industrial society, of 
technical evolution in general over becoming in general, of the “technical 
system” over the “other systems.” “At the industrial level, . . . the system of 
wants is less coherent than the system of the object; wants are formed 

 

150 Stiegler indicates that the “elaboration of a new epistemology, a new philosophy, and a new 
organology, in turn elaborating a reconceptualization and a transformation of the digital as such 
and on another basis than that of the computational ideology that took hold after the Second 
World War … will be the subject of The Future of Knowledge, the second volume of Automatic 
Society [italics in original]” (2016, pp. 33–34). Unfortunately, Stiegler did not live long enough to 
work on and complete this second volume. 
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around the industrial technical object, which thereby takes on the power of 
modeling a civilization” (Simondon 1958, 24, my emphasis) … The 
technical system, the universal tendency that it carries, are no longer the 
partners of the “other systems”; the technical object lays down the law that 
is its own, it affirms an autonomy with regard to which, in the industrial age, 
the other layers of society must regulate themselves, with an actual 
possibility of negotiation. The indetermination of uses may well leave open 
possibilities for adjustments to the “system of objects,” but at bottom the 
object bestows the horizon of all possibilities, essentially preceding the 
fixation of uses. (Stiegler, 1998, pp. 73–74 emphasis in original) 

The “immense power of the technical object over industrial society,” the “technical 

evolution in general over becoming in general,” and “the ‘technical system’ over the 

‘other systems’” echoes Heidegger’s premise in his technological will to will (see Chapter 

2). Stiegler quotes from MEOT to affirm that technical evolution is dictated by 

technological necessity rather than human wants in Simondon’s thoughts. It follows that 

technical object or system “lays down the law that is its own" and assumes “an 

autonomy with regard to which … the other layers of society must regulate themselves.” 

Even though technology can be implemented with an indeterminacy that permits 

negotiations, the indeterminacy is limited, and in the end, technology “bestows the 

horizon of all possibilities, essentially preceding the fixation of uses.” Stiegler attributes 

this closed character of technical objects to their concretization: “The concretization of 

technical objects, their unification, limits the number of their types: the concrete and 

convergent technical object is standardized. This tendency to standardization, to the 

production of more and more integrated types, makes industrialization possible, and not 

the converse …” (1998, p. 72). Concretization leads to standardization that limits the 

possible types of technical objects, reducing the level of indeterminacy that affords 

negotiations from the needs of other layers of society. This perspective of concretization 

seems contradictory to the open and inventive character of concretization that I allude to 

in the last section. Stiegler was in fact aware of this open character, though he interprets 

this as possible only in ruptures of successive epochs: “The dynamic play of the limit 

implies a discontinuity at the heart of all evolution in the sense of concretization. 

Ruptures mark the successive epochs in which the technical object gains its autonomy” 

(1998, p. 74). 

 The emphasis on the closed character of technical concretization is only vague 

and implicit in Technics and Time, but it becomes unambiguous and fully developed in 

his critique of computational society empowered by big data in Automatic Society Vol. 1. 
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Stiegler sees that “contemporary capitalism becomes purely computational, concretized 

in the so-called ‘data economy’” (2016, p. 4), and our commodified sociotechnical milieu 

has become “a human techno-geographical associated milieu “via the digital exosomatic 

devices of that half of the world’s population who are now equipped with smartphones, 

that is, personal portable computers, perpetually eliciting and capturing ‘data’, which is to 

say digital tertiary retentions” (2020, pp. 316–317). It is digital tertiary retention that 

absorbs the human into the technical system, with the human and the natural milieu both 

serving as an associated milieu in concretization: “With digital tertiary retention, techno-

geographical milieus of a new kind arise, where it is the human element of geography 

that is associated with the becoming (that is, the individuation) of the technical milieu, so 

that this element itself acquires a technical function” (2016, p. 39, emphasis in original). 

Serving an indispensable role in a technical system, human individuals become a 

technical resource, a standing-reserve, for the apparatus of an industrial and 

commodified society:  

[W]hat gives rise to techno-geographical milieus in which psychic 
individuals become, through functional integration, functions of the 
apparatus of production and consumption is a process of the concretization 
(in the Simondonian sense) of the technical system that the 24/7 
infrastructure itself forms qua functional integration of biological, psychic, 
sociological and technological automatisms. This forms what Simondon 
called an associated milieu, but in this case of a new type, and one he did 
not envisage. (2016, p. 80, emphasis in original) 

Psychic individuals become “functions of the apparatus of production and consumption” 

under the “functional integration of biological, psychic, sociological and technological 

automatisms” of a technical system that has undergone a process of the concretizing the 

human and the natural milieux as associated milieux. Since Simondon did not envisage 

this new type of associated milieu in which human individuals are parts of the functional 

integration, Stiegler thus calls for “a reinterpretation of Simondon’s thought with respect 

to contemporary realities” because “Simondon could be utilized in the service of the 

ideology of marketing, just as Foucault was used by liberals” (2016, p. 80).151 

 In his reinterpretation of Simondon’s thoughts, Stiegler identifies the crux of the 

problem with the 24/7 capitalism in the short-circuiting of transindividuation, a concept 

 

151 By “ideology of marketing,” Stiegler is referring to the “final integration of marketing and 
ideology” (2016, p. 66). This integration takes place “through the grammmatization of relations in 
which consists that traceability implemented by social networking” (2016, p. 66).   
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that comes from Simondon’s formulation of transindividuality and of psychic and 

collective individuation, which I discussed in Section 8.3. The term “transindividuation” 

never appears in ILNFI, MEOT, or other Simondon’s writing. Simondon only employs the 

terms transindividual (transindividuel) and transindividuality (transindividualité) to 

describe the intersubjectivity of psychic and collective individuation within the “mental 

and practical universe of technicity” (1958/2016, p. 252). As Yuk Hui explains, “Stiegler’s 

concept of transindividuation refers to a transformation of the structures that compose 

the I and the We through the re-organization of tertiary retentions” (2014). Hence 

transindividuation can be understood as an alternative term for Simondon’s psychic and 

collective individuation in which the transindividual (inter-individual) relationship is 

mediated by technical objects. But in Stiegler’s appropriation of Simondon, the technical 

medium of interest is not the “mental and practical universe of technicity” that concerns 

Simondon, but digital tertiary retention. To see why this appropriation is significant to 

Stiegler’s critique of the full and generalized automation of the 24/7 global computational 

infrastructure, we must first understand his pharmacology, which is a theory about the 

simultaneous toxic and curative nature of technology. 

8.5. The Short-Circuiting of Transindividuation 

Stiegler’s pharmacology is captured in the concept of “doubly epolkhal doubling” 

(2016, p. 12). He develops this concept to describe 

how a shock begins by destroying established circuits of transindividuation, 
themselves emerging from a prior shock, and then gives rise to the 
generation of new circuits of transindividuation, which constitute new forms 
of knowledge arising from the previous shock. A techno-logical epoché is 
what breaks with constituted automatisms, with automatisms that have 
been socialized and are capable of producing their own disautomatization 
through appropriated knowledge: the suspension of socialized 
automatisms (which feeds stupidity in its many and varied forms) occurs 
when new, asocial automatisms are set up. A second moment of shock 
(the second redoubling) then produces new capacities for dis-
automatization, that is, for negentropy to foster new social organizations. 
(2016, p. 12) 

In this passage, Stiegler equates a technological epoch with certain established circuits 

of transindividuation, which emerge from two moments of shock. A first moment of shock 

is associated with “a new form of tertiary retention” (2016, p. 34), which destabilizes the 

constituted automatisms in the prior epoch. The technological shocks of alphabetic 
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writing, the printing press, the Internet are examples of this first moment. In a second 

moment of shock, the new form of tertiary retention “requires the formation of new 

knowledge” in order to “achieve socialization, that is, collective individuation” (2016, p. 

34). “New ways of doing things and reasons to do things, of living and thinking” are 

constituted through such new knowledge (2016, p. 34). This would result in “new forms 

of existence” and “new conditions for subsistence” (2016, p. 34), which would foster new 

social organizations. For instance, after the popularization of the Internet via the World 

Wide Web, which was initially used for informational retrieval, the second moment of 

shock came from the new knowledge that the Internet makes it possible to democratize 

the production and consumption of knowledge and information, thus destabilizing the 

purpose and the authority of centralized media.  

The democratization of the early Internet demonstrates how technology as “the 

pharmakon can be toxic and curative only to the extent (and in the excess) that it is both 

entropic and negentropic” (2016, p. 100). But the recent application of big data and deep 

learning in 24/7 capitalism has been “a negentropic factor that has become massively 

entropic” (2016, p. 100). How can a second moment of shock come about such that this 

new pharmakon become more therapeutic rather than toxic? According to Stiegler, this   

must proceed from a social innovation that reinvents the adjustments 
between the social systems and the technical system, and does so 
according to a model where it is no longer the economic system, and the 
technological innovation it requires, that prescribe the social. It must on the 
contrary be a model in which social innovation, founded on different 
economics - on a contributory economy - and on a reinvention of politics, 
conceived as therapeutics, prescribes technological innovation, that is, 
organological evolution, and does so by interpreting technical tendencies. 

 Such a becoming is highly improbable. Yet it alone is the bearer of 
the future, that is, of the rational. (2016, p. 100)  

This analysis seems like a generalization of the therapeutic transformation in alphabetic 

writing, in the printing press, and in the democratizing movement of the early Internet. 

For such social innovation and reinvention of politics to be possible, a society must have 

an established mechanism for political individuation:    

[P]olitical individuation is founded on the collective critique of its sources, 
that is, on the critique of circuits of transindividuation that it inherits in the 
form of various forms of knowledge, themselves organologically 
constituted, concretized, judged and as such realized through institutions 
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that are always retentional systems. These institutional sources, which 
metastabilize the transindividual, reconvert them for any psychic individual 
into the preindividual funds that its social milieu forms, charged with 
potentials for individuation. (2016, p. 145 emphasis in original) 

Institutions, such as those made up of government legislations or collective bargaining 

agreements, are always retentional systems. These systems “metastabilize the 

transindividual” because they provide a stable ground for shared life-knowledge yet 

always subject to critiques and changes. This metastable ground, like the 

supersaturated crystalline solution, is the site for contention between conflicting parties 

that is the source of the preindividual funds and potentials for individuation. The 

transition into new tertiary retentional systems, much like the crystalline seed, should 

introduce new possibilities that bring about the actualization of potentials for 

individuation. 

The problem with the tertiary retentional system of algorithmic governmentality is 

its elimination of the need to resolve conflicts though contentions and negotiations. As 

Stiegler argues, this elimination would lead to the destruction of “signification,” and along 

with it, of the possibility of the new knowledge necessary for a second moment of shock:  

Signification [signification],that is, semiosis as engendering signs, 

significations and significance (making-signs), is the transindividual made 

possible by the process of transindividuation woven between psychic 
systems, technical systems and social systems – that is, between psychic 

individuations, technical individuation and collective individuations. 

The destruction of signification by the digital technical system 
results from the technology of power deployed by the algorithmic 
governmentality of 24/7 capitalism, and it is founded on eliminating 
processes of disparation. The latter is a concept that Simondon introduces 
… (2016, p. 128) 

This relation between signification and disparation can be clarified by reading ILNFI. As 

discussed in Section 8.3, signification for Simondon is “a rapport of beings; signification 

is relational, collective, transindividual” (1964/2020, p. 345). Language is one instrument 

that facilitates such transindividual relation. Simondon argues that signification “emerges 

from a disparation” and presupposes “the existence of a system in a state of metastable 

equilibrium” (Simondon, 1964/2020, p. 16).152 Signification is the new dimension 

 

152 The discussion on disparation can be found in Section 6.4 and pre-individuality in Chapter 7. 
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introduced to resolve disparation, in which incompatibilities become positive constituents 

of the new dimension (See Section 6.3). Drawing from the Wired Article “The End of 

Theory: The Data Deluge Makes the Scientific Method Obsolete” (C. Anderson, 2008), 

Stiegler raises the concern that the replacement of theoretical knowledge with 

automated knowledge in algorithmic governmentality eliminates the social process of 

knowledge creation, which involves negotiations among stakeholders with conflictual 

interests. In Simondon’s terms, automated knowledge eliminates the state of disparation 

in a metastable equilibrium from which signification emerges. It is like turning a 

metastable supersaturated solution into an unsaturated solution, which no longer holds 

the pre-individual potentiality for crystallization. 

For Simondon, collective individuation can be viewed as the next layer of 

individuation on psychic individuation, as individuation that transduces the disparations 

and the tensions of pre-individuality unresolvable at the level of psychic individuation. 

The living being is a product of synthesis and unification not only of complete physical 

individuals, but also of physical beings whose individuation is incomplete.153 Whereas a 

physical being will eventually exhaust the potential energy of its pre-individual reality, 

such as the completion of crystal formation in crystallization, the potential energy of a 

human being is not exhausted until it dies. While alive, the potentiality for its perpetual 

growth lies in the “conflict between the pre-individual reality and the individuated reality 

within the subject” (Simondon, 1964/2020, p. 354). Simondon suggests that this conflict 

corresponds to the inner contradictions and the irrational intensities beneath conscious 

mental activities. It  

indicates to the subject that it is more than the individuated being and that 
it contains the energy for a further individuation; but this further 
individuation cannot take place within the being of the subject; it can only 
take place through this being of the subject and through other beings as 
the transindividual collective. (Simondon, 1964/2020, p. 354) 

A transindividual collective “is not a milieu for the individual but a set of participations in 

which it enters through this second individuation” (1964/2020, p. 348). It is “the 

signification obtained by the superposition of beings that are disparate by themselves in 

 

153 “[W]hat makes the living being appear is in a sense the suspension of the development of the 
physical being and its analysis, not a synthetic relation which unites completed physical 
individuals” (1964/2020, p. 168). 
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a single system” (1964/2020, p. 349). Accordingly, contradictions and irrational 

intensities are the sources for personal and social growth. 

 To shed light on the implication of disparation on psychic and collective 

individuation, Stiegler draws from the dilemma faced by individuals who belong to social 

groups with conflicting ideals:  

[T]he psychic individual is related to and individuates with collective 
individuals that may be in contradiction with each other. This is why it must 
project itself onto the plane of a transindividuation of reference in order to 
overcome these contradictions … and the superego is one such plane, 
which can be embodied in artificial crowds like the Church or the Army, but 
also in other forms, like the Fatherland, the Party, and so on. (Stiegler, 
2016, p. 152) 

By collective individuals, Stiegler is referring to artificial crowds like the Church, the 

Army, the Fatherland, or the Party. A psychic individual may belong to both the Church 

and the Army, which may be in contradiction with each other. To overcome such 

contradictions, the individual “must project itself onto the plane of a transindividuation of 

reference.” Contradictions between artificial crowds are reorganized into positive 

constituents of this new plane, and such resolutions or transductions of contradictions 

bring about the unique development of an individual’s character. Transindividuation thus 

refers to the co-individuation of a psychic individual and collective individuals, which are 

associated with social institutions and technological apparatus. 

 These contradictions, or disparations, are sources of the potentiality for 

transindividuation. Under algorithmic governmentality and 24/7 capitalism, the “process 

of automatized and fully computational transdividuation erases the potential for 

‘disparation’” by “dissolving collective individuals” (Stiegler, 2016, p. 152). In “algorithmic 

concretization[,] … noetic time can be outstripped” (2016, pp. 149–151). Stiegler defines 

“noetic individuals” as “intellectual and spiritual individuals” (2016, p. 12). Thus “noetic 

time” is the time for intellectual and spiritual reflection, which is crucial for the 

contemplation of social critiques. Societies prior to 24/7 computational infrastructure 

have built-in means and structures for facilitating dialogues over social critiques, which 

then feed back into the process social and technical innovation, gradually leading to the 

overcoming of disparations in transindividuation. But under algorithmic concretization,  
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psychic individuation no longer participates in collective individuation and, 
as such, if we have read Simondon well, goes nowhere [tourne à vide]. … 
The process of transindividuation and the transindividual are … 
automatized and concealed by the speed of their production, and founded 
on this high speed. This outstripping [prise de vitesse] of psychic and 
collective individuals is a taking-apart [déprise] of the form of the noetic by 
the computational formlessness [informe] in which this speed consists. 
(2016, p. 149, emphasis in original).  

As the form of the noetic is taken apart, an individual is no longer an indivisible unit, but 

divided into digital parameters in computational algorithms. Stiegler coins the term trans-

dividuation to denote “this false transindividuation that short-circuits psychic individuals” 

and to contend that “[t]he process of transindividuation and the transindividual are 

replaced by the transdividual and transdividuation” (2016, p. 149). An electrical circuit is 

“short-circuited” by connecting two points on the circuit with a wire, and electric current 

will pass through this wire instead of through the normal circuit. When Stiegler uses this 

metaphor, the “wire” represents the algorithmic and computational infrastructure. The 

transductive operation of incorporating psychic individuals into social collectives is 

bypassed by this “wire,” as the individuals now exist in the mode of digital parameters 

that are algorithmically integrated with the computational infrastructure of 24/7 

capitalism. 

 Much like Feenberg, Stiegler extends the theory of concretization to include the 

social milieu as an associated milieu of a technical object, but their conclusions seem 

vastly different. Whereas Feenberg and Simondon identify the potentiality in concretizing 

the social, Stiegler points to the danger therein, as demonstrated by the algorithmic and 

automated infrastructure in our computerized society. 

8.6. The Open and Closed Character of Concretization 

 We can gain some clarity on the seemingly contradictory stance between 

Feenberg and Stiegler on their appropriation of Simondon’s concretization by pointing 

out the simultaneously open and closed character of concretization in technical 

evolution. Recall that technology evolves when inventors creatively imagine “an 

invention that presupposes the problem to be resolved” (Simondon, 1958/2016, p. 57 

emphasis in original). This creative imagination cannot be arrived at by deductive or 

inductive thoughts, but only by transductive thoughts. Technology is always open to 

evolve because it shares its pre-individual reality with the natural milieu and with the 
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human milieu, which come with conflicts, contradictions, tensions. Simondon calls them 

disparations, which hold the potential energy for changes. This openness of technical 

evolution typically involves the branching from technical lineages into new lineages in 

the overcoming of disparations. At the same time, within a single technical lineage (such 

as the examples of diodes in MEOT), the becoming more concrete implies a progress 

toward perfecting the relations between technical organs (modules) to achieve internal 

coherence, thereby increasing the robustness of the technology and reducing its margin 

of indeterminacy. From this angle, as a technology becomes more concrete, as its 

design becomes more perfect, the room for enhancing it also diminishes 

correspondingly. Thus, technology tends toward becoming a closed system in the 

process of concretization if there is no change in the natural or human milieu that 

compels a restructuring of the technology. 

 We can sense the closed system tendency of concretization in Stiegler’s remark 

that “algorithmic governmentality and 24/7 capitalism are the worldwide and total 

concretization” (Stiegler, 2016, p. 121). Algorithmic governmentality is concretized in a 

recurrent causality where its disruption of the social process of actualizing revolutionary 

potentiality in technical politics contribute to a favorable environment for algorithmic 

probability to subsist. If the process of disparation is precluded in algorithmic 

governmentality and 24/7 capitalism, the pre-individual charge of individuals and 

collective would be inhibited from transducing changes in the system. From this 

perspective, the open character of concretization is inhibited unless a second moment of 

shock brings about the re-establishment of new circuits of transindividuation, which 

permits the flow of potential charge from the pre-individual reality of the human and 

natural realms. It is fair to say that Stiegler’s reinterpretation of Simondon’s thoughts 

remain true to the logic behind the theories of concretization, transduction, individuation, 

and transindividuation, and at the same time, it puts into question the Simondonian idea 

that concretization can overcome “the opposition drawn between culture and technics, 

between man and machine,” an opposition that “is false and has no foundation” 

(Simondon, 1958/2016, p. 15).  

 This overcoming of the opposition between culture and technics, roughly 

sketched out by Simondon toward the end of MEOT, can indeed be actualized in a 

technopolitical environment that favors grassroot resistance. Feenberg emphasizes the 

perspective that, despite the proliferation of automated technologies, human agencies 
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today are still active participants in the operations and inventions of contemporary 

technology. The Internet has inherited many characteristics from the preceding, more 

democratic, Internet milieu in the 1990s, in which grassroots and marginals could 

increasingly participate in technical decisions and political actions. The increase in 

grassroot participation in collective decisions has helped re-establish the recurrence of 

causality between the technics and the social, mending the broken channel between the 

figures and the ground of pre-individual charge. If we agree that today’s Internet 

encompasses a mixture of technocratic and democratic aspects, it seems more correct 

to characterize the current mixture as another metastable milieu filled with the tensions 

of pre-individual reality, from which new inventions will eventually emerge, propagating 

the individuations in psyches and social collectives. 

 Unlike Feenberg, Stiegler focuses on how the channel between social critiques 

and technical development has been undermined by algorithmic governmentality and 

24/7 capitalism. Over the past couple of decades, we have indeed witnessed a 

diminishing room for democratic activities on the Internet under surveillance capitalism, 

with power elites gaining control over people’s desire and behavior. Such algorithmic 

governance can be modelled as cybernetic feedbacks, with a clear objective of 

recursively narrowing the gap between ideal behavior (e.g., purchasing a product) and 

actual behavior. If this trend continues, the increasing infiltration of AI technologies in 

everyday life will make our society suffocate from conflictual expressions and purify it 

into a smooth and perfect human-machine coupling. The alarming critique of Stiegler 

could perhaps be applicable if his future projection turns out to be correct. In short, 

whereas Feenberg looks at the past and points out the improvement of this channel from 

social movement and technical politics since the mid-twentieth century, Stiegler looks 

toward the future and anticipates the progressive elimination of noetic time due to 

algorithmic governmentality and 24/7 capitalism. Such elimination makes people 

incapable of critical reflections necessary for concretization and transindividuation. 

8.7. Conclusion 

 This chapter presents how Feenberg and Stiegler respectively appropriated 

Simondon’s theories of concretization and individuation to formulate their critiques of 

technology. Feenberg finds Simondon’s philosophy generally compatible with his 

Marcusian critical theory. Marcuse’s two-dimensional ontology is based on Hegelian 
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potentiality, and both Hegelian potentiality and Simondon’s pre-individuality identify the 

potential for changes in the conflictual relations within a thing and between the thing and 

its milieu. And just as Marcuse finds the basis of his social theory in Hegel’s notion of 

potentiality, Feenberg adopts Simondon’s theory of concretization in his technical 

politics. Concretization is a transductive operation that brings about a techno-geographic 

system in which the technical system is associated with a natural-geographic milieu in a 

relation of recurrent causality. Both Feenberg and Stiegler appropriate concretization by 

substituting this natural-geographic milieu with the social milieu as the associated milieu 

of the technical system, but they have seemingly come to opposite conclusions on the 

openness of the system. Feenberg identifies the openness of concretization in 

transcending the tensions and contradictions of incumbent sociotechnical systems and 

finds actual realization of this in the political struggles for environmentally sound 

technology, free expression on the Internet, and work that is humane, democratic. 

Stiegler identifies the closed character of a technical system in concretization, as a 

technical system is less malleable to changes as it tends toward perfection and 

concreteness. When the human and the social is absorbed into this concretizing system, 

they become resources and standing-reserves for the expansion of realms under 

technical controls. Whereas Heidegger sees cybernetics as the culmination of the 

technological will to will, Stiegler sees algorithmic governmentality and the associated 

tertiary retentional system as totalizing in their manipulation of pretention in human 

behavior.  

 I then try to elucidate these two perspectives on concretizing the social by 

explaining the simultaneously open and closed character of concretization in technical 

evolution, which has an open trajectory across technical lineages but a tendency toward 

closedness within a single technical lineage. The branching off from one technical 

lineage to another demands the charge of pre-individual reality from psychic tensions 

and the social conflicts, and if the channeling of the charge to technical invention is 

blocked, the sociotechnical system becomes a closed system. In the end, the difference 

between Feenberg and Stiegler reflects their different opinions on the condition of the 

communication channel between social critiques and the process of inventing 

technologies. Feenberg emphasizes the improvement of this channel in the sociopolitical 

environments since the mid-twentieth century, whereas Stiegler raises concerns on the 

disconnect of a society from its critical voice under algorithmic governance. The only 
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possibility of overcoming the tendency toward totalizing automatization must proceed 

from a social innovation that reinvents the adjustments between the social systems and 

the technical system. But when the ground, the charge of pre-individuality in the human 

psyche and social tensions, has been blocked from channeling the energy to the 

inventive cycles of technology, the sociotechnical system becomes resistant to changes.  

 There is a certain degree of speculation in Stiegler’s prognosis about the future 

automatic society. Therefore, it is crucial for us is to evaluate this future prognosis by 

considering what I have laid out so far in the previous chapters on machine learning and 

cybernetics. In particular, Stiegler often conflates cybernetics with computing. As I have 

argued in Chapter 6, cybernetics is associated with a philosophy of openness, whereas 

it is the realm of computing that is associated with universality. Many historical 

inventions of computer-related technologies came out of the combination of ideas from 

cybernetics and computing, leading to the common mistake of conflating the two.154 One 

of the cybernetic ideas that have been adopted by the computing industry is that of 

symbiosis (Bardini, 2000). Human-computer symbiosis was in fact the fundamental idea 

behind the invention of the windows operating system and the mouse in personal 

computing (Bardini, 2000), which grew out of the countercultural movement in the 70s 

(Turner, 2008). For many belonging to computing industry, including Kai-Fu Lee and 

Qiufan Chen who authored AI 2041 (2021), human-computer symbiosis is often seen as 

the antithesis of AI automation. They see human-machine coupling as possibly liberating 

if the two parties are engaged in a symbiotic feedback relationship rather than a 

deterministic relationship dictated by formal logics. Simondon has also argued that 

human and machines ought to be in a relationship as peers rather than as master-and-

slave. Will a symbiotic relationship between the human and AI be liberating for the 

human or will it further reify the human into a slave of AI? In the next and concluding 

chapter of this dissertation, I will deliberate this question by examining the stories and 

analyses in AI 2041 while leveraging our understanding of AI and machine learning from 

the historical and philosophical analyses in the preceding chapters. 

 

154 See footnote 56. 
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Chapter 9.  
 
A Critical Inquiry of Human-AI Symbiosis 

Me how does human-computer symbiosis contrast with 

automation? 

ChatGPT:  Human-computer symbiosis and automation are two different 

approaches to using technology to improve productivity and 

efficiency in various tasks. 

Automation refers to the process of using machines, software, 

and other technologies to perform tasks that were previously 

done by humans. The goal of automation is to eliminate 

human involvement in repetitive, low-skill tasks, and reduce 

the cost of labor. In this approach, the computer system or 

machine is responsible for performing the task, and humans 

are not directly involved in the process. 

On the other hand, human-computer symbiosis is the idea 

that humans and computers can work together to achieve 

common goals. The focus of this approach is on enhancing 

human abilities rather than replacing them. The goal is to 

create a partnership between humans and computers, where 

each contributes their unique strengths and skills to solve 

problems and complete tasks. In this approach, computers 

are used as tools to augment human abilities and provide 

new ways of thinking about and approaching problems. 

In contrast to automation, human-computer symbiosis 

emphasizes the importance of human involvement in the 

process. While automation seeks to replace human 

involvement in certain tasks, human-computer symbiosis 

recognizes that humans bring unique skills, creativity, and 

problem-solving abilities that cannot be replicated by 

machines alone. Instead, the goal is to create a synergy 

between humans and computers, where each can contribute 

to the task in their own way. 

9.1. Overview 

 Up to this point in the dissertation, I have laid the groundwork for understanding 

machine learning by tracing its relation to cybernetics and by deliberating the 

philosophical critiques of cybernetics by Martin Heidegger and by Gilbert Simondon. 

Whereas Heidegger sees cybernetics as the culmination of the essence of modern 



205 

technology, as the complete realization of the technological will to will, Simondon derives 

a philosophy of openness from cybernetics and suggests a possible trajectory of co-

evolution between the human, the social, and machines. Stiegler and Feenberg have 

both taken up Simondon’s philosophy in their analysis of contemporary technics. 

Feenberg appropriates the openness of Simondon’s theory of concretization to explain 

the technical politics of social movements. Stiegler examines the closed nature of 

concretization and the short-circuiting of transindividuation to present a critique of 

algorithmic governmentality. Thus for Stiegler, the technical politics advocated by 

Feenberg may not be sustainable in an automatic society in which algorithms hold the 

position for key decision-making over the human minds.  

But will developments in AI empowered by deep learning necessarily bring about 

an automatic society that numbs individuals’ capacity for social critiques and thereby 

short-circuits the transindividuation of the human, technics, and society? Can there be 

alternatives for AI to co-evolve with the human and our society? Some computer 

scientists offer the research direction of human-computer symbiosis as one possible 

alternative to AI automation.155 This direction, endorsed by the authors of AI 2041 as well 

as Hubert Dreyfus156, appears to be most compatible with Simondon’s proposal that 

humans ought to relate to machines as peers rather than as masters and slaves. In fact, 

throughout the history of computing, symbiosis and automation represent two competing 

visions for computing research. Whereas automation, along with the cyborg imaginary, is 

associated with the reduction or elimination of human faculties, research on human-

computer symbiosis explores how the human body and its faculties can be augmented 

via their interactive feedbacks in computers. But as I will contend in the following, the 

computer scientists’ vision of human-AI symbiosis is concerned with how humans relate 

to technology at an individual basis but not with how the society may be transformed. 

Hence the vision can easily be co-opted in a technocratic society because it lacks the 

dimension of transcending incumbent sociotechnical contradictions, which as I have 

explained in Chapter 8, is implicit in Simondon’s theories of concretization, individuation, 

and transindividual. 

 

155 Human-AI symbiosis is the subject of numerous articles in computer science journals (E.g., 
Becks & Weis, 2022; Jarrahi, 2018; Mahmud et al., 2022; Zahedi et al., 2022; Zahedi & 
Kambhampati, 2021; Zhang et al., 2022). 

156 See footnote 20. 
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9.2. A Critique of AI Automation 

 Critics of AI today, such as Stiegler whom we discussed in Chapter 8, are mostly 

concerned with the trend of exacerbating our overreliance on technical solutions that are 

opaque to human understanding and supplant the human in critical decision-making 

within the global informational infrastructure. Anticipating the trend’s social implication 

brings out ethical questions from the loss of human dignity in mass job replacement to 

the existential risk of AI misalignment in which AI agents would be put into self-reflective 

loops and yield behavior misaligned with their designed purposes. As Yuk Hui explains, 

the exacerbation of such social issues can be traced to the life-like recursivity and 

contingency in computer operations and software processes, which behave like gigantic 

organism: “we are observing the becoming of an ‘artificial earth,’ and we are living within 

a gigantic cybernetic system” (Hui, 2019, sec. 6). This metaphor seems even more apt 

recently, with the way people are experimenting with automating large language models 

that yield curious behaviors (See As AutoGPT Released, Should We Be Worried about 

AI?, 2023). For instance, a program built on the OpenAI’s GPT-4 API was given the 

problem of figuring out how to solve a website’s CAPTCHA test, and it came up with a 

rather creative solution. The program went on the TaskRabbit platform and, over 

exchanges of text messages, it tricked an unsuspecting human worker into helping it 

solve the CAPTCHA test by pretending to be a blind person (Kan, 2023).  

Living within a milieu of these gigantic cybernetic systems, humans would appear 

minute in scale, gradually forsaking their agency and freedom to cybernetic machines. 

The problem with the increasing marginalization of the living in favor of a cybernetic 

milieu lies in the fact that the organic appearance of AI technology belies its essence as 

a technical or scientific object, which as Feenberg argues, has no meaning if placed 

outside the context of human societies. In his analysis on objects constructed by 

sciences, Feenberg argues that scientific objects attain their meanings only in relations 

to the experiences of ordinary humans who live with the real-life version of those 

constructed objects (see Feenberg, 2023, Chapter 6). Since the products of AI-

generated results are essentially objects constructed by sciences, Feenberg’s argument 

can be appropriated for the necessary relation between AI and the human. No matter 

how complex is the behavior of an AI program, its results are like any object constructed 

by sciences and must be evaluated by human reasoning. The human intelligence must 
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adjudicate AI-generated results with aspects of scientific rationality and teleological 

notions coming from the lifeworld perspective. This adjudication is an art that uses 

science to understand and correct the products of AI, which lacks the human capacity to 

evaluate its own results in a wider context. With the human taken out, historical 

contingencies, anomalies, and cultural specificities can invalidate any result computed 

by AI, and they could bring about the obsolescence or inappropriateness of 

contextualized data patterns that had been used to train AI models. 

Therefore, just like other technical or scientific objects, AI technologies are 

meaningless objects outside the human context. Relying unthinkingly on AI is analogous 

to the overreliance on a smart camera to get a good photograph. Even with a smart 

camera, a photographer needs to take many photographs to find a good one, and only 

human intelligence can make the selection. In analogy, if we train an AI model with a 

bunch of Cezanne paintings, we will certainly succeed in making a program that is 

capable of recognizing Cezanne’s style and of regenerating paintings of the same style. 

But what AI cannot do is to select aesthetically pleasing results out of thousands of 

regenerated paintings in Cezanne’s style without human intervention, since what are 

considered aesthetically pleasing depend on a changing cultural context and political 

environment.157 This is comparable to my argument in Chapter 6 that AI is not capable of 

composing music that react to political suppression like the anti-Stalin messages in 

Dmitri Shostakovich’s symphonies. 

The human-AI relation becomes problematic when humans falsely attribute 

intelligence to AI programs and consequently, relinquish their role in adjudicating AI-

generated results. Such is the case with the employment of AI-assisted decision-making 

in law courts (see Zerilli et al., 2019). As Simon Natale (2021) has argued, deceitfulness 

is part and parcel of what makes AI appear intelligent throughout its historical 

development. User experience can be characterized as a leap of imagination beyond the 

 

157 This argument takes the view that what is aesthetically pleasing needs to be adjudicated with 
aspects of scientific rationality and teleological notions. Some may refute this view in the 
Cezanne example, arguing that what is aesthetic pleasing is a matter of taste, that les goûts et 
les couleurs ne se discutent pas (everyone’s taste is different). With this view on taste being 
cultural relative, AI can be trained to be up to date on recognizing patterns that match the latest 
fashion or taste in a particular culture. But even then, this AI adjudicator of beauty needs to be 
trained based on human tastes and is simply an algorithmic representation of the taste of certain 
culture at a particular moment in time. It can never be completely automated and become the 
standard of beauty on its own.  
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strict functional specification of a software application. In the case of AI, this leap of 

imagination often becomes the false attribution of intelligence to a technical object. 

Consider the large language model. From the perspective of functional specification, the 

software program models human languages by representing the semiotic relations 

between words or sentences with the proximity of numerical vectors. This model is 

based on how linguists model human languages. It is designed to perform translations or 

to carry out conversations like humans, but not designed to reason like humans. Yet, 

when people engage in dialogues with ChatGPT, they are inclined to attribute the 

program with reasoning abilities to such an extent that Geoffrey Hinton foresees these 

language models attaining an IQ of 210 in the near future (Joseph Raczynski, 2023). But 

the functional specification of language modelling, whose primary objective is to imitate 

human dialogues, clearly has nothing to do with genuine human reasoning or the ability 

to understand and produce meanings.158  

If the world approaches a state in which AI agents of such ilk are responsible for 

running all major societal processes and decisions, to the point where humanity 

becomes irrelevant to these processes that are more concerned with the technological 

will than with the goods of humanity, such an extreme case of AI automation would 

effectively be no different from an abandoned windmill. Purely automated AI may initially 

align with social values, but without human interventions their original alignment with 

human purposes would be invalidated by anomalies, historical contingencies, and 

cultural specificities. So eventually, fully automated AI would necessarily diverge from 

the contingent development of humanity. In the hypothetical scenario where humans 

become marginalized to the point of irrelevance or even extinction due to AI, the 

complex technical processes may keep on running like an abandoned windmill, but 

neither automated AI nor the windmill would fulfill any real purpose. In other words, a 

sociotechnical advancement toward this extreme case of AI automation is effectively a 

collective progression toward a dead world.  

Could future societies be foolish enough to delegate every crucial decision to AI, 

buying into the deceiving appearance of creativity and of understanding human 

meanings? Such a scenario is certainly possible but not inevitable. At the current 

 

158 On the specific reasons behind why large-language models cannot understand meanings, see 
“Climbing towards NLU: On meaning, form, and understanding in the age of data” (Bender & 
Koller, 2020). 
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juncture, it is ambivalent whether societies will choose a path toward full AI automation 

in key decision-making.159 Proponents may argue that AI automation can help mitigate 

the evilness and propensity to wars inherent in human societies. But if an 

overdependence on AI automation leaves no room for human decisions, we ought to 

make every effort to prevent the emergence of a world void of meaning by raising public 

awareness about this inherent lack in AI. Should we then condemn all efforts on AI 

automation? Have we not experienced the benefits brought about by the many hidden AI 

processes that partially automate tasks for our convenience? One alternative to full AI 

automation is the research on human-computer symbiosis conducted by J. C. R. 

Licklider and Douglas Engelbart in the late 1960s and early 1970s. In their vision, 

partially automated AI does not necessarily reduce or replace the human, but instead 

can augment human capabilities and expand the possibilities for how the human can 

live.  

9.3. Automation versus Symbiosis 

Automation and symbiosis characterize the two prevailing visions for computing 

research and development. Over the history of universal computing, researchers have 

explored different realizations of cybernetic ideas that may give either the sense of 

automated mechanization or the sense of symbiotic openness. According to Thierry 

Bardini,“[t]wo main projects had stemmed from the rise of cybernetics: intelligence 

amplification, including Engelbart’s Augmentation of the Human Intellect project, on the 

one hand, and the effort to produce artificial Intelligence [sic] (AI), on the other” (2000, p. 

19). Whereas AI automation tends to simulate the human behavior in machines and to 

substitute the human in an information workflow, research on human-computer 

symbiosis, pioneered by Licklider and Engelbart, explores an open relationship of 

cybernetic feedbacks between the human and the computer for the purpose of 

augmenting human intelligence and other abilities.  

The original idea of human-computer symbiosis can be traced to the seminal 

paper “Man-Computer Symbiosis” (1960) by Licklider, who provided funding support for 

the Augmentation Research Center at Stanford Research Institute. This research center 

 

159 Feenberg made a similar point about the ambivalence of computer technology (2002, pp. 89–
130). 
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was headed by Engelbart, whose vision of the co-evolution of the human and the 

computer represents the center’s research direction in the 1960s. It has been credited 

with the first inventions of the mouse and of the precursor to window-based graphical 

user interface.160 In Chapter 6, I argued that cybernetics is associated with both the 

reductionism of the living as well as the theme of openness and complexity. In the 

context of computing technologies, the reductionism of cybernetics is manifested in AI 

automation whereas the openness and complexity of cybernetics are manifested in 

symbiotic human-computer relationship.  

 While technology can be reifying, prescribing a pre-determined set of actions for 

users interacting with the technology (Akrich, 2010), technology can also open a horizon 

for new possibilities of actions and creations. Language, writing, software programming 

language, networking protocols are all examples of technologies that both prescribe the 

grammar for actions and open a space for creative imagination. The degree of openness 

as well as the degree of behavioral inscription vary with the way a technology is 

designed.161 The more open is a technology, the greater the potential for humans to 

evolve symbiotically with the technology. At the same time, this symbiotic engagement 

comes with the behavioral inscription encoded with values and biases, which need to be 

reflected upon and critiqued by the user community. In a symbiotic relation, the human 

and the open technology co-evolve in a dialectic movement between creative actions 

and reflective critiques. 

 This co-evolution is also possible in a cyborg. The term “cyborg,” a portmanteau 

of cybernetic and organism, was coined in 1960 by Manfred Clynes and Nathan S. Kline 

(1960). A cyborg is a being with both organic and biomechatronic body parts, whose 

functions are performed by software and chips embedded in computerized devices. The 

cyborg imaginary is similar to human-computer symbiosis in that both depend on a 

communication interface between the human and the machine. As in a symbiotic relation 

with a computer, a person whose vision is enhanced by an artificial eye may be opened 

to a new horizon of possible actions. Nevertheless, there is a subtle difference between 

 

160 Thierry Bardini documents the history of such inventions in Bootstrapping: Douglas Engelbart, 
Coevolution, and the Origins of Personal Computing (2000). 

161 I elaborated on this dialectic of open technology in my previous works (Lo, 2016, 2019). 
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the cyborg imaginary and human-computer symbiosis.162 Whereas the cyborg imaginary 

focuses on the assimilation and potential replacement of human faculties, Engelbart 

regards the human and the computer as symbiotic partners that co-evolve over their 

interactions, and he modelled such interactions as cybernetic feedback loops between 

users and machines.163 In a perpetual cycle, users in symbiotic relations with computers 

would incessantly adjust and augment their bodies, minds, and senses in response to an 

evolving milieu of technologies. At the same time, new technologies would be invented 

to better suit the evolving users. 

The inventive focus of human-machine symbiosis lies more on the interactive 

feedbacks between exterior technical objects and the human body than on replacing 

biological organs with heathier and more powerful technical organs. It is satisfied with 

partial automation requiring human intervention rather than progressing toward full 

automation. Looking at the inventions of the mouse and of the graphical user interface 

from Engelbart’s research, it is true that both devices can be regarded as technical 

organs extending the human body, but the purpose of the body extensions is to serve as 

liaisons between the human user and the personal computer, facilitating their 

interactions. The body, the mind, and the senses would presumably evolve and become 

augmented over their interactions with and feedbacks from the personal computer. It is 

assumed that the body and the mind are uniquely distinct from computing devices and 

are augmented in different magnitudes from those of the devices.  

In comparison, the cyborg imaginary focuses on the replacement of human parts 

with artificial limbs or artificial organs. Its end goal appears to be the replacement of the 

entire human with AI automation. It progresses from partial automation, which require 

human intervention, to full AI automation. If computing technologies can outperform the 

biological functions of a human body, some of which are bound to deteriorate over the 

 

162 This view is contrary to Donna Haraway’s claim that everyone sitting in front of a computer 
screen is a cyborg: “By the late twentieth century, our time, a mythic time, we are all chimeras, 
theorized and fabricated hybrids of machine and organism; in short, we are cyborgs” (Haraway, 
1991, p. 150). 

163 “Engelbart’s approach is an instance of this broad conception of feedback applied to ‘whole 
policies of behavior.’ It is the reflexive application of the notion of feedback to research 
management as an instance of learning. In Engelbart’s framework, the tool system and the 
human system are equally important, and the technological development of computing is 
associated with the human capacity to change in order to take advantage of computing as a tool” 
(Bardini, 2000, p. 25). 
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course of a lifetime, then the human body would increasingly be composed of technical 

components. We can find the visualization of this idea in science fiction movies such as 

the Star War series, in which many cyborgs are left with only the human brain and 

perhaps the human heart. The upgrading of cyborgs would expose the redundancy of 

the human body. When there is nothing left in the human that are irreplaceable by 

technical components, the human species would effectively become extinct. This 

relationship between cyborg and technological singularity is illustrated in Fabio 

Comparelli’s computer generated simulation on human evolution (2022), in which the 

human species first transitions into cyborgs and then fully into AI machines. 

 This cyborg imaginary, interpreted with a techno-posthumanist164 lens, is 

imbricated with the “survival of the fittest” mandate. Thriving for the survival of the fittest 

is associated with a will to technologically amplify human capabilities to conquer one 

obstacle after another. This will to power, from technologically conquering the exterior 

milieu, paradoxically leads to the reduction or elimination of human faculties, fulfilling 

Heidegger’s abstract philosophy on the technological will to will (see Section 2.4). Those 

human faculties that are slower or weaker than computers or robots will eventually be 

supplanted. Whereas the ideal of human-computer symbiosis aims at augmenting 

human faculties and senses with the assistance of computing technologies, the cyborg 

imaginary tends to reduce or eliminate the human body. Therefore, the cyborg imaginary 

represents a stepping stone toward technological singularity in the techno-

posthumanism.  

 In contrast, human-computer symbiosis does not align with techno-

posthumanism. Since the goal of human-computer symbiosis is augmenting the human 

rather than reducing it, the vision adopts an evolutionary perspective that tends to be 

creative rather than eliminative. The concept of symbiosis comes from biology, meaning 

"the living together in more or less intimate association or close union of two dissimilar 

organisms” (Symbiosis Definition & Meaning - Merriam-Webster, n.d.). Unlike the mutual 

adaptation in homeostasis with equilibrium as the end goal, symbiosis is historically 

contingent, as the partnering organisms may change or grow in mutual dependency. The 

coupling is greater than the individual, like a whole is greater than its parts, but unlike a 

 

164 The techno-posthumanism here refers to Michael E. Zimmerman’s adoption of the term from 
Ray Kurzweil’s discussion on technological singularity, which Zimmerman associates with 
Heidegger’s technological will to will. For more detailed discussion, see Section 2.4.  
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part in a whole, the individual in a symbiotic relationship nevertheless remains an 

individual. The human with its body would remain intact as an individual without having 

its parts replaced by technical organs. Meanwhile, it can still change and evolve over its 

interaction with its technological milieu.  

 This vision of human-computer symbiosis has been the main driver behind the 

technological innovations associated with personal computing and the world wide web. 

These innovations provide new means for doing things that free the human from 

unnecessary drudgery, allowing her or him to develop other strengths. For instance, to 

manage personal finance, spreadsheet software allows us to fully devote to the mental 

operations of accounting without keeping track of every menial detail in calculations. Or 

in the practice of writing, document software facilitates the shortening of an author’s 

cycles between writing and editing. The habits of our mind have adapted to these tools, 

which open a new horizon for thinking and acting in symbiotic relations with computing 

devices. 

9.4. The Computer Scientists’ Vision of Human-AI 
Symbiosis 

 Whereas Engelbart’s research on augmenting the human intellect draws from the 

principles of biological symbiosis, the holy grail for AI research is typically artificial 

general intelligence (AGI), which refers to the vision of automated machines with human-

like intelligence that can operate completely independent of humans. Symbiosis and AI 

automation thus appear to represent two competing visions for computing research.165 

Nevertheless, AI technologies can also be deployed as symbiotic partners for the 

human. Many computer scientists,166 including Kai-Fu Lee in AI 2041, endorse the vision 

of human-AI symbiosis more so than the vision of AGI, probably because AGI comes 

with the existential risk associated with technological singularity. As Lee remarks, 

“What’s important is that we develop useful applications suitable for AI and seek to find 

human-AI symbiosis, rather than obsess about whether or when deep-learning AI will 

become AGI (K.-F. Lee & Chen, 2021, p. 159). This conviction lends support to optimism 

on a future of humanity accompanied by advances in AI: “if we have faith that human-AI 

 

165 See Bardini’s quote (2000, p. 19) in the beginning of Section 9.3. 

166 See footnote 152. 
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symbiosis is much greater than the sum of the two parts, then we will work to mold AI 

into a perfect complement to help us ‘boldly go where no one has gone before’” (K.-F. 

Lee & Chen, 2021, p. 537).  

 If AI indeed develops along the vision of symbiosis instead of AGI, what are 

some possible ways for humans to interact with AI? What will our lifeworld be like if our 

lives are predominantly in symbiotic relation with AI? The short stories in AI 2041 (K.-F. 

Lee & Chen, 2021) help us imagine such a lifeworld in the year 2041, given the authors’ 

prognosis of AI inventions in the coming years. Their prognosis is based on the 

understanding that AI can “detect incredibly subtle patterns within large quantities of 

data” (2021, p. 430). As explained in Chapter 5, this understanding is not just an expert 

opinion but has its basis in Solomonoff’s formal proof of algorithmic probability. Hence 

the science fictions in AI 2041 portray a rather realistic projection of future AI 

technologies. At the same time, these stories allow readers to conjure up an imaginary 

lifeworld to experience emotions and to reflect on human-computer symbiosis beyond 

categorical analysis.167 In these projections into the future, human senses and 

capabilities are augmented by technological devices. For instance, in most of the stories, 

many characters wore XR (Extended Reality) glasses or contact lenses to gain a 

perception of the world beyond their natural visions. In “The Holy Driver,” teenage 

gamers gifted with top-notch dexterity in virtual car racing were recruited to save 

thousands of lives remotely by continually indulging in virtual games. Their jobs were to 

play games in which they would drive into dangerous situations to save people, and the 

gamers were unaware that these virtual games were real-time simulation of the actual 

reality in some far-away places. 

 There are also passages in AI 2041 on how humans can co-create with 

technology beyond its original design scheme. In “The Twin Sparrow,” the protagonist, 

an autistic Korean kid called Silver Sparrow, co-created an immensely beautiful video 

artwork with his AI companion. The programmer of this AI companion, Seon, found this 

co-creation stunningly impressive: 

A frantic translucent video stream flooded Seon’s field of vision. Different 
resolutions, formats, fragmented sources all edited together in a complex 
rhythm of time and space. Images intertwined, occluded, overwhelmed her 

 

167 Categorical analysis such as Kai-Fu Lee’s analysis of human’s relative strengths in creativity, 
empathy, and dexterity (See discussion in Chapter 1). 
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with their visual vortex. It took a moment before Seon could distinguish 
anything amid the stream. Then she began to make out a few of the 
images: mountains, rivers, lakes, clouds, nebulae, plant veins magnified at 
powers of ten, irises, microstructures of chemical compounds, wind tunnel 
experiments captured in high-speed photography, clips from Star Trek 
movies, and even the day-to-day life of Fountainhead Academy. Most of 
the clips, however, were completely abstract or unfamiliar. There was no 
way Seon could begin to describe all she saw. 

 On a hunch, Seon raised the volume on her earbuds. She heard a 
soft white noise like a trickle of flowing water, subtly varying with the rhythm 
of the visual stream. She squinted through the video layer to focus on Silver 
Sparrow, across from her. She understood the sound then. He could open 
and close his eyes, but not his ears. For children like Silver Sparrow, 
sensory overstimulation could become unbearable. 

 “You made these all by yourself? They’re amazing.” 

 Silver Sparrow’s lip fluttered a few times, then the audio signal 
amplified in Seon’s ear. 

  “It was Solaris.”  

 Seon was speechless. These AI-enabled children were beyond her 
understanding. (K.-F. Lee & Chen, 2021, pp. 111–112) 

In this passage, Silver Sparrow and Solaris, his AI companion, co-created beyond the 

original design of an AI companion programmed by Seon. The introduction of an AI 

companion into Silver Sparrow’s life opened an aesthetic spacetime for Silver Sparrow 

to creatively maneuver and produced the animated artwork. Such aesthetic openness is 

brought forth by the encounter between humans and new technologies.168 

 Nevertheless, the stories in AI 2041 implicitly reveal the problems with a research 

agenda purely based on human-AI symbiosis without taking into account the critiques on 

political economy. They paint a picture of human-AI symbiosis in a world with a 

predominantly capitalist ethos. In this world, people may engage with AI symbiotically 

even though the technologies remain alienated from the people. Our human lives would 

remain dependent on the good will of the elites in control of the technology. Individuals 

would have to struggle to maintain a healthy balance between freedom from and 

dependence on their hegemonic socioeconomic systems. This struggle is the main 

theme of “The Golden Elephant,” where the protagonist lives in a world where even love 

 

168 This co-evolution in human and technology can be viewed as an example of transindividuation 
in Simondon’s philosophy. 
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is ordained, not by parents, but by the insurance system empowered by big data and 

deep learning. In this imaginary world, humans and AI will co-evolve, transindividuation 

will still take place, and life will go on. But this is also a world in which individuals 

increasingly lose agency over their own lives to the elites, to the algorithmic “gods” that 

presumably take care of their lives.  

 This theme of “benevolent god” is also implicit in “The Twin Sparrow.” Toward the 

end of the story, it was revealed that the programmer Seon has inserted a hidden piece 

of code into the AI companion of Silver Sparrow and into that of his twin brother Golden 

Sparrow, generating telepathic dream-like visions that eventually brought them back 

together. This element reveals how powerful is the agent who has control over the 

program. It also sneaks in a theme of benevolent dictatorship. The hidden programs in 

the AI companions led to a happy re-encounter between the separated twins, but this 

was only possible due to the benevolence of Seon, the AI programmer. What if Seon 

was wicked rather than benevolent? As a matter of fact, why should anyone accept their 

lives to be intervened by external agencies that influence and make personal choices for 

them? Should we allow our lives to be dependent on the good will of those who have 

more power over our lives than ourselves? As such, we ought not be satisfied with the 

world of human-AI symbiosis depicted in the stories of AI 2041. 

9.5. A Philosophical Critique of Human-AI Symbiosis 

 How can the philosophical critiques of cybernetics in preceding chapters 

enlighten our perspective on a future society characterized by symbiotic relationship 

between the human and AI? From a philosophical perspective, the concept of symbiosis 

is not yet a fully developed idea and there is a need to evaluate symbiosis via other 

means. This section contends that the computer scientist vision of human-computer 

symbiosis lacks the social dimension and hence the revolutionary potential implied in 

Simondon’s theory of individuation and in Stiegler’s elaboration of Simondon’s theory.  

As explained in Chapter 3, cybernetics for Heidegger is destined to bring about 

the materialization of the essence of technology, and human-AI symbiosis is a 

thoroughly cybernetic idea. Human-AI symbiosis, which sees the human engaging in an 

open co-evolution with AI, would be regarded as a deceptive discourse that hides the 

further reduction of the human to standing reserves for the incessant empowerment of 
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AI. But as I have argued in Chapter 3, the universality of cybernetics is a mistaken 

characterization of the heterogeneous intellectual movement, and the conflation between 

cybernetics and computing technologies would efface the nuances of their relation. In 

more precise terms, universality is a proper characterization of the modern computers 

that model after the universal Turing machine, whose applicability to almost every facet 

of human lives is evident over the past half-century. This universality makes possible the 

adoption of selected cybernetic ideas in the history of computing research and 

development, which has bought about an epochal change of sociotechnical milieu that 

transcends the confinement of previous regimes. Personal computing is an appropriation 

of the computing technology originally targeted for mass and centralized calculation; 

cyberspace is an appropriation of the military-invented Internet for creative grassroot 

communications. While the mechanization of the living in cybernetics tends to reduce the 

human to its standing reserves, cybernetics is simultaneously associated with a 

complexity and openness that tends to liberate the human from technological alienation. 

The tension between reduction and openness is manifested in the dialectic between the 

totalitarian vision and the liberative potentiality of computers. And we have seen the 

pendulum swinging back and forth, from the HAL of 2001: A Space Odyssey (Kubrick, 

1968) to the 1984 Apple’s MacIntosh commercial (2012), from the potential of 

democratization in cyberspace to surveillance capitalism and digital totalitarianism. Such 

a dialectic perspective is also proper for our philosophical critique of human-AI 

symbiosis. Advances in AI may exacerbate the penetration of surveillance capitalism 

and digital totalitarianism, but they also hold the potentiality of breaking loose from 

technological alienation. 

 I contend that this revolutionary potential in technical politics is lacking in the 

discourse of human-AI symbiosis. This lack is evident in the stories of AI 2041. As 

Fredric Jamieson mused, “it is easier to imagine the end of the world than to imagine the 

end of capitalism” (2003). For mainstream authors like Qiufan Chen and Kai-Fu Lee, a 

substantial change in the politico-economic system remains at a superficial level (e.g., a 

jobless environment), but they could not anticipate how AI technology may be shaped 

socially if it is democratized. Imagine, had stories like those in AI 2041 been written in 

the 1970s, the futuristic stories might have come close to predicting the kind of software 

applications in businesses and governmental institutions. But they could not have 

foreseen the emergence of computer hackers, the popularization of personal computing, 
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or the democratization of the Internet. Any attempts at predicting concrete future 

applications would inevitably appear naïve in retrospect,169 because social imagination 

from the top tends to lack the transformative potentiality in the lifeworld of those from 

below.  

 In this regard, we can differentiate the computer scientists’ vision of human-AI 

symbiosis from Simondon’s proposal that humans ought to relate to machines as peers 

rather than as masters and slaves. Like many critics of AI today, Simondon’s 

contemporaries were concerned with the deprivation of humanity due to industrial 

automation, exacerbated by the emerging computing technology. Unlike these 

technology critics, Simondon discerned a positive development of human-machine 

relation. He conceptualized the technical individual as the role for coordinating ready-to-

hand tools or technical elements. In his argument, this role does not inherently belong to 

the human (1958/2016, pp. 77–78). With this role shifting from the human to the 

technology, the human is now liberated from the previous scheme where the human and 

the technology have been in a master-slave relationship. A new relationship is emerging 

where the human and the technology can relate to each other as peers (1958/2016, pp. 

15–16). In the first volume of Technics and Time (1998), Stiegler further develops our 

understanding of this relationship when he constructs a technical history of what he calls 

“epiphylogenesis,” drawing from the works of paleontologist Leroi-Gourhan along with 

Simondon. In this philosophical articulation of human-technology symbiosis 

(Beardsworth, 2010), Stiegler argues that hominization is a technical process of 

evolution and psychic and collective individuation, and the technical history of 

epiphylogenesis convincingly conveys the indispensable role of technology of 

hominization. Hence technology, particularly tertiary retentional system, plays a 

constitutive role in shaping the very definition of what is considered as human. 

 On the surface, human-computer symbiosis is commeasurable with the peer 

relationship between man and machine that Simondon proposes. Many computing 

devices today seem to fulfill Simondon’s vision of an open calculating machine whose 

indeterminacy allows it to be programmable (1958/2016, pp. 31–32, 149–157). But to 

 

169 For example, in B. V. Bowden’s Faster than Thought (1953), the limitations are limited to 
cryptography, science research, government statistics, banks/commerce, and games. These 
applications were largely accurate predictions of applications on the mainframe computers, but 
not the many revolutionary technologies that came after. 
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appreciate Simondon, we need to grasp the philosophy in its entirety beyond his 

technological examples. His philosophy of pre-individual reality, individuation and 

transduction, points toward a future that transcends the present. Instead of what you see 

is what you get, the potentiality in the transindividual relation of psychic and collective 

individuation goes beyond the present constraints. It points toward a historical unfolding 

of sociotechnical changes that transcend the existing circumstances. The human and 

the computing technology share a reality that is greater than whatever they may be at 

the current snapshot. Simondon does not advocate only an open machine but an open 

horizon of techno-cultural formation. The social transformation over the invention of 

personal computers, and over the Web and cyberspace exemplify such transcending 

sociotechnical changes. This open horizon, hinted by Simondon in the last pages of 

MEOT, was elaborated by Feenberg and Stiegler in their appropriation of concretization 

and transindividuation (see my earlier discussion in Sections 8.3, 8.4, and 8.6). Our 

world, with its aesthetics and beauty, meanings, and teleology, is filled with tensed 

relations that hold the potentiality for transcending changes. Any attempt to rethink 

technology, to overcome the antagonism between technics and culture, must find a way 

to safeguard the transcendent potentiality. In fact, this is the approach undertaken by 

Stiegler in his proposal for a new critique of political economy (2010a), in which his 

critique of the generalized proletarianization of consumptions, which results from the 

tertiary retentional systems of hypercapitalism, demands a radical reform of education so 

that youngsters can achieve a synthesis between hyperattention characterized by a 

rapid oscillation among different tasks and deep attention characterized as the capturing 

of attention by a single object (Stiegler, 2010b, p. 73).170 

 

170 Richard Beardsworth in “Technology and Politics: A Response to Bernard Stiegler” raises the 
issue of technological determinism in Stiegler’s critique of proletarianization of hyperconsumption. 
He explains that the “ethical question driving political innovation has, consequently, to be worked 
out in terms of universally coordinated, but locally determined equilibriums between growth, 
sustainability and equity” (216), but Stiegler’s logic of excess in his reinterpretation of Marx 
“ignores the need today to make small distinctions, under the canopy of political regulation, within 
the world as a whole” (217). At the same time, Stiegler’s “technological re-reading of Freud that 
flattens out the vagaries of human affect and human conscience, preventing a nuanced, 
comparative account of the relation between contemporary consumerism and normative thought 
and behaviour” (222). In short, Stiegler’s insight on the implication of tertiary retentional system 
on our protention becomes problematic when it is considered as the determining factor of political 
economy and of human affect and human conscience. 
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9.6. Conclusion 

 This chapter presents the final analysis of AI and machine learning by 

deliberating the possibility of democratizing AI and the openness of human-AI symbiosis. 

The analysis leverages the immanent critique of machine learning (Chapter 3 to Chapter 

5), tracing its cybernetic origin and articulating its technical affordance based on 

Solomonoff’s computational theories, and the philosophy of openness in cybernetics and 

in Simondon’s philosophy (Chapter 6 to Chapter 8). In this chapter, I begin by 

deliberating the totalitarian threat of AI automation, which may bring about the realization 

of Heidegger’s technological will to will. Living in an automatic society is like living within 

a milieu of gigantic cybernetic organisms, but these cybernetic organisms are still 

scientific and technical objects that attain their meanings only in relation to the 

experiences of ordinary humans. They lack the creative openness of Simondon’s 

philosophy if the humans are removed from the equation. But pure automation is not the 

only possible goal for AI development. Humans and AI can relate to each other 

symbiotically. In fact, automation and symbiosis represent two competing visions for 

computing research. Whereas pure automation tends to reduce the human, partially 

automated AI, which requires human interventions to fully function, can serve to 

augment the human in a symbiotic relation. This computer scientists’ vision of human-AI 

symbiosis is endorsed by the authors of AI 2041. They see their vision of human-AI 

symbiosis as potentially beneficial to our society, contrasting the vision of artificial 

general intelligence that leads to dystopian fear about technological singularity or about 

the totalitarianism of an automatic society. But the human-AI symbiosis in AI 2041 falls 

short of the human-machine relation in Simondon’s philosophy. Whereas human-AI 

symbiosis appears to be compatible with Simondon’s notion of human-machine relation, 

in which neither the human nor the machine is the slave in subservience to the other, 

Simondon sees such peer relations as the realization of the pre-individual charge shared 

by the human and the machine, and such realization is manifested in transinindividuation 

of the human, the technics, and the society. Therefore, missing from the computer 

scientists’ vision of human-AI symbiosis is the revolutionary character in Simondon’s 
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theories of concretization and transindividuation, which are adopted by Feenberg and 

Stiegler in their social theories on contemporary technics.171  

 To conclude, it is historical contingent regarding whether human-AI symbiosis 

will be realized as the enframing of the human as the standing reserve of AI technology 

or as the creative actualization of sociotechnical potentiality. According to Stiegler’s 

critique of algorithmic governmentality (see Section 8.4), the trend of theoretical 

knowledge supplanted by automated knowledge, made possible by deep learning, is 

undermining the social process of negotiating knowledge and truths among stakeholders 

with conflictual interests. This in turn eliminates the process of disparation as the basis 

for psychic and collective individuation. If Stiegler is correct, algorithmic governmentality 

would be another example of sociotechnical innovation stabilized by recurrent causality: 

as it disrupts the social process of actualizing revolutionary potentiality in technical 

politics, this disruption results in a milieu that allows algorithmic governmentality to 

subsist. Therefore, even though humans may relate symbiotically to specific AI 

technologies, the human society may still be perpetrated by AI technologies that 

promote the automation of knowledge creation. A new sociotechnical innovation is 

needed to break away from this loop, but whether this innovation can be brought about 

assertively by resistant social movements or by good fortune (as in Heidegger’s 

eschatology of Section 2.5) is a question beyond the scope of this dissertation. 

 

 

171 Today, the level of excitement and anxiety about AI has surged since the recent introduction of 
ChatGPT into popular culture. At the same time, its capability is no more than the AI assistants in 
the short stories of AI 2041. If we apply the arguments in this chapter to applications like 
ChatGPT, they can in fact augment human capacity and develop a new approach to solving daily 
problems. It is more user friendly than google search because the chat is conducted over 
exchanges in natural language. At the same time, the full potentiality of AI, its potential to disrupt 
incumbent sociotechnical systems, demands imagination beyond those like ChatGPT. 
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Conclusion 

Summary of Dissertation 

 This dissertation presents a philosophical critique of machine learning based on 

an investigation into its technical lineage. It begins by explicating Heidegger’s remark in 

Der Spiegel magazine that cybernetics would take the place of philosophy. As explained 

in Section 2.2, philosophy as western metaphysics used to provide the ground, the 

horizon, for determining how beings are revealed. Based on such representational 

systems, Dasein can draw associations between beings with meanings in order to make 

sense of the world that it has been thrown into. This traditional role of philosophy would 

be superseded by the “fundamental science” of cybernetics. In this regard, philosophy as 

western metaphysics is coming to its completion as it has found its material form in 

cybernetics. From his lectures on Nietzsche’s will to power, Heidegger sees the history 

of metaphysics as a series of epochs characterized by the rise of willful subjectivity that 

culminates in the technological will to will (see Sections 2.3 and 2.4). Cybernetics is the 

materialization of the technological will to will and sets the horizon for effecting changes 

in the western world. No thought can escape the total domination of technology until an 

epochal change of collective awareness about the extreme danger of technology (see 

Section 2.5). No purely human effort can bring about this epochal change. Thus “only a 

god can save us.”  

 Heidegger’s critique of cybernetics rides on the assumption that cybernetics is a 

fundamental science of all sciences. Under this assumption, all scientific theories about 

the living and the non-living beings can be represented as cybernetics theories, and 

activities across all domains of reality are universally representable as cybernetic 

behavior. As I have contended by reading the transactions of the Macy Cybernetics 

Conferences in Section 3.2, the cybernetic themes of feedbacks, homeostasis, and 

information can indeed be appropriated to scientific disciplines across the board, but not 

without contradictions and conflicts typical of interdisciplinary projects. Ideas from 

cybernetics research served as an impetus for cross-disciplinary dialogues rather than 

as an agent for harmonizing different domains of knowledge into a reduced form. In fact, 

far from becoming a fundamental science guiding the research of all scientific 

disciplines, cybernetics has been unable to produce concrete and impactful scientific 
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knowledge or theories beyond cybernetic themes such as feedbacks and homeostatis, 

and is therefore regarded as a historical failure from a technical perspective (See Jean-

Pierre Dupuy’s description of this failure in Section 3.1 and footnote 46). Yet, I believe 

that the true implication of cybernetics has been indirect, as it has been influential in how 

the computing technology has evolved, and particularly in the technical lineage of AI and 

machine learning. Modern-day computers are modelled after the universal Turing 

machine (UTM). The Church-Turing thesis suggests that it can perform any rule-of-

thumb process, and that it can perform the functionality of any conceivable machine. Its 

universality is manifested in how computer applications find their way into every aspect 

of our lives. While the most straightforward application of universal computing is for 

speedy and complex calculations, thus replacing the factory of human computers (see 

Section 3.3), it is the application of cybernetic ideas in the field of computer science that 

has shaped how computer science has evolved (see Section 3.4). Had there been no 

cybernetics movement, the history of computer science would have been significantly 

different. As discussed in Sections 3.4 and 3.5, artificial intelligence, personal 

computing, and the cyberspace are branches of computer sciences that have taken up 

the cybernetic idea of problematizing the boundary between humans and machines. 

Among these subfields, AI grew out of automata studies from cybernetics research (see 

Section 3.5). This subfield inherits the problematization of human-machine boundary 

from cybernetics but departs from its primordial goal of attaining mechanistic 

understanding of living organisms. Instead, AI research follows Turing’s outlines for 

machine intelligence and explores the potential of the universal computer in simulating 

human intelligence.  

This change of focus is particularly evident in the research on machine learning 

as a subfield of AI. While many are aware of the cybernetic root of AI and machine 

learning, Chapter 4 points out the differences between the cybernetic learning machines, 

such as Shannon’s mechanical mouse or Ashby’s homeostat, and the subfield of 

machine learning in AI research. The differences are exemplified by the computational 

algorithms of Arthur Samuel’s checkers playing machine and the computational theory in 

Ray Solomonoff’s algorithmic probability. The idea that machine can “learn” has been 

discussed and explored in cybernetics research. As explained in Section 4.2, the goal of 

Claude Shannon’s maze-solving mouse and W. Ross Ashby’s homeostat is to find a 

mechanistic model of learning for the scientific understanding and mechanistic 
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replication of the learning in living organisms, as evident in Ashby’s claim that his 

homeostat is a model of the brain. In contrast, the pioneering works on machine learning 

by Samuel and by Solomonoff are based on abstract computer algorithms that have no 

relation to the learning mechanism in the living (See Section 4.4) 

Chapter 5 explains Solomonoff’s algorithmic probability as a proof that exploits 

the universality of UTM in the context of machine learning. Section 5.3 explains how he 

came up with an abstract algorithm for a UTM to learn from a universe of digital data, 

and proved mathematically that, given infinite time and computing resources, this 

algorithm guarantees the discovery of any subtle pattern in the universe of data. Section 

5.4 explains the proof in non-mathematical languages to make it understandable for non-

technical readers. As argued in Section 5.6, this proof turns out to be applicable to big 

data and deep learning, thus lending support to the non-substantiated claim by computer 

scientists that deep learning can discover any subtle patterns in large amount of data. 

Thus Solomonoff’s proof can be viewed as the machine-learning version of the Church-

Turing thesis that establishes the extreme outer limit of its technical affordance. 

The deep learning program that recognizes subtle data patterns is also equipped 

with the capability to re-generate variations of the same data patterns. Generative-AI 

applications, such as DeepBach, rekindles curiosities about the possibility of 

computational creativity. To deliberate on such questions, Chapter 6 turns to the works 

of Simondon, who developed his philosophy of openness from Bergson’s Creative 

Evolution (1922) and from the open character of cybernetics. Section 6.2 traces the 

openness of cybernetics to the philosophy of Norbert Wiener, arguably the most 

prominent pioneer of the cybernetics movement. Wiener’s autobiography reveals his 

repudiation of the closed system of traditional sciences. For him, the essential 

irregularity of the universe escapes the classical repertory of analysis, in which scientific 

hypotheses stipulated in formal mathematical functions. The primary aim of cybernetics 

is to explore and to bring understanding about disorderly systems across heterogeneous 

environments. It is within the confine of this philosophy of openness and complexity that 

Wiener came up with the notions of negative feedback and homeostasis. Simondon 

identifies openness as the core philosophy of cybernetics, from which he developed his 

philosophy in ILNFI and MEOT. The eclectic nature of these two works can only be 

matched by the dialogues from the transactions of the Macy Cybernetics conferences. 

Sections 6.3 and 6.4 describe in detail how Simondon’s theories are appropriations of 
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various key concepts in cybernetics. Simondon’s theories of recurrent causality, 

concretization, and individuation are philosophical appropriation of the cybernetic notions 

of negative feedbacks, homeostasis, and phylogenesis or ontogenesis. At the same 

time, as explained in Section 6.5, he rejects the cybernetic mechanization of the living 

and its blurring of the boundary between life and machine. Life and machines are 

independent layers of individuations with mutual influences. Rather than conflating the 

human and the machine, the two are capable of co-individuating or trans-individuating. 

In other words, Simondon’s philosophy suggests a possible trajectory of co-evolution 

between the human, the social, and machines.  

Simondon’s philosophy has been characterized by some as speculative ontology 

ontology (Seibt & Rodogno, 2019). But as I contend in Chapter 7, Simondon’s 

philosophy, and in particular the concept of pre-individuality, is not based on pure 

speculation but models the subatomic physical world, whose behavior is only observable 

via the assistance of modern devices. While Aristotle’s model of potentiality was life, this 

model is outdated in light of the advances in modern sciences, which brings about a 

paradigm-shift on our knowledge about the physical and biological world. Thus 

Simondon invents a new model of potentiality from quantum theory and solid-state 

physics. Chapter 7 attempts to shed light on this model by referring to Feynman 

Lectures on Physics to garner some basic understanding of quantum theory and solid-

state physics. This chapter explains how the paradigm of transducing the continuous into 

the formation of the discontinuous in quantum theory (see Section 7.2) and solid-state 

physics (see Section 7.3) are foundational to his conceptualization of pre-individuality 

and recurrent causality. Simondon models the transductive relations between the 

continuous and the discontinuous as a recurrence of causality between the figure and 

the ground (see Section 7.4). This figure-and-ground paradigm is applicable to his 

analysis of technology. Technological alienation is the result of a break between the 

figure of technical schemas and the ground of the natural, psychic, or the social milieu. 

Re-establishing the broken channel can therefore subvert technological alienation. 

 Chapter 8 compares Feenberg’s and Stiegler’s appropriations of Simondon’s 

theories of concretization and transindividuation to their critical social theories and 

explains why the former finds appeals in the openness of concretization whereas the 

latter is alarmed by the closed nature of a concretized sociotechnical system. Feenberg 

embraces Simondon’s philosophy of openness in his technical politics, in which 
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technology can evolve openly when the voices and values from below can be 

incorporated into technical design (see Section 8.3). He finds Simondon’s philosophy 

compatible with his Marcusian critical theory and adopts the theory of concretization by 

substituting the natural-geographic associated milieu with the social milieu. And as 

discussed in Section 8.2, Simondon’s concept of pre-individual charge has implications 

similar to Hegel’s potentiality, from which Marcuse develops his two-dimensional 

ontology. Both Simondon’s pre-individual charge and Hegel’s potentiality are concerned 

with real possibility over formal possibility, and in both, the overcoming of conflicts and 

tensions in inner and outer relations brings about the actualization of potentiality. 

Feenberg is representative of the view that computing technology is potentially 

liberating, which is in dialectic tension with the view that identifies its totalitarian 

possibility. Like Feenberg, Stiegler appropriates Simondon’s theory of concretization 

(see Section 8.4), substituting the natural-geographic associated milieu with the social 

milieu, but he draws an opposite conclusion. He identifies a closed character of technical 

concretization: As a system concretizes, it tends toward an increasingly closed system 

unless changes in the natural or human milieu compel a restructuring of the technology 

into a new technical lineage. While Stiegler is aware that concretization can indeed 

transcend existing conflicts to bring about innovation, he points out that a healthy 

channel between the figures and ground of pre-individual charge is a necessary 

condition for concretization. In the sociotechnical context, the figures are technologies 

and the ground is the realm of reflective psyches and social critiques. Algorithmic 

governmentality and 24/7 capitalism undermine what Stiegler calls the “noetic time” for 

intellectual and spiritual reflections. Technological alienation results from this short-

circuiting of the figures and the ground. Comparing Stiegler with Feenberg, their 

interpretations of Simondon are in fact consistent with each other (see Section 8.6). The 

key difference is in their assessments on the condition of the channel between social 

critiques and the process of inventing technologies. Feenberg points to the past 

movements of social resistance and emphasizes the resulting improvement over the 

past half century. Stiegler examines the nature of algorithmic governmentality and 

projects a future in which critical thoughts are decimated. The question for us is whether 

this dystopian future is inevitable or whether there can be alternate futures for the co-

evolution of AI and society. 
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 In my final analysis in Chapter 9, I turn to human-computer symbiosis as a 

competing vision to AI automation and to the cyborg imaginary for the computer 

scientists since the early 1970s. While the vision of human-computer symbiosis aims at 

augmenting the human mind, body, and senses through cybernetic feedbacks with 

computing devices, AI automation and the cyborg imaginary tend to reduce, replace, and 

eliminate human parts and faculties (see Section 9.3). The computer scientists’ vision of 

symbiosis, as an alternative to automation, echoes the openness of cybernetics (see 

Section 9.4), but this computer scientists’ vision nonetheless falls short of the openness 

that Simondon articulates in his philosophy (see Section 9.5). In Simondon’s theory of 

transindividuation, the machine co-evolves with the human and the society by 

transcending prior conflicts and stagnations, and such transcendence corresponds to the 

revolutionary potentiality in Feenberg’s technical politics. 

Contributions to the Literature 

 Edward Feigenbaum’s sentiment that AI needs a good Dreyfus (Section 1.3), 

together with Heidegger’s dystopian critique of cybernetics (Chapter 2), frame the 

methodology of this dissertation: to take seriously an immanent perspective of AI, both 

historically and technologically, and to conduct a critical and philosophical inquiry of the 

technology based on this immanent perspective. As such, the primary contribution of this 

dissertation comes in how it draws together technical and scientific perspectives with 

critical philosophy of technology to formulate a constructive criticism of AI, one that aims 

at keeping pace with the latest technological advances. By engaging with technical and 

scientific knowledge, I attempt to bring further clarity to the critiques of Simondon, 

Feenberg, and Stiegler and explore the implication of their thoughts on artificial 

intelligence and machine learning.  

I develop an immanent perspective of AI by tracing the intellectual traditions of 

cybernetics and computing (see Chapter 3 to Chapter 4) and by exploring the 

implications of Solomonoff’s computational theories to big data and deep learning 

(Chapter 5). As I argue, Solomonoff’s theories can be seen as a corollary to the Church-

Turing thesis. Whereas the Church-Turing thesis gives an extreme outer limit of what it 

is possible to compute, Solomonoff’s Algorithmic Probability gives an extreme outer limit 

on what machine learning is capable of. Since a deep neural network is Turing complete, 

a deep neural network can function like a computer program in identifying and 
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regenerating data patterns. In other words, deep learning represents a shift of focus in 

the field of machine learning, from statistical models of correlations to the deep neural 

networks that can be programmed like a Turing machine. This more concise 

understanding of deep learning, gained by grasping the core idea behind Solomonoff’s 

algorithmic probability, is useful in diagnosing the weaknesses of writings that downplay 

AI’s genuine potentials. At the same time, it helps repudiate the unfettered imagination of 

AI enthusiasts who anticipate the presence of creativity, emotivity, and consciousness in 

their thriving toward artificial general intelligence.  

By tracing the technical concepts from cybernetics to computing, this dissertation 

places a greater emphasis on the distinction between cybernetics and universal 

computing than their mutual influences and interwoven strands of development. This 

leads to a  the universality of cybernetics, which underlies Heidegger’s formulation of the 

technological will to will. While cybernetics can be distinguished from universal 

computing, the boundary-blurring of cybernetics led to the destabilization of the meaning 

of intelligence and of learning in Turing’s paper on machine intelligence, which in turn led 

to the birth of AI as a subfield of computer science (see Sections 3.4 and 3.5). Chapter 6 

examines the perspective that cybernetics is not only characterized by a reductionism of 

mechanizing the human, but also an openness that makes possible a critical 

constructivist view of technological development in Simondon’s philosophy (see Section 

6.6). Chapter 7 then draws from quantum and solid-state physics to reveal a deeper 

appreciation of the openness of Simondon’s philosophy, in which potentiality is 

conceptualized as the ground of pre-individual charge that gives rise to the operation of 

individuation. Such potentiality reflects a sense of creative evolution that goes beyond 

the pattern recognition and regeneration in deep-learning AI. My Simondonian critique 

thus attempts to reveal a particular shortcoming of the kind of creativity and emotivity 

simulated in generative AI.  

At the same time, the tension between reductionism and openness in cybernetics 

are relived in the dialectic tension between two research visions for AI: the universality 

and closed character of a totality of AI automation on the one hand, and the complexity 

and openness of human-AI symbiosis on the other. This dissertation further develops 

Simondon’s philosophy to formulate a philosophical critique of human-AI symbiosis by 

drawing on the works of Bernard Stiegler and Andrew Feenberg. These two 

philosophers formulated their critiques of technology by appropriating Simondon’s 
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theories of concretization and individuation to the social realm. I attempted to clarify how 

their thoughts relate to one another, which can be illuminated by recognizing the 

simultaneous open and closed character of technical concretization. This illumination 

reiterates the dialectic tension in the pharmacology of technology that may be poisonous 

or curative to the human and social world. It leads to the question of whether human-

computer symbiosis or human-AI symbiosis can be a liberative alternative to the 

enframing of AI automation. On the surface, a symbiotic partnership between humans 

and AI appears to be compatible with the philosophy of Simondon, who holds the view 

that humans ought to relate to machines as peers rather than as masters and slaves. 

But as I argue in Section 9.5, missing in the computer scientist vision of human-AI 

symbiosis is the social dimension in Simondon’s philosophy, as identified by Feenberg 

and Stiegler. Simondon intends to overcome not only the opposition between man and 

machine, but more importantly, the opposition between culture and technics. He 

advocates not only an open machine but also an open horizon of techno-cultural 

formation. Unlike the computer scientist vision of human-computer symbiosis, 

Simondon’s philosophy points to a historical unfolding of sociotechnical changes that 

transcend the contradictions of existing circumstances.  

Recommendations/Areas of Future Research 

 This dissertation examines a technology that has become the focus of 

governments’ strategies across the globe with implications on multiple fronts, from 

military warfare to the shape of the technical milieu in our lifeworld. The corresponding 

funding support guarantees a fast pace of development in AI research for the coming 

years. Moreover, the availability of generic machine-learning model such as the pre-

trained GPT model, which can be adapted to specific usages by fine-tuning the model, 

will bring into existence many new AI applications. One such adaptation is the widely 

popular ChatGPT. In the fine-tuning process of ChatGPT, additional layers are added on 

top of the pre-trained GPT neural network to adapt it to the specific task of generating 

natural language responses in a conversational setting. There are also many 

commercial products, including those by Google and Microsoft, for creating domain-

specific chatbots. As evident by Elon Musk’s indication to develop TruthGPT, ‘a 

maximum truth-seeking AI’ beyond the politically correct ChatGPT, AI chat agent is 

becoming the heir apparent to Internet Search as the final arbiter of “truth” (see Mehta, 
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2003). We can anticipate that many issues with social implications will come with the fast 

pace of AI development.  

 One such issue is the problem of AI alignment, which has become increasingly 

pertinent due to the ever-growing complexity and size of AI models and training 

datasets. An aligned AI system advances the designers’ intended goals whereas a 

misaligned AI system is competent at advancing some objectives, but not the intended 

one (Russell et al., 2022, pp. 31–34). Due to the way AI models are typically trained with 

massive amount of data, the data scientists themselves cannot guarantee a resulting 

model that aligns with their intended goals. These problems affect existing commercial 

systems such as robots (Franklin & Ashton, 2022; Kober et al., 2013), language models 

(Bommasani et al., 2022; Ouyang et al., 2022), autonomous vehicles (Knox et al., 2022), 

and social media recommendation engines (Bommasani et al., 2022; Russell et al., 

2022, pp. 31–34; Stray, 2020). Such examples are frequently found in gaming 

development. For instance, in the game “CoastRunners” developed by OpenAI, the goal 

for the AI agent is to finish the race faster than other players along a pre-specified route. 

To ensure the players to follow the route of the race, the game would reward players 

with points if they hit targets laid out along that route. It turns out that the reinforcement 

learning agent found a way to get higher points without finishing the race: by looping and 

crashing into the same targets indefinitely (Clark & Amodei, 2016). With automated 

applications that build on large language models like GPT-4, AI can perform online 

actions like an avatar represented by a human user.172 If it becomes misaligned, it may 

be susceptible to power-seeking and poses the most catastrophic misalignment risks 

(Bommasani et al., 2022; Carlsmith, 2022; Wei et al., 2022). This problem is 

exacerbated by the recent democratization of generic large language models that 

anyone can fine-tune or build software on.173 

My approach in this dissertation, which combines an immanent understanding of 

the technology and brings this understanding into conversation with critical philosophy, 

seems appropriate for tackling new issues like that of AI misalignment in large language 

models. For instance, on the deliberation about the existential risk with AI misalignment, 

 

172 See footnote 2. 

173 Hinton is particular concerned that such a move is morally irresponsible and can bring chaos 
into the online world (Joseph Raczynski, 2023). 
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we need to understand the potential capability and limitation of large language models. 

This would require an investigation into the machine-learning model called “transformer” 

(see Vaswani et al., 2017). The affordance of deep learning explained in this dissertation 

would contribute to the technical understanding of the transformer model, which consists 

of multiple deep neural networks. The knowledge of how the transformer model works is 

essential for a critique of the claim that large language models can understand human 

language and can reason as well as or better than a human being,174 or for examining 

the fascination on whether putting large-language model in a self-reflexive loop would 

imitate the self-consciousness of human being (AI Explained, 2023; bycloud, 2023; 

QuestionAlt1, 2023).  

When facing a new controversy about a new sociotechnical phenomenon, such 

as the issue of AI misalignment coupled with the democratization of generic large 

language models, a recommended approach is to move past the dichotomy between the 

technical culture and humanities by synthesizing a technical inquiry with the perspective 

of critical philosophical works. Such an approach can bring into conversation the AI 

community and the critical thinkers of continental philosophy, two communities that have 

been mostly isolated from the other epitimozed by the conflict between Dreyfus and the 

early AI pioneers. A critical perspective of technology from continental philosophy can 

engage in a dialogue with the immanent understanding of new technologies. From the 

disapproval of Heidegger’s technological will to will to the philosophy of openness in 

Wiener’s cybernetics and in Simondon’s works, the deliberation of continental 

philosophy in this dissertation identifies the positive potentials in human-AI symbiosis in 

which new technologies bring out latent human potentials prior to their coming into 

beings. This philosophical perspective is critical of a reductionist vision in which human-

technology relations tends toward a master-and-slave hierarchy. It points toward an 

open horizon that guides humans and technologies to grow in a mutually beneficial 

relation.  

 

174 Geoffrey Hinton suggests that these language models will soon possess an IQ of 210 (Joseph 
Raczynski, 2023).  
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Coda: Suggestions of pharmacological AI technologies 

 Up to this point, I have refrained from proposing potential AI applications that 

liberate rather than alienate. Nonetheless, it would be helpful to envision what liberative 

AI technologies may look like, however naïve my suggestions may look in hindsight. 

Below are my proposals of three such AI applications. In coming up with these 

applications, I am reiterating the perspective of this dissertation that technological 

alienation is not inherent in human-AI relations. These AI applications are possible 

countermeasures against the problems of surveillance, algorithmic governmentality, and 

the technological domination of gigantic cybernetics organism. In other words, they 

exhibit how AI can be pharmacological (see Section 8.4), being capable of both poison 

and cure. Utilizing the AI’s affordance of pattern recognition, they are deep-learning 

solutions of the problems introduced through the breakthrough of deep learning, 

exemplifying how technology can be transformed to address the problem of technology, 

exemplifying what Feenberg and Ihde call the gestalt switch (see Section 8.3).  

The first AI application is a health monitoring device for mental health. While 

many health monitoring systems are implemented with centralized servers for 

surveillance, it is technically feasible to implement one without surveillance. Assuming a 

health monitoring system where private data are free from surveillance, it can be 

beneficial for patients or elderlies to keep track of their physical health (heartbeats, blood 

pressure, and so on). In fact, since the affordance of deep learning is pattern recognition 

and not tied to surveillance, this affordance can be implemented as an antidote against 

the social ailments that surveillance capitalism has introduced. One possible antidote is 

an application that tracks and raises alerts on a person’s mental health. For instance, it 

can detect patterns of compulsive buying behavior, excessive web browsing or gaming 

activities, or an extreme imbalance in the choices of food intake. This would help foster a 

reflective perspective on a person’s well-being, recovering the “noetic time”175 for critical 

thoughts and reflections that are marginalized under algorithmic governmentality 

according to Stiegler. This application should be especially appealing for parents who 

are concerned about the unguarded influences of media exposure on their children. 

 

175 See Section 8.4 for how Stiegler defines noetic time. 
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 The second AI application addresses the issue of opacity. Earlier in this 

dissertation, I brought up Stiegler’s critique of algorithmic governmentality in Section 8.4 

and Hui’s critique of gigantic cybernetic organisms in Section 9.2. The opacity of AI is 

central to both critiques. The inability for a human to understand AI’s decision-making, 

presumed to be superior to humans, makes it impossible to critique the rationality of the 

decision. This in turn put AI and humans in a different scale, an unfathomable gigantic 

cybernetic organism versus a feeble and powerless human weakling. But a peer 

relationship between AI and humans is a necessary condition for the human-AI 

symbiosis advocated in Section 9.5. Hence the opacity of AI may bring an imbalance to 

research on human-AI symbiosis. The problem is, the more powerful is a machine-

learning model and the more complex is the model’s architecture, the more opaque 

would be the reasoning behind the model’s decision (see Lo, 2022). Any regulation to 

enforce the complete transparency of AI decision-making would be equivalent to the 

outlawing of AI.  

Nonetheless, it can still be helpful to get a rough idea about the reasoning behind 

AI’s decision-making. This would be analogous to attempts at unveiling the reasoning 

behind human intuitions. Athletes, musicians, and scientists are often asked to explain 

how they arrive at their physical, aesthetic, or mental intuitions. The same is true for 

autistic savants. Ever since the movie Rain Man (1988) came out, it has become a 

common knowledge that autistic savants can perform mind-boggling mathematical 

calculations, but no one understands why, at least until recently. Daniel Tammet, an 

autistic savant who can recall pi to 22,514 decimal places but cannot tell right from left, 

unveils the mental activities behind his extraordinary ability (Johnson, 2005). In the past, 

no one knows because most autistic savants cannot tell how they do what they do. But 

unlike other savants, Tammet can describe what he sees in his head:  

Since his epileptic fit, he has been able to see numbers as shapes, colours 
and textures. The number two, for instance, is a motion, and five is a clap 
of thunder. “When I multiply numbers together, I see two shapes. The 
image starts to change and evolve, and a third shape emerges. That's the 
answer. It's mental imagery. It's like maths without having to think” 
(Johnson, 2005). 

A deep-learning AI is like the mind of an autistic savant. Even though it is impossible to 

articulate its precise means for arriving at decisions, it is possible to extract an 

approximate description and explanation of how they come to such decisions. Such a 
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translation between machine reasoning and human-scale understanding may involve the 

training of a second AI model, feeding it with the past decisions of the first model. This 

post-hoc analysis can identify patterns and possibly unveil a rough sketch of how the 

model arrives at its decisions, in the same way that Daniel Tammet roughly sketches out 

how an autistic savant can perform mind-boggling mathematic calculations. Indeed, 

there are projects in explainable AI (XAI) research that explore how post-hoc analysis 

may overcome the issue of opacity in machine learning (E. Lee et al., 2021). This would 

in turn contribute to research on human-AI symbiosis. 

 Like my first proposal, my third proposed AI application is a countermeasure 

against surveillance capitalism and a pharmacological solution based on the pattern 

recognition technology in deep learning. The application can perform diagnosis on the 

biases in online recommendations. These biases steer users’ desires and behaviors 

toward the goals endorsed by online platforms, effectively modelling after the goal-

oriented feedback loops in cybernetics. In Stiegler’s terms, the platforms manipulate 

users’ protention and marginalize their noetic time for critical thoughts and reflections 

(see Section 8.4). But such biases, however complex, should correspond to some data 

patterns. Therefore, a third-party plugin for a web browser can record a historical trace of 

the recommendations for each website, and the recorded data can then be used to train 

an AI model to recognize the patterns of how each online platform manipulates a specific 

user. The analysis can help users foster an awareness of how online recommendations 

limit their freedom and help them get a rough idea about the online profiles concealed 

from them. This reverse engineering of Internet surveillance involves the translation of 

machine reasoning176 to human-scale understanding that is technically similar to the XAI 

project of post-hoc analysis. I would imagine that people ought to be interested in 

gaining some understanding about their online profiles, regardless of the varying 

degrees of their dependence on online recommendations. A collective awareness can in 

turn become the impetus crucial for real actions in technical politics. 

 

176 Collaborative filtering is one possible algorithm for implementing a recommender system. It 
computes rating predictions by autonomously discovering features that characterize the content 
of an item, and these features may differ from typical human descriptions. For instance, a person 
may describe a given movie as a romantic comedy while the algorithm would characterize it with 
more fine-grained features. Collaborative filtering auto-discover relevant “features,” the meanings 
of which are very difficult for humans to decipher. 
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 These three proposed applications bring together some of the key arguments 

raised in this dissertation. For instance, AI is not inherently subservient to humans nor 

vice versa, and the affordance of deep-learning AI is not surveillance and algorithmic 

governmentality, which are only particular applications of the affordance of pattern 

recognition in a capitalist or totalitarian society. The affordance to recognize data 

patterns can equally be utilized as countermeasures against the capitalist and totalitarian 

social issues that have been exacerbated by deep-learning AI. In that sense, the social 

problems aggravated by technological advances are met with countermeasures made 

possible by the same advances. At the same time, whether the proposed applications 

can be the impetus for the transindividuation in Simondon’s philosophy would not be 

known until they are deployed in actual practices and undergo a subsequent process of 

socially shaping by the technology users.  
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Appendix: Language Model in Machine Learning 

This Appendix presents an overview of how human languages can be 

represented as computer models. Large language models like GPT (Generative Pre-

trained Transformer) uses the transformer model originally designed for natural 

language processing tasks such as language translation. It consists of an encoder and a 

decoder. In automatic language translation, the encoder would first encode a sentence 

in the source language into a meaningful representation. The decoder would then 

decode this meaningful representation into a sentence in the target language. 

Here is an abridged explanation177 of how the encoder of the transformer model 

works and what it uses a neural network for. To encode the sentence “We are going to 

send her a card” into some meaningful representation, the sentence is first divided into 

tokens: <SOS> (a special token for the start of a sentence), “We,” “are,” “going,” “to,” 

“send,” “her,” “a,” and “card,” and <EOS> (a special token for the end of a sentence). 

Each token is converted into a token embedding (see Figure A1). To see what token 

embedding means, let us focus on the meaning of the token “card.” This card can mean 

a postal card, a bank card, or a game card. Suppose that, without considering the 

context of how the word appears in a sentence, there is an 85% chance that the card is 

a bank card, 60% chance that it is a postal card, and 15% chance that it is a game card. 

The token embedding for the token “card” would be the vector [0.85, 0.6, 0.15]. In other 

words, the token embedding contains information about the possible contexts in which 

the word appears. In GPT-3, the dimensionality of a token embedding is 768. Each 

token embedding has 768 possible contexts and is a vector with 768 entries. The token 

embedding for “card” may then look something like [0.002, 0.003, 0.001, 0.85, … 0.6, … 

0.15, …], in which case the default probability of a “bank” context would be the number 

in the fourth entry of the vector. Each token embedding is then further encoded with the 

position of the token in the original sentence.178 In other words, each token is converted 

 

177 I will take out details such as the “attention layers” to simplify my explanation. 

178 The positioning encoding uses a set of sines and cosines at different frequencies across the 
sequence. For example, with “card” in the 9th position, the token embedding encoded with the 9th 
position would become [0.002+𝑓0(9), 0.003+𝑓1(9), 0.001+𝑓2(9), 0.85+𝑓3(9), …] where 𝑓𝑖(𝑝𝑜𝑠) is 
some sine or cosine wave function. For our purpose, we only need to know that the numbers in 
the token embedding is modified by positioning encoding and that the position can be decoded at 
a later stage. 
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to a positional token embedding, which is a vector that contains information on the 

default context and its position in a sentence. This encoded token embedding is then 

passed sequentially to a trained neural network (see Figure A2). 

 

Figure A1: Converting a sentence into inputs to the neural network.  

By the time this neural network operates on the positional token embedding for 

“card,” it would have already done the same for the token “send.” The awareness of 

“send” as a token in the same sentence as “card” makes the neural network realize that 

“card” is very likely to be a postal card. The neural network would therefore tune the 

probabilities about the probable contexts for the token “card.” If the positional encoding 

is not considered for simplicity’s sake, the adjusted token embedding would look 

something like [… 0.2, … 0.95, … 0.1, …], which indicates that the card has a 20% 

chance of being a bank card, 95% chance of being a post card, and 10% chance of 

being a game card (see Figure A3). Once the <EOS> token is processed, the neural 

network would then sequentially output the adjusted token embeddings (along with the 

encoded position) that correspond to the input token embeddings. Note that the neural 

network does not need explicit knowledge about the individual tokens. Instead, it 

operates on the token embeddings, which capture the semantic or contextual 

information associated with each token. In other words, the token embeddings serve as 

numerical representations that encode the meaning or characteristics of the tokens. The 

neural network would process these numerical representations to capture the 
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relationships and contextual information among the tokens. It then expresses such 

semantic information as a sequence of output token embeddings. 

There are many ways to train an encoder’s neural network. One popular method 

is to use the Masked Language Model. For instance, for the masked sentence “The 

[MASK1] brown fox [MASK2] over the lazy dog,” the neural network is trained to 

generate the outputs “quick” for [MASK1] and “jumped” for [MASK2]. This design for 

training a neural network comes with the following assumption: If a neural network can 

do well in such fill-in-the-blank problems, it must have extrapolated relationships and 

contextual information from the masked sentence. In this training set-up, the encoded 

numerical representation output can be converted into probabilities of tokens (see Figure 

A4), and the neural network can be trained to minimize the deviation between these 

probabilities and the correct meaning for the masked token. 

 

Figure A2: Token Embedding with position encoded are input sequentially to the neural network in the 

encoder of the transformer. 
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Figure A3: Neural Network in Encoder 

 

 

Figure A4: Masked Language Model 


