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Abstract

Reinforcement Learning (RL) is an important class of methods in Artificial Intelligence (AI),
particularly for optimization problems and decision-making under uncertainty. However,
practical and ethical concerns in healthcare settings can limit the application of traditional
RL methods, requiring innovative approaches. This thesis explores the application of RL
methods in healthcare to evaluate treatment strategies.

We begin with an overview of RL, followed by an introduction to Q-Learning and Dyna-Q,
two fundamental RL algorithms. We demonstrate the application of these algorithms us-
ing a simulated robot, AdventureBot, navigating a grid world. We then introduce Hidden
Markov Mixture Models (HMMMs) as a method for extracting patient subgroups with dis-
tinct patterns from longitudinal data, which we apply to a simulated dataset. Finally, we
describe our proposed pipeline for integrating HMMMs with CFRL to evaluate healthcare
policies in an offline setting.

Keywords: counterfactual reinforcement learning, offline learning, dependent mixture mod-
els, patient service utilization
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Chapter 1

Introduction

Reinforcement Learning (RL) is a pivotal technology in Artificial Intelligence (AI), driv-
ing substantial progress across many domains. One such example is Boston Dynamics’ Spot
robot, which is capable of autonomously navigating hazardous environments using unsuper-
vised RL techniques. This robot was deployed on Japan’s Fukushima nuclear power plant in
2022 to navigate difficult terrain, carry substantial weight, open and close doors, and collect
analysis samples (Wessling, 2023). Another example is Google’s AlphaGo, which defeated
the world champion Lee Sedol in the game of Go in 2016 (Moyer, 2016). At the time, the
consensus among artificial intelligence and game theory experts was that such a feat was at
least a decade away, given that the best Go-playing programs were still only at the level of
an advanced amateur (Brown, 2016; Wedd, 2018). These examples highlight the capabilities
of RL in solving problems when the environment is uncertain and complex.

1.1 Reinforcement Learning in Healthcare

In the field of healthcare, integrating RL methods has the potential to enable more pre-
cise and personalized medical interventions. This could result in enhanced patient care
outcomes, increased diagnostic precision, or sophisticated predictive models for various dis-
eases. However, healthcare applications of RL must fundamentally differ from their typical
use in other domains. Healthcare providers must abide by ethical and regulatory limitations,
obtain informed consent from patients, adhere to written protocols, and ensure robust over-
sight when carrying out actions. Additionally, they must safeguard patient confidentiality to
comply with regulations such as PIPEDA (Personal Information Protection and Electronic
Documents Act) in Canada and HIPAA (Health Insurance Portability and Accountability
Act) in the United States.

Navigating these complexities, health authority regions such as the Vancouver Island
Health Authority (VIHA) engage in various research and development (R&D) projects
to advance medical knowledge and improve patient outcomes (Vancouver Island Health
Authority, 2023b). VIHA is one of five geographically-based health authorities in British
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Columbia (Government of British Columbia, 2023), providing health care services to 885,000
individuals (Vancouver Island Health Authority, 2023a). As part of its R&D initiatives,
VIHA collects and analyzes patient service utilization (PSU) data in an effort to optimize
patient care and resource allocation. PSU data includes records of patient interactions with
healthcare services, such as hospital visits, consultations, and treatments.

In this thesis, we explore the application of RL methods in the healthcare domain,
focusing on the use of reinforcement learning to improve patient treatment strategies. We
begin by providing an overview of RL and its core concepts. Specifically, we introduce Q-
Learning as a fundamental RL algorithm to learn optimal behaviour policies in environments
that provide rewards based on actions. We then discuss Dyna-Q, an extension of Q-Learning
that incorporates an offline component to accelerate learning without requiring additional
real-world interactions. We demonstrate the application of Q-Learning and Dyna-Q using
an unsupervised simulated robot, AdventureBot. The robot navigates a grid world to find
a treasure, while avoiding obstacles.

We then introduce Hidden Markov Mixture Models (HMMMs) as a method for analyz-
ing PSU data to identify patient subgroups with distinct service utilization patterns. We
apply this method to simulated PSU data to demonstrate its utility in identifying patient
subgroups that display similar service utilization patterns. Finally, we introduce Counter-
factual Reinforcement Learning (CFRL) as an advanced technique for evaluating policies
in an offline setting. We propose a pipeline for integrating HMMs with CFRL to evaluate
treatment strategies in an offline setting. The proposed steps of the pipeline are as follows:

1. Preprocessing PSU data to extract a patient service utilization matrix for each patient.
The matrix dimensions are T×M , where T is the number of time periods where service
utilization is recorded, and M is the number of distinct services available to patients.

2. Utilizing the depmixS4 R package to extract patient subgroups (latent states) from
the PSU matrix.

3. Use the extracted latent states to generate the input for the CFRL algorithm to eval-
uate offline treatment strategies. Specifically, the latent states are used to define a
low-dimensional representation of a patient’s time series, which is effectively a sum-
mary of the patient’s service utilization over time.

For step 1, we define a preprocessing algorithm in Section 4.4. For step 2, we provide an
experiment on simulated data in Sections 4.1 to 4.3. Our results show that the DepmixS4
model performs well in extracting patient subgroups from the simulated PSU data when the
dataset presents strong patterns. Step 3 is further described in Section 4.5. However, we do
not implement step 3 in this thesis, as it requires extensive additional work, including the
collaboration of domain experts to define essential elements such as ’evaluation policies’ and
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’rewards.’ In addition, we provide a demonstration of some concepts in offline RL (Dyna-Q)
in Section 2.3.1.

1.2 Related Work

Dynamic treatment regimes (DTRs) offer a structured approach to personalized medicine by
tailoring treatment decisions to an individual’s changing status over time. Unlike traditional
treatment methods, which apply a uniform approach to all patients, DTRs adjust the level
and type of treatment based on the evolving needs of each patient (Murphy, 2003). DTRs
are particularly relevant in chronic diseases such as diabetes, cancer, and mental health
disorders, where treatment effectiveness can vary significantly across patients. By incor-
porating patient-specific information, DTRs can optimize treatment strategies to improve
patient outcomes and reduce costs.

In healthcare applications, both DTRs and RL aim to optimize a sequence of actions to
achieve a desired outcome. In subsequent chapters, we describe counterfactual reinforcement
learning (CFRL) as a method for evaluating what-if outcomes that are never observed in
the real world. In contrast, DTRs typically involve using longitudinal data to construct
estimators of optimal decision rules based on the outcomes that are directly measurable
and recorded during the treatment process.
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Chapter 2

Reinforcement Learning

2.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL) is a critical area of study in machine learning and AI, char-
acterized by agents learning to make decisions through interaction with an environment.
This decision-making process hinges on the concept of learning from experience, with the
objective of maximizing a cumulative reward over time. Central to RL are three core com-
ponents: states (s), actions (a), and rewards (r). The RL agent’s task is to establish a
behaviour policy π(a|s), i.e. a mapping from states to actions, that will maximize expected
rewards across a time horizon. This time horizon can be finite in the case of episodic tasks
or infinite for continuous tasks, the latter of which could require discounting future rewards
to ensure convergence (Sutton & Barto, 2018).

Learning an optimal policy often requires the agent to balance the exploration of unfa-
miliar states and actions with the exploitation of existing knowledge to optimize long-term
outcomes. The theoretical framework of RL is closely linked to dynamic programming,
Markov decision processes (MDPs), dynamic treatment regimes, and optimal control the-
ory, all of which emphasize probabilistic decision making under uncertainty (Murphy, 2003;
Sutton & Barto, 2018). For a comprehensive understanding of these principles and their
applications in various fields, Sutton and Barto’s text Reinforcement Learning: An Intro-
duction provides an in-depth exploration of the subject matter, detailing both foundational
theories and advanced methodologies in RL (Sutton & Barto, 2018).

2.1.1 Offline vs. Online Reinforcement Learning

RL methods can be broadly divided into offline and online paradigms. Online learning in-
volves the agent continuously learning and adapting its strategy based on real-time interac-
tions with the environment. This approach is dynamic and allows the agent to immediately
incorporate new experiences into its learning process.

On the other hand, offline learning, also known as batch learning, involves the agent
learning from a fixed dataset, without further interaction with the environment. It is par-
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ticularly useful in scenarios for which interacting with the environment is costly, risky, or
not feasible (Sutton & Barto, 2018).

2.1.2 Model-based vs. Model-free Reinforcement Learning

Within the offline and online paradigms, RL methods can be further categorized into model-
based and model-free approaches. These categories refer to the underlying mechanisms
through which the agent makes decisions.

Model-based RL involves the agent developing an internal model of the environment as
it learns it, which the agent uses to simulate and predict future states and rewards. This
approach allows for planning and decision-making based on the model’s predictions. This
is particularly useful for scenarios in which the environment’s dynamics are broadly known
and can be modeled. For example, in a game of chess, a model-based agent can simulate
future moves and outcomes because the rules of the game are well-defined and deterministic.

In contrast, model-free RL methods do not rely on an internal model of the environment.
Instead, they focus on learning optimal policies or value functions directly from interactions
with the environment. This approach is more flexible and can be applied to environments
where the dynamics are unknown or difficult to model. For example, in autonomous driving,
the dynamics of the environment are uncertain and may change rapidly, making it chal-
lenging to develop an accurate model of the environment. A model-free agent would learn
optimal policies through trial and error, without explicitly modeling the environment.

Within the domain of model-free reinforcement learning, Q-Learning is a foundational
algorithm. It enables agents to learn optimal policies by estimating the expected rewards
associated with taking specific actions in given states. We introduce Q-Learning in the
following section.

2.2 Q-Learning

Q-Learning is a model-free reinforcement learning algorithm that can be used to learn
optimal policies in Markov decision processes (MDPs). The algorithm works by learning an
action-value function, Q(a|s), that estimates the expected reward from taking action a in
state s. An optimal behaviour policy π(a|s) can then obtained by selecting the action with
the highest value Q-value for each state (Sutton & Barto, 2018; Watkins & Dayan, 1992).

The Q-Learning algorithm runs for a fixed number of episodes, with each episode con-
sisting of a sequence of steps. At each step, the agent selects an action based on the ε-greedy
policy, i.e. with probability ε, the agent selects a random action among all available actions,
and with probability 1 − ε, the agent selects the action with the highest Q-value for the
current state. The agent then takes the selected action, observes the reward and the next
state, and updates the Q-value for the previous state-action pair using the Q-Learning for-

5



mula (Sutton & Barto, 2018). The episode ends when a terminal state is reached, i.e. the
agent reaches a goal or fails to achieve its objective, and a new episode begins.

We formalize the algorithm and give an example application in the next section.

2.2.1 Algorithm and Example

Data: Learning rate (α), discount factor (γ)
Result: Estimate of optimal policy π(a|s)

Initialize Q(a|s) arbitrarily for all state-action pairs;

for each episode do
Initialize state s;
while state s is not terminal do

Choose action a using policy derived from Q(a|s) (e.g., ε-greedy);
Take action a, observe reward r and next state s′;
Q(a|s)← Q(a|s) + α[r + γ maxa′ Q(a′|s′)−Q(a|s)];
s← s′;

end
end

Algorithm 1: The Q-Learning algorithm. The algorithm runs for a set number of
episodes. Each episode consists of a sequence of steps where the agent interacts with the
environment, updating the Q-values based on the observed rewards. (Sutton & Barto,
2018)

To illustrate reinforcement learning and to offer a new framework for evaluating RL
algorithms, we construct an example called AdventureBot, a simulated robot navigating a
D ×D grid world. AdventureBot’s mission is to find a treasure located in one of the grid
cells. The grid also contains one obstacle that the robot must avoid. Each cell coordinate in
the grid represents a state, and AdventureBot can move up, down, left, or right (actions).
The Q-Learning algorithm works as follows in this scenario:

1. Initial Setup:

• The grid is a D ×D matrix with an obstacle and a treasure that are randomly
placed.

• The Q-table is initialized with all zeros. It has a row for every state (grid cell)
and a column for each possible action, so it’s a (D ×D)× 4 matrix.
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• The penalty for hitting an obstacle is −1, and the reward for finding the treasure
is +1. All other rewards (i.e. for moving to an empty cell) are 0. We set a
maximum number of steps per episode, after which an episode must end.

2. For each episode:

(a) AdventureBot starts at a random position. It picks an action to take based on
the ε-greedy policy, i.e. with probability ε, it chooses a random action, and with
probability 1− ε, it chooses the action with the highest Q-value for the current
state.

(b) AdventureBot moves to the next state and receives a reward based on the action
taken. The Q-value for the previous state-action pair is then updated using the
Q-Learning formula defined in Algorithm 1.

(c) AdventureBot will repeat steps (a) and (b) until a terminal state is reached,
i.e. AdventureBot finds the treasure, hits the obstacle, or reaches the maximum
number of steps per episode.

3. Convergence:

• After many episodes, the Q-values begin to converge, which means AdventureBot
has learned an effective strategy for navigating the grid. With every new episode,
it will require fewer and fewer steps to reach the treasure, and the Q-values will
stabilize.

• After convergence, the result will be a Q-table that approximates the optimal
Q-values for each state-action pair, which can be used to estimate the optimal
policy π(a|s) for AdventureBot.

In this example, AdventureBot starts with no knowledge of the environment. Through
trial and error, AdventureBot learns an optimal path to the treasure. The Q-Learning
algorithm allows it to balance exploration (trying out uncertain paths) with exploitation
(using known good paths), leading to a gradual improvement in its strategy. Over time,
it becomes proficient in navigating the grid, demonstrating the power of Q-Learning in
developing effective behaviors through interaction with an environment.

Figure 2.1 illustrates the number of steps taken by AdventureBot at each episode. As
expected, the number of steps per episode decreases over time, indicating that AdventureBot
can learn an optimal policy for navigating the grid. Code for AdventureBot’s Q-Learning
algorithm is included in Appendix A.1.

In RL, test environments provide a controlled setup for comparing algorithms. One
such environment is Gymnasium’s Frozen Lake. Gymnasium (formerly OpenAI Gym) is
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Figure 2.1: AdventureBot Q-Learning Efficiency. The plot illustrates a decrease in the
number of steps leading to a terminal state at each episode, suggesting AdventureBot’s
increasing proficiency in navigating a 7 × 7 grid. Parameters: learning rate (α = 0.2),
discount factor (γ = 0.9), exploration rate (ε = 0.1), episodes (1000), and maximum steps
per episode (100).

a popular open-source library that provides a wide range of environments for testing and
benchmarking RL algorithms. Frozen Lake is a grid world similar to AdventureBot, in which
the agent must navigate a frozen lake to reach a goal without falling into holes (Frozen Lake
- Gymnasium Documentation, 2023). While AdventureBot and Frozen Lake are similar Q-
Learning environments, the latter is limited to a single reward structure, two grid size
options, and other preset environment configurations. AdventureBot, on the other hand,
offers granular control on the environment setup, which makes it a great complement to the
Gymnasium environments for testing and evaluating RL algorithms.

Building on the foundation of Q-Learning, Dyna-Q introduces an innovative extension
that incorporates both direct and simulated experiences, significantly enhancing the agent’s
ability to learn efficiently.
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2.3 Dyna-Q, an extension of Q-Learning

In healthcare applications, regulatory constraints make real-world experimentation chal-
lenging. In light of these challenges, we explore Dyna-Q, an extension of Q-Learning that
incorporates model-based planning in order to accelerate the learning process. Dyna-Q offers
a unique advantage by enabling offline learning, in which the agent learns from historical
data without interacting with the environment (Sutton, 1990). While still reliant on the
learned policy for selecting actions, Dyna-Q’s algorithm is a step toward a reinforcement
learning approach that relies on historical data for learning.

Dyna-Q can be conceptualized as an enhanced variant of the Q-Learning algorithm,
wherein after each real interaction step, a series of additional steps are taken based on
simulated experiences derived from an internal model of the environment (Sutton, 1990).
Essentially, Dyna-Q retains the core mechanism of Q-Learning—learning an action-value
function, Q(a|s)—and augments it by incorporating a model-based component. The model
of the environment, constructed through observed interactions, is used to generate simulated
experiences. These simulated experiences, in turn, provide supplementary data for updating
the action-value function without having to take any additional actions in the environment
(Sutton & Barto, 2018).

In each iteration, Dyna-Q proceeds as follows: after the standard Q-Learning update
using a real interaction, the algorithm performs a predefined number of updates using
experiences drawn from the internal model. This effectively means that for each actual
step in the environment, Dyna-Q performs multiple simulated ‘planning’ steps, updating
its Q(a|s) values as if these simulated steps were real. This additional phase of model-based
updates serves to accelerate the learning process.

In the next section, we formalize the Dyna-Q algorithm and describe it in the context
of AdventureBot.
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2.3.1 Algorithm and Example

Data: Learning rate (α), discount factor (γ), number of planning steps (n)
Result: Estimate of optimal policy π(a|s)

Initialize Q(a|s) arbitrarily for all state-action pairs;
Initialize the internal model of the environment M(a|s) as empty;

for each episode do
Initialize state s;
while state s is not terminal do

Choose action a from s using policy derived from Q (e.g., ε-greedy);
Take action a, observe reward r and next state s′;
Q(a|s)← Q(a|s) + α[r + γ maxa′ Q(a′|s′)−Q(a|s)];
Update the internal model, M(a|s)← (a, r, s′);
for i = 1 to n do

Select a random previously observed state si and action ai;
Retrieve (ri, s′

i) corresponding to (ai, si) using M(ai|si);
Q(a = ai|s = si)← Q(ai|si) + α[ri + γ maxa′ Q(a′|s′

i)−Q(ai|si)];
end
s← s′;

end
end

Algorithm 2: Dyna-Q Algorithm with n Planning Steps. The algorithm combines
Q-Learning with model-based planning to accelerate the learning process.

Consider the same AdventureBot described in Section 2.2.1, navigating a D × D grid
world. In Dyna-Q, AdventureBot learns not only from direct interactions with the grid,
but also from simulated scenarios generated by its internal model. The algorithm steps for
AdventureBot can be described as follows:

1. Initial Setup: Similar to the Q-Learning setup with the addition of the model M ,
which is initialized alongside the table of Q-values. M can be represented as a (D ×
D) × 4 matrix, with each cell containing a tuple of the form (r, s′), where r is the
reward for taking action a in state s and s′ is the resulting state. Another way to
think of M is as a lookup table for the past outcomes (one reward and one new state)
that resulted from taking an action in a given state.

2. For each episode:

(a) AdventureBot follows the same real-world interaction steps as in Q-Learning.
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(b) After updating the Q-value with real-world data, AdventureBot then conducts
n simulated planning steps. In each planning step, it randomly selects a state-
action pair it has experienced before, retrieves the previously observed outcome
(r and s′) of that action from its model M , and updates the Q-table as if the
simulated experience were real.

3. Convergence:

• The added simulated experiences help AdventureBot to learn faster, as it can
effectively experience many more scenarios within each actual episode. The Q-
values converge to the optimal policy more quickly compared to standard Q-
Learning.

Figure 2.2 compares the number of steps per episode for Q-Learning and Dyna-Q. As
expected, Dyna-Q converges to the optimal policy more quickly, demonstrating the benefits
of incorporating simulated experiences into the learning process. It is important to note that
Dyna-Q requires a deterministic environment, as the model M must accurately predict the
outcomes of actions in order to generate meaningful simulated experiences. Code for the
Dyna-Q algorithm is included in Appendix A.2.

While Dyna-Q offers significant advantages in accelerating learning and improving decision-
making, it is not a complete solution for offline learning. The agent still needs to interact
with the environment to update its model and generate simulated experiences. In the next
section, we introduce Counterfactual Reinforcement Learning (CFRL) as a method for eval-
uating policies in an offline setting, enabling robust policy evaluation without real-world
interactions.

2.4 Counterfactual Reinforcement Learning

Counterfactual Reinforcement Learning (CFRL) is a reinforcement learning technique that
seeks to construct and evaluate counterfactual scenarios, i.e. alternative scenarios that did
not happen. CFRL extends the traditional RL paradigm by incorporating counterfactual
state-action pairs, (s′, a′), and their corresponding reward, r′ (Gajcin & Ivana, 2022). CFRL
offers significant advantages in environments for which real-world experimentation is costly
or infeasible. By analyzing counterfactual scenarios, CFRL enables more robust policy eval-
uation and development without additional real-world interactions.

Moreover, CFRL provides a framework to quantify the impact of past decisions, which is
crucial in retrospective analysis and policy refinement. This approach goes beyond methods
like Dyna-Q by entirely eliminating the need for continuous real interactions. Instead, CFRL
relies solely on historical data to simulate and evaluate different strategies, making it a
powerful tool for offline reinforcement learning. This is particularly relevant in healthcare
applications, where real-world experimentation is not always feasible (Gajcin & Ivana, 2022).
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Figure 2.2: Comparative Analysis of Learning Efficiency for Q-Learning and
Dyna-Q. This figure illustrates the performance of Q-Learning (green line) against Dyna-Q
with 5 planning steps (blue line) and 100 planning steps (red line) in a 7× 7 grid environ-
ment. Dyna-Q performances stabilizes after episode 25, whereas Q-Learning requires three
times as many episodes to reach the same performance. Notably, the line for Dyna-Q with
100 planning steps demonstrates a rapid and substantial drop in steps per episode, indicat-
ing a swifter learning process compared to Dyna-Q with 5 planning steps and Q-Learning.
This trend highlights the accelerated learning and problem-solving capabilities endowed
by a higher number of planning steps in the Dyna-Q algorithm. Parameters: learning rate
(α = 0.2), discount factor (γ = 0.9), exploration rate (ε = 0.1), episodes (200), and maxi-
mum steps per episode (100).

These advantages highlight CFRL as a valuable technique for evaluating healthcare poli-
cies using historical patient service utilization data. CFRL can enable healthcare providers
to optimize treatment strategies, improve patient outcomes, and enhance resource alloca-
tion without the need for real-world experimentation. In the next sections, we explore the
foundational principles of CFRL and its application in healthcare policy evaluation.
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2.4.1 Foundational Knowledge

Formally, CFRL seeks to estimate the expected reward of a target policy π using observed
data that was generated under a different, fixed policy π0 (Joachims & Swaminathan, 2016).
Since CFRL is a reinforcement learning algorithm, the notation is consistent with the stan-
dard RL framework, with states denoted as s, actions as a, and rewards as r. Our formulation
of CFRL assumes discrete states and actions, as is common in many RL applications. Since
we observe the data generated by π0, and we know π0, we can estimate the expected reward
R̂ of π0 accurately as:

R̂(π0) = 1
N

N∑
i=1

ri (2.1)

The key challenge in CFRL is to accurately estimate R̂(π), the expected reward under
the target policy π, based on the data observed under the behavior policy π0 without
executing the target policy in the environment. One approach to this problem is to try to
model the discrepancy between the current policy and the target policy, and correct for it.
We define the propensity pi as the probability of taking action ai under the current policy
π0 given an observed state si. Mathematically, the propensity is written as:

pi = π0(Ai = ai|si) (2.2)

If we can compute these propensities for each action a and each state s, we can compute
an unbiased estimator of the reward of each action using the Inverse Propensity Scoring
(IPS) estimator (Joachims & Swaminathan, 2016). Note that while we use the notation R̂

for the IPS estimator, Joachims and Swaminathan (2016) use Û .
The IPS estimator of the reward of taking action a is defined as:

R̂IPS(a) = 1
N

N∑
i=1

I(ai = a)
pi

r(ai|si), (2.3)

where I(ai = a) is an indicator function that is 1 if the action ai is equal to a and 0 otherwise,
and r(ai|si) is the reward observed after taking action ai in state si. This equation can be
conceptually understood as weighting the observed rewards by the inverse of the propensity
of taking the action that led to the reward. For example, if an action was taken with a high
propensity, the observed reward will be downweighted, and vice versa.

Given {(s1, a1, r1), ..., (sN , aN , rN )} collected under π0, the IPS estimator can be used
to obtain an unbiased estimate of the reward for a target policy π as follows:

R̂IPS(π) = 1
N

N∑
i=1

π(ai|si)
pi

r(ai|si), (2.4)

where pi = π0(ai|si).
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Joachims and Swaminathan (2016) demonstrate that the IPS method performs almost
as well as if we had actually observed the data under the target policy π, and significantly
outperforms approaches that try to model the reward directly. One such approach would
be to fit a regression model on the reward observed under the behavior policy π0 and then
use this model to predict the reward under the target policy π.

Note that CFRL cannot be directly applied to VIHA’s PSU data as it requires the
states to be discrete and time-invariant. In the next sections, we introduce Hidden Markov
Mixture Models (HMMMs) as a method for extracting time-invariant latent states from
PSU data to enable the application of CFRL.
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Chapter 3

Hidden Markov Mixture Models

VIHA datasets comprise records of patient interactions across more than 200 health ser-
vices. The frequencies of these service accesses vary across patients and change over time. To
capture these patterns and assist in dimensionality reduction, we consider Hidden Markov
Models (HMMs) as a method for clustering patients based on their service utilization pat-
terns. HMMs are well-suited for modeling sequential data and can capture underlying struc-
tures in the data that may not be immediately apparent. In the next section, we provide
an overview of HMMs and define the components of HMMs in the context of this thesis.

3.1 Overview of Hidden Markov Models

Hidden Markov Models (HMMs) are a class of probabilistic models that are widely used for
modeling time series data (Rabiner & Juang, 1986). HMMs assume that the system being
modeled is a Markov process with unobserved (hidden) states. The system emits observed
’symbols’ at each time step, and the sequence of these symbols is used to infer the sequence
of hidden states. Formally, a HMM is defined by the following components:

• Observations O: A sequence of observed symbols, O = (O1, O2, . . . , OT ), where Ot

is the observation at time t. In our work, we assume the observations are discrete
values.

• Hidden States S: A sequence of hidden states, S = (S1, S2, . . . , ST ), where St is the
hidden state at time t. We assume the state space is also a vector of discrete values.

• Initial State Probabilities p0: A probability distribution over the initial hidden
states, Pr(S1 = i). These probabilities range from 0 to 1 and must sum to 1: ∑

i Pr(S1 =
i) = 1.
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• State Transition Probabilities p: A matrix of transition probabilities, Pr(St+1 =
j|St = i), where St is the latent state at time t. These probabilities also range from 0
to 1 and must sum to 1: ∑

j Pr(St+1 = j|St = i) = ∑
i Pr(St+1 = j|St = i) = 1.

• Emission Probabilities b: A matrix of probabilities of observing each symbol given
the hidden state, Pr(Ot = o|St = s). These probabilities also range from 0 to 1. In
our work, the observed symbols are the patients’ service accesses. Since a patient can
access any combination of services in a time period, the emission probabilities b do
not need to sum to 1.

By modeling patient data using HMMs, we can capture hidden signals and patterns in
the data. Additionally, the hidden states inferred by the HMM can be used to create an
alternative representation of the data, reducing the dimensionality of the data and simpli-
fying subsequent analyses. Dimensionality reduction is particularly significant in our work
given that the vector of service utilization for each patient has 2M possible states (1 if a
service was used, 0 otherwise), where M is the number of healthcare services available.

Hidden Markov Models lay the foundation for more advanced models, such as Dependent
Mixture Models, which can capture more complex relationships and patterns in the data by
allowing the mixture components to depend on observations or latent variables that change
over time. In the next sections, we introduce Mixture Models and Dependent Mixture
Models.

3.2 Mixture Models

Mixture models are a class of probabilistic models that represent data as a mixture of
underlying distributions. These underlying distributions are combined to form a composite
distribution that can capture complex patterns in the data (McLachlan & Peel, 2000).
Mixture models are particularly useful when the population of the data contains multiple
subpopulations with distinct characteristics. For example, Island Health’s PSU data may
contain a patient group that accesses consultation services sporadically, while another group
accesses emergency services very frequently.

Mixture models can help model the overall population’s service utilization more accu-
rately, which in turn can help healthcare providers identify patient subgroups that would
benefit from tailored treatment strategies. Another advantage of mixture models is that
they can handle overlapping distributions, where some data points may belong to multi-
ple subpopulations simultaneously. This flexibility makes mixture models a powerful tool
for analyzing complex datasets with multiple underlying patterns, as can be the case in
healthcare data. Figure 3.1 shows an illustrative dataset that can be modeled more accu-
rately using a Mixture Model with two Gaussian components, rather than a single Gaussian
distribution.
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Figure 3.1: Illustration of a Mixture Model with Two Gaussian Components. The
blue and red curves represent the individual components with parameters µ = 0, σ = 1 and
µ = 3, σ = 1.5, respectively. The gray area and line indicate the combined dataset and the
overall density estimate of the mixture model.

3.3 Dependent Mixture Models

Dependent mixture models are statistical models that represent data using a mixture of un-
derlying distributions, in which the mixture components depend on unobserved variables.
This dependency structure allows the model to capture more complex relationships and
patterns in the data, compared to traditional mixture models where components are in-
dependent of factors such as time. We will follow the description of a dependent mixture
model from (Lijoi et al., 2014).

A dependent mixture model’s emission probability distribution, b, is a mixture model. In
the context of patient service utilization (PSU), that mixture model is time-dependent. At
each time point, patients are assigned to mixture components. These assignments can change
over time. This dependency structure enables the model to capture the joint distribution of
the observed data and the latent variables, providing a more nuanced representation of the
underlying data generating process (Lijoi et al., 2014).

Dependent mixture models can capture the influence of multiple latent factors (for ex-
ample, health status) on the observed service utilization patterns of patients. For a single
patient, the joint distribution of the observed data O and the latent variables S in a depen-
dent mixture model is expressed in Lijoi et al. (2014) as:
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Pr(O1:T , S1:T |θ) = p0(S1)b(O1|S1)
T −1∏
t=1

p(St+1|St)b(Ot+1|St+1). (3.1)

The elements of this equation are as follows:

• p0(S1) is the vector of initial latent state probabilities.

• p(St+1|St) is the transition probability from latent state St to latent state St+1.

• b(Ot|St) is the emission probability distribution of the observed data at time t given
the latent state at time t, i.e. b(Ot|St) = Pr(Ot|St).

• θ is the vector of model parameters, including the initial state probabilities p0, tran-
sition probabilities p, and emission probabilities b.

If we consider the observed and latent data to be independently distributed across all
N patients, the joint distribution across all patients and all time points can be expressed
as:

P (O(1:N)
1:T , S(1:N)

1:T |θ) =
N∏

n=1
P (O(n)

1:T , S(n)
1:T |θ), (3.2)

where O(n) and S(n) represent the observed and latent data for patient n, respectively.
The model parameters θ for a Dependent Mixture Model can be learned from the

observed data using probabilistic parameter estimation methods. In the next section, we
describe two parameter estimation methods that are used in our work: the Expectation-
Maximization (EM) algorithm and Maximum a Posteriori (MAP) estimation.

3.4 Probabilistic Parameter Estimation

Probabilistic parameter estimation is a fundamental task in statistical modeling, where the
goal is to infer the parameters of a probabilistic model from observed data. This process
involves finding the values of the model parameters that best explain the observed data,
typically by maximizing the likelihood of the data given the model. In the context of Hid-
den Markov Models and Mixture Models, probabilistic parameter estimation is crucial for
learning the initial state probabilities, transition probabilities, and emission probabilities
that best describe the data.

3.4.1 Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm is a statistical method used for finding
maximum likelihood estimates of parameters in probabilistic models, particularly those
with latent variables. The EM algorithm iterates between two steps:
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1. the Expectation step, where it calculates the expected value of the log-likelihood
concerning the latent variables S, and

2. the Maximization step, where it maximizes this expected log-likelihood to update the
model parameters p0, p, and b.

This process is repeated until convergence, leading to a local maximum of the likelihood
function. The EM algorithm is particularly useful in the context of mixture models, where
it efficiently handles the complexities of estimating multiple overlapping distributions. The
seminal work on the EM algorithm in Dempster et al. (1977) provides a comprehensive
foundation for understanding and applying this method.

3.4.2 Maximum a Posteriori Estimation

Maximum a Posteriori (MAP) estimation is a Bayesian approach to parameter estimation
that incorporates prior knowledge about the parameters into the estimation process. In
MAP estimation, the goal is to find the parameter values that maximize the posterior
probability of the parameters given the observed data. This is achieved by combining the
likelihood of the data with the prior distribution of the parameters, resulting in a more
robust estimation procedure. The choice of prior distribution can significantly impact the
final estimates, particularly in cases where the data is limited or noisy.

Formally, a MAP estimate is defined as:

θ̂MAP = arg max
θ

Pr(θ|O) = arg max
θ

Pr(O|θ) Pr(θ). (3.3)

Here, θ represents the parameters of the model, O is the observed data, Pr(O|θ) is the
likelihood of the data given the parameters, and Pr(θ) is the prior distribution over the
parameters.

MAP estimation is useful for incorporating domain knowledge or constraints into the
parameter estimation process, leading to more interpretable and robust models. The MAP
estimates of the parameters in Hidden Markov Models can be computed using the forward-
backward algorithm, which provides a framework for computing the posterior distribution
over the hidden states of an HMM (Rabiner & Juang, 1986).

Rabiner and Juang (1986) defines the following elements:

1. A forward variable αT (i) = Pr(O1, O2, . . . , OT , ST = i|θ).

2. A backward variable βT (i) = Pr(OT +1, OT +2, . . . , OT |ST = i, θ).

Using the forward and backward variables, the posterior distribution over the hidden
states can then be computed as:
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θ̂MAP = arg max
θ

N∑
i=1

αT (i)βT (i). (3.4)

The forward-backward algorithm provides the solution to the MAP estimates of the
parameters in Hidden Markov Models, enabling accurate and efficient parameter estimation
in complex probabilistic models.

In the next section, we introduce depmixS4, an R package that implements Dependent
Mixture Models and relies on the EM algorithm to estimate the model parameters (Visser
& Speekenbrink, 2021). We also describe how we leverage MAP estimation using the output
of the DepmixS4 model.
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Chapter 4

Methods & Results

To evaluate the performance of HMMM’s in predicting PSU patterns, we simulate time
series data for N patients, which we then divide into training and testing subsets. The last
time point of each patient’s time series data is used for testing, while the preceding points
are used for training.

We compare two prediction approaches using our simulated datasets:

1. DepmixS4 Model: A HMMM is fitted to the training data using the depmixS4 pack-
age. The trained model’s estimated parameters are then used to predict the service
utilization for the testing data using MAP estimation.

2. Baseline Approach: A baseline (or naïve) approach that does not account for latent
states is used to predict the service utilization for the testing data. The predicted
service utilization for a patient is the most frequently observed utilization (0 or 1) for
each service class across all time points in the training data.

Each approach is evaluated based on the accuracy of its predictions over all trials,
measured as the proportion of correctly predicted service utilizations in the testing data.
The approaches are then compared using pairwise t-tests and the results are summarized
in Section 4.3.

4.1 Simulated Dataset

We simulate a dataset of T = 12 time points for N = 100 patients. We consider a scenario
with M = 2 service classes and K = 2 latent states. The dataset consists of the service
utilization records for each patient at each time point, where each service class can be either
utilized (1) or not utilized (0). The service utilization vectors U = (U1, U2) for each patient
are generated based on the following process:

1. In the first half of time points, sample U1 ∼ Bern(α) and U2 ∼ Bern(1− α).

2. In the second half of time points, sample U1 ∼ Bern(1− α) and U2 ∼ Bern(α).
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Here, α is a parameter we increase progressively at each simulation, from 0.1 to 0.5. This
process generates service utilization patterns that switch between the two service classes at
the halfway time point. Code for the dataset generation process is included in Appendix
A.4. To illustrate, a sample from the simulated dataset is illustrated in Table 4.1.

The dataset is further divided into training and testing subsets, where we use the first
11 time points of each patient’s data for training (Utrain matrix) and the last time point
for testing (Utest matrix). The training data is used to fit the prediction models, and the
testing data is used to evaluate the models’ performance in predicting the next time point’s
service utilization.

Patient ID Time Point Used Service 1? Used Service 2?
1 1 0 1
1 2 0 1
1 3 0 1
1 4 1 1
1 5 0 1
1 6 0 1
1 7 1 0
1 8 1 0
1 9 1 0
1 10 1 0
1 11 1 0
1 12 1 0

Table 4.1: Sample of Simulated Multivariate Time Series Data for One Patient.
The patient’s data has T = 12 time points, M = 2 service classes, and α = 0.1. Each
row represents the service utilization at a specific time point for a patient. The full dataset
comprises N = 100 patients and is a 1200 × 4 matrix. In this sample, the Utrain matrix
would consist of the first 11 time points, and the Utest matrix would consist of the 12th time
point. The perfect prediction for this patient at time point 12 would be to predict U1 = 1
and U2 = 0. The baseline approach would predict U1 = 1 and U2 = 1 for this patient, as
service 2 was utilized more frequently in the training data.

Note that as α approaches 0.5, the distributions of U1 and U2 become closer together.
At α = 0.5, the distributions are equal, and equal to Bern(0.5). For α = 0.5, we expect
both prediction methods to exhibit 50% accuracy, regardless of their sophistication.

4.2 DepmixS4: Dependent Mixture Models in R

The depmixS4 package in R provides a framework for fitting Dependent Mixture Models to
time series data (Visser & Speekenbrink, 2010). The package facilitates the estimation of
initial state probabilities p0, transition probabilities p, and emission probabilities b using
the EM algorithm (Visser & Speekenbrink, 2011). The resulting models can then be used to
make inferences about the hidden states of the system and to predict future observations.
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Further details about the depmixS4 package can be found in the official documentation
(Visser & Speekenbrink, 2021).

We use the DepmixS4 model to fit a Dependent Mixture Model to our dataset and
predict what the service utilization will be for the last time point of each patient. The
parameters used to fit the model are as follows:

model <- depmix(formula = cbind(X1, X2, X3, ... , Xm) ~ 1,

data = U_train,

nstates = K,

family = multinomial("identity"),

ntimes = Ts_train)

where X1, X2, ..., Xm are the M binary service class utilization variables, U_train is
the training dataset, K is the number of latent states, and Ts_train is the number of time
points per patient in the training data (in our case, Tstrain = 11 for each patient). The
model is then fitted to the training data using fm <- fit(model).

The resulting estimated parameters can be extracted from the fitted model fm using the
getpars() function. The last state of each patient’s time series data can then be predicted
using the best and pest that were estimated by the model. First, the predicted latent state
in the patient’s last time point Tn is assigned as the state with the highest transition
probability pest at the patient’s penultimate time point Tn − 1. Then, using the formula
described in Section 3.4.2, the predicted service utilization is assigned as the MAP estimate
of the emission probabilities best for the predicted latent state.

Code for the model fitting and prediction process is included in Appendix A.4.

4.3 DepmixS4 Model Evaluation

We measure the prediction accuracy of the DepmixS4 model and the baseline approach for
our simulated dataset. The prediction accuracy is calculated as the proportion of correctly
predicted service utilizations in the testing data. It can be written as:

Accuracy =
M∑

m=1

1(Ûm = Um)
M

, (4.1)

where Ûm is the predicted service utilization for service class m, Um is the true service
utilization for service class m, and M is the total number of service classes.

The results summarized in Figure 4.1 indicate that the DepmixS4 model outperforms the
baseline approach significantly for α = 0.1, 0.2, 0.3, which suggests that the model is effective
in predicting service utilization patterns when there is a clear switch in utilization patterns
at the halfway point. We conduct pairwise t-tests to compare the prediction accuracy of the
DepmixS4 model and the baseline approach for each value of α. The results of the t-tests
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are summarized in Table 4.2. The t-tests indicate that the DepmixS4 model significantly
outperforms the baseline approach for α = 0.1, 0.2, 0.3 (p < 0.05 after Bonferroni correction
for five tests). However, the difference in performance is not significant for α = 0.4 and 0.5
(respective raw p-values are p = 0.9004 and p = 0.3293).

α t-value df p-value Confidence Interval Mean Difference
0.1 -85.967 99 8.04e-95 [-0.8198, -0.7828] -0.8013
0.2 -34.947 99 1.70e-57 [-0.5997, -0.5353] -0.5675
0.3 -12.046 99 4.10e-21 [-0.2821, -0.2023] -0.2422
0.4 0.12553 99 9.00e-1 [-0.01481, 0.01681] 0.001
0.5 -0.98039 99 3.29e-1 [-0.00907, 0.00307] -0.003

Table 4.2: Summary of Paired t-test Results for Varying Values of α. The ta-
ble summarizes the results of the paired t-tests comparing the prediction accuracy of the
DepmixS4 model and the baseline approach for each value of α. The t-tests indicate that
the DepmixS4 model significantly outperforms the baseline approach for α = 0.1, 0.2, 0.3
(Bonferroni corrected p-values < 0.05, raw p-values are 8.04e-95, 1.70e-57, and 4.10e-21
respectively.)
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Figure 4.1: DepmixS4 Model and Baseline Approach Prediction Accuracy. The
plot illustrates the prediction accuracy of the DepmixS4 model and the baseline approach.
The DepmixS4 model outperforms the baseline approach by a significant margin for the
smaller values of α.

The DepmixS4 model’s ability to capture the underlying structure of the data allows
it to make more accurate predictions compared to a naive approach that does not account
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for latent states. However, the model’s performance decreases as α approaches 0.5, due
to the increased randomness in the data. The baseline approach performs similarly to the
DepmixS4 model for α = 0.5, as the data becomes more unpredictable and the model’s latent
state representation becomes less informative (for α = 0.5, the emissions are independent
draws from Ber(p = 0.5)). Code for the prediction evaluation process and t-tests is included
in Appendix A.4.

In the next section, we describe how VIHA’s PSU data can be preprocessed in order to
fit a DepmixS4 model.

4.4 Preprocessing Healthcare Data

The VIHA dataset consists of records of interactions between patients and healthcare ser-
vices. Table 4.3 illustrates a fictional sample of the raw dataset, where each row represents
the history of service utilizations for a patient. The service numbers correspond to specific
healthcare services provided by VIHA, such as mental health counseling, addiction treat-
ment, or crisis intervention. We refer to this raw healthcare data as D, a sequence of N

sets of triplets, where the triplet (service number, start time, end time) represents a service
access for a patient. The n-th element of this sequence corresponds to the n-th patient.

We preprocess the dataset as follows:

Data: Raw patient data D, list of service classes of interest target_classes, and
time unit of interest (days, weeks, months, or years) time_unit.

Result: Matrix UT ×N of service utilization per time unit for each patient.

for each patient i in D do
Get patient’s first service access time tstart and last service access time tend;
Divide the time range [tstart, tend] into sequential periods of length time_unit;
Initialize matrix UT ×N for patient i with all entries set to zero;
for each time bin in the period do

for each service accessed by the patient in the time bin do
Find the column index for the service class in U ;
Increment the count of accesses in the corresponding cell of matrix U ;

end
end

end

Algorithm 3: Extracting the Service Utilization Matrix from Raw Patient
Data. This algorithm computes a structured matrix of service utilization counts aligned
to predefined time units.
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Note that in Algorithm 3, each element of the matrix U is initialized to zero. This
initialization acts as a placeholder for service classes for which no data is available during
the specified time units. As we process each entry corresponding to service utilizations, the
respective cell in the matrix is incremented based on the number of times a service class
is accessed within the time frame. If a particular service class does not have any recorded
utilization for a given day, the cell retains its initial value of zero. This approach effectively
pads the matrix on the right with zeros, ensuring that each row (patient) and column
(service class) pair maintains a uniform format regardless of variations between patients.

Moreover, the alignment of time data ensures that each count within the matrix U

corresponds precisely to the defined temporal boundaries of a day. Specifically, for each
patient and each service class, the start of the period is aligned to 00:00 of the day, and the
end of the period is aligned to 23:59. This consistent boundary definition allows for accurate
and comparable aggregations of service utilizations across different days.

The resulting matrix U is a matrix of counts of service utilizations for each patient at
each time unit, where each row represents a patient and each column represents a service
class. Table 4.4 shows the U matrix for Patient C when the time_unit parameter is set to
days and the target_classes parameter is [23, 35]. Code for the preprocessing algorithm is
included in Appendix A.3.

patient id age sex service start end
Patient A 64 Female 9 2021-01-03 12:00:00 2021-01-03 15:00:00
Patient A 64 Female 57 2021-01-03 15:00:00 2021-01-03 16:00:00
Patient B 22 Female 31 2021-01-03 15:00:00 2021-01-03 18:00:00
Patient C 50 Male 23 2021-01-02 12:00:00 2021-01-02 15:00:00
Patient C 50 Male 35 2021-01-05 08:00:00 2021-01-05 10:00:00
Patient C 50 Male 23 2021-01-07 07:00:00 2021-01-07 09:00:00

Table 4.3: Fictional sample of raw patient service utilization data from the VIHA
dataset. Each row represents the service utilization history for a patient. The services
column lists the services accessed by the patient, and the start and end columns indicate
the time intervals during which the services were accessed. In this example, Patient A enters
service 9 at noon on January 3rd, and exits service 9 at 3PM on the same day. Then, Patient
A enters service 57 at 3PM and exits at 4PM. The element of D corresponding to Patient A
is thus: { (9, 2021-01-03 12PM, 2021-01-03 3PM), (57, 2021-01-03 3PM, 2021-01-03 4PM)
}.

The resulting U matrix can be used as input to the depmixS4 package to fit a Dependent
Mixture Model to the patient service utilization data. The latent states inferred by the model
can then be used to predict future service utilizations and evaluate different intervention
strategies, as described in the following sections.
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time bin service 23 service 35
2021-01-02 1 0
2021-01-03 0 0
2021-01-04 0 0
2021-01-05 0 1
2021-01-06 0 0
2021-01-07 1 0

Table 4.4: U matrix for Patient C with time_unit = days and target_classes =
[23, 35]. Each row represents the service utilization for a specific time bin (day) for the
patient, and each column represents the number of times the corresponding service was
accessed.

4.5 Counterfactual Reinforcement Learning

In this section, we describe how the latent states extracted from the DepmixS4 model can be
used in a Counterfactual Reinforcement Learning (CFRL) framework to evaluate different
intervention strategies, after training the DepmixS4 model on the preprocessed U matrix.
We define the key components of the CFRL framework as follows:

• States (S∗): A low-dimensional representation of a patient’s time series, using the la-
tent states estimated by the DepmixS4 model, which summarizes the patient’s service
utilization patterns over time.

– For example, if there are K = 2 latent states, which could be respectively inter-
preted as ’healthy’ and ’unhealthy’ states, a patient’s state S∗ could be repre-
sented as a vector of the proportion of time spent in each state.

– Note the states must be time-invariant and summarize the entire time series if
they are to be used in the CFRL framework.

• Actions (a): Binary variables representing interventions.

– For example, a = 1 indicates that a specific intervention was made (e.g., a crisis
intervention team is deployed), and a = 0 indicates that no intervention was
made.

– Another definition for actions could be a = 1 if any intervention was made at
any time point within the period, and a = 0 otherwise.

• Rewards (r): The rewards associated with each time step, which can be defined
based on specific criteria.

– For example r = 1 if there was no mortality within the entire period for the
patient, and r = 0 if there was at least one death within the period.
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– Another example could be r = 1 if the patient recovers, defined by a specific
criteria for recovery, and r = 0 if the patient does not recover.

• Policy (π0): The current policy used by the Vancouver Island Health Authority
(VIHA) maps a state S∗ to an action a, defining the intervention strategy based on
the patient’s state feature vector. Since this policy is only formally defined in terms
of observed symbols and not in terms of latent states or state feature vectors, we can
approximate it using classification methods as an additional preprocessing step. For
example, we can train a logistic regression model to predict the action based on the
latent states, which is effectively an estimate of π0(a|s∗).

In the next section, we describe an algorithm for implementing Counterfactual Rein-
forcement Learning using the latent states extracted from the DepmixS4 model.
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4.5.1 Pipeline Algorithm

Data: Raw PSU data D, number of latent states K

Result: Counterfactual estimates R̂IPS(a) of the reward of an offline policy π(a|s∗)

Define actions a (e.g., intervention or no intervention);
Define rewards r (e.g., no overdose/mortality = 1, at least one overdose/mortality
= 0);

Step 1: Preprocessing
Generate the U matrix from D using Algorithm 3 and divide into training and
testing datasets.;

Step 2: Extracting Latent States
Fit the DepmixS4 model to training data and extract latent states S for each
patient;

Define S∗, a low-dimensional representation of the latent states S that summarizes
a patient’s service utilization patterns over time;

Step 3: Compute Counterfactual Outcomes
Train a classification model (e.g., logistic regression) on Utrain to estimate π0(a|s∗),
the current policy for enacting an intervention given the state feature vector;

for each patient i do
Compute the counterfactual outcome using the Inverse Propensity Scoring
(IPS) estimator: R̂IPS(a) = 1

N

∑N
i=1

π(ai|s∗
i )

π0(ai|s∗
i ) · ri;

end

Algorithm 4: Counterfactual Reinforcement Learning with DepmixS4 Model
Latent States. The algorithm outlines our proposed pipeline for integrating the Dep-
mixS4 model’s latent states into a Counterfactual Reinforcement Learning framework.
The algorithm computes the estimated reward of a policy π(a|s∗) using Inverse Propen-
sity Scoring.

The algorithm’s final output, R̂IP S(a), provides an estimate of the reward of an offline
policy π(a|s∗) based on the latent states extracted from the DepmixS4 model. This esti-
mate can be used to evaluate different intervention strategies and inform decision-making
processes at VIHA.

Some candidate features for the state S∗ that could be used in this framework include:

• The last element of the DepmixS4 timeseries latent state, ST , which represents the
most likely state for a patient at the last time point T .
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• The most common state in the last month of the DepmixS4 timeseries latent states.

• Number of days elapsed since last terminal state (e.g., opioid overdose).

• Proportion of days spent in a latent state of interest (e.g., ’healthy’) over the last year.

• Number of transitions between latent states in the last year.

For example, the state S∗ could be represented as a vector of the proportion of time
spent in each latent state over the last year, or as a vector of the most common latent state
in each of the last 6 months.
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Chapter 5

Conclusion

In this thesis, we explored Q-Learning as a reinforcement learning algorithm to optimize
path planning for a robot in a grid world environment. We implemented the Q-Learning
algorithm in Python and demonstrated its effectiveness in learning an optimal policy for
the robot to reach a goal while avoiding obstacles. To partially overcome the limitations
of Q-Learning stemming from the need for online interaction, we explored the Dyna-Q
algorithm, which incorporates an offline model of the environment to accelerate learning
without requiring additional interactions with the environment. We implemented the Dyna-
Q algorithm in Python and showed that it learns an optimal policy at a significantly faster
rate than Q-Learning. In our experiment, Q-Learning required approximately 75 episodes
to achieve the performance that Dyna-Q achieved by episode 25. Then, we introduced a
third reinforcement learning technique, Counterfactual Reinforcement Learning, as a fully
offline approach to evaluating policies using longitudinal data.

We discussed the application of Hidden Markov Models and Mixture Models to uncover
hidden patterns in longitudinal patient data, and we demonstrated the effectiveness of the
depmixS4 package in extracting latent states from patient service utilization data when
the data presented strong signals. We showed that the DepmixS4 model outperforms the
baseline model in predicting future service utilization when the data exhibits clear patterns
(for α = 0.1, 0.2, 0.3, Bonferroni corrected p-values p < 0.05, where the emissions in the
simulation are sampled from Ber(α).) However, both the DepmixS4 model and the baseline
approach performed similarly when the data was less predictable (α = 0.4, 0.5, raw p-values
p = 0.9004, 0.3293 respectively).

Finally, we proposed a Counterfactual Reinforcement Learning pipeline that leverages
the latent states extracted from the DepmixS4 model to evaluate different intervention
strategies without requiring interaction with the environment. We outlined an algorithm for
implementing CFRL using Inverse Propensity Scoring to estimate the reward of an offline
policy using domain knowledge and historical data. The methods and results presented in
this thesis provide a foundation for pipeline development with counterfactual reinforcement
learning applied to patient time series data.
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Appendix A

Code

A.1 AdventureBot Q-Learning Algorithm

1 import numpy as np
2 import matplotlib . pyplot as plt
3

4 # Set seed
5 np. random .seed (0)
6

7 # Constants
8 EMOJI_TREASURE = "T"
9 EMOJI_OBSTACLE = "X"

10 EMOJI_ADVENTUREBOT = "B"
11 EMOJI_EMPTY = "_"
12 ACTIONS = ["up", "down", "left", "right"]
13

14

15 class QLearning :
16 def __init__ (
17 self , grid_size , max_steps , alpha , gamma , epsilon , episodes , debug=

False
18 ):
19 """
20 Initialize the Q- Learning agent.
21

22 Parameters :
23 - grid_size : The size of the grid world.
24 - max_steps : The maximum number of steps per episode .
25 - alpha: The learning rate.
26 - gamma: The discount factor .
27 - epsilon : The exploration rate.
28 - episodes : The number of episodes to run.
29 - debug: Enable debugging mode (True/False).
30 """
31 self. grid_size = grid_size
32 self. max_steps = max_steps
33 self.alpha = alpha
34 self.gamma = gamma
35 self. epsilon = epsilon
36 self. episodes = episodes
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37 self.debug = debug
38

39 # Q-table
40 self. q_table = np. random . uniform (
41 low=-1, high =1, size =( grid_size , grid_size , len( ACTIONS ))
42 )
43

44 # Grid world
45 self.state = np.full (( grid_size , grid_size ), EMOJI_EMPTY )
46 self. adventurebot_position = self. randomize_position (
47 EMOJI_ADVENTUREBOT , init=True
48 )
49 self. treasure_position = self. randomize_position ( EMOJI_TREASURE ,

init=True)
50 self. obstacle_position = self. randomize_position ( EMOJI_OBSTACLE ,

init=True)
51

52 # Counters
53 self. step_count = 0
54 self. reached_treasure = 0
55 self. reached_obstacle = 0
56 self. reached_max_steps = 0
57 self. steps_per_episode = []
58

59 def randomize_position (self , emoji , init=False):
60 """
61 Randomly place an emoji on an empty position in the grid.
62

63 Parameters :
64 - emoji: The emoji to place.
65 - init: Whether it’s the initial placement (True/False).
66

67 Returns :
68 - position : The position where the emoji is placed .
69 """
70 if init:
71 while True:
72 position = np. random . randint (0, self.grid_size , size =2)
73 if self.state[tuple( position )] == EMOJI_EMPTY :
74 self.state[tuple( position )] = emoji
75 print(
76 f" Placed {emoji} for the first time at position {

position . tolist ()}"
77 ) if self.debug else None
78 return position . tolist ()
79

80 if emoji == EMOJI_ADVENTUREBOT :
81 self.state[tuple(self. adventurebot_position )] = EMOJI_EMPTY
82 self.state[tuple(self. treasure_position )] = EMOJI_TREASURE
83 self.state[tuple(self. obstacle_position )] = EMOJI_OBSTACLE
84

85 while True:
86 position = np. random . randint (0, self.grid_size , size =2)
87 if self.state[tuple( position )] == EMOJI_EMPTY :
88 self.state[tuple( position )] = emoji
89 print(
90 f" Placed {emoji} back at position { position . tolist ()

}"
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91 ) if self.debug else None
92 return position . tolist ()
93

94 def print_grid_with_bot_position (self):
95 """
96 Print the grid world with the AdventureBot ’s position .
97 """
98 self.state = np.full (( self.grid_size , self. grid_size ), EMOJI_EMPTY )
99 self.state[tuple(self. treasure_position )] = EMOJI_TREASURE

100 self.state[tuple(self. obstacle_position )] = EMOJI_OBSTACLE
101 self.state[tuple(self. adventurebot_position )] = EMOJI_ADVENTUREBOT
102

103 for row in self.state:
104 print(" ".join(row))
105

106 def get_valid_actions (self):
107 """
108 Get valid actions for the AdventureBot at a given position .
109

110 Returns :
111 - valid_actions : A list of valid actions .
112 """
113 y, x = self. adventurebot_position
114 valid_actions = []
115

116 if y > 0:
117 valid_actions . append ("up")
118 if y < self. grid_size - 1:
119 valid_actions . append ("down")
120 if x > 0:
121 valid_actions . append ("left")
122 if x < self. grid_size - 1:
123 valid_actions . append ("right")
124

125 return valid_actions
126

127 def choose_action (self):
128 """
129 Choose an action for the AdventureBot .
130

131 Returns :
132 - chosen_action : The chosen action .
133 """
134 valid_actions = self. get_valid_actions ()
135 if np. random . uniform (0, 1) < self. epsilon :
136 return np. random . choice ( valid_actions )
137 else:
138 q_values = self. q_table [
139 self. adventurebot_position [0], self. adventurebot_position

[1], :
140 ]
141 max_q_value = q_values .max ()
142 max_actions = [
143 ACTIONS [i] for i, q_val in enumerate ( q_values ) if q_val ==

max_q_value
144 ]
145 return np. random . choice ( max_actions )
146
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147 def take_action (self , action ):
148 """
149 Take an action and update the AdventureBot ’s position .
150

151 Parameters :
152 - action : The chosen action .
153

154 Returns :
155 - new_position : The new position after taking the action .
156 - reward : The received reward after taking the action .
157 """
158 new_position = self. adventurebot_position .copy ()
159 y, x = new_position
160

161 if action == "up" and y > 0:
162 new_position = [y - 1, x]
163 elif action == "down" and y < self. grid_size - 1:
164 new_position = [y + 1, x]
165 elif action == "left" and x > 0:
166 new_position = [y, x - 1]
167 elif action == "right" and x < self. grid_size - 1:
168 new_position = [y, x + 1]
169

170 self.state[
171 self. adventurebot_position [0], self. adventurebot_position [1]
172 ] = EMOJI_EMPTY
173 self.state[ new_position [0], new_position [1]] = EMOJI_ADVENTUREBOT
174

175 reward = 0
176 if new_position == self. treasure_position :
177 reward = 1
178 elif new_position == self. obstacle_position :
179 reward = -1
180

181 return new_position , reward
182

183 def update_q_value (self , current_state , action , reward , new_state ):
184 """
185 Update the Q-value based on the Q- Learning update rule.
186

187 Parameters :
188 - current_state : The previous state.
189 - action : The chosen action .
190 - reward : The received reward after taking the action .
191 - new_state : The new state after taking the action .
192 """
193 prev_q_value = self. q_table [
194 current_state [0], current_state [1], ACTIONS .index( action )
195 ]
196 future_reward = self.gamma * self. q_table [ new_state [0], new_state

[1], :]. max ()
197 self. q_table [
198 current_state [0], current_state [1], ACTIONS .index( action )
199 ] += self.alpha * ( reward + future_reward - prev_q_value )
200

201 def run_episode (self):
202 """
203 Run a single episode of the Q- Learning agent.
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204 """
205 self. step_count = 0
206 self. adventurebot_position = self. randomize_position (

EMOJI_ADVENTUREBOT )
207 self. print_grid_with_bot_position () if self.debug else None
208

209 while (
210 self. step_count < self. max_steps
211 and not self. adventurebot_position == self. treasure_position
212 and not self. adventurebot_position == self. obstacle_position
213 ):
214 self. perform_step ()
215

216 # Record the reason for ending the episode
217 if self. step_count == self. max_steps - 1:
218 self. reached_max_steps += 1
219 elif self. adventurebot_position == self. treasure_position :
220 self. reached_treasure += 1
221 print(f" Reached treasure ! End of episode .") if self.debug else

None
222 elif self. adventurebot_position == self. obstacle_position :
223 self. reached_obstacle += 1
224 print(
225 f" Encountered obstacle ! End of episode .") if self.debug else

None
226

227 self. steps_per_episode . append (self. step_count )
228

229 def perform_step (self):
230 """
231 Choose an action and take it (one step).
232 """
233 self. step_count += 1
234 print(f"===== > Step {self. step_count }") if self.debug else None
235

236 # Choose an action based on the current state
237 current_state = self. adventurebot_position
238 self. chosen_action = self. choose_action ()
239

240 # Take the chosen action and update the Q-value
241 new_state , reward = self. take_action (self. chosen_action )
242 self. adventurebot_position = new_state
243 self. update_q_value ( current_state , self. chosen_action , reward ,

new_state )
244

245 if self.debug:
246 print(
247 f"Went **{ self. chosen_action }** at state { current_state },

grid is now:"
248 )
249 self. print_grid_with_bot_position ()
250 print("\n")
251

252 def train(self):
253 """
254 Train the Q- Learning agent over a specified number of episodes .
255 """
256 for episode in range(self. episodes ):

38



257 print(f"========= > Episode { episode }") if self.debug else None
258 self. run_episode ()
259

260 if __name__ == " __main__ ":
261 # Initialize the Q- Learning agent
262 q_learning = QLearning (
263 grid_size =7,
264 max_steps =100 ,
265 alpha =0.2 ,
266 gamma =0.9 ,
267 epsilon =0.1 ,
268 episodes =1000 ,
269 # debug=True , # Uncomment to enable print statements
270 )
271

272 # Train the Q- Learning agent
273 q_learning .train ()
274

275 # Print the Q-table
276 print("\n")
277 print("Final Q-table:")
278 print( q_learning . q_table )
279

280 # Print some statistics
281 print("\n")
282 print(f" Reached treasure { q_learning . reached_treasure } times.")
283 print(f" Reached obstacle { q_learning . reached_obstacle } times.")
284 print(f" Reached max steps { q_learning . reached_max_steps } times.")
285 print(
286 f" Average number of steps per episode : {np.mean( q_learning .

steps_per_episode )}"
287 )
288

289 # Save a plot of the number of steps per episode
290 plt.plot( q_learning . steps_per_episode )
291 plt.grid(True , which=’both ’, linestyle =’--’, linewidth =0.5)
292 plt. xlabel (" Episode ")
293 plt. ylabel (" Number of steps")
294 plt.title(" Number of steps per episode for Q- Learning ")
295 plt. savefig ("plots/ q_learning_steps_per_episode .png")

A.2 AdventureBot Dyna-Q Algorithm

1 import random
2 import matplotlib . pyplot as plt
3 import numpy as np
4 from playground . q_learning import QLearning , EMOJI_EMPTY
5

6 # Set seed
7 np. random .seed (0)
8

9 EMOJI_GHOST = "P"
10

11

12 class DynaQ( QLearning ):
13 def __init__ (
14 self ,
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15 grid_size ,
16 max_steps ,
17 alpha ,
18 gamma ,
19 epsilon ,
20 episodes ,
21 planning_steps =5,
22 debug=False ,
23 ):
24 """
25 Initialize the DynaQ agent.
26

27 Parameters :
28 - grid_size : The size of the grid world.
29 - max_steps : The maximum number of steps per episode .
30 - alpha: The learning rate.
31 - gamma: The discount factor .
32 - epsilon : The exploration rate.
33 - episodes : The number of episodes to run.
34 - planning_steps : The number of planning steps to perform .
35 - debug: Enable debugging mode (True/False).
36 """
37 super (). __init__ (grid_size , max_steps , alpha , gamma , epsilon ,

episodes , debug)
38 self. planning_steps = planning_steps
39 # Model as a dictionary
40 self.model = {}
41

42 def update_model (self , current_state , action , next_state , reward ):
43 """
44 Update the model with the observed transition .
45

46 Parameters :
47 - current_state : The current state.
48 - action : The chosen action .
49 - next_state : The next state.
50 - reward : The received reward .
51 """
52 self.model [( tuple( current_state ), action )] = (next_state , reward )
53

54 def print_grid_with_ghost (self , ghost_position ):
55 """
56 Generate a grid with a ghost to visualize the Dyna -Q planning steps.
57

58 Parameters :
59 - ghost_position : The position of the ghost (Dyna -Q agent).
60

61 Returns :
62 - result : A string representation of the grid.
63 """
64 temp_state = np.copy(self.state)
65 temp_state [tuple(self. adventurebot_position )] = EMOJI_EMPTY
66 temp_state [tuple( ghost_position )] = EMOJI_GHOST
67

68 result = ""
69 for row in temp_state :
70 result += " ".join(row) + "\n"
71
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72 return result
73

74 def planning (self):
75 """
76 Perform planning using the Dyna -Q algorithm .
77

78 During planning , the agent replays and learns from past experiences
stored in a temporary model M.

79

80 The planning steps are as follows :
81 1. Randomly choose a state - action pair from the model.
82 2. Retrieve the next state and reward from the model.
83 3. Update the Q-value based on the model information .
84 """
85 if self.debug:
86 print(" Starting planning steps ...")
87

88 for i in range(self. planning_steps ):
89 print(f" Planning step {i+1}/{ self. planning_steps }") if self.

debug else None
90

91 if self.model:
92 # Randomly choose a state - action pair from the Dyna -Q

planning model
93 state , action = random . choice (list(self.model.keys ()))
94

95 # Retrieve the next state and reward from the model
96 next_state , reward = self.model [( state , action )]
97

98 # Update the Q-value based on the model information
99 self. update_q_value (state , action , reward , next_state )

100

101 print(self. print_grid_with_ghost ( next_state )) if self.debug
else None

102

103 def perform_step (self):
104 """
105 Execute a step using the Dyna -Q agent ’s logic.
106

107 Parameters :
108 - step: The current step.
109

110 Returns :
111 - step_result : The result of the step execution .
112 """
113 # Execute the step using the base QLearning logic
114 step_result = super (). perform_step ()
115

116 # Record the state and action before the base step logic execution
117 prev_state = self. adventurebot_position .copy ()
118 action = self. chosen_action
119

120 # Update the Dyna -Q planning model and perform planning
121 new_state , reward = self. take_action ( action )
122 self. update_model (prev_state , action , new_state , reward )
123 self. planning ()
124

125 return step_result
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126

127

128 if __name__ == " __main__ ":
129 # Initialize the Dyna -Q agent
130 dyna_q = DynaQ(
131 grid_size =7,
132 max_steps =100 ,
133 alpha =0.2 ,
134 gamma =0.9 ,
135 epsilon =0.1 ,
136 episodes =1000 ,
137 planning_steps =5,
138 # debug=True , # Uncomment to enable debugging
139 )
140

141 # Train the Dyna -Q agent
142 dyna_q .train ()
143

144 # Print the Q-table
145 print("\n")
146 print("Final Q-table:")
147 print( dyna_q . q_table )
148

149 # Print some statistics
150 print("\n")
151 print(f" Reached treasure { dyna_q . reached_treasure } times.")
152 print(f" Reached obstacle { dyna_q . reached_obstacle } times.")
153 print(f" Reached max steps { dyna_q . reached_max_steps } times.")
154 print(f" Average number of steps per episode : {np.mean( dyna_q .

steps_per_episode )}")
155

156 # Save a plot of the number of steps per episode
157 plt.plot( dyna_q . steps_per_episode )
158 plt.grid(True , which="both", linestyle ="--", linewidth =0.5)
159 plt. xlabel (" Episode ")
160 plt. ylabel (" Number of steps")
161 plt.title(" Number of steps per episode for Dyna -Q")
162 plt. savefig ("plots/ dyna_steps_per_episode .png")

A.3 Preprocessing VIHA Data

1 from datetime import datetime , timedelta
2 from dateutil . parser import parse
3 import numpy as np
4 import pandas as pd
5

6

7 def get_start_end_of_period (timestamp , time_unit ):
8 """
9 Calculate the start and end datetime objects for the specified time

time_unit relative to the provided timestamp .
10

11 Parameters :
12 - timestamp ( datetime . datetime ): The reference point to calculate the

time_unit from.
13 - time_unit (str): The time time_unit to calculate (’day ’, ’week ’, ’

month ’, ’year ’).
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14

15 Returns :
16 - tuple: A pair of datetime . datetime objects representing the start and

end of the time_unit .
17

18 Raises :
19 - ValueError : If the provided time_unit is not one of the valid options

(’day ’, ’week ’, ’month ’, ’year ’).
20

21 Note:
22 - ’Day ’ is defined from 00:00 to 23:59 of the same calendar day.
23 - ’Week ’ is defined from Monday 00:00 to Sunday 23:59 of the same week.
24 - ’Month ’ is from the first day of the month 00:00 to the last day of

the month 23:59.
25 - ’Year ’ spans from January 1st 00:00 to December 31st 23:59 of the same

year.
26 """
27 if time_unit == "day":
28 start = timestamp . replace (hour =0, minute =0)
29 end = timestamp . replace (hour =23, minute =59)
30 elif time_unit == "week":
31 start = ( timestamp - timedelta (days= timestamp . weekday ())). replace (
32 hour =0, minute =0
33 )
34 end = start + timedelta (days =6, hours =23, minutes =59)
35 elif time_unit == "month":
36 start = timestamp . replace (day =1, hour =0, minute =0)
37 end = start. replace (month=start.month % 12 + 1, day =1) - timedelta (

minutes =1)
38 elif time_unit == "year":
39 start = timestamp . replace (month =1, day =1, hour =0, minute =0)
40 end = start. replace (year=start.year + 1) - timedelta ( minutes =1)
41 else:
42 raise ValueError (" Invalid time time_unit ")
43 return start , end
44

45

46 def parse_int_list ( input_list ):
47 """
48 Convert various representations of a collection of integers (strings ,

lists , single integers ) into a uniform list of integers .
49

50 Parameters :
51 - input_list (str or list or int): Representation of integers , e.g.,

"[1, 2, 3]", [1, 2, 3], or 1.
52

53 Returns :
54 - list: List of integers .
55

56 Examples :
57 - Input: "[1, 2, 3]"
58 - Output : [1, 2, 3]
59

60 - Input: [1, 2, 3]
61 - Output : [1, 2, 3]
62

63 - Input: 1
64 - Output : [1]
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65 """
66 if isinstance (input_list , int):
67 # Single integer input
68 return [ input_list ]
69 elif isinstance (input_list , list):
70 # List input
71 return [int(c) for c in input_list ]
72 elif isinstance (input_list , str):
73 # String input
74 try:
75 return [int(c) for c in input_list .strip("[]").split(" ")]
76 except ValueError :
77 raise ValueError (" String input must be a valid list of integers .

")
78 else:
79 raise TypeError ("Input must be a string , list , or integer .")
80

81

82 def parse_datetime_list ( input_list ):
83 """
84 Convert various representations of a collection of datetime objects (

strings , lists , single datetimes ) into a uniform list of datetime
objects .

85

86 Parameters :
87 - input_list (str or list or datetime ): Representation of datetime (s), e

.g., "[ ’2023 -01 -01 00:00:00 ’ , ’2023 -01 -02 00:00:00 ’]" , [ datetime (2023 ,
1, 1), datetime (2023 , 1, 2)], or datetime (2023 , 1, 1).

88

89 Returns :
90 - list: List of datetime . datetime objects .
91

92 Examples :
93 - Input: "[ ’2023 -01 -01 00:00:00 ’ , ’2023 -01 -02 00:00:00 ’]"
94 - Output : [ datetime . datetime (2023 , 1, 1, 0, 0), datetime . datetime (2023 ,

1, 2, 0, 0)]
95

96 - Input: [ datetime (2023 , 1, 1), datetime (2023 , 1, 2)]
97 - Output : [ datetime . datetime (2023 , 1, 1, 0, 0), datetime . datetime (2023 ,

1, 2, 0, 0)]
98

99 - Input: datetime (2023 , 1, 1)
100 - Output : [ datetime . datetime (2023 , 1, 1, 0, 0)]
101 """
102 if isinstance (input_list , datetime ):
103 # Single datetime input
104 return [ input_list ]
105 elif isinstance (input_list , list):
106 # List input
107 return [parse(str(dt)) for dt in input_list ]
108 elif isinstance (input_list , str):
109 # String input
110 try:
111 return [parse(dt) for dt in input_list .strip("[]").split(" ")]
112 except ValueError :
113 raise ValueError (" String input must be a valid list of datetimes

.")
114 else:
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115 raise TypeError ("Input must be a string , list , or datetime .")
116

117

118 def get_patient_data (patient_id , df):
119 """
120 Retrieve a specific patient ’s data row from a DataFrame based on their

ID.
121

122 Parameters :
123 - patient_id (str/int): Unique identifier of the patient .
124 - df ( pandas . DataFrame ): DataFrame containing patient data with a ’

patient_id ’ column .
125

126 Returns :
127 - pandas . Series : A single row from the DataFrame corresponding to the

patient_id .
128

129 Raises :
130 - IndexError : If no data is found for the given patient_id .
131

132 Example :
133 - Input: patient_id = 123, df = [ DataFrame with patient data]
134 - Output : Series object containing the patient ’s data.
135 """
136 return df[df[" patient_id "] == patient_id ]. iloc [0]
137

138

139 def create_access_vector (
140 patient_id , timestamp , time_unit , df , target_classes , start_only =False
141 ):
142 """
143 Computes a frequency vector representing a patient ’s usage of various

service classes within a specific time time_unit .
144

145 Parameters :
146 - patient_id (str/int): Identifier of the patient whose service usage is

being analyzed .
147 - timestamp ( datetime . datetime ): The point in time from which the

time_unit is calculated .
148 - time_unit (str): The time time_unit for analysis (’day ’, ’week ’, ’

month ’, ’year ’).
149 - df ( pandas . DataFrame ): DataFrame containing service usage data ,

including the classes of services accessed .
150 - target_classes (list): A list of the service classes to be analyzed .
151

152 Returns :
153 - list: A vector representing the frequency of each service class used

by the patient within the specified time_unit .
154

155 Raises :
156 - ValueError : If an invalid time time_unit is specified or if the input

types are incorrect .
157 - IndexError : If the patient data is not found in the DataFrame .
158 - TypeError : If the inputs are not of expected type.
159

160 Example :
161 - TBA
162 """
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163 # Validate inputs
164 if not isinstance (patient_id , (str , int)):
165 raise TypeError (" Patient ID must be a string or integer .")
166 if not isinstance (timestamp , datetime ):
167 raise TypeError (" Timestamp must be a datetime object .")
168 if time_unit not in ["day", "week", "month", "year"]:
169 raise ValueError (
170 f" Invalid time_unit ’{ time_unit }’. Expected one of ’day ’, ’week

’, ’month ’, ’year ’."
171 )
172 if not isinstance ( target_classes , list):
173 raise TypeError (" Unique classes must be a list.")
174

175 try:
176 patient_data = get_patient_data (patient_id , df)
177 patient_classes = parse_int_list ( patient_data [" srv_classes "])
178 start_times = parse_datetime_list ( patient_data [" start_datetimes "])
179 end_times = (
180 parse_datetime_list ( patient_data [" end_datetimes "])
181 if not start_only
182 else start_times
183 )
184

185 start_bound , end_bound = get_start_end_of_period (timestamp ,
time_unit )

186 results = [0] * len( target_classes )
187

188 for service_class , start , end in zip( patient_classes , start_times ,
end_times ):

189 if (
190 start <= end_bound
191 and end >= start_bound
192 and service_class in target_classes
193 ):
194 try:
195 index = target_classes .index( service_class )
196 results [index] += 1
197 except ValueError :
198 raise ValueError (
199 f" Service class { service_class } not found in

unique_classes ."
200 )
201 return results
202 except IndexError :
203 raise IndexError (
204 " Patient data not found. Ensure the patient ID is correct and

present in the DataFrame ."
205 )
206

207

208 def create_access_matrix (patient_id , time_unit , df , target_classes ,
start_only =False):

209 """
210 Generates a matrix representing a patient ’s usage of various service

classes over a period of time. Each row corresponds to a service class
and each column to one time unit (in chronological order).

211

212 Parameters :
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213 - patient_id (str/int): The identifier for the patient .
214 - time_unit (str): The time segment for analyzing service usage (’day ’,

’week ’, ’month ’, ’year ’).
215 - df ( pandas . DataFrame ): DataFrame containing patient service usage data

.
216 - target_classes (list): A list of the service classes to be analyzed .
217

218 Returns :
219 - numpy. ndarray : A 2D array where each row corresponds to a service

class and each column to a time time_unit .
220

221 Raises :
222 - ValueError : If an invalid time time_unit is specified or if the input

types are incorrect .
223 - IndexError : If the patient data is not found in the DataFrame .
224 - TypeError : If the inputs are not of expected type.
225

226 Example :
227 - TBA
228 """
229 # Validate inputs
230 if not isinstance (patient_id , (str , int)):
231 raise TypeError (" Patient ID must be a string or integer .")
232 if time_unit not in ["day", "week", "month", "year"]:
233 raise ValueError (
234 f" Invalid time_unit ’{ time_unit }’. Expected one of ’day ’, ’week

’, ’month ’, ’year ’."
235 )
236 if not isinstance ( target_classes , list):
237 raise TypeError (" Unique classes must be a list.")
238

239 try:
240 patient_data = get_patient_data (patient_id , df)
241 start_times = parse_datetime_list ( patient_data [" start_datetimes "])
242 end_times = (
243 parse_datetime_list ( patient_data [" end_datetimes "])
244 if not start_only
245 else start_times
246 )
247

248 earliest_start = min( start_times )
249 latest_end = max( end_times )
250

251 start_bound , _ = get_start_end_of_period ( earliest_start , time_unit )
252 _, end_bound = get_start_end_of_period (latest_end , time_unit )
253

254 period_deltas = {
255 "day": timedelta (days =1) ,
256 "week": timedelta (weeks =1) ,
257 "month": timedelta (days =31) ,
258 "year": timedelta (days =366) ,
259 }
260

261 period_timestamps = []
262 while start_bound < end_bound :
263 period_timestamps . append ( start_bound )
264 start_bound += period_deltas [ time_unit ]
265
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266 service_usage_matrix = [
267 create_access_vector (
268 patient_id , timestamp , time_unit , df , target_classes ,

start_only
269 )
270 for timestamp in period_timestamps
271 ]
272

273 return np.array( service_usage_matrix ).T
274 except IndexError :
275 raise IndexError (
276 " Patient data not found. Ensure the patient ID is correct and

present in the DataFrame ."
277 )

A.4 DepmixS4 Experiment

1 library ( depmixS4 )
2 library ( tidyverse )
3 library (readr)
4

5 set.seed (123)
6

7 trials <- 100
8 N <- 100 # number of patients
9 M <- 2 # number of service classes

10 K <- 2 # number of latent states
11 alphas <- c(0.1 , 0.2, 0.3, 0.4, 0.5)
12

13 simulate _data <- function (N, M, time_bins , alpha) {
14 U <- matrix (NA , 0, M)
15 Ts <- c()
16

17 offset <- 1
18 half_times <- c(floor(time_bins / 2), ceiling (time_bins / 2))
19 for (n in 1:N) {
20 X1 <- c( rbinom (half_times [1], 1, alpha), rbinom (half_times [2], 1, 1 -

alpha))
21 X2 <- c( rbinom (half_times [1], 1, 1 - alpha), rbinom (half_times [2], 1,

alpha))
22

23 U <- rbind(U, cbind(X1 , X2))
24 Ts <- c(Ts , time_bins)
25 }
26

27 list(U = U, Ts = Ts)
28 }
29

30 # Train/test split
31 split_data <- function (U, Ts , N, M) {
32 U_train = matrix (NA , 0, M)
33 U_test = matrix (0, N, M)
34

35 offset = 1
36 for (n in 1:N) {
37 U_train_temp <- U[ offset :( offset + Ts[n] - 2), ]
38 U_train = rbind(U_train , U_train_temp)
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39

40 U_test[n, ] <- U[ offset + Ts[n] - 1, ]
41

42 offset = offset + Ts[n]
43 }
44 list(U_train = U_train , U_test = U_test , Ts_train = Ts [1:N] - 1)
45 }
46

47 # Train depmix model and return estimated model parameters
48 train_model <- function (U_train , M, K, Ts_train) {
49

50 data <- data.frame(U_train)
51 formula <- as. formula (paste("cbind(", paste0 ("X", 1:M, collapse = ","), ")

~ 1"))
52

53 model <- depmix (formula ,
54 data = data ,
55 nstates = K,
56 family = multinomial (" identity "),
57 ntimes = Ts_train
58 )
59 fm <- fit(model)
60 fb <- forwardbackward (fm)
61 viter <- viterbi (fm)
62 states <- viter$state
63

64 # Get estimated parameters
65 pars <- c( unlist ( getpars (fm)))
66 p0_est <- pars [1:K]
67 p_est <- t( matrix (pars [(K + 1):(K + K*K)], K, K))
68 b_est <- t( matrix (pars [(K + K*K + 1): length (pars)], M, K))
69

70 return (list(p0_est = p0_est , p_est = p_est , b_est = b_est , fm = fm , fb =
fb , states = states ))

71 }
72

73 # Predict service class usage using trained depmix model
74 model_ prediction <- function (model , last_state) {
75 p_est <- model$p_est
76 b_est <- model$b_est
77 predicted _next_state <- which.max(p_est[last_state , ])
78

79 # Return the MAP estimate
80 predicted _usage <- as. numeric (b_est[ predicted _next_state ,] > 0.5)
81 return ( predicted _usage)
82 }
83

84 # Predict service class usage based on most frequent usage in training set
85 baseline _ prediction <- function (U_train) {
86 predicted _usage <- numeric (M)
87 for (m in 1:M) {
88 predicted _usage[m] <- as. numeric (names(which.max(table(U_train[, m]))))
89 }
90 return ( predicted _usage)
91 }
92

93 # Get last predicted latent state for each patient in training set
94 collect _last_known_ states <- function (N, Ts_train , fb) {
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95 last_ states <- numeric (N)
96 for (n in 1:N) {
97 index <- sum(Ts_train [1:n])
98 last_ states [n] <- which.max(fb$alpha[index ,] * fb$beta[index ,])
99 }

100 return (last_ states )
101 }
102

103 depmix _ accuracy <- data.frame( matrix (NA , trials , length ( alphas )))
104 colnames ( depmix _ accuracy ) <- paste0 ("alpha", alphas *10)
105 baseline _ accuracy <- data.frame( matrix (NA , trials , length ( alphas )))
106 colnames ( baseline _ accuracy ) <- paste0 ("alpha", alphas *10)
107

108 for (trial in 1: trials ) {
109 for (alpha in alphas ) {
110 print(paste("==> Trial number ", trial , "of", trials , "for alpha =",

alpha))
111

112 # Get data and split into train and test sets
113 sim_data <- simulate _data(N, M, time_bins = 12, alpha = alpha)
114 data <- split_data(sim_data$U, sim_data$Ts , N, M)
115

116 # Train depmix model
117 trained _model <- train_model(data$U_train , M, K, data$Ts_train)
118

119 # Get last known latent state for each patient
120 last_known _ states <- collect _last_known_ states (N, data$Ts_train , trained

_model$fb)
121

122 # Predict next service class usage for each patient
123 depmix _ predictions <- matrix (NA , N, M)
124 baseline _ predictions <- matrix (NA , N, M)
125 for (n in 1:N) {
126 # Get last known latent state for the patient
127 last_known_state <- last_known_ states [n]
128

129 # Predict service usage using depmix model
130 depmix _ predictions [n, ] <- model_ prediction ( trained _model , last_known_

state)
131

132 # Predict service usage using baseline
133 baseline _ predictions [n, ] <- baseline _ prediction (data$U_train)
134 }
135

136 # Calculate accuracy
137 depmix _ accuracy [trial , which( alphas == alpha)] <- mean( depmix _

predictions == data$U_test)
138 baseline _ accuracy [trial , which( alphas == alpha)] <- mean( baseline _

predictions == data$U_test)
139 }
140 }
141

142 # Export to CSV
143 write.csv( depmix _accuracy , " depmix _v2_ depAccuracy .csv")
144 write.csv( baseline _accuracy , " depmix _v2_ baseAccuracy .csv")
145

146 # Printing the Mean Accuracies for Each Method
147 print( colMeans ( depmix _ accuracy ))
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148 print( colMeans ( baseline _ accuracy ))
149

150 # Plot the results
151 depmix _long <- depmix _ accuracy %>%
152 pivot_ longer (cols = starts _with("alpha"), names_to = "alpha", values _to =

"value") %>%
153 mutate ( group = " Depmix ")
154

155 baseline _long <- baseline _ accuracy %>%
156 pivot_ longer (cols = starts _with("alpha"), names_to = "alpha", values _to =

"value") %>%
157 mutate ( group = " Baseline ")
158

159 combined _data <- bind_rows( depmix _long , baseline _long)
160

161 # Map alpha names to decimal values
162 alpha_ labels <- setNames (seq (0.1 , 0.5, by = 0.1) , paste0 ("alpha", 1:5))
163 combined _data$alpha <- factor ( combined _data$alpha , levels = names(alpha_

labels ), labels = alpha_ labels )
164

165 # Plot the data
166 ggplot ( combined _data , aes(x = alpha , y = value , fill = group)) +
167 geom_ boxplot () +
168 labs(title = " Comparison of Depmix Method and Baseline Method Accuracies ",

x = "Alpha Value", y = " Accuracy ", fill = " Method ") +
169 theme_ minimal () +
170 scale_fill_ manual ( values = c(" Depmix " = "blue", " Baseline " = "red")) +
171 scale_y_ continuous ( labels = function (x) paste0 (x*100, "%")) +
172 theme(text = element _text(size = 12) ,
173 plot.title = element _text(size = 16, face = "bold"),
174 axis.title = element _text(size = 16) ,
175 axis.text = element _text(size = 16) ,
176 legend .title = element _text(size = 12) ,
177 legend .text = element _text(size = 12))
178

179 # Run t-tests
180 baseline <- read_csv(" depmix _v2_ baseAccuracy .csv")
181 depmix <- read_csv(" depmix _v2_ depAccuracy .csv")
182

183 results <- list ()
184

185 for (i in 1:5) {
186 column _name <- paste("alpha", i, sep="")
187 test_ result <- t.test( baseline [[ column _name ]], depmix [[ column _name ]],

paired = TRUE)
188 results [[ column _name ]] <- test_ result
189 }
190

191 results
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