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Abstract 

Recent advancements in high-throughput (HT) multi-omics have significantly impacted 

drug discovery, enhancing the exploration of novel chemistries through innovative 

analytical techniques. Metabolomics, a fundamental branch within the 'Omics’ 

disciplines, focuses on the comprehensive and quantitative characterization of complex 

mixtures, often using mass spectrometry (MS) for analysis. Despite progress in multi-

omics technologies, the chemical analysis of natural products (NP) mixtures remains a 

rate-limiting step in the discovery pipeline, creating a gap between chemical and 

biological profiling. Liquid chromatography (LC) is essential for high-quality chemical 

analysis of NP mixtures but can be time consuming for large sample libraries. 

Addressing the limitation, a dual-grid orthogonal sample pooling strategy called 

MultiplexMS was developed to increase LC-MS throughput. In a proof-of-concept study 

involving 925 fractionated NP extracts, MultiplexMS demonstrated efficacy by 

rediscovering all previously reported bioactive metabolites in only 5% of the original MS 

time. MultiplexMS-Q, an addition to MultiplexMS, introduces mathematical formulations 

to calculate relative quantitation data from MS features detected in pooled samples. This 

quantitative information enriches the qualitative data provided by MultiplexMS, offering a 

comprehensive view of NP mixtures. Advanced MS instrumentation can address 

sensitivity and mass accuracy limitations associated with chemically profiling complex 

mixtures. A subsequent study evaluated the benefits of high-resolution (HR) mass 

spectrometers, emphasizing improved resolving power, scanning speed, and sensitivity 

while maintaining accurate identification in complex samples. Integrating various omics 

techniques is crucial for modern NP discovery. Using a combination of metabolomics 

and genomics, new molecules with unique chemical scaffolds were discovered from 

under expressed biosynthetic machinery. These interdisciplinary approaches deepen our 

understanding of NP chemistry and accelerate drug discovery. MultiplexMS and 

MultiplexMS-Q represent advancements in HT chemical analysis, bridging the gap 

between biological and chemical profiling. The continued integration of omics data is 

essential for discovering novel compounds with potential therapeutic applications. These 

advancements empower researchers to efficiently uncover new bioactive molecules, 

contributing to developing new therapeutics. 
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Chapter 1.  
 
Introduction 

1.1. High-Throughput Mass Spectrometry 

1.1.1. Natural Products Chemistry Discovery Pipeline 

Over the past decades, massive advances in the drug discovery pipeline have 

revolutionized traditional methods of identifying therapeutic targets.1–4 Improvements in 

chromatographic technology and the introduction of highly sensitive mass spectrometry 

(MS) instrumentation have enabled analysts to surpass previous analytical limitations.5 

The drug discovery and development pipeline is an interdisciplinary process 

encompassing multiple research phases to facilitate the creation of effective therapies. 

This process typically comprises target-based or phenotypic screening for hit 

identification and chemical characterization using spectroscopic techniques such as MS 

and nuclear magnetic resonance (NMR).6–8 Subsequent chemical modifications optimize 

the activity and physicochemical profile of the target molecule, influencing the in vivo 

behavior, including potency, clearance, and safety.3,9 However, discovering a potential 

target molecule involves extensive analysis and effort, often incorporating improved data 

analytics and predictive methods to associate chemical properties with biological activity. 

Researchers are increasingly focused on enhancing data handling and interpretation to 

create more efficient and accurate predictive models for drug discovery.1,10–16 

Modern applications of the drug discovery pipeline often employ high-throughput 

screening (HTS) campaigns with large synthetic molecule libraries containing several 

hundred thousand compounds.17 In natural products (NP) chemistry, researchers 

frequently work with prefractionated samples from crude environmental extracts, such as 

those derived from bacteria, fungi, and plants. The prefractionated extracts, which form 

large screening libraries and the precursor samples for further downstream analysis and 

fractionation steps, are often complex mixtures containing numerous primary and 

secondary metabolites. Prefraction and fraction refer to a daughter sample from a parent 

extract and the two terms are used interchangeably in this thesis. These libraries can be 

extensive, consisting of tens to hundreds of thousands of prefractionated samples, 
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typically separated by a chromatographic technique (Figure 1.1).18,19 These 

prefractionated samples can potentially contain tens to hundreds of molecules in a single 

sample, equating to tens of thousands of MS features (detected ions with a specific 

mass-to-charge ratio, m/z) following MS analysis of large libraries. The preference for 

such  prefractionated samples is the increased potential to identify bioactivity, which 

would likely be missed in crude extract screening due to the sample complexity and 

interference from other components in the mixture. For this purpose, identifying bioactive 

NPs and using their target engagement is often preferred from a prefractionated library 

rather than an NP crude extract.18 

 Although NP-based HTS campaigns have become less favored by 

biopharmaceutical companies, academic and government institutions are actively 

promoting these efforts.10 For example, an initiative led by the United States National 

Cancer Institute (NCI) aims to stimulate HTS efforts and accelerate NP drug discovery 

through the NCI Program for Natural Product Discovery (NPNPD).18–20 This program has 

developed a publicly accessible HTS-amenable library containing 1,000,000 fractions 

from 125,000 marine, microbial, and plant extracts collected globally. Other fractionated 

libraries for NP discovery campaigns include the Nature Bank (202,983 fractions)21 and 

the Bioinformatics Institute Singapore (120,000 fractions).22 

 

Figure 1.1  Creating a Fractionated Library from a Biological Extract. 
The typical NP fractionation scheme illustrates creating content libraries from 
fractionated extracts of cultured organisms or collected biomass. (1) An organism 
(such as bacteria or fungi) is isolated from the environment and cultured. For 
plants or sponges, biomass is collected. (2) Production is scaled up to yield 
sufficient metabolite quantities for downstream processes, including 
metabolomics, structure elucidation, and bioassay screening. The metabolites 
are extracted from the large-scale production or physical biomass using organic 
solvents (e.g., MeOH, DCM). (3, 4) The organic extract undergoes fractionation 



3 

using an aqueous organic elution gradient that separates compounds based on 
polarity and simplifies the samples for efficient mass spectrometry analysis. (5) 
Fractions are deposited into library plates for future bioactivity screening or 
metabolomics studies. 

The early adoption of appropriate technologies in the drug discovery pipeline can 

significantly shorten the timeline from identifying potential therapeutic targets to pre-

clinical development. Therefore, there is a concerted effort to develop and utilize 

advanced software and instrumentation to guide researchers toward effective targets, 

aiming to improve the success rate of identified therapeutic development.6,23 This 

involves using novel sampling and investigative omics technologies to identify, target, 

and characterize potential candidates from complex mixtures of molecules.16,24 

Metabolomics, which focuses on the comprehensive and quantitative chemical 

characterization of complex mixtures, has particularly benefited from these 

advancements and has become essential in fields such as NP discovery.25 However, 

advancements in high-throughput (HT) chemical characterization experiments of large 

complex sample libraries, particularly when using liquid chromatography (LC) before MS, 

have not kept pace with technological improvements in the omics field and, therefore, 

hinder the modern, fast-paced drug discovery efforts.  

Chemical characterization of the extract samples is integral to the drug discovery 

process.26 It is becoming increasingly apparent that NP discovery necessitates an 

integrative understanding of chemistry, biology, and computational methods. One-

dimensional perspectives, such as bioassay-guided fractionation (BGF), are no longer 

sufficient to maintain the identification rate for novel bioactive scaffolds. New 

technologies and strategies (discussed later in Section 1.1.4) leverage a biological 

extract's chemical composition with the phenotypic profile to predict the active 

constituent(s).27 Acquiring the complete metabolomic profile of a sample library can be 

advantageous for applying the sample set to various bioassays, reducing the time 

required to identify target compounds and assessing the distribution of a molecule 

across a sample library. However, herein lies the problem. Modest screening facilities 

can assay upwards of 50,000 samples a day in HT bioassays. Still, the chemical 

characterization of large extract libraries is a limiting factor, especially when applying LC-

MS analyses, as the time needed for chromatography hampers the whole analysis 

pipeline.28 For example, the problem with HT LC-MS analysis becomes apparent when 

deciding how to effectively sample the 1,000,000-member NPNPD sample library. Given 
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the traditional metabolomics workflow, samples should be analyzed as replicates to 

establish an accurate representation of each sample's chemical composition.29 Applying 

this methodology to the entire NPNPD library, with an elution gradient of 5 minutes (8-

minute complete cycle), it would take more than 15 years of continuous instrument use 

to obtain the full metabolomics dataset, a timeline not aligned with modern HT drug 

discovery.6 Therefore, developing strategic approaches to mitigate time constraints in 

LC-MS analysis while preserving data quality is crucial for enabling a more efficient 

throughput capacity in the discovery pipeline. This objective forms the central thesis of 

this study. 

1.1.2. Prospects in High-Throughput Natural Products Discovery 

Interest in HTS and NPs for drug discovery remains an attractive research topic 

in academic settings despite waning interest in the pharmaceutical industry.10,12 This lack 

of interest from pharmaceutical companies is mainly due to the complexities associated 

with NP screening, regulations on obtaining access to international bioresources, the 

high complexity of biological samples, limited success in HTS campaigns, restrictive NP 

patent laws, and the costly efforts needed to reduce this complexity to make the 

screening process more fruitful.12,30 However, this has sparked enthusiasm among 

researchers to develop methods for more efficiently identifying chemical targets in 

extracts that could contain thousands of compounds. HTS campaigns are often applied 

in two aspects: biological screening, which investigates the impact of a molecule in a 

biological application against a disease target or mechanism, and chemical screening, 

which analyzes the chemical constitution of a sample.26,31 Improvements in sensitivity 

and associated technologies, such as sophisticated instrumentation and laboratory 

automation, are rapidly enhancing the throughput potential of HTS applications.32 

Phenotypic drug discovery has re-emerged as an effective strategy. It focuses on 

modulating a disease phenotype or biomarker rather than a pre-specified target to 

provide therapeutic benefits.3 One notable application of this is Cell Painting, a high-

content image-based assay for morphological profiling using multiplexed fluorescent 

dyes.33–35 This technique is powerful for identifying small molecules as potential 

therapeutics and uncovering genetic regulators of various biological processes. Cell 

Painting allows for high-content image analysis of individual cells, measuring 

approximately 1,500 morphological features to produce a rich profile suitable for 
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detecting subtle phenotypes.33,35 The advantage of image-based analyses is the ability 

to measure many samples and phenotypes simultaneously. These improvements in 

biological screening have significantly increased the throughput potential of analyses, 

outpacing other areas of the drug discovery pipeline. The challenge remains to bring the 

chemical characterization of complex extracts up to the same speed to realize the 

potential of HTS in NP drug discovery fully. 

The second aspect of HTS is chemical characterization, which involves 

chemically annotating molecules in complex mixtures to determine the chemical 

constitution of samples. This is an application of metabolomics.12,25 This process 

leverages analytical techniques, including MS and NMR spectroscopy, to analyze the 

chemical complexity of a sample, offering valuable insights into the structural 

characteristics of the molecules present. However, due to the insensitivity of NMR, MS is 

the most common analytical application in metabolomics, particularly in untargeted 

experiments, which aim to measure all the molecules in a sample unbiasedly.12 Modern 

MS instrumentation analyzes complex mixtures with remarkable accuracy, providing 

high resolving power, sensitivity for detecting low-abundance molecules and ions, and 

rapid scanning speeds, enabling precise analysis of intricate sample compositions.5,10 

While direct infusion MS (DIMS) can be useful for targeted analyses, NP samples are 

often too complex, leading to compromised data quality. Therefore, a front-end 

application that simplifies sample complexity, like LC, is needed before MS analysis.36 

Section 1.1.5 further discusses the advantages of using high-resolution (HR)-MS 

instrumentation to detect molecules precisely in complex mixtures and the analytical 

benefits of high-accuracy measurements in molecule dereplication. 

1.1.3. Modern High-Throughput Methodologies 

Due to its unparalleled precision, speed, and ability to identify complex mixtures, 

LC-MS is the most widely used method for untargeted metabolomics.5 Modern 

advancements in LC capabilities offer high separation efficiency, improving downstream 

data analysis of complex samples. Ultra-performance liquid chromatography (UPLC) 

platforms, which use columns packed with sub-2 µm particles, require high pressures 

and provide improved separation performance over traditional LC methods.5,37 While 

UPLC-MS offers exceptional quality analysis, it is important to be aware of its 

challenges. The time required to process samples chromatographically can be a 
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hindrance, especially with gradients as short as 5 minutes per sample. This becomes a 

bottleneck in drug discovery, particularly when biological screening can process similarly 

sized sample sets in a fraction of the time.29 

Despite these challenges, improvements are underway in this area.10,38 Analysts 

routinely implement ultra-high-throughput (uHT) MS analyses, a technology that 

leverages optimized ionization and sample delivery techniques to enable sampling from 

plates at a rate of over one sample per second.1 These technologies, which do not 

require a chromatographic separation step, can be used in various screens to detect a 

broad range of analytes, including small molecules, lipids, and proteins. uHT techniques 

include acoustic droplet ejection (ADE)39–41, acoustic mist (AM)42, matrix-assisted laser 

desorption electrospray ionization (MALDI)43,44, and nanostructure-initiator mass 

spectrometry (NIMS).45 These methods improve sample throughput and allow screening 

libraries on a timeline comparable to biological screening campaigns. However, like the 

earlier arguments regarding DIMS, these techniques are best suited to targeted 

applications involving single-molecule or low-complexity samples.11,44 

Another route for HT screening is affinity selection (AS)-MS.46 This approach 

aims to separate binders from non-binders against a biological target. In AS 

experiments, compounds with high affinity are separated from those that do not bind to 

the target. Usually, each library member is present at minute concentrations (often pico- 

or femtomolar), with the target concentration driving the binding equilibrium. When an 

immobilized target is selected, the high local concentration on the surface can lead to a 

rebound effect, resulting in more efficient capture of binders.46 This methodology 

integrates metabolomics analysis with biological screening, reducing the need to 

conduct bioassay screening and metabolomics analyses separately. However, while AS-

MS is still developing and successfully applied in many HT applications, comprehensive 

MS analysis of all samples is limited by the lack of metabolite information in the 

screening application of AS-MS.46 

The Agilent RapidFire HT-MS system is a sample delivery system that performs 

online solid-phase extraction (SPE) separation before MS analysis.47 This SPE-MS 

process improves sample analysis throughput, removes salts and background 

components before analysis, and allows for the analysis of samples at approximately 9 

seconds per sample, enabling the analysis of a 384-well plate in just over 1.5 hours. 
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Users of this technology can apply sampling with various techniques, including lead 

discovery, forensic toxicology, and multi-omic applications.47–49 This flexibility is due to 

the interchangeability of the SPE cartridges with different stationary phases suitable for 

the study. The RapidFire application has been adapted to AS-MS applications to 

increase therapeutic discovery.50 However, SPE-MS has limitations, especially in 

analyzing high-complexity NP samples, such as the lack of chromatographic separation, 

reduced ionization efficiency, limited quantitative accuracy, and less effective untargeted 

profiling compared to targeted analyses.51 Nevertheless, these limitations do not 

diminish the RapidFire system's value as an effective tool for label-free HT drug 

discovery. 

In UPLC-MS analyses, single-channel systems are commonly used, where a 

single column performs chromatography on each sample sequentially. Technological 

developments have aimed to increase the utilization of MS scanning time by parallelizing 

the chromatographic method.52 This involves using multiple columns simultaneously in 

independent LC channels to accelerate the speed of analysis. This technique, known as 

multi-channeling, can increase throughput over single-column chromatography while 

retaining high chromatographic quality.52 However, though this system's throughput is 

advantageous for smaller libraries, it is still insufficient for the extensive libraries 

discussed earlier. Additionally, these systems can be costly and complex to operate 

correctly. 

Until these techniques can match the separation potential of UPLC-MS, 

chromatographic separation will continue to be the mainstay of metabolomics in large 

screening campaigns. UPLC-MS excels in analyzing samples requiring low detection 

limits from complex matrices or characterizing complex biotherapeutics such as 

antibody-drug conjugates.6,12,36 The reduced chromatographic dispersion of eluting 

analytes promotes improved source ionization efficiency.15 Large-scale HT experiments 

drive biotechnology research and the search for drug candidates, offering experimental 

systems that automate the discovery process and promptly allow for tens of thousands 

of samples to be analyzed. Improvements in instrumentation and software processing 

data have reduced the likelihood of experimental errors, providing efficient and robust 

data analysis. Setting aside a significant bottleneck that hinders the NP discovery 

pipeline, namely structure elucidation, the research described herein targets the 
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throughput capabilities of UPLC-MS analysis of large, complex sample libraries by 

reducing the time needed for chromatographic analysis while maintaining data quality.12 

1.1.4. Metabolomics Software Development and Data Repositories 

Modern software applications and data repositories greatly enhance high-

throughput metabolomics analysis. These tools are crucial in accurately deconvoluting 

MS features in complex mixtures and aligning samples in experiments to map molecules 

across datasets. The emergence of data repositories and chemoinformatic approaches 

has significantly expedited the dereplication of NP discovery, enabling the distinction of 

known chemistry from novel compounds within a sample. 

The Natural Product Atlas (NP Atlas), a globally curated database housing over 

36,000 distinct microbial NP compounds, is an important asset in NP discovery. The 

database provides essential structural and chemical information based on published 

data to expedite discovery and dereplication processes.53 NP Atlas also offers 

comprehensive analyses of reported compounds, providing links to additional databases 

such as MIBiG 3.054, SMART 2.055, and NP Classifier.56 At the same time, tools such as 

CFM-ID predict MS/MS fragmentation spectra, and databases like METLIN offer 

empirical MS/MS data.57–59 NMR-based metabolomics has also gained traction due to 

advancements in instrumentation and computational algorithms, supported by resources 

like the Natural Products Magnetic Resonance Database (NP-MRD), which archives 

NMR spectra of identified compounds and can aid in the development of computer-

assisted structure elucidation (CASE) tools such as DP5.13,60–62 

Data preprocessing platforms have significantly advanced due to innovations in 

deconvolution algorithms, hardware improvements, and reference datasets, which 

facilitate dereplication or association with known families or classes of compounds.14 

These platforms transform raw data from the MS acquisition into a machine-friendly 

format suitable for analysis by various bioinformatic software packages. In 

metabolomics, preprocessing steps include deconvolution, calibration, normalization, 

alignment, lock mass correction, and missing value imputation.12,14 Many platforms exist 

for data preprocessing, performing the usual steps with great accuracy and precision 

and often tailored to specific instrument vendors and data acquisition methods. This step 

is crucial for aligning MS features between samples and observing the relative 
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abundances of molecules across a sample set. However, despite the precision of these 

platforms, processing time remains a limiting factor, especially when analyzing large 

datasets or thousands of samples.14 

Modern bioinformatic approaches have surpassed traditional one-dimensional 

methods, enabling the rapid identification of novel bioactive scaffolds in complex 

mixtures. These approaches allow researchers to identify potential bioactive candidates 

more efficiently, reducing the need for iterative testing and isolation. For example, Kurita 

et al. combined NP chemistry, metabolomics, HTS, and similarity networking to discover 

a novel family of NPs from extracts saturated with known compounds.63,64 NP Analyst, 

an open-source platform for Compound Activity Mapping (CAM), integrates metabolomic 

and bioactivity data to prioritize compounds.27 The Global Natural Products Social 

Molecular Networking, or GNPS, provides an open-access database of community-

shard MS/MS spectrometry data and molecular networking to visualize and annotate the 

chemical space in untargeted metabolomics.57,65 McCaughey et al. developed the 

platform Isoanalyst that leverages stable isotopic labeling to correlate MS-based 

metabolomics data with bioinformatic predictions of compound structures.66 In addition, 

various bioinformatic utilities complement this tool, including antiSMASH 6.067, an 

updated version of the most widely used tool for mining microbial genomes for 

secondary/specialized metabolite biosynthetic gene clusters (BGCs), and MIBiG 3.054, 

an online reference database of BGCs. These platforms, and others not mentioned 

here68–70, underscore the critical need for rapid data acquisition in bioassay and UPLC-

MS domains, highlighting the advanced software tools available to integrate HT 

capabilities. Software platforms have facilitated NP discovery, but there is still a gap in 

UPLC-MS sample throughput that must be addressed to leverage the processing and 

analysis capabilities of modern bioinformatic tools.  

1.1.5. Mass Spectrometry Advances in Natural Products Mixtures 

Advancements in various technologies highlight the capabilities of MS systems to 

analyze complex mixtures precisely. Over recent decades, MS has undergone 

remarkable advancements, revolutionizing the capability of investigating complex 

mixtures with unprecedented sensitivity, resolution, and throughput.71 Since its inception 

in the early 20th century, MS has become the central technique extensively utilized for 
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molecular analyses.72 It has demonstrated distinct capabilities in accurately and 

sensitively analyzing complex mixtures, finding wide applications across various studies. 

MS technology has driven data acquisition, processing, and interpretation 

innovations through advanced computational tools and bioinformatics pipelines. 

Introducing ionization techniques like ESI and MALDI has enabled the direct analysis of 

biomolecules such as peptides, proteins, and metabolites from complex biological 

matrices.5,73 This foundation has been crucial for modern proteomics and metabolomics. 

Simultaneously, the development of high-resolution (HR) mass analyzers—such as time-

of-flight (TOF), quadrupole-TOF (qTOF), ion trap, and Orbitrap analyzers—has 

expanded the capacity of MS to resolve complex mixtures with enhanced accuracy and 

mass resolving power.74,75 Integration with chromatographic techniques such as LC 

further enhances the resolving power and analytical throughput of MS-based analyses, 

enabling comprehensive characterization of complex samples with diverse chemical 

compositions.5 These advancements have been pivotal in overcoming the challenges 

posed by the complexity and diversity of biological samples, making MS indispensable in 

research analyses. MS technology finds widespread application in diverse scientific 

domains, notably in metabolomics, where it provides insights into metabolic pathways, 

biomarker discovery, and disease mechanisms, significantly advancing our 

understanding of metabolic networks under various conditions.5,73 Moreover, the ability 

of MS instrumentation to detect and characterize trace analytes with high specificity has 

driven breakthroughs in biomedical research and environmental monitoring.74  

Innovative additions to MS instrumentation have significantly enhanced 

sensitivity and resolution capabilities. Techniques like ion mobility spectrometry (IMS) 

and ambient ionization methods continue to expand MS utility in real-time analysis of 

complex samples, bridging the gap between analytical chemistry and practical 

applications.76 Modern instruments, exemplified by the Waters™ Multi-Reflecting Time-

of-Flight (MRT), achieve remarkable precision (parts per billion (ppb) mass accuracy) 

and resolution (300,000 full width at half maximum (FWHM), enabling comprehensive 

analysis of complex mixtures and facilitating crucial processes such as dereplication and 

molecular formula determination.77 

The evolution of MS technology has profoundly impacted scientific research, 

enabling discoveries across disciplines. As MS continues to evolve and integrate with 
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interdisciplinary approaches, it promises to uncover novel insights into biological 

systems, environmental dynamics, and material sciences, thereby shaping the future of 

scientific inquiry and innovation. Chapter 4 discusses using state-of-the-art MS 

technology to analyze increasingly complex NP mixtures and compares results to a 

current industry-leading HR mass spectrometer. 

1.2. Advancements in High-Throughput Sampling 

1.2.1. Introduction to Sample Pooling 

The standard approach taken by HT experiments is to test each item individually 

in single analyses.6 This approach, while thorough, is time-consuming and costly, mainly 

when the goal is to identify a relatively small number of items of interest from an 

extensive sample library. This issue is prevalent across various fields, including 

biological screening and public health screening, where timely analysis is crucial to, for 

instance, prevent the spread of a disease agent.78,79 One proposed solution is sample 

pooling or multiplexing to address the challenge of low throughput.80 Scientific 

implementation of the sample pooling approach was first described during World War II, 

when draftees were tested for syphilis.80,81 In the approach, blood samples from multiple 

cadets were pooled and tested as one sample for the syphilitic antigen. If the test was 

negative, the cadets were cleared. Otherwise, a positive result would require retesting of 

individuals for the antigen. (Figure 1.2).82,83 While pooling multiple samples and 

analyzing them simultaneously is generally effective, it also presents practical 

challenges. These challenges necessitate innovative experimental designs to minimize 

the need for reanalyzing samples and ensure accuracy during pooled sample analysis.84 

This opens opportunities to identify combinations or organizational strategies that 

enhance positive outcomes by reducing false positive rates (FPRs) or avoiding omitting 

positive results. Several applications of sample pooling for HT operations have been 

documented. However, there are currently no known applications specific to HT sample 

pooling in metabolomics analysis that efficiently handle large sample libraries using 

UPLC-MS.85–88 
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Figure 1.2  Example of Sample Pooling to Increase Throughput 
In this sample pooling example, specimens from human subjects are combined 
into groups of eight for testing in a targeted assay. If the pooled sample tests 
negative, all individuals are considered negative. However, if the pooled sample 
tests positive, each subject within the pool is retested individually. This pooling 
approach has been applied in medical assays to streamline testing for large 
populations, reducing the required time and resources.78,79 

1.2.2. Pooling Constraints in Untargeted Metabolomics 

Throughput presents a notable constraint in metabolomics analyses. When 

employing untargeted metabolomics with UPLC-MS on biological specimens, each 

sample can yield thousands of individual signals known as "MS features," characterized 

by distinct m/z values and retention times.10 Identifying which MS features represent the 

same analyte across multiple UPLC-MS runs becomes challenging, especially when 

profiling numerous samples simultaneously. Constructing MS feature lists for each 

sample is critical in untargeted metabolomics analysis. However, pooling multiple 

samples into a single analysis complicates the reconstruction of individual sample lists 

since the origin of each MS feature becomes ambiguous. This necessitates the 

development of characteristic sampling strategies to enable multiplexing and the 

identification of the origin of specific MS features for downstream analysis. 

Sample pooling in untargeted UPLC-MS metabolomics presents challenges, but 

it is a strategy that can be carefully considered for specific applications. For instance, it 

is most suitable for applications where positive results, or the presence of a particular 

molecule, are infrequent in a dataset. This significantly reduces false positives upon the 

reconstruction of individual sample lists. HT NP experiments for discovering bioactive 

compounds align well with this strategy, given the typically low hit rates (<1 %) in 

biological NP screens.12 
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One multiplexing strategy addressing throughput limitations in HT metabolomics 

involves using pooled quality control (pooled QC) samples to establish a combined peak 

list of all analytes in a sample set.89 This strategy involves combining small aliquots from 

individual samples to create a composite sample, which is then analyzed using UPLC-

MS amongst the rest of the sample set. The pooled QC approach offers several 

advantages: it reduces sample variability by averaging individual differences, leading to 

more robust and reproducible data; it conserves resources by reducing the number of 

analytical runs needed, which is particularly beneficial in large-scale studies with limited 

sample volumes; and pooled samples can serve as quality control references throughout 

the analytical process, aiding in monitoring instrument performance and data 

consistency.90 For instance, Stancliffe et al. recently proposed a data acquisition strategy 

capable of analyzing thousands of samples using GT peak lists from a pooled QC 

sample to identify features from batches of research samples.89 While the pooled QC 

strategy is effective in many ways, it is important to note that it does have limitations. For 

instance, pooled QC eliminates the need for technical replicates for all samples, but the 

number of MS runs increases linearly with the sample count. This can be a drawback 

when meeting the needs of HT-MS screening. However, this pooling design is 

particularly effective for primary metabolomics applications where samples (e.g., urine or 

plasma) are inherently similar but vary in their analyte concentrations. In such cases, the 

method proves effective because the composition of the pooled QC sample mirrors that 

of individual samples, with only the relative abundances of analytes necessitating 

individual runs. 

While throughput remains a significant constraint in untargeted metabolomics 

analyses, strategic sample pooling can help mitigate some challenges. Although pooled 

QC offers data robustness and resource efficiency, it is limited in resolving the increased 

MS run demands in HT-MS screening campaigns. Exploring advanced sample pooling 

strategies holds promise for improving throughput accuracy and efficiency in 

metabolomics analyses. 

1.2.3. Orthogonal or Self-Deconvoluting Matrix Strategy 

HT-MS screening campaigns often use a single-sample approach, which, while 

straightforward, becomes inefficient with large libraries where traditionally only a few 

active compounds are present.86,91 Sample multiplexing strategies have been explored 
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to address this inefficiency, with varying success depending on the pooling scheme and 

application. One effective strategy for HT screening is orthogonal pooling, also known as 

the self-deconvoluting matrix (SDM) strategy.84,87 Orthogonal pooling involves testing 

each sample twice as a component within different sets of samples. For an n-sample 

library tested in pools of size r, this strategy reduces the number of samples to be 

analyzed to 
2𝑛

𝑟
. This represents an r-fold improvement in sampling efficiency compared 

to single-sample HT experiments using n samples with quadruplicate analysis. 

The orthogonal pooling strategy uses a symmetrical matrix of r x r, where 

samples are assigned theoretical wells within the matrix.84 These assigned samples are 

then pooled across each row and column. If a positive result is detected in both a row 

and a column pool, the positive designation is assigned to the sample at the intersection 

of that row and column. This methodology can be readily applied to NP mixtures, 

allowing detected molecules in row-column combinations to be assigned to the sample 

at the intersection of the pair (Figure 1.3). While there is no physical limit to the number 

of samples that can be pooled together, the complexity of samples and the potential for 

poor data quality during UPLC-MS must be considered. This complexity can be 

mitigated by strategically assembling samples within the grid to maximize the diversity of 

pooled samples, using HR instrumentation, and using complementary IMS during 

analysis.37  

 

Figure 1.3  Demultiplexing Strategy Using the Self-Deconvoluting Matrix. 
Orthogonal sample pooling is a powerful technique for sampling complex NP 
mixtures. In this example, 25 samples are arranged in a 5 x 5 matrix. The rows 
and columns are independently pooled and analyzed by UPLC-MS. If a molecule 
is detected in a row and column, then the molecule is assigned to the sample at 
the intersection of the pair. This approach optimizes sampling efficiency and 
facilitates NP analysis. 
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Orthogonal pooling is particularly advantageous for NP screening, where libraries 

of fractionated extracts from different sources contain a vast array of structurally diverse 

compounds.86,91 This HT sampling strategy is ideal for identifying rare molecules 

sparsely distributed across large extract libraries, as the FPR of scarce molecules is low 

compared to molecules with a high presence in a dataset. With the growing sizes of 

modern extract and compound libraries, the scalability of orthogonal sample pooling 

allows the accommodation of large libraries, making it particularly suitable for extensive 

NP screening by UPLC-MS. 

However, biological extracts, particularly from plants, can contain multiple 

molecules or classes of molecules with similar or identical physicochemical properties. 

Pooling these types of samples can increase the risk of false positives during the 

demultiplexing step, as molecules detected in multiple pools may be wrongly assigned to 

multiple sample locations within the grid. Additionally, NP extracts are reputable for 

sample complexity, containing hundreds to thousands of molecules.6 The combination of 

these dense samples can impact data quality in UPLC-MS analyses. While this 

complexity is typically addressed by a primary fractionation step before MS analysis, 

some fractions may contain more molecules than others. A possible multiplexing 

strategy in this instance involves pooling more complex fractions with less complex ones 

to improve data quality in HT experiments. For example, strategically pooling polar 

fractions with less polar ones reduces the chromatographic overlap of metabolites. 

Another effective strategy involves varying source samples to maximize metabolite 

diversity and minimize redundancy in pools. The rich diversity of NP samples, especially 

from bacteria, fungi, and sponges, makes orthogonal pooling ideal for uncovering rare 

molecules sparsely distributed in an extensive extract library. 

Orthogonal pooling, or the SDM strategy, significantly improves throughput over 

traditional single-sample HT-MS screening methods.84 This method enhances efficiency 

and accuracy in identifying rare compounds within large libraries by reducing the number 

of wells and leveraging a symmetrical matrix approach.86 Strategic implementation and 

careful sample selection can mitigate pool complexity and reduce the FPR. However, 

further enhancement of the orthogonal strategy is needed to improve the accuracy of 

matrix deconvolution. This strategy shows that sample pooling is a promising method to 

enhance UPLC-MS sample throughput when adapted for large NP extract libraries.  
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1.2.4. Dual-Grid Orthogonal Sampling Pooling 

Orthogonal sample pooling offers several advantages, but using a single matrix 

and pooling complex mixtures can complicate the demultiplexing process for detected 

molecules and sample assignments. A complementary strategy known as dual-grid 

orthogonal sample pooling can be implemented to address this. This method uses a 

second symmetrical grid as a counterpart to the initial grid.84 Samples from the initial grid 

are then rearranged so that no two samples fall in the same row or column within the 

rearranged grid. While this strategy doubles the number of pooled samples (
4𝑛

𝑟
), the 

method increases the chemical diversity of pooled samples and provides intrinsic 

quadruplicate analysis of samples.84 If a molecule is detected in two row and column 

pairs (totaling four pooled samples), and the sample identification is the same at both 

row and column intersections, the molecule can be confidently assigned to that sample. 

Dual-grid orthogonal pooling reduces the required runs, enabling faster data 

acquisition and preprocessing of UPLC-MS analysis. Fewer runs mean less 

consumption of reagents, solvents, and instrument time, resulting in cost savings and a 

smaller environmental footprint. This approach is particularly advantageous for resource-

limited labs, allowing more extensive research within budget constraints. However, 

successful implementation requires meticulous planning and data management. Each 

sample must be accurately tracked through its row and column pools to ensure precise 

deconvolution. Accurate mixing and precise handling techniques are essential to prevent 

cross-contamination and ensure representative sampling. Tailoring the pooling method 

may become necessary, considering the specific characteristics of the samples under 

analysis—such as solubility, stability, and their interaction with the UPLC-MS system.6 

Leveraging modern laboratory automation and customized data-handling scripts can 

reduce the risks associated with these factors and enhance the screening capabilities of 

HT campaigns. 

The dual-grid orthogonal sample pooling method represents a promising strategy 

to advance NP UPLC-MS analysis. This strategy addresses key challenges in analyzing 

complex NP mixtures by enhancing throughput, improving data quality, and reducing 

costs. As technology evolves, the dual-grid methodology may become integral to HT NP 

research, facilitating the discovery of novel bioactive compounds with greater efficiency 

and precision. This thesis explores the practical applications, advantages, 
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disadvantages, and limitations of the dual-grid orthogonal sampling strategy in profiling 

large NP sample libraries and re-identifying bioactive molecules. 

1.3. Conclusion 

HT-MS has revolutionized the NP drug discovery pipeline, significantly improving 

the efficiency and effectiveness of identifying potential therapeutic compounds.6,10 

Integrating advanced chromatographic techniques with highly sensitive MS 

instrumentation has overcome previous analytical limitations, enabling rapid screening 

and characterization of large, complex sample libraries. This has been particularly 

transformative in NP chemistry, where researchers often deal with intricate mixtures 

from environmental extracts.6 

Despite these advancements, a key challenge remains in aligning the speed of 

chemical characterization with biological screening. Traditional methods such as UPLC-

MS provide high-quality data but are limited by the time-consuming nature of 

chromatographic separation. This bottleneck becomes pronounced when analyzing 

extensive libraries, such as those created by the NPNPD, which contains over a million 

fractions from diverse biological sources.20 To address these challenges, researchers 

are developing innovative strategies to enhance throughput without compromising data 

quality.12,32 Two promising approaches are uHT-MS and dual-grid orthogonal sample 

pooling. uHT-MS methods bypass chromatographic separation and significantly increase 

sample throughput but are best suited for target analysis with samples containing only a 

few molecules.38 The dual-grid orthogonal sampling strategy involves pooling samples in 

rows and columns from symmetrical matrices.84 These matrices contain the same 

samples but are arranged in different configurations to avoid overlap of the samples 

between grids. The dual-grid approach effectively reduces the required analyses 

compared to single-sample approaches. Additionally, the pooling and subsequent 

deconvolution platform are well-suited for complex mixtures. This sample pooling 

approach is well-suited for researchers wanting to obtain metabolomics data on large 

libraries of samples, so the chemical constitution is known prior to bioactivity testing, 

especially when testing the library against multiple targets. In contrast, this methodology 

may not be applicable to sample sets containing only a few samples as the time saving 

benefit would not be as advantageous to individual MS analysis. 
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Integrating sophisticated software and data repositories has facilitated the 

accurate deconvolution and analysis of MS data.14,36 Computational platforms and 

curated databases, such as the Natural Product Atlas and GNPS, expedite dereplication 

by identifying known compounds and aiding in discovering novel bioactive 

molecules.53,57 These tools enhance the interpretive power of MS data, allowing 

researchers to rapidly associate chemical features with identities, facilitate the 

annotation of large libraries, and dereplicate known molecules. 

Ongoing advancements in HT-MS technologies, innovative data handling, and 

analytical strategies are reshaping the NP drug discovery landscape. While challenges 

persist, continuous developments promise to streamline the pipeline, accelerating the 

identification and development of new therapeutic agents. The future of NP drug 

discovery will likely emphasize multidisciplinary approaches, leveraging technological 

innovations and computational tools to meet the growing demand for efficient and 

effective drug discovery processes. 

This thesis investigates a novel multiplexing strategy for analyzing large extract 

libraries using UPLC-MS to profile complex NP samples chemically. The approach uses 

dual-grid orthogonal pooling to maximize diversity within sample sets and leverages 

high-powered MS instrumentation to improve the profiling coverage. The following 

chapters explore the multiplexing strategy's limitations and advantages, effective sample 

organization approaches, relative quantitation calculations from pooled samples, and the 

potential to discover biologically active metabolites in large extract libraries. 

Chapter 2 describes the strategy, design, and application of MultiplexMS – a 

novel MS-based multiplexing approach for the uHT analysis of complex mixtures. This 

chapter outlines the underlying theory behind the multiplexing strategy and how samples 

are strategically organized to diversify the sample pooling. The HT pipeline is then 

applied to rapidly acquire qualitative information about the chemical complexity of a large 

NP library, offering valuable insights for examining extensive collections. Notably, the 

chapter also discusses the development of a user-friendly graphical user interface (GUI), 

making this platform accessible and inclusive, even to non-programmers.  

Chapter 3 continues Chapter 2, entitled “MultiplexMS-Q: A Quantitative Mass 

Spectrometry Method for Relative Feature Abundance Determination in Multiplexed 
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Mixtures.” MultiplexMS-Q enhances the original MultiplexMS approach, which is limited 

to providing qualitative data by generating presence and absence values for detected 

features (1/0). The new utility, MultiplexMS-Q, determines relative quantitative data 

using matrix algebra and least squares algorithms. This advancement facilitates the 

identification and prioritization of bioactive compounds in NP discovery, offering 

improved accuracy following computational deconvolution and comprehensive analysis 

of complex mixtures. Details are provided regarding the development of the 

MultiplexMS-Q pipeline and the integration into the existing GUI package.  

Chapter 4 explores the use of various HR-MS instruments to assess the impact 

of different degrees of MS instrumentation on the outcomes of MultiplexMS 

computational deconvolution. Specifically, attention centers on the precision of 

assignment and mass accuracy of detected molecules. Comparative testing occurs on 

two instruments: the Waters SYNAPT G2-Si and the Waters Xevo MRT. The Xevo MRT 

is a brand-new qTOF instrument with impressive features, including a 100,000 FWHM 

resolving power and a mass accuracy of less than 500 ppb. 

In Chapter 5, the focus shifts to the use of various analytical methods and omics 

technologies. The diverse set of exploratory techniques aimed to predict, isolate, and 

structurally elucidate novel NPs from the genome of a terrestrial bacterium strain, 

Burkholderia megapolitana FERM BP-3421. 
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Chapter 2.  
 
MultiplexMS: A Mass Spectrometry-Based 
Multiplexing Strategy for Ultra-High-Throughput 
Analysis of Complex Mixtures 

Published manuscript 
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worklist generation, essential for use with automated liquid handlers. D.Y.L. also 

assisted with the automated liquid handling system. M.J.J.R., T.U.H.B., and R.G.L. 

jointly authored the manuscript, and all authors approved the final version. 

2.1. Introduction 

In recent years, high-throughput (HT) multi-omics techniques have changed how 

the field pursues the discovery of natural products (NP). The methods are vital for 

prioritizing and directing the isolation of new chemical compounds from biological 

sources.92,93 Among these techniques, metabolomics, an omics branch focused on the 

comprehensive and quantitative chemical characterization of complex NP mixtures, has 

thrived due to technological advancements and remains at the forefront of NP 

research.94 Untargeted metabolomics analysis is fundamental for NP profiling as it 

leverages the exceptional sensitivity of mass spectrometry (MS) to reveal chemical 

information on large numbers of metabolites in biological samples.25 However, despite 

its application potential, acquiring MS for large extract libraries remains a bottleneck in 
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discovery programs. The challenge lies in the time-intensive chromatographic separation 

required for complex mixtures. Despite the capacity of academic high-throughput 

screening (HTS) facilities to analyze over 50,000 samples daily, limitations in MS data 

acquisition persist. The analysis of such a sample library using MS would occupy a mass 

spectrometer for months of continuous use.28 Consider the ambitious goal of the 

National Cancer Institute’s (NCI) Program for Natural Products Discovery, which aims to 

build a 1,000,000-member fraction library. Even with a minimal elution gradient (as short 

as 5 minutes), ultra-performance liquid chromatography (UPLC)-MS analysis of this 

library would demand more than nine years of continuous instrument time. This estimate 

does not account for replicate analyses, which would further extend the processing 

duration.20,29 While HT multi-omics techniques have revolutionized NP discovery, 

addressing the time-intensive nature of MS data aquation remains essential for 

accelerating the identification of valuable chemical entities. 

Recent advancements in high-speed sampling techniques, including matrix-

assisted laser desorption/ionization (MALDI),44 acoustic mist ionization (AMI),95 and 

acoustic droplet ejection (ADE),40 have revolutionized sample delivery for rapid analyses 

(typically <10 s). These techniques excel in targeted analysis of samples with few 

analytes per sample, outperforming traditional liquid chromatography (LC) methods in 

specific experiments.44 However, UPLC-MS methods offer improved coverage for 

complex samples like NP extracts, thanks to the additional dimension provided by 

chromatographic separation.  

In public health screening, sample pooling is one practical solution to the 

challenge of low sample throughput. In this approach, tests are conducted on pools of 

samples, and individual samples are retested only if the pool returns a positive result.78,79 

This strategy is particularly suitable when the frequency of positive results is low, as 

screening multiple negative pools significantly reduces the number of tests required.86 

The discovery of bioactive NPs aligns well with this approach. Biological NP screens 

typically yield hit rates below 1%, encompassing diverse classes of NP structures. Given 

that individual NP structures are sparsely distributed across extract libraries, a 

pool/deconvolute approach is appropriate for compositional analysis. Surprisingly, 

despite the long history of sample pooling applications in other fields, no MS-based 

method for sample pooling has been developed for NP extract libraries.80,82,85,86 
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This study introduces MultiplexMS (MMS), a novel dual-grid orthogonal 

multiplexing strategy. The method addresses the HT limitations encountered in 

untargeted MS analyses by leveraging highly sensitive MS instrumentation through a 

sample pooling approach. Inspired by previously described methods, the multiplexing 

strategy efficiently analyzes NP extracts by pooling rows and columns from sample 

grids. Each pooled sample, comprised of multiple samples, is subjected to UPLC-MS. A 

subsequent computational workflow deconvolutes the resulting MS data from the pooled 

samples, reconstructing feature lists for each sample within the pool (Figure 

2.1).78,80,84,86 The MMS workflow capitalizes on the presence or absence of an MS 

feature (encoded as a 1 = present, 0 = absent), forgoing quantitative information to 

enhance throughput efficiency. This technique proves ideal for untargeted NP 

metabolomics, especially when identifying rare molecules within complex mixtures. 

However, it is unsuitable for quantitative or targeted metabolomics, which requires 

accurate concentration determinations across a broader sample range.96,97 MMS 

enables large-scale MS analysis of extract libraries in a single experiment by pooling 

multiple samples, offering scalability and efficiency compared to traditional UPLC-MS 

methods. Complementing the process is a dedicated stand-alone software package that 

manages pool design and MS feature deconvolution. The study provides detailed 

insights into the development of MMS, covering proof-of-concept validation, exploration 

of pool size limits, in silico modeling to enhance pool design, creation of an open-source 

software platform for MMS, and validation through the rediscovery of bioactive 

compounds from a 925-member extract library. 
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Figure 2.1  Experimental Schematic of the MultiplexMS Screening Pipeline. 
(1) Lists of samples from a fractionated extract library are provided to the 
MultiplexMS application, (2) Preparation grids and tables are generated using the 
‘Preparation’ table in the MultiplexMS application, (3) Samples are pooled either 
manually or using automated liquid handling robotics, (4) Multiplexed samples 
are analyzed by UPLC-MS, (5) The MS data is preprocessed using a software 
platform that performs lock mass correction, spectral alignment, and peak 
picking, (6) An MS feature list is provided to the MultiplexMS application, (7) 
Computational deconvolution of pooled samples, (8) Optional data filtering and 
cleaning, (9) Feature lists for each sample in the grid are generated. 

2.2. Results 

2.2.1. Development of the Multiplexed Sampling Strategy 

MMS revolutionizes UPLC-MS sample analysis by employing a novel dual-grid 

pooling strategy tailored for maximum throughput without compromising MS data 

integrity (Figure 2.2). Inspired by array testing methods78, this approach organizes an n 

sample library into two MultiplexMS Organization (MMSO) grids, each configured as r x 

r, representing the initial and rearranged layouts (Figure 2.3). Samples are grouped into 

pools of size r and strategically positioned to ensure no overlap in row/column placement 

between the two grids. Using the dual-grid strategy minimizes the inherent challenges in 

deconvoluting identical MS features across multiple samples within a single grid. This 

strategy mitigates the risk of false positive assignments and inflated feature lists during 

sample reconstruction. For example, when multiple samples share the same MS feature, 

the deconvolution process can be prone to ambiguous interpretation, leading to 
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inaccurate feature assignments (Appendix Figure A.1). Despite doubling the number of 

samples for analysis, the incorporation of the second grid enhances the precision of MS 

feature assignment and reduces the false positive rate (FPR) during computational 

deconvolution (Appendix Figure A.2). The pooling process involves combining rows 

and columns from the initial and rearranged grids into pools of size r, where each 

sample makes up 1/r of the pooled samples. This ensures consistent sample 

concentration across analyses, preventing dilution effects and preserving the integrity of 

MS data. 

 

Figure 2.2  Overview of the MultiplexMS Organization (MMSO) Strategy. 
Symmetrical initial and rearranged grids of size r2 are generated using the 
MultiplexMS app. Rows and columns of each grid are individually pooled and 
analyzed by UPLC−MS. Aligned MS features (retention time_m/z pair) in each 
dataset are traced back to the intersecting well of the analyzed row/column. If the 
sample at the intersection is the same in both grids, then the feature is assigned 
to that sample. 

The pooled samples then undergo analysis via UPLC-MS. This is followed by the 

generation of a feature list for each mixture using a user-selected software package 

such as MZmine 3,97 Waters Progenesis QI, etc. Subsequently, MMS employs 

computational deconvolution to decipher the initial and rearranged grids. This involves 

assigning features detected at the intersection of row/column combinations in both grids 

to the corresponding sample position. A feature must be detected accurately in matching 

samples across both grids to be added to that sample feature list. One notable 

advantage of this method is the built-in replicate comparison for quality control, as each 
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sample undergoes analysis four times (each row/column in both grids), ensuring 

robustness in results (Figure 2.2). The MMSO approach is specifically crafted to 

increase confidence in analyte assignments, particularly in scenarios where the same 

analyte appears multiple times within a sample set—a potential concern associated with 

orthogonal sample pooling.84 

 

Figure 2.3  The MultiplexMS Organization (MMSO) Protocol. 
(1) Starting with the initial grid (plate 1), the columns are rotated upwards 
incrementally, (2) The displayed samples are replaced into the grid in the new 
location, (3) and (4) The rows of the new grid are then rotated left incrementally, 
(5) The displayed samples are replaced to the new location to make the 
rearranged grid (plate 2). 

2.2.2. In Silico Testing of the MultiplexMS Strategy 

The MMSO sampling strategy and deconvolution protocol in MMS can pose a 

challenge when the same feature(s) appear across multiple samples within a grid. This 

can result in erroneous features being assigned to additional samples. Conversely, if the 

NP libraries are primarily composed of infrequent molecules, the deconvolution algorithm 

can accurately reconstruct MS feature lists for each sample. To rigorously evaluate the 

efficacy of the MMSO method, we conducted an in silico experiment using LC-MS data 

from 1,015 bacterial pre-fractionated extracts sourced from our in-house library. This 

dataset was chosen based on the taxonomic relatedness of the source organisms 

(Actinobacteria), and the likelihood of NP overlap between samples, providing an ideal 

test scenario to quantitatively assess the performance (precision and FPR) of the MMSO 

method for NP mixtures (Appendix Figure A.2).27,98 
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To estimate feature frequency in metabolic profile datasets, we performed an in 

silico subsampling of the full dataset and counted feature presence for all MS features. 

This experiment was repeated 50 times for three different grid sizes (r = 10, 20, and 30), 

containing 100, 400, and 900 prefractions, respectively (Figure 2.4). The number of 

occurrences, x, for each MS feature was averaged for all repetitions and plotted for each 

grid size (Figure 2.5). In all three cases, the average frequency of an MS feature being 

present just once exceeded 2,000 (r = 10, 2,654 ± 391; r = 20, 2,273 ± 149; r = 30, 2,040 

± 71) out of an average of 10,253 ± 657, 13,686 ± 251, and 15,453 ± 98 total MS 

features in each subsampling dataset, respectively. The frequency of MS features 

present twice in the dataset (x = 2) surpassed 1,000 for all grids (r = 10, 1,380 ± 219; r = 

20, 1,258 ± 119; r = 30, 1,196 ± 30), decreasing for higher frequency counts (e.g., x = 5: 

r = 10, 544 ± 189; r = 20, 571 ± 97; r = 30, 512 ± 36). 

 

Figure 2.4  In Silico Testing Scheme of the MultiplexMS Strategy. 
The in silico testing scheme to test the validity of MultiplexMS. From a 
pool of 1,015 marine bacteria prefractionated library, subsets of size n = 
100, 400, and 900 were randomly drawn 50 times with sample 
replacement. The size of the subsets represents grid sizes of r2, where r = 
10, 20, and 30. The number of occurrences, x, for each MS feature, was 
averaged for all repetitions for each subset size (blue bars in Figure 2.5, 
Appendix Figure A.3). Next, the subsets were arranged in MMSO-
configured grids and computationally deconvoluted to determine 
assignment precision (green trendline in Figures 2.5, Appendix Figure 
A.3). 

Additionally, we assessed the precision and FPR of the MMSO method for the 

three selected r2 grid sizes (Figure 2.5). The MMS deconvolution algorithm was applied 

to simulate pooled rows and columns in silico, generating MS feature lists for 

reconstructed samples. Despite limitations such as excluding effects that could lead to 
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feature loss (i.e., ion suppression, sample preparation issues), this experiment provided 

valuable insights into the computational deconvolution algorithm performance under 

ideal conditions. 

 

Figure 2.5  In Silico Testing of the MultiplexMS Strategy. 
The results of the MS feature frequency count and precision calculation for each 
subset population using the dual grid sampling scheme with (A) r = 10, (B) r = 
20, and (C) r = 30 grid dimensions. 

The results showed that most MS features were present five times or fewer (e.g., 

r = 10, 62%), illustrating the sparse distribution of MS features in the prefraction library. 

Moreover, the MMSO sampling strategy improved assignment precision across all 

experimental grid sizes (e.g., x = 5: r = 10, 86 ± 13%; r = 20, 95 ± 9%; r =30, 97 ± 6%) 

compared to the single-grid approach (x = 5: r = 10, 31 ± 8%; r = 20, 25 ± 5%; r = 30, 23 

± 4%, Appendix Figure A.3). However, a balance must be maintained between 

throughput and FPR as grid dimensions r2 increase. The FPR is inversely proportional to 

grid size r, with precision declining as feature frequency increases. Nonetheless, for drug 

discovery applications targeting "rare" metabolites sparsely distributed in a library, 

metabolites occurring with high frequency and weakly correlating with biological activity 

can be safely excluded from downstream analyses, mitigating concerns about FPRs for 

abundant features. 

2.2.3. MultiplexMS Succ   fully D c    lu    “O  -Compound-One-
W ll” L br r    

Virtual experimentation (Section 2.2.2) highlighted the potential of the MMSO 

strategy to sample and deconvolute complex sample libraries successfully. However, the 

methodology does not consider real-world practical issues (e.g., ion suppression, 

pipetting errors) that can impact MS data quality. To demonstrate real-world scenarios 

beyond the in silico trials, increasingly intricate experiments were designed to gauge the 
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method's accuracy under practical conditions. As a proof-of-concept, we organized a set 

of 25 commercially available antibiotic and antifungal NP standards (n = 25) in MMSO 

grids (r = 5) following a “one-compound-one-well” setup (Appendix Figure A.4). This 

straightforward multiplexing scheme served as a litmus test to reveal any potential 

pitfalls like sample pooling effects during MS analyses, caused by instances such as 

chromatographic overlap and ion suppression. 

The MMS app generated the initial and rearranged grids from the provided 

sample list of laboratory standards. Pooled samples were prepared by combining 

appropriate rows and columns within each grid, resulting in 20 pooled samples in total. 

The combined samples were diluted to an appropriate final concentration and subjected 

to UPLC-MS analysis. Preprocessing of the MS data involved peak picking and 

alignment of MS features using Progenesis QI, with a strict blank subtraction and 

minimum intensity threshold applied to the output file (see Section 2.4.3). Subsequently, 

MS feature lists derived from each pooled sample were computationally deconvoluted 

using the MMS “Deconvolute” function to reconstruct feature lists for each NP standard. 

Simultaneously, each of the 25 NP standards underwent individual MS analysis to 

establish a ground-truth (GT) dataset comprising accurate m/z-retention time pairs. A 

thorough examination of the assigned m/z-retention time pairs revealed that all 25 NPs 

were correctly assigned to the reconstructed samples, barring two instances of false-

positive assignments (Appendix Figure A.5). In one case, [M+H]+ m/z 335.10 was 

correctly assigned to penicillin G but incorrectly identified in the reconstructed sample of 

cloxacillin. Closer examination attributed this to low-intensity contamination of the 

commercial cloxacillin standard with penicillin G (Appendix Figure A.6). The second 

incorrect assignment involved the structural isomers tetracycline and doxycycline, where 

subpar peak shapes and overlapping elution times complicated the automated peak 

picking and alignment (Appendix Figure A.7). Overall, the precision of feature 

assignments was 96%, impaired by two instances of false-positive assignments. 

Encouraged by this promising pilot, the methodology was expanded to tackle the 

analysis of complex mixtures and delve into the detection limits for MS-based complex 

mixture analysis. 
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2.2.4. MS Feature Deconvolution Performance for LC-MS Analysis of 
Complex Mixtures 

One of the primary concerns regarding multiplexing is the potential for analyte 

interference, which could result in the loss of information compared to individual sample 

analysis. Factors such as ion suppression, chromatographic peak overlap, and the 

limitations of automated peak detection software can complicate detecting MS features 

in complex mixtures. To understand how increasing sample complexity affects MS 

feature recovery, we conducted a study using a prefraction from our marine bacterial 

library. This prefraction, labeled as i, contained various NP compound classes, including 

micromonolactam (2.1), dracolactam A (2.2), and dracolactam C (2.3).27,99,100 The 

prefractions were analyzed in triplicate, and retained MS features in all three replicates 

established a GT feature list. 

Prefractionated extracts from other source organisms were sequentially added to 

the target prefraction, starting from i + 1, i + 2,..., up to i + 49, and then incrementally for i 

+ 59, 69, 79, and 99. Each set of pooled prefractions represented potential grid 

dimensions from r + 1 to 100 (Figure 2.6). The concentrations of individual prefractions 

in each pooled sample of size r were kept constant across the set to eliminate dilution 

effects. Each pooled sample was analyzed by UPLC-MS, preprocessed in Progenesis 

QI to generate an MS feature list, and compared to the GT feature list to determine 

recovery rates for the GT MS features from the target prefraction. 

Feature recovery of the target prefraction was assessed in two ways. First, the 

three benchmark molecules (2.1 – 2.3) were examined to determine information 

recovery in the presence of increasing numbers of additional prefractions (Figure 2.6.B). 

Extracted ion chromatograms (EICs) for each molecule demonstrated consistent peak 

shape and intensity up to r = 60. Beyond r = 70, although peak shapes remained 

consistent for compounds 2.2 and 2.3, peak intensities decreased, reaching a minimum 

of 64% for 2.2 and 43% for 2.3 of the GT signals when r = 100 (Figure 2.6.B). Similarly, 

for benchmark molecule 2.1, peak shape remained consistent through r = 100, but peak 

intensity decreased at r = 70, with the most significant reduction in intensity observed at 

50% of the GT signal for each molecule when r = 100 (Figure 2.6.B). 

Secondly, the recovery of the complete GT feature list from the target extract was 

analyzed for each test mixture. The percentage of recovered features from the GT 
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feature list plotted against mixture complexity (r = 0 → 100) showed that pooling up to 10 

extracts returned over 97% of GT features. However, increasing the mixture complexity 

to 20 samples reduced recovery to 90%, while pooling up to 30 samples decreased the 

overall recovery rate to 74% (Figure 2.6.C). Analyzing signal intensities for unrecovered 

features indicated that most were low-intensity analytes near the intensity threshold 

(Figure 2.6.D). Since most NPs possess multiple MS features under standard LC-MS 

acquisition conditions, the loss of a few low-intensity features is unlikely to significantly 

impact the chemical characterization of complex mixtures, especially for drug discovery 

applications.29 

An essential insight from this analysis is that grid size selection should not solely 

prioritize reducing acquisition time but should instead consider optimizing sample 

complexity and MS feature recovery. The complexity, chemical similarity, and 

chromatographic properties of the mixtures under analysis heavily influence these 

factors. Users of the MMS platform are recommended to perform the outlined 

benchmarking method with their sample libraries and refer to the plot in Figure 2.6.C to 

select an appropriate grid size for each sample set. 
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Figure 2.6  MS Feature Deconvolution Performance for UPLC-MS Analysis of 
Complex Mixtures. 
(A) Pooling scheme showing the successive addition of complex mixtures to a 
GT sample containing known molecules 2.1, 2.2, and 2.3. (B) Information 
recovery of benchmark molecules. Each molecule shows consistent peak shape 
and intensity up to r = 60 in all cases, while signal intensity reduces above r = 70. 
(C) Relative feature recovery of the full MS feature list from the GT feature list 
was assessed for each test mixture and plotted as percent recovery. Red: r = 5, 
Green: r = 10, Yellow: r = 31. (D) Assessment of feature recovery as a function of 
mixture complexity. GT MS features are on the y-axis in order of feature retention 
success throughout the dataset. 

2.2.5. Assessment of MultiplexMS Performance with Complex 
Mixtures 

The assessment of MS feature recovery concerning sample mixture complexity 

revealed a return rate exceeding 97% for mixtures comprising ten extracts (see Section 

2.2.4), indicating the proficiency of the MMS method in medium-sized grid setups. 

However, this evaluation overlooked alterations in the MS feature list composition due to 

factors like ion suppression and peak overlap. To gauge the method's performance in a 

real-world scenario, MMSO grids housing 90 bacterial prefractions and 10 NP laboratory 

standards were generated so that each row/column in the initial grid contained one NP 

standard (Appendix Figure A.8). This arrangement provides an internal reference 

during the deconvolution step. After pooling and analyzing rows and columns via UPLC-
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MS (totaling 40 samples) per the MMSO protocol, each prefraction was independently 

analyzed in quadruplicate to establish a strict GT MS feature list. 

Preprocessing of the multiplexed MS data in Progenesis QI, involving blank 

subtraction and enforcing a minimum intensity threshold, pooled samples underwent 

computational deconvolution to regenerate MS feature lists for each original prefraction. 

NP standard-associated MS features were accurately linked to their respective samples 

(Appendix Figure A.9) without any false-positive assignments. Next, MS feature lists 

from the GT prefraction replicate analyses were compared to the reconstructed samples 

from the multiplexed plates. Feature recovery was quantified as the percentage of GT 

MS features found in the reconstructed feature list for each prefraction (Appendix 

Figure A.10). Recoveries spanned from a peak of 97% to a low of 57%, with 72% of 

samples boasting recovery rates of 80% or higher. Notably, most samples with 

diminished feature recoveries (<70%) comprised nonpolar “wash” fractions containing 

relatively sparse MS features in the GT dataset (Appendix Figure A.11). The slight 

feature loss in these cases resulted in a considerable reduction in percentage feature 

recovery due to the small denominator value. As observed in the previous pooling 

experiment, absent features were predominantly low-intensity m/z ions, high-frequency 

background ions, isotopologues, or multiply charged ions identified by Progenesis QI. 

Despite these omissions, crucial for precise atomic composition determination, they did 

not impact the informational integrity of the reconstituted MS feature lists for associating 

molecule presence/absence with specific biological traits. 

This experiment supported the outcome aligned with the in silico analysis (Figure 

2.2), affirming excellent FPRs across all samples but high rates for commonly occurring 

features. Using a 10 x 10 grid curtailed data acquisition time tenfold compared to 

quadruplicate individual analyses, with minimal data loss compared to GT MS feature 

lists. The considerable overlap in feature recovery between in silico and experimental 

analyses lends credence to this approach for bioactive compound discovery using 

automated data integration methods.  



33 

2.2.6. Application of MultiplexMS to Ultra-High-Throughput Library 
Analysis 

Prioritizing bioactive compounds is crucial in NP drug discovery, mainly when 

only a small subset of analytes in NP extract libraries display bioactivity.86 Metabolomics 

data, alongside bioassay data collected from a diverse set of NP extracts, can effectively 

spotlight active constituents, streamlining the discovery process in NP pipelines. NP 

Analyst, an open platform for Compound Activity Mapping (CAM), serves as a tool 

integrating metabolomic and bioactivity data to facilitate compound prioritization.27 In the 

original study from our laboratory by Lee et al., metabolomics data from 925 in-house 

marine bacteria prefractionated extracts (155 source organisms), measured in technical 

triplicates (amounting to 2,775 samples), coupled with an Antibiotic Mode of Action 

Profile (BioMAP) screening panel, were leveraged to pinpoint priority molecules for 

isolation, ultimately leading to the discovery of new bioactive compounds.27,101 

The acquisition of MS data for the 925-member prefraction library demanded 

over 15 days of continuous acquisition time, effectively tying up a high-resolution (HR) 

mass spectrometer for several weeks, significantly longer than the time required for 

acquiring the corresponding biological screening results. This original NP Analyst 

experiment provided an ideal testing ground to benchmark the MMSO strategy against a 

GT dataset. Since metabolomics data had already been acquired for each sample in 

triplicate in the original NP Analyst study, the principle of the MMSO strategy was initially 

tested by pooling feature lists in silico using an r-value of 31 (31 x 31). This grid size of r 

= 31 is the minimum size required to accommodate all 925 samples in a single analysis, 

offering the highest possible throughput. This approach reduced the total number of 

samples needed for MS analysis from n = 2,775 (925 × 3) to 124. It reduced the 

theoretical analysis time from 15 consecutive days to just 15 hours, marking a 24-fold 

reduction in acquisition time. 

NP Analyst prioritizes MS features based on the activity profile strength (Activity 

Score) and consistency (Cluster Score) for the samples where the MS feature is found.63 

Errors in reconstitution from MMS could affect both Activity and Cluster scores, 

potentially deprioritizing essential bioactive molecules. To assess the value of MMS data 

for bioactive compound discovery, a new NP Analyst experiment was conducted using 

the reconstituted MS feature lists from the in silico MMS experiment and the BioMAP 
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activity data from the original NP Analyst study. Subsequently, the Activity and Cluster 

Scores for each MS feature were compared between the original and in silico MMS 

experiments. Changes in Activity and Cluster scores for active features from the original 

experiment provided an objective measure of the influence of MMS analysis on the 

bioactive compound discovery, the primary application for which this platform was 

designed. 

The original metabolomics dataset contained 9834 detected MS features, of 

which 845 were defined as 'active' using Activity and Cluster score filters of 2.0 and 0.3, 

respectively. Following computational deconvolution of the in silico pooled dataset, the 

Activity and Cluster scores were recalculated on all active and inactive MS features. An 

MS feature presence filter was applied, eliminating features in >20 reconstructed 

prefractions (Figure 2.7 and Appendix Figure A.12). Encouragingly, all 845 bioactive 

MS features from the original experiment were detected in the filtered virtual experiment. 

Of these, 798 showed no change in Activity and Cluster scores, indicating correct 

assignment to their original positions in each grid. Among the 47 features with changes 

in either Activity or Cluster Score, changes ranged from -4.1 to +0.23 (Activity Score) 

and -0.46 to +0.042 (Cluster Score) (Figure 2.7.B, C). In total, only 26 features had 

changes in scores large enough to change their assignment from 'active' to 'inactive.' 

Notably, there were no 'active' misassignments in the in silico NP Analyst dataset, 

demonstrating high assignment precision and zero false positives. 

 

Figure 2.7  In Silico MultiplexMS Comparison of Activity and Cluster Scores to a 
GT Experiment Set. 
(A) Assessment of the FPR in the active prefractions following in silico 
MultiplexMS. First, MS features present in the dataset ≥ 20 samples were 
omitted. Next, an Activity and Cluster Score filter of 2.0 and 0.3 were applied. (B) 
Absolute changes in the original Activity Scores of the active MS features 
compared to the in silico MultiplexMS experiment. (C) Absolute changes in the 
original Cluster Scores of the active MS features versus the in silico MultiplexMS 
deconvoluted scores. 
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The entire NP Analyst analysis was repeated experimentally as a final validation 

by creating pooled samples from the original stock solutions and reacquiring the raw MS 

data. The prefraction sample list was provided to the MMS app to generate the initial and 

rearranged grids for r = 31 and create the pooled lists for the rows and columns of each 

grid. Pooled samples were analyzed via MS and preprocessed in Progenesis QI for peak 

picking and alignment, and the pooled feature lists were computationally deconvoluted. 

The comparison between the original and deconvoluted datasets revealed the extent of 

feature inflation when pooling up to 31 prefractions, providing an ideal test case for 

prioritizing the rarer analytes in a dataset. 

The prefraction MS feature lists and the original BioMAP dataset were integrated 

using the NP Analyst platform, generating a prefraction-feature activity network for 

bioactive compound identification and prioritization (Figure 2.8 and Appendix Figures 

A.13 – A.15). Encouragingly, the new analysis recapitulated the creation of distinct 

communities for the known bioactive molecules from the original study (Figure 2.8). 

These included communities for micromonolactam (2.1) and dracolactam A (2.2); the 

collismycin analogs collismycin A (2.4), collismycin B (2.5), and SF2738D (2.6); and 

amychelin C (2.7). The characterization data for each molecule were compared to the 

previous report, including m/z, retention time, Activity Score, and Cluster Score for 

representative ions from each molecule (Figures 2.8.B). All previously identified 

molecules were present in the MMS version of the experiment, displaying remarkably 

similar chromatographic characteristics and instrument response. Moreover, the Activity 

and Cluster scores remained identical in nearly all instances. 

These results demonstrate that MMS can successfully decrease acquisition time 

and increase sample throughput for bioactive compound discovery. In a complex real-

world example containing over 900 samples, the system performed equivalently to the 

gold-standard approach with individual replicate analyses but required less than 5% of 

the MS acquisition time. This outcome suggests that, at the compound level, the 

information content was equivalent, paving the way for application in other large NP-

based screening projects where data acquisition rates currently limit the use of next-

generation data integration strategies like NP Analyst. 
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Figure 2.8  Ultra-High-Throughput MultiplexMS Application with Complex 
Mixtures. 
(A) NP Analyst output from multiplexing 925 prefractionated extracts in 31 x 31 
sampling grids (124 pooled samples). Distinct communities of MS features were 
generated. Circled communities highlight dereplicated molecules in the dataset. 
(B) Activity and Cluster Score comparison between molecules identified in the 
original analyses versus MultiplexMS. 

2.3. Conclusion 

Advancements in instrument sensitivity and preprocessing software are key in 

guiding the identification of bioactive compounds in high-throughput screening 

applications. However, as laboratory automation progresses, the scale of NP libraries is 

increasing substantially.20 Consequently, the time required to analyze these samples by 

LC-MS has surged, sometimes spanning decades of instrument time in extreme cases. 

Complicating matters further, many commercial and third-party MS processing software 

packages struggle to handle peak picking and alignment of thousands of samples in a 

single analysis, rendering traditional methods impractical. 

Throughput is a recognized bottleneck in metabolomics, prompting various 

strategies, such as pooled quality control (pooled QC) samples to define complete 

dataset peak lists, to address this challenge.102 This acquisition strategy can analyze 

thousands of samples by utilizing the total peak list from a pooled QC sample to select 

batches of research samples.89 However, despite its effectiveness in eliminating the 

need for technical replicates for all samples, the number of MS runs still increases 

linearly with the sample count. This contrasts MultiplexMS, which requires significantly 

fewer MS runs for a given sample set. 
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In metabolomics, pooled QC works well for samples with similar compositions but 

varying analyte concentrations. However, pooled QC is less effective in bioactive 

compound discovery, where compositions vary widely due to signal suppression and 

overlap. MMS focuses on detecting feature presence/absence rather than quantification, 

allowing for increased throughput. One drawback of this approach is that FPRs can be 

elevated for commonly encountered features. For bioactive compound discovery, this is 

of limited concern. Sampling strategies in natural product research often prioritize 

maximizing species103 and chemical diversity104 within the sample set to uncover "rare" 

metabolites with unique structural and biological properties. Hence, commonly 

encountered features can be disregarded due to their weak correlation with biological 

phenotypes, as demonstrated by the NP Analyst experiment (Section 2.2.6). To mitigate 

false positives, users can design chromatographic methods that minimize overlap and 

incorporate appropriate blank subtraction processes into workflows. This eliminates 

prevalent background MS features from multiplexed rows and columns, ensuring peak 

lists accurately represent mixture composition. Additionally, employing HR-MS systems 

with resolving powers exceeding 20,000 and considering additional separation axes 

such as ion mobility spectrometry (IMS) can reduce the occurrence of incorrect feature 

alignment of features with similar physiochemical properties. 

In summary, MMS offers an HT pipeline for swiftly acquiring qualitative insights 

into the chemical complexity of large NP libraries, facilitating the exploration of extensive 

collections. Supported by an open-source software package with a user-friendly GUI, 

MMS is accessible to non-programmers and vendor-independent, seamlessly integrating 

into existing MS workflows. 

2.4. Materials and Methods 

2.4.1. General Experimental Information 

All solvents used in the mass spectrometry acquisition were of optima LCMS 

grade. Acetonitrile (ACN), methanol (MeOH), and formic acid (HCOOH) were purchased 

from Thermo Fisher Scientific. Deionized water was obtained using an 18 MΩ·cm Milli-Q 

system (EMD Millipore Corporation). Clindamycin, deferoxamine, erythromycin, 

novobiocin, nystatin, roxithromycin, and tetracycline were purchased from Sigma Aldrich. 

Azithromycin was purchased from TCI. Lincomycin was purchased from RPI. Mupirocin 
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was purchased from Applichem. Staurosporine was purchased from LC Laboratories. 

HR-MS acquisition and metabolomics experiments were performed on a Waters 

SYNAPT G2-Si qTOF mass spectrometer. NMR spectra were measured on an AVANCE 

II 600 MHz spectrometer with a 5 mm QCI cryoprobe (Bruker). 

2.4.2. UPLC-MS Acquisition Conditions 

All measurements were performed on an ACQUITY UPLC i-Class system 

(Waters) with an ACQUITY HSS T3 column 1.8 μm (2.1 x 100 mm, Waters). Separation 

was achieved using a linear elution gradient (mobile phase A: H2O + 0.01% formic acid; 

mobile phase B: ACN + 0.01% formic acid) as follows: 0 – 0.3 min, 5% B; 0.3 – 4.7 min, 

5% – 90% B; 4.7 – 5.5 min, 90% – 98% B; 5.5 – 5.8 min, 98% B; 5.8 – 7.5 min, 5% A. 

The flow rate, column temperature, and injection volume were set to 0.5 mL/min, 40 °C, 

and 5 μL, respectively. MS data were acquired on a SYNAPT G2-Si Quadrupole-Time-

of-flight (qTOF) mass spectrometer (Waters) equipped with an electrospray ionization 

(ESI) source. MassLynx v.4.1 SCN941 was used as the instrument acquisition software. 

Mass measurements were recorded using ESI+ data-independent acquisition (DIA) 

experiments. Detection was performed in the m/z range of 50 − 1500 with a scan rate of 

5.0 Hz, a capillary voltage of 3.0 kV, and a desolvation temperature of 300 °C. Leucine 

enkephalin (Waters SKU: 186006013) was employed as the lock spray solution at 200 

pg/μL concentration at 0.10 Hz.  

2.4.3. Mass Spectrometry Data Processing 

All samples were processed using the Progenesis QI software suite 

(v2.2.5826.42898, Nonlinear Dynamics, Waters). Non-lock mass corrected data was 

uploaded into Progenesis QI software for spectra alignment, lock mass calibration 

(applied to the standard m/z 556.2771), and peak picking using the default settings. The 

generated feature table, including the m/z, predicted neutral mass, retention time, and 

intensity values, were exported, and provided to the MMS software for computational 

deconvolution. A strict blank subtraction was implemented whereby MS features in the 

solvent blank samples were omitted from the resulting MS feature table. Then, a 

minimum intensity threshold was applied to the MS features in the table, eliminating 

features from a sample that fell below the threshold. The minimum intensity threshold 
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value was determined according to the Determination of minimum intensity threshold 

protocol (see Section 2.4.4). 

2.4.4. Determination of Minimum Intensity Threshold 

The metabolomics dataset of 1015 prefractions and methanol/water blank 

measurements underwent preprocessing in Waters Progenesis QI using default settings. 

We calculated the feature count per sample across a range of intensity cut-off values to 

identify a cut-off threshold below which a feature was considered absent. We reasoned 

that feature counts would significantly increase below a certain intensity cut-off 

threshold, indicating the presence of noise features in the dataset. We applied a cut-off 

threshold of 70, determined from the inflection point in the feature count–threshold 

intensity graph (Appendix Figure A.16). Subsequently, features below this cut-off value 

were set to 0, and any features present in at least 50% of the blank samples were 

removed from the dataset. 

2.4.5. Sample Preparation 

Schulze et al.98 outlined the process for bacterial strain isolation, culture, 

extraction, library preparation, and crude extract fractionation. In this study, aliquots from 

designated wells in DMSO stock plates containing prefraction samples were transferred 

into Corning V bottom 96-well plates. These aliquots were diluted 1:100 in DMSO, and 

the replicate parent plates were stored at -70 °C for future use. The arrangement of 

samples in the multiplexed destination plate was determined using the “random” function 

within MMS. Based on the sample library size n, MMS will produce r2
 symmetrical grids 

to accommodate all samples in the library where 

𝑔𝑟𝑖𝑑 𝑐𝑜𝑢𝑛𝑡 =  ⌈
𝑛

𝑟2⌉  (Equation 2.1) 

In the final validation experiment, a library size of n = 925 with grid dimensions 

of r = 31 generates a single initial and rearranged grid. Due to the MMSO methodology, 

the total number of pooled samples equals 4r x grid count. 

Sample mixing was carried out using a TECAN Evo 150 liquid handler equipped 

with a LiHa robotic arm for automated multiplexing. In the NP Analyst recreation 
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multiplexing experiment, 20 μL was removed from the parent plate well, and 5 μL was 

dispensed into assigned well coordinates in the initial and rearranged destination plates. 

This process was repeated for all experimental wells until the multiplexing grids were 

complete. Once finished, the destination multiplexed plate was dried in vacuo to remove 

the DMSO. The dry residue was then resuspended in 5 μL DMSO (1:100) and diluted 

with 1.5 mL 50% (v/v) methanol/water (1:30,000) for mass spectrometric analysis. 

2.4.6. MultiplexMS Application Development and Pipeline 

The MMS application is available for both Windows and MacOS operating 

systems. It is supported by extensive online documentation at 

liningtonlab.github.io/MultiplexMS_documentation. MMS requires only preprocessed 

MS1 level MS data in the deconvolution pipeline. This data consists of a multiplexed 

dataset's individual MS features (m/z vs retention time pairs). The flexibility 

of MMS allows it to work with a wide range of data acquisition modes, making it 

compatible with various experimental setups. The MMS application simplifies the user 

process. First, users upload a sample list to the platform. Then, MMS automatically 

arranges these samples in user-defined, symmetrical grids or r x r. Next, the user 

prepares the pooled samples based on row and column combinations for MS analysis. 

The feature table is returned to the MMS application after preprocessing the MS data 

using their preferred software package. Here, the rows/column mixtures are 

computationally deconvoluted back into MS feature lists for each original sample in the 

set. The app also includes data validation and quality control checks, guiding users on 

necessary corrections before submitting their jobs. It is divided into two main 

sections: preparation and deconvolution.  

i) Preparation Page: MMS offers sample preparation utilities that help organize 

samples into symmetrical grids of length r. This feature allows users to customize the 

pool size and define how samples are organized within the pools (whether in a random 

or fixed order). To execute the preparation step, users must select the file containing the 

sample names and specify the output directory for the resulting plate maps and 

preparation tables. The plate organization between the initial and rearranged multiplexed 

plates adheres to the MMSO protocol (Figure 2.3).  
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ii) Deconvolution Page: After conducting MS analyses and preprocessing the 

data, users choose plate maps from the preparation stage and MS feature lists for 

pooled samples. The MMS tool then uses these plate maps as coordinates to 

reconstruct samples from the pooled sample feature lists. The reconstructed feature lists 

are saved to a predefined output folder. Optionally, users can remove features that 

appear in more than a specified number of samples using the ‘Critical threshold’ 

parameter in the Cleaning tab after deconvolution. By default, the tool excludes MS 

features present in the pooled sample MS data but not associated with any individual 

samples. However, users can deselect this exclusion option if they need a complete list 

of all MS features in the pooled sample feature lists (e.g., for examining the fate of 

specific MS features). 

2.4.7. In Silico Subsampling and Feature Frequency Estimation 

The in silico subsampling approach was used to evaluate the mass spectrometric 

feature frequency and precision of the MMS method on a metabolomics dataset of 1015 

prefractions. After processing the metabolic profiles in Waters Progenesis QI with default 

settings, we obtained a flat feature list with features represented as m/z–retention time 

pairs. Additionally, deconvoluted analytes were represented by their molecular mass (M) 

and corresponding retention time. To enhance data quality, a minimum intensity 

threshold (> 70) was applied to remove noisy features from the dataset (see Section 

2.4.4). Subsequently, the dataset was binarized (1 for feature present, 0 for feature 

absent). We subsampled the overall dataset to estimate feature frequency based on a 

selected r2 grid (e.g., r = 10). For each subsample, we tallied the presence of MS 

features across the entire set. This subsampling process was repeated 50 times, and the 

resulting feature frequency values were reported as averages along with standard 

deviations. 

To simulate the MMS method, we followed the following steps: i) randomly draw 

a subsample of size n and arrange the samples in a square grid with dimensions r x r 

(where r = 10, 20, or 30) to mimic the mixing process.; ii) obtain the presence vector for 

each feature in the square grid (length r x r) to generate the initial presence vector (GT); 

iii) apply the MMS strategy to create a rearranged presence vector; iv) Construct a new 

observed vector representing the multiplexed samples using the initial and rearranged 

vectors; v) determine the deconvoluted presence vector based on overlapping feature 
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presence using the observed presence vectors; vi) calculate precision by comparing the 

GT vector with the deconvoluted vector. The precision calculations were measured as 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (Equation 2.2) 

where TP = true positive and FP = false positive. Precision was used to measure 

the repeatability of each iteration versus the instances of false positives. The FPR is 

calculated as 1 ˗ precision. The in silico MMS scheme used a dual-grid and single-grid 

orthogonal strategy to determine MS feature assignment accuracy between methods. 

2.4.8. Isolation, Fermentation, Extraction, and Fractionation 

Frozen stocks were inoculated on solid media (10.0 g of glucose, 5.0 g of NZ-

amine, 1.0 g of CaCO3, 20.0 g of starch, 5.0 g of yeast extract, 20.0 g of agarose, and 

1.0 L of water) and incubated at room temperature until discrete colonies became 

visible. Individual colonies were inoculated into seed cultures in 40.0 mL culture tubes 

with 7 mL of SYP culture medium (31.2 g of Instant Ocean, 10.0 g of soluble starch, 4.0 

g of peptone, 2.0 g of yeast extract per 1 L of water). After four days, 3 mL of the liquid 

culture was used to inoculate 60.0 mL of SYP in 250 mL Erlenmeyer flasks. The culture 

was incubated for five days before 30 mL was transferred to large-scale, 1.0 L media in 

2.8 L Fernbach flasks along with 20.0 g Amberlite XAD-16 absorbent resin and a large 

stainless-steel spring. Large-scale cultures were fermented for seven days, filtered using 

glass microfiber filters, and washed with water (500 mL). The combined cells and resin 

were extracted with 1:1 DCM/MeOH (500 mL), filtered, and the filtrate concentrated to 

dryness in vacuo. Then, the dried extract was fractionated by solid phase extraction 

(SPE) using a MeOH/H2O stepwise LC gradient to afford six prefractions (A – F).98 

2.4.9. Isolation of Active Compounds from Prefraction RLUS-2152D 

Compounds 2.1, 2.2, and 2.3 were initially isolated from RLUS-2152D after 

refermenting the producing organism. Due to supply limitations of the original 

prefraction, we included the new prefraction RLUS-2152E in this experiment. The newly 

fermented prefractions contributed additional molecules, increasing features within the 

NP Analyst network (Community 2). Interestingly, the original molecules persisted and 

displayed similar activity and cluster scores (Figure 2.8). 
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Community 3 showed the presence of 2.4, 2.5, and 2.6. Compounds 2.4 and 2.5 

exhibited identical activity and cluster scores, while 2.6 had slightly lower scores. The 

feature [M+H]+ m/z 753.3066 at 2.30 minutes – corresponding to the parent mass of 2.7 

– was identified in RLUS-2105A, B, and C using Progenesis QI. This identification 

differed from the original assignment limited to B and C. Upon re-examining the 

deconvoluted prefraction, we confirmed the presence of the parent mass of 2.7, albeit in 

very low abundance (still about the minimum intensity threshold applied to the dataset). 

Interestingly, prefraction RLUS-2105A did not induce activity across the panel of 

bacterial strains in the BioMAP screen. Consequently, the feature m/z 753.3066 

received a low activity and cluster score. In contrast, the Fe-complex adduct of 2.7 

maintained identical activity and cluster scores to the original scores (Figure 2.8). 
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Chapter 3.  
 
MultiplexMS-Q: A Quantitative Mass Spectrometry 
Method for Relative Feature Abundance 
Determination in Multiplexed Mixtures 

Manuscript in preparation 

Authors: Michael J. J. Recchia, Tim U. H. Baumeister, Roger G. Linington 

Author Contributions: M.J.J.R. developed and integrated the MultiplexMS-Q 

methodology into the existing application. M.J.J.R. conducted statistical analyses and 

qualitative assessments of the method’s results. T.U.H.B. provided consultation on 

quantitative methodologies and assisted with custom scripts. Additionally, M.J.J.R., 

T.U.H.B., and R.G.L. collaborated on the manuscript’s authorship and will review the 

final version before submission. 

3.1. Introduction 

Advancements in untargeted metabolomics analysis of natural product (NP) 

mixtures continue to evolve, facilitated by improvements in analytical instrument 

technology and computational processing.105,106 These breakthroughs have significantly 

expanded our understanding of biological systems, enabling the exploration of intricate 

molecular landscapes. For example, enhancements in mass spectrometry (MS) 

resolving power enable the differentiation of two adjacent ions of equal intensity, 

allowing for the unequivocal determination of molecular formulae with ppb mass 

accuracy.106–108 Liquid chromatography (LC)-MS has been a cornerstone in this field due 

to its exceptional sensitivity, enabling the detection of a vast array of metabolites in 

biological samples. However, the time-consuming nature of adequately separating 

molecules in complex mixtures remains a significant challenge in the discovery process. 

This bottleneck can hinder the identification of potential bioactive compounds, especially 

when analyzing large NP extract libraries.18,36 

MultiplexMS (MMS) was developed as a solution to the throughput bottleneck, 

capitalizing on strategic sample multiplexing to reduce the time it takes to analyze large 
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sample libraries without compromising data quality.109 This approach pools multiple 

samples in a single MS experiment and then computationally deconvolutes the 

preprocessed MS data to construct individual feature lists for each sample. The MMS 

algorithm produces a binarized presence/absence output (present = 1, absent = 0) that 

enables rapid analysis through computational deconvolution, offering scalability and 

efficiency for large-scale MS analysis of extract libraries in a single experiment.  

While MMS offers significant advantages for high-throughput (HT)-MS analysis, 

the binarized methodology presents quantitative or targeted metabolomics limitations. 

These limitations arise from the need for relative concentration of metabolites across a 

broad sample set, which is essential for a comprehensive dataset analysis. For example, 

Lee et al. conducted a global meta-analysis of several heterologous datasets to assess 

metabolic signatures (diversity of signatures and metabolite abundance) corresponding 

to various phenotypes involved in several metabolic pathways.110 The findings showed 

which metabolic pathways affected the abundance of metabolites for a given phenotype. 

Although nuclear magnetic resonance (NMR)-based metabolomics is also used, LC-MS 

allows various chromatographic columns to separate analytes in mixtures, reducing 

sample complexity and increasing sensitivity to detect many molecules 

simultaneously.111,112 Metabolomics data is often presented as relative quantities of 

molecules across samples without using quantitative NMR or calibration curves for 

specific molecules.113 The primary reason for this discrepancy is the varying ionization 

efficiencies of different metabolites within complex mixtures, which makes direct 

correlation with absolute concentrations challenging.114,115 Furthermore, the impracticality 

of generating standard curves for potentially thousands of molecules exacerbates this 

limitation, posing a sizable obstacle in metabolomics research.36 Determining the relative 

quantification values of a metabolite between samples offers advantages. Statistical 

comparisons of spectral features and intensities allow accurate identification of similar 

compounds and compound classes across sample sets, providing a comprehensive 

view of the metabolome and sample complexities.116,117 

MultiplexMS-Q (MMS-Q) was created to address these challenges by generating 

relative quantitation data of MS features from pooled complex mixtures following MMS 

computational deconvolution. The computational framework MMS-Q uses matrix algebra 

and a least squares algorithm to calculate relative quantitative information about each 

retained MS feature based on the abundance value detected in a pooled sample. By 
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leveraging the MMS binary output, MMS-Q calculates abundance data based on the 

presence of detected features within an initial and rearranged grid pair. This 

methodology enables the determination of relative quantitation data for each detected 

MS feature in the dataset, which can benefit compound activity mapping (CAM) 

techniques that prioritize metabolites based on their relative abundance and potential 

functional relevance, helping to identify lead compounds or NPs with bioactive 

properties.27,33,64,118  

This chapter describes the MMS-Q methodology, including integrating the 

quantitation tool into the existing MMS application, rigorous algorithm testing to optimize 

prediction accuracy, and potential applications in NP discovery. 

 

Figure 3.1  Overview of the MultiplexMS-Q Workflow. 
(A) The MMS-Q quantitation app receives pooled MS data containing abundance 
values and binary data for each MS feature in the pooled sample. (B) The 
binarized data is mapped back to plate coordinates for each MS feature, and 
intensity information for each pooled sample is appended to the grids. These 
binary grids and intensity data are then organized into a matrix equation (Ax = b) 
to calculate the relative intensity value for the MS feature at its position in the 
grid. Each feature in the rows and columns contributes to the pool's abundance 
value and, therefore, carries a weight used to estimate the abundance value of 
the MS feature in the grid. (C) Researchers can determine the minimum intensity 
threshold by analyzing the abundance values in the table. Mapping the 
abundance values against the frequency of values determines an inflection point 
(minimum intensity threshold), which is then applied to the field of values. Any 
MS feature falling below this intensity value is set to 0 in the respective sample. 
(D) The relative abundance of a molecule can be weighed in each sample it was 
detected in, providing a comprehensive analysis of the metabolomics dataset. 
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3.2. Results 

3.2.1. Implementation of the Relative Quantitation Component of 
MultiplexMS 

The MMS-Q method for predicting relative quantitation values builds upon the 

multiplexing approach used in MMS.109 MMS employs a dual-grid orthogonal pooling 

strategy to organize samples from a library of n samples in r x r grids (initial and 

rearranged). These samples are then multiplexed into pools of size r, with each sample 

contributing 1/r of the sample pool. The key innovation lies in the MultiplexMS 

Organization (MMSO) protocol, which strategically places samples between the two 

grids, ensuring that no two samples from the initial grid occupy the same row or column 

in the rearranged grid (Figure 2.3). Following ultra-performance liquid chromatography 

(UPLC)-MS, the pooled samples are computationally deconvoluted by assigning 

detected MS features to the sample occupying the intersection of the row/column 

combinations, generating feature lists for each sample in each grid. The sample feature 

lists are compared between the grids, and only the features present in both are retained. 

However, the binary nature of the MMS deconvolution process, while enabling rapid 

processing, limits relative quantitation analysis. 

Preserving the abundance of data on MS features serves a dual purpose: 

enhancing relative quantitation analysis between samples and mitigating false positive 

assignments. During the computational deconvolution process in MMS, false positives 

become more common as the frequency of an MS feature within the grid increases. 

While detecting an MS feature in a single row and column pair is straightforward, 

challenges arise when multiple instances of the same feature exist (Appendix Figure 

A.1), creating a higher risk of false assignments. Although applying a minimum intensity 

threshold before MMS processing can reduce some instances, there may still be false 

detections that exceed this limit. The binary nature of the computational deconvolution 

method makes it difficult to confirm the presence of an MS feature accurately. 

Relative abundance data can address this issue by comparing relative intensities 

across instances of an MS feature in multiple samples. This comparison enables the 

establishment of an additional threshold for determining the final peak list. The 

computational deconvolution algorithm also considers results from initial and rearranged 
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grid pairs. It requires a detected MS feature to be assigned to the same samples in each 

grid for retention in the final table. This approach assumes that an MS feature assigned 

to multiple samples contributes to the overall abundance value of the analyte in the 

pooled sample, thus carrying weight in the assignment. By analyzing intensity values in 

pool instances and the assignment locations, we can deduce which samples indeed 

contain an MS feature, eliminating the need for reanalysis by UPLC-MS. 

The MMS-Q workflow builds upon the MMS computational deconvolution, using 

the presence/absence data as a blueprint of analyte assignment. The initial step in the 

MMS-Q workflow involves mapping the presence/absence data of each MS feature to 

the assigned sample location in the initial and rearranged grid pair(s) (Figure 3.1.B). For 

each mapped MS feature, the corresponding abundance value is appended to the 

appropriate row or column pool within the grids. Suppose the MS feature is not assigned 

to a sample in a row or column within the grid pairs following computational 

deconvolution but has a corresponding pooled intensity value. In that case, the pool 

intensity value is assigned as zero. The absence of a MS feature in a row or column 

occurs when the deconvolution algorithm does not assign a feature to a sample because 

it did not meet the requirements of being present in the sample in both grids and as a 

result, it is not retained. This process provides a visual representation of each identified 

MS feature within a grid pair, along with the intensity value in the pooled sample. The 

grid serves as a set of linear equations, where each sample is a new variable. Getting 

solutions for these equations was not always possible, especially when an MS feature 

appeared in multiple samples within a grid. Therefore, it was necessary to calculate at 

least an approximate solution for each identified MS feature in every sample. 

The system of linear equations can be expressed as a matrix equation Ax = b, 

where A represents the matrix, with each column in the matrix corresponding to a 

sample in the sample set. The vector x contains unknowns, representing the relative 

abundance value of each MS feature in assigned samples. Vector b consists of 

constants that denote the detected abundance values of the MS feature in the row and 

column pooled samples. The matrix is depicted as an m x n matrix, where m represents 

the number of equations (pooled samples), and n indicates the number of unknown 

variables (samples within the grid). The values of x constitute column vectors of 

unknowns, representing the relative abundance values of the MS feature in each sample 

(Figure 3.1.B). 
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The matrix equation postulates that a possible solution vector x exists where b 

fits within the column space of matrix A. However, if A is not square (m ≠ n), meaning 

there are more samples assigned to the grid than there are pooled samples (m < n), 

techniques like least squares are employed to find the best approximate solution x̂ to 

solve the equation Ax = b. The least squares approach minimizes the sum of the 

squared differences between the entries of Ax̂ and b, where the solution vector x̂ 

represents the values that minimize this difference.  

The least squares method provides a solution for approximating the value of an 

MS feature within a pooled sample. This approximation can be visually represented by 

mapping it back to the binarized matrix. In cases where an MS feature is highly 

abundant in specific pooled samples but less prevalent in others, the weight assignment 

for that feature will be higher at the intersections of the more abundant pooled samples 

and lower in the less abundant ones (Figure 3.1). The weighted calculation will 

distinguish higher abundance MS features over less abundant assignments within the 

dataset. Such analysis empowers users to deprioritize or remove these assignments 

confidently during downstream analysis and instead focus on true positive MS features 

that contribute to the tested biological phenotype. Additionally, the MMS-Q workflow 

adds to the MMS method. Users can easily reanalyze legacy MMS data to add a relative 

abundance of information without recollecting MS data. 

The following sections delineate a series of experiments designed to evaluate the 

efficacy of the MMS-Q workflow. These experiments encompass virtual multiplexing 

trials to assess the similarity between a predicted deconvoluted grid and ground-truth 

(GT) data. Additionally, a set of experiments investigates the method's capability to 

predict relative quantitation information from mixtures. Finally, the experiments conclude 

with an exploration of the potential of MMS-Q to assist in the prioritization of bioactive 

NPs following the reanalysis of a previous multiplexing experiment. 

3.2.2. Simulation-Based Cosine Similarity Evaluation of the 
MultiplexMS-Q Method 

Simulating sample pooling, a practical and efficient approach, provides a rapid 

means to gauge algorithmic success and evaluate the effectiveness of methodological 

adjustments. This includes subjecting the algorithm to rigorous stress tests, including 
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scenarios with a high presence of MS features, to ascertain the robustness in handling 

computationally challenging environments. Within MMS-Q, these challenging scenarios 

often arise when deconvoluting and assigning ubiquitous MS features to the correct 

samples. This also involves assessing the ability of the algorithm to predict the relative 

abundance of MS features within each sample based on the pooled sample MS data. 

As highlighted in Section 2.2.2, identical MS features recurring across multiple 

samples within a grid pose a challenge in the MMSO sample strategy and computational 

deconvolution. This challenge can lead to incorrectly assigning detected features to 

samples, resulting in inaccurate relative abundance values of the assigned MS features. 

This issue stems from the understanding that the same MS feature, if present in multiple 

samples within a pool, contributes to the overall abundance value observed in the MS 

data.119 The following details the development of a simulated pooling and computational 

deconvolution scheme, including the simulation of diverse matrices, the pooling of 

intensity values, and the application of the least squares algorithm for computational 

deconvolution. The overarching aim of this study is to meticulously evaluate the 

precision of analyte assignment, and the reliability of abundance value retrieval 

compared to a GT sample set. 

The in silico algorithm employed here follows the MMS-Q workflow, including 

binarized computational deconvolution of pooled samples followed by relative 

abundance data retrieval. In contrast to the pipeline outlined in Section 2.2.2, the in 

silico process described here generates theoretical values within a defined range, 

reflective of the potential intensity values observed in a mass spectrometer and provided 

to researchers following MS file preprocessing. The algorithm carefully controls the 

number of features detected in a grid at each iteration. This means the algorithm 

generates data ranging from x = 1 to x = grid limitations (r2), where x represents the 

number of occurrences in a grid. To simulate the pipeline, a sample list of size n is 

inputted into the algorithm. MMS-Q then generates symmetrical initial and rearranged 

grids of dimensions r x r for the simulation. In this experiment, grid sizes of r = 10, 20, 

and 30 were chosen, representing sample list sizes of n = 100, 400, and 900, 

respectively.  

The generated initial and rearranged grids for this experiment start as empty 

matrices, occupied only by the coordinate positions of sample names slated for pooling. 
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An intensity value is then randomly generated within the range of 1E4 and 8E6 for each 

occurrence frequency x, ranging from x = 1 to x = r2. The value is inserted in a random 

location within the initial grid. The assigned value range represents a common 

detectable intensity spectrum of MS features observed in untargeted metabolomics 

analyses. The algorithm then follows the MMSO protocol and generates a rearranged 

grid from the initial grid, ensuring that each x is assigned to the same sample between 

grids. These initial and rearranged grids serve as the GT for the MS feature location and 

quantitation in subsequent analyses. Each grid pair is processed through the MMS-Q 

pipeline i times, with each iteration containing different locations of x MS features within 

the grids. For this experiment, the pipeline was iterated i = 400 times for each 

occurrence across the three grid sizes, r. This means the pipeline went through 400 

iterations for each occurrence x from 1 to r2, using different sample assignments and 

abundance values. 

Once values are placed in the grid, the rows and columns are separately 

summed (additive contribution of each occurrence x), generating a value corresponding 

to the overall intensity value of the detected MS feature(s) in a sample pool. This 

process is carried out for the initial and rearranged grids, creating a pool abundance 

value for each row and column. The pooled samples then undergo processing through 

the MMS-Q pipeline. Using the matrix equation, the least squares value for x is predicted 

by fitting the b values into the column space of A. This generates predicted intensity 

values for each retained MS feature following computational deconvolution. Utilizing the 

minimum intensity threshold feature, assigned MS features below the lower limit (1E4) 

are removed from the dataset.  

The predicted values are organized into a list, with positions corresponding to the 

sample names. The predicted values from MMS-Q analysis are then compared to the 

GT values using cosine similarity scoring, generating values between 0 and 1. The 

cosine scoring method enables qualitative assessment of the algorithm's predictive 

capability in accurately generating values for each detected MS feature, even with an 

increasing frequency of MS feature occurrence. Briefly, cosine similarity is a measure to 

assess how similar two vectors are to one another, regardless of magnitude. The cosine 

similarity score is determined by the angle between the two vectors, ranging from -1 

(diametrically opposed) and 1 (vectors are identical).120 The lists are then binarized by 
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assigning a 1 to any non-zero number and used to calculate the false positive rate (FPR) 

(see Section 3.3.4).  

The average cosine scores and FPR were plotted against one another, showing 

the degree of GT versus predicted value similarity as grid complexity increases (Figure 

3.2). When using a r = 10 (n = 100) sized grid, the cosine similarity of the GT versus 

predicted is > 0.8 even when x = 10, a strong result considering there are 20 pooled 

samples per initial and rearranged grid. Also, the FPR at x = 10 is only 0.18 before 

jumping to 0.50 when x = 20. Increasing the grid sizes is expected to improve the cosine 

scores and FPR. An r = 20 (n = 400) grid size improves the cosine score at x = 10 to 0.9 

while maintaining a low false positive rate at this same point (FPR = 0.05). Finally, the r 

= 30 (n = 900) grid size yielded a cosine score > 0.8 even when x = 18, corresponding to 

an FPR of 0.05. The results show that the algorithm has limitations when dealing with 

high MS features in a sample set and the accuracy of MMS-Q abundance value 

determinations after a multiplexing experiment. Since these data are generated using 

computer simulation, the results can be universally applied as guidelines for determining 

grid sizes when dealing with different sample complexities in MS data. These findings 

establish a benchmark for what can be expected in real-world laboratory experiments 

using complex sample datasets. 

 

Figure 3.2  In Silico Testing of the MultiplexMS-Q Strategy. 
The cosine score and FPR calculation results as the presence of an MS feature 
increases in a multiplexing experiment. The calculation has two purposes: 
assessing the similarity between predicted and GT values and determining the 
FPR after eliminating features below a minimum intensity threshold. The 
experiment was performed on three grid sizes: (A) r = 10, (B) r = 20, (C) r = 30. 
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3.2.3. A         R l      Abu d  c  R  r    l    Mul   l x d “O  -
Compound-One-W ll” Sc   r    

The performance of the MMS-Q algorithm is dependent on sample complexity 

and the frequency of identical MS features across samples. The in silico experiment in 

Section 3.2.2 adeptly illustrates how sample complexity directly impacts the predictive 

capabilities of the MMS-Q algorithm, particularly when erroneous positive assignments 

have a discernable effect on the predicted abundance values. This was evaluated by 

comparing GT MS feature values against computationally derived values by cosine 

similarity scoring (Figure 3.2). The in silico experiment demonstrated the applicability of 

the MMS-Q abundance value predictions for increasingly complex grid deconvolution 

schemes. The MMS-Q was then applied to real-world experimental scenarios, evaluating 

algorithm performance with biological samples and the impact on MS data quality. 

To evaluate MS feature assignment precision, a "one-compound-one-well" 

scenario utilizing a 5 x 5 MMSO strategy from the original MMS experiment was reused 

(Appendix Figure A.4). This endeavor aimed to gauge the MMS-Q precision in 

predicting intensity values for 25 laboratory standards. By simulating an environment 

where each well theoretically contains only one instance of a detected molecule, this 

experiment highlights the applicability and efficacy of the MMSO method in a simplified 

setting. The “one-compound-one-well” experiment serves as a “proof-of-concept” 

scenario, providing a benchmarking experiment to observe the potential effects of 

sample pooling, such as chromatographic overlap and ion suppression. Since these data 

were already acquired in the initial MMS study, the deconvoluted data underwent 

processing through the MMS-Q pipeline to generate predicted intensity values for each 

standard. The 25 standards underwent replicate analysis using an in-house Python 

script. If an MS feature is present in at least 2 out of 3 replicates for each set of 

triplicates, it is retained in the GT dataset, and the intensity values are averaged.  

As an initial evaluation of the algorithm, the deconvoluted dataset was studied to 

assess the method's accuracy in assigning MS features to the correct sample. 

Consistent with the initial study's findings, all standards were correctly assigned in 25 of 

25 cases, with two instances of false positive assignments demonstrating a precision 

rate of 96%.109 Subsequently, the focus shifted to assessing the fidelity of predicted 

intensity values against averaged replicate samples. This qualitative comparison was 
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conducted one-on-one, evaluating predictive accuracy against the GT sample. Initially, 

each replicate set of laboratory standards were scrutinized for deviations between 

injections. The average standard deviation between replicate standards was 8.2% 

(Figure 3.3, Appendix Table A.1). Due to the matrix format and varying weights 

between samples where MS features are present, pooled replicate deviation values 

could not be calculated. Instead, examining the extracted ion chromatograms (EICs) of 

parent ions of each standard in assigned pooled samples revealed an average standard 

deviation of 9.7% from integrated values. The disparity in abundance values between 

computationally deconvoluted values and GT samples, including variations among all 

fragment values, was a mere 15.5% of the GT values. Furthermore, on average, the 

percentage difference between identified parent ions and the GT and calculated 

quantitative values was 9.8%, ranging from 0.2% (amoxicillin) to 35% (midecamycin).  

Another aspect examined was the detection and abundance of associative 

fragment ions. Fragment ions associated with standards (presence and abundance 

values) were identified based on groupings in Progenesis QI analysis. These data were 

compared to the determined quantitative dataset. Overall, 92.7% of the fragment ions in 

the GT dataset were detected in the MMS-Q dataset. The success of this experiment 

underscores the predictive effectiveness and warrants further exploration into more 

complex scenarios to evaluate the predictive power of the MMS-Q algorithm when faced 

with realistic and intricate mixtures. 
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Figure 3.3  Comparison of Ground-Truth Tetracycline and Predicted Values 
from Pooled Samples. 
A cross-comparison between a replicate compared tetracycline standard and 
relative abundance values determined from pooled samples. Sixteen total ions 
were associated with the parent ion based on MS data preprocessing and 
computational deconvolution. The average difference between the abundance 
values of tetracycline GT and the calculated values was 8.2%. All fragment ions 
were detected in both, which served as a benchmark experiment to assess the 
effectiveness of the pooling strategy in a “one-compound-one-well” scenario. 

3.2.4. Evaluation of Single Replicate Standards Versus Standards 
Introduced into Complex Mixtures 

The computational simulation of the MMS-Q pipeline demonstrated the high 

accuracy of the relative quantitation platform in assigning abundance values to MS 

features, mainly when the detection of MS features is low (x < 5). This observation was 

further supported by the 5 x 5 experiment, which mimicked a "one-compound-one-well" 

scenario. However, real-world metabolomics experiments rarely follow such ideal 

circumstances. These experiments typically involve complex mixtures containing a 

multitude of analytes, leading to background complexity and potential disruptions in peak 

shapes due to simultaneous analyte elution.  

In the original MMS study described in Section 2.2.5, an experiment was 

devised to evaluate MMS performance using laboratory standards spiked into complex 

mixtures. This experiment included 90 bacterial fractionated extracts and ten 

commercially available NP, and semi-synthetic standards arranged in dual initial and 
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rearranged grids (Appendix Figure A.8). The experiment was designed to assess how 

effectively the deconvolution platform detected the ten standards in complex mixtures. In 

this section, we replicated the same experiment with a different focus: evaluate the 

accuracy of calculated quantitative values of the standards in the presence of complex 

backgrounds. 

The commercial standards underwent quadruplicate analysis using interquartile 

range (IQR) replicate analysis, which eliminates outlier values to generate a GT dataset 

for comparison with pooled datasets (Figure 3.4.A, Appendix Table A.2). Comparison 

between the GT values generated from Progenesis QI and the MMS-Q calculated values 

provided insight into the accuracy of the algorithm in complex background scenarios. 

The MMS-Q calculated abundance values of the standards in the pooled samples 

differed from the GT dataset by an average of 8.4%, ranging from 1.8% (Novobiocin: GT 

– 34,400.93, MMS-Q – 34,802.67) to 25% (Azithromycin: GT – 12,356.84, MMS-Q – 

15,428.54) (Figure 3.4.E, Appendix Table A.2). An outlier in the dataset was the 

prediction of the deferoxamine abundance value (GT – 1,866, Q – 24,978). This 

discrepancy prompted a reexamination of the pooled samples containing deferoxamine 

in Progenesis QI. The precursor [M+H]+ m/z 561.3597 was identified in the assigned 

pooled samples but showed higher abundance values than the averaged GT value 

(55,336; 49,336; 43,347; 1,243). The high abundance values in the pooled data are 

likely due to a pipetting error contributing to a higher concentration of deferoxamine in 

the pooled samples. Despite this outlier, the correct sample assignment in 9 out of 10 

samples provided sufficient evidence to proceed with the analysis.  

A notable concern with sample pooling is the increase in inaccurate MS feature 

assignments, leading to high FPRs. One consequence of using the binarized system is 

obtaining an elevated FPR without the ability to ascertain the reality of these features 

without reexamining the raw MS data. The original MMS analysis demonstrated the 

ability to eliminate high frequency deconvoluted MS features without adversely affecting 

downstream bioactive compound discovery, as these features likely do not contribute to 

potential bioactivity (see Section 2.2.6). MMS-Q calculated abundance data enables 

analysts to address ubiquitous features with low intensities and prioritize less frequent 

molecules with higher intensities in the dataset that likely contribute to observed 

bioactivity. To simplify the dataset, users can set a predetermined minimum intensity 

threshold in the MMS-Q app by calculating the frequency of MS features within specific 
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abundance ranges. Setting the intensity cutoff threshold at the inflection point will 

remove MS features with low intensities (e.g., background ions, contaminants) to 

enhance analyte assignment precision before computational deconvolution.  

A benchmark analysis of MMS-Q was conducted to determine the correct 

assignment of MS features to samples, particularly to assess whether standard features 

were assigned accurately. Encouragingly, all standard features were correctly assigned 

to the appropriate sample in all ten standards. This highlights the advantages of using 

MMS-Q in obtaining accurate abundance values despite complex backgrounds, further 

emphasizing the potential to identify bioactive molecules in mixtures accurately. 

 

Figure 3.4  Comparison of Ground-Truth and Predicted Abundance Values. 
(A) Comparison of abundance values using IQR for lincomycin GT replicate 
standards. (B) EICs of [M+H]+ m/z 407.2211 for lincomycin replicates, comparing 
intensity and peak shape. (C) MS feature count per prefraction using the binary 
MMS system and the MMS-Q predicted values (with minimum intensity threshold 
feature). (D) Determining minimum intensity threshold: plotting the frequency of 
intensity values for MS features against detected intensities. The minimum 
intensity threshold is determined by the point of inflection, below which the MS 
features are removed from the table. (E) Comparison of log-transformed 
abundance values between GT replicates and predicted values. 
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3.2.5. Leveraging Relative Quantitation for Accurate Detection of 
Bioactive Molecules 

Understanding the relative abundance of an analyte across numerous samples is 

crucial for understanding biological processes, disease mechanisms, and responses to 

drug administration.121,122 Initially, MMS analysis was designed to integrate rapid, high-

quality UPLC-MS analysis of complex mixtures with concurrent bioactivity analysis of 

individual samples, mainly using CAM software like NP Analyst. The resultant MMS 

output file is binary, indicating only the presence or absence of analytes in the MS 

output. MMS-Q elevates this capability by affixing relative quantitative information to 

distinct MS features, facilitating more precise prioritization of identified analytes with 

relative abundance information. 

In our prior study outlined in Section 2.2.6, we demonstrated the efficacy of 

MMS to screen large NP libraries using the sample pooling strategy. This was achieved 

by consolidating 925 fractionated microbial extracts into a 31 x 31 multiplexing 

experiment. The fractions were organized into a 31 x 31 grid, the smallest symmetrical 

grid size accommodating all 925 samples. Rows and columns of the grids were 

separately pooled and subjected to UPLC-MS as pooled fractions. This consolidation 

reduced the number of samples requiring MS analysis from 2,775 triplicate analyses to 

just 124, dropping the analysis time from weeks to a single overnight run. The results 

agreed with the original triplicate analysis, which identified several bioactive compounds 

from the NP Analyst network.27,109 

Previous experiments have demonstrated that MMS is prone to a high FPR when 

pooling more than 20 samples together (Figure 2.5).109 Additionally, the binarized data 

lack relative abundance information, leading to the prioritization of MS features based 

solely on Activity and Cluster scores without considering analyte abundance. These 

features may be minimal or absent in a fraction, necessitating reexamination of MS data 

for confirmation or rescreening.  

Exploring the potential of MMS-Q, relative abundance values were calculated 

from pooled MS data using the original NP Analyst and MMS datasets, which included 

pooled MS information and BioMAP activity readings of individual fractions. The aim was 

to assess the accuracy of quantitation following computational deconvolution and to 

determine if compound prioritization of bioactive metabolites was more focused with a 
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minimum intensity threshold application (Figure 3.5).27,109 The multiplexed MS data were 

processed via the MMS-Q pipeline to generate relative quantitative data for each 

detected MS feature. A minimum intensity threshold analysis was performed to remove 

MS features below the inflection point of intensity values (Figure 3.5.B). The MMS-Q 

metabolomics dataset and the initial BioMAP bioactivity data were provided to the NP 

Analyst platform for bioactive compound prioritization. 

Initial observations showed a more focused network (Figure 3.5.A) of MS 

feature-prefraction relationships compared to the previous MMS analysis (Figure 2.8). 

The resulting network produced 21 distinct communities, with 136 possible targets above 

an Activity and Cluster score threshold of 2 and 0.3, respectively. Using the 

metabolomics dataset from the original MMS study, the same bioactive molecules were 

identified: micromonolactam (3.1), dracolactam A (3.2), amychelin C (3.3), collismycin A 

(3.4) and B (3.5), and SF2738D (3.6).27,109 The calculated abundance values of these 

molecules were compared to values detected in adjacent prefractions (e.g., prefraction A 

vs. prefraction B vs. prefraction C), providing relative quantitation information of analyte 

presence across samples (Figure 3.6). This information will allow users to prioritize 

fractions for downstream isolation, assess the relative distribution of a molecule across a 

sample set, and eliminate the need for reanalysis of MS data for quantitative information. 

 

Figure 3.5  Predicting Relative Abundance Values in Pooled Complex Mixtures 
to Identify Target Molecules Accurately. 
(A) A reduced NP Analyst output from MMS-Q with a minimum intensity 
threshold of 500 applied, increasing confidence in lead prioritization and 
minimizing false positives for a more targeted analysis. (B) Determining the 
minimum intensity threshold by plotting the frequency of the abundance values. 
For this experiment, a minimum intensity threshold of 500 was applied based on 
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the inflection point location. (C, D, E) The identification of the original bioactive 
molecules and determination of relative intensity values. 

The results of the NP Analyst network (Figure 3.5.A) showed that all previously 

identified bioactive molecules (3.1 – 3.6) were detected in the benchmark experiment. 

The reduction in possible false positives and low abundance MS features were 

significant after applying a minimum intensity threshold based on calculated abundance 

values. Additionally, Activity and Cluster scores were compared to the original analyses 

to determine score variations using the new MMS-Q methodology (Figure 3.5.C, D, E). 

For instance, collismycin A (3.4, m/z 275.0797, tR 2.62 min) had reduced Activity and 

Cluster scores (6.42 and 0.28, respectively) compared with the original analysis (Figure 

3.5.E). This was due to the identification of collismycin A in an inactive fraction RLUS-

2110A that fell just above the minimum intensity threshold (502), reducing the molecule's 

Activity and Cluster scores. After reexamination of the individual prefraction sample by 

MS, no presence of 3.4 could be detected, indicating a false positive assignment. In the 

original MMS-NP Analyst analysis, this precursor MS feature was not identified as 

potentially active by the NP Analyst program. This was due to the inaccurate 

assignments of the MS feature to multiple inactive fractions, lowering the Activity and 

Cluster scores below the cutoff values and rendering the feature inactive. However, the 

NP Analyst analysis flagged fragments associated with collismycin A (3.4) (e.g., m/z 

205.0935) as active, with Activity and Cluster scores of 13.31 and 0.68, respectively. 

These scores prioritize this molecule for isolation and subsequent bioactivity screening. 

This experiment demonstrates how relative quantitation information can enhance the 

accurate prioritization of molecules within an NP Analyst network and help identify 

potential false positives after computational deconvolution in MMS-Q. 
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Figure 3.6  Relative Abundance Values of Bioactive Molecules Determined from 
MMS-Q. 
(A) amychelin C (3.3) – fraction B: 12725.41, fraction C: 3435.66. (B) 
micromonolactam (3.1) – fraction D: 19788.51, fraction E: 25396.44. (C) 
dracolactam A (3.2) – fraction D: 11786.44, fraction E: 14533.06. (D) collismycin 
A (3.4) – fraction C: 19777.57, fraction D: 13702.69, fraction E: 1620.24. (E) 
collismycin B (3.5) – fraction C: 4383.20, fraction D: 3601.67. (F) SF2738D (3.6) 
– fraction C: 888.09, fraction D: 8536.49. 

This analysis aimed to showcase the effectiveness of applying the MMS-Q 

methodology to HT analyses of complex mixtures. By calculating the relative quantitation 

of MS features across a dataset, researchers gain insights into prioritizing samples for 

isolating molecules and maximizing yields of isolated products. Integrating metabolomics 

data containing relative quantitation data with bioassay readings in CAM software 

platforms, such as NP Analyst, can provide valuable information on molecule behavior. 

For example, this approach allows monitoring activity versus abundance data to confirm 

the compound presence and may yield insights into molecule behavior in the bioassay 

(e.g., IC50 values). Overall, this demonstration highlights how MMS-Q can seamlessly 

incorporate into previous experiments and enhance the identification of potentially 

bioactive molecules in complex mixtures.  

3.3. Conclusion 

Technological advancements in HT metabolomics analyses have significantly 

accelerated the potential for discovering bioactive molecules from natural sources. A 

critical component in the discovery pipeline is the preprocessing software capabilities, 

which include advanced abilities to discern essential and statistically significant MS 

features even in complex mixtures where similar elution times can complicate peak 

shapes.14 This increase in peak-picking sensitivity and accuracy enables the accurate 
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determination of relative abundance values between MS features across replicates in a 

dataset and throughout a sample set. 

Despite these advancements, the HT UPLC-MS analysis of ever-expanding 

sample libraries hinders the discovery process due to chromatographic elution times.19 

In response to this bottleneck, MMS was developed to increase the throughput 

capabilities of UPLC-MS analyses by pooling multiple samples together and then 

computationally deconvoluting detected MS features to reconstruct individual samples 

after MS analysis. Specific experiments and rigorous algorithm testing outlined in 

Chapter 2 demonstrated the success of this methodology in reducing the analysis time 

for an extensive, fractionated library using UPLC-MS. This characteristic sampling 

strategy improves throughput and maintains high-quality MS data. The binarized 

processing in the computational deconvolution algorithm contributes to the speed of 

MMS, where the output for the reconstructed sample lists indicates the presence and 

absence of data (1/0).  

As shown in Section 2.2.6, the binarized output does not hinder the discovery of 

potentially bioactive metabolites in complex mixtures, particularly when using CAM 

platforms such as NP Analyst.27 However, the binarized data prevents the relative 

abundance comparison of an MS feature distributed across a sample set without 

reanalyzing the sample. Determining the relative abundance of MS features in pooled 

samples presents a challenge and, to the best of our knowledge, has not been 

attempted before in metabolomics. The new addition, MMS-Q, calculates the relative 

abundance values of MS features from pooled row and column samples. These 

calculations are based on the binarized deconvoluted results from MMS. The 

deconvoluted data are formatted into a matrix equation for each grid pair. In this 

equation, each presence value contributes a weight to the overall pool abundance value. 

The relative abundances of each presence assignment within the grid are then 

calculated using least squares. The values between the initial and rearranged grid pairs 

are then averaged to obtain the final relative abundance value (see Section 3.2.1). 

For several reasons, the relative abundance value assignment of MS features in 

samples is essential. It normalizes variations in sample size and total metabolite content, 

making comparisons across samples more meaningful.123 Additionally, assigned values 

allow researchers to compare metabolite levels between different conditions when 
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performing metabolomics experiments (e.g., experimental versus control conditions).124 

Focusing on relative changes of a molecule across a sample set biologically enables the 

identification of metabolites associated with specific biological processes or 

pathways.123,124 Finally, including relative abundance values enhances data visualization 

techniques, such as heatmaps and scatterplots, by adding an extra dimension for 

analyzing MS feature distribution.125 

This chapter outlines the experiments and testing that went into the development 

of MMS-Q. These experiments demonstrate the accuracy of MMS-Q in determining the 

relative abundance value of an MS feature in a pooled sample. The MMS-Q workflow 

enhances the original MMS workflow by more accurately assigning relative abundance 

values to deconvoluted assignments. The workflow can be easily incorporated into the 

original MMS pipeline. Users can choose their analysis preference by toggling between 

the ‘Deconvolute’ and ‘Quantitation’ tabs in the graphical user interface (GUI) (see 

Section 3.4.5). Since MMS-Q leverages the output from MMS, it can seamlessly 

integrate into existing analyses. Integrating MMS-Q into the metabolomics analysis 

pipeline enables a more accurate and efficient analysis of complex sample sets. This 

enhancement reduces analysis time, providing researchers with critical relative 

abundance data. This facilitates deeper insights into the biological significance of 

metabolites. 

3.4. Material and Methods 

3.4.1. General Experimental Information 

The solvents use in the MS acquisition were of optima LCMS grade. Laboratory 

antibiotic standards were employed without any additional purification steps. The MMS-

Q pipeline and GUI were developed using the Python coding language. 

3.4.2. UPLC-MS Conditions 

The measurements were conducted using an ACQUITY i-Class UPLC system 

manufactured by Waters Corp. The UPLC system was equipped with an ACQUITY HSS 

T3 column (1.8 μm, 2.1 × 100 mm, Waters). A linear elution gradient was employed for 

separation (mobile phase A: H2O + 0.01% formic acid; mobile phase B: acetonitrile + 
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0.01% formic acid, 0.5 mL/min) as follows: 0−0.3 min, 5% B; 0.3−4.7 min, 5−90% B; 

4.7−5.5 min, 90−98% B; 5.5−5.8 min, 98% B; 5.8−7.5 min, 5% B. MS data were 

acquired using SYNAPT G2-Si qTOF (Waters). All mass measurements were recorded 

using ESI+ data-independent acquisition experiments. 

3.4.3. Mass Spectrometry Data Processing 

All samples were processed using the Progenesis QI software suite 

(v3.0.8293.38961, Nonlinear Dynamics, Waters). Lock-mass corrected positive data was 

uploaded into Progenesis QI for spectra alignment and peak picking using default 

settings. Positive polarity adducts were detected based on [M+H]+, [M+Na]+, [M-

H2O+H]+, and [M+K]+ ions. The sample set then underwent blank subtraction and 

minimal intensity threshold filtration. The generated feature table was rearranged to 

organize the data into a flat csv file, with MS features represented along one axis and 

pooled sample names along the other. The rearranged feature table was provided to the 

MMS-Q app for computational deconvolution and prediction of relative abundances. 

3.4.4. In Silico Generation of Random Grids for Relative Abundance 
Prediction 

The in silico subsampling approach was used to assess the accuracy of 

abundance values following computational deconvolution of pooled sample data. The 

algorithm is implemented in the Python coding language, utilizing libraries such as 

NumPy,126 pandas,127 and scikit-learn (sklearn).128 Random values between the specified 

intensity limits are placed in a grid of a predetermined size, r. Using the MMSO protocol, 

a rearranged grid is generated from the initial grid (Figure 2.3). These initial and 

rearranged grids serve as the GT dataset for comparison. 

The values in each row and column of the grid are summed to assign the 

abundance value of an analyte in a pooled sample. Pooled samples are then processed 

through the MMS-Q pipeline, generating abundance values for each sample. This cycle 

is repeated 400 times with new values and locations for each iteration. The generated 

abundance lists are compared to the GT values using cosine similarity: 

𝐾(𝑋, 𝑌) =  
<𝑋,𝑌>

(‖𝑋‖∗‖𝑌‖)
  (Equation 3.1) 
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 Where X is the list of GT values, and Y is the generated abundance values from 

MMS-Q. The quantity of MS features in the grid incrementally increases by i + 1 until i = 

50, representing the presence of an MS feature in 50 different samples. Finally, the FPR 

calculation follows the outlined procedure in Section 2.4.7. 

3.4.5. MultiplexMS-Q Application Development 

MMS-Q builds upon the existing MMS infrastructure, utilizing the computational 

deconvolution algorithm to demultiplex samples and GUI for easy usability. Changes 

have been made to the GUI to accommodate the MMS-Q pipeline. Firstly, the app has 

four processing options: Preparation, Deconvolution, Quantitation, and Cleaning. 

Secondly, the data processing uses a sample directory that contains the MMSO grids, 

preparation tables, raw and processed files, and the results folder. This addition to the 

data processing will allow users to keep information organized as this data processing 

method can produce large datasets and prioritize essential data files for downstream 

analyses.  
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Figure 3.7  Screenshot of the Preparation Page of MultiplexMS-Q. 

The experimental sample lists are provided to the app in the ‘Preparation’ tab 

and arranged into initial and rearranged grids per the user specifications. The specifics 

of this step are outlined in Section 2.4.6. Following the acquisition and preprocessing of 

data, the pooled feature table consisting of abundance data is provided back to the GUI 

and computationally deconvoluted under the ‘Deconvolution’ tab. This procedure 

produces a binarized demultiplexed file with presence and absence information for 

detected MS features. The deconvolution step in MMS-Q produces two files contained in 

the ‘processed’ folder of the experimental directory: 1) 

‘binary_deconvoluted_feature_table’ which contains the presence and absence of an MS 

feature assigned to specific samples, and 2) 

‘binary_deconvoluted_feature_table_with_placeholders’ containing the same presence 

and absence data, but contains the ‘placeholder’ samples if used to fill empty spaces in 

the symmetrical initial and rearranged grids. 
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Figure 3.8  Screenshot of the Deconvolution Page of MultiplexMS-Q. 

The ’Quantitation’ tab is kept separate from ‘Deconvolution’ if users do not want 

to use the entire quantitation pipeline and only need the binarized data. The 

‘Quantitation’ tab is simplified, allowing users to direct the app toward the experimental 

directory and letting the app do the processing automatically. The app uses the 

experimental directory to look for the ‘processed’ folder containing the 

‘binary_deconvoluted_feature_table_with_placeholders’ file and the pooled feature table 

containing the abundance data. The MMS-Q algorithm uses the binarized deconvoluted 

data to assign features and calculate the relative abundance data. MMS-Q processes 

these data feature-by-feature, creating individual grids for each MS feature containing 

the binarized deconvoluted information with appended pooled abundance data 

corresponding to each row and column. These initial and rearranged grids are saved as 

separate csv files in their respective folders, ‘initial_grid_decon_with_intensities’ and 

‘rearranged_grid_decon_with_intensities,’ where each file has a designation 

‘(initial_or_rearranged)_grid_(grid_number)_row_and_column_intensities_(retention_tim
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e)_(m/z_value).’ The quantitation tool in MMS-Q uses these files to calculate the relative 

abundance values for each MS feature present in each grid using matrix equations and 

least squares calculations. Once a value is assigned in the initial and rearranged grid 

corresponding to a certain MS feature, the values are averaged between the grids, as 

described in Section 3.2.1. The averaged values for all MS features in each sample in 

each grid (grid_1 → grid_z) are arranged in a flat csv file and exported to a folder 

‘quantitative_grids.’ Each file in this folder corresponds to an initial and rearranged grid 

in an experiment. Once all the quantitative grids are generated, all the files in the folder 

are concatenated into a table containing all the samples in the multiplexing experiment. 

This table containing the calculated relative abundance values of each detected MS 

feature in all samples is exported to the ‘results’ folder of the experimental directory. The 

relative abundance values depend on each assignment's weight within the grid and the 

corresponding pooled abundance value. Depending on the weight, values within the grid 

may correspond to low abundance or even negative values. Upon the user's discretion, 

these values can be removed from the grid using a determined minimum intensity 

threshold value. The Critical threshold option eliminates MS features in more than x% of 

samples. This option eliminates ubiquitous features from a dataset and prioritizes the 

rare molecules. 
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Figure 3.9  Screenshot of the Quantitation Page of MultiplexMS-Q. 

A new addition to the existing MMS pipeline is the ability to determine a minimum 

intensity threshold cutoff value, regardless of any computational deconvolution. This 

value, recommended to be set at the inflection point of the intensity range plot, allows 

users to eliminate MS features in a pooled or deconvoluted sample below the cutoff 

value. This process helps improve the precision of assigned MS features and the 

accuracy of calculated abundance values. Also on this page is the ‘Remove Absent 

Features’ option, which eliminates any MS feature that is not present in any sample. This 

option is critical for CAM experiments using platforms such as NP Analyst, which require 

each MS feature to be present in at least one sample. 
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Figure 3.10  Screenshot of the Cleaning Page of MultiplexMS-Q. 
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Chapter 4.  
 
High-Throughput Potential of Next-Gen Mass 
Spectrometers in Complex Mixture Feature Recovery 

Authors: Michael J. J. Recchia, Trevor N. Clark, Adam King, Lee Gethings, David 

Heywood, Roger G. Linington 

Author Contributions: M.J.J.R. and R.G.L. designed the study. M.J.J.R. performed the 

sample pooling and acquired the MS data on the SYNAPT G2-Si mass spectrometer. 

A.K. and L.G. collaborated closely to acquire the MS data on the Xevo MRT. M.J.J.R. 

processed the MS data from the two instruments and performed replicate comparison, 

blank subtraction, alignment, and retention time correction. D.H. assisted with 

experimental logistics and provided Progenesis QI software for data analysis. T.N.C. 

assisted with data acquisition and instrument parameter settings. 

4.1. New Instrument Technologies in Bioactive Molecule 
Discovery 

4.1.1. Introduction 

In the rapidly evolving field of bioactive molecule discovery, it is crucial to stay at 

the forefront of technology to maintain a competitive edge. These technological 

advancements are occurring in an era of sophisticated high-throughput (HT) techniques, 

which allow researchers to identify biologically active molecules from vast libraries 

targeting specific biological mechanisms.27,74,129 Indeed, having an advantage in this field 

helps accurately determine molecular properties and aids in discovering new structures. 

Innovative bioassays, such as Cell Painting, have opened new pathways for drug 

discovery, emphasizing the importance of accurately annotating molecules in HT 

screening campaigns of complex mixtures.33 

Mass spectrometry (MS) has revolutionized drug development and analysis since 

its inception in research.71,72 This ultra-sensitive technique measures qualitative and 

quantitative information about molecules in complex mixtures, making this an invaluable 

tool for compound characterization.106 MS technology enables atomic-level analysis of 
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drug molecules, accelerating the identification of potential drug candidates.71,130,131 MS 

also plays a critical role in the ‘Omics’ research fields, such as proteomics, which 

provides insights into disease mechanisms and potential therapeutic targets, and 

metabolomics, which helps understand metabolic networks in biological 

samples.4,5,113,132–135 This advancement, propelled not only by instrument technology but 

by progressive experimental methods, preprocessing software algorithms, artificial 

intelligence, and publicly accessible data repositories, has moved omics fields beyond 

qualitative analyses to a range of global and targeted quantitative methods that continue 

to revolutionize drug discovery and development.5,24,53,136–138 

MS technology has advanced in three main areas: resolution, sensitivity, and 

speed.10 High-resolution (HR)-MS, the use of mass spectrometers with high resolving 

power capabilities (R > 20,000 full-width half maximum (FWHM) and mass accuracy < 5 

ppm), has significantly improved mass accuracy measurements.139 It allows the 

distinction between compounds with the same nominal mass, determines elemental 

compositions, and provides more precise chemical insights into complex samples.10,133 

HR-MS is crucial for omics analyses, particularly metabolomics, where accurate 

identification of potentially thousands of molecules is required.5,133 HR-MS enhances our 

understanding of the chemical space by unambiguously assigning molecular formulae to 

various features in a dataset, especially when mass accuracy measurements are sub-1 

parts per million (ppm).53,140 The HR capacity can further assist in distinguishing similar 

molecules by resolving fine isotope peaks in the mass spectrum (Figure 4.1). Overall, 

leveraging powerful instrumentation enhances confidence in molecule identification and 

provides valuable insights into the composition of unknown metabolites. 
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Figure 4.1  Example of High-Resolution MS to Distinguish Fine Isotopes. 
An example of HR-MS between instruments differing in resolving power. 
Instrument 1 has a resolving power of 25,000 FWHM, while Instrument 2 can 
obtain 100,000 FWHM. The advantage of using higher-resolving-power 
instruments is the identification of fine isotopes. Identifying these elements can 
increase confidence in molecular formula determinations and improve molecule 
identification. 

4.1.2. High-Resolution Mass Spectrometry in Natural Products 
Metabolomics 

Investigating the diversity of molecular formulae in natural products (NPs) and 

the ability of modern HR-MS instrumentation to distinguish between molecules is a 

significant advancement in metabolomics research. The NP Atlas compound repository, 

a database of over 36,000 reported microbial NPs, provides a platform to study 

molecular formula diversity and understand how well HR-MS instrumentation can 

potentially identify molecules in mixtures.53 Morehouse et al. examined the occurrence, 

distribution, and grouping of microbial NPs to test the hypothesis that intra-family formula 

distributions are diagnostic identifiers for NP compound families.129 A re-examination of 

the updated dataset identified 14,603 distinct molecular formulae consisting primarily of 

carbon, hydrogen, and oxygen elements, consistent with findings by Morehouse et al. 

(Figure 4.2). In their study, excluding formulae that occurred only once, the researchers 

found that molecular formulae were highly diagnostic for the compound family.129 By 

leveraging the HR capabilities of MS instrumentation, we can discern a high distribution 

of molecular formulae in the reported microbial NP world, allowing the distinction 

between specific molecules, even those with similar nominal masses. This leads us to 

the intriguing question: Does nature provide a wide range of various structures of 
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elemental configurations to allow instrumentation to distinguish between molecules, or is 

there a large overlap in molecular formulae? 

 

Figure 4.2  Distribution of All Reported Formulae in the NP Atlas. 

Analysis of the reported NP Atlas library revealed 14,603 distinct molecule 

formulae. Among these, 9,425 formulae appeared only once, 2,325 appeared twice, and 

931 appeared three times (Figure 4.3). Notably, 1,484 formulae contain at least one 

chlorine atom, while 283 contain at least one bromine atom, both exhibiting a 

characteristic isotope pattern in the compound mass spectrum. These analyses 

demonstrate the distribution of molecular formulae across the known NP chemical space 

and emphasize the practical advantages of using HR-MS to measure the mass of 

molecules to determine elemental composition accurately. With cutting-edge MS 

technology, mass measurements can be measured to 5 decimal places, allowing mass 

accuracy at the parts-per-billion (ppb) level. This precision facilitates the unequivocal 

determination of molecular formulae, aiding in the dereplication process to identify 

known or novel molecules and thereby contributing to the advancement of metabolomics 

research. 
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Figure 4.3  Frequency Distribution of Molecular Formulae in the NP Atlas. 

4.1.3. Advances in Mass Spectrometry Instrumentation 

Enhancements in ionization techniques such as matrix-assisted laser 

desorption/ionization (MALDI) and electrospray ionization (ESI) have improved the 

detection capabilities of MS analysis. These techniques allow for analyzing a wide range 

of molecules across diverse samples. Mass analyzers, such as quadrupole time-of-flight 

(qTOF), have reduced analysis times, making them valuable for large-scale 

screenings.5,43,73–75,141,142 Coupling MS with ultra-performance liquid chromatography 

(UPLC) further refines the analysis of complex mixtures by chromatographically 

separating molecules before MS analysis.5 UPLC-ESI-qTOF-MS (referred to as UPLC-

MS in this chapter) has become essential in metabolomics for analyzing complex 

mixtures from extensive extract libraries.5,37,73 

Despite these advancements, UPLC-MS analysis of large extract libraries has 

limitations. As discussed in Chapters 2 and 3, the time required for chromatographic 

separation before MS analysis can be a bottleneck in the discovery process. Chapter 2 

introduced a novel sampling strategy called MultiplexMS (MMS) to reduce the analysis 

time by pooling multiple samples for simultaneous UPLC-MS analysis. The complexity of 

samples and matrix effects can lead to ion suppression, affecting the precision of the 

demultiplexing methodology.143 The previous chapters explored these concerns, 
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describing techniques and strategies to mitigate data loss caused by pooling complex 

samples. 

The study described in Section 2.2.4 illustrates the limitations of sample pooling 

using Waters UPLC in tandem with a Waters SYNAPT qTOF G2-Si equipped with an 

ESI ionization source – an industry-leading instrument for analyzing complex mixtures. 

The study examined a fractionated microbial extract containing known NPs in triplicate to 

establish a ground-truth (GT) dataset. Additional fractionated extracts were incrementally 

pooled until the number of samples reached r = 100. UPLC-MS was then used to 

analyze mixtures to assess the retention of GT features amid increasing sample 

complexity. The study found that 78% of GT features were retained when pooling 30 

complex samples (Figure 2.6).109 

Waters Corp. has developed a new qTOF technology called the Xevo™ Multi-

Reflecting Time-of-Flight (MRT). This technology offers improved sensitivity, resolving 

power (100,000 FWHM), and acquisition speed (100 Hz), allowing it to obtain parts-per-

billion (ppb) mass accuracy (Figure 4.4). In the study described in this chapter, the ‘1-to-

100’ experiment from Section 2.2.4 was conducted in collaboration with Waters Corp. 

using the Xevo MRT, and the results were compared to those acquired on the SYNAPT 

G2-Si using the same dataset. The assessment involved a two-part evaluation: first, by 

identifying the three known molecules in the GT sample throughout the experiment, and 

second, by measuring the retention of GT MS features despite increasing sample 

complexity. It is important to note both instruments used identical ionization sources 

(ESI) and UPLC parameters, differing only in the MS technology. This chapter provides 

insights into how enhanced instrument resolution, sensitivity, and scanning contribute to 

improved feature recall and peak capacity. These findings serve as a benchmark for 

future multiplexing experiments and highlight the accuracy of feature retention 

achievable using HR-MS instruments. 
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Figure 4.4  Instrumentation Used in Assessing the Advantages of Using HR 
Mass Spectrometers When Analyzing Complex Mixtures. 
Waters HR-MS instrumentation was used in this experiment. A Waters UPLC i-
class system was used for the chromatography on the front end of the two mass 
spectrometers. The first instrument was a Waters SYNAPT G2-Si with an ESI 
source in MSe resolution mode. This acquisition mode has a resolving power of 
25,000 FWHM with a 5 Hz scan speed. The second instrument was the Xevo 
MRT. The same ESI source was used with this instrument and is capable of scan 
speeds of 100 Hz with a resolving power of 100,000 FWHM. MS data was 
processed using the Progenesis QI software suite. 

4.2. Instruments and Software Used in this Study 

4.2.1. Waters ACQUITY UPLC i-Class 

A Waters UPLC i-class was used for front-end chromatographic separation 

before MS analysis for this analysis. The UPLC system has a binary solvent manager 

(BSM), a sample manager with a fixed loop (SM-FL), and a column heater. 

Chromatographic separation is achieved using an ACQUITY HSS T3 column - a fully 

encapped, low-coverage C18 bonded-phase column designed to retain extremely polar 

compounds using reversed-phased chromatography with high aqueous mobile phases. 

This instrument setup enhances resolution and ionization efficiency, resulting in narrow 

peak widths and reduced carryover between samples. For the chromatographic details, 

see Section 4.5.2. 
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4.2.2. Waters SYNAPT G2-Si (ESI-qTOF-MS) 

The Waters SYNAPT G2-Si MS system combines StepWave™ ion optics with 

Quantitative Time-of-Flight (QuanTOF™) and High Definition Mass Spectrometry® 

technologies. The SYNAPT MS offers 25,000 FWHM resolution in ‘resolution’ mode with 

a <2 ppm mass error and a scan rate of 5 Hz in MSe resolution mode. StepWave 

technology reduces background noise and eliminates neutral compounds, achieving a 

higher signal-to-noise ratio than traditional qTOF instruments. The instrument features 

HR-MS capabilities and a dynamic range of up to 104. It has an ESI ionization source for 

robust data-independent acquisition with HR and mass accuracy. For details regarding 

UPLC-MS conditions, see Section 4.5.2. 

4.2.3. Waters XEVO MRT (ESI-qTOF-MS) 

The Waters Xevo™ MRT MS shares similar instrument components with the 

SYNAPT G2-Si MS, including the StepWaveXS™ ion guide technology for enhanced 

signal-to-noise. The Multi-Reflecting TOF (MRT) technology, which reflects ions 8x 

between two gridless electrostatic mirrors on a 4m flight path, significantly boosts 

resolving power and sensitivity. The Xevo MRT delivers an impressive 100,000 FWHM 

resolving power, with a mass accuracy of <500 ppb and acquisition rates up to 100 Hz. 

For details regarding UPLC-MS conditions, see Section 4.5.2. 

4.2.4. Nonlinear Dynamics Progenesis QI (Waters) 

The Nonlinear Dynamics MS processing software, Progenesis QI, enables users 

to accurately quantify and identify compounds to support omics research. This study 

used Progenesis QI to process the raw datasets acquired on both instruments. For 

efficient and objective analyses, raw MS files were imported into Progenesis QI, and a 

reference run was selected to align all runs in an experiment. The processing selects 

preferred adducts and peak picking to create an aggregated dataset from all aligned 

runs. Progenesis QI manages complex samples, discerning overlapping compound ions 

to detect complex datasets accurately. The processed data can then be used in 

downstream statistical analysis and compound identification. Since the raw MS data was 

acquired on two different instrument platforms, various processing steps are needed to 
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manage data interpretation; therefore, each dataset must be processed in separate 

Progenesis QI experiments (Section 4.5.3). 

4.3. Results 

4.3.1. Impact of Instrument Choice on Mass Spectrometry Data 
Quality in Complex Samples 

An essential aspect of HT metabolomics is acquiring high-quality molecular data, 

especially as sample complexity increases. This complexity can compromise accurate 

mass measurements due to overlapping MS signals. Precise mass measurements 

enable researchers to obtain unequivocal molecular formulae, aiding in discovering new 

molecules and facilitating the dereplication of known compounds. This study aimed to 

assess how much an instrument influences the quality of MS data, particularly as the 

background matrix becomes more complex with the addition of intricate mixtures. The 

experiment outlined in Section 2.2.4 was recreated, analyzing samples on a Waters 

Xevo MRT and a SYNAPT G2-Si MS instrument. 

The ground-truth (GT) fraction from a microbial extract contains multiple 

molecules, three of which were previously identified as micromonolactam (4.1), 

dracolactam A (4.2), and dracolactam C (4.3) (Figure 4.5).27 More fractions from various 

extracts were added while maintaining a constant concentration of the GT sample 

throughout the experiment. UPLC-MS was used to analyze the mixture at each addition 

step to determine if the instrument could detect the known GT molecules and if there 

was a detection limit due to sample complexity. 

 

Figure 4.5 Target Molecules for the '1-to-100' Multiplexing Experiment. 

After acquiring the dataset on the Xevo MRT and re-acquiring data on the 

SYNAPT G2-Si, raw MS data from both instruments were analyzed using Progenesis QI 
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for alignment and peak picking. The exported data was then compared for MS feature 

comparison between datasets (see Section 4.5.3). Compounds 4.1 – 4.3 were GT 

targets to check for consistent detection across all samples. However, dracolactam C 

(4.3) was not detected in either dataset, likely due to compound degradation. Therefore, 

micromonolactam (4.1) and dracolactam A (4.2) were used as the target molecules.  

The SYNAPT G2-Si data were consistent with earlier findings outlined in Section 

2.2.4, with the GT target molecules identified in all mixtures. Analysis of the Xevo MRT 

preprocessed data showed that the masses of compounds 4.1 and 4.2 were detected in 

all mixtures. For compound 4.1, the m/z 452.27905 was detected, corresponding to the 

water loss ([M-H2O+H]+, calc. m/z 452.2795, Δ -0.99 ppm). Progenesis QI calculated the 

exact mass of the molecule as 469.28239 (calc. 469.2828), with a ppm error of Δ -0.90. 

For compound 4.2, the protonated ion cluster was detected at [M+H]+ m/z 486.28451 

(calc. m/z 486.2850), with a Δ of -1.00 ppm error. Compared to the SYNAPT G2-Si data, 

GT molecules 4.1 and 4.2 exhibited ppm errors of 1.12 and 2.30, respectively. Notably, 

these data maintained mass accuracy, detecting the molecule correctly in all mixtures up 

to r = 100. 

When examining the microbial fractions added to the GT sample to increase 

background complexity, it was identified that fraction RLUS-2144D contained a known 

metabolite, surugamide A (4.4). The microbial fraction was added at r = 20, making 

surugamide A a suitable candidate to test instrument sensitivity for accurate annotation. 

In the r = 20 sample, surugamide A was detected at [M+H]+ m/z 912.62845 (calc. m/z 

912.6286, Δ 0.20 ppm) with excellent resolution on the Xevo MRT. By contrast, 

surugamide A (4.4) was detected on the SYNAPT G2-Si at [M+H]+ m/z 912.6278 (calc. 

m/z 912.6286, Δ 0.92 ppm). The MS spectra differences between the two instruments 

are illustrated in Figure 4.6. 
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Figure 4.6  Mass Spectrum Differences of Known Metabolite Surugamide A (4.4) 
Between the Xevo MRT and SYNAPT G2-Si. 
Surugamide A (4.4), a known NP isolated from a marine Streptomyces sp., is 
abundant in a fractionated extract (RLUS-2144D) from the Linington Lab library. 
In the mixture r = 20, 4.4 was detected with high mass accuracy (<1 ppm) on 
both test instruments. The top spectrum in the figure is from the Xevo MRT 
instrument, and the bottom spectrum is from the SYNAPT G2-Si. This figure 
highlights the difference in resolving power between the two instruments. It 
demonstrates the improved accuracy of measurements when using HR 
instruments to detect and annotate molecules in complex mixtures. 

These results demonstrate that HR instruments with increased sensitivity detect 

relevant ions with high mass accuracy, even in increasingly complex sample matrices. 

The Xevo MRT outperformed the SYNAPT G2-Si, highlighting its superior measurement 

capabilities. This improvement allows researchers to annotate molecules with greater 

accuracy, significantly enhancing the discovery pipeline and proving crucial in identifying 

potentially thousands of molecules in a metabolomics dataset.  
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4.3.2. Performance of High-Sensitivity Mass Spectrometry in Complex 
Mixture Analysis. 

The second part of this experiment was designed to assess instrument limitations 

when pooling many complex samples. Using more powerful instrumentation to analyze 

complex mixtures offers advantages such as increased sensitivity in detector 

technology, faster scanning speed, and improved resolving power. Researchers can 

leverage HR mass spectrometers to detect more MS features with higher mass accuracy 

when conducting pooled experiments. This contributes to higher-quality datasets and 

enhances the potential for pooling more samples, resulting in higher throughput. Today’s 

advanced instrumentation, exemplified by the MMS platform, provides unparalleled data 

quality for efficiently analyzing large sample libraries and facilitating timely drug 

discovery. 

The study employed two Waters instruments: the SYNAPT G2-Si and the new 

Xevo MRT. Both instruments feature highly sensitive detectors capable of identifying 

low-abundance MS features with high mass accuracy. The Xevo MRT exhibits a 

sensitivity increase of 3x compared to the Waters Xevo G3 qTOF instrument—one of the 

best-in-class qTOF mass spectrometers at its release. Examining MS feature retention 

across complex samples aimed to understand how well the instruments recall essential 

details about a sample during sample pooling experiments. These results also shed light 

on the limits of sample pooling within a given specification range. 

The triplicate GT samples underwent replicate comparison, retaining only those 

MS features detected in at least 2 out of 3 samples. Once a GT dataset was established 

from each instrument analysis, the assessment focused on how well the GT MS features 

were recalled as a function of increased background complexity. After processing the 

data from the SYNAPT G2-Si MS, it was found that the GT dataset consisted of 283 MS 

features. In contrast, the Xevo MRT boasted 1064 GT features—a nearly four-fold 

increase in detected MS features. This increase is likely due to the increase in 

instrument sensitivity, which allows the detection of less abundant fragment ions, isotope 

peaks, and adducts in the sample set. Despite analyzing replicates of the same sample 

set, the Xevo MRT analysis occurred at the Waters Research and Development facility 

in Wilmslow, England. The same UPLC instrumentation was used in both experiments, 

and the sample preparation followed the same protocol in both cases. Still, variations 
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(such as retention time and MS feature lists) occurred despite closely matching sample 

preparation protocols. The two GT datasets were compared between instruments, with 

the SYNAPT G2-Si dataset serving as the benchmark. MS features were grouped based 

on recorded retention time and m/z, eliminating features before 1 minute (solvent front) 

and after 6 minutes (wash gradient) (see Section 4.5.3). Initial observations of the Xevo 

MRT dataset revealed a retention time difference of +0.27 minutes, which was corrected 

to align with the SYNAPT G2-Si. Of the 283 MS features in the SYNAPT G2-Si dataset, 

186 of these features were identified in the Xevo MRT dataset despite detecting over 

1000 MS features in the Xevo MRT experiment. For the GT molecules 4.1 and 4.2, the 

number of MS features detected for each molecule was 19 and 15, respectively, 

according to Progenesis QI. In the Xevo MRT data, the GT molecules contained 26 and 

22 MS features each, highlighting the additional sample information available when 

using more sensitive instrumentation. 

As the experiment progressed and more complex mixtures were added to the GT 

sample, the analysis focused on how well the GT features were recalled from mixtures 

ranging from r = 2 to r = 100. For the SYNAPT G2-Si dataset, approximately 95% of the 

GT features could be recalled when pooling up to 10 samples, maintaining 83% of GT 

features up to 20 samples, and approximately 78% when pooling upwards of 30 

samples. In the Xevo MRT dataset, overlapping MS features were assessed, revealing a 

significant improvement in MS feature recall. Even when pooling 50 samples, the Xevo 

MRT maintained an 85% GT MS feature recall (Figure 4.7). 
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Figure 4.7  Relative Feature Recovery of the Full Ground-Truth Feature Lists. 
The GT feature lists were compared to assess the recall effectiveness of MS 
features from the GT dataset. The impact of increasing sample complexity was 
examined by pooling consecutively more samples together (from r = 2 to r =100). 
The blue line represents MS feature recall from data obtained using the SYNAPT 
G2-Si. In contrast, the dotted red line represents the recall of overlapping MS 
features between datasets from the Xevo MRT. The SYNAPT G2-Si detects 
approximately 78% of GT MS features when pooling 30 samples. In contrast, the 
Xevo MRT – with heightened instrument sensitivity – improves data recall by 
detecting 85% of overlapping MS features, even when pooling up to 50 complex 
mixtures. 

A thorough analysis of the loss in MS feature detection revealed that it was due 

to fragment ions and isotopologues in low abundance in the mixtures (Figure 4.8).  
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Figure 4.8  Assessment of MS Feature Recovery as a Function of Mixture 
Complexity of Data from the Xevo MRT. 
Plotting GT MS features along the y-axis in order of feature intensity within the 
GT dataset, a thorough examination reveals which features remain undetected 
as the background complexity of the pooled samples increases. The analysis 
indicates that most of the MS features not recalled in the experiment were low-
abundance fragment ions and isotopologues—data not crucial for bioactive 
molecule prioritization in downstream analyses. 

This experiment highlights the significant improvement in MS feature detection 

resulting from the increased resolving power and sensitivity of the Xevo MRT. The 

objective was to assess how effectively the instrument could detect all the GT MS 

features. Investing in cutting-edge technology can significantly enhance throughput 

potential when analyzing large extract libraries using platforms like MMS. The number of 

samples pooled directly correlates with the fold-change improvement in analysis 

throughput and time savings during UPLC-MS analysis, all while maintaining high mass 

accuracy for detected analytes.  

4.4. Conclusions 

This study aimed to evaluate the impact of instrument choice on the quality of MS 

data in HT metabolomics, particularly as sample complexity increases. The research 

compared two HR-MS instruments, the Xevo MRT and the SYNAPT G2-Si, using a GT 

microbial fraction containing known metabolites. The addition of complex mixtures to the 
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GT sample tested the ability of each instrument to detect these molecules and maintain 

mass accuracy throughout the experiment. The results demonstrated that the Xevo MRT 

outperformed the SYNAPT G2-Si in detecting the GT MS features with higher mass 

accuracy. Specifically, the Xevo MRT identified nearly 4x more GT MS features than the 

SYNAPT G2-Si, showcasing superior instrument sensitivity. This increase in sensitivity 

allowed the Xevo MRT to detect lower abundance fragment ions, enhancing the overall 

quality and depth of the metabolomics data. 

For specific molecules like micromonolactam (4.1) and dracolactam A (4.2), the 

Xevo MRT and SYNAPT G2-Si consistently detected these compounds with high mass 

accuracy (<5 ppm), even in highly complex mixtures. However, the Xevo MRT detected 

the compounds below one ppm mass error, compared to the SYNAPT G2-Si that 

detected the molecules with a 1.12 and 2.30 ppm mass error, respectively. The high 

mass accuracy of known NP surugamide A (4.4) at low concentrations further 

highlighted the Xevo MRT's advanced capabilities, with a mass error of 0.20 ppm 

(SYNAPT G2-Si = 0.92). The superior performance of the Xevo MRT is attributed to its 

enhanced sensitivity, which is reportedly 3x more significant than the already advanced 

Waters Xevo G3 qTOF. The pooling experiment highlighted the advantages of using HR-

MS for analyzing complex samples. The Xevo MRT maintained a high recall rate of 

ground-truth (GT) features even as the sample complexity increased, retaining 85% of 

GT MS features when pooling up to 50 samples. In contrast, the SYNAPT G2-Si recall 

rate dropped significantly as the sample complexity increased, especially beyond pooling 

20 samples. 

This study demonstrates that investing in advanced MS technology, such as the 

Xevo MRT, can significantly enhance the speed and quality of metabolomics data 

analysis. The technology's improved sensitivity and resolving power help accurately 

identify molecules, speed up the discovery process and improve the efficiency of 

analyzing large sample libraries. These advancements are essential for accurately 

identifying molecules in complex metabolomics datasets, highlighting the importance of 

selecting the right instrument for high-throughput metabolomics research. 
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4.5. Materials and Methods 

4.5.1. General Experimental Information 

All solvents used in the MS acquisition were of optima LC-MS grade. Acetonitrile 

(ACN), methanol (MeOH), and formic acid (HCOOH) were purchased from Thermo 

Fisher Scientific. Deionized water was obtained using an 18 MΩ·cm Milli-Q system 

(EMD Millipore Corporation). HR-MS acquisition and metabolomics experiments were 

performed on a Waters Xevo MRT and SYNAPT G2-Si qTOF mass spectrometer. 

4.5.2. UPLC-MS Acquisition Conditions 

MS measurements were performed on a SYNAPT G2-Si (Vancouver, BC, 

Canada) and an Xevo MRT (Wilmslow, England), following the parameters outlined in 

Section 2.4.2.  

4.5.3. Mass Spectrometry Data Processing 

All samples were processed using the Progenesis QI software suite 

(v3.0.9293.38961). Lock-mass corrected positive data was uploaded into Progenesis QI 

for spectra alignment and peak picking using default settings. Positive polarity adducts 

were detected based on [M+H]+, [M+Na]+, [M-H2O+H]+, and [M+K]+ ions. The datasets 

from the two instruments were processed separately because acquisition parameters 

differed, so Progenesis QI processing could not be performed together. Once both 

datasets were processed, the generated feature table, including the m/z, predicted 

neutral mass, retention time, and normalized intensity values, were exported for feature 

comparison between datasets. Strict blank subtraction was implemented in both 

datasets, whereby MS features in the solvent blank samples were omitted from the 

resulting MS feature table. The GT triplicates were replicated and compared, retaining 2 

out of 3 detected features to establish the GT dataset. MS features that eluted before 1 

minute and after 6 minutes were removed from the tables as an additional filter. Next, 

the feature table from the Xevo MRT exhibited a shift in retention time values by +0.27 

minutes, based on the detection of the GT molecules 4.1 and 4.2. Following the 

retention time correction, MS features from the SYNAPT G2-Si feature table were 

compared to the Xevo MRT dataset, detecting the GT features in a dataset of many 
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more MS features. GT features were grouped with Xevo MRT features within a two ppm 

mass error range and 0.1 minute retention time window. 
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Chapter 5.  
 
Unraveling Complex Natural Products Structures 
Through Advanced Spectrometric and Chemical 
Techniques 

5.1. Biological Relevance of the Burkholderiales Order 

Developments in genome sequencing technologies have revolutionized our 

understanding of the genetic composition of various organisms. Genome sequencing 

has had significant implications for exploring the potential of bioactive natural products 

(NPs) that organisms may produce.144 By analyzing genetic information, researchers can 

uncover pathways involved in synthesizing these molecules, which may have 

therapeutic applications.145 A notable outcome of these technological advancements is 

the ability to investigate bacterial taxa beyond well-studied organisms. These bacteria 

may harbor genetic pathways responsible for synthesizing bioactive compounds with 

diverse properties.144 Burkholderia is one example of a group of Gram-negative bacteria 

with diverse ecological niches. Despite its ambiguous taxonomic classification, the 

genus Burkholderia has garnered attention due to reports of its antibacterial, antifungal, 

and cytotoxic activities. The characteristic genetic makeup of Burkholderia species 

provides a rich source for discovering novel bioactive compounds.146 Exploring the 

genetic pathways involved in NP production in Burkholderia allows researchers to 

identify potentially therapeutic molecules to combat various diseases. 

Indeed, the ubiquity of Burkholderia across a broad spectrum of terrestrial and 

aquatic environments exposes it to a myriad of interactions, ranging from beneficial to 

antagonistic.147 These dynamic ecological relations prompt Burkholderia to adapt and 

develop molecules to cope with such diverse pressures. The vast array of Burkholderia-

produced NPs with varying environmental activities showcases its multifaceted 

interactions within different environments.146 For example, Burkholderia's ability to halt 

the cell cycle in rice cells, arising from its mutualistic relationship with pathogenic fungi, 

demonstrates its role in facilitating intricate interactions between plants and their 

microbial partners.148–150 Similarly, Burkholderia-produced NPs with pesticidal activities 

against arthropod pests demonstrate their potential in integrated pest management 
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strategies.151 These compounds also play a crucial role in various biological processes, 

including swarming, biofilm formation, iron acquisition, and quorum sensing.152–155 

The biotechnological potential of Burkholderia extends beyond the production of 

NPs with environmental applications, encompassing a wide range of bioactive molecules 

with diverse molecular scaffolds and biological activities. One notable example of a 

successful NP derived from Burkholderia is  FK228 (romidepsin), a United States Food 

and Drug Administration (FDA)-approved anticancer drug (Figure 5.1).151 FK228 is a 

hybrid peptide with polyketide (PK) – nonribosomal peptide synthetase (NRPS) 

components, highlighting the intricate biosynthetic machinery employed by the bacterium 

to produce complex molecules with therapeutic potential. Other bioactive molecules from 

Burkholderia include spliceostatin A,156 occidiofungin A – D,157 and ornibactin,158,159 each 

with distinctive pharmacological properties ranging from antifungal and antibacterial to 

anticancer activities (Figure 5.1). 

 

Figure 5.1  Natural Products Isolated from Burkholderia sp. 
(A) Spliceostatin A, a semisynthetic analog belonging to a class of spliceosome 
inhibitors. These inhibitors are synthesized by a hybrid PK-NRPS system and 
evaluated in cell-proliferation assays against a panel of solid tumor cancer cell 
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lines;156,160 (B) FK228 (romidepsin), an FDA-approved depsipeptide that acts as 
a natural histone deacetylase (HDACs) inhibitor to treat cutaneous and 
peripheral T-cell lymphoma;151 (C) Occidiofungin A – D, glycopeptides with 
antifungal activity inhibiting a large spectrum of fungal pathogens;157 (D) 
Ornibactins, NRPS-synthesized tetrapeptide siderophores with reported 
antibacterial activity.158,159 

Genomic analysis of Burkholderia species has revealed the presence of 

biosynthetic gene clusters (BGCs) responsible for producing these NPs.146 These 

genetic blueprints provide researchers with valuable insights into the molecular 

machinery involved in NP biosynthesis. Briefly, BGCs are comprised of specific regions 

that encode for various protein domains that are responsible for the assembly of NPs.161 

Deciphering these pathways permits researchers to predict the origin of specific NPs 

and explore the potential of silent or under expressed BGCs to discover novel 

compounds.162 This approach, known as genome mining, has revolutionized the field of 

NP discovery by enabling the systematic exploration of microbial genomes for 

biosynthetic potential.  

Silent or under expressed BGCs often hindered the discovery of novel molecules 

using traditional bioassay-guided discovery methods. This limitation arose because the 

molecules produced by these clusters would fall below the detection limit in target 

bioassays.146 Genome mining has addressed these limitations by allowing researchers 

to systematically survey microbial genomes for BGCs of interest, irrespective of 

expression levels.163,164 However, obtaining NPs from predicted BGCs remains a 

bottleneck because many BGCs are under expressed to produce substantial quantities 

of the NP to allow detection and isolation.162 Advanced genetic engineering techniques 

provide avenues for accessing these molecules. Techniques such as biosynthetic 

investigations and promoter exchange can activate gene expression if the gene cluster 

is not transcribed in the native producer. Heterologous expression is another genetic 

engineering technique that has proven to be a valuable approach for NP discovery from 

Burkholderia, allowing to produce bioactive compounds in genetically tractable hosts.165 

Additionally, integrating genome sequencing technologies with bioinformatics tools has 

enhanced the confidence in predicting molecules from BGCs. This enables researchers 

to identify key features within BGCs, such as gene organization, sequence motifs, and 

enzymatic domains, providing valuable insights into the biosynthetic pathways and 

potential products encoded by these clusters.166,167 
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This chapter describes two studies investigating Burkholderia BGCs through a 

combination of genetic engineering and bioinformatic techniques to unlock the vast 

chemical diversity potential encoded within the microbial genome, leading to the 

discovery of novel NPs. Section 5.3 focuses on the identification, isolation, and structure 

elucidation of a large lipodepsipeptide encoded within a giant NRPS.168 Section 5.4 

explores the advantages of heterologous expression and promotor activation for 

producing NPs that were previously under expressed. These NPs were identified 

through genomic mining of a Burkholderia bacterium.  

5.2. Identification of the Lipodepsipeptide Selethramide 
Encoded in a Giant Nonribosomal Peptide Synthetase 
from a Burkholderia Bacterium 

Published manuscript 

Reprinted with permission from Proc. Natl. Acad. Sci. U. S. A. 2023 120(42), 

e2304668120. Copyright 2023 National Academy of Sciences. DOI: 

10.1073/pnas.2304668120. Licensed under the Creative Commons Attribution Non-

Commercial No-Derivatives license (CC BY-NC-ND): 

https://creativecommons.org/licenses/by-nc-nd/4.0/ 

Authors: Sean B. Romanowski, Sanghoon Lee, Sylvia Kunakom, Bruno S. Paulo S. 

Paulo, Michael J. J. Recchia, Dennis Y. Liu, Hannah Cavanagh, Roger G. Linington, 

Alessandra S. Eustáquio 

Author Contributions: R.G.L. and A.S.E. designed the study. S.B.R., S.L., S.K., B.S.P., 

M.J.J.R., D.Y.L., and H.C. performed research. S.B.R., S.L., S.K., B.S.P., M.J.J.R., 

D.Y.L., H.C., R.G.L., and A.S.E. analyzed data. A.S.E. authored the paper with input 

from all authors. Specifically, M.J.J.R. contributed to the structure elucidation critiques 

from reviews following submission. M.J.J.R. reanalyzed amino acid configurations using 

Marfey’s analysis with a more robust chromatographic method to separate amino acid 

derivatives. Secondly, reviewers questioned the lactone ring location. M.J.J.R. 

reevaluated the NMR data to confirm lactone linkage. To confirm the amino acid 

sequence within the molecule, M.J.J.R. performed base hydrolysis on the molecule to 

open the lactone and performed MS/MS experiments to confirm the sequence. Finally, 
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despite attempting to determine positional configurations within the molecule due to the 

repeating sequence of leucine and serine molecules, this effort was unsuccessful. 

Instead, the information was derived from an in-depth domain analysis of the BGC by 

B.S.P. 

5.2.1. Introduction 

This section discusses the isolation and structure elucidation of a genetically 

encoded NP with therapeutic potential in medicine and agriculture. As mentioned earlier, 

the emergence of advanced bioinformatics tools for genome mining has markedly 

enhanced the prediction of BGCs responsible for encoding novel NPs.167 Burkholderia 

bacteria have emerged as a prolific source of NPs, exhibiting substantial chemodiversity 

and demonstrating activity across diverse biological targets.146 However, despite the 

abundant metabolic profile of the Burkholderiales order, it only represents a small 

fraction of the potential predicted from genomic studies.169 

Obtaining NPs from predicted BGCs remains a significant challenge in the 

discovery process. This is due to insufficient quantities of NP produced by under 

expressed BGCs, making isolation difficult.162 However, the metabolic potential of 

Burkholderia is promising. Multiple NPs are often predicted to be encoded in a large 

genome170–172, resulting from advantageous interactions.171 Exploring these silent or 

under expressed BGCs can expand the known NP chemical space. 

Burkholderia sp. FERM BP­3421, obtained from terrestrial soil, has been 

identified as a prolific producer of bioactive metabolites (Figure 5.1).151,156–160 This strain 

synthesizes abundant bioactive NPs and possesses diverse biosynthetic machinery for 

which no products are known. These include autologous PK-NRPS, polyketide 

synthetases (PKS), and ribosomally synthesized and post-translationally modified 

peptide (RiPP) pathways—additionally, Burkholderia sp. FERM BP-3421 can serve as a 

host organism for heterologously expressed genomes, potentially leading to higher 

yields of metabolites.146 As a result, this strain has been extensively studied to explore 

its biosynthetic potential using various multi-omic approaches. 

This study used a suite of multi-omic approaches, including genomics, 

metabolomics, and epigenomics, to reveal previously identified bioactive NPs and led to 
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the identification of a novel octadecalipodepsipeptide named selethramide (5.1, Figure 

5.2). This new NP was encoded in a giant NRPS. Harnessed epigenomic data improved 

the deoxyribonucleic acid (DNA) transfer efficiency into FERM BP-3421, allowing the 

generation of a selethramide synthetase knockout mutant and identifying the molecule's 

role in swarming motility as a surfactant molecule. This model, which uses multi-omics 

and bioinformatics, allows for potential future studies of NPs. While this section will not 

outline the full description of the paper, it will highlight personal contributions to the 

project. This large molecule proved complex to assemble completely, requiring 

sophisticated spectroscopic and semisynthetic techniques to unambiguously assign the 

absolute configuration of amino acids, establish the ring system with the lactone linkage, 

and position the amino acids within the molecule.  

 

Figure 5.2  The Molecular Structure of Selethramide (5.1), an 
Octadecalipodepsipeptide Isolated From a Burkholderia sp. FERM 
BP-3421 Soil Isolate. 

5.2.2. General Experimentation and Isolation of Selethramide (5.1) 

It should be noted that S.L. performed the original isolation of 5.1 from 

Burkholderia sp. FERM BP-3421. Following the initial analysis, the target molecule 

required further isolation, necessitating additional bacterium culture for structural studies. 

Selethramide (5.1) was discovered based on the doubly charged ion cluster [M+2H]2+ 

m/z 965 from the orphan metabolite features. The fragmentation pattern suggested that 

5.1 was a large lipopeptide, indicated by a series of neutral losses corresponding to the 

molecular weights of serine and leucine/isoleucine residues. The fragmentation pattern 

culminated in a sizeable cyclic structure with an [M+H]+ m/z 641. High-resolution mass 

spectrometry (HR-MS) predicted the molecular formula as C89H158N18O28
 based on the 

protonated ion [M+H]+ m/z 1928.1532. Genomic analysis of the Burkholderia sp. FERM 

BP-3421 strain revealed that the only BGC plausibly associated with 5.1 was the NRPS 

BGC 1.2. According to predictions, 5.1 consisted of an acyl chain with 18 amino acid 
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residues: six units of ᴅ-Ser, one unit of ʟ-Ser, one unit of ᴅ-Thr/ᴅ-allo-Thr, eight units of ʟ-

Leu, and two units of ᴅ-Leu, which matched well with the domain architecture from the 

BGC. 

Selethramide (5.1) was isolated as an amorphous white solid from a liquid culture 

derived from a frozen bacterial stock of Burkholderia sp. FERM BP-3421. The following 

is a summary of the isolation process. First, the bacterium was inoculated onto lysogeny 

broth (LB) agar and incubated at 30 °C. The culture was scaled up to a larger volume (2 

L) in a 2S4G medium, which provided sufficient material for subsequent extraction. The 

bacteria were then extracted using an organic solvent system consisting of 

dichloromethane (DCM) and methanol (MeOH). After extraction, the material was 

vacuum filtered to separate the solvent-extracted material and concentrated in vacuo. 

Next, the dried extract was subjected to primary fractionation using an aqueous 

methanol mobile phase and a C18 stationary phase in a stepwise gradient system, 

increasing by 20% aq. MeOH increments to produce seven fractions (A → F). 

MS analysis of the primary fractions revealed that 5.1 was abundant in fraction 

‘E’ (100% MeOH), which was subjected to reversed-phase (RP) high-pressure liquid 

chromatography (HPLC) to afford two subfractions E-1 and E-2 (VyDAC, 250 mm x 4.6 

mm, 5 µm, 1.0 mL/min, 10% aq. MeOH to 95% aq. MeOH + 0.02% formic acid). E-1 was 

selected for further separation using analytical RP-HPLC in an isocratic elution system 

(Phenomenex Kinetex XB-C18, 250 x 4.6 mm, 5 µm, 1.0 mL/min, 53% aq. ACN + 0.02% 

formic acid) to produce 5.81 mg of purified selethramide (5.1). 

5.2.3. Contribution to Final Structure Determination 

S.L. completed the original structure elucidation of selethramide (5.1). However, 

the initial reported structure faced questions during the review process. Additional 

experiments were conducted to refine and clarify the molecular structure and address 

the reviewed critiques.  

Based on the predicted structure of 5.1 from BGC 1.2 (as shown earlier), 

performing MS/MS analysis on the native molecule would reveal its amino acid 

sequence. The MS/MS fragmentation data indicated that a portion of the molecule was 

cyclized, making it challenging to complete the amino acid sequence due to the 
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unpredictable fragmentation of cyclized peptides. Additionally, severe overlap in NMR 

signals precluded complete 2D structure elucidation of the molecule. The cyclization 

position was deduced from 1H-1H COSY cross-peaks between H-68 and H-69, as well 

as H-69 and H-70. HMBC correlations from H-69 and H-98 to C-103 provided further 

evidence of a cyclized structure extending from 13Thr-69 to the terminal amino acid, 

18Leu-103, via one of the free hydroxy groups. This cyclization position was further 

confirmed by examining the structure of the basic hydrolysis product (details below). 

 

 

Figure 5.3  Selected 2D NMR Correlations and Chemical Shifts For 
Selethramide. 

To comprehensively analyze the MS/MS fragmentation of the peptide, the 

lactone ring would need to be liberated using base hydrolysis. This process breaks the 

lactone linkage and adds a methoxy group (+32 Da) to the carboxyl end of the terminal 

amino acid, linearizing the molecule and allowing MS/MS experimentation to reveal the 

Position 
Unit A 

Position 
Unit B 

δH (ppm) δC (ppm) δH (ppm) δC (ppm) 

2 4.47 53.3 66 -- 175.2 

1ʹ -- 174.6 68 4.35 59.2 

2ʹ 
2.39 

45.9 
69 5.24 72.3 

2.47 70 1.37 18.6 

3ʹ 4.20 66.0 71 -- 171.3 

4ʹ 1.24 23.2 73 4.17 54.9 

      98 4.00 62.8 

   103 -- 173.6 
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complete sequence of amino acids. To break down the cyclic portion of the peptide, a 

sample of selethramide (0.1 mg) was suspended in MeOH (0.5 mL), and then a solution 

of NaOMe (20 µL, 0.5M in MeOH) was added and stirred at room temperature. MS was 

used to monitor the conversion until all the initial material had transformed into the base 

hydrolysis product. Subsequent MS/MS experiments were conducted on the base 

hydrolysis product using a SYNAPT G2-Si UPLC-ESI-qTOF mass spectrometer 

(Waters) analyzed in data-dependent acquisition mode. The instrument was equipped 

with a Waters ACQUITY i-Class UPLC and an HSS T3 column (2.1 × 100 mm, 1.8 µm). 

MS analysis of the derivative selethramide methyl ester product showed a [M+H]+ m/z 

1960.1804 (calc’d 1960.1833), and an absence of the starting material shows complete 

conversion to the product. The amino acid sequences with major fragments consistent 

with the losses of the acyl chain-Ser1 (y17 ion, calc’d 1787.1134, expt 1787.1047), Ser2 

(y16 ion, calc’d 1700.0819, expt 1700.0661), Leu3 (y15 ion, calc’d 1586.9979, expt 

1586.9896), Leu4 (y14 ion, calc’d 1473.9138, expt 1473.9160), Ser5 (y13 ion, calc’d 

1386.8818, expt 1386.8784), Ser6 (y12 ion, calc’d 1299.8488, expt 1299.8474), Leu7 (y11 

ion, calc’d 1186.7657, expt 1186.7670), Leu8 (y10 ion, calc’d 1073.6816, expt 

1073.6794), Ser9 (y9 ion, calc’d 986.6496, expt 986.6479), Leu10 (y8 ion, calc’d 

873.5655, expt 873.5634), Leu11 (y7 ion, calc’d 760.4815, expt 760.4791), Ser12 (y6 ion, 

calc’d 673.4495, expt 673.4478), Thr13 (y5 ion, calc’d 572.4018, expt 572.3998), Leu14 

(y4 ion, calc’d 459.3178, expt 459.3181), Leu15 (y3 ion, calc’d 346.2336, expt 346.2321), 

Ser16 (y2 ion, calc’d 259.2016, expt 259.2002), and Leu17 (y1 ion, calc’d 146.1176, expt 

146.1174) (Figure 5.4). 
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Figure 5.4  MS/MS Fragmentation Pattern of Base Hydrolysis Selethramide 
Product. 
The amino acid sequences with major fragments consistent with the losses of the 
acyl chain-Ser1 (y17 ion, calc’d 1787.1134, expt 1787.1047), Ser2 (y16 ion, calc’d 
1700.0819, expt 1700.0661), Leu3 (y15 ion, calc’d 1586.9979, expt 1586.9896), 
Leu4 (y14 ion, calc’d 1473.9138, expt 1473.9160), Ser5 (y13 ion, calc’d 
1386.8818, expt 1386.8784), Ser6 (y12 ion, calc’d 1299.8488, expt 1299.8474), 
Leu7 (y11 ion, calc’d 1186.7657, expt 1186.7670), Leu8 (y10 ion, calc’d 
1073.6816, expt 1073.6794), Ser9 (y9 ion, calc’d 986.6496, expt 986.6479), 
Leu10 (y8 ion, calc’d 873.5655, expt 873.5634), Leu11 (y7 ion, calc’d 760.4815, 
expt 760.4791), Ser12 (y6 ion, calc’d 673.4495, expt 673.4478), Thr13 (y5 ion, 
calc’d 572.4018, expt 572.3998), Leu14 (y4 ion, calc’d 459.3178, expt 459.3181), 
Leu15 (y3 ion, calc’d 346.2336, expt 346.2321), Ser16 (y2 ion, calc’d 259.2016, 
expt 259.2002), and Leu17 (y1 ion, calc’d 146.1176, expt 146.1174). 

After establishing the amino acid sequence in the linear peptide derivative, the 

focus shifted to determining the absolute configuration of the side chains. This 

determination is achieved through Marfey’s analysis, which involves reacting liberated 

amino acids from the peptide (obtained via acid hydrolysis) with Marfey’s reagent to form 

diastereomers. This process allows the separation of amino acid isomers by RP 

chromatography, providing a facile way to assess absolute configuration. The 

derivatized amino acids are then compared to both ʟ and ᴅ laboratory amino acid 

standards. By determining the retention times of these standards, we can deduce the 

configuration of the amino acids within the molecule. 

An aliquot of selethramide (0.3 mg) was hydrolyzed with 6N HCl at 110 °C for 18 

hours, then dried under nitrogen gas. The resulting hydrolysate was resuspended in 
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50% aq. acetone and derivatized with Marfey’s reagent Nα-(2,4-dinitro-5-fluorophenyl)-ʟ-

valinamide (ʟ-FDVA). The reaction was quenched and analyzed by UPLC-MS (Waters 

RDa TOF) equipped with an ACQUITY UPLC and HSS T3 column (2.1 x 100 mm, 1.8 

µm). The gradient solvent system eluted from 5% aq. ACN to 95% aq. ACN + 0.01% 

formic acid over 13 minutes at a 0.5 mL/min flow. A library of 36 amino acid standards (ʟ 

and ᴅ pairs) was prepared and analyzed like selethramide and saved as a digital library. 

The derivatives from selethramide hydrolysate were matched with the amino acid 

standards library, and the configuration of the side chains in the structure were assigned 

using Waters UNIFI software. Marfey’s analysis revealed that 5.1 contained a 

combination of ʟ and ᴅ serines (Figure 5.5), a ᴅ-allo-threonine (Figure 5.6), and ʟ and ᴅ 

leucines (Figure 5.7). For a complete description of the procedure, see Section 5.5.2. 

 

Figure 5.5  Ex r c  d I   Chr m    r m f r M rf y’  FDVA-Derivatized Serine 
Hydrolysates. 
(A) Selethramide derivatized hydrolysate EIC m/z 386.13. (B) FDVA-ʟ-serine EIC 
m/z 386.13; RT = 4.92 min. (C) FDVA-ᴅ-serine EIC m/z 386.13; RT = 5.16 min. 
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Figure 5.6  Ex r c  d     chr m    r m  f r M rf y’  FDVA-derivatized 
threonine hydrolysates. 
(A) Selethramide derivatized hydrolysate EIC m/z 400.15. (B) FDVA-ᴅ-threonine 
EIC m/z 400.15; RT = 5.90 min. (C) FDVA-ᴅ-allo-threonine EIC m/z 400.15; RT = 
5.52 min. (D) FDVA-ʟ-threonine EIC m/z 400.15; RT = 4.94 min. (E) FDVA-ʟ-allo-
threonine EIC m/z 400.15; RT = 5.06 min. 
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Figure 5.7  Ex r c  d     chr m    r m  f r M rf y’  FDVA-derivatized leucine 
hydrolysates. 
(A) Selethramide derivatized hydrolysate EIC m/z 412.18. (B) FDVA-ᴅ-leucine 
EIC m/z 412.18; RT = 8.45 min. (C) FDVA-ᴅ-isoleucine EIC m/z 412.18; RT = 
8.39 min. (D) FDVA-ᴅ-allo-isoleucine EIC m/z 412.18, RT = 8.37 min. 

Since the sequence of amino acids in 5.1 is known, the next task was to 

determine the configuration of each amino acid within that sequence. To achieve this, 

we conducted a feeding study in which the strain was exposed to deuterated serine and 

leucine. If an epimerization domain existed, we hypothesized that the incorporated 

amino acids would revert to their undeuterated forms. By analyzing the resulting MS/MS 

sequence, we could infer the configuration of each amino acid. Unfortunately, attempts 

to incorporate labeled amino acids through feeding studies did not yield the expected 

results. Attention was turned to identifying epimerization domains within the BGC 

through domain analysis. The analysis revealed that certain amino acids were in the ᴅ 

configuration. Combining this information with predictions from the BGC analysis, we 

assigned the absolute configuration of the amino acids as follows: ᴅ-Ser1-ᴅ-Ser2-ᴅ-

Leu3-ʟ-Leu4-ᴅ-Ser5-ʟ-Ser6-ᴅ-Leu7-ʟ-Leu8-ᴅ-Ser9-ʟ-Leu10-ʟ-Leu11-ᴅ-Ser12-ᴅ-allo-

Thr13-ʟ-Leu14-ʟ-Leu15-ᴅ-Ser16-ʟ-Leu17-ʟ-Leu18 (Figure 5.2). 
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5.3. Discovery of Megapolipeptins by Genome Mining of a 
Burkholderiales Bacteria Collection 

Manuscript in preparation 

Authors: Bruno S. Paulo, Michael J. J. Recchia, Sanghoon Lee, Claire Fergusson, Sean 

B. Romanowski, Antonio Hernandez, Nyssa Krull, Dennis Y. Liu, Hannah Cavanagh, 

Allyson Bos, Christopher Gray, Brian T. Murphy, Roger G. Linington, Alessandra S. 

Eustáquio. 

Author contributions: C.G. mentored A.B., B.T.M. mentored A.H. and N.K., R.G.L. 

mentored M.J.J.R., S.L., C.F., D.Y.L., and H.C., and A.S.E. mentored B.S.P. and S.B.R. 

R.G.L., and A.S.E. secured research funding. A.S.E. and R.G.L. designed the project, 

and C.F. isolated Burkholderiales strains from environmental samples. Subsequent 

strain analysis was performed by S.B.R., A.H., and N.K. using IDBac. B.S.P. isolated 

genomic DNA, conducted genome analyses, and identified candidate features. D.Y.L. 

and H.C. conducted antibacterial assays, and A.B. conducted the antifungal activity 

assays. M.J.J.R. and S.L. were responsible for isolating and structurally characterizing 

megapolipeptins. M.J.J.R.’s contributions included complete structure elucidation, 

Marfey’s analysis to determine amino acid configurations, and NMR chemical shift 

analysis. Additionally, M.J.J.R. performed partial hydrolysis to ascertain the order of the 

threonine amino acid groups in the molecule. The collaborative effort extended to 

manuscript preparation, with B.S.P., M.J.J.R., R.G.L., and A.S.E. contributing to writing 

and reviewing the paper. 

5.3.1. Introduction 

Recent estimates suggest that only 3% of genome-predicted bacterial NPs have 

been successfully isolated and structurally characterized.169 However, obtaining these 

NPs remains challenging because “silent” BGCs are not expressed in practical quantities 

for detection and isolation.162 Despite this limitation, exploring the untapped biosynthetic 

potential of these underexplored NPs could have significant ecological implications in 

pharmaceutical and agricultural applications. This section explores the discovery of two 

novel NPs from predicted BGCs, achieved through activation approaches such as 
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engineering the native producer and heterologous expression in an optimized 

Burkholderia host strain.173 

The heterologous expression of biosynthetic pathways for NPs is gaining 

popularity in microbial technology, drug discovery, and optimization.174 This approach 

can streamline the discovery process, increasing product yields and improving 

throughput.173 Beyond NP production, heterologous expression enables the creation of 

novel analogs through biosynthetic engineering. However, the choice of host strain can 

significantly influence the success of heterologous expression.175 Recent studies have 

highlighted the connection between product yields and the genetic makeup of host 

strains and source DNA. This was demonstrated in the Eustáquio Lab, where 

researchers developed a Burkholderia host strain FERM BP-3421, which showed 

significantly higher production of native NPs than traditional Escherichia coli hosts.176 

This study highlights a multifaceted approach to establishing a pipeline for 

discovering NPs from the Burkholderiales order. Leveraging a Burkholderiales culture 

collection gathered over five years from southern British Columbia, researchers 

employed IDBac – a matrix-assisted laser desorption/ionization (MALDI) TOF MS 

analysis method – to prioritize strains based on metabolic networks and maximize 

diversity.177–179 Out of 230 strains analyzed by IDBac, 100 were selected for genome 

sequencing, with prioritization guided by biosynthetic classification tools such as 

antiSMASH (v6.0).67 The study focused on a hybrid PKS-NRPS BGC conserved in the 

Paraburkholderia megapolitana clade, which includes polyunsaturated fatty acid (PUFA) 

genes. This decision was based on the fact that this type of BGC synthesizes molecules 

with the most potential for bioactivity from Burkholderiales.146 This BGC was named mgp 

for megapolipeptin and was discovered in the in-house strain P. megapolitana RL18-

039-BIC-B (genome #76). 

Previous attempts to isolate these NPs from the strain P. megapolitana DSM 

23488 were unsuccessful due to low yields, preventing isolation.180 Interestingly, the 

BGC responsible for these NPs was silent in the wild-type strain but could be activated 

through promoter replacement. Despite detecting the mgp BGC known for producing 

compounds in the in-house strain RL18-039-BIC-B, no molecules were identified. 

Following previous promoter replacement strategies, the mgp BGC was cloned and 

heterologously expressed in the Burkholderia host strain FERM BP-3421.168 Successful 
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incorporation into the host genome allowed us to identify two novel PKS-NRPS peptides, 

megapolipeptin A (5.2) and megapolipeptin B (5.3), containing varying fatty acid 

components (Figure 5.8). A thorough analysis using the NP Atlas showed low structural 

similarity to other known bacterial NPs (with maximum Tanimoto similarity scores of 0.58 

(5.2) and 0.56 (5.3)).53 This study highlights the advantages of a multi-omic approach 

and synthetic biology-enabled methods for discovering NPs from previously under 

expressed BGCs. While many researchers contributed to this project, this section will 

focus on personal contributions related to isolating and determining the structure of 5.2 

and 5.3. 

 

Figure 5.8  Molecular Structures of NPs Isolated from P. megapolitana. 
The planar structures of megapolipeptin A (5.2) and megapolipeptin B (5.3). 

5.3.2. Isolation and Structure Elucidation of Megapolipeptins A and B 

The strain Burkholderia sp. FERM BP-3421 Δfr9A (pBS2001) was genetically 

modified to express the mgp BGC. After fermentation, the strain was extracted using a 

mixture of DCM and MeOH in a 2:1 ratio. The resulting organic extract was concentrated 

and then subjected to primary fractionation using C18 solid-phase extraction (SPE) 

chromatography, with a stepwise elution gradient of MeOH/H2O starting at 20% aq. 

MeOH to a 100% ethyl acetate wash for six fractionated samples (A → F). MS analysis 

of the fractions showed that fraction ‘C’ (60% aq. MeOH) contained the target molecules. 

Fraction ‘C’ was subjected to semi-preparative RP-HPLC (Phenomenex Synergy 

FUSION RP-80A, 250 x 10 mm) using an elution gradient of 10% aq. ACN to 80% aq. 



105 

ACN + 0.02% formic acid over 30 minutes to afford two fractions: C-1 (m/z 958, 19.3 

minutes) and C-2 (m/z 984, 20.5 minutes). The two molecules were then purified using 

analytical RP-HPLC (Phenomenex Kinetex XB-C18, 250 x 4.6 mm, 5 µm) using an 

isocratic elution system of 35% aq. ACN at 1.2 mL/min yielded 3.7 mg of compound 5.2 

(tR 5.20 minutes) and 9.8 mg of compound 5.3 (tR 9.46 minutes). HR-MS data was 

acquired on a new Waters Multi-Reflecting Time-of-flight (MRT) mass spectrometer 

boasting a resolving power of 300,000 FWHM with parts-per-billion mass accuracy. 

Below is a compilation of the structure elucidation details for megapolipeptin A (5.2) and 

B (5.3) (Figure 5.8). 

Megapolipeptin A (5.2) was obtained as a white powder. HR-MS data indicated a 

molecular formula of C45H75N5O17 based on the protonated cluster ion at [M+H]+ m/z 

958.52350 (calc’d. m/z 958.52307, 0.449 ppm) (Appendix Figure A.17). The tandem 

MS/MS spectrum revealed two sequential neutral losses consistent with threonine amino 

acid residues (Figure 5.9). 

 

Figure 5.9  MS/MS Data for Megapolipeptin A (5.2). 

To further analyze the structure, a comprehensive set of 1D (1H and 13C) and 2D 

(COSY, TOCSY, ROESY, NOESY, HSQC-DEPT, HMBC) NMR experiments were 

conducted to determine the planar structure recorded in DMSO-d6 (Appendix Figures 

B.1–B.7). The 1D NMR spectra indicated the presence of six amide protons (δH 8.49, 

7.93, 7.86, 7.58, 7.19, 6.76), seven carboxylic carbons (δC 174.0, 173.6, 173.4, 170.5, 
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169.9, 169.8, 159.8), and two ketone carbons (δC 206.2, 202.4). In addition, two α-

protons (δH 4.32, 4.21) were detected, suggesting the presence of two amino acid 

residues. Based on the MS/MS data, these residues were proposed as threonine 

residues (Figure 5.9, Appendix Table A.3). 

Two NH protons (δH 7.19, 6.76) showed HMBC correlations to a carbonyl carbon 

(δC 173.6) and a methylene carbon (δC 39.9), suggesting the presence of a terminal 

amide group. COSY and HMBC correlations completed a terminal 4-amino-3,5-

dihydroxypentanamide (Ahpa) moiety as the first complete spin system from these 

resonances. COSY and HMBC correlations established two additional spin systems, 

revealing threonine amino acid residues (1Thr and 2Thr). The 1H-NMR spectra showed 

the presence of four vinylic protons (δH
 5.36 – 5.35), which exhibited COSY correlations 

to four allylic methylenes (δH 1.99 – 1.90). Continued COSY and HMBC correlations 

revealed a 3-amido-5,19-dihydroxyicosa-10,14-dienamide (Adhda) moiety as the fourth 

completed spin system. From a ketone carbon at δC 206.2, HMBC and COSY 

correlations were used to assign a fifth spin system as a 2-hydroxy-4-oxoheptanedioic 

acid (Hoha) functionality. The sixth spin system was completed based on HMBC and 

COSY correlations from an additional downfield ketone carbon at δC 202.4 to give a 2-

methyl-propan-1-one (Mpo) moiety. The arrangement of the various spin systems was 

assigned based on HMBC correlations between the amide carbon of 1Thr-1 and Ahpa-

NH, 1Thr-NH and 2Thr-1, 2Thr-NH and Adhda-1, Adhda-19 and Hoha-2 (Figure 5.10). 

The complete planar structure could not be determined due to unobserved HMBC 

correlations from Mpo-1 to the main structure. Potential connections were considered in 

the carbonyl groups of Adhda-21, Hoha-1, or Hoha-7. 

 

Figure 5.10  Key COSY/TOCSY and HMBC Correlations for Megapolipeptin A 
(5.2). 
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Compound 5.2 was treated with trimethylsilyl (TMS) diazomethane to determine 

possible connection points of the Mpo moiety and unambiguously assign the carboxylic 

acid function groups. MS analysis of the methylated product exhibited two peaks, each 

with an increase in mass of +42 Da ([M+H]+ m/z 1000.5632 (calc’d m/z 1000.5670) 

C48H82N5O17), suggesting the methylation of three carboxylic acids (Appendix Figures 

A.18 and A.19). The derivatized products (designated as 5.4 and 5.5) were isolated and 

subjected to NMR analysis. The 1H-NMR spectrum of both products showed two 

methoxy signals assigned to the acid moieties of Hoha-1 and Hoha-7. Closer inspection 

of the 13C-NMR spectrum revealed that the carbonyl carbon Mpo-1 was no longer 

present. Instead, COSY correlations showed this moiety was now a 2-isopropyl oxirane 

(Ipo) due to a Büchner-Curtius-Schlotterbeck reaction between the carbonyl group and 

TMS diazomethane to generate an epoxide (Figure 5.11). HMBC correlations from Ipo-2 

(δH 2.27) and Ipo-5 (δH 2.87, 2.60) to Adhda-21 (δC 168.4) in both derivatized products 

established the connection of the Ipo moiety with the rest of the molecule (Figure 5.11). 

This completed the planar structures of 5.4 and 5.5 (Figure 5.12). The Mpo moiety was 

found to be connected to Adhda-21 in the unreacted NP, thereby completing the planar 

structure of megapolipeptin A (5.2) (Figure 5.8). Positional assignments of Ahpa [m/z 

149.09352], 1Thr [m/z 250.13945], and 2Thr [m/z 351.19006] spin system moieties were 

corroborated by MS/MS fragmentation data (Figure 5.9). 

 

Figure 5.11  Key COSY and HMBC Correlations for the Derivatized NP with TMS 
Diazomethane. 
(A) The key COSY and HMBC correlations for the derivatized megapolipeptin A 
(5.2) molecule display the connection of the Mpo moiety to the molecule. (B) The 
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proposed pathway via the Büchner-Curtius-Schlotterbeck rearrangement that 
converted a ketone to an epoxide in compounds 5.4 and 5.5. 

 

Figure 5.12  Planar Structures of the Megapolipeptin A Methyl Ester Derivatives 
(5.4 and 5.5). 

Megapolipeptin B (5.3), also isolated as a white powder, exhibited a protonated 

molecular ion [M+H]+ m/z 984.53821 (calc’d m/z 984.53872, -0.518 ppm) during HR-MS 

experiments, indicating a molecular formula of C47H77N5O17 (Appendix Figure A.20). A 

comparison of the MS spectra between compounds 5.2 and 5.3 revealed a mass 

difference of +26 Da, suggesting compound 5.3 contains two additional vinylic methines 

along the hydrocarbon chain (Figure 5.13). 

 

Figure 5.13  MS/MS Data for Megapolipeptin B (5.3). 
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The NMR data of 5.3 closely resembled those of 5.2, showcasing six distinct spin 

systems (Appendix Figures B.8 – B.13).  Upon thorough examination of the downfield 

region of the 1H-NMR spectrum, containing the vinylic signals (δH 5.37), integration 

revealed the presence of six protons, consistent with the addition of 26 mass units. 

Comparative analysis of the 1D and 2D NMR spectra with compound 5.2 identified 

Ahpa, 1Thr, 2Thr, Hoha, and Mpo moieties. COSY and HMBC experiments established 

the final spin system as 3-amido-5,21-dihydroxydocosa-8,12,16-trienamide (Adhta) 

(Appendix Table A.4, Figure 5.14). 

 

Figure 5.14  Key COSY and HMBC Correlation to Establish the Planar Structure 
of Megapolipeptin B (5.3). 

The assignment of the Mpa moiety was determined similarly to 5.2. Compound 

5.3 was treated with TMS diazomethane to generate the 2-isopropyloxirane containing 

diastereomers (5.6 and 5.7) ([M+H]+ 1026.5837 (calc’d 1026.5862) (Appendix Figures 

A.21 and A.22). The complete planar structure of the derivatized product was 

established through COSY and HMBC correlations (Figure 5.15). Specifically, an HMBC 

correlation was observed between Mpo-1 and Adhta-23, suggesting that the Mpo moiety 

in 5.3 is connected to Adhta-21. Finally, the positions of the Ahpa [m/z 149.09352], 1Thr 

[m/z 250.13945], and 2Thr [m/z 351.19006] moieties were confirmed by MS/MS (Figure 

5.13). 

 

Figure 5.15  COSY and HMBC Correlations to Establish the Planar Structure of 
the Derivatized Methyl Ester Product (5.6 and 5.7). 

Upon completing the planar structures of 5.2 and 5.3, attention was directed at 

ascertaining the absolute configuration of the 1Thr and 2Thr residues in both molecules. 

The molecules underwent acid hydrolysis, liberating the amino acid hydrolysates. 
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Subsequently, these liberated hydrolysates were derivatized using Marfey’s reagent (1-

fluoro-2,4-dinitrophenyl-5-ʟ-valineamide) to form diastereomers (Section 

5.5.2).181 Amino acid standards were prepared in parallel. The derivatized hydrolysates 

and amino acid standards were then analyzed via UPLC-MS. By comparing the retention 

times and m/z values of the derivatized hydrolysates to the standards, we determined 

the identity of the residues in both molecules. The analysis revealed the presence of ʟ-

threonine and ʟ-allo-threonine (Figure 5.16). 

 

Figure 5.16  M rf y’  A  ly     f M     l        A (5.2)   d M     l        B 
(5.3). 
(A) EIC [M+H]+ m/z 400.15 of megapolipeptin A hydrolysate. (B) EIC [M+H]+ m/z 
400.15 of megapolipeptin B hydrolysate. (C) FDVA-ʟ-threonine standard. (D) 
FDVA-ʟ-allo-threonine standard. 

To determine the positions of the two different threonine residues, compound 5.3 

underwent partial hydrolysis to obtain a molecule fragment containing only one 

threonine. Once a hydrolysis product containing a single threonine is identified, it can be 

isolated and subjected to Marfey’s analysis to determine the absolute configuration of 

the threonine residue. This analysis allows the inference of the other threonine at the 

second position in the molecule. Initially, a small aliquot of compound 5.3 was partially 

hydrolyzed using 1N HCl at 110 °C over multiple time points to optimize the production 

of the desired fragment. MS analysis of the time points revealed a reaction product with 

an [M+H]+ m/z 753.4213 at 3.83 minutes. This peak corresponded to the loss of the 

peptidic end of the molecule while retaining one threonine moiety (Figure 5.17). Notably, 
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this fragment was most abundant at the 30-minute time point. A larger sample of 5.3 was 

further hydrolyzed using the 30-minute target. After quenching the reaction and 

concentrating the mixture, the fragment was isolated by HPLC (see Section 5.5.3). The 

isolated fragment then underwent Marfey’s analysis, confirming the associated amino 

acid as ʟ-threonine (Figure 5.18). This inference allowed us to identify the other 

threonine residue as ʟ-allo-threonine and assign the absolute configuration of both 

amino acid moieties in each molecule. 

 

 

Figure 5.17  Hydrolysate Product Following Partial Hydrolysis of Megapolipeptin 
B (5.3). 
The MS and MS/MS spectra were obtained for the hydrolysate product following 
partial hydrolysis of megapolipeptin B (5.3). The observed product peak (m/z 
753.4213) corresponds to removing the Ahpa and 1Thr moieties, leaving a single 
threonine residue in the isolated fragment. The peak was targeted for HPLC 
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isolation and subsequent Marfey’s analysis for absolute configuration 
determination.  

 

Figure 5.18  M rf y’  A  ly        h  P r   l Hydr ly    Pr duc . 
(A) EIC [M+H]+ m/z 400.15 of megapolipeptin B (5.3) hydrolysate following partial 
hydrolysis and Marfey’s analysis. (B) EIC [M+H]+ m/z 400.15 of the FDVA-ʟ-
threonine standard. (C) EIC [M+H]+ m/z 400.15 of the FDVA-ʟ-allo-threonine 
standard. 

Megapolipeptin A (5.2) 

[α]ᴅ20 +5.0 (c 0.23, MeOH); UV (MeOH) λmax (log ε) = 248 (1.41) nm. See Appendix 

Table A.3 for NMR shifts. See Appendix Figures B.1 – B.7 for NMR spectra. HR-ESI-

MS [M+H]+ m/z 958.52350  (calc’d for C45H75N5O17, 958.52307, 0.449 ppm). 

Megapolipeptin B (5.3)  

[α]ᴅ20 +4.0 (c 0.52, MeOH); UV (MeOH) λmax (log ε) = 248 (2.04) nm. See Appendix 

Table A.4 for NMR shifts. See Appendix Figures B.8 – B.13 for NMR spectra. HR-ESI-

MS [M+H]+ m/z 984.53821  (calc’d for C47H77N5O17, 984.53872, -0.518 ppm). 
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5.3.3. Bioactivity Evaluation of Isolated Molecules 

Previously, compounds 5.2 and 5.3 were predicted from a silent BGC. These 

large molecules likely serve a specific purpose within the organism, as their synthesis 

would otherwise be energetically costly. We evaluated the antimicrobial potential of the 

compounds by subjecting them to various tests. First, compounds 5.2 and 5.3 were 

evaluated for antibacterial susceptibility against a panel of 17 bacterial pathogens using 

our BioMAP antibacterial platform (Appendix Tables A.5 and A.6).101 No growth 

inhibition of pathogenic organisms was observed even at a maximum concentration of 

128 µM (Appendix Table A.5). Furthermore, compounds 5.2 and 5.3 showed no 

antimycotic activity against Candida albicans or Saccharomyces cerevisiae even at a top 

concentration of 100 µM (Appendix Table A.7 and A.8). Also, neither compound 

exhibited activity against Aspergillus niger or Purpureocillium lilacinum in qualitative 

filamentous screening assays, up to a maximum concentration of 100 µM (Appendix 

Table A.7 and A.8). For detailed information on the antimicrobial experiments, refer to 

Section 5.5.4. 

5.4. Conclusion 

The studies discussed in this chapter aimed to leverage recent advancements in 

multi-omic applications to discover novel secondary metabolite NPs from 

Burkholderiales bacteria. These approaches were designed to be robust methods 

applicable to bacterial species beyond the Burkholderiales order. The primary objective 

was to overcome the bottleneck of obtaining NPs predicted from BGCs using 

bioinformatic methods, thereby expanding the known chemical space of NPs. Notably, 

the P. megapolitana clade emerged as a prolific producer of bioactive NPs, exhibiting a 

high BGC count to genome size ratio and a large diversity of PK-NRPS BGCs, including 

a conserved mgp BGC.146 The Burkholderia strain FERM BP-3421 was identified as a 

successful producer of NP pharmaceutical candidates.168 These studies underscored the 

strain’s utility in producing novel NPs and serving as a host for predicted NPs from silent 

BGCs in native strains. 

In Section 5.2, the study emphasized the synergistic application of genomic, 

bioinformatic, and metabolomic techniques to overcome the challenge of translating 

predictions into NPs. These methods were employed on Burkholderia sp. FERM BP-
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3421, leading to the identification of a novel octadecalipodepsipeptide called 

selethramide (5.1) (Figure 5.2). This sizable peptide comprises a repetitive sequence of 

hydrophilic amino acids (7 serines, 1 allo-threonine) and hydrophobic amino acids (10 

leucines), along with an N-terminal (R)-3-hydroxybutyric acid. Despite its weak 

antimicrobial activity, selethramide plays a role in surface motility due to its surfactant 

properties. The analysis presented here highlights enhanced DNA transfer efficiency and 

opens avenues for discovering future NPs from the Burkholderia strain. 

The second study (Section 5.3) presented the discovery of two novel NPs 

originating from a silent BGC within a P. megapolitana strain. Researchers focused on a 

hybrid PK-NRPS BGC in a P. megapolitana strain that is inherently silent in the 

bacterium. The BGC mgp was identified as a unique ensemble of enzymes critical to the 

biosynthesis of megapolipeptins through bioinformatics and genomics analyses. 

Although MS detected no NPs in the wild-type strain, bioinformatics predictions hinted at 

the presence of novel NPs with potential bioactivity. The mgp was cloned and 

heterologously expressed in the host strain Burkholderia sp. FERM BP-3421. This effort 

led to the discovery of megapolipeptins A (5.2) and B (5.3) at concentrations of 0.6 mg/L 

and 1.5 mg/L, respectively (Figure 5.8).  

These studies have demonstrated that genome sequencing enhances our 

comprehension of biodiversity and facilitates the exploration of novel and biologically 

valuable NPs. The continued advancements in the multi-omic disciplines invigorate the 

search for secondary metabolites in unexplored realms, uncovering a wealth of 

potential.162 One of the described studies employed multidisciplinary approaches to 

obtain NPs from silent or underexpressed sources, mainly when the isolated molecules 

exhibit chemical diversity and low structural similarity to reported microbial NPs. The 

genomics-driven and synthetic biology-enabled pipeline described herein is invaluable 

for expanding the chemical space by discovering novel NPs. 

5.5. Materials and Methods 

5.5.1. General Experimental Procedures 

Optical rotations were measured on a Model 341 (Perkin Elmer) polarimeter. 

Ultraviolet absorption spectra were recorded on a Shimadzu UV-3600 Plus UV–VIS 
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spectrophotometer. HR-MS and MS/MS experiments were recorded on a Waters Select 

Series MRT and a SYNAPT G2-Si UPLC-ESI-qTOF mass spectrometers. NMR spectra 

were measured on an AVANCE II 600 MHz spectrometer equipped with a 5 mm QCI 

cryoprobe and referenced to residual solvent proton and carbon signals δH 2.50 and δC 

39.5 for DMSO-d6. MPLC (CombiFlash, Teledyne ISCO) was performed on a RediSep 

Rf solid load cartridge (5g, Teledyne ISCO). HPLC separations were performed on an 

Agilent 1200 series equipped with a binary pump and a diode array detector using a 

Phenomenex Synergi-RP FUSION (250 x 10 mm, 10 µm), a Phenomenex Kinetex XB-

C18 (250 x 4.6 mm, 5 µm), and a VyDAC-RP (250 mm x 4.6 mm, 5 µm) columns. 

Solvents used for HPLC chromatography were optima grade and were used without 

further purification. 

5.5.2. Determination of the Absolute Configuration of Amino Acids 

Isolated compounds (300 µg each) were hydrolyzed (100 µL 6N HCl at 110 °C 

for 18 hours) in a 500 µL sealed reaction vessel. After the reaction, the excess HCl was 

removed under a stream of N2 (g), and the residue was re-suspended in 100 µL 50% aq. 

acetone. 100 µL of FDVA solution in acetone (10 mg/mL) and 40 µL of 1M NaHCO3 

were added to the reaction vessel and heated at 40 °C for 1 hour. The reaction was then 

quenched with 40 µL 1N HCl and dried under a N2 (g). The dried residue was dissolved 

in 500 µL MeOH and compared with standard FDVA-amino acids by UHPLC-MS 

(Waters ACQUITY HSS T3 1.8 µm, 0.650 mL/min) using a gradient of 5% aq. ACN to 

95% aq. ACN with 0.02% formic acid over 13 minutes. The absolute configuration of 

each amino acid was determined by comparing retention times of FDVA-amino acid 

derivatives in target compounds with standard ᴅ,ʟ FDVA-amino acids. 

5.5.3. Partial Hydrolysis and Isolation of the Hydrolysate 

Megapolipeptin B (5.3, 0.5 mg) underwent partial hydrolysis to isolate a molecule 

fragment containing one threonine residue. Compound 5.3 was hydrolyzed using 1N HCl 

at 110 °C for 30 minutes in a sealed 500 µL reaction vessel. MS continuously monitored 

the reaction progress to optimize the yield of the desired product. After 30 minutes, the 

reaction was quenched with 1M NaHCO3 and dried under a stream of N2 (g). The 

resulting hydrolysate was then purified using HPLC on an Agilent 1200 series system 

equipped with a Kinetex XB-C18 Phenomenex column (250 x 4.6 mm, 5 µm). An elution 
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gradient from 5% to 95% aq. ACN over 40 minutes was employed, with a 1.25 mL/min 

flow rate. The compound eluted at 25.1 minutes (0.1 mg) and was monitored by UV/Vis 

at λ 254 nm. 

5.5.4. Antimicrobial Screening 

Antimicrobial susceptibility tests for target compounds against the bacterial target 

panel are performed using a miniaturized HT assay adapted from the broth microdilution 

method outlined by the Clinical and Laboratory Standards Institute (CLSI). Bacterial test 

strains were individually grown on fresh Nutrient Broth (NB, ATCC Medium 3) agar, 

Tryptic Soy Broth (TSB, ATCC Medium 18) agar, or Brain Heart Infusion (BHI, ATCC 

Medium 44) agar, respectively (Appendix Table A.5), as recommended by the 

American Type Culture Collection (ATCC) cultivation protocol. Individual colonies were 

used to inoculate 3 mL of sterile NB, TSB, or BHI media and grown overnight with 

shaking (200 RPM; 37 °C). Listeria ivanovii (ATCC BAA-139) was incubated overnight 

but not shaken (37 °C; 5% CO2). Saturated overnight cultures were diluted in their 

respective media according to turbidity to achieve approximately 5 x 105 CFU/mL of final 

inoculum density and dispensed into sterile, clear polystyrene 384-well microplates 

(Thermo Scientific™ 265202) with a final screening volume of 30 μL. L. ivanovii was 

diluted and grown in Haemophilus Test Medium (HTM; ATCC Medium 2167). DMSO 

solutions of test compounds and antibiotic controls were prepared as a 1:1 dilution 

series and pinned into each assay plate (200 nL) using a high throughput pinning robot 

(Tecan Freedom EVO 100) to achieve final screening concentrations ranging from 128 

μM to 3.91 nM per compound. In each 384-well plate, lane one was reserved for the 

DMSO vehicle and culture medium; lane two was reserved for the DMSO vehicle, 

culture medium, and target bacteria; lanes 23 and 24 were reserved for antibiotic 

controls, DMSO vehicle, culture medium, and target bacteria. After compound pinning, 

assay plates were read as t0 at OD600 using an automated plate reader (BioTek Synergy 

Neo2), sealed with a lid, and placed in a humidity-controlled incubator at 37 °C for 18-20 

hours before optical density was obtained for t20. L. ivanovii was incubated in a separate 

incubator (37 °C; 5% CO2). The resulting growth curves for each dilution series were 

used to determine the MIC values for each tested compound following standard 

procedures. 
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Appendix A.  
 
Supplemental Figures and Tables 

 

Figure A.1 The Orthogonal Sampling Scheme Using One Grid. 
(A) MS feature deconvolution protocol using one grid. This illustrates a 
“successful solve” when a feature is only present in one well. (B) The depiction of 
false positive assignments when a feature is present in more than one well using 
a single sampling grid. 
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Figure A.2 In Silico Computational Deconvolution Scheme (Single vs. Dual). 
(A) The deconvoluted protocol using a single grid. A theoretical sampling grid is 
generated with a known analyte location. Under the deconvolution protocol, if an 
MS feature is present in a row or column, the entire row/column is given a 1. The 
whole row/column is given a 0 if no analyte is detected. When a row and column 
have a 1, then the sample at the intersection is given a 1. This process 
deconvolutes the sampling grid to create an observed grid. If there is nothing to 
compare to the observed grid, then this automatically becomes the predicted 
grid, creating an overinflated MS feature list with many false positives. These 
false positive assignments occur when x > 1. (B) MultiplexMS incorporates a 
dual-grid strategy to improve MS feature assignment. First, the same GT grid is 
rearranged using the MMSO protocol. Both grids are computationally 
deconvoluted to create observed grids for each arrangement. MS features in 
both observed grids are conserved, and the features present in only one grid are 
discarded from the final list of assigned features. This strategy provides a distinct 
advantage when x > 1. 
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Figure A.3 Single-Grid Orthogonal Sampling Disadvantage When x > 1. 
(A) r = 10, single-grid deconvolution, feature frequency count, and 
precision calculation. The precision of the MS feature assignment drops 
immediately after x > 1. (B) r = 20 shows no improvement in precision 
after x >1. (C) r = 30 shows no improvement in precision after x > 1. 
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Figure A.4 “O  -Compound-One-W ll” 5 x 5 Mul   l x    Ex  r m   . 

The arrangement of samples in the 5 x 5 multiplexing experiment using 
25 NP standards. The initial and rearranged grids were organized 
following the MMSO protocol. 
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Figure A.5 MS Feature Presence Table Following Computational Deconvolution 
of Samples in the 5 x 5 Multiplexing Experiment. 
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Figure A.6 EIC of m/z 335.1060 in the Penicillin G and Cloxacillin Standard. 
Computational deconvolution of the NP standards in the 5 x 5 experiment 
showed the presence of penicillin G in the cloxacillin standard. EIC of the 
appropriate mass shows contamination of penicillin G in the cloxacillin sample. 
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Figure A.7 EIC of m/z 445.1605 in the Tetracycline and Doxycycline Standard. 

Computational deconvolution of the NP standards in the 5 x 5 experiment 
showed the presence of tetracycline and doxycycline in each 
reconstructed sample. Tetracycline and doxycycline are structural 
isomers, and because of the close elution times and poor peak shape, the 
preprocessing software classified these molecules as the same. 
Therefore, each retention time_m/z pair was assigned to each 
reconstructed sample. 
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Figure A.8 Initial and Rearranged Preparation Tables for the 10 x 10 
Multiplexing Experiment. 
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Figure A.9 MS Feature Deconvolution Performance for NPs in Complex 
Mixtures. 
Results of the successful computational deconvolution of the ten 

standards used in the 10 x 10 multiplexing experiment. Each NP standard 
was correctly assigned with zero instances of false positive assignments. 
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Figure A.10 Percent Information Recovery of the Reconstructed 90 Prefractions 
Versus the GT MS Feature List. 
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Figure A.11 Examination of a Feature Presence in GT Versus Reconstructed 
Samples for the 10 x 10 Multiplexing Experiment. 
(A) The percent information recovery for MS feature comparison between 
the reconstructed and GT datasets per elution polarity of the prefractions. 
(B) An in-depth look at the MS feature count per prefraction elution 
polarity in the GT dataset. (C) MS feature counts in the reconstructed 
prefractions. Features in >20 samples were omitted from the final MS 
feature table. 
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Figure A.12 Assessment of FPR Per Prefraction Following In Silico BioMAP 
Multiplexing Experiment. 
Original feature count (red) per prefraction versus the reconstructed MS 
features (blue). (A) An MS feature count filter of >20 was applied, omitting 
those MS features that are present in more than 20 samples. (B) An MS 
feature count filter of >50 was applied, omitting those MS features that 
are present in more than 50 samples. (C) No filter is applied. 
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Figure A.13 High-Resolution Version of the NP Analyst Network from the 
Multiplexing Experiment (Supports Figure 2.8). 

 

Figure A.14 High-Resolution Version of the NP Analyst Network from the 
Multiplexing Experiment (Colored by Community). 
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Figure A.15 The Scatter Plot Visualization of the NP Analyst Network from the 
Multiplexing Experiment. 

 

Figure A.16 Minimum Intensity Threshold Determination. 
The minimum intensity cut-off threshold was implemented so that a 
feature would be deemed absent below a certain intensity. MS feature 
counts were determined on a per-sample basis versus the intensity of the 
detected features. The cut-off threshold was applied to the value 
indicated at the above inflection point. This greatly reduced ubiquitous 
“junk” features in the dataset. 
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Figure A.17 HR-ESI-MS Data for Megapolipeptin A (5.2). 

 

 

Figure A.18  Comparative Extracted Ion Chromatograms of Megapolipeptin A 
(5.2) and Methyl Ester Derivatives. 
(A) EIC of the megapolipeptin A methyl ester derivatives (5.4 and 5.5). Two 
products were observed and isolated by HPLC. (B) EIC of purified 
megapolipeptin A (5.2). 
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Figure A.19  Comparative MS Spectra of Megapolipeptin A (5.2) and Methyl Ester 
Derivatives. 
(A) megapolipeptin A (5.2). (B) and (C) the two megapolipeptin A methyl ester 
derivatives (B: 5.4, tR 4.06 min; C: 5.5, tR 3.98 min). 

  

Figure A.20 HR-ESI-MS Data for Megapolipeptin B (5.3). 
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Figure A.21  Comparative Extracted Ion Chromatograms of Megapolipeptin B 
(5.3) and Methyl Ester Derivatives. 
(A) EIC of the megapolipeptin B methyl ester derivatives (5.6 and 5.7). Two 
products were observed and isolated by HPLC. (B) EIC of purified 
megapolipeptin B (5.3). 

 

 

Figure A.22  Comparative MS Spectra of Megapolipeptin B (5.3) and Methyl Ester 
Derivatives. 
(A) megapolipeptin B (2) (B) and (C) the two megapolipeptin B methyl ester 
derivatives (B: 5.6, tR 4.21 min; C: 5.7, tR 4.29 min).  
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Table A.1 Comparison of Ground-Truth Replicate Values Versus Predicted Abundance Values from 
MultiplexMS-Q in the 5 x 5 “O  -Compound-One-W ll” Ex  r m   . 

standard r.t. m/z replicate abundance R1 R2 R3 std dev predicted values 

Lincomycin 1.58 126.1299 13952.24 13623.06 13098.98 15134.68 863.05 13380.65 

 1.58 316.2002 5449.04 5776.21 5479.12 5091.79 280.22 4620.42 

 1.58 358.2112 48777.54 51915.12 48756.72 45660.77 2553.37 40796.50 

 1.58 389.2105 15207.86 15971.47 15491.59 14160.53 766.05 13911.41 

 1.58 407.2246 1343854.05 1415814.81 1349968.36 1265778.99 61404.27 1220320.94 

 1.58 812.4229 3502.72 3701.41 3132.97 3673.78 261.70 3327.53 

Doxycycline 2.27 188.0874 13248.42 13640.33 14573.75 11531.17 1272.67 10502.70 

 2.27 218.0639 8534.60 9297.29 9299.91 7006.61 1080.46 7105.56 

 2.27 252.0438 3594.39 4236.66 3756.86 2789.65 601.81 3458.95 

 2.27 267.0668 5167.72 5889.67 5371.94 4241.56 688.16 5147.15 

 2.27 284.0696 4426.66 4735.59 4616.66 3927.72 356.13 4426.54 

 2.27 292.0752 3171.27 3332.02 3281.60 2900.20 192.78 3681.20 

 2.27 338.0817 4623.47 4547.66 4899.81 4422.93 201.93 4060.14 

 2.27 392.1129 5600.63 5383.47 5951.71 5466.72 250.56 6258.83 

 2.27 428.1360 834145.83 789558.64 906869.64 806009.21 51860.19 810192.73 

 2.27 445.4280 84802.60 78853.46 93792.81 81761.54 6466.95 71794.02 

ceftazidime 1.54 274.5600 16804.00 20352.01 16402.68 13657.29 2747.80 17738.75 

 1.54 354.0331 4005.81 4941.30 3840.48 3235.67 706.06 4197.06 

 1.54 396.0813 46448.06 55713.31 44709.91 38920.94 6964.76 51401.07 

 1.54 423.0674 5880.71 6962.50 5731.48 4948.14 829.10 6276.86 

 1.54 440.0701 18715.81 22559.50 18098.50 15489.43 2919.16 20308.85 

 1.54 468.0658 68759.48 81304.82 63606.41 61367.20 8917.88 75124.91 

 1.54 524.1180 104225.78 122316.34 93756.56 96604.45 12844.68 112147.40 

midecamycin 2.94 613.3416 8053.81 7864.98 8261.58 8034.88 162.46 0.00 

  2.94 813.4473 24929.59 23045.62 27655.59 24087.55 1973.95 17063.85 
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  2.94 814.8166 129831.82 129485.12 124756.36 135254.00 4292.65 88404.47 

  2.96 815.4598 1740122.38 1714416.55 1739296.54 1766654.07 21333.87 1219800.22 

florfenicol 2.54 127.0567 3990.34 3726.12 3702.46 4542.45 390.52 3723.84 

  2.54 169.0544 6249.32 4983.16 5841.72 7923.08 1234.34 4766.99 

  2.54 205.0309 2981.08 2854.32 2893.81 3195.09 152.19 2902.92 

  2.54 241.0075 67943.81 67027.70 65602.46 71201.27 2375.73 68939.25 

  2.54 243.0044 45786.53 45118.32 44460.63 47780.65 1435.39 45724.66 

  2.54 319.9916 5341.02 5312.16 5228.15 5482.75 105.92 5239.12 

  2.54 321.9886 4233.59 4231.57 4167.48 4301.73 54.83 4127.45 

  2.54 357.0020 174652.63 174970.30 168544.41 180443.20 4862.85 171534.15 

  2.54 358.9993 119077.13 119643.65 114667.01 122920.72 3393.29 117438.12 

nystatin 2.84 163.0861 6614.63 6222.50 6552.44 7068.95 348.35 6452.38 

  2.84 164.0637 2939.00 2868.55 2848.62 3099.83 114.01 3660.91 

  2.84 203.1443 2208.04 2187.99 2144.25 2291.88 61.91 0.00 

  2.84 219.1762 77160.22 76981.11 73617.96 80881.59 2968.07 16847.28 

  2.84 232.0912 2370.71 2209.45 2330.73 2571.95 150.66 2606.84 

  2.84 264.2333 3058.17 3065.72 2869.23 3239.55 151.28 0.00 

  2.84 292.1556 2223.35 2103.81 2177.91 2388.32 120.51 0.00 

  2.84 297.1364 2160.46 2044.62 2171.29 2265.45 90.48 0.00 

  2.84 336.1822 5267.62 5085.35 5110.82 5606.69 239.99 4674.02 

  2.84 354.6952 2973.18 2864.22 2885.05 3170.27 139.62 2386.21 

  2.84 356.1470 2847.73 2764.97 2768.32 3009.89 114.67 2523.62 

  2.84 363.1992 11085.76 10691.01 10775.15 11791.11 499.94 8672.58 

  2.84 363.7013 4108.90 3927.72 3952.23 4446.75 239.10 3262.37 

  2.84 422.7590 7649.76 7334.29 7362.99 8252.01 426.01 6904.87 

  2.84 446.2503 3033.32 2925.61 2992.12 3182.24 108.74 2798.86 

  2.84 654.3529 4379.15 4380.58 4255.95 4500.91 100.01 3890.47 

  2.84 690.3752 22809.86 22476.07 22246.70 23706.82 641.12 23533.41 
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  2.84 709.3921 12815.43 12555.04 12769.20 13122.04 233.77 12313.81 

  2.84 744.4062 21817.52 21169.83 21400.69 22882.03 758.60 22766.94 

  2.84 907.4886 179160.41 176586.73 176309.04 184585.45 3837.76 139255.21 

  2.84 925.4981 1193625.73 1201245.46 1161587.18 1218044.54 23670.01 980445.48 

  2.84 926.6308 9057.98 8843.31 8641.27 9689.34 454.00 7775.96 

amoxicillin 1.16 114.0030 55454.10 51580.29 54410.45 60371.55 3664.10 58710.46 

  1.16 114.0371 2477.68 2441.62 2359.67 2631.74 113.96 2355.50 

  1.16 137.0076 2833.40 2694.98 2800.95 3004.27 128.34 2855.84 

  1.16 139.0653 2432.72 2382.14 2297.26 2618.77 136.04 2471.76 

  1.16 165.0669 3135.55 2980.92 3077.41 3348.32 155.52 3251.53 

  1.16 180.0493 6360.05 6045.91 6157.64 6876.59 368.09 6530.65 

  1.16 188.0835 24059.53 22504.13 23719.48 25954.99 1429.18 24808.05 

  1.16 193.0622 2524.50 2442.44 2473.31 2657.75 95.06 2701.10 

  1.16 193.1138 3116.78 3000.32 2982.02 3368.01 177.80 3197.64 

  1.16 234.0234 12745.73 12127.57 12522.91 13586.70 616.17 13092.23 

  1.16 255.0443 3917.22 3702.06 3856.37 4193.22 205.08 3965.46 

  1.16 277.1011 6146.47 5765.75 6019.31 6654.34 373.74 6371.60 

  1.16 292.1115 6674.88 6313.58 6573.21 7137.85 344.10 6953.17 

  1.16 320.0842 36635.47 34418.15 36058.72 39429.54 2086.14 37182.34 

  1.16 349.0870 387623.35 357976.41 389534.42 415359.24 23465.38 395581.27 

  1.16 365.1057 36818.89 34226.13 36764.30 39466.24 2139.61 36906.80 

  1.16 731.2157 88657.69 83442.70 85273.65 97256.71 6126.20 91201.28 

ampicillin 1.61 106.0675 67055.86 68793.69 66161.08 66212.81 1229.02 65365.09 

  1.61 118.0701 2665.76 2632.78 2638.03 2726.46 42.98 2608.32 

  1.61 145.0550 2955.75 2852.68 2994.67 3019.90 73.60 2775.70 

  1.61 160.0446 82176.29 83225.73 81706.43 81596.70 743.42 81318.19 

  1.61 191.0599 84081.91 85773.39 82906.05 83566.29 1226.05 80114.05 

  1.61 191.0838 14083.88 14335.44 13961.54 13954.65 177.90 13274.82 
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  1.61 211.0730 4341.64 4418.58 4260.21 4346.13 64.73 3986.36 

  1.61 238.1169 2258.84 2287.89 2273.70 2214.93 31.58 2132.39 

  1.61 266.1119 3639.66 3700.72 3584.69 3633.57 47.56 3450.37 

  1.61 322.0996 11001.52 11234.07 10942.14 10828.36 170.87 10299.34 

  1.61 322.1222 2958.62 3025.87 2965.92 2884.07 58.12 3123.22 

  1.61 333.0919 31722.11 32549.06 30986.63 31630.63 641.13 29489.43 

  1.61 349.1116 606065.91 620908.10 602157.24 595132.40 10879.80 590492.74 

  1.61 350.3628 8786.67 9280.49 8383.84 8695.70 371.67 7258.89 

amphotericin B 2.97 163.0858 2620.98 3540.00 2042.88 2280.08 657.02 3085.69 

  2.97 353.1865 4508.85 5899.25 3658.59 3968.71 991.28 4896.05 

  2.97 363.1986 3531.71 4509.61 2871.98 3213.53 705.40 0.00 

  2.97 451.7310 10745.54 14226.01 7697.57 10313.04 2682.71 15747.84 

  2.97 452.2330 5988.53 7674.32 4472.48 5818.79 1312.64 8018.99 

  2.97 461.7437 6623.98 8669.74 4764.49 6437.72 1599.74 9765.51 

  2.97 462.2457 3056.09 3911.85 2223.10 3033.34 689.62 4360.63 

  2.97 688.3578 6015.01 7753.24 5078.37 5213.44 1230.35 5729.97 

  2.97 724.3789 11147.37 14250.69 9452.34 9739.08 2197.50 10498.80 

  2.97 760.4013 59043.92 76771.60 50184.46 50175.71 12535.36 48658.43 

  2.97 905.4734 270815.92 350320.66 232255.55 229871.54 56226.77 178221.04 

  2.97 921.4716 13464.81 18221.09 10076.09 12097.25 3462.94 17277.98 

  2.97 932.4881 4282.69 6225.74 2863.32 3759.02 1421.77 4947.74 

  2.97 957.4996 15442.95 21144.71 10628.23 14555.91 4338.91 17343.81 

novobiocin 4.37 96.0384 3017.40 3199.29 2638.98 3213.92 267.65 0.00 

  4.37 218.1038 23740.13 25172.40 21769.72 24278.26 1440.31 18813.83 

  4.37 613.2383 655640.90 711775.47 580771.73 674375.52 55098.30 356220.00 

  4.37 1225.4658 242831.28 255399.37 230701.30 242393.16 10087.70 180266.13 

  4.37 1225.9623 16923.68 18824.43 14211.97 17734.64 1968.41 13955.14 

chloramphenicol 2.65 142.0801 4049.82 3488.01 5154.95 3506.51 781.48 0.00 
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  2.65 248.0363 3481.45 3179.89 4042.92 3221.53 397.38 0.00 

  2.65 275.0007 98207.28 88675.38 112265.55 93680.92 10148.56 56242.65 

  2.65 276.9974 61511.34 54951.47 72071.63 57510.92 7540.00 34808.50 

  2.65 278.9944 7622.76 6810.67 9014.79 7042.81 988.87 0.00 

  2.65 306.0006 61084.04 56346.42 65791.28 61114.44 3855.91 35531.48 

  2.65 322.0138 92716.89 86880.72 96928.58 94341.36 4259.82 55702.29 

azithromycin 2.05 83.0515 17047.54 20983.48 15609.52 14549.63 2816.56 18831.82 

  2.05 115.0773 4509.27 5869.13 3917.26 3741.43 964.24 4679.14 

  2.05 127.0774 3004.79 4566.99 2306.33 2141.05 1106.70 2763.04 

  2.05 296.2155 6486.85 8286.40 5916.32 5257.82 1300.56 7396.20 

  2.05 375.5147 4584.04 5915.03 4052.88 3784.21 947.52 4616.81 

  2.06 375.2625 450805.08 559610.02 402601.67 390203.55 77103.02 459347.09 

  2.06 375.7646 236007.43 341793.94 186558.02 179670.33 74855.19 210794.95 

  2.05 590.4142 267398.46 330022.89 243285.08 228887.42 44670.55 287526.19 

cefadroxil 1.29 157.0218 22677.15 21896.23 23662.30 22472.91 735.32 21635.44 

  1.29 179.0416 3544.72 3323.73 3636.10 3674.33 157.04 3708.64 

  1.29 183.0391 2652.28 2499.08 2767.06 2690.69 112.73 2612.51 

  1.29 194.0284 2226.96 2132.64 2307.90 2240.33 72.17 0.00 

  1.29 207.0374 129219.02 125930.77 134956.89 126769.40 4071.71 96388.76 

  1.29 253.0289 5264.24 5032.39 5505.49 5254.83 193.26 5170.89 

  1.29 256.0617 11768.14 11298.80 12190.95 11814.65 365.70 11472.39 

  1.29 275.0855 2304.77 2210.49 2458.29 2245.52 109.50 2327.87 

  1.29 318.0683 12292.39 11761.90 12969.07 12146.19 503.55 11687.75 

  1.29 347.0711 37868.83 36688.44 39576.90 37341.15 1236.83 34955.57 

  1.29 363.0900 17190.91 16589.82 17934.11 17048.79 557.93 15665.66 

penicillin G 2.92 153.0834 268993.31 263908.30 271755.01 271316.63 3600.10 288206.86 

  2.92 208.0986 6544.34 10545.96 5819.89 3267.17 3015.38 4588.04 

  2.92 217.0657 5092.17 7901.21 4575.00 2800.31 2114.30 3639.11 
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  2.92 269.1519 3589.40 3756.40 3542.17 3469.62 121.75 3731.66 

  2.92 334.0997 113795.60 135852.63 109845.40 95688.78 16633.04 103901.41 

  2.92 367.1340 353609.39 528898.01 330658.98 201271.17 134734.00 258886.07 

deferoxamine 1.63 101.0861 4125.67 4284.88 4416.70 3675.43 322.88 4784.13 

  1.63 144.1041 5238.43 5516.28 5543.28 4655.72 412.18 6221.89 

  1.63 160.1242 2765.90 2849.86 2973.33 2474.51 212.12 3308.88 

  1.63 165.1038 2853.32 2918.61 3119.89 2521.45 248.64 3359.94 

  1.63 201.1260 66962.46 68894.85 72264.70 59727.83 5297.42 78914.73 

  1.63 260.1390 92100.75 95326.63 100473.48 80502.15 8466.33 106949.20 

  1.63 281.1853 7558.71 7833.61 8321.65 6520.88 760.43 8414.49 

  1.63 307.6411 43915.54 46099.29 45489.56 40157.76 2668.78 42986.97 

  1.63 308.1423 12518.22 13055.96 12975.60 11523.09 704.42 12568.34 

  1.63 319.2353 199548.91 205972.60 214954.37 177719.76 15865.10 236854.20 

  1.63 378.2505 4966.93 5145.53 5296.68 4458.58 364.72 5773.54 

  1.63 443.2493 2285.59 2334.12 2443.55 2079.10 152.69 0.00 

  1.63 560.3535 503880.74 509694.83 550568.72 451378.67 40702.33 586415.87 

  1.63 561.6743 4757.04 4927.68 5541.57 3801.88 720.40 4201.22 

cyclosporine A 5.77 1075.7402 14327.28 12796.23 15443.87 14741.74 1119.92 15399.58 

  5.77 1201.8361 25561007.45 23440212.25 26520729.35 26722080.74 1501879.89 22173804.96 

  5.77 1203.2921 159288.88 138838.15 170775.76 168252.74 14497.49 164820.82 

cloxacillin 3.48 468.0998 162154.31 213985.50 89494.52 182982.93 52914.23 165752.84 

  3.48 469.0901 64658.80 87725.56 33015.75 73235.08 23143.83 73445.68 

cycloheximide 2.72 114.1078 2901.91 2723.88 2862.62 3119.23 163.77 4411.93 

  2.72 141.0715 5730.39 5096.47 6270.87 5823.84 483.98 7907.37 

  2.72 145.0672 6914.15 6416.01 7159.99 7166.46 352.25 9323.98 

  2.72 148.0883 2693.17 2419.15 2956.31 2704.04 219.43 4003.84 

  2.72 157.1019 4570.23 3998.69 5201.00 4510.99 492.62 5977.12 

  2.72 159.1184 7222.59 6530.08 8097.63 7040.05 652.84 8541.30 
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  2.72 162.1094 5417.51 4927.41 5946.42 5378.71 416.91 6801.59 

  2.72 186.1060 11152.77 10162.66 12201.38 11094.27 833.33 14937.62 

  2.72 188.0846 3329.24 3343.65 3252.82 3391.23 57.42 4002.16 

  2.72 190.1609 30229.73 27298.91 33781.45 29608.81 2682.66 35486.44 

  2.72 200.1213 13831.91 12556.53 15105.55 13833.64 1040.63 18226.52 

  2.72 236.1446 24997.60 23171.05 26676.95 25144.79 1435.06 28672.13 

  2.72 246.1507 227102.04 206001.78 251590.42 223713.93 18765.05 257101.53 

  2.72 265.1510 127283.44 115257.65 140569.06 126023.62 10371.67 140495.53 

  2.72 282.1716 393923.04 362168.61 425048.73 394551.80 25674.55 421683.65 

  2.72 304.1526 41468.35 43653.28 34338.01 46413.77 5166.33 54872.84 

tetracycline 1.94 139.0563 7251.26 6531.18 7331.29 7891.32 558.15 8276.75 

  1.94 152.0640 20784.06 18836.26 20700.41 22815.49 1625.59 23819.47 

  1.94 154.0528 2573.74 2333.57 2823.31 2564.34 200.04 2837.61 

  1.94 158.0980 9424.52 8298.25 11681.75 8293.55 1596.10 9524.17 

  1.94 164.0642 10878.61 9775.86 11370.88 11489.10 781.26 12178.19 

  1.94 176.0637 7065.26 6429.39 7454.31 7312.07 453.36 7770.32 

  1.94 180.0590 8329.03 7532.48 9189.18 8265.43 677.84 8924.98 

  1.94 195.0830 3127.29 2588.53 4273.60 2519.75 811.05 2962.06 

  1.94 203.0749 33093.97 27168.72 46173.34 25939.84 9262.11 30998.96 

  1.94 254.0577 3388.87 3064.66 4101.31 3000.64 504.45 3321.95 

  1.94 259.0627 5075.80 4709.39 6278.34 4239.66 871.68 5097.47 

  1.94 280.0750 2839.21 2489.99 3289.76 2737.88 334.27 3109.21 

  1.94 308.0690 2817.96 2570.28 2973.70 2909.89 177.06 3157.96 

  1.94 382.0728 5230.67 4957.15 5141.22 5593.65 267.44 5973.07 

  1.94 444.4238 35582.57 32334.21 34855.45 39558.06 2993.61 38988.86 

  1.94 445.2610 20683.38 24589.19 13082.87 24378.08 5375.06 22929.46 

clarithromycin 2.92 558.3628 7789.96 8419.36 6281.49 8669.04 1071.51 7876.03 

  2.92 748.8341 45709.83 51292.07 32083.94 53753.49 9687.22 43571.48 
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erythromycin 2.58 158.1190 2666.92 2356.82 2749.71 2894.23 227.07 3623.14 

  2.58 540.3524 12202.20 11552.87 12557.15 12496.57 459.81 14530.35 

  2.58 575.3678 267012.04 254622.42 274343.98 272069.73 8809.85 196382.98 

  2.58 715.4490 118647.20 114227.61 124776.60 116937.40 4473.09 146811.20 

  2.58 734.8122 100364.92 94983.76 104398.87 101712.14 3959.99 118765.46 

clindamycin 2.20 126.1299 10275.30 10494.48 10458.38 9873.05 284.82 9327.37 

  2.20 335.1736 3029.34 2941.16 3185.48 2961.38 110.72 2636.85 

  2.20 377.1846 18942.56 18398.06 20241.09 18188.53 922.17 16041.12 

  2.20 379.1730 5654.65 5533.46 5994.16 5436.33 243.32 4997.16 

  2.20 388.2032 6270.32 6090.01 6650.91 6070.02 269.25 5952.66 

  2.20 425.3679 43053.66 38752.08 41672.14 48736.77 4191.65 36799.22 

  2.20 425.4467 179173.57 172007.67 188755.46 176757.58 7047.45 153083.65 

  2.20 425.6157 15770.01 15898.98 16518.80 14892.23 670.28 11898.84 

  2.20 426.1913 1964001.72 1868479.19 2128331.55 1895194.41 116709.46 1244395.20 

roxithromycin 2.93 83.0513 40177.47 37954.49 36916.55 45661.37 3900.79 21424.41 

  2.93 119.1560 29849.09 27854.61 27503.76 34188.90 3072.05 16190.85 

  2.93 308.1970 3421.87 3258.66 3248.07 3758.87 238.34   

  2.93 357.2263 5061.16 4851.66 4647.50 5684.30 448.44   

  2.93 366.2396 59042.93 56871.51 53358.54 66898.75 5737.05 29847.53 

  2.93 366.7413 21046.56 20470.10 18943.94 23725.65 1994.23 10576.95 

  2.93 381.2440 6578.21 6180.95 6051.27 7502.41 655.65   

  2.93 381.7455 2198.47 2057.55 2007.85 2530.01 235.31   

  2.93 419.2711 322606.92 321335.93 292795.86 353688.98 24875.75 167831.39 

  2.93 419.7721 140233.77 138849.27 127119.67 154732.36 11315.26 70993.18 

  2.93 514.3239 7730.23 7288.60 7239.15 8662.95 659.84   

  2.93 572.3675 153174.25 144954.24 141739.32 172829.19 13959.97 79958.34 

  2.93 678.4295 411181.98 375112.20 397773.80 460659.93 36188.74 232826.64 

  2.93 715.4482 5149.45 4229.49 5250.33 5968.53 713.53   
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  2.93 836.5203 42516.09 43483.36 33216.06 50848.87 7230.98 20374.97 

  2.93 837.8956 168509.62 135522.93 174492.55 195513.37 24853.71 86151.11 

piperacillin 2.77 1035.3302 403565.44 376989.57 435456.20 398250.54 24162.96 379435.47 

  2.77 1057.3088 7856.87 7289.68 8602.84 7678.08 550.80 7452.80 

  2.77 143.0847 56515.18 55171.04 58251.21 56123.29 1287.65 54632.20 

  2.77 159.0372 32029.75 30839.57 33165.00 32084.68 950.15 30352.71 

  2.77 274.1198 3510.42 3441.59 3566.31 3523.35 51.73 3530.84 

  2.77 302.1170 14455.96 13633.43 15431.15 14303.29 741.81 12963.01 

  2.77 359.1355 40049.22 38293.91 42442.35 39411.41 1752.62 35450.68 

  2.77 490.1655 4154.75 4036.23 4341.62 4086.39 133.72 2932.45 

  2.77 518.1703 162209.03 153928.29 174520.46 158178.35 8876.72 140163.35 

mupirocin 3.26 114.0497 2774.43 2674.09 2669.82 2979.38 144.93 2879.93 

  3.26 148.1146 5494.66 5278.36 5253.90 5951.72 323.34 5814.38 

  3.26 160.0900 2290.56 2189.38 2235.06 2447.23 112.34 2384.46 

  3.26 180.1400 2678.97 2607.70 2706.09 2723.12 50.87 2942.62 

  3.26 212.1086 4527.03 4456.57 4496.24 4628.29 73.41 4847.55 

  3.26 226.1248 16546.15 16194.11 16717.94 16726.40 248.96 17694.36 

  3.26 248.1284 4056.12 4110.18 4085.09 3973.10 59.59 4200.81 

  3.26 262.1573 2784.95 2740.28 2811.40 2803.17 31.76 2959.68 

  3.26 265.1461 18899.45 18702.56 19000.31 18995.48 139.24 20286.34 

  3.26 273.1502 25874.24 25380.49 25980.59 26261.63 367.50 27771.71 

  3.26 308.1635 207996.96 204039.46 210545.41 209406.00 2836.77 225308.14 

  3.26 337.2010 3191.82 3185.83 3243.15 3146.48 39.69 3359.77 

  3.26 344.1852 276776.01 268255.53 281891.49 280181.03 6065.23 301221.30 

  3.26 402.2398 2352.69 2281.22 2375.26 2401.58 51.66 2508.38 

  3.26 447.2748 38901.38 38107.36 39341.21 39255.56 562.54 42003.08 

  3.26 482.2896 378442.37 369239.47 383381.42 382706.21 6513.27 405752.29 

  3.26 501.3064 1270962.77 1215252.98 1292490.06 1305145.28 39730.13 1396364.45 
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Table A.2 Comparison of Ground-Truth Replicate Values Versus Predicted Abundance Values from 
MultiplexMS-Q in the 10 x 10 Complex Background Experiment. 

standard r.t. m/z R1 R2 R3 R4 IQR3 IQR1 
quartile 
average std dev 

predicted 
values 

lincomycin 1.59 407.2211 30307.02 48339.02 48946.49 53756.02 50148.87 43831.02 50347.18 2423.14 52882.53 

deferoxamine 1.63 561.3597 2395.72 2188.20 1591.39 1289.13 2240.08 1515.82 1866.11 445.14 24978.95 

tetracycline 1.95 445.1601 23060.77 22250.37 21162.68 25784.48 23741.70 21978.44 23064.57 1708.66 20606.66 

azithromycin 2.06 375.2616 22806.34 12848.71 11627.44 12594.37 15338.12 12352.64 12356.84 526.11 15428.54 

clindamycin 2.23 425.1877 54003.72 61596.72 60820.57 59510.61 61014.61 58133.89 58982.90 2969.84 55197.58 

erythromycin 2.60 733.4616 215045.72 232565.07 199629.11 202280.53 219425.56 201617.67 212380.11 13030.04 206982.01 

nystatin 2.86 925.5027 56871.17 139520.94 52907.69 55312.27 77533.61 54711.12 55030.37 1630.32 58180.39 

roxithromycin 2.96 836.5241 99483.28 105199.52 116742.95 90696.27 108085.38 97286.53 103030.51 9453.20 92527.39 

mupirocin 3.26 483.2724 35336.94 31701.94 35615.09 34587.66 35406.48 33866.23 34310.41 1552.17 31271.15 

novobiocin 4.37 613.2389 23945.50 49011.32 26931.41 37715.50 40539.45 26184.94 34400.93 9868.63 34802.67 
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Table A.3  1H (600 MHz) and 13C NMR (150 MHz) Data for Megapolipeptin A (5.2) 
in DMSO-d6

a 

  position   δH, (J in Hz) δC, mult 

Ahpa  1  173.4, qC 

  2a 2.26, dd (14.6, 2.8) 
39.9, CH2 

  2b 2.08, dd (14.6, 9.8) 

  3 3.85, m 67.5, CH 

  4 3.64, m 55.1, CH 

  5a 3.49, m 
60.4, CH2 

  5b 3.49, m 

  4-NH 7.58, d (9.0)  

  1-NH2 
7.19, s  

  6.76, s 

1Thr  1  169.8, qC 

  2 4.21, m 58.6, CH 

  3 3.84, m 67.1, CH 

  4 1.04, d (6.4) 19.6, CH3 

  2-NH 7.86, brd (7.6)  
2Thr  1  169.9, qC 

  2 4.32, dd (8.4) 57.6, CH 

  3 3.93, m 66.9, CH 

  4 0.96, d (6.3) 19.2, CH3 

  2-NH 7.93, brs  
Adhda  1  170.5, qC 

  2a 2.56, m 
39.3, CH2 

  2b 2.36, m 

  3 4.21, m 44.4, CH 

  4a 1.51, m 
41.8, CH2 

  4b 1.51, m 

  5 3.39, m 66.6, CH 

  6a 1.37, m 
36.8, CH2 

  6b 1.23, m 

  7a 1.25, m 
29.2, CH2 

  7b 1.25, m 

  8a 1.33, m 
24.5, CH2 

  8b 1.23, m 

  9a 1.91, m 
32.0, CH2 

  9b 1.91, m 

  10 5.36, m 130.3, CH 

  11 5.35, m 129.6, CH 

  12a 1.99, brs 
32.1, CH2 

  12b 1.99, brs 
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  13a 1.99, brs 
32.1, CH2 

  13b 1.99, brs 

  14 5.35, m 129.4, CH 

  15 5.36, m 130.2, CH 

  16a 1.90, m 
32.1, CH2 

  16b 1.90, m 

  17a 1.23, m 
24.6, CH2 

  17b 1.23, m 

  18a 1.42, m 
34.8, CH2 

  18b 1.26, m 

  19 3.45, m 75.0, CH 

  20 1.04, d (6.4) 20.2, CH3 

  21  159.8, qC 

  3-NH 8.49, d (9.0)  
Hoha  1  174.0, qC 

  2 4.16, m 73.0, CH 

  3a 2.72, m 
45.3, CH2 

  3b 2.72, m 

  4  206.1, qC 

  5a 2.71, m 
37.5, CH2 

  5b 2.66, m 

  6a 2.38, m 
27.6, CH2 

  6b 2.38, m 

  7  173.7, qC 

Mpo  1  202.3, qC 

  2 3.39, m 33.9, CH 

  3 1.01, d (7.2) 17.5, CH3 

    4 1.01, d (7.2) 17.3, CH3 

a All data was acquired on a 600 MHz NMR spectrometer equipped with a 5mm QCI cryoprobe. 
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Table A.4  1H (600 MHz) and 13C NMR (150 MHz) Data for Megapolipeptin B (5.3) 
in DMSO-d6

a 

  position   δH, (J in Hz) δC, mult 

Ahpa  1  173.4, qC 

  2a 2.26, m 
39.9, CH2 

  2b 2.08, dd (14.8, 9.5) 

  3 3.85, m 67.5, CH 

  4 3.64, m 55.1, CH 

  5a 3.48, m 
60.4, CH2 

  5b 3.48, m 

  4-NH 7.62, d (8.7)  

  1-NH2 
7.20, s  

  6.75, s 

1Thr  1  169.8, qC 

  2 4.21, m 58.6, CH 

  3 3.84, m 67.1, CH 

  4 1.05, m 19.6, CH3 

  2-NH 7.95, brs  
2Thr  1  169.9, qC 

  2 4.31, m 57.7, CH 

  3 3.93, m 66.6, CH 

  4 0.95, d (6.0) 19.2, CH3 

  2-NH 8.04, brs  
Adhta  1  170.5, qC 

  2a 2.56, m 
39.3, CH2 

  2b 2.36, m 

  3 4.21, m 44.4, CH 

  4a 1.52, m 
41.7, CH2 

  4b 1.52, m 

  5 3.39, m 66.4, CH 

  6a 1.42, m 
36.9, CH2 

  6b 1.30, m 

  7a 2.03, m 
28.2, CH2 

  7b 1.92, m 

  8 5.36, m 130.3, CH 

  9 5.36, m 129.8, CH 

  10a 1.99, m 
32.1, CH2 

  10b 1.99, m 

  11a 1.99, m 
32.1, CH2 

  11b 1.99, m 

  12 5.36, m 129.5, CH 

  13 5.36, m 129.1, CH 
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  14a 1.99, m 
32.1, CH2 

  14b 1.99, m 

  15a 1.99, m 
32.1, CH2 

  15b 1.99, m 

  16 5.36, m 129.7, CH 

  17 5.36, m 130.2, CH 

  18a 1.91, m 
32.0, CH2 

  18b 1.91, m 

  19a 1.23, m 
24.5, CH2 

  19b 1.23, m 

  20a 1.42, m 
34.8, CH2 

  20b 1.25, m 

  21 3.46, m 75.1, CH 

  22 1.04, m 20.3, CH3 

  23  159.9, qC 

  3-NH 8.49, d (8.7)  
Hoha  1  174.5, qC 

  2 4.13, m 73.5, CH 

  3a 2.72, m 
45.7, CH2 

  3b 2.72, m 

  4  206.3, qC 

  5a 2.71, m 
37.6, CH2 

  5b 2.66, m 

  6a 2.37, m 
27.8, CH2 

  6b 2.37, m 

  7  173.8, qC 

Mpo  1  202.3, qC 

  2 3.39, m 33.9, CH 

  3 1.01, d (7.3) 17.5, CH3 

    4 1.01, d (7.3) 17.3, CH3 

a All data was acquired on a 600 MHz NMR spectrometer equipped with a 5mm QCI cryoprobe. 
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Table A.5 Bacterial Target Panel Strains and Culture Conditions. 

Strain Name 
Strain 
Designation 

BSL 
Growth 
Medium 

Growth 
Condition 

Gram-Positive 

Bacillus subtilis ATCC 6051 1 TSB 37 °C 

Enterococcus faecalis ATCC 29212 2 BHI 37 °C 

Enterococcus faecium ATCC 6569 2 BHI 37 °C 

Listeria ivanovii BAA-139 1 BHI-A; HTM 37 °C; 5% 
CO2 

Staphylococcus aureus (Methicillin-
Resistant) 

BAA-44 2 TSB 37 °C 

Staphylococcus aureus (Methicillin-
Sensitive) 

ATCC 29213 2 TSB 37 °C 

Staphylococcus epidermidis ATCC 14990 1 TSB 37 °C 

Gram-Negative 

Escherichia coli K-12 MG1655 1 NB 37 °C 

Klebsiella aerogenes ATCC 35029 1 NB 37 °C 

Klebsiella pneumoniae ATCC 700603 2 NB 37 °C 

Ochrobactrum anthropi ATCC 49687 1 TSB 37 °C 

Providencia alcalifaciens ATCC 9886 1 TSB 37 °C 

Pseudomonas aeruginosa ATCC 27853 2 TSB 37 °C 

Salmonella enterica ATCC 13311 2 NB 37 °C 

Shigella sonnei ATCC 25931 2 NB 37 °C 

Vibrio cholerae A1552 El Tor 2 TSB 37 °C 

Yersinia pseudotuberculosis ATCC 6904 2 BHI 37 °C 

 

Table A.6 Antimicrobial Activities of Megapolipeptins A (5.2) and B (5.3). 

Strain Name Megapolipeptin A (5.2) Megapolipeptin B (5.3) 

Gram-Positive Bacteria   

Bacillus subtilis >128 M >128 M 

Enterococcus faecalis >128 M >128 M 

Enterococcus faecium >128 M >128 M 

Listeria ivanovii >128 M >128 M 

Staphylococcus aureus (Methicillin-Resistant) >128 M >128 M 

Staphylococcus aureus (Methicillin-Sensitive) >128 M >128 M 

Staphylococcus epidermidis >128 M >128 M 

Gram-Negative Bacteria   

Escherichia coli >128 M >128 M 

Klebsiella aerogenes >128 M >128 M 
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Klebsiella pneumoniae >128 M >128 M 

Ochrobactrum anthropi >128 M >128 M 

Providencia alcalifaciens >128 M >128 M 

Pseudomonas aeruginosa >128 M >128 M 

Salmonella enterica >128 M >128 M 

Shigella sonnei >128 M >128 M 

Vibrio cholerae >128 M >128 M 

Yersinia pseudotuberculosis >128 M >128 M 

 

Table A.7 Fungal Target Panel Strains and Culture Conditions. 

Strain Name Strain Designation BSL 
Growth 
Medium 

Growth 
Condition 

Aspergillus niger DSM 737 1 PDB 22 °C 

Candida albicans ATCC 14053 2 SDB 37 °C 

Purpureocillium lilacinum DSM 846 2 PDB 22 °C 

Saccharomyces cerevisiae ATCC 9763 1 YM 37 °C 

 

Table A.8 Antifungal Activities of Megapolipeptins A (5.2) and B (5.3). 

Strain Name Megapolipeptin A (5.2) Megapolipeptin B (5.3) 

Fungi   

Aspergillus niger >100 M >100 M 

Candida albicans >100 M >100 M 

Purpureocillium lilacinum >100 M >100 M 

Saccharomyces cerevisiae >100 M >100 M 
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Appendix B.  
 
NMR Spectra 

 

Figure B.1  1H NMR Spectrum of Megapolipeptin A (5.2) Acquired in DMSO-d6 at 
600 MHz. 
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Figure B.2  13C NMR Spectrum of Megapolipeptin A (5.2) Acquired in DMSO-d6 at 
150 MHz. 
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Figure B.3  HSQC Spectrum of Megapolipeptin A (5.2) Acquired in DMSO-d6 at 
600 MHz. 
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Figure B.4  1H-1H COSY Spectrum of Megapolipeptin A (5.2) Acquired in DMSO-
d6 at 600 MHz. 

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

 
 (p

p
m

)

123456789

  (ppm)



173 

 

Figure B.5  HMBC Spectrum of Megapolipeptin A (5.2) Acquired in DMSO-d6 at 
600 MHz. 
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Figure B.6  NOESY Spectrum of Megapolipeptin A (5.2) Acquired in DMSO-d6 at 
600 MHz 
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Figure B.7  ROESY Spectrum of Megapolipeptin A (5.2) Acquired in DMSO-d6 at 
600 MHz. 
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Figure B.8  1H NMR Spectrum of Megapolipeptin B (5.3) Acquired in DMSO-d6 at 
600 MHz. 

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

 
 (p

p
m

)

3.12

14.99

10.29

2.60

2.64

3.49

9.22

1.11

1.46

1.20

3.50

1.43

5.80

4.07

1.14

2.11

1.06

1.07

2.09

1.06

6.23

1.13

1.13

1.06

1.97

1.18

0.96

1.01

1.05

1.23

1.42

1.52

1.91

1.99

2.03

2.08

2.26

2.37

2.56

3.39

3.48

3.64

3.84

3.85

3.93

4.13

4.21

4.31

5.36

6.75

7.20

7.62

7.95

8.04

8.49



177 

 

Figure B.9  13C NMR Spectrum of Megapolipeptin B (5.3) Acquired in DMSO-d6 at 
150 MHz. 
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Figure B.10  HSQC Spectrum of Megapolipeptin B (5.3) Acquired in DMSO-d6 at 
600 MHz. 
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Figure B.11  1H-1H COSY Spectrum of Megapolipeptin B (5.3) Acquired in DMSO-
d6 at 600 MHz. 
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Figure B.12  HMBC Spectrum of Megapolipeptin B (5.3) Acquired in DMSO-d6 at 
600 MHz. 
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Figure B.13  NOESY Spectrum of Megapolipeptin B (5.3) Acquired in DMSO-d6 at 
600 MHz. 
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