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Abstract 

Natural products (NPs) are prolific sources of therapeutics, particularly antibiotics. 

Numerous NP antibiotics were discovered from 1940-1960 however, the discovery rate 

declined as known compounds were repeatedly discovered. This led to a decrease in 

this research and contributed to the antimicrobial resistance (AMR) crisis. This project 

uses computational platforms to discover NP antibiotics to combat the AMR crisis 

without constant rediscovery. A profiling platform, ResistoMAP, screened a NP library 

and antimicrobial standards against a panel of 29 drug-resistant strains of Escherichia 

coli. A software, NP Analyst, combined these profiles with mass spectrometry (MS) to 

identify bioactive metabolites. Focusing on unique MS and ResistoMAP profiles, three 

candidates were selected for characterization. Two were identified as streptorubin B and 

undecylprodigiosin, while the third demonstrates activity and is being studied further. 

This suggests that the technique outlined throughout this project is effective in identifying 

compounds effective against resistant pathogens while minimizing rediscovery.  

Keywords:  Natural Products; Antimicrobial Resistance; Rediscovery; ResistoMAP; 

NP Analyst 
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Chapter 1.  
 
Introduction 

1.1. Natural Product Applications 

1.1.1. Origins 

The chemical diversity of nature provides a vast array of natural products (NPs). 

Throughout history, NPs have been utilized as traditional treatments for ailments due to 

their biological properties.1 These historic applications instigated the scientific interest of 

NPs for their medicinal applications. NPs are known to have complex structures that 

cover a large range of molecular weights, sometimes with multiple chiral centers, and 

many H-bond acceptors and donors that translate into unique biological activities for 

these compounds.2–4 Biological activity suggests a potential for a compounds medical 

applications. Only 10% of the world’s biodiversity has been explored for its biological 

properties leaving a promising pool of structurally diverse NPs that could be applied to 

human therapeutics as potential drug treatments.2,3,5 61% of anticancer compounds and 

29% of anti-infectives, accumulated over the past 30 years, are from NPs or have been 

chemically derived from them.6 Figure 1.1 is a representation of the antibacterial drugs 

produced from different sources from January 1981 to September 2019 reproduced from 

Newman and Cragg. Of the 161 drugs, over 50% were identified or derived from NPs 

proving their impact on antibacterial treatments.4 NPs continue to remain an integral 

source and inspiration for potential drug candidates. 
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Figure 1.1. Distribution of sources of 161 antibacterial drugs introduced from 
January 1981 to September 2019. 

This figure is an unofficial adaptation from “Natural Products as Sources of New Drugs over the 

Nearly Four Decades from 01/1981 to 09/2019” by David J. Newman and Gordon M. Cragg.4 

1.1.2. Classifications 

NPs are produced from living organisms derived from microorganisms, plants, 

and animals. Traditional medicine identified plants as an essential source for NPs while 

the discovery of penicillin highlighted fungal NP sources.7,8 Following these, soil and 

water were investigated for their components leading to bacteria being discovered as a 

third prolific source of antibacterial NPs.9 Actinobacteria is a large bacterial phylum in 

which the majority are saprophytic, soil-dwelling microbials with extensive secondary 

metabolism and produce biologically active NPs.10 Their role in human therapeutics is 

impactful, being the producer of two-thirds of all naturally derived antibiotics in current 

clinical use as well as a variety of other therapeutic agents.10 They make up 64% of 

known antibiotic classes followed by other bacteria and fungi.11 Streptomyces is the 

largest genus within Actinobacteria accounting for 80% of the phylum.12 A genome 

sequence on Streptomyces coelicolor revealed that the full potential of these NP 

producers was massively underestimated. Over 20 biosynthetic gene clusters for 

secondary metabolites were identified.10 Consequently, Streptomyces are of great 

interest in the drug discovery field and are important in the fight against multidrug-

resistant pathogens. Currently, they are producers of the majority of clinical antibiotics 

derived from NPs and makeup 50% of the antimicrobial agents used in human medicine 
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today, Table 1.1 highlights a variety of essential antibiotics discovered from this 

genus.12–14  

Table 1.1. Natural Product Antibiotics Discovered from Genus Streptomyces. 

Antibiotic Streptomyces Species 

Chloramphenicol S. venezuelae 

Erythromycin S. erythraeus 

Kanamycin S. kanamyceticus 

Neomycin S. noursei 

Tetracycline S. aureofaciens and S. rimosus 

Rifamycin Amycilatopsis mediterranei 

Cycloserine S. garyphalus 

Vancomycin S. orientalis 

Novobiocin S. niveus 

Streptomycin S. griseus 

Daptomycin S. roseosprorus 

 

This table was produced using combined data from the papers: “Antibiotics produced by Streptomyces” by Procόpio et 

al.13, and “Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery” by Quinn et al.14 

1.1.3. Marine Natural Products (MNP) 

While soil-dwelling Actinobacteria are popular sources for drug discovery the 

development of drug resistance among pathogenic microorganisms attracted studies to 

alternative ecosystems.15 The diverse expanse and alternative environmental stress 

adaptations of marine habitats provide a unique opportunity for alternative NP sources of 

drug-relevant bacteria.16 For example, Salinispora was found as a discrete genus of 

Actinobacteria that flourish in oceanic sediments.17,18 Its cultivation was the first evidence 

of endemic actinomycetes within marine habitats. Salinispora has been identified as 

producers of bioactive NPs for use against cancer and infectious diseases.17,18 A review 

written in 2018 stated that three years prior, the discovery of new marine natural 

products (MNPs) from marine bacteria increased by 22% highlighting this exciting 

source.19 To continue this growth of MNPs, computational methodologies are crucial in 

the systematic design of researching this expansive territory.20 The combination of the 

under-explored marine environment and the production of potent bioactive compounds 

by marine actinomycetes has made the marine environment an exciting avenue that the 

Linington lab focuses on with a NP library partially consisting of marine microbial NPs. 
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1.2. Natural Product Drug Discovery 

With their strong bioactive profiles, NPs were targeted as a main source of 

research for the treatment of infections and diseases. The discovery of penicillin by 

Alexander Fleming in 1928 followed by its re-isolation and clinical studies in the 1940s 

revolutionized the NP drug discovery field.7,21 Following the discovery of penicillin, 

Selman Waksman discovered soil-dwelling actinomycetes that produced biologically 

active compounds able to inhibit pathogenic growth.11 He developed several culture 

techniques and strategies, one of which was deemed the ‘Waksman platform’ which 

instigated the golden age of antibiotic discovery from 1940-1960.11,12,22 Waksman and 

his graduate students discovered several NP antibiotics and antifungals using this 

platform including actinomycin, streptomycin, neomycin, and clavacin.14,23 Another 

breakthrough for NP drug discovery was high-throughput screening (HTS) which allowed 

mechanism-based screening for bioassay-guided fractionation.21 Pharmaceutical 

companies and research groups adopted these methods and began curating large 

microorganism libraries resulting in rapid and abundant antibiotic discovery. More than 

20 classes of antibiotics were discovered during the golden age however, the last 

classes were discovered in the 1980s.11 

1.2.1. The Decline in Antibiotic Discovery 

Large pharmaceutical companies began withdrawing from this avenue due to the 

challenges involved in NP discovery. A significant difficulty is the commitment and effort 

in identifying and isolating target NP compounds with high structural diversity, large 

molecular masses and complicated stereochemistry.24 Once a target has been isolated it 

may only be present in a single fraction at a limited quantity hidden within a mixture. This 

leads to low concentrations of the target compound that is potentially too low to be 

detected by HTS.25 It is also common that the compound may be unstable, have poor 

solubility, or contain contaminants.26 These complex mixtures are unfavourable for HTS 

leaving the pharmaceutical discovery efforts favouring synthetic library HTS instead.25 

Considerable time and precision are required to identify active targets for purification 

from the complex NP mixtures. To ensure the production of active compounds, individual 

colonies are isolated from agar plates and grown through small, medium, and large-

scale fermentations.2 High-speed shakers are used to provide each growth stage with 
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adequate aeration for the actinomycetes to reach full growth potential.2 This growth 

process of at least a month is often followed by the misfortune of rediscovery. The 

common approach of purifying individual compounds often leads to the isolation of the 

abundant components that are commonly already identified. Mainstream antibiotics 

occur in ~1% of soil actinomycetes and display characteristic bioactivities that often 

mask the interesting new antimicrobials.26 Genome sequencing of Streptomyces 

coelicolor showed that some Streptomyces can harbor more than 50 different secondary 

metabolite gene clusters showing that the ‘concealment’ of these important bioactive 

components is habitual for these microorganisms therefore, making it harder to find 

novel candidates.10 Considering these ongoing difficulties, new improvements are 

needed to avoid replication and profit from the lengthy isolation and identification 

processes. 

1.3. Antimicrobial Drug Resistance 

Antibiotics identified during the golden age are still in clinical use, but their 

effectiveness has decreased due to the rise of the antimicrobial resistance (AMR) crisis. 

Microorganisms including bacteria, viruses, fungi, and parasites are adapting to 

withstand the effects of their drug treatments and are continuing to flourish in their 

presence.27 NPs produce antimicrobials through natural evolution however, resistance 

mechanisms to other antimicrobials develop to avoid self-toxicity and other unknown 

implications.12 Specifically, bacterial AMR has emerged as a leading public health threat 

throughout the world as being associated with 4.95 million deaths in 2019.28 They tested 

six leading pathogens for death associated with resistance; Escherichia coli, 

Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, 

Acinetobacter baumannii, and Pseudomonas aeruginosa, with E. coli responsible for the 

most deaths.28  This analysis determined the percentage of fluoroquinolone-resistant E. 

coli, one of the eight leading pathogen-drug combinations responsible for the most 

deaths in 2019, within each country and territory. According to the results, the majority of 

regions have at least 10% of isolates showing resistance, therefore, highlighting the 

global emergence of AMR.28 

The crisis of AMR has occurred as a natural consequence of antimicrobial use.29 

A decade after the discovery of penicillin the first sign of AMR was scientifically recorded 

in the form of penicillinase.30 This trend became repetitive, discover an antimicrobial and 
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AMR was sure to follow. The rise of AMR began during the golden age as 

pharmaceutical companies were continuously producing new antibiotics leading to the 

widespread misuse of these drugs.31 The indiscriminate use of antibiotics leads to 

selective pressure that induces microorganisms’ resistance mechanisms to survive 

making AMR an adaptive response.25,32 The simple solution to combat this issue during 

the golden age was to discover more compounds. However, the decline in drug 

discovery has coincided with the rise of AMR seen in Figure 1.2, making it a global 

issue today. This issue continues to grow due to the continuous misuse of antimicrobial 

drugs in both the medical and agricultural industries. The prescription of antibiotics has 

become an unregulated treatment for many infections including those that are not 

bacterial.22 Their use as prophylactic agricultural supplements to promote livestock 

growth, prevent diseases and other implications utilizes 80% of antibiotics produced.25 

This abuse of antibiotic treatments has led to an increase in concentration of antibiotic 

consumption for humans as they are present in our diets and medical treatments. 

Therefore, this increases the selective pressure on resistance mutations for the 

pathogens. More than 70% of pathogenic bacteria have derived a resistant strain against 

most antibiotics on the market meaning a re-emergence of pre-antibiotic pathogens 

could occur.31 The World Health Organization (WHO) has expressed that to control this 

crisis there must be rational use of antibiotics in all industries.12 Reducing antibiotic use 

for treatments unrelated to human disease and bacterial infections is important in 

reducing the spread of AMR. Additionally, the development of the drug discovery 

pipeline is essential, innovative ideas are needed to revolutionize this field of research. 
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Figure 1.2. Timeline of antibiotic class discovery on the top and events 
associated with AMR on the bottom. 

1.4. Techniques for Antimicrobial Drug Discovery 

1.4.1. Computational Methodologies 

Two common approaches to combat the bacterial AMR crisis are (1) develop 

entirely new antibiotics or (2) modify existing treatments to be effective against mutated 

strains. The first step in investigating NPs is bioassay-guided fractionation, a common 

technique used to simplify the complexity of NP mixtures. Each stage of fractionation 

reduces the complexity of the mixture and eventually, the desired bioactive component 

can be isolated and characterized from the separated prefractions. The development of 

diverse NP libraries containing these crude extract prefractions is a common high 

throughput technique for NP drug discovery as it allows bulk analysis of an expansive 

dataset. Often the first analysis performed on these libraries is the determination of the 

metabolite composition of each extract obtained through metabolomics.3 Collecting mass 

spectrometry (MS) data on a complete NP library yields large volumes of data that make 

prioritization of compounds a significant challenge. However, the development of 
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computational platforms makes this process easier by filtering these expansive libraries 

depending on their identification and classification. These platforms allow rapid 

dereplication and prioritization of extracts saving valuable work time and aiding in the 

avoidance of rediscovery of known compounds.33,34 A common approach is to obtain 

metabolite fingerprints of extracts through MS to allow the differentiation between 

extracts containing novel or known masses.35 Molecular networking is a computational 

method that produces a visual representation of clusters consisting of structurally similar 

metabolites that are predicted to share similar MS/MS fragmentation patterns. It has 

become a beneficial approach to visualize MS datasets and search for metabolite 

identification within complex NP mixtures.34,36,37 With the comparison to databases 

consisting of known analogs these networks allow the rapid prioritization of potential 

novel candidates that do not share characteristics with these databases. 

Traditional techniques for NP drug discovery revolve around the isolation of 

active NP compounds. However, these approaches have decreased in the identification 

of new lead compounds. An alternative approach in NP discovery recently is genome 

mining. It is used to detect the biosynthetic pathway of a bioactive NP and its possible 

chemical interactions.  Genome mining identifies uncharacterized biosynthetic gene 

clusters (BGCs), predicted to produce NPs, within the genome of a sequenced organism 

and uses known information to guide the identification and isolation of the target it 

encodes.38,39 There is a large amount of data on DNA sequences and their annotations 

within public databases therefore, genome mining is dependent on computational 

technology and bioinformatics tools to compare the unknown BGCs with these 

informative databases. AntiSMASH is a platform used to identify BGCs, determine the 

enzymatic components, and generate structure predictions. It then compares the results 

with a database to identify possible relations with known chemistry leading to the rapid 

deconvolution of unknown NPs.40 PRISM is an alternative tool for genome mining that 

predicts genetically encoded NP structures based on microbial genomes. It identifies 

BGCs and generates a library of structural predictions.41 Computational tools such as 

these represent an essential route for the growth of NP discovery. Genome mining has 

become a popular technique for NP identification and characterization due to the rapid 

analysis performed by these platforms.  

Computational approaches aim to significantly contribute to the efficiency of NP-

based drug discovery. The identification and prioritization capabilities of these platforms 
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help guide research to more promising results. NP databases are computational tools 

that can aid in identifying the chemical, biological, and structural information of NPs.42,43 

NP Atlas is an open online based platform that contains all known microbial NP 

structures. The search tool includes both structural and spectral options when looking for 

matches with an unknown NP target. It can be used for the rapid identification of an 

isolated compound.44 Computational platforms can also be used to avoid rediscovery of 

known compounds. Combined with analytical data, such as MS or nuclear magnetic 

resonance (NMR), known or undesirable NPs can be deprioritized.42 These methods can 

identify spectra from the same compounds while also from structurally related 

compounds leading to hints on the chemical classes and functional groups of the 

compound. An example of this kind of platform is METLIN; a high-resolution MS 

database that allows the identification and characterization of metabolites. It contains 

over 1 million molecules including primary metabolites, toxins, small peptides, and NPs 

that are used to identify components of unknown compounds using MS data.43 There are 

structural and spectral dereplication platforms however, there are few that apply 

dereplication using bioactivity profiles. There is a need in NP research for the combined 

efforts of biological and chemical datasets. With bioactivity being the traditional guide for 

NP isolation, a platform that could identify what component is contributing this activity 

would be useful. This project combines biological activity and MS data to predict the 

bioactive metabolites within a NP mixture. 

1.4.2. Bioassay Screening Methodologies 

With the importance of biological activity for medicinal applications, bioactivity 

guided isolation for NP discovery is essential. Bioassays allow the measurement of 

activity of a substance on a living material. Common applications include toxicity, 

antiviral, anticancer etc. assays that measure the activity of compounds against different 

factors such as pathogens, animal cells, human cells etc. Recently, strategies have 

begun turning to alternative bioassay panels to focus on combatting the AMR crisis. 

Resistance-based phenotypic screening has been attempted for the identification of 

novel antibiotics.45 An antibiotic resistance platform that uses a cell-based library of 

drug-resistant strains of E.coli. was developed to measure the antibacterial activity of NP 

extracts to prioritize dereplication in NP drug discovery.45 If the extract contained a 

known antibiotic then its antibacterial activity would be reduced against the resistant 
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strains of E. coli. It was successful in the dereplication of Amycolatopsis mediterranei 

(rifamycin) and Saccharopolyspora erythraea (erythromycin).45 This method allows the 

discovery of potential drug candidates that would be effective against resistant bacterial 

diseases specifically. If used in combination with molecular networking, it could be a new 

approach to NP discovery that would avoid replication while focusing on finding targets 

effective against AMR. 

1.5. Summary and Proposal 

NPs are an essential source of medical therapeutics and instigated a rush in 

antibiotic discovery between 1940-1960.11,22 This massive increase in antibiotic 

discovery improved life expectancy from 40 to 77 years during the 20th century however, 

it quickly dissipated as pharmaceutical companies began withdrawing from this avenue 

of research.24,26 NP discovery is known to be a laborious, inefficient process due to the 

occurrence of rediscovery that pharmaceutical companies prefer to avoid. A natural form 

of protection for microorganisms is to essentially harbour important secondary 

metabolites leaving only a few to be easily isolated resulting in continuous identification 

of the same compounds.10,25 Computational methods are being used for the rapid 

dereplication of NPs through database comparison applications and metabolomic 

analysis.32–34 These methodologies are useful dereplication processes but prioritization 

of unique bioactive compounds is additionally essential for the discovery of novel NP 

antibiotics. The decline in drug discovery coincided with the rise of AMR, the global 

health crisis. The indiscriminate use of antimicrobials allows an increase in the selective 

pressure for resistance mutations of these microorganisms.24,31 Specifically, 4.95 million 

deaths in 2019 were associated with bacterial AMR, with E. coli being responsible for the 

majority.28 A simple solution to combat this crisis would be to discover completely new 

antibiotics however this is an ongoing difficulty. This project uses two analysis tools, 

ResistoMAP and NP Analyst, developed in the Linington lab that observe bioassay and 

metabolomic data in a unique way to assist in the selection of target compounds for 

isolation. These tools offer a novel approach for NP discovery that will minimize the 

rediscovery of known compounds while identifying candidates effective against drug-

resistant pathogens. ResistoMAP is an antibiotic profiling platform that utilizes a panel of 

drug-resistant strains of E. coli and the wildtype. The Linington NP extract library along 

with 80 commercial antimicrobial standards were screened against the ResistoMAP 
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panel. The phenotypic profiles outlining the overall activity profiles produced from 

ResistoMAP are compared against those of the standards as a dereplication method 

while simultaneously providing insight into the mechanism and possible structure of the 

bioactive species.46,47 The initial ResistoMAP dataset consisting of ~6,000 NP 

prefractions is filtered to only include prefractions that display 50% or more growth 

inhibition against 5 or more drug-resistant strains of E. coli. Mass Spectrometry (MS) 

data is obtained on those extracts that pass the filtering along with the 80 antimicrobial 

standards. The ResistoMAP data along with the MS profiles are inputted into NP 

Analyst, an online platform designed to identify bioactive metabolites within complex NP 

extracts. With the combination of these platforms, multiple dereplication techniques are 

provided that increase the outcome of selecting an extract that contains novel chemistry. 

Following the initial application of these programs, 18 extracts are selected for further 

research and analyzed a second time using these platforms. The secondary application 

of ResistoMAP and NP Analyst allows further dereplication and the highly specified 

selection of 3 mass candidates for complete isolation and characterization with the aim 

of discovering novel chemistry that will be effective in combating the AMR crisis.  
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Chapter 2.  
 
ResistoMAP Data Acquisition and Analysis 

2.1. Introduction 

This project represents a novel approach to natural product (NP) discovery that 

minimizes the outcome of rediscovering a known compound while focusing on finding 

candidates that will be effective against resistant bacterial pathogens contributing to the 

antimicrobial resistance (AMR) crisis. Rediscovery is an ongoing issue that has strongly 

influenced the decline in NP drug discovery. Alternative approaches for dereplication are 

essential for the continued research in this avenue. Although AMR is a rising crisis it 

does offer new opportunities for NP drug discovery and applications. Screening against 

a panel of drug-resistant bacterial strains allows for the specified identification of 

candidates that could assist in combating the AMR crisis. ResistoMAP and NP Analyst 

are two applications this project uses to address these two current concerns in the NP 

research field.  

2.1.1. ResistoMAP 

Resistance Mode of Action Profiling (ResistoMAP) is a recent development for 

antibiotic profiling designed by the Linington research group. This platform is designed 

for the dereplication of known classes through the mechanism of action while 

highlighting NP with unique phenotypic profiles.46 It involves the screening of NP extracts 

against a target panel of 29 drug-resistant strains of E. coli along with the wildtype, 

MG1655, to produce a unique phenotypic profile of bioactivity.46,47 This panel may sound 

similar to that reported earlier by Cox et al but instead, ResistoMAP uses a panel of 

single mutants that connect cell survival with drug resistance.45,46 Other variables remain 

unchanged meaning that the resistance observed is a direct result of a singular mutant 

gene. It is designed to provide a more informative prediction of a possible drug-

resistance mechanism for the potential candidate being investigated.  

Dr. Dennis Liu screened both the Linington extract library, consisting of 6,195 NP 

extract prefractions, and a positive control library of 80 commercially available 
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antimicrobial compounds, against the panel of drug-resistant E. coli and wildtype strains. 

The positive controls covered a range of 30 drug classes and were used to dereplicate 

the phenotypic outputs.46,47 Hierarchical clustering is used to group similar phenotypic 

fingerprints. This platform will dereplicate those extracts depicting similar fingerprints to 

antimicrobial standards and therefore, prioritize those displaying unique bioactivity. For 

example, Figure 2.1 shows the hierarchical clustering of phenotypic profiles of rifamycin-

like standards with two prefractions RLUS-1505C and RLUS-1530C.46 The standards 

are showing activity against all drug-resistant strains of E. coli except the rifamycin-

mutated strains, the extract profiles are reflecting this pattern. Therefore, these extracts 

can be dereplicated as containing rifamycin-like compounds. Using this analysis 

technique, these fingerprints will provide a guide to the mechanisms and possible 

structural characteristics of the bioactive species within the NP extract. The clustering 

application of this platform allows the elimination of extracts clustering with antibiotic 

standards while prioritizing those with exclusive phenotypic signatures. 

 

Figure 2.1. ResistoMAP screening showing hierarchical clustering of 
prefractions RLUS-1505C and RLUS-1530C clustering with 
rifamycin-like standards b  w    8    128μM.46 

2.1.2. NP Analyst 

NP Analyst is an open-access online metabolomics software designed to identify 

bioactive metabolites within complex NP mixtures.48 It relates the presence/absence of 

mass spectrometry (MS) features (detected m/z with its corresponding retention time 

(Rt)) to bioactivity profiles. Its compatibility with both bioassay data and MS from all 

major instrument manufacturers provides scientists with a discovery platform that allows 

extensive dereplication and highlights significant metabolites of interest. It does this by 
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comparing the distribution of MS features within a mixture against its biological 

signatures.48 

 

Figure 2.2. NP Analyst default output network showing clusters of NP extracts 
sharing similar bioactive MS features. Each square node represents a 
Sample while the circular nodes correspond to MS features. 

This figure is taken from the default output on the NP Analyst online platform.48 

NP Analyst includes two scores that are used to select priority MS features: 

Activity and Cluster score. The Activity score takes a biological profile of a given MS 

feature and measures its intensity. It takes an average of the bioactivity observed 

against each strain for samples showing similar profiles and then takes the sum of these 

average values. The maximum Activity score is equal to the total tested strains within the 

bioassay and is represented by the size of MS feature circular nodes seen in Figure 2.2. 

The Cluster score is a representation of the biological fingerprint consistency between all 

the extracts containing the specific MS feature. The average Pearson similarity score of 

all the extracts biological fingerprints containing the MS feature is equal to the Cluster 

score, these values cover a range of -1 to +1 which corresponds to the colour of MS 

feature nodes in a network (Figure 2.2). These scores are calculated for every MS 

feature. NP Analyst allows cut-offs for both scores to retain only significant data in turn 

reducing the complexity of the resulting network. These filters allow the removal of MS 



15 

features with weak bioactivity profiles that may not correlate with desirable biological 

phenotypes. 

NP Analyst provides a visualization option known as community viewing which 

divides the full network into smaller interconnected networks called communities (Figure 

2.3). The Louvain method is used to filter the data into these distinct individual networks. 

Each one contains various nodes containing the same biologically active MS features 

allowing the prioritization of interesting extracts. This visualization produces an individual 

network view, two scatter plots (Rt vs. precursor m/z and Cluster score vs. Activity 

score), and a bioactivity heatmap of each community (Figure 2.3). This output allows 

users to easily identify biological similarities between extracts within a community and 

distinguish between the bioactive MS features interconnected between the extracts. 

Investigating the data through this visualization allows a specified view of MS features 

permitting the dereplication and prioritization for compound isolations.  

 

Figure 2.3. NP Analyst community viewing including network view (A), plot of 
retention time vs. precursor m/z for bioactive MS features (B), plot of 
Cluster Score vs Activity Score for bioactive MS features (C), and 
activity phenotypic fingerprints for extracts within the community 
(D). Rows are the NP extracts and columns contain the bioassay values. 

This figure is an unofficial adaptation from “NP Analyst: An Open Online Platform for Compound 
Activity Mapping” by Lee et al.48 
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2.1.3. Combined Applications of ResistoMAP and NP Analyst 

This project combines both ResistoMAP and NP Analyst to provide multiple 

dereplication routes and improve prediction confidence. There are three main routes for 

dereplication: the clustering of standards with extract profiles in ResistoMAP, prior 

research of NP extract chemistry, and the metabolomic applications NP Analyst 

provides. The first route was noted earlier: the clustering analysis performed in 

ResistoMAP allows the prediction of bioactive chemistry based on fingerprint similarities. 

This prediction can then be confirmed with a comparison of metabolomics data using NP 

Analyst. These comparisons reduce the number of possible known candidates leaving a 

smaller, more promising dataset to investigate further. Alternatively, if clustering is not 

used then prior knowledge of extract chemistry can be applied to find other extracts that 

share similar chemistry. Lastly, NP Analyst allows a metabolomic perspective that can 

be applied to the candidates of interest from ResistoMAP. MS data is acquired and 

produces mass and Rt data that can be used in computational databases to further 

dereplicate these candidates. The clustering format in NP Analyst and ResistoMAP 

groups those extracts showing similar chemistry therefore, comparison of metabolomic 

data allows the rapid dereplication for those that cluster together.  

NP extracts are complex mixtures, often containing multiple components of 

interest. A challenge of biological screening is the overlap of multiple bioactive species 

that can cause a misleading profile showing increased activity or the lack of diagnostic 

patterns. To reduce these effects biological profiles that display potent activity across the 

entire panel are removed from the dataset prior to using NP Analyst. With its application 

of identifying bioactive metabolites, NP Analyst will identify the MS feature responsible 

for the bioactive component of interest. Therefore, these misleading profiles become 

easier to analyze as the bioactive MS feature can be identified individually. Once the MS 

feature is identified the specific MS profile can offer insight into the components within 

the suggested compound. Additionally, if these NP extract mixtures are separated from 

prefractions into subfractions it can further isolate the bioactive component and lead to a 

more knowledgeable selection of candidates.  
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2.1.4. Selectivity Ratio Profile Network (SRPNT) and Multivariate 
Pattern Analysis (MVPA) 

ResistoMAP and NP Analyst are the two main applications used in this project 

however, the Selectivity Ratio Profile Network (SRPNT) is an in-house tool that was 

tested as an additional application. Metabolomics are used to profile complex NP 

mixtures. To analyze this data efficiently, strategies are needed to identify the 

meaningful information from these complex datasets.49 Additionally, as NP Analyst does, 

data analysis methods are needed that integrate both biological activity and 

metabolomics. Partial least-squares (PLS) is a method that can break down spectral 

data into uncorrelated latent variables to maximize the variance of independent variables 

(MS features) with a dependent variable (biological activity)49. It is used to find the 

relations between these variables, such as what about the independent variable explains 

the dependent variable.  Using a technique called Target Projection, the feature that 

explains most of the activity observed can be determined.50 Target projection allows the 

calculation of a selectivity ratio (SR) for each analyte. SRs is a ratio between explained 

predictive and residual variance that represents a measure of the ability of a variable to 

discriminate different groups.51 Explained and residual variables are calculated for each 

𝑥-variable, in this case 𝑥-variables represent MS analytes, full equations for these can 

be found in a study by Kvalheim et al.51 

Multivariate Pattern Analysis (MVPA) is a full R-package of techniques that 

analyze multivariate patterns while SRPNT is a wrapper program that can be applied to 

identify active metabolites within a complex NP mixture using SRs as a fingerprint of the 

independent variable.52,53 These software are used for the unique interpretations and 

visualization of collinear data in terms of predictive association patterns.52 Both SRPNT 

and MVPA use PLS and Target Projection to model relationships between cause and 

effect, independent (MS features, 𝑥-variables), and dependent variables (activity, 𝑦-

variables) by calculating SRs for the 𝑥-variables. However, the key difference between 

the two is that MVPA works with a singular 𝑦-variable while SRPNT can use multiple. 

With SRPNT each 𝑥-variable will have as many SR values as there are 𝑦-variables 

therefore, SRPNT can take every 𝑥-variable and calculate how responsible the feature is 

for the antibacterial activity depicted. This creates a SR profile for each feature creating 

an alternative approach for analyzing NP chemistry. With this SR profile, one can 

determine which analytes/molecules have similar chemistry when looking at the 
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antibacterial screens, and which are unique. Molecules may display different chemistry 

but exhibit the same SR profiles, in turn clustering together within the network SRPNT 

produces. SRPNT requires a MS feature table and bioactivity data to produce these 

results. A high SR means the corresponding 𝑥-variable has a strong association with the 

predicted 𝑦-variable.51 The SR profiles can be interpreted in this way to rank 𝑥-variables 

associations to 𝑦-variables which can lead to a candidate molecule being selected for 

isolation.  

2.2. Results 

2.2.1. ResistoMAP Selections 

The initial ResistoMAP dataset was reduced from 6,195 NP extract prefractions 

to 384 by filtering the data to only include extracts that showed an activity of 50% or 

more against 5 or more drug-resistant strains of E. coli. The original ResistoMAP study 

performed by Dr. Dennis Liu identified six extracts displaying unique phenotypic 

fingerprints (Table 2.1). Extracts RLUS-1505 and RLUS-1530 profiles clustered together 

with rifamycin-like standards and were selected for full dereplication of this active 

component. RLUS-2028, RLUS-2045, RLUS-2100, and RLUS-2204 all showed unique 

activity against specific drug-resistant strains therefore, the profiles were flagged for 

further investigation. Some extracts selected strictly based on ResistoMAP output were 

later identified within the NP Analyst network.  

2.2.2. NP Analyst Network Analysis 

MS data was obtained on these 384 NP prefractions and 73 of the 80 

commercial standards (due to availability) to produce the first NP Analyst network, 

Figure 2.4. When observing Figure 2.4 the square nodes represent an NP prefraction or 

one of the commercial antimicrobial standards while each circle node corresponds to a 

MS feature (a m/z with its corresponding Rt). If a square connects to a circular node it 

means the prefraction/standard contains that feature therefore, if two samples connect to 

one MS feature they both contain that compound. Lastly, the colour and size of a circular 

node correspond to the legend seen in Figure 2.4. 
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Figure 2.4. Full NP Analyst output consisting of the 384 selected NP extracts 
and 68 commercial antimicrobials from the ResistoMAP dataset.  

Using the community viewing option this network was split into 36 communities 

that could be divided into 3 different categories. The first were communities that only 

contained commercial antimicrobials. The second category was communities that 

contained both NP prefractions and antimicrobial standards. Community 4 consists of 

several extracts, specifically RLUS-1878C-D prefractions near Spiramycin. NP 

prefractions found within this community were dereplicated for associations with these 

standards (Figure 2.5).  
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Figure 2.5. Community 4 used for dereplication as it contains the NP 
prefractions and commercial antimicrobials labeled. Specifically, 
RLUS-1878 prefractions are directly connected to Spiramycin. 

The final category was communities that contained only extracts – these were 

useful for candidate selections. Community 10 consisted of a variety of extracts 

displaying an array of activity and cluster scores. Prefractions RLUS-1758B&C, RLUS-

1806B, and RLUS-1885B&C were selected for strong correlations within the network 

(Figure 2.6A). Community 27 displayed a selective cluster between 7 extract 

prefractions all showing features with very strong activity scores. From this community 

prefractions RLUS-2085E and RLUS-2024E were selected to research further (Figure 

2.6B). Appendix Table A.1 lists MS features identified within specific communities that 

led to the selection of NP prefractions for further steps. 

 

Figure 2.6. Community 10 (A) and 27 (B) belong to the third category of 
communities. Each prefraction label corresponds to the closest square 
node. 

A B 
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A final dereplication process was completed using knowledge of compounds 

previously isolated from the Linington library. Community 26 contained only prefractions 

RLUS-2108C, D&E. Collismycin A (in-source mass fragment = 244.06 m/z, Rt =2.64 

min) and related analogue SF2738D ([M+H]+ = 258.07, Rt = 3.43 min) have been 

previously identified in these RLUS-2108 prefractions. These were both identified within 

this community. Using these methods 18 extracts (Table 2.1) were chosen to continue 

the project. 

Table 2.1. List of extracts grown up through fermentation processes for novel 
mass candidates for further research. 

Extract Selection Process 

RLUS-2028 

Chosen from ResistoMAP profiles 

RLUS-2045 

RLUS-2100 

RLUS-2204 

RLUS-1505 

RLUS-1530 

 

RLUS-1459 

Selected from NP Analyst 

Community Visualization 

RLUS-1520 

RLUS-1595 

RLUS-1597 

RLUS-1623 

RLUS-1726 

RLUS-1758 

RLUS-1806 

RLUS-1885 

RLUS-2024 

RLUS-2064 

RLUS-2085 

 

2.2.3. Secondary ResistoMAP 

These 18 NP extracts were grown from frozen stocks of the bacterial isolates 

through a fermentation process explained in Section 2.4.4 and separated into 5 

prefractions, A-E, through column flash chromatography. 15 of the 18 extracts 

underwent secondary separation from prefractions into peak libraries each consisting of 

10 subfractions using peak-guided separation via HPLC. Each prefraction was 
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separated into its peak libraries using a customized gradient. Secondary ResistoMAP 

screening was performed on each of these peak libraries. This panel consisted of 9 of 

the original 29 drug-resistant strains of E. coli and the wildtype, commercial 

antimicrobials were not included. Output data was normalized to indicate the activity at a 

certain concentration. If the subfraction was active at the lowest concentration (3.75 

μg/mL) it got a score of 1, at the highest concentration (30 μg/mL) then a score of 0.25.  

RLUS-2024 presented consistent profiles in the E2-4 subfractions as well as lower 

detection in the D2-4 subfractions. RLUS-2085 showed distinct activity in the D2-4 and 

strong profiles for E subfractions. Consistently strong activity was seen against Cef6 and 

Cef7 for the subfractions of RLUS-2028. For the A-2, C-2, and D-2 subfractions, there 

was activity seen against the full panel for this extract. RLUS-2204 had a unique profile 

in the original ResistoMAP dataset and shows a distinct activity profile in this secondary 

dataset. The fingerprints are consistent in both the D2 and E2 subfractions with D2 

showing stronger signals (Figure 2.7). 

   

Figure 2.7.  Peak Library ResistoMAP profiles against 9 drug-resistant strains of 
E. coli and wildtype MG1655 for extracts RLUS-2024, RLUS-2085, 
RLUS-2028, and RLUS-2204. 
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2.2.4. Secondary NP Analyst and SRPNT 

MS data was then obtained on the subfractions to create a secondary NP Analyst 

network for the selection of mass candidates for isolation (Figure 2.8A). 

 

Figure 2.8. Secondary ResistoMAP-NP Analyst network made using the extract 
subfraction ResistoMAP output (A). Secondary NP Analyst network 
coloured by community (B). Legend outlines what extracts are found in 
which community. * Extract only has one node found in the community. 

Candidate Selection Using SRPNT 

Using the MS and ResistoMAP data, SRPNT was able to predict which MS 

feature was showing the strongest activity relative to every other feature via selectivity 

ratios. This output pinpointed one mass: 392.27 m/z (Rt 3.90 min) from RLUS-2085E 

and RLUS-2024E subfractions (Figure 2.9). It showed strong selectivity ratios against 

the majority of the tested strains and overpowered the rest of the data, 392.27 m/z was 

the only candidate selected using this method. 

A B 
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Figure 2.9. SRPNT Cytoscape output of 392.27 m/z showing the highest 
selectivity ratios against each drug-resistant and wildtype strain of 
E. coli. This mass was most prominent in RLUS-2085E-3 subfraction. 

Candidate Selection Using NP Analyst Network 

Figure 2.8B displays the secondary network separated into 7 communities, each 

one containing the extracts of interest. The same candidate found in MVPA was 

identified in Community 1. It is found in both RLUS-2085E and RLUS-2024E 

subfractions. When looking at the MS data (Figure 2.10) shows an intensity of 3.3 × 106, 

and a clean MS1 profile in RLUS-2085E-3, making this subfraction the best candidate for 

isolation due to the intensity and separation of this feature. Another feature, 394.30 m/z 

(Rt 4.29 min) showed a strong activity and was found in RLUS-2085E-6 and -9 

subfractions. MS data identified RLUS-2085E-6 with an intensity of about 3.9 × 106, the 

MS1 profile looked relatively clean (Figure 2.11). Using NP Atlas both these masses 

were identified as similar to those of the prodiginine family and were selected for 

isolation. 
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Figure 2.10. Candidate mass feature 392.27 m/z for isolation from RLUS-2085E-3. 
NP Analyst network view (A), MS1 data of analyte from MS2Analyte 
(B), and analyte intensity in RLUS-2085E-3 (C). 

 

Figure 2.11. Candidate mass feature 394.30 m/z for isolation from RLUS-2085E-6. 
NP Analyst network view (A), MS1 data of analyte from MS2Analyte 
(B), and analyte intensity in RLUS-2085E-6 (C). 
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Community 2 in Figure 2.8B consists of the majority RLUS-2028, an extract 

initially selected for its ResistoMAP profile. Features 438.16 m/z (Rt 1.58 min) and 

452.18 m/z (Rt 1.64 min) were identified to display strong activity and cluster scores 

relative to all other features identified in this community. The MS data identified both 

masses in the second subfraction of RLUS-2028A-C, with the intensity being the highest 

in RLUS-2028A-2 for both. MS data for 438.16 m/z can be seen in Figure 2.12 intensity 

was 1.4 × 106 and MS profile is strong with a few potential contaminants. The MS data 

for 452.18 m/z was very similar with the same intensity. NP Atlas had no known matches 

for these masses and isolation from subfraction RLUS-2028A-2 was chosen.  

 

Figure 2.12. Candidate mass feature 438.16 m/z for isolation from RLUS-2028A-2. 
NP Analyst network view (A), MS1 data of analyte from MS2Analyte 
(B), and analyte intensity in RLUS-2028A-2 (C). 

RLUS-2204 showed unique phenotypic profiles in both the original and 

secondary ResistoMAP data set (Figure 2.7). A group of masses within a few mass 

units of one another (Table 2.2) was found in Community 3 which consists of extract 

RLUS-2204. 
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Table 2.2. Masses identified from secondary NP Analyst network from RLUS-
2204. 

MS Feature (m/z) Retention Time (min) 

538.38 3.10 

552.40 3.19 

568.39 2.94 

582.36 3.06 

598.36 2.27 

 

After looking at the MS profiles, RLUS-2204D-3 was selected for isolation as it 

contained multiple of these masses, specifically 552.40 m/z (Rt 3.19 min) with high 

intensity (1.6 × 106) and a strong MS profile, making it the main target for isolation. NP 

Atlas matched this mass with that of a macrolide.  

 

Figure 2.13. Candidate mass feature 552.40 m/z for isolation from RLUS-2204D-3. 
NP Analyst network view (A), MS1 data of analyte from MS2Analyte 
(B), and analyte intensity in RLUS-2204D-3 (C). 

2.3. Discussion 

In this chapter, we outlined the process by which the individual and combined 

applications of ResistoMAP and NP Analyst can assist in the prioritization of novel 

candidates while avoiding rediscovery.  
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ResistoMAP uses the target panel of 29 drug-resistant strains of E. coli and 

wildtype, covering a range of drug classes each consisting of several genotypes of 

resistance, to produce phenotypes that predict the possible drug mechanism and/or 

structure of an unknown compound.46,47 Decreased activity against a specific set of 

mutants within the panel provides insight into the mechanisms of action and structural 

characteristics of the bioactive species. Additionally, the hierarchical clustering with 

antimicrobial standards allows a dereplication process whereby if the profiles differ 

significantly then the NP extract may contain a novel and/or unrepresented bioactive 

species. These processes outline ResistoMAP’s ability to aid in the prioritization of 

extracts for future discovery developments. A filter was applied to reduce the volume of 

the original ResistoMAP dataset for the extent of this project. We focused on relevant 

ResistoMAP profiles that were showing distinct activity profiles to ensure a possible 

bioactive candidate was prioritized. An activity of 50% or higher filtered out all the NP 

mixtures that showed unimpactful profiles, leaving 384 NP prefractions for a workable 

dataset. The original ResistoMAP study performed by Dr. Dennis Liu flagged extracts as 

showing unique phenotypic profiles. Using this bioactivity-guided selection, 6 extracts 

(Table 2.1) were chosen, 4 of which were included in the ResistoMAP filtering, and the 

remaining 2 (RLUS-2204 and RLUS-2100) were added in the secondary steps of this 

project. To further facilitate dereplication and future prioritization efforts, MS-based 

metabolomics data were obtained on the 384 prefractions along with 73 (of the original 

80) readily available antimicrobial standards.  

NP Analyst uses bioassay data and MS-based metabolomics to predict bioactive 

metabolites. It is built on the rationale that if compounds share the same bioactive 

metabolites, then these compounds will exhibit similar chemistry. With rediscovery being 

a major hurdle in NP discovery, NP Analyst applies this rationale to NP mixtures to 

produce a network that groups compounds with shared chemistry together. It analyses 

the phenotypic profiles to identify which NP mixtures are displaying similar profiles. If 

these profiles are being produced by the same source, then the Rt and mass-to-charge 

ratios of this active component will be identified in both compounds. In summary, if NP 

mixtures contain the same bioactive compounds, then the metabolomic data and 

biological screening output will reflect that. NP Analyst provides a visual representation 

of this comparison by producing a network that connects NP prefractions that show 

similar bioactive metabolites. It scores the biological screening profiles (Activity score 
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and Cluster score) of the prefractions that share MS features. Inputting the ResistoMAP 

data into NP Analyst was a new technique for dereplication as it included both unknown 

NP prefractions and known antimicrobial standards. When analyzing the full network, the 

prefractions that were shown to cluster with the standards could be readily dereplicated. 

This process was made easier when using the community visualization tool available for 

NP Analyst.  

The community visualization format of NP Analyst separates the full network into 

smaller communities that contain highly interconnected nodes indicative of shared 

biologically active MS features. These communities allow a clear and in-depth analysis 

of the NP Analyst network as there are fewer nodes to visualize. These individual 

communities provided this project with a strong basis for NP candidate selection as it 

aided in the elimination of several options. The full network was divided into 36 

communities which were separated into three categories. The first category consisted of 

18 separate communities that only contained antimicrobial standards. With the NP 

Analyst rationale that similar data groups together, these communities indicate that the 

standards within them do not share attributes with the unknown NP mixtures. The 

second category was communities that had antimicrobial standards and NP prefractions 

clustering together. Prefractions and standards will only cluster together if there is 

shared biologically active metabolites therefore, this category is optimal for the 

dereplication and deprioritizing of unknown NP prefractions. Three communities within 

this category deemed 14 NP prefractions as less likely to contain novel components. 

Specifically, community 4 has RLUS-1878C-E prefractions directly sharing an MS 

feature with spiramycin as well as 5 other prefractions near several other antimicrobial 

standards (Figure 2.5). Therefore, these NP prefractions were immediately deprioritized 

for the selection for further research. In theory, if more antimicrobial standards were 

included in a dataset such as this, this category of communities could lead to the rapid 

dereplication of numerous NP extracts.  

The final category consisting of 14 communities was those that only displayed 

NP prefractions. These were ideal for candidate selection as they represented NP 

prefractions that did not share bioactive metabolites with the antimicrobial standards. 

Before selecting prefractions for further investigation these communities underwent final 

dereplication with the previously isolated compounds from the Linington library. This 

addition of previous knowledge led to the dereplication of collismycin A in community 26. 
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It is predicted if collismycin A standard was added to this dataset, this would have been 

a category 2 community. Following these final dereplication processes the prefraction 

candidates for the project's next steps were selected with three requirements in mind: 

consistent strong activity and/or cluster score, unique connections within the community, 

and a MS profile with identifiable fragments and limited contaminations with a Rt 

between 1.5-5.0 minutes to ensure a purified target could be isolated. With these in 

mind, 18 extracts were selected to be grown for secondary steps (Table 2.1). 

An ongoing difficulty with NP discovery is the complexity of the original mixtures. 

To isolate a NP compound, you must start with a mixture containing a mixture of 

compounds from the raw natural source.3 NPs are known to exhibit potent biological 

activities that can display misleading strong bioactivity when present in a mixture. 

Determining where the specific product of interest within the mixture is extremely difficult 

therefore, the common technique is to separate NP extracts into 5-6 prefractions (A-F). 

Instead of having one potent complex mixture now there are separate smaller mixtures 

that may or may not contain the product of interest. To take it further this project 

separated these prefractions into peak libraries consisting of 10 subfractions. These 

peak libraries were separated based on visualized UV peaks to isolate the bioactive 

components identified in the ResistoMAP profiles. 15 of the 18 extracts in Table 2.1 

were separated into subfractions and underwent a smaller secondary ResistoMAP 

screening consisting of only 9 drug-resistant strains of E. coli and the wildtype. The 

output profiles proved that the process was successful as the displayed activity was 

isolated to specific subfractions. RLUS-2085 and RLUS-2024 were potently active in the 

E subfractions and active in the first few D subfractions making these targets for mass 

candidate selection. Originally chosen from bioactivity-guided selection and having 

passed the ResistoMAP filtering, RLUS-2028 was chosen as a candidate for isolation 

and identification. The subfraction phenotypic profiles displayed consistent activity 

against Cef6 and Cef7, and strong profiles for the second subfractions of prefractions A, 

C, and D. RLUS-2204 from the bioactivity-guided selection showed strong activity 

against Cef6 and Cef7 strains within the D2 and E2 subfractions, making them targets of 

interest as well. With this secondary screening, another NP Analyst network was 

constructed to aid in mass candidate selection for isolation. Of the 11 extracts, 7 

displayed unique activity and MS data was collected. The NP Analyst output (Figure 

2.8) separated the extracts into individual communities making visualization of the data 
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relatively easy. Prior to analyzing this network, another approach was taken to visualize 

the data using a tool called Selectivity Ratio Profile Network (SRPNT), a wrapper 

program of the full R-package: Multivariate Pattern Analysis (MVPA). SRPNT was used 

for the interpretation and visualization of collinear data in terms of predictive association 

patterns. It was used in this project to identify which MS feature was showing the 

strongest activity against the secondary ResistoMAP panel relative to all other MS 

features. It does this by taking the selectivity ratio of the activity of a bioactive MS feature 

against each drug-resistant E. coli strain and produces a bar graph. When run on this 

project’s dataset one variable stood out: 392.27 m/z (Rt 3.90 min) found in both the 

RLUS-2024E and RLUS-2085 E subfractions (Figure 2.9). It displayed the highest 

selectivity ratios against the whole panel relative to all other variables therefore, it was 

the only candidate selected using this method. Compared to NP Analyst, SRPNT allows 

a highly specified selection of candidates strictly based on bioactivity. 

Returning to NP Analyst as the main selection source, 5 masses were selected 

for isolation and identification. As mentioned earlier, Figure 2.8B outlines the 

communities the network is divided into. The focus is on mass candidates showing 

strong activity and cluster scores as well as a reasonable Rt. To confirm the candidate is 

a strong choice the MS data is checked to deem the mass is present. Lastly, the masses 

were cross-checked against the NP Atlas as a final dereplication process.44 With SRPNT 

highlighting a mass from the E subfractions of both RLUS-2024 and RLUS-2085, the 

next step was to look at these extracts within the network. Community 1 contained both 

extracts and the same mass candidate identified from SRPNT, 392.27 m/z. Another 

mass found in some E subfractions of both these extracts, 394.30 m/z (Rt 4.30 min), 

showed a stronger activity and cluster score and was flagged as another candidate for 

isolation. The MS data for 392.27 m/z showed high intensity in subfraction RLUS-2085E-

3 making this the subfraction to attempt isolation on (Figure 2.10). MS data identified 

RLUS-2085E-6 with the highest intensity of 394.30 m/z (Figure 2.11). NP Atlas matched 

masses within the range of these two candidates with a family known as prodiginines. 

These are known to have strong bioactivity and are red in colour, similar to the crude 

samples of RLUS-2024 and RLUS-2085. Prodiginine standards were not included within 

the positive control library of ResistoMAP therefore, full isolation and identification were 

performed on these candidates to confirm these belong to this family of compounds. 
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The phenotypic profile of RLUS-2028 in the original ResistoMAP output (Figure 

2.14A) showed strong activity against Cef6 and Cef7 in all prefractions and had 

consistent activity against all strains in RLUS-2028D. With this display of activity, it was 

also included in the 384 prefractions that passed the beginning filtering of ResistoMAP 

data.  

 

Figure 2.14. RLUS-2028 ResistoMAP phenotypic profile (A). Secondary 
ResistoMAP screening on peak library subfractions (B). 

The secondary ResistoMAP screening on RLUS-2028 subfractions (Figure 2.14B) again 

shows consistently strong activity against Cef6 and Cef7 in the first 3 subfractions of 

each prefraction as well as an overall strong profile for the second subfractions of RLUS-

2028A, C, and D. This same profile is not seen for the second subfractions of RLUS-

2028B and E because the separation gradient may have removed the component active 

against the full panel. Community 2 of the secondary NP Analyst network contains this 

extract producing a variety of MS features with consistent activity and cluster scores 

making it difficult to select isolation candidates. When focusing on the second 

subfractions of RLUS-2028 the features seemed to be similar between the second 

subfractions of RLUS-2028A-C but not RLUS-2028D and E. Two masses: 438.16 m/z 

(Rt 1.58 min) and 452.16 m/z (Rt 1.64 min) were found to have strong activity and 

cluster scores relative to all of the features seen and were all present in the second 

subfractions of RLUS-2028A-C. NP Atlas did not match these masses to any known 

microbial NPs. The MS data for these were of high intensity in RLUS-2028A-2 and 

RLUS-2028C-2, the two subfractions that showed an overall strong activity profile. The 

A 

B 
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intensity for both masses was highest in RLUS-2028A-2, making this the source for the 

isolation of these molecules.  

Two extracts, RLUS-2100 and RLUS-2204, did not pass the filtering of the 

ResistoMAP data but were included in secondary steps as bioactivity-guided selections. 

RLUS-2204 specifically showed a unique ResistoMAP phenotypic output with potent 

activity against Cef6 and Cef7 in all prefractions and low activity in the D prefraction.  

 

Figure 2.15. ResistoMAP output for RLUS-2204. 

Examining the communities of the secondary NP Analyst network, community 3 consists 

of extract RLUS-2204 with a set of features with high cluster scores and similar activity 

scores. A group of masses all within 14-18 mass units of one another (Table 2.2) were 

identified to have consistent activity scores and strong cluster scores. Within this group, 

the predominant molecule was 552.40 m/z (Rt 3.19), which displayed an MS profile of 

high intensity within RLUS-2204D-3 (Figure 2.13). NP Atlas identified this mass as 

being similar to that of a macrolide identified by Kinumaki et al. published in 1977.54 This 

study had identified 6 fragment ions in the M-4365 component all within a few mass units 

of one another. With 552.40 m/z being the main target these masses were selected for 

isolation and identification.  

The processes outlined within this chapter assisted in the dereplication and 

prioritization of NP prefractions for the identification of a novel mass candidate. The 

combination of ResistoMAP and NP Analyst offers opportunities that can be applied to 

NP discovery with alternative datasets than those used in this project. It utilizes a 

selection technique that targets potential novel candidates by dereplicating with two 

processes: comparing phenotypic profiles with a positive control library of commercial 

standards in ResistoMAP and grouping similar chemistry based on shared bioactive 
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metabolites with NP Analyst. These processes can be applied with different positive 

controls or bioassay data for an alternative targeted approach to NP discovery.  

2.4. Materials and Methods 

2.4.1. ResistoMAP  

ResistoMAP design and analysis were performed according to the procedure 

outlined by Liu et al.47 Raw plate reader values (via optical density of 600 nm) of 80 

commercial antimicrobial compounds and 6,195 NP extract prefractions against wildtype 

and 29 drug-resistant strains of E. coli were obtained. In brief, t0 values (absorbance 

reading of growth when bacteria is initially added to assay plate) were subtracted from 

corresponding t20 values (absorbance reading of growth 20 hours after t0 was measured) 

for each sample, then divided by the difference between the positive and negative 

controls for normalization (Equation 2.1). These resulting percent growth values were 

inversed by subtracting from 100 to produce percent activity values. These values for 

each extract were standardized across all extracts for each E. coli strain to minimize 

plate-to-plate variation. For the commercial antimicrobial dataset, percent activity values 

at each one of 16 concentrations, against each strain, were averaged across three 

replicates. 

Equation 2.1. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐺𝑟𝑜𝑤𝑡ℎ (%) =
𝑥 − 𝜇𝑏𝑙𝑎𝑛𝑘 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝜇𝑔𝑟𝑜𝑤𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝜇𝑏𝑙𝑎𝑛𝑘 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 × 100 

 

For this project, the complete ResistoMAP dataset underwent filtering to remove 

all instances whereby the percent activity values were greater than 50% against 5 or 

more resistant strains of E. coli. This trimmed the dataset from 6,195 to 384 NP 

prefraction profiles.  

2.4.2. Mass Spectrometry-Based Metabolomics Data Acquisition 

These 384 NP prefractions were collected from Linington Lab marine storage 

plates stored in a -70 ˚C freezer. Four 96-well conical polypropylene storage plates had 

every well filled with 195 μL of 1:1 MeOH: H2O (Waters Optima-Grade MeOH; MilliQ 
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Filtered dH2O) using INTEGRA VIAFLO 96 semi-automated 96-channel liquid handler. 

For each NP prefraction, 5 μL was dispensed from its source deep-well plate to this 

dilution plate. The dilution plates were then sealed using a plate sealer and aluminum 

seal (Agilent PlateLoc Thermal Microplate Sealer) and sonicated for 5 minutes to ensure 

homogeneity. Once sonicated the plates were unsealed and 1 μL of every prefraction 

was transferred to the assay plate for a final dilution of 1:20,000 with dimethyl sulfoxide 

(DMSO). These plates were then sealed, sonicated, and centrifuged. A similar process 

was used to obtain MS data on 73 antimicrobial standards. Four assay plates were 

prepared, each at a different concentration: 10, 100, 10,000, and 100,000 mg/mL.  

 Four NP extract assay plates were analyzed using UPLC-ESI-qTOF MS 

according to the following parameters. Columns 1 and 12 of every plate contained 

solvent blanks and columns 2 to 11 contained up to 96 diluted extract prefractions. 

Solvent blanks were included after every 15 extracts. Chromatographic separation was 

performed with an Acquity I-Class UPLC (Waters) using an Acquity HSS T3 C18 column 

(100 mm × 2.1 mm, 1.8 μm, Waters). Separation used mobile phase (A) as H2O + 0.1% 

formic acid (FA) to (B) MeCN + 0.1% FA at a flow rate of 500 μL/min and for 12.8 min 

(5% MeCN, 0-0.3 min; 5-90% MeCN, 0.3-9.1 min, 90-98% MeCN, 9.1-10.7 min, 98% 

MeCN, 10.7-11 min, 5% MeCN, 11.01-12.8 min). MS data were acquired on a SYNAPT 

G2-Si hybrid quadrupole-traveling wave ion mobility (TWIM) time-of-flight (TOF) 

(Waters) mass spectrometer with an electrospray ionization (ESI) source. The 

instrument was operated in positive ion mode and conducted using data-independent 

acquisition (DIA) mode. Settings were as follows: voltage 3.0 kV; cone voltage 40 V; 

source offset 50V; source temperature 150 ˚C; desolvation temperature 300 ˚C; cone 

gas flow 30 L/hr; desolvation gas flow 600 L/hr. Detection was acquired in the m/z range 

50 – 1500 with a scan rate of 0.25 Hz in both MS and MS2 modes. Leucine enkephalin 

(Waters) lockspray solution was enabled at a concentration of 200 pg/μL at 0.10 Hz. 

2.4.3. NP Analyst Network Production and Community Visualization 

Raw MS files produced by the mass spectrometer were converted to .mzml 

format using the open-source tool MSConvert. Both the MS files in .mzml format and the 

trimmed ResistoMAP screening data in .csv format were simultaneously uploaded onto 

the NP Analyst offline web portal. NP Analyst networking was performed according to 

the following parameters: ppm error 30 m/z; Retention Time Window: 0.03 min; Minimum 
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Intensity: 20,000; Minimum Frequency in Replicates for Replicate Comparison: 2; 

Minimum Frequency in Samples for Feature Alignment: 1; Activity Score Threshold: 

2.03; Cluster Score Threshold: 0.3. For explanation of these parameters, see the 

corresponding publication by Lee et al.48 Output NP Analyst network file was imported 

into Cytoscape 3.8.2 for visualization and analysis.  

Output NP Analyst community network files were separately examined in 

Cytoscape 3.8.2. The ResistoMAP assay .csv output was visualized using Morpheus 

(https://software.broadinstitute.org/morpheus/). The table .csv output was visualized 

using Tableau. The overall network was divided into 36 communities which were divided 

into 3 different categories upon observations: communities containing only antimicrobial 

standards, communities containing NP prefractions and antimicrobial standards, and 

communities only containing NP prefractions.  

Communities Category 1 – Only Antimicrobial Standards 

Of the 36 communities, 18 were placed into this category. Filtering through these 

communities identified numerous antimicrobial standards that do not share 

characteristics with the NP prefractions within the dataset.  

Communities Category 2 – NP Prefractions and Antimicrobial 
Standards 

Only 3 communities were in this category for theoretical dereplication. 

Community 3 dereplicated the prefractions RLUS-1512B, RLUS-1520B, and RLUS-

1520C with standards clarithromycin, erythromycin, puromycin, and roxithromycin. 

Prefraction RLUS-1512B shared mass 559.38 m/z (Rt 2.80 min) directly with 

Erythromycin indicating shared chemistry between the two. Community 4 dereplicated 

RLUS-1478D, RLUS-1492D, RLUS-1503A, D, & E, and RLUS-1878C-E with 

Amphotericin-B, Cephadroxil, Chloramphenicol, D-Cycloserine, Midecamycin, Rifabutin, 

Sparfloxacin, Spiramycin, Sulfadazine, and Tiamulin. The RLUS-1878 prefractions all 

shared mass 430.25 m/z (Rt 2.14 min) directly with Spiramycin. Community 13 

dereplicated RLUS-2064C-E with Clindamycin, Mithramycin, and Minocycline. RLUS-

2064D shares 425.1926 m/z (Rt 2.22 min) with Clindamycin. Source microorganisms of 

https://software.broadinstitute.org/morpheus/


37 

extracts RLUS-1520 and RLUS-2064 were selected for full fermentation and grow-up, 

the other extracts were not selected for future steps.  

Communities Category 3 – NP Prefractions  

The remaining 15 communities belong to this category. Each community was 

analyzed and compared to a list of previously isolated compounds identified within the 

Linington library. Community 26 containing RLUS-2108 was dereplicated with 

collismycin A (in-source mass fragment = 244.06 m/z, Rt =2.64 min) and related 

analogue SF2738D ([M+H]+ = 258.07, Rt = 3.43 min). Some remaining communities 

were loosely dereplicated with previously identified compounds, and extracts displaced 

from those that were dereplicated were selected for full fermentation and grow up. 

Communities 29, 32, and 34 were not included in the NP prefractions selection process 

as they contained extracts that had been previously researched. Table 2.1 contains all 

extracts selected from the NP Analyst network with Table A.1 identifying the 

communities and the masses that differentiated each one. 

2.4.4. Fermentation Process for the 18 Extracts 

Frozen stocks (1:1 glycerol: starch-yeast-peptone SYP media at -70 ˚C) of the 

bacterial isolates were struck onto marine broth agar (MB agar; per 1L dH2O: DIF-COTM 

Marine Broth, 37.4g; 15.0g) at room temperature for up to 5 days. Individual colonies 

were used to inoculate 7mL of SYP liquid media (SYP; per 1L dH2O: Instant Ocean, 

31.2g; Soluble Starch, 10g; Yeast Extract, 4g; Peptone, 2g) with 3 sterile glass beads, 

shaking at room temperature (RT) at 200 RPM for 4-7days. Upon sufficient growth 3mL 

of this liquid culture was used to inoculate 60mL of SYP media within a sterile 

Erlenmeyer flask with a coiled stainless-steel spring, agitated at RT, 200 RPM for 5-7 

days. 45mL of this culture was then used to inoculate 1L of SYP media within a sterile 

2.8L Fernbach flask containing a larger coiled stainless-steel spring and 20g of XAD-17 

resin (Thermo Fisher), shaking at RT, 200 RPM for 5-7days. After this period of 

fermentation, the large-scale culture was filtered with Whatman paper inside a ceramic 

funnel. The remaining residue was extracted with DCM/MeOH (1:1, 250mL) three times 

while stirring. The resulting suspension was filtered again to remove cellular debris and 

torn filter paper. Celite resin (20g) was added to the filtrate and evaporated to dryness in 

vacuo to ensure binding of extract to resin. The extract-adhered resin was packed into a 
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reusable CombiFlash prep column with a resin filter on either end and compacted. An 

elutropic series of MeOH/H2O via CombiFlash separated each extract into 5 prefractions. 

Prefractions A (20% MeOH/H2O), B (40% MeOH/H2O), C (60% MeOH/H2O), D (80% 

MeOH/H2O), and E (100% MeOH/H2O) were evaporated to dryness in vacuo and 

resuspended in minimal MeOH/H2O (1:1) for optimal collection. Each prefraction was 

stored at -70 ˚C and prepared for further separation. 

2.4.5. Peak Library Separation for 15 Extracts 

For 15 of the 18 extracts (Table 2.3), each prefraction was diluted to a 

concentration of 50 μg/mL and centrifuged. 40 μL of the supernatant was stored while 

the remaining volume was transferred to 1.5 mL LC-MS total recovery vials and 

separated via HPLC (Agilent 1200 series; Phenomonex Synergi™ 10 μm Fusion-RP 80 

A 250x10 mm) with customized gradients into peak libraries containing 10 subfractions. 

Subfractions were evaporated to dryness in vacuo and resuspended in minimal 

MeOH/H2O (1:1) for optimal collection. Fully dried peak libraries were stored at -70 ˚C. 

Table 2.3.  List of extracts that underwent prefraction separation into 
subfractions. 

Extracts 

RLUS-2045 RLUS-2024 

RLUS-2100 RLUS-1806 

RLUS-2028 RLUS-1885 

RLUS-2085 RLUS-1530 

RLUS-1758 RLUS-1520 

RLUS-1597 RLUS-1726 

RLUS-1595 RLUS-1623 

RLUS-2204 *only C-E prefractions 

 

2.4.6. Secondary ResistoMAP Screening and Data Analysis 

A secondary smaller assay was derived from the original ResistoMAP screening 

containing 9 of the 29 drug-resistant strains and wildtype of E. coli and excluding the 

positive control library of antibiotics. The same procedure outlined by Liu et al was 

performed.47 In brief, these 10 strains; MG1655, Rif1, NA3, Cef6, Cef7, Cip15KB, Cm2, 

Gn12, Str4, and AC30-1 were inoculated from glycerol stocks into 3 mL overnight 
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cultures in Luria-Bertani (LB) media (Fisher), grown at 37 ˚C, 200 RPM. Saturated 

overnight cultures were diluted in LB media according to turbidity to achieve - 5.0 x 105 

CFU/mL of final inoculum density and dispensed (Matrix WellMate) into sterile 

polystyrene 384-well microplates (Thermo ScientificTM 265202) with a final screening 

volume of 30 μL. Depending on the mass of subfraction they were prepared in a 4-step 

1:1 dilution series from 30 μg/mL. If there was not sufficient mass, then the highest 

concentration possible was used. These solutions were then pinned into each respective 

assay plate (200 nL) using a high throughput pinning robot (Tecan Freedom EVO 100; 

V&P Scientific pin tool). In each 384-well assay plate, columns 1 and 24 were reserved 

for blank control (DMSO vehicle, LB media) while columns 2 and 23 were reserved for 

growth control (DMSO vehicle; LB media; target bacteria). After compound pinning, 

assay plates were read using a plate reader (BioTek Synergy Neo2 running GEN5 

software) to obtain OD600 absorbance values at t0, sealed with lids, and placed in a 

humidity-controlled incubator (Thermo Cytomat) at 37 ˚C, 5 % CO2 for 20h. Post-

incubation OD600 readings were taken at t20. Post-data acquisition, absorbance values 

were normalized using the same process outlined in section 2.4.1. After initial 

normalization, the data was organized to give a value of 1 if the inhibition is greater than 

50% at the lowest concentration and down to zero for the highest concentration (0.75 at 

7.5, 0.5 at 15, and 0.25 at 30 μg/mL).  

2.4.7. Secondary NP Analyst Network 

A total of 53 subfractions showed distinct activity and were profiled by UPLC-

HRMS using a Waters SYNAPT G2Si ESI-qTOF-MS system running MassLynx 

software. Also, LC-MS analyses using an Agilent ESI-quadrupole-MS instrument running 

ChemStation were completed. An additional 150 inactive subfractions were profiled by 

UPLC-HRMS. Subfractions were dissolved in DMSO at a concentration of 7.5 μg/mL 

and placed in three parent 96-well conical polypropylene plates. Using INTEGRA 

VIAFLO 96 semi-automated 96-channel liquid handler 49 μL of 1:1 MeOH: H2O (Waters 

Optima-Grade MeOH; MilliQ Filtered dH2O) was transferred to designated wells in 384-

well pyramidal well polypropylene plate. Again, using the ViaFLO 96 with a fresh set of 

tips, 1 μL of each NP subfraction was pipetted from its parent 96-well plate to its 

destination dilution plate. The dilution plates were then sealed using a plate sealer and 

aluminum seal (Agilent PlateLoc Thermal Microplate Sealer) and sonicated for 5 minutes 
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to ensure homogeneity of the samples. The plates were then centrifuged using a 

Thermo SpeedVac Vacuum Concentrator with Microplate attachments. The same 

parameters outlined in section 2.4.2 were used except IMS mode was not employed. 

 Raw MS files were converted to .mzml format using the open-source tool 

MSConvert. MS2Analyte, an in-house MS processing tool, was used for peak-picking of 

MS data. The following parameters: Manufacturer: Waters; File Type: mzML; Experiment 

Details: Blanks, Replicate Count: 3, MS2 data, and DIA; MS1 Threshold: 2000; Mass 

Error (Da): 0.01; Max Peak Count: 10,000; RT Error (min): 0.1. The corresponding .csv 

assay file and MZmine output .csv file produced from MS2Analyte were used to produce 

a second NP Analyst network using the online platform (https://www.npanalyst.org/) 

using an Activity Score of 0.6 and Cluster Score of 0.32. Using the community 

visualization the network was divided into 7 communities (Figure 2.8B). Of the 53 active 

subfractions, 4 were chosen for isolating and identification processes.  

SRPNT/MVPA Visualization 

Additionally, this activity and HRMS data were inputted into SRPNT to produce a 

network identifying the strength of the candidate’s bioactive profiles. MS2Analyte 

MZmine output file was edited to follow SRPNT format: m/zmass_retentiontime. The 

same assay .csv file and this edited MS2Analyte .csv file produced a graphml. output. 

The procedure followed to run SRPNT is outlined by Baumeister et al. (manuscript in 

preparation) and instructions can be found here: https://github.com/liningtonlab/SRPNT. 

The graphml. output file was opened in Cytoscape 3.8.2 for visualization. These were 

the following parameters used: feature transformation method: seed: 42; introduce 

compound interaction terms: true; feature count limit: 50; number repetitions: 50; percent 

calibration samples: 50; validation threshold: 0.5; number components: 10; use monte 

carlo resamples: true; standardize: false; score filter method: f-value; alpha: 0.05; score 

threshold: 1.0; direction: both; distance metric: Euclidean; edge threshold: 0.85; perform 

community detection: true. In Cytoscape, using Image/Chart 1, bar graph was selected 

for all selectivity ratios producing a bar graph visualization for these ratios. The output 

was strongest for feature 392.27 m/z (Rt 3.90 min), showing selectivity ratios, in order 

from left to right seen in the bar graph: AC30-1: 2.23; Cef6: 0.67; Cef7: 0.58; Cip15KB: 

2.53; Cm2: 6.50; Gn12: 2.28; MG1655: 21.20; NA3: 2.38; Rif1 3.01; Str4: 3.01. 

https://www.npanalyst.org/
https://github.com/liningtonlab/SRPNT
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Community 1 – RLUS-2085E-3 

This community was identified to contain subfractions from extracts RLUS-2024, 

and RLUS-2085, and only one node from both RLUS-1726 and RLUS-1595. RLUS-2085 

was the major presence, with RLUS-2085E being flagged by MVPA, this subfraction was 

the main focus for this community. The mass 392.27 m/z found in MVPA was present in 

this community, with the same mass and retention time (3.90 mins.), an Activity score of 

3.59, and a Cluster score of 0.32. It was present in RLUS-2024E-2 to -9, RLUS-2085D-

3, and RLUS-2085E-3 to -9 subfractions. MS data from MS2Analyte identified this 

feature as an intensity of 3.3 × 106 in subfraction RLUS-2085E-3. 

Another feature 394.30 m/z with a Rt of 4.30 minutes had a higher Activity score 

of 3.88 and Cluster score of 0.66. The network identified its presence in RLUS-2024E-4, 

5, & 9 and RLUS-2085E-6 and -8. MS data identified this feature as an intensity of 3.9 × 

106 in subfraction RLUS-2085E-6. 

Using the Basic Search page in NP Atlas (https://www.npatlas.org/search/basic), 

the mass ranges and origin type of bacteria were searched against the database. 

Feature 392.27 m/z matched with butylcyclohexylprodigiosin (exact mass: 391.2624 Da) 

and metacycloprodigiosin (exact mass: 391.2624) both with formulas C25H33N3O. Mass 

394.30 m/z matched with prodigiosin 25-C (exact mass: 393.2780 Da) and 

undecylprodigiosin (exact mass: 393.2780 Da) both with formulas C25H35N3O.  

Community 2 – RLUS-2028A-2 

This community was identified to contain subfractions from extracts RLUS-2028 

and only one node from both RLUS-1520 and RLUS-1595. Feature 438.16 m/z with a Rt 

of 1.58 minutes has an Activity Score of 1.56 and Cluster Score of 0.95, it is present in 

RLUS-2028A-2 to -4, RLUS-2028B-2 and -3, and RLUS-2028C-2. Feature 452.18 m/z 

with a Rt of 1.64 minutes has an Activity Score of 2.03 and Cluster Score of 0.96, it is 

present in RLUS-2028A-2 and -3, RLUS-2028B-2, and RLUS-2028C-2. Checking the 

second subfractions of these prefractions the MS2Analyte data identified both these 

features with an intensity of 1.4 × 106 in RLUS-2028A-2. Using the same process 

outlined above, NP Atlas did not display any suitable matches. 

https://www.npatlas.org/search/basic
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Community 3 – RLUS-2204D-3 

This community was identified to contain subfractions from extracts RLUS-2204. 

These features 538.38 (Rt 3.10 min), 552.40 (Rt 3.19 min), 568.39 (Rt 3.35 min), 582.36 

(Rt 3.06 min), 598.36 (Rt 2.27 min) m/z were identified to have consistent activity scores 

and strong cluster scores. MS2Analyte data identified 552.40 m/z as having the highest 

intensity within RLUS-2204D-3 which also contained multiple other masses at a 

reasonable intensity. Using the same process outlined above, NP Atlas matched 552.40 

m/z with a compound known as M-4365 G1 (exact mass: 551.3822) with formula 

C31H53NO7. 
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Chapter 3.  
 
Isolation and Structure Elucidation 

3.1. Introduction 

This chapter describes the isolation, identification, and bioactive characterization 

of three candidates identified from the ResistoMAP and NP Analyst selection pipeline 

discussed in Chapter 2.  

Extract prefraction RLUS-2085E was selected for its hit subfractions RLUS-

2085E-3 and RLUS-2085E-6 which displayed activity against a range of drug-resistant 

E. coli strains. Features prioritized by MVPA and NP Analyst led to the selection of two 

molecules, 392.27 m/z and 394.30 m/z for isolation and full structure elucidation. NP 

Atlas suggested these masses as members of the prodiginine family. The prodiginine 

family is comprised of bacterially produced natural products (NP) that share a 

characteristic tripyrrolic core (Figure 3.1).55–57 These red-pigmented compounds display 

an array of attractive biological properties including antibacterial, anticancer, and 

immunosuppressive activity.58–60 Various Serratia and Streptomyces strains have been 

responsible for the production of these compounds and recently, known prodiginines 

have been isolated from marine-sourced actinomycetota.55,57,61 Two compounds of the 

prodiginine family, streptorubin B (2) and undecylprodigiosin (4) have been identified 

from extract RLUS-2085E and will be fully elucidated within this chapter. 
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Figure 3.1.  Structures of natural prodiginine compounds. 

Additionally, extract prefraction RLUS-2028A was selected for its distinct activity 

against the ceftazidime-resistant E. coli identified in RLUS-2028A-2. Analogues 438.2 

m/z (X1) and 452.2 m/z (X2) were flagged by NP Analyst however, isolation difficulties 

prevented full purification and elucidation. Lastly, RLUS-2204D displayed weak activity 

against many drug-resistant E. coli strains except for the ceftazidime-resistant strains 

(Cef-6 and Cef-7). NP Analyst identified five features within a few mass units of one 

another as displaying consistent strong Activity and Cluster scores. MS data identified 

feature, 552.40 m/z (X3) as having the highest intensity. Using this mass as guidance, 

NP Atlas suggested the macrolide antibiotic, M-4365, as this molecule. This macrolide 

was identified by Kinumaki and co- from Micromonospora along with six other macrolide 

components within a few mass units of one another, similar to those identified in NP 

Analyst.54 Macrolides have been previously identified as useful antibiotics for the 

treatment of bacterial infections.62 These compounds are known to inhibit bacterial 

protein synthesis and are characterized by a large macrocyclic lactone ring attached to 

one or more amino-deoxy sugars.62 Popular macrolide antibiotics include erythromycin, 

azithromycin, and clarithromycin. Based on prominence, analogue 552.40 m/z (X3) was 

selected as the main target for isolation and is undergoing further studies.  
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Concluding screening was performed on each of these isolated candidates to 

assess the biological profiles of the purified molecules and compare to the observed 

activity of the secondary ResistoMAP profiles.  

3.2. Results 

3.2.1. Isolation of features 392.27 m/z and 394.30 m/z from RLUS-
2085E 

Both the original and secondary ResistoMAP screening, along with MVPA and 

NP Analyst procedures highlighted prefraction RLUS-2085E for its potent activity 

profiles. This prefraction showed activity against all drug-resistant strains, with the 

strongest against ceftazidime and streptomycin-resistant E. coli. Secondary screening 

revealed that subfractions RLUS-2085E-3 and RLUS-2085E-6 had similar profiles to the 

original ResistoMAP dataset. Activity was observed for RLUS-2085E-3 against all 10 

drug-resistant strains at the concentration of 3.75 μg/mL. Similarly, RLUS-2085E-6 

showed activity at this concentration against all strains excluding ciprofloxacin, 

chloramphenicol-resistant strains, and the wildtype, MG1655. Activity against these 

three strains was observed at 7.5 μg/mL. As stated in the previous chapter, MS features 

392.27 m/z (Rt 3.90 min) from RLUS-2085E-3 and 394.30 m/z (Rt 4.29 min) from RLUS-

2085E-6 were selected for isolation.  

Isolation attempts were made on RLUS-2085E-3 for 392.27 m/z, 1.42 mg was 

obtained. Purity was checked by mass spectrometry (MS) and 1H NMR. Both showed 

signs of impurity therefore, further purification was performed on the full 1.42 mg. 

However, not enough pure sample (below 1.0mg) was collected to obtain workable 

nuclear magnetic resonance (NMR) spectra for elucidation processes. The extract was 

re-grown through fermentation and isolation attempts were performed on the prefraction 

RLUS-2085E rather than the subfraction. Through this process, both 392.27 m/z and 

394.30 m/z were observed and isolated simultaneously using distinct UV signatures 

known to be associated with prodiginines (392.27 m/z, 7.81 mg; 394.30 m/z, 7.29 mg). 

Purities were confirmed using 1H NMR and full 2D NMR datasets were obtained for 

elucidation (Appendix Figures B.2-16) 
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3.2.2. Structure Elucidation of Streptorubin B (2) 

Compound 2 was isolated as an amorphous red solid. The molecular formula of 

the metabolite was determined through HRMS as C25H34N3O with the monoisotopic 

mass of the [M+H]+ adduct: obs 392.2705 m/z. The UV spectrum of this compound 

displayed an absorbance of 545 nm, characteristic of a prodiginine's red colour.63 The 

planar structure of 2 was elucidated using this information and through NMR analysis 

using a combination of 1H, 13C, gCOSY, gHSQC, gHMBC, 15N HSQC, and 15N HMBC 

spectra in chloroform-d (Table 3.1; Appendix Figures B.2-8).  

The experimental 1H NMR spectrum contains a characteristic signal at a 

chemical shift of δH -1.55, which matches the literature published by Weyland and 

coworkers.64 With a combined comparison of chemical shifts reported by Furstner et al 

and Weyland, the experimental 1H and 13C NMR were reflective of the values 

corresponding to those of 2.59,64 Carbon signals ranging from δC 40.0-20.0 correspond to 

ten methylene carbons, while furthest upfield, δC 14.3 represents a methyl group. The 

characteristic prodiginine methoxy can be seen at δC 58.7 (Table 3.1). Six signals 

represent sp2 hybridized quaternary carbons leaving the remaining signals as five 

aromatic CHs, one olefinic CH, and one tertiary CH. Examination of the 1H NMR 

spectrum confirms the presence of ~35 protons: 3 NHs, six aromatic and olefinic, and 26 

aliphatic protons. Full 2D spectra were used to confirm structural connectivity.  

Table 3.1. Tabulated NMR data for 2 isolated from RLUS-2085E. All spectra 
were acquired in chloroform-d4 at 600 MHz (1H), 150 MHz (13C), 60.80 
MHz (15N). 
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Position 
Experimental Data Literature Data64 

𝜹𝑯 (J in Hz) 𝜹𝑪 𝜹𝑵 𝜹𝑯 𝜹𝑪 

1  122.7   122.4 

2 6.91, s 116.7  6.90 116.6 

3 6.34, d 111.6  6.34 111.6 

4 7.25, overlap 127.2  7.22 126.7 

5 12.72, s  160.4 12.71  

6  145.3   147.1 

7 6.09, s 93.3  6.10 92.7 

8  165.9   165.5 

9  121.0   120.3 

10 12.60, s  139.3 12.58  

11 4.02, s 58.7  4.02 58.6 

12 7.11, d 112.7  7.12 112.5 

13  125.4   125.1 

14 12.70, s  162.3 N/A 

15  150.8   150.6 

16 6.50, s 116.8  6.52 116.8 

17  154.8   154.7 

18 3.33, 2.56, overlap 30.2  3.34, 2.54 29.9 

19 1.91,1.25, overlap 31.8  1.98~1.89, 1.42~1.32 31.6 

20 1.77, 0.80, overlap 29.4  1.82~1.76, 0.83~0.78 29.1 

21 1.15, -1.56, overlap 27.7  1.89~1.11, -1.55 27.6 

22 1.56, 0.92, overlap 25.8  1.70~1.50, 0.97~0.90 25.4 

23 1.85, 1.56, overlap 31.2  1.89~1.82, 1.70~1.50 30.9 

24 3.11, s 37.5  3.10 37.3 

25 1.72, 1.15, overlap 39.0  1.85~1.11, 1.76~1.69 38.9 

26 ~1.26 29.9  1.42~1.32 30.6 

27 ~1.38, overlap 23.1  1.42~1.32 22.8 

28 0.92 14.3  0.97~0.90 14.1 

 

There are two NH groups within 2 however, protonation results in three separate 

NH correlations within the 15N HMBC due to presence of formic acid seen at δH 8.90. The 

1H NMR contains two broad signals in the δH 12.0 region which could be three 

overlapping singlets. These can be differentiated using the combined efforts of 15N 

HMBC and literature references (Figure 3.1 (blue arrows)). 15N HMBC spectrum 

contains a nitrogen signal at δN 139.3 showing correlations to δH 7.11 and 6.09. 

Literature states the proton that corresponds to this nitrogen would have an upfield 

signal around 12.0 therefore, N10 δN 139.3 corresponds to the broad singlet at δH 
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12.60.57,64 Indeed, a faint 15N HSQC signal can be seen between these signals. Two 

other nitrogen signals can be seen in the 15N HMBC, δN 1 0.  to δH  .91 and δN 162.3 to 

δH 7.11. This identifies δN 162.3 as closest to N10 as both display correlations to δH 7.11. 

Based on the literature, the corresponding proton for signal δN 160.4 will be the furthest 

downfield signal at δH 12.72, leaving δH 12.70 with N14 δN 162.3. With this information, 

the three pyrrole rings can be identified with gCOSY and gHMBC correlations.  

The methyl groups are easy to identify with gHSQC correlations seen between 

C28, δC 1 .3 and proton δH 0.92, and C11 methoxy at δC 58.7 with the strong singlet at δH 

4.02. The gCOSY spectrum was hard to analyze due to weak signals. However, proton 

δH 6.34 shows coupling to δH 6.91 and 7.25 to which gHMBC correlations to the 

corresponding carbons could be observed as well (Figure 3.1). As stated above with 15N 

HMBC signals N5 was identified as δN 1 0.  with δH 6.91. Its final connection, the 

quaternary carbon, is also identified from gHMBC between δH  .91 and δC 122.7 

completing this first spin system (Figure 3.1). No gCOSY coupling was observed for the 

methoxy at C11 however, a gHMBC correlation is seen between its methyl protons and 

C8, δC 165.9. To complete the second pyrrole spin system as stated above N10, δN 139.3 

shows 15N HMBC correlations to δH  .09 and δH 7.11.  

Several gHMBC correlations are observed from δH  .50 to δC 125.4, 150.8, and 

154.8 (Figure 3.1). Correlations from gHMBC signals can be seen from δH 7.11 to δC 

150.8 as well as to N10, δN 162.3 indicating this is the second pyrrole connected to this 

olefin. Very faint gHMBC correlations can be seen between C24 δH 3.11 and C16, δC 

116.8, and C25 δH 1.72 to C15, δC 150.8 indicating the aliphatic chain connection. 

Continual gHMBC and gCOSY correlations can be seen between proton to carbon 

allowing the construction and differentiation of the diastereotopic protons within the 

aliphatic chain and ring (Figure 3.1).  

This full elucidation was compared to literature of Furstner et al and Weyland.59,64 

The experimental and literature 1H and 13C signals were reflective of one another. HSQC 

and HMBC correlations were consistent with the structure of streptorubin B thus, the 

complete planar structure of 2 was established. 
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Figure 3.2.  Key 2D NMR correlations of 2 in CDCl3 at 600 MHz for 1H and 13C. 
COSY (one-headed arrows), HMBC (double-headed arrows), and N15 

HMBC (blue double-headed arrows) correlations are shown. 

3.2.3. Structure Elucidation of Undecylprodigiosin (4) 

Compound 4 was isolated as an amorphous pink solid. The molecular formula of 

the metabolite was determined through HRMS as C25H35N3O with the monoisotopic 

mass for the [M+H]+ adduct: obs 394.2881 m/z. The UV spectrum of this compound 

displayed an absorbance of 525 nm, which is characteristic of a prodiginine's red 

colour.63 The planar structure of 4 was confirmed using this information and through 

NMR analysis using a combination of 1H, 13C, gCOSY, gHSQC, gHMBC, 15N HSQC, and 

15N HMBC spectra in chloroform-d (Table 3.2; Appendix Figures B.10-16).  

The comparison of 1H and 13C NMR between literature published by Papireddy et 

al. with experimental spectra obtained showed similar correlations in the relative shifts 

for key signals.58 Examination of the experimental spectra confirmed the presence of 26 

carbon signals, six aromatic CHs, one olefinic CH, and six sp2 hybridized quaternary 

carbons: one methoxy, one methyl, and ten methylene carbons. Signals from δC 32.1-

22.8 correspond to the ten-member aliphatic chain of C18-C27. The methoxy group of C11 

is distinctly seen at δC 59.0, while the methyl group of C28 is found furthest downfield at 

δC 14.3 (Table 3.2). The 1H NMR spectrum confirmed the presence of ~36 protons: 3 

NHs, seven aromatic and olefinic, and 26 aliphatic protons. Determining the full 

assignment of 1H NMR resonances was completed using 2D NMR.   
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Table 3.2. Tabulated NMR data for 4 isolated from RLUS-2085E. All spectra 
were acquired in chloroform-d at 600 MHz (1H), 150 MHz (13C), 60.80 
MHz (15N). *Peak values were estimated from spectra provided by 
Papireddy et al. 

 

Positions 

Experimental Data Literature Data58 

𝜹𝑯 (J in Hz) 𝜹𝑪 𝜹𝑵  𝜹𝑯 (J in 
Hz)* 

𝜹𝑪* 

1 7.25, overlap 127.8  7.30 127.6 

2 6.37, q 112.2  6.40 112.1 

3 6.96, m 118.0  6.90 117.8 

4  122.3   122.4 

5 12.69, s  161.0 12.62  

6  149.0   148.8 

7 6.09, d  93.2  6.10 93.0 

8  166.4   166.3 

9  121.6   121.2 

10 12.93, s  139.5 12.90  

11 4.03, s 59.0  4.00 58.8 

12 7.02, s 116.6  7.00 117.7 

13  126.2   126.0 

14 12.74, s  164.7 12.70  

15 6.85, t 129.5  6.85 129.3 

16 6.21, dd 112.7  6.30 112.6 

17  153.4   153.3 

18 2.95, t 28.6  2.90 28.0~29.0 

19 1.77, qu 29.5  1.20~1.90 28.0~29.0 

20 1.40, qu 29.6  1.20~1.90 28.0~29.0 

21 1.26, overlap 29.5  1.20~1.90 28.0~29.0 

22 1.25, overlap 29.8  1.20~1.90 28.0~29.0 
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23 1.25, overlap 29.4  1.20~1.90 28.0~29.0 

24 1.25, overlap 29.8  1.20~1.90 28.0~29.0 

25 1.33, overlap 29.7  1.20~1.90 28.0~29.0 

26 1.24, overlap 32.1  1.20~1.90 31.0 

27 1.28, overlap 22.8  1.20~1.90 22.7 

28 0.87, t 14.3  0.85 14.1 

 

The 1H NMR spectrum contains three prominent signals in the δH 12.0 region 

indicating the presence of three NH groups. There should be only two NH groups 

present therefore, this is indicative of protonation by formic acid seen at δH 8.75. Each of 

these signals is equally strong but the combination of gCOSY, 15N HSQC, and HMBC 

can be used to identify which belongs to each pyrrole (Figure 3.1). There are three 

separate spin systems, each for a specific pyrrole. One can be seen between these 

protons: δH 7.25, 6.96, and 6.37, each showing gCOSY signals to one another and 

proton δH 12.69, an NH proton with 15N HSQC correlation with δN 161.0. This is 

determined to be the first pyrrole ring system; its final quaternary carbon is identified with 

the gHMBC correlations each of these protons shows to C4, δC 122.3.  

Using gHSQC signals, the methoxy group shows distinct correlations for C11 with 

the strong singlet signal at δH 4.03. A strong gHMBC signal can be observed between 

this proton and the quaternary carbon at δC 166.4 which in turn has gHMBC correlations 

to proton δH 7.02 (δC 116.6), the olefin signal connecting two pyrrole rings confirmed by 

15N HMBC signals seen from this proton to δN 139.2 and 164.7 (Figure 3.2). An aromatic 

doublet at δH 6.09 shows strong gHMBC correlations to C6 at δC 149.0 and C9 121.6, two 

quaternary carbons. This proton also shows 15N HMBC correlations to δN 139.5 which 

corresponds to proton δH 12.93 determined with 15N HSQC and gCOSY coupling with 

proton δH 6.09 (Figure 3.2). There are two quaternary carbons within this spin system 

therefore, it is determined that this pyrrole contains the methoxy substituent at C11. 

The final pyrrole ring starts with gHSQC correlations confirming that C15 (δC 

129.5) and C16 (δC 112.7) correspond to aromatic protons δH  .85 and δH 6.21. gCOSY 

coupling can be seen to one another and both to δH 12.74, the final NH group with 15N 

HSQC signal at δN 164.7 and 15N HMBC correlations to δH 6.21. There are two 

quaternary carbons, C13 and C17, that are identified from gHMBC correlations between 

δH 6.85 with δC 12 .2 and δH 6.21 with δC 153.43 completing the pyrrole ring. Lastly, the 

olefinic proton at δH 7.11 shows gHMBC correlations to C13 confirming it is the second 
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pyrrole connected by this bond. Further gHMBC correlations can be seen between δC 

153. 3 and proton signals at δH 2.95 and 1.77 indicating the attachment of the aliphatic 

chain. Due to overlap determining the signals that correspond to this chain was difficult. 

Starting from the end, C28 (δC 14.3) correlates with the methyl protons at δH 0.87 that 

appear as a triplet in the 1H NMR. gHMBC signals can be seen between the methyl 

protons δH 0.87 and C27 (δC 22.8) and C26 (δC 32.1). Overlapping gHMBC correlations are 

roughly seen from δH 1.33 to C24 (δC 29.8) and δH 1.25 to C23 (δC 29.4). The remaining 

aliphatic chain connections are undetermined due to signal overlap. 

This full elucidation was then compared to literature of Papireddy et al. The 

experimental and literature 1H and 13C signals were reflective of one another except the 

NH signals, this occurred due to protonation of the purified compound. Both HSQC and 

HMBC correlations were consistent with the structure of undecylprodigiosin, specifically 

the presence of an aliphatic chain and not a ring. Considering these factors, the 

complete planar structure of 4 was established. 

  

Figure 3.3.  Key 2D NMR correlations of 4 in CDCl3 at 600 MHz for 1H and 13C. 
COSY (one-headed arrows), HMBC (double-headed arrows), and N15 

HMBC (blue double-headed arrows) correlations are shown. 

3.2.4. Isolation of Candidate 552.40 m/z (X3) from RLUS-2204D 

The first step that filtered the ResistoMAP dataset did not include RLUS-2204 

because its ResistoMAP profile only showed strong activity against the ceftazidime-

resistant E. coli strains Cef-6 and Cef-7. This fraction was added to the peak library 

separation into subfractions because of its unique profile. The secondary screening 

displayed activity against all 10 strains for subfraction RLUS-2204D-2, with activity at the 

lowest concentration of 3.75 μg/mL against the ceftazidime-resistant E. coli. As stated in 

the previous chapter, several mass features were seen within a few mass units of one 
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another, but X3 had the strongest MS profile and was selected for prioritized isolation. 

The highest intensity of X3 was in RLUS-2204D-3.  

During the isolation attempts for X3 from RLUS-2204D-3 it was determined that 

several masses could be separated simultaneously. These are the masses separated 

and the mass obtained; 568.56 (0.07 mg; X4), 538.00 (0.10 mg; X5), 598.52 (0.40 mg; 

X6), and X3 (0.39 mg) m/z. Purities of X3 and X6 were checked via 1H NMR, however, 

more mass was needed to determine structural characteristics. To obtain additional 

material the extract was regrown, and isolation was performed on the RLUS-2204D 

prefraction. This separation revealed four other masses identified in the NP Analyst 

network to be isolated simultaneously: 582.53 (X7), 377.37 (X8), 1061.60 (X9), and 

1054.11 (10) m/z (X3, 1.86 mg; X4, 2.22 mg; X6 m/z, 0.40 mg; X7 m/z, 1.23 mg; X8 m/z, 

1.89 mg; X9, 1.67 mg; X10, 1.18 mg). Purities of X3, X4, X6, X7, and X8 were 

determined using 1H NMR however, only X3 displayed semi-purity therefore, a full 2D 

NMR dataset was obtained for elucidation. 

3.2.5. Structure Comparison for X3 

Compound X3 was isolated as a colourless solid. The molecular formula of the 

metabolite was determined through HRMS as C31H53NO7 with the monoisotopic mass for 

the [M+H]+ adduct: obs 552.3904 m/z. Using this information and through NMR analysis 

using a combination of 1H, 13C, gCOSY, gHSQC, and gHMBC in methanol-d4 the spectra 

were compared with literature from Borisova et al.65 (Appendix Figures B.17-21). 

These few key peaks were reflective of one another in the comparison: ketone at δC 

20 .8 and ester at δC 175.0, three olefinic protons at δH 7.24, 6.43, and 5.67 with 

corresponding carbons at δC 149.8, 119.7, and 147.8, and six methyl groups ranging 

from δC 22.2-9.0 with overlapping proton signals from δH 1.85-0.85. This comparison 

suggests the structure of X3 is close to Figure 3.4. 
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Figure 3.4. Suggested structure of candidate X3 from comparison with Borisova 
et al.65 

3.2.6. ResistoMAP Screening for Isolated Candidates 

Following purification, isolated compounds 2, 4, X3, X6, X8, and X9 were serially 

diluted (two-fold dilutions; 30 μg/mL to 3.75 μg/mL) and rescreened against the 

ResistoMAP panel of drug-resistant E. coli to determine the minimum inhibitory 

concentration (MIC) to confirm if bioactive compounds were isolated. Drug-resistant E. 

coli strains can be seen in Appendix Table A.2. Due to contamination results of Rif-7 

are not included.  

 

Figure 3.5. ResistoMAP profiles displaying percent growth of Isolated 
Candidates. Labeling is as follows Candidate_Concentration(μg/mL). If 
there was 100% growth then no activity was observed.  
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Compound 2 demonstrated consistent activity with a MIC of 3.75 μg/mL against 

all drug-resistant strains of E. coli except against rifamycin-resistant strains Rif1 and 

Rif11. Compound 4 displayed a MIC of 15 μg/mL against tetracycline, ciprofloxacin, 

chloramphenicol, and all ceftazidime-resistant E. coli, and an MIC of 3.75 μg/mL against 

Str4 streptomycin-resistant strain (Figure 3.5). These results are reflective of potent 

bioactivity often displayed by prodiginines. 

Isolated components from RLUS-2204 reflected the activity seen in the 

secondary ResistoMAP screening where the majority activity was observed against the 

ceftazidime-resistant E. coli. Compound X3 demonstrated consistent activity against all 

ceftazidime-resistant E. coli, with a MIC of 7.5 μg/mL against Cef6 and Cef7. X6 was 

similar with an MIC of 7.5 μg/mL against Cef7 and activity at 7.5 μg/mL against the 

remaining three strains. Additionally, activity was seen against the ciprofloxacin-resistant 

at 7.5 μg/mL. Lastly, compound X9 demonstrated a 7.5 μg/mL MIC against Cef6 and 15 

μg/mL against the remaining three mutant strains. It also displayed activity against 

ciprofloxacin and tetracycline-resistant strains at 7.5 μg/mL (Figure 3.5). 

3.3. Discussion 

This work led to the isolation of three bioactive molecules, two of which have 

been fully elucidated and identified. Prefraction RLUS-2085E displayed activity against 

all drug-resistant strains, with the strongest being against ceftazidime and streptomycin-

resistant E. coli strains. Hierarchical clustering of the original ResistoMAP profiles did not 

group this prefraction with any antimicrobial standards improving confidence in the 

potential novelty of mass candidates. When divided into a subfraction library, the 

secondary screening showed consistent activity profiles for the majority of E 

subfractions. Specifically, RLUS-2085E-3 and RLUS-2085E-6 were of interest due to the 

observed potent activity at a low concentration of 3.75 μg/mL. These consistent activity 

profiles led to the selection of mass candidates for isolation from these prefractions. With 

the guidance of SRPNT and NP Analyst, the first candidate isolated was 392.27 m/z (Rt 

3.90 min). Initially, NP Atlas matched this candidate with the prodiginine family 

specifically, 2 and metacycloprodigiosin (3). Upon isolation, a characteristic UV/Vis peak 

was observed at 545 nm (Appendix Figure B.1), this is known to correlate to the 

prodiginine family. Members of the prodiginine family have been isolated from various 

microorganisms including Streptomyces coelicolor and recently, marine bacteria Hahella 
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chejuensis and Pseudoalteromonas.66,67 This family of compounds is known to 

demonstrate several biological functions including antibacterial, antifungal and anti-

inflammatory activity. Antibacterial activity has been observed against Bacillus subtilis, 

Staphylococcus aureus, Pseudomonas aeruginosa, and E. coli.67–69 Although 

antibacterial activity has been observed against this bacteria there is limited information 

on the prodiginine effect on resistant pathogens. Prodiginine standards were not 

included in the positive control library of ResistoMAP and have not been documented as 

isolated from the Linington library therefore, extract RLUS-2085 was not dereplicated 

within the first steps of the project.  

Following purification, full 2D NMR was obtained for elucidation. Deconvolution 

with a study by Weyland and co-workers (peak comparison seen in Table 3.1) confirmed 

the isolated compound as 2.54,59 There has been a debate on the assignment of 2 

compared to butylcycloheptylprodigiosin however, the signal of δH -1.55 is characteristic 

to 2 therefore, this compound is not butylcycloheptylprodiosin.59 When in an acidic 

environment prodiginines become protonated resulting in three NH signals within the 

NMR spectra (Figure 3.6). Prodiginines can also undergo tautomerization producing 

three alternative structures, where the protonated nitrogen can switch positions.70 When 

observing the experimental spectra there is no doubling of proton signals or carbons 

therefore, multiple tautomers are not present within the purified compound. The three 

NH signals are a result of protonation from the formic acid present in solution during 

purification.55 

 

Figure 3.6.  Protonation of prodiginines that can occur in an acidic environment. 
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Additionally, NP Analyst associated feature 394.30 m/z (Rt 4.29 min) with strong 

Activity score within subfraction RLUS-2085E-6. With its proximity to the first isolated 

mass, NP Atlas also identified this mass as a part of the prodiginine family, 4 or 

prodigiosin 25-C. The isolation for this candidate was made easy as its separation 

coincided with the first candidate from prefraction RLUS-2085E. Again, the isolation 

identified the characteristic UV/Vis peak at 525 nm (Appendix Figure B.9).  Following 

purification, a full 2D NMR set was obtained for elucidation. Upon elucidation, the 1H 

NMR displayed a unique splitting in the region of δH 12.9-12.5. There should be two 

singlets representing the NH groups within the characteristic prodiginine pyrrole rings 

however, the experimental spectra displayed three distinct signals. These results were 

like that of 2 therefore, this additional NH single is attributed to protonation of the purified 

compound by formic acid. After partial elucidation and deconvolution with the literature, 

this compound was identified as 4.  

The prodiginine family is of interest for the biological properties the compounds 

display.58 Both the prefraction and subfractions of RLUS-2085E displayed a consistent 

phenotypic profile against the ResistoMAP panel of drug-resistant E. coli. Concluding 

screening determined that both isolated molecules; 2 and 4, reflected these strong 

phenotypic profiles identified within the original screens. 2 displayed strong activity 

against most of the drug-resistant E. coli strains while 4 was selectively potent against 

the tetracycline, ciprofloxacin, chloramphenicol, and all ceftazidime-resistant strains. 

These activity profiles reflect the known biological properties of prodiginines against E. 

coli while additionally, highlighting compounds 2 and 4 antibacterial activity against drug-

resistant pathogens.68,69  Prodigiosin (1) has been identified as active against E. coli and 

against drug-resistant Staphylococcus aureus where it exhibited inhibitory activity 

against biofilm formation however, there is limited information on the impacts 

prodiginines have on other resistant pathogens.68,71 The combined efforts of 

ResistoMAP, NP Analyst, and SRPNT allowed the identification of these antibacterial 

compounds within the Linington library and revealed the activity against the resistant 

pathogens. With the observed activity of compounds 2 and 4 the applications of 

prodiginines to combat the AMR crisis are of importance. Further research on the 

pharmacodynamics and toxicity are needed to determine the drug applications of 2 and 

4. 
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An alternative technique that this project used was to select extracts strictly 

based on their activity profiles. The initial filtering of the ResistoMAP dataset removed 

extracts that showed less than 50% activity against 5 or more strains meaning it could 

have removed extracts that displayed unique phenotypic profiles. One extract that did 

not pass the filtering was RLUS-2204. Its original ResitoMAP profile was relatively weak 

against the drug-resistant strains however, it showed potent activity against the 

ceftazidime-resistant E. coli. For this reason, it was selected to add to the secondary 

steps of this project. The secondary screening performed on the subfractions displayed 

a similar pattern was seen in RLUS-2204D-2, it displayed activity against the 10 drug-

resistant strains but was active at the lowest concentration of 3.75 μg/mL against the 

ceftazidime-resistant strains. After examination of the NP Analyst network a group of 

masses within a few mass units of one another were reviewed on NP Atlas which 

matched them with a group of macrolides isolated from Micromonospora. After analyzing 

the intensity of the MS data, candidate 552.40 m/z (Rt 3.19, X3) was the primary target 

for isolation from RLUS-2204D-3. Upon isolation it was discovered that several of the 

candidates could be isolated in a single chromatographic run; therefore, X4-X10 were 

isolated as well. The UV/Vis profile for the candidates was difficult to identify so a mass-

guided separation was performed on the prefraction RLUS-2204D. After purification, a 

full 2D NMR set for X3 was obtained for elucidation. Using the suggested structure from 

NP Atlas, the experimental spectra were compared to that of a NP hybrid produced by 

biosynthetic engineering and fully elucidated by Borisova et al seen in Figure 3.4.65 

Literature 13C signals for the ketone and ester were reflective of the experimental signals 

at δC 206.8 and 175.0, while the olefinic and aliphatic chain signals were in the same 

range but not exact matches. This strongly suggests the planar structure of X3 is that 

identified by this study (Figure 3.4) however, stereochemistry is needed to confirm the 

complete configuration of this isolated compound. 

Along with this mass candidate to ensure a bioactive candidate was isolated a 

few of the other analogues were screened as well. X3 displayed an activity profile that 

was reflective of those seen in the original screen. It demonstrated consistent activity 

against ceftazidime-resistant strains specifically, an MIC of 7.5 μg/mL against Cef6 and 

Cef7. Additionally, X6 and X9 demonstrated similar activity profiles with the strongest 

being against the ceftazidime-resistant strains. Candidate X9 also revealed activity at 7.5 
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μg/mL against ciprofloxacin and tetracycline-resistant E. coli. X6 and X9 are future 

targets for further purification and elucidation. 

This project resulted in the isolation of three molecules, two of which have been 

identified as members of the bioactive family of compounds, prodiginines. All three main 

targets displayed activity that was reflective of the original screen. With these 

conclusions, the selection process outlined using ResistoMAP bioactivity and NP Analyst 

for metabolomic analysis is successful in identifying bioactive compounds effective 

against AMR. The dereplication application of the tool was proven to succeed as these 

isolated compounds did not match those of the antimicrobial standards used in the initial 

dataset. It is theorized that if a prodiginine standard were included in the initial steps of 

this project it would have dereplicated these extracts rather quickly. In the future, these 

isolated compounds will be applied to the Linington library to aid in the dereplication 

process using previously identified compounds. With the rising crisis of AMR, new 

strategies are needed to efficiently identify new candidates that can effectively combat 

AMR. This project outlines a new NP discovery pipeline that has succeeded in the 

isolation of bioactive compounds that inhibit the growth of drug-resistant E. coli. 

Therefore, if applied to alternative datasets the use of ResistoMAP and NP Analyst may 

potentially lead to the identification of NP candidates that can contend with AMR while 

avoiding rediscovery.  

3.4. Materials and Methods 

3.4.1. Fermentation, Isolation, and Discovery of RLUS-2085E 
Prodiginines 

Fermentation and Subfraction Separation 

Frozen stock of Streptomyces spp. RL12-007-NTS-A (1:1 glycerol: SYP media; -

70 ˚C) were plated on solid media (MB agar; 37.4 g/L, 10 g/L soluble starch, 4 g/L yeast 

extract, 2 g/L peptone) at room temperature (RT) for 6 days. Individual colonies were 

used to inoculate 6 × 7 mL SYP liquid media in sterile capped 40 mL culture tubes with 

3 glass beads, shaking at RT, 200 RPM for 4 days. 3 mL of liquid culture solution was 

then used to inoculate 8 × 1 L of SYP media inside sterile 2.8 L Fernbach flasks 

containing a large stainless-steel spring and 20 g of XAD-17 resin capped with 

autoclaved milk filter, shaking at RT, 200 RPM for 7 days. Following fermentation, the 
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large-scale culture (8 × 1 L) was filtered then extracted using DCM/MeOH then 

separated in 5 prefractions using the CombiFlash system via an eluotropic series of 

MeOH/H2O (1:1) and dried in 20 mL borosilicate glass scintillation vials. Prefractions A 

(99.02 mg), B (133.44 mg), C (86.90 mg), D (88.52 mg), and E (117.63 mg) were diluted 

to a concentration of 50 μg/mL and centrifuged. 40 μL of each prefraction supernatant 

was stored while the remaining volume was transferred to 1.5 mL LC-MS total recovery 

vials and separated via HPLC (Agilent 1200 series; Phenomonex SynergiTM 10 μm 

Fusion-RP 80 A 250 × 10 mm) using a customized gradient of MeCN/H2O + 0.02% 

formic acid at a flow rate of 4.0 mL min-1 for each prefraction (Table 3.3). 

Table 3.3. Customized gradients for the separation of RLUS-2085 prefractions 
into subfraction peak libraries. 

Prefraction Gradient 

RLUS-2085A 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 25 % to 45 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min. 

RLUS-2085B 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 30 % to 60 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min. 

RLUS-2085C 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 45 % to 65 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min. 

RLUS-2085D 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 60 % to 85 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min. 

RLUS-2085E 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 60 % to 80 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min. 

 

Regrow of Streptomyces spp. RL12-007-NTS-A was performed using the same 

procedure outlined above. In brief, it was plated for 7 days, at a small scale for 6 days, at 

a medium scale for 5 days, and lastly was extracted after 5 days at a large scale. 

Prefractions were separated via CombiFlash and dried in 20 mL scintillation vials: A 

(240.34 mg), B (169.97 mg), C (148.35 mg), D (265.23 mg), and E (161.85 mg). These 

prefractions were not separated into subfractions. 

Bioactive Analog Isolation 

RLUS-2085E-3 starting mass of 7.43 mg was diluted to 3.5 μg/mL and 

transferred to a 1.5 mL LC-MS total recovery vial and purified via HPLC-MS (Agilent 

6130 MS; Phenomonex Kinetix 2.6 μm XB-C18 150 × 4.6 mm) using a gradient of 

MeCN/H2O + 0.02% formic acid (30% to 70% MeCN over 30 min, 95% MeCN for 5 min) 

at a flow rate of 1.0 mL min-1. One analog was separated with this method, collected via 



61 

fraction collector and dried down under vacuum, then weighed ([M+H]+ 392.1, Rt 21.2 

min, 1.42 mg). The resulting compound was profiled by UPLC-HRMS (Waters SYNAPT 

G2Si ESI-qTOF-MS) to obtain hi-res mass and MS/MS data to check purity. 1H NMR 

(600 MHz) was performed to check purity.  

Analogues were also separated from re-grow prefraction RLUS-2085E (161.85 

mg). It was diluted to 10 μg/mL, transferred to a 1.5 mL LC-MS total recovery vial, and 

separated via HPLC-MS using a gradient of MeCN/H2O + 0.02% formic acid (45% to 

70% MeCN over 30 min, 95% MeCN for 5 min) at a flow rate of 1.0 mL min-1. Two 

analogues displayed prominent absorbances within the UV-Vis region (2: [M+H]+ 392.3 

m/z, Rt 7.75 min, 7.81 mg; 4: [M+H]+ 394.3, Rt 16.1 min, 7.29 mg). Structures were 

verified using 2D NMR (600 MHz) (Appendix Figures B.2-16). 

3.4.2. Fermentation, Isolation, and Analysis of RLUS-2028 

The fermentation procedure outlined in section 3.4.1 was repeated with a frozen 

stock of Streptomyces spp. RL12-042-HVF-A (1:1 glycerol: SYP media; -70 ˚C). In brief, 

it was plated for 7 days, at a small scale for 6 days, medium scale for 7 days, and lastly 

was extracted after 7 days at a large scale. Prefractions were separated via CombiFlash 

and dried in 20 mL scintillation vials: A (227.16 mg), B (382.52 mg), C (404.17 mg), D 

(1041.04 mg), and E (306.87 mg). The separation into the subfraction peak library was 

performed using customized gradients in Table 3.4. 

Table 3.4. Customized gradients for the separation of RLUS-2028 prefractions 
into subfraction peak libraries. 

Prefraction Gradient 

RLUS-2028A 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 20 % to 60 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min 

RLUS-2028B 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 25 % to 50 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min 

RLUS-2028C 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 25 % to 40 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min 

RLUS-2028D 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 40 % to 75 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min 

RLUS-2028E 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 60 % to 85 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min 
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With a mass of 6.70 mg, RLUS-2028A-2 was diluted to 7 μg/mL and transferred 

to a 1.5 mL LC-MS total recovery vial and purified via HPLC-MS using a gradient of 

MeCN/H2O + 0.02% formic acid (5% to 10% MeCN over 10 min, 10% MeCN for 20 min, 

95% MeCN for 5 min) at a flow rate of 1.0 mL min-1. Two analogues (X1: [M+H]+ 438.2 

m/z,  12.8 min, 0.25 mg; X2: 452.2 m/z, Rt 14.61 min, 0.29 mg) were attempted at 

separation with this method and collected via a fraction collector. Due to lack of mass 

and difficulty of separation, these isolations were not pursued to completion. 

3.4.3. Purification, Isolation, and Discovery of RLUS-2204D 

The fermentation procedure outlined in section 3.4.1 was repeated with a frozen 

stock of Streptomyces spp. RL12-082-NTF-B (1:1 glycerol: SYP media; -70 ˚C). In brief, 

it was plated for 13 days, at a small scale for 15 days, at a medium scale for 14 days, 

and lastly was extracted after 10 days at a large scale. Prefractions were separated via 

CombiFlash and dried in 20 mL scintillation vials: A (112.55 mg), B (255.40 mg), C 

(318.96 mg), D (182.09 mg), and E (220.38 mg). The separation into the subfraction 

peak library was performed on prefractions C-E using customized gradients in Table 3.5. 

Table 3.5. Customized gradients for the separation of RLUS-2204 prefractions 
into subfraction peak libraries. 

Prefraction Gradient 

RLUS-2204C 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 20 % to 60 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min 

RLUS-2204D 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 40 % to 65 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min 

RLUS-2204E 
MeCN/H2O + 0.02 % formic acid (5 % MeCN for 2 min, 65 % to 85 % 

MeCN over 18 min, 100 % MeCN for 2 min) at a flow rate of 4.0 mL/min 

 

Regrow of Streptomyces spp. RL12-082-NTF-B was performed using the same 

procedure outlined previously. In brief, it was plated for 13 days, at a small scale for 15 

days, at a medium scale for 10 days, and lastly was extracted after 10 days at a large 

scale. Prefractions were separated via CombiFlash and dried in 20 mL scintillation vials: 

A (177.11 mg), B (228.96 mg), C (370.24 mg), D (234.30 mg), and E (430.30 mg). 

These prefractions were not separated into subfractions. 
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Bioactive Analog Isolation 

RLUS-2204D-3 starting mass of 9.86 mg was diluted to 10 μg/mL and transferred 

to a 1.5 mL LC-MS total recovery vial and purified via HPLC-MS using a gradient of 

MeCN/H2O + 0.02% formic acid (30% to 40% MeCN over 30 min, 95% MeCN for 5 min) 

at a flow rate of 1.0 mL min-1. Four analogues were separated with this method, 

collected via fraction collector and dried down under vacuum, then weighed ([M+H]+ 

598.0 m/z, Rt 4.5 min, 0.4 mg; [M+H]+ 568.0 m/z, Rt 13.1 min,  0.07 mg; [M+H]+ 538.0 

m/z, Rt 15.6 min, 0.10 mg; [M+H]+ 552.0 m/z, Rt 19.2 min, 0.39 mg).  

Re-grow prefraction RLUS-2204D (234.36 mg) was diluted to 20 μg/mL and 

transferred to 1.5 mL LC-MS total recovery vials. Analogues listed above were 

separated via HPLC-MS (Waters 27 7 SQ Detector 2; Synergi 10 μm Fusion-RP 80�̇� 

250 × 10 mm) using a gradient of MeCN/H2O + 0.02% formic acid (25% to 40% MeCN 

over 40 min, 95% MeCN for 8 min) at a flow rate of 8.0 mL min-1. Seven analogues were 

separated with this method, collected via fraction collector and dried down under 

vacuum, then weighed ([M+H]+ 568.56 m/z, Rt 6.0 min, 2.22 mg (X4); [M+H]+ 598.52 

m/z, Rt 9.0 min, 0.40 mg (X6); [M+H]+ 582.53 m/z, Rt 7.0 min, 1.23 mg (X7); [M+H]+ 

552.57 m/z, Rt 18.0 min, 1.86 mg (X3); [M+H]+ 377.37 m/z, Rt 28.0 min, 1.89 mg (X8); 

[M+H]+ 1061.60 m/z, Rt 38.5 min, 1.67 mg (X9); [M+H]+ 1054.11 m/z, Rt 39.0 min, 1.18 

mg (X10)). Full 2D NMR was obtained on X3 (Appendix Figures B.17-21). 

3.4.4. Isolated Candidates ResistoMAP 

ResistoMAP design and analyses were performed according to the procedure 

outlined by Liu et al.47 Screening included the full panel of drug-resistant E. coli while 

commercial standards were excluded from this assay. Isolated candidates; 2, 4, X3, X6, 

X8, and X9 were diluted four-fold from 30 μg/mL. All processing and normalization were 

completed as explained in Section 2.4.1. 

Minimum Inhibitory Concentration (MIC) 

For each compound and drug-resistant strain combination, the minimum 

inhibitory concentration (MIC) was determined as the lowest concentration of the 

compound to inhibit less than 10% growth. 
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Chapter 4.  
 
Conclusion and Outlook 

To address the need for new techniques that expand the research field of natural 

product (NP) discovery a new method for the identification of NP targets that will be 

effective against resistant pathogens was developed. Using ResistoMAP, a profiling 

platform that uses a panel of drug-resistant E. coli and a positive control library of 

commercially available antimicrobial standards, the phenotypic profiles of 384 NP 

prefractions were dereplicated with those of the standards. To prioritize the extracts 

further analysis of mass spectrometry (MS) of all prefractions and standards was 

performed. The activity and MS data were then inputted into NP Analyst, an online 

metabolomics software designed to identify bioactive metabolites within complex NP 

mixtures, for further dereplication and prioritization of candidates for investigation.  

The combined efforts of these platforms allowed the selection of 18 NP 

prefractions for full experimentation. Each prefraction was separated into a peak library 

of 10 subfractions to further isolate the bioactive component observed in the 

ResistoMAP profile. Screening of the subfractions determined the location of the active 

components that were selected to obtain MS data. These data were then used to 

produce a secondary NP Analyst network that allowed differentiation between 

prefractions and led to the selection of 3 candidates for isolation and identification: 

392.27 (2) and 394.30 (4) m/z from RLUS-2085E and 552.40 m/z (X3) from RLUS-

2204D. 

Comparison of the metabolomics data with the Natural Product Atlas database, 

guided the characterization of these candidates. Combined efforts of a full 2D NMR 

dataset and comparison with literature led to the identification of compound 2 as 

streptorubin B and compound 4 as undecylprodigiosin. Both compounds are known to 

display antibacterial activity. Screening of pure candidates demonstrated strong activity 

against the drug-resistant E. coli panel of ResistoMAP. The final candidate, X3 planar 

structure has been predicted to be that of a macrolide antibiotic using 2D NMR 

comparison. Final screening demonstrated activity against ceftazidime-resistant E. coli.  
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In conclusion, the use of ResistoMAP and NP Analyst led to the successful 

identification of three compounds that are effective against drug-resistant pathogens. 

The techniques demonstrated by this project enable a selection process that avoids the 

rediscovery of known chemistry within a control library of antimicrobial standards while 

identifying active compounds that can combat the AMR crisis. 
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Appendix A. 
 
Supplemental Figures and Tables 

Table A.1. MS features of interest in communities consisting of only NP 
prefractions. Bolded prefractions include those selected for further 
investigation of these highlighted MS features. 

Community MS Feature 
Retention Time 

(Rt) 
Activity 
Score 

Cluster 
Score 

Prefractions 

7 

543.3633 4.9543 26.35 0.78 
RLUS-2028D 

RLUS-2067E 

913.6287 3.3085 4.39 0.32 
RLUS-1885D&E 

400.2739 3.307 4.39 0.32 

282.1838 4.0282 27.08 0.48 
RLUS-2028D 

RLUS-2078D 

432.3089 3.7923 5.32 0.54 

RLUS-1852D 

RLUS-2024D 

RLUS-2064D 

10 

411.1057 2.412 8.98 0.97 RLUS-1758B&C 

430.1208 2.2722 7.19 0.37 
RLUS-1758B&C 

RLUS-1885B 

430.1212 2.4126 6.52 0.32 

RLUS-1758B&C 

RLUS-1885B, 
C&D 

445.1131 2.089 6.44 0.30 
RLUS-1758C 

RLUS-1885B&C 

659.8565 1.8996 3.06 0.31 

RLUS-1628B 

RLUS-1734B 

RLUS-1806B 

RLUS-1837B 

RLUS-2058B 

RLUS-2173B 

682.2828 4.2817 21.28 0.72 
RLUS-1505C 

RLUS-1530C 

622.2613 3.8606 7.33 0.47 
RLUS-1505C 

RLUS-1819B&D 

13 
467.2759 4.1273 2.4 0.57 

RLUS-2064C&D 
426.1954 2.3904 2.4 0.57 

24 945.4529 2.3911 14.02 0.33 

RLUS-1498E 

RLUS-1520E 

RLUS-1545D&E 

RLUS-1568E 

RLUS-1597D&E 
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RLUS-1608E 

27 

424.2579 5.138 8.13 0.82 
RLUS-2052E 

RLUS-2085E 

248.2012 2.993 6.97 0.87 

RLUS-2024E 

RLUS-2035E 

RLUS-2052E 

RLUS-2085E 

447.2239 4.8755 7.68 0.86 

RLUS-2024E 

RLUS-2035F 

RLUS-2052E 

28 

639.3849 3.7372 4.0 0.97 
RLUS-1806D 

RLUS-1806E 

509.2976 4,289 4.0 0.97 
RLUS-1806D 

RLUS-1806E 

495.281 3.887 4.0 0.97 
RLUS-1806D 

RLUS-1806E 

30 
402.2602 5.0917 16.14 0.61 RLUS-1703E 

RLUS-1726D 398.4397 5.3528 16.14 0.61 

31 

931.1907 3.6968 21.48 0.99 
RLUS-1623C 

RLUS-1623D 

353.1005 3.573 16.15 0.71 

RLUS-1623C 

RLUS-1623D 

RLUS-1623E 

33 552.3862 3.1925 5.85 0.7 
RLUS-1459D 

RLUS-1459E 

35 745.4002 2.9828 4.31 0.7 
RLUS-1595C 

RLUS-1595D 

 

Table A.2.  ResistoMAP Profiling target panel consisting of 29 drug-resistant E. 
coli strains. 

Strain Gene Mutation Protein 
Selection 
Antibiotic 

Drug 
Mechanism 

S83L 

gyrA 

S83L 

DNA gyrase subunit 
A 

Ciprofloxacin 
DNA gyrase 

Cip1 S83A 

Cip3 D87Y 

Cip5 D87G 

Cip2KB 

gyrB 

L509G 
DNA gyrase subunit 

B 
Cip15KB S464Y 

NA3 D426N Nalidixic Acid 

Cip8 
marR 

R77H Multiple antibiotic 
resistance protein 

Ciprofloxacin 
Multidrug 
resistance 

Tet8 H120fs Tetracycline 

Cm2 acrR E118* Chloramphenicol 
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Cm3 A151fs 
HTH-type 

transcriptional 
regulator AcrR 

Rif1 

rpoB 

I572L DNA-directed RNA 
polymerase subunit 

beta 
Rifampicin 

RNA 
polymerase 

Rif7 I572S 

Rif11 D516N 

Cef1 
evnZ 

T402M Sensor histidine 
kinase EnvZ 

Ceftazidime 
Cell wall 
synthesis 

Cef8 P248S 

Cef6 rfaH W4* 
Transcription 

antitermination 
protein RfaH 

Cef7 rfaG E289fs 
Lipopolysaccharide 
core biosynthesis 

protein RfaG 

Gn12 cyoA I127fs Cytochrome bo(3) 
ubiquinol oxidase 

subunit 2 

Gentamicin 

Protein 
synthesis 

Kn14  W82* 

Kanamycin 
Kn6 ubiB Y176* 

Probable protein 
kinase UbiB 

Gn14 
ubiF 

D342H 3-
demethoxyubiquinol 

3-hydroxylase 

Gentamicin 

Kn15 Q120* Kanamycin 

Str1 

rpsL 

K43R 
30S ribosomal 

protein S12 
Streptomycin Str3 K43N 

Str4 P91Q 

RK2 N/A N/A N/A Kanamycin Plasmidborne 
multidrug 
resistance 

AC29-1 N/A N/A N/A 
Ampicillin 

AC30-1 N/A N/A N/A 
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Appendix B. 
 
Supplemental Mass Spectrometry and NMR Spectra 

 

Figure B.1. UV Absorption of 2 used as the guide for isolation. 
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Figure B.2. 1H-NMR spectrum of streptorubin B (2) at 600 MHz in CDCl3-d. 
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Figure B.3. 13C-NMR spectrum of 2 at 600 MHz in CDCl3-d. 
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Figure B.4. gCOSY spectrum of 2 at 600 MHz in CDCl3-d 

  
 3

 2
 1

0
1

2
3

 
5

 
7

8
9

1
0

1
1

1
2

1
3

1
 

1
5

 
 (p

p
m
)

   3 2 10123 5 7891
0

1
1

1
2

1
3

1
 

1
5

  (ppm)



80 

 

 Figure B.5. gHSQC spectrum of 2 at 600 MHz in CDCl3-d. 
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Figure B.6. gHMBC spectrum of 2 at 600 MHz in CDCl3-d 
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Figure B.7. 15N-HSQC spectrum of 2 at 600 MHz in CDCl3-d 
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Figure B.8. 15N-HMBC spectrum of 2 at 600 MHz in CDCl3-d. 
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Figure B.9.  UV Absorption of 4 used as the guide for isolation. 
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Figure B.10. 1H-NMR spectrum of undecylprodigiosin (4) at 600 MHz in CDCl3-d. 
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Figure B.11. 13C-NMR spectrum of 4 at 600 MHz in CDCl3-d. 
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Figure B.12. gCOSY spectrum of 4 at 600 MHz in CDCl3-d. 
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Figure B.13. gHSQC spectrum of 4 at 600 MHz in CDCl3-d. 

  
 3

 2
 1

0
1

2
3

 
5

 
7

8
9

1
0

1
1

1
2

1
3

1
 

1
5

 
 (p

p
m
)

01
0

2
0

3
0

 
0

5
0

 
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
 
0

1
5
0

1
 
0

1
7
0

1
8
0

  (ppm)



89 

 

Figure B.14. gHMBC spectrum of 4 at 600 MHz in CDCl3-d. 
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Figure B.15. 15N-HSQC spectrum of 4 at 600 MHz in CDCl3-d. 
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Figure B.16. 15N-HMBC spectrum of 4 at 600 MHz in CDCl3-d. 
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Figure B.17 1H-NMR spectrum of RLUS-2204D 552.40 m/z (X3) at 600 MHz in 
MeOD. 
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Figure B.18. 13C-NMR spectrum of X3 at 600 MHz in MeOD. 
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Figure B.19. gCOSY spectrum of X3 at 600 MHz in MeOD.  

 

0
1

2
3

 
5

 
7

8
9

 
 (p

p
m
)

0123 5 78

  (ppm)



95 

 

Figure B.20. gHSQC spectrum of X3 at 600 MHz in MeOD. 
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Figure B.21. gHMBC spectrum of X3 at 600 MHz in MeOD. 
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