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Abstract

Space-filling properties are favored in designs of computer experiments. Strong orthogonal
arrays of strength 24 are a class of space-filling designs that guarantee 4 x 2 and 2 x 4
two-dimensional space-filling properties. However, the patterns of the two-dimensional pro-
jections can be very different with some being notably better than the others. In a strong
orthogonal array of strength 2+, we would like to have more of better patterns among the
two factor projections. The objective of this study is to identify strong orthogonal arrays of
strength 2+ with better two-dimensional projection properties, utilizing two selection crite-
ria. We use second order saturated designs to construct strong orthogonal arrays of strength
2+ and evaluate all available second order saturated designs to find good designs with 16
runs. Designs are identified for the number of factors, m = 6,7,8,9, and 10, according to
both selection criteria. The study is extended to 32 runs, using 3 out of 12 second order
saturated designs to identify designs with better two-dimensional projection properties for

m = 10 to 21 under both selection criteria.

Keywords: Space-filling designs; Strong orthogonal arrays; Two-dimensional projection

properties; Selection criteria; Second order saturated designs
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Chapter 1

Introduction

Design of experiments is a branch of applied statistics focusing on collecting and analyzing
data to assess how a set of factors influences a variable of interest, known as the response
variable. Factorial designs are a commonly used type of designs. We can study multiple
factors, each with specified levels, using a factorial design. Factors in such experiments
produce main effects, which quantify their average impact on the response variable across
other factors. Additionally, interaction effects occur when a factor’s influence on the response
variable is affected by other factors under investigation. For a factorial experiment with m
factors of 2 levels, denoted by 41, there are a total of 27" — 1 effects. For example, if a design
involves 4 factors, we require at least 16 experimental runs to explore all possible treatment
combinations (2 x 2 x 2 x 2 = 16). This allows us to study all 15 effects (2* — 1 = 15) arising

from these factors.

As the number of factors increases, the number of experimental runs required of a full
factorial design grows exponentially, making it impractical in many real-world scenarios.
To address this challenge, fractional factorial designs were introduced. These designs use a

fraction of the runs required by a full factorial to study a large number of factors effectively.

With the rapid increase in computer processing power, computer experiments are in-
creasingly replacing conventional physical experiments. For instance, computer experiments
are often preferred when the physical system is expensive, the system is difficult to operate,

there are safety concerns, or the computer model enables faster exploration.

The response of a computer experiment is often deterministic [7], meaning that it will
consistently produce the same output given the same initial input conditions. Consequently,
the model we fit to the data from a computer experiment must account for the minimal to
nonexistent noise in the response. The absence of random error in computer experiments

allows for the exploration of a much larger experimental region than in classical designs.



While changing factors can be challenging in physical experiments, computer experiments

easily accommodate factors with a large number of levels.

In classical experimental designs, the three main principles, namely randomization, repli-
cation, and blocking are crucial when choosing a design. However, these principles are ir-
relevant for deterministic models because the response will always be identical for the same

factor combination. To effectively use computer experiments, we need space-filling designs.

Space-filling designs are preferred in computer experiments because they ensure that the
design points are evenly distributed across the entire design region. Because of their evenly
spread-out points, space-filling designs have the potential to capture diverse response behav-
iors across various regions within the design space. Moreover, in high-dimensional spaces,
space-filling designs are particularly valuable because they efficiently distribute points across

multiple dimensions without requiring an impractical number of experimental runs.

Strong orthogonal arrays of strength 2+ offer appealing space-filling properties across
pairs of factors. In this study, our primary objective is to identify strong orthogonal arrays

of strength 2+ that exhibit better two-dimensional projection properties.

In Chapter 2, we briefly introduce fractional factorial designs and orthogonal arrays.
Moving to Chapter 3, our focus shifts to strong orthogonal arrays of strength 2+ and
their construction, where we explore various patterns observed in two-factor projections
within these designs. We then outline the objectives of our study. Chapter 4 delves into the
algorithmic implementations undertaken to achieve these objectives, presenting detailed
results and emphasizing key findings. Finally, we conclude with a summary of our research

and some remarks about possible future work.



Chapter 2

Fractional factorial designs and
orthogonal arrays

Consider a design with five factors, each having two levels. To estimate all the effects using

a full factorial design, 32 runs are required. Following are the effects which can be studied

using this design:

Effect Type Number of Effects
Average effect 1
Main effect 5
Two factors 10
Three factors 10
Interactions
Four factors 5
Five factors 1

Table 2.1: Effects studied in a five-factor full factorial design.

In practical applications, when a large number of factors are studied in an experiment,
higher order interactions are usually insignificant [2]. Experimenters typically focus on esti-
mating main effects and some two-factor interactions. Hence, higher order interactions are
often not of primary interest, making it unnecessary to conduct all 32 runs to estimate all

the effects in Table 2.1. This is where fractional factorial designs become useful.



2.1 Regular fractional factorial designs

An experimental design with a fraction of 2™ runs in a factorial experiment is considered
a fractional factorial design. These designs are beneficial for studying the effects of a large
number of factors on a response variable with a relatively small number of experimental
runs. A regular fractional factorial design, denoted as a 2P design, is a (%)p fraction of
a 2™ design, which uses only 2"7P runs. For example, instead of using 32 runs to study
five factors, we can employ a 2* full factorial design to study 4 factors and the fifth factor
can be studied by confounding it with a higher order interaction. This approach is known
as a half-fractional factorial design of a five-factor two-level experiment, denoted as a 2°~!

design. By using this design, we only need 16 runs instead of 32 to study all five factors.

Let us examine two more examples where we can effectively study 4 factors and 7 factors

using just 8 experimental runs. Note that, we use £ instead of 1 for convenience.

a b c d = abc
+ + + +
+ + - -
+ — + —
+ — — +
_ + + _
— + — +
— — + +

Table 2.2: A 241 fractional factorial design

A factorial design with 23 = 8 runs is employed to study three factors. If one wants to
study 4 factors using 23 factorial design, the abc interaction can be used to accommodate the
factor d. In this design, the main effect of d cannot be distinguished from the abc interaction
because the effects d and abc are “confounded”. They cannot be separately estimated and

abce is called the “alias” of d.

In general, regular fractional factorial designs are constructed using generators. The
fractional factorial design in Table 2.2 is a 2*~! design and it is obtained from the following

generator



d = abe. (2.1)

If you multiply the signs of the elements in any column by the signs of those same
elements, the result will be a column of ones which is denoted by I, known as identity.
Hence, we can say that a x a =1, b x b =1, ¢ x ¢ = I. By multiplying both sides of the

generator in equation (2.1) by d, we obtain that

dx d=d* = abed.

This will give the defining relation of the design

I = abcd,

which contains a four letter word abcd.

a b c d=ab e =ac f=bc g=abc
+ + + + + + +
+ + — + — - —
+ - + - + - -
+ — — — — + +
— + + — — + —
- + - - + - +
- - + + — — +
— — — + + + —

Table 2.3: A 27 fractional factorial design

The design in Table 2.3 can be utilized to study 7 factors and it is a 27~* fractional
factorial design. In this design, we use d=ab, e = ac, f = bc, ¢ = abc as generators. The

defining relation for this design starts with

I = abd = ace = bef = abeg. (2.2)

In order to complete the defining relation we must add all words which can be created
by multiplying the four generators in equation (2.2) in all possible ways. For example,

abd x ace = a’bede = Ibcde = bede. The complete defining relation is given by



I = abd = ace = bef = abcg = bede = acdf = cdg = abef
= beg = afg = def = adeg = bdfg = cefg = abcdefy.

In regular fractional factorial designs, the effects are either orthogonal or fully con-
founded, making it impossible to estimate all effects simultaneously, unlike in full factorial

designs.

2.2 Orthogonal arrays

Orthogonal arrays (OAs) are a class of fractional factorial designs. A formal definition for

OAs with two levels in each factor is, given in, [6] as follows:

Definition 1. A factorial design with n runs for m factors, each at two levels, is an
orthogonal array of strength t if any submatriz with t columns contains all 2t level combi-
nations with equal frequency. This type of array is denoted by OA(n,m,2,t). For a design
to be an OA(n,m,2,t), n must be a multiple of 2¢, meaning that n = \2¢ for some positive

integer .

Let us look at a simple example of an OA:

- -+

In this OA, each column represents a factor, and each row represents an experimental
run. The two levels are assigned to each factor in a way that every possible combination of
levels for any 2 columns (factors) appears equally often. For example, looking at columns 1
and 2, we see that the combinations (+,+), (+,—), (—,+), and (—, —) each appear once.
This is a strength 2 OA, and we use OA(4, 3, 2, 2) to denote this array.

An OA with 8 runs and 4 factors is given below. In this array, each 3-tuple appears with
the same frequency in the rows, and the run size n is a multiple of 23 = 8. Thus, the design

has strength three and is denoted by OA(8, 4,2, 3). If a column is removed, the remaining

6



design retains its status as an orthogonal array of strength three.

+ 4+ + +
+ + - -
+ - + -
+ - - +
T
-+ - 4+
- -+ 4+

Definition 1 implies that, if a design is an OA of strength ¢, it must also qualify as an
OA of any strength ¢’ < t. For example, the above array is not only a strength 3 OA but

also has strength 2. In every two columns, each combination of pair of levels appears twice.

The array given below is an orthogonal array with mixed levels, where factors can have
different numbers of levels. In this array, the first factor has 4 levels denoted by 0, 1,2 and

3, while the remaining two factors have two levels each, denoted by 0 and 1.

_ o = O = O = O
O = O = = O = O

W W N N = = O O

In the orthogonal array given above, all possible combinations of levels in any two
columns appear with the same frequency. For instance, each combination of levels in the
second and third factors occurs twice, while the combinations in the first and second factors
appear once. Therefore, this is a mixed-level orthogonal array of strength 2, which we denote
by OA(8,3,4 x 2 x 2,2).



Chapter 3

Finding better strong orthogonal
arrays of strength 2+

3.1 Strong orthogonal arrays

Before delving into a formal definition of strong orthogonal arrays (SOAs), let’s consider
the example below to gather insights so as to better understand the concepts behind SOAs.

Consider the following array:

N R b= = 0t & W O Tt oy WO N~ &=

N O~ O kW O Tt N O~ Wk O3
N = D O OO0 O Ut WwWw woul g+~ +— 3

W H P WO NNOPKROSOS & ot ot 3
N U OO WO O N WO ot
N R RN OO WO O WO Ot e
S O Ut W Ut W oY © = N = DN k= =

The array has 16 runs and 7 factors, each having 8 levels denoted by {0, 1, 2, 3, 4, 5, 6,

7}. Tt possesses the following interesting properties:

1. If the above array with 8 levels is collapsed into an array with 2 levels using the

mapping:



[a] 0, ifa=0,1,2,3,

4 1, ifa=4,56,7,

where [z] denotes the largest integer not exceeding x, the resulting array becomes an
orthogonal array with 2 levels and strength 3, which is an OA(16, 7, 2, 3).

2. If you consider any subarray of two columns and collapse one factor into 2 levels using
[a/4], and the other factor into 4 levels using [a/2], the array becomes an orthogonal
array with strength 2. This is an OA(16, 2, 2 x 4, 2) or an OA(16, 2, 4x 2, 2).

3. Any subarray with one column is an OA(16, 1, 8, 1).

Definition 2. An n x m matriz with entries from {0, 1, ..., s* — 1} is called an SOA
of n runs, m factors, st levels, and strength t if any subarray of g columns for any g with
1 < g <t can be collapsed into an OA(n,g,s"t x --- x s%_ g) for any positive integers
Uty ..., Ug with uy + -+ +uy = t. Here, collapsing s* levels into s%i levels is done according
to la/s'™%] for a = 0,1,...,s" — 1. We use SOA(n,m,s',t) to denote such an array. As
an SOA(n,m, st t) can be collapsed into an OA(n,m,s,t), it must have n = \st for some
integer A([5]).

According to Definition 2, the array described above is an SOA(16,7,8, 3).

Definition 2 implies that an SOA (n, m, s, 2), a strong orthogonal array of strength 2 with
52 levels in each factor, collapses into an OA(n,m, s,2) when the s? levels are transformed
into s levels using the [a/s] transformation. For instance, applying this to an SOA of strength
2 with 4 levels in each factor, SOA(n, m,4,2) collapses into an OA(n,m,2,2). Therefore,
in any two-dimensions, an SOA(n,m, s2, 2) achieves a stratification on an s x s grid just as
an OA(n,m, s,2) does. This implies that an SOA(n,m, s?,2) fills space to the same extent

as an OA(n,m, s,2) does in two-dimensions, but not better.

SOAs with strength ¢ > 3 exhibit better space-filling characteristics compared to compa-
rable OAs. For instance, as we discussed earlier in the example, an SOA (n, m, 23, 3) achieves
stratifications on 22 x 2 and 2 x 22 grids in two-dimensions and 2 x 2 x 2 grids in three-
dimensions. On the other hand, while an OA(n,m, 2, 3) achieves stratifications on 2 x 2 x 2
grids in three-dimensions, it only ensures stratifications on 2 x 2 grids in two-dimensions.
The better space-filling properties in two-dimensions provided by an SOA(n,m, s3,3) is

evident.



While the space-filling properties of SOAs with strength 3 are highly attractive, it’s
worth noting that these designs can become quite costly due to the substantial run sizes
needed for various scenarios. In order to address this issue, a novel class of arrays, SOAs of
strength 2+ has been introduced in [4]. To put it briefly, SOAs of strength 24 are SOAs of
strength 2 that possess two-dimensional space-filling properties found in SOAs of strength 3.

Let us understand the stratification properties of OAs, SOAs of strength 2, and SOAs

of strength 24 that were discussed earlier, using the following three examples.

el e e Y an an)
OO OO

WWNON OO
WNH—ROWN—O
WWNON OO
WHNOWHNO

An OA(8, 2, 2, 2) An SOA(8, 2, 4, 2) An SOA(8, 2, 4, 2+)
- [ J [ J
° [ ] [ ]

(a) OA(S, 2, 2, 2) (b) SOA(8, 2, 4, 2) (c) SOA(S, 2, 4, 2+)

Figure 3.1: Stratification properties of OAs, SOAs of strength 2 and SOAs of strength 2+

Each of the arrays given above has 2 factors, with all having 4 levels per factor except
for the OA. Both the OA(8, 2, 2, 2) and the SOA(S8, 2, 4, 2) achieve stratification on a
2 x 2 grid as shown in Figures 3.1(a) and 3.1(b). Notably, the SOA(8, 2, 4, 2+) achieves a
stratification on a 2 x 4 grid as shown in Figure 3.1(c). It also achieves a stratification on
a 4 x 2 grid. Note that in Figure 3.1(a), the points are relatively bigger compared to the
other two figures. This is done to indicate that there are two points on each plotted point,

demonstrating that there are 8 runs.
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Definition 3. An SOA of strength 2+ with n runs and m factors of s* levels is an
n x m matriz with entries from {0,1,..,5% — 1} , if any subarray of two columns can be
collapsed into an OA(n,2,s> x s,2) and an OA(n,2,s x s2,2). We denote this array by
SOA (n,m,s?, 2+).

According to Definition 3, an SOA(n, m, s, 2+) surpasses an SOA(n, m, s, 2) by offering
better two-dimensional space-filling properties. While an SOA(n,m, s2,2) only guarantees
stratifications on s x s grids in two-dimensions, an SOA (n, m, s2, 2+) achieves stratifications
on both s x s and s x s? grids in two-dimensions. Let us look at an SOA of strength 2+

with 16 runs.

2222220000
220200122 2
2020212122
20000333¢00
0221122212
02013¢03¢030F90
00231103320
0003331112
11122 2 2 2 21
11320032060 3
13102103203
1330031121
3111122003 3
3131301211
3 313112111
3333333333

In this design, any two columns can be collapsed into an OA(16, 2, 2 x 4, 2) and an
OA(16, 2, 4 x 2, 2). Although the SOA of strength 3 introduced earlier in this section
shares the same two-dimensional space-filling property, it is limited to studying 7 factors
with 16 runs. In contrast, the SOA of strength 2+ provided in this example can study up
to 10 factors. Hence, SOAs of strength 2+ offer economic advantages over SOAs of strength
3. As per [4], Table 3.1 summarizes the maximum number of factors that can be studied in
SOAs of strength 3 and 2+.

11



n Strength 3 Strength 24

16 7 10
32 15 22
64 31 50
128 63 >106
256 127 >226

Table 3.1: Maximum number of factors studied in SOAs of strength 3 and 24, where n is
the number of runs.

3.2 Construction of strong orthogonal arrays of strength 2+

This section describes the construction of SOAs of strength 2+ using regular 2™~ fractional
factorial designs. Specifically, we construct an SOA (2%, m, 4, 2+), by utilizing designs A and

B based on the relationship detailed in the following Lemma, which is Proposition 1 in [4].

Lemma 1. An SOA(n,m,s?,2+), say D, exists if and only if there exist two arrays A
and B where A = (a1, ...,an,) is an OA(n,m,s,2) and B = (by,...,by) is an OA(n,m,s,1)
such that (aj,ar,by) is an OA of strength 8 for any j # k. The three arrays are linked
through D = sA + B.

According to Lemma 1, to construct an SOA of strength 2+ with 4 levels in each
factor, denoted as SOA(n,m,4,2+), the designs A and B should be orthogonal arrays with
strengths 2 and 1, respectively. It is important to notice that, this approach constructs
SOAs of strength 2+ with 4 levels using OAs with 2 levels in each factor. Furthermore,
when selecting any two columns from A and one column from B, where the selected column
from B corresponds to either the first or the second column in A, the design created by
these three columns should form an OA with strength 3. This requirement ensures that
the three columns are independent. The relationship between the three arrays is given by
D=2A+B.

Since the levels in SOAs are denoted as {0, 1,2,...,s'—1}, the levels in the corresponding
orthogonal arrays should also be represented using 0 and 1. Regular designs with two levels
are often studied using two levels denoted as —1 and +1. If A and B have levels £1, they
can be equivalently represented using levels 0 and 1, respectively, by transforming matrices
via (A+1)/2 and (B + 1)/2, where for instance, (A + 1) denotes the resulting matrix after

12



adding 1 to every element of A. Therefore, when constructing D from A and B with levels
+1, we will adjust the relationship D = 24 + B as follows:

p_o@t (Bt
2 2
B 3
=A+5+3 (3.1)

Now that we understand how to create an SOA of strength 2+ given designs A and
B, our focus should shift to the method for constructing A and B. Columns of A and B
are selected from a saturated regular design. A saturated design, S, with n = 2* runs and
m = n — 1 factors is obtained by first constructing a full factorial design with k factors, and
then incorporating every possible interaction column. For instance, the design in Table 2.3
is a saturated design derived from a full factorial design involving 3 factors, resulting in
n = 23 = 8 experimental runs. The saturated design includes m =n—-1=8 -1 =7
factors in total. In other words, it is termed as a saturated design because it cannot be an
orthogonal array if any additional factor is introduced. However, if any factor is removed,

it remains as an orthogonal array.

Let C be a subset of m columns in S. The set of columns that are not included in C
forms the complementary design, and is denoted by C' = S\C. In [1], second-order saturated
(SOS) designs were introduced to describe designs in which all degrees of freedom can be
utilized to estimate either main effects or two-factor interaction terms. Here, a design C' is
an SOS design if any d € C' can be expressed as d = ab for some a,b € C. According to [4],
an SOA (2%, m, 4,2+) can be constructed using an SOS design, C, and below are the steps:

1. Take A = C. Write A = (ay, ..., am).

2. Since C is an SOS design, we must have a; = b]-b; for some bj,b;- € C. Take
B = (biy....bm).

3. Obtain D, an SOA(2% m, 4,2+), using equation (3.1).

We will now examine an example to demonstrate how these three steps can be used
to construct D. Consider the SOS design, C' = {a, b, ¢, d, abed}, for 16 runs. The saturated

design S of 16 runs has m = 2* — 1 = 15 columns and can be written as

S ={a,b,c,d,ab,ac,ad, bc,bd, cd, abe, abd, acd, bed, abed} .

13



Then, the complementary design of C' has 10 factors and is given by
C = {ab, ac,ad, b, bd, cd, abe, abd, acd, bed}.

According to step 1, the above design C will allow us to construct an SOA(16, 10, 4, 2+),
an SOA of strength 2+ with 10 factors. However, if we aim to construct an SOA(16, 8,4, 2+),
an SOA of strength 2+ with 8 factors, we need to remove two factors from C' to create a
design A with 8 factors. There are (120) = 45 ways of doing this. Thus, there are 45 different

options for selecting an A with 8 factors. If we opt for

A = {ab,ac, ad, be, cd, abd, acd, bed},

our C will be updated as
C ={a,b,c,d,bd,abc,abed}.

According to Step 2, each term in A can be expressed as a product of two terms in C.
There may exist multiple pairs of factors within C' that produce each term in A. All possible

pairs for the above design A are listed in Table 3.2.

Term No.in A Term Pairs of factors
1 ab (a, b), (c, abc)
2 ac (a, ¢), (b, abc), (bd, abed)
3 ad (a, d)
4 be (b, ¢), (a, abc)
5 cd (c, d)
6 abd (a, bd), (c, abed)
7 acd (bd, abc), (b, abed )
8 bed (¢, bd), (a, abed)

Table 3.2: Pairs of factors selected from design C to construct design B

Any factor that appears in a product can be used to construct B. There are
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4Xx6XxXx2x4x2x4x4x4=24,576

choices for B and one of them is given by

B = {a,a,a,b, c,abed, abed, abed} .

Finally, by substituting the designs A and B obtained above into equation (3.1), we can
construct an SOA(16, 8, 4, 24). The resulting design D is presented in Table 3.3.

factor 1 factor 2 factor 3 factor 4 factor 5 factor 6 factor 7 factor 8

3 3 3 3 3 3 3 3
3 3 1 3 1 0 0 0
3 1 3 1 0 2 0 0
3 1 1 1 2 1 3 3
1 3 3 0 3 0 2 0
1 3 1 0 1 3 1 3
1 1 3 2 0 1 1 3
1 1 1 2 2 2 2 0
0 0 0 3 3 0 0 2
0 0 2 3 1 3 3 1
0 2 0 1 0 1 3 1
0 2 2 1 2 2 0 2
2 0 0 0 3 3 1 1
2 0 2 0 1 0 2 2
2 2 0 2 0 2 2 2
2 2 2 2 2 1 1 1

Table 3.3: An SOA(16, 8, 4, 2+)
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3.3 Two-factor projection patterns of strong orthogonal ar-
rays of strength 2+

Strong orthogonal arrays of strength 2+ are a class of designs that guarantee stratifications
on 4 x 2 and 2 x 4 grids in two-dimensional projections. However, the space-filling patterns
among the projections can differ. For instance, if we examine the two-factor projections of
factors 1 & 5,1 & 2,1 & 4, and 1 & 7 in D given in Table 3.3, we will observe four different
patterns, as shown in Figures 3.2(a), 3.2(b), 3.2(c), and 3.2(d).

o . . . . o ® ®
~ . . . . o PY PY
- . . . . - ® ®
o . . . . o PY PY
0 1 2 3 0 1 2 3
(a) Pattern 1 (b) Pattern 2
@ ® ® ° ® ®
o ® ® o ® ®
- ® ® - ® ®
° ] ® ° [ J ®
0 ! 2 3 0 1 2 3
(c) Pattern 3 (d) Pattern 4

Figure 3.2: Different patterns of two-factor projections in SOAs of strength 2+

Note that in Figures 3.2(b), 3.2(c), and 3.2(d), the points are relatively bigger compared
to the points in Figure 3.2(a). This is done to indicate that there are two replicates coinciding

at each plotted point, demonstrating that there are 16 runs in each pattern.
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The reason for the difference in the patterns of two-factor projections is due to the
different combinations of factors in designs A and B that were used to create D. Let us
explore this further using a few examples. Tables 3.4 and 3.5 below show the columns in

designs A and B used in the example discussed in Section 3.2.

Al Ay A3 Ay As Ag  A;  Ag
ab ac ad bec ed abd acd bed

Table 3.4: Columns in design A

By By B3 By Bs Bg By Bsg
a a a b ¢ abed abed abed

Table 3.5: Columns in design B

First, we look at Figure 3.2(a), which represents the pattern corresponding to the two-
dimensional projection of factors 1 and 5 in D. Let us investigate the four columns corre-

sponding to these factors in A and B.

Al A5 Bl BS

ab cd a c

The four columns ab, cd, a, and ¢ are independent, as there is no relation among them.
Therefore, the pattern corresponding to two-dimensional projection of the two factors in
the design D forms a 4 x 4 space-filling design as shown in Figure 3.2(a). This pattern is

analogous to what we observe in an orthogonal array with 4 levels.

Similarly, we will examine the columns in designs A and B corresponding to the factors
1 & 2 in design D. It can be observed that among the four columns A; and Ay in Table 3.4
and B; and Bs in Table 3.5, there exists a word of length two, By X By = a x a = I. This

results in a distinct pattern as shown in Figure 3.2(b).

In addition, the distinct patterns 3 and 4 in Figures 3.2(c) and 3.2(d) respectively,
correspond to the two-dimensional projections of factors 1 & 4 and 1 & 7. The differences
in these patterns arise because the corresponding columns in A and B form words of length
3 and 4, respectively, among them. Specifically, A1 x By X By = ab x a x b = [ and

A1 X A7 x By X By = ab X acd X a x abed = I, respectively, explain these distinct patterns.
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In summary, there are four distinct space-filling patterns in the two-factor projections in
SOAs of strength 24. Pattern 1 exhibits a 4 x 4 space-filling property, while the other three
patterns exhibit 4 x2 and 2 x4 space-filling properties. The reason for these different patterns
is that the corresponding columns in A and B form words of varying lengths. Specifically,
Patterns 1, 2, 3, and 4 correspond to all columns being independent, and having words of

length 2, 3, and 4, respectively.

3.4 Objective of the study and selection criteria

As discussed in Chapter 1, space-filling properties are favored in designs of computer exper-
iments. Figures 3.2(a), 3.2(b), 3.2(c) and 3.2(d) display various patterns, with some being
notably better than the others. So, in an SOA of strength 2+, we would like to have more of
better patterns among the two-factor projections. Pattern 1 is the best because it exhibits
4 x 4 space-filling properties and the points are well spread out in the grid. This makes

Pattern 1 the most desirable.

After Pattern 1, Pattern 2 is the next most desirable among the two-factor projections
because it does not have large empty regions. The points in Pattern 2 are spread out across
the grid more evenly, not as well as in Pattern 1, but significantly better than those in
Patterns 3 and 4.

In both Patterns 3 and 4, there are relatively large empty regions (see the shaded
regions). However, Pattern 4 has four large empty regions along the edges of the grid,
whereas Pattern 3 has only two large empty regions. Therefore, Pattern 3 is preferred over

Pattern 4 for two-factor projections due to its more favorable point distribution.

With the above consideration in mind, if we let f1, fo, f3, and f4 denote the frequencies
of Patterns 1, 2, 3, and 4, respectively, we would like to have most occurrences of Pattern
1, followed by Pattern 2, Pattern 3, and Pattern 4 among the two-factor projections for an
SOA of strength 2+. In this study our objective is to find good strong orthogonal arrays of
strength 2+ with better two-dimensional projection properties, and to do this we employ

two selection criteria.

Criterion 1: Sequentially maximize (f1, fa, f3, f1)-

Criterion 2: Sequentially minimize (fy, f3, fo, f1)-

We use Criterion 1 to illustrate. It involves selecting designs by sequentially maximizing
f1, fa, fs, and fy. We first select the designs with the highest f; values, from which we
select the designs with the highest fo values. We then continue this process for f3 and fy.
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Chapter 4

Algorithmic implementation and
results

This chapter first explains the algorithmic approach used to find the best SOAs of strength
2+ for 16 runs and then extends the approach to 32 runs.

4.1 Designs of 16 runs

The construction of SOAs of strength 24 is based on SOS designs, as detailed in Section
3.2. (See page 13 for a definition of SOS designs). Thus, we should consider all possible SOS
designs to identify the best designs. According to [3], there are four minimal SOS designs
for 16 runs. A minimal SOS design is one that cannot be reduced to an SOS design by
removing any factors. For instance, C' = {a, b, ¢, d, abcd} is an SOS design. If we remove any
factor from C, it will no longer be an SOS design. For example, if we remove factor a from
C, a will move to C, the complementary design of C. There is no product of pair of factors
in C that can produce a in C. Hence, C' is a minimal SOS design. However, if you add any
factor to an SOS design, it will be an SOS design.

In our study, we used all the four minimal SOS designs to find good SOAs of strength

2+ with better two-dimensional projection properties. Below are the four SOS designs:

SOS;(n=16) with m =8 : C' = {a,b,¢,d, ab, ac, be, abc}

SOS3(n=16) with m =8 : C' = {d, ad, bd, cd, abd, acd, bed, abcd}

SOS3(n=16) with m =5 : C ={a,b,c,d, abed}

SOS4(n=16) with m =6 : C = {a,b, ¢, d,ab, cd}
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Remark 1. Orthogonal arrays with 4 levels for 16 runs exist for up to 5 factors ([6])
and exhibit 4 x 4 two-dimensional projection properties. Since OAs have better projection
properties compared to SOAs of strength 2+, we focus our exploration on designs for more

than five factors.

The total number of factors we can study using a factorial design with 16 runs is 15.
Since SOS;(n=16) and SOSy(n=16) each have 8 factors, the complementary designs C' of
these designs have 15 — 8 = 7 factors. Since design A = C is an orthogonal array, it will
remain an orthogonal array even if we remove some factors. This allows us to construct SOAs
of strength 2+ containing 7 factors or fewer. However, our focus will be on constructing
designs with 6 or more factors (Remark 1). Therefore, we will explore SOAs of strength 2+
with m = 6,7 from both SOS;(n=16) and SOS2(n=16). Similarly, using SOS3(n=16) and
SOS4(n=16), we can study designs with m = 6,7,8,9,10 factors and m = 6,7,8,9 factors,

respectively.

Note that, according to Table 3.1, SOAs of strength 3 for 16 runs exist for m = 7,
and they exhibit the same two-dimensional projection properties as SOAs of strength 2+.
However, the former offers better space-filling properties than the latter due to their 2 x2x2
projection properties onto three factors. Since our goal is to find SOAs of strength 2+ with
better two-dimensional projection properties, we will also consider m = 6 and m = 7 when

identifying the best designs.

We need to find the set of frequencies (f1, fa, f3, fa) for every SOA of strength 2+ that we
could construct using the four minimal SOS designs in order to find the best ones according
to the two criteria introduced in Section 3.4. For example, if we consider the design D, an
SOA of strength 24, in Table 3.3, we have to look at all possible two-factor projections
of D and compute the frequencies fi, fo, f3 and f;. In other words, we will examine each
and every two-factor projection in D. For each pair of factors selected from D, we will then
determine the length of the word formed among the corresponding columns in designs A
and B.

When we look at the two-factor projection of the first two factors of D, we can see that
the two columns A; and Ay in A (Table 3.4) and two columns B; and By in B (Table 3.5)
contains a word of length 2 (B; X By = a x a = I) among them. Hence the two-factor
projection of first two factors of D will exhibit Pattern 2. Similarly, if we look at the two-
factor projection of the second and fourth factor of D, we can see that Ay, A4, Bs and By
form a word of length four (A x A3 X Bg Xx Bs =ac X bc x axb=1).

20



There are (g) = 28 two-factor projections in D and Table 4.1 shows the breakdown of

the frequencies of those 28 two-factor projections.

Length of the word Two-factor projections Frequency
Independent 1&5,1&6,2&7,3&4,3&6,3&7, 9
4&8,5&7,5&8
Two 1&2,1&3,2&3,6&7,6&8,7&8 6
Three 1&5,1&8,2&5,2&8,3&8,4&D5, 8
4&7,5&6
Four 1&7,2&4,2&6,3&5,4&6 )

Table 4.1: Length of the words formed among the adjacent factors in designs A and B

Hence the frequencies of observing Pattern 1, 2, 3 and 4 among the two-factor projection
in D are fi =9, fo =6, fs =8 and f; = 5 respectively.

In this manner, for each SOS and a given number of factors, we first find the set of
frequencies for each SOA of strength 2+ and then find the best one among them based on
Criteria 1 and 2 introduced in Section 3.4. Ideally, we would prefer to examine all possible
combinations of As and Bs from these four SOSs and compute the frequency sets. However
due to computational constraints, we considered all As but only a randomly selected subset
of Bs for each A.

Here are the steps involved in finding the best designs for each minimal SOS design for

a given number of factors:

1. Consider a design A.
2. Randomly select a subset of 1000 Bs that can be constructed using the design A.

3. Find the set of frequencies (f1, fo, f3, fa) corresponding to each SOA of strength 2+

that can be constructed using A and B.

4. Repeat steps 2 and 3 for all possible As that can be constructed using the given

minimal SOS design.

5. Select the SOA design that performs best according to Criteria 1 or 2.

Since we are randomly selecting a subset of Bs in step 2, we ran this algorithm 5 times.

It’s reassuring to see that we obtained the same result in each run.
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We will now summarize all the findings. Table 4.2 presents the frequency sets associated
with good SOAs of strength 2+ that exhibit better two-dimensional projection properties
achievable using SOS;(n=16). For instance, among the configurations examined, there ex-
ists a design comprising 6 factors where 8 out of its (g) = 15 two-factor projections have
Pattern 1, and 7 have Pattern 2. Notably, none of these projections exhibit Patterns 3 or 4.
The best SOA of strength 24 identified according to Criterion 2 is the same as the one

found according to Criterion 1, in terms of their sets of frequencies.

Criterion 1 Criterion 2
fi o fs falfa f3 fo S
6|8 7 0 0|0 O 7 8
710 21 0 OO0 O 21 O

Table 4.2: Frequency sets for best SOAs of strength 24 constructed using SOS;(n=16)

Table 4.3 displays the frequency sets associated with the best SOAs of strength 2+
constructed using SOSy(n=16). It highlights that designs derived from SOS2(n=16) out-
perform those from SOS;(n=16), according to Criterion 1. For example, for m = 7, the
best SOA of strength 2+ constructed using SOS;(n=16), according to Criterion 1, exhibits
all of its (;) = 21 two-factor projections showing Pattern 2. Recall that this pattern exhibit
4 x 2 and 2 x 4 space-filling properties. However, for the same criterion, the best design
constructed using SOSa(n=16), shows 14 of its two-dimensional projections with Pattern 1,

the most favorable pattern with 4 x 4 space-filling properties.

Criterion 1 Criterion 2
fi ' fo f3 falfa S5 fo N
6|11 2 2 0|0 0O 7 8
7114 4 2 1,0 3 6 12

Table 4.3: Frequency sets for best SOAs of strength 2+ constructed using SOS2(n=16)

Tables 4.4 and 4.5 show the frequency sets associated with the best SOAs of strength 2+
constructed using SOS3(n=16) and SOS4(n=16), respectively. Although, in a few cases, the
configurations provided by both SOSs are the same, SOS3(n=16) generally outperforms
SOS4(n=16) and the other two SOS designs. This is because the better designs derived
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from SOS3(n=16) include more two-factor projections that exhibit Pattern 1, which is the
preferred pattern in space-filling designs.

Criterion 1 Criterion 2
" fi o s falfe f3 fo h
6 112 3 0 0|0 0 3 12
7115 3 1 210 2 11 8
8|16 7 2 3|1 8 3 16
9118 9 0 9|3 10 7 16
1015 10 10 10| 5 20 5 15

Table 4.4: Frequency sets for best SOAs of strength 24 constructed using SOS3(n=16)

Criterion 1 Criterion 2
- fi oo fs falfa f3 o S
612 3 0 O[O0 0 3 12
71 3 1 2|0 2 11 8
8|14 8 4 2|1 8 5 14
9118 9 0 93 12 3 18

Table 4.5: Frequency sets for best SOAs of strength 2+ constructed using SOS4(n=16)

Table 4.6 shows the frequency sets corresponding to the best SOAs of strength 2+ found
from all four SOS designs based on Criterion 1. The designs A and B used to construct
these designs are provided alongside their respective frequencies. Notably, SOS3(n=16) can

construct best designs for all m = 6,7,8,9, and 10.
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m fi fo f3s Jfa A B
6 12 3 0 0 {ab, ac, ad, bc, bd, abc} {cd, d, d, ¢, ¢, cd}
7T 15 3 1 2 {ab, ac, ad, bec, bd, abd, {abed, d, acd, abc, d, abe,
bed } abed}
8 16 7 2 3 {ac, be, bd, cd, abc, abd, {¢, abed, ab, ¢, ab, ab,
acd, bed} abed, abed}
9 18 9 0 9 {ab, ac, ad, bc, bd, cd, {b, ¢, d, d, ¢, b, d, c, b}
abe, abd, acd}
10 15 10 10 10 {ab, ac, ad, be, bd, cd, {a, a, a, b, b, ¢, d, ¢, b, a}

abe, abd, acd, bed}

Table 4.6: Frequency sets, designs A and B corresponding to best SOAs of strength 2+ for
16 runs based on Criterion 1

The good SOAs of strength 2+ that are constructed using designs A and B in Table 4.6

through equation (3.1) are provided below.
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16). However, the array with m = 7 , given by SOS3(n
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The best SOA(16,10,4,2+) accord-

ing to Criterion 1
Table 4.7 shows the frequency sets corresponding to the best SOAs of strength 2+ found

from all four SOS designs based on Criterion 2. Except for m = 7, all the best designs can

is also interesting because 8 of the two-factor projections have Pattern 1.

be constructed using SOS3(n



m fi f3 fo h A B
6 0 0 3 12 {ab, ad, bd, abd, acd, bed} {abe, abed, d, abe, d, abed}

7 0 0 21 0 {ad, bd, cd, abd, acd, bed, (d, d, d, d, d, d d}
abed}
8 1 8 3 16 {ab, ac, ad, be, bd, cd, {b, b, d, d, bed, ¢, ¢, abed}
abd, acd}

9 3 10 7 16 {ab, ac, ad, be, bd, cd, {a, ¢, a, b, ¢, b, abed, ¢, b}
abe, abd, acd}

10 5 20 5 15 {ab, ac, ad, be, bd, cd, {a, ¢, d, b, d, ¢, abcd,
abe, abd, acd, bed} abed, b, a}

Table 4.7: Frequency sets, designs A and B corresponding to best SOAs of strength 2+ for
16 runs based on Criterion 2

The SOAs of strength 2+ that are constructed using designs A and B in Table 4.7 are

provided in below.

3 3 3 3 3 3 333 3 3 3 3
300100 000 O0O0U 0O O
22 3 2 10 331 3 1 11
21 0 0 2 3 00 2 0 2 2 2
0 210 30 31 3 1 3 11
01 2 2 0 3 0 2 0 2 0 2 2
131 1 1 3 31111 3 3
10 2 3 20 0 2 2 2 2 00
003 01 2 13 3 1 1 31
0 3 0 2 21 200 2 2 0 2
1 1.3 1 3 1 13113 1 3
1 2 0 3 0 2 20 2 2 0 20
311 3 11 113 3 1 1 3
3 2 2 1 2 2 22 00 2 20
2 01 2 3 2 1 11 3 3 31
23 2 001 22 2 00 0 2
The best SOA(16, 6, 4, 2+) according The best SOA(16, 7, 4, 2+) according
to Criterion 2 to Criterion 2

26



NDrHAMNANOOAN MM —OANANO

Nr—TANO—MNON—MNOANMN—ANO

NN O M ANO—MNANMNANO

DA ANOOANMN —H—MNANOON

N—HANOHNOANMN—ANO—MNON

NN —OOANNMNMN——OOAN N

NHNO AN N —HONONOANON

MNMNOOMMNOO AN —H— AN

NN EHAAA OO OO AN

NOOMAN——ANOMNMO—AIA —

NHANOHMNON—TIMONM—NO

N=HOANMN—OANMN—ONM—ON

MNOAN—OMN—ANMNOAN—OM— N

NN O—OMANMNAN—O—OMA

MNOMOMNMOMO AN AN — AN —

NN ANNOO—H—MNMNOOANN

NN OOOO A —— AN AN

The best SOA(16, 9, 4, 2+) according

to Criterion 2

The best SOA(16, 8, 4, 2+) according

to Criterion 2

DA NN —ANOOANOANNO

DA ANOOANHMM—OANANO

NOAN—OM—ANOMN—ANMOAN —

NN O =N ANO—MNANMNANO

N—HOANN—OANMN—ONM—ON

MNOMNO—AN—ANMNOMNO—AN— AN

NN OOANNMNN—— OO

MNOMOMNMOMNO AN AN — A —

MNMNOOMMNOO NN —H— A

NN HAA O OOOANANANN

The best SOA(16,10,4,2+) accord-

ing to Criterion 2

Note that although the good SOAs of strength 2+ found for m = 6 from both Criterion 1
and Criterion 2 have the same set of frequencies, the two designs obtained from the algorithm

may differ from each other. This is because there can be multiple designs with the same

frequency set corresponding to the best designs, and we have reported one of them.
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4.2 Designs of 32 runs

There are 12 minimal SOS designs for 32 runs, but due to computational limitations, we

only considered 3 of them.

e SOS1(n=32) with m =10 : C' = {a, b, ¢, d, abed, ae, be, ce, de, abcde}
e SOSy(n=32) withm = 16: C = {a,b,c,d, e, ab, ac, ad, bc, bd, cd, abe, abd, acd, bed, abed}

e SOS3(n=32) with m = 16 : C = {e, ae, be, ce, de, abe, ace, ade, bee, bde, cde, abee,
abde, acde, bede, abede}

Remark 2. Orthogonal arrays with 4 levels for 32 runs exist for up to 9 factors [6].
Therefore, for 32 runs, we only need to study SOAs of strength 2+ with 10 or more factors.

We can study 31 factors using a factorial design with 32 runs. Since SOS;(n=32) has 10
factors, we can construct SOAs of strength 24 with 32 runs for up to 31 —10 = 21 factors. In
view of Remark 2, we only need to study designs with m = 10,11,12,13,14,15,16,17, 18,19,
20 and 21 factors. Additionally, since both SOS2(n=32) and SOS3(n=32) have 16 factors,
we can study designs with m = 10,11,12,13, 14, and 15 factors.

According to Table 3.1, SOAs of strength 3 for 32 runs exist for m = 15 or less and
they offer better space-filling properties than SOAs of strength 2+ due to their three-
dimensional projection properties. Since our goal is to find designs of strength 2+ with
better two-dimensional projection properties, we also considered m = 10,11,12,13,14 and

15 when identifying the best ones.

Similar to the case with 16 runs, we aimed to examine all possible combinations of As
and Bs from these three SOS designs. However, due to increased computational burden
caused by the larger run size, we only considered a subset of As and Bs. For 32 runs, in
the steps outlined in the previous section, we did not consider all possible As that could be
created for a given m and an SOS design. Instead, we randomly selected a subset of 50 As
in each of the 5 times the algorithm is run to ensure that a sufficient number of designs is

captured.

Next, we will examine the results summarized in Tables 4.8, 4.9 and 4.10 for good SOAs
of strength 24 with 32 runs, which were constructed using SOS; (n=32), SOS2(n=32), and
SOS3(n=32) respectively.
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Criterion 1 Criterion 2
- fi o fs fulfa f3 fo S
0143 2 0 0|0 0 2 43
11|51 2 2 0,0 2 2 51
2160 2 2 2|10 3 4 59
3|7 2 3 3|0 5 7 66
4179 4 6 2|1 9 3 78
519 6 4 5|1 13 10 381
6199 10 6 5 |2 12 14 92
17110 7 14 5 |3 20 9 104
8119 9 17 8 |5 21 19 108
19 1128 15 16 12| 7 25 18 121
20 1136 13 27 14| 9 37 13 131
21 (142 16 36 16 |12 45 19 134

Table 4.8: Frequency sets for best SOAs of strength 24 constructed using SOS;(n=32)

Based on Criterion 1, SOS;(n=32) provides designs with better two-dimensional pro-
jection properties in all scenarios, except when m = 12, for which SOS3(n=32) produces
the best one. However, the difference is minute even in this case. For m = 11, the frequency
sets corresponding to the best designs are identical for both SOS;(n=32) and SOS2(n=32).
Thus, both designs have the potential to yield the best SOA of strength 24 in this scenario.

For Criterion 2, in SOS;(n=32), we observe that for m = 10 and m = 11, the frequency
sets corresponding to the best SOAs of strength 24 are identical to those found under
Criterion 1. For m = 11 and m = 14, SOS3(n=32) produces better designs compared to
other SOS designs. For m = 15, SOS2(n=32) yields the best design, although the designs
from the other SOSs are also noteworthy because more of their two-factor projections exhibit

Pattern 1.
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Criterion 1 Criterion 2
" fi o fs Al fs f35 fo S
10141 3 1 0|0 0 5 40
11147 6 2 0|0 2 6 47
12153 5 2 6|0 6 10 50
13|56 5 13 4|0 8 15 55
14148 27 15 1 | 0 13 46 32
15/ 0 91 14 0|0 14 91 O

Table 4.9: Frequency sets for best SOAs of strength 2+ constructed using SOS2(n=32)

Criterion 1 Criterion 2
- fi oo fs falfa f3 o S
10743 1 1 0[]0 0 5 40
1{51 2 2 0|0 1 5 49
12160 3 2 1[0 4 3 59
13/68 3 4 3|0 8 3 67
14179 5 5 3,0 11 5 75
518 4 9 3|1 12 10 82

Table 4.10: Frequency sets for best SOAs of strength 2+ constructed using SOS3(n=32)

Overall, SOS;(n=32) emerges as the preferred choice for providing SOAs with better
two-dimensional projection properties based on both criteria. This outcome is not surprising
given that SOS;(n=32) can be considered as the “double” of SOS3(n=16) [3]. SOS3(n=16)
comprises 5 factors and 16 runs, whereas SOS;(n=32) expands upon this by incorporating
10 factors and 32 runs. More specifically, SOS;(n=32) includes all the factors present in
SOS3(n=16) (a,b,c,d,abed) and augments them with an additional independent factor,
denoted as e, resulting in the factors a, b, ¢, d, abed, ae, be, ce, de and abede. SOS3(n=16) has
shown to produce better designs for 16 runs, and as expected, SOS;(n=32) also produces

good designs for 32 runs.

Tables 4.11 and 4.12 show the frequency sets corresponding to the best SOAs of strength
2+ found from all three SOS designs based on Criteria 1 and 2 respectively. The designs A

and B used to construct these best SOAs are provided alongside their respective frequencies.
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m fi fa fz3 Jfa A B

10 43 2 0 O {ad, bd, cd, abd, acd, bed, {ade, abce, abede, d, de, abed,

bee, cde, bde, bede} ce, abde, d, de}

11 51 2 2 0 {ab, ac, ad, be, bd, ace, ade, {e, acde, abcde, acd, bee, a,

bed, bde, abee, bede} ae ,b, acde, abe, ae}

12 60 3 2 1 {a, ¢, d, ac, ad, be, bd, cd, {ab, abde, ab, ce, bde, e,

abe, acd, bed, abed} acde, de, be, be, e, bee}

13 70 2 3 3 e bd, cd, abc, abd, abe, acd, {bc, ce, d, be, abcd, a, b, ae,
bed, cde, bde, abce, acde, ad, ade, d, ac, ade}

abde}

14 79 4 6 2 e ac, ad, bd, abc, abe, acd, {abcde, ae, a, ¢, ¢, abd, cd, d,

ace, bce, cde, bde, abce, bede, abed, bed, b, ae, cd, abede}
abde}

15 90 6 4 5 {e ab, be, cd, abe, abe, acd, {¢, b, ae, ac, abcde, abd,
ace, ade, bed, cde, bde, acde, abed, b, abd, c, d, abcde,

bede, abde} abed, bee, ae}

16 99 10 6 5 {e, ab, ac, ad, bc, cd, abe, {a, abce, be, d, b, be, d, ce,
abd, abe, acd, ade, bcd, bee, cde, be, a, be, cde, b, d, bd}

bde, acde, abde}

17 110 7 14 5 {e, ab, ac, be, bd, cd, abe, {¢, acde, a, ce, abcde, acde,
abd, abe, acd, ade, bcd, bee, abcde, ad, b, be, a, a, d, ce,

cde, bde, abce, abde} ace, bede, ad}

18 119 9 17 8 {e, ab, ad, bc, bd, abe, abd, {ae, ae, ac, de, ac, abcde, c,
abe, acd, ace, ade, bed, bee, b, a, a, ae, b, bede, c, bede,
cde, bde, abce, acde, abde} be, abcde, ce}

19 128 15 16 12 {e, ab, ac, be, bd, cd, abe, {d, b, ce, ad, abcde, ¢, ace,
abd, abe, acd, ade, bed, bee, ad, a, c, d, abcde, ¢, d, b, de,
cde, bde, abce, acde, bede, d, abede, ce}

abde}

20 136 13 27 14 {e, ab, ac, ad, be, bd, cd, abd, {ce, b, b, ae, abe, de, d,
abe, acd, ace, ade, bed, bee, abcde, abe, be, ae, d, a, a,
cde, bde, abce, acde, bede, abe, ¢, d, de, b, a, ce}

abde}

21 142 16 36 16 {e, ab, ac, ad, be, bd, cd, abc, {abcde, a, ce, d, c, de, ce, de,

abd, abe, acd, ace, ace, ade,
bed, bee, cde, bde, abce, acde,
bede, abde}

abcd, b, abed, ce, de, ae, c,
ce, be, d, abed, ae, abede}

Table 4.11: Frequency sets, designs A and B corresponding to best SOAs of strength 2+
for 32 runs based on Criterion 1

31



m fi f3 fo i A B

10 0 0 2 43 {ad, bd, cd, abd, acd, bed, {ade, abce, abede, d, de, abed,

bee, cde, bde, bede} ce, abde, d, de}

11 0 1 5 49 {a, b, d, ab, ac, ad, bc, abc,  {ae, abde, cde, ae, acde, bede,

acd, bed, abed} cde, cd, abde, c, ae}

12 0 3 4 59 {ac, be, cd, abe, abe, acd, {abd, ae, c, be, ab, b, c, ace,
ade, bee, cde, bde, bede, abde} ab, b, ce, be}

13 0 5 7 66 {e ad, cd, abd, acd, ace, ade, {ce, abe, be, de, ac, ac, ce,

bee, cde, bde, abce, acde, abcde, ce, c, abcde, ce, be, bd}
abde}

14 0 11 5 75 {a, b, ¢, ab, ac, ad, be, bd, {bce, bee, ade, bde, abcde,
cd, abe, abd, acd, bed, abed} ade, bde, abcde, bede, cde,

abe, bede, de, ae}

15 0 14 91 0 {ae, be, ce, de, abe, ace, ade, {e, e, ¢, ¢, ¢, ¢, ¢, ¢ ¢ e, e,

bee, bde, cde, abce, abde, abd, e, e, e}
acde, bede, abede}

16 2 12 14 92 {e, ab, be, bd, cd, abc, abd, {a, a, abcd, ac, a, bee, b, a,
abe, ace, bed, cde, bde, abce,  a, ae, ac, be, be, ac, d, abcde}

acde, bede, abde}

17 3 20 9 104 {e, ab, ac, be, bd, cd, abd, {de, abc, b, abc, de, ce, bde,
abe, acd, ace, ade, bed, cde, ae, ad, abc, abed, abe, d, d,

abce, acde, bede, abde} be, ¢, c}

18 5 21 19 108 {e, ab, ac, ad, be, bd, abe, {a, cd, ae, a, b, b, de, abcde,
abd, abe, acd, ade, bcd, cde, cd, cd, cd, ¢, b, a, d, cd,
bde, abce, acde, bede, abde} abede}

19 7 25 18 121 {e, ab, ad, be, bd, cd, abe, {b, b, de, be, de, c, d, de,
abd, acd, ace, ade, bed, bee, abcd, ¢, de, ae, be, abcd, b,
cde, bde, abce, acde, bede, abcde, de, a, abed}

abde}

20 9 37 13 131 e, ab, ac, ad, be, bd, cd, abd, {ae, abe, ce, a, ce, de, ce, c,
abe, acd, ace, ade, bed, bee, ce, be, ae, de, a, abc, d, b,
cde, bde, abce, acde, bede, abcde, abede, a, abed}

abde}

21 12 45 19 134 {e, ab, ac, ad, be, bd, cd, abe, {d, be, c, de, b, de, ¢, d, c,

abd, abe, acd, ace, ade, bcd,
bee, cde, bde, abce, acde,

bede, abde}

ae, abcde, ae, ae, abed, ce, d,
b, d, b, abcd, abced}

Table 4.12: Frequency sets, designs A and B corresponding to best SOAs of strength 2+
for 32 runs based on Criterion 2
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Chapter 5

Concluding remarks

Strong orthogonal arrays of strength 2+ are a class of designs that guarantee 4 x 2 and 2 x 4
two-dimensional projection properties. However, the patterns among these projections differ,
and some are notably more appealing than others. The objective of our study is to identify
designs with good projection properties, utilizing two selection criteria. We employed second
order saturated designs to construct SOAs. We have identified and listed the best SOAs
of strength 2+ that we obtained from each SOS design for run sizes of 16 and 32. Using
our results, experimenters can choose SOAs of strength 24+ with better two-dimensional

projection properties rather than selecting one at random.

In this study, we used an algorithm to identify good designs. Due to time constraints
and the large number of designs one needs to consider for each SOS design, we were unable
to perform a complete search for both run sizes. However, it is possible to conduct a more
comprehensive search in future work. Additionally, a theoretical investigation about different
patterns and two-factor projections of good designs could be explored. Our study focused
on finding regular SOAs of strength 2+. Exploring the use of non-regular designs could also

yield valuable insights.
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