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Abstract

In this work, several machine learning and data analysis tools were applied to various

datasets consisting of seismo-acoustic recordings. Due to the complexities and uncertain-

ties of each dataset, several criteria were proposed for the adequate application of these

techniques for different tasks. The first was to assess the quality of two open-access vol-

cano seismic datasets, one considered noisy (Cotopaxi volcano, Ecuador), and the other

clean (Llaima volcano, Chile). By applying a catalogue cleaning procedure, metrics and

benchmarks were defined to rapidly assess each dataset’s quality. After analyses, the Co-

topaxi dataset showed numerous mislabelled events, which was confirmed by performing

a blind test from experts’ assessment. In contrast, Llaima’s catalogue yielded few misla-

belled events, validating its cleaner status. A second task consisted of expanding a dataset

of volcanic explosions from nearly 10 years (2006-2016) of continuous acoustic recordings

from a seismo-acoustic network on the flanks of Tungurahua volcano, Ecuador. The original

explosions were identified by human inspection using an amplitude threshold and omitted

small to medium sized explosions. To expand this catalogue, a series of successive steps

combining traditional and novel data analysis with (un)supervised machine learning tools

was applied to continuous recordings from one station. This led to more than 29,000 new

explosions being detected that were grouped and linked to changes in Tungurahua’s activity.

Finally, a third dataset consisting of several months (March-July 2021) of novel continuous

acoustic recordings from the Squamish River (Mount Cayley, BC.), was explored. To use

these recordings as a potential tool for natural hazards monitoring in the region, an acous-

tic activity baseline was established by harnessing the extreme weather conditions caused

by the 2021 Western North American heat wave. Recordings of local weather parameters,

especially water level gauges, were used to relate part of the acoustic measurements to the
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river’s discharge rate using rapid data analysis tools. Anomalous signals deviating from this

baseline are proposed as a means to identify future natural hazards. This work showcases

the flexibility -yet care- with which machine learning and data analysis tools can be applied

to monitor volcano and mountain hazards, and lays the groundwork for future developments.

Keywords: Volcano Seismology and Infrasound; Signal Detection and Classification; Machine-

Learning Applications; Data Analysis for Geophysical Signals
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Chapter 1

Introduction

The ongoing development of nations worldwide leads to a growing number of people search-

ing for new living spaces and resources. Meanwhile, the Earth’s dynamic geological processes

are constantly reshaping our planet as various regions experience constant natural phenom-

ena, including the growth and erosion of volcanoes and mountain ranges. These processes

give rise to natural hazards that, added to the periodic effect of seasons and climate change,

affect various groups of people around the world. For instance, as of 2015 more than 8%

of the world’s population lived within 100 km of a volcano with at least one significant

eruption in the Holocene (the current geological epoch starting approximately 11,000 years

ago), and more than 1 billion people (14.3%) lived within 100 km of a volcano with any

activity in the Holocene (Freire et al., 2019). In addition to the increasing proximity of com-

munities to volcanoes, volcanic activity is a persistent phenomenon globally with around

40-50 continuing eruptions any given time (Smithsonian Institution, 2024). This means that

the potential impacts of volcanic hazards to populations are not expected to decrease in the

near future. Impacts associated to volcanic activity include phenomena with varying impact

ranging from ash fall and lava flows, to volcanic tsunamis (e.g., Connor et al., 2015).

Added to the hazards of active volcanoes, seasonal cycles contribute to the weathering, ero-

sion and/or degradation of volcanoes, mountain ranges and glaciers that in turn produce

other hazards such as landslides, avalanches, debris flows, lahars, etc. Since these hazards

can occur in various mountain settings, as well as on volcanoes that are not necessarily

erupting, they are much more prevalent than those directly related to volcanic activity, and

thus cause economic damage and deaths at a higher rate. For example, landslides cause
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thousands of deaths yearly even considering that recorded values are under-registered (Pet-

ley, 2012). Furthermore, climate change has increased the occurrence of weather-triggered

landslides or debris flows (Gariano and Guzzetti, 2016; Chiarle et al., 2021).

These two facts: 1) Increasing population in the need of new places to live, and 2) nat-

ural hazards that, at best, remain constant over time, make it so that more people and

infrastructure are at risk of potential loss and are a continuous concern for local and na-

tional governments. On the other hand, as exposure to natural hazards increases, technology

advances and new instruments and methods become more accessible in cost and operabil-

ity allowing for more effective risk mitigation initiatives. In particular, the cost of seismic

and infrasonic recording systems is decreasing continuously with alternatives to traditional

systems based on simple processing boards for digitizing signals and/or the use of low

cost MEMS (Micro-ElectroMechanical systems) sensors (e.g., Raspberry Shake seismic and

acoustic sensors, Raspberry Shake, 2024, Gem Infrasound Logger, Anderson et al., 2018).

Systems such as these allow for denser monitoring networks, or rapid temporal deployments

without severely sacrificing the quality of the signals recorded (Anderson et al., 2018; An-

thony et al., 2019). These advances often imply reduction of additional equipment related

to power or digitizing capabilities and allow sensor installations on previously restrictive

areas where even one new instrument is a significant improvement for hazard monitoring.

These new sensors, their increasing installation numbers, and the specifics involved in the

whole system come with different complications at different stages of implementation. For

instance, when monitoring is at its onset and sensors have just started to acquire data from

the geological processes, meaningful conclusions are difficult to extract. This means that at

first, a remote and unknown area requires careful examination of the regular signal contents

to enable eventual distinction of normal versus anomalous behaviour. Therefore, there is a

need to properly/objectively establish a baseline and perform anomaly detection. On the

other extreme case, once the networks start growing larger, the amount of data requires

a paradigm that allows efficient information extraction, so that it can adequately keep up

with the stream of baseline information as well as novel signals.

While initially a system requires manual treatment of the data, at some point the tasks be-
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come unfeasible without large human resources, and a system has to be built to handle ever

increasing amounts of data. This means that the designed system needs to be robust and

scalable: i.e., it performs consistently for similar datasets, and reasonably for increasingly

larger datasets –or at least that can be easily modified to cope for them. The amount of data

also requires that logistical challenges, such as transmission of data in remote areas, is done

efficiently. This can be done by executing appropriate in-situ processing, and transmitting

only the relevant information –via satellite or local low-bandwidth radios– instead of full

signals. Since different sensor specifications allow for specific subsets of techniques to be

applied, it is relevant to identify what information can be extracted from limited scenarios,

and how it compares with ideal contexts. Additionally, systems based solely on human revi-

sion could suffer from methodological uncertainties, procedural errors, or subjective biases

that go beyond the techniques or amount of data analyzed.

As a means to address these issues, the research and adoption of machine learning tools

has become increasingly popular both at the level of natural hazard monitoring in general

(Jain et al., 2023; Abraham et al., 2024), as well as for volcanic (Malfante et al., 2018; Khan

et al., 2019; Carniel and Guzmán, 2020), earthquake (Mousavi and Beroza, 2023), and mass

movement events such as landslides and debris flows (Tehrani et al., 2022; Ponziani et al.,

2023) in particular. Nevertheless, all systems begin with some kind of human prior assess-

ment, scrutinized data or predefined input, and are subject to potential unknown errors or

knowledge gaps that if not corrected in time, can propagate surreptitiously even after the

development of fully automated procedures. The success of a system then depends on the

difficulties or particularities of its implementation, but especially on the nature, quantity,

and quality of the available information to address a task. The degree of previous knowledge

and the extension/size of a given dataset determines what kind of techniques or procedures

can be applied to gain insights, and what tasks for hazards monitoring they can expound.

Thus, here I define as a locked dataset one which is already given in a definite manner:

there is a finite number of given observations and no natural expansion on the data itself

can be achieved; all objects within are already catalogued, i.e., they have been assigned a

label or class. Nevertheless, they are important because they constitute the input to cre-
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ate automated systems or even synthetic data. Conversely, an unlocked dataset is that

which possesses streams of unconstrained data which can be further explored. For unlocked

datasets, a given catalogue may or may not exist, but in principle new objects of interest

can be extracted depending on a project’s goal.

In this work, three different tasks related to monitoring of volcano and mass movement

events were specified for the analysis of three different types of data sets, and the general

conceptualization is summarized in Figure 1.1.

LOCKED DATASET
HUMAN CATALOGUE

UNLOCKED DATASET
HUMAN CATALOGUE

UNLOCKED DATASET
NO CATALOGUE

INCREASING UNCERTAINTY

ASSESS QUALITY IMPROVE/EXPAND CATALOGUE ESTABLISH BASELINE

KNOWLEDGE REFINEMENT

Figure 1.1: Diagram of applicable tasks depending on the nature and knowledge of given
datasets.

Figure 1.1 shows the relationship between the uncertainty of different types of datasets

with the knowledge refinement (i.e., amount of advancement or detail to be achieved) and

tasks enacted upon each. To achieve the tasks, several data analysis and machine learning

approaches were developed and applied to diverse seismic and acoustic datasets.

1.1 Data and Methods

1.1.1 Seismic and Acoustic Data

Seismology is a branch of geophysics and Earth Sciences which focuses on the study of the

Earth’s vibrations, in order to gain knowledge of the subsurface (Shearer , 2009). The mea-
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surement of the Earth’s vibrations is done with seismometers that record ground motion

based on principles like the inertia of suspended masses and springs inside an instrument

responding to external movement (Shearer , 2009). Modern instruments output different

magnitudes, e.g., voltages that are digitized into counts, which can be converted into a

physical magnitude related to motion (i.e., displacement, velocity or acceleration). While

these measurements occur in continuous time, the instruments record at given sampling

frequencies (usually tens to hundreds of samples per second), and create a time series of

the vibrations detected at the instrument’s location. Acoustics on the other hand, study

sound -mechanical waves propagating through the atmosphere- using microbarometers or

microphones. Acoustic infrasound sensors measure pressure transients in the air in frequen-

cies usually lower than human hearing (i.e., 0.01 to 20Hz vs 20Hz to 20kHz) because waves

propagate longer distances in those frequencies (Dannemann et al., 2023). These acoustic

infrasound sensors are capable of recording explosions or large mass movements and make

them well-suited for monitoring superficial ground activity at volcanic and mountain re-

gions (Allstadt et al., 2018). Thus, acoustics are a complementary tool to seismology that

can enhance the understanding of different natural or man-made phenomena, and to de-

scribe the coupling between seismic and acoustic waves (Dannemann et al., 2023). It is

worth mentioning that seismic and acoustic signals are similar in the sense that both record

perturbations propagating through a given medium (Figure 1.2).

Different phenomena can give rise to different waveforms in the time series recordings, and

they contain information concerning the nature of the source that generated them, the path

between the source and the sensor, and the site characteristics of the sensor (besides the

instrument’s response to the signal itself) (Shearer , 2009). Sometimes, recognizing different

types of signals is straightforward for a trained analyst, or aided by a spectrogram of the

waveform (Figure 1.3).

However, most signals are varied and complex, their characteristics may not be unique to a

given class, they may overlap in time, they may be obscured by noise, or subtle differences

may be of interest that may require meticulous analysis. Most importantly, given that a

standard seismic or acoustic recording can contain millions of samples in a single day (e.g.,
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Figure 1.2: a) Example of a day’s worth of raw seismic data and b) a day’s worth of raw
acoustic data from Tungurahua volcano and Mount Cayley, respectively.

Figure 1.3: a) Example of a raw seismic volcano-tectonic signal with its spectrogram below.
b) Example of a raw acoustic explosion signal with its spectrogram below. Both taken at
Tungurahua volcano.

4,320,000 samples for an instrument recording at 50Hz), human operators can seldom afford

the time to analyze the waveforms "manually" from an ever growing number of instruments.

Thus, automated systems comprised of computers using data analysis and machine learning

tools are constantly being deployed and improved for better natural hazards monitoring.
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1.1.2 Methods

Machine Learning

Many definitions exist for Machine Mearning (ML), however most revolve around roughly

the same idea: "Machine Learning is the science of programming computers so that they

can learn from data" (Géron, 2019). Since the use of data is required, many concepts and

approaches overlap between Machine Learning and Statistics and interchangeable terminol-

ogy is used depending on the context in which they are explained (Wasserman, 2004; James

et al., 2013). For example, supervised learning (a Computer Science term) is equivalent to

class-prediction (a Statistics term), nevertheless, this variety has helped enrich the related

fields involved (Berk, 2016).

A simplified way to understand (most) of machine learning is by using the following equation

1.1 as an analogy:

Y = fX(x) (1.1)

where f is a function that a computer will learn based on a given training set X, that

will generate an output Y given an input x. The nature of each term can be wide-ranging.

For example, supervised learning is a task where given a dataset X of observations with

their respective labels, f learns to predict the label or class Y , of an input instance x.

Unsupervised learning, or clustering, can be thought of as when the dataset X has no

predefined labels for the observations but class memberships need to be assigned to each

based on some similarity criteria. If the outputs Y are not classes, but numbers, then the

task falls on the regression task, and similarly if the outputs Y ∼ X are new observations,

this is called generative learning. An even more abstract task called reinforcement learning,

consists on finding f such that it learns to take "optimal" actions Y based on rewards and

policies as its "training set" X (Géron, 2019).

In general, machine learning application steps can be summarized as follows:

1. Identify the kind of task to be addressed

2. Obtain/Organize/Preprocess available data compatible with the goal
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3. Select appropriate methods, models and algorithms for the dataset and task at hand

4. Train, tune, and validate the tools

5. Implement, apply or deploy the tools (and share them!)

In the natural hazards context, two interrelated tasks are of major relevance: the detection

and the classification of signals of interest. These tasks can range from the identification of

predefined/known types of waveforms, to the formation of new unknown classes or families

of events, to the detection of anomalous signals. These tasks have been and continue to

be explored for volcano (e.g., Malfante et al., 2018; Carniel and Guzmán, 2020), as well as

mass movement (e.g., Thüring et al., 2015; Chmiel et al., 2021; Liu et al., 2021) monitoring.

Since seismovolcanic events have been defined for a long time and are identified routinely

in observatories (Chouet and Matoza, 2013), most of the ML techniques applied in volcano

monitoring deal with supervised learning. Unsupervised techniques are less common and

used in cases of large data sets where none or little prior human classifications have been

performed (Malfante et al., 2018), or with the aim of finding interesting families of events or

patterns potentially related to volcanic activity (e.g., citealpAnzieta2019, Zali2024). Nev-

erheless, before the application of many machine learning techniques, data generally needs

to be preprocessed in one way or another, usually to avoid the curse of dimensionality that

can lead to overfitting systems (systems that did not learn to generalize outside of their

training dataset) with poor performance (Géron, 2019). For a brief description of some

popular Machine Learning tools, and data analysis algorithms applied in the forthcoming

literature see Appendix A.1.

Feature extraction: Seismic or acoustic recordings are continuous, and as such, there

is no predefined data size of interest for analysis (i.e., some events of interest may last for

longer or shorter periods, which implies time windows have varying sizes even for events that

belong to the same class or type). For instance, some events might last a few seconds (e.g.,

explosions), while others can extend for minutes, hours or even days (e.g., volcanic tremor).

For this reason, when trying to apply ML techniques in seismic or acoustic recordings, a

usual strategy is to extract features from different events so that they can be properly
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compared (Cortes et al., 2016). There is still no consensus on which are the best features

to be used and different strategies are still being studied (e.g., Malfante et al., 2018; Khan

et al., 2019), but comprehensive feature selection schemes can yield superior performances

compared to ones based on "domain expertise" (Toney et al., 2022).

Event Detection: In volcano monitoring, much of the work is dedicated to classification

tasks, since event detection is usually done semi-automatically using standard data analysis

algorithms such as STA/LTA (short-time-average, long-time-average ratio trigger) or the

recently proposed VINEDA (Bueno et al., 2019), with classification done manually (Mal-

fante et al., 2018) or with machine-learning based systems (Carniel and Guzmán, 2020).

Some interesting results using ML are schemes that combine event detection and classifica-

tion using Hidden Markov Models (HMM) (e.g., Hammer et al., 2012; Bhatti et al., 2016)

as opposed to only classification.

Machine learning techniques have been used to improve debris flow warnings through the

use of Random Forests (RF) (Chmiel et al., 2021), and for snow avalanche detection using

Support Vector Machines (SVM) in combination with acoustic array processing (Thüring

et al., 2015). In both cases, the methods reduced false positive detection considerably.

Supervised Learning - Signal Classification: In the volcanic event classification prob-

lem, a wide range of ML methods have been extensively tried for automatic classification

tasks with varying success (e.g., Malfante et al., 2018; Titos et al., 2018; Khan et al., 2019;

Martínez et al., 2021; Manley et al., 2022). For example, Decision Trees (DT) have been

applied to automatically detect precursors for real time-forecasting of sudden explosive erup-

tions from tremor signals (Dempsey et al., 2020). Multi-Layer Perceptron (MLP) has been

used to discriminate between volcanic hybrid events and explosion-generated earthquakes

(e.g., Esposito et al., 2018). A SVM classifier was tested against and outperformed Linear

Discriminat Analysis (LDA), MLP, and Random Forests (RF) classifiers for the classifi-

cation of volcano-tectonic (VT), long period (LP), Hybrid, Tremor and Explosive seismic

events (Lara et al., 2020). RF have also been tried for other subsets of events: VT, LP,

Nested, Hybrid and Tornillo events, with good results (Falcin et al., 2021).
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Deep Neural Networks (DNN) have been applied with very good results. For instance, a

Convolutional Autoencoder was used to find potential precursory signals to volcano eruption

(Zali et al., 2024). A Recurrent, Short-Long Term Memory (SLTM) and Gated Recurrent

Unit (GRU) Artificial Neural Networks were tested with raw data and extracted features for

LP, VT, Tremor, Hybrid and Silence event classification and showed that feature extraction

outperforms analysis of raw data for this task (Titos et al., 2019).

In the acoustic realm, the application of various advanced Neural Networks enabled classi-

fication of auroral, mountain associated, microbarom and volcanic signals from the Library

of Typical Infrasonic Signals in the Comprehensive Nuclear-Test-Ban Treaty of the United

Nations, and showed good performance (Solomon et al., 2018). Automatic classification

of volcano, tsunami and earthquake acoustic signals from the same data set was similarly

explored with SVM (Li et al., 2016). Another experiment using SVM showed excellent

performance for subcrater explosion location indentification (Toney et al., 2022).

Unsupervised Learning - Signal clustering: Supervised ML techniques usually learn

from large amounts of data in order to better generalize predictions (Géron, 2019). When

sufficient labelled data is unavailable or if in the search of specific families of events within

a certain class is desired, unsupervised learning becomes useful. In the case of unsupervised

learning, techniques can be applied to features or direct signals, or to a set of measurements

of (dis)similarity between observations. In the latter case, this (dis)similarity can be calcu-

lated by statistical means, or by defining distances between signals or their features.

Hierarchical clustering of correlation values, as a measure of similarity, have been used in

many settings. For instance, to identify families of icequakes (Lamb et al., 2020) or to distin-

guish explosions between different volcanoes (Ortiz et al., 2020). Other similarity measures

such as Dynamic Time Warping have been applied to identify families of potential eruption

precursory events (Anzieta et al., 2019).

Self Organizing Maps (SOM) (Kohonen, 2001) have been used to study the relationship

between volcanic degassing behaviour and seismo-acoustic signals in experimental settings

(e.g., Giudicepietro et al., 2021), to distinguish between seismic events and artificial explo-

sions (Kuyuk et al., 2011), and to identify signals related to seismic volcanic activity and
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noise (e.g., Reyes and Jiménez Mosquera, 2017). The K-means algorithm has also been used

to study transitions in the style of activity of volcanoes associated to families of different

acoustic signals (e.g., Witsil and Johnson, 2020; Watson, 2020).

Implementation

In this work, the Python programming language and several of its standard libraries (scipy,

numpy, matplotlib, etc.), along with the specialized package "Obspy" (Beyreuther et al.,

2010) -a python framework for seismology- were used to explore and analyze the bulk

of the data. Other specific packages/tools are mentioned in each Chapter when relevant.

Additionally, to apply many different machine learning algorithms, I used the "Scikit-Learn"

python package (Pedregosa et al., 2011).

1.2 Thesis objective and specific goals

Data analysis, and Machine Learning in particular, continue to be fruitful areas of research

since it is expected that with more widespread instrumentation continuously recording

underground and atmospheric phenomena, automated systems will become so effective that

more rapid and reliable forecasting of natural hazards will be possible. As such, it is worth

trying to improve all steps towards the creation of robust systems dealing with different

tasks related to various types of datasets, whether they be locked or unlocked, or whether

there is plenty or little prior knowledge about them. At the same time, there are still many

regions in the world without comprehensive monitoring networks, with perhaps only one

sensor to monitor entire areas. Thus, the general objective of this research is to design or

improve data analysis and/or machine learning tools and methods that can be applied to

recordings from single stations, to deepen the knowledge of various types of datasets with

increasing uncertainties as shown in Figure 1.1.

Specific Goals

Locked datasets

When locked datasets are fully determined in terms of the number of signals they possess,

and their events are catalogued with more than one type or class, they are useful as the
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potential input for training automatic classification systems. As such, I aim to assess the

quality of the information these datasets hold. More precisely, I want to answer the following

questions:

1. Can the quality of a given catalogue (i.e., how well are the events within labelled) be

assessed?

2. Can one determine which of the events within a catalogue may be mislabelled?

3. Can a degree of uncertainty be assigned to the assumption that each event’s label

may or may not be mislabelled?

4. Are the previous questions answerable in an objective and fast way?

For this study I used two publicly available seismic datasets with characteristics not typi-

cally found in similar open-access data sources –one from Cotopaxi volcano, Ecuador and

another from Llaima volcano, Chile. The datasets possess selected waveforms, along with

their respective class membership labels as determined by the observatories in charge of

monitoring them, and I applied a machine learning dataset-cleaning procedure to answer

the posed questions.

Unlocked dataset with a human created catalogue

Unlocked datasets imply that new information can be extracted from them by defining

tasks according to previous knowledge. If a dataset possesses a human defined catalogue,

a natural task is to build an expanded catalogue based upon the information found by

the operators, and then to try to gain more knowledge from this new dataset. The precise

sequence of tasks are:

1. Take advantage of traditional data-analysis tools for preliminary detection of events.

2. Use the human created catalogue to train supervised classifiers that help refine the

preliminary detections.

3. Use unsupervised machine learning techniques to assert the capabilities of gaining

deeper knowledge from the newly identified events.
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4. Combine deep-learning with unsupervised learning to allow faster retrieval of the

deeper knowledge.

For these tasks I used nearly 10 years of continuous acoustic recordings from Tungurahua

volcano, Ecuador, and an explosion catalogue constructed by a human operator for this

dataset. This fairly unique unlocked dataset served as a means to test the capabilities of

various machine learning tools.

Unlocked dataset with no prior knowledge

When there is no previous knowledge for an unlocked catalogue, the first task is to establish

a baseline of information, so that other applications can be built from there. In this case

the objectives are:

1. Develop an efficient algorithm to extract useful signals from background noise to

monitor river-flow discharge rates that can be applied in-situ.

2. Make use of this baseline information to identify/clean potentially anomalous data.

This work is conducted by applying data-analysis tools to acoustic data collected at

the confluence point of the Squamish River and Mud Creek at Mount Cayley, British

Columbia, Canada during the spring-summer of 2021.

1.3 Thesis outine

The rest of the Chapters of this thesis are organized as follows: In Chapter 2, a machine

learning procedure was implemented to assess the quality of two publicly-available seismic

volcanic locked datasets, one under suspicion of having potentially misclassified events, and

the other regarded as clean and used for reference. The results for this chapter have already

been published. In Chapter 3, an unlocked acoustic dataset with a catalogue of volcanic

explosions previously identified by a human analyst was explored and expanded by using a

combination of classical data analysis techniques along with supervised, unsupervised and

deep learning algorithms and these results are currently under review as of the writing of

this thesis. In Chapter 4, a novel acoustic unlocked dataset with no previous analysis was

surveyed, and a procedure for baseline river streamflow characterization was determined
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and further results are expected to be published in the future. Chapter 5 summarizes the

results of the previous chapters and describes the most important lessons learned from the

whole study.
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Chapter 2

Cleaning volcano-seismic event
catalogues: a machine learning
application for robust systems and
potential crises in volcano
observatories

Anzieta, J., D. Pacheco, G. Williams-Jones, and M.C. Ruiz (2023), Cleaning volcano-seismic

event catalogues: a machine learning application for robust systems and potential crises in

volcano observatories, Bulletin of Volcanology, 85, 1–16, doi:10.1007/s00445-023-01674-9.

2.1 Introduction

The detection and identification of different volcano-seismic events has been used for decades

as a tool to characterize the state of volcanic activity, with early observatories dating back

to the end of the nineteenth and beginning of the twentieth centuries (McNutt and Ro-

man, 2015). Thus, extensive research has focused on distinguishing and describing different

classes of events for a given volcano so that today a few types have become standard in

volcano observatories around the world. Common types of events related to volcanic activity

are low frequency (or long period—LP), high frequency (or volcano tectonic—VT), tremor

(TR), hybrid (HB), very long period (VLP) and explosive (EX) events (McNutt et al., 2015;

Chouet and Matoza, 2013), pyroclastic density currents (PDC—which are surficial events

that result from lateral blasts, boiling over, the collapse of lava domes, and eruptive columns;
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Dufek et al., 2015), and more sub-classifications that can be volcano specific (e.g., Tornillos

which are a particular kind of highly harmonic, long-duration LP; Narváez et al., 1997).

Other events can be detected by volcano-seismic networks that are not necessarily related

to volcanic activity, including icequakes (IQ), rockfalls, lahars, regional quakes (RE), and

noise (NS). Among all the classes of seismic events, LPs and VTs typically stand out given

their relation to important physical processes (Chouet and Matoza, 2013) and as diagnostic

signals for volcanic activity. LP origins are often associated with, but not limited to, conduit

resonances due to fluid movement within the volcanic edifice (Chouet, 1996), oscillations

due to pumping mechanisms in shallow fractures, brittle failure of flowing magma under-

going glass transition near the conduit wall, escape of gases through fractures (Chouet and

Matoza, 2013), or fast and large input of gas into gas pockets below a permeable sealing

cap (Girona et al., 2019), while VTs are often explained as brittle fractures in the edifice

driven by local stress changes or magma movement (McNutt, 2005). We acknowledge that

in reality there is a continuum of events between VTs and LPs, and a hard classification is

complex for many reasons, e.g., VTs may transition to LPs due to seismic attenuation or

changes in the volcano as shown experimentally and in simulations (Benson et al., 2008;

Clarke et al., 2021). Nevertheless, the distinction of such types of events is still central in

volcano monitoring, and a thorough tracking of the occurrence of these events can be used

as a tool for volcanic eruption forecasting (Bell et al., 2018), or reawakening estimation

(Kilburn, 2003). Volcano observatories review and evaluate the volcanic activity by creating

and examining catalogues, and monitoring tasks are possible when catalogues are accurate

and comprehensive enough (Boué et al., 2016).

These short-lived events (LPs and VTs) are in principle distinguishable reasonably quickly

through human inspection, by looking at the seismogram appearance (McNutt and Roman,

2015), or at other parameters such as frequency content. However, it can become exceed-

ingly difficult for analysts to maintain a correct identification when short-handed or during

unexpected circumstances, such as a sudden volcano reactivation or personnel changes. For

these and other reasons, particularly the decreasing costs of powerful computers, the use of

automated systems is becoming increasingly prevalent at observatories for monitoring and
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forecasting volcano activity (Pallister et al., 2019). Technological and methodological ad-

vances have led to the exploration and use of an ever-increasing wealth of machine learning

techniques that explicitly or implicitly extract and select several parameters from the data

to achieve highly performing systems (Malfante et al., 2018; Khan et al., 2019). Well-trained

automated systems have many advantages compared to human analysts including but not

limited to unbiased (i.e., not influenced by analyst subjectivity; Falcin et al., 2021), consis-

tent over time (i.e., repeatable performance after implementation when volcanic conditions

remain the same; Bueno et al., 2020), and faster execution. Supervised machine learning

classifiers, which are generally the core of automated recognition systems, rely on the labels

provided in a catalogue to be trained, and thus, if a catalogue is biased, its derived models

will also be biased. These systems usually require copious amounts of well-labelled data to

be constructed as unbiased as possible, and a catalogue’s integrity can be compromised due

to unexpected situations like a sudden volcano reactivation, or when analysts or sensors

are changed. Mislabelling is a significant source of model misclassification with seismic data

(Linville et al., 2020), and thus, clean, unbiased catalogues are necessary to train adequate

models. However, cleaning an existing catalogue can be a costly procedure since it requires

human and time resources for the revision of each event. It is noteworthy that Bayesian

deep learning approaches, using transfer (i.e., using data from one volcano to train systems

for another e.g., Bueno et al., 2020) and active (i.e., systems that interactively query users

to label new observations, e.g., Bueno et al., 2022) learning, have been successfully applied

(even on small datasets) to determine the potential uncertainty in event labels as volcanic

activity evolves, simultaneously as the events are being catalogued. These procedures al-

low mapping uncertainties in the class memberships to later retrain the model. Another

advancement in the area consists of augmentation of the dataset so that state-of-the-art

classifiers can learn from large amounts of known good quality data (Witsil et al., 2022).

Nevertheless, they still require clean initial catalogues, posterior human validation for un-

known events, or complex system fine-tuning.

To identify and overcome potential classification issues in volcanic catalogues, we propose

an easy and rapid method for volcano observatories to assess the quality of a volcano cata-
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logue in general, and of the specific events in it. Hence, events with "low confidence" can be

revised by a human to improve the catalogue with less effort than going through the whole

catalogue. Herein, we apply techniques developed in the machine learning and data min-

ing domains to deal with potentially noisy labels in open catalogues with their respective

waveforms from two different volcanoes: Cotopaxi volcano in Ecuador, and Llaima volcano

in Chile (locations shown in Fig. 1). Both are ice-clad, subduction-driven stratovolcanoes

that have been recently active, and thus, their catalogues are ideal for methodological per-

formance comparisons.

The rest of this work is organized as follows: In the "Methodology" section, we present the

procedural framework of the technique applied to clean databases in general along with pro-

posed extensions to it. In the "Data processing and models" section, we detail the specific

datasets used, enumerate the chosen models along with their parameters, and describe the

data standardization steps for the application of the method. In the "Results" section, we

present a subsample showing how events are evaluated to determine if they are potentially

mislabelled, and we summarize the general results from both catalogues. In the "Discussion"

section, we comment on and show the products and consequences of the applied method

comparing both datasets. The "Conclusion" section discusses the potential extensions to

this work.

2.2 Methodology

The accuracy of the classification models used for the creation of automated systems can be

impacted by two types of noise in the training datasets: label or class noise, and attribute or

feature noise (García et al., 2015; Frenay and Verleysen, 2014). In the volcano-seismic event

classification task, label refers to the specific family or class (type of event) an event has

been designated as, and attributes or features to the different quantities that are extracted

from the waveforms (e.g., peak frequency, duration, amplitude skewness, etc.). Both types

of noise can have varying impact on the performance of the classifiers. If the noisy attributes

are highly correlated with the labels, they can be more impactful than label noise (García

et al., 2015). In contrast, if the noise in the attributes is not widespread or strong enough,
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using a reasonable number of uncorrelated features could mitigate the effects of such noise,

as opposed to noise in labels that have direct impact on the learning process (Frenay and

Verleysen, 2014). Here, we implement a strategy that can simultaneously address the hypo-

thetical existence of both types of noise in the context of volcano-seismic event catalogues.

There are many strategies to deal with noisy datasets. One strategy consists of creating

stable classifiers that are mildly affected by relatively low levels of noise in the data. These

classifiers are trained with the data as is and are designed to perform well for future observa-

tions (i.e., robust learners; García et al., 2015; Frenay and Verleysen, 2014). In the context

of volcano-seismic event classification, however, it is not only desired to create systems that

can identify future events properly, but also to have correct historical records of all events

because they could have statistical value in hindsight (Bell et al., 2018). Therefore, it is more

relevant to apply a strategy to correct wrongly assigned labels by assessing the quality of a

catalogue as a whole and of each event one by one. This task falls into the "data cleansing"

or "noise filtering" domain. To do this, we apply a modified version of voting filtering (as

first described by Brodley and Friedl, 1999) also known as ensemble filters (García et al.,

2015). The basic idea of the ensemble filters scheme is to create different predictive models

in several disjoint partitions (non-overlapping subsets) of the data, train the models in one

partition of the data, and then quantify how the different models "see" observations in the

complementary left-out subsets in the dataset. Each event’s quality or confidence is then

evaluated based on the number of predictions from the models that agree with the original

labels. It is expected that the majority of predictions from the different classifiers will agree

with the original label for a given "unseen" instance if the original label is consistent with

the information learned from the observations in the training partitions, assuming that the

noise is not too large (Brodley and Friedl, 1999). Conversely, noisy observations will show a

disagreement between the original label and some of the models’ predictions if the informa-

tion from the training partitions is strongly incompatible. Consequently, one can define an

instance’s quality based on the number of agreements and disagreements and define criteria

for their eventual correction or definitive removal from the dataset.

In our approach, we modify the voting filtering method in four aspects by (1) using a LOO
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(Leave-One-Out, or “one versus the rest”) partition scheme instead of partitions of arbi-

trary size; (2) extracting and using mostly uncorrelated "sufficient" sets of features instead

of a single fixed set; (3) requiring a few "shallow learners" (Deng and Yu, 2014) for super-

vised learning; and (4) exploring unsupervised and/or transfer learning for the raw data if

possible. Before describing the procedure in detail, we present an analogy illustrating the

scheme.

In the supervised part of the scheme, we choose s shallow supervised classifiers that act as

independent volcano analysts; they will learn from the both the catalogue’s labels and infor-

mation extracted from their corresponding waveforms and separately evaluate each event.

The information is extracted in different features that are grouped in g complementary

sets so that each set describes the n events sufficiently. This leads to several algorithms

repeating while learning from different features at a time. To learn, one of the events is

excluded, and each "analyst" will be trained with each of the feature sets and the labels of

the other events and predict the label of the excluded event based on what they learned.

This process is repeated for each of the events so that each is judged almost identically

to the others. This means the full dataset minus one event acts as the training partition

each time leading to n different training partitions and helping to mitigate issues when a

class has too few events compared to others. Shallow learners are thus required for speed

since s × g × n supervised models are trained, but also because it makes the models easy

to implement in popular programming and machine learning environments (e.g., Python,

R, Weka, Orange, etc.). They may need to be mildly regularized to help avoid over-fitting

into the noisy instances, even if label noise might lead internal validation procedures –such

as bootstrapping– to the election of non-optimal hyperparameters (Frenay and Verleysen,

2014). The g sets of features are proposed to extract diverse information from the dataset

to evaluate each instance while reducing potential attribute noise or bias. We argue that

by creating many similar models with separate feature groups, we simultaneously achieve a

desirable diversity (complementary classifiers as in Sáez et al., 2013) while not overloading

the procedure with excessively diverse ensembles that may lead to a decrease in noise de-

tection (Sluban and Lavrač , 2015).
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The u unsupervised classifiers can be thought of as analysts that are only given information

about the relations between events, either similarities or differences –and not the labels– and

are expected to group them "blindly". Since unsupervised models are inherently different

to supervised models (for a detailed review see Carniel and Guzmán, 2020), they will find

class memberships independently of the catalogue’s original labels (with or without label

noise). These classifications may occasionally disagree with human perception or definitions

of classes and are in principle "nameless" in the sense that they lack direct one-to-one cor-

respondence to the supervised classes. Thus, when exploring unsupervised classifiers, the

"best" class assignations should first be identified by performing some kind of validation

scheme such as examination of the confusion matrix between the original labels and the

labels from the clustering. If the unsupervised algorithm has unfixed hyperparameters (e.g.,

epsilon in "Density-Based Spatial Clustering of Applications with Noise", DBSCAN), a

search for the best hyperparameter(s) should be done, again by performing some validation

of choice with the known labels. While unsupervised learning is generally less successful

than supervised learning at matching human expertise, it still groups together instances

that are very similar and leaves out from a coherent cluster instances that are not so similar

(not necessarily but potentially noisy).

Finally, using t transfer learning models is analogous to asking analysts to label events in

one catalogue using knowledge learned from another catalogue. One should consider that

knowledge from other volcanoes may not be directly applicable to the catalogue of interest

without proper unification of data characteristics from different sources (Keramati et al.,

2023). In this work, we did not use transfer learning models because some do not currently

achieve state-of-the-art performance even in clean catalogues (Cortés Moreno et al., 2019)

or are not yet easy/fast enough to apply for the catalogue cleaning task (Bueno et al., 2020;

Keramati et al., 2023). However, in contexts where the revision of a catalogue is not urgent,

they could be applied, even given the potential lower performance, to check for highly con-

sistent events that could be seen as "extremely archetypal" or "globally consistent".

Both unsupervised and transfer models have the advantage that they do not need to be re-

trained each time an event is labelled. In the end, each event will have m quasi-independent
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predictions where m = g × s + u + t coming from g × s supervised, u unsupervised, and

t transfer classifiers. A comparison of all these predictions with the original label helps us

define the following unique magnitude, ci:

ci = 1
m

m∑
j

Ii−agreej (2.1)

as the "consistency" of the i-th event. Here, I is the indicator function based on the m

predicted labels that takes value 1 if the j prediction agrees with the i-th original label,

and 0 if it does not. This magnitude is the arithmetic mean of agreements per event, and

while it is akin to the definition of accuracy, we use the term "consistency" as we do not

actually know in principle if the models’ predictions are accurate or not due to noise; we

can thus only talk about consistency between the original label and the models’ labels. The

consistency value of each observation represents its quality given the rest of the data and

the models, and all of them describe the quality of the catalogue in general. Thus, following

Eq. 1, a "highly confident" instance is one where most or all the models agree with the

original label (c ∼ 1), while an instance with a few disagreements might require inspection.

The specific steps to implement this approach are summarized in the following sequence:

0. Preprocess the data accordingly (e.g., trim data to contain only signals, filter/detrend

when needed, scale amplitudes).

1. Extract g different groups of features from the n seismic waveforms.

2. Calculate a (dis)similarity measure matrix between all the events in the catalogue.

3. Select s low complexity supervised classifiers and explore hyperparameters to be used

in the predictions of each of the n observations.

4. Select and apply u unsupervised classifiers, and when required, optimize hyperparam-

eters by comparing the clustering labels with the original labels and selecting values

that give the best accuracy or other performance measures.

5. Select t transfer learning models to the events making sure the transfer learning models

are compatible with the dataset.
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6. After choosing hyperparameters from step 3, for each event, train the different models

with the rest of the data and predict its label.

7. For each observation, assign the appropriate label determined from the comparison

and optimization of the clustering labels with the original labels.

8. Apply the t transfer learning models to each event and obtain the label predictions.

9. Calculate the consistency of each event for all the predictions as defined in Equation

2.1.

As numerous models may introduce too many uncertainties in a catalogue’s quality

assessment, one could opt to stay with the more classic voting filtering scheme and use

only supervised models (therefore abandoning steps 2, 4, 5, 7 and 8 in the implementation

sequence above). The inclusion or exclusion of models in the implementation depends on

how much time researchers can devote to the catalogue’s quality assessment. A definite

exclusion of a model and its predictions can be avoided, if desired, if each model is given an

importance value in Equation 2.1 in a weighted average fashion (weighted majority voting;

Sáez et al., 2013; García et al., 2015) –this should depend on the trust in the model or

comparable performance measures instead of discarding altogether. Here, we use Equation

2.1 as is, and assume all models are of equal importance for each consistency calculation.

Finally, a catalogue’s quality can be assessed from the consistencies of all the events and

the different statistics that can be derived from them. As a first action, after performing all

steps, lower quality events can be manually inspected (by one or more human analysts) for

their removal or relabelling if possible. Additional insights obtained from full catalogue or

class consistency statistics are described in the "Results" and "Discussions" sections.

2.3 Data processing and models

The open catalogues studied here for Cotopaxi and Llaima volcanoes (Figure 2.1) contain

seismic waveforms with their respective labels provided in different formats. For access to

these catalogues, see the Data availability section. The Cotopaxi dataset has waveforms

recorded from two instruments, one short period and one broadband, while the Llaima
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Figure 2.1: Locations for Cotopaxi and Llaima volcanoes in South America shown as red
stars. Names and locations of the seismic stations used in this study are indicated by blue
stars. Maps created using Cartopy, Met Office (2010 - 2015)

dataset has data from one broadband sensor only. Since the Cotopaxi events from both sen-

sors do not overlap (from 2012 to 2014 for the short period sensor and from 2018 to 2019 for

the broadband sensor), we restrict our analysis to the broadband seismometer because that

instrument possesses more events and a wider frequency band for analysis. In both datasets,

only the vertical component is provided since it contains all the necessary information to

classify the event types (Canário et al., 2020). In contexts where overlapping data is avail-

able from various seismic stations, the procedure can be implemented for each instrument’s

records independently by adding the different predictions to the consistency calculation in

Equation 2.1 for each event and weighting them according to the confidence on each sensor

if necessary. Cotopaxi events are provided along with 84 pre-calculated attributes for each
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event (Pérez et al., 2020). Llaima events have been pre-processed to have fixed amplitudes

and zero-padded to last 60 s (Canário et al., 2020). While both catalogues possess various

classes of events, we restrict this analysis to LPs and VTs because they are the most rele-

vant for volcanic precursory activity, they are the most numerous in the Cotopaxi dataset

(619 LPs and 46 VTs out of 706 total events), and one class vs one class noise detection

systems yield better performances than multi-class approaches (García et al., 2015). Out of

3592 total events in the Llaima dataset (Canário et al., 2020), we used the 1310 LPs and

304 VTs available. To make the method comparable between both catalogues and repro-

ducible for others, we preprocess the data so that events have similar properties before the

feature extraction step. Similar steps are recommended for other datasets as they intend to

optimize the performance of the models. Waveforms fed to the system should only contain

signals from the event itself and not pre- and post-event noise since that could alter perfor-

mance. Thus, for the Cotopaxi catalogue, we removed the first and last 10 s of noise that

was included in the raw signals, and for the Llaima catalogue, we removed the zero-padded

tail of the signals. In real-world applications, this requirement can be fulfilled by applying

automatic event onset and end detection algorithms such as STA/LTA if waveforms contain

signals other than the events. Additionally, the Llaima dataset was resampled from 100 to

50 Hz to ensure direct procedural comparisons between datasets. Waveforms from both

datasets are provided pre-filtered to have frequencies higher than 1 Hz (Pérez et al., 2020;

Canário et al., 2020), and in general, we recommend filtering the data to reduce the effect of

the background noise that may alter analyses, especially in events with low signal to noise

ratio. Finally, we normalize the traces with respect to the maximum absolute amplitude so

that events are characterized based on the contrast of attributes, not magnitude/scale.

After preprocessing, we extracted three complementary sets of attributes from independent

research groups that have been tested and found adequate for volcanic event classification.

The three sets of features are selected and applied independently: the first following those

proposed by Watson (2020), the second following Titos et al. (2018), and the third by com-

bining features inspired by Soto et al. (2018) and Reyes and Jiménez Mosquera (2017), as

described in Appendix B.1. While the features proposed by Watson (2020) were originally
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used for volcano-acoustic signals, they comprise a subset of the features described in Mal-

fante et al. (2018) for volcano-seismic signals and are studied as a minimal working set.

The attribute description of the three sets of features obtained in temporal and frequency

domains is summarized in Table 2.1. At first, these sets of features may appear arbitrary,

and some are "low level" and thus may not be ideal for some of the more classic machine

learning algorithms. However, since there is not a definite "best" set of features to describe

seismic waveforms, and there is no way to determine the "best" set for a given volcano under

the assumption of imperfect labelling, we recommended choosing any desired set of features

as long as they have already been successfully proven in clean datasets and are simple and

fast to extract without any volcano specific preparation. Additionally, after preprocessing,

we calculated two (dis)similarity matrices based on waveform cross-correlation (ccorr) and

dynamic time warping (DTW) distances (Anzieta et al., 2019; Ida et al., 2022) for each

event against the rest. It must be stressed that since distances are calculated for each event

against the others into a (dis)similarity matrix, this leads to n(n−1)/2 calculations for each

matrix that may need to be parallelized to be feasible in an admissible time (i.e., a couple

of hours on a modern desktop PC) for datasets with a few thousand events, depending on

the processing power of the computing system.

Following our condition of using easily applicable and low computational cost classifiers, we

tested the methodology using supervised and unsupervised models present in the standard

scikit-learn Python library (Pedregosa et al., 2011) summarized along with their explored

respective hyperparameters in Table 2.2, in combination with the Python seismological

framework ObsPy (Beyreuther et al., 2010).

For both datasets, we applied the algorithms to the three simple sets of features described

earlier. In addition, since the features from Pérez et al. (2020) were already precomputed, we

applied them to the Cotopaxi catalogue. We did this to test the robustness of the methodol-

ogy, but in general, we discourage the use of feature sets with so many parameters especially

because without data reduction they may lead to over-fitting (Carniel and Guzmán, 2020)

and because they make calculations slower. We tuned only the most commonly explored

hyperparameters shown in Table 2.2, and they were set to values that increased the ac-
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Table 2.1: Description of the sets of features used to train the supervised classifiers. Set 1
features are derived following Watson (2020), set 2 feature extraction follows Titos et al.
(2018), and set 3 features are obtained as proposed in Appendix B.1. The "Pérez" group
refers to the pre-calculated features provided by Pérez et al. (2020). The distance metrics
based on waveform cross-correlation and dynamic time warping (Anzieta et al., 2019; Ida
et al., 2022) for unsupervised classifiers are also listed.

Group Description Domain
set 1, feature 1 standard deviation time
set 1, feature 2 skewness time
set 1, feature 3 kurtosis time
set 1, feature 4 peak frequency frequency
set 1, feature 5 quality factor frequency
set 1, feature 6 skewness frequency
set 1, feature 7 50th percentile of the cumulative sum of the signal

amplitude in frequency domain
frequency

set 2, features 1-5 5th-order Linear Predictive Coding coefficients of the
first segment of the waveform out of three

time

set 2, features 6-10 5th-order Linear Predictive Coding coefficients of the
second segment of the waveform out of three

time

set 2, features 11-15 5th-order Linear Predictive Coding coefficients of the
third segment of the waveform out of three

time

set 2, features 16-18 The 20th, 50th, and 80th percentiles of the cumulative
sum of the signal amplitude in time domain

time

set 2, features 19-21 The 20th, 50th, and 80th percentiles of the cumulative
sum of the signal amplitude in frequency domain

frequency

set3, feature 1 Duration time
set3, features 2-8 7th-order Legendre Coefficients from transformed

waveform
time

set3, features 9-16 Mean values of amplitude spectrum at seven intervals
of same size from 0 to 12.5 Hz

time

Pérez 84 features provided by Pérez et al. (2020) multi
Unsupervised 1 Waveform cross-correlation (ccorr) time
Unsupervised 2 Dynamic time warping–based distance (DTW) time

curacy of the models using a 10-fold cross-validation scheme, avoiding fine-tuning them to

prevent over-fitting due to lack of knowledge of the number of mislabelled instances. While

we explored several numbers of neighbours for the k-nearest neighbours (kNN) classifier,

we defaulted to 1-NN as it generally yielded better consistency scores than other number of

neighbours (albeit scores were lower than those of the other supervised models). The 1-NN

classifier is also a local distance-dependent method sensitive to noise (García et al., 2015)

that can help to identify highly confident instances assuming mislabelled observations occur
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Table 2.2: Classification models and their adjusted parameters and abbreviations used in
this work.

Adjusted hyperparameters
Supervised models
K-nearest neighbours (KNN) Number of neighbours
Logistic regression (LogisReg) Inverse of regularization strength
Linear support vector machines (SVM-l) Inverse of regularization strength
Polynomial support vector machines
(SVM-p)

Inverse of regularization strength, polyno-
mial order

Radial basis function support vector ma-
chines (SVM-rbf)

Inverse of regularization strength, gamma
(sample influence radius)

Neural network (shallow) (sNN) Alpha (strength of regularization), learn-
ing rate, hidden layers’ sizes

Random forest (RF) Number of trees in the forest, maximum
features, minimum samples for split

Unsupervised models
k-means (kMeans) Number of clusters (fxed to 2)
Hierarchical clustering (HierClust) Number of clusters (fixed to 2), linkage

criterion
Density-Based Spatial Clustering of Ap-
plications with Noise (DBSCAN)

Maximum distance for neighbourhood
(eps)

Spectral clustering (SpecClust) Number of clusters (fixed to 2)

mostly in the "subjective decision boundaries" (where it is difficult to separate VTs and LPs

due to the continuum of possible waveforms).

In the case of unsupervised algorithms, we discarded models that led to very low accuracies

or delivered no predictions of one of the classes (generally VTs since they constitute the

class with the fewest events in both datasets). It should be noted that depending on the

comparison method, a similarity or dissimilarity (distances) matrix should be constructed

as required by the unsupervised algorithms. Here, we did not use spectrogram-based fea-

tures because they usually require tuning more parameters than total PSD or signal am-

plitude spectrum, e.g., spectrogram time window length and percentage of overlapping.

Besides these basic preprocessing steps for spectrograms, one methodology requires cross-

correlating the smoothed spectrograms (SPCC) of all of the events or designated events

in a dataset and then voting between the labels of the top five correlated events (Curilem

et al., 2018). Another example requires calculating dissimilarity measurements of the events

with an "Atlas" (a kind of spectrogram-based image stacking) of the families or classes of
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events (Pérez et al., 2022). In our scheme, both methods could become computationally

expensive for large datasets: in the first case because each event’s smoothed spectrogram in

the catalogue is contrasted with the rest to look for the top five cross-correlations (requiring

n(n − 1)/2 comparisons plus spectrogram smoothing), and in the second case because, for

each partition, a new "Atlas" would be calculated without the event of interest. Addition-

ally, mislabelled events may distort the spectrogram templates and stacks of spectrograms

of events with noisy labels will potentially have blurry boundaries that make decisions less

reliable.

After all the models are trained/defined, predictions are obtained for each event along with

their consistencies. Then, general metrics about the catalogue and its classes can be ob-

tained and events with low consistencies can be reviewed and relabelled or discarded from

the dataset altogether. The general procedure is summarized in Figure 2.2.

Preprocess/Standardize data

Select and extract features / 
Calculate (dis)similarity matrices

Select various models and apply 
them to the features/matrices

Use predictions to calculate the 
consistency score for each event

Review events with low 
consistencies / general metrics

Relabel/Remove events to 
clean a catalogue

Evaluate and tune models 
when necessary

Figure 2.2: Summary of the general procedure for the catalogue cleaning task.
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2.4 Results

Based on the unique consistency scores of all events, we present several metrics tailored and

examined by event, class, and globally, and compare them for both catalogues. We do not

investigate metrics per classifier since the method’s objective is focused on cleaning noisy

labels, classifier performance is uncertain in the presence of noise, and they can be studied

and reflected by weighting Equation 2.1 if needed.

First, we show a visual example of subsets of events from both catalogues displaying

(dis)agreements between the original label and predictions from the different models (Figure

2.3). Consistency is asserted for each event on a dataset following Equation 2.1. In this fig-

ure, the first column of each diagram depicts an event’s original label coded in blue for LPs

and yellow for VTs, and successive columns show agreement with each model in green and

disagreement in red. The events shown are ordered as provided in the datasets (unordered

in the Cotopaxi dataset and ordered in the Llaima dataset), and the subsets were picked

with the intention of depicting different degrees of consistency shown at the right of each

subplot.

Events with low consistency have fewer agreements (i.e., fewer green squares after the first

column from the left) or equivalently some disagreements (some red squares after the first

column from the left). Note that the Cotopaxi catalogue has more models than the Llaima

catalogue because we used the pre-calculated features exactly as provided by Pérez et al.

(2020). We calculate per class consistency statistics for each catalogue by grouping accord-

ing to the original labels (Table 2.3).

Table 2.3: Consistency statistics of classes in the Cotopaxi and Llaima catalogues.

Class consistencies Cotopaxi LPs Cotopaxi VTs Llaima LPs Llaima VTs
Average 0.9321 0.4832 0.9547 0.8595
Standard dev. 0.0754 0.2585 0.0756 0.2055
Maximum 1 0.8857 1 0.9643
Minimum 0.2857 0.0571 0.1428 0
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Figure 2.3: Examples of the varying consistency of seismic events from Cotopaxi volcano
(a, b) and Llaima volcano (c, d). The labels on top of each plot refer to the feature set/dis-
tance metric used as described in Table 2.1 followed by the model applied named after
abbreviations in Table 2.2. The original labels given in the first column of each plot and
(dis)agreements are coded as shown in the legend, and rounded consistencies of each event
are attached to the right of each plot.

These statistics show that different classes can have different overall consistency behav-

iors within a catalogue and between catalogues. Figure 2.4 shows the Frequency Distri-

bution (histogram) of Consistencies (FDC) per class for Cotopaxi volcano (Figure 2.4a,

b) and Llaima volcano (Figure 2.4c, d).
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Figure 2.4: Frequency distributions of consistencies of LP (a, c) and VT (b, d) events in
the Cotopaxi (a, b) and Llaima (c, d) catalogues, where n is the number of events in each
group.

The consistency comprising all events without distinction for both catalogues is calculated,

and the same general statistics are presented in Table 2.4.

Table 2.4: Consistency statistics of all events in the Cotopaxi and Llaima catalogues.

Global consistencies Cotopaxi Llaima
Average 0.9011 0.9368
Standard dev. 0.1510 0.1182
Maximum 1 1
Minimum 0.0571 0
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Lastly, we show the FDC of both catalogues as a whole with no distinction between

classes in Figure 2.5.

Figure 2.5: Global frequency distributions of consistencies for the Cotopaxi (a) and Llaima
(b) catalogues, where n is the number of events in each group.

2.5 Discussions

Figure 2.3 shows that unsupervised classifiers (columns two-to-nine for the Cotopaxi events

and two-to-eight for the Llaima events) present more disagreements-red squares-than su-

pervised ones compared to original labels, but they still provide information for events that

appear to belong together when there is agreement in events with high consistency values.

This leads to the existence of "perfectly coherent" events, but these belong to the LP class.

The existence of these events is most likely due to the fact that for both datasets, LPs

overwhelmingly represent the majority of events (93.08% of events in the Cotopaxi cata-

logue and 81.16% of events in the Llaima catalogue) so classifiers will tend to favour LP

predictions. Same models can sometimes agree in their predictions even when using different

features (for example the kNN predictions for VTs in Figure 2.3a) but they do not need to

always agree (for example classifiers from set1 vs the others in the VT with consistency 0.29

in Figure 2.3c). This suggests that many features/models are useful to explore ambiguities
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that arise when information learned from the dataset does not fully agree with an event’s

original label. Furthermore, with respect to data imbalance, LPs are on average highly con-

sistent for both datasets, and the variability of the consistency is similar (Table 2.3).

By contrast, for VTs in both datasets, average consistencies are smaller, and variabilities

are larger than for LPs. Furthermore, there are notable differences in consistency statistics

for VTs. The average consistency for VTs in the Llaima catalogue is much higher than that

in the Cotopaxi catalogue despite the variability being similar, and in general, the FDC

for VTs from Llaima follows an expected left-tailed distribution (Figure 2.4d). The clean

catalogues naturally ought to display consistencies distributed similar to the ones shown for

the Llaima catalogue for all classes, since regardless of class, most events should confidently

belong to their supposed class. Conversely, only a few should be outliers belonging to the

same class or mislabels that belong to another category.

It is also important to stress that if one does not examine the classes in a separated man-

ner, global statistics are not sufficiently different to easily state the comparative quality of

the catalogues (Table 2.4, Figure 2.5). Figure 2.5 shows that if the data is too imbalanced

(which is extreme for the Cotopaxi dataset), the frequency distribution of consistencies of

the larger family of events will "absorb" the distribution of the underrepresented family if

they are not separated. Using this comprehensive information from the calculated consis-

tencies, we believe there is strong evidence to confirm the hypothesis that the Cotopaxi

catalogue is, in comparison, at least noisier than the Llaima dataset (i.e., seen as a group,

events in Cotopaxi’s VT family tend to be confused and not clearly distinguishable, as op-

posed to Llaima’s events –either LPs or VTs).

While the consistency distribution for VTs in the Cotopaxi catalogue appears less stable

compared to the other more natural distributions (Fig. 2.4b versus Fig. 2.4a, c, d), it is

not clear if the distribution’s odd shape is due to mislabels in the VT class itself, or if VTs

are poorly consistent because the models are biased towards LP predictions due to misclas-

sifications within the LP class. To explicitly assert if the noise in the Cotopaxi catalogue

comes from a poor evaluation of LP or VT events, or both, we performed a quick blind

test of a few LPs and VTs designated highly and vaguely consistent based solely on the
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raw waveforms of the selected events. Three experienced volcano seismology analysts from

IGEPN (Instituto Geofísico de la Escuela Politécnica Nacional, Ecuador) were asked to in-

dependently use any criteria/tools to indicate the class membership of each "anonymized"

waveform as being LP or VT. We henceforth call events with high consistencies in their

family "high quality" events or HQ for short, and use "low quality" or LQ for events with

low consistency within their family. A total of 28 events from Cotopaxi were selected that

included seven LQ LPs (consistencies < 0.7), eight LQ VTs (consistencies < 0.55), six HQ

LPs (consistencies > 0.9), and seven HQ VTs (consistencies > 0.7). Of the seven LQ LPs,

all were labelled as VTs by at least one analyst, and three were identified as VTs by at least

two of three analysts. Of the eight LQ VTs, three were not relabelled by any analyst, four

were relabelled by just one analyst, and just one was relabelled by two analysts. As for the

HQ LPs, only one was not relabelled by any analyst. Finally, for the HQ VTs, no analyst

relabelled any of the eight VTs. From this experiment, we confirm that most ambiguity in

the Cotopaxi dataset comes from the LPs, since LQ and especially HQ VTs are consistent

with their original labelling for the analysts, while for LPs, even HQ events present a level

of ambiguity. Details of the experiment are provided in Appendix B.3.

Although both "low quality" LPs and VTs could be mislabeled, low consistency scores can

help reduce the revision process to subsets of the full dataset (by looking at events in the

left tails of the FDC). After visual (Figure 2.6) revision, relabelling or even removal from

the dataset could help increase the quality of the catalogue. Additionally, while we cannot

assert the cleanness of the Llaima dataset since criteria for labeling seismic volcanic events

vary from observatory to observatory and volcano to volcano, and we are not familiar with

the operational details at OVDAS (Observatorio Volcanológico de los Andes del Sur, Chile),

we nevertheless identified a few low consistency LPs and VTs which may require revision

for relabelling or filtering (Figure 2.7).

To further explore the results of analyzing the consistency scores in a simulated real-world

scenario, we tested the influence of relabelling only the "bad" events that at least two out

of three analysts switched in the Cotopaxi catalogue. We do this assuming that in a real

application of this methodology, even if we showed that there could be "good" events that
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Figure 2.6: A “low quality” (LQ) LP (a) and “low quality” (LQ) VT (b) from the Cotopaxi
catalogue with their spectrograms (c, d). The LQ LP may very likely be a mislabelled VT,
whereas the LQ VT is more ambiguous.

Figure 2.7: A “low quality” (LQ) LP (a) and “low quality” (LQ) VT (b) from the Llaima
catalogue with their spectrograms (c, d).

analysts may relabel after revision, only bad events would be reasonably reviewed in large

datasets -for this experiment, it amounts to three LPs and one VT. To assess the real effect

on the catalogue’s quality overall, we thus re-calculated the statistics of the previous sec-

tion based only on switching the classes of the "original labels". The resulting statistics are

compared to the statistics from Tables 2.3 and 2.4. By doing so, we can measure the actual

global changes due to correcting "bad labels" (Table 2.5).
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Table 2.5: Consistency statistics for the Cotopaxi catalogue after changing the labels and
reapplying the method.

Re-calculated statistics Cotopaxi Lps Cotopaxi VTs Cotopaxi all-events
Average 0.9329 0.5060 0.9021
Standard dev. 0.0738 0.2535 0.1477
Maximum 1 0.8857 1
Minimum 0.371429 0.0571 0.0571

Following this, we show that if the labels had originally been as the analysts redefined, all

statistics noticeably improve. Additionally, the effects of these seemingly small changes in

the consistency score distributions become apparent (Figure 2.8).

Figure 2.8: Consistency distributions for LPs, VTs, and all events from the Cotopaxi cata-
logue after four events have been relabeled, where n is the number of events in each group.

From these comparisons (Table 2.5 vs Tables 2.3 and 2.4, and Figure 2.8b vs Figure 2.4b),

it is clear that both the VTs and LPs became on average more consistent and less variable.

The average consistency increased from 0.9321 to 0.9329, 0.4832 to 0.5060, and 0.9011 to

0.9021 for LPs, VTs, and globally, respectively, while at the same time, all standard devi-

ations decreased. Most notably, the FDC for VTs became closer to an expected left-tailed

distribution. This indicates that the process is meaningful for cleaning datasets, even if only

a few (here 4 out of 665) events are reviewed and relabelled; this process could be repeated

until no further changes are needed.

To further verify what a clean catalogue’s consistency should look like, we inverted the usual

scenario where only "low quality" events are reviewed. We created an "ideal catalogue" from

a dubious one by inspecting "distinctively good" events with notably high consistencies -
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in this scenario, the agreement of unsupervised models with original labels becomes more

meaningful. The suspicion that the Cotopaxi catalogue has considerable noise in the LP

family was previously confirmed by this methodology and corroborated by experts at the

IGEPN. Therefore, we created a sub-catalogue inspecting the high quality (events with

consistencies > 0.9) LP events along with all the VTs to see how this would change the

results in the VT consistencies. From 486 "distinctively good" LPs, we picked 125 that were

very visually compelling (i.e., events with emergent onsets and dominant low frequencies)

as LP events based on waveform, spectrogram, and spectrum observations. We applied the

methodology to the 125 LP events along with the original 46 VTs, initially with their orig-

inal labels, to assess the effect of using HQ LPs in the calculations before cleaning the

catalogue. We then reran the procedure by changing the label of the single VT event that

was identified as a LP in the previous test.

By using the original labels employing a subset of LP events that fall within the usual

characteristics of LPs, we show that the FDC of VTs follows the expected left-tailed dis-

tribution closer than in the full dataset (Figure 2.9b vs Figure 2.4b) as the removed noisy

LPs no longer affect the classifiers’ performances. More importantly, by changing the label

of the single VT that the analysts identified earlier as a potential LP, the consistency dis-

tribution of the VTs became even closer to the expected left-tailed distribution of a clean

dataset (Figure 2.9d). Interestingly, the event that was changed by analysts in the original

dataset has a higher consistency score within the "cleaner" dataset (from 0.5429 to 0.8333).

While this may seem contradictory, it supports the idea that since high consistencies are

more abundant in cleaner datasets (or within robust families), a higher threshold should be

considered for the definition of potential noise boundary. However, this does not mean that

large amounts of data should be examined since in cleaner catalogues, the great majority

of the events’ consistencies will be high as seen in the Llaima dataset (see Figure 2.4c, d).

Consequently, the frequency distribution of consistencies is a tool that can help diagnose

the potential existence and even level of noise in a catalogue. If distributions show close to

expected ideal behaviour (left-tailed distributions), the catalogue is more likely to have a

low level of noise, while the more noise in a dataset, the more it will depart from the normal
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Figure 2.9: Consistency frequency distributions of the reduced Cotopaxi dataset that con-
tains the same VT events but with visually picked "good quality" LP events before (a, b)
and after (c, d) correcting the label of one VT event, where n is the number of events in
each group.

behaviour. As seen from this experiment, the effects of using more balanced datasets will

likely enhance the results from the proposed methodology since classifiers will not favor a

family or class based on the number of instances, but on the label noise.

Some important final remarks about implementation of this method are that by using inde-

pendent classifiers, one can introduce or discard classifiers with varying complexity and thus

this method works efficiently for small and large datasets. For very large datasets (several

thousand seismic signals or more), the method can be easily adapted to save computing

time. For instance, since the classifiers are independent, their training can be done in a
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parallelized manner not only using multiple cores of a single system simultaneously, but

also using many computing devices with different capabilities (e.g., using independent and

dedicated systems with powerful CPUs or GPUs to train neural network models, which

are currently the bottleneck in our experiments). Other strategies could be to partition the

data in any way (randomly or by year/activity period) so that smaller and more tractable

subsets can be studied, thus greatly reducing the computational burden of classifiers that

scale sharply with the number of samples. Another advantage of the method is that once

models have been obtained, and events have been relabelled or discarded, features and

(dis)similarity matrices have already been calculated so new iterations due to new labels

only involve hyperparameter and model re-calculations (Figure 2.2). Another characteristic

of the proposed methodology is that the explored sets of features are sufficiently comple-

mentary that they present high agreement in general but allow enough variability so that

events which might be slightly odd within a class could still be considered for examination

(e.g., the relabelled VT in the "cleaner dataset" scenario still had too low a consistency to

be considered of "exceptional quality" and thus required revision). Furthermore, in our ex-

periment, the set described by Watson (2020) led to higher consistencies than the other two

(the proposed set of features in Appendix B.1 shows slightly lower consistencies, followed

by the features of Titos et al., 2018) with the Cotopaxi data. For the Llaima catalogue, the

features proposed in this article yielded higher consistencies than the features by Watson

(2020) and than those by Titos et al. (2018) in that order. Furthermore, the correlation

matrix visualizations between all the features for the Cotopaxi and the Llaima catalogues

(Appendix B.2) show some features that are inevitably slightly correlated in the case of

similar feature definitions (e.g., percentiles in FD, of Titos et al., 2018, compared to skew-

ness in FD, used in Watson, 2020), but are not strongly correlated as groups between the

proposed sets of features. In the case of longer available exploration times (e.g., outside of

volcanic crises), more comprehensive sets of features (Toney et al., 2022) and models could

be tested without altering the general procedure, adding to the flexibility of the method.

We also investigated what would happen in extreme situations when the catalogue cleaning

needs to be done rapidly using default values for the supervised classifiers and skipping
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the hyperparameter tuning. While this leads to slightly less consistent models, events with

very low/high consistencies are still sufficiently well identified. A clear disadvantage of the

method is that it performs best in one-to-one class comparisons, and thus becomes increas-

ingly cumbersome to apply when many classes are present within a catalogue. The method

would need to be applied k(k − 1)/2 times if k classes are investigated, although when

catalogues have specific classes that are sufficiently different to the rest, those comparisons

can be bypassed.

2.6 Conclusions

We explored the results of applying a machine learning approach for the quality assessment

of two volcano-seismic event catalogues. The proposed methodology enables the identifica-

tion of potentially noisy labels in catalogues, provides steps to find out where (which class)

the source of noise could be in the catalogues, and yields a rough estimation of the signifi-

cance of this noise. The methodology is easier to apply than those using complex machine

learning algorithms since few hyperparameters need to be mildly tuned for the proposed

models, and preprocessing steps are general enough that they do not require volcano-specific

knowledge. During emergencies, the hyperparameter determination steps can be skipped and

default models could be trained with similar results. The use of complementary but uncom-

plicated features in the creation of different simple models helps achieve the right amount

of model diversity in a manner that is straightforward to apply. The advantage of the fast

implementation is that one can quickly and iteratively apply the process. The statistics

obtained from this process allow for visual as well as quantitative verification of the quality

of the catalogues, along with assessment of the effect of cleaning these catalogues. In this

study, we showed that the methodology helped to objectively verify the existence of pre-

sumed noise in the Cotopaxi catalogue and showed what a good catalogue should look like

in the case of the Llaima dataset. Noisy events were unsurprisingly identified in both cata-

logues, and thus, we believe that similar procedures should be considered in other settings

where noisy labels could be present affecting classification tasks. In particular, this same

experiment could be repeated to examine the compatibility of events within sub-families
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derived from unsupervised learning (clustering), or to clean dubious but useful historical

catalogues. While the results of this study were derived from catalogues of volcanoes with

similar characteristics, the procedure is sufficiently general that it can be applied to other

types of volcanoes.
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Chapter 3

Investigating 10 years of volcano
acoustic activity at Tungurahua
volcano, Ecuador aided by Machine
Learning

Anzieta, J., G. Williams-Jones, H.D. Ortiz and M.C. Ruiz (2024), Investigating 10 years

of volcano acoustic activity at Tungurahua volcano, Ecuador aided by Machine Learning,

Seismological Research Letters, In Review.

3.1 Introduction

Seismology in general, and volcano seismology in particular, heavily relies on the recording

and analysis of Earth’s ground motion to try to understand geophysical processes such as

earthquakes and volcanic eruptions. When the recordings of atmospheric vibrations are also

included, seismo-acoustics (Arrowsmith et al., 2010) allows for a better understanding and

discrimination of subsurface and atmospheric signals related to volcanic activity, or to other

phenomena of interest such as earthquakes and chemical or nuclear explosions (Matoza and

Roman, 2022; Dannemann et al., 2023).

Progress in the sensing, acquisition, and storage of seismo-acoustic data has led to the devel-

opment of ever more sophisticated tools for volcano monitoring (Matoza and Roman, 2022),

with the increasing amount and complexity of data requiring the creation and application

of efficient and nearly automatic procedures.

The nature of such tools is varied, and among them, traditional multi-station methods stand
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out because the breadth of applicable techniques surpasses the capabilities of single-station

approaches for the quantitative description of different phenomena sources (Ortiz et al.,

2018; Matoza and Roman, 2022; Tan et al., 2023) (e.g., by determination of parameters re-

lated to source location, geometry, time-evolution, etc.). On the other hand, single-station

routines still offer valuable information ranging from statistical approaches analyzing the

time evolution of single event occurrences (Varley et al., 2006), to complex tracking of seis-

mic velocity changes related to subsurface changes in volcanoes (De Plaen et al., 2016),

or phenomena in their vicinity (Ortiz et al., 2021a); these are often the sole option when

multiple sensors are not available in a specific area.

Complementary to the more traditional tools, several machine learning methods have been

adopted relatively early in volcano seismology (Matoza and Roman, 2022; Carniel and

Guzmán, 2020), and led to a plethora of studies applying supervised (Masotti et al., 2006;

Malfante et al., 2018a; Titos et al., 2018, 2019; Martínez et al., 2021; Manley et al., 2022;

Toney et al., 2022; Trani et al., 2022), unsupervised (Esposito et al., 2008; Reyes and

Jiménez Mosquera, 2017; Ortiz et al., 2021b; Watson, 2020; Witsil and Johnson, 2020;

Duque et al., 2020), transfer learning techniques (Bueno et al., 2020; Titos et al., 2020;

Keramati et al., 2023), or their combinations (Ren et al., 2020).

Here we explored the results of applying a combination of several traditional tools and con-

temporary machine learning techniques currently employed by the community to increase

the information from a catalogue of explosions obtained manually by only using data from

a single acoustic station (simulating situations when only one station is available or stable

for a long period of time). We applied a succession of tools to examine a vast dataset in

order to save time and human resources while ensuring good data quality. This study aims

to showcase how much information can be extracted from a single station, to compare some

modern tools with traditional ones, and to enhance an existing database, which is desirable

even in hindsight for a deeper understanding of eruptive processes (Yukutake et al., 2023).
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3.2 Background and Data

3.2.1 Background

Tungurahua is an andesitic stratovolcano located in the Andean region of Ecuador (Figure

3.1a) with numerous historical episodes of major eruptive activity (Mothes et al., 2015), the

most recent of which occurred from October 1999 to March 2016. This recent activity was

characterized by periods with several eruptive phases and styles interspersed with periods of

relative quiescence. The active phases generated a broad range of phenomena that resulted

from often continuous and sometimes intense degassing (Arellano et al., 2008; Hidalgo et al.,

2015) processes. Ash emissions (Eychenne et al., 2012; Wright et al., 2012) of different sizes

were often correlated with explosions of varying intensities from strombolian to sub-plinian

(Fee et al., 2010; Kim et al., 2014; Hall et al., 2015; Anderson et al., 2018; Battaglia et al.,

2019). These explosions often included pyroclastic fountaining (Hidalgo et al., 2015), but

most notably pyroclastic density currents of great intensity and destructive power (Douillet

et al., 2013; Hall et al., 2015).

The monitoring of Tungurahua volcano has been responsibility of Ecuador’s Instituto Ge-

ofisico - Escuela Politecnica Nacional (IG-EPN), since 1983 with monitoring capabilities

steadily increasing since the institutions’ inception due to various international collabora-

tions (Hidalgo et al., 2023). The first real time transmission, permanent, collocated broad-

band seismic and infrasonic sensors were installed on the flanks of Tungurahua (Figure 3.1)

gradually from July 2006 to 2008 in collaboration with the Japan International Cooperation

Agency (JICA) (Kumagai et al., 2007). This network of 5 permanent stations (Figure 3.1b)

provided near continuous seismic and acoustic recordings during the last 10 years of activity

(Figure 3.2a), and continues to operate presently.

3.2.2 Data

From these recordings, an unpublished explosion catalogue was created manually by IG-

EPN personnel as eruptions unfolded. Discrete acoustic events that exceeded a threshold

(∼40 Pascals [Pa] peak-to-peak pressure at Station BMAS) were hand-picked and generated

a catalogue of 6523 relatively discrete events spanning from July 14, 2006, to August 25,
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Figure 3.1: Location of Tungurahua volcano (red star) and Reventador volcano (black star),
as well as of the two major cities in Ecuador (black dots). b) Seismo-acoustic network from
the IG-EPN-JICA collaboration. Blue circles are unused stations, the red star indicates the
location of BMAS used for this study.

2015 (Figure 3.2b). Given the large volume of data that needed to be manually processed,

acoustic signals were scrutinized from daily drumplots with a relatively low time resolution

of approximately one minute. Consequently, when examined in detail at smaller scales, some

of the degassing signals displayed various shapes that deviated from the typical N-shaped

explosions, bearing some resemblance to short "jetting" (rightmost column in Figure 3.3)

events that were also present during explosive periods at Tungurahua (Ruiz et al., 2006;

Matoza et al., 2009; Fee et al., 2010; Anderson et al., 2018).

Although some of the events lie in the continuum between discrete explosions and tremor-

like behaviour, we used all the timestamps in this manual catalogue and extracted 20 seconds

waveforms from the recordings at station BMAS (red star in Figure 3.1b) as input for this

study. Here, like in the original manual catalogue, the focus is on signals with transient

explosion-like resemblance and thus, we only tried window sizes of 10 and 20 seconds,

sufficient to encompass the primary content of these signals. While chugging or jetting

signals can persist for significantly longer periods (up to several hours), they were not central

to the analysis and a small subset was included only as they were present in the original
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Figure 3.2: a) Data time availability per station in the Tungurahua IG-EPN-JICA network.
b) Daily number of explosions from a manually constructed catalogue

Figure 3.3: 20 seconds samples of some repeating acoustic events indexed in the manual
catalogue as recorded in BMAS (unfiltered). P2PPr stands for peak-to-peak pressure.

catalogue. The 20 second windows allowed for better classification and cleaning results to

be described later compared to the 10 second window. This approach enables consistent

assessment of potential repeating patterns (Figure 3.3), while ensuring that variations in

waveforms are not influenced by differences in station locations.
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Station BMAS was selected as it was used as the reference for the manual catalogue, was

one of the first stations to be installed, and had more data than all other stations except

BRUN. Importantly, the signal-to-noise ratio of the BMAS station was second only to BBIL

because Tungurahua’s geometry favours acoustic propagation towards the north-west (Kim

et al., 2012; Anderson et al., 2018; Ortiz et al., 2018). Since station BMAS was inactive

during some time periods (Figure 3.2a), the explosion events manually detected at the

station were 5740. Additionally, we manually extracted 5715 non-explosion waveforms from

the same station for training purposes described below.

3.3 Methods and Procedures

The general analysis scheme for the ten years of acoustic recordings based exclusively on

station BMAS was as follows: first we attempted to contrast and optimize two automatic

detection algorithms. Because we ignored other stations, we applied two successive pro-

cedures to discard potential false detections. The first consisted of testing a combination

of several supervised classifiers and features using the manual explosions and handpicked

noise, and then applying the best classifier to keep the detections that were classified as

explosions. The second consisted of manually reviewing a subset of the explosions obtained

in the previous step, and using the false positives to further discard wrong detections. This

was done using the classifiers that were not previously chosen and retaining events labelled

as explosions by most of them. These two steps were performed to reduce the number of

events that must be reviewed manually to create a robust catalog from a single station, and

can be ignored for example, by using a multi-station coincidence approach. Finally, these

distilled events were used to apply classical clustering with two measures of (dis)similarity,

and deep clustering using a Convolutional Autoencoder. All analyses involving waveforms

were performed on a personal computer using Python, its popular libraries (e.g., Numpy,

Scipy, Matplotlib, etc.), the seismological package Obspy (Beyreuther et al., 2010), and

several other software packages (referenced below when appropriate). As a first step before

cutting the waveforms, daily acoustic traces were high-pass filtered above 0.05 Hz to pre-

serve most of the information while eliminating intense low frequency drifts. This leads to
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the potential inclusion of microbaroms (low-frequency atmospheric pressure waves created

by the ocean that propagate over long distances) or other low frequency phenomena into the

study, but they will be taken out during the several sequential dataset cleaning procedures.

The cut signals had fixed durations of 20 seconds and were normalized against maximum

absolute amplitude so that they could be compared solely based on their shape and not

their magnitudes (e.g., Canário et al., 2020; Anzieta et al., 2023). Since all the traces were

extracted from the same station (BMAS), no further preprocessing was performed.

3.3.1 Part 1: Dataset increment

The first part of this study consisted of attempting to reduce the gap between manually

detected explosions and missing events due to the ∼40 Pa peak-to-peak manual detection

threshold.

While machine learning has achieved state-of-the-art performance in earthquake detection

and phase picking nearly equalling (Zhu and Beroza, 2018; Mousavi et al., 2020; Mai et al.,

2023) and sometimes even surpassing human capabilities (Wickham-Piotrowski et al., 2023;

Okamoto et al., 2024), in volcano seismology machine learning is mostly devoted to event

classification because event detection is still routinely applied semi-automatically using

classical techniques (Malfante et al., 2018b; Mousavi and Beroza, 2023). Many current

machine learning applications still rely upon the classic STA/LTA algorithm for detection

and then apply more sophisticated tools for clustering or classification (e.g., Jenkins II

et al., 2021; Machacca et al., 2023; Tan et al., 2023), although it is possible to deal with

both tasks simultaneously (e.g., Titos et al., 2019; Cortés et al., 2021).

Here, we also aim to improve the original catalogue by dividing the problem in two parts:

first by detecting signals with ’classical’ tools, and then by improving the detections using

machine learning classification between true signals and noise. We then apply a process to

clean the dataset further.

Detection

For detection, we tested a version of the classical STA/LTA algorithm (Allen, 1978) against

the "VINEDA" algorithm designed specifically for explosion detection (Bueno et al., 2019).
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Both, the STA/LTA and the VINEDA algorithms require adjusting or tuning many param-

eters that depend on the data and influence their detection performance. Thus, we explored

a range of suitable parameters for both by examining data previously inspected visually that

consisted of two days with low explosive activity (20 and 12 explosions) and one of intense

activity (more than 800 explosions). For the recursive STA/LTA (used for explosion-like

signals; e.g., Matoza et al., 2014, 2019), we tried short-time windows of 0.5, 1, 2, and 3

seconds, long-time windows of 10 to 60 s in steps of 10 seconds, onset thresholds of 3, 5, 9,

12, 17 and 20, and off thresholds of 1, 3 and 5. For the VINEDA detector, we fixed the high

frequency to 8 Hz, low frequency to 0.3 Hz and the average minimum and maximum event

durations to 2 and 20 seconds, respectively. We then explored combinations of the number

of frequency bands and duration bands to 3, 5, 7 separately, the beta value to 0.13, 0.2,

0.3, 0.5 and 1, and the detection threshold to values of 25, 50, 75 and 100. After compar-

ing results from both detectors’ combinations of parameters, we picked from the ones we

deemed adequate (as discussed in a later section): a short-time window of 1 second, long

time window of 40 seconds and trigger-on-off of 9, 3 for the recursive STA/TLA detector,

and for VINEDA –besides the mentioned fixed parameters– we used both the number of

frequency bands and number of duration bands of 3, and beta equal to 0.2.

Discrimination

To discriminate actual acoustic events from noisy signals with explosion-like shapes that slip

through the detection stage (e.g., instrumental glitches), we trained a classifier using the

5740 events from the manual catalogue and the 5715 non-explosion waveforms described in

the previous section. For ease and speed of implementation, we trained and validated several

simple learning models ("shallow learners", Deng and Yu, 2014) implemented in the scikit-

learn Python package (Pedregosa et al., 2011) using three independent groups of features

with demonstrated success in volcano seismo-acoustic datasets (Titos et al., 2018; Watson,

2020; Anzieta et al., 2023), and picked the one that performed the best. Among the different

"shallow learners" (Support Vector Machine –SVM, Random Forest –RF, and shallow Neural

Network –NN classifiers) and features we tried, the SVM classifier performed the best after

executing a 10-fold cross-validation scheme using the manual explosions and non-explosive
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signals by comparing classification accuracies. When trained with features following those

proposed by Anzieta et al. (2023), it replicated other successful SVM implementations (Li

et al., 2016; Tang et al., 2020; Toney et al., 2022).

Cleaning

As a final step to further clean the dataset, we created subsets of the newly detected events

classified as explosions in the previous step, reused the manual non-explosions into new sets

of events, and performed a cleaning procedure similar to the one described in Anzieta et al.

(2023). This procedure consists of creating several mostly independent shallow classifiers

to measure the "consistency" (or quality) of each event given its preassigned label, that is,

how the many different classifiers label each event based on information learned from all

the other events compared to the original label. If most classifiers agree with the original

label then the event is highly consistent (thus most likely well labelled) and vice-versa. This

way the quality of each event’s label can be high or low depending on its consistency and

a visual inspection or straight filtering of the low quality observations can then be applied

in a "voting-filtering" scheme (Brodley and Friedl, 1999). In summary, for each event, many

shallow classifiers are created with all the other events, and the quality of the event is defined

by the number of agreements of the predictions with its original label. Poor quality events

are those in which many classifiers disagreed with the original label and can be discarded

while high-quality events can be kept.

3.3.2 Part 2: Classical Clustering

Once a clean catalogue was created, we applied, compared and combined two different

techniques to identify families of repeating events. The first method was to cluster events

based on waveform cross-correlation (CC) which is still one of the preferred techniques to

establish template waveforms for matched filtering (e.g., Machacca et al., 2023; Tan et al.,

2023). The second technique is clustering based on pseudo-distances between waveforms

calculated using the Dynamic Time Warping (DTW) method (Anzieta et al., 2019; Ida

et al., 2022). In the case of CC, the matrix is converted from correlation (similarity) to

dissimilarity, and we refer to these operation or values as CC*.
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These two processes are very computationally intensive (especially DTW) although they

can be greatly sped up even in consumer grade computers by using Graphics Processing

Unit (GPU) techniques when available (Beaucé et al., 2017). For instance, DTW distance

calculations between a few thousand observations can be performed in a few seconds using

GPU approaches (Hundt et al., 2014), as long as the number of observations can fit in the

GPU memory (≲ 5000 events). If a GPU is not available, several Python packages (Tavenard

et al., 2020; Wannesm et al., 2022) have been optimized and can calculate DTW distances

between hundreds to several thousands of observations from a few seconds to several hours in

the CPU virtually without memory limitations. Nevertheless, since each event is compared

to the rest, at some point increasing the number of events leads to a number of calculations

( n(n−1)
2 calculations for a set of size n) that can rapidly exceed available resources (e.g.,

processing time or device memory). For such situations, it is possible to split datasets

into subgroups to identify and isolate representative clusters within them, allowing for

comparative analyses at a later stage (e.g., by clustering events in a day and then using

those clusters to prove other days as Allstadt and Malone, 2014; Lamb et al., 2020, 2022).

Here, we divided the entire dataset into the distinct eruptive phases and grouped events

within each phase to achieve processing times of seconds to a few hours for all phases,

depending on the number of events (hundreds to a few thousands).

After the distance-matrices were found for each period, we visualize them as a proxy for

evolution of explosivity, and then applied the Hierarchical Clustering algorithm using Ward’s

criterion (Anzieta et al., 2019; Ortiz et al., 2021b) to find representative families. There are

several ways to cluster events: one is by defining a dissimilarity (or similarity) threshold

and then considering the families of clustered events given this threshold, and another is

by predefining a set number of families. Here we investigated fixing the number of families

for several reasons: 1) In DTW there is no apparent value for strong association between

events before inspecting the entire dataset so both (dis)similarity measures would not be

comparable in a straightforward manner. 2) Thresholding is also arbitrary and different

studies have used several different thresholds (e.g., 0.6 in Allstadt and Malone, 2014, 0.7 in

Lamb et al., 2020, and 0.8 in Lamb et al., 2022), and even after a threshold is defined the
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minimum number of events for a family to be considered important is also arbitrary and

may or may not leave out meaningful clusters. 3) Thresholding is not sufficient to guarantee

high resemblance between events and can lead to associations that are not necessarily good

(Figure C.1) or may leave events unassociated that may belong together (Figure C.2). 4)

Fixing the number of families to a low number diminishes the clustering precision but

allows for more potentially noisy events to be included in a cluster (Green and Neuberg,

2006). High thresholds imply smaller clusters that may appear disconnected or disappear

altogether, while a coarse aggregation allows the study of general explosive behaviour during

a long period, i.e., as long as 10 years of activity. 5) Despite coarser resolution, combining

the cross-correlations and DTW can help alleviate the poor clustering by merging similar

events using two factually different similarity approaches. Thus, for both (dis)similarity

measures we clustered events into families of size 4 and 7 and explored coarse clustering.

Since the labels coming from each distance clustering are arbitrary, to identify coincidental

groupings between DTW and CC distances (i.e., events that were grouped simultaneously),

we relabelled these such that the total amount of coincidences was maximal to produce

families as large as possible –this is equivalent to permuting the rows and columns of the

confusion matrix such that the trace of this matrix between the arbitrary labels is maximized

as shown next:



DTW f1 DTW f2 DTW f3 DTW f4

CC f1 857 117 476 76

CC f2 938 1106 1312 20

CC f3 519 23 57 417

CC f4 1078 112 233 648


→

→



DTW f1−3 DTW f2 DTW f3−4 DTW f4−1

CC f1 476 117 76 857

CC f2 1312 1106 20 938

CC f3 57 23 417 519

CC f4 233 112 648 1078


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This optimal label swap can be found automatically in a fast manner using the Hungar-

ian algorithm (a combinatorial optimization algorithm that minimizes or maximizes –the

total cost– on a one-to-one assignment problem). By swapping labels, only events that are

clustered together using both independent difference matrices are considered to belong to

a given family, and by maximizing the trace, the most amount of consistent/coincidental

clustered events are preserved. Finally, the time evolution of the events with respect to their

families is studied for different periods.

3.3.3 Part 3: Deep Learning Clustering

The advent of deep learning methods –in particular Convolutional Neural Networks (CNN)–

has been a major advance in pattern recognition in volcano seismology as these methods

can learn feature representations from the raw data, and thus do not require "hand-crafted"

features (Titos et al., 2020; Manley et al., 2022; Trani et al., 2022). Nevertheless, as in

more classic machine learning algorithms, there is no single "flavor" of Neural Network

that fits all problems (Titos et al., 2018, 2019; Manley et al., 2022). Among the many

available deep learning architectures one of the most interesting ones is the Convolutional

Autoencoder (CA) because it can find efficient feature representations from images ex-

plicitly (Géron, 2019), making it well suited for spectrograms, scalograms or any other

two-dimensional waveform characterization. Convolutional Autoencoders have had success

in supervised (Zheng et al., 2019; Kong et al., 2021) and unsupervised learning tasks (Jenk-

ins II et al., 2021; Zali et al., 2024), and are reasonably quick to train. Simply put, a CA

will receive a signal, encode (compress) it, and attempt to reconstruct (decode) it from the

compressed version. The interesting part is using this compressed representation to perform

other tasks in an efficient manner. Here we also trained a CA focusing on compressing the

waveform representations to then apply clustering, and additionally compared its perfor-

mance with those of the classical methods described earlier.

To do so, as inputs we converted the 20 second time-domain acoustic traces to scalograms

using the Continuous Wavelet Transform (CWT) (Lee et al., 2019) as suggested by Jenk-

ins II et al. (2021). To improve resolution on the most important portions of the signals, we

created the 2D representations by focusing on frequencies between 0.17 and 8.0 Hz as most
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of the energy was contained in that frequency band (e.g., Ruiz et al., 2006; Ortiz et al.,

2018, 2021b for Tungurahua volcano) and applied a complex Morlet wavelet with central

frequency 1.5 and bandwidth 0.85 after exploration. We then reshaped the representations

to images of resolution 80 × 144 pixels.

Then we constructed the CA architecture similar to those suggested by Jenkins II et al.

(2021) and Zali et al. (2024) compatible with the 2D representations described in Table 3.1.

We chose maximum amplitude normalization to normalize the 2D representations of the

waveforms to be consistent with the previous techniques.

Table 3.1: Convolutional Autoencoder Architecture. The name, type, shape and activa-
tion function of the different layers forming the Convolutional Autoencoder network are
described along with the number of trainable parameters for each layer.

Layer(depth) Type Output Shape Activation Num. of params.
Encoding
Input(-) InputLayer (80,144,1) - -
Conv2D-1(8) Conv2D (40,72,8) elu 288
Conv2D-2(16) Conv2D (20,36,16) elu 1936
Conv2D-3(32) Conv2D (10,18,32) elu 7712
Conv2D-4(64) Conv2D (5,9,64) elu 30784
Flatten(-) Flatten (2880) - -
Dense1(1) Dense (26) elu 74906
Decoding
Dense2(1) Dense (2880) elu 77760
Reshape(-) Reshape (5,9,64) - -
Conv2DT-4(64) Conv2DTranspose (10,18,32) elu 30752
Conv2DT-3(32) Conv2DTranspose (20,36,16) elu 7696
Conv2DT-2(16) Conv2DTranspose (40,72,8) elu 1928
Conv2DT-1(8) Conv2DTranspose (80,144,1) sigmoid 281
TOTAL 234043

After training and evaluating the Autoencoder, we used the encoder portion of the CA

network to find the representation of each observation in a 26 dimensional vector. For the

grouping of these latent representations, we used two classical schemes: k-means clustering

as in Zali et al. (2024), and Gaussian mixtures modelling (GMM) clustering as in Jenkins II

et al. (2021), and combined them in a similar fashion as for the clusterings from DTW and

CC*, that is, by constructing a confusion matrix between both labellings and picking events
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that are grouped together by both schemes. Additionally, we retained clustered events that

possessed a high degree of membership to their own class for a given clustering scheme. In

the case of k-means clustering, the degree of membership was assessed by using the distance

to the mean of each family as a measure of quality (less distant events to the same mean

are considered more similar between them). For the GMM clustering, we used the proba-

bility of membership to each Gaussian mixture as the measure of quality (events with high

probability of membership to the same mixture are considered more similar). In summary,

we sought to ensure that events grouped into a family were assigned in a consistent way

from two different methods’ "perspectives" and with a high degree of membership for each

method. Although we dealt with the whole dataset at once, the clustering process required

a fraction of the elapsed time (a few minutes) compared to what would have been required

to label all events as described in the previous subsection (due to the difference matrices

calculations plus clustering). Finally, the total number of events belonging to both k-means

and GMM clustering for 4 and 7 families was approximately two thirds of the explosions,

but was reduced to 15,124 and 14,505 events respectively, after also applying quality restric-

tions (probability of membership higher than 0.99 for GMM clustering and distance lower

than the 75th percentile of distances for k-means).

A workflow diagram summarizing the entire procedure is shown in Figure 3.4.
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Figure 3.4: Workflow diagram of the processes applied in this study.
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3.4 Results and Comments

3.4.1 Part 1: Data Increment

Detection

After inspection of the performance of both detection algorithms during different explosive

rates, and attempts to identify a fixed set of parameters suitable for the diverse activity, we

decided to risk incurring more false detections in favour of capturing potential explosion-

like signals. Nevertheless, we opted to use VINEDA since even wrong detections had more

impulsive behaviour than those that could be produced by the recursive STA/LTA when

lowering the threshold too much (Figure 3.5).

From the application of VINEDA, we obtained 118,516 detections in a process that took a

few minutes for the entire dataset. Because the algorithm still detected signals that did not

necessarily belong to volcanic activity (e.g., instrumental/natural noise or other transient

waveforms), we proceeded to use the manual explosions and manually picked non-explosions

waveforms to discriminate between signals and noise.

Discrimination

From the 118,516 events obtained by VINEDA, 75,483 were classified as events related to

volcanic activity and the rest were classified as noise using the SVM classifier trained with

the events from the manual catalogue. However, while the internal cross-validation of the

winning classifier led to an average accuracy greater than 93%, simple classifier systems tend

to perform worse when faced with new data because they possess less generalization power

than deep classifiers (Géron, 2019). To verify this, we manually reviewed nearly 30,000 out

of the 75,483 events by inspecting traces from other stations (when available) and found

that ∼ 21% of the events were dubiously classified as explosions and close to 7% of the

events were definitely not explosions (i.e., noise with shapes resembling explosions). It is

not surprising that there were so many events of dubious nature since we started from a

manual catalogue created with a large peak-to-peak amplitude threshold (∼ 40 Pa) many

times larger than background noise (Figure 3.5a), leading to detection and classification of

events with amplitudes of ∼ 1 Pascal (Figure 3.5c). As such, in order to preserve events
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Figure 3.5: Example of detection and discrimination stages. a) Daily trace with visual ∼ 40
Pa threshold as the dashed red lines. Zoomed region delimited by vertical blue lines. b)
STA/LTA Characteristic function for the whole day with detection threshold as the dashed
red line. Blue lines define the zoomed regions in c-d. c) Zoomed trace. Small explosions de-
tected by a "shallow learner" are highlighted in green. d) STA/LTA Characteristic Function
for the zoomed trace. Lowering the detection threshold would increase false detections.

that are most likely related to volcanic activity, we applied the cleaning procedure with the

following details.

Cleaning

In the original version of the catalogue-cleaning procedure proposed by Anzieta et al. (2023),

the focus was on cleaning already reviewed/published catalogues to identify potentially
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mislabelled events by assessing events with low consistency compared to information from

other events in the catalogue. However, a good quality catalogue can be created quickly

by just preserving events with high consistency. Here, we opted to apply that procedure

to the 75,483 remaining events from the previous step by partitioning the whole dataset

into 12 non-overlapping subgroups of ∼ 6000 events labelled as "explosions" and adding the

original manually picked non-explosions plus the truly noisy events we identified through

visual inspection. To create the shallow learners, we used the classifiers and features not

used in the previous discrimination step. This means that we used all the combinations

between the features by Titos et al. (2018); Watson (2020); Anzieta et al. (2023) and SVM,

RF and NN classifiers except the winner used in the discrimination step (SVM with features

from Anzieta et al., 2023). After applying the cleaning procedure to each of these subgroups

and retaining only explosion events with consistencies higher than 0.8 (equivalent to ≥7/8

coincidences between original label and predictions), we identified 36,359 events with high

confidence; a more than 6 fold increase compared to the original catalogue (Figure 3.6).

Figure 3.6: Superimposed daily explosions from the original manually determined catalogue
(red) and new automatic detections (blue)
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3.4.2 Part 2: Classical Clustering

After obtaining the 36,359 events, we divided the whole dataset into subsets of eruptive

phases separated by quiescence of several days (Hidalgo et al., 2015) to cluster events within

periods. Before clustering, distance/dissimilarity (or similarity) matrices must be calculated

and the matrices themselves can be very informative about the state of activity/evolution

of a volcano. It is important to note that DTW pseudo-distances are inherently different

than those from CC* not only because they are obtained from a non-linear operation, but

also because they do not possess a fixed upper-bound for maximum dissimilarity (for CC*

maximum dissimilarity is 1). Nevertheless, both measures should lead to similar results. To

show that this behaviour also transferred between several eruptive phases, we calculated

DTW and CC* dissimilarity matrices for the events of five consecutive eruptive periods

studied by Ortiz et al. (2018) and described in Table 3.2; qualitatively analogous results

were obtained for other periods.

Table 3.2: Focused Periods of Eruptive Activity.

Period Date Number of Events
1 Jan 2010 to March 2010 2046
2 May 2010 to Aug 2010 2490
3 Nov 2010 to Jan 2011 1305
4 Apr 2011 to May 2011 445
5 Nov 2011 to Sep 2012 1701
Total 7987

Once the difference matrices were generated and examined (Figure 3.7), the next step was

to cluster and identify highly similar events combining them. To perform the clustering, we

applied the hierarchical clustering method using Ward’s criterion as in Anzieta et al. (2019)

and Ortiz et al. (2021b). We predicted labels for families of size 4 and 7 to show a coarse

and fine event discrimination/grouping. This process delivered 4 families with 3077 total

events and 7 families with 2478 total events which correspond to 38% and 31% of the total

detections during this time frame. The time evolution of events that were clustered together

combining both matrices is shown in Figure 3.8.
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Figure 3.7: Dissimilarity matrices obtained using DTW and CC*. a) DTW dissimilarity
matrix. b) CC* dissimilarity matrix. Periods were divided visually and numbered following
Table 3.2. Blue depicts similarity and white/red dissimilarity. Black lines delimit same-
period dissimilarity portions. Blue colors depict similarity and red dissimilarity according
to the colorbar values.

Figure 3.8: Daily occurrences of events clustered using DTW joint with CC* grouped into
4 (a) and 7 (b) families for the examined period. Larger marker sizes indicate more event
occurrences on a given date as given by the solid black marker. Vertical black lines separate
the periods and they are numbered according to Table 3.2. Gaps in detections are due to
surficial inactivity.
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3.4.3 Part 3: Deep Learning Clustering

We used 30% of the 36,359 acoustic events for training and 70% for validation and obtained

good reconstruction results from the scalograms probably because the CWT is very well

suited for non-stationary processes (Kumar and Foufoula-Georgiou, 1997).

Figure 3.9: Examples of raw acoustic event waveforms, their normalized scalograms, their
decoded images and residual images from the trained autoencoder network. The residual
image shows the mean-squared error (MSE) between the reconstructed image and the orig-
inal one.

As a reminder, to obtain good latent representations, CA must learn to reconstruct their

inputs as faithfully as possible. Once an input is reconstructed, one can compare the orig-

inal 2D-representation with the reconstructed one and characterize qualitatively as well

as quantitatively differences between them. In Figure 3.9 we show 4 examples of acoustic

events with different shapes, along with their original scalograms, their reconstructed scalo-

grams, and their residual images. The residual image also shows the mean-squared error

(MSE) between the reconstructed image and the original one; we only used that value as a

measure of error to have an intuitive idea of the mean difference in "pixel value" between

images, and not as the loss-function for training the network. This is because we weighed

vector normalization as in Jenkins II et al. (2021) and Zali et al. (2024) against maximum
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amplitude normalization (with sigmoid activation functions and binary cross-entropy as the

loss function) as suggested by Géron (2019), and opted for the later combination because it

returned smaller MSE between original and reconstructed images even though the preferred

loss-function for a sigmoid activation is the binary cross-entropy and we used that one here.

This standard approach is better for image-like inputs because images have an inherent

lower bound, i.e., there are no negative values for pixels, so mappings to reconstruct images

(either spectrograms or scalograms) are naturally bounded (by zero). The reconstructions

are mostly faithful to the original images, although some of the small amplitude fine details

are lost in the noisier signals (Figure 3.9). This is another property of CA that, thanks to

their power to reconstruct the main features of the signals, have been proposed as denoisers

(Zhu et al., 2019). It also suggests that the latent 26-dimensional representations are ade-

quate to attempt clustering.

Figure 3.10 shows the distribution of events for clusterings of size 4 and 7 combining k-

means and GMM, plus the quality restrictions (probability of membership higher than 0.99

and distance lower than the 75th percentile of distances).

Figure 3.10: Daily occurrences of events clustered using DTW joint with CC* grouped into 4
(top) and 7 (bottom) families for the whole dataset. Larger marker sizes indicate more event
occurrences on a given date as given by the solid black marker. Vertical dashed black lines
enclose the periods studied in Figure 3.8. Gaps in detections are due to surficial inactivity.
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3.5 Discussion

The inspection of various parameters of both the recursive STA/LTA and VINEDA led us to

verify that there is no single set of parameters that maximize true detections and minimize

false detections during days with different explosive rates. Although in cases of low explosive

activity it was easier to tune the recursive STA/LTA, in cases of high activity or noise it

had less sensitivity to impulsive signals than VINEDA. This could be especially problem-

atic because explosions could sometimes occur in the middle of the transition between rapid

explosions to emissions tremor or vice versa (e.g., Fee et al., 2010; Figure C.3). Also, while

VINEDA has many parameters that make it more complex to tune than STA/LTA, after

extensive exploration, we found that given some prior knowledge of the events (expected

durations and frequency content) that allow fixing the duration and frequency ranges, one

can focus only on a couple of parameters to optimize performance. For instance, the most

sensitive parameters for detections are beta and the number of frequency bands which cause

noticeable changes in number of true and false detections in a consistent manner. Lower

beta led to more detections overall, and a higher number of frequency bands reduced detec-

tions but favoured reduced false detections slightly, while the number of duration bands led

to minor changes in detection numbers. Thus, after setting parameters that can be easily

surveyed in a given dataset, emphasis can be placed on adjusting beta and the number of

frequency bands, making it comparable to STA/LTA schemes (i.e., testing of short and long

windows durations and on and off thresholds). Nevertheless, depending on environmental

conditions or instrumental defects/problems, atypical signals unrelated to volcanic activity

can still bypass classical detectors. For this reason it is important to obtain catalogues that

are as clean as possible before applying sophisticated tools since the noise greatly affects

the predictive capability of any system, independently of its sophistication. Cleaning efforts

are usually time intensive and different schemes can be tried to alleviate the time devoted

to this task. At every step in obtaining a good quality dataset, one must consider that

the more restrictions one implements into an automatic or semi-automatic tool, the greater

amount of potentially good data may be missed.

Here, we used traditional tools (not Machine Learning related) for detection because they
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are fast to apply, but then used different forms of supervised learning with classifiers that

are easy to implement and require little tuning to further clean detections from classical

algorithms. This created a robust dataset over 6 times larger than the original manually

created catalogue in a timely manner, and we believe this procedure can be applied to sim-

ilar datasets so that they become more complete for further knowledge extraction. While

SVM was a good shallow classifier, it is still important to explore other classifiers such as

Random Forests that have also been tried with good success (e.g., Malfante et al., 2018b;

Falcin et al., 2021). When time permits, a deep study for the best features for each classi-

fier and dataset following a comprehensive approach such as that proposed by Toney et al.

(2022) is also recommended.

The increase of ∼ 6.33 times (from 5740 to 36,359) the number of events obtained through

human inspection (Figure 3.6) through automated methods was also observed in Ortiz et al.

(2018). While celebrating that there was an increase in the number of explosions just from

the fact that the 40 Pa threshold was high to begin with may be too optimistic, the key

point is that this procedure is semi-automatic and can reduce the inspection time substan-

tially. The determination of the ∼ 6000 explosions detected manually took a few weeks of

work with clear explosions (high signal to noise ratio), so we can argue that producing the

same work for the current catalogue might take considerable efforts and time. Still, we note

that just like other machine learning tools, human revision is advised when possible. While

changing propagation conditions will affect detections and thus different periods could show

artificial explosion rate variations, we argue that in the bad scenarios explosions will gen-

erally be obfuscated, but in times of high explosivity (in terms of number and intensity

of explosions) the amount of detections will increase independently of families. Since we

observed different types of explosions alternate in time arbitrarily, at least relative changes

between clusters in a given day or period should be credible. However, it is a fact that many

more explosions were not included because of the use of a single station and probable bias

in the cleaning stages, and explosion sequences may not alternate between families ran-

domly. Thus, we acknowledge that since this catalogue is but a first approximation, a more

complete one can be created considering information from other stations and the seismic
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components, and correlations between number of detections and weather parameters may

help resolve this question.

The clustering task is of particular interest and importance because the existence of diverse

events repeating and interspersing in time tells us about recurrent dynamical processes re-

lated to the state of activity of a volcano. Even dissimilarity matrices on their own possess

important analytical value to identify temporal patterns before clustering is applied, but

clustering makes the picture clearer. At the same time, clustering is not a straightforward

task and there is no single algorithm that suitably solves all problems.

The striking similarity between the two matrices (Figure 3.7) indicates that CC* as well as

DTW methods provided similar insights into the temporal relationships between events. At

the same time there are small differences that enable identification and discrimination of

"super similar events", i.e., pairs or groups of events that are deemed highly similar using

both criteria. Visual observation of period 2 suggests that a large number of events with high

similarity in both matrices occurred consistently throughout the entire time frame, and it

appears that these events may have been present in all periods to some extent. In contrast,

the following period (period 3 in Figure 3.7) is comprised of events that are different to

almost every other event during all times. This may be due to notable changes in the source

of the events or related to a major vulcanian eruption on November 22, 2010 (Ortiz et al.,

2018). Nevertheless, several events repeat in time in spite of crater location changes detected

during these periods by Ortiz et al. (2018). This suggests that source parameters control-

ling the appearance of explosive waveforms are likely influenced not only by the relative

vent location or possible vent geometries, but also by the interplay of deeper factors over

time (plus path effects). For instance, given a family of repeating events, it is assumed that

their source should essentially be the same, yet amplitudes can vary. This suggests that for

different repeating events, the generation process is similar except in intensity. This could

imply then that even if the surficial location stays seemingly the same, it is on a deeper

level below the crater that a transient phenomenon must repeat for a given family of events

yet be different between families. Further, this transient process is non destructive at such

levels so that waveforms ‘repeat’ even after large eruptions or after many years of activity.
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Perhaps, a complex network of fractures (like those proposed by Butcher et al., 2020) that

connect roughly to the same surficial location become alternatingly permeable and shape

the waveforms, or are part of the generating process for the explosions themselves. However,

elucidating this question, is a step that will require a similar yet extended approach using

the seismo-acoustic data from all available stations to better probe the sources (e.g., Ruiz

et al., 2006).

Notably, most events reoccur throughout all eruptive phases, although some families tend

to be more prominent than others at certain times before they all reappear in a balanced

manner towards the end of the studied periods. For both groupings in periods 2 and 3 on

Figure 3.8, two different families of explosions (A and B) show a large number of events

with respect to others but none completely disappear. This could be related to a change in

eruptive behaviour due to the change in the location (and other parameters) of the vent/-

source, but also suggests simultaneous competing source mechanisms that become more or

less prominent over time. It is also clear that partitioning the events into more families can

dilute the knowledge gained because some families become too under-represented. However,

we cannot rule out that the existence of rare but repetitive events may be linked to distinct

processes associated with eruptions as shown in Anzieta et al. (2019).

While this exercise provides interesting insights by clustering events between different peri-

ods, using larger number of explosions and applying these techniques as described eventually

becomes infeasible as mentioned earlier. For this reason, as the objective of this exercise

was to revise the full extent of the dataset (∼ 10 years of events), to obtain similar detailed

results for the whole dataset we applied and show the results of the more modern deep

learning techniques below.

Here we contrasted the results of using two (dis)similarity measurements to look for clus-

tering and patterns in the data distilled from the detection and cleaning steps, and showed

that different criteria should still deliver similar knowledge (e.g., similar behaviour for the

same periods of activity as shown in Figure 3.7), and that their combination helps solid-

ify it. The main limitation of classical clustering through waveform direct comparisons is

computational burden (if distances between all pairs of events are considered), so in cases
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of limited time they are mostly well suited for moderate datasets. Here, we consider mod-

erate datasets those that have only a few thousand events and can fit in the memory of a

consumer-grade GPU that allows all-against-all calculations in a few seconds as opposed to

minutes/hours in a consumer-grade CPU.

While there is no single algorithm or procedure to solve all tasks, deep learning techniques

are becoming more prevalent because of the strong generalization capabilities they possess.

As noted in the methods section, two of the strongest points of Convolutional Autoencoders

are the generalization ability (inherited from deep learning) and efficient representation (by

optimized encoding-decoding) that make it a suitable tool to engage with the full dataset.

The other important feature of the CA network architectures proposed by Jenkins II et al.

(2021) and Zali et al. (2024) is that they are fairly quick to train. While tuning of training

parameters (hyper-parameters) can be a lengthy process (and "an art" for some), using a con-

sumer grade GPU can greatly decrease the time required to test different hyper-parameters,

to later train the whole dataset in a CPU if memory is insufficient for the whole dataset.

Although they generally require a large amount of good quality data (preferably tens of

thousands of events or more for a process such as the one described here) and parameter

tuning to be trained properly, after they "learn" a task, they perform satisfactorily (as seen

in Figure 3.10 vs Figure 3.8, Figure 3.7 vs. Figure C.4, Figures C.5 to C.15) and generally

faster than almost any other procedure given observations/datasets of the same nature.

For instance, producing the inputs for Figure C.4 took 30 min with the same computer

that required >7 hours to produce Figure 3.7b. Additionally, continuous improvements in

hardware and software capabilities make deploying these deep learning systems easier with

time. Figures C.5 to C.15 show samples of the families of events based on the CA clustering

and they generally show similar semblance, which makes it in agreement with traditional

results. Nevertheless, it must be mentioned that separating events into more families tends

to blur the major differences between them (e.g., waveforms from families 7A vs 7G, or

7F vs 7C in Appendix C.4) and thus interpretations on what they precisely mean in time

related to the behaviour of the volcano is harder.

For the entire dataset (Figure 3.10), there are obvious periods with more acoustic activity
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and there is a similar behaviour with the analyzed periods (Table 3.2, Figure 3.8), i.e., the

corresponding periods A and B have families that surpass the others in terms of events, but

no event family is totally absent.

In general, behaviour between clusterings is qualitatively similar (Figure 3.8 and Figure

3.10), with some families taking precedence over others at times, or bursts of events in-

creasing in number for all families (e.g., Figure 3.10 from late 2007 to early 2008). However,

due to the large number of events, in this case there is no family that is almost completely

"diluted" by having too few events when using 7 families (family 7F in Figure 3.8b vs. fam-

ilies in Figure 3.10b bottom); although one of the families shows an almost complete and

distinctively long "quiescence" since 2006 to 2013 (family 7D in Figure 3.10b). A few events

from each family are shown in Appendix C.4.

To our knowledge, this is the first time classical clusterings of acoustic signals have been

directly compared with clusterings from encoded signals from a CA. This opens the avenue

to consider improving deep learning approaches that may lead to ultimately equal perfor-

mances to traditional tools and could allow fine exploration of more large datasets faster

(for example, after using all stations and discriminating even lower signal to noise events).

Nevertheless, the traditional techniques remain a good, if not the best standard, when there

are no resource restrictions and can be combined with the more modern tools (e.g., classical

tools such as k-means and GMM clustering with "deep" latent representations). Compara-

tively, k-means clustering led to more consistent groupings than GMM but no algorithm was

perfect at clustering events when analyzing results on their own. For instance, only a few of

the examples of repeating events in Figure 3.3 met all the criteria for clustering, although

those that did, belonged to families in concordance with their apparent shapes (similar to

the samples in Figures C.5 to C.15). On the other hand, when events met all the criteria,

the resemblance between same family observations increased noticeably but reduced the

number of events dramatically, to less than half of the dataset. To overcome this problem,

a few high-quality events from each family could be inspected quickly and they can be used

as labelled events to implement a semi-supervised learning (learning from a few labelled

observations) scheme (e.g., ?), in a time critical situation, the same pre-trained CA network
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could be used to create a classifying network (Géron, 2019).

On the other hand, the application of improved deep learning networks or perhaps the

widespread adoption of Neural Operators to learn and rapidly evaluate functions (Kovachki

et al., 2023), may provide the volcano-seismological community the tools to more effectively

and efficiently analyze the ever expanding datasets. Neural Operators are a recent paradigm

in deep learning that map between infinite dimensional function spaces as opposed to finite

dimensional vectors (of regular neural networks). They are currently being used in the seis-

mological community for multi-station simultaneous picking of seismic arrivals irrespective

of the network geometry with excellent results (Sun et al., 2023), and thus their potential

to improve tasks is still unknown but promising.

Here we showed that a Convolutional Autoencoder, already tested successfully in seismic

datasets, translated very well into a purely acoustic dataset with minor modifications (scalo-

gram representations and maximum amplitude normalization with binary cross-entropy loss

function) and thus can also translate well into similar datasets. This procedure greatly re-

duced the time to explore the whole dataset: after the Autoencoder was trained (which

effectively took a couple of hours because of hyper-parameter optimization, but not training

time), encoding the wavelets and clustering them takes from a few minutes (few thousand

events) to a couple of hours (full dataset) depending on the size of the eruptive period used.

This is in contrast to the several hours to several days required when following the classical

procedures in our processing system and thus reinforces the significant advantages of deep

learning approaches.

As a final comment, all these results can be replicated from a multi-station standpoint so

that lower uncertainties can be achieved in all tasks: detection, cleaning, classification, clus-

tering, etc., although independent subsystems are recommended in case of station loss or

other data-loss problems. In particular, the same tools can be applied to combine acoustic

with co-located seismic recordings, and obtain even deeper pattern recognition and under-

standing of volcanic processes. The salient advantage of using multi-station approaches is

immediate as the cleaning stage is omitted because network coincidences can be used to

discard false detections.
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3.6 Conclusions

This work encompasses the exploration of many classical and novel data processing tech-

niques applied to a very large dataset originating from almost continuous acoustic recordings

from 2006 to 2016 at Tungurahua volcano while it was still erupting. The task consisted

of trying to increase and improve the quality of an existing catalogue of manually detected

explosions. We simulated the common situation of possessing a single acoustic sensor at a

volcano and analyzed the data by dividing the problem into consecutive detection, cleaning

and clustering steps. We compared and combined many available tools while trying to find

a compromise between accuracy of detections and resource investment. This confirmed that

there is no universal, perfect algorithm to complete a given task and it is best to actually

use them in tandem to compensate for inherent weaknesses. As means to rapidly analyze

the whole dataset simultaneously, we verified that a Convolutional Autoencoder network

architecture already proven for seismic datasets handles the task successfully for acoustic

signals with minor modifications. For this particular dataset, we found that the scalogram

obtained from Continuous Wavelet Transform is a better two-dimensional descriptor than

the more common spectrogram, and argue that it should be tried for other discrete events.

In a similar fashion we also found that using maximum amplitude normalization for scalo-

grams, sigmoid function activation for the output layer, and binary-cross entropy as the

loss function for the Convolutional Autoencoder network delivers better results than vector

normalization, linear activation function for the output layer, and mean squared error as

the loss function, respectively. By employing a comprehensive approach, we extended the

manually curated catalogue from around 6000 events to over 36,000 events. This allowed

us to identify recurring groups of events and their interplay throughout the ten years of

recordings at Tungurahua volcano. The relative simplicity of the implementation of this

procedure should motivate its adoption for other extensive datasets.
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Chapter 4

Tracking changes in natural
streams using acoustic data: The
2021 Western North America heat
wave at the Squamish River, BC,
Canada

4.1 Introduction

The number of scientific efforts focusing on the effects of climate change are increasing with

urgency, especially since escalating extreme weather events result in large environmental,

societal and economic impacts (Naveau et al., 2020; Krichen et al., 2024). This is reflected

in the steady increase of literature containing the phrases "climate change" and "extreme

weather events" since the mid-1980s (Figure 4.1). Most of these efforts are devoted to trying

to mitigate the effects of natural hazards by improving the understanding or modelling the

predictability of these phenomena (Finkel et al., 2023), or by improving monitoring capa-

bilities with continuously evolving classical and unconventional technological tools (Krichen

et al., 2024). In spite of all the combined efforts, natural hazards monitoring remains chal-

lenging for many reasons including economic and logistical challenges of installing and

maintaining instruments in areas of interest, and technical complexities of analyzing and

interpreting the derived data in a timely manner (Krichen et al., 2024).

Among the many hazards, there is great interest in monitoring those related to water

streams such as rivers and their flows. These hazards can occur in two contrasting scenarios:
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Figure 4.1: Time evolution of the appearance of the phrases "climate change" and "extreme
weather events" in publications since 1924 (Michel et al., 2011).

low discharges that can lead to droughts (Seybold et al., 2023); and high flows that can lead

to flooding (Arnell and Gosling, 2016; Ward et al., 2018) among others. Similarly, extreme

weather and climate leads to an increase in the occurrence of mass movement events such

as landslides and debris-flows (Chiarle et al., 2021).

British Columbia is the westernmost province of Canada and its climate is significantly in-

fluenced by the Pacific Ocean as well as by the belt of mountains on the western margin of

the Americas. As such, it has regions that exhibit some of the wettest and driest climates in

Canada. A notable feature from the mountains of the province is that they possess roughly

between 13,000 and 15,000 glaciers (Clague et al., 2011; Pfeffer et al., 2014; Bevington and

Menounos, 2022) which contribute to the flow in streams and rivers especially in summer,

as these glaciers melt at a heightened rate. The rugged geology of the region is due in part to

a combination of extensive volcanic activity and repeated periods of continental glaciation,

making the area prone to mass movement events of great magnitude.

On November 2021, British Columbia, Canada, experienced one of its most devastating his-

torical extreme weather event, when the intense rain from an atmospheric river generated

floods and landslides in the southwest of the province; the severity of these hazards is bound
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to worsen with time (Gillett et al., 2022).

Similarly, although less catastrophic, are continuous debris flow events occurring on the

flanks of Mount Cayley (Figure 4.2a), that have caused repeated damage to the Squamish

River Forest Service Road used for logging and for accessing various recreational activities

in the region. At least 4 such events have occurred in recorded history, one presumably in

July 1963 (Clague and Souther , 1982), another in June 1984 (Cruden and Lu, 1992), and a

third during the night of June 28th, 2014 that wiped out the road and stranded about 300

campers from the nearest town of Squamish. The most recent event occurred on the night

of October 16th, 2023, and stranded logging personnel that managed to walk across Mud

Creek to return to town.

Figure 4.2: a) Location of Mount Cayley (red star), Vancouver (blue star), and region of
interest (blue square), B.C., Canada. b) Zoomed region of interest. Stars show locations of
instrumentation used in this study. Black arrows show direction of flow.

Improving decision-making and emergency response to increasing hazards such as these re-

quires a constant increase of effective monitoring capabilities (Krichen et al., 2024) although

the effectiveness of any strategy must be compared with a baseline knowledge of the setting

of interest (Kumar et al., 2021).

Given that rivers are a primary source of freshwater essential for societal sustainability,

100



monitoring streamflow is a widely practiced and sought-after activity globally, in addition

to its significance in mitigating hazards and understanding ecological implications (Dobriyal

et al., 2017; Zhu et al., 2021). However, the collection of historical hydrological data and

installation of monitoring stations remain as challenging tasks for the creation of flood early

warning systems (Perera et al., 2020). While there are many ways to perform streamflow

measurements and no unique classification of methods exists (e.g., Dobriyal et al., 2017;

Iukhno et al., 2021; Llaban and Ella, 2022), the methods are generally categorized based

on their application principles: direct methods, hydraulic structure methods, non-contact

methods, and sensor-based methods (Llaban and Ella, 2022). These methods have different

features in terms of cost, operational and implementation efficiency, accuracy, time effec-

tiveness, and ecological significance and can go from classical current meters that use rotors

inside the stream, to indirect particle image velocimetry using cameras on UAVs or radar

and ultrasonic-based sensors (Dobriyal et al., 2017; Llaban and Ella, 2022). Nevertheless,

given that there is no universally applicable method for measuring streamflows across differ-

ent settings, ongoing research is dedicated to developing, refining, and expanding existing

methods, as well as exploring new approaches for use in remote areas (e.g., Hundt and

Blasch, 2019; Zhao et al., 2019; Zhu et al., 2021). Several state of the art water discharge

sensors require proper and sometimes complex installation conditions (Dobriyal et al., 2017;

Llaban and Ella, 2022), and as an example, a typical hydrometric station for the Regional

District of Nanaimo, British Columbia costs around 15000$-20000$ CAD for installation

and $10000-$20000 CAD for ongoing (yearly) maintenance (Sutherland, 2015).

The continuous research and development of sensors has allowed for the appearance of

cheaper and more portable instruments, in particular acoustic ones (Anderson et al., 2017).

Acoustic sensors are becoming ubiquitous as a geophysical tool because of their versatility

to detect of a wide range of phenomena that include natural explosions from active volca-

noes or man-made ones from mining, debris-flows, rockfalls and avalanches at the slopes of

mountains and volcanoes, and streamflows from rivers and dams, among others (Allstadt

et al., 2018; Anderson et al., 2019; Dannemann Dugick et al., 2023). Acoustic sensors, either

combined with seismic sensors (Belli et al., 2022) or used in multiple-sensor arrays (e.g.,
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Marchetti et al., 2019; Marshall et al., 2019; Johnson et al., 2021; Sanderson et al., 2021;

Marchetti and Johnson, 2023), have proven useful to detect mass-movement events such as

lahars, avalanches and debris-flows. Although single infrasound sensors are less effective for

monitoring purposes (Marchetti and Johnson, 2023), they can still be useful for site char-

acterization before, during and after debris flows for the creation of early warning systems

(e.g.,Kogelnig et al., 2014; Liu et al., 2015) as well as provide information about changes in

the atmosphere (e.g., Ortiz et al., 2021). Due to this versatility, in this study we use single-

sensor acoustic data to develop a preliminary framework in British Columbia. In order to

monitor continuous fluid movement and for future potential hazard monitoring two tasks

are pursued simultaneously: 1) Establish an effective discharge rate monitoring setup at a

specific region near the Squamish River to define a baseline acoustic behaviour of the area.

2) Use the inferred baseline information from the local discharge rate to detect potential

deviations/anomalies to support the development of future early warning systems. These

tasks are derived using recorded low-frequency (≤ 50Hz) acoustic signals from before, dur-

ing and after the extraordinary 2021 Western North America heat wave. More specifically,

due to Mud Creek’s historical record of persistent and recent damaging debris flows, and

at the request of the BC Ministry of Forests, we focus our study at the confluence point of

Mud Creek and Squamish River on the western flank of Mount Cayley (Figure 4.2b). Addi-

tionally, third party regional weather parameters are compared with the acoustic recordings

to define a baseline for the acoustic behaviour of different phenomena in the area, and track

their time evolution for the duration of the study period (March 13th to July 9th, 2021).

4.2 Datasets and Methods

4.2.1 Datasets

To track stream variations and potential mass movement events, we installed a temporary

low-frequency acoustic sensor at the streams’ convergence spot at a distance of a few tens

of meters from both Squamish River and Mud Creek (Figure 4.3a). We used one of the

relatively newly developed “Gem Infrasound Logger” (Gem) low-frequency acoustic sensors

by Anderson et al. (2017) because of their portability, autonomy and small size that made
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them ideal for rapid installation, concealment, and operation in such a remote area (Figure

4.3c). These sensors have already shown their prowess in diverse extreme settings such as

active volcanoes (Anderson et al., 2017; Rosenblatt et al., 2022) and weather balloon ex-

periments (Bowman and Albert, 2018; Brissaud et al., 2021), but also in less complicated

regions for water discharge characterization such as in Tatum et al. (2023). The Gems are

differential pressure transducer-based sensors that record 100 samples per second and have

a flat response in the 0.039 − 27.1Hz frequency band making them suitable for detecting a

wide range of phenomena. The sensor was installed near the border of a small forest (Figure

4.3b) to ensure good quality low-noise data using the trees to reduce the effect from strong

winds (Tatum et al., 2023).

Figure 4.3: Collage of images showing the installation setting of the Gem acoustic sensor.
See Figure 4.2 for site location.
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The rift in this confluence point has rocks of various sizes (some probably carried from past

debris flows down Mud Creek), and this forms irregularities in the channel that produce

diverse simultaneous turbulent currents generating noise year-round (Figure 4.4).

Figure 4.4: Depiction of the area and some of the Roughness Elements (RE) that can create
noise related to discharge rates.

In order to both associate and discriminate the information recorded with the low-frequency

acoustic sensor to local and regional signals, we also gathered several environmental param-

eters from weather stations and water level sensors in proximity (within ∼ 40 km) of the

junction (Figure 4.2b, red star). The main water level sensor collects the information from

Squamish River relatively near Brackendale, close to the Squamish Airport weather station

and is 39 km downstream (Figure 4.2b, dark blue star) from the installed acoustic sensor.

The secondary water level sensor is located upstream on the Elaho River, one of the ma-

jor tributaries, and 9.5 km northwest of the sensor location (Figure 4.2b, green star). The

discharge rates are derived empirically from continuous water level measurements. A WSC

hydrometric technologist takes direct measurements of discharge and water level by deploy-

ing special instruments, from a bridge, by wading in a stream, by boat, or using a cable-way

strung across a river several times a year to stablish stage-discharge curves. Both values are
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made publicly available in real-time every 5 minutes for up to 18 months retrospectively

on the Environment and Climate Change Canada Real-time Hydrometric Data web site

(ECCC-Real-time Hydrometric Data web site, 2024). One weather station sits at the top of

Mount Cayley (Figure 4.2b, light blue star), provides data from higher atmospheric phe-

nomena, and is relatively close to the sensor, with the data provided by the BC Ministry

of Forests. The other weather station at the Squamish Airport (Figure 4.2b, orange star) is

∼ 40 km to the South-Southeast of the station and provides weather parameters from lower

regions of the atmosphere; its data is also publicly available at ECCC-Historical Climate

Data web site (2024). The weather stations provide data on an hourly basis and, along with

the water discharges, were collected during the full study period (Figure 4.5).

Figure 4.5: Weather parameters in the area of interest.

Diurnal cycles due to sun power are clearly visible in the air temperature and wind speed

time series (Figure 4.5). Discharge rates at Squamish River are highly seasonal and driven

by precipitation and snowmelt patterns: 1) discharge rates are low from January to March;
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2) Freshet flows are large and sustained during late spring through summer due to snowmelt;

and 3) There are high but sporadic peak discharges due to rain on snow storms during fall

(Fath, 2014). Thus, there is a high correlation between air temperature and water discharge

rate at both rivers, illustrating the influence of high temperatures on the streams in the

region, specially during the heatwave that produced large and fast temperature changes.

There were also periods when significant flows did not fully correlate with temperature,

specifically around March 28, and after June 15th. Those flows are most likely related to

regional parameters other than temperature because they appear in the Squamish as well

as the Elaho water discharge measurements.

The daily wind cycles generate strong noise in the raw acoustic recordings (Figure 4.6).

However, since the Squamish River is a persistent, identifiable sound producer in the Gem

sensor’s area, we focus on the discharge rate datasets from the Squamish River as a main

control, and from the Elaho River as a secondary one, to create a strong local baseline

dataset. Acoustic measurements will be compared to those discharge rates from hereon,

and different environmental phenomena will be appraised with respect to this information

when relevant.

Figure 4.6: Temperature, Wind and Infrasound series.
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4.2.2 Methods - Acoustic Streamflow Monitoring

A characterization of the water discharge rate from the Squamish River at the junction with

Mud Creek is made by relating it to local noise levels captured from the Gem Infrasound

Logger, based on approaches in the recent work by Ronan et al. (2017), Anderson et al.

(2019), Osborne et al. (2021) and Tatum et al. (2023). Note that it is important not to

confuse this atmospheric acoustic method with the traditional "acoustic velocity meters"

and "acoustic doppler current profiler" methods which are underwater acoustic techniques

that probe velocities inside the stream (Dobriyal et al., 2017; Kästner et al., 2018; Zhu

et al., 2021), nor with the ultrasonic sensor method that work outside of the stream like

reflected-beam water gauges (Llaban and Ella, 2022).

Ronan et al. (2017) investigated many different types of waves and their sounds in a con-

trolled setting, and linked them to different Froude numbers (Fr) that allow distinguishing

between subcritical (Fr < 1) and supercritical (Fr > 1) flows. Froude numbers are useful

because they can be used to investigate and infer various flow parameters under certain

assumptions, and settings that extend beyond rivers (e.g., Le Moigne et al., 2020). The

Froude number is defined in Equation 4.1 as:

Fr = v√
gh

(4.1)

with v the velocity of the flow, g = 9.8m/s2 the acceleration of gravity, and h the depth

of the flow. Additionally, Ronan et al. (2017) showed that the different flow jumps show

different average spectral power for specific frequency bands. Anderson et al. (2019) noted

a correspondence of acoustic amplitude with discharges on a seasonal flood cycle, a flash

flood, and a regulated dam spill-over was hinted. On the other hand, Tatum et al. (2023)

performed another controlled study in the same area as Ronan et al. (2017), and demon-

strated that acoustic power and its relation to wave configuration is consistent within a

given year, but not over the years, and that it does not necessarily correlate solely to dis-

charge rate. As such wave morphology is a crucial factor to take into account in studies

linking low-frequency sound power and discharge rates. However, as opposed to the experi-
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ments of Ronan et al. (2017) and Tatum et al. (2023), our setting possesses varied obstacles

or roughness elements (RE) that can be expected to cause different types of flows almost

irrespective of discharge rate (Figure 4.4). Finally, Osborne et al. (2021) used microphones

recording in an audible frequency band (≥ 50Hz − 20kHz) to show that river stage can be

estimated from sound pressure when appropriate frequency bands are selected and signals

are properly filtered.

In this study, it was not possible to apply the Froude equation because both local river

velocity and depth are unknowns at the confluence spot. Nevertheless, in order to develop a

method that could be potentially implemented locally to enable future hazard warnings in

a timely and robust manner, we combined different aspects from previous studies (Ronan

et al., 2017; Anderson et al., 2019; Osborne et al., 2021; Tatum et al., 2023) into a simplified

procedure.

Instead of working in the frequency domain (e.g., Osborne et al., 2021) or calculating acous-

tic power (e.g., Tatum et al., 2023), we directly operated on the recorded amplitudes in the

time domain (as suggested in Anderson et al., 2019) and then obtained data statistics

(similar to Osborne et al., 2021) with minor signal pre-processing. First and foremost, as

described in Anderson et al. (2023), software is provided to pre-process the data acquired

with the Gems into more standard readable files. We then used the Obspy package for

Python (Beyreuther et al., 2010) and standard libraries to perform subsequent analyses.

After this initial step, data streams were divided into non-overlapping windows of 150 sec-

onds. The time windows were detrended and filtered on an appropriate frequency band to

be described. Finally, the mean, standard deviation, and different percentiles of the abso-

lute amplitudes of the windowed signals were calculated and explored as proxies for river

discharge rate.

The filtering frequency band is not arbitrary; following the guidelines and past experiences

from the mentioned studies, a frequency inspection was performed which found that wide

frequency bands can become excessively excited by specific flow regimes or unimportant

noise (like that produced by wind). For that reason, the effect of changes in discharge rates

was investigated across many different frequency bands, and found that good correlation
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occurs at specific bands that are most likely site-dependent. For instance, in our location

a frequency band of 3 − 8Hz was determined to be suitable for tracking discharge changes

with relatively low impact from other sources. Conversely, by using the open dataset from

Tatum et al. (2023) to validate this method, a frequency band from 40 − 50Hz was found

to provide good results. The specific band for a region can be found empirically by filtering

and trying many different frequency values, and comparing them to water discharge rates,

or can also be found by performing a spectral analysis of the setting and searching for an

adequate band in a similar fashion as suggested by Osborne et al. (2021). The simplicity of

this approach permits this exploration to be fast.

Comparison of the proposed method with another study

By filtering the open data-sets from Tatum et al. (2023) on the appropriate band (40−50Hz)

and using their open code, it is shown how the tracking capabilities from the method pro-

posed here (Figures 4.7c and 4.9c) compares to the processing scheme by Tatum et al.

(2023) (Figures 4.7b and 4.9b) for the water discharge rate (Figures 4.7a and 4.9a). Addi-

tionally, Figures 4.8 and 4.10 show that by using the same frequency band as we proposed

(40 − 50Hz), the results of applying their processing scheme is nearly identical to ours

(Figures 4.7c and 4.9c), albeit with more computational burden. Our results display the

filtered amplitudes for 1 hour long windows between 9-10 AM as in Tatum et al. (2023) to

be compared directly, as well as for 2.5 minutes windows in those times.
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Figure 4.7: a) 2021 Discharge Rate. b) Acoustic Power by Tatum et al. (2023). c) Proposed
acoustic amplitude at different time window sizes (1-hour and 2.5 minutes long).

Figure 4.8: Comparison of the 2021 discharge rate with the acoustic power derived as in
Tatum et al. (2023) restricted to our proposed frequency band 40 − 50Hz.
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Figure 4.9: a) 2022 Discharge Rate. b) Acoustic Power by Tatum et al. (2023). c) Proposed
acoustic amplitude at different time window sizes (1-hour and 2.5 minutes long).

Figure 4.10: Comparison of the 2022 discharge rate with the acoustic power derived as in
Tatum et al. (2023) restricted to our proposed frequency band 40 − 50Hz.
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4.3 Results

Out of the many statistics derived from the processed acoustic amplitudes analysis, we

found that the 10th percentile was the most stable, and show that particular time series

for results hereon (a comparison of the derived 10th percentile and other statistics is shown

in Appendix D.1). We emphasize that further processing such as instrumental response

deconvolution was not applied with an on-site early warning application in mind. Also,

because of greater correlation, discharge rates were used instead of water level/stage for all

subsequent analysis (a comparison between discharge rates and stages is shown in Appendix

D.2). To showcase the effect of the different discharge rates on the frequency content of

the signals, semi-diurnal spectrograms filtered above 3Hz were calculated from the pre-

processed only signals (to observe diurnal trends hinted by parameters shown in Figure

4.6). These time series (processed acoustic amplitudes and spectrograms) were calculated

for the whole period and compared to water discharges from the region’s sensors described

before.

Figure 4.11: Comparison between a) discharge rates and b) filtered amplitudes with the c)
masked semi-diurnal spectrogram.

Figure 4.11 shows the full discharge rate (a), the bandpass filtered 10th percentile amplitudes

(b), and the spectrogram of the signals filtered above 3Hz (c). To visualize important

features in the frequency spectrum, the spectrogram was masked for some days between

March 23 and 29 because of an unusually powerful signal recorded between those days. The
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complete unmasked spectrogram is shown in Appendix D.3.

Detailed plots zoomed into periods of interest that displayed extraordinary water discharges

that were not directly correlated with temperature increase (Figure 4.12).

Figure 4.12: (a1,b1) Comparison between discharge rates and filtered amplitudes. (a2,b2)
The corresponding unmasked spectrograms for unprocessed amplitudes.

Figure 4.12 shows discharge rate superimposed by re-scaled or adjusted acoustic amplitudes

by finding a linear relationship between the 10th percentile amplitudes and the discharge

rate at the Squamish River. The relationship was obtained by finding the linear regression

equation between the 10th percentile amplitudes and the discharge (Figure 4.13).

Figure 4.13: Relation between 10th percentile filtered amplitudes and discharge rates at
a)the Squamish River and b)the Elaho River.
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4.3.1 Cleaning the acoustic records

To achieve a cleaner time series of amplitudes, at least as a first approximation, the 10th

percentile amplitudes selected as the baseline series was contrasted with the rest of the

series of statistics that were noisier (Appendix D.1). By calculating the ratio between the

other statistics versus that of the 10th percentile, variability thresholds were established

that define potential anomalies in the data. Figure 4.14a displays the (cropped) ratio of

the standard deviation of the 3 − 8Hz filtered amplitude to the 10th percentile of the

filtered amplitude. This ratio describes how much the values in a given window of time

fluctuate compared with the baseline values in the same window, and serves as a tool to

identify anomalous behaviour. The effects of applying thresholds to the ratios to identify

and discard anomalous data are shown in Figure 4.14b, where the original 10th percentile

of the filtered amplitudes along with the cleaned series are plotted.

Figure 4.14: a) Ratio between the standard deviation of the filtered amplitudes and the 10th

percentile filtered amplitudes. b) Cleaned time series (blue) by discarding points (red) that
were outside of thresholds defined on the ratio.

The effects of this preliminary anomalous data cleaning procedure are further detailed in
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Figure 4.15, where only amplitudes falling inside the threshold shown in Figure 4.14a are

plotted along the discharge rates.

Figure 4.15: (a1,b1) Discharge rates and cleaned filtered amplitudes. (a2,b2) The corre-
sponding unmasked spectrograms for unprocessed amplitudes.

4.4 Discussions

In Figure 4.11 we see the discharge rates time series for both sensors, at Elaho and Squamish,

the time series for the 10th percentile of the 3 − 8Hz filtered absolute amplitude, and the

semi-diurnal spectrogram for the pre-processed acoustic recordings filtered above 3Hz for

whole study period. A high correlation between the discharge rates and filtered amplitudes

is evident even when one discharge rate sensor is not in the same river (Elaho) and the

other (Squamish) is more than 30 km downstream. The semi-diurnal spectrogram shows

that there is a quasi-periodical daily change of power across many frequencies and is more

distinguishable during the first half of the study period and related to wind noise (Figure

4.6). Daily fluctuations of the atmospheric temperature and wind have been identified and

characterized using infrasound in a relatively stable volcanic setting (Ortiz et al., 2021),

and here it becomes superseded by the river noise as discharge rates increase during the

second half of the study period (Figure 4.11), due to the proximity of our sensor to the river

(Figure 4.3).

In Figure 4.12 we focused on two specific time periods that presented sudden water discharge

rate changes at both sensors that were not related to increase in temperature (as seen from
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comparing temperatures to discharge rates in Figure 4.5). The first surge occurred on March

28th and is most likely related to a short but very strong storm that occurred on that day

and that caused heavy rains and winds across the southwest of the province (Weisgarber,

M , 2021). The other surge is much larger and occurred on June 13 and is arguably related

to continuous rains in the region prior to that date (Figure 4.5), although no extraordinary

report exists for that specific period other than the heat wave occurring a few days later.

Other than the obvious difference in discharge rates due to one surge occurring in spring

and the other in summer, only subtle differences exist between the two surges (Figures 4.12

and 4.15).

From the first zoomed image (Figure 4.12a1) we can infer that the diurnal noise due to

winds is strong enough to surpass the background river noise. This diurnal noise is observed

at other frequency bands as inferred from the semi-diurnal spectrograms (Figures 4.11c and

4.12 b2). The spectrogram on the first period of interest (Figure 4.12a2) has been unmasked

to show an anomaly with great power between March 19 and 23. We could not relate this

anomaly to any weather parameter in the region (Figure 4.5) but the method was able to

bypass part of this anomaly (Figure 4.15a1), and not incorporate it fully into the amplitudes

that track the water discharge rate.

On the second zoomed image (Figure 4.12b1), the noise from wind is completely obscured

by the Squamish River’s discharge increase (i.e., there are many gaps due to anomaly clean-

ing in Figure 4.15a1 compared to Figure 4.15b1). In this case, diurnal fluctuations in the

amplitudes form clear crests and valleys that generally coincide between discharge rates and

acoustic amplitudes. These fluctuations are due to diurnal temperature changes that melt

the region’s snow cover and glaciers at different rates, which in turn change the water dis-

charge rates. We highlight the fact that while crests and valleys generally coincide between

the acoustic and discharge rate time series, they do not necessarily track perfectly in time.

For instance, for the surges, the acoustic increasing amplitudes appear to arrive at the same

time if not earlier than those in the discharge rate series (both at Elaho’s sensor –upstream

and the one at Squamish –downstream). On the other hand, as seen immediately before the

second surge (Figure 4.12b1), the acoustic amplitudes seem to "lag behind" the discharge
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rate series (most notably when they start to wane). This suggests that the acoustic signal

can be used to track sudden discharge increases better than waning periods.

The direct comparisons were possible because acoustic amplitudes were rescaled to track

the discharge rates. The rescaling was done using a linear regression between the 10th per-

centile filtered amplitudes and the discharge rates (Figure 4.13). It is clear that the Squamish

River’s discharge rate has a better relationship with the acoustic series than the Elaho’s dis-

charge rate which is not surprising since the acoustic sensor is measuring roughly the "same

river" as the water level ∼ 30 km south. This is only partially true however, since there is

a mayor tributary (Ashlu Creek), between the study site and the sensor near Brackendale

(Figure 4.2). Due to this large tributary and other minor ones downstream, we presume that

the relationship between the acoustic amplitudes and discharge rates would be much closer

if there were local discharge rate measurements at the study site. It is also possible that

even Mud Creek could have created sensible noise at least during the times of significant

snow/glacier melt.

Even with the 10th percentile cleaning of the data (Figure 4.11), there are moments when

acoustic amplitudes deviate considerably from discharge rate. There are two cases, when

deviations are larger than the expected/average behaviour, and when deviations are below

the expected value. For the later case, a quick solution to disregard the bad data is exerting

a threshold to discard readings when they fall below the site’s baseline noise since there

is a clear amplitude in the first few days of the study. For the former case, we used the

ratio of the standard deviation of the filtered amplitudes to their 10th percentiles to detect

periods when the variability of the data is too large or too small compared to the base-

line behaviour. By defining thresholds that separate "stable" data from atypical data, much

cleaner acoustic amplitudes could be generated that are less influenced by wind transients

(Figure 4.15). The cleaning comes with a cost however, as data continuity is lost, and data

loss can be especially significant during times of high noise (Figure 4.15a1-2). It is also

plausible that the thresholds are site-dependant and need to be defined in a case-by-case

manner. Nevertheless, a clean steady background noise can be established at least as a

first-order approximation without incurring heavy calculations.
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By following and extending the approaches from Anderson et al. (2019) and Osborne et al.

(2021), i.e., by applying percentile statistics plus the standard deviation to acoustic ampli-

tudes, the effect of transient phenomena can be mitigated due to a persistent and consistent

baseline noise produced by the Squamish River at the site that permitted the good correla-

tion with acoustic amplitudes. The relatively stable correspondence of the acoustic ampli-

tude with the many discharge rates during the whole period is due to the somewhat ideal

conditions of the site. It is possible that the rock wall in front of the sensor location (seen

in Figure 4.3) acts as a reflector that allows the river noise to remain "trapped" in the area

despite potential strong winds and weather conditions. Additionally, due to the presence of

rocks of various sizes in the river, and the roughness of the rock wall, even when discharge

rates increase and surpass the height of the smaller rocks (thus reducing some effective

roughness elements), the noise sources from channel obstacles in the water-atmosphere in-

terface remain important enough to produce noise in various frequencies (Osborne et al.,

2022) (Figure 4.4). Related to this, while we can not fully explain the important signals in

the lower frequencies (≤ 10Hz) as opposed to Ronan et al. (2017) and Tatum et al. (2023),

it is likely due to the overall size of the noise producing structures and the geometry of the

setting as a whole that led to strong harmonics in the lower frequencies when the discharge

rates began to rise after April 15, 2021.

Using water discharge rates likely led to better correlation with acoustic amplitudes than

with stages because water levels are strongly conditioned by river channel geometries. This

is apparent when both river’s discharge rates and levels are compared (Appendix D.2) and

while the Elaho River has less streamflow than the Squamish River, at a certain point, the

river stages become almost identical as an artefact of local river channel geometries. Thus,

we emphasize that discharge rates better characterize flows over a region as well as locally,

and should be used in other natural settings for similar studies. Of course, better results are

expected if using local discharge rates, and this also implies that periodic calibration might

be needed to determine the relationship between acoustic amplitudes and the discharge rates

as is customary for some methods (Dobriyal et al., 2017; Llaban and Ella, 2022), especially

after events such as debris-flows that may alter the local noise sources. Future research may
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include using other frequency bands for the purpose of identification of anomalies, stem-

ming from this stable/robust way to track the baseline behaviour. Additionally, this is a

step towards the future implementation of machine learning based early warning systems

that can be hard to implement because sensors may not have been deployed long enough,

or because some mass movement events are rare (Allstadt et al., 2018). The addition of

co-located seismic sensors along with cameras could help infer a more precise local water

discharge rate as well as deepen knowledge on the evolution of mass flow parameters (e.g.,

Walsh et al., 2023; Bosa et al., 2024).

It was shown that the method seems to be robust enough when taking into account on-site

characteristics, since its application to the dataset of an independent study (Tatum et al.,

2023) produced comparable performance for acoustic discharge rate tracking.

4.5 Conclusions

In this work we showed that the low frequency region of sound is suitable to track discharge

rates, at least for rivers with characteristics similar to the Squamish River by consider-

ing data filtered in specific bands of frequencies, and extracting percentile statistics. The

method gave similar results when used in an independent dataset. A good empirical corre-

lation between discharge rate and filtered infrasound amplitude could be established in a

wide range of values as the 2021 heatwave was a perfect opportunity to test the capabilities

to detect very large discharge rate variations. Additionally, atypical surges unrelated to the

snow/glacier melting driven by a rise in temperature were successfully identified and their

onset was tracked at least as fast as the surge passed near the instrument. The flexibility of

the method allowed for the simple extraction of parameters that helped further clean the

filtered acoustic amplitudes for a better description of the area’s background noise. This

represents the first step into the creation of early warning systems that require both simple

instrumentation and that allow rapid/local signal processing in remote areas. Furthermore,

this approach has an even greater advantage especially since the acoustic sensor is not lim-

ited to measuring only river signals, and can eventually be used to capture sound-producing

local anomalies besides debris-flows, sudden water surges or floods.
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Chapter 5

Conclusions

Natural hazards have been and will be part of human history for our entire existence. For

this reason, our position to face them must be increasingly proactive instead of reactive.

The constant increase in analytical capabilities given by better geophysical theories, new

instrumentation, and faster and more powerful computing must be used in order to improve

our response and mitigate their effects. In this work I have used and combined a group of

computational methods and tools of diverse nature to carry out tasks that increased the

knowledge of several also diverse data sets. To achieve this new knowledge, the tasks that

were executed, along with the applied tools for each case, were conceived, designed, and

adapted around the previous information and the nature of each dataset. For the Llaima

and Cotopaxi seismic datasets and catalogues -where one of them was believed to be noisy-

I applied a catalogue cleaning procedure. For the Tungurahua volcano acoustic dataset, I

combined classical data analysis tools, unsupervised, supervised, and deep learning tools (as

well as a modification of the catalogue cleaning procedure) to upgrade a previously created

human catalogue. For the Mount Cayley dataset, a quick data analysis tool was defined to

monitor the Squamish River’s local discharge rate.

The specific conclusions for each chapter are described next, followed by final remarks and

suggestions for future work.

5.1 Catalogue Cleaning Procedure

The development and application of the catalogue cleaning procedure to locked datasets

with multiple classes led to the definition of an important concept pertaining to the level
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of "trust" one has to the assigned label of an event within a catalogue: the consistency.

This value helps answer the third question of this project (Can a degree of uncertainty

be assigned to the assumption that each event’s label may or may not be mislabelled?) by

definition, because of its "consensus" nature. However, we found the level of uncertainty

is highly dependent on the quality of the catalogue. For example, for a very good/clean

catalogue, a consistency of 0.5 should be considered bad (half the predictors see this event

as the other class!), however if the catalogue is noisy, that value could be biased by an im-

balanced class noise (as we found for the Cotopaxi catalogue). Nevertheless, the definition

of the consistency alone also answers the second question directly. That is, events with low

consistencies can be suspected of being noisy, and should be further reviewed or discarded.

The initial question is consequently dealt with –Can the quality of a given catalogue be as-

sessed? Yes, after the catalogue cleaning procedure, a statistical analysis of the consistencies

within each family or class can inform if there are potential mistakes in the labels of the

events. If a catalogue is clean, the large majority of the events within a family should have

high consistencies, and more notably, the distribution of consistences should be left tailed

which means that fewer and fewer events should be more and more uncertain. Interestingly

enough, I found that the family whose distribution does not follow the ideal pattern is not

necessarily the one that has the noise, as observed in the Cotopaxi catalogue.

The relevance of this procedure is multiple because not only can it be used for cleaning

other catalogues with similar characteristics to the ones in this study, but it can serve as

a way to quickly refine newly created catalogues conserving only high quality events as I

showed for the subsequent chapter.

A minor additional conclusion is that the whole concept of ‘consensus’ of various classifiers

could be applied only because their training is fast/simple, and thus this work serves as

an example of the lingering relevance, potential importance, and discernible applications of

less novel tools (compared to Deep Learning).
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5.2 Partially known dataset exploration

Unlocked datasets are incredibly rich sources of new knowledge because of the sheer amount

of data (and phenomena occurring simultaneously) continuous seismic or acoustic recordings

have. For Tungurahua volcano, a human catalogue of explosions was used as the primary

source to feed a supervised classifier that helped distinguish explosions from non-explosions

obtained by classical algorithm detections. This task alone is noteworthy because a better

characterization of the level of explosive activity was achieved. However, finding events with

confidence was just the first part of the task, and by using unsupervised learning algorithms,

I showed that explosive patterns repeated over the years and were associated to different

eruptive activity. Even more so, I showed that deep learning led to similar results as the

classical unsupervised algorithms, but in a fraction of the time. I also provided guidance on

how to further enhance these already effective techniques within their respective contexts.

This chapter served to explicitly test part of the potential of machine learning when applied

to unlocked datasets, and much like this thesis itself, it helped to define "a sequence of

knowledge gains" for datasets with partial previous information. From detection, to cleaning,

to pattern identification, a suite of tools were used/proposed to effectively deal with a very

large (10 years) dataset. The explored tools are flexible enough that their application to

multi-station datasets can lead to better results. These results can be combined with the

seismic signals associated with explosions to gain even deeper knowledge of the explosive

activity.

5.3 Extracting knowledge from a fully unknown dataset

Due to the intrinsic uncertainty related to a brand new dataset and location, starting a new

monitoring network from zero is quite a challenging task. To successfully monitor sporadic

events such as debris flows or avalanches, one must have knowledge of the base noise level

in a region. At the same time, if a region is remote, efforts should be made to optimize

anomaly detection and early warning alert processes. In the last chapter of this thesis, I

proposed a procedure to track the level of the Squamish River that also allowed us to define

potentially anomalous data. The construction of this procedure was done both by doing
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a site-dependent analysis of possible frequency bands of interest to achieve good tracking,

and also with the help of multiple regional climate data to give confidence to the results

obtained.

The search for adequate frequency bands for discharge rate monitoring was shown to be of

crucial importance because it defines the precision of the results derived from the proposed

procedure. Additionally, discharge rate as opposed to water level was also found to be a

more meaningful magnitude to correlate sound to. The results from this chapter corroborate

and highlight low frequency/infrasound sensors as suitable tools for tracking streamflow

discharge rates in remote/uncontrolled regions due to the rugged characteristics of the

environment where the instrument was installed, and lay the ground for future extensions

to natural hazards monitoring. In particular, this study demonstrated the capabilities and

relevance of low-cost sensors (in this case the Gem Infrasound Logger) that will serve to

power increasingly comprehensive warning systems.

5.4 Concluding Remarks and Future Work

Seismic and acoustic data have been and will remain invaluable tools for monitoring nat-

ural hazards, because they provide insights about geophysical processes below the Earth’s

surface, at the interface with the atmosphere, and once they become totally superficial, in

as close as we can to real-time. However, these signals need to be carefully analyzed to be

truly useful, both when dealing with large and complex monitoring networks, as in the case

of little instrumentation and limited datasets.

Machine learning is a very versatile set of tools, but contrary to popular perception, it can-

not be implemented lightly; it must be applied with extensive knowledge of the task to be

performed. Furthermore, just as when we apply artificial intelligence tools to everyday life

and we do not (should not) use them blindly without vetting the information, in the same

way (and even more so) machine learning applied to monitoring natural disasters must be

carefully controlled by humans.

Interestingly, the order of the chapters is given according to increasing uncertainty (and

chronological completion), but in situations of new monitoring networks, the steps would
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be executed in reverse, that is, first the baseline knowledge of a region should be established,

then exhaustive catalogues would be created describing signals of interest and patterns in

the data, and finally the quality of these created catalogues may be evaluated. The fact

that these tools have already been created and are available means that they can be now

replicated in the proper sequence for said situations.

Specific future work for each of the chapters is varied: For the second chapter it would

be interesting to test the procedure with data from other volcanoes (e.g., Mt Saint He-

lens, Deception Island volcano), and also to look for improvements on synthetic datasets.

Tasks remaining for the third chapter include interpretation of the families based on joint

information with the co-located seismic sensors and other stations plus other geophysical

parameters collected during the activity of Tungurahua volcano such as deformation and

gases. Additionally, information of the actual effects of the explosions (e.g., emission of

water vapour, mild or strong ash, pyroclastic density currents, etc.) based on monitoring

reports by IGEPN investigated to determine links to the different families along with other

parameters not used in this study (such as acoustic and seismic amplitudes). In terms of

the methodology, other wavelet families or network geometries could be tested more to

either further reduce processing time, or increase reconstruction (and thus compression)

accuracy, and eventually even modelling. As for the fourth chapter, besides the addition of

collocated seismic sensors and cameras, advanced anomaly detection tools based on deep

learning could be implemented as more data and knowledge is acquired from the area.

Although this chapter is called ‘Conclusions’, at least based on the results of chapters 3 and

4, these actually seem like the first steps towards more robust systems. Although the need

to perform this study for settings with a single station was always in mind, the possibili-

ties of obtaining even more refined results will increase with the use of multiple stations.

Furthermore, the possible integration of these methods in conjunction with other types of

continuous geophysical signals (e.g., deformation) expands the range of possibilities towards

an eventual more powerful monitoring and natural hazards forecasting.

In the same vein, the development of more complex machine learning tools that can not

only learn from the data, but also integrate geophysical knowledge will push the limits of
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what can be achieved even further, but this can be achieved only as long as there are solid

foundations, as has been my goal in this work.
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Appendix A

Supplementary Information for the
Introduction

A.1 Brief description of some tools

Some typical (James et al., 2013; Géron, 2019) machine learning supervised and unsuper-

vised tools are:

Supervised Learning

k-Nearest Neighbours: The K-Nearest Neighbours (KNN) algorithm consists of as-

signing labels to unknown observations based on the majority class of its k most proximal

neighbours. The "proximity" will be defined based on a metric. KNN struggles in higher di-

mensions due to the curse of dimensionality (i.e., 10 points at random in a given length are

closer than in a given area, a given volume, and so on). It adds potential bias and variance

in an uncontrollable manner and it also is hard to compute (you need to check for points)

for large n and p.

Logistic regression: This is a traditional statistical technique designed specifically for

binary responses that assumes a linear model for the "logit" function (the log of the odds-
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ratio).

log

(
p(x)

1 − p(x)

)
= β0 + β1X1 + β2X2 + . . . + βpXp

The parameters are estimated using maximum likelihood so that the final estimated value

is p̂(x) (probability of success or class).

Discriminant Analysis: Linear Discriminant Analysis (LDA) is another linear method

for classification where Gaussians for each class are defined (assuming same predictor corre-

lation and variance for each class) and then equal probability density linear boundaries are

produced. Logistic regressions are unstable when there is little to no overlap of classes in any

dimension (quasi step or step function). The LDA models the distribution of the X given

the response Y , i.e. P (X|Y ), then uses Bayes’ Rule to estimate P (Y |X). The Gaussians

have means, variances and correlations for each class. The number of parameters grow as

K + p(p − 1)/2. If covariances are not the same then the boundaries are parabolas. This

leads to QDA (Quadratic Discriminant Analysis) which is a more flexible model but needs

(K − 1)(p(p + 1)/2) parameters and that results in extra variance.

Support Vector Machines: Support Vector Machines (SVM) is a classification algo-

rithm based on finding optimal decision boundaries (hyperplanes) when classes are separa-

ble and adapting linear boundaries when classes are not separable. The gap between the

closest data points divided by boundaries is called MARGIN and the closest points are

called Support Vectors. The idea is based on creating a function which assigns positive and

negative coding of support vectors, and zero at the boundary, and maximizes the distance

to support vectors. When points are not separable, the same approach must be corrected

for overlap by calculating the errors (amount of deviance based on decision boundary) from

misclassified points to the hypothetical decision boundary. The result is a linear boundary

obtained non-parametrically; it does not assume a probability distribution or linear relation

of the predictors (i.e., Logistic); it is a geometric idea. This technique can be extended to

include "automatic" transformation of the features to polynomial or radial basis functions

via the "Kernel trick".
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non-linear SVM: In non-linear SVM, the approach is to transform the regressors X

into a new set with higher dimensions and then project it into the original space. The new

function is a linear combination of basis functions (arbitrarily chosen) of the predictors.

These basis functions are called Kernels and the most popular are polynomial kernels and

Gaussian Radial Basis functions.

Regression Trees: This algorithm creates simple assignation regions based on step func-

tions as decision boundaries. They assign classes for terminal nodes based on majority

membership in the node. The criteria to prune or create children nodes is based on rela-

tive error minimization for a partition, minimum parent node size to partition, minimum

children node size to be created, and so on.

Ensembles-Voting Classifier: Voting classifier is a technique that uses a small group

of trained classifiers, and then assigns a prediction based on a majority-wins voting scheme.

The idea of this ensemble is that if sufficiently uncorrelated comparable classifiers tend to

get responses right most of the time and vote for the final decision, the prediction tends

to be correct more times than each of them separately. For instance, as an approximation,

let us assume that 3 comparable independent classifiers have each 0.51 chance of getting

a prediction right ideally for all possible observations. In a voting scheme, the probabil-

ity of them getting the right answer is the probability of 2 or 3 getting the answer right

simultaneously:

P (2 or 3 correctly classified) = 3C2 × 0.512 × 0.49 + 3C3 × 0.513 ≈ 0.515

which is 10% higher than each of the previous classifiers alone. When the probability of

being right is greater, this gained percentage increases. If the individual classifiers all output

probabilistic outcomes, the voting classifier can also be probabilistic, making it a "soft"

voting classifier. On the contrary, the voting classifier assigns a specific class and is a "hard"

classifier.
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Ensembles-Bagging: This technique consists of averaging a set of bootstrapped (resam-

pled observations and variables) learners to reduce the variability (Bootstrap Aggregation

= B-Agging). It works best with low bias-high variance models and is called ensemble of

weak learners.

Random Forests: Random forests are bagging regression trees with a random subsample

of explanatory variables. When the number of parameters is large, the trees tend to be

similar if using Bagging. Based on variance of correlated random variables, the idea is to

"add random variability" to the trees to then average and reduce it. The subset m is usually
√

p for classification (and p/3 for regression). Since the most important variables might be

left out, the technique allows for less important variables to contribute in the explanation

of variability. The predicted value of a given x is still the average of the many (tens or

hundreds) trees. A drawback is that it loses tree structure (unable to visualize when and

where splits occurred). This technique reduces variance of single classification trees.

Artificial Neural Networks: An Artificial Neural Network (or just Neural Network -

NN) can be understood as a set of nodes (or perceptrons) that in some sense emulate neu-

rons in a biological brain. These nodes form connected "layers" and output responses from

the linear combinations of their inputs (+ biases) into other nodes. The linear combinations

of inputs are fed into an activation function, for example, a sigmoid function that yields

a value between 0 and 1 (to emulate a probability) and becomes the input of further con-

nected nodes. The weights of the connections are optimized (usually by a backwards error

propagation method) to minimize a cost of misclassifying each instance. The architectures

of the networks are varied, and many versions exist with different problem-solving capabili-

ties (Géron, 2019). Deep learning is a branch of machine learning that uses neural networks

with many layers. One of the most important properties of these deep neural networks

is that there is no need for explicit feature extraction since the systems can find efficient

representations by themselves.
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Unsupervised Learning

k-Means: k-Means is a popular unsupervised learning technique that consists of itera-

tively finding "centroids" of groups of unlabelled observations, such that the distance be-

tween grouped instances and these centroids and between observations close to this centroid

is minimized. This is done by minimizing intra-group variance, equivalently maximizing

inter-group variance. The number of groups is a parameter to be decided.

Hierarchical clustering: Hierarchical clustering are a family of procedures to find groups

of most similar observations based on a dissimilarity matrix between each element and the

rest. Among all the methods, the most common ones are to initially consider all elements

disjoint and merging them based on similarity, or by considering all elements initially to-

gether and then partitioning them until they are all separated. As in k-Means, the number

of groups is a parameter to be decided.

DBSCAN: Density-Based Spatial Clustering of Applications with Noise defines clusters

by constructing dense observation regions. It is based on the definition of clusters based on

core instances with a minimum number of neighbours closer than a small distance ϵ. Series

of neighbouring cores with their non-core neighbours define a large single cluster. Instances

with no neighbours are considered anomalies.

Spectral Clustering: The Spectral Clustering algorithm creates a low-dimensional rep-

resentation from a similarity matrix between all instances, and uses another clustering

algorithm (e.g., k-means) to group instances.

Self Organizing Maps: Self Organizing Maps (SOM) are a particular kind of Artificial

Neural Network that iteratively finds and deforms a network of connected vectors (or nodes)

such that topologically similar features are located closer together in the network, all obser-

vations are near a node in the network, and the network approximates the distribution of
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observations in the feature space. The number of nodes and geometry of the network have

to be set.

Gaussian Mixture Models: Gaussian Mixture Models are a family of probabilistic mod-

els that assume that the observations in a given dataset belong to a normally distributed

subpopulation, where the number of Gaussian subpopulations is given. Each Gaussian dis-

tribution helps defining a cluster or family of instances and has its own unknown mean

and covariance matrix. To find all the unknown parameters the instances are initially given

a set of arbitrary labels (obtained from k-means for example), and initial parameters of

the Gaussian distributions are determined. An iterative process is then performed in which

the algorithm calculates the probability of each data point belonging to each Gaussian

distribution. These probabilities are then used to update the parameters of the Gaussian

distributions, and the process is repeated until convergence. When the final parameters

are found, the Gaussian Mixture Model is fully determined and now points in the feature

space can be assigned to a given class based on the maximum of the probabilities of being

generated from all the Gaussian distributions. The general idea is similar to LDA but for

the context of unsupervised learning.

Classical data analysis tools

Notable classical data analysis tools are:

Spectrograms: Spectrograms are one type of visual representation of a signal’s frequency

content evolution over time. In broad terms it is obtained by dividing the signal in small

time intervals or windows, calculating the frequency spectrum for each interval using the

Fourier transform, and then plotting these spectra in an sequential manner as a function

of time. The resulting image shows how the signal’s frequency content changes over time

by using varying colors indicating the time-frequency distribution of amplitudes. Figure 1.3

shows examples of signals with their spectrograms.
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Scalograms - Continuous Wavelet Transforms representations: Scalograms are

yet another way to describe a signal’s "shape" evolution over time, but based on the Contin-

uous Wavelet Transform that uses localized waves (wavelets) as basis functions, as opposed

to the sines and cosines from the Fourier Transform, and provides another time-frequency

representation of the signal where different frequencies have different resolutions in the rep-

resentation. It is particularly useful for analyzing signals with abrupt changes, transient

events, or non-periodic behaviour (Kumar and Foufoula-Georgiou, 1997).

STA/LTA algorithm: One of the earliest and simplest methods for event detection is

the Short Term Average - Long Term Average Ratio (STA/LTA) (Withers et al., 1998).

The idea behind this algorithm is to calculate successive values of ratios between the ab-

solute or squared signal of short-to-long signal windows, define onset and offset thresholds,

and compare the calculated values to these thresholds which, when surpassed, mark the

beginning and ending of an event as shown (Figure A.1). The successive ratio values form

the characteristic function and its shape changes with different choices of window size. The

window sizes as well as the threshold values need to be tuned depending on applications and

data. This method has undergone many modifications and adaptations through the years

Figure A.1: Example of the STA/LTA algorithm applied to raw acoustic data (upper panels)
with their characteristic functions (lower panels). Left: A picked event where the short term
average surpassed the long term average. Right: The characteristic function is never higher
than the threshold so there is no detection.

since its early use in 1965 (Withers et al., 1998), and is now outperformed by some that use

other signal information, such as power spectral densities (Vaezi and van der Baan, 2015),

140



in specific contexts. However, it is still used as a first approach for volcano monitoring (e.g.,

Spina et al., 2021; Tepp, 2018; Malfante et al., 2018), landslides (Bell, 2018), or for debris

flows (Coviello et al., 2019) since it can even be implemented within digitizing units due to

its low complexity. Nevertheless, in certain contexts this technique can not be applied and

manual counting is still sometimes performed (e.g., Bell et al., 2017; Schimmel et al., 2021).

Dynamic Time Warping: Dynamic Time Warping (DTW) is an algorithm to non-

linearly measure the similarity between two sequences by finding the optimal distortion

that one sequence has to go through to replicate the other sequence regardless of their

onsets, lengths, or varying speeds. The general procedure is to construct a matrix with the

distances between each point of a series to each point of the other one (this matrix can

be restricted), and finding the optimal path (minimum cumulative distance) so that the

first and the last samples coincide between the series by applying a dynamic programming

procedure (Sakoe and Chiba, 1978).
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Appendix B

Supplementary Information for
“Cleaning volcano-seismic event
catalogues: a machine learning
application for robust systems and
potential crises in volcano
observatories”

B.1 Description of the construction of the features proposed
in this study

In this appendix we describe how the features proposed in this study are constructed based

on Figure B.1 as follows: Frequency Domain (FD) features are extracted calculating the

Discrete Fourier Transform (DFT) of the signal, and obtaining the average of the Amplitude

Spectrum (red horizontal lines in the leftmost panels) at 7 same-size intervals spanning from

0 Hz to 12.5 Hz. Time Domain (TD) features extraction consists of the following sequence

applied to each resulting waveform: 1) Take absolute value of the waveform. 2) Obtain the

cumulative absolute sum (CAT). 3) Detrend the standardized CAT. 4) Obtain the envelope

using the Hilbert Transform. 5) Extract the 8 coefficients derived from a 7th order Legendre

Polynomials fit (red line in the rightmost panels) of the time-normalized envelope for direct

comparison between shapes. Add the duration of the events as a separate feature.
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Figure B.1: Schematic describing the steps for calculating the features proposed in this
study.

B.2 Correlation between the sets of features used in tis study

In Figure B.2 the absolute values of the Correlation Matrix between features extracted

following Watson (2020), Titos et al. (2018), and those proposed in this study for the

Cotopaxi and Llaima volcano datasets are shown. Groups of features from the different

studies are separated by white lines. Features that have strong correlations (orange to yellow

colours) are usually related because of similar mathematical definitions. For example, the

peak and median values in the Frequency Domain (FD) of Watson (2020) are strongly

correlated with the 20th, 50th and 80th percentiles in the FD of Titos et al. (2018) and the

mean interval amplitudes proposed in this study. Notice, however, that in general variables

are not strongly correlated between groups of features as much as within groups of features.

This is specially evident for instance in the linear predicting coefficients (LPCs) of Titos

et al. (2018) in the Llaima dataset.
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Figure B.2: Absolute correlations between sets of features used in this study.

B.3 Details of the blind re-classification experiment

The results of the blind re-classification experiment are shown in Table B.1 with details

of the comparison between Low Quality (LQ) and High Quality (HQ) events’ labels with

the labels perceived by analysts after providing only raw waveforms. The agreements or

disagreements with the original labels are based on the "majority voting" from the analysts’

perception. In real world applications only events with low quality should be revised by

analysts and changed when in disagreement with the original label.
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Appendix C

Supplementary Information for
“Investigating 10 years of volcano
acoustic activity at Tungurahua
volcano, Ecuador aided by Machine
Learning”

C.1 Comparison between different events according to their
(dis)similarities

In this section I exemplify how different (dis)similarity criteria may include or exclude

similar events if using them separately.
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Figure C.1: Examples of events with high correlations (>0.8) yet high Dynamic Time Warp-
ing distance.

Figure C.2: Examples of events with low correlations (<0.6) yet low Dynamic Time Warping
distance.
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C.2 Example of a period with complex explosion detection

In this section I show a 20 minute period of acoustic recordings from Tungurahua volcano

that demonstrate intense acoustic activity that make explosion detections difficult.

Figure C.3: Example of explosions occurring during a complex emissions period that difficult
detection.
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C.3 Cross-correlation distance matrix using encoded scalo-
grams

In this section I show how the cross-correlation matrix of the encoded scalograms (Figure

C.4) for the same 5 periods studied in this chapter is similar to those obtained from the

direct waveforms in Figure 3.7.

Figure C.4: Cross correlation distance matrix for periods in Table 2 obtained from decoded
scalograms.

152



C.4 Examples of events from different clustered families

In this section I show several examples of events belonging to different clustered families.

Figure C.5: Examples from family 4A.

Figure C.6: Examples from family 4B.

Figure C.7: Examples from family 4C.
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Figure C.8: Examples from family 4D.

Figure C.9: Examples from family 7A.

Figure C.10: Examples from family 7B.
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Figure C.11: Examples from family 7C.

Figure C.12: Examples from family 7D.

Figure C.13: Examples from family 7E.
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Figure C.14: Examples from family 7F.

Figure C.15: Examples from family 7G.
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Appendix D

Supplementary Information for
“Tracking changes in natural
streams using acoustic data: The
2021 Western North America heat
wave at the Squamish River, BC,
Canada”

D.1 Different Statistics for the filtered acoustic amplitude

For the analyses of Chapter 4, we explored various statistics to track water discharge rates.

All the statistics show similar behaviour, but the most stable one resembling discharge

rates was the 10th percentile. This is seen in Figure D.1 by scaling all the series so that

their amplitudes become comparable. The 10th percentile is the less variable one and thus

is the selected statistic to track water discharge rates.
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Figure D.1: Different statistics for the filtered 3 − 8Hz acoustic amplitudes.
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D.2 Comparison of Discharge Rates and Water Levels

Figure D.2: Comparison between water discharge rates and water stages for the Squamish
and Elaho Rivers.
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D.3 Unmasked spectrogram during the study period

The spectrogram in Figure 4.11 was masked due to intense noise that prevented the visual-

ization of the spectral intensities. In Figure D.3 we show how the complete figure without

masking and the other spectral intensities are dimmed.

Figure D.3: (a) Discharge Rates and (b) acoustic Amplitudes during the study period with
(c) unmasked spectrogram.
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