
Neural Networks for Functional and
Survival Data

by

Sidi Wu

M.Sc., The George Washington University, 2016
B.A., University of International Relations, 2014

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
Department of Statistics and Actuarial Science

Faculty of Science

© Sidi Wu 2024
SIMON FRASER UNIVERSITY

Summer 2024

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Sidi Wu

Degree: Doctor of Philosophy

Thesis title: Neural Networks for Functional and Survival Data

Committee: Chair: Harsha Perera
Lecturer, Statistics and Actuarial Science

Jiguo Cao
Co-supervisor
Professor, Statistics and Actuarial Science

Cédric Beaulac
Co-supervisor
Professor, Mathematics
Université du Québec à Montréal

Haolun Shi
Committee Member
Assistant Professor, Statistics and Actuarial Science

Liangliang Wang
Examiner
Associate Professor, Statistics and Actuarial Science

Chongzhi Di
External Examiner
Professor
Biostatistics Program, Public Health Sciences Division
Fred Hutchinson Cancer Center

ii

Abstract

The integration of advanced statistical methods with cutting-edge machine learning tech-
niques has attracted substantial attention. Within this convergence, functional data analysis
(FDA) and survival analysis are two pivotal areas where traditional statistical tools often
encounter limitations in capturing the intricacies of dynamic processes and time-to-event
outcomes. FDA is a statistical discipline that analyzes curves, surfaces and any random
variables defined across infinite-dimensional spaces for various statistical tasks, including func-
tional regression and functional data representation. We take advantage of neural networks,
proposing novel models to tackle the scarce exploration of nonlinear regression analysis with
scalar predictors and a functional response. In addition, a neural network-based approach
is developed to address nonlinear representation learning and direct curve smoothing of
discrete functional data concurrently. Time-to-event prediction, the task of predicting the
time until the occurrence of a particular event of interest based on the characteristics of
individuals, is a fundamental challenge in survival analysis and finds applications across
diverse fields. We propose a simplified strategy to analyze right-censored survival outcomes
using neural networks, enhancing estimation accuracy and computational efficiency in model
discrimination in comparison to several existing survival neural networks.

Keywords: Neural networks; Functional data analysis; Functional regression; Representation
learning; Survival analysis; Time-to-event prediction

iii

Dedication

To my parents Biying Lin and Xuechao Wu.

iv

Acknowledgements

I would first like to express my sincere gratitude to my supervisors, Dr. Jiguo Cao and Dr.
Cédric Beaulac, for their unwavering support, continuous encouragement and invaluable
guidance throughout the course of my Ph.D. Their expertise, patience, and mentorship have
been instrumental in shaping my research direction and academic growth.

I am also grateful to the members of my thesis committee, Dr. Haolun Shi, Dr. Liangliang
Wang, and Dr. Chongzhi Di, for their valuable feedback and constructive criticism, which
greatly contributed to the improvement of this work.

Additionally, I would like to acknowledge the contributions of my collaborators, Dr. Shu
Jiang, Dr. Farouk S. Nathoo, Dr. Michelle F. Miranda, Dr. Mirza Faisal Beg, Dr. Eugene
Opoku, Dr. Yunlong Nie, Erin Gibson and Jie Wang, for their guidance, collaboration,
expertise, and shared insights that have enhanced the scope and depth of my research and
broadened my knowledge in statistics.

My heartfelt appreciation is extended to all faculty members and staff in the Department
of Statistics and Actuarial Science at Simon Fraser University. Thank you for being there
whenever I needed help. Many thanks to my fellow graduate students in the department for
their camaraderie, encouragement, and insightful discussions. The delightful and challenging
times we spent together are precious memories that I will never forget.

Last but not least, I am deeply indebted to my family and friends who supported
me throughout my academic journey. Deepest thanks to my parents, whose endless love,
encouragement, patience, and understanding have been the cornerstone of my academic
pursuits. Special thanks to my cousin, Xiaoqin Wu, whose care and love made Vancouver a
home to me. Warmest thanks to my best friend, Shuwei Yan, whose friendship has brought
me immense joy over the years.

v

Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables ix

List of Figures xii

1 Introduction 1

2 Neural Networks for Scalar Input and Functional Output 3
2.1 Introduction . 3
2.2 Methodology . 9

2.2.1 Neural Network with Functional Response: Mapping to Basis Coeffi-
cients (NNBB) . 9

2.2.2 Neural Network with Functional Response: Mapping to FPC Scores
(NNSS) . 10

2.2.3 Modification to the Objective Function (NNBR and NNSR) 13
2.2.4 Irregularly Spaced Functional Data 16
2.2.5 Roughness Penalty . 17

2.3 Computational Complexity . 20
2.4 Real Data Application . 22
2.5 Simulation Studies . 26

2.5.1 Generating Data . 26
2.5.2 Results . 27

2.6 Conclusions and Discussion . 34

3 Functional Autoencoder for Smoothing and Representation Learning 37

vi

3.1 Introduction . 37
3.2 Functional Autoencoders (FAEs) . 41

3.2.1 Motivation: Autoencoders for Continuous Functional Data 41
3.2.2 Proposed Model: Autoencoders for Discrete Functional Data 42
3.2.3 FAE as a Functional Data Smoother 48
3.2.4 FAE for Irregularly Spaced Observations 50

3.3 Connection with Existing Models . 51
3.3.1 Relation with FPCA . 51
3.3.2 Relation with AE . 52

3.4 Simulation Studies . 52
3.4.1 Simulation Setup . 53
3.4.2 Results . 54

3.5 Real Application . 61
3.6 Conclusion . 65

4 Simplified Survival Neural Network for Time-to-Event Prediction 68
4.1 Introduction . 68
4.2 Methodology . 71

4.2.1 Step 1: Time-to-Event Outcome Transformation under Right-Censoring 71
4.2.2 Step 2: Feature Extraction with Neural Networks 74
4.2.3 Step 3: Individualized Survival Prediction 76

4.3 Simulation Studies . 77
4.3.1 Scenario 1: Proportional & Linear 78
4.3.2 Scenario 2: Proportional & Nonlinear 79
4.3.3 Scenario 3: Nonproportional & Nonlinear 79
4.3.4 Computation Speed with Different Loss Functions 80

4.4 Real Applications . 81
4.5 Conclusion . 84

5 Conclusion and Future Work 85

Bibliography 87

Appendix A Appendix to Chapter 2 95
A.1 List of All Notations . 95
A.2 Model Configurations in Real Application 98

Appendix B Appendix to Chapter 3 99
B.1 Simulation Studies: Additional Details . 99

B.1.1 Model Configurations . 99
B.1.2 Statistical Results . 101

vii

B.2 Real Application: Additional Details . 104
B.2.1 Hyperparameter Tuning . 104
B.2.2 Model Configurations . 104
B.2.3 Statistical Results . 106

Appendix C Appendix to Chapter 4 107
C.1 Time Splitting . 107
C.2 Additional Details for Simulation Studies 107

C.2.1 Scenario 1: Proportional & Linear 107
C.2.2 Scenario 2: Proportional & Nonlinear 108
C.2.3 Scenario 3: Nonproportional & Nonlinear 108

C.3 Additional Details for Real Application . 110
C.4 Additional Figures . 110

viii

List of Tables

Table 2.1 Mean squared errors of prediction (MSEPs) of 20 random test sets for
various models with ASFR data set. 23

Table 2.2 Mean squared errors of prediction (MSEPs) of 20 random test sets for
various models with data generated by Design 1. 28

Table 2.3 Mean squared errors of prediction (MSEPs) of 20 random test sets for
various models with data generated by Design 2. 33

Table 2.4 Mean squared errors of prediction (MSEPs) of 20 random test sets for
various models with data generated by Design 3. 33

Table 2.5 Mean squared errors of prediction (MSEPs) of 20 random test sets for
various models with data generated by Design 4. 34

Table 3.1 Means and standard deviations (displayed inside parentheses) of predic-
tion error and classification accuracy of functional autoencoder with the
identity activation function (FAE(Identity)), functional autoencoder
with the softplus activation function (FAE(Softplus)) and functional
principal component analysis (FPCA) on 10 random test data sets in
Scenario 1.1, with the best results being highlighted in bold. 55

Table 3.2 Means and standard deviations (displayed inside parentheses) of predic-
tion error and classification accuracy of functional autoencoder with the
identity activation function (FAE(Identity)), functional autoencoder
with the sigmoid activation function (FAE(Sigmoid)) and functional
principal component analysis (FPCA) on 10 random test data sets in
Scenario 1.2, with the best results being highlighted in bold. 55

Table 3.3 Means and standard deviations (displayed inside parentheses) of predic-
tion error and classification accuracy of functional autoencoder with the
sigmoid activation function (FAE(Sigmoid)) and classic autoencoder
with the sigmoid activation function (AE(Sigmoid)) on 10 random test
data sets in Scenario 2.1, with the better results being highlighted in
bold. 57

ix

Table 3.4 Means and standard deviations (displayed inside parentheses) of predic-
tion error and classification accuracy of functional autoencoder with the
softplus activation function (FAE(Softplus)) and classic autoencoder
with the softplus activation function (AE(Softplus)) on 10 random test
data sets when training with 80% irregularly observed data in Scenario
2.2, with the better results being highlighted in bold. 59

Table 3.5 Means and standard deviations (displayed inside parentheses) of predic-
tion error and classification accuracy of functional autoencoder with the
softplus activation function (FAE(Softplus)) and classic autoencoder
with the softplus activation function (AE(Softplus)) on 10 random test
data sets when training with 20% irregularly observed data in Scenario
2.2, with the better results being highlighted in bold. 60

Table 3.6 Means and standard deviations (displayed inside parentheses) of pre-
diction error and classification accuracy of functional autoencoder with
the identity activation function (FAE(Identity)) and the sigmoid acti-
vation function (FAE(Sigmoid)), classic autoencoder with the identity
activation function (AE(Identity)) and the sigmoid activation function
(AE(Sigmoid)) and functional principal component analysis (FPCA) on
20 random test sets with the El Niño data set. 64

Table 4.1 The original data set with two individuals (left), and the new data set
after splitting the follow-up interval at time points 5 and 10, resulting
in consecutive time intervals of length 5 (right). 77

Table 4.2 Means and standard deviations (in parentheses) of C-indices over the
100 replicates for different methods, including classic cox proportional
hazard model (Classic Cox (Linear)), and our proposed simplified neural
networks using reweighing (RW), mean imputation (MI) or deviance
residual (DR) in Step 1, a feed-forward neural network (NN) in Step
2, and either classic Cox regression (Cox) or Cox regression with time-
dependent coefficient (Cox(NP)) in Step 3, on simulated data sets with
different sample size (n) and censoring rate (CR) and satisfying the
proportional assumption of Cox model. 79

x

Table 4.3 Means and standard deviations (in parentheses) of C-indices over the
100 replicates for different methods, including classic cox proportional
hazard model (Classic Cox (Linear)), and our proposed simplified neural
networks using reweighing (RW), mean imputation (MI) or deviance
residual (DR) in Step 1, a feed-forward neural network (NN) in Step
2, and either classic Cox regression (Cox) or Cox regression with time-
dependent coefficient (Cox(NP)) in Step 3, on simulated data sets
with different sample size (n) and censoring rate (CR), satisfying the
proportional but violating the linear assumption of Cox model. 80

Table 4.4 Means and standard deviations (in parentheses) of C-indices over the
100 replicates for different methods, including classic cox proportional
hazard model (Classic Cox (Linear)), and our proposed simplified neural
networks using reweighing (RW), mean imputation (MI) or deviance
residual (DR) in Step 1, a feed-forward neural network (NN) in Step
2, and either classic Cox regression (Cox) or Cox regression with time-
dependent coefficient (Cox(NP)) in Step 3, on simulated data sets with
different sample size (n) and censoring rate (CR) and violating the
proportional and linear assumptions of Cox model. 81

Table 4.5 Computational times (in seconds) of the loss function of DeepSurv, the
loss function of Cox-MLP/Cox-Time with one control case, the loss
function of DeepHit with single event of interest, and the loss function of
the neural network of the proposed method for running 10,000 replicates
of data sets with training size ntrain and batch size sbatch. 82

Table 4.6 C-indices, averaged over the five cross-validation folds, for Classic Cox
and our proposed simplified neural networks using RW, MI or RD in
Step 1, a feed-forward neural network (NN) in Step 2, and either Cox
or Cox(NP) in Step 3 on three common survival datasets. 83

Table 4.7 C-indices, averaged over the five cross-validation folds, for two existing
nonlinear models DeepSurv and Cox-MLP, as well as our proposed
simplified neural networks for nonlinear scenarios with RW, MI or RD
in Step 1, a feed-forward neural network (NN) in Step 2, and Cox in
Step 3 on three common survival datasets. 83

Table 4.8 C-indices, averaged over the five cross-validation folds, for two exist-
ing nonlinear and nonproportional methods, including Cox-Time and
DeepHit, as well as our proposed simplified neural networks for nonpro-
portional scenarios with RW, MI or RD in Step 1, a feed-forward neural
network (NN) in Step 2, and Cox(NP) in Step 3 on three common
survival datasets. 83

xi

List of Figures

Figure 2.1 Age-specific fertility rates for 92 countries around the world. 4
Figure 2.2 The second B-spline basis coefficient (estimated using the functional

response Y (t)) versus two scalar covariates, including female age and
under-5 mortality, separately. The red lines are the smoothing curves
estimated using R function lowess(). 7

Figure 2.3 The relations between the covariate female age and the Y (t)-estimated
second basis coefficient (ĉ2,Y (t)), FoS-predicted second basis coeffi-
cient (ĉ2,FoS), NNBB-predicted second basis coefficient (ĉ2,NNBB) and
NNBR-predicted second basis coefficient (ĉ2,NNBR), respectively. . . 24

Figure 2.4 The relations between the covariate Under-5 Mortality and the Y (t)-
estimated second basis coefficient (ĉ2,Y (t)), FoS-predicted second basis
coefficient (ĉ2,FoS), NNBB-predicted second basis coefficient (ĉ2,NNBB)
and NNBR-predicted secondbasis coefficient (ĉ2,NNBR), respectively. 25

Figure 2.5 Scatter plots of the true c12 (ζ12 as per the generator), FoS-predicted
ĉ12,FoS, NNBB-predicted ĉ12,NNBB, and NNBR-predicted ĉ12,NNBR

against X12 in Design 1, from left to right respectively. 29
Figure 2.6 Scatter plots of the true c4 (ζ4 as per the generator), FoS-predicted

ĉ4,FoS, NNBB-predicted ĉ4,NNBB, and NNBR-predicted ĉ4,NNBR against
X4 in Design 1, from left to right respectively. 30

Figure 2.7 Scatter plots of the true c5 (ζ5 as per the generator), FoS-predicted
ĉ5,FoS, NNBB-predicted ĉ5,NNBB, and NNBR-predicted ĉ5,NNBR against
X5 in Design 1, from left to right respectively. 31

Figure 3.1 Functional autoencoder for continuous data with L = 1 hidden layer. 42
Figure 3.2 Functional autoencoder for discrete data with L = 1 hidden layer. . 44
Figure 3.3 Encoder with a feature layer. Notice that the input and feature layers

are devoid of parameters at this point and are entirely deterministic
given the data and the choice of basis functions for {w(I)

k (t)}K(1)
k=1 . . 45

Figure 3.4 Decoder with a coefficient layer. Similarly, the last two layers are
devoid of parameters and are deterministic. 47

xii

Figure 3.5 A graphical representation of the FAE we propose for discrete func-
tional data. The model represented only has a single hidden layer h,
that serves the role of latent representation. 48

Figure 3.6 The simulated curves and the curves recovered by functional principal
component analysis (FPCA), classic autoencoder with the sigmoid ac-
tivation function (AE(Sigmoid)) and functional autoencoder with the
sigmoid activation function (FAE(Sigmoid)) using 5 representations
for a random test set in Scenario 1.2 and Scenario 2.1. 56

Figure 3.7 The simulated irregularly spaced curves and the curves recovered by
classic autoencoder with the softplus activation function (AE(Softplus))
and functional autoencoder with the softplus activation function
(FAE(Softplus)) using 5 representations for a random test set in
Scenario 2.2, when training with 80% observations (left panel) and
20% observations (right panel), respectively. 61

Figure 3.8 Centered monthly sea surface temperature measured in the Niño
region defined by the coordinates 0-10 degree South and 90-80 degree
West. 62

Figure 3.9 The observed curves and curves recovered by functional principal
component analysis (FPCA), classic autoencoder with the sigmoid
activation function (AE(Sigmoid)) and functional autoencoder with
the sigmoid activation (FAE(Sigmoid)) using 5 representations for a
test set of El Niño data set. 63

Figure 3.10 How the averaged prediction error and classification accuracy of
functional autoencoder (FAE) and classic autoencoder (AE) with the
identity activation function using 5 representations on 20 random
test sets of the El Niño data set change with the number of epochs. 65

Figure 3.11 How the averaged prediction error and classification accuracy of
functional autoencoder (FAE) and classic autoencoder (AE) with the
sigmoid activation function using 5 representations on 20 random
test sets of the El Niño data set change with the number of epochs. 66

Figure 4.1 Diagram of the simplified survival neural network in the form of a
3-step pipeline, consisting of survival time transformation, feature
extraction with neural networks and hazard model fitting. 70

Figure 4.2 Transformed time-to-event response Y , obtained from reweighing,
mean imputation, and deviance residual, vs. the observed time T
for censoring and event individuals in the Rot. & GBSG dataset
(Kvamme et al., 2019). 73

xiii

Chapter 1

Introduction

The intersection of machine learning and statistical analysis has witnessed remarkable
advancements, with neural networks emerging as powerful tools for analyzing different types
of data. This thesis primarily focuses on the development of statistical models leveraging
neural networks in the domains of functional data analysis (FDA) and survival analysis.
Functional data, which consist of curves or functions defined over a continuum, are typically
observed in a discrete manner. In this work, we seek novel approaches relying on neural
networks to address challenges related to nonlinearity in regression and representation
problems regarding discrete functional data. In addition, survival analysis refers to the study
of time-to-event data, where the main emphasis lies in understanding the time until the
occurrence of an event of interest. This work investigates a simplified framework to tackle
time-to-event prediction through neural networks, providing a new perspective to model
survival data subject to right censoring.

Functional regression is an active and trendy topic of research in FDA and has received
wide attention in real applications and methodological developments. Among different types
of functional regression problems, function-on-scalar regression (regression of a functional
response on scalar predictors) is always a challenging task, especially when the relation
between the response and the predictors is nonlinear. In Chapter 2, we develop a general
framework of neural networks tailored for functional response, which aims at predicting
smooth curves using the scalar inputs through a typical feed-forward neural network. To
achieve the direct usage of functional data collected in a discrete form for network training, we
slightly modify the objective function of the neural network, thereby ensuring the application
of backpropagation, a gradient estimation method for neural network optimization. Numerical
experiments demonstrate the superiority of the proposed models in relationship recovery
and curve prediction under various nonlinear scenarios.

Representation learning of functional data is another fundamental but critical problem
of interest in FDA. A standard pipeline in FDA is to first convert the discretely observed
data to smooth functions, and then represent smooth functional data by some finite-
dimensional vector of scalar values summarizing the information carried by the functions.

1

Basis expansion and functional principal component analysis are the two most widely
recognized and commonly employed approaches for dimensional reduction of functional data.
Both methods concentrate on learning the linear representation of functional data, yet in
existing literature, limited attention has been paid to exploring the nonlinear mappings from
the data space to the representation space, especially with deep learning techniques. To
bridge this divide, we propose a solution to the nonlinear representation learning using a novel
functional autoencoder (FAE) based on densely feed-forward neural networks in Chapter 3.
The architecture of the proposed FAE is partially based on the neural network for functional
output introduced in Chapter 2, integrating a newly designed input layer to directly input
discrete functional data. Distinguished from the majority of the existing representation
learning methods that require smooth functional inputs, our approach is dedicated to
performing unsupervised representation learning and direct curve smoothing for discrete
functional observations simultaneously, eliminating the conduct of curve smoothing assuming
any particular form in advance. The advantages of the proposed FAE in reconstructing
discrete data as smooth curves and extracting informative representation for classification
are illustrated in different simulation designs.

In Chapter 4, we divert our attention to integrate neural networks into time-to-event
prediction. With the expansion of modern data sets, the conventional approaches modelling
biomedical covariates and a time-to-event outcome, e.g., Cox regression (Cox, 1972), become
computationally challenging, prompting the emergence of survival neural networks as an
alternative approach. Existing survival neural networks mainly focus on constructing neural
networks directly using time-to-event outcome, each with its customized loss function
and distinct training procedure to address right censoring. These customizations, however,
introduce arbitrariness and bias into the estimation and increase the computational burden
in network training. We instead propose a simplified survival neural network in the form
of a three-step pipeline that does not require any modification of the loss function or
training procedure to tackle time-to-event prediction. Numerical studies demonstrate that our
simplified survival neural networks is computationally efficient and statistically competitive
in model discrimination comparing to several existing survival neural networks.

2

Chapter 2

Neural Networks for Scalar Input
and Functional Output

The regression of a functional response on a set of scalar predictors can be a challenging task,
especially if there is a large number of predictors, or the relationship between those predictors
and the response is nonlinear. In this chapter, we propose a solution to this problem: a
feed-forward neural network (NN) designed to predict a functional response using scalar
inputs. First, we transform the functional response to a finite-dimensional representation
and construct an NN that outputs this representation. Then, we propose to modify the
output of an NN via the objective function and introduce different objective functions
for network training. The proposed models are suited for both regularly and irregularly
spaced data, and a roughness penalty can be further applied to control the smoothness of
the predicted curve. In our experiments, we demonstrate that our models outperform the
conventional function-on-scalar regression model in multiple scenarios while computationally
scaling better with the dimension of the predictors. See Wu et al. (2023) for the published
version of this chapter.

2.1 Introduction

Functional data analysis (FDA) is a rapidly developing branch of statistics which targets at
the theory and analysis of functional variables. As the atom of FDA, functional variables or
functional data refer to curves, surfaces and any random variables taking values in an infinite
dimensional space, such as time and spatial space (Ramsay and Silverman, 2005; Ferraty and
Vieu, 2006). A basic and commonly recognized framework in FDA is to regard the functional
data as realizations of an underlying stochastic process (Wang et al., 2016a), and indeed, a
large fraction of data coming from different fields can be characterized as functional data.
Figure 2.1, for example, illustrates the fertility rates over the age of females for 92 countries.
Each curve is treated as a smooth function of age and can be viewed as functional data. The
fertility curves were measured at several time points, each of which represents an age group

3

in increasing order. This age-specific fertility rate (ASFR) data was collected from the United
Nations Gender Information (UNGEN) database by Mehrotra and Maity (Suchit Mehrotra,
2022). They estimated the observations based on the surveys conducted between 2000 and
2005. The data set is publicly available at https://github.com/suchitm/fosr_clust.

0
10

0
20

0
30

0

Age group

B
ir

th
s

pe
r

10
00

 w
om

en

15−19 20−24 25−29 30−34 35−39 40−44 45−49

Figure 2.1: Age-specific fertility rates for 92 countries around the world.

Among different aspects of FDA, functional regression has received the most attention
in applications and methodological development (Morris, 2015). Functional regression, in
general, can be divided into three types: (1) scalar-on-function regression (regression analysis
of scalar responses on functional predictors)(Lin et al., 2017), (2) function-on-function
regression (predictors and responses of the regression are both functional) (Cai et al.,
2021b,a), and (3) function-on-scalar (FoS) regression (regression of functional responses on
scalar predictors, also named as the varying-coefficient model)(Cai et al., 2022). While plenty
of work has been done for the first two scenarios, studies discussing functional response
regression remain scarce. Functional linear models (FLM), a series of extensions of the
classic linear models, are the most conventional and widely applied methods in dealing with
regression problems. A general form of FLM for FoS regression can be written as

Y (t) = Xβ(t) + ϵ(t), (2.1)

where Y (t) is the functional response, and X is a vector of scalar covariates. The unknown
vector β(t) consists of parameter functions varying over t, and ϵ(t) stands for the random
error term. In FDA, the consensual approach is to represent functional data with a linear
combination of a finite number of known basis functions. Ramsay & Silverman (Ramsay and
Silverman, 2005) introduced projecting functional response with basis functions like B-splines

4

https://github.com/suchitm/fosr_clust

for fitting the FoS regression model. Chiou et al. (Chiou et al., 2004, 2003) proposed to use
functional principal component analysis (FPCA) for dimensional reduction and represent
the functional response with eigenfunctions obtained via spectral decomposition of the
covariance function of Y (t). Both approaches summarize the information carried by the
functional variable Y (t) to a finite-dimensional vector of scalar representations (B-spline
basis coefficients or functional principal component scores (FPC scores)). In solving linear
functional regression problems, taking FoS regression as an example, the linear relation
between the scalar predictors and the functional response is indeed captured by fitting a
linear relation between the predictors and the scalar representation.

Some nonlinear approaches have been developed to handle more complicated regression
settings. Zhang and Wang (Zhang and Wang, 2014) combined the FoS with the additive
models to gain the varying-coefficient additive model for functional data which does not
require the linearity assumption between the scalar predictors and the functional response.
Afterwards, an extension to this varying-coefficient additive model, named as functional
additive mixed (FAM) model, was established by Scheipl et al. (Fabian Scheipl and Greven,
2015) with a general form

Y (t) =
R∑

r=1
fr (Xr, t) + ϵ(t), (2.2)

for functional response Y (t). Each term in the additive predictor fr(Xr, t) is a function of t
and a subset Xr of the complete predictor set X including scalar and functional covariates.
This extensive framework can consist of both linear and nonlinear effects of functional and
scalar covariates that may vary smoothly over the index of the functional response. Naturally,
this model was further extended, by Scheipl et al (Fabian Scheipl and Greven, 2016), to the
generalized functional additive mixed model in order to take care of non-Gaussian functional
response. Although several nonlinear attempts have been made, the existing regression
methods for FDA have been predominantly linear (Wang et al., 2016a). Considering the
emerging trend of complicatedly structured functional data, there is an increasing demand
to develop more nonlinear approaches to FDA.

In this work, we propose a solution to the FoS problem which is able to handle a
large number of predictors and the nonlinear relation between the scalar predictors and
the functional response. Our solution borrows from the machine learning literature, which
follows a trend in adapting machine learning techniques to known statistical problems such
as survival analysis (Ishwaran et al., 2008; Katzman et al., 2018; Beaulac et al., 2018) or
causal inference (Schölkopf et al., 2021; Lecca, 2021). We adapt the NN architecture for
functional data.

In some existing works, efforts have been made to combine deep NNs to the field of
functional data analysis. For instance, Rossi et al.(Rossi et al., 2002; Rossi and Conan-
Guez, 2005) firstly explored the idea of applying NNs to functional data by constructing

5

a functional neural network (FNN) with functional neurons in the first hidden layer for
functional inputs. FNN was then extended by Thind et al. (Thind et al., 2023, 2020) to
feed both functional and scalar coviarates as inputs and outputs a scalar response. Rao et
al. (Rao et al., 2020) equipped FNN with geographically weighted regression and spatial
autoregressive technique to handle regression problems with spatially correlated functional
data. Meanwhile, Wang et al.(Wang et al., 2020) proposed a nonlinear function-on-function
model using a fully connected NN. Previously, Yao et al. (Yao et al., 2021) developed an
NN with a new basis layer whose hidden neurons are micro NNs, to perform a parsimonious
dimension reduction for functional inputs using information relevant to the scalar target.
(Wang and Cao, 2023a) introduced a functional nonlinear learning approach to adequately
represent multivariate functional data within a reduced-dimensional feature space. (Wang
and Cao, 2023b) proposed a nonlinear prediction method for functional time series.

Most of the mentioned works are focused on building NNs with functional inputs and
scalar outputs. In this work, we consider the other side of the coin. We design an NN meant to
predict a functional response and to the best of our knowledge, this study is the first attempt
to solve the FoS regression problem using artificial NNs. Because the standard machine
learning techniques are designed for finite-dimensional feature vectors, we propose to encode
the information contained in the intrinsically infinite-dimensional functional response to a
finite-dimensional vector of scalar representations. Different from other nonlinear approaches
targeting at FoS regression problems, our methods, in particular, focus on studying the
nonlinear association between the predictors and the scalar representations of the functional
response, to further reveal the relation between the scalar predictors and the functional
response. In this way, we maintain the interpretability of the relation between the scalar
predictors and the functional response, despite of the usage of NNs.

Challenged by the ASFR data introduced previously, in this work, we are interested in
conducting a FoS analysis to accurately predict the functional curves using scalar predictors
and also reveal any potential nonlinear relation between the predictors and the response. For
each of the 92 observations (countries), the functional curve of fertility rates is associated
with 15 demographic and socioeconomic variables averaging over the information available
on Gapminder in a country-level manner from 2000 to 2005 (Suchit Mehrotra, 2022). These
15 scalar covariates consist of age at first marriage, under-5 mortality, maternity deaths per
1000 women, cervical cancer deaths per 100,000 women, female labor force participation,
male to female ratio (women aged from 15-49), contraception prevalence (women aged from
15-49), life expectancy, mean years of school (women % men, women aged from 15-34),
female’s body mass index (BMI), the number of births attended by trained birth staff (% of
total), gross domestic product (GDP) per capita, the proportion of dollar billionaires per
1 million people, health expenditures (% of GDP) and the amount of alcohol its populace
consumes. All the covariates downloaded from the listed data source have been previously
standardized, and many predictor pairs among them are found highly correlated.

6

Due to the difficulty in directly determining whether there is a nonlinear relation between
a scalar variable and a random function, we pay more attention to the association between the
scalar covariates and the scalar representations summarizing the information of the functional
response. Regarding the scalar representations, we choose to use the basis coefficients which
are estimated by approximating the response function with a linear expansion of the most
common B-spline basis functions. Besides the initial choice of the basis coefficients, we also
attempt to implant the FPC scores as the scalar representations in the real application.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●

● ●
●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

−1 0 1 2 3

0
10

0
20

0
30

0
40

0

Female Age

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

● ●

●●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−1 0 1 2

Under−5 Mortality

Figure 2.2: The second B-spline basis coefficient (estimated using the functional response
Y (t)) versus two scalar covariates, including female age and under-5 mortality, separately.
The red lines are the smoothing curves estimated using R function lowess().

Accordingly, with the ASFR data set, instead of picturing the relation between the
infinite-dimensional response curve and the 15 scalar covariates, we obtain visualizations
of one B-spline basis coefficient against one predictor for all possible combinations. The
representation process is purely based on the fertility trajectories with no contribution from
the 15 predictors. Six B-spline basis functions are employed, which is recommended by the
cross-validation we performed. Figure 2.2 displays the in-pair associations for some selected
basis coefficient-predictor pairs. We incorporate a locally-weighted smoothing curve in red
to help visualizing if the association is linear or not. The existence of nonlinear associations
between some coefficient-predictor pairs is endorsed, as shown with the female age predictor
in Figure 2.2. On the other hand, the association pattern of the second basis coefficient to
under-5 mortality is basically linear as depicted in Figure 2.2. As both linear and nonlinear
patterns are detected among all possible basis coefficient-predictor sets, we would like to
set up a procedure with the ability to include every available covariate to precisely predict

7

the response trajectory, while simultaneously capturing the true relationships between the
predictors and the scalar representations of the functional response.

Three main contributions are made in this work. First, we construct a general framework
of NN for functional response which aims at predicting curves using the input through a feed-
forward NN architecture by slightly modifying the output of the NN via the objective function.
Such modifications are readily applicable to other types of networks such as convolutional
neural networks (CNN) (Zhu et al., 2016), and long short-term memory (LSTM) model
(Hochreiter and Schmidhuber, 1997; Greff et al., 2017; Gers et al., 2000). Second, we pay
attention to the behavior of the functional output during the network training process and
propose to hold their natural smoothness property by adding a roughness penalty in the
objective function for training NN. Lastly, we make numerous comparisons under various
scenarios to analyze and conclude the conditions of use for different versions of our methods.

The biggest challenge to the implementation of the aforementioned contributions is to
ensure the NN models can be trained using backpropagation as a standard NN (Rumelhart
et al., 1986). Theoretically, we need to define the flow of information from the input to the
objective function as a sequence of operations differentiable with respect to the weights of
the NN. However, in practice, because we rely on an auto-differentiation package, such as
Keras (Allaire and Chollet, 2020), to train the NN, we need to define the objective function
as a sequence of operations provided by that package. The available differential operations
are incapable of dealing with derivatives of the integral of the infinite-dimensional functional
response with respect to NN weights. Besides, some common features when fitting functional
data, such as roughness penalties, were obviously not designed with that consideration in
mind. For example, it is common to penalize the integrated second-order derivative of a
functional curve for smoothing in FDA. But a roughness penalty cannot be simply integrated
into the objective function when training the NN. Overcoming that challenge is a central
part of these contributions mentioned above and to do so, we needed to be creative and
adapt the objective functions in various ways detailed later in this manuscript.

The remainder of this chapter is organized as follows. In Section 2.2, we detail the
proposed NN with a functional response, with an additional discussion on how to control
the smoothness of the predicted curves. A brief discussion about the computational costs of
NNs and the FLM with functional response is provided in Section 2.3. Section 2.4 contains
the results of prediction in the real application using different methods. In section 2.5, we
conduct simulation studies, under linear and nonlinear scenarios, and compare the proposed
models with the existing FoS model in both the predictive accuracy for discretely observed
time points and the ability to reconstruct the true response trajectories over a continuum.
Lastly, some concluding remarks are given in Section 2.6.

8

2.2 Methodology

Suppose we have N subjects and for the i-th subject, the input is a set of numerical variables
Xi = {Xi1, Xi2, ..., XiP }, and the output is a functional variable Yi(t), t ∈ T in the L2(t)
space. Functional data is often assumed to lie in the L2 space because it ensures that the
data is square-intergrable, allowing the optimization of the statistical models with respect to
the squared-loss criterion in the FoS regression framework. In reality, the functional response
Yi(t) is usually measured in a discrete manner, for instance, at mi time points or locations.
Therefore, instead of observing the full trajectory of Yi(t), for the i-th subject, we obtain
mi pairs of observations {tij , Zi(tij)}, j = 1, 2, ...mi and Zi(tij) = Yi(tij) + ϵi(tij), where
ϵi(tij) is the i.i.d. observation error. To simplify the situation, in the following discussion, we
assume that for all subjects, the functional term Yi(t)’s are observed at the same m densely
and equally spaced time points. In other words, we assume that m1 = m2 = · · · = mN = m

and t1j = t2j = · · · = tNj = tj for j = 1, 2, ...,m. A summary of notations used throughout
the manuscript is provided in Table A.1 in Appendix A.

2.2.1 Neural Network with Functional Response: Mapping to Basis Coef-
ficients (NNBB)

To overcome the difficulty in modelling infinite-dimensional data, a common pipeline in
FDA is to summarize the information of functions {Yi(t)}N

i=1 into a set of finite-dimensional
vectors of coefficients using some basis representation method, and consequently,

Yi(t) =
Kb∑

k=1
cikθk(t) = θ′Ci, (2.3)

where Kb is the number of basis functions. It is common practice to select Kb by cross-
validation (Ramsay and Silverman, 2005). The vector θ contains the basis functions
θ1(t), ..., θKb

(t) from a selected basis system, such as the Fourier basis system or B-spline
system (in our study, we mainly used the latter), and θk(t) also belongs to L2 space. Ci

is a Kb-dimensional vector of basis coefficients {cik}Kb
k=1 which lies in RKb and needs to

be determined. These basis coefficients serve as parameters of this model. Without the
smooth underlying functions Yi(t)’s, the discrete observations Zi(tij)’s are used to esti-
mate {cik}Kb

k=1 by fitting Zi(tij) =
∑Kb

k=1 cikθk(tij) + ϵi(tij). The least square estimator of
cik, denoted by c◦

ik, is obtained by minimizing the sum of squared error (SSE) criterion
SSE(Z|C) =

∑N
i=1

∑m
j=1
Ä
Zi(tij) −

∑Kb
k=1 cikθk(tij)

ä2
.

Eq.(2.3) implies that Y (t) can be approximated by a linear combination of the basis
functions θ(t)’s, which carry the fixed modes of variations over T with real-valued basis
coefficients. Learning how the predictors X’s regress on the variation of Y (t), as a result, can
be naturally replaced with learning how the predictors X’s regress on the set of unknown
basis coefficients c’s. Therefore we propose to set the basis coefficients c’s as a function of

9

X’s. Let F (·) be a mapping function from RP to RKb so that X can be mapped to the basis
coefficients as

Ci = F (Xi), (2.4)

which in turn can be used to map X to the functional response Y (t) with Yi(t) = θ′F (Xi).
Consequently, we can learn the nonlinear relation between Xi and Yi(t) by setting F (·)
to be a nonlinear function. Here we propose a densely feed-forward NN as the mapping
function F (·), where the basis coefficients {ci1, ci2, ..., ciKb

} are the outputs of the NN, then
the model can be expressed as

Ci = NNη(Xi) = gL+1

(
· · · g1

(
P∑

p=1
w1pXip + b1

))
, (2.5)

where g1, ..., gL+1 are the activation functions at each layer with L being the number of
hidden layers, and η denotes the NN parameter set consisting of weights {wℓp}L+1

ℓ=1 and bias
{bℓ}L+1

ℓ=1 of all layers. The NN is optimized by minimizing the standard objective function
calculating the mean squared error (MSE) as LC(η) = 1/ntrain

∑ntrain
i=1

∑Kb
k=1(ĉik − cik)2,

where ntrain is the number of samples in the training set, and in application the true basis
coefficients cik’s are replaced with c◦

ik’s.
We named this model NNBB as it is an NN, with B-spline coefficient output (B) and

trained by minimizing the MSE of those B-spline coefficients (B). With the exception of the
output layer, the NNBB uses a conventional NN architecture and thus, typical approaches
for hyperparameter tuning and training can be applied. We summarize the training process
of NNBB in Algorithm 1. The optimized NN is used for prediction where it takes the new
scalar inputs in the test set and then outputs the predicted basis coefficients Ĉnew. The
predicted functional response Ŷ (t) is further constructed as Ŷ (t) = θ′Ĉnew.

2.2.2 Neural Network with Functional Response: Mapping to FPC Scores
(NNSS)

Apart from basis expansion, the other popular approach for dimension reduction is FPCA. To
be specific, let µ(t) and K(t, t′) = cov(Y (t), Y (t′)) be the mean and covariance functions of
the underlying function Y (t), and accordingly, the spectral decomposition of the covariance
function is K(t, t′) =

∑∞
k=1 γkϕk(t)ϕk(t′), where {γk, k ≥ 1} are the eigenvalues in decreasing

order with
∑

k γk < ∞ and ϕk’s are corresponding eigenfunctions, also named functional
principle components (FPCs), with restriction of

∫
ϕ2

k(t)dt = 1 for all k. Following the
Karhunen-Loève expansion, the i-th observed functional response Yi(t) can be represented as
Yi(t) = µ(t) +

∑∞
k=1 ξikϕk(t). Denote Ỹi(t) = Yi(t) − µ(t) as the centered functional response

10

Algorithm 1: Training NNBB
Input: Xi = {Xi1, Xi2, ..., XiP }, {Zi(tij)}m

j=1 in the training set ntrain
Output: NN with the optimized parameter set η̂

1 set up hyperparameters, including:
- for smoothing Zi(tij): basis function vector θ = [θ1(t), ..., θKb

(t)], number of basis
functions Kb

- for training NN: number of hidden layers (L), number of neurons per hidden layer,
activation functions (g1, ..., gL+1), number of epochs (E), batch size, NN optimizer
(with a learning rate ϱ), etc.

2 forall i ∈ ntrain do obtain {c◦
ik}Kb

k=1 by projecting {Zi(tij)}m
j=1 to the selected set of

basis functions θ

3 randomly initialize NN parameter set and get η = ηinitial

4 train a fully-connected NN with input Xi and output {c◦
ik}Kb

k=1
for e = 1 to E do

I. forward propagation
(i) pass Xi through the NN and get {ĉik}Kb

k=1 for all i ∈ ntrain
(ii) calculate L(η) = 1/ntrain

∑ntrain
i=1

∑Kb
k=1(ĉik − c◦

ik)2

II. backward propagation
(i) update NN parameter set as η∗ = η − ϱ∂L(η)

∂η

III. if e < E then set η = η∗, and then repeat I. & II.
else return η∗

end
5 return NN with the estimated parameter set η̂ = η∗

for the i-th subject, we can express the expansion as

Ỹi(t) =
∞∑

k=1
ξikϕk(t), (2.6)

where ξik =
∫

{Yi(t) − µ(t)}ϕk(t)dt is the k-th FPC score for Yi(t) with zero mean and
cov(ξik, ξil) = γk · 1(k = l). Representing functions with eigenfucntions eigen-decomposed
from cov(Y (t), Y (t′)) and the corresponding FPC scores can be considered as a special case
of basis expansion, where eigenfunctions play the role of basis functions which, however, are
unknown and need to be numerically calculated using the observed functional data. Given
a desired proportion of variance explained (τ) by the FPCs, Ỹi(t) can be approximated
arbitrarily well by a finite number of the leading FPCs, where

Ỹi(t) ≈
Kτ∑
k=1

ξikϕk(t), (2.7)

11

and Kτ is a valued parameter truncating the FPCs and reducing the dimension of Y (t). Kτ

is determined by τ as the smallest integer satisfying
∑Kτ

k=1 γk ≥ τ . Because of the fast decay
rate of γk, Kτ is usually an small integer. In pratice, FPCA can be easily performed in R

with the help of some FDA-related packages, e.g., fda (Ramsay et al., 2020) and fdapace
(Carroll et al., 2020). The fda package requires the users to firstly smooth the discrete
observations Zi(tij)’s and then apply FPCA on the smoothed functional data for {ξ◦

ik}Kτ
k=1

and {ϕ̂k(t)}Kτ
k=1, an estimator of {ξik}Kτ

k=1 and {ϕk(t)}Kτ
k=1, respectively, while the fdapace

package is able to estimate {ξik}Kτ
k=1 and {ϕk(t)}Kτ

k=1 with observed data Zi(tij)’s directly.
It is clearly shown in Eq.(2.7) that Ỹi(t) can be effectively approximated by a linear

combination of the top eigenfunctions {ϕk(t)}Kτ
k=1, with the major modes of variations among

Ỹi(t) captured. Following the idea in Wang & al. (Wang et al., 2020), under the regression
setting, in order to learn the impact of different values of Xi on the variation of Ỹi(t), we
propose to set the coefficients ξi = {ξi1, ξi2, ..., ξiKτ } to be a function of Xi, by formulation,
ξi = F (Xi) and consequently we have

Ỹi(t) = ϕ′F (Xi), (2.8)

where ϕ is a Kτ -dimensional vector cataloging the Kτ leading FPCs. To model the nonlinear
relation, similarly, we proposed to set the mapping function F (·) as a densely feed-forward
NN, and then we can write

ξi = NNη(Xi) = gL+1

(
· · · g1

(
P∑

p=1
w1pXip + b1

))
, (2.9)

where g1, ..., gL+1 are the activation functions at each layer with L being the number of
hidden layers, and η denotes the NN parameter set consisting of weights {wℓp}L+1

ℓ=1 and bias
{bℓ}L+1

ℓ=1 of all layers. Likewise, NNη(Xi) is trained by minimizing the MSE loss function
Lξ(η) = 1/ntrain

∑ntrain
i=1

∑Kτ
k=1(ξ̂ik − ξik)2, where ntrain stands for the number of training set

subjects, and the true FPC scores ξik’s are replaced by ξ◦
ik’s.

Following the same naming convention, we refer to this model has NNSS because
it is an NN model build with output being the FPC scores (S) trained on the scores
(S) themselves.The complete training process of NNSS is summarized in Algorithm 2.
Again, the hyperparameter tuning and model training of NNSS are the same as of a
conventional NN. Meanwhile, the returned NN with optimized parameters set η̂ is used
for prediction where it takes the new scalar inputs in the test set and then outputs the
predicted FPC scores ξ̂new. The predicted functional response Ŷ (t) is further recovered
as Ŷ (t) = µ̂(t) + ϕ̂

′
ξ̂new = µ̂(t) + ϕ̂

′NN(Xnew|η̂), where ϕ̂ is the vector consisting of the
estimated FPCs ϕ̂1(t), ..., ϕ̂Kτ (t).

12

Algorithm 2: Training NNSS
Input: Xi = {Xi1, Xi2, ..., XiP }, {Zi(tij)}m

j=1 in the training set ntrain
Output: NN with the optimized parameter set η̂

1 set up hyperparameters, including:
- for performing FPCA: the desired proportion of variance explained τ for

determining Kτ

- for training NN: number of hidden layers (L), number of neurons per hidden layer,
activation functions (g1, ..., gL+1), number of epochs (E), batch size, NN optimizer
(with a learning rate τ), etc.

forall i ∈ ntrain do
2 estimate the mean function µ(t) and the covariance function K(t, t′) using

{Zi(tij)}m
j=1

3 perform eigen-decomposition on K̂(t, t′) and get {ϕ̂k(t)}Kτ
k=1 and the

corresponding FPC scores {ξ◦
ik}Kτ

k=1
end

4 randomly initialize NN parameter set and get η = ηinitial
5 train a fully-connected NN with input Xi and output {ξ◦

ik}Kτ
k=1

for e = 1 to E do
I. forward propagation

(i) pass Xi through the NN and get {ξ̂ik}Kτ
k=1 for all i ∈ ntrain

(ii) calculate L(η) = 1/ntrain
∑ntrain

i=1
∑Kτ

k=1(ξ̂ik − ξ◦
ik)2

II. backward propagation
(i) update NN parameter set as η∗ = η − ϱ∂L(η)

∂η

III. if e < E then set η = η∗, and then repeat I. & II.
else return η∗

end
6 return NN with the estimated parameter set η̂ = η∗

2.2.3 Modification to the Objective Function (NNBR and NNSR)

In the two previous sections, we define two NNs outputting basis coefficients or FPC scores,
and those outputs are further used to construct the predicted response variable. Let us
discuss a way to build an objective function that directly uses the response variable in order
to estimate the parameters. For simplicity, we only discuss the B-spline model of Section
2.2.1 but know that a similar concept can also be applied to the FPCA model described
in Section 2.2.2. In brief, in Section 2.2.1, we first fit a B-spline model on the observed
functional response to estimate a set of basis coefficients for the response in the training set
and then we train an NN to predict these basis coefficients using the predictors.

In this section, we propose to modify the objective function in order to bypass the initial
estimation of basis coefficients. The key idea of the new objective function is to directly
minimize the prediction error of the response variable. In other words, instead of minimizing

13

the MSE between ĉik and cik, here we first transform the NN output, the B-splines basis
coefficients, into the predicted response Ŷi(t) and then minimize the MSE between Ŷi(t) and
Yi(t). What supports us to implement such objective function is the fact that we rely on
differentiable operations to build this new objective function. Doing so guarantees that we
can rely on the backpropagation algorithm to train the NN using readily available packages.

Suppose that we want to fit the functional response with a B-spline made of Kb basis
functions θ and Kb associated basis coefficients C . Then the predict response Ŷi(t) at time
t is the vector product between θ and Ci as illustrated in Eq. (2.3). This means that the
relation between the predicted response Ŷi(t) and the predicted basis coefficients Ĉi is linear,
thus we can easily compute the derivative of Ŷi(t) with respect to the coefficients. This
further indicates that if we observe the response at time t then we are able to compute the
gradient of (Yi(t) − Ŷi(t))2 with respect to the basis coefficients and therefore we can also
compute the gradient with respect to the parameters η of the NN that outputs those basis
coefficients.

More generally, assuming the response is observed at m time points t1, t2, ..., tm for every
subject, we can generate a matrix of basis functions evaluated at those time points, denoted
as Θ, which is a Kb × m matrix where each row represents a basis function with entries
taking the values of that basis function at each of the m time points. Consequently, we can
obtain the predicted response Ŷ(ntrain×m) for every m observed time points and for all ntrain

subjects by doing a simple matrix multiplication

Ŷ(ntrain×m) = Ĉ(ntrain×Kb)Θ(Kb×m), (2.10)

where Ĉ is a matrix where a row contains the Kb NN-estimated coefficients for a single
observed subject. In our proposed model, Ĉ is the output produced by the NN function as
explained in Section 2.2.1. However, we now modify the objective function to train the NN
to minimize the MSE between the observed response and the predicted one

LY (η) = 1
ntrain

ntrain∑
i=1

m∑
j=1

(Yi(tij) − Ŷi(tij))2. (2.11)

Note that in implementation, the discrete observation Zi(tij) = Yi(tij) + ϵi(tij) will replace
Yi(tij), the underlying true functional curve. In this way, we entirely bypass the need to
estimate the basis coefficients first and fit the parameters η with respect to the functional
response directly. We call this variant NNBR because its architecture is an NN with basis
coefficients output (B) fitted by minimizing the MSE of the response variable (R). The entire
training process of NNBR is detailed in Algorithm 3. Similarly, we can get a prediction for a
new input Xnew as Ŷ (t) = θ′Ĉnew = θ′NN(Xnew|η̂).

When comparing NNBR to NNBB, we note that they share a similar architecture but use
different objective functions. A significant difference between both models is that in order to

14

Algorithm 3: Training NNBR
Input: Xi = {Xi1, Xi2, ..., XiP }, {Zi(tij)}m

j=1 in the training set ntrain

Output: NN with the optimized parameter set η̂

1 set up hyperparameters, including:
- for smoothing Zi(tij): basis function vector θ = [θ1(t), ..., θKb

(t)], number of basis
functions Kb

- for training NN: number of hidden layers (L), number of neurons per hidden layer,
activation functions (g1, ..., gL+1), number of epochs (E), batch size, NN optimizer
(with a learning rate ϱ), etc.

2 evaluate [θ1(t), ..., θKb
(t)] at all observed timestamps {tj}m

j=1 and form the matrix
Θ(Kb×m)

3 randomly initialize NN parameter set and get η = ηinitial

4 train a fully-connected NN with input Xi and output {Zi(tij)}m
j=1

for e = 1 to E do
I. forward propagation

(i) pass Xi through the NN and get {ĉik}Kb
k=1 for all i ∈ ntrain

(ii) multiply {ĉik}Kb
k=1 with Θ(Kb×m) to get {Ŷ (tij)}m

j=1
(iii) calculate L(η) = 1/ntrain

∑ntrain
i=1

∑m
j=1(Zi(ij) − Ŷi(tij))2

II. backward propagation
(i) update NN parameter set as η∗ = η − ϱ∂L(η)

∂η

III. if e < E then set η = η∗, and then repeat I. & II.
else return η∗

end
5 return NN with the estimated parameter set η̂ = η∗

train the NNBB we need to first estimate the basis coefficients of the functional response.
Conversely, training the NNBR requires a modification of the objective function which
slightly increases the computational cost but meanwhile bypasses the need of a beforehand
estimation of basis coefficients.

A similar process could be conducted with an NN that outputs FPC scores as described
in Section 2.2.2, where this time it predicts response Ŷ using those scores. We named that
model NNSR and describe the training process in Algorithm 4.

It is worth mentioning that the network architectures of NNBR and NNSR remain
the same as a classic NN even though we have modified their objective functions. Such
modifications only influence the network optimization with no changes to the sensitivity
with respect to the hyperparameters and the architecture (number of layers and depth).
Additionally, the proposed modification that targets at the minimization of the difference
between Yi(t) and Ŷi(t) is surprisingly simple, convenient and computationally efficient.
Compared to the operation that minimizes the difference between cik and ĉik (NNBB) or

15

between ξik and ξ̂ik (NNSS), the modified objective function only requires an additional
operation, namely a simple matrix multiplication as Eq. (2.10) in forward propagation and
an additional step to compute the gradient of (Yi(t) − Ŷi(t))2 with respect to the basis
coefficients outputted by NN in backward propagation. This only increases negligibly the
computational cost of NNBR and NNSR when compared to NNBB or NNSS.

Algorithm 4: Training NNSR
Input: Xi = {Xi1, Xi2, ..., XiP }, {Zi(tij)}m

j=1 in the training set ntrain

Output: NN with the optimized parameter set η̂

1 set up hyperparameters, including:
- for performing FPCA: the desired proportion of variance explained τ for

determining Kτ

- for training NN: number of hidden layers (L), number of neurons per hidden layer,
activation functions (g1, ..., gL+1), number of epochs (E), batch size, NN optimizer
(with a learning rate τ), etc.

forall i ∈ ntrain do
2 estimate the mean function µ(t) and the covariance function K(t, t′) using

{Zi(tij)}m
j=1

3 perform eigen-decomposition on K̂(t, t′) and get {ϕ̂k(t)}Kτ
k=1

4 form Φ̂(Kτ ×m), a matrix of eigenfunctions [ϕ̂1(t), ..., ϕ̂Kτ (t)] evaluated at all
observed time points {tj}m

j=1
end

5 randomly initialize NN parameter set and get η = ηinitial

6 train a fully-connected NN with input Xi and output {Zi(tij)}m
j=1

for e = 1 to E do
I. forward propagation

(i) pass Xi through the NN and get {ξ̂ik}Kτ
k=1 for all i ∈ ntrain

(ii) multiply {ξ̂ik}Kτ
k=1 with Φ̂(Kτ ×m) to get {Ŷ (tij)}m

j=1
(iii) calculate L(η) = 1/ntrain

∑ntrain
i=1

∑m
j=1(Zi(ij) − Ŷi(tij))2

II. backward propagation
(i) update NN parameter set as η∗ = η − ϱ∂L(η)

∂η

III. if e < E then set η = η∗, and then repeat I. & II.
else return η∗

end
7 return NN with the estimated parameter set η̂ = η∗

2.2.4 Irregularly Spaced Functional Data

Earlier in this section we made the common assumption that the functional response Y (t) is
observed at the same m equally spaced time points. While this was a useful assumption to

16

make in order to explain how to train the model, it is actually not a necessary condition
to fit any of the four models described above and we can train these models even with
irregularly spaced functional response.

For the first two models we introduced, NNBB and NNSS, in order to train the NN, we
simply need an estimate for the basis coefficients or an estimate for the FPC scores. We can
rely on some existing FDA literature to get those estimates (Ramsay and Silverman, 2005;
Yao et al., 2005a) for irregularly spaced functional data.

For both models that utilize the modified objective function, NNBR and NNSR, it is a
bit more complicated but not so much. Once again, let us focus on NNBR to simplify the
explanations. In the setting with irregularly spaced functional observations, the assumptions
m1 = m2 = · · · = mN = m and t1j = t2j = · · · = tNj = tj no longer hold. Suppose that mirr

is the total number of time points with at least one observation given all training subjects and
{tij}mirr

j=1 represents the union set of {tij}mi
j=1 for all i in the training set. The goal is to train

the model using only the observations at {tij}mi
j=1 when the i-th subject is observed at this

time. To achieve this, we need to generate a matrix Θirr of size Kb ×mirr with the k-th row
containing entries of the k-th chosen basis function evaluated at {tij}mirr

j=1 . This matrix Θirr

will be employed for the calculation of Ŷi(tij) at all mirr time points with observation(s) by
taking the matrix multiplication NNη(X)Θirr. However, because for each subject i, Yi(tij)’s
are originally observed at only {tij}mi

j=1 instead of all mirr time points, when computing the
objective function, we need to eliminate the contribution of those unobserved subject-time
point pairs by multiplying them by 0, and accordingly

LYirr(η) = 1
ntrain

ntrain∑
i=1

mi∑
j=1

Ä
Yi(tij) − Ŷi(tij)

ä2

= 1
ntrain

ntrain∑
i=1

mirr∑
j=1

Ä
Yi(tij) − Ŷi(tij)

ä2
· 1 (Yi(tij) is observed) , (2.12)

which assures that the unobserved subject-time point pairs do not contribute to the gradient
of the objective function.

Because of the common strategy used in FDA, which represents the infinite-dimensional
curve using a finite basis set, we are able to construct the curve over the entire interval T .
This allows us to compute the predictive accuracy even if the test set contains observations
at time points previously unseen, as long as they are within the interval of time points
observed in the training set.

2.2.5 Roughness Penalty

When predicting the functional response using NNs, we need to pay attention not only to the
predictive accuracy but also the smoothness of the predicted trajectories, as it is standard in
FDA. In practice, we observe that the performance of the NN mapping with basis expansion

17

is influenced by the number of basis functions selected. Usually, the more basis functions we
use to re-express the functional response, the higher accuracy can be gained when predicting
the response at a set of given time points.

In FDA, it is common to set the number of basis functions to be less than the number of
the observed time/location points with enough valid observations. However, in the cases
where the observed time points are limited, we can consider increasing the number of basis
functions to benefit the predictive accuracy. This benefit brought by more basis functions
comes at the sacrifice of smoothness of the fitted functional trajectories, as they introduce
in more variations. This is to be expected; because the prediction response for a specific
time point Ŷi(t) is the inner product of the basis coefficients and basis functions that are
non-zero at t, then the more non-zero basis functions we have the more flexible that point
estimate is. To control the smoothness of fitted curves without limiting the number of basis
functions, we follow the common idea in FDA and propose to add some classic roughness
penalty to the objective function of the NN. This simple addition ensures the smoothness of
the predicted functional curves without putting any burden to the differentialable operation
(since the roughness penalty terms we consider are also linearly related to the NN outputs).

There are multiple types of roughness penalties that can be applied to smooth the func-
tional curves. In our implementation, we focus on two conventional and popular approaches:
penalizing with the second derivative of the function, and penalizing directly the basis
coefficients, to relieve the roughness concern with the NN-fitted functional response. Notice
that we do not need to define roughness penalties for NNBB and NNSS as the smoothing is
done when fitting the curve a priori.

Penalizing the Second-Order Derivative of Y (t)

When the smoothness of fit becomes a concern and the roughness penalty turns out to
be a necessity, the most common and popular method would be penalizing the o-th order
derivative of the function Y (t). The squared second derivative of a function Y (t) at t reveals
its curvature at t, therefore it is natural to measure the roughness of the Ŷi(t) by taking
the integrated square of its second derivative (Ramsay and Silverman, 2005). Adding this
penalty term to the objective function of the NN leads to

Lpen(η) = 1
ntrain

ntrain∑
i=1

(
m∑

j=1

Ä
Yi(tij) − Ŷi(tij)

ä2
+ λ

∫
T

Ç
d2Ŷi(t)
dt2

å2

dt

)
. (2.13)

The parameter λ acts as a smoothness controller for balancing the trade-off between fitting
to the data and the variability of the predicted function (Ramsay and Silverman, 2005).
When λ becomes larger, the more emphasis will be put on the smoothness of the fitted
curves. On the contrary, for a smaller λ, the fitted curve tends to be more wiggly as there
is less penalty placed on its roughness. The selection of the optimal λ can be achieved by

18

using cross-validation, where either the subjects or the time points are randomly divided
into sub-samples (in practice, we partition the time points).

Unfortunately, we cannot back-propagate the gradient through the integral of Eq. (2.13),
and thus we will approximate the integral with a summation over the domain T . Because
we are able to generate Ŷi(t), we can approximate this integral with as many points as we
deemed necessary

Lpen(η) = 1
ntrain

ntrain∑
i=1

(
m∑

j=1
(Yi(tij) − Ŷi(tij))2 + λT

Q− 1

Q∑
q=2

Ç
d2Ŷi(tiq)
dt2iq

å2)
, (2.14)

where tiq = tq for all i and {tq}Q
q=1 are equally spaced time points covering the entire domain

T with length T . Notice that we do not need to actually compute those second order
derivatives, because

Ŷi(t) =
Kb∑

k=1
ĉikθk(t)

⇒ d2Ŷi(t)
dt2

=
Kb∑

k=1
ĉik
d2θk(t)
dt2

, (2.15)

then what we really need are the second order derivatives of the basis functions, which
are much easier to compute and readily available in the fda package. Therefore, we can
back-propagate the gradient of the objective function of Eq. (2.14) with respect to η without
any problems.

Penalizing the Basis Coefficients C

Penalizing directly on the basis coefficients was firstly introduced by Eilers & Marx (Eilers
and Marx, 1996) when adjacent B-splines are used to re-express the functional variable
in a regression problem. Compared to penalizing the derivative, this idea reduces the
dimensionality of the smoothing problem to Kb, the number of basis functions, instead of N ,
the number of observations (Eilers and Marx, 1996).

The basic structure of this penalty is the difference of a set of consecutive basis coefficients
∆2ck = ck − 2ck−1 + ck−2. This difference has a strong connection with the second derivative
of the fitted function, which is revealed by the simple formula for derivatives of B-splines
given by De Boor (de Boor, 1978). The summation of the squared differences for all three
consecutive coefficients {ck, ck−1, ck−2}, k = 3, ...,Kb would be the main component of the
penalty term, with the strength of the penalty further controlled by a tuning parameter λ.

19

Like previously, the penalty term is added to the objective function of NN as:

Lpen(η) = 1
ntrain

ntrain∑
i=1

(
m∑

j=1

Ä
Yi(tij) − Ŷi(tij)

ä2
+ λ

Kb∑
k=3

(∆2cik)2

)
. (2.16)

Similarly, the optimal hyperparameter λ is selected using k-fold cross-validation.
Empirically, when fitting one of the B-spline models, especially the NNBR model,

including a large number of basis functions, more than m for example, leads to a better
predictive accuracy, but also results in a set of very rough predicted curves. When Kb > m the
predicted curves quickly become wiggly, and thus we would increase the number of basis such
that Kb >> m and impose a roughness penalty at the same time to keep the curves smooth.
In some cases, this leads to the top performer in terms of predictive accuracy. Unfortunately,
using Kb >> m and a roughness penalty could make the complex hyperparameter tuning
process even more difficult. Nonetheless, we believe it is important to provide roughness
penalties and justifications for those when providing a technique to fit functional data.

We implemented the four models and the two roughness penalties in R (R Core Team,
2019). The functional component of our implementation relies on the fda package and the
NN component uses the R implementation of Keras. Our implementations of those models
along the real data example are available online on the second author’s GitHub page.

2.3 Computational Complexity

An advantage of using an NN as the link function instead of a linear combination is that it
might have a lower computational cost. More specifically, when using a standard training
procedure for both models, the NN approach scales better with the number of predictors.
Indeed, we usually find an exact solution for the FoS model which involves the inversion of a
matrix, resulting in worse scaling with respect to the number of predictors. On the flip side,
the algorithm used to train NN scales linearly with the number of predictors.

Start by looking at the FoS model, we rely on the formulation established in Ramsay &
Silverman (Ramsay and Silverman, 2005), chapter 14. This book contains various information
about the computational details of the solutions of the FoS optimization problem under
various parameterizations. However, its simplest form is quite similar to the least square
solution of a traditional regression where:

B̂ = (XT X)−1XTY, (2.17)

which involves the inversion of a P × P matrix that requires a number of operations
proportional to P 3, say O(P 3) in big O notation, using Gaussian elimination. The Strassen
algorithm (Strassen et al., 1969) manages to get that order down to O(P 2.8) and the more

20

recent Coppersmith-Winograd algorithm (Coppersmith and Winograd, 1987) gets the order
of matrix multiplication down to O(P 2.37) for a matrix of dimension P × P .

The fda package uses the solve() function included in the default R language which
in turn employs the linear algebra package (LAPACK) (Anderson et al., 1999) that relies
one Gaussian elimination to inverse matrices. Other than the matrix inversion, the matrix
multiplication component of the solution involves a P × P matrix, a P ×N matrix and a
N ×m matrix resulting in a number of operations of order O(PN). Including the matrix
multiplication part of the solution the whole FoS estimation requires a number of operations
of order O(P 3N). The more complete solutions that consider the smoothness of the predicted
curves involve the inversion of a matrix of dimension KpP ×KpP where Kp is the number
of basis of the functional parameters β(t). It means scaling polynomial with power 3 with
the number of predictors P when using Gaussian elimination. Hence, we consider that the
number of operations needed to obtain the exact solution to the FoS problem requires a
number of operations of order O(P 3N).

As far as NNs are concerned, according to Hastie & al. (Hastie et al., 2009), the
computational cost of training an NN is of order O(PNnwE) when backpropagation is
adopted (Rumelhart et al., 1986) to estimate the gradient and when a gradient-based
approach is applied to fit the NN. In the formulation above, N is the number of observations,
P is the number of predictors, nw is the number of weights (hidden neurons) in the NN and
E the number of training epochs.

Therefore, if we strictly focus on how the run time of an NN scales with N and P ,
we are looking at a linear scaling in both cases, O(PN). Consequently, when comparing
computational costs, the NN model has a pretty significant advantage when it comes to its
scaling with respect to the number of predictors. Because of this better scaling with respect
to the number of predictors, we can claim that our proposed models are better equipped
than the FoS regression to deal with data sets containing lots of predictors.

However, let us be a little more nuanced. It is clear that under some circumstances we
can fit extremely large NNs which could lead to a slow fitting process. Additionally, the
main difference between the traditional ways to fit these models is that we pursue an exact
solution for the linear problem and on the contrary we utilize a gradient-based approach to
find a solution in the case of NNs. As a result, for a linear model, such as FoS, we do have
worse scaling with respect to P but we have guarantees that the optimal solution is reached.
In theory, it would be possible to fit a linear model, such as FoS, with a gradient-based
approach to improve how its computational cost scales with respect to P , though this is
certainly not the standard optimization approach.

21

2.4 Real Data Application

We evaluate the predictive performance of the proposed methods, along with the conventional
FoS model and the FAM model on the ASFR data set introduced in Section 2.1. We consider
to compare the proposed models with the FAM model, Yi(t) =

∑P
p=1 fp (Xip, t) + ϵi(t),

because our methods can easily and naturally account for the nonlinear effects of all possible
interactions simultaneously, while FAM is predominantly focused on learning the nonlinear
relation between the functional response and each of the scalar predictors individually (it is
computationally difficult and expensive for FAM to learn all possible interactions from a
multi-dimensional aspect). For each of the models, we proceed with 20 repetitions of random
subsampling validation: randomly dividing the data set into a training set and a test set,
with 80% and 20% of the total samples assigned to them, respectively.

Following the same tuning strategy usually applied in classic NNs, the hyperparameters of
all models (except FAM) in comparison are firstly tuned using 5-fold cross-validation in order
to fairly improve their performances during actual training. We start the hyperparameter
tuning with FoS, considering it involves only one hyperparameter Kb, the number of basis
functions. To reduce the computational time consumed by the tuning processes of the
NN-based models, the optimal basis system selected for the FoS model is then used for the
rest of the models. Afterwards, for each NN-based model, we perform a grid search on all
network hyperparameters simultaneously by taking a list of possible values for each of the
hyperparameters and running a 5-fold cross-validation for all combinations. An NN consisting
of 2 hidden layers with 50 and 30 neurons, respectively, is selected. 99% proportion of variance
explained is recommended by cross-validation as the threshold to truncate the FPCs scores
in NNSS and NNSR. For NNBR with penalized objective function (NNBR(P)), we apply 10
basis functions and the second-order derivative roughness penalty, together with smoothing
parameter λ = 10−7, which is similarly suggested by the 5-fold cross-validation from a set
of possible values {10−i}8

i=1. Considering the number of basis functions is not dramatically
large, the fitted curves are already quite smooth without any roughness penalty. Thus, a
relatively small λ is acceptable as more emphasis ought to be placed on the fitting to data
for an overall smallest Lpen(η). A summary of the optimal hyperparameters determined for
each model is provided in Table A.2 in Appendix A. This hyperparameter tuning approach
is also applied in the simulations of Section 2.5. The FoS model used in this experiment is
coming from the R-package fda, and FAM model is trained with the help of function pffr()

in the refund package.

22

Table 2.1: Mean squared errors of prediction (MSEPs) of 20 random test sets for various
models with ASFR data set.

Methods Mean Std. Dev. p-value of t-test

FoS 1177.98 513.58 -
NNBB 1031.87 294.87 0.18
NNSS 992.50 296.68 0.01
NNBR 1060.50 210.63 0.20

NNBR(P) 1059.07 208.27 0.19
NNSR 1047.46 277.37 0.11
FAM 1317.33 919.62 0.28

Table 2.1 shows the predictive performance of each model using the mean squared error
of prediction (MSEP) over the 20 replications. The predictive accuracy is measured by the
MSEP averaged across the number of samples and the number of observed time points in
the test set. A two-sided paired t-test is later conducted to compare the MSEPs of the 20
replicates of our models to the 20 MSEPs of the FoS model. It is clearly shown that our
proposed models consistently outperform FoS and FAM models in predicting the fertility
curves, with both smaller means and standard deviations (SDs) of the prediction errors of
20 random test sets, demonstrating their advantages in capturing both linear and nonlinear
effects of all predictors on the functional response. NNSS model, as indicated in Table 2.1,
has the best predictive performance, which interestingly implies that the FPC scores are
more informative than the basis coefficients in representing Y (t) with this data set, and
consequently the effects of covariates on functional response are better described by the
relations between the predictors and FPC scores instead of basis coefficients. In addition,
the prediction error of NNBR optimized by the penalized objective function is lower than
that of the non-penalized NNBR, indicating that including a relatively large number of basis
functions, along with a roughness penalty term added to the objective function, can help
improve the prediction without loss on the smoothness of the predicted curves.

As previously mentioned in Section 2.1, several covariates, such as female age and GDP
per capita, are seemingly not linearly related to many of the basis coefficients representing the
fertility trajectory. Therefore we focus on the basis coefficients ĈFoS, ĈNNBB and ĈMMBR

predicted by FoS, NNBB and NNBR (they are the models using basis coefficients for
regression), respectively. The relations between the predictor female age and each of the
obtained second basis coefficients, including Y (t)-estimated second basis coefficient ĉ2,Y (t)

and the model-predicted ones, are displayed in Figure 2.3. We can see that the nonlinear
pattern for female age and the second basis coefficient is better recovered by NNBB and
NNBR, while the FoS-predicted basis coefficient ĉ2,FoS is more likely linearly related to female
age. Likewise, we select under-5 mortality out of those covariates that have highly likely

23

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●

● ●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0
10

0
20

0
30

0
40

0

"Observed"

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

FoS

●

● ●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

−1 0 1 2 3

0
10

0
20

0
30

0
40

0

NNBB

●

● ●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

−1 0 1 2 3

NNBR

Female Age

Figure 2.3: The relations between the covariate female age and the Y (t)-estimated second
basis coefficient (ĉ2,Y (t)), FoS-predicted second basis coefficient (ĉ2,FoS), NNBB-predicted
second basis coefficient (ĉ2,NNBB) and NNBR-predicted second basis coefficient (ĉ2,NNBR),
respectively.

24

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

● ●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

0
10

0
20

0
30

0
40

0

"Observed"

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

FoS

●

● ●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

−1 0 1 2

0
10

0
20

0
30

0
40

0

NNBB

●

● ●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

−1 0 1 2

NNBR

Under−5 Mortality

Figure 2.4: The relations between the covariate Under-5 Mortality and the Y (t)-estimated
second basis coefficient (ĉ2,Y (t)), FoS-predicted second basis coefficient (ĉ2,FoS), NNBB-
predicted second basis coefficient (ĉ2,NNBB) and NNBR-predicted secondbasis coefficient
(ĉ2,NNBR), respectively.

25

linear associations with some of the basis coefficients, and Figure 2.4 reveals how under-5
mortality relates to different model-predict second basis coefficient ĉ2. It is noticed there are
plainly linear trends between under-5 mortality and the second basis coefficients predicted
by the three models mentioned, while under-5 mortality has been shown linearly related
to the second basis coefficient estimated by Y (t). It is not surprising that FoS reconstructs
the most similar pattern to the one built on the Y (t)-estimated basis coefficient, but the
proposed models also master the linear information when recovering the associations, which
proves that the NN-based models have the ability to take good care of both the nonlinear
and linear relations between the predictors and scalar representations simultaneously. Due to
the relatively small number of observations, it is worth mentioning that the relations between
covariates and basis coefficients may not be fully revealed and visual misunderstanding could
occur.

2.5 Simulation Studies

2.5.1 Generating Data

We are interested in data sets that have multiple predictors and a potentially nonlinear
relation between the scalar predictors and the functional response. We were inspired by
the variable selection literature to design our data generators. More precisely, our data
generators are similar to those proposed by Wang & al. (Wang et al., 2007) and Barber &
al. (Barber et al., 2017). The basic concept is to build the functional response using a linear
combination of a set of K random curves ψk(t) and K associated coefficients ζk(X):

Y (t) =
K∑

k=1
ζk(X)ψk(t). (2.18)

and we are going to explore multiple approaches to generate the random curves ψk(t)’s and
multiple ways to use the predictors X to build coefficients ζk(X)’s.

Firstly, we concentrate on how to generate the curves ψk(t)’s. Wang & al. (Wang et al.,
2007) employ spline functions constructed with B-splines. Due to the requirement of their
simulation, they use rather simple order 4 B-splines with 1 interior knot corresponding
to 5 basis functions. To create a simple scenario for visualization purpose, we consider a
configuration where a random curve ψk(t) is set to be a single B-spline basis function Bk(t):

ψk(t) = Bk(t). (2.19)

Here, the applied B-spline basis system is of order of 4, while the number of interior knots
are calculated using the number of predictors (number of predictors −4). The total number
of basis functions, in this scenario, is equivalent to the number of scalar covariates. The
main purpose of this configuration is to visualize if models are able to recover the coefficients

26

ζk(X)’s. Because in this example, a single covariate only affect a single B-spline basis
function, we can fix ζk(X) to be a nonlinear function of the coefficients X and to see if
the trained model captured that nonlinear effect. We notably use that configuration for our
Design 1.

The second configuration is a somewhat more realistic case where the covariates affect
the response over the entire time interval. In this configuration, each random curve ψk(t)
will be built using B-splines of order 4 with 9 interiors knots corresponding to 13 basis
function {Bl(t)}13

l=1. The 13 associated coefficients βl’s are randomly generated from a normal
distribution. Thus, for the B-splines configuration we have:

ψk(t) =
13∑

l=1
βk,lBl(t). (2.20)

This configuration is used in our Design 2, 3 & 4.
In terms of the coefficients ζk(X)’s we will look at three configurations. Because NNs

are known to capture nonlinear relationships, it is important to design nonlinear functions
ζk(·)’s. First, for visualization, we apply a polynomial function to the continuous predictors.
Specifically, a subset of continuous covariates, denoted by Xpoly, is randomly selected and
each coviariate in Xpoly is further transformed by a polynomial function with either second
or third degree (half of the selected covariates are processed by quadratic functions and
the rest by cubic functions), and accordingly ζk(X) = polynomial(Xk) for Xk ∈ Xpoly,
otherwise ζk(X) = Xk. This configuration is used in Design 1 & 2 with a visualization
example displayed in Design 1. Our second configuration is also nonlinear but this time it
is a bit more complex. We define a 3-hidden-layer NN with the sigmoid (which is nonlinear)
activation functions and random weights. For this configuration, ζk(X) is the k-th output of
an NN taking X as its input. These coefficients are used for Design 3. Finally, we consider
the case where Y (t) is a linear combination of curves with X being the coefficients directly.
In other words, the k-th coefficient is simply the k-th predictor: ζk(X) = Xk. This is a
scenario where we expect the FoS to outperform the models we propose, but we want to
visit this example regardless. We call this the linear configuration and use it for Design 4.

Finally, we add a random noise, which is normally distributed with zero mean and a
variance of 2 to every data point Yi(tij).

2.5.2 Results

Four different simulation designs are considered to illustrate the advantages of the proposed
methods. For each design, we generated data sets of 2000 observations and randomly sampled
1800 training observations and 200 testing observations. This random subsampling procedure
was repeated 20 times. We opted to experiment with 20 scalar predictors, different random
curve configurations and different relations between the coefficients and predictors, either

27

linear or nonlinear, all with some random noise. To mimic the real-world scenario, the actual
observations for Y (t) were simulated discretely at 40 equally spaced time points {tj}40

j=1 that
entirely cover T = [0, 1]. Similar to the real application, we compare the proposed NN-based
methods, including NNBB, NNSS, NNBR and NNSR, to the novel FoS model (we exclude
FAM model because its training cost is tremendously high and based on the results of the
initial replicates, it performs poorly compared to the other models). The predictive accuracy
was evaluated using the MSEP on the test set. We also report the p-value of the two-sided
paired t-test of the MSEPs of each of our methods to that of the FoS.

Design 1 (nonlinear scenario): We generate 20 random predictors (K = 20), where
Xk’s are i.i.d. uniform random variables from [a, b] with a ∈ {−4,−3,−2,−1, 0}, b ∈
{3, 4, 5, 6, 7} for all k. We apply the polynomial transformation to 50% of the continuous
variables by setting ζk(X) = polynomical(Xk) with degree of 2 and 3 for k = 8, 10, 12, 13, 14
and k = 1, 3, 4, 7, 9, respectively, and ζk(X) = Xk otherwise. The random curves ψk(t)’s, in
this case, are set to be the B-spline basis functions as ψk(t) = Bk(t) for all k, and accordingly
the functional response is simulated as Y (t) =

∑20
k=1 ζk(X)Bk(t).

Table 2.2: Mean squared errors of prediction (MSEPs) of 20 random test sets for various
models with data generated by Design 1.

Methods FoS NNBB NNSS NNBR NNSR

Mean 49.20 5.14 5.98 4.95 5.91
Std. Dev. 1.64 4.11 0.23 0.11 0.19
p-value - <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

Table 2.2 summarizes the means and SDs of the MSEPs on the same testing observations
achieved by different models in 20 replicates for Design 1. In the nonlinear scenario, we
observe that the predictive performances of all the NN-based models surpass that of the
FoS Model under 1% significance level. Two proposed models using basis coefficients as the
output of NN exhibit the best-level performances in predicting the response curve, with
smaller means of MSEPs compared to those of the NN-based models outputting FPC scores.
This is expected because the functional response in this design is generated as a directly
linear combination of the polynomial-transformed predictors and B-spline basis functions,
and given this special setting, we are able to visualize the relations as some describable
patterns for some selected coefficient-predictor pairs. This design highlights a situation where
using FoS would be extremely problematic and where any of our proposed NN models would
provide a significant improvement.

Next, we compare NNBB, NNBR with FoS for their abilities in recovering the underlying
relationships for different coefficient-predictor pairs. The relations between a predictor and
basis coefficients achieved by the aforementioned models are visualized through the scatter

28

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●
●

●
●●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
● ●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−
10

0
−

60
−

20
0

True

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●
● ●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●●

●

●

●
●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●●●

●
●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●●
●

●
●

●

●
●

●

● ●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●●

●

●
●

●
●

● ●

●

●

●

●● ● ●

●

●

●

●●

●
● ●

●

●

●

●

●

●●
●

●

● ●●

● ●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
● ● ●●

●

●●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

● ● ●

●

●

●
●

●

●

●
● ●

●
●

●●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

● ●
●

●●
●

●

●
● ●

● ●

●

●

●
●

●●

●

●●

●

●●

●●

●● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
● ●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ● ●

●
●

●

●

●
● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●●

●

●

●
●

●

●

●●

●

●
●●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●
●

●

●

●

●

●

●●
●

● ●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
● ●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●●

●

●
●

●●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●
●

●
●

●

●●

●

●

●
●

●

● ●

● ●
●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

● ●●

●

●●

●

●

●

● ●

●
●

●

●

●

● ●

●
●

●
●

●
●

●
●

●

●
●

●●
●

●

●
●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

● ●

●
●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●
●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●

● ●

●
●

●

●●●
●

●●

●

●●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●● ●

●

●
●
●●

●
●

●

●

●●

●

●
●

●
●

●●
●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●●

● ●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

FoS

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●● ●
●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−4 −2 0 2 4 6

−
10

0
−

60
−

20
0

NNBB

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●● ●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−4 −2 0 2 4 6

NNBR

X12

Figure 2.5: Scatter plots of the true c12 (ζ12 as per the generator), FoS-predicted ĉ12,FoS,
NNBB-predicted ĉ12,NNBB, and NNBR-predicted ĉ12,NNBR against X12 in Design 1, from
left to right respectively.

29

●
●● ●

●

●

●
●

●

●

●

●
●

●

●

●●●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●●

●

●
●

●

●

● ●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

● ●● ●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●● ●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●●
●●

●●●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●
●

●
●●

●

●

●

●

●●

●● ●

●

●

●● ●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●
●

● ●

●

●

●

●
●●● ●

●
●● ●●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

● ●

●

●

●
●

●●
●

●

●
● ●● ●

●
●

●●

●

●

●

●
●

●

●●●●●
●

●

●
●

●

●

●

●

●

●
●●

●
●

● ●

●

●

●

●
●●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●●
●

●

●
●

● ●

●

● ●●
● ●

●

●

● ●

●

●

●

● ●●

●

●
●

●

●

●
● ●

●●

●● ● ●
●

●

●●
● ●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●● ●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●
●●

●

●

●●
●

●

●

●

● ●●
●

●

●

●

●

●●
●

● ●●●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●●
●●

●

●●
●

●
●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

● ●● ●

●

●
●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●●●●

●

●

●

●

●

●

●
● ●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●
●●● ●●

●
●

● ●
● ● ●● ●

●●

●

●
●

●

●

●

● ●
●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

● ●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

● ● ●
● ●●●

●

●
●

●

●

●

●

●
●●

●●

●

●

●●
●

●

●
●

●
●●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

● ●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●●●

●

●

●●
●

●
● ●

●

●●●
● ●●●●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

● ●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
● ●●

●

●
●

●
● ●

●

●

●
●

●

●

●

●●● ●
●

●

●

●

● ●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●●● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●● ●
● ●●

●

●

●

●

●

●● ●

●

●

●
● ●

●

●

●●

●

● ●
●

●
●

●

●
●

●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●●
●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●●

●

● ●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●●
● ●●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

● ●

●

●●

●

●

●

● ●●

●
●

●

● ●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●

●

●
● ●

●
●

●

●

●
●

●
●

● ●

●

●

●

●● ●●
●

●

●●

● ●
●

●

●
●

●
●

●

●

●

● ● ●
●

●

●

●

●

●

● ●
●

●

●

●
●

●
● ●

●

●
●●

●

●

●

●

●

● ●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●●
●

●● ●●

●

●

●
●●●● ●

●

●● ●

● ●●
●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●
●●

●
●

●

●

●

●● ●
● ●●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

● ●●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●●
●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●●●● ●
●

●

●
●

●

●

●

●● ●●

●

●●

●

●

●
●

● ●●
●

●

●●

●●

●

●

●

●
●

●
●●

● ●●
● ●●●

●

●

●

●

●

● ●

●
●

●
●●

●

●

●
●●●

●

●

●
●

●

● ●● ●●

●

●

●

●
●● ●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●
●0

50
10

0

True

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

● ●

●

●●

●●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

FoS

● ●
● ●

●

●

●
●

●

●

●

●
●

●

●

●●●●●
●

● ●●

●

●
●

●

●

●

● ●● ●●●

●

●●●
●● ● ●● ●●

●

●

●

●

●

●●● ●●

●

●

●
●

●

●

●● ● ●●

●

●

●

●
●

● ●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●● ●● ● ●

●

●

●
●

●

●
●

●

●

●

●

●

●● ●● ●●●

●

●

●
●●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●●●● ●●

●

●

● ● ●●●●
●●●

●

●

●

●
●

● ●●

●

●

●

●● ● ●
●

● ●● ●

●

●

●

●● ●● ●

●

●

●● ●

●

●

●

● ●
●●

●

● ●
●

● ●

●

●

●

●

●

● ●●

●

●

●

●●●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●●

●

●

●

●

● ● ●●
●

●●●● ●● ● ●●

●

● ● ●

●

●

●

●

●

●

● ●● ●

●

●●

●

●

●

● ●● ●● ●

●

●

● ●●●
●

●

● ● ●● ●● ● ●●

●

●

●

●
●

●

●●●●●● ●●●

●

●

●

●

●

● ●●

●
●

● ●

●

●

●● ●●

●

● ●●
●

●

● ●
●

●

●

●

●

●

●●
● ●●

●

●

● ●

●

●

●

●● ●

●

●●●
●

● ●

●●
● ● ●

●

● ●

●

●

●

● ●●

●

●
●

●

●

● ● ●●
●

●
● ●

●
●

●

●●● ●●

●

●

●

● ●

●

●

●

●
●●

●

●●

●

● ●

●

●

●

●

●●

●

●

● ●●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
● ●● ●● ●

●

●

●

●

●● ●

●

●

● ●
●

●

●

●

●

● ● ●● ●●● ●●●●●●

●

●●●

●

●

●

● ●●
●

●

●

●

●

●● ●● ●●● ●
●

●

●

●●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●● ●

●

● ●●●
●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●●

●

●●●●

●

●

●

●●● ●● ●

●

●

●

●

●

●

●

●

●●● ●● ● ●● ●●●●

●

●●● ●
● ●● ●●●

●

●

● ●

●

●

●

● ●●●
●● ●

●

●●

●

●

●

●

● ●●●

●

●●●

●

●

●

●

●
●●

●

●● ● ●

●

● ●

●

●
●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●● ●●

●

●

●

●

● ●● ●●

●

●●
●

●

●

●●●
●

●

●

●

●

●

●

● ● ●● ●

●

●

●

●

●●
●

●

●

●

●

●●

●

● ●

●

●●●●
● ●

●
●

●● ●● ● ●● ●●●

●

●
●

●

●

●

● ●● ●●

●
●

●●

●

●

●

● ●●

●

●● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●● ●● ●
●

●

●

●

● ●● ●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

● ●

●

●●● ●
●●●● ●● ●●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●● ●●● ●●

●

●
●

●

●

●

●

●
●●

●

●

●

● ●● ●

●

● ● ●
● ●●●●

●
●

●

●
●

●

●●● ●●

●

● ●●
●

●

●

●

● ●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●●
●

● ● ●
●● ●●

●

●●●

●

●●
●

●

●

●

●

●
●

●● ●

●

●●●
●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●●●
●

● ●

●

●

●

●

● ●● ●
● ●

●
●

●

● ●

●

●

●
●

● ● ●

●

●

●

● ● ●● ●●● ●
●

●

●

●

●● ●
● ●

●

●

●

●
●

●

●

●●

●

● ●●●
●

●

●
● ●●

●

● ●●●

●

●

●

●

●

●●
● ●

●

●
●●● ● ●

●

●

●●

●

●●●
●● ●●● ●● ●● ●

●● ●
●

●●●● ● ●●

●
●●●
●

●

●

●

● ● ● ●●

●

●●

●
●

● ●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●● ● ●●

●

● ● ●● ●

●

●

●●

●

●

●
●●● ●● ●

●

●● ●●●

●

●

●

●●

●●

●

●

● ●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●●●●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●● ●● ●

●

●● ●

●

●

●● ● ●
●●●

●

●

●

●

●● ●

●

●●● ● ●

●

●●

●

● ● ●● ●● ●
● ●

●

●

●●●

●

●

●

●●● ●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●● ●● ●● ●●●●● ●●

●

●

● ● ●

●

●

● ● ●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●● ●● ●●

●

● ● ●● ●●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●● ●

●

●

●

●

●●

●

●

●

●

●

●

● ●●●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●●●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●● ●

●

●●

●

●● ● ●●● ●

●

● ●●

●

●

● ●

●

●

●

● ●● ●●

●

●

●

●●● ●

●

●

●

●

●● ●● ● ●●

●
●

● ●● ●

●

●

●

●● ●● ● ●
●●

● ●●

●

●
●

● ●●

●
●

● ● ●
●

●

●

●

●

●

● ●● ●

●

●

●
●● ●

●

●●●

●

●

●

●

●

● ●●

●

●

● ● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●●

●

●

●●
●●● ●●

●

●

● ●●●● ●●
●

● ● ● ●●●

●

● ●

●

●

●

● ●●

●

●

●

●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●● ●●●●

●

●● ●● ●● ●●
●

●

● ● ● ●●
● ●●

●

●

●

●

●

●

●
●●●●

●
●●●●

●

● ●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●●
●●●● ●● ●● ●

● ●●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ● ●●●● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●●

●

●

● ●● ●

●

●

●

● ●

●

●

●

●

●●

●

● ● ●●

●

●

●

●

●

●

● ●
●
●● ● ●

●

● ●

●

●

●●● ●●

●

●●

●

●

●
●

●
●●

●

●

●●●● ●

●

●

●

●● ●● ● ●●● ●●● ●●

●

● ●● ●● ●
●

●●

●
● ● ●●●

●

●

●
●

●

● ●●
●●

●

●

●

●●●
●●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●●

●

●● ● ●●●●

●

● ●

●

● ●

●

●●

−2 0 2 4

0
50

10
0

NNBB

● ●● ●
●

●

●
●

●

●

●

●

●

●

●

●●●
●●

●

● ●●

●

●

●

●

●

●

● ●●
●●●

●

●●
●

●
● ●

●
●

●●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●
●

● ●●

●

●

●

●
●

● ●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●● ●● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●● ●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●●

●

●

● ●
●●

●●
●

●●

●

●

●

●
●● ●

●

●

●

●

●
● ●

●

●

●
●●

●

●

●

●

●● ●● ●

●

●

●● ●

●

●

●

●
●

●
●

●

● ●
●

● ●

●

●

●

●

●

● ●
●

●

●

●

●●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

● ● ●●●
●●

●● ●● ● ●●

●

● ● ●

●

●

●

●

●

●

● ●● ●

●

●
●

●

●

●

● ●● ●
●

●

●

●

● ●●●
●

●

●
●

●
● ●●

● ●●

●

●

●

●
●

●

●●●●●
●

●
●●

●

●

●

●

●

● ●●

●
●

● ●

●

●

●
● ●●

●

●
●●

●

●

●
● ●

●

●

●

●

●

●

● ●
●●

●

●

● ●

●

●

●

●●
●

●

●●●
●

●
●

●
●

● ●
●

●

● ●

●

●

●

● ●●

●

● ●●

●

● ● ●●●

●
● ●

●

●

●

●●● ●
●

●

●

●

● ●

●

●

●

●
●●

●

●●

●

● ●

●

●

●

●

●●

●

●

● ●●
●

●

●

●●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●●
●

●

●

●

●
●

●
●

●

●

● ● ●

●

●

●

●

●
● ●●

●
●●

●
●●

●●
●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●● ●● ●●●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●●

●

●

●
●●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●●● ●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●●●●

●

●●● ●
● ●● ●●●

●

●

● ●

●

●

●

●
●

●
●

●● ●

●

●●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●
●●

●

●● ● ●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●
●● ●●

●

●● ●

●

●

●
●●●

●

●

●

●

●

●

● ● ●● ●

●

●

●

●

●●
●

●

●

●

●

●
●

●

● ●

●

●●
●●

● ●
●

● ●
●

●
● ● ●● ●

●●

●

●
●

●

●

●

● ●● ●
●

●●

●●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●● ●
●

● ●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●
●

●

●●

●

●

●●●● ●
● ●● ●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

● ●

●

● ● ●
●

●●
●

●

●
●

●

●
●

●

●●●
●●

●

●
●●●

●

●

●

●
●
●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●
●

● ●
●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
● ●● ●

●

●

●

●

●
●

● ●● ●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●
● ●● ●●● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●●●

●

●

●
●

●
●

●

● ●
●●

●

●

●

●

●

●●●
●

●

●
●

●●
● ●

●

●

●
●

●

●●●
●

●
●●

● ●● ●

●
●●●

●
●

●●●
● ● ●●

●

●●
●

●

●

●

●

●
● ● ●●

●

●●

● ●● ●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●● ● ●●

●

●
●

●● ●

●

●

●●

●

●

●
●●● ●

● ●

●

●● ●●●

●

●

●

●
●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●
●●● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●● ●●

●

●

●
●

●

●

●

●● ● ● ●●
●

●

●

●

●

●● ●

●

●
●

● ●
●

●

●●

●

● ●
●● ●●

●●
●●

●

●●●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●
●●

●
●

●●●●
●

●●

●

●

●
● ●

●

●

●
● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●● ●●

●

● ● ●●
●●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●● ●

●

●

●

●

●●

●

●

●

●

●

●

● ●●●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●
● ●

●

●●

●

●

●

● ●●

● ●

●

● ●●

●

●

● ●

●

●

●

● ●●
●

●

●

●

●

●●● ●

●

●

●

●

●
● ●

●
● ●

●

●
●

●
●● ●

●

●

●

●● ●● ●
●

●●
● ●●

●

●●

● ●

●

●●

● ● ●
●

●

●

●

●

●

● ●●
●

●

●

●

●
● ●

●

●●●

●

●

●

●

●

● ●●

●

●

● ● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●●
●●● ●●

●

●

● ●
●●● ●●

●
● ● ● ●●●

●

●
●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●●
●●

●●

●

●●
●● ●

● ●●
●

●

● ●
●

●● ● ●
●

●

●

●

●

●

●

●

●
●●●

● ●●●
●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

● ●●
●

● ●●
●● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●●

●

● ● ●●

●

●

●

●

●

●

● ●●●
● ● ●

●

●
●

●

●

●
●● ●●

●

●●

●

●

●
●

● ●●

●

●

●●
●● ●

●

●

●

●
● ●● ● ●●● ●●

● ●
●

●

● ●
● ●

● ●
●

●●

●

●
● ●●●

●

●

●
●

●

●
●

● ●●

●

●

●

●●● ●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●●

●

●
●

● ●
●●●

●

●
●

●

● ●

●

●●

−2 0 2 4 6

NNBR

6

X4

Figure 2.6: Scatter plots of the true c4 (ζ4 as per the generator), FoS-predicted ĉ4,FoS,
NNBB-predicted ĉ4,NNBB, and NNBR-predicted ĉ4,NNBR against X4 in Design 1, from left
to right respectively.

30

●●
●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●●

−
5

0
5

True

●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●● ●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●●

●

●●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●
●

● ●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

FoS

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
5

0
5

NNBB

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

NNBR

X5

Figure 2.7: Scatter plots of the true c5 (ζ5 as per the generator), FoS-predicted ĉ5,FoS,
NNBB-predicted ĉ5,NNBB, and NNBR-predicted ĉ5,NNBR against X5 in Design 1, from left
to right respectively.

31

plots of each of the basis coefficients against the predictor. Remember that we designed this
simulation specifically to visualize how NN models learn C = NNη(X) and to compare it
with the ζk(X) we designed.

We randomly select X12, one of the polynomial-transformed covariates, and c12, the basis
coefficient corresponding to the 12-th B-spline basis function, and show their true relation,
as ζ12(·), together with the relations reconstructed by the three mentioned approaches using
scatter plots of true c12 and ĉ12 predicted by each of the models against X12 in Figure 2.5.
Undoubtedly, NNBB and NNBR both precisely capture the ∩-shape between the true c12

and X12, while FoS replaces the nonlinear trend with a downwards linear pattern. Being
interested in a more complex truth, we also select X4, one of the covariates transformed with
a cubic polynomial, coupled with c4, the basis coefficient corresponding to the 4-th B-spline,
and provide the scatter plots illustrating the true and model-reconstructed relations between
X4 and c4 in Figure 2.6 . As expected, NNBB and NNBR perform well in overall recovering
the nonlinear shape while NNBR behaves more accurately in capturing the local curvature
occurring in the left component of the true pattern. It is not surprising that FoS again learns
a linear relation because it is designed to only learn such relations. Likewise, the associations
between X5 and c5’s by multiple models are revealed in Figure 2.7, but differently, the true
relation for this X5-c5 pair is linear. We can observe, NNBB and NNBR perform similarly
as FoS in retrieving the linear pattern but with comparably thicker bandwidths, indicating
that our models can also successfully detect the linear relation for some coefficient-predictor
pairs but with higher variance. Figure 2.5, 2.6 and 2.7 highlight the utility of our methods in
recovering the true underlying relations, especially the nonlinear relations between the basis
coefficients and the predictors, and the success in learning the true relationships contributes
to their fabulous performances on predicting the response trajectories. The ability to recover
the true underlying nonlinear relations is the main benefit of our proposed approaches.

Design 2 (nonlinear scenario): 20 random predictors (K = 20) are generated, with
Xk’s being binary variables for k = 1, 3, 5, 7, eight-level categorical variables for k = 2, 4, 6,
and i.i.d. uniform random variables from [a, b] with a ∈ {−4,−3,−2,−1, 0}, b ∈ {3, 4, 5, 6, 7}
for k ≥ 8. Likewise, approximate 50% of the continuous variables are later transformed by
polynomial functions with different degrees, where ζk(X) = polynomical(Xk) with the second
and the third degree for k = 14, 16, 17, 18 and k = 8, 10, 19, 20, separately, and ζk(X) = Xk

for the remainder. Then we construct the response curve as Y (t) =
∑20

k=1 ζk(X)ψk(t),
coupled with ψk(t) =

∑13
l=1 βk,lBl(t), where {Bl(t)}13

l=1 are the B-spline basis functions with
order 4 and βk,l are i.i.d. random variables following the normal distribution N (0, 4).

32

Table 2.3: Mean squared errors of prediction (MSEPs) of 20 random test sets for various
models with data generated by Design 2.

Methods FoS NNBB NNSS NNBR NNSR

Mean 4559.20 38.33 286.23 36.38 265.50
Std. Dev. 159.01 9.18 79.68 18.76 16.05
p-value - <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

The means and SDs of the MSEPs on the testing observations for all methods in
comparison can be found in Table 2.3. We observe that all our proposed methods remain
superior to the FoS method in this setting. The NN-based models with basis-coefficient
output continue to be the top-tier performers, especially the NNBR model trained using the
response variable directly. The performance of the FoS is still significantly lower than the
NN models and still has the highest variance. For both of these designs, some coefficient
functions ζk’s have significant nonlinear curvature being polynomial functions of degree 2
or 3. Consequently, the dominance of the NN models is expected, even now with a more
realistic scenario where a predictor affects the response on its entire domain T .

Design 3 (nonlinear scenario): We continue to set K = 20, and Xk’s are generated
as binary variables, eight-level categorical variables and i.i.d. uniform random variables
from [a, b] with a ∈ {−4,−3,−2,−1, 0}, b ∈ {3, 4, 5, 6, 7} for different sets of k (same as
Design 2). We trigger the nonlinear configuration by passing the predictors X through
the 3-hidden-layer NN introduced in Section 2.5.1, resulting in ζ(X) = NN(X). Same as
Design 2, we choose to use the random curves ψk(t) =

∑13
l=1 βk,lBl(t), where {Bl(t)}13

l=1

are the B-spline basis functions with order 4 and βk,l
i.i.d.∼ N (0, 4). In consequence, the

functional response is generated following Y (t) =
∑20

k=1 NN(X)ψk(t).

Table 2.4: Mean squared errors of prediction (MSEPs) of 20 random test sets for various
models with data generated by Design 3.

Methods FoS NNBB NNSS NNBR NNSR

Mean 4.17 4.18 4.16 4.13 4.17
Std. Dev. 0.02 0.03 0.02 0.03 0.02
p-value - 1.1e-02 6.2e-02 2.7e-08 1.8e-01

Table 2.4 reports the means and SDs of MSEPs on the test sets for all models with
data generated by Design 3. It is shown that most models perform similarly on predicting
the functional curve. The ζk(X)’s produced by the NN generator are barely nonlinear,
having only small curvature with respect to the predictors. This leads to a reduction in the

33

performance gap between our NN models and the FoS model. However, the NNBR model
comes ahead once again, being significantly superior to the FoS model.

Design 4 (linear scenario): In the last design, we consider setting up a scenario where
the functional response Y (t) is linearly associated to the scalar predictors. 20 predictors are
generated in the manner that {Xk}20

k=1 are binary variables, eight-level categorical variables
and i.i.d. uniform random variables from [a, b] with a ∈ {−4,−3,−2,−1, 0}, b ∈ {3, 4, 5, 6, 7}
for different subsets of k = 1, 2, ..., 20 (same as Design 2 & 3). The linear setting is simply
achieved with ζk(X) = Xk. We continue with the random curves ψk(t) =

∑13
l=1 βk,lBl(t),

where {Bl(t)}13
l=1 are the order 4 B-spline basis functions, together with βk,l

i.i.d.∼ N (0, 4).
The functional response is generated as a linear combination of the random curves and
predictors, following Y (t) =

∑20
k=1Xkψk(t).

Table 2.5: Mean squared errors of prediction (MSEPs) of 20 random test sets for various
models with data generated by Design 4.

Methods FoS NNBB NNSS NNBR NNSR

Mean 4.01 4.19 6.66 4.07 5.94
Std. Dev. 0.05 0.06 0.15 0.05 0.05
p-value - 3.2e-08 4.3e-13 7.8e-07 2.2e-09

Table 2.5 displays the results of all models under the linear setting described. In the linear
scenario, we expect FoS to be the top performer and indeed, it has the lowest prediction error
compared to all the proposed methods. This is reasonable as the Y (t) is constructed linearly
with respect to the predictors in this design. However, despite the proposed approaches being
significantly worse, NNBB and NNBR remain competitive with strong performances closely
following the one of FoS. From an absolute perspective, the gap between NNBR and FoS is
much smaller in the scenario favouring FoS (Design 4), with FoS being marginally ahead,
than it is in the scenario favouring NNBR (Design 1 & 2), with NNBR being dramatically
ahead.

2.6 Conclusions and Discussion

In the chapter, we introduced a new solution for the regression of a functional response
on scalar predictors, which consistently outperforms the current models when the relation
between the functional response and the scale predictors is nonlinear. We designed and
manipulated the standard feed-forward NN to produce two types of output, either basis
coefficients or FPC scores, both of them being the traditional techniques to analyse functional
data. The proposed modification to the objective function allows us to train the model
directly with the functional response variable thus bypassing the necessity to firstly estimate
those coefficients using conventional FDA approaches. The modified objective function

34

enables the transformation of a scalar layer to a functional output by constructing functional
curves using a linear operation, which ensures the applicability of backpropagation. In this
way, an NN with the proposed functional output layer behaves similarly as a regular NN
and allows the usage of typical cross-validation techniques for hyperparameter tuning. Such
modifications can be directly implemented to the output layer of any existing NN to produce
a functional response, promoting the utilization of various deep learning techniques in a
functional regression framework. We implemented all of our proposed models in a way
they can be trained on both regularly and irregularly spaced domain. Additionally, we
provided the necessary tools to control the smoothness of the predicted response curves by
implementing two different roughness penalties. Furthermore, our family of models scales
better with the number of predictors.

Based on a real data application, we demonstrated a case where the models we propose
are superior to already established techniques such as FoS and FAM. Moreoever, through
several simulation studies, we not only showed the superior predictive power of our NN-based
approaches, but also their strong ability to recover nonlinear relation between the predictors
and the coefficients representing the response curves.

On the other hand, the developed methods rely on a large number of hyperparameters,
including the number of hidden layers, the number of neurons in each of the hidden layers, the
number of basis functions (NN output size), the number of training epochs, etc. This is the
main weakness of our approach since conducting a grid search on that space is particularly
annoying and time-consuming. For both B-spline expansion models, the performance varied
dramatically from one hyperparameter configuration to another and this is certainly what
we need to bring up. Comparatively, the FPCA-based models varied only slightly while
changing the number of principal components. Given once we have the first few leading
principal components, we can capture the vast majority of the variability between curves.
The performances were also much more stable across various parameterizations, though
those models were rarely top performers. In contrast, the FoS model is the easiest to fit
among all the models applied, albeit it performed poorly in nonlinear situations.

Multiple directions of further research are considered at the moment. Our proposed
models can be extended to predict multidimensional (mainly two-dimensional) functional
response where t ∈ Rq, q > 1. In this scenario, we can borrow the basis expansion or the
FPCA technique to compress the multidimensional functional data to a vector of finite scalar
basis coefficients or FPC scores (Ivanescu, 2013; Hayes and Halliday, 1974; Dierckx, 1984;
Zhou and Pan, 2014; Chen and Jiang, 2016). Additionally, our current models rely on the
existing NN architecture with a scalar output layer, which requires us to firstly project the
functional response to some finite-dimensional coefficients and then feed the NN with the
scalar representations obtained. Extending the NN to a more dynamic architecture allowing a
functional output layer could be a more appropriate tool for such type of regression problems.
This could be achieved by defining functional neurons and functional layers, some concepts

35

we are currently exploring. Furthermore, a combination of our proposed NN models with
existing literature that tackles the SoF problem can be explored to create a general and
complete framework for using NN to analyze and solve regression problems for various forms
of functional data.

36

Chapter 3

Functional Autoencoder for
Smoothing and Representation
Learning

Existing techniques for data smoothing and dimensional reduction in functional data analysis
(FDA) primarily focus on linear representations of functional data, however, addressing
nonlinear mappings from the data space to the representation space is more effective in
applications. In this chapter, we propose to learn the nonlinear representations of functional
data using neural network autoencoders (AEs) designed to process data in the form it is
usually collected without the need of preprocessing. We design the encoder to employ a
projection layer that computes the inner product of the functional data and functional
weights over the observed timestamps, and the decoder to apply a recovery layer that maps
the finite-dimensional vector extracted from the functional data back to the functional space
using a set of predetermined basis functions. The developed architecture can accommodate
both regularly and irregularly spaced data. Our experiments demonstrate that the proposed
method outperforms functional principal component analysis (FPCA) in terms of prediction
and classification. Meanwhile, our approach has superior smoothing ability and better
computational efficiency in comparison to the conventional AE under both linear and
nonlinear settings. A manuscript of this chapter is presently under review, and a preprint is
available online (Wu et al., 2024).

3.1 Introduction

FDA has found extensive application and received growing attention across diverse scientific
domains. Functional data, as the core of FDA, is defined as any random variables that
assume values in an infinite-dimensional space, such as time or spatial space in theory
(Ramsay and Silverman, 2005; Ferraty and Vieu, 2006) , and usually discretely observed
at some regularly or irregularly spaced points over the time span in applications. Due to
the complexity and difficulty in interpreting and analyzing infinite-dimensional variables, a

37

common pipeline for FDA is to represent the infinite-dimensional functional data, denoted
as X(t), by a finite-dimensional vector of coefficients that extract and summarize the useful
information carried by the individual functions (Yao et al., 2021). These coefficients can be
of interests themselves or be readily utilized in further analysis (Wang et al., 2016a).

Two predominate approaches for dimensional reduction in FDA are basis expansion and
FPCA. The first approach, the conventional basis expansion, represents the functional data
as Xi(t) =

∑MB
m=1 cimϕm(t), where ϕm(t) are known basis functions and cim are corresponding

basis coefficients for the i-th subject containing the information from the original functions
(Ramsay and Silverman, 2005). This method requires the predetermination of a basis
system, for instance, Fourier or B-spline, and the number of basis functions MB, in order
to learn the representation of functional data. The second approach, FPCA (Ramsay and
Silverman, 2005; Ferraty and Vieu, 2006; Sang et al., 2017), is a fully data-driven method
that compresses the functional data Xi(t) into functional principal component (FPC) scores
as ξim =

∫
{Xi(t) − µ(t)}ψm(t)dt, where µ(t) is the mean function of X(t), and ψm(t)’s are

the FPCs which are also the eigenfunctions derived from the spectral decomposition of the
variance-covariance function of X(t). By Karhunen-Loève expansion, FPCA can construct
the functional data as Xi(t) = µ(t) +

∑MP
m=1 ξimψm(t), with a predetermined proportion

of explained variation, which indirectly defines MP , the number of FPCs identified. The
theoretical details and results on asymptotic distributions have been well derived and
fully discussed by Dauxois et al. (1982), Hall and Hosseini-Nasab (2006) and Hall and
Hosseini-Nasab (2006).

Representations such as FPC scores have been widely used for establishing functional
regression models (Yao et al., 2005b; Müller and Yao, 2008; Yao et al., 2010), clustering
(Chiou and Li, 2007; Peng and Müller, 2008) and classification (Müller, 2005; Müller and
Stadtmüller, 2005) of functional curves. Both aforementioned methods are fundamentally
linear mappings from infinite-dimensional data to the vector of finite scalars, however, learning
linear projections of functional data might not be sufficient and informative. Furthermore,
FPCA relies on the assumption of a common variance-covariance of all curves, which might
be violated when the individual trajectories are labelled with classes.

Numerous extensions to the conventional FPCA have been suggested to adapt the linear
representation of functional data for diverse scenarios (Yao et al., 2005a; Chen and Lei,
2015; Peng and Paul, 2009; Sang et al., 2017; Zhong et al., 2022). Nevertheless, limited
contributions on nonlinear representation learning of functional data can be found in latest
literature. Song and Li (2021) extended the standard FPCA to a nonlinear additive functional
principal component analysis (NAFPCA) for vector-valued functional data to accommodate
nonlinear functions of functional data via two additively nested Hilbert spaces. Similar to
the linear FPCA with discrete functional data, however, this technique requires to first
estimate the underlying X(t) using the basis expansion or the reproducing Kernel Hilbert
space method in the first-level function space. Chen and Müller (2012) developed nonlinear

38

manifold learning to generate nonlinear representations of functional data by modifying
the existing nonlinear dimension reduction methods to satisfy functional data settings.
The manifold-based representation is basically designed to be layered on the representation
produced by FPCA, while its computational difficulties may arise as the sample size increases.

Meanwhile, the advent use of big data and the gradual popularity of deep learning
promote the introduction of neural networks to functional data representation learning.
Wang and Cao (2023a) explored a functional nonlinear learning method, namely FunNoL,
which relies on recurrent neural networks (RNNs) to represent multivariate functional data
in a lower-dimensional feature space and handle the missing observations and excessive
local disturbances of observed functional data. This method ignores the basic structure of
functional data as it regards X(t) as time series data and captures the temporal dependency
across time sequences. Moreover, to enable the use of representation for classifying curves,
FunNoL is designed to be a semi-supervised model that combines a classification model with
a standard RNN, introducing more complexity to network optimization and representation
learning. Hsieh et al. (2021) defined a functional autoencoder that generalizes the conventional
neural network AEs to handle continuous functional data, and developed the functional
gradient-based learning algorithm for optimizing the AE to study the nonlinear projection
of multidimensional functional data. This approach requires smooth functional inputs and
overlooks the common issue where functional data are barely fully observed in practice (Yao
et al., 2005a).

The main objective of this study is to propose a solution to the nonlinear representation
learning and smoothing of discrete functional data using a novel functional autoencoder
(FAE) based on a densely feed-forward neural network, which includes FPCA as a special
case under the linear representation setting. As an unsupervised learning technique, AEs
have been frequently used for feature extraction and representation learning in vector-space
problems (Hinton and Salakhutdinov, 2006; Wang et al., 2016b; Meiler et al., 2001; Bengio
et al., 2013). A traditional AE consists of an encoder and a decoder connected by a bottleneck
layer, where the former one is a mapping from a P -dimensional vector-valued input space
to a d-dimensional representation space and the latter one maps from the d-dimensional
representation space back to a vector-valued output space of P dimensions, where the output
layer consists of a reconstruction of the original input. Assuming d << P , the neurons in the
bottleneck layer serve as a lower-dimension representation of the input. This representation
is a collection of neuron features extracted from the AE and can be of interests themselves or
can be used for further research. The relation between AE and principal component analysis
(PCA) has been well discussed in several existing studies. Oja (1982, 1992) demonstrated
that a neural network employing a linear activation function essentially learns the principal
component representation of the input data. Furthermore, Baldi and Hornik (1989) and
Bengio et al. (2013) demonstrated that an autoencoder with one hidden layer and identity
activation is essentially equivalent to PCA. Bourlard and Kamp (1988) and Baldi and Hornik

39

(1989) also explained that the representation captured by such autoencoders is a basis of
the subspace spanned by the leading principal components (PCs) instead of necessarily
coincident with them. The connection between conventional AE and PCA can be naturally
transplanted to that of the designed FAE and FPCA with a relevant discussion provided.

Specifically, in this work, we propose to construct an autoencoder under discrete functional
data settings. We design the encoder to incorporate a projection layer computing the inner
product of the functional data and functional weights over the observed discrete time spans,
and the decoder to equip a recovery layer to map the finite-dimensional vector extracted
from the functional data to functional space using a set of preselected basis functions.
The developed architecture compresses the discretely observed functional data to a set of
representations and then outputs smooth functions. The resulting lower-dimensional vector
will be the representation/encoding of the functional data, which serves a similar purpose
to the basis coefficients or FPC scores previously mentioned and can be inputted into any
further analysis.

The autoencoder we design for functional data have at least the following highlights.
First, the proposed FAE addresses the learning of a nonlinear representation from discrete
functional data with a flexible nonlinear mapping path captured by neural networks, elimi-
nating the conduct of curve smoothing assuming any particular form in advance. In other
words, our method performs a one-step model simultaneously learning the representative
feature and smoothing the discretely observed trajectories. Second, it allows us to obtain
linear and nonlinear projections of functional data, with the former path serving as an
alternative approach to FPCA. Third, the proposed method is applicable for both regularly
and irregularly spaced data, while the smoothness of the recovered curves is controlled
through a roughness penalty added to the objective function in model training. Forth, the ar-
chitecture of the FAE is flexibly programmable and compatible with existing neural networks
libraries/modules. Last but not the least, the robustness and efficiency of our method in
representation extraction and curve recovery with small size of data and substantial missing
information are supported by the results of various numerical experiments.

The remainder of this chapter proceeds in the following manner. In Section 3.2, we
provide the methodological details for the proposed FAE, including a description about
the network architecture and an explanation on the corresponding training procedure. A
brief discussion on the connections between the proposed method and two well-established
methods, FPCA and AE, is given in Section 3.3. In Section 3.4, we compare the proposed
FAE with FPCA and AE for functional data representation, focusing on relationship capture
and computational efficiency through extensive simulation studies across various scenarios.
The designed FAE and the other techniques in comparison are further evaluated in Section
3.5 with a real data application. Finally, we conclude with a discussion and future directions
in Section 3.6. The preprocessed data sets and computing codes of the proposed method on
selected applications are available at https://github.com/CedricBeaulac/FAE.

40

https://github.com/CedricBeaulac/FAE

3.2 Functional Autoencoders (FAEs)

3.2.1 Motivation: Autoencoders for Continuous Functional Data

Suppose there are N subjects and for the i-th subject, a functional variable Xi(t), t ∈ T is
observed in the L2(t) space. To address the limitations of linear representations of functional
data X(t), we propose to learn nonlinear mappings from functional data space L2(t) to
K-dimensional vector space RK through a neural network autoencoder which contains an
encoder compressing the functional input to some scalar-valued neurons, and a decoder
reconstructing the functional input back from the encoded representations.

We introduce an autoencoder with L hidden layers (excluding the input and output
layers) for continuous functional data X(t), which we suppose, are fully observed over a
continuum t and t ∈ T . Different from conventional AEs consuming scalar inputs, in this
scenario, functions are served as inputs and fed into the neural network, and the designed
autoencoder for continuous functional data is supposed to be trained by minimizing the
reconstruction error L(X(t), X̂(t)) = 1

Ntrain

∑Ntrain
i=1

∫
T (Xi(t) − X̂i(t))2dt.

We propose to encode the infinite-dimensional functions to some finite number of
numerical neurons by introducing functional weights wI(t) to bridge the input and the first
hidden layer of the encoder. Specifically, the scalar inner product, which connects neurons
in the input and the first hidden layer of the conventional AE, is generalized by the inner
product of the functional input X(t) and functional weight wI(t) in L2 space. Consequently,
the k-th neuron in the first hidden layer h(1)

k is computed as

h
(1)
k = g

Å∫
T
X(t)wI

k(t)dt
ã
, (3.1)

where wI
k(t) is the input functional weight connecting the functional input and the k-th

neuron in the first hidden layer, and g(·) is the activation function. To be noted that here
we opt to neglect the numerical bias term b(1) for simplicity.

The proposed functional weights together with the inner product of two functions achieve
the mapping from L2 to RK(1) , where K(l) is the number of neurons in the l-th hidden layer
and l ∈ {1, 2, ..., L}. The resulting numerical neurons are further passed to the continuous
hidden layers of the autoencoder, following the same calculation rules as in conventional
AEs. Accordingly, the k-th neuron in the l-th hidden layers is given by

h
(l)
k = g

Ñ
K(l−1)∑

j=1
h

(l−1)
j w

(l)
jk

é
, (3.2)

with hl−1
j being the j-th neuron in the l − 1 layer connected by the scalar network weight

w
(l)
jk .

41

X(t)

Input layer (I)

h
(1)
1

h
(1)
2

h
(1)
K(1)

Hidden layer (l)

w
(I)
1 (t)

w
(I)
2 (t)

w
(I)
K(1)(t)

X̂(t)

Output layer (O)

w
(O)
1 (t)

w
(O)
2 (t)

w
(O)
K(L)(t)

...

Figure 3.1: Functional autoencoder for continuous data with L = 1 hidden layer.

Similarly, a set of functional weights {wO
k (t)}K(L)

k=1 , instead of scalar weights, are applied
at the output layer of the decoder to map the second to last layer from RK(L) back to
functional space L2 and mathematically, the outputted functional neuron is calculated as

X̂(t) =
K(L)∑
k=1

h
(L)
k w

(O)
k (t), (3.3)

where wO
k (t) is the output functional weight connecting the k-th neuron in the L-th hidden

layer and the output functional neuron. For this output layer to produce the functional
output required, the linear activation function must be used.

We name this autoencoder the continuous functional autoencoder (CFAE) and a graphical
visualization of the CFAE with L = 1 hidden layer(s) for functional data can be seen in Figure
3.1. In this scenario, {h(1)

1 , h
(1)
2 , ..., h

(1)
K(1)} is regarded as the vector-valued representation of

X(t).

3.2.2 Proposed Model: Autoencoders for Discrete Functional Data

The CFAE introduced in Section 3.2.1 serves as an inspiration for the model we proposed
to better suit discrete functional data, which reflects how functional data are collected and
stored in practical applications. Considering the functional data are discretely observed
at J evenly spaced time points t1, ..., tJ over the time interval T for all N subjects, and
therefore for the i-th subject, we obtain J pairs of observations {tj , Xi(tj)}, j = 1, 2, ...J .
As a matter of fact, the real functional data are often contaminated with some observational
errors, resulting in a collection of noisy discrete observations X̃i(tj) = Xi(tj) + ϵi(tj), where
ϵi(tj) is the i.i.d. measurement error. Without knowing the true underlying curves X(t)’s,
the contaminated observations {X̃(tj)}J

j=1’s are employed as an alternative to {X(tj)}J
j=1’s

in applications.

42

We propose to adapt the CFAE to take data {X(t1), X(t2), ..., X(tJ)}, a J-dimensional
vector, as the input. Instead of smoothing the discrete data and then applying the previously
defined autoencoder, we develop the architecture to satisfy such discrete functional input.
This is a major advantage of our proposed method as the data no longer needs to be
preprocessed in any way before being fed to our proposed FAE. To do so, we replace the
weight functions wI

k(t) for the input layer and wO
k (t) for the output layer with their discrete

versions {wI
k(tj)}J

j=1 and {wO
k (tj)}J

j=1 evaluated at the corresponding J time points t1, ..., tJ ,
respectively. Naturally, the integral

∫
T X(t)w(I)

k (t)dt in Eq.(3.1) is approximated numerically
using the rectangular or trapezoidal rule, and accordingly the k-th neuron in the first hidden
layer is updated as

h
(1)
k = g

(
J∑

j=1
ωjX(tj)w(I)

k (tj)
)
, (3.4)

where {ωj}J
j=1 are the weights used in the numerical integration algorithm.

Likewise, the output layer now consists of J neurons corresponding to the J-dimensional
input vector as

X̂(tj) =
K(L)∑
k=1

h
(L)
k w

(O)
k (tj). (3.5)

As illustrated in Figure 3.2, the mappings L2 → RK(1) and RK(L) → L2 in the CFAE
are substituted with RJ → RK(1) and RK(L) → RJ , respectively, for this discrete setting.

The autoencoder we proposed for discrete functional data seemingly behaves the same
as a conventional AE, however, our FAE requires a different training process which accounts
for the assumption that functional data are the realization of a underlying smooth stochastic
process. This way, the proposed FAE considers the serial correlation of the functional data
and returns a smooth and continuous functional data without the need of smoothing in the
input preemptively.

We further propose to represent the functional weights used in the input and output
layers as w(·)

k (t) =
∑M

(·)
k

m=1 c
(·)
mkϕ

(·)
mk(t), where {ϕ(·)

mk(t)}M
(·)
k

m=1’s are some known basis functions
from a selected basis system for the k-th functional weight, such as Fourier or B-spline,
{c(·)

mk}M
(·)
k

m=1 are the corresponding basis coefficients remain to be determined, and M
(·)
k is

some predefined truncation integer for the k-th weight. The snapshots of the k-th input or
output weight function are accordingly marked as

w
(·)
k (tj) =

M
(·)
k∑

m=1
c

(·)
mkϕ

(·)
mk(tj), (3.6)

43

X(t1)

X(t2)

X(t3)

X(tJ)

Input layer (I)

h
(1)
1

h
(1)
2

h
(1)
K(1)

Hidden layer (l)

w
(I)
1 (t1)

w
(I)
1 (t2)

w
(I)
1 (t3)

w
(I)
1 (tJ)

X̂(t1)

X̂(t2)

X̂(t3)

X̂(tJ)

Output layer (O)

w
(O)
1 (t1)

w
(O)
1 (t2)

w
(O)
1 (t3)

w
(O)
1 (tJ)

...

...
...

Figure 3.2: Functional autoencoder for discrete data with L = 1 hidden layer.

and therefore Eq.(3.4) and Eq.(3.5) calculating the k-th neurons in the first hidden layer
and the output layer, respectively, can be re-written as

h
(1)
k = g

Ñ
J∑

j=1
ωjX(tj)

M
(I)
k∑

m=1
c

(I)
mkϕ

(I)
mk(tj)

é
= g

Ñ
M

(I)
k∑

m=1
c

(I)
mk

J∑
j=1

ωjX(tj)ϕ(I)
mk(tj)

é
, (3.7)

X̂(tj) =
K(L)∑
k=1

h
(L)
k

M
(O)
k∑

m=1
c

(O)
mkϕ

(O)
mk (tj)

=
K(L)∑
k=1

M
(O)
k∑

m=1
h

(L)
k c

(O)
mkϕ

(O)
mk (tj). (3.8)

In such a manner, the problem of learning the functional weights w(·)
k (t)’s using typical

machine learning techniques becomes one of learning {c(·)
mk}M

(·)
k

m=1, the parameters defining
w

(·)
k (tj), for k = 1, ...,K(l), l = 1 or L, and consequently, we seek to learn the coefficients

{c(·)
mk}M

(·)
k

m=1 through backpropagation.

Encoder with a Feature Layer

For computational convenience, we let M (I)
k = M (I) and ϕ

(I)
mk(t) = ϕ

(I)
m (t) for all k ∈

{1, 2, ...,K(1)}, indicating that the input weight functions {w(I)
k (t)}K(1)

k=1 are expressed with

44

X(t1)

X(t2)

X(t3)

X(tJ)

Input layer

f1

f2

f3

f4

fM(I)

Feature layer

ϕ
(I)
1 (t1)
ϕ

(I)
1 (t2)
ϕ

(I)
1 (t3)

ϕ
(I)
1 (tJ)

h
(1)
1

h
(1)
2

h
(1)
K(1)

First hidden layer

c
(I)
11

c
(I)
21

c
(I)
31

c
(I)
41

c
(I)
M(I)1

...
...

...

Figure 3.3: Encoder with a feature layer. Notice that the input and feature layers are devoid
of parameters at this point and are entirely deterministic given the data and the choice of
basis functions for {w(I)

k (t)}K(1)
k=1 .

the same basis expansion. In consequence, we can simplify Eq. (3.7) as

h
(1)
k = g

Ñ
M(I)∑
m=1

c
(I)
mk

J∑
j=1

ωjX(tj)ϕ(I)
m (tj)

é
= g

Ñ
M(I)∑
m=1

c
(I)
mkfm

é
, (3.9)

where fm =
∑J

j=1 ωjX(tj)ϕ(I)
m (tj),m = {1, 2, ...,M (I)}, a Riemann sum approximating the

inner product of X(t) and ϕ(I)
m (t). {fm}M(I)

m=1 represent the resulting features of X(t) projected
to the basis function sets and serve as the pivot connecting the input layer and the first
hidden layer. Hence, we design our proposed encoder by inserting a feature layer of fm’s
between the input layer and the first hidden layer, as shown in Figure 3.3. This deterministic
layer translates discretely observed functional data into a scalar structure that can then be
processed with existing neural network models and training algorithms.

Specifically, the input layer and the feature layer are linked by the snapshots of the basis
function set {ϕ(I)

m (tj)}M(I)
m=1 , while c(I)

mk becomes the network weights connecting the feature
layer and the first hidden layer.

A benefit of this layer architecture is that different observations which might be observed
at different time points will all get converted to the same features. Consequently, irregularly
observed data are managed through this deterministic layer. It is also possible to recover

45

the continuous functional weights {w(I)
k (t)}K(1)

k=1 for visualization purpose after learning the
coefficients {c(I)

mk}M(I)
m=1 .

Decoder with a Coefficient Layer

Again, for simplicity, we set the basis functions to be the same for representing all output
weight functions {w(O)

k (t)}K(L)
k=1 by setting M

(O)
k = M (O) and ϕ

(O)
mk (t) = ϕ

(O)
m (t) for all

k ∈ {1, 2, ...,K(L)}. Following on Eq.(3.8), we now have:

X̂(tj) =
K(L)∑
k=1

M(O)∑
m=1

h
(L)
k c

(O)
mkϕ

(O)
m (tj)

=
M(O)∑
m=1

Ñ
K(L)∑
k=1

h
(L)
k c

(O)
mk

é
ϕ(O)

m (tj)

=
M(O)∑
m=1

bmϕ
(O)
m (tj), (3.10)

where bm =
∑K(L)

k=1 h
(L)
k c

(O)
mk . In fact, {ϕ(O)

m (t)}M(O)
m=1 can be regarded as the basis functions used

in the representation of X̂(t), the reconstructed functional observation. In turn, {bm}M(O)
m=1

play the role of the corresponding basis coefficients.
Hence, in Figure 3.4, we visualize bm’s as the neurons of a coefficient layer added to

the decoder for connecting the last hidden layer and the output layer, while c(O)
mk are the

network weights between the last hidden layer and the coefficient layer. Meanwhile, the
coefficient layer and the output layer are connected deterministically through snapshots
of the basis functions {ϕ(O)

m (t)}M(O)
m=1 . The proposed decoder is essentially and functionally

consistent with NNBR, a neural network designed for scalar input and functional output,
developed by Wu et al. (2023), since both approaches decompress the scalar-valued basis
coefficients to the functional curves in a linear manner, ensuring the use of backpropagation
in model training.

Likewise, an advantage of this layer architecture is its ability to easily handle irregularly
spaced data, as explained in Wu et al. (2023). It also provides a smooth reconstruction
of the input functional data, which can be evaluated at any point on the domain, effec-
tively smoothing the functional data while simultaneously learning a meaningful and useful
representation.

Training the Proposed FAE

A full architecture (with L = 1) of the proposed FAE is displayed in Figure 3.5. As detailed
in the previous parts of this section, a deterministic feature layer of size M (I) is created
to follow the input layer without using any unknown parameters or weights for neuron
calculation, and each neuron in the feature layer produces a scalar value computed as the

46

h
(L)
1

h
(L)
2

h
(L)
K(L)

Last hidden layer

b1

b2

b3

b4

bM(O)

Coefficient layer

c
(O)
11

c
(O)
21

c
(O)
31

c
(O)
41

c
(O)
M(O)1

X̂(t1)

X̂(t2)

X̂(t3)

X̂(tJ)

Output layer

ϕ
(O)
1 (t1)
ϕ

(O)
1 (t2)
ϕ

(O)
1 (t3)

ϕ
(O)
1 (tJ)

...

...

...

Figure 3.4: Decoder with a coefficient layer. Similarly, the last two layers are devoid of
parameters and are deterministic.

numerical approximation of the inner product of the input X(tj) and the preselected basis
function ϕ(I)

m (tj) over the observed timestamp. On the other end, a coefficient layer of M (O)

scalar-valued neurons is handcrafted as the second to last layer, and it connects the output
layer through the known basis functions ϕ(O)

m (t)’s, making the output layer also deterministic.
Layers between the feature layer and the coefficient layer share the same structure as a
conventional AE. This specific structure is the essence of the proposed FAE.

Same as traditional AEs, the training process of FAEs comprises of two components, the
forward propagation and the backward propagation, and can be operated using existing neural
network libraries or modules, such as PyTorch (Paszke et al., 2019) and TensorFlow (Abadi
et al., 2015). The forward propagation has been previously depicted and is summarized in
Algorithm 5. Here we put emphasize on the backward propagation that updates the network
parameters using gradient-based optimizers.

Let θ = {c((I)
mk , c

(O)
mk , η} denote the collection of network parameters, where η stands for all

the network weights involved in connecting the hidden layers. The training process targets
at finding θ̂ = argminθ L(X(tj), X̂(tj)), and we employ the standard mean squared error
(MSE) between X(tj) and X̂(tj) across all the observed time points t1, ..., tJ and all subjects
in the training set as the reconstruction error of the FAE, in specific, L(X(tj), X̂(tj)) =

1
Ntrain

∑Ntrain
i=1

∑J
j=1(Xi(tj) − X̂i(tj))2. We design the output layer of FAE to be a linear

combination of some preselected basis functions {ϕ(O)
m }M(O)

m=1 and the neurons {bm}M(O)
m=1

outputted by the second to last layer (the coefficient layer), and therefore the neuron
X̂(tj) in the output layer of FAE, which is the snapshot of the reconstructed curve X̂(t)

47

X(t1)

X(t2)

X(t3)

X(tJ)

Input layer

f1

f2

f3

f4

fM(I)

Feature layer

ϕ
(I)
1 (t1)
ϕ

(I)
1 (t2)
ϕ

(I)
1 (t3)

ϕ
(I)
1 (tJ)

h
(1)
1

h
(1)
2

h
(1)
K(1)

Hidden layer
(Representation)

b1

b2

b3

b4

bM(O)

Coefficient layer

X̂(t1)

X̂(t2)

X̂(t3)

X̂(tJ)

Output layer

ϕ
(O)
1 (t1)
ϕ

(O)
1 (t2)
ϕ

(O)
1 (t3)

ϕ
(O)
1 (tJ)

...
...

...

...

...

Figure 3.5: A graphical representation of the FAE we propose for discrete functional data.
The model represented only has a single hidden layer h, that serves the role of latent
representation.

at time tj is the vector product of {bm}M(O)
m=1 and {ϕ(O)

m }M(O)
m=1 evaluated at the specific tj .

The linear relation between the coefficient layer and the output layer, together with the
differentials of the known basis functions, ensures the feasibility of computing the gradient
of (Xi(tj) − X̂i(tj))2 with respect to the coefficients bm as:

∂L

∂bm
= ∂L

∂X̂(tj)
∂X̂(tj)
∂bm

. (3.11)

The gradient with respect to the network weights η in the remaining layers prior to the
coefficient layer can be subsequently computed in the backward manner as that in a classic
neural network until reaching the feature layer, while no any further gradient calculation
is made from the feature layer back to the input layer because they are connected by the
predefined input basis functions {ϕ(I)

m }M(I)
m=1 , instead of some network parameters in need of

training. Algorithm 6 details the gradient calculation procedure used to update network
parameters in the backward propagation.

3.2.3 FAE as a Functional Data Smoother

By design, our proposed FAE outputs a smooth continuous curve over the entire interval of
interest as an estimate of the underlying stochastic process for any input distinctly observed

48

Algorithm 5: FAE Forward Pass
Input: X = {X(t1), X(t2), ..., X(tJ)}
Output: X̂ = {X̂(t1), X̂(t2), ..., X̂(tJ)}
Hyperparameters:{ϕ(I)

m (tj)}M(I)
m=1 , {ϕ

(O)
m (tj)}M(O)

m=1 , ωj for all j, a predefined network
NN(θ) with L hidden layers, K(l) neurons in the l-th hidden layer, activation
functions g1, ..., gL, E epochs, Optimizer (including learning rate ϱ), etc.

1 Input Layer → Feature Layer
{X(tj)}J

j=1 → fm =
∑J

j=1 ωjX(tj)ϕ(I)
m (tj),m ∈ {1, 2, ...,M (I)}

2 Feature Layer → Coefficient Layer
{fm}M(I)

m=1 → bm =
∑KL

k=1 c
(O)
mk gL

Ä
· · · g1

Ä∑M(I)
m=1 c

(I)
mkfm

ää
,m ∈ {1, 2, ...,M (O)}

Specifically, the k-th neuron in the l-th hidden layer is constructed the same way as
that in conventional neural networks as h(l)

k = gl(
∑K(l−1)

j=1 h
(l−1)
j w

(l)
jk), and w

(l)
jk ’s are

the scalar network weights
3 Coefficient Layer → Output Layer

{bm}M(O)
m=1 → X̂(tj) =

∑M(O)
m=1 bmϕ

(O)
m (tj), j ∈ {1, ..., J}

return {X̂(t1), X̂(t2), ..., X̂(tJ)}

functional data by

X̂(t) =
K(L)∑
k=1

M(O)∑
m=1

h
(L)
k c

(O)
mkϕ

(O)
m (t) =

M(O)∑
m=1

bmϕ
(O)
m (t), (3.12)

which is achievable thanks to the continuity of the preselected basis functions ϕ(O)
m (t)’s. This

is a core design choice made so that the FAE we propose acts not only as a representation
learner but a smoother itself and could substitute other smoothing processes such as fitting
a B-spline model.

Following the tradition in FDA, we can promote the smoothness of the output curves
by adding a roughness penalty to the objective function of the FAE. With a consideration
for computational simplicity, among different choices of roughness penalties, we propose to
apply the difference penalty (Eilers and Marx, 1996) on the elements of the coefficient layer
as they act as the basis coefficients in the output functional curves. Consequently, including
such a penalty term leads to the following objective function,

Lpen = 1
Ntrain

Ntrain∑
i=1

Ñ
J∑

j=1

Ä
Xi(tj) − X̂i(tj)

ä2
+ λ

M(O)∑
m=3

(∆2bim)2

é
(3.13)

and ∆2bim = bim − 2bi(m−1) + bi(m−2), where bim is the m-th neuron in the coefficient layer
for the i-th training subject, and parameter λ controls the smoothness. In implementation,

49

Algorithm 6: FAE Backward Pass
Input: θcurrent, {X(t1), X(t2), ..., X(tJ)}, {X̂(t1), X̂(t2), ..., X̂(tJ)}
Output: θupdated

Hyperparameters:{ϕ(I)
m (tj)}M(I)

m=1 , {ϕ
(O)
m (tj)}M(O)

m=1 , ωj for all j, a predefined network
NN(θ) with L hidden layers, K(l) neurons in the l-th hidden layer, activation
functions g1, ..., gL, E epochs, Optimizer (including learning rate ϱ), etc.

1 Compute loss function L(X(tj), X̂(tj))
2 Set θ = θcurrent
3 Output Layer → Coefficient Layer

∂L(θ)
∂bm

= ∂L(θ)
∂X̂(tj)

∂X̂(tj)
∂bm

, because X̂(tj) = f(bm) and f ′(bm) exists

4 Coefficient Layer → Feature Layer
∂L(θ)

∂θ , same gradient calculation as used in traditional neural networks
5 Feature Layer → Input Layer

No gradient calculation involved (deterministic operation)
6 Update NN parameters θ∗

return θupdated = θ∗

we suggest applying a roughness penalty when M (O) is relatively large (M (O) >> J). The
optimal λ can be selected using cross-validation.

3.2.4 FAE for Irregularly Spaced Observations

For many existing FDA models, it is quite common to assume that the observed discrete
functional data are regularly spaced. A benefit of our designed FAE is that it is free of this
assumption and its input layer can actually be of flexible size because of the proposed feature
layer applied in the early stage of the model.

As detailed in section 3.2.2, we express the input functional weights w(I)
k (tj) by a fixed

representation of
∑M(I)

m=1 c
(I)
mkϕ

(I)
m (tj), and therefore every discrete functional input Xi(tij), j =

1, ..., Ji, where Ji varies with i, are all equivalently projected to the same M (I) basis functions,
forming the tij-free features fim =

∑Ji
j=1 ωijXi(tij)ϕ(I)

m (tij),m = {1, 2, ...,M (I)}. These M (I)

features then participate in the following forward pass in place of the actual functional
inputs Xi(tij) for training the same set of network parameters including the input weight
coefficients c(I)

mk, which are free of i.
The designed feature layer, combined with the input functional weight representation,

processes irregular inputs by generalizing the problem of estimating irregular snapshots of
input weight functions to estimating input weight coefficients that are consistent over all
subjects.

50

3.3 Connection with Existing Models

3.3.1 Relation with FPCA

As previously pointed out by Baldi and Hornik (1989), Bengio et al. (2013), and Bourlard
and Kamp (1988), a single-hidden-layer linear autoencoder with its objective function being
the squared reconstruction error, i.e., L =

∑Ntrain
i=1

∥∥∥Xi − X̂i

∥∥∥2
=

∑Ntrain
i=1 ∥Xi −WdWeXi∥2 =∑Ntrain

i=1
∑P

p=1 {Xip − (WdWeXi)p}2, where Xi = {Xi1, Xi2, ..., XiP }, Wd, We denote the i-th
network input of P dimensions, weight matrix of the decoder and weight matrix of the
encoder, respectively, is approximately identical to the conventional PCA, because such an
autoencoder is learning the same subspace as the PCA. More precisely, the unique global
minimum of L is corresponding to the orthogonal projection of X onto the subspace spanned
by the leading eigenvectors (principal components) of the covariance matrix of X. It is
worth mentioning that at the global minimum, the uniqueness occurs with the global map
Wd ×We, while the matrices Wd and We may not be unique. This is because for multiple
appropriate C we have Wd ×We = (WdC)(C−1We). In other words, the mapping Wd ×We

is unique but not the encoder and decoder weight matrices.
When it comes to the functional scenario, a homogeneous relationship exists between FAE

and FPCA. For a single-hidden-layer FAE with linear activation function under continuous
functional data setting, the objective function measuring the mean squared reconstruction
error turns out to be

L =
Ntrain∑

i=1

∥∥∥Xi − X̂i

∥∥∥2
=

Ntrain∑
i=1

∫
T

Xi(t) −
K(1)∑
k=1

Å∫
T
Xi(t)w(I)

k (t)dt
ã
w

(O)
k (t)

2

dt. (3.14)

Ramsay and Silverman (2005) concluded that the aforementioned fitting criterion is
minimized when the orthonormal-restricted weight functions w(·)(t) are precisely the same
set of principal component weight functions of the functional data X(t). Hence, training a
one-hidden-layer linear FAE with respect to the squared reconstruction error criterion and
an orthonormal constrain on functional weights is exactly approaching to project the input
X(t) onto the subspace generated by the FPCs, the same space learned by FPCA.

For discrete functional data, the objective function becomes

L =
Ntrain∑

i=1

∥∥∥Xi − X̂i

∥∥∥2
=

Ntrain∑
i=1

1
J

J∑
j=1

Xi(tj) −
K(1)∑
k=1

(
J∑

j=1
ωjXi(tj)w(I)

k (tj)
)
w

(O)
k (tj)

2

.

(3.15)

It is important to notice that this approximation can lead to some difference which should
progressively decreases as J increases. Consequently, for relatively large values of J , the
FAE optimized by minimizing Eq.(3.15) will yield functional weights that are approximately
the same as those obtained by minimizing Eq.(3.14). To put it differently, when subjected to

51

the orthonormal constraint on the functional weights, the FAE that minimizes the objective
model Eq.(3.14) is effectively learning the empirical projection of X(t) onto the same space
as FPCA does. Importantly, the proposed FAE with discrete configuration generalizes FPCA
up to a few approximations, and the functional weights produced by FAE can be identically
interpreted as the FPCs in FAE.

3.3.2 Relation with AE

As pointed out in section 3.2.2, the proposed FAE is structurally similar to the classic AEs
based on fully connected neural networks. The main difference lies in the first and last layers.
In detail, a classic AE consists of network weights (and bias) free of restrictions and the
training task aims at optimizing these vectors of network parameters. The FAE we developed
also includes such weights to link layers between the feature layer and coefficient layer,
however, the difference lies in the deterministic weights before the feature layer and after
the coefficient layer, which are comprised of snapshots of continuous basis functions. With
the goal of optimizing the non-deterministic weights, the training process of FAE follows the
same rule as used in AEs. The FAE can be regarded as an extension of a conventional AE
with some deterministic operations added to both ends of the network.

The addition of feature layer to the AE architecture enables the FAE to quickly summarize
the underlying temporal relationship among observed time span into neurons that actually
step into the network, resulting in faster convergence and better generalization during
network training compared to conventional AE. Meanwhile, thanks to the application of
the functional output weights, the FAE we developed can recover the discrete functional
data to smooth curves over a continuous interval, satisfying the smoothness requirement of
functional data, while the classic AE is limited to output discontinuous functions evaluated
at some discrete timestamp of observations. Additionally, our method is capable to efficiently
handle irregularly spaced functional input along with its underlying correlation in the feature
layer by adjusting the weights ω used for numerical integration calculation, while AE has to
address the issue of having insufficient observations at certain time points by training the
model with some null-valued input for the corresponding neurons in the input layer. The
designed structure benefits our method with better performance in less computational cost
when manipulating irregularity, which is further highlighted by a series of simulation studies
in the following section.

3.4 Simulation Studies

In this section, we aim to compare our proposed FAE with the two existing baseline methods
it extends, FPCA and AE respectively, for representation learning and curve smoothing
from discretely observed functional data. We concentrate on investigating the effectiveness

52

of our method compared to FPCA in capturing the potential nonlinear relationship, as well
as evaluating the smoothing ability and computational efficiency of FAE compared to AE.

3.4.1 Simulation Setup

Data Generation

We generate the data by first sampling a d-dimensional representation Z from a Gaussian
mixture model. The mean vector and the covariance matrix of each component are designed
so that components are separable. We then apply a function f(·) that maps the representation
Z, to a set of M -dimensional basis coefficients Bm. Finally, we produce the continuous
functional data using a linear combination of M basis functions γm(t)’s and the basis
coefficients Bm:

X(t) =
M∑

m=1
Bmγm(t) = f(Z)γ. (3.16)

Finally, we evaluate X(t) at some discrete times {t1, t2, ..., tJ} ∈ [0, 1] to obtain a discrete
version of the functional data.

The basis system used is the B-spline basis system with an order of 4, and the number of
bases M varies throughout experiments. In terms of the mapping function f(·), we employ
a neural network NN(·) with multiple architectures aiming to create different mapping
paths from the representation vector Z to the basis coefficients of the functional data. The
neural network takes the d-dimensional representation vector as input and outputs the
M -dimensional basis coefficients. We apply neural networks with no hidden layers and a
linear activation function for linear scenarios, and networks with at least one hidden layer
and nonlinear activation functions for nonlinear scenarios.

An optional Gaussian noise can be further added to the discrete functional curve to
mimic observational errors. The component of the Gaussian mixture model from which
the representation was sampled is used as the label for the functional data in classification
experiments.

Implementation of Models

FPCA linearly encodes functional curves to FPC scores ξim’s with corresponding FPCs
ψm(t)’s. We implement FPCA in Python relying on the scikit-fda library (Ramos-Carreño
et al., 2022). The discrete functional data are first converted to smooth functions using basis
expansion with customized number of B-spline basis functions, and then the conventional
FPCA is performed on the estimated curve with a user-defined number of FPCs. The
resulting FPC scores serve as the scalar representation of the functional data and are used
for further statistical analyses.

53

AE based on a densely feed-forward network architecture can learn an encoding from
the functional trajectory observed at discrete time points to a lower-dimensional vector of
representation without considering any temporal correlations among the discrete observations.
We design the input layer of AE to have J neurons with the j-th neuron representing the
snapshot of the discrete functional observation at tj . We adopt different architectures with a
bottleneck hidden layer that produces the representation, experiment with both linear and
nonlinear activation functions, and initialize the network weights to random values drawn
from N (0, σ). We implement the AE using the PyTorch library.

Lastly, we implement the proposed FAE using PyTorch, along with the scikit-fda
library for applying the basis expansion to functional weights. Analogously, we attempt with
different architectures that include a hidden layer for extracting the representation, employ
both linear and nonlinear activation functions in model training, and initialize the weights
randomly by sampling from a Gaussian distribution N (0, σ).

3.4.2 Results

A series of simulations are performed under various scenarios to investigate the performance
of the proposed method in both prediction and classification, comparing it with FPCA and
AE individually. The prediction error is measured by the mean squared prediction error
(MSEp) averaged across the number of samples and the number of observed time points in
the test set, while the classification accuracy, Pclassification, is calculated as the percentage
of test observations that can be labelled correctly by a logistic regression based on the
representations extracted. For each scenario, we report the mean and standard deviation
(SD) of the evaluation metrics across all replications.

FAE vs. FPCA

Scenario 1.1 (Linear & Regular): 6000 discrete functional observations evaluated at
21 equally spaced points over the interval [0, 1] are simulated. A five-dimensional Gaussian
mixture model with three components is used to generate the representations and the
resulting functional curves are labelled with class 1, 2 and 3. A neural network with no
hidden layers and a linear activation function is performed to map the representation
to the basis coefficients. We employ 8 B-spline basis functions (M = 8) along with the
aforementioned basis coefficients to express the underlying functional curves.

We assign 80% of the observations by random to the training set and the remainder to
the test set. The FPCA and two types of FAE are successively trained and the model details
are summarized in Table B.1 in Appendix B.

Scenario 1.2 (Nonlinear & Regular): We generate 3000 functional observations
discretely measured at 51 equally spaced points over the interval T = [0, 1]. We sample a
5-dimensional representation for each curve from a 3-component Gaussian mixture model
and label the associated functional curves with class 1, 2 and 3. We map the representations

54

Table 3.1: Means and standard deviations (displayed inside parentheses) of prediction error
and classification accuracy of functional autoencoder with the identity activation function
(FAE(Identity)), functional autoencoder with the softplus activation function (FAE(Softplus))
and functional principal component analysis (FPCA) on 10 random test data sets in Scenario
1.1, with the best results being highlighted in bold.

FAE
(Identity)

FAE
(Softplus) FPCA

MSEp

3 Reps 0.0050(0.0001) 0.0045(0.0005) 0.0052(0.0001)
5 Reps 0.0019(<0.0001) 0.0022(0.0003) 0.0021(<0.0001)
10 Reps 0.0009(<0.0001) 0.0017(0.0005) 0.0010(<0.0001)

Pclassification

3 Reps 87.24%(0.93%) 87.72%(1.62%) 87.68%(0.78%)
5 Reps 87.94%(0.81%) 86.53%(0.94%) 89.21%(0.78%)
10 Reps 89.16%(0.75%) 89.61%(0.99%) 89.22%(0.70%)

Table 3.2: Means and standard deviations (displayed inside parentheses) of prediction error
and classification accuracy of functional autoencoder with the identity activation function
(FAE(Identity)), functional autoencoder with the sigmoid activation function (FAE(Sigmoid))
and functional principal component analysis (FPCA) on 10 random test data sets in Scenario
1.2, with the best results being highlighted in bold.

FAE
(Identity)

FAE
(Sigmoid) FPCA

MSEp

3 Reps 0.0070(0.0002) 0.0038(0.0002) 0.0070(0.0002)
5 Reps 0.0035(0.0001) 0.0026(0.0004) 0.0036(0.0001)
10 Reps 0.0013(<0.0001) 0.0014(<0.0001) 0.0013(<0.0001)

Pclassification

3 Reps 85.05%(1.08%) 88.68%(1.46%) 85.17%(1.06%)
5 Reps 86.62%(1.06%) 92.42%(1.02%) 86.65%(1.28%)
10 Reps 87.55%(1.13%) 91.20%(1.06%) 87.53%(1.26%)

to the basis coefficients using a neural network with one hidden layer with 20 neurons and
the sigmoid activation function. Afterwards, individual functional curve is constructed using
10 B-spline basis functions and the basis coefficients described above.

We continue to randomly generate training and test sets that contain 80% and 20%
observations respectively. Again, we put FPCA, linear FAE and nonlinear FAE in comparison
with model configuration adjusted and detailed in Table B.2 in Appendix B.

Table 3.1 and Table 3.2 summarize the predictive and classification performances of
the proposed FAEs and FPCA. In the linear & regular context, we observe that all three
approaches in comparison yield similar performance in both prediction and classification for
most representation attempts.

In contrast, under the nonlinear scenario, both linear FAE (FAE with the identity
activation function) and FPCA generate relatively higher MSEp and lower Pclassification

55

0.6

0.4

0.2

0.0

0.2

0.4

0.6

"Simulated" FPCA

0.0 0.2 0.4 0.6 0.8 1.0

FAE(Sigmoid)

0.0 0.2 0.4 0.6 0.8 1.0
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
AE(Sigmoid)

Figure 3.6: The simulated curves and the curves recovered by functional principal component
analysis (FPCA), classic autoencoder with the sigmoid activation function (AE(Sigmoid))
and functional autoencoder with the sigmoid activation function (FAE(Sigmoid)) using 5
representations for a random test set in Scenario 1.2 and Scenario 2.1.

due to the violation of the linearity assumption. Meanwhile, the FAE with the sigmoid
activation function retains superior performance in both prediction and classification in
comparison to the other linear approaches, with only minimal difference when predicting
with 10 representations. This indicates that the nonlinear FAE can capture and comprise
the information carried by the discrete data more efficiently and accurately.

With regard to curve smoothing, as displayed in Figure 3.6, both FPCA and FAE
with the sigmoid activation function produce smooth curves based on the inputted discrete
observations, while the designed FAE demonstrates additional benefits in curve recovery.
Plainly, FAE can not only correctly reconstruct the complete moving trend but also sensitively
capture the individual pop-up variations, e.g. the local ∩-shaped mode appearing in the
shaded interval.

FAE vs. AE

Scenario 2.1 (Nonlinear & Regular): The simulated data used in the Scenario 1.2 in
this section is simultaneously applied for a comparison between FAE and AE. Again, 80%
of the random observations are assigned to the training set and the remaining 20% to the
test set. Given that this scenario follows the nonlinear setting, we put emphasize on the
nonlinear models by training the baseline model AE and the proposed FAE with model
configurations listed in Table B.3 in Appendix B.

Table 3.3 presents the means and SDs of MSEp and Pclassification over 10 replicates
trained by AE and FAE with the sigmoid activation function in the nonlinear but regularly-

56

Ta
bl

e
3.

3:
M

ea
ns

an
d

st
an

da
rd

de
vi

at
io

ns
(d

isp
la

ye
d

in
sid

e
pa

re
nt

he
se

s)
of

pr
ed

ic
tio

n
er

ro
r

an
d

cl
as

sifi
ca

tio
n

ac
cu

ra
cy

of
fu

nc
tio

na
l

au
to

en
co

de
r

w
ith

th
e

sig
m

oi
d

ac
tiv

at
io

n
fu

nc
tio

n
(F

A
E

(S
ig

m
oi

d)
)

an
d

cl
as

sic
au

to
en

co
de

r
w

ith
th

e
sig

m
oi

d
ac

tiv
at

io
n

fu
nc

tio
n

(A
E(

Si
gm

oi
d)

)
on

10
ra

nd
om

te
st

da
ta

se
ts

in
Sc

en
ar

io
2.

1,
w

ith
th

e
be

tt
er

re
su

lts
be

in
g

hi
gh

lig
ht

ed
in

bo
ld

.

FA
E

(S
ig

m
oi

d)
A

E
(S

ig
m

oi
d)

3
R

ep
s

5
R

ep
s

10
R

ep
s

3
R

ep
s

5
R

ep
s

10
R

ep
s

M
SE

p
0.

00
38

(0
.0

00
2)

0.
00

26
(0

.0
00

4)
0.

00
14

(<
0.

00
01

)
0.

00
46

(0
.0

00
5)

0.
00

30
(0

.0
00

5)
0.

01
24

(0
.0

06
9)

P
cl

as
si

fi
ca

ti
on

88
.6

8%
(1

.4
6%

)
92

.4
2%

(1
.0

2%
)

91
.0

2%
(1

.0
6%

)
89

.3
5%

(1
.3

9%
)

92
.7

5%
(1

.1
5%

)
92

.6
5%

(1
.8

1%
)

57

spaced-data scenario. We observe that the two methods achieve competitive performance in
representation learning, with the nonlinear AE giving better results in classifying curves,
while the nonlinear FAE excels with smaller predictive errors in reconstructing the functional
observations. Figure 3.6 visualizes the simulated curves and the full trajectories recovered by
FPCA, nonlinear AE and nonlinear FAE, respectively. It is clearly shown that the proposed
FAE can directly and accurately output smooth curves using the given discrete observations
for the entire domain, while AE is limited to discretely recover the curve at the time points
with available observations, indicating that our FAE is capable of efficiently capturing
the representative information and simultaneously smoothing the discretely functional
observation.

Scenario 2.2 (Nonlinear & Irregular): In this scenario, we continue to use the data
simulated in Scenario 1.2 and randomly remove measurements in 25 time points (excluding
the start and end time point) for each curve to create irregularly and discretely observed
functional data, that is, the resulting functional curve contains 26 irregular observations
individually over the domain interval T .

We experiment with two different training set settings: (i) the training set contains 80%
observations; (ii) the training set contains 20% data, and focus on a comparison between the
nonlinear AE and nonlinear FAE with configurations provided in Table B.4 in Appendix B
to examine their performances in handling nonlinearity and irregularity simultaneously. For
those time points without observations (randomly removed), we feed the corresponding
neurons in the input layer of AE and FAE with 0 and abandon those neurons when computing
the loss. When training FAE, we also adjust the weights {ωj}Ji

j=1 individually for each discrete
curve i for a reasonable numerical integration over all the observed timestamp.

The performances of prediction and classification of nonlinear AE and nonlinear FAE,
trained with 80% and 20% irregularly spaced functional data, are illustrated in Table
3.4 and Table 3.5, separately, with the performances of both models reported for each
thousand epochs. We can see that the proposed FAE shows more advantages in speedily
learning the representation and accurately capturing the information for both prediction
and classification, especially when the training epochs remain small. On the other hand,
the classic AE needs to gradually master the mapping path in respect of reconstruction
error, while its resulting representations can outperform those by FAE in classification
when the training cost increases. The visual comparisons of how the mean MSEp and mean
Pclassification of FAE and AE change with the number of training epochs for 80% and 20%
training sizes, corresponding to Table 3.4 and Table 3.5, are presented in Section B.1.2
of Appendix B. As demonstrated, the computational efficiency of the FAE is robust over
different representation numbers, which further confirms that the FAE is able to generalize
better and converge faster even with fewer epochs and larger batch size over traditional
AE that has similar architecture in the matter of curve reconstruction and unsupervised
representation learning for classification.

58

Ta
bl

e
3.

4:
M

ea
ns

an
d

st
an

da
rd

de
vi

at
io

ns
(d

isp
la

ye
d

in
sid

e
pa

re
nt

he
se

s)
of

pr
ed

ic
tio

n
er

ro
r

an
d

cl
as

sifi
ca

tio
n

ac
cu

ra
cy

of
fu

nc
tio

na
l

au
to

en
co

de
r

w
ith

th
e

so
ft

pl
us

ac
tiv

at
io

n
fu

nc
tio

n
(F

A
E

(S
of

tp
lu

s)
)

an
d

cl
as

sic
au

to
en

co
de

r
w

ith
th

e
so

ft
pl

us
ac

tiv
at

io
n

fu
nc

tio
n

(A
E(

So
ft

pl
us

))
on

10
ra

nd
om

te
st

da
ta

se
ts

w
he

n
tr

ai
ni

ng
w

ith
80

%
irr

eg
ul

ar
ly

ob
se

rv
ed

da
ta

in
Sc

en
ar

io
2.

2,
w

ith
th

e
be

tt
er

re
su

lts
be

in
g

hi
gh

lig
ht

ed
in

bo
ld

.

FA
E

(S
of

tp
lu

s)
A

E
(S

of
tp

lu
s)

3
R

ep
s

5
R

ep
s

10
R

ep
s

3
R

ep
s

5
R

ep
s

10
R

ep
s

M
SE

p
ep

oc
hs

=
10

00
0.

00
31

(0
.0

00
3)

0.
00

23
(0

.0
00

2)
0.

00
14

(0
.0

00
2)

0.
00

35
(0

.0
00

2)
0.

00
29

(0
.0

00
3)

0.
01

43
(0

.0
12

7)
ep

oc
hs

=
20

00
0.

00
23

(0
.0

00
1)

0.
00

15
(<

0.
00

01
)

0.
00

10
(<

0.
00

01
)

0.
00

34
(0

.0
00

3)
0.

00
44

(0
.0

05
9)

0.
01

03
(0

.0
10

2)

P
cl

as
si

fi
ca

ti
on

ep
oc

hs
=

10
00

86
.5

7%
(1

.0
8%

)
87

.8
5%

(2
.0

3%
)

89
.2

2%
(1

.1
7%

)
89

.8
5%

(1
.3

2%
)

91
.0

5%
(0

.6
9%

)
90

.5
8%

(1
.5

9%
)

ep
oc

hs
=

20
00

88
.6

7%
(1

.2
2%

)
90

.1
2%

(1
.7

0%
)

91
.7

5%
(1

.1
0%

)
90

.6
8%

(1
.3

0%
)

91
.0

3%
(1

.0
9%

)
90

.7
3%

(1
.6

6%
)

59

Ta
bl

e
3.

5:
M

ea
ns

an
d

st
an

da
rd

de
vi

at
io

ns
(d

isp
la

ye
d

in
sid

e
pa

re
nt

he
se

s)
of

pr
ed

ic
tio

n
er

ro
r

an
d

cl
as

sifi
ca

tio
n

ac
cu

ra
cy

of
fu

nc
tio

na
l

au
to

en
co

de
r

w
ith

th
e

so
ft

pl
us

ac
tiv

at
io

n
fu

nc
tio

n
(F

A
E

(S
of

tp
lu

s)
)

an
d

cl
as

sic
au

to
en

co
de

r
w

ith
th

e
so

ft
pl

us
ac

tiv
at

io
n

fu
nc

tio
n

(A
E(

So
ft

pl
us

))
on

10
ra

nd
om

te
st

da
ta

se
ts

w
he

n
tr

ai
ni

ng
w

ith
20

%
irr

eg
ul

ar
ly

ob
se

rv
ed

da
ta

in
Sc

en
ar

io
2.

2,
w

ith
th

e
be

tt
er

re
su

lts
be

in
g

hi
gh

lig
ht

ed
in

bo
ld

.

FA
E

(S
of

tp
lu

s)
A

E
(S

of
tp

lu
s)

3
R

ep
s

5
R

ep
s

10
R

ep
s

3
R

ep
s

5
R

ep
s

10
R

ep
s

M
SE

p

ep
oc

hs
=

10
00

0.
00

57
(0

.0
00

9)
0.

00
41

(0
.0

00
9)

0.
00

39
(0

.0
02

6)
0.

03
86

(0
.0

15
2)

0.
07

30
(0

.0
23

7)
0.

45
91

(0
.2

69
2)

ep
oc

hs
=

20
00

0.
00

46
(0

.0
01

1)
0.

00
30

(0
.0

00
4)

0.
00

25
(0

.0
00

7)
0.

01
94

(0
.0

09
4)

0.
04

64
(0

.0
26

6)
0.

35
79

(0
.2

44
9)

ep
oc

hs
=

30
00

0.
00

35
(0

.0
00

3)
0.

00
27

(0
.0

00
3)

0.
00

19
(0

.0
00

4)
0.

01
04

(0
.0

02
7)

0.
02

30
(0

.1
57

8)
0.

19
17

(0
.0

93
4)

ep
oc

hs
=

40
00

0.
00

31
(0

.0
00

2)
0.

00
21

(<
0.

00
01

)
0.

00
29

(0
.0

03
9)

0.
00

86
(0

.0
01

2)
0.

00
93

(0
.0

03
7)

0.
09

68
(0

.0
63

2)
ep

oc
hs

=
50

00
0.

00
29

(0
.0

00
2)

0.
00

19
(0

.0
00

1)
0.

00
15

(0
.0

00
4)

0.
00

94
(0

.0
01

0)
0.

00
70

(0
.0

01
5)

0.
05

88
(0

.0
43

4)

P
cl

as
si

fi
ca

ti
on

ep
oc

hs
=

10
00

78
.3

2%
(1

.1
0%

)
81

.5
9%

(2
.1

2%
)

82
.3

0%
(2

.8
4%

)
78

.7
1%

(2
.9

7%
)

80
.4

8%
(2

.3
0%

)
64

.3
6%

(5
.2

6%
)

ep
oc

hs
=

20
00

81
.4

0%
(2

.0
0%

)
83

.8
6%

(1
.1

7%
)

83
.5

0%
(1

.2
0%

)
85

.3
0%

(0
.8

2%
)

86
.1

6%
(1

.3
9%

)
80

.6
3%

(6
.8

7%
)

ep
oc

hs
=

30
00

84
.0

9%
(1

.0
6%

)
85

.7
5%

(1
.2

4%
)

85
.2

7%
(1

.0
2%

)
86

.7
0%

(1
.1

1%
)

87
.5

0%
(1

.5
7%

)
88

.6
1%

(1
.2

9%
)

ep
oc

hs
=

40
00

85
.0

5%
(0

.7
2%

)
86

.6
9%

(1
.2

6%
)

87
.1

7%
(1

.0
4%

)
87

.1
8%

(1
.2

7%
)

88
.0

3%
(1

.1
7%

)
90

.0
5%

(0
.6

5%
)

ep
oc

hs
=

50
00

85
.5

3%
(0

.9
4%

)
87

.6
3%

(1
.2

6%
)

88
.2

7%
(1

.3
4%

)
87

.5
0%

(1
.2

5%
)

88
.2

3%
(0

.8
6%

)
89

.9
8%

(0
.6

3%
)

60

0.75

0.50

0.25

0.00

0.25

0.50

0.75
"Simulated"

0.75

0.50

0.25

0.00

0.25

0.50

0.75

FAE(Softplus)

0.0 0.2 0.4 0.6 0.8 1.0
1

0

1

2

3

AE(Softplus)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

"Simulated"

1.0

0.5

0.0

0.5

1.0

FAE(Softplus)

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2
AE(Softplus)

Figure 3.7: The simulated irregularly spaced curves and the curves recovered by classic
autoencoder with the softplus activation function (AE(Softplus)) and functional autoencoder
with the softplus activation function (FAE(Softplus)) using 5 representations for a random
test set in Scenario 2.2, when training with 80% observations (left panel) and 20% observations
(right panel), respectively.

Apart from representation learning, we display the simulated irregularly spaced functional
segments, along with the full curves reconstructed by the nonlinear AE and nonlinear
FAE in Figure 3.7 to reveal the smoothing ability of the FAE. When training with 80%
observations, it is not surprising to observe that the proposed FAE oversteps the classic AE
by generating predominantly smooth curves that effectively capture the entire underlying
patterns and primary modes present in the originally observed data. Nevertheless, trajectories
obtained through AE exhibit noticeable oscillations and incoherence with numerous accidents
protrudes appearing across the entire domain. In the case of training with only 20% data, as
expected, the FAE continues its dominance by showing dramatically leading performance in
curve smoothing, highlighting that the FAE with specially designed architecture is able to
efficiently learn the representations and simultaneously smooth the unequally spaced and
noisy functional data, even with limited training information.

3.5 Real Application

To further demonstrate the effectiveness of our method, in this section, we perform the
proposed FAE, together with the conventional FPCA and the classic AE on the El Niño

61

2 4 6 8 10 12
Month

6

4

2

0

2

4

Se
a

Su
rfa

ce
 T

em
pe

ra
tu

re

Figure 3.8: Centered monthly sea surface temperature measured in the Niño region defined
by the coordinates 0-10 degree South and 90-80 degree West.

data set which is available in R package rainbow (Shang and Hyndman, 2019). This data
set catalogs the monthly sea surface temperatures originally observed in 4 different locations
from January 1950 to December 2006. The temperature curves were discretely measured at 12
evenly spaced time points over the entire interval for every year. We treat the measurements
of each calendar year as an independent observation of the true underlying functional curve
(varying with time), resulting in a total of 267 observations, and we label the 4 locations with
numbers from 1 to 4 randomly. To avoid poor random initialization and obtain stable training
process for the NN-based methods, we centre the data by subtracting the sample mean curve
across all observations, and a visualization of the centered sea surface temperature curves is
provided by Figure 3.8.

We continue to compare the proposed method with two benchmark models, FPCA and
AE, on their performances in terms of curve reconstruction and representation extraction. We
equip the classic AE and the proposed FAE with different combinations of hyperparameters for
a linear mapping path and a potential nonlinear mapping pattern, while FPCA is performed
with the focus on measuring the linear relationship. The hyperparameters for all models in
comparison are tuned in advance to yield a fair improvement in their performances during the
actual training. To reduce the computational cost of the tuning process, for each model, we fix
the number of representations to be 5 and then perform a grid search over the hyperparameters
of our interests with respect to the loss function by simply building a model for each possible
combination of all of the hyperparameter values provided, and the optimal model architecture
combination of hyperparameters identified by the grid search with 5 representations is further
applied to model training with 3 and 8 representations. In Appendix B, Table B.5 provides a

62

summary of the candidate values considered in hyperparameter tuning for all models, while
the details of the optimally identified configurations for models in comparison is narrated
in Table B.6. We proceed with 20 repetitions of random subsampling validation: randomly
dividing the data set into a training set and a test set, with 80% and 20% of the total samples
assigned to them, respectively. We evaluate the prediction and classification performances of
all the mentioned approaches on the 20 test sets using 3, 5 and 8 representations, respectively.

Table 3.6 summaries the performances of all the methods applied for different num-
bers of representation extracted on curve prediction and classification, using MSEp and
Pclassification averaged over 20 random test sets. Apparently, the proposed FAEs consistently
and comprehensively outperforms the FPCA and the AE models in both reconstruction and
classification, by reaching the lowest prediction error and the highest classification accuracy
for all representation attempts. With regard to the predictive performance, the linear FAE
retains to be the top performer, closely followed by the nonlinear FAE. On the other hand,
the nonlinear FAE continuously oversteps the other models in the competition of classifying
curves, exhibiting its advantages in extracting more informative representations. To further
confirm this in the context of statistical significance, we conduct two-sided paired t-tests to
compare the MSEp and Pclassification of the 20 replicates of the nonlinear FAE to those of
the FPCA, and the corresponding p-values are reported in Table B.7 in Appendix B. We
observe that the nonlinear FAE remains superior to the FPCA regarding both evaluation
metrics, especially when the representation size increases, demonstrating the importance
and necessity of the proposed FAE in nonlinear representation learning.

6

4

2

0

2

4

"Observed" FPCA

2 4 6 8 10 12
6

4

2

0

2

4

AE(Sigmoid)

2 4 6 8 10 12

FAE(Sigmoid)

Month

Se
a

Su
rfa

ce
 T

em
pe

ra
tu

re

Figure 3.9: The observed curves and curves recovered by functional principal component
analysis (FPCA), classic autoencoder with the sigmoid activation function (AE(Sigmoid)) and
functional autoencoder with the sigmoid activation (FAE(Sigmoid)) using 5 representations
for a test set of El Niño data set.

63

Ta
bl

e
3.

6:
M

ea
ns

an
d

st
an

da
rd

de
vi

at
io

ns
(d

isp
la

ye
d

in
sid

e
pa

re
nt

he
se

s)
of

pr
ed

ic
tio

n
er

ro
r

an
d

cl
as

sifi
ca

tio
n

ac
cu

ra
cy

of
fu

nc
tio

na
l

au
to

en
co

de
rw

ith
th

ei
de

nt
ity

ac
tiv

at
io

n
fu

nc
tio

n
(F

A
E(

Id
en

tit
y)

)a
nd

th
es

ig
m

oi
d

ac
tiv

at
io

n
fu

nc
tio

n
(F

A
E(

Si
gm

oi
d)

),
cl

as
sic

au
to

en
co

de
r

w
ith

th
ei

de
nt

ity
ac

tiv
at

io
n

fu
nc

tio
n

(A
E(

Id
en

tit
y)

)a
nd

th
es

ig
m

oi
d

ac
tiv

at
io

n
fu

nc
tio

n
(A

E(
Si

gm
oi

d)
)a

nd
fu

nc
tio

na
lp

rin
ci

pa
lc

om
po

ne
nt

an
al

ys
is

(F
PC

A
)

on
20

ra
nd

om
te

st
se

ts
w

ith
th

e
El

N
iñ

o
da

ta
se

t.

FA
E

(I
de

nt
it

y)
FA

E
(S

ig
m

oi
d)

A
E

(I
de

nt
it

y)
A

E
(S

ig
m

oi
d)

F
P

C
A

M
SE

p

3
re

ps
0.

06
16

(0
.0

05
1)

0.
05

82
(0

.0
04

5)
0.

06
19

(0
.0

05
1)

0.
07

15
(0

.0
07

9)
0.

06
56

(0
.0

05
4)

5
re

ps
0.

02
11

(0
.0

02
3)

0.
02

26
(0

.0
03

1)
0.

02
61

(0
.0

05
2)

0.
03

29
(0

.0
04

2)
0.

02
42

(0
.0

03
1)

8
re

ps
0.

00
62

(0
.0

00
9)

0.
00

89
(0

.0
01

4)
0.

00
64

(0
.0

00
8)

0.
00

71
(0

.0
02

1)
0.

01
13

(0
.0

01
3)

P
cl

as
si

fi
ca

ti
on

3
re

ps
76

.8
8%

(4
.0

1%
)

77
.6

8%
(5

.0
7%

)
76

.5
2%

(3
.6

7%
)

77
.1

4%
(6

.0
5%

)
77

.5
9%

(4
.8

1%
)

5
re

ps
85

.1
8%

(4
.8

6%
)

86
.5

2%
(4

.4
6%

)
84

.2
0%

(5
.1

5%
)

85
.7

1%
(3

.4
8%

)
84

.3
8%

(5
.2

0%
)

8
re

ps
85

.8
9%

(4
.5

8%
)

87
.5

9%
(4

.6
7%

)
85

.2
7%

(3
.9

1%
)

85
.8

0%
(3

.8
9%

)
84

.8
1%

(4
.5

0%
)

64

The other highlight of the proposed FAE is its capability of smoothing the originally
discrete data. As illustrated in Figure 3.9, the trajectories recovered by using FAE are
smooth over the entire domain due to the fact that they are constructed as the linear
combination of the neurons in the coefficient layer and the basis functions that can be
evaluated at any point within the interval of observation. On the contrary, the classic AE
can only achieve point-wise prediction at the timestamp with actual observations, resulting
in visible discontinuity in the curve reconstruction. Meanwhile, FPCA can also produce
smooth prediction but it usually requires the discrete observation to be firstly smoothed.

In addition, FAE surpasses AE by fast converging to a similarly low prediction error
but with a resulting higher classification accuracy in both linear and nonlinear scenarios,
as displayed in Figure 3.10 and Figure 3.11, demonstrating its high efficiency in extracting
meaningful features and potential advantage in saving computational cost. It is noteworthy
that the model configuration for the nonlinear AE is simpler than that of the nonlinear FAE,
which brings benefits to the speed of nonlinear AE in training loss convergence.

0 1000 2000 3000 4000 5000
Epochs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ed

ict
io

n
Er

ro
r

AE
FAE

0 1000 2000 3000 4000 5000
Epochs

78.0%

79.0%

80.0%

81.0%

82.0%

83.0%

84.0%

85.0%

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

AE
FAE

Figure 3.10: How the averaged prediction error and classification accuracy of functional
autoencoder (FAE) and classic autoencoder (AE) with the identity activation function using
5 representations on 20 random test sets of the El Niño data set change with the number of
epochs.

The given results might imply that, for the El Niño data, the true relationship between
the functional space to representation space for the sea temperature curves can be more
accurately learned and revealed through a nonlinear mapping path, with the resulting
nonlinear representations carrying more valuable information beneficial for further statistical
analysis.

3.6 Conclusion

In this work, we introduced autoencoders with a new architecture design for discrete
functional observations targeting at unsupervised representation learning and direct curve

65

0 1000 2000 3000 4000 5000
Epochs

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ed

ict
io

n
Er

ro
r

AE
FAE

0 1000 2000 3000 4000 5000
Epochs

78.0%

80.0%

82.0%

84.0%

86.0%

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

AE
FAE

Figure 3.11: How the averaged prediction error and classification accuracy of functional
autoencoder (FAE) and classic autoencoder (AE) with the sigmoid activation function using
5 representations on 20 random test sets of the El Niño data set change with the number of
epochs.

smoothing concurrently. The deterministic feature layer added to the encoder reduces the
computational effort and enhances the model robustness in learning performance, while
the additional coefficient layer similarly incorporated into the decoder ensures the usage
of backpropagation in model training and allows the decompression from scalar neurons
to functional curve in a linear manner. Additionally, we implemented our proposed FAE
in a way that accommodates both regularly and irregularly functional data with flexible
necessity on the size of training data for achieving satisfactory performance. Through several
simulation studies and a real application, we demonstrated that the method we proposed is
superior to the classic linear representation method for functional data, i.e., FPCA, under
nonlinear scenarios and retains competitive performance in linear cases. Moreover, the
numerical experiments endorse that our model can lead to an improvement over the classic
AE in terms of prediction by generalizing and converging rapidly even with reduced training
observations.

Nevertheless, the developed method depends on numerous hyperparameters, including the
number of hidden layers, the number of neurons in each hidden layer, the training optimizer,
etc., and unfortunately, conducting a grid search on that space can be time-consuming. It
is necessary to bring up that the performance of the FAE varies from one hyperparameter
configuration to another, and the randomness in initializing network parameters will introduce
more variance to the results across training replicates. In contrast, the FPCA can be
effortlessly fitted with only a few hyperparameters necessitating predetermination, but in
sacrifice of the ability to accurately capturing the learning maps in nonlinear situations.
Another weakness of our approach is its inability to process multidimensional functional
data in its current form. Therefore, in a future work we could extend the current network
architecture to a more dynamic architecture allowing discrete multivariate functional data.

66

This might be achieved by introducing micro-neural networks (Lin et al., 2014; Yao et al.,
2021) to replace the neurons in the feature layer and the coefficient layer. Furthermore,
an analogous architecture of our proposed FAE can be implemented to tackle nonlinear
functional regression problems with both a functional predictor and a functional response.

67

Chapter 4

Simplified Survival Neural Network
for Time-to-Event Prediction

Time-to-event is a common outcome measure in biomedical applications, with Cox regression
(Cox, 1972) being the conventional approach for evaluating the relationship between features
and this outcome. To address the computational challenge posed by the growth of modern
data sets, various survival neural networks have been suggested as alternatives. Each
network depends on a customized loss function and its corresponding training procedure,
which could introduce inconsistency and bias. In this chapter, we present three simple
approaches for transforming the time-to-event outcomes into a quantitative response vector.
This transformed response can be readily utilized in any deep neural network without
requiring the customization of the loss function to accommodate right censoring. We propose
a novel simplified survival neural network to tackle the time-to-event prediction. It is
essentially comprised of three steps: survival outcome transformation, feature extraction, and
hazard model fitting. Our numerical studies show that the proposed framework maintains
competitiveness with existing methods in terms of model discrimination under both the
proportional hazards and nonproportional hazards settings, and it is demonstrated that
our simplest loss function is the most computationally efficient when compared to the loss
functions of other popular survival neural networks regardless of data size and batch size.
The content showcased in this chapter is currently undergoing the journal review process.

4.1 Introduction

Time-to-event analysis has found wide application and gained significant attention in various
health science domains. The Cox proportional hazards model (Cox regression) (Cox, 1972;
Shen and Cook, 2013; Keogh and Morris, 2018), which assumes that the underlying hazard
function is proportional over the follow-up time period across different covariates, has been
predominately taken as the conventional approach to time-to-event prediction and the
investigation of the relation between the covariates and survival outcome. Methods that

68

relax the proportional hazard assumption have also been well-developed in the literature
(Schemper, 1992; Klein and Moeschberger, 2003; Borucka, 2014). However, with the advent
use of big data, the computational capacity of the classic Cox regression for time-to-event
prediction becomes insufficient.

Several existing studies have proposed survival neural networks, which integrate deep
neural networks with the Cox proportional hazards model, focusing on the development of
specialized matching loss functions. Faraggi and Simon (1995) first explored the extension
of Cox regression with neural network by substituting the linear predictor of Cox with a
one-hidden-layer neural network, while retaining the Newton-Raphson’s method for model
parameterization. Katzman et al. (2018) expanded on the work of Faraggi-Simon by incor-
porating modern deep learning techniques into the Cox proportional hazard loss function
under the proportional assumption. Their method, known as DeepSurv, aims to minimize
the averaged negative log partial likelihood with regularization. Kvamme et al. (2019) revis-
ited these methods and developed nonproportional alternatives, Cox-MLP and Cox-Time,
relying on an approximation to the negative loglikelihood loss function that can reduce the
computational cost for batching survival data under nonlinearity and nonproportionality. Lee
et al. (2018) distinguished their method, DeepHit, by using a deep neural network to model
the distribution of the survival times directly under no assumptions about the underlying
stochastic process.

The aforementioned approaches, however, primarily focus on constructing the neural
networks directly using time-to-event outcomes, each with its distinctly customized loss
function and training procedure to address right censoring. As we demonstrate in the
subsequent sections of the chapter, each of the diverse loss functions proposed by the
aforementioned methods carries unique interpretations and varying levels of computational
complexity. In this study, we instead propose a simplified survival neural network that
does not necessitate customization of the loss function or training approach to address
time-to-event prediction. The core of the proposed method is to transform the time-to-event
outcomes into a quantitative response vector that captures the essence of survival information
such that the prediction problem becomes an ordinary regression that can be inputted into
any deep neural network. We introduce and compare three such transformations in this
chapter along with their theoretical justifications.

The proposed method is summarized in three steps shown in Figure 4.1. As illustrated, in
Step 1, we implement a survival outcome transformation using the observed time and event
indicator to obtain the transformed response Y free of right-censoring. Inspired by Beaulac
et al. (2023), in the following Step 2 aimed at feature extraction, we construct a densely
feed-forward neural network with the P covariates {x1, x2, ..., xP } and the quantitative
response Y serving as its input and output, respectively. We then take {Z1, Z2, ..., ZP ′}, the
P ′ neurons of the last hidden layer of the trained neural network, as the features that capture
the nonlinear relation among the original covariates on predicting the target Y . Finally, we

69

Features

Transformation

Observed
Time

Survival Time
Transofrmation

Feature Extract ion
with Neural Networks

Hazard Model
Fit t ing

Hazard Model
with Extracted

Features

x1

x2

xP

Z1

Z2

Z3

ZP'

Y
?
? ?

?
?
?

...

Step 1 Step 2 Step 3

Event
Indicator

...

...

...Y

Figure 4.1: Diagram of the simplified survival neural network in the form of a 3-step pipeline,
consisting of survival time transformation, feature extraction with neural networks and
hazard model fitting.

fit a hazard model in Step 3 using the extracted features {Z1, Z2, ..., ZP ′}, together with the
originally observed time and event indicator, to achieve the goal of individualized survival
prediction.

Our simplified survival neural networks have two major advantages. First, we reduce the
complexity of survival neural networks to an ordinary neural network that does not require
a tailored loss function and training procedure by proposing transformation of the time-to-
event outcomes. Such transformation will not only simplify existing survival neural networks,
but will also be directly applicable to various types of networks, such as convolutional neural
networks (Zhu et al., 2016) and segmentation networks (Jha et al., 2020), among many
others with application in survival data. Second, the proposed pipeline as illustrated in
Figure 4.1 is computationally efficient. It accommodates ties in the time-to-event outcomes
and both proportional and nonproportional hazards. We provide open source functions
for implementation (https://github.com/sidiwu/SSurvNN) such that it can be used for
future machine learning research with time-to-event prediction.

The remainder of this chapter proceeds as follows. In Section 4.2, we provide methodolog-
ical details for time-to-event outcome transformation, feature extraction, and hazard model
fitting. The finite sample performance is investigated in Section 4.3 via intensive simulation
studies. We compare the proposed method to several existing survival neural networks in
Section 4.4 under real data applications. Finally, we conclude with discussion and future
directions in Section 4.5.

70

https://github.com/sidiwu/SSurvNN

4.2 Methodology

In this section, we provide details of the proposed method that aligns with each of the steps
presented in Figure 4.1, i.e., transformation, feature extraction, and hazard model fitting.
Suppose that there are n independent individuals in the cohort. For individual i, we let xi

denote a vector of P covariates. We denote the observed time-to-event outcome with the
pair (Ti, δi), where Ti is the minimum of event time T ∗

i and censoring time Ci, and δi is
the event indicator with δi = 1 indicating that the observed Ti is the event time and δi = 0
indicating censoring time.

4.2.1 Step 1: Time-to-Event Outcome Transformation under Right-Censoring

We first introduce three transformations to the time-to-event outcome and denote the
transformed quantitative response by Yi for individual i throughout the chapter.

Reweighing

The reweighing method is designed to transform T ∗
i by applying a function f(T ∗

i) where
f : [0,∞) → IR. A widely adopted choice of such function is the log transformation.
Nevertheless, in survival study, it is quite common to obtain right-censoring individuals
whose actual event times T ∗’s are unobserved, and ignoring the censored observations would
lead to biased estimates. To address this issue, one approach is to reweigh the observed
survival times Ti’s using a suitable weight that accounts for censoring by

Yi = δif(Ti)
Ŝc(T−

i)
, (4.1)

where Ŝc(·) represents the Kaplan-Meier survival function of the censoring random variable
C, and T−

i denotes the left limit of Ti. It can be shown that the expectation of Yi conditional
on the observed covariates is approximately equal to the expectation f(T ∗

i) conditional on
the observed covariates (Koul et al., 1981).

Mean Imputation

As an alternative strategy to accommodate the presence of right-censoring, mean imputation
transforms the time-to-event outcome Ti differently according to the corresponding δi for
each cohort individual. Specifically, for an event individual i (δi = 1), we directly set the
response Yi as f(Ti), where f is again the function of log transformation; while for an
censored subject i (δi = 0) without the actual event observation, we substitute its unknown
event time with the expected value that accounts for all event times larger than the censored
time Ci, and the response becomes

71

Yi =

∑
T ∗

(j)>Ci
f(T ∗

j)△Ŝ(T ∗
(j))

Ŝ(Ci)
, (4.2)

where T ∗
(1) < T ∗

(2) < . . . < T ∗
(J) are the J ordered distinct event times, and Ŝ(·) and △Ŝ(T ∗

(j))
denote the Kaplan-Meier survival function and the jump size of Ŝ(·) at time T ∗

(j), respectively.
Consequently, in this setting, the largest observation T ∗

(J) will be automatically regarded
as the true event and simultaneously serves as the largest mass point of the estimated
survival function of T ∗. Under the self consistency property of the Kaplan-Meier estimator
(Efron, 1967), the reweighing method can be mathematically proven to be equivalent to
mean imputation; this has been discussed in detail in Datta (2005).

Deviance Residual

This last approach developed for time-to-event transformation entails the substitution of
the survival endpoint with suitably chosen residuals. This design effortlessly inherits the
simple algorithms applicable to continuous outcomes and masterly bypasses the challenges
associated with right-censoring. Specifically, we first consider the null martingale residual
for the i-th individual defined as:

Gi = δi −H0(t),

where H0(t) =
∫ t

0 h0(t)dt denotes the cumulative hazard function at time t. One way to
interpret Gi is as the discrepancy between the number of events that were observed and
the number of events that were expected. However, the main limitation of the martingale
residuals is its high skewness, taking values from −∞ to 1, and therefore we opt to employ
a common alternative named deviance residual to facilitate the transformation. Accordingly,
the transformed time-to-event outcome is further denoted as:

Yi = sign(Ĝi)[2{ − M̂i − δi log
Ä
δi − Ĝi

ä
}]1/2 . (4.3)

As a normalized version of the martingale residual (Davison and Gigli, 1989), the deviance
residual Yi enables the expansion of Gi on its range from [−∞, 1] to a wider real line of
[−∞,∞] by utilizing a simple log transformation.

Figure 4.2 visualizes a comparison of the relationship between the observed censor-
ing/event time T vs. transformed response Y under the three transformation methods using
the Rot. & GBSG dataset (Kvamme et al., 2019) from the real application section. It shows
that the reweighing method transforms all censoring observations to a response Y valued
at 0 and the event observations to Y ’s that are positively correlated to the original event
times. Likewise, the mean imputation approach log-transforms the event times, naturally
giving rise to an increasingly concave-down shape curve that signifies a positive correlation

72

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●● ●● ● ●● ●●● ●●●●● ●●●●●●●● ●●●●●● ●● ● ●●●●●●● ●●●●● ●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●●● ● ●● ●●●●●●●●● ●● ●●●●● ●●● ●●●●●● ●●●●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●● ●●●●● ●●● ● ●●● ●●●●●●●●● ●● ●●●●●● ●●●●●● ●●● ●●●●●●●●●●●● ● ●●● ●●●●● ● ●●●● ●●●●●●● ●● ●● ●●●●● ●●● ●●●●● ●● ●●●●●●● ●●●● ● ●●● ●● ●●●●●●●● ●●●●● ●●●●● ●●● ●●●●● ●●●●●● ●●●●●● ●● ●● ●●●●●●●●● ●●●●●●●● ●●●●●●● ●●●● ●●●● ●●●●●●●● ●●●● ●● ●●●● ●● ●● ●● ●● ●●●●●● ●●●●●●● ●●●●●● ●●● ●●●●●● ●●● ●● ●●●●●●●●●●●●● ●● ●●●●●● ●● ●● ●●●●●● ●●●● ●●●● ●● ●● ●● ●●●●● ●●● ●●●●●●● ●● ●● ●●●●●● ●●●●● ●● ● ●●●●●●●●● ● ●●●●●● ●● ●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●●●●● ● ●●●●●● ●● ●●●●●●● ● ● ●● ● ●● ●● ●●●● ●● ●● ●●● ●●● ●● ●● ●●● ●●● ●●●●●● ● ●●●●● ●●●●● ●●●●●●●●● ●●●●● ● ●●● ●●● ●●● ● ● ● ●● ●●● ●●● ●● ●● ●●● ●●●● ● ●● ●●●●●● ●●● ●● ●● ●●● ●●●●● ●●●●●● ●● ●●●● ●●●●● ●●● ●●●● ●●●● ●●● ● ●●● ●● ●● ● ●●● ●● ●● ●●●● ●●●●● ●● ●●● ●● ● ●●● ●●●● ● ●●● ● ●●● ● ●●●● ● ●● ●● ● ●●●●●●●●●●● ● ●●● ●●● ● ●● ●●●●● ●● ●●●●●●●● ●●●● ●● ● ●● ●●●● ● ● ●●●●●●●●● ● ● ●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●● ●● ●● ●● ●●●●●●●●●●●● ●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●
●

●

●●

●

●●●●

●

●●●●●●●

●

●●●●●

●

●

●
●

●●●●●●

●

●●●●

●

●●

●

●●●●●●●●●
●

●●●●●
●

●●●●●●●

●●

●●●●●●●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●

●

●

●

●

●●●●●●●●

●

●

●

●●●●
●

●●

●

●●●●●

●

●●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●
●

●●

●

●
●●

●

●●●●●●●●

●

●

●

●●●●

●

●

●●●●●
●

●●

●

●●●●●●●●●●●

●

●

●●

●

●●●●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●●●
●

●

●●

●

●●●

●

●

●

●

●●●●●●

●

●●

●

●

●

●●

●

●

●

●●●●●●●

●

●●●●

●

●●●●

●

●

●●

●●●●

●

●●●●●
●

●●●●●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●

●

●

●●●

●

●●●●●●●

●

●●●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●●●●

●
●

●●●●●

●

●

●●●●●
●

●●

●

●●●●●

●

●●

●

●

●

●●●●●●●●●●●●
●

●
●

●●●●

●●

●

●

●
●

●●●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●

●
●●

●

●●

●●●●●●

●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●●●●●●●

●

●
●

●●●●
●

●

●

●
●

●
●

●●●●●●●●●

●●
●

●●●
●●●●●

●
●

●●
●●●

●●●
●●

●
●

●
●

●
●

●

●●
●●

●●●

●
●●

●●●
●

●

●●

●

●●

●

●
●

●●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●●

●
●

●

●●

●

●
●

●●

●●
●

●●

●●

●●

●
●

●

●
●●

●

●
●

●

●
●

●

●
●

●●●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●●
●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●●

●●●●

●

●

●

●

●

●●
●

●

●
●●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●●●●●
●

●

●

●

●
●

●●

●

●

●

●

●●●● ●
● ●●●●●●●●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●
●●

●
●

●
●

●
●

●

●

●

●●
●●●●●

●●

●●●●
●

●

●

●●●

●●

●●

●

●

●

●

●

●

●●●

●●●●
●●

●●

●

●●●
●

●

●●
●

●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●
●

●●●●●●●●●●●●●●●●● ●

●

● ●● ●●
●

●●●●● ●●●●●●●
●

●●●●●● ●

● ●
●●●●●●

●
●●●●● ●●

●
●●●●●●●●●● ●●●●●● ●●●●●●●

●●
●●●●●●●●●●●●●●●

●
●●●● ●●●●

●
●●●●●●●

●
●

●● ●●●●●●●●● ●

●

●●●●● ●●
●

●●●●●

●

●●●●●●●●● ●●●● ●●●●
●

●●●●●●●●●●●●
●

●●●●●●●●●●● ●●●●●●●●
●

●

●

●●●●● ●●● ● ●●● ●●●●●●●●
●

●● ●●●●●

●

●●●●●● ●●
●

●●●●●●●●●●●
●

● ●●
●

●●●●

●

●
●●●

●

●●●●●●
●

●● ●
●

●●●●
●

●●● ●●●
●

●
●

●

●●●●●●
●

●●●

●

● ●●

●

●
●

●●●●●●●● ●●●●
●

●●●●

●

●●● ●●●●
●

●●●●●● ●●●●●● ●
●

●● ●●●●●●●●
●

●●●●●●●● ●●●●●●● ●●
●●

●●●

●

●●●●●●●
●

●●●● ●
●

●●●
●

●● ●● ●
●

●●
●●●●●● ●●●●●●

●
●●●●●● ●●

●
●●●●●● ●●

●
●

●
●●●●●●●●●●●●● ●● ●●●●●● ●

●
●● ●●●●●

●
●●●

●
●●●

●
●

●
●

●
●● ●●

●●●
●

●●
●●●●●●

●
●

●

●
●

●●●●●
●

●●●●
●

●
● ●

●●●●●●●

●

●

●

●●●●●
●

●● ●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●● ●●●●●●●●●●

●
●●●●●

● ●●
●●●

●●●●

● ●
●

●

●
●

●

●●

●●

●
●

●

●

●
●

●●
●

●●● ●

●

●

●

●●

●

●●● ●●●●
●● ●

●●●

●●

●●

●●●

●●
●●

●●
●

●●

●●●●

●
●

●
●● ●

●

●

●●● ● ● ● ●
●

●●● ●●

●

●
●

●
● ●●● ●●

●●
● ●

●
●●●●●

●
●●

●
●

●

●
●

●

●
●

●●
●

●●

●●●●●

●

●
● ●

●●●

●
●●●

● ●●●

●●●● ●

●●

●

●
●

●
● ●●● ●

●
●

●
●

●
●● ●

●

●

●
●●●●

●●●●

●

●● ●●

●

●

●

●
●

●●

●

●●
● ●

●●
●

● ●●
● ● ●●●

●
● ●● ●

● ●

●
●●●

●
●●●●●

●

●
●●

● ●

●●
●

●

●

●

●●●
●

●

●

●●
●

●●●●●

●●

●
●

●

●

●

●● ●●
●

●

● ● ●
●●●●●●

●
●

● ●
●●

●

●

●
●●

●●●●●

●●

●●●●●
●●

●●
●

●●

●
●

●
●

●

●

●● ●●●●●●●●●●●

●

●●●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●
●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●●

●●●
●●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●●●

●

●
●●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●●

●

●

●
●●●●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●

●
●●

●●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●
●●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●●
● ●●

●

●

●
●

●

●● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●●

●●

●

●

●●
●

●

●
●

●

●

●

●
●

●●●

●
● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●●

●●

●

●
●

●
●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●●

● ●●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●● ●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
● ●●

●

●
●

●
●

●

●

●
●

●
●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●●

●●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●

●

●

●
● ●

●●

●

●
●●●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●
●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●

●

●

●

●

●●

●●●

●●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●●

●

●
●●●

●
● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●
●●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

Censoring Individuals Event Individuals

R
ew

eighing
M

ean Im
putation

D
eviance R

esidual

0 25 50 75 0 20 40 60 80

0

2

4

6

8

0

1

2

3

4

−1

0

1

2

3

Observed Time T

Tr
an

sf
or

m
ed

 T
im

e
Y

Figure 4.2: Transformed time-to-event response Y , obtained from reweighing, mean imputa-
tion, and deviance residual, vs. the observed time T for censoring and event individuals in
the Rot. & GBSG dataset (Kvamme et al., 2019).

between the transformed Y ’s and the original event observations. On the other hand, em-
ploying mean imputation introduces variability in the relationship between the censoring
observations and their corresponding transformed response across different cases. Different
from the first two transformations, the deviance residual method produces transformed
quantitative responses that are negatively correlated to the original survival observations for
both event and censoring individuals. The figures that display the relationship between the
observed censoring/event time and the response transformed by the three transformation
approaches with the other data sets used in the real application are provided in Section C.4
of Appendix C.

73

4.2.2 Step 2: Feature Extraction with Neural Networks

In this study, we concentrate on employing densely feed-forward neural networks (NNs),
which constitute the most prevalent architecture in neural network applications. Here, we
define an NN composed of a P -dimensional input layer, L hidden layers, and the scalar
output layer. While we define a densely feed-forward neural network in this subsection, we
note that this can be flexibly adjusted to any neural network of interest with the transformed
Y . In learning the potentially nonlinear mapping path from the input x to the output Y ,
we have

Yi = NNη (xi) = aL+1

(
· · · a1

(
P∑

p=1
w1pxip + b1

))
, (4.4)

where a1, ..., aL+1 are the activation functions connecting each two consecutive layers, and
η is comprised of weights {wℓp}L+1

ℓ=1 and bias {bℓ}L+1
ℓ=1 of all layers. We intuitively force the

activation function aL+1 connecting the output layer to be the linear activation function and
withdraw the neurons in the last hidden layer, denoted by Z = (Z1, Z2, ..., ZP ′) as shown
in Figure 4.1. These neuron are identified as the meaningful features that are inputted in
the subsequent hazard function in Step 3, because they gradually capture and condense the
nonlinear relationship among the covariates, effectively summarizing the valuable information
carried by the input variables x and their association with the outcome Y . To ensure the
identifiability of the survival model employed in the following step, we enforce the dimension
of features, to be much less than the number of observations, i.e., P ′ ≪ n in practice.

It is worth pointing out that Yi = NNη(xi) is free of the restriction on training with
respect to a specific loss function and can be fitted with mini-batch stochastic gradient
descent (SGD), as the quantitative output Y is treated equivalently for both censored and
event individuals.

Loss Function Comparison

The time-to-event transformation described in Step 1 removes the requirement of a cus-
tomized loss function for time-to-event outcome when constructing a survival neural network.
In this section, we provide three such examples of how the customization of the loss function
differs among various existing survival neural networks.

Assuming the mean squared error loss is used, the objective function of the neural
network applied in Step 2 of our pipeline is simply formulated as the mean squared difference
between the predicted and actual network output,

LNN(η) = 1
ntrain

ntrain∑
i=1

(Yi − Ŷi)2, (4.5)

74

where ntrain represents the number of training individuals in a single batch. Such a loss
function is commonly used, computationally efficient and easily implemented in network
training. Additionally, the neural network is configured to output the transformed response,
an unbiased estimator of the original time-to-event outcome.

In comparison, the majority of the existing survival neural networks employ customized
loss functions that can result in additional computational cost and inconsistent estimation.
For instance, Kvamme et al. (2019) equipped their method DeepSurv with a loss function
measuring the negative log partial likelihood with regularization,

LDeepSurv(η) = 1
nδ=1

∑
i:δi=1

log

Ñ ∑
j∈R(Ti)

exp[ĝη(xj) − ĝη(xi)]

é
+ λ · ∥η∥2

2 , (4.6)

where nδ=1 denotes the number of events in the training set, R(Ti) is the risk set at time Ti,
ĝη(xi) is the log-rank function outputted by the network for the i-th subject, and λ acts as
the regularization parameter. Considering the loss in Eq.(4.6) takes the sum over risk set
R(Ti), which can be as large as the full training set (Katzman et al., 2018), the computation
of DeepSurv necessitates the input of the entire data set for each training epoch, ballooning
the computational cost of network training.

To tackle this limitation and enable the usage of mini-batch SGD, Katzman et al.
(2018) incorporated the developed nonlinear and nonproportional survival neural networks,
Cox-MLP and Cox-Time, with a LDeepSurv(η)-approximated loss function,

LCox-MLP(η) = LCox-Time(η) = 1
ntrain,δ=1

∑
i:δi=1

log

Ñ ∑
j∈R̃(Ti)

exp[ĝη(xj) − ĝη(xi)]

é
, (4.7)

where ntrain,δ=1 denotes the number of individuals with an observable event in a single
training batch and R̃(Ti) is a reasonable approximation of the full sum over R(Ti) in
Eq.(4.6). They also demonstrated that it is sufficient to sample only one individual j from
the risk set. While this approximation is seemingly efficient, the definition of sampling only
one individual is quiet arbitrary.

On the other hand, DeepHit (Lee et al., 2018) was designed to be trained by minimizing
a total loss function, LDeepHit(η) = L1 +L2, composed of two terms: the log-likelihood of the
joint distribution of the first hitting time and event L1, and a combination of cause-specific
ranking loss function L2 that adapts the idea of concordance (Harrell et al., 1982). In the
cases with single event of interest, the two sub-loss functions L1 and L2 can be separately
expressed as

L1 = −
ntrain∑
i=1

{
1(δi = 1) · log (yi,Ti) + 1(δi = 0) · log

Ä
1 − F̂ (Ti|xi)

ä}
, (4.8)

75

where 1 denotes an indicator function, yi,Ti is the network-outputted probability P̂ (Ti|xi)
that the subject i will experience the event at time Ti, and F̂ (Ti|xi) = P̂ (t ≤ Ti|xi) =∑Ti

T =0 P̂ (t = T |xi), and

L2 = α ·
∑
i ̸=j

Ai,j · ζ
Ä
F̂ (Ti|xi), F̂ (Ti|xj)

ä
, (4.9)

where Ai,j
∆= 1(δi = 1, Ti < Tj) is the indicator function to filter comparable pairs (i, j)’s,

the coefficient α is chosen to trade off ranking loss, and ζ(·, ·) is a convex loss function.
Consequently, this design enforces the calculation of two loss components along with an
additional step to search acceptable pairs, resulting in expensive computational cost in the
training stage.

We demonstrate the trade-off of computational speed and prediction performance between
these competing methods with the proposed method in Section 4.3.4.

4.2.3 Step 3: Individualized Survival Prediction

With the goal of predicting individualized survival, we focus on modelling the hazard function
using the extracted features Z in Step 2,

h(t|Z) = h0(t)exp{βT Z}, (4.10)

where h0(t) is the non-parametric baseline hazard function, and β is the vector of coefficients
corresponding to the set of feature covariates Z. Given Eq.(4.10), we can easily predict
future survival for any new individual i′ at some time t as

S(t|Z) = S0(t)exp
(

β̂
T

Zi′
)
, (4.11)

where S0(t) = exp
Ä
−

∫ t
0 h0(u)du

ä
is the baseline survival function. Note that the proportional

hazard assumption should be tested rigorously (Schoenfeld, 1982).

Violation of the Proportional Hazards Assumption

If the fitted Cox regression violates the proportional hazards assumption, we propose to
introduce the time-dependent coefficient β(t) (Klein and Moeschberger, 2003), i.e.,

h(t|Z) = h0(t)exp{βT (t)Z}. (4.12)

To practically implement the time-dependent coefficient modelling, we utilize the idea of
time splitting (Therneau et al., 2017). Simply put, time splitting serves to divide individuals’
survival records into multiple sub-records according to the given M − 1 cut points lying
inside the observation interval T , leading to M sub-intervals {T (m)}M

m=1. The resulting data

76

Table 4.1: The original data set with two individuals (left), and the new data set after
splitting the follow-up interval at time points 5 and 10, resulting in consecutive time intervals
of length 5 (right).

ID Duration Event x1 x2
1 9 0 -1.6 5.4
2 13 1 -0.6 3.6

⇒

ID Start time Stop time Event x1 x2
1 0 5 0 -1.6 5.4
1 5 9 0 -1.6 5.4
2 0 5 0 -0.6 3.6
2 5 10 0 -0.6 3.6
2 10 13 1 -0.6 3.6

set follows the ‘counting process’ format with the start and stop times of the sub-interval,
the event status, as well as the values of the covariates (Cook and Lawless, 2018). The
implementation of time splitting is detailed in Section C.1 of Appendix C and an example
of time splitting for two individuals is illustrated in Table 4.1.

Handling Ties

It is common to encounter ties in the observed time in survival analysis and most neural
networks do not correctly handle ties (Yang et al., 2022). Thus, it is worth mentioning
that our proposed framework supports both Breslow and Efron methods for tied events
(Hertz-Picciotto and Rockhill, 1997). The two options of handling ties are given as part of
our pipeline and can be user-specified.

4.3 Simulation Studies

We aim to investigate the finite sample performance of the proposed method under 12
simulation settings. We denote the three transformations with RW, MI, and DR for reweighing,
mean imputation and deviance residual, respectively. We let Cox and Cox(NP) refer to
the proportional hazards model and the nonproportional hazards model with time-varying
coefficient. Two sample sizes (n = 500 and 5000) as well as two censoring proportions (CR
= 0.3 and 0.6) are also investigated in this simulation study.

The proposed method is readily implemented in R with self-defined functions for trans-
formations, neural network constructed within TensorFlow (Allaire and Tang, 2020) and
Keras (Allaire and Chollet, 2020), and hazard models using the survival (Therneau, 2023)
package. All the simulations were conducted on the Compute Canada server.

We focus on the concordance index or C-index (Harrell et al., 1982), one of the most
commonly used evaluation metrics in survival analysis, to examine the prediction accuracy
of the proposed method. In the case of proportional hazards assumption being satisfied, the
C-index can be estimated with the concordance() function within the survival package.
When Cox regression is fitted with time-dependent coefficients, on the other hand, we utilize
the time-dependent C-index (Antolini et al., 2005; Jiang et al., 2021) from M sub-intervals.

77

Specifically,

Cdynamic =
∑M

m=1
∑nm

i=1
∑nm

j=1;j ̸=i conc(m)
ij∑M

m=1
∑nm

i=1
∑nm

j=1;j ̸=i comp(m)
ij

, (4.13)

with

comp(m)
ij = I{T (m)

i < T
(m)
j & δ

(m)
i = 1}

+ I{T (m)
i = T

(m)
j & δ

(m)
i = 1 & δ

(m)
j = 0}, (4.14)

conc(m)
ij = I{Ŝ(T (m)

i |Zi) < Ŝ(T (m)
i |Zj)} · comp(m)

ij , (4.15)

where T (m)
i and δ

(m)
i denote the observed time and the event indicator for individual i at

m-th sub-interval, and nm is the number of records available in T (m). For implementation
of the dynamic C-index, we rely on the concordance() function in survival package on
the dataset post time splitting as described in Section 4.2.3.

In each of the following scenarios, we randomly selected 50% of the individuals for
training and the remaining 50% for testing. All experiments were repeated for 100 times.

4.3.1 Scenario 1: Proportional & Linear

We begin with a scenario where the underlying hazard model for data generation satisfies
the proportional hazards and linear assumptions. We simulated five covariates where x1 ∼
Bern(0.5), x2, x3 were assumed to follow Unif[−1, 1], and x4, x5 were assumed to follow
Unif[−2, 1]. The corresponding coefficients of xi were randomly sampled from a uniform
distribution over [−1, 1]. The details of all other parameters used for simulations in this
scenario can be found in Table C.1 of Appendix C.

For all repetitions, we consistently used 10 features extracted from a two-hidden-layer
(with 20 and 10 neurons in the first and second hidden layer, respectively) feed-forward
neural network that were subsequently used in the Cox regression. Table C.4 of Appendix C
describes the hyperparameters involved in the neural network as well as the details for fitting
nonproportional hazard models.

Table 4.2 displays the means and standard deviations (SDs) of the C-indices on the
testing sets averaged over 100 replicates for difference methods. We can see that under this
subsection, the classic Cox retains the best discriminatory performance in all the simulations.
This is as expected as the classic Cox is the true model for data generation. Meanwhile, we
observe that the discriminatory performances using the proposed NN-Cox and NN-Cox(NP)
are both competitive to that of the classic Cox model, especially when the dataset size
increases to 5000. Under this simulation study, we see that using DR transformation gives
the highest C-index. However, the difference in C-index brought by the three transformation

78

Table 4.2: Means and standard deviations (in parentheses) of C-indices over the 100 replicates
for different methods, including classic cox proportional hazard model (Classic Cox (Linear)),
and our proposed simplified neural networks using reweighing (RW), mean imputation (MI)
or deviance residual (DR) in Step 1, a feed-forward neural network (NN) in Step 2, and either
classic Cox regression (Cox) or Cox regression with time-dependent coefficient (Cox(NP)) in
Step 3, on simulated data sets with different sample size (n) and censoring rate (CR) and
satisfying the proportional assumption of Cox model.

n = 500 n=5000

CR≈0.3 CR≈0.6 CR≈0.3 CR≈0.6

Classic Cox (Linear) 0.733 (0.019) 0.746 (0.021) 0.757 (0.005) 0.774 (0.005)
RW-NN-Cox 0.728 (0.018) 0.740 (0.022) 0.756 (0.005) 0.773 (0.005)
MI-NN-Cox 0.729 (0.018) 0.740 (0.023) 0.756 (0.005) 0.774 (0.005)
DR-NN-Cox 0.729 (0.019) 0.742 (0.022) 0.756 (0.005) 0.774 (0.005)

RW-NN-Cox(NP) 0.728 (0.019) 0.736 (0.023) 0.756 (0.005) 0.773 (0.005)
MI-NN-Cox(NP) 0.728 (0.018) 0.736 (0.023) 0.756 (0.005) 0.774 (0.005)
DR-NN-Cox(NP) 0.728 (0.019) 0.738 (0.022) 0.756 (0.005) 0.774 (0.005)

methods are minimal, indicating that all three approaches can efficiently capture the survival
information.

4.3.2 Scenario 2: Proportional & Nonlinear

Next, we investigate the finite sample performance of a more realistic scenario where the data
sets were simulated free of the linearity assumption. The simulation details are described in
Section C.2.2 of Appendix C.

Table 4.3 summarizes the results under all 4 settings in this scenario. As expected, we
see that the classic Cox generates the lowest C-index due to the violation of the linearity
assumption. It is not surprising to see that our proposed method is significantly superior
to the classic Cox under all settings, because the neural network in the second step of the
pipeline does not rely on the linearity assumption. The DR transformation method continues
to show its advantages by giving the highest C-index when the data size increases to 5000
while the MI transformation seems to benefit the most when the data size is relatively small.

4.3.3 Scenario 3: Nonproportional & Nonlinear

Lastly, we are interested in investigating how well the proposed method performs when both
the proportional hazards and linearity assumptions are violated. We provide the simulation
details for this scenario in Section C.2.3 of Appendix C.

We illustrate the results in Table 4.4. As expected, we see that the classic Cox generates
the lowest C-index due to the violation of proportional hazards and linearity assumptions.
We can see that the NN-Cox(NP) retains superior discriminatory performance in comparsion

79

Table 4.3: Means and standard deviations (in parentheses) of C-indices over the 100 replicates
for different methods, including classic cox proportional hazard model (Classic Cox (Linear)),
and our proposed simplified neural networks using reweighing (RW), mean imputation (MI)
or deviance residual (DR) in Step 1, a feed-forward neural network (NN) in Step 2, and either
classic Cox regression (Cox) or Cox regression with time-dependent coefficient (Cox(NP))
in Step 3, on simulated data sets with different sample size (n) and censoring rate (CR),
satisfying the proportional but violating the linear assumption of Cox model.

n = 500 n = 5000

CR≈0.3 CR≈0.6 CR≈0.3 CR≈0.6

Classic Cox (Linear) 0.692 (0.018) 0.727 (0.023) 0.719 (0.005) 0.767 (0.006)
RW-NN-Cox 0.734 (0.028) 0.750 (0.033) 0.772 (0.014) 0.819 (0.014)
MI-NN-Cox 0.739 (0.030) 0.773 (0.037) 0.761 (0.022) 0.809 (0.018)
DR-NN-Cox 0.720 (0.029) 0.761 (0.038) 0.785 (0.010) 0.826 (0.012)

RW-NN-Cox(NP) 0.735 (0.029) 0.749 (0.032) 0.772 (0.014) 0.819 (0.014)
MI-NN-Cox(NP) 0.739 (0.031) 0.772 (0.038) 0.763 (0.021) 0.809 (0.017)
DR-NN-Cox(NP) 0.721 (0.029) 0.760 (0.038) 0.785 (0.010) 0.827 (0.012)

to the other approaches. Similarly to Scenario 2, we observe that the RE and MI lead to
slightly better results when the sample size is small (500), while the DR transformation
demonstrates more advantages when the size of the data increases to 5000. Additionally,
our pipeline is quiet robust and was not effected by a larger censoring rate as demonstrated
under all simulation scenarios.

4.3.4 Computation Speed with Different Loss Functions

Comparisons of computational costs among the aforementioned loss functions in Section 4.2.2
on training sets with different sample sizes using mini-batch SGD are demonstrated in this
subsection. Because the training procedure of DeepSurv requires the input of the entire
training set, we compute its corresponding loss function using the full training data instead of
reduced training subjects in batches. We perform the comparison on the same programming
platform Python (Van Rossum and Drake, 2009) and apply the mean squared loss function
directly accessible in PyTorch (Paszke et al., 2019) for the proposed simplified survival
neural network and the loss functions in default settings provided by the Python library
pycox (Kvamme et al., 2019; Antolini et al., 2005; Katzman et al., 2018; Lee et al., 2018;
Fotso, 2018; Graf et al., 1999) for the remaining methods. Specifically, we set DeepHit to
the single-event mode and let 10 be the size of the equidistant discretization grid of the
continuous event times for its output layer.

Table 4.5 illustrates the result of the comparison among four loss functions on their
computational costs for running 10000 replicates of data sets with different sample sizes
and around 30% of censoring subjects. It is not surprising to observe that our simplest loss

80

Table 4.4: Means and standard deviations (in parentheses) of C-indices over the 100 replicates
for different methods, including classic cox proportional hazard model (Classic Cox (Linear)),
and our proposed simplified neural networks using reweighing (RW), mean imputation (MI)
or deviance residual (DR) in Step 1, a feed-forward neural network (NN) in Step 2, and either
classic Cox regression (Cox) or Cox regression with time-dependent coefficient (Cox(NP)) in
Step 3, on simulated data sets with different sample size (n) and censoring rate (CR) and
violating the proportional and linear assumptions of Cox model.

n = 500 n=5000

CR≈0.3 CR≈0.6 CR≈0.3 CR≈0.6

Classic Cox (Linear) 0.624 (0.024) 0.683 (0.031) 0.658 (0.009) 0.659 (0.013)
RW-NN-Cox 0.686 (0.042) 0.734 (0.043) 0.702 (0.031) 0.719 (0.042)
MI-NN-Cox 0.692 (0.040) 0.745 (0.045) 0.729 (0.037) 0.752 (0.044)
DR-NN-Cox 0.666 (0.042) 0.728 (0.040) 0.731 (0.037) 0.766 (0.042)

RW-NN-Cox(NP) 0.703 (0.037) 0.746 (0.039) 0.725 (0.028) 0.7467 (0.035)
MI-NN-Cox(NP) 0.709 (0.037) 0.754 (0.042) 0.750 (0.031) 0.776 (0.036)
DR-NN-Cox(NP) 0.685 (0.038) 0.743 (0.035) 0.746 (0.032) 0.789 (0.035)

function LNN(η) outperforms the others in terms of computational efficiency for all scenarios.
Specifically, the execution time of our loss function experiences only a slight increase as the
data size grows, whereas the computational costs of the other losses rise dramatically with
the size of the data. On the other hand, in an individual mini-batch step, with a decrease
in the batch size, the time for running a single batch declines but the corresponding batch
number climbs, generally resulting in a growing cost in the evaluation of the loss function
in one full epoch. However, in practice, mini-batch SGD tends to progress much faster in
terms of convergence to SGD (in other words, mini-SGD usually need less number of epochs
to reach a stable solution), especially when the network is initialized far from the point of
convergence (Bottou, 2010; Bertsekas, 2015).

4.4 Real Applications

We further compare our proposed method with existing methods in three real world data sets.
The data sets include the Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC), the Rotterdam tumor bank and German Breast Cancer Study Group (Rot. &
GBSG) and the Assay of Serum Free Light Chain (FLCHAIN). These data sets are previously
processed and publicly available in the Python module pycox. Among the existing survival
neural networks, we considered two nonlinear models (DeepSurv and Cox-MLP (Kvamme
et al., 2019)), together with two models that can handle nonproportionality (Cox-Time
(Kvamme et al., 2019) and DeepHit). All methods are compared with the classic Cox
proportional hazards model to achieve a benchmark.

81

Table 4.5: Computational times (in seconds) of the loss function of DeepSurv, the loss
function of Cox-MLP/Cox-Time with one control case, the loss function of DeepHit with
single event of interest, and the loss function of the neural network of the proposed method
for running 10,000 replicates of data sets with training size ntrain and batch size sbatch.

ntrain sbatch LDeepSurv(η) LCox-MLP(η)/LCox-Time(η) LDeepHit(η) LNN(η)

1,000
10 - 33.65 568.81 30.26
100 - 3.63 162.64 3.08
1,000 3.12 0.75 >1000 0.42

10,000
100 - 41.13 >1000 32.31
1,000 - 6.70 >1000 3.83
10,000 20.03 4.07 >1000 1.04

100,000
1,000 - 96.13 >1000 33.85
10,000 - 40.54 >1000 9.43
100,000 200.69 17.08 >1000 3.80

Note: DeepSurv necessitates the usage of the complete training set during the training
stage and therefore mini-batch Stochastic Gradient Descent is not applicable to it.

For the proposed framework, all three transformations are used in this analysis. In the
feature-extraction step involving neural networks, we apply a densely feed-forward neural
network with two hidden layers and a nonlinear activation function. The network is trained
using the Adam optimizer with the default learning rate and weight decay setting. No
batch normalization and early stopping are used. Table C.6 of Appendix C catalogs the
hyperparameters of the neural networks along with the time splitting interval designed for
the nonproportional hazard model.

All reported C-indices in this section are averaged over a 5-fold cross-validation. It is
clearly shown in Table 4.6 that our proposed approach consistently outperforms the Classic
Cox in discrimination under various settings, particularly when the data set fails to satisfy
the assumptions of Cox hazards model. From Table 4.7, we can see that our proposed NN-Cox
retains similar discriminatory performance with those of nonlinear approaches, including
DeepSurv and Cox-MLP. Meanwhile, Tabel 4.8 illustrates that our proposed NN-Cox(NP)
also yields similar prediction performance to those of the competing non-proportional models
Cox-Time and DeepHit. Thus, our proposed method is competitive to many existing survival
neural networks with more convenience in computation and less complexity in interpretation.
In addition, we observe that the NN-Cox(NP) generally oversteps NN-Cox, which agrees
with the conclusions made by Kvamme et al. (Kvamme et al., 2019). Additionally, we see
minimal differences among the three transformation methods with the DR transformation
having a slightly better predictive performance.

82

Table 4.6: C-indices, averaged over the five cross-validation folds, for Classic Cox and our
proposed simplified neural networks using RW, MI or RD in Step 1, a feed-forward neural
network (NN) in Step 2, and either Cox or Cox(NP) in Step 3 on three common survival
datasets.

Method METABRIC Rot. & GBSG FLCHAIN

Classic Cox 0.628 0.666 0.790

RW-NN-Cox 0.637 0.669 0.788
MI-NN-Cox 0.635 0.669 0.791
DR-NN-Cox 0.632 0.673 0.792
RW-NN-Cox(NP) 0.661 0.673 0.789
MI-NN-Cox(NP) 0.659 0.669 0.791
DR-NN-Cox(NP) 0.660 0.676 0.792

Table 4.7: C-indices, averaged over the five cross-validation folds, for two existing nonlinear
models DeepSurv and Cox-MLP, as well as our proposed simplified neural networks for
nonlinear scenarios with RW, MI or RD in Step 1, a feed-forward neural network (NN) in
Step 2, and Cox in Step 3 on three common survival datasets.

Method METABRIC Rot. & GBSG FLCHAIN

DeepSurv 0.636 0.674 0.790
Cox-MLP 0.643 0.669 0.793

RW-NN-Cox 0.637 0.669 0.788
MI-NN-Cox 0.635 0.669 0.791
DR-NN-Cox 0.632 0.673 0.792

Table 4.8: C-indices, averaged over the five cross-validation folds, for two existing nonlinear
and nonproportional methods, including Cox-Time and DeepHit, as well as our proposed
simplified neural networks for nonproportional scenarios with RW, MI or RD in Step 1,
a feed-forward neural network (NN) in Step 2, and Cox(NP) in Step 3 on three common
survival datasets.

Method METABRIC Rot. & GBSG FLCHAIN

Cox-Time 0.662 0.677 0.790
DeepHit 0.675 0.670 0.792

RW-NN-Cox(NP) 0.661 0.673 0.789
MI-NN-Cox(NP) 0.659 0.669 0.791
DR-NN-Cox(NP) 0.660 0.676 0.792

83

4.5 Conclusion

In this chapter, we introduced a simplified survival neural network based on transformed
time-to-event outcomes that does not necessitate customization of loss function and training
procedure. The proposed transformations enable the utilization of any existing neural
networks without modifying loss functions to accommodate right censoring, eliminating
inconsistency and bias in estimation. Through numerical experiments, we observed the
computational efficiency of the proposed method in comparison to competing methods. We
demonstrated that the proposed method is robust against violation of the linearity and
proportional hazards assumptions, and is competitive in model discrimination to several
existing survival neural networks. Comprised of three easily implementable steps, the
proposed approach is computationally efficient and flexible. By transforming the time-to-
event outcomes into quantitative responses, our proposed framework enables the conversion
of survival neural networks into an ordinary regression framework. This, in turn, facilitates
the utilization of various neural network models and further allows the inclusion of high-
dimensional data, e.g., imaging data, for time-to-event prediction.

84

Chapter 5

Conclusion and Future Work

This thesis is dedicated to the integration of machine learning techniques into statistical
analysis, developing novel methodologies that utilize neural networks to address statistical
challenges associated with functional data and survival data.

Chapter 2 introduces new approaches to tackle regression problem with scalar covariates
and a functional response. Specifically, we designed and implemented a densely feed-forward
neural network to output either basis coefficients or FPC scores, the two common represen-
tations of functions that are further used to construct the predicted functional response.
To enable training the neural network directly with the functional response, we proposed
to modify the objective function through a multiplication operation to bypass the initial
estimation of the scalar representations. Such modifications are readily applicable to the
output layer of various types of networks to produce a functional response, promoting the
future research in utilization of various machine learning techniques in a functional regression
framework. The developed models can accommodate both regularly and irregularly spaced
functional data, and additionally, a roughness penalty can be incorporated into the objective
function to enforce smoothness regularization of the predicted curves. To the best of our
knowledge, this is the first endeavor to model function-on-scalar regression using artificial
neural networks. Numerical results have demonstrated that our methods outperform the
conventional function-on-scalar regression model in capturing relation and predicting curve,
particularly under nonlinear settings. We are interested in establishing a comprehensive and
versatile framework for addressing nonlinear regression problems across various types of
functional data. This framework will include considerations for locally sparse regularization,
enhancing its adaptability to different data scenarios.

We presented a novel neural network-based solution, named functional autoencoder
(FAE), aiming at representation learning of functional data in Chapter 3. The proposed FAE
features a distinctive architecture comprising customized input and output layers. These
layers are designed to compress discrete functional observations into either linear or nonlinear
representation while concurrently generating smooth reconstruction of the functional data.
Through simulation studies and a real application, we found that the proposed FAE compares

85

favorably with FPCA and the conventional autoencoder in different aspects. It achieves
satisfactory performance in prediction and classification when handling both regularly and
irregularly spaced functional data. Employing the designed architecture to address functional
regression issues is valuable, allowing for the exploration of nonlinear associations between a
functional covariate and a functional response.

The last component of this thesis discusses time-to-event prediction with neural networks
in a simplified manner. The proposed method reduces the complexity of survival neural
networks to an ordinary neural network by first transforming the time-to-event outcomes
under right censoring into a quantitative response vector that serves as the output of a
neural network for feature extraction. The extracted features contain the survival information
and act as the substitutes for the original covariates in a following hazard model fitting
process to achieve individualized survival prediction. Different from most survival neural
networks, our strategy eliminates the requirement of a customized loss function or training
procedure for time-to-event outcome when constructing a survival neural network. Simulation
studies show that our simplified survival neural network outperforms Cox regression in
addressing concerns with nonlinearity and nonproportionality. Furthermore, compared with
several existing survival neural networks in three real data sets, the developed approach
achieves competitive performance in model discrimination with significant advantages in
computational efficiency and model interpretation. The flexibility of employing various
types of neural networks for feature extraction in the proposed pipeline provides a potential
solution to predicting survival duration of individuals using not only scalar biomarkers but
imaging diagnosis.

86

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore,
S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K.,
Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,
M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning
on heterogeneous systems. Software available from tensorflow.org.

Allaire, J. and Chollet, F. (2020). keras: R Interface to ‘Keras’. R package version 2.3.0.0.

Allaire, J. and Tang, Y. (2020). tensorflow: R Interface to ‘TensorFlow’. R package version
2.2.0.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. (1999). LAPACK
Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition.

Antolini, L., Boracchi, P., and Biganzoli, E. (2005). A time-dependent discrimination index
for survival data. Statistics in Medicine, 24(24):3927–3944.

Baldi, P. and Hornik, K. (1989). Neural networks and principal component analysis: Learning
from examples without local minima. Neural Networks, 2(1):53–58.

Barber, R. F., Reimherr, M., and Schill, T. (2017). The function-on-scalar lasso with
applications to longitudinal gwas. Electronic Journal of Statistics, 11(1):1351–1389.

Beaulac, C., Rosenthal, J. S., and Hodgson, D. (2018). A deep latent-variable model
application to select treatment intensity in survival analysis. Proceedings of the Machine
Learning for Health (ML4H) Workshop at NeurIPS 2018.

Beaulac, C., Wu, S., Gibson, E., Miranda, M. F., Cao, J., Rocha, L., Beg, M. F., and Nathoo,
F. S. (2023). Neuroimaging feature extraction using a neural network classifier for imaging
genetics. BMC Bioinformatics, 24(1):271.

Bengio, Y., Courville, A. C., and Vincent, P. (2013). Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1798–1828.

Bertsekas, D. P. (2015). Incremental gradient, subgradient, and proximal methods for convex
optimization: A survey. arXiv preprint arXiv:1507.01030.

87

Borucka, J. (2014). Extensions of Cox model for non-proportional hazards purpose. Ekonome-
tria, 3(45):85–101.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186.

Bourlard, H. and Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular
value decomposition. Biological Cybernetics, 59(4):291–294.

Cai, X., Xue, L., and Cao, J. (2021a). Robust penalized m-estimation for function-on-function
linear regression. Stat, 10(1):e390.

Cai, X., Xue, L., and Cao, J. (2021b). Variable selection for multiple function-on-function
linear regressionl. Statistica Sinica, 32(4):1–43.

Cai, X., Xue, L., and Cao, J. (2022). Robust estimation and variable selection for function-
on-scalar regression. Canadian Journal of Statistics, 50(1):162–179.

Carroll, C., Gajardo, A., Chen, Y., Dai, X., Fan, J., Hadjipantelis, P. Z., Han, K., Ji, H.,
Mueller, H.-G., and Wang, J.-L. (2020). fdapace: Functional Data Analysis and Empirical
Dynamics. R package version 0.5.5.

Chen, D. and Müller, H.-G. (2012). Nonlinear Manifold Representations for Functional Data.
The Annals of Statistics, 40(1):1–29.

Chen, K. and Lei, J. (2015). Localized functional principal component analysis. Journal of
the American Statistical Association, 110(511):1266–1275.

Chen, L.-H. and Jiang, C.-R. (2016). Multi-dimensional functional principal component
analysis. Statistics and Computing, 27(5):1181–1192.

Chiou, J.-M. and Li, P.-L. (2007). Functional clustering and identifying substructures of
longitudinal data. Journal of the Royal Statistical Society Series B: Statistical Methodology,
69(4):679–699.

Chiou, J.-M., Müller, H.-G., and Wang, J.-L. (2004). Functional response models. Statistica
Sinica, pages 675–693.

Chiou, J.-M., Müller, H.-G., and Wang, J.-L. (2003). Functional quasi-likelihood regression
models with smooth random effects. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 65(2):405–423.

Cook, R. J. and Lawless, J. F. (2018). Multistate Models for the Analysis of Life History
Data. CRC Press.

Coppersmith, D. and Winograd, S. (1987). Matrix multiplication via arithmetic progressions.
In Proceedings of the nineteenth annual ACM symposium on Theory of Computing, pages
1–6.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society.
Series B (Methodological), 34(2):187–220.

88

Datta, S. (2005). Estimating the mean life time using right censored data. Statistical
Methodology, 2(1):65–69.

Dauxois, J., Pousse, A., and Romain, Y. (1982). Asymptotic theory for the principal
component analysis of a vector random function: Some applications to statistical inference.
Journal of Multivariate Analysis, 12(1):136–154.

Davison, A. C. and Gigli, A. (1989). Deviance residuals and normal scores plots. Biometrika,
76(2):211–221.

de Boor, C. (1978). A Practical Guide to Splines. Springer.

Dierckx, P. (1984). Computation of least-squares spline approximations to data over
incomplete grids. Computers & Mathematics with Applications, 10(3):283–289.

Efron, B. (1967). The two sample problem with censored data. In Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability, volume 4, pages 831–853.

Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties.
Statistical Science, 11(2):89–121.

Fabian Scheipl, A.-M. S. and Greven, S. (2015). Functional additive mixed models. Journal
of Computational and Graphical Statistics, 24(2):477–501.

Fabian Scheipl, J. G. and Greven, S. (2016). Generalized functional additive mixed models.
Electronic Journal of Statistics, 10(1):1455–1492.

Faraggi, D. and Simon, R. (1995). A neural network model for survival data. Statistics in
Medicine, 14(1):73–82.

Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and
Practice. Springer.

Fotso, S. (2018). Deep neural networks for survival analysis based on a multi-task framework.
ArXiv Preprint arXiv:1801.05512v1.

Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to forget: Continual
prediction with lstm. Neural Computation, 12:2451–2471.

Graf, E., Schmoor, C., Sauerbrei, W., and Schumacher, M. (1999). Assessment and com-
parison of prognostic classification schemes for survival data. Statistics in Medicine,
18(17–18):2529–2545.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J. (2017).
Lstm: A search space odyssey. IEEE Transactions on Neural Networks and Learning
Systems, 28(10):2222–2232.

Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal compo-
nents analysis. Journal of the Royal Statistical Society Series B: Statistical Methodology,
68(1):109–126.

Harrell, Frank E., J., Califf, R. M., Pryor, D. B., Lee, K. L., and Rosati, R. A. (1982).
Evaluating the yield of medical tests. JAMA, 247(18):2543–2546.

89

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, volume 2. Springer.

Hayes, J. G. and Halliday, J. (1974). The least-squares fitting of cubic spline surfaces to
general data sets. IMA Journal of Applied Mathematics, 14(1):89–103.

Hertz-Picciotto, I. and Rockhill, B. (1997). Validity and efficiency of approximation methods
for tied survival times in Cox regression. Biometrics, 53(3):1151–1156.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8):1735–1780.

Hsieh, T.-Y., Sun, Y., Wang, S., and Honavar, V. (2021). Functional autoencoders for
functional data representation learning. In Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM), pages 666–674.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and Lauer, M. S. (2008). Random survival
forests. The Annals of Applied Statistics, 2(3):841–860.

Ivanescu, A. (2013). A note on bivariate smoothing for two-dimensional functional data.
International Journal of Statistics and Probability, 2(2).

Jha, D., Riegler, M. A., Johansen, D., Halvorsen, P., and Johansen, H. D. (2020). Doubleu-
net: A deep convolutional neural network for medical image segmentation. In 2020 IEEE
33rd International symposium on computer-based medical systems (CBMS), pages 558–564.

Jiang, S., Xie, Y., and Colditz, G. A. (2021). Functional ensemble survival tree: Dynamic pre-
diction of alzheimer’s disease progression accommodating multiple time-varying covariates.
Journal of the Royal Statistical Society Series C: Applied Statistics, 70(1):66–79.

Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., and Kluger, Y. (2018).
Deepsurv: personalized treatment recommender system using a cox proportional hazards
deep neural network. BMC Medical Research Methodology, 18(1):1–12.

Keogh, R. H. and Morris, T. P. (2018). Multiple imputation in Cox regression when there
are time-varying effects of covariates. Statistics in Medicine, 37(25):3661–3678.

Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored
and Truncated Data, volume 1230. Springer.

Koul, H., Susarla, V., and Van Ryzin, J. (1981). Regression analysis with randomly right-
censored data. The Annals of Statistics, 9(6):1276–1288.

Kvamme, H., Borgan, Ø., and Scheel, I. (2019). Time-to-event prediction with neural
networks and Cox regression. arXiv preprint arXiv:1907.00825.

Lecca, P. (2021). Machine learning for causal inference in biological networks: perspectives
of this challenge. Frontiers in Bioinformatics, page 45.

90

Lee, C., Zame, W., Yoon, J., and van der Schaar, M. (2018). Deephit: A deep learning
approach to survival analysis with competing risks. Proceedings of the AAAI Conference
on Artificial Intelligence, 32(1).

Lin, M., Chen, Q., and Yan, S. (2014). Network in network. arXiv preprint arXiv:1312.4400.

Lin, Z., Cao, J., Wang, L., and Wang, H. (2017). Locally sparse estimator for functional linear
regression models. Journal of Computational and Graphical Statistics, 26(2):306–318.

Meiler, J., Müller, M., Zeidler, A., and Schmäschke, F. (2001). Generation and evaluation
of dimension-reduced amino acid parameter representations by artificial neural networks.
Molecular Modeling Annual, 7(9):360–369.

Morris, J. S. (2015). Functional regression. Annual Review of Statistics and Its Application,
2(1):321–359.

Müller, H.-g. (2005). Functional modelling and classification of longitudinal data. Scandina-
vian Journal of Statistics, 32(2):223–240.

Müller, H.-G. and Stadtmüller, U. (2005). Generalized Functional Linear Models. The
Annals of Statistics, 33(2):774–805.

Müller, H.-G. and Yao, F. (2008). Functional additive models. Journal of the American
Statistical Association, 103(484):1534–1544.

Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of
Mathematical Biology, 15:267–273.

Oja, E. (1992). Principal components, minor components, and linear neural networks. Neural
Networks, 5(6):927–935.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pages 8024–8035.

Peng, J. and Müller, H.-G. (2008). Distance-based clustering of sparsely observed stochastic
processes, with applications to online auctions. The Annals of Applied Statistics, 2(3):1056–
1077.

Peng, J. and Paul, D. (2009). A geometric approach to maximum likelihood estimation of the
functional principal components from sparse longitudinal data. Journal of Computational
and Graphical Statistics, 18(4):995–1015.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Ramos-Carreño, C., Torrecilla, J. L., Hong, Y., and Suárez, A. (2022). scikit-fda: Computa-
tional tools for machine learning with functional data. In 2022 IEEE 34th International
Conference on Tools with Artificial Intelligence (ICTAI), pages 213–218.

91

Ramsay, J. O., Graves, S., and Hooker, G. (2020). fda: Functional Data Analysis. R package
version 5.1.5.1.

Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis (Second Edition).
Springer.

Rao, A. R., Wang, Q., Wang, H., Khorasgani, H., and Gupta, C. (2020). Spatio-temporal
functional neural networks. arXiv preprint arXiv:2009.05665.

Rossi, F. and Conan-Guez, B. (2005). Functional multi-layer perceptron: a non-linear tool
for functional data analysis. Neural Networks, 18(1):45–60.

Rossi, F., Conan-Guez, B., and Fleuret, F. (2002). Functional data analysis with multi
layer perceptrons. In Proceedings of the 2002 International Joint Conference on Neural
Networks. IJCNN’02 (Cat. No.02CH37290), volume 3, pages 2843–2848.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088):533–536.

Sang, P., Wang, L., and Cao, J. (2017). Parametric functional principal component analysis.
Biometrics, 73(3):802–810.

Schemper, M. (1992). Cox analysis of survival data with non-proportional hazard functions.
Journal of the Royal Statistical Society. Series D (The Statistician), 41(4):455–465.

Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model.
Biometrika, 69(1):239–241.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y.
(2021). Toward causal representation learning. Proceedings of the IEEE, 109(5):612–634.

Shang, H. and Hyndman, R. (2019). rainbow: Bagplots, Boxplots and Rainbow Plots for
Functional Data. R package version 3.6.

Shen, H. and Cook, R. J. (2013). Regression with incomplete covariates and left-truncated
time-to-event data. Statistics in Medicine, 32(6):1004–1015.

Song, J. and Li, B. (2021). Nonlinear and additive principal component analysis for functional
data. Journal of Multivariate Analysis, 181:104675.

Strassen, V. et al. (1969). Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356.

Suchit Mehrotra, A. M. (2022). Simultaneous variable selection, clustering, and smoothing
in function-on-scalar regression. Canadian Journal of Statistics, 50(1):180–199.

Therneau, T. (2023). A Package for Survival Analysis in R. R package version 3.5-3.

Therneau, T., Crowson, C., and Atkinson, E. (2017). Using time dependent covariates and
time dependent coefficients in the Cox model. Survival Vignettes, 2(3):1–25.

Thind, B., Multani, K., and Cao, J. (2020). Neural networks as functional classifiers. arXiv
preprint arXiv:2010.04305.

92

Thind, B., Multani, K., and Cao, J. (2023). Deep learning with functional inputs. Journal
of Computational and Graphical Statistics, 32:171–180.

Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA.

Wang, H. and Cao, J. (2023a). Functional nonlinear learning. Journal of Computational
and Graphical Statistics, 0:1–32.

Wang, H. and Cao, J. (2023b). Nonlinear prediction of functional time series. Environmetrics,
34(5):e2792.

Wang, J.-L., Chiou, J.-M., and Müller, H.-G. (2016a). Functional data analysis. Annual
Review of Statistics and Its Application, 3(1):257–295.

Wang, L., Chen, G., and Li, H. (2007). Group scad regression analysis for microarray time
course gene expression data. Bioinformatics, 23(12):1486–1494.

Wang, Q., Wang, H., Gupta, C., Rao, A., and Khorasgani, H. (2020). A non-linear function-
on-function model for regression with time series data. In 2020 IEEE International
Conference on Big Data (Big Data), pages 232–239.

Wang, Y., Yao, H., and Zhao, S. (2016b). Auto-encoder based dimensionality reduction.
Neurocomputing, 184:232–242.

Wu, S., Beaulac, C., and Cao, J. (2023). Neural networks for scalar input and functional
output. Statistics and Computing, 33(5):118.

Wu, S., Beaulac, C., and Cao, J. (2024). Functional autoencoder for smoothing and
representation learning. arXiv preprint arXiv:2401.09499.

Yang, X., Abraham, L., Kim, S., Smirnov, P., Ruan, F., Haibe-Kains, B., and Tibshirani,
R. (2022). Fastcph: Efficient survival analysis for neural networks. arXiv preprint
arXiv:2208.09793.

Yao, F., Fu, Y., and Lee, T. C. M. (2010). Functional mixture regression. Biostatistics,
12(2):341–353.

Yao, F., Müller, H.-G., and Wang, J.-L. (2005a). Functional data analysis for sparse
longitudinal data. Journal of the American statistical association, 100(470):577–590.

Yao, F., Müller, H.-G., and Wang, J.-L. (2005b). Functional linear regression analysis for
longitudinal data. The Annals of Statistics, 33(6):2873–2903.

Yao, J., Mueller, J., and Wang, J. (2021). Deep learning for functional data analysis with
adaptive basis layers. In Proceedings of the 38th International Conference on Machine
Learning, volume 139, pages 11898–11908.

Zhang, X. and Wang, J.-L. (2014). Varying-coefficient additive models for functional data.
Biometrika, 102(1):15–32.

Zhong, R., Liu, S., Li, H., and Zhang, J. (2022). Functional principal component analysis
estimator for non-gaussian data. Journal of Statistical Computation and Simulation,
92(13):2788–2801.

93

Zhou, L. and Pan, H. (2014). Principal component analysis of two-dimensional functional
data. Journal of Computational and Graphical Statistics, 23(3):779–801.

Zhu, X., Yao, J., and Huang, J. (2016). Deep convolutional neural network for survival analysis
with pathological images. In 2016 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pages 544–547.

94

Appendix A

Appendix to Chapter 2

A.1 List of All Notations

A full list of notations used throughout Chapter 2 is provided in Table A.1.

Table A.1: A summary of notations used in the manuscript.

Notation Description
N Number of subjects

ntrain Number of subjects in the training set
nw Number of weights in the neural network
P Number of scalar predictors
t The time space where Y can take value
T The domain interval of t

tij , tiq The j(q)-th observed time point for the i-th subject
tj , tq The j(q)-th equally spaced time point in the interval T
T The length of the domain interval T
mi Number of discrete observations of the functional response for the i-th

subject
m The same number of discrete observations of the functional response assumed

for all subjects
mirr Number of time points with at least one observation given all training

subjects for irregularly observed functional data
Q A predefined number of equally spaced time points covering T entirely
Xip The p-th scalar predictor for the i-th subject
Xi The P -dimensional vector of predictors for the i-th subject

Xnew The matrix of a new set of inputs
Xpoly A subset of continuous covariates randomly selected for polynomial trans-

formations in simulation study
X The matrix of P -dimensional predictors for all subjects in a traditional

regression
Y (t) The underlying stochastic process of the functional response

Yi(t), Yi The functional response for the i-th subject

95

Ŷi(t) The predicted functional response for the i-th subject
Ŷ (t) The vector of the predicted functional response for all subjects

Ŷ The matrix of the predicted functional response for all training subjects
evaluated at all m observed time points

Ỹi(t) The centered functional response for the i-th subject
Yi(tij) The discrete observation of the functional response at time tij for the i-th

subject
Ŷi(tij) The predicted functional response evaluated at time tij for the i-th subject
Y The vector of response for all observations in a traditional regression

Zi(tij) The noisy observation of the functional response at time tij for the i-th
subject

Z The N ×m matrix of noisy observations at m time point of the functional
response for all subjects

ϵi(tij) The observation error for the functional response at time tij for the i-th
subject

cik The basis coefficient corresponding to the k-th basis function θk(t) for the
i-th subject

Ci The Kb-dimensional vector of basis coefficients cik’s for the i-th subject
c◦

ik The least square estimator of cik

ĉik The neural network estimator of cik

C The matrix of basis coefficients for all subjects in the training set
Ĉ The matrix of neural network-estimated basis coefficients for all subjects in

the training set
Ĉnew The matrix of neural network-estimated basis coefficients for a new set of

inputs
θk(t) The k-th basis function

θ The vector of Kb basis functions θk(t)’s
Θ The Kb ×m matrix with the k-th row being entries of θk(t) evaluated at all

m observed time
Θirr The Kb ×mirr matrix with the k-th row being entries of θk(t) evaluated at

all mirr time points
µ(t) The mean function of Y (t)
µ̂(t) An estimator of µ(t) with the observed data

K(t, t′) The covariance function of Y (t)
K̂(t, t′) An estimator of K(t, t′) with the observed data
γk The k-th eigenvalue (in decreasing order) by the spectral decomposition of

K(t, t′)
ξik The k-th functional principal component score (FPC score) for the i-th

subject
ξ◦

ik An estimator of ξik with the observed data
ξ The matrix of FPC scores for all subjects in the training set

ξ̂new The matrix of neural network-estimated FPC scores for a new set of inputs
ϕk(t) The k-th functional principal component (FPC); The eigenfunction corre-

sponding to the k-th eigenvalue γk

ϕ The vector of the Kτ leading FPCs
ϕ̂k(t) An estimator of ϕk(t) with the observed data

ϕ̂ The vector of the Kτ estimated FPCs

96

Kb A predefined truncation integer determining the number of basis functions
used

Kτ The truncation integer determining number of the FPCs used
Kp The truncation integer determining the number of basis functions of func-

tional parameters
K Number of random curves used for generating functional response in simu-

lation study
τ The percentage of variance explained that determines Kτ

F (·) The mapping function
gℓ The activation function at the ℓ-th hidden layer of the neural network
wℓp The network weight connecting the p-th neuron in the ℓ-th hidden layer of

the neural network
bp The network bias in the ℓ-th hidden layer of the neural network
η The parameter set containing weights {wℓp}L+1

ℓ=1 and bias {bℓ}L+1
ℓ=1 of all

layers of the neural network
η̂ The optimized parameter set of the neural network
E Number of epochs for training neural networks
ϱ The learning rate for training neural networks
L Number of hidden layers of the neural network

L(η) The objective function calculating the mean squared error (MSE) between
the actual and estimated outputs of the neural network

LC(η) The objective function calculating the MSE between cik and ĉik in NNBB
Lξ(η) The objective function calculating the MSE between ξik and ξ̂ik in NNSS
LY (η) The objective function calculating the MSE between Yi(tij) and Ŷi(tij) in

NNBR and NNSR with regularly-spaced functional data
LYirr(η) The objective function calculating the MSE between Yi(tij) and Ŷi(tij) in

NNBR and NNSR with irregularly spaced functional data
Lpen(η) The penalized objective function

λ A tuning parameter that controls the smoothness of the predicted functional
curve

∆2cik The second-order difference of {cik}Kb
k=1 for the i-th subject; ∆2cik = cik −

2cik−1 + cik−2, k ∈ {3, ...,Kb}
B̂ The vector of the least squares estimators of the coefficients in a traditional

regression
ψk(t) The k-th random curve for generating functional response in simulation

study
ζk(·) The function that maps X to coefficients for generating functional response

in simulation study
ζk(X) The k-th associated coefficient mapped from X for generating functional

response in simulation study
Bk(t), Bl(t) The k(l)-th B-spline basis function

βk,l The l-th randomly generated basis coefficient for ψk(t)
O(·) The big O

97

A.2 Model Configurations in Real Application

Table A.2 summarizes the configurations for models applied in the real application.

Table A.2: Configurations of all models applied (except FAM) in the real application with
ASFR data set.

Model FoS NNBB NNSS NNBR NNBR(P) NNSR

Number of hidden layers (L) - 2 2 2 2 2
Number of neurons per hidden layer - [50, 30] [50, 30] [50, 30] 50, 30] [50, 30]

Activation functions - [Sigmoid, ReLU] [ReLU, ReLU] [Sigmoid, ReLU] [Sigmoid, ReLU] [Sigmoid, ReLU]
Batch size - 8 8 8 8 8

Epochs (E) - 1500 1500 1500 1500 1500
Number of basis functions (Kb) 6 6 - 6 6 -

Type of basis functions B-spline B-spline - B-spline B-spline -
% of variance explained (τ) - - 99% - - 99%

Roughness penalty parameter (λ) - - - - 10−7 -
Type of roughness penalty - - - - 2nd Derivative -

98

Appendix B

Appendix to Chapter 3

B.1 Simulation Studies: Additional Details

B.1.1 Model Configurations

The details of configurations for models utilized in Scenario 1.1, 1.2, 2.1, and 2.2 in the
simulation stuides section are presented in Table B.1, Table B.2, Table B.3, and Table B.4,
separately.

Table B.1: A summary of configurations for FPCA and FAEs trained in Scenario 1.1.

FPCA FAE (linear) FAE (nonlinear)

No. of representations attempted (K) 3, 5, 10 3, 5, 10 3, 5, 10
No. of hidden layer (L) - 1 1
No. of neurons in hidden layers (K(l)) - [K] [20, K, 20]
Activation function (g(·)) - Identity Softplus
Training epochs - 500 1000
Batches size - 256 256
Optimizer - AdamW AdamW
Learning rate - 10−2 10−2

SD for weight initialization (σ) - 1 1
No. of ϕ(I)

m (t) & ϕ
(O)
m (t) (M (I) & M (O)) - 10, 10 10, 10

Type of basis ϕ(I)
m (t) & ϕ

(O)
m (t) - B-spline, B-spline B-spline, B-spline

No. of basis for curve smoothing 10 - -
Type of basis for curve smoothing B-spline - -
Smoothing penalty parameter (λ) - 0 0

99

Table B.2: A summary of configurations for FPCA and FAEs trained in Scenario 1.2.

FPCA FAE (linear) FAE (nonlinear)

No. of representations attempted (K) 3, 5, 10 3, 5, 10 3, 5, 10
No. of hidden layer (L) - 1 3
No. of neurons in hidden layers (K(l)) - [K] [150, K, 150]
Activation function (g(·)) - Identity Sigmoid
Training epochs - 1000 2000
Batches size - 128 128
Optimizer - AdamW AdamW
Learning rate - 10−2 10−2

SD for weight initialization (σ) - 1 1
No. of ϕ(I)

m (t) & ϕ
(O)
m (t) (M (I) & M (O)) - 50, 50 50, 50

Type of basis ϕ(I)
m (t) & ϕ

(O)
m (t) - B-spline, B-spline B-spline, B-spline

No. of basis for curve smoothing 15 - -
Type of basis for curve smoothing B-spline - -
Smoothing penalty parameter (λ) - 0.001 0.001

Table B.3: A summary of configurations for AE and FAE trained in Scenario 2.1.

AE FAE

No. of representations attempted (K) 3, 5, 10 3, 5, 10
No. of hidden layer (L) 3 3
No. of neurons in hidden layers (K(l)) [150, K,150] [150, K, 150]
Activation function (g(·)) Sigmoid Sigmoid
Training epochs 2000 2000
Batches size 128 128
Optimizer AdamW AdamW
Learning rate 10−2 10−2

SD for weight initialization (σ) 1 1
No. of ϕ(I)

m (t) & ϕ
(O)
m (t) (M (I) & M (O)) - 50, 50

Type of basis ϕ(I)
m (t) & ϕ

(O)
m (t) - B-spline, B-spline

Smoothing penalty parameter (λ) - 0.001

100

Table B.4: A summary of configurations for AE and FAE trained in Scenario 2.2.

AE FAE

Size of training set 80% 20% 80% 20%
No. of representations attempted (K) 3, 5, 10 3, 5, 10 3, 5, 10 3, 5, 10
No. of hidden layer (L) 3 3 3 3
No. of neurons in hidden layers (K(l)) [50, K, 50] [50, K, 50] [50, K, 50] [50, K, 50]
Activation function (g(·)) Softplus Softplus Softplus Softplus
Training epochs 2000 5000 2000 5000
Batches size 128 128 128 128
Optimizer AdamW AdamW AdamW AdamW
Learning rate 10−2 10−2 10−2 10−2

SD for weight initialization (σ) 1 1 1 1
No. of ϕ(I)

m (t) & ϕ
(O)
m (t) (M (I) & M (O)) - - 50, 50 50, 50

Type of basis ϕ(I)
m (t) & ϕ

(O)
m (t) - - B-spline, B-spline B-spline, B-spline

Smoothing penalty parameter (λ) - - 0.001 0.001

B.1.2 Statistical Results

This section displays how the mean prediction error (MSEp) and mean classification accuracy
(Pclassification) of the proposed FAE and conventional AE changes with the number of training
epochs for different training sizes and different dimensions of the representation for scenario
2.2 in the simulation studies section. The prediction error is measured by the mean prediction
error squared prediction error (MSEp) averaged across the number of samples and the number
of observed time points in the test set. The classification accuracy, Pclassification, is calculated
as the percentage of test observations that can be labelled correctly by a logistic regression
based on the representations extracted.

250 500 750 1000 1250 1500 1750 2000
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ed

ict
io

n
Er

ro
r

AE
FAE

250 500 750 1000 1250 1500 1750 2000
Epochs

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

AE
FAE

Figure B.1: How the averaged prediction error and classification accuracy of functional
autoencoder (FAE) and classic autoencoder (AE) with the softplus activation function using
3 representations on 10 random test sets change with the number of epochs, given the
functional data are irregularly observed and 80% of data used for training in Scenario 2.2.

101

250 500 750 1000 1250 1500 1750 2000
Epochs

0.00

0.01

0.02

0.03

0.04

0.05
Pr

ed
ict

io
n

Er
ro

r

AE
FAE

250 500 750 1000 1250 1500 1750 2000
Epochs

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

AE
FAE

Figure B.2: How the averaged prediction error and classification accuracy of functional
autoencoder (FAE) and classic autoencoder (AE) with the softplus activation function using
5 representations on 10 random test sets change with the number of epochs, given the
functional data are irregularly observed and 80% of data used for training in Scenario 2.2.

250 500 750 1000 1250 1500 1750 2000
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ed

ict
io

n
Er

ro
r

AE
FAE

250 500 750 1000 1250 1500 1750 2000
Epochs

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

AE
FAE

Figure B.3: How the averaged prediction error and classification accuracy of functional
autoencoder (FAE) and classic autoencoder (AE) with the softplus activation function using
10 representations on 10 random test sets change with the number of epochs, given the
functional data are irregularly observed and 80% of data used for training in Scenario 2.2.

102

0 1000 2000 3000 4000 5000
Epochs

0.0

0.1

0.2

0.3

0.4
Pr

ed
ict

io
n

Er
ro

r

AE
FAE

0 1000 2000 3000 4000 5000
Epochs

40%

50%

60%

70%

80%

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

AE
FAE

Figure B.4: How the averaged prediction error and classification accuracy of functional
autoencoder (FAE) and classic autoencoder (AE) with the softplus activation function using
3 representations on 10 random test sets change with the number of epochs, given the
functional data are irregularly observed and 20% of data used for training in Scenario 2.2.

0 1000 2000 3000 4000 5000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ed

ict
io

n
Er

ro
r

AE
FAE

0 1000 2000 3000 4000 5000
Epochs

50.0%

60.0%

70.0%

80.0%

90.0%

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

AE
FAE

Figure B.5: How the averaged prediction error and classification accuracy of functional
autoencoder (FAE) and classic autoencoder (AE) with the softplus activation function using
5 representations on 10 random test sets change with the number of epochs, given the
functional data are irregularly observed and 20% of data used for training in Scenario 2.2.

103

0 1000 2000 3000 4000 5000
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Pr

ed
ict

io
n

Er
ro

r

AE
FAE

0 1000 2000 3000 4000 5000
Epochs

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

AE
FAE

Figure B.6: How the averaged prediction error and classification accuracy of functional
autoencoder (FAE) and classic autoencoder (AE) with the softplus activation function using
10 representations on 10 random test sets change with the number of epochs, given the
functional data are irregularly observed and 20% of data used for training in Scenario 2.2.

B.2 Real Application: Additional Details

B.2.1 Hyperparameter Tuning

Table B.5 catalogs the candidate values of interest used in hyperparameter tuning in the
real application.

B.2.2 Model Configurations

The details of configurations for models applied in the real application are provided in
Table B.6.

Table B.6: A summary of the identified configurations for FPCA, AEs and FAEs trained
with the El Niño data set.

FPCA AE (Linear) AE (Nonlinear) FAE (Linear) FAE (Nonlinear)

No. of representations attempted (K) 3, 5, 8 3, 5, 8 3, 5, 8 3, 5, 8 3, 5, 8
No. of hidden layer (L) - 1 3 1 3
No. of neurons in hidden layers (K(l)) - [K] [10, K, 10] [K] [100, K, 100]
Activation function (g(·)) - Identity Sigmoid Identity Sigmoid
Training epochs - 5000 5000 5000 5000
Batches size - 28 28 28 28
Optimizer - Adam Adam Adam Adam
Learning rate - 10−2 10−2 10−3 10−3

SD for weight initialization (σ) - 0.5 0.5 0.5 0.5
No. of ϕ(I)

m (t) & ϕ
(O)
m (t) (M (I) & M (O)) - - - 20, 20 20, 20

Type of basis ϕ(I)
m (t) & ϕ

(O)
m (t) - - - B-spline, B-spline B-spline, B-spline

No. of basis for curve smoothing 10 - -
Type of basis for curve smoothing B-spline - -
Smoothing penalty parameter (λ) - - - 0.001 0.001

104

Ta
bl

e
B

.5
:A

lis
t

of
ca

nd
id

at
e

va
lu

es
of

in
te

re
st

us
ed

in
hy

pe
rp

ar
am

et
er

tu
ni

ng
fo

r
al

lm
od

el
s

in
co

m
pa

ris
on

.

F
P

C
A

A
E

(L
in

ea
r)

A
E

(N
on

lin
ea

r)
FA

E
(L

in
ea

r)
FA

E
(N

on
lin

ea
r)

N
o.

of
ne

ur
on

s
in

hi
dd

en
la

ye
rs

(K
(l

))
-

-
[1

0,
K

,1
0]

,[
20

,K
,2

0]
,[

50
,K

,5
0]

,[1
00

,K
,1

00
]

-
[1

0,
K

,1
0]

,[
20

,K
,2

0]
,[

50
,K

,5
0]

,[1
00

,K
,1

00
]

A
ct

iv
at

io
n

fu
nc

tio
n

(g
(·)

)
-

-
Si

gm
oi

d,
So

ft
pl

us
,T

an
h,

R
eL

U
-

Si
gm

oi
d,

So
ft

pl
us

,T
an

h,
R

eL
U

Tr
ai

ni
ng

ep
oc

hs
-

20
00

,5
00

0
20

00
,5

00
0,

10
00

0
20

00
,5

00
0

20
00

,5
00

0,
10

00
0

O
pt

im
iz

er
-

A
da

m
,A

da
m

W
,A

da
m

ax
A

da
m

,A
da

m
W

,A
da

m
ax

A
da

m
,A

da
m

W
,A

da
m

ax
A

da
m

,A
da

m
W

,A
da

m
ax

Le
ar

ni
ng

ra
te

-
10

−
2 ,

10
−

3
10

−
2 ,

10
−

3
10

−
2 ,

10
−

3
10

−
2 ,

10
−

3

N
o.

of
ϕ

(I
)

m
(t

)
&
ϕ

(O
)

m
(t

)
(M

(I
)

&
M

(O
))

-
-

-
(1

5,
15

),
(2

0,
20

)
(1

5,
15

),
(2

0,
20

)
N

o.
of

ba
sis

fo
r

cu
rv

e
sm

oo
th

in
g

5,
8,

10
-

-
T

yp
e

of
ba

sis
fo

r
cu

rv
e

sm
oo

th
in

g
B

-s
pl

in
e,

Fo
ur

ie
r

-
-

-
-

Sm
oo

th
in

g
pe

na
lty

pa
ra

m
et

er
(λ

)
-

-
-

0.
01

,0
.0

01
,0

.0
00

1
0.

01
,0

.0
01

,0
.0

00
1

105

B.2.3 Statistical Results

Table B.7 contains the results of the two-sided paired t-tests comparing the performances
of the proposed FAE with nonlinear activation function and the classic FPCA in the real
application.

Table B.7: Means, standard deviations (displayed inside parentheses) and the p-values of
two-sided paired t-test of the prediction error and classification accuracy of functional
autoencdoer with the sigmoid activation function (FAE(Sigmoid) and functional principal
component analysis (FPCA) on 20 random test sets with the El Niño data set.

FAE (Sigmoid) FPCA p-value of t-test

MSEp

3 reps 0.0582(0.0045) 0.0656(0.0054) 3.1262 × 10−8

5 reps 0.0226(0.0031) 0.0242(0.0031) 0.0038
8 reps 0.0089(0.0014) 0.0113(0.0013) 2.2727 × 10−15

Pclassification

3 reps 77.68%(5.07%) 77.59%(4.81%) 0.9237
5 reps 86.52%(4.46%) 84.38%(5.20%) 0.0102
8 reps 87.59%(4.67%) 84.81%(4.50%) 0.0358

106

Appendix C

Appendix to Chapter 4

C.1 Time Splitting

The time splitting approach partitions individuals’ survival records into sub-intervals
{T (m)}M

m=1 containing corresponding records. For the individual i, the observed duration Ti

and the event indicator δi are together rewritten as T (m)
i and δ

(m)
i for T (m),m = 1, ...,Mi,

where Ti ∈ T (Mi), following

T
(m)
i =

{
Ti, if Ti ∈ T (m),

T (m)
max , if Ti /∈ T (m).

(C.1)

δ
(m)
i =

{
δi, if ti ∈ T (m),

0, if ti /∈ T (m).
(C.2)

Here, T (m)
max denotes the upper bound of the sub-interval T (m). For individuals experiencing

several time intervals, all intervals ahead of the last one are marked as censored status, while
only the last record contains the final status.

C.2 Additional Details for Simulation Studies

We provide additional simulation details, including formulations, descriptions of parameters,
and model configurations used in the simulation studies section.

C.2.1 Scenario 1: Proportional & Linear

In this scenario, we simulated the survival time for a fixed interval of T = [0, 300] from a
proportional hazard model

h(t|x) = h0(t)exp{g(x)}, (C.3)
g(x) = βT x, (C.4)

107

Table C.1 provides the details of the parameters for the simulations in this scenario.

Table C.1: List of parameters used for simulating survival time from a proportional hazard
model for different simulation settings in Scenario 1.

n= 500 n=5000

CR≈0.3 CR≈0.6 CR≈0.3 CR≈0.6

Baseline hazard (h0) 0.01 0.01 0.01 0.01
Censoring hazard (c(t)) 0.005 0.02 0.005 0.02
Observation interval (T) [0, 300] [0, 200] [0, 300] [0, 200]
β [0.8310, 0.5437, 0.1725, 0.9421, -0.7515]

Note: The identical set of coefficients β = [0.8310, 0.5437, 0.1725, 0.9421,−0.7515] is
consistently used by different simulation setups in Scenario 1.

C.2.2 Scenario 2: Proportional & Nonlinear

We extended the data generation in Scenario 1 with non-linearity by replacing Eq.(C.4) with
a nonlinear and proportional hazard model of form

g(x) = βT x + 3
2
(
x2x3 + x4x5 + x2

2 + x2
3 + x2

5
)
. (C.5)

Again, four data sets differ in size or censoring rate were generated with the constant
baseline hazard h0 = 0.01. Table C.2 details the parameters used for scenario 2. Same as the
setting for scenario 1, we continued with x = {x1, x2, ..., x5}, while the first covariate x1 was
drawn from a binomial distribution of p = 0.5, and x2, x3 and x4, x5 were from the uniform
distribution of [−1, 1] and [−2, 1], respectively. The coefficient vector β contains elements
randomly drawn from an uniform distribution between -1 and 1. We sampled the censoring
time using various observation intervals and censoring hazard, and labeled whoever were
observed at risk at the end of the observation period to be censored individuals to ensure
the desired censoring percent can be achieved.

C.2.3 Scenario 3: Nonproportional & Nonlinear

In this scenario, the survival data sets were generated from a nonproportional hazard model

h(t|x) = h0(t)exp{g(x, t)},
g(x, t) = a(x) + b(x)t,
a(x) = βT x + sin(x5),

b(x) =
∣∣∣∣∣32 5∑

i=1
xi + x4x5

∣∣∣∣∣ , (C.6)

108

Table C.2: List of parameters used for simulating survival time from a proportional but
nonlinear hazard model for different simulation settings in Scenario 2.

n = 500 n=5000

CR≈0.3 CR≈0.6 CR≈0.3 CR≈0.6

Baseline hazard (h0) 0.01 0.01 0.01 0.01
Censoring hazard (c(t)) 0.02 0.18 0.02 0.18
Observation interval (T) [0, 100] [0, 20] [0, 100] [0, 20]
β [0.6455, 0.8015, 0.7111, 0.7286, 0.6662]

Note: The identical set of coefficients β = [0.6455, 0.8015, 0.7111, 0.7286, 0.6662] is
consistently used by different simulation setups in Scenario 2.

Table C.3: List of parameters used for simulating survival time from a nonproportional &
nonlinear hazard model for different simulation settings in Scenario 3.

n = 500 n=5000

CR≈0.3 CR≈0.6 CR≈0.3 CR≈0.6

Baseline hazard (h0) 0.001 0.001 0.001 0.001
Censoring hazard (c(t)) 0.05 0.15 0.05 0.15
Observation interval (T) [0, 30] [0, 20] [0, 30] [0, 20]
β [−0.3480,−0.0127,−0.5468, 0.8260, 0.3143]

Note: The identical set of coefficients β = [−0.3480,−0.0127,−0.5468, 0.8260, 0.3143] is
consistently used by different simulation setups in Scenario 3.

and this time the baseline hazard h0 is set to be 0.001. The covariates x and the corresponding
coefficients β were randomly sampled from the identical distributions as those mentioned
in the other scenarios. Again, we simulated data sets of 500 subjects and 5000 subjects
with an approximate censoring rate of 0.3 and 0.6, respectively, by controlling the length of
observation interval T and censoring hazard c(t). Analogously, Table C.3 lists the values of
mentioned parameters used across different simulations under this scenario.

In practice, when fitting NN-Cox(NP) models, we sliced the domain interval into consecutive
sub-intervals and performed proportional hazards on the dataset post time splitting with the
extracted features plus several time-involved interactions. The model configurations, given
in Table C.4, were applied in all three scenarios.

109

Table C.4: A summary of the configurations used for neural network training and hazard
model fitting in all scenarios.

n = 500 n=5000

CR≈0.3 CR≈0.6 CR≈0.3 CR≈0.6

Neurons of the 1st hidden layer 20 20 20 20
Neurons of the 2nd hidden layer

(number of features) 10 10 10 10
Activation function Sigmoid Sigmoid Sigmoid Sigmoid
Batch size 48 48 48 48
Epochs 100 100 100 100

Length of sub-intervals
Scenario 1 30 20 30 20
Scenario 2 10 2 10 2
Scenario 3 1 1 1 1

Number of time-involved interactions 4 4 4 4

C.3 Additional Details for Real Application

We include more information about the 3 real data sets and hyperparameters involved in
the model fitting procedure in the real applications section in Table C.5 and Table C.6,
respectively.

Table C.6: A description of the hyperparameters used for neural network training and hazard
model fitting for the 3 data sets.

METABRIC Rot. & GBSG FLCHAIN

Neurons of the 1st hidden layer 30 30 20
Neurons of the 2nd hiddenlayer

(number of features) 15 15 10
Activation function Sigmoid Sigmoid Sigmoid
Batch size 32 24 64
Epochs 100 50 50

Length of sub-intervals 50 10 400
Number of time-involved interactions 8 8 5

C.4 Additional Figures

In this section, we provide the figures that display the relationship between the observed
censoring/event time T vs. transformed response Y under the three transformation methods,

110

Ta
bl

e
C

.5
:A

su
m

m
ar

y
of

th
e

3
da

ta
se

ts
em

pl
oy

ed
in

th
e

re
al

ap
pl

ic
at

io
n.

D
at

as
et

N
o.

of
in

di
vi

du
al

s
C

ov
ar

ia
te

s
Sh

or
te

st
&

lo
ng

es
t

du
ra

tio
n

U
ni

qu
e

du
ra

tio
ns

C
en

so
rin

g
ra

te

M
ET

A
B

R
IC

19
03

9
[0

.1
,3

55
.2

]
16

85
42

.0
4%

R
ot

.&
G

B
SG

22
32

7
[0

.2
62

83
37

,8
7.

35
93

44
0]

12
30

43
.2

3%
FL

C
H

A
IN

65
21

8
[1

,5
16

6]
27

14
69

.9
6%

111

including reweighing, mean imputation and deviance residual, using the Molecular Taxonomy
of Breast Cancer International Consortium (METABRIC) dataset and the Assay of Serum
Free Light Chain (FLCHAIN) dataset (Kvamme et al., 2019) from the real application
section, respectively.

● ● ●● ●● ●●●●● ●● ● ●● ● ●●● ● ● ●● ●● ●● ●● ●●●● ●● ● ● ●●● ●● ● ● ●●●● ●● ●●● ● ●●●●●● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ● ●● ●● ● ● ●●●● ● ●● ●●●● ● ●● ●● ●● ● ●●● ●● ● ●●●●● ●● ●● ●● ●● ●●●●● ● ●● ●● ●●● ●●● ●● ● ●●● ● ●● ●●●●● ●●● ● ●●● ●●● ● ●●● ●●●● ● ●●● ●● ●● ● ● ●●●●●● ● ● ● ●● ●●● ● ●●● ●●● ●●● ●● ●● ●● ●●●● ●● ●●● ●●● ●●●● ●●● ●●● ●●● ●●● ● ●● ● ● ●●● ●●● ●● ●● ●● ●●●●●● ●●●●● ●● ●● ●● ● ●● ● ● ●● ●● ●●● ●●●● ●● ●●● ● ●● ●● ●● ● ●● ●● ●●● ●● ●● ●● ●● ●● ●●●● ●●● ●● ● ● ●● ●● ● ●●● ● ●● ●●●● ● ●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●●● ●● ●● ● ●● ● ●●●● ●●●●● ●●●● ● ● ●●●● ●● ●●● ● ●●●●● ●● ●● ●● ●●● ● ●●● ●● ●●● ● ●● ●●●● ●●●● ● ●●● ●● ●● ● ●● ●● ● ●●● ●● ●●● ●● ● ●●●● ●●● ●● ●●● ●● ●● ● ●● ●● ●●●●● ●● ●●● ●●● ●● ●● ●●●● ●● ● ●● ●● ●● ●● ● ● ●● ●●● ●●●● ●●●● ●●● ●● ●● ●● ●●● ●●● ●● ● ●● ●● ●● ●● ●●●● ●●● ●● ●● ●● ●●● ● ●● ●● ●●● ● ●● ●● ●●● ●●●●●● ●● ●● ●●● ●●● ●●● ●● ● ●● ● ●● ●● ● ●●● ●●● ●● ●● ●●● ●●● ●●●● ● ●● ●●●● ●●● ●● ●●●● ●●● ●● ● ● ●●●● ● ●●● ● ●●● ●● ●●●● ● ●● ●● ●●●● ● ●●●● ●● ●●● ● ●● ● ●●●● ●●●●● ● ●●● ● ●● ●●● ●●● ●● ● ●●●● ● ●● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ●● ●● ●●● ● ●●● ●●● ●● ●●● ●●● ● ●●● ●● ● ● ●● ●● ●●●● ●● ●● ●●

● ●
●

●
●

● ●●●
●●

●
●

● ●

●

● ●●
● ● ● ●

● ●

●

●

● ●●
●●●● ●

●
●

● ●
●

●

●
● ●

● ●
●●●

●
●

●
●

●
● ●●●●●

●
●●

●

●
● ●● ●

●
● ●

●
●

●
●

● ●

●

●● ●
●

●

●
●

● ● ●
●●

●

● ●

●

●●
●

●

●
●

● ●
● ●

●

● ●
●●

●● ●
●●●●● ●

●
●

●
●

●
●

●

●●●●

●
●

●●
●

●

●
●

●

●
●

●

●● ●
●

●● ● ●

●
●

●●●●
●●● ● ●

●●
●

●● ●
●●

●
●●●

● ● ●●
●

●
●

●
●

● ● ●●●
●●

●

●
● ● ●

●
●

●

●

●
●●

●
●

●●
●

●●
●

● ●●
●● ●●

●●
●

●
●

●
●

●●●
●

●●●
●●

●
●●

●
●●

●
●

●●
● ●

●
● ● ●
●● ●

●●

●
● ●

●
●

●

●●●●●

●

●●●
●

●

●
●

●
●

●

●

● ●

●
● ●

●
● ●

●
●●

●

●●
●●

●●
●

●
●

● ●
● ●

●
●

●
● ●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●●
●●●●

●
●●

●

● ●
●

●

● ●● ● ●
●●

● ●● ●●●●
● ●●● ●

●

●
●

●●
●

●
●

●
●●

●
●

●

●
●●

●
●●

●● ●

●

● ●

●

●
●●●

●

●●●
●

●

●
●

●●

●
● ●●

●
●

●●

●●
●

● ●●●●
●

●
●

●● ●
●

●
●

●
●

●●

●

●

●

●●
● ●

●

●

●
●●● ●●●

●

● ●●
●

●

●

●

●
● ●

●

●

● ●
●

●●
●● ●●●

●
●

● ●●●
●

●●●
●

●
●●

●
●

● ●
● ●

●
●

●● ●●●●●
●

●

●
●●

●●●
●● ●

● ●●●● ●● ● ●
●

●

●
●●

●

●

● ●
●● ●●●

●
●●●

●
●●●

●●

●

●
● ●

●

●●
●●

●
●●

●
●●

● ●● ●

●

●

●
●

●
●

●
●●

●●● ●

●
●

● ●●
●

●● ●
●

●
●● ●●

●
● ●

●
●● ●

●
●

●●●
●●●

●●
●

●
●●

●

●
●

●

●
●● ●

● ● ●
●

●
●● ●

● ● ●●
●

●●●
●

●

●

●

●●●
●

●
●

●●●
●

● ●
●

●●

●●

●●
●

●

●

●●●

●

●●●
●

● ● ● ●
●●● ● ●●

● ● ●
●

●
●● ●●●

●
●

●

●
●●

●●●
● ●

●●●

●

●

●

●
●

●
● ●●

● ●●●● ●●●●
● ●

●●
● ●

●

●

●
●●

●●
●

●

●

●

●
●●

●
●

●
● ●● ●

● ●●
●

●●

● ●
● ●

● ●●
●

●●

●

●

●● ●
●●

● ●

●●

●
●● ●

●

●●
●

●●● ● ●
●

●
●

● ● ● ●
● ●●

●
●

●● ●● ●● ●●

●
●

●

●

●

●
●●●

●●

●

●

●
●

●

●
●●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
● ●

●

●

●
●

●

●

●
● ●

●

●

●
●●

●

●

●

●

●

●
●●

●
●●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●
●

●● ●

●●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●

●

●●●●

●
●●

●
●

●●

●

●●
●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●
● ●●

●

●●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●●

●

●●

●
●

●
●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●
●

●

●

●
●●

●
●

●
●

● ●
●

●●
●

●
● ●●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●●●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●●

● ●
●

●

●

●●●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●
●

●

●

●
●●

●

●

●●
●

●

●

●●
●

●

●
●

●
●

●

●

●●
●●

●
●●

●

●

●

●●

●

●
●

●
● ●

●
●●●●

●●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●●

●

●●●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●● ●

●

●

● ●●

●

●●
●

●

●

●●
●●

●

●
●

●

●●
●

●

●

●
●●

●
●●

●●

●

●

●●

●

●

●

●

●

●● ●

●
● ●

●

●

●

●

●

● ● ●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●●

●●

●●

●

●

●

●●
●

●

●
●●

●

●

●
● ●

●●
●

●
●●

●
●

●

●

●

●
●

●●●

●

●

●

●
●

●

●●●

● ●

●●
●

●

●

●

●
●

●
●

●●

●
●●

●
●

●●●
●

● ●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

● ●●
●

●●

●
●

● ●

●
●●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●●
●

●

●●

●

●
●●

●

●

●
●

●

● ●
●

●

●
●●

●

●

●●
●●

●●
●

●

●● ●●● ●●●●●● ●● ● ●● ● ● ●●●
●

● ●● ●● ●● ●●● ● ●●● ●●
●

● ● ●● ● ●●

●

● ●●
●●● ●● ●●●● ● ●●●● ●● ●●●●● ● ● ●●

●● ●● ●●●● ● ●● ● ●●●

●

●●● ● ●● ●
●

●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ●●●● ●● ●
●

●●●●●
●

●●● ●●●● ●●● ● ●●● ●●● ●●● ●● ● ● ●●●●

●
●●● ●● ● ●● ●●● ● ●●●● ● ●●●●

●
● ●● ●

●

●●●●
●

●● ●●●●●● ●● ● ●● ● ● ●●● ● ●
● ●● ●

●
● ●●● ●●●● ● ●●

●

●● ●●● ●● ● ●●●
●

●● ●●
●

●
●●● ●●● ●

● ●
●

● ● ●● ●● ●●●● ●● ●●
●● ●●●

●

●●

●

●
● ●●● ●●●●● ● ● ●●●● ●● ●● ●●● ● ●●●● ●● ●

●
● ●●

●
●● ●●● ●●

●

●

●● ●● ●●●● ● ● ●● ● ●●●●●
●●●● ●● ● ●● ●●● ●●● ● ●●● ●● ●●●
●●●● ● ●●●● ● ●● ●● ● ●●● ●

● ● ●●●● ● ●● ●●
●

● ●●
● ●●●● ●

●
● ●●

●
●●●●●●● ● ● ●●● ●●● ●●● ●● ●●●● ●● ● ●●●● ●●● ●●● ●● ● ● ●

●● ●

●

●
●

●● ●● ●● ●● ● ●●
●

● ●● ●●●

●

●● ●● ●●● ●●●●● ●● ● ●●●● ●● ● ●●● ● ●● ●●●
●● ● ● ●

●
● ●● ●●

●

●● ● ●●●●● ● ● ● ●● ● ● ●● ●
●

●●● ● ●● ● ●● ●
●

●●● ●● ● ●●● ●● ●● ● ●
●

● ● ●● ●● ●●●● ●●● ●● ● ● ● ●●● ●● ●● ●● ●●●● ●●●● ●●● ● ●●● ● ●●● ●

●
●

● ●● ●●● ●● ●● ● ●●● ●● ●●● ● ●●●●
●● ●●

●●● ●●● ●● ●●●● ●●● ●●● ●●●● ●● ●●● ●● ●●● ● ●●● ●● ●●● ● ●● ●● ●● ●● ●● ●●
●

●● ●●●● ●●● ●●●●● ● ●● ● ● ●●● ● ●● ● ●● ●● ● ●● ●
●

● ●● ●●●●●● ●● ● ●●●

●

●● ●● ●● ●● ● ●● ●● ● ●●
●●●●● ●● ●● ●●●●● ●● ● ●● ●●●● ● ●● ● ●

● ●● ●●●● ●● ●●●● ●●● ●● ● ●● ●● ●●● ● ●● ●● ● ●
● ●●

●●● ●●● ●● ●● ● ●●●● ●● ●● ● ●● ●●●● ●●

●

●●● ●●● ●●●●● ●● ●●
●

●● ●● ● ● ●
●

●●● ●● ●
● ●

●
●● ● ●●● ●● ● ● ●● ●● ● ●●● ●● ● ●● ● ●● ●

●
● ●●

●
● ●●● ●● ●● ● ●●● ●●● ●● ●● ● ●

●
●●●

●●● ● ●●● ●● ●

●

●
●

●●● ●● ● ● ●●●●●●
●

●

●● ●●● ● ●● ●●● ●● ●● ●

●

●●
●●

● ●● ●
●●● ●●

●

●● ● ●●

●

●●● ● ●●● ●● ● ●
● ●● ●●

●

●●●● ●● ● ●● ●● ●

●

● ●
● ●●●● ●●● ● ●● ●● ●●● ● ●●● ●

●
●●● ● ●●●●

●

● ●● ●●● ●● ●

●

●● ●

●

● ●● ●●● ●●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●

●●
●●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●●
●

●

●

●
●●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●●

●
●

●

●

●

●

●

●
● ●

●

●●
●●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

● ●●

●

●

●●●
●

●
●

●

●●●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●●

●

●●●
●

●●

●●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

● ● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●●●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●●

●

●●● ●

●●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

Censoring Individuals Event Individuals

R
ew

eighing
M

ean Im
putation

D
eviance R

esidual

0 100 200 300 0 100 200 300

0

100

200

300

400

−2

0

2

4

6

−2

0

2

Observed Time T

Tr
an

sf
or

m
ed

 T
im

e
Y

Figure C.1: Transformed time-to-event response Y , obtained from reweighing, mean imputa-
tion, and deviance residual, vs. the observed time T for censoring and event individuals in
the METABRIC dataset (Kvamme et al., 2019).

112

●● ●●● ● ●● ● ●●●●●●●● ●● ●●● ● ●●● ●●● ●● ● ●●● ● ●●● ●● ●●● ●● ●● ●●● ●● ●●●● ●● ● ●● ●●●● ●● ● ●●●●●● ● ●● ●●● ●●● ●●●●● ●●●●● ●● ●● ●●● ●●●● ●● ●●● ● ●● ●● ●● ● ●●●● ● ●●●● ● ●● ●● ● ●●●● ●● ●● ●● ●●● ●●● ●● ●● ●● ● ● ●●●●●● ● ●● ●●●● ●●● ●●● ● ●● ● ●●● ●● ●● ●●● ●●● ●●● ●● ●● ● ●●●●● ●● ●● ●● ●●●●● ●● ● ● ●●●● ●●●● ●● ●● ●● ● ●●● ●● ●●●● ●●● ●●●● ●● ●● ●● ●● ●● ●● ●●● ● ●● ● ●●●● ●●●● ●● ●● ●●● ●● ●●●●●● ●●● ● ●●●● ●●●●● ●● ●●● ● ●●●● ●●● ●● ●● ●●● ●●●● ●●● ● ●●● ●● ●●● ● ●●●●●●●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ●● ● ●●● ● ●●● ●● ● ●●●● ●● ●● ●● ●● ●●● ●● ●●● ●●●●●● ● ●●●●●●● ●●● ●●●● ●● ● ●●●● ●● ●●●● ●●● ●●●●●● ● ●● ● ●●●●● ●● ●●●● ● ●● ● ●●●● ●●●●● ●●● ●● ●● ●●● ●●●● ●●●●●● ●●●● ● ●● ●●● ●●● ●● ●●●● ●●●● ●●● ●●● ●●● ●● ●● ●● ●●● ●●●●● ●● ●●●● ● ●●●● ●●●●●● ●● ● ●●●●●●●●● ●●● ●●● ●● ●●● ●●●● ●●● ●● ●●● ●●●● ●●● ●● ●● ●●●● ● ●●● ●● ●●●●● ●●● ●●● ●●●●●● ●● ●●● ●●●● ● ●●●●●● ●●●● ●● ●● ●●● ●● ●●● ●●●● ● ●●●●●● ●● ●● ●● ● ●●● ●● ●●●●●● ●●● ●● ●●● ● ●●●● ●●● ●●●● ●●● ● ●●● ●●●● ●● ●● ● ●●● ●●●● ●●● ●●● ●● ●● ●● ●●●● ●● ●●●●●●● ●●● ●●● ●●● ●● ●●●● ●● ●●●● ●● ● ●● ●●●●●● ●● ●● ●●● ● ●●● ●●●●● ●● ●● ●● ●●●●● ● ●● ●● ●●●● ● ●● ●● ●● ●●● ●●●● ●●●● ● ●● ●●●●●● ● ●●●● ●●● ●●●● ●● ●●●●● ●●● ●● ●●●●●●● ●● ●●● ●●● ●●● ●●●●● ● ●●● ● ●●●●● ●●● ● ●●● ●●● ● ●●●● ●●●● ●●● ●● ●●● ●● ●●● ●●● ●●●●● ● ●●● ●●● ●● ●●●● ●●● ●●●● ●●● ●● ● ●●●●● ●●●● ●● ●● ●●●●● ●●●●● ●● ●● ●●●● ●●●●●● ●●●●●●●● ●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●●●●● ●●●● ●●●● ●●●● ●●●● ●●● ● ● ●●●● ●●● ●● ●●●●●● ●● ●●● ● ●●●● ●●●● ●●●● ●●●● ●●● ●● ● ●●● ● ●● ●●●●●● ● ● ●●●●● ●●●●● ● ●● ●●● ●●●● ● ●●●● ● ●●●● ●●●●● ●●●● ● ●● ●●● ●●●●●●● ● ●●●● ● ● ●● ● ●● ● ●● ●● ● ●●● ●●● ● ●● ●●● ●● ● ●● ●●● ●●● ●● ●●●●● ● ●●● ●●●●●●●● ●●●● ●●● ●●●●●●●●● ●●●●●●●● ●● ●●●●● ●● ●●● ●● ● ●● ●●● ●●●● ●● ●● ●● ●●●● ●● ●●●●●●●●●●● ●●● ● ●● ●● ●● ●● ●●●●●●● ●● ●● ●●●●● ●●● ●● ●●● ●● ●● ●●● ●●● ●● ●● ●●● ●●●● ●● ●●●● ●●● ●●● ● ●●●● ●●●● ●●●●● ●● ●● ●●● ●●●●●● ●●● ●● ●●●● ● ●●● ●●●● ●●●● ●●● ●●● ● ●●●● ●●●● ●●● ● ●● ●●●●●● ●●● ● ●●● ●● ●●●●●● ●●● ●● ●●● ●● ●●●● ●●● ● ●●●●● ● ●●●●● ●●● ●●● ●● ●●●● ●●● ●● ●●● ●●●● ●●●● ●●●●●●● ●●●● ●● ●● ●●●● ● ●●● ● ●●● ●● ●●●● ●●●● ● ●●●●● ●● ●●● ●● ● ● ●● ● ●● ●●●●● ●●●●● ●●●●●● ●● ●● ●●● ● ● ●● ● ●●● ●● ●●● ●●● ●● ●●●●●● ●●●●● ●● ●● ● ●● ●●●●●● ●● ●● ●● ●●● ●●●● ● ●●● ●● ●●●● ●●●● ●● ●● ●●●●● ●●● ●●●●● ●●● ●● ●● ●● ●● ●● ● ●●●●● ●●●● ●● ●●●● ●●● ●●●● ●● ●●● ●●● ●●● ● ●● ●●●●● ●●●●● ● ●● ●●●●●● ●●●●●●● ●●●● ● ●●●● ●●●● ●● ●●●● ●●●● ●●● ●●● ●●●●● ● ●●●●●● ●●● ●●● ●● ●● ●●●●●● ●● ●●● ●● ●● ●●●● ● ●● ●● ●●●●●● ●● ●●●● ● ●●●● ●● ●●● ● ●●● ●● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ●●● ●● ●● ●●● ●● ●●●●● ●●● ●●●● ●●●●● ●●● ●●● ● ●● ●● ●●● ●●●●●● ●● ●●●●●●● ●● ●●●● ●●●●●●●●●●●● ●●● ●●●● ●● ●●●● ●● ●● ●●●● ● ●●●● ●● ●●●● ●● ●●● ●●●● ●● ●●● ●●●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ● ●● ●●●●● ●●●● ●●●● ● ●●● ●●●● ● ●● ●●●● ●●●●● ●● ●●●●● ●● ●●●● ●●●●●●●● ●●● ● ●●● ●●●●● ●●●● ● ●● ●● ●● ● ●● ●●●● ●● ●●●●● ●●●● ● ● ●● ● ●●● ●● ●● ●●● ●●●● ● ●● ●● ●●● ● ●● ●● ●● ●● ●●●● ●● ● ●●● ●●●●●●●● ●●●●●●● ● ●●● ●● ●● ●● ● ●●●●● ●● ● ●●● ●● ●●●●●● ●● ●● ●● ●●● ●● ●●● ●● ●●●●●●● ●● ●●●●●●● ●● ●●● ●● ●●● ●● ● ●●●●●●●● ●● ●●● ●●●●●● ● ●● ● ● ●● ●● ●● ●●● ● ●●●●●●● ●● ●●●● ● ●●●●● ●●● ● ●● ●●●● ●●● ●● ●●● ● ● ●● ●● ●●●● ●●● ●● ● ● ●● ● ●●● ● ●●● ● ● ●● ●●● ●●●● ●● ●● ●●● ● ●●●● ●● ●●●●●● ● ●●●● ●●●●● ●●● ●● ●● ●●●●●●● ●● ●● ● ● ●●●●● ●●● ●●●●●●● ●● ●●●● ●●●●● ●● ● ●●●●● ●●● ●●● ●●● ● ●● ●●● ●●●● ● ●●●●● ● ● ● ●●● ●●●● ● ●● ●● ●●●●● ●● ●●● ● ●● ● ●● ● ● ●●● ● ●● ● ●●● ●● ●● ●●● ●● ●●●● ●●● ●●●● ● ●●●● ●●● ● ●●● ●●● ●● ●●●● ● ● ●●● ● ●●● ● ●● ●● ●●●●● ●●●●● ●●● ● ●● ● ● ●●●● ●●●● ●● ●● ●●●● ●● ●● ● ●● ●●● ●● ● ●●●●● ● ●● ●●●● ● ●●●● ●● ● ●●●●●● ●● ●●●● ● ●●● ● ●●●● ●● ● ●●●●● ●● ●●●●●●● ● ● ●●●● ●● ● ●● ●● ●● ●● ●●●●●●●● ●● ● ●●●● ●● ●● ● ●●●● ● ●●●● ● ●● ●● ●● ●● ●● ●●● ●● ●●●● ● ●● ●● ●●● ●● ●●● ●●●● ●●● ●●●● ●●● ●● ●●● ● ● ●●●●● ●●●●●● ● ●● ●● ●●● ●●● ●● ●●●●● ●● ● ●●● ● ●●●● ●●● ●● ●●●● ●● ●●●● ●●●●● ● ●● ●●● ● ●●● ●● ● ●● ●●●● ● ●● ●● ●● ● ●● ●●● ●● ●●● ●● ●● ●● ● ●● ● ●●●●●●● ● ● ●● ●●● ● ●● ●● ●●●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ● ●●●●●● ● ●● ●● ● ●● ●●●● ●●● ● ●●● ●● ●●●●● ● ●●●●● ●● ●●● ●● ●●● ●●● ● ●●●● ● ●●●● ●●● ●● ●● ●●● ●● ● ●● ●●● ● ●●● ● ●● ●●●● ●●●● ●●● ● ●●● ●●● ●●● ●●●●●●● ●● ●●●● ●● ●● ●●● ●●● ●● ●● ●●● ●●●● ●●● ●● ●●●● ●● ● ●● ●●●● ●●● ●●● ●●● ● ●● ●●● ●● ●●● ●● ●●●●●●●●●●● ●● ●● ● ●●●● ●● ●● ●●● ● ●● ●●● ●●●● ●●●● ●●● ●● ●● ●● ●●● ●●● ●● ● ●●●●●● ●● ●●● ● ●● ● ●●●● ● ●● ●● ●●● ●● ●● ●● ●●● ●●●●●● ●● ● ● ●●●● ●● ●● ●●●●● ●● ●●●●● ●●●●●●● ●●● ●● ●● ●● ● ●●● ●● ●● ●● ●●●● ●●● ● ●● ●●●● ●● ●●● ●●● ●● ● ●● ● ●● ●● ●●● ● ●●● ● ●● ●●●● ●●● ●●●●●● ● ●●● ●● ● ●● ●●● ●● ●●●● ●●● ●●● ●●●● ● ●● ● ●●●● ●●● ●●● ● ●● ●● ●● ●● ●● ●●●●● ● ●●● ● ●● ●●●● ● ●●● ●● ●●●●● ●● ● ●●●● ●● ● ●●● ● ●●●● ● ● ●●● ●● ●●●● ●● ●●● ●● ●●● ●● ● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●●● ●●● ●●●●● ● ●●● ● ●●● ●● ● ●● ●● ●●●● ●●●● ●●●● ●●● ●●●● ● ● ●●● ●● ● ●● ●●● ● ●●● ● ●●●●● ●●●● ● ● ●●●●● ● ●● ●●●●● ●● ●● ●●●●●●● ●● ● ●●● ●●● ● ●●● ●● ●●● ●●●●● ● ●● ●●●●● ●●● ●●● ●●● ● ●●●● ● ●●●●●● ●● ●●●●●●●●● ● ● ●● ● ●●● ●● ● ●●● ●● ●●●● ●●●● ● ●●● ●●● ●● ●● ● ● ● ●● ●● ●● ●●●●●●● ●● ●● ●●● ● ● ●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ●● ● ●● ●● ● ● ●●● ● ●●●●●●●● ●●●●●● ● ●●●●●●●● ●●●● ●●●● ●● ●●● ●● ●● ●●●●● ● ●●●● ●●●●● ●● ●● ●● ●●●● ● ●●● ●● ●● ●●● ●● ● ●● ●●●● ● ●●● ●●● ●● ●●●● ●● ●● ●● ● ●● ●●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●●● ● ●●● ● ●●● ●● ●●● ●● ●●● ●● ●●●●●●● ●●●●● ●● ●●● ●● ●●●● ●●● ● ●●●●●● ●●● ● ●●●● ●● ●●● ●● ●●● ●●●● ●● ●●● ●● ●●● ●●●●● ●● ●●●● ● ●●● ● ●●● ●●● ●●●● ● ●● ●● ●● ●● ● ●●●● ●●●● ●●● ●● ●● ● ● ●●●● ● ● ●●●● ●●●●● ●●● ●● ●●● ●● ●●●● ●● ●● ●● ●●● ●●●● ●● ●● ●●● ●●●● ●●●● ●●●● ●● ●●● ●●●●● ●●● ●●●● ● ●●●● ●● ●● ●● ●● ●● ●●●● ● ● ●●● ●●●● ●●● ● ●● ●●● ●●●● ●● ●●●● ●● ●●●●●● ●●● ●●●●●●●● ●●● ●● ● ●● ●●●●● ●● ●●●●● ●● ●● ● ●●● ● ● ●●●● ● ●●●● ●●●● ●●●● ●●● ●●●●● ●●● ● ●●●● ●●●● ●● ●● ●● ●● ● ●●●● ● ●●●●● ● ●● ● ●●●● ● ●● ●● ●●● ●● ●●●● ●●●● ●● ●●● ●●● ●●●●● ●● ●●● ●●● ●●● ●●● ●●● ● ●●●● ● ●●● ●● ●●●● ●●● ● ●●●● ●●●● ●● ●●●● ●●● ●● ●●●● ● ●●● ● ●● ●● ●●●●● ●● ● ●● ● ●● ●●● ●●●● ●●●●● ● ●●● ●●● ● ●●● ● ● ●● ●●● ●● ●●●●●● ●● ● ●●● ●●● ●● ● ●● ●●● ●● ●●● ●●● ●●●● ●● ●● ●●●●●● ●●● ●●●●● ● ●●● ●●●●● ● ●●● ● ●●● ●●● ●●● ●●●●● ●● ●●●●●● ●●● ●● ●● ●●●● ●● ● ●● ●●●●●● ●● ●● ●● ●● ● ●●● ●●●● ● ●● ●●● ●●● ●●● ●● ●●● ●●● ● ●● ●● ● ●●●● ●●●●● ● ●●● ●●● ● ●● ●

●
●

●

●●

●

●

●

●

●●●
●●●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●●
●

●

●
●

●
●

●

●●

●

●

●

●
●

●●●
●

●●

●

●

●

●●
●

●●
●

●●●

●

●

●●●

●●

●
●

●● ●●

●

●

●

●
●

●

●

●

●●

●
●

●

●●
●

●
●

●
●

●

●

●

●●●

●

●
●

●

●
●

●
●

●●
●

●●
●● ●

● ●●●
●

●
●

●
●

●

●

●

●
●

●
●●

●●●

●
●

●

●

●●
●

●

●
●

●

●●

●
●

●

●
●

●
●●

●

●

●●
●●

●

●●

●
●●

●

●
●

●

●

●

●●
●●●

●
● ●

●

●

●

●●●●●
●

●
●

●

●

●●●
●●●

●

●

●

●
●

●
●

●
●

●● ●● ●●
●●

●
●

●

●●
●

●

●●

●

●

●
● ●

●

●
●

●
●

●●

●

●
●

●
●

●●●

●

●●

●

●

●

●
●

●

●●● ●
●

●●●
●●

●

●

●●

●
●●●

●

●●●●

●

●

● ●●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●●●

●

●●

●

●
●

●
●

●●
●●

●

●

●●●●●●●●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●● ●
●●

●
●

●●
●

●

●

●

●●●
●

●

●
●

●

●

●

●
● ●●

●

●
●

●●● ●
●●●●

●
●

●●●●●
●●

●●
●

●●●

●

●

●

●
●●●

●
●

●

●
●

●●

●
●●

●
●●●

●

●
●

●
●

●
●●

●●●
●●

●●

●

●

●

●

●
●

●
●●●

●●●●●
●●

●

●
●

●

●
●●

●
●●●

●

●●●●●

●

●●●

●

●

●
●

●●

●

●

●
●

●●
●●●

● ●
●●●

●

●●

●●● ●●

●

●
●

●
●

●

●

●●

●

●●●●
●

●
●

●●●

●

●
●●●

●
●●●●

●

●

●

●

●

●●●●●●●●
●

●●●
●

●
●

●
●

●●

●

●●
●●

●●

●
●

●

●●●

●●
●●

●
●●

●

●

●
● ●●●

●

●
●

●●
●

●

●●●●

●

●●

●

●●●
●●●●●

●

●● ●●

●

●●

●

●
●

●●●

●●

●

●●●
●

●

●

●●
●●

● ●
●

●

●

●

●
●●

●

●
●

●●●●

●

●

●
●●

●

●
●

●

●●

●

●

●●●●●

●

●
●

●

●
●

●●

●

●
●●●

●

●●●
●●

●●
●●

●

●
●

●●

●
●●●

●

●

●

●

● ●●

●

●●●

●

●
●

●

●●

● ●
●

●● ●
●

●●●
●

●
●

●●●●●
●

●

●●
●

●●
●

●

●●

●● ●●
●● ●

●

●●●

●

●

● ●
●

●

●●●●
●

●
●

●
●

●

●

●

●

●
●

●●
●

●●
●

●

●

●

●

●

●
●

●●●●

●
●

●
●

●●
●●●

●

●
●

●
●

●

●●
●●

●
●●●

●

●●
●● ●

●
●

●
●●●

●

●

●
●●●

●
●

●
●

●●●●
●

●

●
●●●●

●●

●

●

●

●
●●●●
●●

●
●

●●
●

●●●
●●

●
●

●
●●

●

● ●●

●

●
●●●

●●

●●

●
●

●
●●

●●

●

●
●●

●●
●

●
●

●

●●
●

●

●
●●● ●●

●●

●

●●

●

●●●●
●

● ●

●
●

●●

●

●●
●●

●●
●●

●
●●●

●
●●

●

●

●

●
●●

●
●●

●●
●

●
●

●

●
●

●●●

●
●

●●
●●

●
●

●

●● ●●●

●

●●●●●●
●●●●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●●
●●●

●●
●

●

●●●

●

●●●
●

●●●
●

●

●

●

● ●
●●

●

●

●●

●

●
●

●●●
●●

●

●

●

●●

●

●

●●●●
●●●

●

●●●

●

●●●
●

●●

●

●

●

●

●●

●
●

●

●

●●●●●

●

●
●

●●●●
●

●●●●

●

●
●● ●●

●

●●
●

●

● ●
●●

●
●

●●
●●

●●
●●●

●●
●● ●

●
●

●●
●

●●●●
●●

●
● ●

●●
●

●
● ●

●

● ●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●●
●

●

● ●
●

●

●●●
●

●●
●

●

●●●●

●
●

●●

●

●
●●●●●

●
●

●●●
●

●●

●

●●●●●●●●●
●

●●●●
●

●

●

●

●

●●●●
●

●
●

●
●● ●

●

●
●

●

●●● ●

●

●

●

●

●

●
●

●

●

●●●●
●

●

●●●●
●●●●●●● ●
●

●

●

●

●
●

●
●●

●
●

●●●
●●●

●

●●
●

●

●●●
●

●

●●
●

●
●

●
●

●
●●

●
●

●
●

●

●●

●

●
●

●
●

●
●●

●●
●●

●

●
●●●●

●●

●

●●

●

●
●

●●● ●
●

●

●

●●●●●
●

●

●

●

●●
●

●●●●
●●

●
●

●

●

●

●●●

●

● ●●

●

●●●

●

●●

●●

●●
●

●●

●

●

●●●

●

●●●
●

●●
●

●
●

●

●
●●●●

●

●●
●

●
●

●●
●●

●●●●

●

●

●

●●

●●
●●

●

●

●

●●
●● ●

●●

●
●●●

●

●

●

●
●●

●●
●

●

●

●
●

●

●●
●

●

●●

●●
● ●

●
●●

●

●●
●●

●●
●

●
●●●●●●● ●
●

●●

●

●
●

●

●●●

● ●

●
●

●
●

●●

●

●
●

●●
●

●

●●●

●
●

●●●●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●●

●

●●●
●

●

●●●
●●

●

●

●

●
●

●●

●

● ●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●●●●●

●

●●●●
●

●

●

●

●

●

●● ●●●
●●

●

●
●

●
●

●

●

●
●●

●●
●

●

●
●●

●

●
●

●
●●

●

●●●

●

●
●

●
● ●●●●●

●●
●

●●
●●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●●
●

●●●
●

●

●

●●●
● ●●

●

●●●

●

●

●

●●
● ●

●

●

●
●

●

●
●

●
●●●●

●

●●
●●

●
●

●

●

●
●●●

●●

●●●●●●

●

●●●

●

●

●●
●

●

●●●

●

●

●

●●

●

●

●●
●●

●●

●

●●

●

●●●●

●

●
●

●●●●
●

●●

●

●
●

●
●●

●

●

●●●●●
●

●

●

●●

●

●

●

●
●

●●

●

●

●

●●
●

●

●●●●●
●

●● ●●

●

●

● ●●●
●

●

●

●●

●
●

●
●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●●
●

●
●

●● ●

●
●

●
●

●

●

●●

●●

●

●●●
●●

●● ●
●●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●●
●●●

●● ●●●●●●
●

●

●

●●●

●

●●●
●●●●●●●

●

●

●●

●

●
●●

●

●●
●●●

●

●
●

●

●
●●

●

●

●

●●●

●

●●
●●

●

●

●●
●●

●
●●●

●

●

●

●
●

●

●●
●

●

●

●

●● ●
● ●

●

●
●

●●●
●

●●●

●

●

●

●
●● ●●●●●
●

●●

●

●●●

●

●
●

●

●

●●●
● ●

●
●

●●

●

●

●●●●
●

●
● ●●●●

●
●

●
●●●

●

●●●●●●●
●

●
●

●

●
●●

●

●●●●

●

●●
●

●

●
●

●

●
●

●

●
● ●

●

●●
●

●
●

●

●●●
●

●

●●●

●

●
●

●

●
●

●●

●

●●
●

● ●●
●

●●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●●●

●

●

●
●

●
●

●

●●●●●●●
● ●●●●●

●●
● ●

●●
●

●

●

●

●

●

●
●●●

●

●

●
●

●
●●

●
●

●

●●●●

●

●

●

●

●●
●

●

●
●

●
●

●

●●
●

●
●

●●●●●

●●

●

●

●●●●
●●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●●●
●●●● ●

●

●●

●

●●●●
●

●

●
●

●

● ●
●

●

●

●

●
●

●●

●
●

●●●
●●

●●

●
●

●●●
●

●
●●●

●

●

●

●

●

●

●

●

●
●●●
●

●● ●
●

●

●

●

●

●
●

●

●
●

●●●● ●
●● ●

●
●

●

●

●
●

●●

●
●

●
●

●

●
●

●● ●●
●

●●
●

●

●
●

●

●

●●

●

● ●●

●

●

●
●

●●●
●●

●

●
●

●●● ●●●
●●

●

●
●

●●

●

●

●
●●●●

●
●

●

●

●

●
●

●
●

●●●●
●

●

●

●●●●●●

●

●●
●

●●
●

●●●●

●

●

●

●
●●●

●
●

●●●
●●

●

●
●

●

●
●

●

●●

●

●●●
● ●

●
●

●●

●
●

●

●
●

●●
●●●

●

●

●

●

●

●

●●●
●

●
●●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●●
●

●●●
●

●●

●

●
●●●

●

●●

●

●
●●

●
●●● ●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

●●●
●

●

●●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●●●
●

●

●

●

●

●●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

● ●
●●●

●

●

●●
●●

●

●
●

●
●

●
●

●

●

●

●●●●●

●

●
●

●●
●

●

●
●●

●
●

●●●
●

●

●
●

●●●
●

●

●●
●

●

●●●
●

●

●
●

●●●

●
●

●
●

●

●

●

●

●
●

●

●
●●●●●●

●●
●

● ● ●●
●

●

●

●
●

●

●
●●●

●

●
●●●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●

●

●●●

●
●

●

●

●

●●
●

●●
●●

● ●●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●●●●

●

●●●●●

●

●
●

●
●

●
●

●
●

●●

●

●
●

●●●
●

●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●●
●●

●

●

●● ●●●

●

●●

●

●●

●
●

●
●

●●

● ●●
●

●

●

●

●
●

●
●●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

● ●
●

●
●

●●●●
●●

●
●

● ●

●

●●

●

●
●

●

●

●

●●●
●

●

●

●●●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●

●

●

●

●
●●●

●
●

●
●

●

●●

●

●

●

●●●
●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●●●

●

●●
●

●

●
●●

●
●

●

●

●
●

●
●

●●

●
●

●●
●

● ●

●

●●

●●

●●●

●

●

●
●

●
●●

●

●●

●

●●
●

●●●●
●●●

●
●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●●

●●●

●

●
●

●

●

●
●●●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●●
●●●●●●

●

●

●

●

●

●

●
●

●●●
●

●

●
●

●●

●

●

●●
●

●●

●●●
●

●●●

●

●●

●

●
●

●

●
●

●
●

●

●

●●

●

●
●

●
●●

●●●

●
●●

●
●

●
●

●

●

●
●●●

●
●

●
●

●●
●

●●

●●
●

●

●
●

●

●

●

●●●●
●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●●●
●

● ●●●●

●

●●●

●●●

●

●●

●
●

●

●●

●

●
●

●
●●

●

●
●

●

●
●

●
●

●●

●

●
●

●
●

●

●
●●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●● ●

●
●

●

●
●

●

●●

●●

●

●●

●●●●●

●

●

●●●
●

●

●

●●
●

●
●

●
●

●
●●

●
●

●
●

●

●
●

●●●

●
●

●

●

●
●●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●●●
●

●

●

●

● ●●●
●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●
●

●
●●

●

●

●

●

●●

●
●●

●

●
●●

●

●

●

●
●

●

●●●
●

●

●
●●

●

●
●●

●

●

●

●
●●

●

●

●●●
●

●●●

●

●●
●

●

●

●●
●●

●

●

● ●

●
●

●

●

●
●

●
●

●●

●

●

●●

●
●

●
●

●●
●

●●●

● ●

● ●●
●●● ●

●

●

●●
●●

●

●

●
●

●

●●●●●●●
●

●
●

●
●

●

●●

●

●
●●●

●
● ●

●

●

●●
●

●●
●

●

●

●●

●●

●

●●

●

●

●

●

●●

●
●

●●●
● ●

●●●●

●

●

●
●

●●●●●●●●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●
●●●

●●●
●

●
●

●●
●

●●
●

●
●

●

●
●

● ●

●

●

●

●●
●●●

●●●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●
●●●●●

●●●

●●●●
●

●

● ●●●●
●●●

●

●
●

●
●

●

●●●

●
●

●

●

●

●

●

●
●

●
●●●

●
●

●●●

●

●
●●●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●●
●● ●

●

●●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●
●

●●●●
●

●●

●●
●

●

●

●

●

●●

●

●
●

●●●

●

●
●

●

●
●

●●●●

●

●
●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●
●●
●

●
●●

●

●●
●●

●

●

●

●●●

●
●

●●

●
●

●

●●

●
●

●

●●●
●

●
●

●
●

● ●●
●

●

●
●●

●●

●●
●

●

●●
●

●●
●

●

●

●
●●

●

●
●

●

●●●

●

●●●
●

●

●●

●

●
●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●●●
●

●
●

●

●

●

●

●

●

●●

●●

●●

●
●●●

●
●

●
●

●● ●●

●

●●●
●

●

●●●
●

●●

●
●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●●●

●

●

● ●●

●

●●●
●

●

●
●

●

●

●

●●

●

●
●●

●
●

●
●●●●

●

●

●●●●●
●

●●
●

●
●●●●●

●●
●●

●
●

●

●

●

●

●●●

●

●

●●
●●●

●●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●
●●●

●
●●

●

●

●●●

●

●●●
●●●●●

●
●

●

●
●●

●●

●●

●

●

●
●

●

●
●

●

●

●
●

●●●

●
●

●●●●

●

●
●

●

● ●●

●

●

●
●

●
●

●
●●●

●

●

●●
●●

●●●●
●

●
●●

●

●
●● ●●●

●

●

●
●

●

●●

●
●

●

●
●

●

●●●

●●

●

●

●●
●

●

●
●●

●
●

●

●●

●●

●
●

●

●
●●

●●
●

●●●
●

●

●
●

●
●

●
●

●

●
●

●●●

●
●

●●
●

●
●

●

●● ●●●
●

●

●

●

● ●

●

●
●

●
●

●●
●●

●●
●●●

●
●

●

●●

●

●
●

●

●

●●

●

●
● ●

●

●

●
●

●

●

●●●●

●

●

●●
●

●●

●

●●
●

●

●

●
●

●

●●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●●

●

●●

●●●●

●

●

●●
●

●●●●

●
●

●

●

●

●
●●

●

●●
●

●●
●

●
●●

●●
●

●
●●●●●

●

●
●

●
●

●

●● ●
●

●
●

●

●

●
●

●

●●●●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●
●

●●
●●●

●●
●

●

●

●

●●

●
●

●
●

●

●
●

●
●

●●

●

●

●●●●

● ●

●●

●
●●● ● ●

●
●

●● ●

●●

●
●

●
●

●●●●●●●●
●

●
●●

●
●

●●

●

●

●●

●

●
●

●●● ● ●●

●

●● ●

●
●

●
●

●
●

●●●
●● ●●●

●

●●
● ●

●

●●●●
●

●
●

●●●●

●
●

●
●

●
●●● ●●● ●●●

●
●

●●●

●●

●● ●● ●●

●

●
●

●●

●

●

●

●
●

● ●

●

●● ●● ● ●●

●

●

●

●●●
●

● ●
●

●● ● ●●●● ●● ●● ●● ●●● ●●● ●● ●

●

●
● ● ● ●●●●●

● ●
●

●

●●●●
●●

●
●●

● ●
●● ● ●●● ●

●

●● ●●● ●●● ●●●
●● ●

●
● ●●●●● ●● ●

●
●

●

●●●●● ●

● ● ●
●●●● ●●●

●

●●
●● ●● ● ●●● ●● ●●●● ●●

●
●●●

●
●● ●

●

●● ●● ●● ●● ●●

●

● ●
● ● ●●●

●
●●

●

●

●● ●
●

●●● ●● ●●●●●● ●
●●

● ●●●
●

●●●●

●

●● ●●

●

● ●●
●●

●●
●

●

●

●
●

●●

●

●●●

●

●●
●

● ●●● ●● ●●

●

● ●●●●●●●●● ●
●

●

●

●● ●● ●
●

●●
●

●●● ●
●

●●● ●● ● ●●● ● ●●● ●

●
● ●●●● ●
● ●

●

●
●

●● ●●
●

●● ●●● ●●●●●● ● ●●●●●●● ●●● ●●●
●

●
●

● ●●●● ●
●

●●●●
●●● ●●●●●● ● ●● ● ●●

●●● ●● ●●
●

●

●
●● ● ●●●● ●●●●● ●●

● ●● ●● ●●● ●●●
●

●●●●●

●

●●●

●

●
●● ●●

●
●●●

●● ●●●● ●●●● ●
●●

●●● ●●
●

●● ●● ●
●

●●

●

●●●●● ●● ●●●
●

● ●●●● ●●●●●
●

●
●

● ●●●●●●●●● ●●● ●●● ●● ●●

●

●●●● ●●
● ●

●
●●● ●●●● ●●● ●

●
●● ●●●

● ● ●●● ●

●

●●●●
●

●●
●

●●● ●●●●●
●

●● ●●
●

●●
●

● ●

●●●●●

●

●●●● ●
●

●● ●●● ●●
●●

●
●●●

●
● ●●●●●

●
●● ●● ●● ● ●

●●
●

●
●●●●●

●
●●●

●● ●●● ● ●●●● ●●● ●●●● ●●

●
● ●●●

●●●● ●
●

●●
● ●●

●
●●●

●

●●●
●●● ●● ●● ●● ●●●● ●● ●●●●●●

●
●●● ●●● ●

●●
●● ●●●● ●●

●●●
●

●● ● ●

●

●●●●●● ●● ●
●

●
●

●

● ●●● ●●●●●
●

●
●

●
●● ●●●●

● ● ●● ●● ●●●
● ● ●● ●
●

●● ●●● ●●●

●

●●●● ● ●● ●●●●●
●

● ●●●● ●●●
●●●● ●● ●●●●● ●●

●
●

●
●●●●●●● ●● ●●● ●●● ●●● ●●●●● ● ●●

●
● ●●●

●● ●●
● ● ●●● ●●

●
● ●●●● ●●●

●
●●● ●● ●●● ●● ●●

●

●●
●

●●●●● ● ●●●
●●

●
●● ●●●● ●●● ●●●● ●●

●

●

●

● ●●
●●●

●●●● ●●
●● ●●●●●
●●●●● ●● ●● ●●●

●
●●●●●● ●●●●●●

●

●

●●● ●●●
●

●
●

●

●

●●●● ●
● ●

●
●● ●●●●● ●●●

●
●●●

●
●●●● ●●●● ●

●
●

● ● ●●●

●

●●
●

●● ●●●●●
●

●
●

●●

●

●
●●●● ●●●

●
●●●● ●●●● ●●

●
●

●
●

●●
● ● ●

●
●●●●●

●

● ● ●●●●● ●●●●

●

● ●● ●●
●

●●●

●

● ●●●
● ●

●●●● ●●●●● ●●●● ● ●● ●●● ●●●●●●● ● ●●●● ● ● ●

●

● ●
●

● ●● ●

●
●

●●
●

●●● ● ●● ●●● ●● ● ●
●

●●● ●●● ●
●

●●●●
● ● ●●

●
●●●●●●●●
●●●● ●●

●
●●●●●●●●● ●●●●●●●

●

●● ●●●●● ●● ●●● ●
●

● ●
●

●●● ●
●●

●

●

●

●● ●
●

●●●● ●
●

●●●●●●●●●●● ●●
●

● ●● ●● ●● ●● ●●●●●●● ●● ●

●

●●●●
●

●●● ●● ●●● ●● ●● ●●

●

●●●
●● ●● ●●● ●●●● ●● ●●●● ●●

●
●●

●
● ●●●● ●●●

●
●●●●● ●

●
●

●

●●● ●●●●●● ●●● ●

●

●●●
●

● ●●
●

●●●●
●●●●
●●● ●●

●
●

●●●
●

●●●● ●●● ● ●
●

●●●●●
●

●●● ● ●●● ●● ●●●●
●

●

●
●● ●● ●●

●
●

●
●●●● ●

●● ● ●●●●
● ● ●●●●● ●

●
●

●●
●

●● ●●●●
●●● ●● ●●● ●●●● ●●●● ●●●●●●● ●●●● ●● ●

●

●●●
● ●

●●● ●
●●

●

●● ●●●●
●●●● ● ●●●●● ●● ●●●

●

●

● ● ●
● ● ●

●

●●●●
●

●●●●● ●●●●●● ●
●

●●
●●

●
● ● ●

● ● ●●●
●

●
●●

●

●●
●

●
●

●●●●●●
●●●●● ●

●
●

●

●
●● ●●●●●

●
●● ●● ●

●

●●● ●●●
●

● ●●
●

●● ●●●●
●●●

● ●●
●● ●●●●● ●●● ●●●●●
●●

●

●
●

●● ●

●

●● ●

●

● ●●●●● ●●●● ●
●

●●●● ●●● ●●●● ●● ●●● ●●
●

●●● ● ●● ●●●●● ●●●●● ● ●

●

●●●●
●●

●●●●●●
●

●●●

● ●
●●●● ●●●

●
●

●
●●

●

●

●●●● ●●
●

●●
●

●●●●
●

● ●●●●●● ●●● ●●● ●● ●
●

●●●●●● ●
● ●●

●

●
● ●● ●●●

●

●
●● ●

●

●●●●●● ●● ●●●●
● ●●●● ●

● ●●
● ● ●●

●
●

●
●●

●
●● ●●● ●

●

●

●

●
●

●●● ●

●

●●
● ● ●● ●● ●● ●●● ●● ●● ●●●

●
●

●●

●●

●

●●● ●●●● ●●●●● ●●
●

●
●

●

●

●● ●

●

●●
●

●●●●●● ●● ●●●●●●● ●

●
●●●

●

●●●●●●●●●●●
●

●●
●

●●●
●

●● ●●●
●

●● ●● ●●
●

●
●

●●●
●

●● ●●
●

●

●● ●●● ●●●
●

●● ●●●
●●●

●

●
●

●● ●● ●● ●● ●●●● ●●●
●

●
●

● ●● ●●●●● ●●●

●

●●●

●

● ●●
●

●●●● ● ●● ●●
●

●

●●●●● ●● ●●●●● ●● ●●●
● ●●●●●●●● ●●

●
● ●●●

●●●●
●

●●●● ● ●
●

●● ●● ● ●

●

●●●● ●
●

●●●●
●

●●●

●

● ● ●
● ● ●●

●

●● ●● ●●● ●●●● ● ●
●

●

●

●●
●

● ●
●

●
●

●

●
●● ●●●

●
●● ● ●●●

●●●●●●●● ●●●●●●● ● ●●● ●

●

●
●

●
●

● ●●●
●

●

●● ● ●●● ●

●

●●●●●

●

●
●

●● ●●
●●● ●● ●●● ●● ●●●●●

●● ●

●

●●●●●●

●

●● ●
●● ●

●

●●● ●● ● ●●●●●●●● ●
●

●●● ●●●●●●
● ●

●
● ● ●

●

●

●

●● ●●● ● ●●●●●

●●

●● ●●●● ● ●●●●

●

●●

●
●

●●
●●●● ●●● ●● ●

●
●

● ● ●

●

●● ●●●● ●●● ●
● ● ● ●

● ●
●●● ● ●●

● ● ● ●● ●●● ●●●

●

●● ●
●

●●
●

● ●●

●
●

●●
●●●●●●

● ●●●● ●●●●● ●●● ●● ●
●

●●●●●●● ●

●

●
● ● ● ●●●●● ●●

●
●●●●●●

●
●● ●●●● ●●●●● ●

●

● ●●●
●●

●●● ●●
● ●●●

● ●
●

●●

●

●●●● ● ●●●●
● ● ● ● ●●● ●●●

●

● ●

●

●
●

●●●●● ●● ●●

●

● ●
●

●
●● ● ● ●●

●
● ●

●
●

●●
●

●
●

●● ●●● ●
●

●●●● ●●● ●●●
●

● ●●●

●

●●

●

● ●●● ●●● ●●
●●

●

●

●
● ●●

● ● ●●
●

●
●● ●

●
●●●●●

●●●●

●

●●● ● ●

●

● ● ●●●
●

●●●● ●● ●
●

●●●
● ●

●
●

● ● ●
●

●●
●

●● ● ●●●●

●
● ●● ●●●● ● ●●●● ●

●
●

●●●●●

●

●● ●●●

●

● ●●● ● ●●●● ●
● ●

●●●●●
●● ●●●●●●●

● ● ●●●● ●● ● ●
●

●
●

●● ●● ●●●●●●●● ●● ● ●●●
●

●● ●
●

● ●●●
●

● ●●●
● ● ●

●
●● ●● ●● ●● ●●● ●

● ●●●● ● ●
●

●

●

●●● ●● ●●● ●●●●
●●

●
●●●●

●●●
●● ●●

●
● ● ●●●●● ●●●●●

●

● ●● ●● ●●●
●●

●

●● ●●●●
●

●

●

● ●
●

●

● ●●●
●

●●
●

●● ●●
●

●

●● ●●●

●

●●
●●●

● ●● ●●● ● ●●● ●
●

● ●● ●●●

●

● ●
●

●● ●● ● ●● ●●
●

●● ●
●

●
●● ●● ●● ● ●● ● ●●●●●●

● ● ● ●
●

●●
●

● ●● ●
●

●●●● ●
●

●●●● ●● ●
●

●●●
●

●
●

●

●
●

●
● ●●●●●

●
● ●

●

●

●
● ●● ●●●● ●●● ●

●●

●

●

●

●●●●

●

●
●●●

●
●

●

●

●●

●

●● ●●
●

●●
●

●
●●●

●
●

●●●
●

●●● ●
● ●●

●●
●

●● ● ●● ●●
● ● ●●●

● ●
●

●●
●●

●●●
●

●●● ● ●●
●

●●
●

●●●
●●●●●●● ●● ●●●

●

●

●

●● ●●
●

●●
●

●● ●● ●●● ●●●● ●●● ●● ●●●● ●
●

● ●
●

●●●● ●
●

●

●
●●

●●● ●
●

●
●

●
●

●● ●●

●

●● ●●●●●●●●●●
●

●

●

●
●

● ●●●● ●● ●● ●●

●

●
●● ●●● ●●●● ●●●

●

●●

●

●● ●● ●● ●●

●

●●● ●● ● ●●●●●● ●● ●●
● ●

●
● ● ●●●

● ●
●● ●● ●

●●
●● ●

●
●● ●●

●

●●●●●

●

●
● ● ● ●●●

●
●

● ●● ●●●●● ●● ●●●●
●

●●●●●●●
●●

● ●●
●● ●● ● ●●● ●

● ●● ●● ●●●●
●

●●
● ●

●
●●●● ●

●
●●● ●●

●

●
● ● ●
● ● ●

●
●

●

●●● ● ●●

●

● ●● ●●
●● ●●● ●●●●●

●

● ●●● ●

●

●
●● ●●●

●● ●●●● ●
●●

●●●
●●●

● ● ●
● ● ●●●
● ●●

●
●●

●
● ●

●
●

●

●

●

●

●

●
●

●●●●

●

● ●●
● ● ●

●
●●

●●
● ●●

●
●

●
●●●●●

●
●

● ●●●● ●
● ●

●●

●
● ●●

●
●

● ● ●

●●

●

●

●●●● ●
●

●●
●

●

●

●●● ●
●

● ●● ●● ●●

●

●
●

●
●●

●●● ●● ●● ●●

●

●●●
●●●●

●
● ●●

●
● ●●

●
●

● ● ●● ●

●

●●●● ●●●
●

●●●●
●●● ●●

●

●

● ●
●●

●
●

● ● ●● ●●

●

● ●●
● ● ●●●●●

●●●
● ●

● ●●●●● ● ●
●

●●●●● ●● ●
●

●●●●●●● ●
● ● ●●

●

●●
●

● ●●● ●● ●●

●

●●●
●● ●

●
●

●●●●
●

●●
●

●●

●

●●
● ●

●●●● ● ●●●●●
●

●● ●●●●●●●●
●

● ● ●
●

● ●●● ●

●
● ●●● ●

●
●●●● ●●●● ● ●●● ●●● ●

● ●

●

● ● ● ●
●

●
● ●● ●●●●●●● ●
● ●● ●●

●

●
● ●

●
●●

●● ●● ●
●

●
●

●

●●● ●●● ●
●

●
●

● ●
●

●

●

● ● ●●●
● ●●●●●●●●

●●●●●

●

● ●●●●●●●● ●●●●
●

●●●
●● ●

●

●

●
●

●● ●●●●
● ●

●●●
●

●●●●● ●

●

●

●

●
●

●●●● ● ●●
●

●● ●
● ●

●●
●

●
● ●

●
●●●● ● ●●

●
●●● ●● ●●●● ●

●

●● ●

●

●
●● ●●

●

●
●

●●●
●

●

●● ●● ●● ●
●

●● ●●
●

●

●
●

●● ● ●
●●

●●
●●

●

●● ●●●
●● ●●●●●●● ●●●●

●
●●

●●
●

●● ●●●●
●●

●
● ●●●●●

●
●●●

● ●●●
●

●● ●●●
●●

●
●●

●●●

●

●●
●●● ●● ●●● ●●●●

●

●

●

●●●● ● ●●
● ●

●
●●

●●
●

●●●● ● ●● ●● ●● ●
●

● ●●
●● ●●●

●
●●● ●● ●

●

●
● ●●●

● ● ●
●●●

●
●●●●● ●●

●
●● ●●● ●

●

●●●●
●

●
●● ●

●
●●● ●●●

●

●
●

●

●

●●● ●●●● ●●●● ●●●● ●● ●●

●

●●●●
●

●●● ●●●
●

●
●●●●
●● ●● ●

● ●●
●

●
●●●

●

●
● ●●

● ●●●● ●
●● ● ●
●

●●
●

●●●● ●● ●●●● ●
●

●●●●●● ●●● ●●●●●●●● ●●● ●

●

●
●

●
●●●

●

●

●● ●●●●● ●● ●

●
●

●●

●
● ●

●●●● ● ●●●● ●●●●
●●●●

●●● ●●●●● ●●

●
● ●●

●●
●●

●
●

●● ●
● ●

●
●

● ●
●●●

● ● ●●●●

●

● ●
●

● ●●
●

●

● ●● ●● ●●● ●

●

●●●● ●●●● ●
● ●●●

●●● ●●●●
●

●● ●
●●

●●

●

●●

●

●●● ●●

●
● ●●●

● ● ●●● ●
●

●●
●●

●●●
● ●●●● ●●●● ●

●

●●
●●

●●
●

●●
●●●

● ● ●●● ● ●
●

●● ●●●●
●

●●
● ●

●
● ●● ●●● ●●●● ●●●●● ● ●●

●
●●

●

● ●●

●

● ● ●● ●
●● ●

●

●●●●●
●

●● ● ●●
● ●●● ●

●

● ●
● ●●●

●● ●●
●

●●
● ●●

●
●

●
●

●

●
●●●●●●
●

●●
●●●●

●

● ●●● ●●●●

●
●

●
●●

● ●●

●

●●● ●●● ●●●●● ●● ●●●●●● ●●● ●

●

●● ●●●●
●

● ● ●
●

●●●●●● ●● ●
●

●
●

●● ● ●
●●

●●●

●

● ●● ●●● ●●● ●●● ●

●

●●●
●●● ● ●● ●● ● ●●●

●

●●●●
● ●

●●● ●●● ● ●
● ●

● ●●● ● ● ●● ●● ●●●● ● ●●● ●●● ●●● ●● ●● ●● ●● ●●●● ●●● ●●● ●●●●● ● ●●●● ●● ●●●●●● ● ●● ●●● ●● ●●●●●● ● ● ●●●●● ●●●● ●●● ● ●● ●● ●●●● ●●● ●
●

● ●● ●●● ● ●●● ● ●● ● ●● ● ●
● ●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ● ●● ● ●● ●

● ● ●●● ● ●●● ● ●● ● ●●●●●● ●● ● ●●●● ●●● ●●● ●● ● ●● ●● ●●●● ●
●

●● ●● ●●●●●● ●●● ● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●●●● ●● ●●● ● ● ●● ● ●● ● ●● ●● ●●● ● ● ●●● ●● ● ●● ●● ● ●● ●●● ●● ●●● ●
●

●● ●● ●● ●● ● ●●● ● ●●● ●●●● ●● ● ● ●●● ●●●●●● ● ● ●●●● ●●● ●●● ●● ● ●● ●● ●● ●● ●●

●

● ● ●●● ●●● ● ●●●● ●●● ● ●●● ●● ● ●●● ● ●●● ●●●
●●● ● ●●● ●● ●● ●● ●●●

●●● ● ●●●

●
●● ● ●●● ●●● ●●●● ●●●●● ●● ●●● ● ●● ● ●● ● ●●●● ●● ●● ● ●

●
●

●● ●● ● ●● ●● ● ●●● ●● ●● ● ●● ●●● ●● ●● ●● ● ●
● ● ● ●● ●● ●● ●●● ● ●●

●
●●● ●● ● ●● ●●● ●●● ●

● ● ●●● ● ●●● ● ●● ●● ●● ●
●

● ● ●●● ● ●● ● ●●● ● ●●●● ●●●● ●● ●● ●●● ●● ● ● ●● ●● ●● ●● ●●● ● ●●● ● ●●● ●● ●●● ● ●● ● ● ●●● ●● ●● ● ●● ● ● ●● ● ● ●
●● ● ●●● ● ●

●● ●●● ●● ●
●

●● ● ●● ● ●● ● ●
●●● ● ●

●
●● ●● ●● ●● ●●● ●● ●● ●●● ●●

●● ● ● ● ●● ●●● ●● ● ●● ●● ● ●●●● ●●● ●● ●● ●● ● ●●● ●●● ●●● ●● ●●● ●
●

● ●●● ●● ●●●● ●

●

●
●● ●●●● ●● ●●●● ●● ●●● ● ●● ●● ●●●● ●● ●● ●● ● ●●● ●●

●
● ● ●●● ●●● ●●●● ●●●● ●● ●● ●●●● ●●●

●
● ● ●●●● ●● ●● ●●●● ● ●

●
●● ●●● ●●●

●
● ●●● ● ●●● ● ●● ●●● ●● ● ● ●●● ●● ●●●●●● ●

●
●● ● ●● ● ●● ●●●●●● ● ●●● ●● ● ●● ● ●●● ●

●●●● ●●● ●● ●● ● ●● ●●● ●●● ●●● ● ●●●● ● ● ●● ●●● ●●●● ● ●●● ●●● ● ●●
●

●● ● ● ●● ● ● ●●
● ● ●●●● ●● ● ● ●● ● ●● ●● ●● ●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ● ●● ●● ● ●●●● ●●● ●● ●●● ● ●●●● ● ●● ●● ● ● ●● ●● ●● ● ●●● ●● ● ●● ●●● ● ● ●● ●● ●●●● ● ● ● ●●● ● ●●● ●● ●●● ●● ●● ●● ●●● ● ●● ● ●● ●●● ●●● ● ● ●● ●● ●●● ●●● ●● ● ●● ●●

●

●● ●● ●● ●●
●

●● ●● ●●● ●●● ●●●●● ●● ● ●●●● ●● ●● ● ●
●● ● ●

●
●●● ●●● ●

● ● ●●● ● ●● ●●● ●●● ●●● ●● ●● ● ●● ●● ●● ●●● ●●● ●● ● ●●●● ● ● ●● ● ●
●● ●●● ● ●● ● ●●●● ● ● ● ●●● ● ● ●● ●●● ●●● ●● ●● ●● ●

● ●

●

●●● ●● ● ●●● ●●● ●●●● ●
●● ● ●●●● ●● ● ●● ●●●● ● ● ●●● ●● ●●●● ●●● ●● ● ●●●● ●●● ●● ●● ●● ●●●● ● ●● ●

●
● ● ●● ● ●● ●●● ●● ●● ●●

●● ● ● ●●
●

● ● ●
● ●● ●● ●● ●● ●● ●●●● ● ●●

●
●●● ● ●● ● ●●●● ● ●● ●●

●● ●●● ●● ●●●● ● ●● ●● ● ●●●● ● ●
●

●● ●
●●●●● ● ● ●

● ● ●●●●●●● ●● ● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●●
●

● ● ● ●●● ●● ●●● ●● ●● ●● ●●●● ● ●●● ●● ● ●● ●● ●●●●●● ●● ● ●● ●● ●● ●● ● ● ●●●●● ●● ● ●●● ●● ●●● ● ●●● ●● ●●●● ●● ● ●● ● ● ●●● ●● ● ●●●● ●● ●● ●● ● ● ●● ●● ● ●●● ●● ● ●● ●●● ●● ●● ●● ● ●● ●● ●● ● ●●●●
●●● ● ●● ●●● ●●●●

●
● ●● ● ● ●●

●
●

●

●● ●
●

● ● ●● ● ●●
●

● ●● ●●
●

●● ● ●● ● ●●●●● ● ● ●●● ●●● ●● ● ●● ●●●● ● ●● ●
●

● ●● ● ● ● ●●● ●●●● ● ● ● ●
● ●●●●● ●● ●● ●● ●●●● ● ●●● ●● ●●● ●●●● ●●● ●● ●● ● ●

●
●●● ●●● ●● ● ●●●● ● ●● ●●● ●● ●● ●●● ●●

●
●● ●● ●●● ● ●●●●

●

●● ●● ●● ●●

●

●● ●● ●● ●● ●●
●

●
● ● ●● ●●●● ● ●● ●● ●● ●●

●

●● ●●●● ● ● ●● ●● ●● ●●● ●● ● ● ●● ●●●● ● ●● ● ●●● ●
● ● ● ●●● ● ●● ● ●●●

●

● ●● ●●● ●● ● ●●● ●● ●●● ●● ● ●●● ●●● ●● ●● ● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ● ●

●
●● ●● ● ● ●●● ●●

●
● ● ●●●● ● ●●● ●●● ● ●●●● ● ●● ●● ●●●

●
● ●●● ●● ●● ●●●● ● ●

●
● ●● ●● ●● ● ●● ● ●●●●● ● ●●● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

● ●

●

● ●
●

●●

●
●

●

●

●
●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●●

●

●

●●●
●

●

●
● ●●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

● ●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●●

●

● ●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●

●

●
●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

● ●
●

●

●

●●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
● ●●

●

●
●●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●●

●●
●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●●
● ●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●●●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●
●●

●

●

●
●●

●

●

●

●
● ●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●● ● ●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

● ●

●
● ●● ●

●

●

●
●

●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●
●

●●
● ●

●

●

●
●

●
●●

●

●●
●

●

●

●

●
●

●

●

●

●

●●● ●●
●

●●

●

●● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

● ●

●

● ●●

●

●

●
●

●
●

●●

●

●

●
●

●●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●● ● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●●
● ●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●
●●

●

●
● ●

●

● ●
●

●●
●

●●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
●●● ●

●

● ●

●

●

●

●

●
●

●●

●

●

●

● ●

●
●

●

●

●

●
● ●

●
●

●
●

●● ●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

● ●
● ●●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●● ●

● ●

●●● ●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●● ●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

● ●●

●

●●

●

●
●

● ●

●

●●
●

●

●
●

●

●

●

●

●

●
●

● ● ●
●

●

●
●

●●

●

●
●

●

●

●●
●

●

●

●●

●

● ●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●
● ●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●●
● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●
●

● ●
●

●
●

●●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

● ●

●

● ●
●

●●

●●

●

●

●
●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●

●

●●●
●

●

●
● ●●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●● ●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

● ●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●
●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●●
●

●
●●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●●●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●● ● ●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
● ●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●

●● ●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●●

● ●

●

●

●
●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

● ●●

●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
● ● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●●
● ●

●

●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●
● ●

●

● ●

●

●●
●

●●

●

●
●

●

●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●●
● ●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●
●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

● ●
● ●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●● ●

● ●

●●● ●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●● ●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●
●●

●

●●

●

●
●

● ●

●

●●
●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

● ●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●
● ●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

Censoring Individuals Event Individuals
R

ew
eighing

M
ean Im

putation
D

eviance R
esidual

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0

100

200

300

400

0

2

4

6

8

−1

0

1

2

3

Observed Time T

Tr
an

sf
or

m
ed

 T
im

e
Y

Figure C.2: Transformed time-to-event response Y , obtained from reweighing, mean imputa-
tion, and deviance residual, vs. the observed time T for censoring and event individuals in
the FLCHAIN dataset (Kvamme et al., 2019).

113

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Neural Networks for Scalar Input and Functional Output
	Introduction
	Methodology
	Neural Network with Functional Response: Mapping to Basis Coefficients (NNBB)
	Neural Network with Functional Response: Mapping to FPC Scores (NNSS)
	Modification to the Objective Function (NNBR and NNSR)
	Irregularly Spaced Functional Data
	Roughness Penalty

	Computational Complexity
	Real Data Application
	Simulation Studies
	Generating Data
	Results

	Conclusions and Discussion

	Functional Autoencoder for Smoothing and Representation Learning
	Introduction
	Functional Autoencoders (FAEs)
	Motivation: Autoencoders for Continuous Functional Data
	Proposed Model: Autoencoders for Discrete Functional Data
	FAE as a Functional Data Smoother
	FAE for Irregularly Spaced Observations

	Connection with Existing Models
	Relation with FPCA
	Relation with AE

	Simulation Studies
	Simulation Setup
	Results

	Real Application
	Conclusion

	Simplified Survival Neural Network for Time-to-Event Prediction
	Introduction
	Methodology
	Step 1: Time-to-Event Outcome Transformation under Right-Censoring
	Step 2: Feature Extraction with Neural Networks
	Step 3: Individualized Survival Prediction

	Simulation Studies
	Scenario 1: Proportional & Linear
	Scenario 2: Proportional & Nonlinear
	Scenario 3: Nonproportional & Nonlinear
	Computation Speed with Different Loss Functions

	Real Applications
	Conclusion

	Conclusion and Future Work
	Bibliography
	Appendix Appendix to Chapter 2
	List of All Notations
	Model Configurations in Real Application

	Appendix Appendix to Chapter 3
	Simulation Studies: Additional Details
	Model Configurations
	Statistical Results

	Real Application: Additional Details
	Hyperparameter Tuning
	Model Configurations
	Statistical Results

	Appendix Appendix to Chapter 4
	Time Splitting
	Additional Details for Simulation Studies
	Scenario 1: Proportional & Linear
	Scenario 2: Proportional & Nonlinear
	Scenario 3: Nonproportional & Nonlinear

	Additional Details for Real Application
	Additional Figures

