
Single-Shot RGB-D Grasping of Objects Using a
Multi-finger Robot: A Grasp Rectangle Approach with

Post-Processing

by

Pouya Samandi

B.Sc. (Mechanical Engineering), IUST, 2019

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Applied Science

in the

School of Engineering Science

Faculty of Applied Sciences

© Pouya Samandi 2024

SIMON FRASER UNIVERSITY

Summer 2024

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

ii

Declaration of Committee

Name:

Degree:

Title:

Committee:

Pouya Samandi

Master of Applied Science

Single-Shot RGB-D Grasping of Objects Using
a Multi-finger Robot: A Grasp Rectangle
Approach with Post-Processing

Chair: Jie Liang
 Professor, Engineering Science
Kamal Gupta
Co-Supervisor
Professor, Engineering Science

Mehran Mehrandezh
Co-Supervisor
Professor, Engineering and Applied Science
University of Regina

Mike Hegedus
Committee Member
Lecturer, Engineering Science

Mehrdad Moallem
Examiner
Professor, Mechatronic Systems Engineering

iii

Abstract

 Grasping objects with robots is a complex challenge in the field of robotics. This

research introduces a fast and dependable method for picking up objects of varying

shapes and colors. The primary aim is to develop a flexible approach capable of

handling a wide array of different objects. The proposed method is designed to function

when objects are placed on a table, and the robot is positioned either above or in front of

them.

 Building upon an existing technique called the grasp rectangle, we employ a trained

network to enhance the way we grasp objects. What sets this apart is our ability to

expand the network's capabilities to work with robots equipped with multiple fingers. To

achieve this, we incorporate a post-processing step into the network.

 Our experiments validate the effectiveness of our approach. We achieve a successful

object grasp rate of 94.4% when viewed from above and an accuracy of 95.6% when

grasping from the side. These findings highlight the considerable potential of our method

in addressing the challenging problem of robotic grasping, particularly in scenarios

involving different object placements and colors.

Keywords: Robotic grasping; multi-finger robotic hand; deep learning; grasp rectangle

method; object detection; object segmentation

iv

Dedication

I dedicate this thesis to the unwavering pillars of my life:

 To my beloved mother, Mahsa Fakhimi, whose boundless love, sacrifices, and

unwavering support have been the guiding forces shaping my journey. Your strength and

encouragement have been my constant inspiration.

 To my father, Hossein Samandi, whose wisdom, resilience, and encouragement have

been a source of motivation and a reminder that challenges are but stepping stones to

success.

 This work stands as a tribute to the enduring impact of family and mentors, whose

influence has shaped not only my academic endeavors but also the person I have

become.

v

Acknowledgements

 Special thanks to Dr. Kamal Gupta and Dr. Mehran Mehrandezh for their invaluable

guidance, mentorship, and scholarly insights that have illuminated my academic path.

Your dedication to knowledge and commitment to excellence have left an indelible mark

on my intellectual pursuits.

vi

Table of Contents

Declaration of Committee .. ii
Abstract .. iii
Dedication .. iv
Acknowledgements ... v
Table of Contents ... vi
List of Tables ... viii
List of Figures... ix

Chapter 1. Introduction .. 1
1.1. Related works .. 1

1.1.1. Analytical grasping methods .. 1
1.1.2. Deep learning and geometric shape-based grasping methods 3
1.1.3. Reinforcement Learning in robotic grasping ... 5
1.1.4. Grasp Rectangle method ... 6
1.1.5. Base method, GR-ConvNet .. 7

1.2. Contributions of this thesis ... 9

Chapter 2. Problem and Hardware Description .. 11
2.1. Problem description ... 11
2.2. Objects to be grasped ... 14
2.3. Setup explanation .. 17

2.3.1. Kinova Gen-3 robotic arm .. 17
2.3.2. SCHUNK Dextrous hand 2.0 (SDH 2.0) ... 18

Chapter 3. Grasp Strategy ... 20
3.1. Point clouds to depth image/map ... 22
3.2. Calibrating depth and RGB image ... 24
3.3. Object detection with YOLO .. 25
3.4. Grasp the rectangle and extract the spatial pose of the end-effector from it 27
3.5. Tuning grasp rectangle method and extracting Grasp’s pose parameters 28

3.5.1. Finding corresponding edges from the segmented object 31
3.5.2. Grasp center tuning .. 32
3.5.3. Calculating the contact points on the object from the image 35
3.5.4. Choosing the best contact points ... 37
3.5.5. Finding the grasp width .. 40
3.5.6. Finding the height of the object .. 41
3.5.7. Grasp type determination based on grasp width and object’s height 43
3.5.8. Determining the End Effector distance from the grasp center 45
3.5.9. Summary of Section 3.5 ... 46

3.6. Different Grasp Types ... 48
3.7. Controlling finger movement and pressure using tactile feedback 51

Chapter 4. Experimental results .. 53

vii

4.1. Grasp rectangle evaluation .. 53
4.2. Accuracy of YOLO network for detecting objects ... 54
4.3. GR_ConvNet without any post-processing .. 55

4.3.1. Unbalanced pressure ... 55
4.3.2. Missed Contact .. 56
4.3.3. Slippage due to the anchor force .. 57

4.4. Grasping objects viewing from the top and viewing from the side 58
4.5. Limitations ... 62

Chapter 5. Conclusion and Future Work .. 65

References ... 67

Appendix A. Video Summary of Thesis and Object Grasping Demonstration 74

Appendix B. Files and Code ... 75

viii

List of Tables

Table 3.1: Defining Grasp type, based on the height of the object in the z direction and
width of the grasp ... 44

Table 3.3: distance between end-effector and grasp center for different scenarios of
grasping. .. 45

Table 3.4: joint speed compares to Nominal-Speed (NS) value for each joint................ 49

Table 4.1: Comparing the output of networks .. 54

Table 4.2: Output of different methods on real-world experiments. 60

ix

List of Figures

Figure 1.1: Grasp Rectangle method and outputs. Outputs are five parameters that
define a rectangle in a plane [30]. .. 6

Figure 1.2: GR-ConvNet network architecture proposed in [36]. Input is an RGB-D image
and output is the grasp rectangle parameters. ... 8

Figure 2.1: Schunk SDH robotic hand attached to the Kinova kortex Robot gen3 robotic
arm. The robot is viewed from the side grasping configuration. 13

Figure 2.2: Schunk SDH robotic hand attached to the Kinova kortex Robot gen3 robotic
arm. The robot is in the view from the top grasping configuration. 13

Figure 2.3: Objects we tend to grasp viewing from the side ... 15

Figure 2.4: Objects we tend to grasp viewing from the top .. 17

Figure 2.5: Kinova gen3 robotic arm with 7 degrees of freedom. 18

Figure 2.6: Schunk SDH robotic hand with 3-fingers [45] .. 19

Figure 3.1: A flowchart of the chapter 3. .. 21

Figure 3.2: a) a drill and a can in Simulation and b) point cloud presentation of objects
[14] ... 24

Figure 3.3: Depth map before and after noise cancelation filter of a can from the top
view, a) noisy data b) denoised depth .. 24

Figure 3.4: calibrated RGB and Depth Image. a) shows the RGB image, b) corresponds
to calibrated Depth image after trimming and shifting and c) shows the
depth image without any calibration. .. 25

Figure 3.5: Using YOLO to detect objects ... 27

Figure 3.6: Top-left shows an object detected by YOLO. We use the bounding box and
grabCut method to segment the object as shown in figure 12. c. Figure
12. b shows an object and grasp rectangle created by the GR-ConvNet
network. We use this rectangle and grabCut method to segment the
object from viewing from the top as shown in figure 12.d. 30

Figure 3.7: The Flowchart for our search-based processing (we call it SB-Convnet). It
extracts the required grasp parameters for each view. 31

Figure 3.8: a) shows the segmented object and b) shows the edge of the object created
by the canny method. ... 32

Figure 3.9: Calibrating grasp center along the x-axis ... 33

Figure 3.10: Calibrating grasp center along the y axis ... 33

Figure 3.11: projection of fingertips and palm center (grasp-center) on the ground from
the third-person view. ... 36

Figure 3.12: projection of fingertips and palm center (grasp-center) on the ground from
the camera view. .. 37

Figure 3.13: normal direction of contact points .. 38

Figure 3.14: Estimated contact points and the best finger directions that minimize the
normal difference for all three fingers ... 40

Figure 3.15: Extracting width from contact points .. 41

Figure 3.16: Object height definition .. 43

x

Figure 3.17: The blue rectangle represents the raw output of the network and the pink
rectangle shows grasp after calibration in the camera view. 47

Figure 3.18: a, c, and e present before grasp and b), d), f) present grasps after execution
for lateral, tripod, and power grasp respectively. 50

Figure 4.1: a) Unequal force will result in the object's fall down and unsuccessful grasp
attempt and b) unbalanced pressure will move the object to another
position and result in unsuccessful grasping. ... 56

Figure 4.2: Unsuccessful grasp because one finger missed the object while it was
closing. ... 57

Figure 4.3: Unsuccessful grasp due to the slippage. ... 58

Figure 4.4: Some examples of successful grasps. ... 62

Figure 4.5: An example of objects that our search based method might fail to grasp 63

Figure 4.6: Some examples of objects that the GrabCut method failed to segment them
from the background. This method is sensitive to white colored objects. 64

1

Chapter 1. Introduction

 The future of manufacturing is undoubtedly tied to robotics, as these incredible

machines have the ability to automate tasks that were once daunting or even impossible

for humans. A captivating challenge in the world of robotics is to develop effective grasping

techniques. Engineers have created various robotic hands, each with its unique shapes

and Degree of freedoms [1]. Over time, researchers have explored different approaches,

such as analytical methods [2], [3], geometric shape-based grasping [4], and machine

learning-based methods [5]. However, many of these methods were limited to specific

tasks or objects, lacking the flexibility required for handling diverse scenarios.

 In recent years, the focus of research has shifted towards creating grasping systems

with greater adaptability, enabling robots to handle a wide range of objects, regardless of

their shapes and sizes. To achieve this, machine learning algorithms have emerged as

invaluable tools for improving grasp accuracy and reducing processing time. By

harnessing the potential of machine learning, researchers can train algorithms to elevate

robotic grasping capabilities, making manufacturing processes more efficient and

productive [6], [7], [8].

 Nonetheless, it is essential to approach machine learning with caution, considering the

wealth of knowledge developed before its prevalence. While machine learning algorithms

have shown impressive results in controlled experiments, they may not always be entirely

reliable, as their performance heavily relies on the quality of the dataset and training

process [9].

1.1. Related works

1.1.1. Analytical grasping methods

 Analytical grasping methods also known as geometry-based method, have been a

prominent research focus in robotics for achieving reliable and efficient grasping of

objects. These methods utilize shape matching and geometric reasoning to determine

suitable hand configurations and contact points for successful grasps using mathematical

models and analytical approaches to determine optimal hand configurations and contact

points for successful grasps using mathematical models and analytical approaches.

2

Grasp Quality Metrics: One fundamental aspect of analytical grasping methods is the

definition and computation of grasp quality metrics. Various metrics have been proposed,

such as force-closure, form-closure, wrench-based, and friction-based metrics [2], [3]. In

their work [10] presented a comprehensive survey of grasp quality metrics, providing

insights into their mathematical foundations and practical applications.

 In addition, the method that has been proposed by [11] uses triangular planes to analyze

the contact points and corresponding normals. In [12], the authors tried to minimize the

computational time for force closure using predefined constraints. Also, in [13] the authors

decreased computational time by estimating the grasp wrench solely for contacts that align

geometrically with parallel jaws.

Template-Based Approaches: Template-based approaches are one category of

analytical methods. These methods utilize predefined hand configurations or templates

that are designed or learned to match the shape of the object being grasped. For instance,

[14] proposed a template-based grasping method where a library of grasp templates was

created based on known object shapes. The template that best matched the object's

shape was selected for grasp planning and execution.

Model-Based Approaches: Model-based approaches aim to construct a 3D model of

the object and perform grasp planning based on this model [15] presented a model-

based grasping system that utilized depth data from a range sensor to reconstruct the

object's geometry and they tend to grasp object relied on the table. Grasp planning was

then performed by analyzing the geometric properties of the reconstructed model, such

as surface normal and curvature.

 Additionally, spatial features have been extracted from household objects captured

from a single viewpoint, facilitating their classification into various object primitives

conducive to grasping [16]. These primitives offer a heuristic simplification of an object's

shape, representing it with predefined geometric forms like cubes, cylinders, or spheres

[17]. Objects may be represented by a single primitive or broken down into sub-

primitives [18], [19].

Shape Matching and Feature Extraction: Shape matching is a fundamental

component of analytical methods. Various techniques have been developed to extract

features (Object’s surface, normals and e.g.) from object shapes and match them to

3

hand configurations. [4] is a shape context-based approach for grasp synthesis, where

local shape descriptors were computed and matched to hand templates to determine

suitable grasps.

Object Recognition and Pose Estimation: Accurate object recognition and pose

estimation are crucial for an analytical method. [20] introduced a method that combined

shape-based object recognition with pose estimation using RGB-D data. The system

utilized a segmentation method to detect object and estimate the best grasp, to grasp the

objects.

Limitations and Challenges: analytical methods face challenges in handling objects with

complex shapes, occlusions, or pose variations. These methods rely on precise

information about the object's geometry and friction coefficients. Also, they often rely on

accurate object recognition and pose estimation, which can be challenging in cluttered

environment. Furthermore, achieving real-time performance and adaptability to novel

objects remain ongoing research challenges.

 As a result, analytical methods offer a promising avenue for enhancing robotic grasping

capabilities by leveraging the geometric properties of objects. Template-based and model-

based approaches, along with shape matching and feature extraction techniques,

contribute to enabling more robust and adaptive grasping. Incorporating learning-based

approaches further enhances the grasp synthesis process. However, challenges such as

handling complex object shapes, real-time implementation, and generalization to novel

objects require further investigation. The combination of analytical methods with other

grasping approaches, such as deep learning-based methods, holds potential for

advancing robotic grasping in real-world scenarios.

1.1.2. Deep learning and geometric shape-based grasping methods

 In the field of robotic grasping, researchers have explored various machine learning

methods, often combining Shape-Based Techniques with Deep Learning models to

improve the effectiveness of multi-fingered grasping [5], [21], [22]. Furthermore, certain

learning-based methods leverage primitive shapes or similar objects to discern effective

grasps [23], [24], [25].

4

 One notable study, [26] introduces a deep learning architecture that predicts stable

grasp positions for robotic hands using partial object views. The Convolutional Neural

Network (CNN) is trained on RGBD image patches of known object models and estimates

grasp quality metrics, such as force closure, without explicit calculations. During runtime,

the system generates scene point clouds and meshes from a single viewpoint and utilizes

the deep network to create heatmaps for potential fingertip and palm locations. By

leveraging Simulated Annealing in a grasp simulator, the approach identifies stable grasps

that align with visible object portions and correspond to low-energy locations on the

heatmaps.

 Another relevant study, [22] introduces the first active deep learning approach to robotic

grasping, specifically addressing the challenge of data collection for multi-finger hands.

The proposed method employs a multi-armed bandit formulation to select between three

exploration strategies, allowing the grasp model to cover the configuration space of grasps

and diverse objects more effectively.

limitations and challenges: One limitation is the requirement for substantial amounts of

labeled data for training, making data collection and annotation challenging for real-world

scenarios [9]. Moreover, ensuring safety and reliability is a significant challenge due to the

vulnerability of deep learning models to training dataset and unpredictable behavior, which

can lead to potential safety hazards and unexpected failures in robotic systems [9].

Additionally, the method described in the papers relies heavily on point clouds, and

creating and maintaining accurate point cloud descriptions of objects can be a daunting

task [6].

 While the introduced methods show improved success rate and speed compared to

traditional shape-based techniques [6], they still face challenges in terms of speed and

complexity. Since these models heavily rely on the train dataset, using these models may

not be easily applicable in industrial settings due to unpredicted insectaries. To address

these issues, this thesis we propose a new method that is faster, with higher success rate,

and significantly easier to use and train, offering potential advancements in robotic

grasping for real-world applications.

5

1.1.3. Reinforcement Learning in robotic grasping

 Reinforcement Learning (RL) has gained significant popularity in the field of robotic

grasping due to its unique advantages over Deep Learning models and shape-based

methods [27], [28], [29], [30], [31]. Unlike shape-based methods, it doesn't necessitate a

complete model description of objects. Some prominent studies showcase the success of

RL in robotic grasping:

 [32] presents a scalable RL approach, QT-Opt, for learning dynamic manipulation skills

in grasping tasks. Unlike static grasping methods, QT-Opt enables the robot to perform

closed-loop vision-based control, continuously updating its grasp strategy based on real-

time observations to optimize long-horizon grasp success. By utilizing over 580k real-

world grasp attempts, the approach trains a deep neural network Q-function with over

1.2M parameters, achieving an impressive 96% grasp success rate on unseen objects.

 [33] introduces a hierarchical RL framework for robotic grasping based on point clouds.

The lower-level hierarchy learns multiple grasp types, while the upper-level hierarchy

selects the appropriate grasp based on the object's point cloud. Through an autonomous

collection of grasp datasets via trial and error, the approach iteratively improves grasping

performance.

 However, RL in robotic grasping does face some limitations and challenges. One major

limitation is the high sample complexity, as RL algorithms often require a large number of

interactions with the environment for effective learning. This process can be time-

consuming and impractical for physical robots, raising concerns about wear and tear and

safety issues. Additionally, collecting sufficient data for training RL models can be costly

and may not fully capture the diverse range of real-world grasping scenarios. Furthermore,

transferring learned policies from simulation to the real world poses a significant hurdle

due to the reality gap between the two domains, potentially leading to suboptimal

performance or failures in real-world deployments.

 Considering these limitations and safety concerns, using RL for grasping objects may

not always be the preferred strategy. Researchers need to address these challenges and

explore other approaches to ensure the effectiveness and reliability of robotic grasping in

practical applications.

6

1.1.4. Grasp Rectangle method

 In this thesis, we are developing our method on top of a method called "grasp rectangle

method". This method has been widely used in automation and robotics [30], [34], [35],

[36]. This method involves creating a bounding box or rectangle around the optimal point

of grasp, determined by five key parameters: the center of grasp (x and y coordinates),

orientation (theta), width of finger opening (w), and length of finger opening (h) [37], [38],

[39], [40]. These parameters (Figure 1.1) define the position, alignment, and gripping

configuration required for effective and secure object manipulation [30]. By using these

parameters, a rectangle representing the grasp can be created, which is why it is referred

to as the "grasp rectangle method."

Figure 1.1: Grasp Rectangle method and outputs. Outputs are five parameters that define a
rectangle in a plane [30].

 This method was initially developed by [30], where they used a grasp rectangle to create

bounding boxes around candidate grasp points. Since then, the method has been refined

and adapted with different inputs and networks [34], [35], [36]. Some approaches use only

RGB images as input [36], while others incorporate RGB-D information [34], [35]. In [34]

employ hot encoding for network training, while others use object segmentation to create

grasp rectangles [36]. Remarkably, some studies demonstrate the ability to generate

grasp candidates in less than 50 milliseconds and create grasp rectangles for multiple

objects from a single input.

7

 Two widely used datasets, the Cornel [41] and Jacquard [42] grasp datasets, provide

RGB-D images and corresponding grasp rectangles. The Cornel Dataset contains 240

objects with a total of 1,035 images and 8,019 grasps, while the Jacquard dataset

comprises images from 11,000 objects, totaling 54,000 images and 1.1 million grasp

rectangles. However, the top-view nature and solid backgrounds of these datasets can

pose challenges when grasping objects with diverse or colorful backgrounds.

 The method is well-suited for two-finger robots, grippers, and suction-based end-

effectors due to the nature of the datasets used. However, it may struggle to create

accurate grasp rectangles for objects with complex backgrounds or when viewed from

different angles. Despite its promising features, to the best of our knowledge, no one has

applied the grasp rectangle method to multi-finger robots for object grasping.

 In this thesis, we present two main contributions. First, we extend the grasp rectangle

method to be applicable for multi-finger robots. Second, we develop an algorithm that

enables successful grasping of objects irrespective of their background or camera view.

 Inspired by the promising results demonstrated in various studies and real-world

experiments, we have chosen to leverage an existing network, specifically the one trained

by [35], which achieved 94% accuracy on real experiment. Our objective is to build upon

their work and adapt their method to accommodate a multi-finger robot for enhanced

grasping capabilities.

1.1.5. Base method, GR-ConvNet

 As mentioned earlier. We have developed our method, using grasp rectangle method.

The are many studies suggesting a novel network architecture to increase the accuracy

of this method. One of the best papers in this area is paper presented by [35].

 In this project, a modular robotic system is presented to address the challenge of

generating and executing effective grasps on unknown objects using antipodal robotic

grasping. The approach involves a novel model called Generative Residual Convolutional

Neural Network (GR-ConvNet) that can produce reliable antipodal grasps from multi-

channel input in real-time. The performance of the proposed model is evaluated on

established datasets and a diverse range of household objects.

8

 The results demonstrate exceptional accuracy, achieving a state-of-the-art accuracy of

97.7% on the Cornell grasping datasets. Furthermore, a grasp success rate of 95.4% and

93% for household and adversarial objects is demonstrated, respectively, utilizing a 7-

degree-of-freedom robotic arm.

 Their network generates three images from which we can infer grasp rectangles for

multiple objects. Figure 1.2 shows an overview of the proposed system architecture. The

inference module acquires RGB and aligned depth images of the scene from the RGB-D

camera. The images are pre-processed to match the input format of the GR-ConvNet. The

network generates quality, angle, and width images, which are then used to infer antipodal

grasp pose.

 The outcomes produced by this neural network consist of five crucial parameters

defining the grasp rectangle. These parameters, namely [x, y, theta, w, h] (Figure 1.1),

have been comprehensively detailed in section 1.1.4 of the document. These values

represent the horizontal position (x) and vertical position (y) of the grasp, the orientation

angle (theta) of the rectangle, as well as its width (w) and height (h).

Figure 1.2: GR-ConvNet network architecture proposed in [36]. Input is an RGB-D image and
output is the grasp rectangle parameters.

9

1.2. Contributions of this thesis

This project contains many contributions and they been explained below.

1. Enhancing Grasping Techniques for Multi-Finger Robots: While the Grasp

Rectangle method has been widely utilized for object manipulation, its application with

multi-finger robots remains unexplored territory until now. To the best of our

knowledge, no prior work has leveraged this method's potential with multi-finger

robotic systems.

2. Efficient and Versatile Point Cloud-based Process: In contrast to other prevalent

methodologies that require the full point cloud definition of the object, our approach

offers remarkable speed and versatility by utilizing partial point cloud representations.

It effectively operates across a diverse array of objects, extending beyond the confines

of pre-defined datasets. This adaptability significantly broadens its practical utility and

impact.

3. Expanding Grasp Rectangle into 3D Space: While traditional Grasp Rectangle

approaches have predominantly focused on top-view grasping scenarios, our method

can grasp objects not only from a top view but also from the side of the object.

4. Refinement and Search-Based Grasping: Our project goes beyond mere utilization

of network-generated rectangles. Through a tuning process, we not only enhance

accuracy but also employ a search-based algorithm to determine the most viable

grasping points. This dual-pronged approach ensures not just precision but also

strategic grasp planning.

5. Streamlined Implementation with Comparative Simplicity: In contrast to methods

requiring the combination of simulation and real-world images, our proposed technique

provides relative simplicity and ease of implementation by using only a single-shot

RGB-D image as input. This characteristic not only expedites integration into real-

world applications but also fosters wider accessibility, ultimately driving practical

adoption.

6. Using Tactile Feedback for Asserting Enough Force on Objects: In this project,

we go beyond solely relying on vision to grasp objects. Instead, we utilize tactile

10

sensors installed on each link of the robotic hand to detect contact and apply adequate

pressure or force for gripping objects. This approach significantly enhances our ability

to grasp objects with precision and finesse.

The results of this thesis have been submitted to ICRA 2024 Conference:

P. Samandi, K. Gupta, and M. Mehrandezh, "Enhancing Object Grasping Efficiency with

Deep Learning and Post-Processing for Multi-Finger Robotic Hands," Manuscript

submitted for presentation at the 2024 IEEE International Conference on Robotics and

Automation (ICRA 2024).

 The entire code for this project has been uploaded to the Google Drive folder containing

all of our code and files with:

https://drive.google.com/drive/folders/10gTKtssOeb2Z6OVQdz0Cdi3k93sMUfL9?usp=dri

ve_link

 Additionally, please refer to the video at this link for real experimental results

demonstrating a multi-fingered robot grasping a variety of objects in real-time.

https://drive.google.com/drive/folders/10gTKtssOeb2Z6OVQdz0Cdi3k93sMUfL9?usp=drive_link
https://summit.sfu.ca/item/38159

11

Chapter 2. Problem and Hardware Description

2.1. Problem description

 The primary objective of this project is the development of a state-of-the-art algorithm,

enabling a multi-finger robot to proficiently grasp a wide variety of objects with different

shapes, sizes, and dimensions. Our aim is to achieve swift grasp calculations in real time

or near real-time while upholding the highest levels of reliability and precision.

 Our focus is on creating an algorithm that empowers the robot to adeptly grasp objects

within its camera's field of view, with a particular emphasis on using only a single-shot

image rather than scanning the object from multiple angles. This effort is concentrated on

two main scenarios: objects observed from an overhead perspective, referred to as

"viewing from top grasping," as shown in Figure 2.2, and objects viewed from the frontal

angle, referred to as " viewing from side grasping," as shown in Figure 2.1.

 The viewing from the top scenario often involves objects placed beneath the robot, a

common occurrence in bin-picking operations. However, it's important to note that objects

may not always be neatly arranged beneath the robot, and they can be positioned

anywhere around it. Therefore, our algorithm is designed to handle grasping objects both

beneath and in front of the robot to provide versatile and efficient object manipulation

capabilities.

In this project, we are using tactile sensing to put enough pressure to grasp objects. In

addition, we’re focusing on only grasping objects once at a time. It means for each trial,

there is only one object in the Camera view. For viewing from side grasping, we assume

that the objects are sufficiently tall to be accommodated by our relatively large robotic

hand.

 Although our system has managed to grasp various objects including transparent

objects, however, detecting transparent objects remains a challenge, and not all

transparent objects are graspable using our current method. This challenge extends to

white objects as well, and we will delve into this matter in further detail later. Consequently,

our target objects primarily consist of items that feature colorful parts.

12

 We assume that the dimensions of the objects are suitable for the hand and not

excessively large or small. However, due to the limitations of the robotic hand, we exclude

objects weighing more than 1kg from our grasp dataset. Additionally, we exclude

deformable objects from our grasp dataset, as their unique nature of grasp and sensing

presents distinct challenges. To summarize our objectives are:

• Develop an advanced algorithm for multi-finger robot grasping.

• Grasp various objects with speed, reliability, and precision.

• Use single-shot images for grasp calculations within the camera view.

• Handle viewing from the top and viewing from the side grasping scenarios.

• Adapt to objects placed around the robot, not just beneath it.

• Employ tactile sensing for precise pressure during grasping.

• Focus on single object grasping in each trial.

• The dimensions of the objects should be suitable for the hand to be grasped.

• Objects should have colorful parts to be recognized by our method.

• Objects should weigh less than 1kg.

• Objects should be solid and not deformable.

• Objects are placed on a flat surface, and they are not stacked on top of each other.

13

Figure 2.1: Schunk SDH robotic hand attached to the Kinova kortex Robot gen3 robotic arm.
The robot is viewed from the side grasping configuration.

Figure 2.2: Schunk SDH robotic hand attached to the Kinova kortex Robot gen3 robotic arm.
The robot is in the view from the top grasping configuration.

14

2.2. Objects to be grasped

 Figure 2.3 and Figure 2.4 shows objects we tend to grasp viewing from the top and

viewing from the side.

15

Figure 2.3: Objects we tend to grasp viewing from the side

16

17

Figure 2.4: Objects we tend to grasp viewing from the top

2.3. Setup explanation

2.3.1. Kinova Gen-3 robotic arm

The Kinova Gen3 [43] is a robotic arm platform developed by Kinova Robotics (Figure 2.5).

Key features of the Kinova Gen3 include:

1. This robot is equipped with a 1920 x 1080 (16:9) color module with 47 ± 3° field of
view. Also, it’s equipped with a Depth sensor with 480 x 270 (16:9) and a field of view
of 72 ± 3°.

2. Safety features: The Gen3 is designed with safety in mind, with built-in safety
mechanisms to prevent accidents and protect users and the surrounding environment.

3. ROS compatibility: The Gen3 is compatible with the Robot Operating System (ROS),
which is a widely used framework for developing robotic applications. This

18

compatibility enables seamless integration with existing ROS-based systems and
software libraries.

In addition, the camera attached to the arm is an Intel RealSense D415 depth camera with
an accuracy of <2% at a 2 m distance [44]. It is developed by Intel Corporation, designed
for capturing high-resolution depth images, and enables accurate depth perception in
various applications. It features an infrared projector and dual infrared cameras, which
work together to capture depth data with precision. The camera utilizes stereo vision
technology to generate depth maps.

Figure 2.5: Kinova gen3 robotic arm with 7 degrees of freedom.

2.3.2. SCHUNK Dextrous hand 2.0 (SDH 2.0)

 The SDH 2.0 (Schunk Dextrous Hand) is a highly versatile and advanced robotic hand

developed by Schunk [45] (). Key Features of SDH are:

1. SDH has 3 articulated fingers, each with 2 DoF (Degree of Freedoms). In addition, it

has a 7th DoF at the base of two of the fingers named as pivoting joint. This joint is

19

responsible for pivoting two base fingers as shown in Figure 2.6. The PIP (Proximal

Interphalangeal) joint of a finger is the first joint from the fingertip, allowing bending and

flexing of the finger. The DIP (Distal Interphalangeal) joint is the second joint at the tip of

the finger, enabling further fine movement and control.

2. Sensors: The SDH is equipped with tactile sensors on the fingers, enabling it to perceive

the forces and contact points during grasping. This sensor feedback provides valuable

information for controlling the hand's grasp and ensuring safe interactions with the grasped

object.

3. Control and Programming: The SDH can be controlled using various interfaces, such

as ROS (Robot Operating System), which allows for seamless integration with other

robotic systems and simplifies programming and operation. However, all the packages

were compatible with ROS Kinetic on Ubuntu 16.04, is one of the challenges in this project

was integration between the software as the rest of the code including Kinova packages

was on Ubuntu 20.04 and ROS Noetic.

Figure 2.6: Schunk SDH robotic hand with 3-fingers [45]

20

Chapter 3. Grasp Strategy

 In our method, we need five parameters to grasp an object which are: {Pₑ, θₑ, w, θₚ,

Gₜ}. Pₑ [x, y, z] denotes the arm's end-effector positions, while θₑ [θₓ, θy, θz] signifies the

orientation values. The 'w' parameter is the width of the grasp rectangle as shown in Figure

1.1. This parameter defines the initial finger separation width before grasping an object

during the finger closure process. In other words, it shows how wide we should open

fingers before grasping an object. The pivotal joint angle named θₚ (Shown in Figure 2.6)

is the first joint of the robotic hand, responsible for pivoting the base of the finger 2 and

finger 3). Lastly, 'Gₜ,' the grasp type parameter, specifies the desired grasp method:

lateral, tripod, or power grasp (as illustrated in Figure 2.5). These parameters play a key

role in solving inverse kinematics, allowing us to determine the robot's joint positions. For

simplicity, we assume that the gripper's palm is perpendicular to the object, maintaining

constant values for θₓ (yaw) and θy (pitch). This simplification enables us to define the end-

effector's Cartesian pose as {Pₑ, θz}.

 To determine these parameters, we employ the grasp rectangle method in conjunction

with RGB-D images, as explained in section 1.1.5. While this method has exhibited over

90% accuracy in real-world experiments, it has primarily been designed for grippers with

only two fingers. In Section 4.3, we have reported the results of using the grasp rectangle

method with our multi-finger hand without any post-processing. Upon conducting these

tests, it became apparent that although the grasp rectangle method performed admirably

for two-finger robots, it encountered difficulties when applied to multi-finger robots. As a

result, we are proposing post-processing to use the grasp rectangle method for a
multi-finger robot. The Figure 3.1 shows the flowchart of the chapter 3.

21

Figure 3.1: A flowchart of the chapter 3.

 The camera, mounted on top of the robotic arm (Figure 2.2), captures information in

the form of RGB images and point clouds from the environment. In Section 3.1, we

convert these point clouds into a depth map. Subsequently, in Section 3.2, a calibration

process synchronizes the depth information with RGB data, ensuring precise alignment

between each pixel in the RGB image and the corresponding depth information.

 The selection of the desired viewpoint for object grasping, whether from the side or

top, guides our subsequent actions. When opting for viewing from the side, YOLOv5 is

employed for object detection (Section 3.3), provides essential information. This data is

then utilized for object segmentation, as detailed in Section 3.5, leading to the creation of

a grasp rectangle (Section 3.4).

 Contrarily, when choosing a top view for grasping, the grasp rectangle method is

initially applied (Section 3.4). The rationale behind this approach is elaborated in Section

3.5. Subsequently, in the same section, we fine-tune the parameters extracted from the

grasp rectangle method. The five crucial parameters - {Pₑ, θₑ, w, θₚ, Gₜ} - are then

derived from the available information.

 Upon obtaining these vital parameters, the robot end-effector is positioned at the initial

grasp pose (Section 3.4), and the robotic hand is set to an initial grasping configuration

22

based on the grasp type (Section 3.6). At the end, in Section 3.7, the fingers are closed,

applying controlled pressure monitored by tactile sensing, culminating in the successful

picking of the object.

 The pseudo-code below shows step-by-step of the process of our method. The reason

we differentiate the viewing from side and viewing from top (viewing from top) has been

explained in section 3.5.

Algorithm 1

• Placing the Robot at the Initial scanning pose and choosing the view
• Converting Point clouds to Depth map. (Section 3.1)
• Calibrating Depth and RGB image. (Section 3.2)
• If: viewing from top grasping

o use the grasp rectangle method to detect the best grasp pose candidate (Section 3.4)
o Implementing the Post-processing method and extracting required parameters. (Section

3.5)
• Else if: viewing from side grasping

o Detecting the object in the environment with YOLOv5 (Section 3.3)
o Using YOLO and Segmentation algorithm to create the mask of the object. (Section 3.5)
o Implementing the Post-processing method and extracting required parameters. (Section

3.5
• End if
• Place the hand and fingers at the initial grasp configuration and close the fingers based on the

grasp type (Section 3.6)
• Stop fingers after pressing enough pressure on the object using tactile sensing (section 3.7)

3.1. Point clouds to depth image/map

 As mentioned in Section 2.3.1, our system incorporates a camera mounted on a robotic

arm, accompanied by a lidar sensor that generates point clouds. The primary objective is

to convert these point clouds into a Depth image as the input of our network is RGB-D.

Each pixel represents the distance between the camera and the corresponding pixel in

the 3D space. These point clouds encompass the spatial coordinates (X, Y, Z) of various

physical shapes within the camera's field of view (Figure 3.2). We aim to assign each pose

to an image, transforming the X and Y coordinates in 3D space into u and v coordinates

23

that correspond to specific pixels in an image, called depth image/map, with a defined

resolution (640 x 480 image).

 To generate a depth map from a point cloud, we leverage the Point Cloud Library (PCL).

Specifically, we employ the voxel grid filter function to down-sample the cloud, with a grid

size set to 0.01m. Additionally, we utilize the organized neighbor search to spatially

organize points, with the search radius being 0.1m. Finally, the value for search parameter

k, indicating the number of nearest neighbors considered during the organized neighbor

search, is set be 10. These parameter values are integral to the process of transforming

point clouds into depth images within our system.

 However, a challenge arises from the inherent noise present in the depth map obtained

from the sensor. To address this issue, we have implemented a noise cancellation

technique that involves uniform averaging of a specific portion of the image. By employing

this approach, we replace the unassigned values in the Depth image, effectively reducing

the noise. Figure 3.3 visually illustrates the impact of this noise cancellation process,

offering a side-by-side comparison of the depth map before and after the application of

the technique.

 Through the implementation of this noise cancellation approach, our goal is to enhance

the quality of the depth map. By reducing the noise, we can achieve more precise and

reliable assignments of points to their respective positions in the designated empty image.

This improvement plays a pivotal role in optimizing the overall performance of our system.

24

a) b)

Figure 3.2: a) a drill and a can in Simulation and b) point cloud presentation of objects [14]

a) b)

Figure 3.3: Depth map before and after noise cancelation filter of a can from the top view, a)
noisy data b) denoised depth

3.2. Calibrating depth and RGB image

 The Depth sensor captures a larger region compared to the RGB image, as depicted in

the Figure 3.4 and as a result, the Depth and RGB images need to be aligned on each

other and be calibrated. The calibration process involves a meticulous adjustment of the

position and orientation of the images, specifically achieved by manipulating pixels in both

the x and y directions.

25

 The pixel movement process involves carefully adjusting the spatial positions of

individual pixels in both the x and y directions. This adjustment is crucial to align

corresponding features and structures in the larger-captured region of the Depth sensor

with those in the RGB image. By precisely shifting pixels, we ensure that specific points in

the scene captured by the Depth sensor align accurately with their counterparts in the

RGB image, establishing a direct and faithful pixel-to-pixel correspondence.

 Following this alignment, a trimming step is introduced to further refine the calibration.

Trimming involves selectively removing or adjusting pixels at the periphery of the depth

image, effectively eliminating any misalignments or inconsistencies that might have

persisted after the initial pixel movement. Subsequently, to achieve uniformity in size, the

trimmed depth image is resized to match the dimensions of the RGB image. This resizing

process ensures that both images share the same scale. The result of this calibration is

illustrated in the figure below, which showcases a side-by-side comparison of the images

before and after the calibration process.

a)

b)

c)

Figure 3.4: calibrated RGB and Depth Image. a) shows the RGB image, b) corresponds to
calibrated Depth image after trimming and shifting and c) shows the depth image without any
calibration.

3.3. Object detection with YOLO

 YOLO (You Only Look Once) [46] is an innovative object detection algorithm that has

significantly advanced real-time object detection tasks. Unlike traditional detectors that

require multiple passes over an image, YOLO performs detection in a single pass [47],

[48], [49].

26

 To accomplish this, YOLO divides an input image into a grid and predicts bounding

boxes and class probabilities directly on this grid. It can identify multiple objects within the

image, assigning corresponding class labels and confidence scores. YOLO operates at

different scales to detect objects of varying sizes and aspect ratios.

 One remarkable advantage of YOLO is its exceptional speed, enabling real-time object

detection on high-resolution images and videos. This makes it highly suitable for

applications requiring fast and accurate object detection, such as autonomous driving,

video surveillance, and robotics.

 YOLO has undergone several iterations, with each version improving accuracy and

speed. Our project employs YOLOv5) [46], which has shown excellent performance in

classification and detection tasks. However, it should be noted that YOLOv5 has a limited

capacity to handle a wide range of objects.

 Many objects we aim to grasp in our project are not present in its pre-trained dataset.

To address this limitation, we fine-tuned YOLOv5 using a household dataset [50]. This

dataset contains 388 annotated images with 1737 objects of the 20 classes. The training

was conducted on a computer equipped with an Intel Core i9 CPU and an Nvidia GPU

3080 with 32 GB of memory. The dataset was split into training, evaluation, and test

subsets as the portions 70%, 15%, and 15% respectively. The network was trained on the

training dataset, and we utilized a 5-fold cross-validation method to evaluate its

performance.

 This network consists of three activation functions. a) Localization Loss (Bounding
Box Loss): To compute the difference between the predicted bounding box coordinates

and the true bounding box we used Mean squared error (MSE). b) Confidence Loss:

YOLO predicts a confidence score for each bounding box, indicating how confident the

model is that the box contains an object and that the box is accurately localized. c) Class
Prediction Loss: The class prediction loss is typically computed using categorical cross-

entropy.

 After training the network, we employed a ROS package provided by [51]. This package

utilizes the trained model and operates solely on RGB images to generate bounding boxes

around objects. Figure 3 provides an illustrative example of how YOLO functions.

27

 By combining the power of YOLO with fine-tuning our specific dataset and integrating it

into our ROS framework, we aim to achieve accurate and efficient object detection in real-

world scenarios, facilitating successful grasping and manipulation tasks.

Figure 3.5: Using YOLO to detect objects

3.4. Grasp the rectangle and extract the spatial pose of the
end-effector from it

 As explained in Section 1.1.5, we use the GR-ConvNet network to generate grasp

rectangles, yielding coordinates [x, y, θ, w] within a 2D camera frame (Figure 1.1). The

process of extracting the pose of the end-effector from the information provided by grasp

recatagle involves a progression from the image frame to the camera frame and ultimately

to the base frame.

 This transition involves the integration of the "zc" value, representing the separation

between the camera frame and the grasp center “gc” of the image rectangle (Figure 3.16).

By employing defined mathematical expressions, the end-effector pose [Xc, Yc, Zc, θc] can

be effectively computed within the context of the camera frame. These calculations enable

the conversion of grasp rectangle information from the image frame to coordinates

relevant for planning within the camera frame, facilitating subsequent robotic operations.

28

𝑋𝑐 =
𝑥 −

𝑖𝑚𝑎𝑔𝑒_𝑤𝑖𝑑𝑡ℎ
2

𝑖𝑚𝑎𝑔𝑒_𝑤𝑖𝑑𝑡ℎ
2

. 𝑍𝑐 (1)

𝑌𝑐 =
𝑥 −

𝑖𝑚𝑎𝑔𝑒_ℎ𝑒𝑖𝑔ℎ𝑡
2

𝑖𝑚𝑎𝑔𝑒_ℎ𝑒𝑖𝑔ℎ𝑡
2

. 𝑍𝑐 (2)

θc = θ (3)

3.5. Tuning grasp rectangle method and extracting Grasp’s
pose parameters

As explained at the beginning of this chapter, our grasp planning approach necessitates

the consideration of five parameters: {Pₑ, θₑ, w, θₚ, Gₜ}. While the values for Pₑ, θₑ, can be

extracted from the output of the GR-ConvNet, combined with the Depth image and our

predefined constraints, there remains the task of deducing the remaining parameters

using the available data.

 However, it is important to highlight that the initial output from the grasp rectangle

network doesn't exactly match our specific needs. This is thoroughly discussed in Section

4.3, which emphasizes the crucial role of calibration. This calibration process fine-tunes

certain parameters to achieve specific goals:

 a) Ensuring that all fingers make contact with the object and none of them miss during

the closing motion. b) Ensuring even pressure on the fingertips to prevent slipping or

shifting of the object. c) Adjusting finger width for the best grip, avoiding both overly wide

and too narrow grips that could affect the success of the grasp and the distribution of

pressure. d) Deriving the angle for the pivoting joint and determining the grasp type based

on available information, to configure the robotic hand appropriately for a successful

grasp.

 By carefully addressing these important considerations and refining parameter values,

we improve the dependability and effectiveness of our multi-finger robotic grasping

system. This enhancement empowers the robot to adeptly handle various objects in real-

world situations.

29

 In this project, we utilize the "GrabCut" function from the OpenCV library to perform

object segmentation from the background and create a mask of the object. The mask is

defined as the same region as the segmented object but with pixel values of 1 inside the

object and 0 otherwise. GrabCut is an image segmentation method based on graph cuts.

Starting with a user-specified bounding box around the object to be segmented, the

algorithm estimates the color distribution of the target object and that of the background

using a Gaussian mixture model. This technique requires an estimated bounding box

around the object, which helps the algorithm accurately isolate the object. An intuitive

approach would be to leverage the bounding boxes generated by an object detector like

the YOLO [46]. However, relying solely on YOLO has its limitations, as it may not

accurately detect the complete spectrum of objects. The original YOLO training dataset

encompassed around 80 objects. We fine-tuned YOLOv5 using a household objects

dataset [50] narrowing down its focus to 20 common household items. Impressively, after

fewer than 50 training rounds, our model achieved an accuracy of 98.24\% on the

evaluation dataset (Section 4.2). While this adaptation led to a commendable 97%

success rate in detecting objects from a side-view grasping scenario (Section 4.2), its

performance substantially deteriorated in the case of a top-view grasping scenario

(Section 4.2), with the success rate dropping to below 60%. This less-than-optimal result,

explored in (Section 4.2). can be attributed to YOLO's difficulty in precisely detecting

smaller objects.

 On the contrary, the grasp rectangle network excelled in identifying grasp rectangles

across a broader array of objects, accommodating varying shapes and sizes.

Nevertheless, this method demonstrated vulnerability to changes in background color and

depth images. Instances featuring vivid backgrounds or sudden shifts in depth could

undermine the effectiveness of this approach in generating feasible grasp rectangles.

 When considering top-view grasping scenarios, the circumstances usually present a

consistent, uniform background, and the depth map remains relatively stable as objects

are positioned on a level surface. However, challenges arise in side-view grasping

situations, where depth maps exhibit abrupt variations and display diverse, vibrant

backgrounds. This discrepancy can be attributed to the training datasets in use, such as

the Cornell [41] and Jaguar datasets [42], which primarily focused on objects placed on

monochromatic surfaces at specific camera-to-object distances.

30

 Figure 3.6: Top-left shows an object detected by YOLO. We use the bounding box and grabCut
method to segment the object as shown in figure 12. c. Figure 12. b shows an object and grasp
rectangle created by the GR-ConvNet network. We use this rectangle and grabCut method to
segment the object from viewing from the top as shown in figure 12.d.

 As a result, our approach capitalizes on the YOLO detector's ability to craft bounding
boxes for the side-view grasping dataset, while the grasp rectangle network adeptly
generates these bounding boxes for the top-view grasping context. Shows bounding
boxes created by YOLO and GR-ConvNet. Figure 3.6 shows a bounding box created by
YOLO from viewing from the side and a bounding box created by GR-ConvNet viewing
from the top and their corresponding segmented object. The aluminum part in the
downright corner of the Figures is one part of the robotic hand that is visible in the camera
view. The accompanying Figure 3.7 illustrates the roadmap to determine all the necessary
parameters for successfully grasping an object.

31

Figure 3.7: The Flowchart for our search-based processing (we call it SB-Convnet). It extracts the
required grasp parameters for each view.

 As depicted in Figure 3.7The object grasping process initiates by selecting the grasp

view from the top or side. Grasp rectangles, outlined in Section 3.5 for viewing from the

top or utilizing YOLO (Section 3.3), and define the bounding boxes. With this bounding

box, we proceed to segment the object (Section 3.7). The green boxes in the figure

symbolize a step-by-step post-processing method employed to refine the grasp center

and extract the necessary parameters. The subsequent sections of this chapter elaborate

on these steps in detail. In Section 3.5.1 we find object edges using the segmented object.

In Section 3.5.2 we tune the grasp center points to have a more accurate grasp. In Section

3.5.3 and 3.5.4 we find the potential contact points and we choose the best candidate

based on a search-based algorithm. In Section 3.5.5 and 3.5.6 we extract the height and

width of the object from the RGB-D image. In section 3.5.7 we choose the grasp type using

the Object’s height and width.

3.5.1. Finding corresponding edges from the segmented object

 After creating a segmented object, we used a computer vision technique with the object's

mask to find its edges. We employed the Canny function from OpenCV, which is good at

Extracting the height

and width of the

object

32

detecting object edges. Then, we picked pixels from these detected edges to create a

mask. This gave us a set of points along the object's edges for further analysis (Figure 3.8)

 To figure out the edge normal at each point of the object boundary, we used the OpenCV

Sobel method to calculate the gradient in the image coordinates. The normal vector at

each point was determined by taking the cross-product of these gradient vectors. We then

made sure the resulting vector had a length of 1, making it a unit normal.

To make the math easier, we rotated the mask using the theta value we got from another

network. This theta represents the rotation angle of the rectangle that encloses the object.

This whole process helped us find the object's edges accurately and calculate normal

angles at each pixel. These findings are crucial for our next steps, like planning how to

manipulate and grasp the object.

 a) b)

Figure 3.8: a) shows the segmented object and b) shows the edge of the object created by the
canny method.

3.5.2. Grasp center tuning

As explained before, to achieve better results, we need to fine-tune the grasp center

gc{xc,yc} in the image. To elaborate on this technique, we offer Figure 3.9 and Figure 3.10

33

Figure 3.9: Calibrating grasp center along the x-axis

Figure 3.10: Calibrating grasp center along the y axis

34

as a visual guide, illustrating the sequential calibration process for grasp-center points. As

shown in Figure 3.9, we transfer the grasp center (x) to the point in the middle of the right

and left points and we name it gc-new. The “right point” and “left point” sit at the object's

extreme edges and share the same vertical position (y) as the “grasp center (GC)”.

 Next, we focus on calibrating the y-coordinate. Our goal is to ensure there's enough

space between the GC-new and the vertical edge of the object. To achieve this, we

measure the distance between the gc-new and the "Up Point" and "Down Point". These

points sit at the object's extreme edges and share the same horizontal position (x) as gc-

new. If these two distances happen to be smaller than a predefined threshold, we transfer

the g_c.new in a direction that meets the threshold, and we call the calibrated point "gc-

cal". In addition, when the object is small, and the distance between the grasp center point

and both the 'up point' and 'down point' falls below the threshold, we position the grasp

center at the midpoint of these extreme points. This step guarantees that all the fingers

have adequate space to potentially make contact with the object.

 Importantly, this calibration process aims to optimize our grasp without significantly

shifting the grasp rectangle from its initial position. This way, we can maintain the highest

grasp quality based on the output of the original Network. The Pseudo code below shows

a representation of the presented process.

Notes:

a) The mask-edge, a visual representation of the object's edge, adopts a structured format of [224,
224] pixels, where a pixel value of "1" signifies the presence of an object edge.

b) The mask-edge's segmentation serves as a basis for subsequent calculations, notably mask-
edge[:, yc] representing the collection of x-values corresponding to points sharing the common y
coordinate within the mask-edge picture. Conversely, mask-edge[xc, :] encapsulates the y values
of points aligning with the identical x coordinate xc within the mask-edge depiction.

Algorithm 2

o Get grasp center = [xc, yc]
o right-point = [max(mask-edge[:, yc]), yc], left point = [min(mask-edge[:, yc]), yc],
o xc-new = mean (right-point, left-point)
o up-point = [xc-new, max(mask-edge[xc-new, :])], down-point =[xc-new, min(mask-edge[xc-new, :])].

Figure (16)
o ∆y1 = |yc – up-point| and ∆y2 = |yc – down-point|

35

o If: ∆y1 < Threshold(20pixels)
• yc-new = yc – Threshold + ∆y1 (bringing down the center point)

o else-If: ∆y2 < Threshold(20pixels)
• yc-new = yc + Threshold - ∆y2 (bringing up the center point)

 In addition, Figure 3.10 shows a point named ground point. This point is been defined
by going 10 pixels in the horizontal direction from the “right point”. We need this point as
a reference for a point that is not on the object but is close to the object on the ground.
This point will be important to find the height of the object in 3D space as explained in
Section 3.5.6.

3.5.3. Calculating the contact points on the object from the image

 In our approach to identifying the optimal grasping approach for objects, we employ a

search-based algorithm. This method involves evaluating various grasp candidates and

selecting the most efficient one. The initial step is to estimate where the fingers would

make contact when the palm is positioned over the grasp center and the fingers are

closed. This estimation requires determining the position of the finger bases within the

image plane, as depicted in the 3D visualization presented in Figure 3.11.

 However, it's important to note that the system perceives the object through RGB-D

data which is a 2D image, as illustrated in Figure 3.12. To bridge the gap, we define the

projection of finger bases on the image plane. For clarity, we introduce the concept of a

"projection rectangle," represented by the blue rectangle in both Figure 3.12 and Figure

3.13. This rectangle connects all the projected finger base points. As a result, with

knowledge of the dimensions (width and height) of the "projection rectangle" and the

center point of the rectangle on the image plane, we can estimate the projection of the

finger bases onto the image plane.

 The dimensions of the projection rectangle have a linear relationship with the distance

from the camera frame to the grasp center. Simply put, as the hand moves further from

the object, the dimensions of the projection rectangle decrease, and vice versa. To

quantify this relationship, we introduce parameters "ku" and "kv," representing the width

and height of the rectangle, respectively. Equations (5) and (6) express their

computation:

36

ku = ku0 - (Zc / Z0 - 1) (5)

kv = kv0 - (Zc / Z0 - 1) (6)

 Here, "Zc" denotes the distance between the camera frame and the grasp center,

extracted from a Depth image (Figure 3.16). Constants "Z0," " ku0" and " kv0" require

calibration for each robot and camera system; in our setup, these constants were

determined to be approximately 600 mm, 20, and 15, respectively.

 With the grasp center, "ku," and "kv" determined, we can estimate the projection of

fingertips on the grasp plane. By incorporating this algorithm and considering these

factors, we achieve precise positioning of the finger bases. This, in turn, allows us to

identify the optimal contact points for achieving the best possible grasp, as detailed in

Section 3.5.4.

Figure 3.11: projection of fingertips and palm center (grasp-center) on the ground from the third-
person view.

37

Figure 3.12: projection of fingertips and palm center (grasp-center) on the ground from the
camera view.

3.5.4. Choosing the best contact points

 By analyzing the finger bases, we can establish a line that indicates the direction in

which the fingers close. This line intersects with the edge of the object, revealing the

contact points for each finger. It is important to remember that the pivotal_joint (θₚ) can

rotate Finger 2 and Finger 3 around their base frame (Figure 2.6), resulting in potentially

different contact points based on their rotation. Figure 3.13 serves as an example to help

a better understanding of the concept. For simplicity, we only use a pivotal joint angle

between 0 to 90 degrees with 10-degree interval. In addition, Finger 1 can only be

closed in one direction which is the horizontal direction.

38

Figure 3.13: normal direction of contact points

Before explaining Figure 3.13 we need to define the parameters that have been

presented in this figure.

𝑥: coordinate along the horizontal axis of image coordination.

�̂�: coordinate along the vertical axis of the image coordinate.

𝜽𝒑,𝒋 ∈ {0, 10, 20, . . . , 90} 𝑎𝑛𝑑, 𝑗 ∈ { 0, 1, . . . , 9} , where 𝜃𝑝,𝑗 is a pivotal joint angle between 0 to 90,

(e.g: 𝜃𝑝,0 = 0 𝑎𝑛𝑑 𝜃𝑝,1 = 10 𝑎𝑛𝑑 𝜃𝑝,9 = 90)

fi, j: direction of finger{i} (𝑖 ∈ { 1, 2, 3}) and jth closing direction of pivotal joint where:

𝑗 ∈ { 0,1, . . . , 9}. For finger 2, the f2, j = θp, j and for finger 3, the f3, j = −θp, j.

x

y

39

CPi, j: A contact point refers to the location where the closing finger{i} makes contact with the

object, applying sufficient pressure to halt its movement. Refer to section 3.7 for detailed insights

into how fingers detect contact and exert adequate pressure on the object. These points are pixels

coordinated in the image plane.

ni, j: normal direction of the surface at the contact point for finger{i} and jth closing direction of

pivotal joint where 𝑗 ∈ { 0, 1, . . . , 9}. The values are in degrees and correspond to the rotation

concerning the horizontal line. The normal direction of the surface (edge) of the object has been

extracted using the Sobel method explained in Section 3.5.1.

Our objective is to determine the pivotal joint angle (𝜃𝑝,𝑗) that minimizes the difference between

finger directions and surface normals. These rotational disparities are quantified by Equation 7,

where θj is the sum of absolute differences between fi, j and ni, j across all fingers. Equation 8

defines the rotational difference vector ̂, and our goal is to identify the minimum value in this

vector along with the corresponding 𝜃𝑝,𝑗 value. For example, if θ4 represents the minimum of ̂,

then: 𝒋 = 𝟒 and 𝜽𝒑,𝒋 = 𝟒𝟎 and best contact points for each finger be at CPi, 4.

θj = ∑ (3
𝑖=1 | fi, j - ni, j|) (7)

̂ = [θ0, θ1, …, θ9] (8)

 For "finger 1," it's crucial to emphasize that this finger is restricted to movement along

a single direction, as illustrated by the red arrow. Unlike other fingers, finger 1 lacks

rotational flexibility; it can only close parallel to the horizontal line in the image. Then:

 n1, j = 0o for 𝑗 ∈ { 0, 1, . . . , 9}.

 In contrast, "Finger 2" and "Finger 3" have more flexible motion. They can pivot relative

to each other, as shown by green and yellow arrows. In this example provided in Figure

3.13, the pivotal joint angles of the green arrows are 0o degrees and the yellow arrows

are 40o degrees.

 As it can be seen in, Figure 3.13, the “0” degree pivotal joint results in a smaller

difference in norms (θ) for all fingers, indicating better alignment with the object's

surface. Conversely, the “40” degree pivotal joint leads to a larger difference in norms

and is less suitable.

40

In essence, this method enables us to optimize finger rotation for improved alignment

with the object's surface normal, determining the most effective finger configuration for a

successful grasp.

 In addition, Figure 3.14 shows an example of a contact point on the object and the

direction in which we close the fingers. This direction has been chosen based on the

method explained in this chapter.

Figure 3.14: Estimated contact points and the best finger directions that minimize the normal
difference for all three fingers

3.5.5. Finding the grasp width

 By having the best contact points, we aim to establish a reliable grasp rectangle. By

utilizing the grasp rectangle, we can not only provide a visual representation but also

define important parameters such as grasp width and finger opening. this information is

essential in defining grasp type and grasp height parameters.

 In Section 3.5.4, we find the best contact points when we close the fingers. Figure 3.15

the contact points of finger 2 and finger 3, signifying the corner points on one side of the

grasp rectangle. Meanwhile, the contact point of finger 1 denotes the contact location

41

along the middle edge on the opposite side of the rectangle. This information allows us to

determine the length and width of the grasp rectangle, as visualized in the figure.

 To enhance the precision and clarity of the grasp definition and representation, we have

chosen to increase the size of the grasp rectangle. In this particular project, the dimensions

of the rectangle have been enlarged by 10 pixels on each side. Note that this enlargement

value may vary for different images with different resolutions.

Figure 3.15: Extracting width from contact points

3.5.6. Finding the height of the object

 To ascertain the height of an object, we rely on the measurement between the object's

grasp center and a predetermined reference point located near the object. This

reference point's precise distance is determined using a depth image. To

 As depicted in Figure 3.16, we leverage two key metrics, "Zg" and "Zc," to effectively

characterize both the grasp type and the required depth for the grasp. "Zc," signifies the

distance between the camera and the center of the object's grasp. These metrics are

derived from a depth image. On the other hand, "Zg" represents the distance from the

42

camera to the ground or table surface, specifically denoting the distance to the

predefined “ground point”. Figure 3.10shows the “ground point” on the image plane. As

explained in Section 3.5.2, the ground point is defined by going 10 pixels in the

horizontal direction from the “right point”.

 Through the subtraction of "Zg" from "Zc," we can compute the height of the object.

This information is pivotal in determining the appropriate grasp type and the optimal

depth to which the fingers should descend.

Figure 3.10, the Ground point

43

Figure 3.16: Object height definition

3.5.7. Grasp type determination based on grasp width and object’s
height

 As is explained in detail in Section 3.6, we eliminate our grasping options to lateral,

tripod, and power grasp (Figure 3.18). Lateral is suitable for grasping smaller objects, tripod

grasping is been used for larger objects compared to the lateral grasp. The power grasp

is specifically designed for relatively larger objects. It involves creating an enveloping

grasp around the object and creating multiple contact points with the object for a more

stable grasp. To keep the consistency of Section 3.5 and extracting all the required

parameters we define the grasp type Determination in this section. However, a detailed

explanation of different grasp types and the strategy of closing fingers are explained in

Section 3.6.

As explained in Section 3.6, we narrow down our focus to three distinct grasping

options: lateral, tripod, and power grasp (see Figure 3.18). The choice among these

grasping techniques is informed by the nature and size of the objects to be manipulated.

Lateral grasp proves effective for securing smaller objects. Tripod grasp, on the other

44

hand, is strategically employed for larger objects in comparison to those suited for lateral

grasping. The power grasp is designed for relatively larger objects, creating an

enveloping grip around the object, and establishing multiple contact points to ensure a

stable and secure grasp. To maintain the coherence of Section 3.5 and to extract all

necessary parameters, we introduce the concept of Grasp Type Determination in this

section. A comprehensive understanding of the different grasp types and the intricacies

of the finger-closing strategy is expounded upon in Section 3.6.

 For grasping objects viewing from the side, we have enough space to perform power

grasp and hence we use only power grasp because it is the most stable type of grasp.

However, when considering the grasping of objects when viewing from the top, the

grasping space might be limited and objects can have a variety of shapes and sizes, as a

result, the selection of an appropriate grasp type is guided by the following table.

Table 3.1: Defining Grasp type, based on the height of the object in the z direction and width of the grasp

Object Grasp Width (Section 3.5.5) Object’s height (Section 3.5.6) Grasp type

Object1 Width < pinch threshold NA Lateral

Object2 Width > pinch threshold Height < power threshold Tripod

Object3 Width > pinch threshold Height > power threshold Power

Let's delve into the explanation of the table's contents:

Object 1: If the width of the object is found to be less than the defined pinch threshold, and

the height is not a significant factor in the grasp, the appropriate grasp type to employ is

the pinch grasp. In this case, it is recommended to utilize two fingers placed closely

together to achieve the desired grasp.

Object 2: When the width of the object surpasses the pinch threshold, while the height

remains below the defined power threshold, the optimal choice for grasping is the tripod

grasp. The tripod grasp involves utilizing three fingers, strategically positioned to ensure

stability and secure gripping of the object.

Object 3: For objects where both the width and height exceed their respective thresholds

(pinch and power thresholds), the most suitable grasp type is the power grasp. Employing

45

the power grasp entails utilizing the entire hand to firmly grasp the object, thereby

providing enhanced stability during manipulation.

It is crucial to note that the values of the pinch and power thresholds are predetermined,

based on the specific requirements and characteristics of the grasping task. These

threshold values are typically derived from experimental evaluation or existing knowledge

to optimize the grasp planning for a variety of objects.

Furthermore, in the case of viewing from side grasping, the power grasp is universally

recommended as the most stable and reliable type of grasp due to its ability to provide a

robust grip and ensure object control from different angles.

By referring to this grasp type determination methodology, one can effectively and

systematically choose the appropriate grasp type based on the object's width and height.

3.5.8. Determining the End Effector distance from the grasp center

 Another crucial parameter to extract is the end-effector position Pₑ [x, y, z]. The x and

y values are extracted from the calibrated rectangle effector within the camera frame

(Section 3.4). The “z” of the end effector is determined based on a specific distance from

the object's grasp center. However, this distance varies depending on the type of grasp

being executed. Furthermore, the distance also differs when considering viewing from the

side and viewing from top grasping scenarios.

 Table 3.2 provides a clear outline of the distances between the end effector and the

grasp center for different grasping scenarios:

Table 3.2: distance between end-effector and grasp center for different scenarios of grasping.

Grasp view\Grasp type Pinch grasp Tripod Grasp Power grasp

viewing from top 21 cm 20cm 17 cm

viewing from side - - 16 cm

Analyzing the table reveals the following:

46

1. Viewing from top Grasping: For the pinch, tripod, and power grasps in a viewing from
top scenario, the respective distances between the end effector and the grasp center
are 21 cm, 20 cm, and 17 cm. These values indicate the desired proximity between
the end effector and the object, facilitating effective and controlled grasping viewing
from the top perspective.

2. Viewing from side Grasping: In the case of viewing from side grasping, denoted as the
most reliable type of grasp, only the power grasp is applicable. The distance between
the end effector and the grasp center for viewing from side power grasping is 16 cm.
This distance is carefully determined to optimize the grasp by ensuring sufficient
contact with the object viewing from the side angle.

 It is important to emphasize that these distances have been experimentally determined
and are specific to the grasping system under consideration. They allow for consistent and
accurate positioning of the end effector during grasping tasks, resulting in reliable and
successful object manipulation.

 By utilizing this information and considering the appropriate distances between the end
effector and the grasp center, we can achieve precise and effective grasping in different
scenarios, both viewing from the top and viewing from the side.

3.5.9. Summary of Section 3.5

 As previously detailed, a set of nine parameters is crucially defined for the successful

grasping of an object. These parameters were introduced in Section 3.7, and throughout

the subsequent sections, we systematically extract and refine these parameters to ensure

reliable and effective grasping.

 To begin, we employ the rectangle network to extract the grasp center parameters.

These values are acquired by creating a mask of the object through segmentation

methods, identifying its edges as explained in Section 3.7.1. The refinement of grasp

center parameters in Section 3.7.2 enhances the accuracy and reliability of the grasp

representation.

 Moving on to Sections 3.7.3, 3.7.4, and 3.7.4, we identify potential contact points

between the hand and the object for different joint angles of the pivotal joint. The goal is

to determine the best grasp by minimizing the normal value of these contacts. By selecting

the pivotal joint angle that results in the lowest total normal difference, we ensure an

optimal grasp configuration.

47

 Subsequently, in Section 3.7.5, we define the grasp rectangle based on the chosen

contact points. This rectangle serves as a reference frame for grasp planning and

execution. Furthermore, in Section 3.7.6, we leverage depth information and a reference

point to determine the height of the object. These values play a crucial role in classifying

the grasp type, as detailed in Section 3.7.7. Additionally, in Section 3.7.8, we determine

the position of the end effector based on the grasp view and grasp type. This

comprehensive approach ensures a systematic and informed process for achieving

successful grasping. In summary, through a systematic process of parameter extraction,

refinement, and calculation, we establish a robust grasp planning approach. The Figure

3.17 shows two grasp rectangles, before and after tuning. As can be seen from the images

below, the accuracy of the rectangle increased based on our method. This enables us to

represent and transfer the necessary grasp parameters, ensuring successful object

manipulation within the desired world frame.

Figure 3.17: The blue rectangle represents the raw output of the network and the pink rectangle
shows grasp after calibration in the camera view.

48

3.6. Different Grasp Types

 The goal is to mimic the different grasp types when the fingers touch the object and

stop. To grasp objects, the first step is to position the robotic hand near the object at a

certain distance (Section 3.5.8), and then we close the fingers based on the size and

position of the object. The robotic hand we use consists of a total of 7 DOFs. For simplicity,

we have defined three possible grasp types: lateral, tripod, and power grasp (Figure 3.18

and Figure 3.18). As shown in Figure 2.6, the first joints of fingers are named PIP (Proximal

joint), and the second joints are named DIP (Distal Interphalangeal). To mimic grasp types,

we need to control the joints’ speed in a way that enables them to touch and grasp the

object according to the desired grasp type.

 The lateral grasp resembles a parallel jaw gripper, where the distal pads or fingertips

move toward each other in a pinching motion. This type of grasp is ideal for handling

smaller and thinner objects with precision(Figure 3.18.a and Figure 3.18.b). In the lateral

grasp the second joints (DIP), tend to maintain a straighter alignment, approaching zero

degrees. In other words, the PIP (First joints) need to move much faster compared to the

DIP joint.

 In tripod grasping, the DIP joints bend more compared to lateral grasping as can be

seen in Figure 3.18.c and Figure 3.18.d. However, the PIP joints still have a higher joint

angle and as a result, we close them faster than DIP joints. The tripod configuration allows

us to grasp objects of larger size compared to the lateral grasp. This versatility makes it

suitable for a wider range of object sizes.

 The power grasp is specifically designed for relatively larger objects. It involves creating

an enveloping grasp around the object and creating multiple contact points with the object

for a more stable grasp. This approach provides a secure and stable grip on the object.

We mimic this configuration by allowing the DIP and PIP joints to close at the same speed.

 As explained earlier, we regulate the speed at which the fingers close to achieve the

desired grasp. The modulation of finger closure speed is managed through a parameter

known as "nominal speed" (NS), acting as a setting that influences the rate at which the

finger joints come together. The NS parameter signifies the nominal rotational speed of

the joints and is adjusted based on the specific grasp type. By multiplying the NS

parameter by a specific factor, we can effectively alter the joint speed for each grasping

49

technique. Table 3.3 outlines the relationship between joint speed and grasp type. For

example, in the lateral grasp, the speed of the PIP joints is three times faster than in the

power grasp. Similarly, in the tripod grasp, the PIP joints close at a rate two times faster

than in the power grasp. Notably, the DIP (Distal Interphalangeal) joint speed remains

consistent across all grasp types.

 It should be mentioned that parameters have been established through experimentation

of the Power, Tripod, and Lateral grasping types, aiming to enhance grasping success

rates in each respective scenario. Figure 3.18 shows grasping before and after the grasp.

Table 3.3: joint speed compares to Nominal-Speed (NS) value for each joint
The joint name\ grasp

type
Power Tripod lateral

PIP (joint 1) 1 x NS 2 x NS 3 x NS

DIP (joint 2) 1 x NS 1 x NS 1 x NS

50

a

b

c

d

e

f

Figure 3.18: a, c, and e present before grasp and b), d), f) present grasps after execution for
lateral, tripod, and power grasp respectively.

51

3.7. Controlling finger movement and pressure using tactile
feedback

 Our multi-finger robot employs tactile sensors to detect pressure exerted on objects, a

common feature in many similar robotic systems. As shown in Figure 2.6, each fingertip is

equipped with multiple tactile sensors. The DIP (Distal Interphalangeal) links are

comprised of a 7x9 mesh of sensors, while the PIP (Metacarpophalangeal) links consist

of an 8x9 sensor mesh. To simplify the analysis, we utilize the mean pressure from all

tactile sensors associated with each fingertip as an indicator of the total pressure applied

during manipulation tasks. Also, the sensor data is very noisy so taking means will help

with dealing with noise.

 During the process of closing the fingers and establishing a firm grip on an object, it is

essential to exert sufficient pressure without exceeding the limits that may cause damage

to the object or the robotic hand. To address this requirement, we have implemented a

control system that adjusts the finger closure speed based on the pressure detected by

the tactile sensors. This control system serves as a feedback mechanism, gradually

slowing down the speed of finger closure as the pressure reaches specific thresholds,

known as DIP_Pressure_limit and PIP_Pressure_limit, respectively. The pressure

sensors provide a resolution of 12 bits, meaning pressure values can digitally range

between 0 and 4095, corresponding to 0-250 KPa. We have set the DIP_Pressure_limit

and PIP_Pressure_limit to 2500 and 2000, respectively.

 The primary objective of the feedback mechanism is to ensure a gradual reduction in

finger closure speed as the pressure on the object increases. By slowing down the finger

movement, we can maintain a delicate balance between exerting enough force to secure

the object and preventing excessive pressure that could potentially lead to damage. This

approach allows for precise control over the applied force, ensuring a safe and controlled

grip on the object.

 The integration of this feedback-driven control system significantly enhances the overall

performance and safety of our multi-finger robot. By continuously monitoring the pressure

through the tactile sensors and adjusting the finger closure speed accordingly, we can

achieve reliable and dexterous interaction with objects in various scenarios.

52

 Our closing strategy involves incrementally closing the fingers until reaching the specific

pressure threshold assigned to each link (Figure 3.18). If the pressure on the DIP (Distal

Interphalangeal) link reaches its limit, we simultaneously halt the corresponding PIP

(Metacarpophalangeal) link. However, in the event that the PIP pressure limit is reached

first, we halt the PIP link while allowing the DIP link to continue its movement until it also

reaches its pressure limit or the predefined time limit elapses.

 The underlying rationale for this strategy is twofold. When the tactile sensors on DIP links

sense contact and enough pressure, further movement in the PIP joint could amplify

pressure at the contact point. To ensure optimal contact with sufficient pressure, the

movement is arrested. Conversely, if the PIP link makes initial contact and senses enough

pressure, resuming motion in the DIP joint could potentially introduce another contact point

without exacerbating pressure at the PIP contact. This enables the finger to establish

multiple contacts with the object, which is particularly pertinent in power grasp scenarios.

 To prevent indefinite movements, we have imposed a time limit on all actions. The

pseudo code provided below outlines the grasp procedure, which has been explained in

Sections 3.6.

Algorithm 3

o Set the grasp type (Power, Tripod, Pinch)
o Reset the timer
o Start closing the joints based on the speed defined for each Grasp type (Table 3.3)
o While (timer < time_limit or all_joints_velocity > 0):

• Calculate the mean pressure for each PIP and DIP links
• For each finger:

▪ DIP_velocity. = DIP_NS * (1 – DIP_pressure / DIP_pressure_limit)
▪ PIP_velocity = PIP_NS * (1 – PIP_pressure / PIP_pressure_limit)
▪ if (DIP pressure >= DIP_pressure_limit):

 DIP_velocity = 0
 PIP_velocity = 0 (Halt stopping the PIP when the DIP_pressure reach to each

limit)
▪ else if (PIP pressure >= PIP_pressure_limit):

 PIP_velocity = 0
o Stop

53

Chapter 4. Experimental results

 Our methodology has been rigorously evaluated using four distinct approaches. 1) we

assessed the accuracy of the calibrated grasp rectangle network by conducting

experiments on the cornel dataset [41]. This involved measuring the network's ability to

accurately predict grasp rectangles.

2) To evaluate the necessity of the post-pressor algorithm, we conduct an experiment to

grasp an object with only the output of the GR_ConvNet network and without any

calibration.

3) we evaluated the accuracy of the YOLO network, which was employed for object

detection. By analyzing the network's performance, we determined its effectiveness in

correctly identifying objects within the given context. This method has tested the side view

test dataset as it has been explained in Section 3.3 .

 4), we assessed the success rate of grasping objects viewing from the top and viewing

from the side separately. This involved executing grasping actions and measuring the

proportion of successful grasps achieved.

4.1. Grasp rectangle evaluation

 As many of the other research in this area [34], [36], [52], we are testing the output of

our network and its calibration process, on the test dataset to compare its accuracy on it.

To ensure a fair comparison of our results, we adopt the rectangle metric proposed by

Jiang et al. [26] to evaluate the performance of our system in grasp detection. This metric

defines the criteria for a grasp to be considered valid, which are as follows:

1. The intersection over union (IoU) score between the predicted grasp rectangle and the
ground truth grasp rectangle must be greater than 25%.

2. The difference in grasp orientation between the predicted grasp rectangle and the
ground truth rectangle should be less than 30 degrees.

After feeding the image into the GR-ConvNet network proposed by [35] doing its

calibration process as explained in Section 3.7 and creating the new rectangle, we

54

compare the results with the grand truth rectangle with the explained method. We used 5-

fold cross-validation to evaluate our network performance like the base model.

Table 4.1 shows the accuracy presented by Cornell's official website [41] as three best

accuracies reported. Our network is an enhancement on top of the network presented

networks.

Table 4.1: Comparing the output of networks

Network name
Accuracy on Cornell

grasp dataset

Grasp_det_seg_cnn [36] 98.2

GR_ConvNet [35] 97.7

Resnet50 multi_grasp [52] 96.0

SB_ConvNet (ours) 98.6

 Following the application of our proposed calibration process, detailed in Section 3.7,

to the base network architecture, SB_ConvNet emerges as a standout performer,

achieving an impressive accuracy of 98.6%. This substantiates the efficacy of our

calibration technique in enhancing the network's grasp detection capabilities. In

comparison, the other networks, Grasp_det_seg_cnn, GR_ConvNet, and Resnet50

multi_grasp, exhibit accuracies of 98.2%, 97.7%, and 96.0% respectively. Notably, our

network's accuracy of 98.6% not only surpasses these notable benchmarks but also

outperforms the three best-reported accuracies listed on the Cornell official website. This

showcases the advancement offered by SB_ConvNet and underscores its potential to

enhance the precision and reliability of grasp detection in real-world scenarios.

4.2. Accuracy of YOLO network for detecting objects

 After our model finished its training, it showed remarkable results. It achieved an

accuracy of over 98.24% on the evaluation dataset and 97% on the test dataset in just

under 50 rounds of training. Additionally, we've taken on the task of retraining the Yolov5

model, as mentioned in [53], [54], using the dataset generously provided by [50].

55

 This section is all about thoroughly evaluating how well the retrained Yolov5 model can

detect objects. We've looked at it from two different angles: a view from the side and a

top-down view. We carefully selected 20 different objects and paired each one with its

corresponding pictures. To make the evaluation even better, we made sure to rotate each

object in five different ways, which really helped us understand the model's performance.

 The model successfully detected 96.0% of the objects in different positions and

orientations. It should be pointed out that in our evaluation, we assumed all the objects

were standing upright and clearly visible to the camera. This worked well because our

robotic hand is designed to grab objects that are standing up straight.

 However, we did notice that the model struggled when it came to seeing objects from

above. Its accuracy dropped to 73% in this case. This was especially true for smaller

objects with different shapes that the model hadn't seen much of during training. Since the

grasp rectangle method was showing promising results in creating boxes, we decided to

use it for top-view grasping. This method was very applicable to our case, especially for

top-down grasping.

4.3. GR_ConvNet without any post-processing

 Each object underwent individual assessment, being presented sequentially before the
camera. These evaluations involved varying the object's placement and orientation. It is
important to note that prior to evaluating our post-processor function, we first examined
the raw output of the GR_ConvNet [35], without applying any post-processing. This
preliminary step allowed us to gauge the system's performance and highlight the essential
role that the post-processor plays in refining the results. We focused on extracting the
necessary parameters, as elaborated in Section 3.7 while excluding the procedures
outlined in Sections 3.5.2. It's important to note that we set the pivotal_joint_angle to zero
due to limitations in available information. This initial assessment revealed a modest
success rate of 65%. We identified three primary reasons for these outcomes:

4.3.1. Unbalanced pressure

 Figure 4.1 demonstrates a scenario where uneven pressure was applied to the object,
potentially causing its displacement from the intended grasp location or, in more severe

56

instances, leading to the object falling. Such imbalanced pressure significantly increased
the likelihood of an unsuccessful grasp. This highlights the crucial nature of calibrating the
x value of the grasp, as outlined in Section 3.7.1.

 a) b)

Figure 4.1: a) Unequal force will result in the object's fall down and unsuccessful grasp attempt
and b) unbalanced pressure will move the object to another position and result in unsuccessful

grasping.

4.3.2. Missed Contact

 Figure 4.2 illustrates situations where the grasp placement was too close to the object's

edges or even outside its boundaries. This often resulted in a finger failing to contact the

object, resulting in missed grasps. The importance of accurately calibrating the y value,

as detailed in Section 3.4.1, is evident here.

57

Figure 4.2: Unsuccessful grasp because one finger missed the object while it was closing.

4.3.3. Slippage due to the anchor force

 As depicted in Figure 4.3, instances arose where the object slipped from the robot's grip

due to the anchor force exerted by the object's center of mass. This highlights the

significance of aiming to grasp objects near their center of mass.

58

Figure 4.3: Unsuccessful grasp due to the slippage.

 In conclusion, the utilization of a postprocessor proved indispensable for the multi-finger

robot's successful grasping endeavors, especially when dealing with relatively larger

objects compared to those previously grasped using grippers. This evaluation serves to

emphasize the critical role of fine-tuning various parameters and employing a

comprehensive approach in achieving effective and reliable grasping outcomes.

4.4. Grasping objects viewing from the top and viewing
from the side

 The evaluation process involved several stages to ensure the successful grasping of

objects by the robot. Initially, the robot assumed a scanning pose, allowing it to survey

and identify objects within its visual range. Once an object was detected, the robot

followed the outlined procedures in Section 3.7 to execute the grasping maneuver.

 Our findings underscore the critical importance of fine-tuning the network specifically for

multi-finger robotic systems, which significantly enhances the overall success rate. To

reinforce this point, we conducted additional tests on 20 objects, with 200 attempts made

for grasping viewing from the top, and 15 objects, with 150 attempts, for viewing from side

59

grasping. These additional tests consistently demonstrated the improvements achieved

through network calibration.

 Remarkably, our approach achieved an impressive success rate of 94.4% for viewing

from top grasping and 95.6% for viewing from side grasping. As depicted in Figure 4.4,

various grasp poses were successfully executed during viewing from top grasping.

Furthermore, our method exhibited efficiency, with average calculation times of 0.120

seconds for viewing from top grasping and 0.123 seconds for viewing from side grasping.

 A video demonstrating samples of real experiments conducted with our algorithm with

our experimental set-up comprising a Gen 3 Kinova arm with a wrist-mounted RealSense

D415 RGBD camera and 3-fingered Schunk Dextrous Hand (SDH) is posted at

https://summit.sfu.ca/item/38159.

 Table 4.2 compares our approach to some of the leading studies in robotic grasping

that use CNN models. Our (SB_ConvNet) is a promising choice for successfully grasping

objects, especially in real-world scenarios with multi-fingered robots. It's worth noting that

for multi-finger robots, we've achieved a significantly higher success rate (95%) than the

success rate reported, e.g., [21]in previous work [21] on household objects. Furthermore,

our processing time (120 milliseconds) is significantly shorter than the processing time

reported (8.1s) in [21].

 However, it is important to note that our method encountered challenges when

attempting to grasp objects of solid white or transparent colour due to limitations in the

grabCut method. Despite this limitation, our approach showcased significant

advancements in grasping objects of varying shapes and colours. By implementing a more

advanced segmentation method, we are confident that we can overcome this challenge

as well.

 It's important to note that while we haven't conducted direct comparisons with other

studies, there could be variations in processing time and outcomes across different

computer setups and processors. Nevertheless, our method demonstrates significant

advancements, particularly in the realm of multi-finger grasping techniques. We've

observed a remarkable improvement in grasp success rates compared to existing

methods in this domain.

60

Table 4.2: Output of different methods on real-world experiments.

Network Name Input
processing

time(s)
number of fingers

Success

Rate (%)

DDGGC [21] Point-cloud 8.1 3-finger robot 71

Multi-FinGAN [5], [21] Point-cloud 9.1 3-finger robot 60

Voxel-MDN-Prior [22],

[55]
Point cloud - 3-finger robot 75

Multi-grasp-detector [52] RGB-D 0.25 Gripper (2) 89

GR-ConvNet [35] RGB-D 0.2s Gripper (2) 95.4

GR-ConvNet (our test) RGB-D 0.023 3-finger robot 65

SRConvNet- (ours)
RGB-D(viewing

from side)
0.120 3-finger robot 96.0

SRConvNet- (ours)
RGB-D (viewing

from top)
0.123 3-finger robot 95.0

61

62

Figure 4.4: Some examples of successful grasps.

4.5. Limitations

 In our project, we thoroughly assessed our model across various conditions and

scenarios, including comparisons with prior studies (refer to Table 4.2). While we achieved

success in accurately grasping household objects, we encountered challenges with

objects possessing unique shapes. Some examples of these problematic objects are

illustrated in Figure 4.5.

 For instance, in Figure 4.5.a, our search-based method struggles due to limitations in

determining pivotal joint angles to minimize the distance between the finger direction and

the object's normal contact points. This limitation stems from the structure of the SDH

hand and the interplay between pivotal joints. Our method, optimized for common-shaped

objects, may require adaptation for objects with diverse shapes, possibly necessitating a

hand with a different structure and greater dexterity.

63

 Similarly, in Figure 4.5.b, although our method excels in identifying grasp centers and

minimizing the angle between finger closing direction and normals at contact points, it may

fail to grasp objects from the top due to insufficient contact between fingertips and the

object's surface. Such objects may challenge human grasp as well, posing a risk of

slipping even from human hands.

a) b)

Figure 4.5: An example of objects that our search based method might fail to grasp

 Furthermore, as discussed in Section 3.3, our segmentation approach using the

GrabCut method encounters difficulties with white-colored objects, failing to distinguish

them from the background. While colorful scenes can aid segmentation in many cases,

certain scenarios, as depicted in the accompanying figures, present challenges where the

method falters, leading to model failure. Future studies may necessitate a more advanced

segmentation model to address these limitations effectively.

 Additionally, our model's performance has not been evaluated across different lighting

conditions, which could potentially impact its effectiveness in various environments and

scenes.

64

a) b)

Figure 4.6: Some examples of objects that the GrabCut method failed to segment them from the

background. This method is sensitive to white colored objects.

65

Chapter 5. Conclusion and Future Work

 In our study, we've introduced an efficient post-processing technique that harnesses a

search-based algorithm to enhance the performance of the well-established "grasp

rectangle (GR)" method for multi-finger robots. What sets our approach apart is its

remarkable speed and reliability compared to existing multi-finger robot grasping methods.

Notably, our proposed post-processing technique not only elevates the outcomes of GR

Networks but also, improved the reliability of grasping even for two-finger grippers.

 In our project, we employed the GrabCut method for object segmentation, a technique

that necessitates predefined bounding boxes. These bounding boxes were generated by

YOLO, with one set for grasping from the side and another for grasping from the top. Once

the object is segmented, we utilize the edges of the object to determine the normals at

each edge point. Initially, we fine-tune the grasp center points. Subsequently, by projecting

the fingertips onto the grasp plane, we employed a search-based method to identify the

optimal grasp pose. Our objective was to ascertain the pivotal joint angle that would

minimize the disparity between the fingers closing directions and the object's normals at

the contact points. Ultimately, the required parameters to grasp an object (Refer to

Chapter 3) were obtained from the information extracted from the tuned grasped

rectangle.

 While we employed the GrabCut method for segmentation, it excelled in terms of speed

and reliability. However, it did face challenges when detecting transparent and white

objects. In our future work, we intend to implement more advanced segmentation methods

to tackle these challenges and further enhance the efficiency and effectiveness of our

approach. Additionally, we aim to expand our method to encompass the simultaneous

grasping of multiple objects from a single image.

 Moreover, within this project, our grasp operations were confined to objects placed on a

flat surface, limiting our end-effector pose to 4 degrees of freedom (DOF). To broaden the

scope of our approach, we aim to extend our method to handle objects not constrained to

planar surfaces, thereby increasing the potential DOF of grasp pose to 6. Furthermore, it

is essential to validate our method using a variety of robotic hands equipped with higher

degrees of freedom. A robotic hand with increased DOF can offer enhanced versatility in

grasping objects with complex shapes.

66

 Additionally, we must assess our model's efficacy under diverse lighting conditions and

scenarios, including those involving shadows. Evaluating our system's performance in the

presence of shadows will provide insights into its robustness across a wider spectrum of

real-world environments.

 In addition, the tactile feedback introduced in Section 3.5.7 currently applies the same

force value, close to a maximum range of the sensor to all objects. However, certain

delicate objects, such as eggs, require a specific and often gentler touch. In our future

work, we aim to extend our method to accommodate grasping objects with varying force

requirements. This enhancement will enable our system to adapt its grasp force based on

the specific characteristics and needs of each individual object, thereby improving its

versatility and applicability across a wider range of scenarios. [56]

67

References

[1] C. Piazza, G. Grioli, M. G. Catalano, and A. Bicchi, “A Century of Robotic Hands,”

Robotics, and Autonomous Systems Annu. Rev. Control Robot. Auton. Syst.

2019, vol. 22, pp. 1–32, 2019, doi: 10.1146/annurev-control-060117.

[2] S. El-Khoury and A. Sahbani, “On computing robust n-finger force-closure grasps

of 3D objects,” in 2009 IEEE International Conference on Robotics and

Automation, IEEE, May 2009, pp. 2480–2486. doi:

10.1109/ROBOT.2009.5152272.

[3] R. Krug, D. Dimitrov, K. Charusta, and B. Iliev, “On the efficient computation of

independent contact regions for force closure grasps,” in 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IEEE, Oct. 2010, pp.

586–591. doi: 10.1109/IROS.2010.5654380.

[4] R. R. Devaraja, R. Maskeliūnas, and R. Damaševičius, “Design and evaluation of

anthropomorphic robotic hand for object grasping and shape recognition,”

Computers, vol. 10, no. 1, pp. 1–14, 2021, doi: 10.3390/computers10010001.

[5] J. Lundell et al., “Multi-FinGAN: Generative Coarse-To-Fine Sampling of Multi-

Finger Grasps,” in Proceedings - IEEE International Conference on Robotics and

Automation, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 4495–

4501. doi: 10.1109/ICRA48506.2021.9561228.

[6] R. Newbury et al., “Deep Learning Approaches to Grasp Synthesis: A Review,”

IEEE Transactions on Robotics, pp. 1–22, 2023, doi:

10.1109/TRO.2023.3280597.

[7] D. Kalashnikov et al., “Scalable Deep Reinforcement Learning for Vision-Based

Robotic Manipulation,” in 2nd Conference on Robot Learning (CoRL 2018),

Z¨urich, Switzerland., 2018. [Online]. Available: https://goo.gl/wQrYmc.

[8] Q. Lu, M. Van Der Merwe, B. Sundaralingam, and T. Hermans, “Multifingered

grasp planning via inference in deep neural networks: Outperforming sampling by

68

learning differentiable models,” IEEE Robot Autom Mag, vol. 27, no. 2, pp. 55–65,

Jun. 2020, doi: 10.1109/MRA.2020.2976322.

[9] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E.

Muharemagic, “Deep learning applications and challenges in big data analytics,” J

Big Data, vol. 2, no. 1, Dec. 2015, doi: 10.1186/s40537-014-0007-7.

[10] M. A. Roa and R. Suárez, “Grasp quality measures: review and performance,”

Auton Robots, vol. 38, no. 1, pp. 65–88, Jan. 2015, doi: 10.1007/s10514-014-

9402-3.

[11] J. W. Li, H. Liu, and H. G. Cai, “On computing three-finger force-closure grasps of

2-D and 3-D objects,” IEEE Transactions on Robotics and Automation, vol. 19, no.

1, pp. 155–161, Feb. 2003, doi: 10.1109/TRA.2002.806774.

[12] M. Hegedus, K. Gupta, and M. Mehrandezh, “Efficiently finding poses for multiple

grasp types with partial point clouds by uncoupling grasp shape and scale,” Auton

Robots, vol. 46, no. 6, pp. 749–767, Aug. 2022, doi: 10.1007/s10514-022-10049-

6.

[13] G. M. Bone, A. Lambert, and M. Edwards, “Automated Modeling and Robotic

Grasping of Unknown Three-Dimensional Objects,” in IEEE International

Conference on Robotics and Automation, IEEE Xplore, 2008, pp. 19–23.

[14] M. Hegedus, K. Gupta, and M. Mehrandezh, “Efficiently finding poses for multiple

grasp types with partial point clouds by uncoupling grasp shape and scale.,”

Auton Robots, vol. 46, no. 6, pp. 749–767, 2022.

[15] F. Lévesque, B. Sauvet, P. Cardou, and C. Gosselin, “A model-based scooping

grasp for the autonomous picking of unknown objects with a two-fingered gripper,”

Rob Auton Syst, vol. 106, pp. 14–25, Aug. 2018, doi: 10.1016/j.robot.2018.04.003.

[16] Siddarth Jain and Brenna Argall, “Grasp Detection for Assistive Robotic

Manipulation,” in IEEE International Conference on Robotics and Automation :

Stockholm, Sweden, 2016, pp. 2015–2021.

69

[17] A. T. Milled, S. Knoopt, H. I. Christensen, and P. K. Allent, “Automatic Grasp

Planning Using Shape Primitives.” [Online]. Available:

www.cs.columbia.eduramillerigraspit.

[18] Markus Przybylski, Tamim Asfour, and R¨udiger Dillmann, “Planning Grasps for

Robotic Hands using a Novel Object Representation based on the Medial Axis

Transform,” in International Conference on Robotics and Automation (ICRA),

IEEE, 2011, pp. 1781–1788.

[19] M. Nieuwenhuisen, J. Stückler, A. Berner, R. Klein, and S. Behnke, “Shape-

Primitive Based Object Recognition and Grasping,” in 7th German Conference on

Robotics, May, May 2012, pp. 1–5.

[20] M. Zhu et al., “Single image 3D object detection and pose estimation for

grasping,” in 2014 IEEE International Conference on Robotics and Automation

(ICRA), IEEE, May 2014, pp. 3936–3943. doi: 10.1109/ICRA.2014.6907430.

[21] J. Lundell, F. Verdoja, and V. Kyrki, “DDGC: Generative Deep Dexterous

Grasping in Clutter,” IEEE Robot Autom Lett, vol. 6, no. 4, pp. 6899–6906, Oct.

2021, doi: 10.1109/LRA.2021.3096239.

[22] Q. Lu, Mark Van der Merwe, and Tucker Hermans, “Multi-fingered active grasp

learning,” IEEE/RSJ International Conference on Intelligent Robots (IROS), pp.

8415–8422, 2020, Accessed: May 09, 2024. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9340783/

[23] D. Fischinger, A. Weiss, and M. Vincze, “Learning grasps with topographic

features,” International Journal of Robotics Research, vol. 34, no. 9, pp. 1167–

1194, Aug. 2015, doi: 10.1177/0278364915577105.

[24] A. Herzog et al., “Learning of grasp selection based on shape-templates,” Auton

Robots, vol. 36, no. 1–2, pp. 51–65, Jan. 2014, doi: 10.1007/s10514-013-9366-8.

[25] R. Detry, C. H. Ek, M. Madry, J. Piater, and D. Kragic, “Improving data efficiency

of self supervised learning for robotic grasping,” in Robotics and Automation

(ICRA), 2019, pp. 3791–3797.

70

[26] J. Varley, J. Weisz, J. Weiss, and P. Allen, “Generating multi-fingered robotic

grasps via deep learning,” in 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), IEEE, Sep. 2015, pp. 4415–4420. doi:

10.1109/IROS.2015.7354004.

[27] T. Boroushaki, I. Perper, M. Nachin, A. Rodriguez, and F. Adib, “Rfusion: Robotic

grasping via rf-visual sensing and learning,” in 19th ACM conference on

embedded networked sensor systems 2021, Nov. 2021, pp. 192–205. doi:

10.1145/3485730.3485944.

[28] E. Valarezo Añazco et al., “Natural object manipulation using anthropomorphic

robotic hand through deep reinforcement learning and deep grasping probability

network,” Applied Intelligence, vol. 51, no. 2, pp. 1041–1055, Feb. 2021, doi:

10.1007/S10489-020-01870-6.

[29] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber, “A Survey on Learning-

Based Robotic Grasping,” Current Robotics Reports, vol. 1, no. 4, pp. 239–249,

Dec. 2020, doi: 10.1007/S43154-020-00021-6.

[30] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” Int J

Rob Res, vol. 34, no. 4–5, pp. 705–724, Apr. 2015, doi:

10.1177/0278364914549607.

[31] M. Mohammed, K. Chung, C. C.-I. Access, and undefined 2020, “Review of deep

reinforcement learning-based object grasping: Techniques, open challenges, and

recommendations,” ieeexplore.ieee.org, Accessed: Apr. 28, 2024. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/9210095/

[32] D. Kalashnikov et al., “QT-Opt: Scalable Deep Reinforcement Learning for Vision-

Based Robotic Manipulation,” Jun. 2018, [Online]. Available:

http://arxiv.org/abs/1806.10293

[33] T. Osa, J. Peters, and G. Neumann, “Experiments with Hierarchical

Reinforcement Learning of Multiple Grasping Policies,” in 2016 International

Symposium on Experimental Robotics, Springer International Publishing, 2017,

2017, pp. 160–172. doi: 10.1007/978-3-319-50115-4_15.

71

[34] J. Redmon and A. Angelova, “Real-time grasp detection using convolutional

neural networks,” in 2015 IEEE International Conference on Robotics and

Automation (ICRA), IEEE, May 2015, pp. 1316–1322. doi:

10.1109/ICRA.2015.7139361.

[35] S. Kumra, S. Joshi, and F. Sahin, “Antipodal Robotic Grasping using Generative

Residual Convolutional Neural Network,” in 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), IEEE, Oct. 2020, pp.

9626–9633. doi: 10.1109/IROS45743.2020.9340777.

[36] S. Ainetter and F. Fraundorfer, “End-to-end Trainable Deep Neural Network for

Robotic Grasp Detection and Semantic Segmentation from RGB,” in 2021 IEEE

International Conference on Robotics and Automation (ICRA), IEEE, May 2021,

pp. 13452–13458. doi: 10.1109/ICRA48506.2021.9561398.

[37] L. Chen, P. Huang, Y. Li, Z. M.-I. J. of Control, and undefined 2020, “Detecting

graspable rectangles of objects in robotic grasping,” Springer, vol. 18, no. 5, pp.

1343–1352, May 2020, doi: 10.1007/s12555-019-0186-2.

[38] L. Chen, P. Huang, Y. Li, Z. M.-I. T. on, and undefined 2020, “Edge-dependent

efficient grasp rectangle search in robotic grasp detection,” ieeexplore.ieee.org,

Accessed: Apr. 28, 2024. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9311695/

[39] Y. Jiang, S. Moseson, A. S.-2011 I. International, and undefined 2011, “Efficient

grasping from rgbd images: Learning using a new rectangle representation,”

ieeexplore.ieee.org, Accessed: Apr. 28, 2024. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/5980145/

[40] J. Zhang, M. Li, Y. Feng, and C. Yang, “Robotic grasp detection based on image

processing and random forest,” Multimed Tools Appl, vol. 79, no. 3–4, pp. 2427–

2446, Jan. 2020, doi: 10.1007/S11042-019-08302-9.

[41] “Cornell grasping dataset.” Accessed: Aug. 31, 2013. [Online]. Available:

http://pr.cs.cornell.edu/grasping/rectdata/data.php,accessed:2013-09-01

72

[42] A. Depierre, E. Dellandrea, and L. Chen, “Jacquard: A Large Scale Dataset for

Robotic Grasp Detection,” in 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), IEEE, Oct. 2018, pp. 3511–3516. doi:

10.1109/IROS.2018.8593950.

[43] Kinova Inc, “Kinova Kortex Gen3 7-DOF Robot Arm.” [Online]. Available:

https://www.kinovarobotics.com/product/gen3-robots

[44] “Intel ® RealSense TM Product Family D400 Series Datasheet Intel ®

RealSenseTM Vision Processor D4, Intel ® RealSenseTM Vision,” 2022. [Online].

Available: www.intel.com/design/literature.htm.

[45] SCHUNK GmbH & Co. KG, “SCHUNK Dextrous Hand 2.0 (SDH 2.0).” [Online].

Available: http://www.schunk.com

[46] Glenn Jocher, “YOLOv5 by Ultralytics.” May 29, 2020. [Online]. Available:

https://github.com/ultralytics/yolov5

[47] R. Huang, J. Pedoeem, and Chen C, “YOLO-LITE: a real-time object detection

algorithm optimized for non-GPU computers,” in IEEE international conference on

big data (big data), Dec. 2018, pp. 2503–2510. Accessed: Apr. 28, 2024. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/8621865/

[48] W. Fang, L. Wang, P. R.-I. Access, and undefined 2019, “Tinier-YOLO: A real-

time object detection method for constrained environments,” ieeexplore.ieee.org,

Accessed: Apr. 28, 2024. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/8941141/

[49] T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using YOLO:

challenges, architectural successors, datasets and applications,” Multimed Tools

Appl, vol. 82, no. 6, pp. 9243–9275, Mar. 2023, doi: 10.1007/S11042-022-13644-

Y.

[50] P. Douglas De Rizzo Meneghetti et al., “Annotated image dataset of household

objects from the RoboFEI@Home team,” Oct. 2020.

73

[51] M. Bjelonic, “YOLO ROS: Real-Time Object Detection for ROS.” 2018. [Online].

Available: https://github.com/leggedrobotics/darknet_ros

[52] F. J. Chu, R. Xu, and P. A. Vela, “Real-world multiobject, multigrasp detection,”

IEEE Robot Autom Lett, vol. 3, no. 4, pp. 3355–3362, Oct. 2018, doi:

10.1109/LRA.2018.2852777.

[53] I. S. Isa, M. S. A. Rosli, U. K. Yusof, M. I. F. Maruzuki, and S. N. Sulaiman,

“Optimizing the Hyperparameter Tuning of YOLOv5 for Underwater Detection,”

IEEE Access, vol. 10, pp. 52818–52831, 2022, doi:

10.1109/ACCESS.2022.3174583.

[54] H. Zhang, M. Tian, G. Shao, J. Cheng, and J. Liu, “Target Detection of Forward-

Looking Sonar Image Based on Improved YOLOv5,” IEEE Access, vol. 10, pp.

18023–18034, 2022, doi: 10.1109/ACCESS.2022.3150339.

[55] Q. Lu, M. Van der Merwe, and T. Hermans, “Multi-Fingered Active Grasp

Learning,” Jun. 2020, [Online]. Available: http://arxiv.org/abs/2006.05264

[56] A. Tourani, H. Bavle, J. L. Sanchez-Lopez, R. M. Salinas, and H. Voos, “Marker-

Based Visual SLAM Leveraging Hierarchical Representations,” in IEEE

International Conference on Intelligent Robots and Systems, Institute of Electrical

and Electronics Engineers Inc., 2023, pp. 3461–3467. doi:

10.1109/IROS55552.2023.10341891.

74

Appendix A.

Video Summary of Thesis and Object Grasping

Demonstration

 This video provides a summary of the grasping process and demonstrates the robot in

action, grasping objects from both the side and the top. It showcases various examples of

the robot successfully performing these tasks.

Filename: https://summit.sfu.ca/item/38159

75

Appendix B.

Files and Code

 This link directs to a Google Drive containing all the files and code used and created

in this thesis.

Link:
https://drive.google.com/drive/folders/10gTKtssOeb2Z6OVQdz0Cdi3k93sMUfL9?usp=dri

ve_link

