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Abstract 

Atmospheric rivers (ARs) influence floods, droughts, and snowpack levels in southwest 

British Columbia (BC), making their variability consequential to the region’s water 

resources. While instrumental AR data are limited to recent decades, tree ring records 

can extend knowledge of AR trends by centuries, allowing for better contextualization of 

current and future AR trends. This research evaluates two dendrochronological methods 

– tree ring width and tree ring δ18O – for their novel use as proxy records of historical AR 

variability in southwest BC. Generalized Additive Models reveal that AR data explain tree 

ring width and δ18O variability not explained by other climate data, suggesting an AR 

signal. The strength of this signal is stronger for tree ring δ18O, with the percentage of fall 

precipitation from Pineapple Express (PE)-type ARs explaining up to 44% of δ18O 

variance. These results indicate the potential for centuries-long PE records and carry 

important implications for water resource management. 

 

Keywords:  Atmospheric river; Pineapple Express; dendrochronology; tree ring; δ18O; 
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Chapter 1.  
 
General Introduction 

1.1. Summary 

Anthropogenic climate change is distorting the global water cycle, particularly 

through shifts in the patterns and intensities of hydrological extremes (Douville et al., 

2021). This intensification of extreme rainfall and droughts poses severe risks to human 

livelihoods, agricultural systems, economies, and water resources worldwide 

(Intergovernmental Panel on Climate Change, 2022). Along the southwest coast of 

British Columbia (BC) and northwest coast of the conterminous United States (US), 

hereinafter referred to as the Pacific Northwest (PNW), extreme precipitation in the form 

of atmospheric river (AR) storms has important impacts on the region’s water budgets 

(Dettinger, 2013; Eldardiry et al., 2019; Goldenson et al., 2018; Metro Vancouver, 

2019a). However, the lack of multi-century long historical records of AR trends limits the 

ability of PNW water resource managers to account for these storms in future planning. 

Such data are especially crucial as the region grapples with climate change-induced 

shifts to snowpack, streamflow, and summer water availability (Metro Vancouver, 2019b; 

Seattle Public Utilities, 2019; Vano et al., 2015). To this end, this research evaluates two 

dendrochronological approaches, tree ring width and δ18O in tree ring cellulose, for their 

novel use as proxy records of historical AR trends in southwest BC, Canada. 

1.2. Background 

Atmospheric rivers are filamentary hydrological features, thousands of kilometres 

long and hundreds of kilometres wide, that transport large volumes of water vapour and 

deliver intense precipitation to mid-latitude coastlines (Ralph et al., 2018; Ralph & 

Dettinger, 2011). These synoptic-scale plumes are responsible for over 90% of the 

globe’s water vapour flux from the tropics toward the poles (measured as vertically 

integrated horizontal water vapour flux) (Zhu & Newell, 1998), with some ARs 

transporting water at a rate of fifteen Mississippi Rivers combined (Ralph et al., 2018; 

Ralph & Dettinger, 2011). When AR paths intersect coastal or inland mountain ranges, 

the storms release intense orographic precipitation (Ralph & Dettinger, 2011), giving way 
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to the flooding, landslides, and infrastructure damage often associated with ARs (Payne 

et al., 2020). As a result, ARs are responsible for 84% of flood damages in the western 

US (1978-2017) (Corringham et al., 2019). 

ARs also bring important impacts to North American water resources, including in 

the PNW. The PNW experiences Mediterranean and oceanic climates, with mild, wet 

winters followed by dry summers (Peel et al., 2007). This drives many PNW watersheds’ 

hybrid runoff regimes, wherein mountain snowpacks accumulate in cold seasons and 

melt in warmer months (Pike et al., 2011). These snowpacks function as natural 

reservoirs; they hold the region’s winter precipitation until the spring and early summer, 

when warm temperatures melt the snow and release water to downstream environments 

(Vano et al., 2015). Through this system, snowpacks provide in-season water resupply 

to human-made reservoirs, and this resupply is necessary to meet the PNW’s municipal, 

agricultural, and industrial water demands (Vano et al., 2015 and refs. therein). ARs, as 

predominantly cold-season phenomena (Mundhenk et al., 2016), interact with this 

snowmelt-reliant system. Although AR precipitation is generally associated with 

beneficial snowpack contributions in western North America (Eldardiry et al., 2019), 

PNW ARs tend to degrade snowpacks through rain-on-snow events (Chen et al., 2019; 

Eldardiry et al., 2019), challenging the PNW’s water resources. At the same time, warm-

season ARs can relieve droughts, and ARs have broken 60-74% of all persistent 

droughts between 1950 and 2010 in the US PNW (Dettinger, 2013). Understanding AR 

frequency and seasonality, then, is crucial in determining the PNW’s ability to meet its 

water demands.  

Climate change is likely to compound AR effects on PNW water resources. 

Warmer temperatures are projected to reduce winter snowpacks, straining the PNW’s 

snowmelt-fed regime (Siirila-Woodburn et al., 2021). In one PNW watershed serving the 

municipal water supply of Metro Vancouver, BC, a >90% decrease in peak wintertime 

snow water equivalent (SWE) is projected for the 2080s under a high-emissions 

scenario (RCP 8.5) (Dierauer et al., 2021). Such decreased SWE can exacerbate 

summer streamflow droughts (Dierauer et al., 2021) and strain the region’s water 

resources (Metro Vancouver, 2019b; Siirila-Woodburn et al., 2021), especially during the 

PNW’s projected longer summer dry spells (Curry & Sobie, 2023; Mote & Salathé, 

2010). Considering ARs’ ability to break and create droughts, ARs are likely to 

increasingly interact with PNW hydroclimate extremes as the climate warms. 
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Climate change is also affecting ARs themselves, bringing additional hazards. As 

greenhouse gas emissions increase global ocean and atmospheric temperatures, the 

intensity of ARs is rising (Baek & Lora, 2021). Warmer oceans and air are projected to 

increase atmospheric moisture (Held & Soden, 2006), enhancing the frequency, 

duration, size (Rhoades et al., 2020), and precipitation intensity of AR storms (Payne et 

al., 2020). Climate change-derived AR intensification has already begun; for example, 

climate change made a 2021 AR in the PNW 45% more likely (Gillett et al., 2022). This 

AR’s heavy precipitation caused flooding, landslides, and major evacuations; cut off 

Vancouver, BC from the rest of Canada by rail and road; and led to five fatalities (Gillett 

et al., 2022). Considering climate change’s intensification of ARs and their hazards, 

there is a growing interest in understanding the interannual frequency and intensity of 

AR storms to better accommodate their hydroclimate impacts (Ralph et al., 2017).  

A climate change-altered precipitation regime in the PNW is also likely to affect 

the region’s vegetation. PNW vegetation is finely adapted to mild summers and cool, wet 

winters, and shifts to this system will lead to cascading, ecosystem-level impacts 

(Shanley et al., 2015). These impacts may particularly manifest in PNW forests, where 

longer summer dry periods, decreased snowpack, and increased drought stress will 

likely affect tree growth and productivity (Albright & Peterson, 2013; Case et al., 2021). 

With more of the region’s precipitation arriving from ARs (Gershunov et al., 2019), AR 

interannual variability may increasingly play a role in tree growth; recent studies have 

begun examining this relationship (Borkotoky et al., 2023; Howard et al., 2023; 

Steinschneider et al., 2018). 

Knowledge of historical AR storm patterns is essential for contextualizing current 

and future AR trends. However, quantification of AR variability has traditionally been 

limited to the mid-20th century satellite era (Shields et al., 2018), impeding the ability to 

evaluate present and future ARs. Dendrochronological records, alternatively, can serve 

as effective proxy records for past weather extremes and climate many centuries older 

than instrumental or satellite reanalysis records (Speer, 2010). Such historical 

reconstructions are possible because trees generally grow a distinct ring each year and 

because tree growth can be climate-limited; for example, drought-intolerant trees might 

grow narrower rings in drier years than wetter years (Speer, 2010). If yearly tree ring 

width, a common dendrochronological measurement, correlates strongly with 

instrumental records of a climate variable, then ring width can serve as an annually-
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resolved proxy record of that climate variable that extends beyond the instrumental 

record. In the PNW, tree ring width records have added to knowledge of past streamflow 

(Littell et al., 2016), groundwater levels (Hunter et al., 2020), SWE (Mood et al., 2020), 

summer temperature (Pitman & Smith, 2012), precipitation (Dannenberg & Wise, 2016), 

and snow drought (Harley et al., 2020), with some reconstructions as old as eight 

centuries (Littell et al., 2016). Recent research has indicated the potential for tree ring 

widths to record centuries-long AR history on the US west coast (Borkotoky et al., 2023; 

Gupta et al., 2023; Howard et al., 2023; Steinschneider et al., 2018). However, radial 

growth records have not yet been tested for their use as an AR proxy in southwest BC.  

Tree ring stable isotopes are another dendrochronological record that documents 

past climates. Isotopes with heavier atomic weights cycle through the environment 

differently than their lighter counterparts, and climatic controls on that cycling can 

correlate strongly with stable isotope compositions measured in tree rings (McCarroll & 

Loader, 2004a). Stable isotope dendrochronology applications are diverse, with 

relationships identified between tree ring stable isotopes and climate variables such as 

humidity (G. Xu et al., 2022), soil moisture (Tei et al., 2013), moisture source (Labotka et 

al., 2016), precipitation amounts (Roden & Ehleringer, 2007; C. Xu et al., 2013), cyclone 

activity (Miller et al., 2006), and the phases of climate oscillations such as the El Niño 

Southern Oscillation (Brienen et al., 2012), the Pacific Decadal Oscillation (PDO) (C. Xu 

et al., 2019), and the Arctic Oscillation (AO) (Churakova Sidorova et al., 2021; Dinis et 

al., 2019). 

In the PNW, where plant growth is less water-limited than other parts of the world 

(Nemani et al., 2003), stable isotope dendrochronology is a valuable option for recording 

annual hydroclimate histories (Ratcliff et al., 2018). Currently, a stable isotope tree ring 

proxy record has not been created for North American west coast AR storm variability; 

this gap likely exists because AR precipitation’s δ18O and δ2H isotopic ratios are not 

substantially different from those of non-AR precipitation (Greenblat et al., 2024; 

McCabe-Glynn et al., 2016). However, Pineapple Express (PE) storms, a category of 

ARs that transport water vapor from the subtropical Pacific Ocean to the North American 

west coast (Shields & Kiehl, 2016b), exhibit potential for appearing in tree ring stable 

isotope records due to their precipitation’s enriched δ18O relative to non-PE precipitation 

(Oster et al., 2012; Spry et al., 2014). The potential capture of enriched δ18O from PE AR 

storms in tree ring cellulose, and the associated relationships between tree ring δ18O 
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and interannual PE variability, were first studied in Spry (2013), though a multi-tree δ18O 

record has not yet been evaluated for its use as a PE proxy. 

1.3. Purpose and Objectives 

The potential extension of AR history using dendrochronological methods carries 

substantial implications for water resource management in the PNW. 

Dendrochronological records of water extremes have already demonstrated their 

management utility across North America; applications include the measurement of 

drought return periods (Kwon & Lall, 2016), the estimation of reservoir sizes (Patskoski 

& Sankarasubramanian, 2015), and the contextualization of modern river and stream 

gauge data (Meko & Woodhouse, 2011). For ARs, the extension of their historical 

patterns beyond instrumental records using dendrochronological methods would allow 

for a more comprehensive evaluation of their long-term interannual frequency. This, in 

turn, would allow for improved contextualization and management of current and future 

ARs in a changing climate. 

This research explores two dendrochronological methods — tree ring width 

records and records of δ18O in tree cellulose — for their ability to record drought and AR 

variability in the PNW. To do so, this thesis presents tree ring records for Pacific silver fir 

and Douglas-fir in two coastal watersheds on the southwest coast of BC. This thesis also 

presents records of AR and PE AR frequency, and their annual contribution to 

precipitation for the study region, using satellite reanalyses and weather station data. 

The tree ring records are then compared with the AR and PE AR records using 

Generalized Additive Models (GAMs) to evaluate whether and how these 

dendrochronological methods function as proxy records for AR and PE AR variability. 

In Chapter 2, I present Pacific silver fir radial growth records from southwest BC 

and analyze their potential to record AR variability. I establish annual and earlywood 

radial growth chronologies for Pacific silver fir, a species potentially responsive to AR 

trends due to their sensitivity to low moisture availability (Klinka et al., 1999), then 

assess their relationships with AR variability using Generalized Additive Models (GAMs). 

Likely determinants of tree radial growth, including temperature, snowpack, and climate 

oscillations such as El Niño Southern Oscillation are also included in the GAM to identify 

whether AR data explain tree growth variability not explained by other climate variables. 
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To clarify the interpretation of AR effects on tree growth, I also evaluate concurrent 

impacts of ARs and summer drought on tree growth using t-tests. These results are 

discussed in the context of other tree ring width reconstructions of AR variability from 

western North America.  

In Chapter 3, I present Douglas-fir δ18O records from southwest BC and analyze 

their potential as a proxy for PE AR storm variability using GAMs. Known environmental 

determinants of tree ring δ18O, such as snowpack, relative humidity, and climate 

oscillations, are included in the GAM analyses to identify whether PE AR data explain 

tree ring δ18O variability not explained by other climate variables. These results are 

discussed in a PNW water management context with consideration of PEs’ ability to 

compound the effects of climate change on future PNW snow and streamflow droughts. 

In these chapters, two dendrochronological records, ring width and δ18O, are 

assessed as potential proxy records of southwest BC’s historical AR and drought 

variability. Together, they present a deeper understanding of the region’s 

paleohydroclimate variability and situate these hydrological extremes – and their water 

management implications – within the PNW’s climate change projections. 
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Chapter 2. Evaluating AR and Drought Effects on 
Tree Radial Growth in Southwest BC 

2.1. Introduction 

Atmospheric rivers (ARs) are filamentary hydrological features of the lower 

troposphere, thousands of kilometres long and hundreds of kilometres wide, that 

transport large volumes of water vapour and deliver intense precipitation to mid-latitude 

coastlines (Ralph et al., 2018; Ralph & Dettinger, 2011). ARs dramatically affect 

hydroclimates, with their characteristic extreme precipitation producing flood conditions 

(Barth et al., 2017; Lavers et al., 2011; Neiman et al., 2011; Payne et al., 2020), relieving 

drought conditions (Dettinger, 2013; Dettinger et al., 2011), and modulating winter 

snowpacks (Eldardiry et al., 2019). As climate change increases ocean and air 

temperatures, ARs are projected to increase in frequency, duration, size (Rhoades et al., 

2020), and precipitation intensity (Baek & Lora, 2021; Payne et al., 2020). These 

changes to ARs are likely to amplify both AR flood hazards (Corringham et al., 2019) 

and ARs’ impacts on water resources (Chen et al., 2018; Dettinger et al., 2011). In this 

context, there is a growing interest in understanding the interannual frequency and 

intensity of AR storms to better accommodate their hydroclimate impacts (Ralph et al., 

2017).  

Knowledge of historical AR patterns is essential to plan for future AR variability, 

but data on past AR variability has traditionally been limited to the mid-20th century 

satellite era (Shields et al., 2018). These few available decades of satellite AR records 

may poorly capture ARs’ long-term variability, as low-frequency, multi-decadal climate 

oscillations appear to affect AR patterns (X. Liu et al., 2016; Mantua & Hare, 2002). Tree 

ring records, meanwhile, are an annually precise and reliable measure of past climates 

and weather extremes many centuries older than instrumental or satellite records 

(Speer, 2010). Tree radial growth records have been used to reconstruct past 

hydroclimates globally (e.g., Ljungqvist et al., 2020; Steiger et al., 2018), including recent 

advances in reconstructing North American west coast AR trends (Borkotoky et al., 

2023; Gupta et al., 2023; Howard et al., 2023; Steinschneider et al., 2018). However, no 

tree ring-based interannual AR reconstruction exists for the study area of southwest 

British Columbia (BC). 
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Southwest BC’s hydroclimate complicates the creation of such an AR 

reconstruction. This region experiences higher annual precipitation than the North 

American Pacific coast to the south (Schneider et al., 2017), making its trees less 

moisture-limited (Coulthard & Smith, 2016; Nemani et al., 2003), and therefore less likely 

to record precipitation variability, than trees growing in AR-affected regions to the south. 

This trend was documented in Borkotoky et al. (2023), who found that western United 

States (US) tree ring records more precisely reconstructed southwest US AR variability 

than northwest US AR variability. However, despite their relative lack of moisture 

limitation, trees in southwest BC have been found to record precipitation inputs (Mood & 

Smith, 2021; St. George, 2014). In southwest BC and the northwest conterminous 

United States (hereinafter, Pacific Northwest [PNW]), winter precipitation tends to limit 

radial growth (St. George, 2014) due to large snowpacks delaying the start of growing 

seasons (Kirdyanov et al., 2003; Sanmiguel-Vallelado et al., 2019; Watson & Luckman, 

2016). A smaller number of PNW radial growth records do positively correlate with winter 

precipitation (St. George, 2014), likely a result of snowmelt’s contribution to soil moisture 

during growing seasons (St. George, 2014; Watson & Luckman, 2016). ARs occur more 

frequently in cold seasons (Mundhenk et al., 2016), and cold-season AR precipitation 

may affect radial growth by either delaying the growing season or increasing soil 

moisture during growing seasons. 

However, the influence of cold-season ARs on southwest BC’s snowpack, and 

therefore on radial growth, is not definitive. While North American Pacific coast cold-

season ARs are thought to result in positive snow accumulation (Eldardiry et al., 2019), 

this trend primarily holds for the high-elevation Sierra Nevada mountains (Eldardiry et 

al., 2019). Meanwhile, cold-season ARs affecting the US PNW tend to result in negative 

snow water equivalent (SWE) changes, likely due to the region’s warm storm 

temperatures and resulting enhanced snow ablation (Chen et al., 2019). This suggests 

that frequent PNW winter ARs may challenge, rather than benefit, PNW snowpacks. The 

direction of AR-derived SWE change is also confounded by southwest BC’s AR 

temperatures, with the nearby Cascade Range in Washington, USA, experiencing AR 

temperatures more evenly split above and below freezing levels than California’s Sierra 

Nevada mountains, whose AR days are more frequently below 0°C (Hu & Nolin, 2019). 

Additional complications to the interpretation of AR effects on southwest BC’s snowpack 

include the timing of cold-season ARs, as the extent of positive and negative SWE 
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accumulation from ARs varies by the month of a storm’s occurrence (Eldardiry et al., 

2019). Despite these intricacies, the success of Borkotoky et al. (2023) in reconstructing 

AR variability using radial growth records in the US PNW, which experiences a similar 

climate to that of southwest BC (Peel et al., 2007), indicates that such a record is 

possible for southwest BC. The exact mechanisms for an AR effect on radial growth, 

though, are complex. 

 Differences in moisture availability between seasons may additionally obscure 

AR-radial growth relationships in southwest BC and elsewhere. ARs, as primarily cold-

season phenomena (Mundhenk et al., 2016), may enhance or constrain radial growth 

through SWE effects as described, but be followed low-precipitation summers, which 

can independently affect radial growth (e.g., Crawford et al., 2015). Inter-seasonal 

moisture availability and its effects on radial growth may be especially impactful in a 

southwest BC context; growing-season precipitation inputs in the region are typically 

less than half that of cold-season precipitation inputs (ECCC, 2023c), making growing-

season moisture availability potentially more limiting to radial growth than cold-season 

precipitation inputs. As such, an evaluation of southwest BC’s AR-radial growth 

relationship requires examination of the concurrent effects of cold-season AR 

precipitation and summer moisture availability on radial growth. 

 The creation of a long-term, tree ring-based record of past southwest BC AR 

variability would be highly informative for the region’s water resource management. 

Coastal and near-coastal southwest BC watersheds experience hybrid runoff regimes, 

with snowmelt and rainfall both determining moisture availability and the extent of 

summer low streamflow (Pike et al., 2011). The region’s mountain snowpacks serve as 

natural reservoirs under this regime, with snowmelt offsetting low summer precipitation 

and providing water for municipal, agricultural, fisheries, and industrial needs in warmer 

and drier months (Metro Vancouver, 2019b; Pike et al., 2011; Vano et al., 2015 and refs. 

therein). As the climate warms, snowmelt contributions to summer streamflow are 

projected to weaken or disappear entirely (Pike et al., 2011), and municipal water 

managers in the region have identified a need to expand future water storage capacity to 

more extensively retain winter precipitation (Metro Vancouver, 2019b). ARs strongly 

impact this winter precipitation (Sharma & Déry, 2020), with currently-variable snowpack 

effects (Chen et al., 2019; Eldardiry et al., 2019) and a shift toward more AR 

precipitation falling as rain than snow as the climate warms (Gonzales et al., 2019). 
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Considering this context, a more comprehensive understanding of the frequency and 

extent of past ARs would be highly useful in planning for future water resource needs. 

 This study evaluates the capacity of radial growth records from trees in 

southwest BC that experience winter snowpacks to record AR variability. Considering 

the climatic complexities shaping these records, this study uses a Generalized Additive 

Model (GAM) approach. GAMs model a response variable (e.g., radial growth) as a sum 

of non-linear functions of multiple predictor variables (e.g., ARs and other climate 

variables) (Wood, 2017) and allow for an assessment of what combination of predictor 

variables best explain the response variable. Using GAMs, this study evaluates AR data 

for their ability to explain tree radial growth relative to known predictors of radial growth 

in southwest BC. These alternative predictors of radial growth include precipitation 

amount (Crawford et al., 2015; Dannenberg & Wise, 2016; St. George, 2014), 

temperature (Larocque & Smith, 2005; Pitman & Smith, 2012; Starheim et al., 2013), 

snowpack (Mood & Smith, 2021; Starheim et al., 2013), and the phases of climate 

oscillations affecting the region (St. George, 2014). For this study, AR data are 

assembled by multiple seasonal and annual metrics – total AR count, intense AR count, 

and ARs’ percent contribution to total precipitation – to further clarify AR impacts on 

radial growth. This study also evaluates sub-annual ring widths for their potential to 

record AR variability, as sub-annual rings may record seasonal signals unresolvable in 

annual ring widths (Dannenberg & Wise, 2016). Additionally, this study examines the 

interactive effects of cold-season ARs and warm-season drought on tree radial growth to 

inform interpretations of the AR-radial growth relationship. 

2.2. Methods 

2.2.1. Study area 

Core samples were collected from Pacific silver fir (Abies amabilis) trees in the 

Malcolm Knapp Research Forest (MKRF) to study the relationships between radial 

growth, interannual AR variability, and drought. The PNW is a moisture-rich region 

(PRISM, 2024) with trees that are less moisture-limited than other parts of North 

America (Coulthard & Smith, 2016; Nemani et al., 2003). To maximize the likelihood of 

identifying an AR signal in a PNW radial growth record, this study evaluated Pacific 

silver firs, as this species has the highest water demand of any evergreen tree in BC 
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(Klinka et al., 1999) and a low tolerance for water deficits (Province of British Columbia, 

2024). Considering ARs’ ability to contiribute to (via snowpack loss) and end drought 

conditions (Dettinger, 2013), it was reasoned that the high water demand of Pacific silver 

firs and their poor tolerance for water deficits may increase the species’ ability to record 

AR precipitation variability in their radial growth compared to other species in the region. 

The Pacific silver fir study site, referred to as MKRF-1, is located on q̓ic̓əy̓ 

(Katzie) and Stó:lō land (Katzie First Nation, 2024; Stó:lō Research and Resource 

Management Centre, 2016) within the North Alouette Watershed, 50 km east of 

Vancouver, BC. This site was selected for its accessible location within a research 

forest, for its nearby climate station, and for the Pacific silver fir trees located at the site. 

MKRF-1 has a mean elevation of 441.42 m above sea level, a southwest aspect, a 5-15° 

slope, and is located within the Coastal Western Hemlock very wet maritime (CWHvm1) 

biogeoclimatic zone (B.C. Ministry of Forests, 2021). Characteristic of the CWHvm1 

zone, this area experiences mild winters and cool summers with frequent hot and dry 

stretches (Meidinger & Pojar, 1991). The study area receives a mean annual 

precipitation of 2180 mm and has a mean annual temperature of 9.9°C (1981-2010 

climate normals; (ECCC, 2023c)). As a whole, this climate supports the site’s tree cover 

of western hemlock (Tsuga heterophylla), western redcedar (Thuja plicata), Pacific silver 

fir (Abies amabilis), and grand fir (Abies grandis) and the understory of primarily salal 

(Gaultheria shallon), deer fern (Blechnum spicant), red huckleberry (Vaccinium 

parvifolium), and Alaskan blueberry (Vaccinium alaskaense). The study site was last 

logged between 1920 and 1931. In 1931, a large fire burned the site, and the forest has 

since regenerated naturally except for tree thinning in 2002 and 2003 (I. Aron, personal 

communication, October 31, 2022). The exact location of MKRF-1 was selected as it 

was known to have avoided more recent fires that have prevented Pacific silver fir 

growth elsewhere in the MKRF (I. Aron, personal communication, October 31, 2022). 

Presently, the site is surrounded by active logging and newly planted tree stands. 

MKRF-1 is located 6.2 km southwest of the MKRF-2 site described in Chapter 3 (Figure 

2.1). 
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Figure 2.1 Location and extent of the MKRF and the locations of the two sites 

sampled within the MKRF described in Chapters 2 and 3. 

The MKRF-1 study area has a rainfall-dominated hydroclimate regime with 

ephemeral winter snow cover (Leach & Moore, 2014) (Figure 2.2). Precipitation varies 

seasonally, with higher precipitation in the fall and winter (ONDJFM) than in the spring 

and summer (AMJJAS) (Figure 2.2). MKRF-1 is located within a watershed experiencing 
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high-elevation seasonal winter snowpack, exemplified with data from the nearest high-

elevation climate station in Figure 2.2B.  

  

Figure 2.2 (A) Mean monthly rainfall and (B) snowfall at MKRF-1 and the 
Grouse Mountain climate station, 1981-2010. MKRF-1 data are 
sourced from the nearest available climate station (Haney UBC RF 
Admin, Station ID: 1103332). The Grouse Mountain station is 
approximately 45 km from MKRF-1 and is 1103.00 m above sea level. 
Data sources: MKRF-1, (ECCC, 2023c); Grouse Mountain (ECCC 
2024). 

2.2.2. Sampling and ring width measurement 

In fall 2022, winter 2022-2023, and spring 2023, Pacific silver firs were cored at 

MKRF-1 (Figure 2.1). Due to the limited number of Pacific silver firs within the MKRF 

and at MKRF-1, trees were selected for coring according to a targeted sampling design 

in which all living Pacific silver firs within a 0.25 km radius of a known Pacific silver fir 

stand (49.328538, -122.542705) were cored. Tree cores were collected with a 5-mm 

increment borer at the standard 1.35 m from the tree base. Table A1 lists the locations 

and details of the cored trees. Fifteen trees were cored with two complete cores 

collected per tree for cross-dating purposes. This sample size satisfied an expressed 

population signal (EPS) > 0.85 over the years of the available precipitation record 

(described in section 2.2.3), indicating that the ring width record was adequately 

common among the sampled population and not dominated by an individual tree or trees 
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(Speer, 2010). EPS was calculated using the dplR R package (Bunn, 2008) with the 

following equation: 

𝐸𝑃𝑆 = !	×	$
!	×	$%('($)

     (2.1) 

wherein 𝑡 was the average number of tree series using one core per tree and 𝑟	was the 

mean between-tree correlation (Speer, 2010).  

To develop a ring width chronology for the site, the tree cores were first sanded, 

dated, and cross-dated following the standard methodology described in Speer (2010). 

Sanding of the tree cores was completed with a belt sander followed by hand-sanding 

with successively finer grit to resolve the details of the rings. To assign calendar years to 

the tree rings and cross-date the cores, both the list method and the cross-dating 

program COFECHA were applied. The list method involves counting annual rings 

backwards from the most recent year of growth, identifying narrow ring years for each 

core, and comparing those years between cores to confirm the accuracy of the counted 

years and to detect potential missing or duplicate rings (Yamaguchi, 1991). To further 

validate the tree ring dating, secondary cross-dating was completed with the COFECHA 

program (Grissino-Mayer, 2001; Holmes, 1983).  

To establish radial growth records, the cores were scanned at 2400 dots per inch 

(DPI) with an Epson V39 Flatbed Scanner. Then, ring widths were measured with the 

CooRecorder program (Cybis Dendrochronology, 2022). The CooRecorder “auto-place” 

function was utilized to systematically identify boundaries between earlywood and 

latewood. These earlywood and latewood boundaries were then visually evaluated, and 

any auto-place boundary errors were resolved. Then, site-wide earlywood, latewood, 

and annual radial growth datasets were compiled using the program CDendro (Cybis 

Dendrochronology, 2022). For trees sampled in April through October (i.e. while the 

trees may have been growing), the youngest growth rings were omitted from trees’ ring 

width records in CDendro as they may have not represented a full season of earlywood 

and/or latewood development. Following ring width measurement and cross-dating, the 

ring width records were standardized to a negative exponential curve to remove age-

related growth trends using the R package dplR (Bunn, 2008). This detrending method 

was selected as it retains interdecadal variability (Cook & Kairiukstis, 1990), which AR 

activity is known to exhibit (Gershunov et al., 2017). The resulting detrended ring width 
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records were compiled into earlywood, latewood, and annual ring site chronologies 

spanning 1931 through 2021.  

2.2.3. Sourcing AR and climate data 

AR data 

To analyze relationships between radial growth and interannual AR variability, 

AR data for southwest BC were obtained from the SIO-R1 catalogue developed by 

Gershunov et al. (2017). SIO-R1 is currently the longest-spanning AR reanalysis record 

available, and its long temporal overlap with the MKRF-1 chronologies makes it well 

suited for this study. The SIO-R1 catalogue identifies AR events and their vertically 

integrated horizontal vapour transport (IVT), integrated water vapour (IWV), wind 

direction, and landfalling latitude and longitude using National Centers for Environmental 

Prediction/National Center for Atmospheric Research (NCEP/NCAR) atmospheric 

reanalysis (Gershunov et al., 2017). SIO-R1 classifies ARs as features with contiguous 

grid cells spanning 1500 km or more in which IVT is greater than 250 kg/m/s, IWV is 

greater than 15 mm, and which cross the North American Pacific coastline between 32.5 

and 52.5°N. This catalogue extends from January 1948 through the present and has a 

2.5°, 6-hourly resolution (Gershunov et al., 2017). To determine annual AR counts within 

the study region, ARs with a central landfalling location within the grid cell covering the 

study area (the grid cell bounded by 47.5°N, 50°N, 125°W, 122.5°W, Figure 2.3) were 

extracted from the larger dataset. To align the 6-hourly AR data with daily precipitation 

records, the AR data were upscaled to daily records by considering days with at least 

one AR time step as AR days. Then, AR days were summed by water year1 (WY) and 

season (JFM, AMJ, JAS, and OND) to determine WY and seasonal AR counts.  

 
1 North American water years are October 1 to September 30 and are named by the calendar 
year in which they end. 
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Figure 2.3  Location of the MKRF-1 study site, SIO-R1 AR data region, and 

climate stations.  

Two additional AR variables with the potential to capture AR effects on tree 

growth were included in the analysis: percent AR precipitation and intense AR count. To 

calculate percent AR precipitation (i.e., the percentage of the total annual or seasonal 

precipitation occurring on AR days), the precipitation occurring on AR days was divided 

by the total precipitation for the corresponding WY or season. Precipitation data sources 

are described below. For intense AR count, intense AR days are defined as AR days at 

or above the 90th percentile of daily precipitation (i.e., days with precipitation totals 

higher than 90% of the compiled daily records). The 90th percentile and above is 

commonly used to define intense AR precipitation (e.g., Chen et al., 2018; Hagos et al., 

2016; Najibi & Steinschneider, 2023; Ramos et al., 2018), informing its use here. 
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To further understand the AR storms affecting the west coast of North America, 

the fraction of ARs approaching the study area from the southwest was calculated. This 

was used to approximate the fraction of ARs that were Pineapple Express (PE) storms, 

as PEs originate in the subtropical Pacific Ocean and approach the west coast of North 

America from the southwest (Dettinger, 2004). PEs carry unique hydroclimate impacts 

relative to non-PE ARs (Gonzales et al., 2022), discussed in Chapter 3. To calculate the 

fraction of all SIO-R1 ARs which were PEs, the number AR time steps with positive u 

and v wind vectors (i.e. approaching from the southwest) was divided by the total 

number of AR time steps over the catalogue’s 1949-2021 range.  

Climate data 

To determine whether AR variability showed a unique signature in MKRF-1 radial 

growth records, AR data were analyzed alongside other climate variables likely to affect 

the trees’ radial growth. One variable, precipitation amount, has been shown to correlate 

with PNW tree ring width records (Crawford et al., 2015; Dannenberg & Wise, 2016; St. 

George, 2014). The mostly negative trend between PNW radial growth and winter 

precipitation in particular is likely due to heavier snowpacks delaying the start of cambial 

activity in the spring (St. George, 2014). These relationships vary by season and 

precipitation variable; for example, Crawford et al. (2015) reported significant positive 

relationships with April-June precipitation and Dannenberg & Wise (2016) reported 

significant positive relationships with cool-season extreme low precipitation.  

For this study, precipitation data were taken from the nearest climate station to 

MKRF-1, Haney UBC RF Admin (Station ID: 1103332). This station is 1.85 km southeast 

of MKRF-1 and its record spans WYs 1962-2021 (Figure 2.3). Some data were missing 

from this record, so to assemble a complete daily precipitation record, a “shift factor” 

approach was applied. Precipitation data were obtained from the next-nearest weather 

station to MKRF-1 with temporally overlapping records, Abbotsford Airport (Station IDs: 

1100030, 1100031). Then, both the Abbotsford Airport and Haney UBC RF Admin daily 

precipitation records were averaged for every month of their record. These monthly 

values were then averaged by decade, e.g. 1970s July mean daily precipitation at 

Abbotsford Airport, 1980s July mean daily precipitation at Abbotsford Airport, etc. The 

difference between corresponding months’ decadal averages at the two stations were 

calculated for each decade; these differences are referred to as “shift factors.” For days 
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missing data from the Haney UBC RF Admin record, the Abbotsford Airport monthly 

mean daily precipitation for the corresponding month was summed with the 

corresponding shift factor; the resulting value was added to the Haney UBC RF Admin 

record. This method allows for an estimation of a day’s precipitation at Haney UBC RF 

Admin while adjusting for mean monthly and decadal-scale differences in precipitation at 

the two stations. For days with data missing at both Haney UBC RF Admin and 

Abbotsford Airport, the same shift factor approach was applied using precipitation data 

from Pitt Meadows CS (Station ID: 1106178). The combination of these three stations’ 

data created a continuous daily precipitation record representative of average monthly 

and decadal conditions at the Haney UBC RF Admin station.  

Interannual temperature data were also included in the analysis, as tree radial 

growth has been identified as responding to temperature variability in the PNW. 

Larocque & Smith (2005) identified positive relationships between radial growth and July 

mean air temperature in BC’s southern Coast Mountains, while Pitman & Smith (2012) 

identified positive significant relationships between radial growth and June-July mean air 

temperature in BC’s central Coast Mountains. Starheim et al. (2013) also found 

significant positive correlations between radial growth and preceding winter (October-

April) mean temperature in the central Coast Mountains. For this study, temperature 

records were assembled with the same daily climate station data (Haney UBC RF 

Admin, Abbotsford Airport, and Pitt Meadows CS) and shift factor methods as described 

for the precipitation record. Mean temperature records were assembled by WY and 

season for 1962-2021.  

Snowpack data were also included in the analysis, as tree radial growth is known 

to vary with snowpack in southwest BC. For example, Starheim et al. (2013) found 

significant negative relationships between annual radial growth and end-of-winter SWE 

in the central Coast Mountains, while Mood & Smith (2021) found significant negative 

correlations between annual radial growth and April 1 SWE in the southern Coast 

Mountains. These relationships are both consistent with the regional trends reviewed in 

St. George (2014), who found predominantly negative relationships between cold 

season precipitation and radial growth across the PNW. Persistent seasonal snowpacks 

occur at higher elevations in the study site’s watershed (Figure 2.2), and the timing of 

this snowpack’s melt may affect soil temperatures, and therefore the start of springtime 

transpiration (Mellander et al., 2004), at lower elevations. For this study, NCEP-NCAR 
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gridded atmospheric reanalysis of daily kg/m2 of water equivalent of accumulated snow 

depth were averaged across WYs and included in the analysis. This source was 

selected as was the highest-resolution continuous SWE record overlapping with the 

radial growth record available at the time of this study (a 59-year overlap). Complex 

topography, such as southwest BC’s Coast Mountains, has been found to limit the ability 

of gridded SWE reanalysis records to reconstruct true SWE (Snauffer et al., 2016). 

However, a continuous SWE record was necessary to calculate mean WY SWE, and 

this was not available from nearby climate stations, resulting in the use of a gridded 

SWE reconstruction.  

A climate index which combines temperature and precipitation variability, the 

Standardised Precipitation-Evapotranspiration Index (SPEI), was incorporated into this 

study for its potential to represent drought conditions better than temperature or 

precipitation alone. The SPEI considers the effect of potential evapotranspiration on 

drought severity (Beguería et al., 2010), making it well-suited to assess the impacts of 

drought conditions on plants compared to other drought indices. For this study, mean 

seasonal and WY SPEI records for the study area were assembled from Beguería et al. 

(2023). 

Solar radiation data were also included in the analysis for their potential to impact 

radial growth. Relationships between solar radiation and tree radial growth have been 

studied elsewhere in North America; for example, Nicklen et al. (2019) found a negative 

relationship between annual mean potential solar radiation and radial growth in Alaska, 

while Stahle et al. (1991) found a negative relationship between March-June percentage 

possible sunshine and radial growth in the central United States. Although relationships 

between solar radiation and tree radial growth have not been assessed in the PNW, 

solar radiation is known to generally limit plant growth in southwest BC more than 

temperature or precipitation (Nemani et al., 2003). For this reason, a proxy for solar 

radiation – mean cloud cover (MCC) – was included in this study’s analysis. While other 

measures of radiation like Photosynthetically Active Radiation (PAR) are more 

commonly used to express the portion of radiation affecting plant growth (Ryu et al., 

2018), historical PAR records are limited to recent decades (Tang et al., 2022). To 

maximize the temporal overlap between solar radiation data and the MKRF-1 

chronology, MCC data in the form of NCEP-NCAR gridded percentages of cloud cover 
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were used in this study. These data were averaged across WYs and by season to 

approximate incoming radiation over the study area. 

Multiple climate oscillations also influence tree ring radial growth in the PNW. 

These include the El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation 

(PDO), the Arctic Oscillation (AO), the Madden-Julian Oscillation (MJO), the North 

Pacific Gyre Oscillation (NPGO), and the Pacific-North American Oscillation (PNA). 

ENSO creates warm and dry PNW winters in its El Niño phase and cool and wet winters 

in its La Niña phase (NOAA PSL, 2023), and PNW tree ring width records have recorded 

significant positive associations between ENSO indices and radial growth (St. George, 

2014; Starheim et al., 2013). In the positive NPGO phase, ocean-to-land moisture 

transport is enhanced (X. Liu et al., 2016), with Dong et al. (2022) documenting a 

positive association between tree radial growth and the NPGO index globally. The PDO 

index, meanwhile, is negatively associated with ocean-to-land moisture transport over 

the PNW (X. Liu et al., 2016), and radial growth chronologies have shown both 

significant positive and negative associations with the PDO index (Lyu et al., 2019; St. 

George, 2014; Starheim et al., 2013) The AO, whose negative phase is associated with 

more cold air outflow to the mid-latitudes (Thompson et al., 2003), has also shown 

significant positive correlations with radial growth (D’Arrigo et al., 2003; Y. Liu et al., 

2015). The MJO exhibits an alternating negative phase of enhanced convection and 

rainfall and positive phase of suppressed convection and rainfall (National Weather 

Service Climate Prediction Center, 2023b), and its variability has also appeared in tree 

radial growth records (Maxwell et al., 2018). Finally, the PNA, determined by air 

pressure anomalies over the Pacific Ocean, strengthens the mid-latitude jet stream and 

is associated with decreased precipitation in the PNW in its positive phase (Z. Liu et al., 

2017). PNA variability has also shown significant positive correlations with western North 

American tree radial growth records (St. George, 2014; Starheim et al., 2013; Trouet & 

Taylor, 2010).  

Many of these oscillations also affect AR variability. Mundhenk et al. (2016) 

found that more ARs occur in the North Pacific during La Niña than El Niño, and AR 

activity has been shown to vary significantly with the location of the MJO convective 

phase (Guan et al., 2012). More ARs also occur in the PNW during the PNA positive 

phase (Toride & Hakim, 2021). These oscillations and teleconnections have an 
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interactive relationship with ARs, with the PNA phase modulating the MJO-AR 

relationship (Toride & Hakim, 2021).  

Climate oscillation indices synthesize multiple environmental variables, such as 

temperature, precipitation, and storm frequency, into a single index. This may allow 

climate oscillation indices to explain radial growth variability better than a single climate 

variable alone. Considering ENSO, PDO, MJO, AO, NPGO, and PNA’s impacts on the 

PNW climate, their interactions with AR variability, and their presence in tree ring 

records, these oscillations were also included in the analysis. 

All AR variables, climate variables and climate oscillation indices were 

assembled by WY and season (JFM, AMJ, JAS, OND), except for mean SWE, which 

was only assembled by WY. All data sources, including their units, station location or 

grid cell extent, and record length are described in Table 2.1. 
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Table 2.1 AR and climate data sources. All records were generated for each variable by water year (WY) and by season 
unless otherwise noted. 

Variable Description Data region Record length 
(WY) 

Time period Data source 

AR variables      
Total AR count Number of AR days, where an AR day is any day 

with at least one 6-hour time step classified by 
Gershunov et al. (2017) as an AR time step.  

47.5, 50,  
-125, -122.5 

1949-2021 WY and 
seasonal 

Gershunov et al. (2017) 

Intense AR count Number of AR days exceeding the 90th percentile 
for daily precipitation at the Haney UBC RF Admin 
climate station. 

47.5, 50,  
-125, -122.5 

1949-2021 WY and 
seasonal 

PE days: Gershunov et 
al. (2017) 
Precipitation: (ECCC, 
2023d, 2023h, 2023i, 
2023j) 

% AR 
precipitation 

Percent of total WY and seasonal precipitation 
occurring on AR days. Precipitation data were 
sourced from the Haney UBC RF Admin weather 
station (Climate station ID: 1103332), Abbotsford 
Airport weather station (Station IDs: 1100030, 
1100031) and Pitt Meadows CS weather station 
(Station ID: 1106178). The combination of these 
data sources is described below under “total 
precipitation.”  

47.5, 50,  
-125, -122.5 

1962-2021 WY and 
seasonal 

PE days: Gershunov et 
al. (2017) 
Precipitation: (ECCC, 
2023d, 2023h, 2023i, 
2023j) 
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Variable Description Data region Record length 
(WY) 

Time period Data source 

Climate variables      
Total 
precipitation 

Daily precipitation records were sourced from the 
Haney UBC RF Admin weather station (Station ID: 
1103332). For days when this weather station was 
missing data, the precipitation record was 
supplemented with data from nearby weather 
stations: Abbotsford Airport (Station IDs: 1100030, 
1100031) and Pitt Meadows CS (Station ID: 
1106178). Data from these stations were scaled to 
Haney UBC RF Admin monthly and decadal 
averages and combined with the Haney UBC RF 
Admin record to create a continuous daily record. 
Data were reported in mm. 

Station data: 
 
Haney UBC RF 
Admin 
49.2645, -122.5732 
 
Abbotsford Airport 
49.0253, -122.3600 
 
Pitt Meadows CS 
49.2083, -122.6900 

1962-2021 WY and 
seasonal 

Haney UBC RF Admin: 
(ECCC, 2023j) 
Abbotsford Airport: 
(ECCC, 2023d) 
(ECCC, 2023h) 
Pitt Meadows CS: 
(ECCC, 2023i) 

Mean 
temperature 

Mean WY temperature was calculated using daily 
temperature records recorded at the Haney UBC 
RF Admin weather station (Climate station ID: 
1103332). For days with data missing from the 
Haney UBC RF Admin record, temperature data 
from Abbotsford Airport (Station IDs: 1100030, 
1100031) and Pitt Meadows CS (Station ID: 
1106178) were scaled and adjusted to Haney UBC 
RF Admin monthly and decadal averages and 
combined with the Haney UBC RF Admin record to 
create a continuous daily record. 

Station data: 
 
Haney UBC RF 
Admin 
49.2645, 
-122.5732 
 
Abbotsford Airport 
49.0253, 
-122.3600 
 
Pitt Meadows CS 
49.2083, 
-122.6900 

1962-2021 WY and 
seasonal 

Haney UBC RF Admin: 
(ECCC, 2023j) 
Abbotsford Airport: 
(ECCC, 2023d) 
(ECCC, 2023h) 
Pitt Meadows CS: 
(ECCC, 2023i)   
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Variable Description Data region Record length 
(WY) 

Time period Data source 

MCC Mean WY and seasonal cloud cover above the 
study site were calculated using NCEP-NCAR 
atmospheric reanalysis data. This dataset 
considers the entire atmosphere as one layer and 
reports vertical cloud cover from 0-100% at 
1.875°x1.875° resolution. 

48.57, 50.47,  
-121.875,  
-123.75 

1962-2021 WY and 
seasonal 

(NOAA, 2024a) 

SWE Mean WY SWE values were calculated from 
NCEP-NCAR atmospheric reanalysis data. This 
source reports daily kg/m2 of water equivalent of 
accumulated snow depth at 1.875°x1.875° 
resolution.  

48.57, 50.47,  
-121.875,  
-123.75 

1962-2021 WY (NOAA, 2024b) 

Climate indices      
SPEI SPEI is a drought index calculated using 

precipitation and potential evapotranspiration 
(Beguería et al., 2010). Mean seasonal and WY 
SPEI were calculated using gridded data with a 
0.5°x0.5° resolution for the grid cell covering the 
study area. 

49, 49.5, 
-122.25,  
-122.75 

1962-2021 WY and 
seasonal 

(Beguería et al., 2023) 

ENSO ENSO is a three-to-seven-year oscillation with low 
atmospheric pressures and high sea surface 
temperatures occurring in the tropical eastern 
Pacific during the El Niño phase. The Niño 3.4 
index was selected for this study as it is commonly 
used for ENSO analysis in North America and is 
defined by sea surface temperatures between 5°N-
5°S, 170°W-120°W (ESRL/NOAA, 2023).  

Global 1962-2021 WY and 
seasonal 

(ESRL/NOAA, 2023) 
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Variable Description Data region Record length 
(WY) 

Time period Data source 

PDO The PDO is a 20-to-30-year oscillation defined by 
Pacific Ocean temperature and sea level pressure. 
When interior North Pacific sea surface 
temperatures and sea level pressures are 
anomalously low, the PDO is in its positive phase 
(NOAA, 2023).  

Global 1962-2021 WY and 
seasonal 

(NOAA, 2023) 

AO The AO is a weeks- to months-long oscillation 
characterized by atmospheric pressure over the 
arctic and northern Pacific and Atlantic oceans. 
When Arctic atmospheric pressure is anomalously 
low and north Pacific and Atlantic atmospheric 
pressure is anomalously high, the AO is in its 
positive phase (Thompson et al., 2003).  

Global 1962-2021 WY and 
seasonal 

(National Weather 
Service Climate 
Prediction Center, 
2023a) 

MJO The MJO is a 30-to-60-day oscillation which 
creates regions of enhanced and suppressed 
tropical rainfall. MJO records were determined by 
200 hPa velocity potential anomalies within 0-
30°N, normalized by standard deviation during 
ENSO-neutral and weak ENSO winters (National 
Weather Service Climate Prediction Center, 
2023b). Weekly MJO records for the 120°W region 
(the eastern tropical Pacific) were used. 

120°W region 1979-2021 WY and 
seasonal 

(National Weather 
Service Climate 
Prediction Center, 
2023b) 

NPGO The NPGO is a decadal-scale ocean oscillation 
defined by sea surface height anomaly in the 
northeast Pacific (Di Lorenzo et al., 2008).  

Global 1962-2021 WY and 
seasonal 

(Di Lorenzo, 2023) 
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Variable Description Data region Record length 
(WY) 

Time period Data source 

PNA The PNA teleconnection is a sub-seasonal 
variation defined by 550 mb height anomalies and 
affects the Northern Hemisphere extra-tropics. The 
positive phase of the PNA features above-average 
heights (above-average temperatures) in the 
tropical Pacific and western North America 
(National Weather Service Climate Prediction 
Center, 2023c). 

Global 1962-2021 WY and 
seasonal 

(National Weather 
Service Climate 
Prediction Center, 
2023c) 
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2.2.4. Analyzing relationships between radial growth, ARs, and 
climate variables with GAMs 

Generalized Additive Models (GAMs) were created to analyze relationships 

between radial growth, ARs, and climate variables. GAMs model relationships between 

the sums of smoothed functions of predictor variables (covariates) and a response 

variable (Wood, 2017). Unlike Generalized Linear Models, the linear equivalent to 

GAMs, GAMs model non-linear relationships between predictor and response variables. 

This makes GAMs a suitable choice for modelling the potentially non-linear relationships 

between AR variables, climate variables, and climate oscillation indices (the predictor 

variables) and annual, earlywood, and latewood radial growth (the response variables). 

This study applied GAMs to 1) assess relationships between individual predictor 

variables and the radial growth response variables, and 2) determine whether AR data, 

alongside known predictors of radial growth, improved model fits. 

To determine whether inclusion of AR variables improved model fits, single-

predictor GAMs were first created between all WY and seasonal AR variables, climate 

variables, and climate oscillation indices (as predictors) and annual, earlywood, and 

latewood radial growth (as response variables). GAMs cannot model more response 

data than the number of predictor variable inputs (Wood, 2017), so to refine the number 

of predictor variables in the multi-predictor GAMs, only the non-AR variables with the 

strongest relationships to radial growth were included. Predictor variables were 

assessed according to their single-predictor GAM’s 1) p value, where the p value 

approximates the likelihood that a model’s smooth covariate equals zero, and 2) 

adjusted R2, the proportion of variance explained where original variance and residual 

variance are both approximated using unbiased estimators (Wood, 2017). Non-AR 

predictors with p<0.05 and R2≥0.1 were selected for inclusion in the multi-predictor 

GAMs. A multi-predictor GAM was created with these variables, then all AR variables 

were added to this GAM and model fit before and after AR variable inclusion was 

evaluated, as described below. This allowed for a determination of if and how AR data 

explained radial growth variability while accounting for the effects of other likely 

influences on radial growth. 

Due to the large number of covariates, a stepwise GAM approach was necessary 

to prevent the model from having more coefficients than response variable observations. 
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First, a multi-predictor GAM was created with the maximum number of selected (p<0.05 

and R2 ≥0.1) non-AR predictors. The GAM was implemented with automatic term 

selection using the double-penalty “shrinkage” applied, wherein covariates with the 

strongest effect on the response were retained and covariates with weak effects were 

penalized out of the model. This method was chosen as it performs better than 

alternative selection methods when Restricted Maximum Likelihood (REML) is used for 

smoothing parameter estimation (Marra & Wood, 2011), described below. GAM 

covariates with an estimated degrees of freedom <0.0001 were considered penalized 

out of the model. Penalized covariates were removed from the model, then the 

remaining selected non-AR predictor variables were added to the GAM and the process 

was repeated. After all the selected non-AR predictor variables were evaluated (i.e. 

retained in or removed from the GAM), the AR predictor variables were added to the 

GAM. The iterative penalization approach was repeated until all AR predictors had been 

evaluated in the GAM.  

Predictor variables were also assessed for their concurvity at each GAM 

iteration. Concurvity, a measure of predictor variable redundancy in which one smooth 

term can be approximated by another smooth term in the GAM, can create unstable 

smooth parameter estimates (Kovács, 2022). The ‘concurvity()’ function in the ‘mgcv’ R 

package was used to test concurvity of covariates (R Core Team, 2022; Wood, 2004). 

Concurvity values range from 0 to 1, with 0 indicating zero concurvity and 1 indicating no 

identifiability between predictor variables (Wood, 2004). When two predictor variables’ 

estimate concurvity exceeded 0.5 and neither was penalized out of the model, the 

predictor variable with the lower p value in the GAM output was retained in the 

subsequent iteration and the predictor with the higher p value was removed. “Estimate” 

concurvity exceeding 0.5 was selected as the cut-off because “estimate” is considered a 

more reliable concurvity measure than the “worst” or “observed” concurvity measures 

available in ‘mgcv’ and because concurvity above 0.5 may introduce substantial risk of a 

false statistically significant effect (He, 2004; Wood, 2004). 

GAMs were implemented with the ‘gam’ function using the ‘mgcv’ package in the 

R environment (R Core Team, 2022; Wood, 2004). For all GAMs, REML was applied as 

a smoothing parameter as it is less prone to undersmoothing the models than other 

smoothing parameters (Wood, 2011). K, the basis dimension which sets the upper limits 

of degrees of freedom for the smooth functions, was set to 4 to avoid overfitting the 
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model, resulting in a maximum of three degrees of freedom for all smooth functions 

(Wood, 2023). Models were also evaluated using the ‘k.check’ function in ‘mgcv’ to 

ensure that the k-index was near one, as k-indices below one indicate a missed pattern 

left in the model’s residuals (Wood, 2017). 

The quality of the final non-AR GAM and including-AR GAM was assessed 

according to the models’ p values, adjusted R2 values, and Akaike Information Criteria 

(AIC). AIC evaluates models by taking both their accuracy and parsimony (number of 

predictor variables) into account, with lower values indicating a more accurate model 

with fewer parameters (Wagenmakers & Farrell, 2004). This final model comparison 

allows for a determination of whether and how AR variable inclusion alongside likely 

determinants of radial growth improved model fit. This process of creating single-

predictor GAMs followed by iterative multi-predictor GAMs to assess AR effects on GAM 

fits was repeated for each of the detrended radial growth response variables (annual 

growth, earlywood, and latewood). 

The GAMs were used to assess a large number of annual and seasonal AR, 

climate, and climate oscillation variables as potential predictors of radial growth. These 

analyses were exploratory by design and intended to evaluate many potential sources of 

radial growth variability. To constrain the risk of type I errors resulting from the large 

number of predictor variables tested, this study also compared the GAM results with 

other North American and PNW studies on climate relationships with radial growth. This 

pairing of the GAM results with available literature clarified how the GAM results were 

similar or dissimilar to trends identified elsewhere and allowed for a more 

comprehensive evaluation of potential mechanisms for environmental control on radial 

growth beyond the GAM. 

2.2.5. Analyzing the interactive effects of ARs and summer droughts 
on tree growth 

To evaluate the concurrent effects of AR variability and summer drought on radial 

growth, radial growth for years with dry summers and high or low ARs the preceding fall 

and winter (ONDJFM) were compared with t-tests. “Dry” summer years were identified 

as any WY with a negative JAS SPEI, as this indicates low precipitation and/or high 

evaporative demand conditions (Beguería et al., 2010). ONDJFM was selected for 
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analysis of AR occurrence following the reasoning that this range could capture AR 

occurrence affecting snowpack in advance of the onset of dry JAS conditions. Using the 

SIO-R1 record, high ONDJFM AR years were determined as any years above the 75th 

percentile for ONDJFM total AR count (>32 ARs/year, 1962-2021) and low AR years 

were determined as any years below the 25th percentile for total ONDJFM AR count 

(<20.75 ARs/year, 1962-2021). Annual radial growth for years falling into either category 

– years with dry summers and high fall/winter total AR count, and years with dry 

summers and low fall/winter total AR count – were sub-selected from the detrended 

MKRF-1 annual ring width chronology. Then, a Welch’s t-test was performed to compare 

radial growth between the groups.  

This process was repeated for intense ONDJFM AR counts. High intense 

ONDJFM AR counts were determined as any years above the 75th percentile for the 

variable (>13 intense ARs/year, 1962-2021) and low intense ONDJFM AR count as any 

years below the 25th percentile for the variable (<7 intense ARs/year, 1962-2021). A 

Welch’s t-test was performed to compare radial growth between these groups.  

To determine whether a potential mediating effect of ONDJFM ARs on radial 

growth was due to AR incidence or due to precipitation generally, a third Welch’s t-test 

was performed to compare radial growth means between dry summer years with low 

ONDJFM precipitation (<25th percentile, <1359.9mm, 1962-2021) and dry summer years 

with high ONDFJM precipitation (>75th percentile, >1786.3mm, 1962-2021).  

Welch’s t-tests were chosen for all three analyses due to the lack of equal 

variance between groups. For all groups, data distributions were assessed with Shapiro-

Wilk normality tests and analyses were performed with the R base package (R Core 

Team, 2022). These t-test results identified whether radial growth significantly differed 

between dry summer years with high vs. low total AR counts, high vs. low intense AR 

counts, and high vs. low precipitation in the preceding fall and winter. Low summer 

precipitation is generally associated with low radial growth in the western US and 

Canada (St. George, 2014), and these t-tests allow for an evaluation of whether ARs 

mediate or compound the effects of dry summers on radial growth. 
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2.3. Results 

2.3.1. Tree ring data 

Sampling at the MKRF-1 site ultimately yielded 30 complete cores from 15 trees. 

List method and COFECHA cross-dating revealed that two of the sampled trees 

produced a duplicate ring in the 1997 calendar year; this was measured as a single 

year’s growth, and earlywood and latewood measurements were excluded for these 

trees’ 1997 rings. Raw annual ring width series from MKRF-1 are shown in Figure 2.4. 

For the years overlapping with the available AR record (1962-2021), annual and 

earlywood EPS met the 0.85 guideline (annual EPS=0.859, earlywood EPS=0.850), 

while latewood did not (latewood EPS = 0.567). COFECHA results indicated that, of 50-

year series segments, series intercorrelation was highest for 1950-1999 (segment 

correlation = 0.29) and lowest for 1975-2021 (segment correlation = 0.18). DplR 

calculations of series intercorrelation showed a mean intercorrelation of 0.28 for the 

entire record, 1931-2021.  

 
Figure 2.4  Raw annual ring width measurements from the Pacific silver fir 

cores used to assemble the MKRF-1 radial growth chronologies. 
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The raw radial growth measurements were detrended on a negative exponential 

curve to remove age-related growth trends, revealing interannual variation in radial 

growth across the site. The compiled annual ring width index (RWI) chronology is shown 

in Figure 2.5 alongside the chronology’s sample size. 

  
Figure 2.5 The MKRF-1 detrended annual radial growth chronology RWI 

overlaid with the chronology’s sample size. 

2.3.2. AR and climate data 

Total AR count in the study region ranged from 27 to 65 ARs per WY, while the 

number of intense ARs per WY ranged from 5 to 25 (Figure 2.6A). The OND season 

experienced the greatest number of ARs (by both total ARs and intense ARs) as well as 

the largest mean percentage contribution of AR precipitation to total seasonal 

precipitation (Figure 2.6B). The JAS season experienced the second-highest total AR 

count and mean percentage contribution of AR precipitation to total seasonal 

precipitation, while the AMJ season was the least affected by ARs according to the AR 

variables measured (Figure 2.6B). 
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Figure 2.6 (A) Interannual WY AR variability and (B) the mean of AR variables 
by WY and season, both for 1962-2021. 

Calculation of the fraction of ARs in the SIO-R1 catalogue which were PEs (i.e., 

ARs which approached the study area from the southwest) revealed that 84.2% of ARs 

were PE ARs.  

Post-hoc Pearson correlations were carried out to additionally investigate 

relationships between variables of interest, with results reported in Table A7. 

0

10

20

30

40

50

60

0

10

20

30

40

50

60

70

1962 1972 1982 1992 2002 2012

W
Y 
%
 A
R
 p
re
ci
pi
ta
tio
n

AR
 c
ou
nt
s

Water year

Total AR count Intense AR count WY % AR precipitation

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

45

WY JFM AMJ JAS OND

%
 A
R
 p
re
ci
pi
ta
tio
n

AR
 c
ou
nt
s

Mean total AR count Mean intense AR count
Mean % AR precipitation

A 

B 



 34 

2.3.3. Radial growth relationships with ARs and climate variables 

Annual radial growth relationships with ARs and climate variables 

Results from single-predictor GAMs between AR and climate predictor variables 

and the annual RWI indicated significant (p<0.05 and R2≥0.10) relationships between 

the annual radial growth index and mean SWE, AMJ PDO, JAS PDO, WY PDO, JFM 

MJO, WY MJO, and AMJ Niño 3.4 (Table A2, Figure 2.7). 

   

Figure 2.7 Variables with significant (p<0.05 and R2≥0.10) relationships with the 
MKRF-1 annual radial width index (RWI) in single-predictor GAMs. 
Figure A shows the adjusted R2 values and direction of the 
relationship (assessed visually, as adjusted R2 values do not have a 
sign) for variables with linear relationships with annual RWI. Figures 
B, C, and D show the shape of the non-linear significant 
relationships, with y-axes denoting the smooth function of the 
predictor variable’s effect on RWI (centered to zero) and small 
vertical lines denoting the distribution of the climate oscillation data. 
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 GAMs including AR variables showed higher model R2 than the GAM without, 

with R2 increasing by 0.181 between the first and final GAM iteration (Table 2.2). AIC is 

also lower when AR variables are included in the GAM (AIC=-49.7 at GAM iteration 1, 

AIC=-65.6 at the final GAM iteration) (Table 2.2). 

Table 2.2 Multi-predictor GAM iterations for annual RWI. For non-penalized 
variable pairs with concurvity greater than 0.5, only the underlined 
variables were retained in the subsequent iteration. 

GAM 
iteration 

Input variables Adjusted 
R2 

Deviance 
explained 
(%) 

AIC Penalized 
variables 

Non-
penalized 
variable 
pairs with 
concurvity 
above 0.5 

1 
Significant 
non-AR 
variables 

Mean SWE 
AMJ PDO 
JAS PDO 
WY PDO 
JFM MJO 
WY MJO 
AMJ Niño 3.4 

0.467 53.8 -49.7 JAS PDO JFM MJO & 
WY MJO 

2  
Remove 
penalized 
and high-
concurvity 
variables, 
add AR 
variables 

Mean SWE 
AMJ PDO 
WY PDO 
WY MJO 
AMJ Niño 3.4 
WY total AR count 
JFM total AR count 
AMJ total AR count 
JAS total AR count 
OND total AR count 
WY %AR precipitation 
JFM %AR 
precipitation 
JAS %AR 
precipitation 
OND %AR 
precipitation 

0.610 69.4 -60.0 WY total AR 
count 
JFM total AR 
count  
AMJ total AR 
count 
OND total AR 
count  
AMJ %AR 
precipitation 
JAS %AR 
precipitation 
OND %AR 
precipitation 

WY %AR 
precipitation 
& 
JFM %AR 
precipitation 
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GAM 
iteration 

Input variables Adjusted 
R2 

Deviance 
explained 
(%) 

AIC Penalized 
variables 

Non-
penalized 
variable 
pairs with 
concurvity 
above 0.5 

3  
Remove 
penalized 
and high-
concurvity 
variables, 
add AR 
variables 

Mean SWE 
AMJ PDO 
WY PDO 
WY MJO 
AMJ Niño 3.4 
JAS total AR count 
WY %AR precipitation 
WY intense AR count 
AMJ intense AR count 
JFM intense AR count 
JAS intense AR count 
OND intense AR 
count 

0.657 72.7 -65.6 WY % AR 
precipitation 
AMJ intense 
AR count 
JFM intense AR 
count 
JAS intense AR 
count 
 

OND intense 
AR count & 
WY intense 
AR count 

4 
Remove 
penalized 
and high-
concurvity 
variables 
to create 
final GAM 

Mean SWE 
AMJ PDO 
WY PDO 
WY MJO 
AMJ Niño 3.4 
JAS total AR count 
OND intense AR 
count 

0.648 71.4 -65.6 None None 

 
 Variables retained in the final GAM iteration were mean SWE, AMJ PDO, WY 

PDO, WY MJO, AMJ Niño 3.4, JAS total AR count, and OND intense AR count (Table 

2.3). All variables but JAS total AR count and AMJ Niño 3.4 showed p<0.05 (Table 2.3). 

Table 2.3 Final multi-predictor GAM results for the annual RWI GAM. P values 
<0.05 are shown in bold. EDF indicates the corresponding variable’s 
estimated degrees of freedom in the GAM. 

Predictor variable EDF F statistic p value 

JAS total AR count 0.74 0.96 0.06 
OND intense AR count 1.60 6.19 <0.01 
Mean SWE 0.85 1.93 0.01 
AMJ PDO 0.84 1.82 0.01 
WY PDO 0.84 1.79 0.01 
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Predictor variable EDF F statistic p value 

WY MJO 2.10 4.56 <0.01 
AMJ Niño 3.4 0.92 0.51 0.19 

 
 Of the variables retained in the final annual RWI GAM, only JAS AR count 

showed a positive linear relationship with RWI (Figure 2.8). Mean SWE, AMJ PDO, and 

WY PDO showed negative linear relationships, while OND intense AR count and WY 

MJO showed non-linear but negatively trending relationships (Figure 2.8). AMJ Niño 3.4 

showed a non-linear trend with low RWI at low and high AMJ Niño 3.4 and no partial 

effect on RWI at neutral AMJ Niño 3.4 (Figure 2.8). 
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Figure 2.8 Individual partial effects of the smooth functions of predictor 
variables on the annual RWI response variable. The predictor 
variables included are those retained (i.e., not pentalized) in the final 
multi-predictor GAM. Y-axis values are zero-centered, and the 
numbers following the y-axis labels are the predictor variables’ 
effective degrees of freedom in the GAM. The shaded area indicates 
the 95% confidence interval and small vertical lines on the x-axes 
denote the distribution of AR and climate data. 
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Earlywood radial growth relationships with AR and climate variables 

Results from single-predictor GAMs between all predictor variables and the 

earlywood RWI indicate significant (p<0.05 and R2≥0.10) earlywood RWI relationships 

with mean SWE, WY PDO, AMJ PDO, JAS PDO, OND PDO, WY MJO, JFM MJO, AMJ 

PNA, and AMJ Niño 3.4 (Table A3, Figure 2.9). 

    

 

 

 

 

 

Figure 2.9 Variables with significant (p<0.05 and R2≥0.10) relationships with the 
MKRF-1 earlywood radial width index (RWI) in single-predictor 
GAMs. Figure A shows the adjusted R2 values and direction of the 
relationship (assessed visually, as adjusted R2 values do not have a 
sign) for variables with linear relationships with annual RWI. Figures 
B, C, and D show the shape of the significant variables with non-
linear relationships to earlywood RWI, with y-axes denoting the 
smooth function of the predictor variable’s effect on earlywood RWI 
(centered to zero) and small vertical lines denoting the distribution 
of the climate oscillation data. 
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The final earlywood multi-predictor GAM with AR variables showed a higher 

model R2 than the final GAM without AR variables, with R2 increasing by 0.133 between 

the first and final GAM iterations (Table 2.4). AIC also decreased between the first and 

final GAM iterations (Table 2.4). 

Table 2.4 Earlywood RWI multi-predictor GAM iterations. For non-penalized 
variable pairs with concurvity>0.05, only the underlined variables 
were retained in the subsequent GAM iteration. 

GAM 
iteration 

Input variables Adjusted 
R2 

Deviance 
explained 
(%) 

AIC Penalized 
variables 

Non-
penalized 
variable 
pairs with 
concurvity 
above 0.5 

1 
Significant 
non-AR 
variables 

Mean SWE 
WY PDO 
AMJ PDO 
JAS PDO 
OND PDO 
WY MJO 
JFM MJO 
AMJ PNA 
AMJ Niño 3.4 

0.495 56.6 -39.15 JAS PDO 
OND PDO 
AMJ PNA 

WY MJO & 
JFM MJO 
 
 

2 
Remove 
penalized 
and high-
concurvity 
non-AR 
variables 
and add 
AR 
variables 

Mean SWE 
WY PDO 
AMJ PDO 
JFM MJO 
AMJ Niño 3.4 
WY total AR count 
JFM total AR count 
AMJ total AR count 
JAS total AR count 
OND total AR count 
WY %AR precipitation 
JFM %AR precipitation 
AMJ %AR precipitation 
OND %AR 
precipitation 

0.618 69.6 -50.99 WY total AR 
count 
AMJ total AR 
count 
OND total AR 
count 
JFM %AR 
precipitation 
OND %AR 
precipitation 
AMJ %AR 
precipitation 
 

None 
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GAM 
iteration 

Input variables Adjusted 
R2 

Deviance 
explained 
(%) 

AIC Penalized 
variables 

Non-
penalized 
variable 
pairs with 
concurvity 
above 0.5 

3 
Remove 
penalized 
variables 
and add 
remaining 
AR 
variables 

Mean SWE 
WY PDO 
AMJ PDO 
JFM MJO 
AMJ Niño 3.4 
JFM total AR count 
JAS total AR count 
WY %AR precipitation 
JAS %AR precipitation 
WY intense AR count 
JAS intense AR count 
AMJ intense AR count 
JFM intense AR count 
OND intense AR count 

0.70 77.8 -
58.424 

JAS %AR 
precipitation 
JFM intense 
AR count 
JAS intense 
AR count 

OND intense 
AR count & 
WY intense 
AR count 
 
WY % AR 
precipitation 
& WY 
intense AR 
count 
 

4 
Remove 
penalized 
and high-
concurvity 
variables  

Mean SWE 
WY PDO 
AMJ PDO 
JFM MJO 
AMJ Niño 3.4 
JFM total AR count 
JAS total AR count 
WY %AR precipitation 
AMJ intense AR count 
OND intense AR count 

0.628 69.2 -53.44 JAS total AR 
count 
WY % AR 
precipitation 

None 

5 
Remove 
penalized 
variables to 
create final 
GAM 

Mean SWE 
WY PDO 
AMJ PDO 
JFM MJO 
AMJ Niño 3.4 
JFM total AR count 
AMJ intense AR count 
OND intense AR count 

0.628 69.2 -53.44 None None 

 
Variables retained in the final GAM iteration were JFM total AR count, AMJ 

intense AR count, OND intense AR count, mean SWE, WY PDO, AMJ PDO, JFM MJO, 
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and AMJ Niño 3.4. All variables but JFM total AR count and AMJ Niño 3.4 showed 

p<0.05 (Table 2.5). 

Table 2.5 Summary results of final multi-predictor GAM annual RW. P values 
less than 0.05 are shown in bold. EDF indicates the variable’s 
estimated degrees of freedom in the GAM. 

Response variable EDF F statistic p value 
JFM total AR count 0.549 0.30 0.20 
AMJ intense AR count 0.784 1.21 0.04 
OND intense AR count 1.429 5.30 <0.01 
Mean SWE 0.819 1.51 0.02 
WY PDO 0.838 1.73 0.01 
AMJ PDO 0.846 1.84 0.01 
JFM MJO 0.927 4.21 <0.01 
AMJ Niño 3.4 1.184 0.85 0.12 

 
 AMJ intense AR count, mean SWE, WY PDO, AMJ PDO, and JFM MJO varied 

negatively and linearly with earlywood RWI, while OND intense AR count varied non-

linearly but predominantly negatively (Figure 2.10). JFM total AR count varied non-

linearly but predominantly positively with earlywood RWI, while earlywood RWI was low 

at low and high AMJ Niño 3.4 and neutral at neutral AMJ Niño 3.4 (Figure 2.10). 
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Figure 2.10 Individual partial effects of the smooth functions of predictor 
variables on the earlywood RWI response variable. The predictor 
variables included are those retained (i.e., not penalized) in the final 
multi-predictor GAM. Y-axis values are zero-centered, and the 
numbers following the y-axis labels are the predictor variables’ 
effective degrees of freedom in the GAM. The shaded area indicates 
the 95% confidence interval and small vertical lines on the x-axes 
denote the distribution of AR and climate data. 
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2.3.4. AR and drought effects on radial growth 

The t-tests revealed no significant differences in RWI between drought summer 

years with high and low ONDJFM precipitation, drought summer years with high and low 

ONDJFM total AR counts, or drought summer years with high and low ONDJFM intense 

AR counts. While annual rings grown during drought summers with low ONDJFM 

precipitation were smaller (M=0.966, SD=0.173) than annual rings grown during drought 

summers for years with high ONDJFM precipitation (M=0.927, SD=0.172), the two were 

not significantly different (t[10.9]=-0.161, p=0.68). Annual rings grown during drought 

summer years with low ONDJFM total AR count years were smaller (mean [M]=0.903, 

standard deviation [SD]=0.096) than annual rings grown during drought summers with 

high ONDJFM total AR counts (M=1.013, SD=0.188), but the two were also not 

significantly different (t[7.44] = -1.29, p=0.240). Oppositely, annual rings grown during 

drought summers with low intense ONDJFM AR counts were larger (M=1.038, 

SD=0.122) than annual rings for drought summers with high intense ONDJFM AR 

counts (M=0.944, SD=0.201). However, these two groups were also not significantly 

different (t[8.37]=0.945, p=0.37). RWI distributions for all groups are shown in Figure 

2.11.  

  
Figure 2.11 RWI distributions for dry summer (JAS SPEI<0) years low (<25th 

percentile) and high (>75th percentile) in intense ONDJFM AR count, 
total ONDJFM AR count, and ONDJFM precipitation. 
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2.4. Discussion  

2.4.1. Radial growth as an AR proxy record 

This study’s results indicate that southwest BC trees can record AR variability in 

their radial growth. This is the first documented radial growth-AR relationship in 

southwest BC, to our knowledge. GAM results reveal this finding; AR data improved 

GAM outputs for the annual RWI and earlywood RWI GAMs, as both showed higher 

adjusted R2 and lower AIC with AR variable inclusion. Additionally, some AR variables 

did not exhibit high concurvity with other non-AR predictor variables (Tables 2.2, 2.4). 

Together, these results indicate that AR data explain radial growth variability not 

explained by other climate predictors. Figure 2.12 summarizes the AR variables and 

other climate variables retained in the final GAM iterations. As the latewood chronology 

did not meet the EPS≥0.85 threshold, its GAM results are available in Appendix A but 

excluded here. 

 
Figure 2.12 PE and climate variables retained in the final annual and earlywood 

multi-predictor GAMs. Green upward arrows indicate a positive 
relationship between the variable and RWI, red downward arrows 
indicate a negative relationship between the variable and RWI, and 
blue curved arrows indicate a non-linear relationship between the 
variable and RWI wherein RWI increases when the variable is low 
and decreases when the variable is high. Tree image retrieved from 
Stone (2022). 
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The AR variables retained in the final annual and earlywood GAM iterations 

suggest that ARs may affect radial growth in southwest BC through multiple 

mechanisms. The GAMs showed a positive relationship between radial growth and total 

AR counts, including positive associations between JFM total AR count and earlywood 

RWI (Figure 2.10). This may be a result of ARs contributing to a shrinking of SWE and 

supporting an earlier onset of the growing season. A post-hoc Pearson correlation test 

revealed a significant negative correlation between WY AR count and mean SWE 

(r[58]=-0.27, p=0.03), suggesting that the positive total AR count-earlywood radial 

growth relationship may result from AR depletion of snowpacks and the resulting early 

onset and extension of the growing season. Similar negative trends between snowpack 

and Pacific silver fir radial growth were also observed in Mood & Smith (2021). Although 

the MKRF-1 area experiences ephemeral snow cover (Leach & Moore, 2014), rather 

than a seasonal snow cover that persists throughout the winter, the seasonal snowpack 

conditions at higher elevations may affect the length of the growing season at MKRF-1. 

Seasonal SWE affects the timing of spring soil warming and the extent of summer soil 

moisture (Wilson et al., 2020), and these effects may propagate from higher elevations 

to nearby lower elevations and explain the observed AR-radial growth and SWE-radial 

growth associations.  

The final GAM iteration also showed a positive association between JAS total AR 

count and annual RWI (Figure 2.8). While this may result from AR contributions to soil 

moisture during the late growing season, total JAS precipitation was not significant in the 

single-predictor GAM. This suggests that the positive association between JAS ARs and 

radial growth may be a result of non-precipitation AR effects, or a combination of AR 

effects including precipitation. Summer precipitation has been found to both positively 

and negatively correlate with PNW radial growth (St. George, 2014), aligning with this 

study’s GAM result showing a lack of clear association between JAS precipitation totals 

and radial growth. 

While total AR counts showed positive associations with radial growth in the final 

GAM iterations, intense AR counts showed negative associations. High radial growth 

corresponded with low OND intense AR count in both the annual and earlywood final 

GAMs (Figures 2.8, 2.10), and intense ARs’ contributions to snowpacks may explain this 

effect. Eldardiry et al. (2019) observed greater increases in SWE for more intense ARs 

(95th percentile of daily precipitation records) than less intense ARs (90th percentile of 
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daily precipitation records), suggesting that AR intensity increases SWE accumulation. 

Both the annual and earlywood radial growth records showed negative associations with 

SWE in their final GAM iterations (Figures 2.8, 2.10), indicating that high SWE is 

associated with low radial growth at the site. Through this relationship, high OND intense 

AR counts are likely to result in high snowpacks, which delay the onset of cambial 

activity and cause the observed low radial growth. 

Meanwhile, high AMJ intense AR counts also corresponded with low radial 

growth in the earlywood GAM (Figure 2.10). Due to their occurrence in warmer months, 

AMJ ARs are unlikely to interact with snow levels and instead may exert a constraining 

effect on radial growth through their tendency for rapid runoff. This mechanism was 

observed in Wise & Dannenberg (2022), who modeled radial growth responses to equal 

precipitation amounts delivered either steadily through time or delivered through 

extreme, concentrated precipitation events. This study found that, while steady 

precipitation delivery conferred a positive effect on radial growth, precipitation delivered 

over fewer, more intense events resulted in reduced radial growth. Wise and 

Dannenberg (2022) attributed this trend to extreme precipitation’s likelihood to rapidly 

leave catchments through saturation and infiltration excess overland flow rather than 

persisting as soil moisture and effectively wetting the root zone. While the % AR 

precipitation variable more closely aligns with the extreme precipitation modeled in Wise 

and Dannenberg (2022), and the final earlywood GAM did not retain any % AR 

precipitation variables, % AR precipitation and intense AR counts were significantly 

positively correlated in the AMJ season (r[58]=0.86, p<0.01). This indicates that AMJ 

seasons with high intense AR counts received most of their precipitation through those 

intense AR events. Intense precipitation events are more likely to exceed the maximum 

infiltration rates of soils and generate more infiltration excess overland flow relative to 

less intense precipitation events (Bronstert et al., 2023); in the AR context, intense AMJ 

ARs, delivering a large fraction of the season’s precipitation, contribute little to soil water 

relative to less-intense precipitation events. This mechanism aligns with this study’s 

findings of a positive total AR count-radial growth relationship and a negative intense AR 

count-radial growth relationship as well as the results of Wise and Dannenberg (2022). 

Comparison of intense and total AR effects on radial growth during dry summer 

years clarifies this point. Years with dry summers preceded by wet cold-seasons showed 

higher RWI than years with dry summers preceded by dry cold-seasons, and the same 
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trend was identified for years with dry summers preceded by high vs. low total AR count 

cold-seasons (Figure 2.11). Although the differences between these groups were not 

significant in t-tests, the trend suggests that fall and winter AR precipitation, delivered in 

part through low-intensity events, may have provided a mediating effect on dry summers’ 

constraint on radial growths. However, the opposite trend was observed for intense AR 

counts. Years with dry summers preceded by high intense AR count cold-seasons had 

lower radial growth than dry summers preceded by low intense AR count cold-seasons 

(Figure 2.11). This difference also was not significant in a t-test, but the divergent trends 

between intense and total AR counts on dry summer radial growth suggest that intense 

cold-season ARs affect radial growth uniquely from cold-season ARs in general. 

These GAM and t-test results indicate that AR associations with radial growth 

vary based on AR intensity. While southwest BC ARs tend to deplete winter snowpacks, 

likely exerting a positive effect on radial growth, intense ARs tend toward the opposite. 

Southwest BC intense AR precipitation is more likely to contribute to snowpacks in cold 

seasons and rapidly leave catchments as runoff in warm seasons, likely constraining 

radial growth. These opposite trends provide important insight into the interpretation of 

radial growth reconstructions of AR variability. 

These findings are specific to southwest BC, and previous studies have identified 

that the strength and direction of AR effects on radial growth vary regionally. For 

example, while Howard et al. (2023) and Steinschneider et al. (2018) identified strong 

positive correlations between coastal Californian radial growth records, extreme 

precipitation occurrences, and AR counts, Steinschneider et al. (2018) found weaker 

positive correlations with Sierra Nevada records and negative correlations between 

radial growth and AR counts in western Mexico, southern Arizona, and New Mexico. 

These results suggest that local-scale hydroclimates and trees’ environmental 

tolerances can cause highly varied effects of ARs on radial growth. In this context, radial 

growth reconstructions of AR variability should not assume uniform positive associations 

between AR counts and radial growth. Instead, future reconstructions should both 

disaggregate AR data by precipitation intensity and evaluate seasonalized AR effects on 

local-scale hydroclimates to comprehensively understand AR-radial growth relationships. 
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2.4.2. Additional sources of radial growth variability 

In addition to AR variability, the variability of several climate measures, including 

SWE, appeared to affect radial growth at the study site. Both annual RWI and earlywood 

RWI showed significant negative relationships with mean SWE (Figures 2.8, 2.10; Table 

2.3, 2.5). Of the tested variables which were not AR or climate oscillation variables (i.e., 

total precipitation, mean temperature, MCC, SWE, and SPEI), SWE was the only 

variable retained in either the annual or earlywood final GAMs, pointing to this variable’s 

prevailing association with radial growth. The significant (p<0.05) negative relationships 

observed indicate that high winter snowpacks likely did not benefit tree growth through 

soil moisture contributions; instead, they appeared to constrain early-season radial 

growth through the suppression of soil temperatures and a resulting delayed onset of 

cambial activity. These negative SWE-radial growth trends align with the majority-

negative trend for PNW winter precipitation relationships with radial growth identified in 

St. George (2014).  

The PDO also showed significant relationships with radial growth, with WY and 

AMJ PDO varying negatively with both annual and earlywood RWI in their respective 

final GAM iterations (Figure 2.8, 2.10; Table 2.3, 2.5). The PDO’s climate effects are 

multivariate; the positive PDO phase is associated with reduced ocean-to-land moisture 

transport in the PNW, and the PDO exerts its greatest temperature effects in the study 

area in cold seasons (X. Liu et al., 2016). Resultingly, the PDO has been found to 

modulate western Canadian snow accumulations and melts on interdecadal time scales 

(Whitfield et al., 2010). The significant radial growth relationships with PDO phases are 

likely a result of the PDO’s long-term, concurrent controls on precipitation, temperature, 

and snow levels.  

The MJO also showed significant relationships with radial growth records. WY 

MJO varied negatively with annual RWI in its final GAM iteration (Figure 2.8, Table 2.3), 

while JFM MJO varied negatively with earlywood RWI in its final GAM iteration (Figure 

2.10, Table 2.5). The positive MJO phase is associated with suppressed precipitation 

(National Weather Service Climate Prediction Center, 2023b), and radial growth likely 

responded positively to the negative MJO phase’s enhanced convection and 

precipitation. The MJO varies intra-seasonally (30-90 days) (Zhang, 2005), making 

possible the earlywood RWI’s precise response to the JFM MJO phase. 
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Both the annual and earlywood RWI records showed non-significant, non-linear 

relationships with AMJ Niño 3.4 in their respective final GAM iterations (Figures 2.9, 

2.10; Tables 2.3, 2.5). RWI was suppressed during AMJ La Niña years (i.e., low Niño 

3.4) and AMJ El Niño years (i.e., high Niño 3.4), but RWI was enhanced during AMJ 

ENSO-neutral years (i.e., moderate Niño 3.4) (Figures 2.9, 2.10). The extremes of 

ENSO likely explain this trend. The El Niño phase of ENSO is associated with warm and 

dry PNW conditions, while the La Niña phase is associated with cool and wet PNW 

conditions (Lee et al., 2014). PNW radial growth records have been found to vary 

positively with growing-season temperature (Larocque & Smith, 2005; Pitman & Smith, 

2012), such that cool AMJ temperatures under La Niña are likely to constrain radial 

growth. Meanwhile, regional radial growth records have also been identified as 

responding positively to growing-season precipitation (Crawford et al., 2015; St. George, 

2014), such that low AMJ precipitation under El Niño is likely to constrain radial growth 

as well. In this context, both AMJ El Niño and La Niña PNW conditions challenge radial 

growth, while neutral ENSO’s milder conditions avoids these extremes. This likely 

creates the observed non-linear relationship between Niño 3.4 and radial growth. 

Several of the tested climate variables showed no relationships with radial 

growth. Notably, the radial growth records did not appear to respond to solar radiation 

variability (Tables A2, A3), despite solar radiation more broadly limiting PNW plant 

growth than temperature or precipitation (Nemani et al., 2003). The lack of observed 

response to solar radiation may point to the utilized MCC data inadequately 

approximating PAR, or it may indeed suggest that the sampled Pacific silver firs were 

not limited by solar radiation availability. Pacific silver firs are highly tolerant of low light 

(Klinka et al., 1999), suggesting that the latter is the case. If longer-lived PAR data 

become available, future analysis using this data could clarify this point. 

2.4.3. Southwest BC climate reconstructions 

Although this study’s results indicate that ARs affect radial growth in a manner 

not explained by the other tested climate variables, radial growth reconstructions of AR 

variability in southwest BC remain challenging. Linear regressions are typically applied in 

tree ring climate reconstructions (Speer, 2010), and a linear Pearson correlation 

between the strongest AR variable in either chronology’s single-predictor GAM (by 

adjusted R2 value), AMJ intense AR count, reveals a significant negative correlation 
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between the variable and earlywood RWI (r[58] = -0.32, p=0.01). However, this 

correlation is weaker than the Spearman correlations exceeding r=0.5 identified between 

coastal Californian radial growth records and AR counts identified in Steinschneider et 

al. (2018), likely due to southwest BC’s moisture-rich hydroclimate. In this context, 

alternative methods of paleoclimate reconstruction, such as tree ring density or δ18O, 

may be better suited to reconstruct AR variability in this region. 

Despite the chronologies’ relatively low response to AR variability, this study’s 

findings of divergent total AR and intense AR effects on southwest BC radial growth 

have important implications for future tree ring AR reconstructions. Disaggregating total 

AR and intense AR data can clarify AR effects on radial growth, as this study 

demonstrated. Reconstructions of intense ARs may also be particularly informative in a 

management context, as AR intensity dictates ARs’ disaster risks (Corringham et al., 

2019) and impacts on water resources (Chen et al., 2018; Dettinger et al., 2011), 

including on snowpacks (Eldardiry et al., 2019). Future attempts at PNW historical AR 

reconstruction should consider this total AR vs. intense AR distinction. As climate 

change amplifies AR intensity (Payne et al., 2020), a long-term, annually resolved record 

of past intense AR variability will become increasingly useful to contextualize modern 

ARs and plan for future hydroclimate extremes. 

2.5. Conclusions 

This study’s GAM results suggest that southwest BC trees can record AR 

variability in their radial growth, a novel finding for the region. ARs appear to oppositely 

affect radial growth based on their intensity; high total AR counts were associated with 

high radial growth, while high intense AR counts were associated with low radial growth. 

These trends held for both cold-season and warm-season ARs. For fall and winter ARs, 

interactions between AR intensity and snowpack appeared to drive the observed result, 

as low SWE was associated with high radial growth in the GAM, and southwest BC ARs 

generally deplete snowpacks, enhancing radial growth. Intense ARs, however, are more 

likely to contribute to snowpacks and suppress radial growth, as observed. Meanwhile, 

for warm-season ARs, interactions between AR intensity and overland flow may drive 

the observed positive association between intense AR counts and radial growth. The 

GAM results also suggested PDO, MJO, and ENSO associations with radial growth, and 

SWE, temperature, and precipitation mechanisms are hypothesized. Comparisons 
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between this study’s results and other North American radial growth AR reconstructions 

reveals that this study’s chronologies more poorly approximate AR variability than radial 

growth records in the southwest US; in this context, alternative methods of 

paleohydroclimate reconstruction may be better suited to this moisture-rich region. 
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Chapter 3. Examining Pineapple Express Storm 
Variability with Tree Ring Stable Isotopes 

3.1. Introduction 

Pineapple Express (PE) storms contribute large volumes of water to the North 

American west coast, with dramatic effects on water resources. PEs, a type of 

atmospheric river (AR), are synoptic-scale hydrological features that transport water 

from oceans to mid-latitude coastlines as long, narrow corridors of concentrated water 

vapor (Ralph et al., 2004; Zhu & Newell, 1998). While ARs are global phenomena (Guan 

& Waliser, 2015), PE ARs (hereinafter, PEs) are defined by their origin in the sub-

tropical Pacific Ocean and filamentary transport of water vapor to the North American 

west coast (Dettinger, 2004; Roberge et al., 2009). ARs are known for their strong 

associations with extreme precipitation (Chen et al., 2018; Waliser & Guan, 2017), 

flooding (Barth et al., 2017; Lavers et al., 2011), and wind hazards (Waliser & Guan, 

2017) as well as beneficial contributions to snowpack (Eldardiry et al., 2019; Guan et al., 

2013) and drought cessation (Dettinger, 2013). PEs, however, bring hydrological 

impacts and water management implications distinct from non-PE ARs affecting the 

North American west coast. Winter PEs affecting western North America contain 2 kg/m2 

more precipitable water and are 1.5°C warmer at landfall compared to non-PE ARs 

(Gonzales et al., 2022). These warmer temperatures make PEs more likely to precipitate 

as rain than snow than non-PE ARs (Gonzales et al., 2022), with important hydroclimate 

impacts. The ratio of rain to snow precipitation (rain fraction) influences the hazard of AR 

storms, with rainier ARs tied to heightened flood risk due to a more rapid release of 

runoff (Henn et al., 2020; Ralph et al., 2019). Additionally, warmer ARs (such as PEs) 

are more likely to deplete snowpacks through rain-on-snow events than cooler ARs 

(Guan et al., 2016), additionally magnifying flood conditions (Li et al., 2019). The 

frequency and intensity of PEs, then, have substantial implications on the water 

resources of the mid-latitude North American west coast. 

These implications are particularly consequential in the southwest coast of British 

Columbia (BC) and the northwest coast of the United States (US) (hereinafter, Pacific 

Northwest [PNW]). Coastal and near-coastal PNW watersheds experience hybrid runoff 

regimes, with snowmelt and rainfall both determining moisture availability and the 
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maintenance of streamflow in the PNW’s warm and dry summer months (Pike et al., 

2011; Tohver et al., 2014). Many of the region’s municipalities rely on cold-season 

precipitation stored in mountain snowpacks to function as natural reservoirs, the melting 

of which mediates low summer precipitation and meets water demands (Pike et al., 

2011; Vano et al., 2010, 2015). Climate warming-induced increasing rain fraction and 

decreasing snowpacks (Siirila-Woodburn et al., 2021) pose a challenge to this regime 

(Hamlet, 2011), making PEs’ warm temperatures and resulting interactions with snow 

levels (Gonzales et al., 2022) increasingly significant. 

Given the influence of PEs on water resources and hydroclimates, there is a 

strong need to understand interannual patterns of PE storms. Contextualizing modern 

PEs requires long-term historical knowledge of past PE variability; however, such 

knowledge is generally limited to the mid-20th century satellite era (Shields et al., 2018). 

Dendrochronological data, alternatively, offer potential proxy records of past weather 

extremes like PEs that are centuries older than many instrumental records (Speer, 

2010). One such dendrochronological record, the oxygen stable isotope (δ18O) 

composition of tree ring cellulose, has been effectively used to reconstruct paleoclimates 

due to the climatic controls on the δ18O of meteoric water. This δ18O increases with 

increased air temperatures (Araguás-Araguás et al., 2000), decreases with increased 

precipitation amounts due to Rayleigh fractionation (Gat, 1996), and varies with factors 

affected by temperature and precipitation amounts such as condensation height 

(Buenning et al., 2012), precipitation source area (Gat, 1996), and the distance 

precipitation travels from its source (Gat, 1996). When water precipitates over land and 

becomes available to trees through soil water, this water’s isotopic signature can be 

incorporated into a tree’s α-cellulose as it grows (McCarroll & Loader, 2004a). Tree ring 

α-cellulose, then, has the potential to create an annual record of climatic controls on 

source water δ18O. This source water δ18O signal may be dampened by additional 

controls on α-cellulose δ18O such as growing season relative humidity (Roden et al., 

2000), isotope exchange with xylem water (Nakatsuka et al., 2020), and the depth of soil 

water accessed by trees (Brinkmann et al., 2018). Despite these additional cellulose 

δ18O controls, tree ring δ18O has been used as an effective paleoclimate proxy for 

precipitation origin. For example, a southeastern US tree ring δ18O record was found to 

record North Atlantic hurricane activity (Miller et al., 2006), while another southeastern 

US tree ring δ18O record was found to predominantly reflect seasonal moisture source 
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(Labotka et al., 2016). PEs, however, have not yet been assessed as a potential source 

of variability in tree ring δ18O records. 

The δ18O in α-cellulose exhibits potential as a proxy record of PE variability due 

to a substantial isotopic difference between PE and non-PE storms. Spry et al. (2014) 

found that PE precipitation affecting southwest BC was 5-6‰ more enriched in δ18O 

than non-PE precipitation, and Oster et al. (2012) identified similarly enriched δ18O in PE 

precipitation relative to non-PE precipitation affecting central California. Both studies 

attributed this enriched δ18O to the warmer temperatures at the PEs’ subtropical origins 

relative to non-PE storms, with warmer temperatures evaporatively enriching sub-

tropical seawater relative to the poles (LeGrande & Schmidt, 2006). The enriched δ18O 

contained in PE precipitation raises the possibility that trees may record a PE variability 

signal in the δ18O of their α-cellulose. While preliminary research on a single PNW tree’s 

α-cellulose δ18O did not indicate that the tree captured PE variability (Spry, 2013), stable 

isotopic sampling of four trees is generally required to sufficiently capture variance at a 

site (Leavitt, 2010). Such a multi-tree analysis of tree ring δ18O as a potential proxy 

record for PE variability has not yet been carried out. 

A variety of environmental factors have been found to influence the δ18O stored 

in trees’ α-cellulose each year. These factors, including precipitation amount (Roden & 

Ehleringer, 2007; C. Xu et al., 2013), relative humidity (Shi et al., 2011), temperature 

(Labuhn et al., 2014; Rebetez et al., 2003; Saurer et al., 2008; Shi et al., 2011; G. Xu et 

al., 2014), and snowpack (Qin et al., 2022) are all highly interrelated and cumulatively 

influenced by climate oscillations (e.g., Wang & Asefa, 2018). Identifying whether trees 

capture a PE signal in their δ18O, then, requires an analytical accounting for other factors 

controlling δ18O variability. To this end, Generalized Additive Models (GAMs) are well-

suited to analyze these interrelated influences on δ18O as GAMs model effect variables 

as a sum of non-linear functions of multiple predictor variables (Wood, 2017). GAMs 

allow for an assessment of what combination of predictor variables, such as PE 

variability, relative humidity, and precipitation, best explain a response variable, such as 

α-cellulose δ18O. The application of GAMs to dendrohydrological research is a relatively 

new field with a promising capacity to explore tree ring data variability using interrelated 

environmental predictors, including PE data.  
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Managing the PNW’s water resources requires a comprehensive understanding 

of precipitation extremes like PEs. Although this understanding is currently limited to the 

short length of instrumental records, tree ring δ18O offers the potential to extend this 

record and better contextualize the variability of current and future PE storms. This study 

aims to develop tree ring δ18O records from four Douglas-fir (Pseudotsuga menziesii) 

trees in southwest BC and (1) test this record’s utility as a proxy for PE variability using a 

GAM approach; (2) evaluate alternative sources of tree ring δ18O variability including 

temperature, total precipitation, humidity, and climate oscillations; and (3) contextualize 

these records with other North American tree ring δ18O records. Finally, the implications 

of using tree ring δ18O in informing water resource management in the PNW are 

discussed. 

3.2. Methods 

3.2.1. Study areas 

Two sites in southwest BC were identified for tree ring δ18O study. One site, 

“Capilano,” is located within a forested park in the Capilano Watershed 10 km north of 

Vancouver, BC. This site was selected for comparison with the δ18O record created for 

that site by Spry (2013). A second location, “MKRF-2,” is located within the Malcolm 

Knapp Research Forest (MKRF), 50 km east of the Capilano site. This site was selected 

for its somewhat drier climate and therefore potential to capture PE variability distinct 

from the Capilano site. This location is also advantageous because it overlaps with the 

study area described in Chapter 2 and, as a research forest, the hydrometeorology and 

human activities in the area have been well described since the mid-20th century 

(Malcolm Knapp Research Forest, n.d.). Site locations are shown in Figure 3.1. 
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Figure 3.1 Locations of the Capilano and MKRF-2 study sites. The dotted line 

indicates the extent of the Shields & Kiehl (2016b) grid cell utilized 
for PE data. Climate stations used to create daily precipitation and 
temperature records at Capilano and MKRF-2 are shown. 

The Capilano study site is located on səlilwətaɬ (Tsleil-Waututh), xʷməθkʷəy̓əm 

(Musqueam), Sḵwx̱wú7mesh (Squamish), and Stó:lō land (Musqueam Indian Band, 

2024; Squamish Nation, 2024; Stó:lō Research and Resource Management Centre, 

2016; Tsleil-Waututh Nation, 2021) within the Capilano River Regional Park. The site 

has an average elevation of 66 m above sea level, a southwest aspect, a 0-5° slope, and 

falls within the Coastal Western Hemlock dry maritime biogeoclimatic zone (CWHdm) 

(B.C. Ministry of Forests, 2021). Characteristic of the CHWdm zone, this region 
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experiences cool summers and mild, wet winters (Meidinger & Pojar, 1991), receiving a 

mean annual precipitation of 2399 mm and with a mean temperature of 9.1°C (1981-

2010 climate normals; [ECCC, 2023a, 2023b]). This climate supports the study site’s 

tree cover of primarily Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga 

heterophylla), and western redcedar (Thuja plicata) and understory of predominantly 

salal (Gaultheria shallon), sword fern (Polystichum munitum), and flat moss 

(Plagiothecium undulatum) (Meidinger & Pojar, 1991).   

The second study site, “MKRF-2,” is located 6.2 km southwest of the “MKRF-1” 

site described in Chapter 2, both within the North Alouette Watershed on Katzie and 

Stó:lō land (Katzie First Nation, 2024; Stó:lō Research and Resource Management 

Centre, 2016). MKRF-2 has an average elevation of 175 m above sea level, a southwest 

aspect, and a 5-30° slope. It experiences a CWHdm climate with similar tree cover and 

understory to the Capilano site (B.C. Ministry of Forests, 2021). The area is warmer and 

drier than the Capilano site, with an average temperature of 9.9°C and annual 

precipitation of 2180 mm (1981-2010 climate normals; [ECCC, 2023c]). A large fire 

burned the area in 1868, but, at present, the site is a dense forest of mostly Douglas-fir 

and western hemlock and is surrounded by active logging and newly planted tree stands 

(I. Aron, personal communication, October 31, 2022). The exact location of this site was 

chosen for its accessibility within the MKRF and for its similar elevation to the Capilano 

site.  

Both sites have rainfall-dominated hydroclimates with some winter snowfall 

(Figure 3.2). Precipitation varies seasonally, with higher precipitation in the fall and 

winter (ONDJFM) than in the spring and summer (AMJJAS) (Figure 3.2). Both sites are 

also located within watersheds experiencing high-elevation seasonal winter snowpack, 

exemplified with data from a nearby climate station in Figure 3.2B. 
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Figure 3.2 (A) Mean monthly rainfall and (B) snowfall at Capilano, MKRF-2, and 
the Grouse Mountain climate station (Station ID: 1105658), 1981-
2010. For Capilano and MKRF-2, data are sourced from the nearest 
available climate stations (N Vancouver Cleveland for Capilano, 
Station ID: 110EF56; Haney UBC RF Admin for MKRF-2, Station ID: 
1103332). The Grouse Mountain station approximately 3 km from 
Capilano, is 45 km from MKRF-2, and is 1103.00 m above sea level. 
Data sources: Capilano, (ECCC, 2023b); MKRF-2, (ECCC, 2023c); 
Grouse Mountain, ECCC (2024).  

3.2.2. Sampling and sample preparation 

In fall 2022, Douglas-fir trees were cored at Capilano and MKRF-2. Douglas-fir 

trees were selected for δ18O study for their distinct definition between light-colored 

earlywood and dark-colored latewood (Martinez, 1996). Annual δ18O analysis requires 

slicing the rings by year, so the high-contrast earlywood and latewood of Douglas-firs 

makes these trees suitable. Four Douglas-fir trees were cored per site, as this sample 

size has commonly been identified as sufficient to produce representative site 

chronologies of tree ring stable isotopes which capture the benchmark 85% of site 

variance (Leavitt, 2010). To select individual trees for coring, 20 m transects were laid 

perpendicular to the slopes at each site and all Douglas-firs within 2 m of the transects 

were numbered. Then, numbers were chosen using a random number generator and the 

corresponding trees were cored until two complete cores were retrieved per tree from 

four trees. These cores were later compared to a PE record extending to 1981, so it was 
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also visually confirmed at the time of sampling that each core was of sufficient age to 

overlap with the PE record. All cores were sampled using a 5 mm increment borer at 

1.35 m above the tree base. Table C1 lists the locations and details of the trees cored at 

Capilano and MKRF-2. 

To prepare the cores for annual δ18O measurement, the cores were first lightly 

sanded to enhance earlywood-latewood contrast. Then, the cores were dated and cross-

dated with the other trees sampled at the same site using the list method, CooRecorder, 

and COFECHA as described in Chapter 2 (Cybis Dendrochronology, 2022; Holmes, 

1983; Yamaguchi, 1991). To limit time and costs associated with δ18O analysis, one core 

from each tree was selected at random for δ18O analysis, and a sample pooling 

technique was applied. Pooling, or combining annual rings of identical age from different 

trees, allows for a higher replication of the isotope chronology without increasing the 

number of δ18O analyses and associated cost (Foroozan et al., 2019). The four selected 

cores were sliced into annual increments, then approximately equal wood masses 

(±0.02 mg) from each tree for the same year were pooled together as determined by the 

mass from the tree weighing the least in each year. When slicing the annual rings to 

produce equal ring masses across years, the rings were sliced parallel to the direction of 

growth so that proportional volumes of earlywood and latewood were contributed to the 

pooled sample. This method of pooling by mass was chosen as it avoids producing 

mass-weighted δ18O values (Tardif et al., 2008). However, the rings for every 10th year 

were not pooled and instead were analyzed individually to provide an estimate of the 

error associated with pooling (Leavitt, 2010). All the pooled and non-pooled samples 

were then further cut into thin slices and finely ground with an agate mortar and pestle to 

form homogenous wood samples for each year. This process was carried out for the 

rings of growth years 1981-2021, as this overlapped with the available PE record.  

3.2.3. Extraction of α-cellulose and δ18O measurement 

Tree ring α-cellulose was isolated from the wood using a modified version of the 

extraction processes described in Leavitt & Danzer (1993) and Loader et al. (1997). The 

ground wood samples were placed into Soxhlet extraction thimbles; each thimble was 

placed into a beaker with sodium chlorite, acetic acid, and deionized water; then the 

beakers were heated in an ultrasonic bath to remove the wood’s resins, tannins, and 

lignin and form holocellulose. The holocellulose samples were then placed in extraction 
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thimbles within beakers containing a sodium hydroxide solution; this process removes 

carbohydrates and results in α-cellulose (Loader et al., 1997). Further methodological 

details are described in Appendix B.  

The α-cellulose samples were sent to the Washington State University Stable 

Isotope Laboratory for δ18O analysis. δ18O was measured with a Thermo Finnigan Delta 

XP isotope ratio mass spectrometer coupled with a Thermo Scientific Temperature 

Conversion/Elemental Analyzer which pyrolized samples at >1400 ˚C to convert oxygen 

present in the α-cellulose samples to carbon monoxide. Then, the carbon monoxide gas 

was passed through the mass spectrometer to determine its oxygen isotopic content 

(Thermo Fisher Scientific, 2008). Measurements are reported as δ18O (‰) normalized to 

Vienna Standard Mean Ocean Water (VSMOW) using two-point normalization of 

USGS54 and USGS56 after corrections for time and size. 

3.2.4. Sourcing PE and climate data 

Pineapple Express data 

PE data were sourced from the Shields & Kiehl catalogue described in Shields & 

Kiehl (2016b) and Rutz et al. (2019). This catalogue identifies PEs approaching the 

North American west coast using satellite-based atmospheric reanalysis from the 

Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) 

project. From MERRA-2, landfalling PEs are classified as features with contiguous grid 

cells spanning at least 200 km and a length-to-width ratio of 2:1 in which grid cells meet 

a latitude-dependent integrated water vapour (IWV) threshold and a regional wind 

threshold defined by 85th percentile 850 mb wind magnitudes. This catalogue captures 

PEs by additionally selecting for features approaching the North American west coast 

from a southwesterly direction, i.e. grid cells with 850 mb wind vectors between 180° and 

270°. This dataset identifies PE presence and absence at 3-hourly (8 time steps per day) 

0.5° latitude and 0.625° longitude resolution from January 1980 through June 2017 (Rutz 

et al., 2019; Shields & Kiehl, 2016b) and was selected for this study as it is the most up-

to-date reanalysis record of PE storms available. 

To determine annual PE counts within the study region, the global three-hourly 

(eight daily) Shields & Kiehl (2016b) data were first cropped to a spatial extent 

containing the study sites. Two spatial extents were considered: 1) a larger selection 
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area (49°, 49.5°, -123.75°, -122.5°) which would capture regional PE variability, and 2) 

the smallest selection area containing both study sites (49°, 49.5°, -123.125°, -122.5) 

which would capture more site-specific PE variability. The difference in PE counts per 

water year2 (WY) captured by these different areas did not vary substantially (Table 3.1). 

The smaller selection area was ultimately chosen for this study as AR-derived 

precipitation in mountainous regions such as the Coast Mountains varies strongly 

spatially (Sharma & Déry, 2020), making the smaller area’s finer resolution preferable. 

Table 3.1 Mean PE day count per WY by selection criterion. The underline 
indicates the combined geographical extent and temporal upscaling 
method which were chosen for this study. 

  Temporal upscaling 
method 

 

  ≤ 1/8 PE time steps per 
day = PE day* 

≤ 4/8 PE time steps per day = 
PE day* 

Geographical 
extent 

Small region 
49°, 49.5°, -123.125°,  
-122.5 

25.4 PEs/year 0.7 PEs/year 

 Large region 
49°, 49.5°, -123.75°,  
-122.5° 

30.1 PEs/year 0.7 PEs/year 

* These upscaling methods refer to the number of three-hourly (eight daily) time steps identified as PE time steps in the 
Shields & Kiehl (2016b) catalogue for a day to be considered a “PE day” in this study. 

The Shields & Kiehl (2016b) 3-hourly data were also upscaled into daily records 

to allow for the creation of a daily AR count dataset. Two temporal upscaling methods 

were considered: 1) if at least one 3-hour time step of the eight daily time steps was a 

PE time step then the day would be considered a PE day (referred to as the 1/8 

selection), and 2) if at least four out of the eight daily time steps were PE time steps then 

the day would be considered a PE day (referred to as the 4/8 selection). Mean WY PE 

counts were calculated for each of these permutations (Table 3.1). While the 4/8 

selection produced an average of 0.7 PEs/year, the 1/8 selection produced an average 

of 25.4 and 30.1 PEs/year (Table 3.1), making the 1/8 selection closer to the 40 

ARs/year rate identified in Waliser & Guan (2017) as common for mid-latitude coastal 

 
2 North American water years are October 1 to September 30 and are named by the calendar 
year in which they end. 
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areas. The 1/8 selection was also determined to be more representative for this study as 

any PE precipitation might contribute δ18O-enriched precipitation to the region, even if 

the PE precipitation lasted nine hours (three time steps) or fewer. For these reasons, this 

study used the 1/8 selection to calculate daily PE records. Once the spatial extent and 

temporal upscaling method were chosen, PE day counts were summed by WY and 

season to create WY and seasonal PE count records. Seasons are defined as winter 

(January, February, March - JFM), spring (April, May, June - AMJ), summer (July, 

August, September - JAS), and fall (October, November, December - OND). WY (rather 

than calendar year) analysis was conducted to standardize this study with similar 

studies.  

A second PE variable, the percentage of total WY precipitation occurring on PE 

days, was included in the analysis as it was reasoned that this variable might better 

capture the influence of PEs on the soil water δ18O available to trees. To calculate the 

percent PE contribution, daily precipitation data measured at the weather stations 

nearest the sites (N Vancouver Wharves [Climate station ID: 1108447] for Capilano and 

Haney UBC RF Admin [Climate station ID: 1103332] for MKRF-2) overlapping 

temporally with the isotope chronology were sourced. Where data were missing from 

these stations, data were sourced from the next-closest weather stations (Vancouver 

International Airport [Station ID: 1108447] and Vancouver Harbour [Station ID: 1108446] 

for Capilano, Abbotsford Airport [Station IDs: 1100030, 1100031] and Pitt Meadows CS 

[Station ID: 1106178] for MKRF-2) using the “shift factor” approach described in Chapter 

2. Once continuous daily precipitation records were established, precipitation occurring 

on PE days (as defined by the temporally upscaled Shields & Kiehl [2016b] record) was 

identified and the percentages of total WY precipitation occurring on PE days were 

calculated for MKRF-2 and Capilano.  

A third PE variable, intense PE count, was also assembled. Intense PE days 

were defined as PE days at or above the 90th percentile of daily precipitation (i.e., days 

with precipitation totals higher than 90% of the compiled daily Capilano or MKRF-2 

precipitation records described above). The 90th percentile and above is commonly used 

to define intense AR precipitation (e.g., Chen et al., 2018; Hagos et al., 2016; Najibi & 

Steinschneider, 2023; Ramos et al., 2018), informing its use here.  
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All PE variables were assembled by WY and seasonally. Although the Shields & 

Kiehl (2016b) PE record spans January 1980 through June 2017, PE count, percent PE 

precipitation, and intense PE count data were truncated to WYs 1981-2016 due to the 

1980 and 2017 data not including entire WYs.  

Climate data 

Additional climate data were included in this study’s GAM analysis for their 

potential to explain δ18O variability. Significant negative correlations have been identified 

between tree ring δ18O and precipitation amounts (Saurer et al., 2008; Shi et al., 2011), 

likely a result of the so-called “amount effect” in which meteoric water δ18O decreases 

with increased precipitation amounts due to Rayleigh fractionation (Gat, 1996). Total WY 

and seasonal precipitation amounts at the study areas were included in the analysis to 

capture this relationship.  

This study also includes growing-season relative humidity (GS-RH) as it has 

been found to negatively correlate with tree ring δ18O (Shi et al., 2011), likely a result of 

isotopic fractionation in tree leaves. Under low-humidity conditions, more light (δ18O-

depleted) water molecules preferentially evaporate from leaves, leaving enriched δ18O in 

leaf water which enriches δ18O in α-cellulose (Roden et al., 2000). To account for this 

relationship, growing-season relative humidity (June through September relative 

humidity) data were also included in the analysis. Tree ring δ18O is also known to vary 

positively with temperature (Labuhn et al., 2014; Rebetez et al., 2003; Saurer et al., 

2008; Shi et al., 2011; G. Xu et al., 2014), a result of increasing evaporative enrichment 

effects on soil water with increasing temperature (Sano et al., 2013), and so was also 

included in the analysis. Standardised Precipitation-Evapotranspiration Index (SPEI) 

data were included as well, as SPEI, which combines temperature and precipitation data 

to represent drought intensity (Beguería et al., 2010), may capture δ18O variability more 

strongly than precipitation or temperature alone (G. Xu et al., 2014). SPEI has exhibited 

negative relationships with α-cellulose δ18O likely due to the negative relationship 

between relative humidity and δ18O (Beguería et al., 2010; Nagavciuc et al., 2022; G. Xu 

et al., 2014).  

Snow water equivalent (SWE) data were also included in the analysis for their 

potential to represent cold-season precipitation amounts experienced by trees. While 

cold-season rain is not immediately incorporated into tree growth (as tree growth occurs 
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in warmer months), cold-season precipitation which falls as snow is stored in the 

snowpack until warmer months when it melts and becomes available to trees, allowing 

for its incorporation into cellulose δ18O (Leonelli et al., 2017). Therefore, a cold-season 

precipitation amount-δ18O relationship might be better represented in α-cellulose by 

SWE than precipitation totals. SWE may also affect tree ring δ18O through its impacts on 

growing season length, wherein higher seasonal SWE may delay the onset of the 

growing season, resulting in less leaf water evaporative enrichment over the growing 

season and lower α-cellulose δ18O (Qin et al., 2022). Seasonal snowpacks occur at 

higher elevations in both the study sites’ watersheds (Figure 3.2), and the timing of this 

snowpack’s melt may affect soil temperatures, and thus the length of the growing 

season (Mellander et al., 2004), at lower elevations such as at Capilano and MKRF-2.  

 Several climate oscillation indices were also included in the analysis. Climate 

oscillations influence an array of α-cellulose δ18O drivers, including storm track (Lin et 

al., 2020; Zheng et al., 2018), temperature (Becker & Tippett, 2024; Zheng et al., 2018), 

precipitation amounts (Nalley et al., 2019), SWE (Pathak et al., 2018; Thakur et al., 

2020), and RH (Miralles et al., 2014). Therefore, climate oscillation indices, which 

synthesize these important environmental variables into one index, are well correlated 

with tree ring δ18O records from across the globe (e.g., Brienen et al., 2012; Churakova 

(Sidorova) et al., 2023; Dinis et al., 2019; C. Xu et al., 2019). Several climate oscillations 

affecting PNW weather, as described below, were included in this analysis for their 

potential to explain δ18O variability better than a single climate variable alone. 

One oscillation affecting the PNW, El Niño Southern Oscillation (ENSO), creates 

anomalously warm and dry winters for the PNW in its El Niño phase and anomalously 

cool and wet PNW winters in its La Niña phase (NOAA PSL, 2023). More ARs occur in 

the PNW during La Niña and fewer during El Niño (Mundhenk et al., 2016), although this 

relationship is less pronounced in the PNW than elsewhere on the eastern Pacific coast 

(Payne & Magnusdottir, 2014). While ENSO was not found to significantly relate to PE 

variability in southwest BC (Spry et al., 2014), ENSO variability has been shown to 

correlate significantly with tree ring δ18O elsewhere (Brienen et al., 2012), indicating its 

use in this study. 

The Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation 

(NPGO) are also included in the analysis for their potential impact on tree ring δ18O. In 
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the positive PDO phase, ocean-to-land moisture transport is reduced over the PNW, and 

in the positive NPGO phase, ocean-to-land moisture transport is enhanced (X. Liu et al., 

2016). These oscillations are also associated with variations in Pacific Ocean sea 

surface temperature (SST) (Di Lorenzo et al., 2008; Mantua & Hare, 2002), driving air 

temperature variability in the PNW (Mass et al., 2022). Tree ring δ18O records have been 

found to record PDO and NPGO variability (Sakashita et al., 2017; C. Xu et al., 2019), 

supporting their inclusion in this study. 

The Arctic Oscillation (AO), Madden-Julian Oscillation (MJO), and Pacific/North 

American pattern (PNA) are included in the analysis as the three may individually and in 

combination have impacts on δ18O variability and AR patterns. Anomalously low Arctic 

air pressure during the AO’s positive phase shifts storms northward of their usual paths, 

while anomalously high Arctic air pressure during the negative phase shifts storms 

equatorward (Thompson et al., 2003). In California, more ARs were shown to occur 

during the negative phase of AO (Guan et al., 2013). The MJO, meanwhile, exhibits an 

alternating negative phase of enhanced convection and rainfall and positive phase of 

suppressed convection and rainfall (National Weather Service Climate Prediction 

Center, 2023b). AR activity has been shown to vary significantly with the location of the 

MJO convective phase (Guan et al., 2012), including significant negative correlations 

between the percent contribution of PE storms to annual precipitation and the MJO 

phase in southwest BC (Spry et al., 2014). The PNA, meanwhile, is determined by 

differences in air pressure anomalies over the Pacific Ocean and North America. In the 

PNA positive phase, air pressure anomalies strengthen the mid-latitude jet stream and 

decrease precipitation in the PNW (Z. Liu et al., 2017). However, more ARs occur in the 

PNW during the PNA positive phase (Toride & Hakim, 2021). These oscillations and 

teleconnections also have an interactive relationship with ARs; for example, PNA phase 

has been found to correlate with the MJO’s teleconnection to AR activity (Toride & 

Hakim, 2021). Tree ring δ18O has also been found to reflect summer AO variability in 

northeastern Canada and May AO variability in the Siberian sub-Arctic (Churakova 

Sidorova et al., 2021; Dinis et al., 2019), but tree ring δ18O relationships with AO, PNA, 

or MJO have not been tested for the PNW. This study also analyzed these climate 

oscillations for their potential to explain PE variability. 

Water-year records of temperature, precipitation, SWE, SPEI, ENSO, PDO, 

NPGO, AO, MJO, and PNA were included in the GAM analysis alongside PE variables. 
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Records for all variables, except SWE and GS-RH, were also assembled seasonally, 

with seasons defined as winter (January, February, March - JFM), spring (April, May, 

June - AMJ), summer (July, August, September - JAS), and fall (October, November, 

December - OND). GS-RH was assembled for the growing season, June through 

September, and mean SWE was only assembled by WY. Complete data details, region, 

and sources are described in Table 3.2. 
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Table 3.2 AR and climate data sources.  

Variable Description Data region Time period Data source 
PE variables     
PE count Number of PE days, where a PE day is any day with at least one 

3-hour time step classified by Shields & Kiehl (2016b) as a PE 
time step. PE records were available for WYs 1981-2016 at 0.5° 
latitude and 0.625° longitude resolution. 

49, 49.5,  
-123.125,  
-122.5 

Seasonal and WY (Shields & Kiehl, 2016b) 

Intense PE count Number of PE days exceeding the 90th percentile for daily 
precipitation at Capilano or MKRF-2. 

49, 49.5,  
-123.125,  
-122.5 

Seasonal and WY PE days: (Shields & Kiehl, 
2016b) 
Capilano precipitation:  
(ECCC, 2023e, 2023g, 
2023f) 
MKRF-2 precipitation: 
(ECCC, 2023d, 2023h, 
2023i, 2023j) 

% PE precipitation The percentage of total WY or seasonal precipitation falling on 
PE days. Precipitation data sources are described below under 
“total precipitation.”  

49, 49.5,  
-123.125,  
-122.5 

Seasonal and WY PE days: (Shields & Kiehl, 
2016b) 
Capilano precipitation: 
(ECCC, 2023e, 2023g, 
2023f) 
MKRF-2 precipitation: 
(ECCC, 2023d, 2023h, 
2023i, 2023j) 
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Variable Description Data region Time period Data source 
Climate variables     
Total precipitation Capilano: Daily precipitation totals were sourced from the N 

Vancouver Wharves weather station records (Station ID: 
1105669). Where data were missing from this station, data were 
inserted from the Vancouver International Airport weather station 
(Station ID: 1108447) using the shift factor method described in 
Chapter 2. 
On days where data from both N Vancouver Wharves and 
Vancouver International Airport were missing (5 days), shifted 
data from the nearby Vancouver Harbour station (Station ID:  
1108446) were used.  
 
MKRF-2: Daily precipitation totals recorded at the Haney UBC 
RF Admin weather station (Station ID: 1103332). Where data 
were missing from the Haney UBC RF Admin record, 
precipitation data from Abbotsford Airport (Station IDs: 1100030, 
1100031) and Pitt Meadows CS (Station ID: 1106178) were 
inserted using the shift factor method. 
 
Precipitation records were reported in mm. 

Stations: 
 
N Vancouver 
Wharves 49.3148,  
-123.1153 
 
Vancouver 
International 
Airport 49.1950, 
-123.1819 
 
Vancouver 
Harbour 49.2944, 
-123.1114 
 
Haney UBC RF 
Admin 49.2645, 
-122.5732 
 
Abbotsford Airport 
49.0253, 
-122.3600 
 
Pitt Meadows CS 
49.2083, 
-122.6900 
 

Seasonal and WY Capilano: 
N Vancouver Wharves: 
(ECCC, 2023e) 
Vancouver International 
Airport: (ECCC, 2023g) 
Vancouver Harbour: 
(ECCC, 2023f) 
 
MKRF-2: 
Haney UBC RF Admin: 
(ECCC, 2023j) 
Abbotsford Airport: 
(ECCC, 2023d) 
(ECCC, 2023h) 
Pitt Meadows CS: 
(ECCC, 2023i)  
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Variable Description Data region Time period Data source 
Mean temperature Mean daily temperature data were sourced from the same 

stations as the precipitation records. Temperature data were 
reported in °C. 

Stations: 
 
N Vancouver 
Wharves 49.3148,  
-123.1153 
 
Vancouver 
International 
Airport 49.1950, 
-123.1819 
 
Vancouver 
Harbour 49.2944, 
-123.1114 
 
Haney UBC RF 
Admin 49.2645, 
-122.5732 
 
Abbotsford Airport 
49.0253, 
-122.3600 
 
Pitt Meadows CS 
49.2083, 
-122.6900 

Seasonal and WY Capilano: 
N Vancouver Wharves: 
(ECCC, 2023e) 
Vancouver International 
Airport: (ECCC, 2023g) 
Vancouver Harbour: 
(ECCC, 2023f) 
 
MKRF-2: 
Haney UBC RF Admin: 
(ECCC, 2023j) 
Abbotsford Airport: 
 
(ECCC, 2023h, 2023d) 
Pitt Meadows CS: 
(ECCC, 2023i)  
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Variable Description Data region Time period Data source 
GS-RH Relative humidity is expressed as a percentage of the amount of 

water vapour in the air compared to how much water vapour 
could be potentially held by air at the same temperature. RH 
data were sourced from a 5x5° gridded dataset interpolated 
using station records. Mean RH was calculated for each WY 
growing season from 1981-2016. 

47.5, 52.5, 
-122.5, -127.5 

Growing season 
(June-September) 

(Willett, 2023) 

SWE Mean WY SWE was calculated as the average of monthly SWE 
and is reported in metres of water equivalent. (ECCC, 2021) 
determines SWE using MERRA-2 reanalysis, temperature and 
snowpack models, satellite records, and climate station data and 
interpolates these records over a 0.25°x0.25° grid. SWE data 
were available for calendar years 1981-2016, so water-year 
records were truncated to 1982-2015. 

49, 49.5, 
-122.5, -123.125 

WY (ECCC, 2021) 

Climate indices     
SPEI SPEI is a drought index calculated using precipitation and 

potential evapotranspiration (Beguería et al., 2010). Mean 
seasonal and WY SPEI were calculated using gridded data with 
0.5°x0.5° resolution for the adjacent grid cells covering the both 
study areas. 

49, 49.5, 
-122.25, -123.75 

Seasonal and WY (Beguería et al., 2023) 

ENSO ENSO is a 3-to-7-year oscillation with low atmospheric pressures 
and high sea surface temperatures occurring in the tropical 
eastern Pacific during the El Niño phase. The Niño 3.4 index 
was selected for this study as it is commonly used for ENSO 
analysis in North America and is defined by sea surface 
temperatures between 5°N-5°S, 170°W-120°W (ESRL/NOAA, 
2023). This record provided monthly Niño 3.4 index data.  

Global Seasonal and WY (ESRL/NOAA, 2023) 
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Variable Description Data region Time period Data source 
PDO The PDO is a 20-to-30-year oscillation defined by Pacific Ocean 

temperature and sea level pressure. When interior North Pacific 
sea surface temperatures and sea level pressures are 
anomalously low, the PDO is in its positive phase (NOAA, 2023). 
PDO index data were available at monthly resolution.  

Global Seasonal and WY (NOAA, 2023) 

AO The AO is a weeks- to months-long oscillation characterized by 
atmospheric pressure over the arctic and northern Pacific and 
Atlantic oceans. When Arctic atmospheric pressure is 
anomalously low and north Pacific and Atlantic atmospheric 
pressure is anomalously high, the AO is in its positive phase 
(Thompson et al., 2003). AO index data were available at 
monthly resolution.  

Global Seasonal and WY (National Weather Service 
Climate Prediction Center, 
2023a) 

MJO The MJO is a 30-to-60-day oscillation which creates regions of 
enhanced and suppressed tropical rainfall. MJO records were 
determined by 200 hPa velocity potential anomalies within 0-
30°N, normalized by standard deviation during ENSO-neutral 
and weak ENSO winters (National Weather Service Climate 
Prediction Center, 2023b). Weekly MJO records for the 120°W 
region (the eastern tropical Pacific) were used in this study. 

120°W region Seasonal and WY (National Weather Service 
Climate Prediction Center, 
2023b) 

NPGO The NPGO is a decadal-scale ocean oscillation defined by sea 
surface height anomaly in the northeast Pacific (Di Lorenzo et 
al., 2008). NPGO index data were available at monthly 
resolution.  

Global Seasonal and WY (Di Lorenzo, 2023) 

PNA The PNA teleconnection is a sub-seasonal variation defined by 
550 millibar height anomalies and affects the Northern 
Hemisphere extratropics. The positive phase of the PNA 
features above-average heights (above-average temperatures) 
in the tropical Pacific and western North America (National 
Weather Service Climate Prediction Center, 2023c). PNA index 
data were available at monthly resolution.  

Global Seasonal and WY (National Weather Service 
Climate Prediction Center, 
2023c) 
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3.2.5. Analysis of PE records and tree ring δ18O chronologies 

Analyzing relationships between δ18O, PE, and climate data  

GAMs were used to assess relationships between PE and climate variables and 

tree-ring δ18O. GAMs examine the associations between the sums of smoothed 

functions of predictor variables (covariates) and a univariate response variable (Wood, 

2017); here, the predictor variables are the annual and seasonal PE, climate, and 

climate index variables, and the response variable is tree ring δ18O. Linear relationships 

cannot be assumed between the predictor variables and δ18O, making GAMs a suitable 

choice as they model both linear and non-linear relationships. Due to the large number 

of predictor variables, single-predictor GAMs were first created between each predictor 

variable and the response variables, δ18O at Capilano and MKRF-2, to determine which 

predictors demonstrated the strongest individual relationships with δ18O records. Then, 

the predictor variables with the strongest individual relationships to δ18O were included 

alongside PE data in multi-predictor GAMs to determine whether PE data improved 

model fit. This process is described in detail below. GAM refinements, including 

smoothing parameter selection, limitation to the models’ degrees of freedom, automatic 

term selection, and k-index review were identical to those described in Chapter 2.   

To assess individual relationships between PE and climate variables and δ18O, 

single-predictor GAMs were first created. These GAMs were assessed according to their 

1) p values, where the p value approximates the likelihood that a model’s smooth 

covariate equals zero, and 2) adjusted R2, the proportion of variance explained where 

original variance and residual variance are both approximated using unbiased estimators 

(Wood, 2017). Single-predictor GAMs (i.e., GAMs testing one climate predictor variable 

with the δ18O response variable) were created for all PE and climate variables (WY and 

seasonalized). These GAMs modeled the effects of the smooth functions of predictor 

variables on the response variables (i.e., the smooth function of the predictor variable’s 

association with the response variable). Of these GAMs, covariates exceeding the level 

of significance (p<0.05) were selected for inclusion in multi-predictor GAMs. This method 

of refining the covariates used in the multi-predictor GAMs was applied due to the 

number of predictor covariates exceeding the number of δ18O data points. GAMs require 

more response data than predictor variables (Wood, 2017), which this method achieved. 
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To determine whether PE data improved GAM outputs, multi-predictor GAMs 

were first created with only the selected (p<0.05 in single-predictor GAMs) non-PE 

covariates. Then, PE variables were added to the GAM and model fits were compared 

before and after PE variable inclusion. To limit the number of predictor variables, only 

WY and seasonalized PE count and % PE precipitation (not intense PE count) were 

analyzed in the multi-predictor GAMs; intense PE count was excluded after noting its 

lack of significant (p<0.05) relationships with either site’s δ18O by WY or season. 

Due to the large number of covariates, multiple iterations of the multi-predictor 

GAMs were carried out to avoid the model having more predictor variables than 

response variable observations. At each GAM iteration, double penalty shrinkage 

automatic term selection was enabled to penalize variables poorly explaining δ18O from 

the model. Variables were also assessed for concurvity at each iteration, and for non-

penalized variable pairs with estimate concurvity >0.5, the variable with the lower p value 

was removed from the subsequent GAM iteration (as described in Chapter 2). The 

quality of the final non-PE and including-PE models were compared using their p values, 

adjusted R2 values, and Akaike Information Criterion (AIC). AIC evaluates models by 

taking both their accuracy and parsimony (number of predictor variables) into account, 

with lower AIC indicating a more accurate model with fewer parameters (Wagenmakers 

& Farrell, 2004). The final model comparison allowed for a determination of whether PE 

variable inclusion alongside likely determinants of tree ring δ18O improved model output 

(i.e., whether PE data explained δ18O variability not explained by other δ18O predictors). 

The GAMs were used to assess a large number of annual and seasonal PE, 

climate, and climate oscillation variables as potential predictors of δ18O. Considering that 

little research exists on tree ring δ18O-climate correlations in the PNW, these analyses 

were exploratory by design and intended to evaluate many potential sources of δ18O 

variability. To constrain the risk of type I errors resulting from the large number of 

predictor variables tested, this study also compared the GAM results with other North 

American studies on tree ring δ18O-climate relationships. This pairing of the GAM results 

with available literature clarified how the GAM results were similar or dissimilar to trends 

identified elsewhere and allowed for a more comprehensive evaluation of potential 

mechanisms for environmental control on tree ring δ18O beyond the GAM. 
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Analyzing site records  

Summary statistics were calculated to compare Capilano and MKRF-2 δ18O 

records. Standard deviations for each pooled year at Capilano and MKRF-2, alongside 

the standard deviation for each complete record, were calculated to assess the error 

associated with pooling.  

To evaluate how the MKRF-2 and Capilano δ18O records compared with each 

other and within a regional context, Pearson correlation coefficients were calculated 

between MKRF-2, Capilano, and other tree cellulose δ18O records from western North 

America. All annually-resolved, multi-tree cellulose δ18O chronologies sampled in 

western North America and available on the International Tree Ring Database (ITRDB) 

were assessed (NOAA, 2024c). Tree cellulose δ18O records from this region identified 

through Web of Science keyword searches which were available at the time of this study 

were also included in the analysis. Searches including the keywords “tree ring” and 

“δ18O” followed by political boundaries in western North America (California, Oregon, 

Washington, British Columbia, Yukon, and Alaska) were performed. Chronology 

locations and data sources can be found in Table C2. 

Hierarchical cluster analyses were also used to assess similarities between the 

North American records. The records described in Table C2 do not fully temporally 

overlap with each other or this study’s records, and complete data (no missing values) 

are required for hierarchical cluster calculations. To address this, two subsets of records 

with data overlapping temporally with the Capilano and MKRF-2 records were analyzed. 

MKRF-2, Capilano, and records collected to the north of Capilano and MKRF-2 in Alaska 

(Csank et al. [2016] and Porter et al. [2014]) and the Northwest Territories (Hudson et al. 

[2015]) were one grouping; MKRF-2, Capilano, and records collected to the south in 

Washington, Idaho, and Oregon (Schmidt-Simard [2022] for all) were the second group. 

Each group’s records overlapped for thirteen years. Sites identified in the ITRDB and 

literature search that did not measure or pool more than one tree’s δ18O per site were 

excluded from the hierarchical cluster analysis. Additionally, one site recorded in Csank 

et al. (2016), Csank_BR, was excluded from the analysis for its poor temporal overlap 

with MKRF-2 and Capilano. To carry out the hierarchical cluster analyses, data were 

scaled across years using the ‘scale’ function in the R base package (R Core Team, 

2022), which subtracts the year’s mean δ18O from each δ18O observation then divides by 
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the year’s standard deviation. Agglomerative hierarchical clusters with average linkage 

clustering were then computed for the two groups using the ‘hclust’ function in the R 

base package (R Core Team, 2022).  

3.3. Results 

3.3.1. Annual tree ring isotope records 

The cross-dating program COFECHA confirmed successful cross-dating at both 

sites, with correlations above the significance level (r>0.328) between series segments 

and the master sequence for Capilano and MKRF-2 (Holmes, 1983). Between 1981 and 

2021, δ18O measured at Capilano ranged from 20.53 ± 0.17‰ to 25.52 ± 0.28‰ with a 

mean of 23.13 ± 0.15‰ (Figure 3.3A). Mean δ18O measured at MKRF-2 was higher at 

24.02 ± 0.14‰, and its values ranged from 20.87 ± 0.17‰ to 27.63 ± 0.14‰ (Figure 

3.3B).  
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Figure 3.3 Annual tree ring δ18O measured at (A) Capilano and (B) MKRF-2. The 

solid line represents the pooled δ18O record and points represent 
individual trees’ δ18O for non-pooled years. Where the solid lines 
coincide with non-pooled years, the solid lines are the average of 
the individual trees’ δ18O for that year. Error bars and error shading 
indicate the uncertainty associated with δ18O measurements. 

For Capilano, four of the five non-pooled years are less dispersed (have lower 

standard deviations) than the entire pooled Capilano record (Figure 3.4A). At MKRF-2, 

three of the four non-pooled years are less dispersed than the entire pooled MKRF-2 

record (Figure 3.4B).  
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Figure 3.4 Standard deviations for non-pooled years’ δ18O at (A) Capilano and 
(B) MKRF-2 alongside the standard deviation for all pooled samples 
at each site. 
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Mean δ18O of the non-pooled years for each tree is shown in Figure 3.5A for 

Capilano and Figure 3.5B for MKRF-2. 

 

 
 

Figure 3.5 Non-pooled δ18O raw values and means for each tree at (A) Capilano 
and (B) MKRF-2. Labels indicate the growth years for the non-pooled 
samples. 

3.3.2. PE records 

WY PE count in the study area ranged from 11 to 39 with a mean of 25 (Figure 

3.6A). PEs were most frequent in the OND season; however, they made up the largest 

fraction of total precipitation in the JFM season (Figure 3.6B). Annually, MKRF-2 

received a larger percentage of its precipitation from PEs than Capilano (Figure 3.6B). 

A 

B 
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Figure 3.6 (A) WY PE count and % PE precipitation at Capilano and MKRF-2 
and (B) mean PE count and % PE precipitation by WY and season 
for the sites, both for 1981-2021. 

3.3.3. Relationships between δ18O, PE, and climate data 

Capilano results 

Results from single-predictor GAMs between PE predictor variables (PE count 

and % PE precipitation) and the Capilano δ18O response variable indicate no significant 

(p<0.05) relationships between the two (Table C3). Significant p values were found for 

AMJ AO, OND temperature, WY SPEI, and GS-RH (Table C3, Figure 3.7).  
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Figure 3.7 Climate variables with significant (p <0.05) relationships with δ¹⁸O in 

Capilano single-predictor GAMs. (A) the adjusted R2 values and 
direction of relationship (assessed visually, as adjusted R2 values do 
not have a sign) for predictor variables with linear relationships to 
the response variable. (B) the relationship between the only non-
linear significant (p<0.05) variable and the response variable. Note 
that y-axis in B indicates the smooth effect of AMJ AO on δ¹⁸O, with 
small vertical lines denoting the distribution of AMJ AO data. 

Multi-predictor GAM results for Capilano show an increased model R2 when PE 

variables are included. While the selected (p<0.05) non-PE variables return a GAM with 

an R2 of 0.45 (GAM iteration 1), the final iteration which includes PE variables returns a 

GAM with an R2 of 0.561 (GAM iteration 4) (Table 3.4). AIC is also lower when PE 

variables are included in the GAM (AIC=102 at GAM iteration 1, AIC=97.5 at the final 

GAM iteration) (Table 3.3). 

Table 3.3 Capilano multi-predictor GAM iterations.  

GAM 
iteration 

Variables R2 
(adjusted) 

Deviance 
explained 
(%) 

AIC Penalized 
variables 

Non-
penalized 
variables 
with 
concurvity 
above 0.5 

1 
Significant 
non-PE 
variables 

AMJ AO 
WY SPEI 
Mean OND 
temperature 
GS-RH 

0.453 51.3 101.6 None None 
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GAM 
iteration 

Variables R2 
(adjusted) 

Deviance 
explained 
(%) 

AIC Penalized 
variables 

Non-
penalized 
variables 
with 
concurvity 
above 0.5 

2 
Add PE 
variables 

AMJ AO 
WY SPEI 
Mean OND 
temperature 
GS-RH 
OND PE count 
JFM PE count 
AMJ PE count 
JAS PE count 
WY PE count 
WY % PE 
precipitation 
JAS % PE 
precipitation 

0.556 64.2 97.8 OND PE count 
JFM PE count 
AMJ PE count 
JAS PE count 
WY PE count 

None 

3  
Remove 
penalized 
variables 
and add 
remaining 
PE 
variables 

AMJ AO 
WY SPEI 
Mean OND 
temperature 
GS-RH 
WY % PE 
precipitation 
JAS % PE 
precipitation 
OND % PE 
precipitation 
JFM % PE 
precipitation 
AMJ % PE 
precipitation 

0.561 64.8 97.5 JFM % PE 
count 
OND % PE 
count 

None 
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GAM 
iteration 

Variables R2 
(adjusted) 

Deviance 
explained 
(%) 

AIC Penalized 
variables 

Non-
penalized 
variables 
with 
concurvity 
above 0.5 

4 
Remove 
penalized 
variables to 
create final 
GAM 

AMJ AO 
WY SPEI 
Mean OND 
temperature 
GS-RH 
WY % PE 
precipitation 
JAS % PE 
precipitation 
AMJ % PE 
precipitation 

0.561 64.8 97.5 None None 

 
Variables retained in the final GAM iteration were AMJ AO, WY SPEI, OND 

temperature, GS-RH, WY % PE precipitation, JAS % PE precipitation, and AMJ % PE 

precipitation (Table 3.3). AMJ AO, WY SPEI, OND temperature, and WY % PE 

precipitation had significant p values (Table 3.4). 

Table 3.4 Summary results of final multi-predictor GAM for Capilano. P values 
<0.05 are shown in bold. EDF indicates the variable’s estimated 
degrees of freedom in the GAM. 

Response variable EDF F statistic p value 
AMJ AO 1.79 3.98 <0.01 
WY SPEI 0.91 3.22 <0.01 
Mean OND temperature 0.87 2.18 0.01 
GS-RH 0.22 0.10 0.25 
WY % PE precipitation 1.61 1.85 0.04 
JAS % PE precipitation 1.41 1.39 0.06 
AMJ % PE precipitation 0.13 0.05 0.27 

 
 WY SPEI and OND temperature exhibit the strongest negative relationships with 

δ18O (i.e., wetter conditions and higher temperatures result in lower values of δ18O). AMJ 

% PE precipitation and GS-RH also vary negatively with δ18O, although to a lesser 

extent than WY SPEI or OND temperature. The percentage of PE precipitation by WY 

has a non-linear relationship with δ18O, with decreasing δ18O at lower percentages and 
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increasing δ18O at higher percentages. JAS percentage of PE precipitation also has a 

non-linear relationship with δ18O; δ18O increases at low percentages and decreases at 

high percentages. AMJ AO also has a non-linear relationship, with low δ18O at strong 

negative and positive AO phases and no effect on δ18O at the neutral AO phase (Figure 

3.8). 

 
Figure 3.8 Individual partial effects of the smooth functions of predictor 

variables on the Capilano δ18O response variable. The predictor 
variables included are those retained (i.e., not penalized) in the final 
multi-predictor GAM. Y-axis values are zero-centered, and the 
numbers following the y-axis labels are the models’ effective 
degrees of freedom in the GAM. The shaded area indicates the 95% 
confidence interval and small vertical lines on the x-axes denote the 
distribution of PE and climate data. 
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MKRF-2 results 

Results from single-predictor GAMs indicate significant (p<0.05) correlations 

between δ18O and 13 predictor variables. Of PE predictor variables, only OND % PE 

precipitation had significant p values (Table C4). Significant climate oscillation indices 

were WY PDO, WY ENSO, AMJ ENSO, OND AO, and AMJ NPGO. Significant climate 

variables were AMJ mean temperature, WY total precipitation, OND total precipitation, 

WY SPEI, OND SPEI, WY mean SWE, and mean GS-RH (Table C4) with the direction 

of relationships shown in Figure 3.9.  

 
Figure 3.9 Variables with significant (p<0.05) relationships with δ18O in MKRF-2 

single-predictor GAMs. All significant variables displayed linear 
relationships with δ18O in the GAMs. The sign of the adjusted R2 
values indicates the direction of the relationship (note that the 
directions of the relationships were assessed visually, as adjusted 
R2 values do not have a sign). 

To additionally evaluate the linear relationship between OND % PE precipitation 

and MKRF-2 δ18O, normality of the two variables was confirmed with Shapiro-Wilk tests 

and a post-hoc Pearson correlation coefficient was calculated. This revealed OND % PE 

precipitation as explaining 44% of MKRF-2 δ18O’s variance (r[34]=0.44, p=0.01). 

Multi-predictor GAM results for MKRF-2 show an increased model R2 when PE 

variables are included. While the significant (p<0.05) non-PE variables return a GAM 

with R2=0.415 (GAM iteration 1), the final iteration which includes PE variables returns a 

GAM with R2=0.428 (GAM iteration 9) (Table 3.5). However, AIC is higher when PE 
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variables are included in the GAM (AIC=104 at GAM iteration 1 vs. AIC=108 at the final 

GAM iteration) (Table 3.5).  

Table 3.5 MKRF-2 multi-predictor GAM iterations. For variables with 
concurvity>0.5, only the underlined variables were retained in the 
subsequent GAM iteration. 

GAM 
iteration 

Variables R2 
(adjusted) 

Deviance 
explained 
(%) 

AIC Penalized 
variables 

Non-penalized 
variables with 
concurvity above 
0.5 

1 
Significant 
non-PE 
variables 

OND SPEI 
OND AO 
OND precipitation 
WY precipitation 
Mean AMJ 
temperature 
SWE 
WY Niño 3.4 
AMJ Niño 3.4 
GS-RH 
AMJ NPGO 
WY SPEI 
WY PDO 

0.415 48.7 104 WY 
precipitation 
Mean AMJ 
temperature 
SWE 
AMJ Niño 3.4 
WY SPEI 
WY PDO 

OND SPEI & OND 
precipitation 

2 
Remove 
penalized 
variables 
and high-
concurvity 
variables, 
add PE 
variables 

OND AO 
OND precipitation 
WY Niño 3.4 
GS-RH 
AMJ NPGO 
OND % PE 
precipitation 
OND PE count 
JFM % PE 
precipitation 
WY PE count 
AMJ PE count 
AMJ % PE 
precipitation 

0.428 50.3 108 OND % PE 
precipitation 
OND PE 
count 
JFM % PE 
precipitation 
AMJ PE 
count 
AMJ % PE 
precipitation 

None 
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GAM 
iteration 

Variables R2 
(adjusted) 

Deviance 
explained 
(%) 

AIC Penalized 
variables 

Non-penalized 
variables with 
concurvity above 
0.5 

3 
Remove 
penalized 
variables 
and add 
remaining 
PE 
variables 

OND AO 
OND precipitation 
WY Niño 3.4 
GS-RH 
AMJ NPGO 
WY PE count 
JAS PE count 
JAS % PE 
precipitation 
JFM PE count 
WY % PE 
precipitation 

0.428 50.3 108 JAS PE count 
JAS % PE 
precipitation 
JFM PE count 
WY % PE 
precipitation 

None 

4 
Remove 
penalized 
variables 
to create 
final GAM 

OND AO 
OND precipitation 
WY Niño 3.4 
GS-RH 
AMJ NPGO 
WY PE count 

0.428 50.3 108 None None 

 
 Variables retained in the final GAM iteration were OND AO, OND precipitation, 

WY Niño 3.4, GS-RH, AMJ NPGO, and WY PE count (Table 3.5). Only OND AO and 

OND precipitation had significant p values (Table 3.6). 

Table 3.6 MKRF-2 final multi-predictor GAM results. P values <0.05 are shown 
in bold. EDF indicates the variable’s estimated degrees of freedom 
in the GAM. 

Predictor variable EDF F statistic p value 

OND AO 0.81 1.41 0.03 
OND precipitation 0.86 2.02 0.01 
WY Niño 3.4 0.50 0.33 0.15 
GS-RH 0.63 0.56 0.10 
AMJ NPGO 1.14 1.15 0.05 
WY PE count 0.66 0.64 0.09 
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OND AO, WY Niño 3.4, and WY PE count have positive relationships with δ18O, 

while OND precipitation and GS-RH have negative relationships. AMJ NPGO has a non-

linear but mostly negative relationship with δ18O (Figure 3.10). 

 
Figure 3.10 Individual partial effects of the smooth functions of predictor 

variables on the MKRF-2 δ18O response variable. The predictor 
variables included are those retained (i.e., not penalized) in the final 
multi-predictor GAM. Y-axis values are zero-centered, and the 
numbers following the y-axis labels are the predictor variables’ 
effective degrees of freedom in the GAM. The shaded area indicates 
the 95% confidence interval and small vertical lines on the x-axes 
denote the distribution of PE and climate data. 

 To evaluate relationships between predictor variables, a post-hoc Pearson 

correlation was calculated. After confirming normality with Shapiro-Wilk tests, Pearson 

correlations revealed a significant negative relationship between MKRF-2 OND % PE 

precipitation and mean SWE (r[32]=-0.48, p<0.01).  
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3.3.4. Site comparisons 

GAMs indicated some overlap in the variables significantly related to the 

Capilano and MKRF-2 δ18O records. Both sites’ records were significantly related to GS-

RH in single- and multi-predictor GAMs, and both sites’ records were significantly related 

to SPEI in single-predictor GAMs. No other seasonalized significant variables were 

common between the sites, although the sites recorded significant relationships between 

δ18O and % PE precipitation, temperature, SPEI, and AO in different seasons.  

The Capilano and MKRF-2 δ18O records were compared with each other and 

with nearby δ18O records using Pearson correlations and hierarchical cluster analyses. 

Pearson correlation results show that the Capilano and MKRF-2 records were both most 

strongly correlated with each other (r[39]=0.33, p=0.034), with no other significant 

correlations found at the p<0.05 level (Table C5). Hierarchical cluster analyses revealed 

additional associations between sites’ δ18O records. In the first hierarchical cluster, 

Capilano and MKRF-2 δ18O records were most similar to central Alaskan tree ring δ18O 

records and most dissimilar to coastal Alaskan records (Figure 3.11). The second 

hierarchical cluster grouped the MKRF-2 and Capilano records together as a separate 

branch from the Washington, Idaho, and Oregon records (Figure 3.11). 
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Figure 3.11 Locations of all available western North America cellulose δ18O 

records overlaid with hierarchical cluster results for selected 
records (records with >1 tree per site and strong temporal overlap 
with the MKRF-2 and the Capilano records). Site symbols identify 
hierarchical cluster groupings, with triangles indicating the sites 
included in both groups and circles indicating the sites excluded 
from the hierarchical cluster analyses. 

3.4. Discussion 

3.4.1. Tree ring δ18O as a PE proxy 

This study’s GAM results indicate that southwest BC tree ring δ18O records 

documented a PE signature. Results from single-predictor PE GAMs (i.e., one PE 

variable compared with δ18O) identified only one PE variable, MKRF-2 OND % PE 

precipitation, as significant at the p<0.05 level. OND % PE precipitation varied linearly 

and positively with MKRF-2 δ18O (Figure 3.7), and this linear relationship indicates the 

1 

2 
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potential for α-cellulose δ18O to serve as a proxy for OND % PE precipitation, as linear 

regressions are typically applied in tree ring climate reconstructions (Speer, 2010). To 

confirm this point, a post-hoc Pearson correlation revealed that OND % PE precipitation 

explained 44% of MKRF-2 δ18O’s variance at a p value of 0.01. This finding establishes 

α-cellulose δ18O as a meaningful proxy of OND % PE precipitation variability in 

southwest BC. 

Whether PE-enriched water is responsible for this relationship, however, is 

uncertain. OND precipitation does not coincide with trees’ growing seasons, so 

precipitation cannot be incorporated into trees’ soil water at the time of, or shortly after, 

an OND precipitation event. However, initial rainfall after rainless summers has been 

found to persist in small soil pores throughout the winter in the PNW (Renée Brooks et 

al., 2010), potentially making OND precipitation available to trees at the start of their 

growing season. The positive relationship between MKRF-2 trees’ δ18O and OND % PE 

precipitation may reflect this relationship, though other PE effects on trees’ environments 

may also explain the observed relationship. For example, PE-derived SWE effects on 

growing season lengths may drive the observed association between OND % PE 

precipitation and tree ring δ18O. Tree ring α-cellulose δ18O has been found to negatively 

respond to snowpack depths across the globe (Foroozan et al., 2020; Qin et al., 2022), 

and Qin et al. (2022) attributes this to snowmelt’s modulation of the start of springtime 

transpiration. Low snowpacks allow for transpiration to begin earlier in the year, and this 

enhances leaf water evaporative enrichment and α-cellulose δ18O (Cooper et al., 2020; 

Roden et al., 2000). Persistent seasonal snowpacks occur at higher elevations in both 

the study sites’ watersheds (Figure 3.2), and the timing of this snowpack’s melt may 

affect soil temperatures, and thus the start of springtime transpiration (Mellander et al., 

2004), at lower elevations such as at Capilano and MKRF-2. Additionally, the 

characteristically warm temperatures of cold-season PEs (Gonzales et al., 2022) make 

PEs likely to degrade snowpacks through rain-on-snow events (Guan et al., 2016). 

Therefore, years with frequent PEs may experience lower mountain snowpacks and an 

earlier snowmelt and start to spring transpiration, and this may cause the observed 

enriched α-cellulose δ18O. Considered together, OND PEs may enrich α-cellulose δ18O if 

their precipitation water persists in soil pores throughout the winter, and they may also 

enrich α-cellulose δ18O through snowpack depletion effects. 
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Multi-predictor GAM results affirm this mechanism. Despite OND % PE 

precipitation showing the strongest relationship of any tested climate variable by single-

predictor GAM R2, the multi-predictor GAM penalized this variable out of the model. This 

was likely a result of the model’s regularization technique and automatic term selection, 

which can penalize redundant (i.e., correlated) predictors out of GAMs if other predictors 

better explain response data variability. While OND % PE precipitation was individually 

significant in the single-predictor GAM, the multi-predictor MKRF-2 GAM showed that 

other variables better explained the observed δ18O. This points to a variable correlated 

with PEs (e.g., SWE) as driving the OND % PE precipitation-δ18O relationship, rather 

than the δ18O signature of PE precipitation inputs. 

However, the multi-predictor GAM results do indicate that PE variability affected 

δ18O in a manner not explained by other predictor variables. Inclusion of PE data 

improved GAM model fit for both sites; for Capilano, the GAM adjusted R2 increased by 

0.111 with PE data inclusion, while for MKRF-2, GAM adjusted R2 increased by 0.013. 

Although the GAMs for both sites showed increased R2 with PE variable inclusion, AIC 

decreased when PE variables were included in the Capilano GAM (indicating a better-

performing model), while AIC increased with PE variable inclusion for the MKRF-2 GAM 

(indicating a poorer-performing model). This increase in AIC may be a result of the final 

MKRF-2 including-PE model being more complex than the non-PE model, as model 

complexity increases AIC (Wagenmakers & Farrell, 2004). Regardless, the inclusion of 

PE variables in both sites’ final GAMs while applying an automatic term selection 

penalization approach indicates that PE data explain δ18O variability that is not explained 

by the other variables included in the models. PE variables’ relationships with δ18O in the 

final multi-predictor GAMs, alongside moisture, temperature, and climate oscillation 

relationships, are summarized in Figure 3.12. 
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Figure 3.12 PE and climate variables retained in the final Capilano and MKRF-2 

multi-predictor GAMs, grouped by their δ18O control mechanisms. 
Note that source water effects interact with leaf water evaporative 
enrichment effects and that climate oscillations can dictate the 
variability of the other two control mechanisms. Green upward 
arrows indicate a positive relationship between the variable and 
RWI, red downward arrows indicate a negative relationship between 
the variable and RWI, and blue curved arrows indicate a non-linear 
relationship between the variable and RWI as reflected in the 
direction of the curve. Tree image retrieved from McCune (2018). 

The PE variables retained in the final multi-predictor GAMs for both sites reveal 

interactions between exogenous controls on tree ring δ18O. For MKRF-2, the final GAM 

iteration identified a positive relationship between δ18O and WY PE count, aligning with 

the hypothesis that δ18O-enriched water from PE storms affecting the area enriches α-

cellulose δ18O. The Capilano chronology’s recording of PE variability, however, was 

more nuanced. The final Capilano GAM showed a non-linear relationship between JAS 

% PE precipitation, with δ18O increasing with JAS % PE precipitation from 0 - 15% and 

decreasing above 15% (Figure 3.8). This may be due to the behaviour of rainwater 

infiltration into soils during the dry season; PEs and AR storms generally tend to deliver 

intense precipitation (Waliser & Guan, 2017), which is more likely to exceed the 

maximum infiltration capacities of soils and generate more infiltration excess overland 

flow relative to less intense precipitation events (Bronstert et al., 2023). PE precipitation 

may, then, exceed the infiltration capacities of soils such that much of the precipitation 

leaves the catchment as overland flow and is unavailable to trees. For southwest BC, 

this scenario may be exacerbated during the region’s dry summers (Odon et al., 2019), 
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when infrequent rain creates dry soils prior to PE events. The soil type at Capilano, 

sandy loam (Province of British Columbia, 2018), is especially water repellent under 

antecedent drought conditions (Gimbel et al., 2016). This combination of factors may 

create the nonlinear δ18O – JAS % PE precipitation trend observed at Capilano. Under 

low JAS % PE precipitation conditions, PE precipitation more readily infiltrates the soil 

and is available for incorporation into trees’ α-cellulose, creating the positive relationship 

between α-cellulose δ18O and low JAS % PE precipitation. Meanwhile, under high JAS 

% PE precipitation, PE precipitation (received through intense rain events) is more likely 

to exceed the soil’s infiltration capacity and be unavailable to trees, leading to a negative 

trend. Together, these may explain the non-linear relationship observed. 

The non-linear PE relationship recorded at Capilano is further clarified by the 

other PE variable retained in Capilano’s final GAM: WY % PE precipitation. For this 

variable, the final GAM identified a negative relationship between the two for 0 - 12% 

WY PE precipitation and a positive relationship for WY PE precipitation higher than 12%, 

i.e., a U-shaped curve (Figure 3.8). The shape of this relationship is opposite to that of 

JAS % PE precipitation, likely a result of PEs interacting with snowpacks to affect δ18O. 

Due to their subtropical origin, PEs tend to be warm storms (Gonzales et al., 2022), 

making cold-season PEs likely to deplete snowpacks through rain-on-snow events 

(Dettinger, 2004; Guan et al., 2016). This can cause earlier snowmelts, which enhance 

leaf water evaporative enrichment and therefore enhance tree ring α-cellulose δ18O, as 

described above. This PEs precipitation is likely enriched in δ18O (Spry et al., 2014), but 

winter precipitation falling as rain does not coincide with trees’ growing season and 

therefore is unlikely to be recorded in trees’ α-cellulose. However, if winter PE 

precipitation falls as snow, its springtime melt is more available to trees as they grow. 

Such a PE snow contribution is more likely at low % PE precipitation than high % PE 

precipitation due to PEs’ warm temperatures. These relationships can be summarized 

as: PE incidence and SWE relate negatively, PE incidence and α-cellulose δ18O relate 

positively, and SWE and α-cellulose δ18O relate negatively. The shape of the WY % PE 

precipitation curve reflects this interaction (Figure 3.8). At low WY % PE precipitation, 

PEs minimally degrade snowpacks, allowing PE precipitation to store in snow and 

become available to trees, but this PE enrichment of α-cellulose δ18O decreases as % 

PE precipitation increases and the snowpack diminishes. Meanwhile, at high WY % PE 
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precipitation, PEs greatly reduce snowpacks, enhancing leaf water evaporative 

enrichment and α-cellulose δ18O through earlier snowmelt.  

The lack of significant relationships between any WY or seasonalized intense PE 

count variable and δ18O at either site (Tables C3, C4) may point to these intense storms’ 

precipitation rapidly leaving catchments. While lower-intensity precipitation is more likely 

to infiltrate soil and persist longer in catchments, higher-intensity precipitation is more 

likely to rapidly leave a catchment as overland flow (Bronstert et al., 2023), thus 

precluding its incorporation into cellulose δ18O. 

Overall, these results indicate that PE variability affects α-cellulose δ18O in a 

manner not explained by other climate variables included in the models. Some PE 

effects may be due to source water inputs, but other PE effects are better clarified by 

PEs’ interactions with other climate variables affecting α-cellulose δ18O such as SWE 

and soil infiltration rates. Despite this, the significant linear relationship between MKRF-2 

OND % PE precipitation and α-cellulose δ18O indicates the potential for α-cellulose δ18O 

to reconstruct historical PE variability beyond instrumental records. 

3.4.2. Additional sources of δ18O variability  

In addition to PE variability, the variability of several climate measures appeared 

to affect tree ring δ18O at Capilano and MKRF-2. One such variable, GS-RH, varied with 

δ18O at both sites and demonstrated a significant negative relationship with both sites’ 

δ18O in single-predictor GAMs (Figures 3.7, 3.9) and non-significant negative 

relationships in the final multi-predictor GAMs (Figures 3.8, 3.10). These results are 

consistent with negative relationships identified between GS-RH and tree ring cellulose 

δ18O documented in other studies (An et al., 2014; Churakova (Sidorova) et al., 2023; 

Labuhn et al., 2014; Shi et al., 2011; Y. Wu et al., 2023), a probable result of leaf water 

evaporative enrichment effects (Roden et al., 2000). When trees transpire, the lighter 

(16O-containing) water molecules preferentially evaporate from leaves before the heavier 

(18O-containing) water molecules. Leaf water (and its δ18O) form the trees’ sucrose, 

which developing cambial cells break down to form the cellulose composing the year’s 

growth ring (Roden et al., 2000). RH, which strongly mediates stomatal conductance, 

enhances transpiration rates at low RH and suppresses transpiration rates at high RH 

(Grantz, 1990). The relationship between RH and α-cellulose δ18O, then, is negative; low 



 96 

GS-RH enriches α-cellulose δ18O, while high GS-RH depletes it (Roden et al., 2000). 

This aligns with the GS-RH relationships observed at Capilano and MKRF-2 as well as 

SPEI results. WY SPEI, which increases with RH (Beguería et al., 2010), varied 

significantly negatively with δ18O in the Capilano single- and multi-predictor GAMs and 

the MKRF-2 single-predictor GAM. Together, these results indicate a strong GS-RH 

effect on MKRF-2 and Capilano α-cellulose δ18O. 

Both WY and season-specific precipitation amounts also showed relationships 

with δ18O, including significant relationships in the MKRF-2 GAMs. WY precipitation 

varied negatively with MKRF-2 δ18O in the single-predictor GAM (Figure 3.9), while OND 

precipitation varied negatively with MKRF-2 δ18O in both single and multi-predictor 

GAMs (Figures 3.9, 3.10). This result is likely a combination of leaf water evaporative 

enrichment effects and the “amount effect.” Precipitation varies positively with RH, 

supporting a negative relationship between precipitation and cellulose δ18O due to 

evaporative enrichment as also documented in Tsuji et al. (2006) and Sano et al. (2013). 

The amount effect, which refers to the negative relationship often observed between 

meteoric water δ18O and precipitation amounts (Vystavna et al., 2021), occurs due to the 

preferential precipitation of heavy water molecules. At low precipitation amounts, only a 

heavier (δ18O-enriched) fraction of water vapour precipitates, while at high precipitation 

amounts, more of the total water vapour plume precipitates, contributing more 16O-

containing water to an area (Dansgaard, 1964). The combination of these two negative 

associations likely shaped the negative α-cellulose δ18O-precipitation amount 

relationships identified at MRKF-2.  

Temperature also demonstrated an effect on tree ring δ18O, with AMJ 

temperature showing a significant positive relationship with δ18O in the MKRF-2 single-

predictor GAM (Figure 3.9). This positive relationship is consistent with trends identified 

in similar tree ring cellulose δ18O studies (Labuhn et al., 2014; Rebetez et al., 2003; 

Saurer et al., 2008; Shi et al., 2011; G. Xu et al., 2014), an association derived from the 

evaporative enrichment of soil water with increasing temperatures (Sano et al., 2013). 

However, OND temperature showed significant negative relationships with Capilano 

δ18O in both the single- and multi-predictor GAMs (Figures 3.7, 3.8), a potential result of 

PE and SWE effects. Considering that the negative temperature- δ18O relationship was 

only significant for OND and that PEs are most frequent in the OND season at Capilano 

(Figure 3.6), an OND-SWE interaction may be driving the observed association. In 



 97 

warmer fall seasons, PE precipitation is more likely to rapidly leave the site catchment as 

overland or subsurface flow than persist throughout the cold season as snowpack. This 

means that PE-derived enriched δ18O is less likely to be available to trees during their 

growing season as snowmelt for warm OND seasons compared to cooler ones, driving 

down δ18O as temperature increases. The seasonality of both sites’ trends strongly 

aligns with the findings of Xu et al. (2014); that study identified negative correlations 

between tree cellulose δ18O and cold-season temperature and positive correlations with 

warm-season temperature. Although that study’s location precludes it from PE effects, 

the results agree with those found at MKRF-2 and Capilano in that cold season 

temperature’s effect on δ18O deviates from the expected trend driven by soil water 

evaporative enrichment.  

The simultaneous SWE, GS-RH, precipitation amount, and SPEI associations 

with the Capilano and MKRF-2 δ18O records indicate a strong moisture availability 

control on tree ring δ18O. While this study did not specifically assess tree ring δ18O’s use 

as a drought proxy, similar studies have extended drought history by centuries using tree 

ring δ18O (Labuhn et al., 2016; G. Xu et al., 2014, 2019). The use of tree ring stable 

isotopes to infer PNW drought history has not been thoroughly explored; however, future 

research could investigate its value in the region. 

Several climate oscillations also showed significant relationships with the MKRF-

2 and Capilano δ18O records, including ENSO and PDO. WY PDO, WY Niño 3.4, and 

AMJ Niño 3.4 all varied positively with δ18O in MKRF-2 single-predictor GAMs (Figure 

3.9). PDO, sometimes described as a long-lived ENSO-like pattern of climate variability 

(Mantua & Hare, 2002) affects Pacific climates similarly to ENSO through cyclic variation 

in Pacific Ocean surface temperatures (Mantua & Hare, 2002; McPhaden et al., 2020). 

The positive phases of Niño 3.4 and the PDO index are associated with warmer 

temperatures in the PNW (Mantua & Hare, 2002; Yu et al., 2015), which aligns with the 

significant positive AMJ temperature-δ18O relationship flagged in the MKRF-2 single-

predictor GAM (Figure 3.9). 

The AMJ NPGO index also showed a significant negative relationship with 

MKRF-2 δ18O in the single-predictor GAM (Figure 3.9). The NPGO drives cyclic variation 

in sea surface temperature and height in the northeast Pacific Ocean, with negative 

NPGO phases associated with warmer SST along the North American Pacific Coast (Di 
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Lorenzo et al., 2008). SST varies positively with PNW air temperature, with the most 

significant correlations observed in spring and summer months (Mass et al., 2022). This 

spring and summer NPGO-air temperature effect may be driving the negative NPGO-

δ18O relationship at MKRF-2; the negative NPGO phases increase coastal PNW SST 

and air temperatures, which then increase α-cellulose δ18O. AMJ temperature varied 

significantly positively with δ18O at MKRF-2 (Figure 3.9), aligning with the negative AMJ 

NPGO-δ18O relationship. 

The AO also showed significant positive relationships with α-cellulose δ18O. OND 

AO varied positively with MKRF-2 δ18O in single and multi-predictor GAMs (Figures 3.9, 

3.10), while AMJ AO varied non-linearly in Capilano single and multi-predictor GAMs 

with negative partial effects on δ18O in positive and negative AO phases and positive 

partial effects on δ18O in the neutral phase (Figures 3.7, 3.8). The MKRF-2 positive 

association between OND AO and δ18O may be a result of the AO’s modulation of winter 

snowpack. AO- (negative phase) is associated with more frequent cold air outbreaks to 

the mid-latitudes (Smith & Sheridan, 2022), and negative associations between the AO 

index and SWE have been identified in North America (Liner et al., 2022), with greater 

SWE during AO-. Additionally, SWE itself varies significantly negatively with δ18O at 

MKRF-2 (Figure 3.9). Through this relationship, AO- may support high SWE and low α-

cellulose δ18O through delayed snowmelt and the suppression of leaf water evaporative 

enrichment. Although little research exists assessing tree ring δ18O relationships with 

AO, Churakova Sidorova et al. (2021) did flag SWE as a potential modulating factor in 

the AO-tree ring δ18O relationship. Meanwhile, the nonlinear relationship between 

Capilano δ18O and AMJ AO may also be a result of SWE effects on δ18O. At AMJ AO-, 

which supports more frequent AMJ cold outbreaks to the mid-latitudes (Smith & 

Sheridan, 2022), the timing of snowmelt is likely to be later in the year due to cooler 

temperatures, reducing α-cellulose δ18O through suppression of leaf water evaporative 

enrichment. This explains the positive trend (left side) of the Capilano AMJ AO-δ18O 

relationship. However, warm moisture transport in the positive AMJ AO phase (AO+) 

may explain the negative trend (right side) of this relationship. Moisture transport above 

the east Pacific coast is enhanced in AO+ relative to neutral AO (Sun et al., 2022), 

potentially increasing RH and driving down δ18O through the suppression of leaf water 

evaporative enrichment (Roden et al., 2000). While moisture transport above the east 

Pacific coast is also enhanced in AO- relative to neutral AO (Smith & Sheridan, 2022), 
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the colder AMJ AO- precipitation is more likely to delay snowmelt and suppress leaf 

water evaporative enrichment, while the warmer AMJ AO+ precipitation is more likely to 

contribute to high-RH suppression of leaf water evaporative enrichment, creating the 

non-linear trend observed. A similar relationship was hypothesized in Churakova 

Sidorova et al. (2021), who found a significant relationship between subarctic tree ring 

δ18O and May AO and attributed the relationship to warm temperature effects of AO+ on 

snowmelt timing and evapotranspiration. The AO is also known to impact climates in a 

non-linear manner (Son et al., 2012; A. Wu et al., 2006), supporting the non-linear δ18O 

effects observed at Capilano. The shape of the AO trend additionally supports the use of 

GAMs in this study, as the non-linear AO trend would not have been captured by a linear 

analysis. 

Endogenous controls on α-cellulose δ18O may have also impacted Capilano and 

MKRF-2 results, though these were not explored in this study. The rate of isotopic 

exchange with xylem water prior to cellulose synthesis has been shown to affect 

cellulose δ18O, with older trees capturing lower δ18O in their new growth due to 

enhanced isotopic exchange with xylem water (Nakatsuka et al., 2020). Soil water δ18O 

also varies with depth (Brinkmann et al., 2018), with shallow-rooting trees accessing soil 

water more representative of meteoric water δ18O and deeper-rooting trees accessing 

groundwater with a more muted δ18O response to meteoric water inputs (McCarroll & 

Loader, 2004b). Both rooting depth and the rate of xylem water isotopic exchange are 

functions of tree age (McCarroll & Loader, 2004b; Nakatsuka et al., 2020), potentially 

skewing the meteoric water δ18O recorded by trees over time. To minimize this 

confounding effect, this study only analyzed the most recent 40 years of growth from 

centuries-old trees; however, these age-related effects may have influenced the results. 

Overall, the results indicate that non-PE sources of δ18O variability affected 

MKRF-2 and Capilano δ18O, including many moisture variables. These results generally 

align with known α-cellulose δ18O responses to trees’ environments, with some atypical 

results potentially derived from compounding SWE-PE and SWE-RH effects.  

3.4.3. Regional context 

Differences between the Capilano and MKRF-2 δ18O records reveal exogenous 

controls on tree ring δ18O. Mean δ18O was 0.89 ± 0.15‰ higher at MKRF-2; this may be 
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due to the site’s 0.8°C warmer mean temperature over the study period (ECCC, 2023c, 

2023b), as AMJ temperature conferred an δ18O enrichment effect at MKRF-2 and similar 

positive associations between tree ring δ18O and temperature have been documented 

elsewhere (Labuhn et al., 2014; Rebetez et al., 2003; Saurer et al., 2008; Shi et al., 

2011; G. Xu et al., 2014). Mean MKRF-2 δ18O may be additionally enriched due to the 

larger contribution of PE precipitation to total WY precipitation compared to Capilano 

(Figure 3.6). Moreover, the greater increase in the Capilano multi-predictor GAM 

adjusted R2 after PE variable inclusion, relative to MKRF-2, may be a result of the site’s 

nearer proximity to the coast. Heavier (18O-containing) water molecules precipitate 

before lighter (18O-containing) ones (McCarroll & Loader, 2004b), making Capilano likely 

to receive more of PE storms’ enriched δ18O than MKRF-2. 

Despite differences between the records, Capilano and MKRF-2 δ18O appear to 

have recorded site- and region-wide climate signals. The two sites’ δ18O records showed 

a significant positive correlation with each other (Table C5), a probable result of the 

sites’ <50 km proximity and resulting similar environmental and source water conditions. 

This indicates that the two sites recorded a similar regional signal. Assessment of the 

individual δ18O records also suggests that each record documented a site-wide signal, 

with δ18O for all non-pooled years but one being less dispersed than the site’s entire 

δ18O record (Figure 3.4). Additionally, although trees do not record identical δ18O in non-

pooled years (Figure 3.3), the trees do appear to record similar inter-annual trends. For 

example, all MKRF-2 trees recorded 2011 as having the lowest δ18O of the non-pooled 

years, and three of four Capilano trees recorded 1981 as having the highest δ18O of the 

non-pooled years (Figure 3.5). While such trends are not consistent for all non-pooled 

years (Figure 3.5), the existence of the noted trends suggests that trees recorded similar 

inter-annual trends in their δ18O. Overall, site-wide signals appear to have been captured 

at Capilano and MKRF-2. 

Comparison with other North American tree ring δ18O records additionally 

contextualize the Capilano and MKRF-2 records. The hierarchical cluster analysis 

between this study’s sites and tree ring δ18O records to the north reveal that the 

Capilano and MKRF-2 records are more similar to central Alaskan tree ring δ18O records 

than coastal Alaskan or northern Northwest Territories records (Figure 3.11). A second 

hierarchical cluster analysis grouped the Capilano and MKRF-2 records separately from 

Oregon, Idaho, and Washington records (Figure 3.11). Together, these results indicate 
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that Capilano and MKRF-2 recorded a unique PNW δ18O signal with some similarity to 

central Alaskan signals and less similarity to coastal signals. 

3.4.4. Water resource management implications 

The significant relationships between PE variables and tree ring δ18O identified in 

this study indicate the capacity for tree ring δ18O to reconstruct past PE trends. While 

this study measured α-cellulose δ18O for years within the instrumental PE record, tree 

ring δ18O records older than the mid-20th century satellite era can extend knowledge of 

historical PE variability by decades or centuries. The strength of such a reconstruction 

could additionally improve with the use of more finely attuned PE data, as PE datasets 

that identify PEs by their sub-tropical origins and storm track exist (e.g., Dettinger [2004]) 

but were not applied in this study as they do not use the most modern reanalysis 

algorithms. Reconstructions of PE variability using tree ring δ18O may reveal even 

stronger relationships than found in this study if a modern-quality reanalysis record of 

PEs, identified by their subtropical origin and storm track, becomes available in the 

future. 

The PNW’s unique water resource management context makes such a 

reconstruction especially valuable. The PNW generally experiences wet winters and dry 

summers (Peel et al., 2007), with mountain snowpacks serving as natural reservoirs to 

offset low summer precipitation, sustain summer streamflow, and meet warm-season 

water demands (Metro Vancouver, 2019b; Pike et al., 2011; Vano et al., 2015). Many 

human-made reservoirs in the PNW rely on this snowmelt regime for in-season resupply; 

for example, the PNW’s Columbia River dams can only store about 30% of the 

watershed’s average yearly runoff at a time (Federal Columbia River Power System et 

al., 2001). As climate change brings longer summer dry spells and warmer year-round 

temperatures to the PNW (Curry & Sobie, 2023; Mote & Salathé, 2010), snowmelt-

modulated water resources are likely to become more tenuous (Siirila-Woodburn et al., 

2021). This trend may be consequential in warmer and lower-elevation PNW watersheds 

such as the Capilano watershed serving the Metro Vancouver, BC water supply. 

Dierauer et al. (2021) projects this catchment to experience a >90% decrease in peak 

SWE and earlier melt-out for the 2080s relative to the 1980s under a high-emissions 

climate scenario. Climate change is also projected to drive more frequent and severe 

snow droughts in the Capilano watershed, with snow droughts more likely to propagate 
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into summer streamflow drought conditions as the climate warms (Dierauer et al., 2021). 

In response to these projections, municipal water management agencies in the region 

have identified a need to expand water storage capacity to avert summer water 

shortages in the coming decades (Metro Vancouver, 2019b; Seattle Public Utilities, 

2019).  

PEs are likely to especially challenge PNW water resources in a warming 

climate. While the intense precipitation characteristic to ARs contributes to snowpacks 

and has broken droughts across North America (Chen et al., 2018; Dettinger, 2013; 

Eldardiry et al., 2019; Waliser & Guan, 2017), PEs may not provide the same beneficial 

contributions to water budgets. The warmer temperatures of PEs relative to non-PE ARs 

makes them more likely to precipitate as rain than snow (Gonzales et al., 2022), and 

higher AR temperature is associated with higher rain-on-snow-triggered snowpack 

degradation (Guan et al., 2016). Therefore, despite providing substantial moisture inputs 

in cold seasons, PEs may reduce winter snowpacks, thus reducing warm-season 

streamflow in catchments with snowmelt-modulated hydrological regimes. Alongside the 

PNW’s snow and summer streamflow drought projections, the intensification and 

increased rain fraction of PEs with climate change (Gonzales et al., 2022; Payne et al., 

2020) may increasingly deplete snowpacks and dictate summer water availability for 

municipal, agricultural, fisheries, and industrial needs as the climate warms. 

Considering this challenging context, tree ring δ18O records of historical PE 

variability can provide important knowledge to inform future water resource 

management. In the PNW, past AR variability is relatively consistent with projected 

future trends (compared to the larger increases in AR frequency and intensity projected 

for California and northwest BC (Radić et al., 2015; Shields & Kiehl, 2016a). Therefore, 

knowledge of historical PE variability, and particularly the frequency and extent of past 

high-PE and low-PE years, can inform the likely frequency and extent of this variability 

the future. This future-facing perspective is vital for clarifying water storage capacity 

needs in catchments with snowmelt-modulated hydrological regimes. If high-PE years 

increasingly exacerbate snow drought as the climate warms, knowledge of the extent 

and frequency of high-PE years can inform the water volumes needed to accommodate 

concomitant low-streamflow summers. As a whole, PE trends revealed using tree ring 

δ18O are a valuable potential source of knowledge to inform plans for future water 

storage capacity needs in the PNW’s changing climate. 
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3.5. Conclusions 

This study establishes tree ring δ18O as a viable proxy record for PE contribution 

to fall precipitation. PEs affected Capilano and MKRF-2 δ18O distinctly from other 

environmental controls on tree ring δ18O, with WY % PE precipitation, WY PE count, and 

JAS % PE precipitation associated with higher δ18O and AMJ % PE precipitation 

associated with decreased δ18O in multi-predictor GAMs. While most results point 

toward PE effects on moisture availability as the primary α-cellulose δ18O control 

mechanism, some PE-δ18O relationships suggest that δ18O-enriched PE precipitation 

may have elevated α-cellulose δ18O. In multi-predictor GAMs, PE signals were recorded 

alongside similarly influential environmental signals (OND temperature, OND 

precipitation, GS-RH, and WY SPEI) and climate oscillation indices (AMJ AO, OND AO, 

AMJ NPGO, and WY Niño 3.4), additionally pointing to moisture availability’s control on 

α-cellulose δ18O. This study also shows that GAMs are an effective means of evaluating 

interrelated and potentially non-linear predictors of δ18O variability, as relationships 

between SWE and GS-RH likely explained other predictors’ non-linear effects on δ18O. 

Overall, this study demonstrates evidence for the potential creation of a centuries-long 

record of PE variability using tree ring δ18O. Considering the ability of PEs to compound 

the effects of climate change on future PNW snow and streamflow droughts, a long-lived 

PE proxy record would provide valuable information to inform future water resource 

management in the region. 
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Chapter 4.  General Conclusions 

This research evaluated two dendrochronological methods, tree ring width and 

tree ring δ18O, for their ability to document historical atmospheric river (AR) variability in 

the Pacific Northwest (PNW). Chapter 2 presented annual growth and earlywood radial 

growth Pacific silver fir chronologies from southwest British Columbia (BC), 1931-2021. 

Generalized Additive Models (GAMs) revealed that AR data explained variability in these 

records that was not explained by other climate data, an indication that the sampled 

trees recorded a unique AR signal in their radial growth. This was a novel finding for 

southwest BC, as previous radial growth reconstructions of AR variability had not 

evaluated the Canadian west coast. The observed relationships between ARs and radial 

growth varied with AR intensity; while high total AR counts were associated with high 

radial growth, high intense (90th percentile of daily precipitation) ARs were associated 

with low radial growth. The influence of AR intensity on snow-water equivalent (SWE) 

and soil moisture appeared to drive these trends, with intense ARs and concomitant high 

cold-season SWE and warm-season overland flow appearing to constrain radial growth, 

while total ARs, with concomitant low cold-season SWE, appeared to enhance radial 

growth.  

Chapter 3 presented two tree ring δ18O records from Douglas-firs in southwest 

BC, both 1981-2021. GAMs showed that Pineapple Express (PE) AR data explained 

δ18O variability not explained by other tested environmental controls on δ18O at both 

sites, indicating that the sampled trees’ δ18O responded to interannual PE AR variability. 

To our knowledge, these are the first tree ring δ18O records showing a PE AR signal in 

North America. However, most of the observed PE AR-δ18O relationships point to PE AR 

effects on moisture and transpiration, rather than PE AR enriched δ18O inputs, as the 

primary α-cellulose δ18O control mechanisms. PE AR signals were recorded alongside 

similarly influential environmental signals (fall temperature, fall precipitation, growing 

season relative humidity, and water year Standardized Precipitation Evaporation Index 

(SPEI) and climate oscillation indices (spring Arctic Oscillation [AO], fall AO, spring North 

Pacific Gyre Oscillation, and water year Niño 3.4) in the GAMs, supporting the posited 

moisture and transpiration controls on α-cellulose δ18O.  
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 Evaluated together, southwest BC tree ring δ18O exhibits stronger potential as a 

proxy record for historical PE AR variability than radial growth as a proxy for all ARs. The 

PE AR variable most strongly associated with δ18O, the percentage of fall precipitation 

from PEs, explained 44% of δ18O variance at the MKRF-2 site. This relationship strength 

is similar to that documented in tree ring δ18O moisture source and variability 

reconstructions (e.g., Labotka et al., 2016; Roden & Ehleringer, 2007; Shi et al., 2011; 

Xu et al., 2013). Meanwhile, the AR variable most strongly associated with radial growth, 

spring intense AR count, explained 32% of earlywood variance. This is much weaker 

than the strength of radial growth-AR relationships identified in coastal California, which 

commonly explain >50% of AR variance (Steinschneider et al., 2018). In this context, 

tree ring δ18O is the more informative method for evaluating past AR variability in 

southwest BC. Although this method is limited to PE AR reconstructions, rather than all 

ARs, PE ARs exhibit distinct hydroclimate impacts compared to non-PE ARs (Gonzales 

et al., 2022). This makes PE ARs an important area of study and supports the creation 

of a potentially centuries-long southwest BC tree ring δ18O record for use as a historical 

PE AR proxy record. 

This research identified multiple points of future inquiry. The opposite 

associations of all ARs and intense ARs on southwest BC radial growth indicate that 

future AR-radial growth analyses should disaggregate AR data by intensity, as this may 

most clearly illuminate AR effects on radial growth. Future analysis of southwest BC 

drought history could also look to tree ring δ18O as a proxy record, as this research 

identified strong associations between tree ring δ18O records and historical moisture 

availability trends. Additionally, if a modern-quality reanalysis record of PE ARs – 

identified by their subtropical origin and storm track – becomes available, future research 

should evaluate this record’s relationships with tree ring δ18O. This would improve upon 

this study’s assessment of tree ring δ18O as a PE AR proxy record. 

ARs and climate change pose existential threats to the PNW’s water resource 

management regime, and this research clarifies the ability of dendrochronological 

records to contextualize present and future AR-driven hydrological change. Such 

dendrochronological records are especially valuable in distinguishing the long-term 

frequency and extent of high and low AR occurrence years. As water resource 

managers in the PNW look to adapt water storage capacity to accommodate reduced 

snowpacks and meet warm-season water demands (Metro Vancouver, 2019b; Seattle 
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Public Utilities, 2019), dendrochronological records – and especially tree ring δ18O – 

present a meaningful source of historical hydroclimate knowledge to inform this 

adaptation. 
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Appendix A: Chapter 2 supplemental tables 

Table A.1 Location and tree characteristics for Pacific silver firs sampled for 
radial growth at MKRF-1. 

Sample 
ID 

Latitude Longitude Elevation 
(masl) 

Diameter 
at Breast 
Height 
(DBH) 
(m) 

Tree 
height 
(m) 

Record 
length* 

Sampling 
date* 

PSF-11 49.328549 -122.543340 438.99 0.40 38 1937 - 
2021, 
1937 - 
2022 

08-26-
2022, 
03-30-
2023  

PSF-12 49.328645 -122.543239 437.06 0.42 33 1942 - 
2021 

10-20-
2022 

PSF-13 49.328750 -122.543303 437.78 0.49 31 1936 - 
2021, 
1936 - 
2021 

08-09-
2022, 
10-20-
2022 

PSF-15 49.328729 -122.543869 442.19 0.32 33 1933 - 
2021 

08-09-
2022 

PSF-17 49.329012 -122.543195 436.62 0.27 31 1934 - 
2021, 
1934 - 
2022 

08-26-
2022, 
03-30-
2023 

PSF-26 49.328484 -122.543335 439.86 0.30 33 1952 - 
2022 

03-30-
2023 

PSF-27 49.328689 -122.543462 439.47 0.40 33 1933 - 
2022 

03-30-
2023 

PSF-28 49.327987 -122.543324 449.33 0.36 32 1940 - 
2022 

04-26-
2023 

PSF-30 49.327795 -122.543226 451.72 0.48 34 1939 - 
2022 

04-26-
2023 

PSF-31 49.327844 -122.543198 450.25 0.50 33 1941 - 
2022 

04-26-
2023 

PSF-32 49.327983 -122.541668 440.26 0.38 31 1937 - 
2022 

05-22-
2023 

PSF-33 49.327996 -122.541893 440.39 0.37 31 1931 - 
2022 

05-22-
2023 

PSF-36 49.328063 -122.541827 439.95 0.27 30 1939 - 
2022 

05-22-
2023 

PSF-37 49.328474 -122.541995 438.49 0.42 33 1933 - 
2022 

05-22-
2023 
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Sample 
ID 

Latitude Longitude Elevation 
(masl) 

Diameter 
at Breast 
Height 
(DBH) 
(m) 

Tree 
height 
(m) 

Record 
length* 

Sampling 
date* 

PSF-38 49.328646 -122.542147 437.87 0.23 30 1946 - 
2022 

05-22-
2023 

* For trees with cores sampled on different days, the record length and sampling date of the earlier sampled core is 
listed first, followed by the core sampled later. 

Table A.2 P values, adjusted R2, and DE for the single-predictor GAMs 
between the MKRF-1 annual growth index and AR and climate 
variables. P values <0.05 and R2≥0.10 are shown in bold. 

 WY AMJ JAS OND JFM 
AR variables      
Total AR count p = 0.71 

R2 = -0.01 
DE = 0.02 

p = 0.03 
R2 = 0.06 
DE = 0.07 

p = 0.15 
R2 = 0.02 
DE = 0.04 

p = 0.88 
R2 = -0.02 
DE = 0.00 

p = 0.45 
R2 = -0.01 
DE = 0.01 

Percent AR precipitation p = 0.27 
R2 = 0.00 
DE = 0.01 

p = 0.11 
R2 = 0.03 
DE = 0.04 

p = 0.56 
R2 = 0.01 
DE = 0.04 

p = 0.72 
R2 = -0.01 
DE = 0.01 

p = 0.74 
R2 = -0.02 
DE = 0.02 

Intense AR count p = 0.12 
R2 = 0.06 
DE = 0.09 

p = 0.02 
R2 = 0.07 
DE = 0.08 

p = 0.72 
R2 = -0.01 
DE = 0.00 

p = 0.18 
R2 = 0.04 
DE = 0.07 

p = 0.73 
R2 = -0.02 
DE = 0.00 

Climate variables      
Mean temperature p = 0.37 

R2 = 0.00 
DE = 0.01 

p = 0.07 
R2 = 0.04 
DE = 0.05 

p = 0.86 
R2 = -0.01 
DE = 0.00 

p = 0.67 
R2 = 0.00 
DE = 0.02 

p = 0.27 
R2 = 0.00 
DE = 0.00 

Total precipitation p = 0.54 
R2 = -0.01 
DE = 0.01 

p = 0.22 
R2 = 0.01 
DE = 0.03 

p = 0.58 
R2 = 0.01 
DE = 0.00 

p = 0.35 
R2 = 0.00 
DE = 0.01 

p = 0.89 
R2 = -0.02 
DE = 0.00 

SPEI p = 0.77 
R2 = -0.01 
DE = 0.01 

p = 0.44 
R2 = 0.01 
DE = 0.04 

p = 0.54 
R2 = 0.01 
DE = 0.02 

p = 0.56 
R2 = 0.00 
DE = 0.02 

p = 0.90 
R2 = -0.02 
DE = 0.25 

MCC p = 0.42 
R2 = -0.01 
DE = 0.01 

p = 0.74 
R2 = -0.02 
DE = 0.00 

p = 0.92 
R2 = -0.02 
DE = 0.00 

p = 0.41 
R2 = -0.01 
DE = 0.01 

p = 0.26 
R2 = 0.00 
DE = 0.02 

SWE p = <0.01 
R2 = 0.24 
DE = 0.25 

    

Climate oscillation 
indices 
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 WY AMJ JAS OND JFM 
MJO p = 0.03 

R2 = 0.19 
DE = 0.24 

p = 0.27 
R2 = 0.01 
DE = 0.03 

p = 0.06 
R2 = 0.13 
DE = 0.18 

p = 0.35 
R2 = 0.00 
DE = 0.02 

p = 0.01 
R2 = 0.12 
DE = 0.14 

PDO p = <0.01 
R2 = 0.17 
DE = 0.18 

p = <0.01 
R2 = 0.29 
DE = 0.32 

p = <0.01 
R2 = 0.20 
DE = 0.22 

p = 0.81 
R2 = -0.02 
DE = 0.11 

p = 0.46 
R2 = -0.01 
DE = 0.00 

Niño 3.4 p = 0.10 
R2 = 0.09 
DE = 0.12 

p = 0.02 
R2 = 0.15 
DE = 0.19 

p = 0.98 
R2 = -0.02 
DE = 0.00 

p = 0.74 
R2 = -0.01 
DE = 0.00 

p = 0.46 
R2 = 0.01 
DE = 0.03 

AO p = 0.02 
R2 = 0.07 
DE = 0.09 

p = 0.40 
R2 = 0.10 
DE = 0.03 

p = 0.04 
R2 = 0.05 
DE = 0.07 

p = 0.35 
R2 = 0.00 
DE = 0.13 

p = 0.01 
R2 = 0.12 
DE = 0.09 

NPGO p = 0.24 
R2 = 0.01 
DE = 0.02 

p = 0.48 
R2 = -0.01 
DE = 0.01 

p = 0.21 
R2 = 0.01 
DE = 0.03 

p = 0.07 
R2 = 0.04 
DE = 0.06 

p = 0.50 
R2 = 0.00 
DE = 0.01 

PNA p = 0.53 
R2 = -0.01 
DE = 0.09 

p = 0.02 
R2 = 0.08 
DE = 0.10 

p = 0.08 
R2 = 0.04 
DE = 0.05 

p = 0.81 
R2 = -0.02 
DE = 0.00 

p = 0.46 
R2 = -0.01 
DE = 0.01 

 

Table A.3 P values, adjusted R2, and DE for the single-predictor GAMs 
between the MKRF-1 earlywood growth index and AR and climate 
variables. P values <0.05 and R2≥0.10 are shown in bold. 

 WY AMJ JAS OND JFM 
AR variables       
Total AR count p = 0.58 

R2 = -0.01 
DE = 0.01 

p = 0.08 
R2 = 0.02 
DE = 0.09 

p = 0.21 
R2 = 0.01 
DE = 0.03 

p = 0.58 
R2 = -0.01 
DE = 0.01 

p = 0.30 
R2 = 0.00 
DE = 0.02 

Percent AR precipitation p = 0.41 
R2 = 0.00 
DE = 0.01 

p = 0.02 
R2 = 0.07 
DE = 0.09 

p = 0.77 
R2 = -0.01 
DE = 0.02 

p = 0.86 
R2 = -0.01 
DE = 0.01 

p = 0.57 
R2 = -0.01 
DE = 0.01 

Intense AR count p = 0.33 
R2 = 0.04 
DE = 0.07 

p = 0.01 
R2 = 0.09 
DE = 0.10 

p = 0.72 
R2 = -0.01 
DE = 0.00 

p = 0.27 
R2 = 0.03 
DE = 0.06 

p = 0.59 
R2 = -0.01 
DE = 0.00 

Climate variables      
Mean temperature p = 0.59 

R2 = -0.01 
DE = 0.04 

p = 0.17 
R2 = 0.02 
DE = 0.03 

p = 0.52 
R2 = 0.01 
DE = 0.04 

p = 0.78 
R2 = -0.01 
DE = 0.01 

p = 0.36 
R2 = 0.00 
DE = 0.01 
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 WY AMJ JAS OND JFM 
Total precipitation p = 0.67 

R2 = -0.01 
DE = 0.00 

p = 0.20 
R2 = 0.01 
DE = 0.03 

p = 0.48 
R2 = -0.01 
DE = 0.01 

p = 0.47 
R2 = -0.01 
DE = 0.01 

p = 0.79 
R2 = -0.01 
DE = 0.00 

SPEI p = 0.80 
R2 = -0.01 
DE = 0.01 

p = 0.35 
R2 = 0.02 
DE = 0.04 

p = 0.51 
R2 = 0.00 
DE = 0.02 

p = 0.65 
R2 = -0.01 
DE = 0.01 

p = 0.79 
R2 = 0.00 
DE = 0.02 

MCC p = 0.52 
R2 = 0.00 
DE = 0.01 

p = 0.54 
R2 = -0.01 
DE = 0.01 

p = 0.88 
R2 = -0.02 
DE = 0.00 

p = 0.41 
R2 = 0.00 
DE = 0.01 

p = 0.33 
R2 = 0.00 
DE = 0.02 

SWE p = <0.01 
R2 = 0.22 
DE = 0.23 

    

Climate oscillation 
indices 

     

MJO p = 0.01 
R2 = 0.24 
DE = 0.29 

p = 0.30 
R2 = 0.03 
DE = 0.07 

p = 0.05 
R2 = 0.15 
DE = 0.19 

p = 0.51 
R2 = -0.01 
DE = 0.01 

p = 0.01 
R2 = 0.12 
DE = 0.14 

PDO p = <0.01 
R2 = 0.16 
DE = 0.18 

p = <0.01 
R2 = 0.28 
DE = 0.31 

p = <0.01 
R2 = 0.19 
DE = 0.20 

p = 0.01 
R2 = 0.10 
DE = 0.11 

p = 0.01 
R2 = 0.09 
DE = 0.11 

Niño 3.4 p = 0.12 
R2 = 0.08 
DE = 0.12 

p = 0.02 
R2 = 0.15 
DE = 0.19 

p = 0.82 
R2 = -0.01 
DE = 0.00 

p = 0.82 
R2 = -0.01 
DE = 0.00 

p = 0.55 
R2 = 0.00 
DE = 0.03 

AO p = 0.57 
R2 = 0.04 
DE = 0.06 

p = 0.27 
R2 = 0.02 
DE = 0.05 

p = 0.06 
R2 = 0.04 
DE = 0.06 

p = 0.06 
R2 = 0.11 
DE = 0.15 

p = 0.05 
R2 = 0.05 
DE = 0.07 

NPGO p = 0.48 
R2 = -0.01 
DE = 0.01 

p = 0.81 
R2 = -0.02 
DE = 0.00 

p = 0.40 
R2 = 0.00 
DE = 0.01 

p = 0.18 
R2 = 0.01 
DE = 0.03 

p = 0.74 
R2 = -0.01 
DE = 0.02 

PNA p = 0.44 
R2 = -0.01 
DE = 0.01 

p = 0.01 
R2 = 0.10 
DE = 0.11 

p = 0.44 
R2 = 0.05 
DE = 0.07 

p = 0.66 
R2 = -0.01 
DE = 0.00 

p = 0.36 
R2 = 0.00 
DE = 0.01 
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Figure A.1 Variables with significant (p<0.05 and R2≥0.10) relationships with the 
MKRF-1 latewood radial width index (RWI) in single-predictor GAMs. 
(A) the adjusted R2 values and direction of the relationship 
(assessed visually, as adjusted R2 values do not have a sign) for 
variables with linear relationships with annual RWI. (B) and (C) the 
shape of the significant variables with non-linear relationships to 
latewood RWI, with y-axes zero-centered and small vertical lines 
denoting the distribution of AR and climate oscillation data.  
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Table A.4 Multi-predictor GAM iterations for latewood RWI.  

GAM 
iteration 

Input variables Adjusted 
R2 

Deviance 
explained 
(%) 

AIC Penalized 
variables 

Non-
penalized 
variable 
pairs with 
concurvity 
above 0.5 

1 
Significant 
non-AR 
variables 

OND mean 
temperature 
WY NPGO 
OND NPGO 
JAS NPGO 
WY PDO 
JAS PDO 

0.214 24.4 -78.3 OND mean 
temperature 
WY NPGO 
JAS NPGO 
WY PDO 

None 

2 
Remove 
penalized 
non-AR 
variables 
and add AR 
variables 

OND NPGO 
JAS PDO 
WY total AR count 
JFM total AR 
count 
AMJ total AR 
count 
JAS total AR count 
OND total AR 
count 
WY %AR 
precipitation 
JFM %AR 
precipitation 
AMJ %AR 
precipitation 
JAS %AR 
precipitation 
OND %AR 
precipitation 

0.348 40.4 -85.6 WY total AR 
count 
JFM total AR 
count 
AMJ total AR 
count 
OND total AR 
count 
WY %AR 
precipitation 
JFM %AR 
precipitation 
AMJ %AR 
precipitation 

None 
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GAM 
iteration 

Input variables Adjusted 
R2 

Deviance 
explained 
(%) 

AIC Penalized 
variables 

Non-
penalized 
variable 
pairs with 
concurvity 
above 0.5 

3  
Remove 
penalized 
variables 
and add 
remaining 
AR 
variables 

OND NPGO 
JAS PDO 
JAS total AR count 
JAS %AR 
precipitation 
OND %AR 
precipitation 
WY intense AR 
count 
JAS intense AR 
count 
AMJ intense AR 
count 
JFM intense AR 
count 
OND intense AR 
count 

0.477 54.0 -95.7 OND % AR 
precipitation 
AMJ intense AR 
count 
JAS intense AR 
count 
OND intense AR 
count 

None 

4 
Remove 
penalized 
variables 
and create 
final GAM 

OND NPGO 
JAS PDO 
JAS total AR count 
JAS %AR 
precipitation 
WY intense AR 
count 
JFM intense AR 
count 

 
0.477 

54.0 -95.7 None None 
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Table A.5 Summary results of the final multi-predictor GAM for latewood RWI. 
P values less than 0.05 are shown in bold. EDF indicates the 
variable’s estimated degrees of freedom in the GAM. 

Response variable EDF F statistic p value 
JAS AR count 1.022 1.90 0.01 
JAS % AR precipitation 1.555 1.82 0.03 
WY intense AR count 1.378 6.08 <0.01 
JFM intense AR count 0.883 0.50 0.18 
OND NPGO 1.383 1.87 0.02 
JAS PDO 0.925 4.09 <0.01 
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Figure A.2 Individual partial effects of the smooth functions of predictor 
variables on the latewood RWI response variable. The predictor 
variables included are those retained (i.e., not penalized) in the final 
multi-predictor GAM. Y-axis values are zero-centered, and the 
numbers following the y-axis labels are the predictor variables’ 
effective degrees of freedom in the GAM. The shaded area indicates 
the 95% confidence interval andmall vertical lines on the x-axes 
denote the distribution of AR and climate data. 

Table A.6 P values, adjusted R2, and DE for the single-predictor GAMs 
between the MKRF-1 latewood growth index and AR and climate 
variables. P values <0.05 and R2≥0.10 are shown in bold. 

 WY AMJ JAS OND JFM 
AR variables         
AR count p = 0.61 

R2 = -0.01 
DE = 0.00 

p = 0.38 
R2 = 0.00 
DE = 0.01 

p = 0.18 
R2 = 0.01 
DE = 0.03 

p = 0.23 
R2 = 0.00 
DE = 0.02 

p = 0.49 
R2 = -0.01 
DE = 0.01 

Percent AR precipitation p = 0.05 
R2 = 0.05 
DE = 0.06 

p = 0.31 
R2 = 0.00 
DE = 0.02 

p = 0.45 
R2 = 0.02 
DE = 0.05 

p = 0.07 
R2 = 0.04 
DE = 0.06 

p = 0.24 
R2 = 0.01 
DE = 0.02 
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 WY AMJ JAS OND JFM 
Intense AR count p = 0.02 

R2 = 0.12 
DE = 0.15 

p = 0.10 
R2 = 0.03 
DE = 0.05 

p = 0.42 
R2 = 0.01 
DE = 0.04 

p = 0.05 
R2 = 0.05 
DE = 0.07 

p = 0.38 
R2 = 0.02 
DE = 0.06 

Climate variables      
Mean temperature p = <0.01 

R2 = 0.08 
DE = 0.10 

p = <0.01 
R2 = 0.14 
DE = 0.16 

p = 0.03 
R2 = 0.06 
DE = 0.07 

p = 0.76 
R2 = -0.01 
DE = 0.00 

p = 0.06 
R2 = 0.04 
DE = 0.06 

Total precipitation p = 0.33 
R2 = 0.00 
DE = 0.02 

p = 0.15 
R2 = 0.02 
DE = 0.04 

p = 0.84 
R2 = -0.02 
DE = 0.00 

p = 0.51 
R2 = -0.01 
DE = 0.01 

p = 0.53 
R2 = 0.01 
DE = 0.04 

SPEI p = 0.86 
R2 = -0.01 
DE =  0.01 

p = 0.48 
R2 = -0.01 
DE = 0.01 

p = 0.24 
R2 = 0.01 
DE = 0.02 

p = 0.50 
R2 = -0.01 
DE = 0.01 

p = 0.95 
R2 = -0.02 
DE = 0.00 

MCC p = 0.33 
R2 = 0.00 
DE = 0.02 

p = 0.75 
R2 = -0.01 
DE = 0.01 

p = 0.93 
R2 = -0.02 
DE = 0.00 

p = 0.36 
R2 = 0.00 
DE = 0.01 

p = 0.14 
R2 = 0.02 
DE = 0.04 

SWE p = 0.07 
R2 = 0.03 
DE = 0.05 

    

Climate oscillation 
indices 

     

MJO p = 0.28 
R2 = 0.07 
DE = 0.11 

p = 0.10 
R2 = 0.04 
DE = 0.06 

p = 0.82 
R2 = -0.02 
DE = 0.00 

p = 0.09 
R2 = 0.04 
DE =0.07 

p = 0.07 
R2 = 0.05 
DE = 0.08 

PDO p = 0.02 
R2 = 0.07 
DE = 0.09 

p = <0.01 
R2 = 0.17 
DE = 0.20 

p = <0.01 
R2 = 0.12 
DE = 0.13 

p = 0.23 
R2 = 0.01 
DE = 0.02 

p = 0.49 
R2 = -0.01 
DE = 0.01 

ENSO p = 0.04 
R2 = 0.05 
DE = 0.07 

p = 0.01 
R2 = 0.09 
DE = 0.10 

p = 0.40 
R2 = 0.00 
DE = 0.01 

p = 0.17 
R2 = 0.02 
DE = 0.03 

p = 0.08 
R2 = 0.04 
DE = 0.05 

AO p = 0.01 
R2 = 0.09 
DE = 0.10 

p = 0.26 
R2 = 0.04 
DE = 0.07 

p = 0.02 
R2 = 0.08 
DE = 0.09 

p = 0.18 
R2 = 0.01 
DE = 0.03 

p = 0.03 
R2 = 0.06 
DE = 0.08 

NPGO p = <0.01 
R2 = 0.12 
DE = 0.13 

p = 0.02 
R2 = 0.07 
DE = 0.09 

p = <0.01 
R2 = 0.11 
DE = 0.13 

p = <0.01 
R2 = 0.17 
DE = 0.18 

p = 0.02 
R2 = 0.07 
DE = 0.09 

PNA p = 0.27 
R2 = 0.00 
DE = 0.02 

p = 0.22 
R2 = 0.01 
DE = 0.03 

p = 0.37 
R2 = 0.00 
DE = 0.01 

p = 0.68 
R2 = -0.01 
DE = 0.00 

p = 0.51 
R2 = -0.01 
DE = 0.01 
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Table A.7 Post-hoc Pearson correlation results for variables of interest. 

Variable 1 Variable 2 N Pearson’s r p 

Mean SWE WY AR count 58 -0.27 0.03 
AMJ % AR 
precipitation 

AMJ intense AR 
count 

58 0.86 <0.01 

AMJ intense AR 
count 

Earlywood RWI 58 -0.32 0.01 

Spring PDO Annual RWI 58 -0.43 <0.01 
Mean SWE Annual RWI 58 -0.50 <0.01 
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Appendix B: Procedure for α-cellulose extraction 

This procedure was developed by Zheng-Hua Li at the Stable Isotope Laboratory 

at the University of Tennessee in Knoxville as a modification of the methodologies of 

Bronstert et al. (2023) and Leavitt & Danzer (1993). 

Part A (Day 1) 

1. Prepare the tree ring samples (date, slice into annual increments, 
and pool appropriately). 

2. Set up the ultrasonic bath under the fume hood. Turn on the heat 
for the ultrasonic bath and set temperature to 69°C. Fill the bath 
with distilled water. The water level should be close to the fill line 
when you have 2 1-L beakers in the bath, but not too full that the 
water will spill over into the beakers and contaminate the samples. 
Cover the bath with the lid and let it warm up. 

3. Label 8 Soxhlet extraction tubes and 2 1-L beakers using different 
coloured elastic bands. 

4. Tree ring samples should already be prepared (dated, sanded and 
separated into annual or seasonal rings for analysis). One at a 
time, slice each sample into small slivers, as thin as possible. 

5. Add a couple small drops of deionized (DI) water and grind the 
sample in agate mortar and pestle until it is soft and the fibers 
begin to pull apart.  

6. Place the sample in a labelled extraction tube using tweezers and 
some DI water to flush all the remaining fibers out. Write down the 
sample name and corresponding extraction tube # in the notebook 
(e.g. DF3A 1980 EW, red tube in yellow beaker). Do this for all 8 
samples. 

7. Place four extraction tubes in each labelled beaker. For each 
beaker, pour in 175 mL DI water, 1.7 mL acetic acid (glacial) and 
2.5 g of sodium chlorite. Disperse the ingredients evenly amongst 
all 4 tubes in the beaker.  

8. Place the beakers in the ultrasonic bath for four hours with three 
additions of acetic acid (1.7 mL) and sodium chlorite (2.5 g), one 
after each hour. Place half-full plastic laboratory bottles (e.g. 
Nalgene bottles) around the beakers or on top, depending on the 
size and beaker arrangement in the ultrasonic bath. Make sure 
that the beakers are weigh down or propped up by the plastic 
bottles sufficiently so that the beakers can’t tip over. 

9. Keep an eye on the samples in the bath to make sure the elastics 
stay on and that they don’t tip over. 

10. Remove the extraction tubes from the bath after four hours and 
remove the solution by vacuum filtration (you can create a vacuum 
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filtration system using the lab sink, a rubber tube, a large 
Erlenmeyer flask and a rubber stopper). 

11. While each tube/sample is still hooked up to the vacuum filtration 
system, wash the samples with deionized water (fill the tube 
halfway and let it drain three times).  

12. Rinse the two large beakers with DI and place the tubes back in 
the correct beakers. 
 

Part B (Day 2) 

1. Heat up the bath to 69°C. 
2. Grind the samples again using a mortar and pestle and a couple 

drops DI water. The samples should be ground enough that they 
appear fibrous Another drop or two of water may be necessary to 
achieve the right consistency. The sample should together and form 
one wet ball of fiber when picked up with tweezers. It should also 
have turned a white colour, as opposed to a more yellowy or brown 
wood colour. This is called holocellulose. 

3. Add a 10% w/v sodium hydroxide mixture (i.e., 10 mg per 100 mL di 
water) to the beakers (about 200 mL per beaker is fine, or 50 mL per 
tube) and sonicate for 45 minutes at 69 °C. 

4. Remove the tubes from the beaker, drain the solution and wash once 
more with deionized water (~50 mL). 

5. Add a 17% w/v sodium hydroxide solution to the beakers, about 200 
mL per beaker. Sonicate for 45 minutes at room temperature (use 
distilled water in the sonicator bath). 

6. Remove the tubes from the beakers and remove residual sodium 
hydroxide solution by filtration under vacuum. 

7. Wash the α-cellulose with 17% w/v sodium hydroxide solution (~20 
mL per sample). 

8. Wash the α-cellulose with copious amounts of deionized water (using 
vacuum filtration procedure). 

9. Wash the α-cellulose with 1% hydrochloric acid (~20 mL per sample). 
10. Flush the α-cellulose with large volumes of cold deionized water until 

the washings are neutral (use pH paper to test for neutrality). 
11. Remove the sample from the extraction tube using tweezers. (Again, 

you should be able to pick up the whole sample as one mass). Place 
the sample in a small labelled (pre-weighed) sample vial. 

12. Place all 8 sample vials in an oven at 40 °C for at least four hours. 
13. Weigh when dry. 
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Appendix C: Chapter 3 supplemental tables 

Table C.1 Location and tree characteristics for the Douglas-fir trees sampled 
at Capilano and MKRF-2. Two cores were collected per tree. DBH 
indicates the diameter at breast height. 

Site Sample 
name 

Latitude Longitude Metres 
above sea 
level 

DBH (m) Tree 
height (m) 

Capilano Cap_T1C2 49.354825 -123.111650 67.58 0.98 51 
Capilano Cap_T3C2 49.354667 -123.111675 66.74 1.51 >55 
Capilano Cap_T4C3 49.354540 -123.111541 65.14 0.73 43 
Capilano Cap_T5C2 49.354563 -123.111860 65.03 1.21 54 
MKRF-2 MK_T3C1 49.279912 -122.584259 173.81 1.46 >55 
MKRF-2 MK _T4C1 49.279729 -122.584194 173.65 1.42 >55 
MKRF-2 MK _T6C1 49.279973 -122.584214 174.97 1.23 >55 
MKRF-2 MK _T7C1 49.279983 -122.584106 176.55 1.07 51 

 

Table C.2 Selected tree ring cellulose records from western North America. 

Chronology Location Temporal 
coverage 

Tree species Number 
of trees 

Record details 

Csank_BR 
(Csank et al., 
2016) 

Southern 
coastal 
Alaska, USA 

1950-1995 White spruce 
(Picea glauca) 

4 Only the live tree 
chronologies from this site 
were analyzed. 

Csank_PB 
(Csank et al., 
2016) 

Southern 
coastal 
Alaska, USA 

1950-1995 White spruce 
(Picea glauca) 

4 Only the live tree 
chronologies from this site 
were analyzed. 

Csank_V 
(Csank et al., 
2016) 

Southern 
coastal 
Alaska, USA 

1950-1995 White spruce 
(Picea glauca) 

4 Only the live tree 
chronologies from this site 
were analyzed. 

Hudson_AB 
(Hudson et 
al., 2015) 

Eastern 
Alaska, USA 

1991-2009 White spruce 
(Picea glauca) 

6  “Upper” and “lower” 
records from this site were 
25 m apart. The two 
records were averaged 
into one for this analysis. 

Hudson_BB 
(Hudson et 
al., 2015) 

Central 
Alaska, USA 

1991-2009 White spruce 
(Picea glauca) 

6 “Upper” and “lower” 
records from this site were 
25 m apart. The two 
records were averaged 
into one for this analysis. 
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Chronology Location Temporal 
coverage 

Tree species Number 
of trees 

Record details 

Hudson_NB 
(Hudson et 
al., 2015) 

Central 
Alaska, USA 

1991-2009 White spruce 
(Picea glauca) 

6 “Upper” and “lower” 
records from this site were 
25 m apart. The two 
records were averaged 
into one for this analysis. 

Porter 
(Porter et al., 
2014) 

Northwestern 
Northwest 
Territories, 
Canada 

1780-2003 White spruce 
(Picea glauca) 

3 None. 

Simard_ID 
(Schmidt-
Simard, 
2022) 

Northwestern 
Idaho, USA 

2006-2018 Ponderosa 
pine (Pinus 
ponderosa) 

6 Earlywood and latewood 
δ18O values were 
averaged by year for this 
analysis. 

Simard_OR 
(Schmidt-
Simard, 
2022) 

Northeastern 
Oregon, USA 

2006-2018 Ponderosa 
pine (Pinus 
ponderosa) 

5 Earlywood and latewood 
δ18O values were 
averaged by year for this 
analysis. 

Simard_WA 
(Schmidt-
Simard, 
2022) 

Southwestern 
Washington, 
USA 

2006-2018 Ponderosa 
pine (Pinus 
ponderosa) 

10 Earlywood and latewood 
δ18O values were 
averaged by year for this 
analysis. 

Spry 
(Spry, 2013) 

Southwestern 
British 
Columbia, 
Canada* 

1960-1995 Douglas-fir 
(Pseudotsuga 
menziesii) 

1 Earlywood and latewood 
δ18O values were 
averaged by year for this 
analysis. 

* Note that the Spry site is located <200 m from the Capilano site described in Chapter 3. 
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Table C.3 P values, adjusted R2 values, and deviance explained (DE) for the 
single-factor GAMs between annual tree ring δ18O measured from 
Capilano and water year PE and climate variables. P values <0.05 are 
shown in bold. 

 WY AMJ JAS OND JFM 
PE variables      
PE count p = 0.65 

R2 = 0.02 
DE = 0.08 

p = 0.87 
R2 = -0.03 
DE =<0.01 

p = 0.82 
R2 = -0.03 
DE = <0.01 

p = 0.26 
R2 = 0.10 
DE = 0.16 

p = 0.28 
R2 = 0.05 
DE = 0.10 

Intense PE count p = 0.76 
R2 = -0.03 
DE = 0.00 

*  * p = 0.53 
R2 = 0.01 
DE = 0.05 

p = 0.96 
R2 = -0.03 
DE = 0.00 

% PE precipitation p = 0.27 
R2 = 0.06 
DE = 0.12 

p = >0.99 
R2 = -0.03 
DE = 0.01 

p = 0.87 
R2 = -0.03 
DE = <0.01 

p = 0.98 
R2 = -0.03 
DE =<0.01 

p = 0.47 
R2 = -0.01 
DE = 0.02 

Climate variables      
Mean temperature p = 0.49 

R2 = 0.03 
DE = 0.08 

p = 0.78 
R2 = -0.03 
DE =<0.01 

p = 0.37 
R2 = -0.01 
DE = 0.02 

p = 0.03 
R2 = 0.10 
DE = 0.13 

p = 0.34 
R2 = 0.07 
DE = 0.12 

Total precipitation p = 0.08 
R2 = 0.06 
DE = 0.09 

p = 0.06 
R2 = 0.18 
DE = 0.24 

p = 0.83 
R2 = -0.03 
DE = <0.01 

p = 0.55 
R2 = 0.01 
DE = 0.05 

p = 0.37 
R2 = <0.01 
DE = 0.02 

SPEI p = 0.03 
R2 = 0.10 
DE = 0.13 

p = 0.05 
R2 = 0.08 
DE = 0.11 

p = 0.31 
R2 = 0.05 
DE = 0.10 

p = 0.14 
R2 = 0.04 
DE = 0.06 

p = 0.51 
R2 = -0.02 
DE = 0.01 

SWE p = 0.37 
R2 = -0.01 
DE = 0.02 

    

GS-RH p = 0.01 
R2 = 0.14 
DE = 0.17 

    

Climate oscillation 
indices 

     

MJO p = 0.34 
R2 = <0.01 
DE = 0.03 

p = 0.64 
R2 = -0.02 
DE = 0.01 

p = 0.81 
R2 = -0.03 
DE =<0.01 

p = 0.15 
R2 = 0.03 
DE = 0.06 

p = 0.45 
R2 = -0.01 
DE = 0.02 

PDO p = 0.37 
R2 = -0.01 
DE = 0.02 

p = 0.24 
R2 = 0.01 
DE = 0.04 

p = 0.51 
R2 = 0.01 
DE = 0.06 

p = 0.68 
R2 = -0.02 
DE = <0.01 

p = 0.72 
R2 = -0.03 
DE =<0.01 
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 WY AMJ JAS OND JFM 
ENSO p = 0.46 

R2 = -0.01 
DE = 0.02 

p = 0.81 
R2 = -0.03 
DE =<0.01 

p = 0.40 
R2 = -0.01 
DE = 0.02 

p = 0.47 
R2 = -0.01 
DE = 0.02 

p = 0.65 
R2 = -0.02 
DE = 0.01 

AO p = 0.20 
R2 = 0.02 
DE = 0.05 

p = 0.02 
R2 = 0.21 
DE = 0.27 

p = 0.94 
R2 = -0.03 
DE =<0.01 

p = 0.89 
R2 = -0.03 
DE =<0.01 

p = 0.05 
R2 = 0.08 
DE = 0.11 

NPGO p = 0.50 
R2 = 0.02 
DE = 0.06 

p = 0.68 
R2 = <0.01 
DE = 0.04 

p = 0.47 
R2 = 0.02 
DE = 0.06 

p = 0.37 
R2 = -0.01 
DE = 0.02 

p = 0.30 
R2 = 0.03 
DE = 0.14 

PNA p = 0.55 
R2 = -0.02 
DE = 0.01 

p = 0.17 
R2 = 0.12 
DE = 0.19 

p = 0.79 
R2 = -0.01 
DE = 0.02 

p = 0.42 
R2 = -0.01 
DE = 0.02 

p = 0.26 
R2 = 0.01 
DE = 0.04 

* Predictor variables which were incompatible with GAM analysis as they contained fewer unique 
data levels than the specified k-index. 

Table C.4 P values, adjusted R2 values, and deviance explained (DE) for the 
single-factor GAMs between annual tree ring δ18O measured from 
MKRF-2 and water year PE and climate variables. P values <0.05 are 
shown in bold. 

 WY AMJ JAS OND JFM 
PE variables      
PE day count p = 0.06 

R2 = 0.09 
DE = 0.12 

p = 0.31 
R2 = < 0.01 
DE = <0.03 

p = 0.48 
R2 = -0.01 
DE = 0.01 

p = 0.05 
R2 = 0.19 
DE = 0.25 

p = 0.74 
R2 = -0.03 
DE = <0.01 

Intense PE count p = 0.73 
R2 = -0.02 
DE = 0.00 

* * p = 0.06 
R2 = 0.07 
DE = 0.10 

p = 0.23 
R2 = 0.01 
DE = 0.04 

% PE precipitation p = 0.96 
R2 = -0.03 
DE = <0.01 

p = 0.38 
R2 = 0.03 
DE = 0.09 

p = 0.85 
R2 = -0.02 
DE = 0.02 

p = <0.01 
R2 = 0.17 
DE = 0.19 

p = 0.06 
R2 = 0.17 
DE = 0.15 

Climate variables      
Mean temperature p = 0.23 

R2 = 0.01 
DE = 0.04 

p = 0.03 
R2 = 0.11 
DE = 0.13 

p = 0.41 
R2 = 0.05 
DE = 0.10 

p = 0.88 
R2 = -0.02 
DE = 0.01 

p = 0.56 
R2 = 0.01 
DE = 0.05 

Total precipitation p = 0.03 
R2 = 0.11 
DE = 0.14 

p = 0.71 
R2 = -0.03 
DE = <0.01 

p = 0.76 
R2 = -0.03 
DE = <0.01 

p = 0.02 
R2 = 0.12 
DE = 0.14 

p = 0.05 
R2 = 0.08 
DE = 0.11 

SPEI p = 0.04 
R2 = 0.10 
DE = 0.12 

p = 0.49 
R2 = -0.01 
DE = 0.01 

p = 1.00 
R2 = -0.03 
DE = <0.01 

p = 0.01 
R2 = 0.14 
DE = 0.17 

p = 0.15 
R2 = 0.03 
DE = 0.06 
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 WY AMJ JAS OND JFM 
SWE p = 0.03 

R2 = 0.11 
DE = 0.14 

    

GS-RH p = 0.02 
R2 = 0.12 
DE = 0.14 

    

Climate oscillation 
indices 

     

MJO p = 0.49 
R2 = 0.01 
DE = 0.06 

p = 0.65 
R2 = -0.02 
DE = 0.01 

p = 0.24 
R2 = 0.01 
DE = 0.04 

p = 0.75 
R2 = -0.03 
DE =<0.01 

p = 0.86 
R2 = -0.02 
DE = 0.02 

PDO p = 0.03 
R2 = 0.11 
DE = 0.14 

p = 0.71 
R2 = -0.03 
DE =<0.01 

p = 0.13 
R2 = 0.04 
DE = 0.07 

p = 0.08 
R2 = 0.06 
DE = 0.09 

p = 0.68 
R2 = <0.01 
DE = 0.04 

ENSO p = 0.04 
R2 = 0.10 
DE = 0.12 

p = 0.04 
R2 = 0.10 
DE = 0.12 

p = 0.31 
R2 = < 0.01 
DE = 0.03 

p = 0.01 
R2 = 0.05 
DE = 0.08 

p = 0.07 
R2 = 0.07 
DE = 0.09 

AO p = 0.68 
R2 = -0.02 
DE = 0.01 

p = 0.17 
R2 = 0.10 
DE = 0.16 

p = 0.49 
R2 = -0.01 
DE = 0.01 

p = 0.02 
R2 = 0.12 
DE = 0.15 

p = 0.47 
R2 = -0.01 
DE = 0.02 

NPGO p = 0.13 
R2 = 0.09 
DE = 0.13 

p = 0.04 
R2 = 0.10 
DE = 0.12 

p = 0.07 
R2 = 0.07 
DE = 0.09 

p = 0.27 
R2 = 0.05 
DE = 0.09 

p = 0.17 
R2 = 0.08 
DE = 0.13 

PNA p = 0.84 
R2 = -0.03 
DE = <0.01 

p = 0.20 
R2 = 0.02 
DE = 0.05 

p = 0.69 
R2 = -0.02 
DE =<0.01 

p = 0.29 
R2 = <0.01 
DE =0.03 

p = 0.51 
R2 = -0.02 
DE = 0.01 

* Predictor variables incompatible with GAM analysis due to their fewer unique data levels than 
the specified k-index.  
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Table C.5 Pearson correlations between Capilano and MKRF-2 δ¹⁸O records 
and selected tree cellulose δ¹⁸O records from across North America. 
Chronologies are listed by descending p value. DF indicates the 
degrees of freedom in the Pearson correlation. 

 Capilano correlations            MKRF-2 correlations    

Chronology r value p value DF         Chronology r value p value DF 

MKRF-2 0.33 0.03 39  Capilano 0.33 0.03 39 
Hudson_AB -0.37 0.12 17  Csank_BR 0.24 0.38 13 
Simard_ID -0.42 0.16 11  Spry 0.19 0.50 13 
Csank_BR 0.33 0.23 13  Hudson_AB 0.13 0.60 17 
Porter -0.17 0.43 21  Simard_OR 0.14 0.64 11 
Simard_WA 0.24 0.44 11  Hudson_BB -0.10 0.67 17 
Csank_PB -0.14 0.53 21  Simard_ID 0.13 0.68 11 
Hudson_NU 0.13 0.59 17  Csank_PB 0.08 0.70 21 
Simard_OR -0.14 0.65 11  Porter -0.08 0.71 21 
Spry 0.12 0.67 13  Hudson_NU 0.07 0.77 17 
Csank_V -0.06 0.74 28  Csank_V 0.03 0.87 28 
Hudson_BB 0.06 0.82 17  Simard_WA -0.04 0.90 11 
 


