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Abstract

With the recent advent of Text-to-3D models based on Text-to-image diffusion models, they are in-

creasingly being integrated into Computer Graphics pipelines, facilitating creative 3D design tasks

in unrestricted domains. Nevertheless, simple textual prompting is often insufficient for interac-

tive and local manipulation of 3D content. Incorporating user-guided sketches offers a more intu-

itive control for editing and manipulation. However, since state-of-the-art Text-to-3D models rely

on gradients generated by rendering arbitrary views for optimization, integrating sketches in these

pipelines is not straightforward. This thesis presents SKED, a method for editing 3D objects rep-

resented as Neural Radiance Fields (NeRFs) conditioned on a text prompt and two sketches from

different views. We ensure semantic alignment of the edit by using a pretrained text-to-image model

as guidance. Additionally, our framework uses novel loss functions to make the edit adhere to the

provided sketches. We demonstrate the effectiveness of our method through various qualitative and

quantitative experiments.
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Chapter 1

Introduction

This thesis is based on the ICCV 2023 paper titled "SKED: Sketch-guided Text-based 3D Editing."

I would like to express my sincere gratitude to my co-authors and collaborators on this paper: Dr.

Ali Mahdavi-Amiri, Dr. Daniel Cohen-Or, Or Perel, and Mehdi Safaee.

In this chapter, we establish the context and motivation for our research. We then clearly define

the problem, discussing its significance and the challenges it presents in the field. Following this,

we outline our approach to addressing these challenges and highlight the contributions our study

aims to make.

1.1 Motivation

Creativity finds expression through various mediums, transforming ideas from the mind into reality.

Recent advancements in neural generative art have streamlined these mediums, often reducing them

to a simple text prompt—users can now create content by merely describing their visions. While

this development significantly democratizes art, enabling both amateur and professional artists to

easily express their ideas, it also restricts user control by limiting them to coarse and simplistic de-

scriptions and interactive handles. In this thesis, we propose a method to regain some of this control,

allowing neural networks to augment rather than replace human creativity, thereby enhancing the

user’s ability to shape the generative process.

1.2 Research problem

Recently, significant progress has been made in the field of text-conditioned image generation [4,

68, 64, 66]. These advancements are largely due to harnessing the power of diffusion models [76,

23, 77, 78] trained on large-scale text-image datasets [72]. These developments have transformed

computer vision, enabling the creation of diverse and remarkable visual content from mere text

prompts.

The power and versatility of text-to-image models have expanded the scope of image editing

methods. Many of these methods approach editing by modifying the input text prompt [31, 22, 53,
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10, 21]. While this approach is simple, it often fails to meet the user’s need for flexible and fine-

grained control over the editing process. Conversely, sketch-guided editing provides a more intuitive

and detailed level of control, enabling users to precisely define their desired outcomes through their

drawing skills [94, 85, 92, 35].

Although sketch-guided text-driven image generation and manipulation are well-studied, The

intriguing problem of bringing this framework into the realm of 3D editing remains fairly unsolved.

In this thesis, we aim to take a step towards solving this problem.

1.3 Significance and challenges

Designing a text-to-3D framework presents several complex challenges, each requiring careful con-

sideration to address effectively. A fundamental question is the choice of 3D representation, as there

are various options, including point clouds, polygonal meshes, and implicit models such as Neural

Radiance Fields (NeRFs). While there is extensive research focusing on modeling 3D objects as

meshes [48, 65] and point clouds [56], each approach has its own limitations. Mesh-based models,

for instance, primarily allow for color editing and minor deformations. This is because maintain-

ing the integrity of a high-quality mesh throughout extensive transformations is challenging. On

the other hand, although point clouds offer a flexible structure for 3D modeling, they pose major

difficulties in rendering realistic images.

Secondly, the lack of text-3D datasets comparable in scale to their text-image counterparts

presents a considerable challenge. In response, DreamFusion [62] and various subsequent stud-

ies have leveraged pretrained text-to-image models by distilling their knowledge of the visual world

to create 3D objects. These methods typically operate by rendering multiple views of an object rep-

resented by a NeRF and utilizing the diffusion model as a score function estimator. This process

optimizes the object within the probability distribution function learned by the diffusion model,

aiming to produce an outcome that is plausible based on the input text prompt. While these tech-

niques help to address the issue of data scarcity, incorporating additional controls, such as sketches,

poses further complications. It is impractical for users to provide sketches from every possible view.

Therefore, we aim to design a framework that requires users to provide only a minimal number of

sketches, potentially as few as two or three.

2



Figure 1.1: Overview of our Sketch-guided, Text-based 3D Editing Framework. Starting with a
NeRF representation of a 3D object (e.g., a cat), our framework integrates input from sketches of
two views and a text prompt describing the desired modifications. The output is an edited NeRF
where the changes align semantically with the text prompt and adhere to the multiview sketches.

1.4 Method and contributions

We present SKED, A Sketch guided 3D Editing technique. Our framework modifies a 3D object

represented as a Neural Radiance Field (NeRF), using a combination of a text prompt and a min-

imum of two multiview sketches. Achieving consistency with the constraints imposed by the text

prompt and sketches is challenging due to potential semantic mismatches between the text and the

sketches. Moreover, the assumption of free-form hand-drawn sketches can result in a lack of multi-

view consistency. To address these challenges, we divide the problem into two manageable subtasks:

the first utilizes geometric reasoning to determine the location and boundaries of the edits based on

the sketches, while the second leverages the semantic knowledge from a pretrained text-to-image

model to refine the geometry and add semantic texture to the edited regions. We demonstrate the

versatility of our method through various results, showing its capability to add objects, accessories,

and artifacts or to replace parts of existing objects. An overview of our framework can be observed

in Figure 1.1. Our approach is validated through both qualitative and quantitative assessments, in-

cluding ablation studies that highlight the contributions of different components of our framework.

1.5 Structure of the thesis

This thesis is organized into six chapters. Chapter 2 explores related works and the state-of-the-art

in sketch-based 3D modeling, diffusion models, and neural fields. Chapter 3 provides a summary

of essential preliminaries and definitions related to diffusion models, Score Distillation Sampling

(SDS), and volumetric rendering. In chapter 4, we provide a detailed explanation of our method.

Chapter 5 presents extensive qualitative and quantitative evaluations of our method, including ab-

lation studies of various components. Finally, Chapter 6 discusses the limitations of our work and

proposes several directions for future research.
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Chapter 2

Related Works

2.1 Sketch-based modeling

From the early Renaissance through the emergence of computer animation in the late 1920s, artists

have consistently focused on creating believable representations of the 3D world. The highly ac-

claimed art guidebook, The Illusion of Life [26], emphasizes the importance of "weight, depth,

and balance" in three-dimensional drawings. With the advent of digital art, these fundamental

principles have continued to underpin the systems and frameworks used in artistic content cre-

ation [37]. Traditional sketch-based modeling systems usually work by inflating and stitching user-

drawn lines to 3D meshes [91]. Beginning with Teddy [24], many works have focused on convert-

ing scribbles and 2D contours into intermediate forms, such as closed polylines [28] or implicit

functions [27, 81, 1, 71, 8]. Since transforming 2D sketches into 3D representations poses an under-

constrained challenge, various approaches have been developed to address this issue. Some methods

integrate additional priors, correlating the inflation thickness with the chordal axis depth of curved

shapes [24], while others incorporate extra user annotations [71, 28, 19, 58] or utilize predefined

models, such as reference figures for human bodies [83]. Departing from traditional systems, recent

works have introduced data-driven approaches and power of deep neural networks for the task of

sketch-to-3D [44, 39, 15, 9].

Our work differs from past research by utilizing a pretrained text-to-image model as a semantic

prior. This way, we bypass the need for arduous tuning of inflation parameters and collecting large

3D datasets.

2.2 Diffusion models

Diffusion models [23, 76, 77, 78] are state-of-the-art generative models for image synthesis, capa-

ble of generating diverse and high-quality images. Particularly in recent years, text-to-image models

have emerged [66, 64, 4, 68] that utilize large-scale text-image datasets [72] to integrate text em-

beddings into diffusion model training, enabling text-driven image generation. These advancements

have significantly transformed the field of visual content creation, enabling a variety of tasks through
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enhanced image generation and editing capabilities [10, 22, 53, 31, 46]. Text alone is insufficient

for many applications as it only provides coarse control over the generated content. Because of

this, some recent work has focused on introducing extra spatial control such as semantic masks [3],

localized object level control [61], and local pattern transfer [67]. There is another line of work

that enables general conditioning on spatial data such as depth, normal and segmentation maps by

adding extra modules to the pretrained diffusion model and training on a paired dataset [94, 54].

Related to our work, Voynov et al. [85] developed a differentiable edge detector that incorpo-

rates an edge loss at each diffusion step, facilitating sketch-conditioned image generation. Cheng

et al. [13] introduced a method that enhances sketch-based image generation by differentiating be-

tween sketches, strokes, and various levels of realism. More recently, Parmar et al. [60] advanced

this area by proposing a cycle consistency-based training approach for SDXL-Turbo [70], which

supports sketch-based image generation and other image translation tasks in a single diffusion step.

Diffusion models are also used for 3D content generation by training directly on point clouds [56,

45], feature maps of neural fields [74, 2], or directly learning the parameters of an MLP represent-

ing the implicit representation of a shape [17]. While showing potential for high-quality 3D content

creation, these works are hard to scale due to their dependency on large-scale 3D data.

2.3 Neural fields

Neural Radiance Fields (NeRFs) [49] have recently emerged as promising 3D representations be-

cause of their compressed representation and versatility in various applications, such as novel view

synthesis and editing. These models represent 3D scenes and objects through implicit functions that

are represented through deep neural networks. Since their introduction, there have been various ef-

forts to increase these models’ reconstruction quality [5, 6, 7, 84, 88]. Additionally, some research

works have tried to increase rendering speed and make these frameworks more compact by com-

bining them with explicit grid representations [69, 11, 12] or by taking the volumetric rendering

approach of NeRF and combining it with primitive rasterization [32]. The pivotal work of Mueller

et al. [55] proposes a compact hash-based grid approach that allows for NeRF optimization in a few

seconds. This work paves the way for interactive research directions in neural fields. Recent works

have introduced interactive editing of NeRFs through latent manipulation [57, 11, 59], intermediate

representations [14, 43], local editing through segmentation masks [50, 34, 40, 36], and text-based

stylization and inpainting [90, 48, 86, 87, 18, 51].

Neural radiance fields are a suitable representation for 3D content manipulation [38] since, con-

trary to meshes, they do not depend on topological properties such as genus and watertightness [52,

18, 48]. Early works on NeRF editing and generation with large vision language models such as

CLIP [63] attempted to align arbitrary rendered views with a given text prompt [87, 25]. However,

without a geometric prior, CLIP fails to produce multiview-consistent 3D assets. Dream3D [93]

uses shape embeddings and language prior from a text-to-image diffusion model to generate 3D

shapes. However, this model requires large 3D datasets to generalize.
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DreamFusion [62] bypasses the need for a 3D dataset by using the power of a pretrained text-

to-image diffusion model as a prior. Their framework utilizes a diffusion model as a score function

estimator to optimize a NeRF based on an input text prompt. They render arbitrary views of an

object represented by a NeRF and gradually optimize the parameters of the NeRF with gradients

coming from the diffusion model to align the NeRF with the input text prompt. Magic3D [41]

further improves the DreamFusion framework by utilizing a two-stage optimization process where

the second stage optimizes a mesh extracted from the NeRF. Both of these frameworks show the

potential ability of global 3D editing with simple prompt changes. Concurrently, Latent-NeRF [47]

proposes to generate a NeRF able to directly render latent maps of a latent diffusion model for faster

training and rendering.

Our framework builds on a simplified version of DreamFusion [62] to combine the genera-

tive prior of a text-to-image model with traditional sketch-based constraints. Similar to DreamFu-

sion [62], our pipeline works in a zero-shot manner, requiring no text-3D datasets.

Concurrent with our research, Vox-E [73] has introduced a grid mixing method for NeRF edit-

ing that utilizes cross-attention maps from the attention modules of a text-to-image model. Simi-

larly, Instruct-NeRF2NeRF [20] facilitates NeRF editing through a training set updating procedure.

Our work, however, distinctively offers precise sketch-based control over the editing region, setting

it apart from Vox-E. Additionally, unlike Instruct-NeRF2NeRF, our approach supports localized

sketch-based editing, providing a more targeted modification capability.
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Chapter 3

Preliminaries and Background

This chapter provides the necessary background on Neural Radiance Fields (NeRFs), Diffusion

models, and Score Distillation Sampling (SDS).

3.1 Neural Radiance Fields (NeRFs)

Neural Radiance Fields (NeRFs) [49] represent a class of implicit 3D representations primarily uti-

lized for novel view synthesis. These methods represent a scene as being composed of light-emitting

particles, which allows them to bypass the computationally expensive ray-triangle intersections [80].

Instead, they employ volumetric rendering as their backbone, enabling the rendering of scenes from

arbitrary viewpoints. NeRFs are coordinate-based frameworks that take a point in the 3D space as

input and output the density σ and a view dependent RGB color c of that point. Formally, a NeRF

comprises of two functions. fσ(x), which maps 3D points to a single real number which is the den-

sity of that point, and fc(x, d), which takes the coordinates of a 3D point and the viewing direction

and outputs the RGB color of that points. fσ and fc can be MLPs [49], 3D grids [69], or a mixture of

both [55]. Given these two functions, the expected color of a pixel represented by a ray r(t) = o+td

can be calculated using the volumetric rendering equation:

C(r) =
∫ tf

tn

T (t)fσ(r(t))fc(r(t), d)dt, (3.1)

where

T (t) = exp (−
∫ t

tn

fσ(r(s))ds) (3.2)

is the transmittance function.

In this thesis, we propose a framework that applies sketch-based text-guided editing, to 3D

objects represented by NeRFs.
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3.2 Diffusion models

Diffusion models [76, 23] belong to a class of generative models that sample from a target data

distribution, pdata through a sequential process. This involves reversing a forward process that in-

crementally transforms samples from the target distribution into a standard Gaussian distribution

by progressively adding noise. The initial transformation to the Gaussian distribution is known as

the forward process, while the reverse transformation back to the target distribution is termed the

backward process. More precisely, the intermediate noisy data at timestep t is calculated by:

xt = αtx + σtϵ, (3.3)

where x is a sample from the target distribution provided by the training data, ϵ is a standard Gaus-

sian noise, and αt and σt are the parameters of the diffusion noise scheduler.

The key part of a diffusion model is a neural network ϵθ usually parameterized as a UNet [23]

that is trained to predict clean, denoised data x̂ from noisy data xt. This network is trained with the

loss

Ldiffusion = Et∼U [1,T ],ϵt∼N (0,I)
[
w(t) ∥ϵθ (zt; t, c) − ϵt∥2

2

]
. (3.4)

In this equation, c is a conditional input such as text [4, 68, 64] and w(t) is a weighting function

usually set to 1 [23, 16]. In simpler terms, the diffusion training process involves sampling data

from the training set, adding noise to this data where the noise timestep t is sampled from a uniform

distribution, and training the UNet ϵθ to predict the noise that was added.

After training, multiple schedulers [23, 77, 42, 29] can be used to sample from the target distri-

bution. Starting from a random sample from the standard Gaussian distribution xT , these methods

iteratively denoise the input. In each timestep, t, these methods take as input xt, and according to the

specific scheduler, they predict a less noisy data xt−1 until they finally reach a clean sample from

the target distribution x0 ∼ pdata. Additionally, these methods usually use classifier-free guidance

to enhance the quality and diversity of the samples. This guidance involves linearly combining the

noise predicted with the input condition, ϵθ(xt, c) and without the input condition, ϵθ(xt, ∅), where

∅ denotes null condition. The final noise prediction ϵ̂θ is calculated by:

ϵ̂θ = ωϵθ(xt, c) + (1 − ω)ϵθ(xt, ∅), (3.5)

where ω is a hyperparameter determining the effect of the conditional input.

Latent Diffusion Models: Latent Diffusion Models (LDMs) [66] are a type of image diffu-

sion models that operate within a latent space rather than directly sampling high-resolution images.

These models comprise two main components: firstly, a variational autoencoder, which includes

an image encoder E(x) and a decoder D(z). This autoencoder is pretrained on the image training

dataset. The second component is the diffusion UNet ϵθ, which is trained to generate plausible sam-

ples directly in the latent space created by the autoencoder. During inference, the latents produced
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by the diffusion process are inputted into D(z) to generate high-resolution images. A key advantage

of LDMs is their ability to produce high-resolution images using fewer memory and time resources.

3.3 Score Distillation Sampling (SDS)

Diffusion models excel at learning distributions where enough data is available. In many domains,

such as text-to-3D, data is notably scarce, complicating the training process. Additionally, there is

often a desire to condition the generation process on extra conditions, such as sketches or edges,

but the available data may be insufficient for these requirements. In such cases, Score Distillation

Sampling (SDS) [62] proves invaluable. It utilizes a pretrained diffusion model as a prior, allowing

for the optimization of parameters within a differentiable, parameterized image framework.

More precisely, let gϕ be a parameterized image representation. e.g. a differentiable 3D renderer

with parameters ϕ. It is notable that NeRFs are such a representation with ϕ being the parameters

of the coordinate-based MLP or the parameters of a feature grid. SDS optimizes the parameters ϕ

by gradients that minimize the diffusion loss. If in equation 3.4 we assume zt is a noised version of

gϕ, taking the gradient with respect to ϕ and using the chain rule, will give us:

∇ϕLdiffusion = Et,ϵ[ω(t)(ϵ̂θ(zt; t, c) − ϵt)
∂ϵ̂θ(gt

ϕ; t, c)
∂zt

∂gϕ

∂ϕ
]. (3.6)

In this equation the constant 2 ∂zt
∂gθ

is absorbed into the constant ω(t). A Naive approach to

generation would be to simply optimize the parameters of gθ with gradient descent and gradients

coming from this loss function. However, DreamFusion [62] empirically shows that the diffusion

UNet jacobian
∂ϵ̂θ(gt

ϕ;t,c)
∂zt

is difficult to optimize and is very expensive to compute. Hence, they

propose to omit this term to get to the final SDS loss gradient, which is:

∇ϕLSDS = Et,ϵ[ω(t)(ϵ̂θ(zt; t, c) − ϵt)
∂gθ

∂θ
]. (3.7)

DreamFusion [62] further formally proves that optimizing a parameterized image representation

with this loss is equivalent to minimizing the KL divergence between a family of Gaussians around

gϕ and the diffusion conditional likelihood p(zt; t, c).

The algorithm for DreamFusion is fairly simple. In each iteration of optimization, gϕ is utilized

to render an image. Noise is then added to this image with respect to a random timestep t, and then

this noisy render will be inputted into the UNet to get the predicted noise ϵ̂θ. After that, the gradient

of the SDS loss as defined in equation 3.7 will be used to optimize gϕ.

In summary, SDS is an alternative to the original ancestral sampling of diffusion models that

allows for extra conditioning on images or generation of parameterized image representations such

as NeRFs. In Fig. 3.1, you can see the difference between ancestral sampling and SDS.
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Figure 3.1: Score Distillation Sampling compared to the ancestral sampling used in text-to-image
models. gϕ is a parameterized image representation such as a NeRF, or an identity map. Gradients
computed with LSDS are used to optimize the parameters of gϕ.
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Chapter 4

Method

In this chapter, we introduce our framework, SKED, which enables the editing of 3D objects rep-

resented as NeRFs, utilizing a text prompt and a few multiview sketches. Our approach comprises

two parts that work in parallel. Firstly, a coarse 3D geometry is constructed from the multiview

sketches, which, while requiring further refinement, serves as a guide for subsequent optimization.

During optimization, two loss functions are employed to ensure that edits closely align with the

provided sketches. Secondly, we implement Score Distillation Sampling (SDS) [62] with a text-to-

image latent diffusion model to generate fine-grained and realistic edits based on the text prompt

given to the framework.

The two loss functions employed in our framework are fundamental in ensuring adherence to

the principles of effective local editing. The first principle is the preservation of the original object.

To achieve this, we introduce the preservation loss, which minimizes the difference between the ge-

ometry and appearance of the edited output compared to the base object outside the sketch regions.

The second principle is alignment for the given constraints, which, in our case, are the multiview

sketches provided as input. To address this, we implement a silhouette loss, ensuring that any added

mass conforms accurately to the outlines defined by the sketches.

4.1 Method overview

As illustrated in Figure 4.1, our framework begins with a base Neural Radiance Field model, Fo :
(p, r̂; θ) → (co, σo). This model works by mapping 3D coordinates and unit rays to corresponding

color and volumetric density outputs. Fo is used in volumetric rendering, enabling the rendering of

arbitrary views of a base 3D object. This base object may be derived from multiview images [55] or

through a text-to-3D generation pipeline [62]. Furthermore, Fo allows for the rendering of multiple

views of the 3D object, over which sketches can be drawn to define the outlines of the desired edits.

Let CN
i=1 be renderings of Fo from N different views, onto which we have drawn sketches. We

refer to these renderings as sketch canvases and their respective viewpoints as sketch views. The

sketches can be delineated by masks or a closed curve that outlines the border of the edit region. In

both instances, the sketches are preprocessed into masks MN
i=1, where each Mi = {m1, m2, ..., mS}
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Figure 4.1: An overview of our framework. We use Fo to render at least two views of the base object
and then sketch over them (Ci). The input to the editing framework are these sketches preprocessed
to masks (Mi) and a text prompt. Similar to DreamFusion [62], in each iteration of optimization,
we render Fe from a random view around the object and calculate the gradient of the SDS loss
to optimize Fe. This ensures that the edit aligns with the text prompt semantically. Additionally,
we apply Lpres to constrain the density and color of Fe to be similar to Fo away from the sketch
regions. Finally, we also constraint the object mask renderings of Fe to occupy the sketch region by
computing a loss Lsil.

represents a set of pixels within the edit region. Additionally, our framework takes a text prompt T

as input, which defines the semantics of the edit. We start our optimization process by making a

copy of the base NeRF Fo, calling the copy Fe, which at the start of optimization is equal to Fo.

We utilize the Instant-NGP [55] architecture for our NeRF model, chosen for its rapid rendering

capabilities and memory efficiency. This framework employs a density grid that identifies and tracks

empty regions to optimize rendering efficiency and avoid sampling from empty spaces. During

raymarching, the model skips these empty areas. The grid is periodically pruned throughout training.

In our editing process, if the density grid from Fo is used without change, it would initially prevent

sampling from the edit regions that intersect with the empty regions of Fo. This can disrupt correct

gradient flow and force our framework to depend on random alterations of the occupancy grid.

To mitigate this issue, we calculate the bounding boxes of the sketch masks Mi, extrude them,

and intersect them within R3. This process defines a coarse edit region in 3D space where we activate

the density grid of Fe. Additionally, we define a warm-up period at the start of optimization, during

which we avoid pruning the density grid. This step helps the model stabilize the edit region and

prevents it from mistakenly culling it as empty space.

At each iteration of the optimization, we sample a random viewpoint on a sphere around the 3D

object and use Fe to render the object from that view. Then, we use the gradients of the SDS loss

to push Fe to high-density regions of the conditional probability distribution function p(Fe; T ), i.e.

a NeRF of a 3D object which is both realistic and aligns with the input text prompt T . However, as

expected and shown in our ablation studies in chapter 5, using text guidance alone would drastically

change the base object outside the sketch region, and the edit would not adhere to the given sketches.

12



Therefore, through applying two novel loss functions, we constraint the editing process in a way that

the base object is unchanged and the edits align with the given sketches.

4.2 Preservation loss

One of the principles of an effective 3D editing framework is that the geometry and color of the

base object stay unchanged during editing. To encourage this, we employ a loss function referred to

as preservation loss Lpres. At each iteration of the optimization process, we sample a random view

on a sphere around the object and use Fe to render that view. Our key idea is that when rendering,

for each point sampled for raymarching, we decide whether that point’s density and color should

be changed. For this, we define and calculate a distance D(pi) between the multiview sketches and

point pi. Intuitively, the point’s density and color should be changed if D(pi) is large and should

remain unchanged otherwise. We define D(pi) by first projecting pi on each of the sketch canvases

and calculating a per-view 2D distance d(pi) as:

dj(pi) = min
k

||
⌊
Π(pi, Cj) + 1

2

⌋
− mk||2, (4.1)

where Π(pi, Cj) is the projection of the 3D point pi to the sketch canvas Cj rounded to the nearest

integer (Fig. 4.2). This equation calculates the minimum distance between the projection of the

sampled 3D coordinate pi to the pixels of the sketch masks. After calculating dj(pi) for every

sketch view, we calculate the multiview distance as:

D(pi) = 1
N

N∑
j=1

dj(pi). (4.2)

The reason we use the mean of the per-view distances is that it relaxes the constraint in the case that

the multiview sketches are not fully aligned. Additionally, it is smoother and easier to optimize than

using other aggregators such as maximum value.

After computing the multiview sketch distance for all the sampled points during raymarching

{pi}K
i=1, we can compute Lpres:

Lpres = 1
K

K∑
i=1

wi[CE(αe, αo) + λcαo||ce − co||2], (4.3)

where αo is the occupancy of the base object from Fo, computed by thresholding the density, and

αe is the alpha value of pi derived by αe = 1 − exp(−σeδ), such that σe is the density Fe(p, r̂; ϕ)
and δ is the step between two consecutive points sampled along a ray. CE denotes the cross entropy

loss. Furthermore, co and ce are the color values of the base object and edited object derived from

Fo and Fe, respectively, and λc is a hyperparameter specifying the importance of color preservation

in the editing process. We limit color preservation to points which are occupied by the base object.

The density and color preservation constraints are modulated by the weight wi, which is calculated
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Figure 4.2: During raymarching, sampled points pis are projected onto the sketch canvases Cj to
determine Π(pi, Cj). Subsequently, the minimum distance di(pi) between the projected points and
the sketch pixels is calculated. The red color in C1 and C2 illustrates the distance functions d1 and
d2 in the image space, respectively. These per-view distances are averaged to compute the point-
sketch distance D(pi). This distance D(pi) is then utilized to calculate per-point weights, which
modulate the preservation loss Lpres in our framework.

by:

wi = 1 − exp(−D(pi)2

2β2 ). (4.4)

Intuitively, this equation classifies sampled points into three categories. First, points where

D(pi) = 0, which means that the per-view sketch distance for all sketch views is equal to zero,

and the point falls into the sketch region and can be changed. Second, points where D(pi) is a very

small value, which means that the point probably lies in the sketch region in at least one of the sketch

views. This could be caused by misalignments in the multiview sketches. Third points where D(pi)
is large and wi is large, which are points that should be conserved. Additionally, the sensitivity of

wi to D(pi) is controlled with the hyperparameter β. small values of β tighten the constraint so that

only sketch regions are modified, and larger values of β impose a more relaxed constraint.

4.3 Silhouette loss

In addition to ensuring that the base object’s original content is preserved, we also have to force the

framework’s edits to respect the input sketches. We do this by rendering the object masks of all the
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sketch views and enforcing that in the sketch regions; the object masks are occupied. In more detail,

we minimize the following loss, which we call the silhouette loss (Lsil).

Lsil = 1
H.W.N

N∑
j=1

H.W∑
i=1

−IMj (xi) log Cα
j (xi). (4.5)

In this equation, H and W are the dimensions of the rendered masks, IMj (xi) is an indicator

function which is 1 if pixel xi is in the sketch region and 0 otherwise. Cα
j (xi) is the alpha object

mask rendered with Fe(p, r̂; ϕ) from each sketch view.

4.4 Optimization

Our final objective is

Ltotal = LSDS + λpresLpres + λsilLsil + λspLsp, (4.6)

where λpres, λsil and λsp are the weights of each separate loss term in our objective. Building on

prior work [62, 41, 25], we incorporate an additional sparsity loss, Lsp, which promotes coherent

output and assists in preventing the generation of floaters and artifacts. This loss is defined as:

Lsp = − 1
K

K∑
i=1

ω̂i log (ω̂i) + (1 − ω̂i) log (1 − ω̂i), (4.7)

where ω̂i is the accumulated alpha value along a ray. This loss encourages each ray’s opacity to be

either 1 or 0, preventing cloudy artifacts.

4.5 Implementation

Our implementation is based on the Stable-DreamFusion [82] GitHub repository, which is a simple

implementation of DreamFusion [62]. We use StableDiffusion v1.4 [66] as the pretrained text-to-

image model. Although, our model is compatible with any other text-to-image diffusion model. For

most of our experiments, we set λpres, λsil, λsp and λc to 5 × 10−6, 1, 5 × 10−4 and 5. In our abla-

tion studies in chapter 5 we show the effect of changing these values. Following DreamFusion [62],

we set the guidance scale of classifier-free guidance to 100. We sample noise timesteps in each it-

eration of optimization uniformly in the range of [20, 980]. The warmup period for the occupancy

grid pruning is set to 1000. We sample the camera poses in each iteration on a sphere around the

object. We choose the radius of the sphere according to the size of the base object, and we sample

elevation and azimuth in a way that ensures that the sketch regions are always visible. For memory

efficiency in implementing equation 4.3 we employ a KD-Tree for efficient point querying. We use

the ADAM [33] optimizer with a learning rate of 0.005 and a learning rate scheduler that exponen-
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tially decays the learning rate by 0.1 at the end of the optimization. We run our algorithm for 10, 000
iterations, which takes around 30-40 minutes on a single NVIDIA RTX 3090 GPU.
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Chapter 5

Experiments

In this chapter, we conduct extensive qualitative and quantitative experiments and ablation studies

to validate our framework and design choices. In our experiments, we use 3D assets which are freely

available and assets that are generated with text-to-3D models [62].

5.1 Qualitative results

In Fig. 5.1, we demonstrate several edits performed using our framework. Our approach successfully

adheres to the coarse geometry outlined by the multiview sketches while semantically blending

the edit region with the base object. Notably, the multiview sketches do not need to be precise or

tightly drawn. By increasing the complexity of the contour curves, users can guide the framework

to generate more complex shapes. In Fig.5.1, we illustrate this flexibility with an example where

using the same text prompt but providing two completely different sets of sketches, our framework

successfully performs localized edits (cherry on top of a sundae).

Furthermore, in Fig. 5.2, we demonstrate the capability of our framework to perform various

types of edits. We are able to perform both additive edits (e.g. adding a crown on a teddy bear or

adding whipped cream on a stack of pancakes) and replacement edits where a part of the base object

is completely replaced according to user input (e.g. tree to cactus or white long skirt).

A natural application of our framework is progressive editing, where additional details and or-

naments are sequentially added to an object. Fig. 5.3 illustrates a two-step editing process in which

a red tie is first added to the cat, followed by a chef’s hat.

In Fig. 5.4, we demonstrate that we can control the strength of the preservation constraint by

changing the hyperparameter β in equation 4.4. It is evident that increasing β would relax the

preservation constraint and results in more edits outside the sketch regions.

Our edits are applied to objects represented as NeRF models. These objects can reconstructed

from multiview images using Instant-NGP [55] or generated with DreamFusion [62] with a diffusion

model identical to the model we use for editing. The renderings of the NeRF model are assumed

to be in the distribution of the pretrained diffusion model. In Fig. 5.1 and Fig. 5.2, we demonstrate

that our method is capable of editing both reconstructed objects (Cat, Anime girl, Horse, Ficus)
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Figure 5.1: Examples of SKED used for editing various objects reconstructed from multiview im-
ages (Anime girl) or generated with DreamFusion [62] (Teddy, Cupcake, Sundae, Plant). All exam-
ples were edited using two multiview sketches and a text prompt as input.

and generated objects (Stack of pancakes, Teddy bear, Cupcake, Sundae, Plant). Additionally, in

Fig. 5.5, we illustrate the geometry of the edits by rendering normal maps and depth maps. Our

model is able to construct plausible geometry.
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Figure 5.2: Our method supports multiple types of edit. We can both perform additive edits where
a part is added to the base object (Cream on top of pancakes, adding a crown on a Teddy bear) and
replacement edits where a part of an object is overwritten according to the user input (Ficus replaced
with cactus, Girl wearing long skirt).

Figure 5.3: Progressive editing. We first add a red tie to the cat and then add a chef hat.
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β = 0.005 β = 0.1 β = 1.0
Figure 5.4: Sensitivity control. By changing the parameter β, we are able to control the strength of
the preservation constraint. Increasing β would result in a more relaxed constraint where regions
outside the sketched areas are edited, and we can observe a softer blending of the edited part with
the base object. Overlay of the sketches is demonstrated on the edited output.

Depth map

Normal map

RGB

Figure 5.5: The normal and depth maps of the edits generated by our method.

Figure 5.6: Examples from the modified version of the sketch shape pipeline of Latent-NeRF [47].

20



5.2 Comparison

To the best of our knowledge, this is the first framework that enables sketch-guided and text-based

3D editing. Due to the novelty of our approach, direct comparisons with existing methods are not

feasible. However, we have adapted the sketch-shape generation pipeline from Latent-NeRF [47]

for use as a comparative baseline. Initially, we start with a base NeRF of the 3D asset intended for

editing. We then intersect the bounding boxes of the multiview sketches to create a coarse geometry

and determine the edit’s location as a mesh. Finally, we apply the generation process from Latent-

NeRF [47]. We must note that we avoid using the direct intersection of sketches because the view

inconsistency of the multiview sketches causes the optimization process not to converge.

In Fig. 5.6, it is evident that although the sketch region is occupied and the edits align seman-

tically with the input text prompts, the input multiview sketches are not adequately respected, and

the base object is excessively altered. We also note that our framework typically converges in 30-40

minutes, whereas Latent-NeRF [47] usually requires 60-70 minutes, making our framework approx-

imately twice as fast.

5.3 Quantitative results

To our knowledge, we present the first framework that enables sketch-guided and text-based 3D

editing. Without an existing benchmark for systematic comparison, we establish a series of quanti-

tative tests to evaluate our framework’s ability to preserve the base object while generating edits that

adhere to the input sketches and text prompt. We conduct our experiments on a set of five different

representative examples. Each example includes a 3D object in the form of a NeRF [55], a text

prompt, and a pair of multiview sketches.

5.3.1 Base model fidelity

We measure the model fidelity by calculating the PSNR between renderings of Fo and Fe from the

sketch views and outside the sketch regions. As indicated in Table 5.1, our framework consistently

maintains the base object more effectively than the Text-Only approach. Furthermore, we show

the critical and effective role of our Lpres in preserving the base object. Finally, we highlight the

superiority of our framework compared to the modified version of Latent-NeRF [47]. However,

PSNR alone is not a comprehensive measure for an effective editing framework. It is important to

note that if the framework does not alter the base object at all, it results in an artificially high PSNR.

Additionally, we assess the perceptual fidelity to the base object by computing the LPIPS dis-

tance between the base and edited objects. The results, as shown in Table 5.2, indicate that our

framework generally maintains the perceptual integrity of the base object more effectively than

competing baselines.
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Table 5.1: Fidelity to the base field. We calculate PSNR ↑ between renderings of Fe and Fo from the
sketch views and outside the sketch region. SKED (no-preserve) refers to a variant of our method
which doesn’t apply Lpres. Text-Only refers to a public re-implementation of DreamFusion[62].
Latent-NeRF [47] is a modified version of their sketch-shape generation pipeline.

Method Cat Cupcake Horse Sundae Plant Mean
+chef hat +candle +horn +cherry +flower

View 1View 2View 1View 2View 1View 2View 1View 2View 1View 2

SKED 31.05 34.13 23.73 25.98 32.45 31.46 26.47 25.99 21.71 22.31 27.53
SKED (no-preserve) 15.58 16.59 20.12 19.47 18.02 16.52 17.39 17.44 10.16 10.12 16.14
Text-Only 15.63 16.78 17.38 17.15 16.69 15.09 20.57 20.74 13.75 12.68 16.65
Latent-NeRF [47] 21.15 22.62 21.99 21.20 17.00 15.97 16.07 15.47 17.66 16.78 18.59

Table 5.2: Perceptual fidelity to the base field. We measure the Perceptual Image Patch Similarity
(LPIPS ↓) between renderings of Fe and Fo from the sketch views outside the sketch regions. We
use VGG [75] as the base network for calculating LPIPS. SKED (no-preserv) refers to a variant of
our method which doesn’t apply Lpres. Text-Only refers to a public re-implementation of Dream-
Fusion [62]. Latent-NeRF [47] is a modified version of their sketch-shape generation pipeline.

Method Cat Cupcake Horse Sundae Plant Mean
+chef hat +candle +horn +cherry +flower
A B A B A B A B A B

SKED 0.070 0.069 0.069 0.061 0.028 0.032 0.086 0.094 0.158 0.128 0.079
SKED (no-preserv) 0.290 0.250 0.091 0.093 0.089 0.098 0.169 0.154 0.291 0.309 0.183
Text-Only 0.150 0.137 0.076 0.076 0.115 0.134 0.081 0.079 0.170 0.180 0.120
Latent-NeRF [47] 0.102 0.101 0.066 0.065 0.081 0.100 0.139 0.141 0.108 0.113 0.101
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Table 5.3: Sketch alignment score. We measure whether the sketch region is filled with generated
mass by a metric we refer to as Intersection-over-Sketch (IoS ↑). The IoS is calculated by comparing
the sketch regions’ area and the generated edit’s alpha mask. Refer to Section 5.3 for more details.
The SKED (no-silh) variant, which runs with Lpres and without Lsil avoids generating content in
the sketch region (see also Fig. 5.7)

Method Cat Cupcake Horse Sundae Plant Mean
+chef hat +candle +horn +cherry +flower

View 1 View 2 View 1 View 2 View 1 View 2 View 1 View 2 View 1 View 2

SKED 0.9384 0.9689 0.8364 0.8875 0.6423 0.5363 0.7817 0.9096 0.9388 0.7801 0.8220
SKED (no-silh) 0.0196 0.0176 0.0263 0.0209 0.0090 0.0077 0.0541 0.0506 0.0024 0.0028 0.0211

5.3.2 Sketch adherence

To evaluate how closely our framework adheres to the input multiview sketches, we have developed

a new metric called Intersection-over-Sketch (IoS). This metric calculates the ratio of the sketch

regions that are filled with the generated mass. The IoS is computed as follows:

IoS =
N∑

i=1

|Mi ∩ Cα
i |

|Mi|
, (5.1)

where Mi represents the area of the sketch region in sketch view i, and Cα
i denotes the thresholded

alpha object mask rendered from the same view using Fe with threshold value α. To ensure that our

measurement is not sensitive to the thresholding value α we average the IoS with nine α values in

the range [0, 1].
As shown in Table 5.3, our Lsil effectively ensures that the sketch region is filled in accordance

with the input multiview sketches. However, it is important to note that this metric does not assess

the semantic accuracy of the edit relative to the input text prompt. For instance, if a method were to

uniformly fill the entire sketch region with a single color, it would still yield high IoS values.

5.3.3 Semantic alignment

To measure whether our framework generates semantically correct edits according to the input text

prompt, we use CLIP-similarity [63] of renderings of the edited object from Fe and the text prompt.

More precisely, we render the object from forty randomly sampled views for each object and average

the CLIP-similarity of these images with the text prompt. As can be seen in Table 5.4, although our

framework does not directly optimize for CLIP-similarity, the results are comparable with the Text-

Only framework. We attribute the lower scores of our method in some examples to the additional

constraints we optimize for, such as sketches, which prevent the model from generating artificially

meaningful results. In contrast, the Text-Only approach often produces artifacts that, while seman-

tically close to the input text prompt, lack realism. (See qualitative ablation results for Text-Only in

Fig. 5.7).
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Table 5.4: Semantic alignment score. We measure the CLIP-similarity [63] ↑ of renderings of each method’s
output from random views and the input text prompt. Text-Only refers to a public re-implementation of [62].
Compared to the Text-Only framework which alters the whole base object to increase image-text similarity,
SKED preserves the base model while respecting the sketch constraints and maintaining semantic similarity
with the text prompt.

Method Cat (+hat) Cupcake (+candle) Horse (+horn) Sundae (+cherry) Plant (+flower) Mean

Ours 0.2336 ± 1.1e-3 0.2849 ± 4.2e-3 0.2943 ± 4.8e-3 0.2635 ± 2.4e-3 0.2933 ± 4.0e-3 0.2739
Text-Only 0.2744 ± 4.4e-3 0.2818 ± 6.2e-3 0.2928 ± 8.4e-3 0.2674 ± 4.9e-3 0.2865 ± 3.3e-3 0.2806

5.4 Ablation Studies

We utilize two loss terms in our framework to achieve localized sketch-based editing: Lpres, which

preserves the original content of the object, and Lsil, which generates edits based on the input

multiview sketches. We conduct ablation studies on these two loss functions and present visual

examples in Fig. 5.7. Text-Only refers to directly applying DreamFusion[62] to a base NeRF. While

the output aligns with the given text prompts, the geometry and color of the base object change

drastically. Similarly, when only Lsil is applied, the sketch region changes according to the text

prompt, but the base object also undergoes significant alterations. In contrast, applying only Lpres

preserves the base object but leaves the sketch regions unchanged. Only by using both loss functions

together does the framework ensure that the sketch region is edited according to the input text

prompt and multiview sketches while preserving the base object.

In Fig. 5.8, we investigate the impact of the diffusion model type used as our semantic prior.

Prior research [82] has indicated that using open-source text-to-image models like Stable Diffu-

sion [66] in text-to-3D pipelines often results in lower quality 3D objects compared to commercial,

larger models such as Imagen [68]. This disparity is due to open-source models being less responsive

to directional prompts and generally less powerful overall. In our work, we observe a similar trend.

When utilizing a more advanced text-to-image model, DeepFloyd [79], we can frequently achieve

successful edits where Stable Diffusion fails. As illustrated in Fig. 5.8, Stable Diffusion cannot gen-

erate a gift box on the table, while DeepFloyd, serving as the generative prior, successfully creates

a plausible gift box.
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Base Model Text-Only Ours
–Lpres, Lsil

Ours
Lpres, –Lsil

Ours
full

Figure 5.7: Ablation study. The effect of our loss functions is shown in two examples. The text
prompts used for these edits are "A cat wearing a chef hat" and "A red flower stem rising from a
potted plant". All settings for experiments are identical except the use of the two proposed losses
Lpres and Lsil. Text-Only is a reimplementation of DreamFusion [82].

Base Model Text Prompt Input Sketches SKED
Stable Diffusion [66]

SKED
Deepfloyd-IF [79]

Figure 5.8: Effect of the diffusion Model backbone. Any text-to-image diffusion model can be used in our
framework
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Chapter 6

Conclusion and Limitations

In this thesis, we introduced SKED, a framework for editing 3D objects represented as Neural

Radiance Fields (NeRFs), utilizing both text prompts and multiview sketches. We established that

semantic, sketch-based 3D editing of NeRFs is complex, requiring the problem to be split into two

distinct parts. The first part creates a coarse geometry from the input sketches and ensures the edits

align with these sketches. The second part focuses on producing realistic edits that comply with

the text prompt by leveraging the capabilities of a pretrained text-to-image diffusion model as a

semantic prior.

To guide and constrain the editing process effectively, we developed two novel loss functions.

The first, the preservation loss, ensures that the density and color fields of the NeRF outside the

sketched regions remain unchanged. The second, the silhouette loss, guarantees that the edits occur

within the sketched regions and that these areas are adequately filled. Our evaluations demonstrate

that both loss functions are essential, providing the necessary constraints for successful sketch-based

3D editing.

However, our framework, SKED, inherits limitations from the text-to-3D generation pipeline of

DreamFusion [62]. Firstly, SKED involves a lengthy optimization process that prevents its use in

real-time applications. Secondly, it encounters issues common to SDS-based 3D generation, namely

over-saturated colors and the multi-face problem. Over-saturated colors result from the necessary

use of a large classifier-free guidance scale for score distillation sampling. Recent developments in

SDS loss variants [89, 30], have shown potential in mitigating this issue, and their integration may

benefit our framework. The multi-face issue, illustrated in Fig.6.1, arises due to biases in the pre-

trained text-to-image diffusion models. These models often develop a preference for common poses

found in training data—for example, more images of cats from the front than the back—leading to a

lack of directional understanding. Consequently, 3D assets generated may be semantically coherent

but structurally unrealistic, such as a cat with multiple faces or a structurally incorrect Santa hat (see

Fig.6.1).

There are numerous possibilities for future research building on our work. One intriguing direc-

tion is using sketch scribbles to introduce motion into generated 3D assets. By interpreting dynamic

sketches, this approach could facilitate the creation of animated sequences or interactive 3D models
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Figure 6.1: An example of the multi-face problem in our framework. Because the diffusion model
lacks the directional understanding of a "Santa hat", it generates an edit which, while semantically
correct, is not structurally realistic.

that respond to user input, enriching the application of NeRFs in virtual and augmented reality envi-

ronments. Another potential avenue involves adapting our sketch-based loss functions to edit other

visual domains, such as videos. This could lead to innovative techniques for video post-production,

where editors can make substantial modifications through intuitive sketch inputs. Finally, our re-

search can be extended for multiview or single-view sketch-based 3D generation.
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