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Abstract

Assessing and managing risks is essential for insurance companies. We recognize the heavy-
tailed behaviour and dependency among different coverages in insurance claim datasets.
To capture claim dependency, we proposed a hierarchical model and several Copula-Based
models. Composite models are applied to address the heavy-tailed behaviour of individual
losses. To evaluate the performance of the proposed model from the insurance aspect, we
approximate the risk measures using the Monte Carlo methodology. Finally, we demonstrate
that the model considering dependency enhances model goodness-of-fit while providing more
accurate risk measures of the aggregate losses for all types of coverage in total.
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Chapter 1

Introduction

Insurance provides financial compensation to individuals or companies after a particular
event occurs. In life insurance, the company compensates for the insured’s death; in home
insurance, the insurer covers the damage to the residential property. There is also a type of
insurance that protects insurance companies from losses called reinsurance.

Assessing and managing potential losses are essential for insurance companies. Without
a correct understanding of such risks, the insurance design might not be reasonable and
may cause unexpected losses. For example, an earthquake in an area may cause substantial
financial loss to the insurance companies.

Understanding the risks and developing an effective risk-managing strategy can benefit
companies and the economy in several ways. First, a correct understanding of risks helps the
company evaluate on a fairness basis. For instance, in life insurance, it is common for smokers
to be charged higher premiums compared to nonsmokers. Next, effective risk management
provides stable protection to society. Furthermore, appropriate risk management prevents
the company from bankruptcy, which can cover individual losses of the insured. The previous
two are the advantages of economics. Moreover, a company with a robust risk management
strategy can price the insurance product competitively.

From a statistical point of view, applying random variables to transform real-life sce-
narios into mathematical expressions to study uncertainty is well-known. Discrete random
variables are employed for countable scenarios, while continuous random variables are suit-
able for uncountable situations. Furthermore, selecting appropriate random variables and
creating models should account for more detailed risk behaviours. Eling (2012) used several
skewed distributions from the skewed-elliptical distribution family to simulate that the in-
surance claims are not symmetric. Hong and Martin (2018) proposed a non-parametric type
of model, the Dirichlet process mixture model, which applied historical data and avoided
complicated model selection processes.
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1.1 Heavy-Tailed Distribution

One of the main behaviours of insurance losses is the high possibility of extreme events.
During risk mitigation processes, if companies pool the risk based on the expected total
claim amount, such extreme events can result in excessively large claims, dampening the
solvency of the insurance portfolio. In this regard, there have been many approaches that
could handle heavy-tailed behaviours of insurance claims.

Starting from the exponential distribution family, there are some heavy-tailed distribu-
tions, such as Pareto, Inverse-Gamma, and Weibull, under certain parameter settings. They
often appear in actuarial literature to model the individual loss random variables.

Furthermore, two famous theorems contribute to modelling extreme values: the Fisher-
Tippett-Gnedenko theorem and the Pickands-Balkema-De Haan theorem. The Fisher-Tippett-
Gnedenko theorem, contributed by Fisher and Tippett (1928) and Gnedenko (1943), sug-
gests dividing a sample into multiple subsamples and utilizes the distribution of the most
significant values of subsamples is one of the Fréchet, Gumbel, or Weibull distributions.
The Pickands-Balkema-De Haan theorem shows that the excess values of a sample can be
studied using the generalized Pareto distribution. There has been some discussion around
the two approaches. One of the most recent, Bücher and Zhou (2021), discussed the block
maxima and peak-over-threshold (POT) approach in several scenarios. There are also some
applications in multiple research areas. Resnick (1997) applied the POT approach to ana-
lyzing the Danish fire losses, the same dataset we used in this project; Hou and Liu (2023)
investigated the mooring line for fish cages.

However, block maxima and generalized Pareto distributions only describe extreme be-
haviours. With a primary focus on extreme losses, the model cannot reflect other loss
situations accurately. To address that, mixture and splicing models were proposed to com-
bine multiple distributions to better describe the risk on the whole distribution’s support.
Miljkovic and Grün (2016) discussed several mixture models for multimodality insurance
losses. Unlike the mixture models, which combine multiple distributions overlapping, the
splicing models divide the whole support into multiple regions and combine distributions
without overlaps. Fung et al. (2024) provided a comprehensive introduction about the mix-
ture and splicing models and proposed soft splicing models to connect both. In this project,
we apply composite models, a special type of splicing model. In particular, they combine
the distribution with consideration of the continuity and differentiability at splicing points.
There are quite a few articles that applied composite distributions: Scollnik and Sun (2012),
Cooray and Ananda (2005), and Pigeon and Denuit (2011).

1.2 Dependency Modelling for Insurance Claims

In addition to the behaviour of a single loss, insurance companies are also interested in an-
alyzing aggregate losses for risk diversification and company operation purposes. However,
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risks might be related and affect each other. Some factors affect insurance claims (or cover-
ages) simultaneously, or different insurance lines will affect each other’s likelihood of claims
occurring. For instance, natural disasters in a region damage all properties and cause mul-
tiple insurance claims. Hence, hierarchical and Copula-Based modelling frameworks were
regularly discussed to describe such relationships.

Hierarchical modelling bridges the relationship between different events by sharing the
belief that the risks from a common environment are not independently distributed, and
such modelling schemes have been widely applied in several fields. Pechon et al. (2021)
introduced a correlated random effects model for multivariate credibility. It aims to study
the hidden risk factors in individual policyholders that jointly affect home and motor claims.
Likewise, Fung et al. (2023) applied compound claim frequency models, which simulated
how storms influence the claim counts.

However, constructing such models requires a deep understanding of the data and is
entirely arbitrary. Without intuitions of causation among the events, creating a model like
that is challenging. Alternatively, a Copula-Based method avoids such settings by flexibly
connecting random variables using a dependent structure. More specifically, we can create
a joint distribution using any marginal random variables and a dependent structure. Such
a dependent structure is called a copula and is defined by Sklar (1959). In his work, he
proposed a theorem to decompose an existing joint distribution into marginal distributions
and a copula function. Further, the theorem also allows for constructing a joint distribution
from marginal distributions and a copula function. Continuing Sklar’s work, several para-
metric copula functions have been proposed: Clayton (1978) proposed Clayton copula; Joe
(1993) introduced Joe copula, etc.

The Copula-Based methodologies became more mature, extending the concept in several
directions. Lee (2002) and Cameron et al. (2004) combined the copula with regression.
Other than continuous margins, some research applied the copula with discrete margins.
Nikoloulopoulos (2013) did inferences on the asymptotic for the multivariate normal copula
with some discrete regressions. Recently, Oh et al. (2021) and Jeong et al. (2023) applied
copula structure to connecting insurance claim components.

Overall, there is no winner regarding which method is the best. Hierarchical modelling
is more intuitive and interpretable than Copula-Based models. However, in some scenarios,
Copula-Based schemes provide more flexibility.

1.3 Motivation & Contributions

The Danish multi-peril fire loss dataset contains 2167 fire claims reported to reinsurance,
which involves three loss sources: building, contents, and profits.

Over the past few decades, this dataset has been studied from different aspects.
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1. McNeil (1997) applied the generalized Pareto distribution. He estimated the parame-
ters and made inferences related to the goodness of fit.

2. Resnick (1997) studied the tail behaviour and tested the time-independent assumption
for the aggregate fire loss.

3. Cabras and Castellanos (2011) implemented an additive mixture model to study the
dataset. One component of the additive mixture model is a generalized Pareto distri-
bution to capture the heavy-tailed behaviour.

Most research focused on the heavy-tailed behaviour of the aggregate loss caused by fire
and provided a series of statistical inferences.

Inspired by existing research, we recognize the heavy-tailed aggregate loss in this dataset
and how dependency will influence the studies’ results. The impacts could be more substan-
tial, especially when both come together. Therefore, we conduct a comprehensive study to
consider both issues and discuss the results with the risk management aspect. By extending
individual and collective risk models, we propose three different types of models in this
project to describe the claim numbers: a Fully Independent model as a benchmark model,
a hierarchical model constructed intuitively, and finally, some Copula-Based models. Mean-
while, several 2-component composite models study the severity component. After conduct-
ing statistical and risk analyses, we conclude that the models with dependency structure
significantly enhance model goodness-of-fit and provide more accurate risk measures of the
aggregate losses for all types of coverage in total.

The remainder of this project is organized as follows: Chapter 2 provides an overview
of the modelling frameworks for frequency and severity components. In Chapter 3, we start
by introducing the dataset. The proposed models are applied to Danish fire losses, followed
by simulations to assess the risk measures for different proposed models. The last chapter,
Chapter 4, concludes the studies.
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Chapter 2

Methodology

The central intuition of modelling aggregate losses in a fixed time period is recognizing two
uncertainties: the number of claims and the associated losses. Inspired by traditional and
recent modelling frameworks, we study the aggregate loss in this project by constructing
models that accommodate the dependency among different insurance coverages and the
heavy-tailed behaviour of the losses.

In the following sections, we start with the traditional modelling framework, collective
and individual risk models, for modelling the aggregate claims. Then, we introduce how
the collective and individual risk models are applied in this project. Next, the maximum
likelihood parameter estimation method is reviewed. Finally, in the spirit of the collective
and individual risk models, we propose statistical models for both frequency and severity
components.

2.1 Aggregate Loss Models

There are mainly two approaches to model aggregate claims in fixed periods, the individual
and collective risk models. While the former is applied to study the loss by aggregating
a certain number of individual losses, the latter is normally used to model the loss by
aggregating claims occurring under one policy with a random number of claims. They are
utilized depending on the purpose of analysis and applications. In our study, our proposed
models aggregate the losses at the coverage level in the spirit of the collective risk model.
Then, using the individual risk model, we sum the losses from three insurance coverages.

2.1.1 Individual Risk Model

Consider a group of n independent policies over a specific time period. Let Si denote the loss
incurred from the ith policy during this time period, which can also be viewed as the claim
amount paid to individual policy i with no insurance modification. We write Si = Ii · Yi,
where Ii is a Bernoulli random variable with probability pi that a loss occurs, and Yi is the
associated loss amount with distribution function FYi .
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We can further express the distribution function of Si for individual policy i based on
the setting as

FSi(si) =

1 − pi si = 0;

1 − pi + pk · FYi(si) si > 0,

which is a mixed distribution with a probability mass at 0 and continuous on values greater
than 0. By recognizing Si is a compound binomial distribution (i.e., Si = ∑Ii

k=1 Yk, with
Si = 0 when Ii = 0), the mean and the variance of Si can be derived as:

E[Si] = E[E[Si|Ii]]

= (1 − pi) · E[Si|Ii = 0] + pi · E[Si|Ii = 1]

= pi · µi,

Var[Si] = E[Var[Si|Ii]] + Var[E[Si|Ii]]

= pi · σ2
i + pi(1 − pi)µ2

i ,

where µi and σ2
i are the mean and the variance of Yi, respectively.

The characteristics of the aggregate loss of n independent policies, S, defined by

S =
n∑

i=1
Si

can be obtained as follows:

• Mean: E[S] = ∑n
i=1(pi)µi;

• Variance: Var[S] = ∑n
i=1

[
pi
(
σ2

i + (1 − pi)µ2
i

)]
.

Note that in a special case, where the distribution is the same for all the policies, i.e.,
for all i = 1, 2, . . . , n, pi = p, and FYi = F with µi = µ and σ2

i = σ2, the characteristics of
S can be deduced to

• Mean: E[S] = ∑n
k=1[pkµk] = npµ;

• Variance: Var[S] = n[pσ2 + p(1 − p)µ2].

2.1.2 Collective Risk Model

Unlike the individual risk model, the collective risk model aggregates the claims occurring
in a specific time period. Let a random variable N denote the number of claims with mean
µN and variance σ2

N . The claim amount (or severity) random variable of the ith claim is
denoted by Yi with common mean µY and common variance σ2

Y . By summing up all the
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losses, the corresponding aggregate loss random variable, S, can be expressed as

S =
N∑

i=1
Yi.

Note here S = 0, if N = 0. We assume that loss random variables, {Yi}i≥1, are independent
and identically distributed. In addition to this assumption, we assume that N is independent
of all loss random variables, which allows for separately modelling frequency and severity.
However, these two assumptions may not be reasonable in practice. Vernic et al. (2021)
applied a bivariate Sarmoanov distribution to capture the dependence between the frequency
and severity components.

Then, the attributes of the aggregate loss random variable can be derived as

E[S] = E
[
E
[

N∑
i=1

Yi|N
]]

= E
[

N∑
i=1

E[Yi]
]

= E [N · µY ]

= µN · µY ,

Var[S] = E[Var[S|N ]] + Var[E[S|N ]]

= E[N · σ2
Y ] + Var[N · µY ]

= µN · σ2
Y + σ2

N · µ2
Y .

2.1.3 Discussion

As mentioned in the first chapter, our research interest is to study the Danish reinsurance
aggregate losses occurring during a month or monthly aggregate losses. Specifically, we
are interested in modelling total monthly losses under three insurance coverages (building,
contents, and profits). The collective risk modelling framework is applied for each coverage
to model the total losses. Then, the idea of individual risk framework is utilized, the add-up
of the losses from three coverages is the aggregate loss we are interested in. For month t,
by denoting N1t, N2t, and N3t as the number of claims corresponding to three insurance
coverages occurred in the tth month, respectively, and Yitk as the kth claim amount under
the ith coverage incurred in month t, the aggregate loss of the tth month, St, can then be
expressed as

St =
3∑

i=1

Nit∑
k=1

Yitk. (2.1)

In the following sections of this chapter, we introduce a Fully Independent model, a
Binomial Thinning model, and three Copula-Based models. The Fully Independent model
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assumes no dependency among N1t, N2t, and N3t, t = 1, 2, . . .. However, the Binomial
Thinning uses the number of claims reported (each claim reported could have losses in
any of the three coverages) to bridge the relationships among the three claim numbers.
The Copula-Based models connect three claim numbers directly using copula functions.
Although the aggregate loss in the tth month is the same as presented in (2.1), N1t, N2t,
and N3t are correlated under the Binomial Thinning and Copula-Based models.

2.2 Maximum Likelihood Estimations

The maximum likelihood estimation is a method that uses observations to estimate the
parameters for a proposed distribution (model). This method is widely used because it is
flexible and fully uses the observed data. Compared to the method of moments, which uses
raw moments to estimate the model parameters, the maximum likelihood method considers
every observation, which can be either a single outcome or an event.

Let x1, . . . , xT be T observations. Given a distribution function with a vector of param-
eters, Θ, the likelihood function can be written as

L(Θ|x1, . . . , xT ) =
T∏

t=1
fX(xt), (2.2)

where fX is the probability density function or probability mass function of Xis, depend-
ing on whether the distribution is continuous or discrete. However, Equation (2.2) is the
likelihood function for single-value observations. The likelihood function for other types of
observations, such as truncated observations, can also be constructed.

The maximum likelihood estimation provides a way to estimate the parameters of the
underlying distribution, the so-called maximum likelihood estimate. The maximum likeli-
hood estimation suggests a set of parameter values assumed model result in the observed
data. In practice, one can maximize the logarithm of likelihood functions for computational
and mathematical convenience. From Equation (2.2), the log-likelihood function, denoted
as l, is given by

l(Θ|x1, . . . , xT ) = log [L(Θ|x1, . . . , xT )]

=
T∑

t=1
log [fX(xt)] .

To obtain the maximum likelihood estimation of the parameters, we first take the partial
derivatives of the log-likelihood function with respect to each of the parameters, and then
the maximum likelihood estimators can be obtained by solving the following system of
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equations: 
∂

∂θ1
l(Θ|x1, . . . , xT ) = 0

...
∂

∂θm
l(Θ|x1, . . . , xT ) = 0

,

where m is the total number of parameters. In general, obtaining the closed-form solutions
to this system of equations is difficult. One can apply the Newton-Raphson Method to solve
such problems iteratively or use other numerical methods.

Besides determining the parameter estimates, the likelihood function values at maxima
can be used to obtain a model selection criterion. Provided that the estimated parameter
of a statistical model is Θ̂, Akaike information and Bayesian information criteria (AIC and
BIC) are widely used and defined as follows:

AIC = 2m− 2l(Θ̂|x1, . . . , xT ),

BIC = m ln(T ) − 2l(Θ̂|x1, . . . , xT ),

where m represents the number of parameters (the number of elements of Θ̂). AIC is a
model evaluation criterion that considers the model’s complexity into account. Given the
same log-likelihood function values under two different models, AIC suggests using a model
with fewer parameters. BIC considers both the number of parameters and the number of
observations. Both AIC and BIC select the most preferred model by choosing the smallest
value.

2.3 Frequency Modelling Frameworks

In this section, we propose three types of frequency models to study the number of claims:
Fully Independent model, Binomial Thinning model, and Copula-Based models. The in-
dependent model is used as a benchmark model for comparison. The Binomial Thinning
model is a typical model that captures the dependency among the claim numbers in differ-
ent lines. However, it only allows a fixed dependency structure between any two margins.
Copula-Based models construct the joint distribution of claim counts from different lines of
business with great flexibility. These three types of models are to be introduced respectively
in the following three subsections.

2.3.1 Benchmark Model: Independent Frequency Model

From Equation (2.1), by directly applying collective and individual risk models, we get a
Fully Independent compound model, which is treated as a benchmark model throughout the
remaining analyses. In addition to the independence assumption between the frequency and
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severity components, it also assumes that the number of claims under different coverages
are independently distributed.

Let N1t, N2t and N3t represent the number of claims under the building, contents, and
profits coverages, respectively, in the tth month. All claim numbers observed from the three
coverages are overdispersed. Because of that, we assume that Nit ∼ N B(ri, λi) for the ith

insurance coverage. The probability mass function of claim numbers Nit is

Pr(Nit = nit) = Γ(ri + nit)
Γ(ri)Γ(nit + 1)

(
λi

ri + λi

)nit
(

ri

ri + λi

)ri

, nit = 0, 1, 2, . . . , (2.3)

with mean and variance being λi and λi(1 + λi/ri).
The likelihood function with T (months) observations can be written as

L(Θ|D) =
T∏

t=1
Pr(N1t = n1t, N2t = n2t, N3t = n3t; Θ)

ind.=
T∏

t=1
Pr(N1t = n1t; Θ) · Pr(N2t = n2t; Θ) · Pr(N3t = n3t; Θ)

=
T∏

t=1

3∏
i=1

[ Γ(ri + nit)
Γ(nit + 1)Γ(ri)

(λi/ri)nit

(1 + λi/ri)ri+nit

]
, (2.4)

where Θ is a vector of six parameters, and D is an observation set which contains the
observed claim numbers of all three coverages for T months.

For parameter estimations, we use the maximum likelihood approach and use maximum
likelihood estimators for further investigation. Because of the independent assumption, we
do not need to start with the full likelihood. Instead of (2.4), we can estimate the parameters
of each marginal distribution separately. In this case, the likelihood function for claim
numbers of ith coverage is given by

Li(ri, λi|ni1, . . . , niT ) =
T∏

t=1
Pr(Nit = nit; ri, λi)

=
T∏

t=1

Γ(ri + nit)
Γ(ri)Γ(nit + 1)

(
λi

ri + λi

)nit
(

ri

ri + λi

)ri

.
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Then, its log-likelihood can be expressed as

li(ri, λi|ni1, . . . , niT ) =
T∑

t=1
log[Pr(Ni = ni; ri, λi)]

=
T∑

t=1
log[Γ(ri + nit)] − T log[Γ(ri)] −

T∑
t=1

log[Γ(nit + 1)]

+
T∑

t=1
nit log

(
λi

ri + λi

)
+ Tri log

(
ri

ri + λi

)
. (2.5)

Since the maximum likelihood estimators of the negative binomial distribution do not have
closed-form expressions, we apply a numerical method to approximate the parameter values
that maximize the log-likelihood given by (2.5) for i = 1, 2, 3.

2.3.2 Binomial Thinning Model

Hierarchical models inspire us to propose a joint frequency distribution at a multilevel since
the data contains the number of claims reported each month, and each claim reported could
have losses in any of the three insurance coverages. Given the number of claims reported
in month t, denoted as Mt, it is natural to assume that the claim numbers for different
insurance coverages are all binomially distributed with size parameter Mt, and the three
claim counting random variables are conditionally independent.

We propose a Binomial Thinning model, in which we assume a negative binomial model
for the reported claim numbers with parameters r and λ. Furthermore, we assume that for
i = 1, 2, 3, (Nit|Mt) ∼ BN (Mt, λi/λ), where λi/λ is the probability of a reported claim
having a loss in ith coverage, for the three sources of claim numbers. The joint probability
mass function can be expressed as

Pr(Mt = mt, N1t = n1t, N2t = n2t, N3t = n3t)

= Pr(Mt = mt) · Pr(N1t = n1t|Mt = mt) · Pr(N2t = n2t|Mt = mt) · Pr(N3t = n3t|Mt = mt)

=
[ Γ(r +mt)

Γ(mt + 1)Γ(r)
(λ/r)mt

(1 + λ/r)r+mt

]
·

3∏
i=1

[(
mt

nit

)
λnit

i (λ− λi)mt−nit

λmt

]
. (2.6)

Since the three claim numbers are conditionally independent of each other, given the number
of reported claims, we can obtain that the marginal distribution of Nit is a negative binomial
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with size parameter r and mean λi. The detailed derivation is shown below:

Pr(Nit = nit)

=
∞∑

mt=nit

[Pr(Nit = nit|Mt = mt) · Pr(Mt = mt)]

=
∞∑

mt=nit

[ Γ(r +mt)
Γ(mt + 1)Γ(r)

(λ/r)mt

(1 + λ/r)r+mt

]
·
[(
mt

nit

)
λnit

i (λ− λi)λ−nit

λmt

]

= Γ(r + nit)
Γ(nit + 1)Γ(r)

∞∑
mt=nit

(
r +mt − 1
mt − nit

)(
λ− λi

λ

)mt−nit
(
λi

λ

)nit
(

λ

λ+ r

)mt
(

r

λ+ r

)r

= Γ(r + nit)
Γ(nit + 1)Γ(r)

(
λi

λi + r

)nit
(

r

λi + r

)r ∞∑
mt=nit

(
r +mt − 1
mt − nit

)
(λi + r)nit+r(λ− λi)mt−nit

(λ+ r)mt+r

= Γ(r + nit)
Γ(nit + 1)Γ(r)

(
λi

λi + r

)nit
(

r

λi + r

)r

, nit = 0, 1, 2, . . . .

Note that the claim numbers under each coverage cannot exceed the reported claims. As
a result, the summation for mt in the above derivation is summing from nit instead of
0. We can write the last step directly from the previous step because we recognize that
the summation is summing probability mass functions of a negative binomial from 0 to
infinity. An alternative way to show that the marginal distribution of claim numbers is
negative binomial is to use generating functions, either moment-generating or characteristic
functions.

The likelihood function for T months data is the product of T joint probability mass
functions, given by (2.6). It can be written as

L(Θ|D) =
T∏

t=1
Pr(Mt = mt, N1t = n1t, N2t = n2t, N3t = n3t),

=
T∏

t=1

{[ Γ(r +mt)
Γ(mt + 1)Γ(r)

(λ/r)mt

(1 + λ/r)r+mt

]
·

3∏
i=1

[(
mt

nit

)
λnit

i (λ− λi)mt−nit

λmt

]}
. (2.7)

Compared with the independent model, this Binomial Thinning considers the dependency
among three lines of business. However, an obvious drawback is the unchangeable dependent
structure. The dependent relationship is tied to the marginal distributions. For the Binomial
Thinning model, marginals are consistently correlated. If the observation shows a more
correlated dependency in extreme cases, such hierarchical models cannot flexibly adjust the
relationship among the marginal random variables.

2.3.3 Copula-Based Frequency Model

To overcome the drawback of the Binomial Thinning model, we consider the copula ap-
proach. Copula is a joint distribution with standard uniform marginal distributions. By
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treating the cumulative distribution function as a standard uniform random variable, one
can combine any existing continuous marginal distributions with a copula function and get
a new joint distribution. This process can be reversed. The idea was first proposed by Sklar
(1959) and applied in different research areas.

This section reviews the basic concept of copula, its definition, and its associated prop-
erties. Moreover, some implicit and explicit copulas are introduced as examples that will be
applied in the application chapter. We also discuss applying copula with discrete random
variables and the likelihood function.

Sklar (1959) defined copula functions. The main theorem is stated below.

Theorem 1. Let X1, . . . , Xn be n continuous random variables. Their corresponding dis-
tributions are denoted by F1, . . . , Fn. The corresponding copula function is

C(F1(x1), . . . , Fn(xn)) = F (x1, . . . , xn), (2.8)

where F is the joint distribution of Xis.

By using Theorem 1, we can split a joint distribution into two parts. One part is the
marginal distributions, and the other is the copula function, which we treat as a built-in
dependent structure of the joint distribution. In addition, we can build a joint distribution
by combining the marginal distributions with a copula function to capture the dependence
between the marginals.

We can get its density since we can treat a copula function as a joint cumulative distri-
bution of n standard uniform random variables.

Corollary 1.1. Given that C(F1(x1), . . . , Fn(xn)) defined by (2.8) is a joint distribution
function, the corresponding joint density for n uniform margins and the joint density for
x1, . . . , xn are

c(F1(x1), . . . , Fn(xn)) = ∂n

∂F1(x1) · · · ∂Fn(xn) [C(F1(x1), . . . , Fn(xn))] ,

f(x1, . . . , xn) = ∂n

∂x1 · · · ∂xn
[C(F1(x1), . . . , Fn(xn))]

= f1(x1) · · · fn(xn) · c((F1(x1), . . . , Fn(xn))), (2.9)

where c is the joint probability density function of F1(X1), . . . , Fn(Xn), f is the joint proba-
bility density function of Xis corresponding to F , and ∀i = 1, . . . , n, fi are marginal density
functions.

The following can be proved since copula functions are joint distribution functions.

Corollary 1.2. Suppose that C(F1(x1), . . . , Fn(xn)) is a copula function, 0 ≤ u1 ≤ u2 ≤ 1.
For all j ∈ {1, . . . , n}, the following properties hold:
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• C(0, . . . , 0) = 0;

• C(1, . . . , 1) = 1;

• C(F1(x1), . . . , Fj(u1), . . . , Fn(xn)) ≤ C(F1(x1), . . . , Fj(u2), . . . , Fn(xn));

• C(F1(x1), . . . , 0, . . . , Fn(xn)) = 0;

• C(1, . . . , Fj(x1), . . . , 1) = Fj(x1).

Figure 2.1 are examples of two-dimensional copulas. The left and right panels are the 2-
dimensional lower and upper Fréchet–Hoeffding copula bounds. They indicate the perfectly
negative and positive relationships, respectively, between two random variables. All copula
functions are bounded by these two surfaces. The middle panel is a Gaussian copula (see
below for its definition).

Figure 2.1: Three Copulas

There are two main types of copula functions: implicit and explicit. Implicit copulas are
extracted from the existing multivariate distributions. However, they are not required to
have explicit expressions. Unlike implicit copulas, explicit copulas have explicit formulas,
for which they are constructed by using generating functions.

By Theorem 1, a way to generate a dependent relationship is to extract it from the
existing joint distributions. Such types of copula are called implicit copulas. A Gaussian
copula is extracted from a multivariate normal distribution. Let U1, . . . , Un ∼ U(0, 1) with
correlation matrix P .

Cn
Gauss(u1, . . . , un) = ΦP (Φ−1(u1), . . . ,Φ−1(un)), (2.10)

where Φ−1 is the inverse of the cumulative distribution function of a standard normal
random variable, ΦP is the cumulative distribution function of multivariate standard normal
with correlation or covariance matrix P . The parameters associated are elements in the
correlation matrix, which has n(n − 1)/2 parameters describing the pairwise correlations.
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Given a pairwise correlation is equal to 1, the pair are perfectly positively correlated to each
other. The pair are perfectly negatively correlated if the pairwise correlation is −1.

In addition to the copulas extracted from existing distributions, a widely used class of
explicit copulas is Archimedean copulas. It provides a variety of dependent structures and
can be easily applied in practice.

Definition 1. An Archimedean generator ψ is a strictly decreasing, concave, and contin-
uous function. It maps numbers in (0,∞) to [0, 1] with ψ(0) = 1 and ψ(∞) = 0. The
corresponding Archimedean copula function is defined by

C(u1, . . . , un) = ψ(ψ−1(u1) + · · · + ψ−1(un)).

We now show two Archimedean copula structures, Gumbel and Joe copulas. The Gumbel
copula, introduced by Gumbel (1960), is constructed by the generator, ψG(t) = exp(−t1/θ),
for t ≥ 0 and θ ≥ 1. By the definition of the Archimedean copulas, the Gumbel copula is
defined as

Cn
G(u1, . . . , un) = ψG

(
ψ−1

G (u1) + · · · + ψ−1
G (un)

)
= exp

[
−(−(log u1)θ − · · · − (log un)θ)1/θ

]
, u ∈ [0, 1], (2.11)

where θ ≥ 1. The parameter can be interpreted as a level of dependency. When θ = 1,
there is no dependency among the margins; when θ increases, the tails of margins become
more and more positively correlated. The Joe copula is proposed by Joe (1993) with the
generator ψJ(t) = 1 − [1 − exp(−t)]1/θ, for t ≥ 0 and θ ≥ 1. The Joe copula can be written
as

Cn
J (u1, . . . , un) = ψJ

(
ψ−1

J (u1) + · · · + ψ−1
J (un)

)
= 1 −

1 − exp

−
n∑

j=1

(
− ln

(
1 − (1 − uj)θ

))1/θ

, u ∈ [0, 1], (2.12)

where θ ≥ 1. A larger θ indicates that the margins are more positively correlated. There
are many other examples of Archimedean copulas, such as Clayton copula introduced by
Clayton (1978).

We now consider the maximum likelihood estimation in the copula model situation.
With the observed information set D = {xit, i = 1, . . . , n, t = 1, . . . , T}, and using the joint
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density function, (2.9), the likelihood and log-likelihood functions can be expressed as

L(Θ|D) =
T∏

t=1
f(x1t, . . . , xnt)

=
T∏

t=1
f1(x1t) · · · fn(xnt) · c((F1(x1t), . . . , Fn(xnt))),

l(Θ|D) =
T∑

t=1
log f(x1t, . . . , xnt)

=
T∑

t=1
[log f1(x1t) + · · · + log fn(xnt)] +

T∑
t=1

[log c((F1(x1t), . . . , Fn(xnt))] , (2.13)

where Θ is a vector of parameters of the marginal distributions and the copula. The pro-
cedure of estimating the parameters uses the first part of Equation (2.13) as a profile
likelihood for estimating the parameters of the marginal distributions. Then, by plugging in
the estimated parameter values, we determine the maximum likelihood estimators of copula
parameters that maximize the log-likelihood function given by Equation (2.13).

To apply copula with discrete random variables, we now introduce a way to transform
the copula density into a mass function for discrete random variables. Let X1, X2, and X3

be discrete random variables with supports that are non-negative integers with cumulative
distribution functions F1, F2, and F3, respectively.

c(F1(x1), F2(x2)) = Pr[X1 = x1, X2 = x2]

= Pr[x1 − 1 < X1 ≤ x1, x2 − 1 < X2 ≤ x2]

= Pr(X1 ≤ x1, X2 ≤ x2)

− Pr(X1 ≤ x1 − 1, X2 ≤ x2) − Pr(X1 ≤ x1, X2 ≤ x2 − 1)

+ Pr(X1 ≤ x1 − 1, X2 ≤ x2 − 1)

= C(F1(x1), F2(x2))

− C(F1(x1 − 1), F2(x2)) − C(F1(x1), F2(x2 − 1))

+ C(F1(x1 − 1), F2(x2 − 1)).
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Similarly, for a three-dimensional copula function, the corresponding copula mass function
can be derived as

c(F1(x1), F2(x2), F3(x3)) = C(F1(x1), F2(x2), F3(x3))

−
3∑

h1=1
C(. . . , Fh1(xh1 − 1), . . .)

+
3∑

h1,h2∈{1,2,3};
h1 ̸=h2

C(. . . , Fh1(xh1 − 1), Fh2(xh2 − 1), . . .)

−
3∑

h1,h2,h3∈{1,2,3};
h1 ̸=h2 ̸=h3

C(Fh1(xh1 − 1), Fh2(xh2 − 1), Fh3(xh3 − 1)).

(2.14)

There are concerns regarding applying copula with discrete random variables. Instead
of a unique copula function with continuous margins, the discrete one may have an infinite
number of copula functions that can match the joint distribution. Assume we have two
dependent Bernoulli random variables. The sample space Ω = {(0, 0), (0, 1), (1, 0), (1, 1)}
with probabilities 0.2, 0.3, 0.1, and 0.4, respectively. It is evident that determining a copula
function with a small sample space is not robust enough. However, there are still some
reasons to use a copula with discrete random variables. Instead of two possible random
values for each margin, consider margins with supports being all non-negative integers such
as negative binomial. With a larger sample space, the possible copula function will be more
restricted and more robust when we compare different copula structures. Although there
are still infinite surfaces that pass through all the points, applying different surfaces will
not drastically affect the joint distribution with a specific shape of the surface.

In this project, we combine three negative binomial random variables with each of the
three copula functions: Gaussian, Gumbel, and Joe copulas. Let N1t, N2t, N3t be negatively
binomially distributed with Nit ∼ N B(ri, λi), i = 1, 2, 3. The log-likelihood function of a
Copula-Based frequency component can be derived from Equation (2.13) by plugging in
the probability mass functions of the margins, (2.3). The second part of Equation (2.13) is
obtained by discretizing the copula functions, (2.10), (2.11), and (2.12) using (2.14).

2.4 Severity Modelling Framework

We have considered the models for the frequency component of the aggregate loss model in
the last section. In this section, we study the models for the severity component. As men-
tioned in the first chapter, short-term insurance loss data is usually heavy-tailed. Composite
models can capture this behaviour while maintaining a good fit for the head part of the loss
distribution.
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A 2-component composite model combines the head part of a light-tailed distribution
with the tail part of a heavy-tailed distribution. Denote the densities for the head part
and tail part as g1(Y ) and g2(Y ) with cumulative distribution functions G1(Y ) and G2(Y ),
respectively. The density function of the 2-component composite model for the loss/claim
amount random variable can be expresses as

gcomp(y) =


1

1+ϕ g
∗
1(y), y < u;

ϕ
1+ϕ g

∗
2(y), y ≥ u,

(2.15)

where ϕ is a weight parameter, u represents the threshold that separates the two compo-
nents, and g∗

1 and g∗
2 denote the truncated distributions, given by g∗

1(y) = g1(y)/G1(u) and
g∗

2(y) = g2(y)/(1 −G2(u)). The cumulative distribution function of this composite model
can be expressed as

Gcomp(y) =


1

1+ϕ G
∗
1(y), y < u;

1
1+ϕ + ϕ

1+ϕ G
∗
2(y), y ≥ u,

=


1

1+ϕ
G1(y)
G1(u) , y < u;

1
1+ϕ + ϕ

1+ϕ
G2(y)

1−G2(u) , y ≥ u.

where G∗
1 and G∗

2 are the cumulative distribution function of truncated random variables
corresponding to g∗

1 and g∗
2. The inverse of the cumulative distribution function can be

obtained as

G−1
comp(p) =

G
−1
1 (p · (1 + ϕ) ·G1(u)) , p < 1

1+ϕ ;

G−1
2

((
p(1+ϕ)

ϕ − 1
ϕ

)
· (1 −G2(u))

)
, p ≥ 1

1+ϕ .
(2.16)

We only need to estimate the parameters of the head and tail distributions. In this study,
the threshold and weight parameters are determined by assuming that the density function
of this composite model is continuous and differentiable at the threshold. More specifically,
by the continuity assumption at u for (2.15), we have limy→u− g(y) = limy→u+ g(y), which
can be induced to obtain

ϕ =
limy→u− g∗

1(y)
limy→u+ g∗

2(x) = g1(u)(1 −G2(u))
g2(u)G1(u) . (2.17)

From the differentiability aspect for density function (2.15) at u, the following equality
holds:

1
1 + ϕ

lim
y→u−

d
dy g

∗
1(y) = ϕ

1 + ϕ
lim

y→u+

d
dy g

∗
2(y). (2.18)
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We further plug in the weight parameter given by Equation (2.17), and then Equation (2.18)
can be rewritten as

d
du ln

(
g1(u)
g2(u)

)
= 0. (2.19)

The following is an example to illustrate the process of determining the threshold and
weight parameters for Gamma & Inverse-Gamma composite models, given that we know the
distribution parameters. Let Y1 ∼ Gamma(α1, θ1) and Y2 ∼ Inv − Gamma(α2, θ2). Their
density functions are given by

g1(y1) = (y1/θ1)α1e−y1/θ1

y1Γ(α1) , y1 ≥ 0,

g2(y2) = (θ2/y2)α2e−θ2/y2

y2Γ(α2) , y2 ≥ 0.

By using Equations (2.17) and (2.19), we can obtain the threshold and weight parameters
as functions of the distribution parameters. In this case,

d
du

[
ln g1(u)
g2(u)

]

= d
du

ln
(u/θ1)α1 e−u/θ1

uΓ(α1)
(θ2/u)α2 e−θ2/u

uΓ(α2)


= d

du

[
α1 ln u− u

θ1
+ α2 ln u+ θ2

u

]
= (α1 + α2) 1

u
− 1
θ1

− θ2
u2 .

Then, we can use the u obtained to get the weight parameter ϕ using (2.17).
Table 2.1 lists the expression of the threshold parameter u or an equation to determine

u for other composite models that we consider in this project. Besides, one should recognize
that calculating the weight parameter can always be done by using (2.17).

Name Head Dist. Tail Dist. u

G & IG (x/θ1)α1 e−x/θ1
xΓ(α1)

(θ2/x)α2 e−θ2/x

xΓ(α2) u =
(α1+α2)+

√
(α1+α2)2−4 θ2

θ1
2/θ1

G & LN (x/θ1)α1 e−x/θ1
xΓ(α1)

exp
{

− (ln x−µ2)2

2σ2
2

}
xσ2

√
2π

0 = α1 − u
θ1

+ ln x−u
σ2

2

G & Pa (x/θ1)α1 e−x/θ1
xΓ(α1)

α2θ
α2
2

(x+θ2)α2+1 u =
(α1+α2− θ2

θ1
)+
√

(α1+α2
θ2
θ1

)2+4 θ2
θ1

(α1−1)
2/θ1

E & IG e−x/θ1
θ1

(θ2/x)α2 e−θ2/x

xΓ(α2) u =
(α2+1)+

√
(α2+1)2−4 θ2

θ1
2/θ1

E & LN e−x/θ1
θ1

exp
{

− (ln x−µ2)2

2σ2
2

}
xσ2

√
2π

0 = − 1
θ1

+ 1
u

+ ln u−µ2
uσ2

2

E & Pa e−x/θ1
θ1

α2θ
α2
2

(x+θ2)α2+1 u = (α2 + 1)θ1 − θ2

Table 2.1: Composite Models
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For the first column of the table, we use abbreviations to represent different distributions.
G & IG indicate the Gamma & Inv-Gamma composite model where Gamma distribution
represents modelling the head part of the composite distribution, and Inverse-Gamma stands
to model the tail part. Besides, LN represents Log-Normal; Pa stands for Pareto; E is used
for the head part and represents Exponential distribution. The Head Dist. and Tail Dist.
columns show the parameterization of the distributions of head and tail parts.
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Chapter 3

Application in Danish Reinsurance
Dataset

In this chapter, the frequency and severity models that we propose in Chapter 2 are applied
to the Danish reinsurance dataset for risk analyses of the aggregate loss under all three
insurance coverages. We consider the composite model to capture the heavy-tailed behaviour
in the dataset. Meanwhile, by comparing the frequency models through risk analyses, we
conclude that a relationship among different insurance coverages in this dataset exists and
is influential.

In the following sections, we first show our data exploration results. We then fit the data
to our proposed frequency and severity models. Finally, we apply the Monte Carlo approach
to approximate the risk measures under different models that we study in this project.

3.1 Data Exploration

In this project, we consider a well-known dataset, the Danish multi-peril fire losses, which
is available in R library, "CASdataset", and recorded by Copenhagen Reinsurance company,
which contains 2167 fire loss records in Danish Krone from 1980 to 1990. Each recorded
claim includes the loss amounts of three sections: building, contents, and profits. Table 3.1
shows a few rows of the data provided by this dataset. The Building, Contents, and Profits
columns show the Danish Krone losses in the millions, adjusted by inflation using 1985 as
the base year. The Total column aggregates the three amounts.

Date Building Contents Profits Total
1980-01-03 1.09809663 0.58565150 0.00000000 1.683748
1980-01-04 1.75695461 0.33674960 0.00000000 2.093704
1980-01-05 1.73258126 0.00000000 0.00000000 1.732581
1980-01-07 0.00000000 1.30537600 0.47437775 1.779754
1980-01-07 1.24450952 3.36749600 0.00000000 4.612006

Table 3.1: Excerpt from the Danish Fire Dataset
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As mentioned in Chapter 2, our focus is on modelling the aggregate losses during a
specific time period; here, we consider the monthly aggregate losses. Before applying the
modelling technique, we aggregate the claim numbers on a monthly basis to obtain the
following observations: the number of claims for each month, and the associated loss amount
under the ith line of insurance for each claim, for i = 1, 2, 3, where i = 1 represents the
damage to the building, i = 2 is the contents related, and i = 3 stands for the loss in profits.

After reorganizing the original data, we have observations for a total of 132 months.
Table 3.2 summarizes the monthly number of claims. The possible claim numbers range
from 0 to infinity. We also found overdispersion behaviours for all claim numbers. Based on
these, we conclude to use a negative binomial random variable for claim numbers. From the
summary statistics, all four claim numbers have means that are close to their medians. In
addition, the number of claims under building coverage has the highest mean value among
the three coverages. Losing profits are the least likely to happen. Besides, recall that a claim
reported will lead to losses in any of the three insurance coverages. Therefore, the maximum
of the reported claim number is the largest compared to the other three coverages’ claim
numbers. These behaviours on the claim numbers can also be explored from the boxplots
shown in Figure 3.1.

Source Min. 1st Qu. Median Mean 3rd Qu. Max.
Building 4 11 15 15.08 18 34
Contents 1 10 13 12.73 15 31
Profits 0 3 4 4.67 6.25 19

Claims Reported 7 13 16 16.42 19.25 37

Table 3.2: Summary of Claim Numbers

Figure 3.1: Claim Numbers’ Boxplots
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The claim numbers from three coverages are related based on the data structure and
the intuitions. When checked using the Pearson correlation coefficient, the Building and
Contents are highly correlated, with a coefficient of 0.88. Although the other two pairs are
not larger than 0.88, they are still moderately correlated, where the Pearson correlation
coefficients for Contents and Profits, and Building and Profits are 0.75 and 0.57, respec-
tively. In addition, both Kendall and Spearman’s rank correlation coefficients show positive
relationships among the claims. Figure 3.2 shows the scatterplots in which we can visually
observe the dependency between any two insurance coverages for the claim numbers.

(a) Building vs Contents (b) Building vs Profits

(c) Contents vs Profits

Figure 3.2: Scatterplots of Three Pairs of Claim Numbers

In addition to our previous observations, we check whether the independent assumption
is valid and whether there are seasonal effects. The lag 1-month autocorrelation statistic
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for the building claims is 0.21, which shows a weak time dependence. The profit sector
has the most significant lag 1-month autocorrelation of 0.51. To observe seasonal effects,
Figure 3.3 shows the boxplots of the claim numbers under the three insurance lines for each
month of the year. The plot shows mild seasonal effects. On average, the claim numbers
in summer and winter are observed to be greater than those in the other two seasons. In
summary, although the observations show some time dependencies and mild seasonal effects,
we assume time independence and focus on the dependency among coverages.

Figure 3.3: Seasonal Effects

Following the exploration of the frequency component, we further explore the individual
losses after eliminating the zero losses. Table 3.3 displays the summary statistics regarding
the individual losses for all three insurance coverages. From the table, we find that the loss
amount under the building coverage has the largest summary statistics. We also observe
from these statistics that all losses are heavy-tailed distributed. More specifically, we see
that the mean is larger than the median for each of the three lines, and the maximum is
quite significant compared to their corresponding third quartile statistics.

Source Min. 1st Qu. Median Mean 3rd Qu. Max.
Building 0.02319 0.96618 1.32013 1.98668 1.97860 152.41321
Contents 0.00083 0.29000 0.57570 1.70178 1.44648 132.01320
Profits 0.00408 0.10011 0.26619 0.85180 0.67929 61.93265

Table 3.3: Summary of Loss Amount for Three Business Lines

Similar to the frequency data exploration, we show boxplots for losses in Figure 3.4.
The boxplots demonstrate visually the heavy-tailed nature of the loss amounts and that the
building coverage incurs the largest loss amounts on a per-claim basis. Note that Figure 3.4
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shows only losses in (0, 20]; some extreme values are not presented in order to clearly show
the right-skewed behaviour and detailed empirical distributions.

Figure 3.4: Individual Losses’ Boxplots

3.2 Estimation Results

This section shows the estimation results for our proposed frequency and severity models.
We first consider our benchmark model for the claim counts. Recall that for this model, the
numbers of claims from the three insurance lines are all independently following negative
binomial distributions. Specifically, Nit ∼ N B(ri, λi) where t = 1, 2, . . . , 132, i = 1, 2, 3. For
estimating the MLEs, we maximize the log-likelihood function given by (2.5) for all three
coverages. Although the number of claims reported is irrelevant to this model, we apply
a similar procedure to estimate its negative binomial parameters. The full log-likelihood
function value is calculated by including the number of claims reported. However, there is
no closed-form formula to calculate the MLE of the size parameter of the negative binomial
distributions. To solve this, we apply the "optim" function in R to numerically obtain the
estimated parameter values. Table 3.4 (right panel) shows the estimated values, the corre-
sponding standard errors, and 95% interval estimates for this model. The standard errors
of the estimates are generated from the "optim" function.

Unlike the Fully Independent model, the Binomial Thinning model requires working
with full likelihood to estimate the parameter values because of the dependency between
the claim reported and claims from three coverages. Recall that the marginal distribution
of the claim reported follows a negative binomial with parameter r and λ, and the claim
number for the ith coverage Nit ∼ N B(r, λi), where t = 1, 2, . . . , 132. The logarithm of
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Equation (2.7) is used to find the MLEs of the parameters for the Binomial Thinning model
numerically. The left panel of Table 3.4 shows the estimated values and other relevant
statistics.

Binomial Thinning Model Fully Independent Model
estimate CI (95%) SE estimate CI (95%) SE

λ1 15.08 14.24 15.91 0.43 15.08 14.21 15.95 0.44
r1 - - - - 20.74 8.96 32.52 6.01
λ2 12.72 11.97 13.47 0.38 12.72 11.92 13.52 0.41
r2 - - - - 17.59 7.55 27.64 5.12
λ3 4.67 4.27 5.07 0.20 4.67 4.11 5.22 0.28
r3 - - - - 3.62 1.94 5.30 0.86
λ 16.42 15.53 17.30 0.45 16.42 15.53 17.30 0.45
r 25.32 10.03 40.62 7.80 25.24 10.05 40.43 7.75

log L −1183.47 −1516.57
AIC 2382.94 3043.14
BIC 2406.00 3057.56

Table 3.4: Parameter estimates for the frequency components

From Table 3.4, we observe that the estimates for the λ values between the two models
are similar (the same decimal places after rounding) as expected since λs represent the
means in both models. For the building coverage, we obtain that the MLE of λ1 is 15.08,
which is the same as the λ1 estimate under the Binomial Thinning model after rounding.
Also, their corresponding standard errors are relatively small. The largest standard error of
these λ estimates is 0.45 for the profits coverage. However, the standard errors of r estimates
are quite large compared to those for all the λ estimates. While the standard error of the r3

estimate under the Fully Independent model is 0.86, the standard errors of other r estimates
are greater than 5, implying much wider interval estimates. For example, the 95% interval
estimates of r under the Fully Independent model is [10.05, 40.43]. Besides these statistics,
we obtained model comparison criteria for both. Recall from the model construction aspect
that the Fully Independent model allows the situation that the number of claims reported
is smaller than the claim number of single coverage. The Binomial Thinning model should
outperform the Fully Independent model. AIC and BIC also suggest that the Binomial
Thinning model is better than the independent one.

As mentioned in the previous chapter, the MLEs for the independent model can be used
as estimators of the margins in Copula-Based models. Such parameter estimations maximize
the profile likelihood instead of the complete likelihood by setting the copula parameter as
a nuisance parameter. Then, by plugging in the estimated parameters of the margins, we
maximize the log-likelihood function, (2.13), to estimate the copula parameter. The copula
parameter estimation results are displayed in Table 3.5.

As mentioned previously, the parameter value for the Gaussian copula can be interpreted
as a pairwise correlation level. For simplicity, we assume an exchangeable Gaussian copula
where the correlation of all pairs is the same. Denoting the common correlation coefficient

26



Gaussian Copula Gumbel Copula Joe Copula
Est. parameter 0.70452 1.83147 2.17170
Log-likelihood -1015.953 -1021.079 -1033.461

Table 3.5: The estimates and log-likelihood of copula models

as ρ, the correlation matrix for the Gaussian copula can be expressed as

P =


1 ρ ρ

ρ 1 ρ

ρ ρ 1

 .
Our estimated Gaussian copula parameter is ρ = 0.7, which shows a strong positive corre-
lation among the margins. The estimated parameters of the Gumbel and Joe copulas also
suggest a positive and relatively strong dependency.

The composite models mentioned in Chapter 2 are fitted to the data, and the parameters
are estimated. For applying composite models for the Building loss data, we consider the
Exponential (E) and Gamma (G) distributions for the head part and the Inverse-Gamma
(IG), Pareto (Pa), and Log-Normal (LN) distributions for the tail part of the losses. We
then fit the six different composite models to the Building loss data. Table 3.6 shows the
model selection criteria of these models. The model selection criteria for the losses from the
other two business lines can be viewed in Appendix A.1

G & IG G & Pa G & LN E & IG E & Pa E & LN
# of parameters 4 4 4 3 3 3

log L -2800.93 -2771.15 -2771.14 -3181.33 -3220.69 -3220.72
AIC 5609.87 5550.30 5550.29 6368.65 6447.37 6447.43
BIC 5632.25 5572.68 5572.67 6385.44 6464.16 6464.22

Table 3.6: Log-likelihood of composite models for the building losses

From the results in Table 3.6, the Gamma & Log-Normal (G & LN) composite and
Gamma & Pareto (G & Pa) composite, both having four parameters, show similar fitting
performance. Both models have almost the same log-likelihood values, as well as AIC and
BIC values. We choose the Gamma & Log-Normal (G & LN) composite for our further
analyses. Similar comparisons have been made for the contents and profits losses. We found
that Gamma & Log-Normal (G & LN) composite model is the best for modelling content
losses, and the Gamma & Pareto (G & Pa) fits the profit losses the best.

Table 3.7 shows the parameter estimates of three composite distributions, which are
the best fit mentioned above. Using the density of composite distribution given by (2.15)
for constructing the likelihood function, we estimate the parameters for the head and tail
distributions. Thus, the splicing point and weight parameter can be obtained by using the
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expressions in Table 2.1 and Equation (2.17). Figure 3.5 shows the probability density
functions of the three coverages’ individual losses. We use different colors to indicate the
head and tail part of the distribution.

Building: G&LN Contents: G&LN Profits: G&Pa
Head
Distribution

α1 = 3.71085 α1 = 1.98766 α1 = 1.55072
θ1 = 0.37198 θ1 = 0.21591 θ1 = 0.10144

Tail
Distribution

µ2 = −331.88884 µ2 = −1.34871 α2 = 1.41237
σ2 = 13.20987 σ2 = 1.69228 θ2 = 0.37195

u 2.08943 0.47466 0.11282
ϕ 0.32151 1.34244 2.92302

Table 3.7: Parameter estimates for the severity components

For interpreting the estimation results, we use the Gamma & Log-Normal for the build-
ing losses as an example. The parameter estimates for the head distribution are α1 = 3.71085
and θ1 = 0.37198. The estimates for the tail distribution, Log-Normal, are µ2 = −331.88884
and σ2 = 13.20987. The splicing point for the composite distribution is calculated as
u = 2.08943, which means that the whole distribution is split at 2.08943; the head part
is Gamma distributed, and the tail part is Log-Normal distributed. Based on the estimated
weight parameter, we can interpret 1/(1 +ϕ) = 0.24329 as the proportion of Y that follows
the Gamma distribution, and ϕ/(1+ϕ) = 0.75671 of Y follows the Log-Normal distribution.

In conclusion, we consider three main types of models: the Fully Independent model, the
Binomial Thinning model, and three Copula-Based models. The Fully Independent model
uses independent negative binomial random variables for the claim numbers from three in-
surance coverages, Building, Contents, and Profits, and their individual loss amounts are
modelled by various composite models, where both Gamma & Log-Normal composite and
Gamma & Pareto composite models are found outperformed. For the frequency compo-
nent, the Binomial Thinning uses a negative binomial for the number of claims reported,
and conditionally, the other three claim numbers are binomially distributed. The Copula-
Based models link negative binomial claim numbers with Gaussian, Gumbel, and Joe copula
structures. Recall that, the aggregate losses for the three types of model can be expressed
by Equation (2.1).

3.3 Empirical Findings for Risk Management

In the previous section, we analyzed and compared the models from a statistical point of
view. In this section, we study the models from an insurance perspective. Our primary
interest is the performance of the risk analyses on the aggregation level for a specific time
period (one month in this project), which aggregates the losses for all three insurance
coverages. We conduct risk analyses based on the models that fit the data best in this
chapter. Then, we assess how well the models performed in the insurance aspect.
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(a) Building Composite

(b) Contents Composite

(c) Profits Composite

Figure 3.5: Composite Probability Density Functions for Three Coverages’ Individual Losses

In the insurance industry, estimating the risk level for a product or portfolio is critical
for determining the premium and reserve. Companies set the premium and reserve levels
by considering the risks they face. Some common questions are, for example, how much
the company should charge to make the produce profitable and still be competitive with
the other companies, and how much capital the company should set aside to protect the
company from bankruptcy with a 95% probability.

We recall some existing risk measures that we apply in this project. Let S be an aggregate
loss random variable with cumulative distribution function FS .
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1. Value at Risk: VaRα(S) = inf{s ∈ R : FS(s) > α}, 0 ≤ α ≤ 1, which can be treated as
a standard to check the assets should be reserved to reduce the bankruptcy possibility
to 1 − α.

2. Tail Value at Risk: E[S|S ≥ VaRα(S)], 0 ≤ α ≤ 1, which is the expected loss given
that the losses exceeding the Value at Risk at α. That is, if bankruptcy happens, what
the average excess loss is.

3. Proportional Hazard risk measure: PHα(S) =
∫∞

0 (1−FS(s))1/α ds, α ≥ 1, introduced
by Wang (1995). Specifically, the survival function is distorted in the definition. After
the transformation, more probability is assigned to the extreme losses. Using the
integral to calculate the expectation of the distorted random variable, we get a more
conservative expected value.

4. Dual Power Risk Measure: DPβ(S) =
∫∞

0 1−(FS(s))β ds, β ≥ 1. The idea is similar to
the Proportional Hazard risk measure except that the cumulative distribution function
is now distorted.

As we can see, these risk measures all have their particular interpretation and advan-
tages/disadvantages when using them for risk management. They should not be naively
applied to all scenarios. For example, the Value at Risk provides information about the loss
that will make the company insolvent. However, by fixing the α, the Value at Risk of an
aggregate loss may be larger than the sum of the Value at Risks of each individual loss,
which does not obey the idea of diversification. Artzner et al. (1999) proposed four criteria,
and a risk measure satisfying them is called a coherent risk measure. The Tail Value at
Risk is a coherent risk measure for continuous random variables. Wang (1994) proved the
integration of the transformed distribution is coherent when the transformation is a concave
function.

Because the closed-form distribution of the aggregate loss cannot be derived, we use
the Monte Carlo simulation approach to approximate the risk measurements. We simulate
100,000 months of data, each including the reported claims, the claim numbers for three
business lines, and the individual loss amounts for all three types of models. Further, the
aggregate loss is the sum of individual losses for a month using (2.1).

The simulation process for the independent model is straightforward. We use random
generations for the negative binomial to simulate claim numbers for all business lines. The
Binomial Thinning model, on the other hand, requires the simulation of the reported claim
numbers. We then apply binomial random generation with size parameters as the reported
claim numbers to get the claim numbers for three lines of business. The simulation under
the copula models uses a similar approach. We first randomly generate the uniform margins
from the copula functions. With these uniform margins, we can obtain the claim numbers
using the inverse of the marginal distributions. To simulate loss amounts from the composite
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models, we randomly generate the values from the standard uniform distribution and use
the inverse of the composite distribution (2.16) to get simulated losses.

Figures 3.6 and 3.7 show the scatterplots of Building versus Contents and Building versus
Profits claims for observed and simulated frequency data under the Fully Independent, the
Binomial Thinning, and the three Copula-Based models. The scatterplot of Contents versus
Profits can be viewed in Appendix A.2. Since the number of observations is 132 compared
to 100000 months of simulated data points, we arbitrarily use 132 rows from the simulated
data to make the scatterplots to easier compare with observed data.

Based on the plots of observed data in both Figures 3.6a and 3.7a, there are apparent
positive relationships among the margins. As we expect, the independent model cannot
capture such dependent behaviour. The Binomial Thinning model shows a strong positive
dependency between the Building and Contents claim numbers, which is the closest one
to the observed data visually. However, in Figure 3.7, the Joe copula appears to capture
the most positive relationship between the Building and Profits. In addition, as we can see
different copulas show different dependence structures. Gaussian copula has both the large
claim numbers and the small claim numbers correlated closely in Figure 3.6d. In Figure
3.6f, Joe copula shows more correlations of the large claim numbers.

For each risk measure and each aggregate model, we investigate the risk measure for
monthly aggregate losses for each insurance coverage and monthly total losses for the com-
pany. Table 3.8 shows the approximated risk measures under different aggregate models,
in which Building, Contents, and Profits indicate the insurance coverages. The Aggregate
column indicates the risk measures of the monthly total losses by aggregating the losses
from three insurance coverages.

From Table 3.8, we can observe that the Fully Independent model underestimates most
of its measures of risk for the Aggregate compared to the observed data. Especially, for the
Tail Value at Risks, at α = 0.9, the Fully Independent model suggests 114.7784 compared
to the empirical 130.9614. The difference is magnified at α = 0.95, where the estimate
under the independent is 140.1614, while the empirical one is 171.8545. Both the Binomial
Thinning and Copula-Based models perform better than the Fully Independent model and
provide generally closer and risk measures comparable to the empirical estimates. Although
the Tail Value at Risk at α = 0.95 for the Binomial Thinning and Copula-Based models
are all around 150, which still differ by around 20 compared to the empirical, they can be
explained by the small sample size (we observed 132 months of data).

One finding regarding the Binomial Thinning and Copula-Based model is that the risk
measures are similar except for the Proportional Hazard risk measures. The Gaussian cop-
ula’s approximation is 134.76, which is the most conservative one compared to others. The
Binomial Thinning and Joe copula provide relatively small and closer to the empirical re-
sults. It is hard to explain intuitively because proportional hazard risk measures distort the
distributions of the aggregate loss for all models.
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(a) Observed (b) Independent

(c) Binomial Thinning (d) Gaussian Copula

(e) Gumbel Copula (f) Joe Copula

Figure 3.6: Observed & Simulated Building versus Contents Claims

32



(a) Observed (b) Independent

(c) Binomial Thinning (d) Gaussian Copula

(e) Gumbel Copula (f) Joe Copula

Figure 3.7: Observed & Simulated Building versus Profits Claims
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Measure Model Building Contents Profits Aggregate

VaR0.90(S)

Observations 43.3675 37.6107 8.92768 84.9583
Independent 45.8395 40.1350 8.8537 82.5497

Binomial Thinning 45.5542 39.8117 8.3302 87.4485
Gaussian 46.0096 39.9315 8.9250 88.0304
Gumbel 45.9438 40.4155 8.8096 88.6401

Joe 46.0086 40.2537 8.7924 88.3784

TVaR0.90(S)

Observations 67.6329 61.7309 17.3499 130.9614
Independent 62.2931 64.1973 21.7799 114.7784

Binomial Thinning 62.1844 63.4675 22.5703 122.2398
Gaussian 62.5756 63.7182 24.1390 123.6911
Gumbel 62.7209 64.0983 24.1995 124.4939

Joe 63.2035 63.4808 22.3663 122.8164

TVaR0.95(S)

Observations 88.5959 82.6582 24.1481 171.8545
Independent 75.1908 82.9212 32.7698 140.1614

Binomial Thinning 75.2890 82.0129 34.9973 149.5173
Gaussian 75.5330 82.1879 37.4004 151.7549
Gumbel 75.8074 82.2438 37.6642 152.5675

Joe 76.6455 81.3573 34.0908 149.5723

PH2(S)

Observations 51.9328 42.8176 11.3142 93.6248
Independent 54.1955 56.3798 28.3590 102.4392

Binomial Thinning 58.8418 56.8998 40.0197 114.9348
Gaussian 53.3108 50.3601 63.6347 134.7637
Gumbel 53.5260 49.7185 55.6399 126.7038

Joe 60.1957 47.3558 38.5885 111.7715

DP3(S)

Observations 43.2273 35.9657 8.2477 82.2996
Independent 41.5724 35.7542 9.2529 76.3109

Binomial Thinning 41.5093 35.5262 9.4621 79.5965
Gaussian 41.6905 35.6027 9.9802 80.0948
Gumbel 41.6977 35.8246 9.9892 80.2022

Joe 41.8295 35.5719 9.4253 79.6027

Table 3.8: Approximated Risk Measures
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Chapter 4

Conclusion and Discussion

Insurance companies need to manage risks. They accept risks transferred from individuals
or companies in exchange for premiums. Almost every step in the operation of an insurance
company involves risk management, including setting profitable and competitive premium
levels and managing the capital to cover potential losses.

However, risk should be understood correctly. Statistical models should closely reflect the
empirical behaviours to provide informative suggestions. In this project, we found capturing
the dependency among different insurance lines and the heavy-tailed behaviour for the per-
claim losses can improve the performance of assessing the risk of monthly aggregate loss.

Besides, the dependencies among claims from the dataset behave the closest to the
Binomial Thinning dependencies, which are all linear dependent. In this case, the Binomial
Thinning is already the best fit for the data compared to other Copula-Based models.
However, we still find the Copula-Based model able to combine different dependencies with
discrete random variables. Further, unlike the Hierarchical models, the construction of the
Copula-Based model does not require intuition understanding regarding the data itself.

For further research, Geenens (2020) proposed a way to connect discrete random vari-
ables with a dependent structure. The logic is similar to the copula but with more mathe-
matical rigours.
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Appendix A

Additional Tables and Figures

A.1 Contents and Profits’ Individual Losses Modelling Se-
lection Results

We also considered six composite distributions for the losses of content and profit. From
the following table, the Gamma & Log-Normal composite distribution best fits the content
loss. The Gamma & Pareto composite distribution can model the profit loss.

G & IG G & Pa G & LN Exp & IG Exp & Pa Exp & LN
# of parameters 4 4 4 3 3 3

log L -2187.88 -2039.52 -2037.59 -2102.97 -2102.81 -2102.16
AIC 4383.77 4087.04 4083.18 4211.95 4211.61 4210.32
BIC 4405.47 4108.74 4104.88 4228.23 4227.89 4226.60

Table A.1: Log-likelihood of composite models for the content losses

G & IG G & Pa G & LN Exp & IG Exp & Pa Exp & LN
# of parameters 4 4 4 3 3 3

log L -309.19 -297.19 -427.81 -305.93 -304.53 -304.48
AIC 626.38 602.39 863.62 617.86 615.06 614.97
BIC 644.07 620.08 881.31 631.13 628.33 628.24

Table A.2: Log-likelihood of composite models for the profit losses

A.2 Observed and Simulated Contents vs Profits Claims
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(a) Observed (b) Independent

(c) Binomial Thinning (d) Joe Copula

(e) Joe Copula (f) Joe Copula

Figure A.1: Observed & Simulated Building vs Profits Claims
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Appendix B

Code

The R codes are available at https://github.com/AnxiousLegHair/TianxingYan_masterproject.
git.
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