
Gaze-Based Text Entry with Common
RGB Cameras

by

Yuchi Chen

M.Sc., Beijing University of Posts and Telecommunications, 2015
B.Sc., Beijing University of Posts and Telecommunications, 2012

Project Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Yuchi Chen 2024
SIMON FRASER UNIVERSITY

Spring 2024

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Yuchi Chen

Degree: Master of Science

Thesis title: Gaze-Based Text Entry with Common RGB
Cameras

Committee: Chair: Zhengjie Miao
Assistant Professor, Computing Science

Jiangchuan Liu
Supervisor
Professor, Computing Science

Qianping Gu
Committee Member
Professor, Computing Science

Jiannan Wang
Examiner
Associate Professor, Computing Science

ii

Abstract

Gaze-based text entry has seen success in both academic researches and commercial prod-
ucts. However, such solutions typically involve specialized hardware, limiting their scala-
bility and feasibility. Commercial gaze tracking solutions that use common RGB webcams
yield coarse gaze regions, which are not directly ready for text entry tasks. In this project,
to fill the open gap of the cost-efficient gaze-based text entry task with common RGB
cameras, we propose a solution that leverages the advantage of both appearance-based and
model-based methodologies of gaze tracking, and tackle challenges for the text entry task.
With a prototype as the proof-of-concept, we show that our system can enable a user to
conduct tap typing on a virtual keyboard with a gaze point on the screen, at a typing speed
ranging from 18 to 30 letters per minute with an accuracy of over 90%.

Keywords: human-computer interaction; gaze tracking; text entry; machine learning

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Jiangchuan Liu for his
great guidance and support. I would like to thank my lab mates and staff at the School of
Computing Science for all their help and support throughout my studies at Simon Fraser
University. I am very grateful to Dr. Qianping Gu, Dr. Jiannan Wang and Dr. Zhengjie
Miao, for their collaboration and support as the members of my project committee.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Literature Review 4
2.1 Computer Vision-Based Gaze Tracking . 4
2.2 Text Entry Methods . 5
2.3 Gaze Tracking in Text Entry . 6

3 Gaze-Based Text Entry 8
3.1 Appearance-Based Feature Extraction . 8

3.1.1 Face Detection . 8
3.1.2 Face Feature Extraction . 9
3.1.3 Eye Feature Extraction . 10

3.2 Model-Based Measurement . 10
3.2.1 Head Pose Measurement . 10
3.2.2 Gaze Vector Measurement . 12
3.2.3 Gaze Point Measurement . 13

3.3 Gaze-Based Text Entry . 13
3.3.1 Virtual Keyboard Layout . 14
3.3.2 Stabilizing Keystroke Location . 14

4 Experiments 16
4.1 Experiment Setup . 16

v

4.1.1 Hardware . 16
4.1.2 Datasets . 16
4.1.3 Implementation . 17

4.2 Evaluations . 18
4.2.1 Results of Feature Extraction . 18
4.2.2 Results of Model-Based Measurement 18
4.2.3 Results of Gaze-Based Text Entry 21

5 Discussions and Conclusion 22
5.1 Discussions . 22
5.2 Conclusion . 22

Bibliography 23

Appendix A Synthesized Eye Image Dataset 27
A.1 Head Pose and Gaze Vector Distribution . 27
A.2 Simulated Gaze Point Measurement . 27

Appendix B Key Codes 29
B.1 Codes for Model-Based Measurement . 29
B.2 Codes for Text Entry . 32

Appendix C Corpus for Text Entry Task 35

vi

List of Tables

Table 4.1 Evaluation on the performance of gaze-based text entry 21

vii

List of Figures

Figure 1.1 Overview of our gaze-based text entry solution, which consists of
appearance-based feature extractions and model-based measurements,
yields gaze point measures, and uses such measure as the hint for
keystrokes on a virtual keyboard. 2

Figure 3.1 MobileNetV2 model for face feature extraction, including 68 face
landmarks. 9

Figure 3.2 Hourglass-based model for eye feature extraction. 9
Figure 3.3 Synthesized eye images and the eye feature extraction results from

the model, including eyelid landmarks, iris landmarks, eyeball center
and iris center. 10

Figure 3.4 The rotation of the head impacts the measurement of the gaze vector.
Point Pg is the intersection point of the two gaze vectors on the
screen, and it can deviate from the point Po, the default position,
when the user is facing away from the screen. 11

Figure 3.5 Rationale of the gaze point prediction. 12
Figure 3.6 Layout of the virtual QWERTY keyboard. 14
Figure 3.7 Keystroke point is taken from the recent three gaze point measures

on the keyboard to stabilize the choice of keys. 14

Figure 4.1 Framework and data flow of the prototype system. The blue part
indicates the GUI, the orange part indicates the appearance-based
feature extraction runtime, and the green parts are the implementa-
tions of model-based algorithms and the text entry function. 17

Figure 4.2 Screenshot of our prototype system when the user is conducting the
text entry. 18

Figure 4.3 CDF of the normalized deviation of eye landmarks within the syn-
thesized dataset. 19

Figure 4.4 CDF of gaze vector angle deviation within the synthesized dataset. 19
Figure 4.5 Angle deviation of both yaw and pitch angles in head pose measure-

ment within the MPIIGaze dataset. 20

viii

Figure 4.6 Translation deviation of head pose measurement within the MPI-
IGaze dataset. 20

ix

Chapter 1

Introduction

Human gaze tracking has been a long lasting topic in the area of Human-Computer In-
teractions (HCI), and has seen commercial success in recent years. Particularly, a series
academic and industrial efforts have been witnessed to explore gaze-based text entry as a
part of novel HCI technologies, ranging from research projects like TAGSwipe [23], to cut-
ting edge virtual/ augmented reality products like Apple Vision Pro1. Most of such efforts,
however, typically involve specialized hardware, like the iMotions infrared eye tracker2 in
TAGSWipe, or the manufactured infrared camera in Apple’s head mounted display (HMD),
which can be too costly for widespread adoptions. Commercial products that work on com-
mon, low-cost RGB cameras tend to provide coarse gaze detection result that is not directly
read for the text entry task3. That said, a cost-efficient solution to gaze-based text entry
still remains an open gap.

As a crucial part of cost-efficient gaze tracking solutions, common RGB cameras are
widely utilized in many research efforts. Generally, gaze tracking projects based on RGB
cameras can be categorized into two categories: model-based and appearance-based. The
main difference lies in how they proceed the image inputs of human’s face and eyes, which
determines their quality of delivery and computational costs. Early efforts are mostly model-
based [13], since lightweight, cost-efficient solutions to human face and eye detection are
rich in the area of conventional computer vision technologies; the gaze is then estimated
with sophisticated algorithms, either by the shapes of the eyes and pupils [5] or the corneal
reflection from them [30]. In light of outstanding advancement in machine learning, notably
represented by deep learning technologies, later efforts trend appearance-based, an end-to-
end methodology acknowledging the fact that the image of human face and eyes suffice to
directly derive the gaze [46]. Comparing with those model-based, appearance-based solu-

1https://www.apple.com/apple-vision-pro/

2https://imotions.com/products/hardware/smi-redn/

3https://beam.eyeware.tech/

1

Figure 1.1: Overview of our gaze-based text entry solution, which consists of appearance-
based feature extractions and model-based measurements, yields gaze point measures, and
uses such measure as the hint for keystrokes on a virtual keyboard.

tions can be generally more robust against dynamic conditions, while preserving the quality
of delivery. Such a superiority of cause comes with costs. For appearance-based solutions,
with more designated objectives or higher accuracy or precision requirements, comes larger
datasets or more complicated structure to build the neural network, which raises the over-
head of both model training and inference, resulting in less scalability and flexibility than
model-based solutions.

Inspired by the scalability of model-based solutions and the robustness of appearance-
based solutions, in this project, we propose a solution that tries to combine them both for
the task of realizing gaze-based text entry. Figure 1.1 illustrates the overview of our solution,
consists of appearance-based feature extraction, including face and eye features, and model-
based measurements, including gaze vector and head pose. Different from appearance-based
solutions that yield results end-to-end, we use Deep Neural Networks (DNNs) to extract
useful user features from images captured by RGB cameras, taking the advantage of the
reliability of DNNs in human face and eye detection. Following a model-based principle
thereby, we design subtle algorithms that can utilize the user features and derive the gaze
point on the screen. To achieve the text entry, this gaze point measure is then used as
the hint for the user to issue a keystroke on a virtual keyboard. Due to the fact that the
gaze point measure can be unstable because of systematic source of error or user behaviors,
we solve this practical challenge in our prototype implementation by measuring historical
average and interpolating between adjacent measures.

2

In conclusion, our contribution is three-fold: (1) we tackle the challenge of cost-efficient
solution to gaze-based text entry, which is based on common off-the-shelf RGB cameras, (2)
we propose a solution that subtly combines appearance-based and model-based methodology
to achieve gaze point tracking, (3) we optimize the gaze point measure for text entry task,
and (4) we showcase our solution with a prototype that enables gaze-based text entry under
a manner of tap typing.

3

Chapter 2

Literature Review

In this project, we focus on realizing the text entry task by tracking user gaze point on
the target screen with common RGB cameras like webcams. Therefore, this work is closely
related to computer vision-based gaze tracking technologies, the text entry methods, and
the application of gaze tracking in text entry tasks in research literature.

2.1 Computer Vision-Based Gaze Tracking

During the past years, the mainstream of Computer Vision (CV) based gaze tracking tech-
nologies falls into two major categories: model-based [13] and appearance-based [46]. As they
both take the images of users’ faces and eyes as input, the difference mostly lies in the
information extraction [37].

The model-based solutions tend to decode geometric features from the image input. For
the gaze tracking task, model-based solutions typically resolve the user gaze vector, the
indicator of the line-of-sight emitting from the user’s iris, by deriving geometric features of
eyes, such as the shapes of eyelids in the image input [5], or the corneal reflection in the iris
[30]. Model-based gaze tracking is particularly popular in early research efforts, mostly due
to mature, lightweight implementations of CV-based feature extraction algorithms, and the
flexibility in the processing of geometric features. For example, EyeTab [40] extracted the
user’s iris contour from image input, and yielded the gaze point on a tablet by calculating
the intersection between the gaze vector and the screen. As a later work, ScreenGlint [17]
outperformed EyeTab by exploiting the glint of the screen on the user’s cornea for gaze
point detection. ScreenGlint applied a Gaussian regression process to establish the mapping
between the features derived from eye images and a 4 × 7 grid of square cells on the screen.
While ScreenGlint achieved a mean absolute error (MAE) of around 1.47 cm without head
pose variations, it suffered from a MAE of 1.72 cm when head pose variation presents,
revealing the importance of resolving the user’s head pose in gaze tracking.

The appearance-based solutions, alternatively, do not decode geometric features from
the image input; instead, appearance-based solutions leave this decoding task to machine

4

learning based models, and tend to derive the target information end-to-end, such as the
user gaze vector or point on the screen, directly from the image input [36]. The advancing
machine learning and deep learning technologies open the opportunity for appearance-based
gaze tracking technologies to keep functional against various image input qualities, with the
tradeoff between the robustness of achieving objectives, and the restricted flexibility and
scalability caused by limitations of datasets. Holland et al. [16] presented an early neural
network based solution to determine the end-to-end mapping between the eye image input
and the gaze point on a commodity tablet. Huang et al. [18, 19] later presented a similar
appearance-based solution for tablets, but utilized a Random Forest regression model and
presented a dataset called TabletGaze. Different from these projects, GazeCapture [22]
provided an appearance-based solution for both tablets and smartphones, with a dataset
of mappings between user face images and 13 major gaze points, collected from over 1,450
people with a total of 2.5 million frames. In addition to this dataset, iTracker, a CNN-based
end-to-end model is proposed for gaze point tracking, achieving an average prediction error
of 2.53 cm and 2.12 cm, with and without calibration respectively. Based on both datasets
of TabletGaze and GazeCapture, iMon [20], a latest appearance-based solution, improved
previous efforts by constructing a probabilistic 2D heatmap gaze representation input and
refined models to overcome various source of errors in the dataset, outperforming previous
works by 22% to 28%.

In this project, we intend to take advantage of the upside of both model-based and
appearance-based solutions. In particular, acknowledging the flexibility and scalability of
geometric feature processing in model-based solutions, we do not try to derive the gaze
point from the image input end-to-end, but the 3D location of the user’s iris and 3D gaze
vector from the image input, and geometrically calculate the gaze point on the surface of
the target screen. On the other hand, while model-based solutions are built on conventional
CV-based feature extraction algorithms, we utilize deep learning-based models for feature
extraction, so as to achieve the robustness similar with appearance-based solutions.

2.2 Text Entry Methods

Text entry is a basic yet crucial task in human-computer interaction, thus it has long been
a heated topic in HCI research area. While some research effort was put on hand writing
[44], the majority of existing research works focus on the other two mainstream text entry
methods: tap typing and word-gesture typing, also known as swipe typing. Tap typing
follows conventional text entry rationale, that the user inputs a word letter by letter, where
each letter is registered by a keystroke on a keyboard. Swipe typing, on the other hand, was
proposed particularly after touch screen appeared, which significantly altered the text entry
habits of mobile device users, as it could be challenging to preciously reach a virtual key
on a small touch screen. Instead of inputting letter by letter, swipe typing typically allows

5

a user to swipe over the keyboard along a trajectory composed by letters in the designated
word.

Both tap typing [45, 12] and swipe typing [26, 6] can be built on a conventional QW-
ERTY keyboard, which is suitable for leveraging users’ existing typing skills in various
novel scenarios. Nevertheless, in some scenarios the implementation or usage of QWERTY
keyboard can be challenging, thus the need for customized keyboard rises. For instance, to
achieve an eyes-free implicit text entry method, finger limbs and tips are widely used as the
surface of a virtual keyboard, which is typically customized in diverse ways [41, 27, 43]. Be-
side of these works, some other solutions were witnessed that either involve other keyboard
locations [35], body parts like nose tips [21] and wrists [11], or novel input methods like
phrase typing [42], an advanced swipe typing alters from word-gesture typing by directly
enabling phrase input.

In this project, we intend to utilize the user gaze point on the target screen as the hint
for text entry, which essentially requires a one-fingered text entry method. Therefore, we
implement tap taping on QWERTY keyboard as a basic input method, and further explore
and leverage existing swipe typing methods for better performance.

2.3 Gaze Tracking in Text Entry

Although eye tracking technologies have been long advancing for decades, the application of
eye tracking technologies in HCI, and particularly for the text entry task, has been witnessed
only in recent score. Drewes et al. [9] presented an early interaction system by utilizing the
user gaze point and its movement. This solution relied on a third-party commodity eye
tracker to track a user’s eyes, whom was asked to stay still against a target Nokia N80
phone model. A series of works on gaze-based interaction, which mostly focused on text
entry, were published ever since.

Few work developed customized text entry function without using a third-party eye
tracker. For example, iType [25] proposed an appearance-based tap typing entry by tracking
users’ gaze point on a customized 4 × 3 grid keyboard on a smartphone, or a 5 × 4 grid
keyboard on a tablet, using the front camera of the target device. While reaching the
keystroke detection accuracy of 97% and 89% for static and dynamic scenarios respectively,
iType suffered from a significant response delay of 364 ms, and a typing speed of around 0.5
character per second, due to the overhead of conducting end-to-end gaze point detection
from the image input. Alternatively, acknowledging the challenge in realizing the gaze point
tracking, many other research efforts tend to leverage third-party commodity eye trackers,
and thus focus on achieving various objectives and improving the performance, such as
accuracy and response, for text entry methods ranging from tap typing to swipe typing. For
instance, Lu et al. [28] proposed GlanceType, a tap typing on split keyboards on a tablet,
with a commodity Pupil-Labs eye tracker. Similarly, TAGSwipe [23] utilized a commodity

6

iMotions eye tracker to realize gaze-based swipe typing on a desktop, by asking the user
to tap on a smartphone. As a popular manufacturer of commodity eye trackers, Tobii’s eye
tracker products were adopted in more research works [10, 34, 31, 24, 15, 8]; some also
involve head mounted displays (HMD) to transfer the gaze information between the real
world and AR or VR environments [33, 38, 14].

In this project, we aim at realizing the gaze tracking with common RGB cameras, thus
essentially being different from the previous efforts that utilize third-party commodity eye
trackers. In addition, in order to overcome the limitation brought by appearance-based
gaze tracking solution in previous efforts like iType, we do not intend to reach the gaze
tracking end-to-end from image output; instead, we tackle the challenge in resolving gaze
point detection by geometric methods following a model-based principle.

7

Chapter 3

Gaze-Based Text Entry

As illustrated in Figure 1.1, our approach consists of appearance-based feature extraction
and model-based measurement. In this chapter, we break down each part with details.

3.1 Appearance-Based Feature Extraction

For gaze point tracking task, the necessary features must be acquired from the user’s face,
which is captured by the RGB camera. For appearance-based methodology, the features
are extracted directly from the raw image captured by the camera, without decoding any
geometry information from the raw image. As such, the features include the face detection
to start with. From the face image extracted from the raw image, the face features and eye
features are extracted.

3.1.1 Face Detection

For face detection, we first applied a conventional CV technology called the Viola-Jones
object detection algorithm, as a preliminary and lightweight method. This algorithm is
essentially a cascaded classification on the Haar-like features derived from the captured
image. The Haar-like features are the differences of average intensities between different
regions in the image; as a result, these features include useful information for detecting and
distinguishing among objects. A major issue is that the detection results highly depends on
the image quality and the angular pose of the face in the image.

For more reliable detection in the proof-of-concept prototype, we utilize the Dlib library
[1], a famous open-source project that implements both conventional CV algorithms and
deep learning based algorithms. In particular, we choose the histogram of oriented gradients
(HOG) and linear Support Vector Machine (SVM) face detector from the python-based Dlib
for lightweight and accurate face detection.

8

Figure 3.1: MobileNetV2 model for face feature extraction, including 68 face landmarks.

Figure 3.2: Hourglass-based model for eye feature extraction.

3.1.2 Face Feature Extraction

For reliable face landmark detection, we utilize a deep learning-based detection from the
MobileNet V2 model. MobileNet V2 is a general-purpose, lightweight convolutional neural
network (CNN) for object detection tasks.

The structure of our MobileNet V2 model is shown in Figure 3.1. Different from the
CNNs that applies traditional convolution layers, the MobileNet V2 model splits the layer
into two subtasks: a depth-wise convolution for filtering inputs, and a point-wise convolution
for combination of the filtered values. The two subtasks together form a depth-wise separable
convolution block, which operates faster than traditional convolution layers.

In our proof-of-concept prototype, we choose an open PyTorch-based pre-trained Mo-
bileNet V2 model [7]. The MobileNet V2 model we use takes one channel 64×64 image
inputs and yields 68 face landmarks.

9

Figure 3.3: Synthesized eye images and the eye feature extraction results from the model,
including eyelid landmarks, iris landmarks, eyeball center and iris center.

3.1.3 Eye Feature Extraction

For eye detection, we train an hourglass-based neural network model, which is inspired
by GazeML [29], a representative appearance-based eye landmark detection project. As a
tradeoff between the performance and computational costs, we customize the model to be
two-layer hourglasses wrapped by full connection layers, as shown in Figure 3.2.

The model is trained with a synthesized eye image dataset from UnityEyes [39], a re-
search project that can generate realistic eye images and provide corresponding parameters.
We create 100,000 images of human eyes, with various skins, gaze directions and head poses.
With the output of landmarks of eyelid and iris, and the implicit parameters like eyeball
center, the hourglass-based model yields the 2D location of these landmarks on the input
image, as shown in Figure 3.3. These landmarks serve as key inputs for the model-based
gaze vector measurement in a similar way as face landmarks for head pose measurement.
Some more quantitative details on the dataset are in Appendix A.

3.2 Model-Based Measurement

In this section, we introduce our model-based measurement on key parameters, include the
head pose, the gaze vector, and eventually the gaze point [32].

3.2.1 Head Pose Measurement

The user’s head pose includes two key features: the transform and rotation. The transform
indicates the 3-D location of the user’s head from the camera, including the Euler distance
between the head and the screen. The rotation, on the other hand, indicates the direction
to where the user’s head is facing with, impacting the measurement of the user gaze vector,
as shown in Figure 3.4.

10

Figure 3.4: The rotation of the head impacts the measurement of the gaze vector. Point Pg

is the intersection point of the two gaze vectors on the screen, and it can deviate from the
point Po, the default position, when the user is facing away from the screen.

For head pose measurement, we take the 3-D location of the face landmarks on a generic
head model as a reference, and use the 2-D location of the user’s face landmarks in the
image to compute the 6 Degree of Freedom (6-DOF) head pose, i.e. the transform on three
dimensions (x, y, z) and the rotation (α, β, γ) along the 3 dimensions. Specifically, denote
matrices Rx(α), Ry(β) and Rz(γ) as the rotation matrix on three dimensions, then the
general rotation matrix Rr is calculated as follows:

Rr = Rz(γ)Ry(β)Rx(α) (3.1)

Denote the transform vector T = (tx, ty, yz)T , then the relationship between the 2D location
of a face landmark (u, v) and its 3D location (x, y, z) is as follows:

s

u

v

1

 =

fx 0 xo

0 fy yo

0 0 1

 (Rr|T)

x

y

z

1

 (3.2)

where s is the scale factor, fx and fy are the focus length of the front camera in terms of
pixels, and (xo, yo) is the principle point, which is also the center of the screen. By solving
this Perspective-N-Points (PNP) problem, the rotation matrix Rr and transform vector T

can be calculated, and then the 6-DOF head pose are derived.

11

θa

θe

d

pupil

line of sight

screen

z x

yPg

Po

Figure 3.5: Rationale of the gaze point prediction.

3.2.2 Gaze Vector Measurement

The gaze vector is defined as the line of sight sourced from the user’s pupil. For measuring
the gaze vector of each eye, we use the iris landmarks, the eyeball center and iris center.
Different from the gaze estimation in [29], which extracts the gaze vector from eyeball center
and iris center, we follow a similar methodology in head pose measurement, that is solving
the PNP problem from the 2D landmarks to their 3D locations. In particular, we compare
the 2D location of these landmarks with a cardinal eyeball model, and solve a PNP problem
to derive the rotation of the eyeball, including the yaw and pitch angles. Formally, denote
the gaze vector from the left and right eye as gl and gr respectively. Assume that the yaw
and pitch angle of the head pose are θ and ϕ, denote Ry and Rp as rotation matrices of yaw
and pitch respectively, the transformed gaze vector g

′
l can be determined as follows:

g
′

l = RyRpgl =

cos θ cos ϕ − sin θ cos θ sin ϕ

sin θ cos ϕ cos θ sin θ sin ϕ

− sin ϕ 0 cos ϕ

 gl (3.3)

Similarly, the transformed gaze vector g
′
r from the right eye can be determined as the

mirrored gaze vector of the left eye.

12

3.2.3 Gaze Point Measurement

With the 2D location of the landmark of iris, eyeball center and iris center detected, the
gaze vector from the eye can be calculated following a model-based principle [29]. The
theoretical rationale is illustrated in Figure 3.5. The gaze vector generally encodes the yaw
θa and elevation θe of the line of sight, and the distance d along the normal from the user’s
iris center, to its projection point Po on the surface where the screen is on. The relative
translation between Po and the gaze point Pg can be calculated in a model-based manner.
Formally, take the location of the principle point Po(xo, yo), which is the center point of the
screen, as the initial location of the user gaze point. The face-to-screen distance, denoted
as d, is derivable from the transform vector on z-axis. Denote the Euler angle of the gaze
vector on yaw as Θh, and similarly the Euler angle on pitch as Θe, the location of the gaze
point Pg(xg, yg) can be calculated as:

{
xg = xo + d tan Θh

yg = yo + d tan Θe
cos Θh

(3.4)

When the user head rotates, the deviation in of the Euler angle ∆θh and ∆θe on yaw and
pitch can be acquired from the rotation matrix respectively. The location of the gaze point
Pg(xg, yg) is then given by: xg = xo + d tan(Θh + ∆Θh)

yg = yo + d tan(Θe+∆Θe)
cos(Θh+∆Θh)

(3.5)

When the user is squinting at the screen, both the rotation and transform of the head
impacts the movement of the gaze point. Denote the new face-to-screen distance as d′, the
yaw and pitch Euler angle deviation of the head as ∆Φh and ∆Φe, the location of the gaze
point Pg(xg, yg) is then calculated as: xg = xo + d′ tan(Θh + ∆Θh − ∆Φh)

yg = yo + d′ tan(Θe+∆Θe+∆Φe)
cos(Θh+∆Θh−∆Φh)

(3.6)

3.3 Gaze-Based Text Entry

We use the gaze point measure as the location of a keystroke, as it is a virtual finger taping
on the keys of a virtual keyboard. Another hint is required for indicting the happening of
a keystroke. Acknowledging that the user’s face expression can serve as such a hint, we
consider it as an inconvenient option for the keystroke hint, decreasing the typing speed
while increasing the cognitive load. As such, we use other potential input that a target
system can receive. For the example of the desktop scenario, we use the left mouse button
as the hint in our proof-of-concept prototype.

13

Figure 3.6: Layout of the virtual QWERTY keyboard.

Figure 3.7: Keystroke point is taken from the recent three gaze point measures on the
keyboard to stabilize the choice of keys.

3.3.1 Virtual Keyboard Layout

We develop a virtual QWERTY keyboard for the taping entry task, as shown in Figure
3.6. For the ease of implementation, the current keyboard consists of letters only, but it
is considered as straightforward to extend the keyboard to other layout, such as the full
QWERTY keyboard. When the user gaze point hovers over a virtual key, the system can
detect which key is being focused based on the location of the gaze point. When a keystroke
happens, the system will yield the chosen key and complete the entry of one letter.

3.3.2 Stabilizing Keystroke Location

As one challenge faced in the above method, the gaze point measure can be unstable along
the time, due to the systematic source of error, such as the unstable results of face detection
or face and eye landmark extractions. Additionally, the user can unintentionally move the
head during the typing, causing unexpected movement of gaze points. To mitigate this
challenge, we use the average of the gaze point location from the recent several frames,
thus reducing the impact of deviation per frame. In our prototype implementation, we take

14

the average from the recent three frames, as shown in Figure 3.7. To further smooth the
movement of gaze point on the keyboard, we interpolate the gaze point measure between
two adjacent measures. As such, when the user gaze on the key, the system will try to make
the focus as stable as possible, increasing the accuracy of the text entry.

15

Chapter 4

Experiments

In this chapter, we report the experiments on the proposed system, including the imple-
mentation of the proof-of-concept prototype and relative evaluation results.

4.1 Experiment Setup

As tackling the gaze-based text entry task that using common RGB cameras, we implement
a proof-of-concept prototype that involves a desktop computer, a common RGB webcam,
and a software implementation.

To quantitatively evaluate the performance of the key function modules of appearance-
based feature extraction and model-based measurement, we mainly conduct in-dataset eval-
uations, i.e. comparing the derived result with the truth given in the datasets. For evalu-
ations on the text entry performance with the prototype system, we test the real-world
performance of one participant when conducting text entry task on the prototype system.

4.1.1 Hardware

We use a Logitech HD Webcam C525, a popular low-cost desktop webcam, as the RGB
camera in our system. The system is implemented on a desktop, where an NVIDIA GeForce
GTX 1080 Ti serves as the GPU for operating the DNN model.

4.1.2 Datasets

For eye feature extraction and gaze vector measurement, we use our synthesized eye image
dataset, which provides detailed eye landmark locations and the gaze vector. We report
more details of the dataset in Appendix A.

For head pose measurement, we use MPIIGaze dataset [47], a representative appearance-
based dataset for gaze tracking tasks. The MPIIGaze dataset consists of over 200,000 we-
bcam images collected from 15 participants in their daily desktop use, directly providing
head pose measurement as baseline for benchmark.

16

Figure 4.1: Framework and data flow of the prototype system. The blue part indicates the
GUI, the orange part indicates the appearance-based feature extraction runtime, and the
green parts are the implementations of model-based algorithms and the text entry function.

4.1.3 Implementation

The proof-of-concept prototype is implemented based on Python, a widespread cross-platform
script programming language.

As illustrated in Figure 4.1, the prototype system mainly involves three open projects
of libraries and platforms: OpenCV [3], Dlib [1] and PyTorch [4]. OpenCV is a popular
library for image processing, and a well-founded base for realizing Graphic User Interface
(GUI). In particular, we use the API from OpenCV to derive RGB image captured by the
webcam, and utilize the UI module from OpenCV to provide graphic feedback of gaze point
measurement, then text entry, on the screen. Dlib, as the toolbox for CV oriented machine
learning algorithms, which is mainly used for face detection in the system. PyTorch serves
as the DNN operation platform and is used to yield face and eye landmarks.

Beside of the operation of DNN models and realization of text entry tasks, the codes
of the prototype mainly consists of logical implementation of model-based measurement
algorithms in Section 3.2. Key codes that realize the model-based measurement and text
entry task is listed in Appendix B.

Figure 4.2 shows a screenshot of the system, where the user is gazing at the key "W"
and pressing the left mouse button to input the letter. The system is able to operate at a
frame rate ranging from 15 to 22 frames per second (FPS), which is relatively limited due
to imperfect implementations and hardware capacity, but feasible for evaluations.

17

Figure 4.2: Screenshot of our prototype system when the user is conducting the text entry.

4.2 Evaluations

In this section, we report the quantitative evaluations on the performance of the appearance-
based feature extraction and the model-based measurement, as well as the user performance
in the gaze-based text entry task.

4.2.1 Results of Feature Extraction

Since we utilized pre-trained model for face feature extraction, we mainly focus on evaluating
the accuracy of the eye feature extraction model.

Figure 4.3 illustrates the Cumulative Distribution Function (CDF) of the normalized
deviation of the measured eye landmarks from the ground truth in the synthesized dataset.
As shown in the evaluation results, the maximum normalized deviation is below 10% of the
ground truth, and the overall mean accuracy is around 95%.

4.2.2 Results of Model-Based Measurement

The model-based measurement includes the gaze vector measurement and head pose mea-
surement. For quantitative evaluation, we apply the pipeline of the system on our synthe-
sized dataset and the MPIIGaze dataset, and derive the relative deviation of face landmarks,
eye landmarks, head pose and gaze vector measurement from the ground truth.

The evaluation results on gaze vector measurement show that the maximum deviation
of both yaw and pitch angles are close to around 5 degrees, as shown in Figure 4.4, and the
mean deviation is over 4.5 degree for yaw angles below 4.5 degree for pitch angles.

18

Figure 4.3: CDF of the normalized deviation of eye landmarks within the
synthesized dataset.

Figure 4.4: CDF of gaze vector angle deviation within the synthesized
dataset.

For evaluating the head pose accuracy, we conduct measurement on all 15 participants’
data in the MPIIGaze dataset and yield the mean deviations respectively.

19

Figure 4.5: Angle deviation of both yaw and pitch angles in head pose measurement within
the MPIIGaze dataset.

Figure 4.6: Translation deviation of head pose measurement within the MPIIGaze dataset.

20

As is shown in Figure 4.5, the overall angle deviation is within the range from 0.6 to
1.4 degree for both yaw and pitch angle measures, and the results of both types of angles
are relatively close for each participant. Evaluation results on translation of head pose are
illustrated in Figure 4.6. As shown in the figure, the overall deviation is below 0.7 for the
normalized deviation of 3D distance between the translation measurement and the ground
truth. One potential reason for the result is that we derive head pose measurement in the
similar way with the derivation of the ground truth in the MPIIGaze dataset.

4.2.3 Results of Gaze-Based Text Entry

We conduct a transcribing task on the system to evaluate the text entry performance,
including the speed and accuracy. We choose a letter that consists of 70 words and 342
letters from the Open American National Corpus [2] for the transcribing task. The detail
of the chosen letter is presented in Appendix C.

The text entry task consists of 5 rounds with unlimited time, and 4 breaks of around 5
minutes. For each round we record the overall time to finish typing the letter by using the
gaze, the count of the letters input, and the count of mistake letter input during the typing.

Table 4.1: Evaluation on the performance of gaze-based text entry

Task Completion Overall Mistake Accuracy
Round Time (min) Count Count

1 17.8 374 32 91.4%
2 19.1 380 38 90.0%
3 18.6 380 38 90.0%
4 14.6 367 25 93.1%
5 11.3 370 28 92.4%

Avg. 16.3 374.2 32.2 91.4%

As shown in Table 4.1, the overall completion time for each round ranges from around
11 minutes to over 19 minutes. Therefore, the typing speed is measured as in a range of 18
to 30 letters per minute, and averagely 4.3 words per minute. There are totally 161 out of
1871 characters mischosen during the tasks, showing that the overall accuracy is over 90%
and averagely around 91.4%

21

Chapter 5

Discussions and Conclusion

5.1 Discussions

The limitations of our solution are basically three-fold. First, our system is not quite com-
plete as a text entry system, as the virtual keyboard consists of letters only. Additionally,
the system does not provide much functionalities to ease the user’s cognitive overhead, such
as auto-fill and word suggestion. Second, the performance of our prototype is considerable
low, mainly due to the fact that the implementation of the system is not optimized, and the
hardware is a bit out-of-date for the latest open-source platforms. Third, the evaluation is
conducted only in a preliminary manner, lacking extensive quantitative measurements on
the user performance, while the sample space is also as small as possible.

As future works, we will first push the limitations above by completing and optimizing
the system implementation. Furthermore, we will explore on leveraging existing advanced
text entry techniques to improve the solution, notably including the popular functionalities
like auto-fill and word suggestion, and other advanced text entry solutions, such as tap
typing with optimized keyboard, swipe typing and phrase typing.

5.2 Conclusion

In this project, we propose a cost-efficient gaze-based text entry solution that uses common
RGB cameras. We leverage the pros of appearance-based and model-based methodologies
for gaze tracking, and tackle the challenges when use the gaze point measure as the hint for
keystroke. From the evaluation on our proof-of-concept, we show that our system can enable
a user to input texts by gazing at a virtual keyboard on the screen, at a speed ranging from
18 to 30 letters per minute with an accuracy of over 90%.

22

Bibliography

[1] Dlib c++ library, http://dlib.net/.

[2] Open american national corpus, https://anc.org/.

[3] Opencv python, https://pypi.org/project/opencv-python/.

[4] Pytorch, https://pytorch.org/.

[5] Seung-Jin Baek, Kang-A Choi, Chunfei Ma, Young-Hyun Kim, and Sung-Jea Ko. Eye-
ball model-based iris center localization for visible image-based eye-gaze tracking sys-
tems. IEEE Transactions on Consumer Electronics, 59(2):415–421, 2013.

[6] Syed Masum Billah, Yu-Jung Ko, Vikas Ashok, Xiaojun Bi, and IV Ramakrishnan.
Accessible gesture typing for non-visual text entry on smartphones. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems, pages 1–12, 2019.

[7] Cunjian Chen. PyTorch Face Landmark: A fast and accurate facial
landmark detector, 2021. Open-source software available at https :
//github.com/cunjian/pytorchf acelandmark.

[8] Wenzhe Cui, Rui Liu, Zhi Li, Yifan Wang, Andrew Wang, Xia Zhao, Sina Rashidian,
Furqan Baig, IV Ramakrishnan, Fusheng Wang, et al. Glancewriter: Writing text by
glancing over letters with gaze. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pages 1–13, 2023.

[9] Heiko Drewes, Alexander De Luca, and Albrecht Schmidt. Eye-gaze interaction for
mobile phones. In ACM Mobility, 2007.

[10] Wenxin Feng, Jiangnan Zou, Andrew Kurauchi, Carlos H Morimoto, and Margrit
Betke. Hgaze typing: Head-gesture assisted gaze typing. In ACM Symposium on Eye
Tracking Research and Applications, pages 1–11, 2021.

[11] Jun Gong, Zheer Xu, Qifan Guo, Teddy Seyed, Xiang’Anthony’ Chen, Xiaojun Bi, and
Xing-Dong Yang. Wristext: One-handed text entry on smartwatch using wrist gestures.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems,
pages 1–14, 2018.

[12] Yizheng Gu, Chun Yu, Zhipeng Li, Zhaoheng Li, Xiaoying Wei, and Yuanchun Shi.
Qwertyring: Text entry on physical surfaces using a ring. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(4):1–29, 2020.

23

[13] Dan Witzner Hansen and Qiang Ji. In the eye of the beholder: A survey of models
for eyes and gaze. IEEE transactions on pattern analysis and machine intelligence,
32(3):478–500, 2010.

[14] Zhenyi He, Christof Lutteroth, and Ken Perlin. Tapgazer: Text entry with finger
tapping and gaze-directed word selection. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems, pages 1–16, 2022.

[15] Ramin Hedeshy, Chandan Kumar, Raphael Menges, and Steffen Staab. Hummer: Text
entry by gaze and hum. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems, pages 1–11, 2021.

[16] Corey Holland, Atenas Garza, Elena Kurtova, Jose Cruz, and Oleg Komogortsev. Us-
ability evaluation of eye tracking on an unmodified common tablet. In ACM CHI
Extended Abstracts on Human Factors in Computing Systems, 2013.

[17] Michael Xuelin Huang, Jiajia Li, Grace Ngai, and Hong Va Leong. Screenglint: Practi-
cal, in-situ gaze estimation on smartphones. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, pages 2546–2557, 2017.

[18] Qiong Huang, Ashok Veeraraghavan, and Ashutosh Sabharwal. TabletGaze: uncon-
strained appearance-based gaze estimation in mobile tablets. arXiv:1508.01244, 2015.

[19] Qiong Huang, Ashok Veeraraghavan, and Ashutosh Sabharwal. TabletGaze: dataset
and analysis for unconstrained appearance-based gaze estimation in mobile tablets.
Machine Vision and Applications, 28(5-6):445–461, 2017.

[20] Sinh Huynh, Rajesh Krishna Balan, and JeongGil Ko. imon: Appearance-based gaze
tracking system on mobile devices. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 5(4):1–26, 2021.

[21] Pragma Kar, Krishna Mishra, Sudipro Ghosh, Sandip Chakraborty, and Samiran Chat-
topadhyay. Nosype: A novel nose-tip tracking-based text entry system for smartphone
users with clinical disabilities for touch-based typing. In Proceedings of the 23rd Inter-
national Conference on Mobile Human-Computer Interaction, pages 1–16, 2021.

[22] Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan, Suchendra Bhandarkar,
Wojciech Matusik, and Antonio Torralba. Eye tracking for everyone. In IEEE CVPR,
2016.

[23] Chandan Kumar, Ramin Hedeshy, I Scott MacKenzie, and Steffen Staab. Tagswipe:
Touch assisted gaze swipe for text entry. In Proceedings of the 2020 CHI conference
on human factors in computing systems, pages 1–12, 2020.

[24] Kuno Kurzhals, Fabian Göbel, Katrin Angerbauer, Michael Sedlmair, and Martin
Raubal. A view on the viewer: Gaze-adaptive captions for videos. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–12,
2020.

[25] Zhenjiang Li, Mo Li, Prasant Mohapatra, Jinsong Han, and Shuaiyu Chen. iType:
Using eye gaze to enhance typing privacy. In IEEE INFOCOM, 2017.

24

[26] Chen Liang, Chi Hsia, Chun Yu, Yukang Yan, Yuntao Wang, and Yuanchun Shi. Drg-
keyboard: Enabling subtle gesture typing on the fingertip with dual imu rings. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
6(4):1–30, 2023.

[27] Zongjian Liu, Jieling He, Jianjiang Feng, and Jie Zhou. Printype: Text entry via
fingerprint recognition. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 6(4):1–31, 2023.

[28] Yiqin Lu, Chun Yu, Shuyi Fan, Xiaojun Bi, and Yuanchun Shi. Typing on split key-
boards with peripheral vision. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, pages 1–12, 2019.

[29] Seonwook Park, Xucong Zhang, Andreas Bulling, and Otmar Hilliges. Learning to
find eye region landmarks for remote gaze estimation in unconstrained settings. In
Proceedings of the 2018 ACM Symposium on Eye Tracking Research and Applications,
pages 1–10, 2018.

[30] Alexander Plopski, Yuta Itoh, Christian Nitschke, Kiyoshi Kiyokawa, Gudrun Klinker,
and Haruo Takemura. Corneal-imaging calibration for optical see-through head-
mounted displays. IEEE transactions on visualization and computer graphics,
21(4):481–490, 2015.

[31] Korok Sengupta, Sabin Bhattarai, Sayan Sarcar, I Scott MacKenzie, and Steffen Staab.
Leveraging error correction in voice-based text entry by talk-and-gaze. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–11,
2020.

[32] Linfeng Shen, Yuchi Chen, and Jiangchuan Liu. Energy-efficient interactive 360° video
streaming with real-time gaze tracking on mobile devices. In 2021 IEEE 18th Inter-
national Conference on Mobile Ad Hoc and Smart Systems (MASS), pages 243–251.
IEEE, 2021.

[33] Ludwig Sidenmark and Hans Gellersen. Eye&head: Synergetic eye and head movement
for gaze pointing and selection. In Proceedings of the 32nd annual ACM symposium on
user interface software and technology, pages 1161–1174, 2019.

[34] Shyamli Sindhwani, Christof Lutteroth, and Gerald Weber. Retype: Quick text editing
with keyboard and gaze. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, pages 1–13, 2019.

[35] Paul Streli, Jiaxi Jiang, Andreas Rene Fender, Manuel Meier, Hugo Romat, and Chris-
tian Holz. Taptype: Ten-finger text entry on everyday surfaces via bayesian inference.
In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems,
pages 1–16, 2022.

[36] Kar-Han Tan, David J Kriegman, and Narendra Ahuja. Appearance-based eye gaze
estimation. In IEEE WACV, 2002.

[37] Congyi Wang, Fuhao Shi, Shihong Xia, and Jinxiang Chai. Realtime 3D eye gaze ani-
mation using a single RGB camera. ACM Transactions on Graphics (TOG), 35(4):118,
2016.

25

[38] Shibo Wang, Shusen Yang, Hailiang Li, Xiaodan Zhang, Chen Zhou, Chenren Xu,
Feng Qian, Nanbin Wang, and Zongben Xu. Salientvr: saliency-driven mobile 360-
degree video streaming with gaze information. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking, pages 542–555, 2022.

[39] Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency, Peter Robinson, and Andreas
Bulling. Learning an appearance-based gaze estimator from one million synthesised im-
ages. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research
and Applications, pages 131–138, 2016.

[40] Erroll Wood and Andreas Bulling. Eyetab: Model-based gaze estimation on unmodified
tablet computers. In Proceedings of the Symposium on Eye Tracking Research and
Applications, pages 207–210, 2014.

[41] Zheer Xu, Weihao Chen, Dongyang Zhao, Jiehui Luo, Te-Yen Wu, Jun Gong, Sicheng
Yin, Jialun Zhai, and Xing-Dong Yang. Bitiptext: Bimanual eyes-free text entry on a
fingertip keyboard. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, pages 1–13, 2020.

[42] Zheer Xu, Yankang Meng, Xiaojun Bi, and Xing-Dong Yang. Phrase-gesture typing on
smartphones. In Proceedings of the 35th Annual ACM Symposium on User Interface
Software and Technology, pages 1–11, 2022.

[43] Zheer Xu, Pui Chung Wong, Jun Gong, Te-Yen Wu, Aditya Shekhar Nittala, Xiaojun
Bi, Jürgen Steimle, Hongbo Fu, Kening Zhu, and Xing-Dong Yang. Tiptext: Eyes-free
text entry on a fingertip keyboard. In Proceedings of the 32nd Annual ACM Symposium
on User Interface Software and Technology, pages 883–899, 2019.

[44] Huanpu Yin, Anfu Zhou, Guangyuan Su, Bo Chen, Liang Liu, and Huadong Ma.
Learning to recognize handwriting input with acoustic features. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(2):1–26, 2020.

[45] Mingrui Ray Zhang, Shumin Zhai, and Jacob O Wobbrock. Typeanywhere: A qwerty-
based text entry solution for ubiquitous computing. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems, pages 1–16, 2022.

[46] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. Appearance-based
gaze estimation in the wild. In IEEE CVPR, 2015.

[47] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. Mpiigaze: Real-
world dataset and deep appearance-based gaze estimation. IEEE transactions on pat-
tern analysis and machine intelligence, 41(1):162–175, 2017.

26

Appendix A

Synthesized Eye Image Dataset

In this chapter, we report some more quantitative details about our synthesized eye image
dataset.

A.1 Head Pose and Gaze Vector Distribution

Our synthesized eye image dataset consist of 100,000 images that are generated from 3D
eye region models. The synthesized dataset comes with parameters that include the 2D
location of eye landmarks, the iris size that can be used to calculate the location of the
eyeball center, and the Euler angle of the head pose against the camera.

Evaluations on the distribution of the parameters, include the gaze vector and head pose,
are illustrated in Figure A.1, where Figure A.1a shows the normalized yaw and pitch angle
of the gaze vector and Figure A.1b shows the normalized angles of the head pose. The yaw
and pitch angles of gaze vector are bounded within range (−π

2 , π
2). The yaw angles of head

pose are bounded within range (−π
4 , π

4), while the pitch angles fall in range (−π
6 , π

6).

A.2 Simulated Gaze Point Measurement

By setting the head location fixed, we simulate the gaze point tracking results using the
synthesized dataset. The head is located at the normal from the center of the screen; as
such, the gaze point measurement will be determined only by the distance of the head from
the screen, the gaze vector and the head pose. Figure A.2 illustrates the normalized gaze
point location on the screen as the simulation results. By setting the screen to be of a typical
dimension of 60 cm by 40 cm, the simulated gaze points that fall out of the screen is filtered.
As shown in the normalized results, the gaze point measurements can cover the screen and
be uniformly distributed.

27

(a) Normalized yaw and pitch angles of gaze vec-
tor. (b) Normalized yaw and pitch angles of head pose.

Figure A.1: Distributions of gaze vectors and head poses in the synthesized eye image
dataset.

Figure A.2: Normalized simulation results of gaze point measurement on the screen within
the synthesized dataset. The 3D location of the head is fixed to be on the normal emitted
from the center of the screen. Gaze points that fall outside of the screen are filtered out.

28

Appendix B

Key Codes

In this chapter, we present the key codes that implement the algorithm parts in the project,
including the codes for model-based measurement and the text entry task.

B.1 Codes for Model-Based Measurement

import cv2
import numpy as np
from scipy.spatial.transform import Rotation

68 landmarks on a cardinal face model
CARDINALFACE = np.array([

[−0.07141807, −0.02827123, 0.08114384],
[−0.07067417, −0.00961522, 0.08035654],
[−0.06844646, 0.00895837, 0.08046731],
[−0.06474301, 0.02708319, 0.08045689],
[−0.05778475, 0.04384917, 0.07802191],
[−0.04673809, 0.05812865, 0.07192291],
[−0.03293922, 0.06962711, 0.06106274],
[−0.01744018, 0.07850638, 0.04752971],
[0., 0.08105961, 0.0425195],
[0.01744018, 0.07850638, 0.04752971],
[0.03293922, 0.06962711, 0.06106274],
[0.04673809, 0.05812865, 0.07192291],
[0.05778475, 0.04384917, 0.07802191],
[0.06474301, 0.02708319, 0.08045689],
[0.06844646, 0.00895837, 0.08046731],
[0.07067417, −0.00961522, 0.08035654],
[0.07141807, −0.02827123, 0.08114384],
[−0.05977758, −0.0447858, 0.04562813],
[−0.05055506, −0.05334294, 0.03834846],
[−0.0375633, −0.05609241, 0.03158344],

29

[−0.02423648, −0.05463779, 0.02510117],
[−0.01168798, −0.04986641, 0.02050337],
[0.01168798, −0.04986641, 0.02050337],
[0.02423648, −0.05463779, 0.02510117],
[0.0375633, −0.05609241, 0.03158344],
[0.05055506, −0.05334294, 0.03834846],
[0.05977758, −0.0447858, 0.04562813],
[0., −0.03515768, 0.02038099],
[0., −0.02350421, 0.01366667],
[0., −0.01196914, 0.00658284],
[0., 0., 0.],
[−0.01479319, 0.00949072, 0.01708772],
[−0.00762319, 0.01179908, 0.01419133],
[0., 0.01381676, 0.01205559],
[0.00762319, 0.01179908, 0.01419133],
[0.01479319, 0.00949072, 0.01708772],
[−0.045, −0.032415, 0.03976718],
[−0.0370546, −0.0371723, 0.03579593],
[−0.0275166, −0.03714814, 0.03425518],
[−0.01919724, −0.03101962, 0.03359268],
[−0.02813814, −0.0294397, 0.03345652],
[−0.03763013, −0.02948442, 0.03497732],
[0.01919724, −0.03101962, 0.03359268],
[0.0275166, −0.03714814, 0.03425518],
[0.0370546, −0.0371723, 0.03579593],
[0.045, −0.032415, 0.03976718],
[0.03763013, −0.02948442, 0.03497732],
[0.02813814, −0.0294397, 0.03345652],
[−0.02847002, 0.03331642, 0.03667993],
[−0.01796181, 0.02843251, 0.02335485],
[−0.00742947, 0.0258057, 0.01630812],
[0., 0.0275555, 0.01538404],
[0.00742947, 0.0258057, 0.01630812],
[0.01796181, 0.02843251, 0.02335485],
[0.02847002, 0.03331642, 0.03667993],
[0.0183606, 0.0423393, 0.02523355],
[0.00808323, 0.04614537, 0.01820142],
[0., 0.04688623, 0.01716318],
[−0.00808323, 0.04614537, 0.01820142],
[−0.0183606, 0.0423393, 0.02523355],
[−0.02409981, 0.03367606, 0.03421466],
[−0.00756874, 0.03192644, 0.01851247],
[0., 0.03263345, 0.01732347],
[0.00756874, 0.03192644, 0.01851247],
[0.02409981, 0.03367606, 0.03421466],
[0.00771924, 0.03711846, 0.01940396],
[0., 0.03791103, 0.0180805],

30

[−0.00771924, 0.03711846, 0.01940396],
], type=float)

10 landmarks on a cardinal eye model
CARDINALEYE = np.array([

[0.0, 0.0, 0.0]
[0.0, 0.0, −0.5],
[0.0, 0.1, −0.4712415],
[0.07071, 0.07071, −0.4712415],
[0.1, 0.0, −0.4712415],
[0.07071, −0.07071, −0.4712415],
[0.0, −0.1, −0.4712415],
[−0.07071, −0.07071, −0.4712415],
[−0.1, 0.0, −0.4712415],
[−0.07071, 0.07071, −0.4712415]], type=float)

Derive head pose from 68 face landmarks by solving PNP
problem

def getHeadPose(face_landmarks):
Camera parameters are necessary for solving PNP
global camera_matrix , camera_coeff

Rotation vector on axis (x, y, z)
rot_vec = np.zeros(3, dtype=float)

Translation vector on axis (x, y, z)
trans_vec = np.array([0, 0, 1], dtype=float)

Solve PNP problem with cardinal face landmarks
_, rot_vec, trans_vec = cv2.solvePnP(CARDINALFACE ,
face_landmarks , camera_matrix , camera_coeff , rot_vec,
trans_vec , useExtrinsicGuess=True, flags=cv2.
SOLVEPNP_ITERATIVE)

Rotation matrix from rotation vector
rot_mat = Rotation.from_rotrans_vec(rot_vec)

return rot_mat, trans_vec

Derive gaze vector from 10 eye landmarks by solving PNP
problem and adjust it with head pose

def getGazeVector(eye_landmarks , head_rot_mat ,
head_trans_vec):
Camera parameters are necessary for solving PNP
global camera_matrix , camera_coeff

Rotation vector on axis (x, y, z)

31

rot_vec = np.zeros(3, dtype=float)

Translation vector on axis (x, y, z)
trans_vec = np.array([0, 0, 1], dtype=float)

Solve PNP problem with cardinal eye landmarks
_, rot_vec, trans_vec = cv2.solvePnP(CARDINALEYE ,
eye_landmarks , camera_matrix , camera_coeff , rot_vec,
trans_vec , useExtrinsicGuess=True, flags=cv2.
SOLVEPNP_ITERATIVE)

return rot_vec @ head_rot_mat , trans_vec +
head_trans_vec

Get 2D gaze point location
def getGazePoint(rot_vec, trans_vec):

take the screen surface as z == 0, as such the gaze
point is the intersection point of gaze vector’s
extension

given rotation vector (rx, ry, rz) and translation
vector (tx, ty, tz), the gaze point location is as:

x = tx + tz / rz ∗ rx
y = ty + tz / rz ∗ ry
d = − trans_vec[2] / rot_vec[2]
x = trans_vec[0] + d ∗ rot_vec[0]
y = trans_vec[1] + d ∗ rot_vec[1]

return (np.round(x), np.round(y))

B.2 Codes for Text Entry

import cv2
import numpy as np

Function of adding text entry events to the frame
def showKeyboard(img):

global gaze_point_loc , curText, keyboard_locs , hist_loc,
counter, strike, reset

Take average of gaze point locations in last 3 frames
as keystroke point

if counter % 3 != 0 and not reset:
hist_loc.append(gaze_point_loc)

else:
hist_loc = [gaze_point_loc]

32

avg_loc = np.mean(hist_loc, axis=0)

draw keyboard on screen with resolution 1280 x 720
img = cv2.rectangle(img, (200, 480), (1080, 719), (255,
255, 255), 2)

for row in range(3):
for col in range(len(keyboard_locs[row])):

if (keyboard_locs[row][col][0][0] <= avg_loc[0]
<= keyboard_locs[row][col][1][0]) and

(keyboard_locs[row][col][0][1] <= avg_loc[1] <=
keyboard_locs[row][col][1][1]):
if strike:

color = (0, 0, 255)
else:

color = (255, 255, 0)
img = cv2.rectangle(img, keyboard_locs[row][
col][0], keyboard_locs[row][col][1],
color, −1)

break

show text
if len(curText):

img = cv2.putText(img, curText, (200, 440), cv2.
FONT_HERSHEY_TRIPLEX , 2, (0, 0, 255), 2)

for row in range(3):
if row == 0: # 10 keys of QWERTYUIOP

for col in range(10):
img = cv2.rectangle(img, keyboard_locs[row][
col][0], keyboard_locs[row][col][1],
(255, 255, 255), 1)

img = cv2.putText(img, keyboard[row][col],
keyboard_locs[row][col][2], cv2.
FONT_HERSHEY_PLAIN , 3, (255, 255, 255),
4)

elif row == 1: # 9 keys of ASDFGHJKL
for col in range(9):

img = cv2.rectangle(img, keyboard_locs[row][
col][0], keyboard_locs[row][col][1],
(255, 255, 255), 1)

img = cv2.putText(img, keyboard[row][col],
keyboard_locs[row][col][2], cv2.
FONT_HERSHEY_PLAIN , 3,

(255, 255, 255), 4)
else: # 7 keys of ZXCVBNM

for col in range(7):

33

img = cv2.rectangle(img, keyboard_locs[row][
col][0], keyboard_locs[row][col][1],
(255, 255, 255), 1)

img = cv2.putText(img, keyboard[row][col],
keyboard_locs[row][col][2], cv2.
FONT_HERSHEY_PLAIN , 3,

(255, 255, 255), 4)

return img

Callback function, use left mouse button event as
keystroke and add chosen letter to text

def callback(event, x, y, flags, param):
global gaze_point_loc , strike, curText
if event == cv2.EVENT_LBUTTONDOWN:

strike = True
for row in range(3):

for col in range(len(keyboard_locs[row])):
if (keyboard_locs[row][col][0][0] <=
gaze_point_loc[0] <= keyboard_locs[row][
col][1][0]) and (

keyboard_locs[row][col][0][1] <=
gaze_point_loc[1] <=
keyboard_locs[row][col][1][1]):

curText += keyboard[row][col]
break

elif event == cv2.EVENT_LBUTTONUP:
strike = False

34

Appendix C

Corpus for Text Entry Task

We choose the letter numbered 710CYL237 from the Open American National Corpus for
conducting the evaluation on the text entry performance. The original content of the letter
is as follows:

Dear,
Thank you for your interest in Aloha United Way. I am enclosing our 1999 Annual
Report; Hoaloha, our quarterly report; and Year 2000 Report to Donors to introduce
you to some basic services about AUW. If you need additional information, please feel
free to contact me at (808) 543-2213, or e-mail me at: deborahm@auw.org.
Sincerely,
Deborah M. Sanders Murray Aloha United Way Assistant Vice President
Marketing/ Communications Enc.

After clean the content by keeping only the letters and replacing the number and symbol
with words, the text for conducting text entry task is as follows, including 70 words and
342 letters:

Dear
Thank you for your interest in Aloha United Way I am enclosing our Annual Report
Hoaloha our quarterly report and Year Report to Donors to introduce you to some basic
services about AUW If you need additional information please feel free to contact me
at number or email me at deborahm at auw dot org
Sincerely
Deborah M Sanders Murray Aloha United Way Assistant Vice President
Marketing Communications Enc

35

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Literature Review
	Computer Vision-Based Gaze Tracking
	Text Entry Methods
	Gaze Tracking in Text Entry

	Gaze-Based Text Entry
	Appearance-Based Feature Extraction
	Face Detection
	Face Feature Extraction
	Eye Feature Extraction

	Model-Based Measurement
	Head Pose Measurement
	Gaze Vector Measurement
	Gaze Point Measurement

	Gaze-Based Text Entry
	Virtual Keyboard Layout
	Stabilizing Keystroke Location

	Experiments
	Experiment Setup
	Hardware
	Datasets
	Implementation

	Evaluations
	Results of Feature Extraction
	Results of Model-Based Measurement
	Results of Gaze-Based Text Entry

	Discussions and Conclusion
	Discussions
	Conclusion

	Bibliography
	Appendix Synthesized Eye Image Dataset
	Head Pose and Gaze Vector Distribution
	Simulated Gaze Point Measurement

	Appendix Key Codes
	Codes for Model-Based Measurement
	Codes for Text Entry

	Appendix Corpus for Text Entry Task

