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Abstract

Algebraic vector bundles are a construction useful for studying the geometry of varieties;
they are objects which associate a vector space to each point of the variety in a “polynomial”
fashion. These bundles can be explicitly represented via transition matrices, which encode
how the vector spaces vary as one moves along the variety. In 1957, Sir Michael Atiyah
showed that every indecomposable bundle over a smooth elliptic curve was determined
by a point on the curve, and two invariants; the rank and degree. However, his work is
not entirely explicit—using his results, we obtain explicit representations of the bundles in
terms of transition matrices. As an application, we present a constructive proof of global
generation for certain indecomposable bundles over elliptic curves.
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Chapter 1

Introduction

Algebraic geometry is the study of solutions to systems of polynomial equations, by inter-
preting such systems as topological spaces and examining the underlying geometry. Spaces
defined by polynomial equations in this way are called algebraic varieties. There are many
interesting families of algebraic varieties—among these are elliptic curves (Definition 2.1).
They are smooth complete curves of genus one, together with a marked point which we call
the base point. Elliptic curves form one of the first non-trivial classes of varieties, making
them a useful testing ground for conjectures. They are famous for their application in the
proof of Fermat’s Last Theorem, as well as their use in cryptography.

One way to study the geometry of an algebraic variety is by using vector bundles (Defi-
nition 2.21)—objects which associate a vector space to every point of the variety in a “poly-
nomial” fashion. These allow one to probe subvarieties of the base variety—particularly
those with nice properties, such as complete intersections. There are two invariants which
can be associated to any vector bundle: the rank, which is the dimension of the fibres, and
the degree (Definition 2.32), which roughly encodes how twisted the bundle is, see Figure
1.1.

The Möbius strip is an example of a rank one vector bundle over the projective real line
(a circle), see Figure 1.1. Topologically (i.e. up to homeomorphism), this is the unique non-
trivial vector bundle over the circle. Algebraically however, there is a distinction between
clockwise and counter-clockwise twists, and the degree essentially tracks the number of
twists. Note that in the interest of visualisation, we have truncated the vector spaces—they
are meant to continue on infinitely.

Unlike for vector spaces, in general there are rank two or higher bundles which cannot
be decomposed into a direct sum of rank one vector bundles—these are called indecom-
posable bundles. In the case of the projective line however, there is a well-known result of
Grothendieck that every vector bundle decomposes into line bundles (bundles of rank one)
[5].
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Figure 1.1: A rank one vector bundle.

Theorem 1.1. Every vector bundle over P1 decomposes as a direct sum of line bundles.
More precisely, for any vector bundle E over P1 of rank r, we have

E ∼= OX(k1)⊕OX(k2)⊕ · · ·OX(kr)

where k1 ≥ k2 ≥ · · · ≥ kr ∈ Z.

Hazewinkel and Martin provided an elementary proof of this result by providing so-called
transition matrices for vector bundles over the projective line [9]. Transition matrices encode
how the vector spaces associated to each point vary as one moves along the variety. The use
of transition matrices is one of the standard ways to explicitly work with vector bundles.

Proposition 1.2. Every vector bundle over P1 can be represented by a single transition
matrix of the form

M01 =



xk1 0 0 · · · 0
0 xk2 0 0
0 0 xk3 0
... . . . ...
0 0 0 · · · xkr


where k1 ≥ k2 ≥ · · · ≥ kr ∈ Z and r is the rank of the bundle.

Classically, vector bundles have been challenging to study—even over projective n-space,
there are many unanswered questions regarding indecomposable vector bundles [8]. For
instance, there is a classical result which shows that there is always an indecomposable
bundle of rank n − 1 over Pn where n is odd [8]. Additionally, a famous conjecture of
Hartshorne states that there are no indecomposable bundles of rank two when the dimension
of the space is sufficiently large [6, Section 6]:
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Conjecture 1.3 (Hartshorne). If n ≥ 7, then there are no indecomposable vector bundles
of rank two over Pn. In other words, every vector bundle of rank two decomposes into a
direct sum of line bundles.1

These suggest that the indecomposability of vector bundles over projective space is
generally very erratic and hard to predict. However, for elliptic curves, Atiyah classified
indecomposable vector bundles in his 1957 paper [1]:

Theorem 1.4 (Atiyah). For any rank r and degree d, there exist indecomposable vector
bundles E of rank r and degree d over an elliptic curve. Furthermore, there is an isomor-
phism

E ∼= E(r, d)⊗ L

where E(r, d) is a unique vector bundle of rank r and degree d, and L is a degree zero line
bundle.

This shows that there are bundles of arbitrary rank which do not decompose into a direct
sum of line bundles, unlike Theorem 1.1. Moreover, since degree zero line bundles over an
elliptic curve are in correspondence with points of the curve (Lemmas 2.8, 2.30), this shows
that every indecomposable bundle over an elliptic curve is completely determined by its
rank, degree, and a point on the curve. Atiyah constructs the distinguished bundles E(r, d)
inductively via certain non-split extensions (Definition 2.27). Our main contribution in this
thesis is to make this construction explicit—we provide transition matrices representing the
indecomposable bundles E(r, d), and extend this to further find transition matrices which
represent any indecomposable bundle over an elliptic curve.

Construction 1.5 (Z.). Let X be an elliptic curve over an algebraically closed field K with
char K 6= 2, and let P ∈ X. For any rank r and degree d, we provide an open cover U1, U2

of X (depending on P ) and a matrix MP (r, d) such that the vector bundle given by MP (r, d)
is isomorphic to the indecomposable bundle E(r, d)⊗O(P −O) (Definition 2.29).

Many applications of vector bundles come from understanding the global sections of the
bundle: regular functions mapping each point on the variety to a vector in its corresponding
vector space. The sections can be used to understand subvarieties of the underlying variety,
or find mappings of the variety into projective space or Grassmannians. Such mappings
are possible when the global sections globally generate the bundle (Definition 2.44, Figure
1.2). In Figure 1.2, we provide an example of global sections on a line bundle over a curve.
They globally generate the bundle if they span every fibre of the bundle. For instance, at
the fibre indicated by the dashed line, the section s2 does not span, but s1 does, so that

1Hartshorne’s conjecture is also commonly referred to as a statement about the existence of so-called
complete intersections of small co-dimension. The connection can be found in [6, Section 6].
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Figure 1.2: An example of global sections on a line bundle over a curve X.

together they globally generate this bundle. Using Riemann-Roch (Theorem 2.33), one can
prove that a line bundle over an elliptic curve is globally generated if and only if its degree
is at least two. There is an analogous argument which can be used to extend this result to
arbitrary rank indecomposable bundles over an elliptic curve:

Theorem 1.6 (Z.). Let X be any elliptic curve over an algebraically closed field K (no
restriction on characteristic), and let E be a non-trivial indecomposable vector bundle over
X of rank r and degree d. Then E is globally generated if and only if

d ≥ r + 1.

As an application of our transition matrices, we provide an explicit proof of this result
for the distinguished bundles E(r, d). Additionally, we have included software to compute
global sections of a bundle associated to any upper triangular transition matrix over a
suitable open cover.

Our study of vector bundles over elliptic curves was partially motivated by the following
problem:

Problem 1.7. Given an ample vector bundle E over an elliptic curve X, what is the smallest
m such that E⊗m ⊗ ωX is globally generated, where ωX is a canonical line bundle over X
(in this case ωX ∼= OX , the structure sheaf of X. See [7, Chapter 2, Section 2]).

There is a conjecture by Fujita in 1985 which addresses the case of line bundles [4]:

Conjecture 1.8 (Fujita’s Freeness Conjecture). If X is a projective variety, and L is an
ample line bundle over X, then L⊗m ⊗ ωX is globally generated if m ≥ dimX + 1, where
ωX denotes a canonical line bundle over X.

Via our construction, we were able to compute various examples which provide evidence
towards an extension of this conjecture:
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Conjecture 1.9. If X is a projective variety and E is an indecomposable ample vector
bundle of rank r over X, then E⊗m ⊗ ωX is globally generated if

m ≥ dimX + rank E

We note that in the case of X an elliptic curve, there is an ample bundle E over X for
which the bound is sharp.

In Chapter 2, we will cover the necessary preliminaries to discuss the central results,
including a review of the results obtained by Atiyah in [1]. Chapter 3 contains the construc-
tion of the transition matrices. Chapter 4 consists of some of the immediate applications of
the transition matrices, including an explicit proof of global generation for the distinguished
bundles, as well as a tool for computing global sections. In the Appendix, we have included
the code for software to compute global sections given a transition matrix, implemented in
SageMath.
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Chapter 2

Preliminaries

In this chapter, we will review or introduce the necessary tools to describe and prove our
central results. We assume the reader is familiar with the basics of algebraic geometry via
e.g. [7, Chapter 1] or [10, Chapter I]. We also assume the reader is familiar with some
of the basics of sheaves of OX -modules from the beginning of [7, Chapter 2, Section 5].
Throughout this chapter, we assume K is an algebraically closed field and char K 6= 2.

2.1 Elliptic Curves

Definition 2.1. An elliptic curve over K is a smooth irreducible projective (i.e. a variety
in PnK for some n) curve of genus one, together with a marked point which we denote by O.1

From Proposition 1.7 in [12, Chapter 3], as long as char K 6= 2, every elliptic curve can
be represented in Legendre form: as the zero locus in P2 of the polynomial

x2
2x0 = x1(x1 − x0)(x1 − λx0) (2.1)

where λ ∈ K\{0, 1}. In this case, the marked point is O = (0 : 0 : 1). For the rest of this
chapter, as well as in Chapter 3, we will assume any given elliptic curve is in Legendre form,
though we note that for the general proof of global generation (Theorem 4.1), this is not
necessary.

From this representation, we have a natural open covering of X given by the standard
affine open covering of P2. Recall that

P2 = D+(x0) ∪D+(x1) ∪D+(x2) (2.2)
1Some authors do not insist that elliptic curves come with a marked point.
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Figure 2.1: The real zero locus of an elliptic curve in Legendre form, on an affine patch of
P2.

where D+(xi) are the distinguished open sets where xi 6= 0. We set

U0 = D+(x0) ∩X (2.3)

U2 = D+(x2) ∩X

In other words, U0 is all of X except for the point O, and U2 is all of X except the three
points (1 : 0 : 0), (1 : 1 : 0), and (1 : λ : 0). Therefore, we have that U0 ∪ U2 is an open
(affine) cover of X. For our discussion, it is useful to understand the structure sheaf of X
explicitly on this open cover. First, on the open set U0, we have that x0 6= 0, and hence we
define

x := x1
x0
, y := x2

x0
. (2.4)

Dividing (2.1) by x3
0 yields

y2 = x(x− 1)(x− λ),

so that the ring of regular functions on U0 is2

OX(U0) = K[x, y]/〈y2 − x(x− 1)(x− λ)〉.
2Here we are adopting Hartshorne’s notation for the ring associated to an open set over a sheaf. Other

conventional notations are Γ(OU0 ) or H0(U0,OX).
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On U2, we have x2 6= 0, so we have the two monomials

xy−1 = x1
x2
, y−1 = x0

x2
,

and if we divide (2.1) by x3
2, then we obtain

y−1 = xy−1(xy−1 − y−1)(xy−1 − λy−1),

so that the ring of regular functions on U2 is

OX(U2) = K[xy−1, y−1]/〈y−1 − xy−1(xy−1 − y−1)(xy−1 − λy−1)〉.

Finally, on the intersection U0 ∩ U2, we simply note that y becomes invertible. Therefore,
in summary we have

OX(U0) = K[x, y]/〈y2 − x(x− 1)(x− λ)〉

OX(U2) = K[xy−1, y−1]/〈y−1 − xy−1(xy−1 − y−1)(xy−1 − λy−1)〉 (2.5)

OX(U0 ∩ U2) = K[x, y±1]/〈y2 − x(x− 1)(x− λ)〉.

2.2 Divisors and Valuations

Vital to our central construction will be the use of valuations. We will also cover divisors,
as Cartier divisors yield a useful way to represent line bundles. We will do so on smooth
projective curves, although we note that every definition we give can be extended appropri-
ately to higher dimensional projective varieties. One may find more information on discrete
valuations from [2, Chapter 9], and for a discussion on divisors, see [7, Chapter 2, Section
6] or [10, Chapter III, Section 1].

Definition 2.2. Let R be a commutative ring with unity. Then a discrete valuation on R
is a map ν : R→ Z ∪ {∞} satisfying

1. ν(r) =∞ if and only if r = 0

2. ν(rs) = ν(r) + ν(s)

3. ν(r + s) ≥ min{ν(r), ν(s)}

Here, we are defining ∞+ a =∞ and min{∞, a} = a for any a ∈ Z.3

Example 2.3. The simplest example of a non-trivial discrete valuation is on K[x]: if we
set

ν(f) = −deg(f), ν(0) =∞,
3Some authors exclude 0 from the domain of ν, to avoid dealing with ∞.
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then ν is a discrete valuation on K[x]. 4

Given a smooth projective curve X, the order of vanishing of a function on a point
x ∈ X forms a valuation on the local rings OX,x—the rings of rational functions which are
regular (non-singular) at x. Consequently, we also get a valuation on the ring of rational
functions K(X): Let x ∈ X be a point on the curve. Since X is smooth, each local ring
OX,x has a unique maximal ideal mx which is principal since X is a curve. Given a non-zero
rational function f = p

q ∈ K(X)∗, where p and q are elements of the local ring OX,x, we
have

p = tkp′, q = t`q′

for some units p′, q′ ∈ OX,x and where t is a generator of mx.

Definition 2.4. The order of vanishing of f at x as

ordx(f) = k − `.

If ordx(f) is strictly positive, we say f vanishes at x; if strictly negative, we say f has a
pole at x. The order of vanishing at x forms a valuation, and we will often instead denote
it as

νx(f) := ordx(f), νx(0) :=∞

To understand the geometry of a projective curve, it is useful to study rational functions
defined on the variety; and in particular, on the vanishing of these functions along the
variety. This is captured via divisors.

Definition 2.5. Let X be a smooth projective curve. A Weil divisor on X is a formal sum
of points

D =
∑
x∈X

nx · x, nx ∈ Z

where all but finitely many nx = 0. The degree of a divisor is the sum of the coefficients

degD =
∑
x∈X

nx.

Given a non-zero rational function f ∈ K(X)∗, we define the principal divisor

div f =
∑
x∈X

νx(f) · x.

9



Given an open set U ⊂ X, we can restrict a divisor to only points in U , which we denote
by D|U . We say a divisor D is effective if all of its coefficients are non-negative, and denote
this by D ≥ 0.

More generally, divisors over a smooth projective variety are formal sums of co-dimension
one subvarieties, but in the case of a curve, a co-dimension one subvariety is just a finite
union of points on the curve. This partially motivates our restriction to curves, since we
obtain a useful invariant in the degree (the number of points counted with multiplicity).

Remark 2.6. Principal divisors are indeed Weil divisors, since a rational function on a
curve has only finitely many points where it vanishes or contains a pole (Lemma 6.1 in
[7, Chapter 2]). Furthermore, principal divisors have degree zero (Proposition 6.4 in [7,
Chapter 2]).

Definition 2.7. Two divisors D1 and D2 are said to be linearly equivalent, denoted by
D1 ∼ D2, if there exists f ∈ K(X)∗ such that

D1 −D2 = div f.

A linear equivalence class D is the set of all divisors linearly equivalent to D. By Remark
2.6 above, we can see that the degree of all divisors in a class are equal, and hence we define
the degree of a linear equivalence class to be the degree of any representative.

Linear equivalence classes of divisors over elliptic curves are particularly well-behaved.

Lemma 2.8. If X is an elliptic curve and P,Q ∈ X, then P ∼ Q4 if and only if P = Q.
Furthermore, any degree zero divisor on X is linearly equivalent to P −O for a unique point
P ∈ X.

Proof. This is Lemma 3.3 and Proposition 3.4 (a) in [12, Chapter 3].

Corollary 2.9. If X is an elliptic curve, then every degree one divisor is linearly equivalent
to one of the form P for some unique P ∈ X.

Proof. Suppose D is a Weil divisor of degree one. Then D−O is of degree zero, and hence
by Lemma 2.8 above, we have that it is linearly equivalent to P −O for some unique P ∈ X,
so that D ∼ P .

When X is an elliptic curve, with the open covering U0, U2 as in (2.3), we can find
special elements in OX(U0 ∩ U2) which attain all values for the valuation νO. Recall from

4Here, we are interpreting the points P and Q as the divisors 1 · P and 1 · Q. In [12], this is denoted
[P ]—but in the interest of simplifying notation, we exclude this.

10



(2.5) that OX(U0 ∩ U2) = K[x, y±1]/〈y2 − x(x− 1)(x− λ)〉. Set

ωk =


y−k/3 if k ≡ 0 mod 3

xy−(k+2)/3 if k ≡ 1 mod 3

x2y−(k+4)/3 if k ≡ 2 mod 3

(2.6)

Lemma 2.10. We have νO(ωk) = k.

Proof. In Example 3.3 in [12, Chapter 2], Silverman computes the order of vanishing of the
coordinate functions along an elliptic curve in Legendre form. We find that νO(x) = −2
and νO(y) = −3, so that

νO(ωk) =


−3
(
−k
3

)
if k ≡ 0 mod 3

−2− 3
(
−(k+2)

3

)
if k ≡ 1 mod 3

−4− 3
(
−(k+4)

3

)
if k ≡ 2 mod 3

which evaluates to k in all cases.

Later, when we are explicitly working with global sections of vector bundles such as in
Theorem 3.19 or Theorem 4.8, the interactions between the rings of regular functions on
the open cover (2.3) will be important to understand. In particular, we want to understand
how the rings behave with respect to the valuation at O. Recall that OX(U) is the ring
consisting of rational functions which are regular everywhere on U .

Lemma 2.11. 1. The ring OX(U0) contains ωk for k ≤ −2.

2. There are no elements of valuation −1 at O in OX(U0). In particular, the element
ω−1 is not in the ring.

3. If f ∈ OX(U0), then νO(f) ≤ 0.

Proof. In the construction of ωk (2.6), taking k sufficiently negative will make the exponent
in y non-negative. We separate these into the three cases defining ωk:

1. If k ≡ 0 mod 3 and k ≤ −2, then in fact k ≤ −3, and so ωk is in fact a positive
exponent of y.

2. If k ≡ 1 mod 3 and k ≤ −2, then the exponent in y is non-negative.

3. If k ≡ 2 mod 3 and k ≤ −2, then in fact k ≤ −4, so that the exponent in y is
non-negative.

11



Therefore, for k ≤ −2, the ωk are monomials in x and y with non-negative exponents.
Recall from 2.5 that

OX(U0) = K[x, y]/〈y2 − x(x− 1)(x− λ)〉,

establishing (1).
Now suppose an element f ∈ OX(U0) has valuation −1 at O. Since it is regular on U0

and is a rational function, it must therefore vanish at exactly one point P ∈ X, so that
div f = P −O and P 6= O. This contradicts Lemma 2.8 and establishes (2).

Finally, we prove (3) by the contrapositive: Suppose f ∈ K(X) is such that νO(f) > 0.
Then f must have a pole at some point P 6= O, and therefore P ∈ U0. Hence f is not
regular on U0 and we conclude that f 6∈ OX(U0).

Lemma 2.12. The ring OX(U2) consists of all elements of f ∈ OX(U0 ∩ U2) satisfying
νO(f) ≥ 0. In particular, OX(U2) does not contain ω−1.

Proof. A rational function in OX(U0 ∩ U2) lies in OX(U2) if and only if it is regular at the
one missing point, O. In other words, if and only if the rational function has non-negative
valuation at O.

Lemma 2.13. We have that

OX(U0) ∩ OX(U2) = K.

Proof. If an element lies in OX(U0) ∩ OX(U2), then it is regular everywhere, but the only
globally regular functions on a projective variety are constant (Theorem 3.4 in [7, Chapter
1]).

These lemmas will allow us to interact with the rings without having to deal with
equivalence classes modulo the ideal. Instead we can exclusively work with the special
elements ωk. For our explicit proof of global generation, we will need the ability to cancel
elements of the same valuation.

Lemma 2.14. Let X be a smooth projective curve over a field K, and let x ∈ X. Suppose
f, g ∈ K(X)∗ are non-zero rational functions such that νx(f) = νx(g) = k. Then there
exists a constant c ∈ K such that νx(f − cg) > k.

Proof. Let x ∈ X. Since X is smooth, the local ring OX,x is a PID with maximal ideal
mx = 〈tx〉. Then f = utkx and g = vtkx for u, v units. We know that OX,x/mx

∼= K, so the
images u, v are just some elements in K. In particular, there is some other constant c ∈ K
such that u − cv = 0. Therefore u − cv ∈ mx, so that u − cv = wtx for some w ∈ OX,x.

12



Hence

f − cg = (u− cv)tkx = wtk+1
x ,

so that νx(f − cg) ≥ k + 1.

Lemma 2.15. For any integer m ≥ 1, and f ∈ OX(U0 ∩ U2), there is an element g ∈
OX(U0) such that f − ωm1 g ∈ OX(U2). Furthermore, if m ≥ 2, then we can further enforce
that νO(f − ωm1 g) > 0.

Proof. If the valuation of f at O is non-negative then it is in OX(U2) already by Lemma
2.12, so set g = 0. We proceed by reverse induction on k := νO(f). The base case is k = 0,
which follows from the above. Now let k ≤ −1, and suppose that if f ′ ∈ OX(U0 ∩ U2)
satisfies νO(f ′) > k, then there exists g′ such that f ′ − ωm1 g′ ∈ OX(U2).

Set g0 = ω−m+k, so that νO(g0) = −m + k by Lemma 2.10. Since m ≥ 1 and k ≤ −1,
we have that νO(g0) ≤ −2, so that g0 ∈ OX(U0) by Lemma 2.11. Furthermore, by the
properties of valuations, we have νO(ωm1 g0) = k, so that we can apply Lemma 2.14 to find
a constant c ∈ K such that

νO(f − cωm1 g0) > k.

Now apply induction to obtain g′, and set g = g′ + cg0.
If m ≥ 2, then we can also cancel valuation zero terms, by taking g = cω−m for an

appropriate c ∈ K. This will be in OX(U0) by Lemma 2.11 since m ≥ 2.

Corollary 2.16. Let q ∈ Z+, m ≥ 1 and suppose

f ∈ OX(U0 ∩ U2)q.

Then there exists a vector g ∈ OX(U0)q such that

f− ωm1 Iqg ∈ OX(U2)q,

where Iq is q × q identity matrix. Furthermore, if the i-th entry of f is already in OX(U2),
then the i-th entry of f− ωm1 Iqg is precisely that same entry.

Proof. This is just the vector form of Lemma 2.15 above. The only addition is the final
sentence, which follows from the proof of the lemma. Namely, if an entry already lies in
OX(U2), we took g = 0 in the proof, so that taking the difference does not affect that
entry.

Finally, in order to explicitly represent line bundles, we will need an alternative repre-
sentation of Weil divisors, coming from locally principal divisors.
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Definition 2.17. Let X be a smooth projective curve. A Cartier divisor on X is an
equivalence class5 D which can be represented by the data {(Ui, fi)}ni=0, where the {Ui}ni=0
form an open cover of X and fi ∈ OX(Ui)∗. Furthermore, for any indices i, j, we have that
the quotients

fi
fj
∈ OX(Ui ∩ Uj)∗.

Note that the quotients being invertible further implies that

div fi
fj
|Ui∩Uj = div fi|Ui∩Uj − div fj |Ui∩Uj = 0,

so that the divisors of the functions fi are equal on intersections of open sets in the cover.
Starting from a Cartier divisor D = {(Ui, fi)}ni=0, we can construct a Weil divisor as follows:
Any point x ∈ X lies in some Ui. Set nx := νx(fi). It is possible that x may lie in another
Uj for i 6= j, but by the above observation, we have that νx(fi) = νx(fj) for all x ∈ Ui ∩Uj ,
so that this is well-defined. Since there are only finitely many fi, and they only have finitely
many zeroes and poles, only finitely many of the nx will be non-zero. This motivates the
idea that Cartier divisors are locally principal Weil divisors—they locally look principal,
and globally glue together to give a Weil divisor since they agree on intersections.

Proposition 2.18. If X is a smooth projective curve,6 then every Weil divisor can be
represented by a Cartier divisor.

Proof. This is Proposition 6.11 and Remark 6.11.2 from [7, Chapter 2].

Example 2.19. In the case of an elliptic curve X, having an explicit form for the divisor
O as a Cartier divisor will be particularly useful. Let X be in Legendre form, and let U0, U2

be the open cover of X from (2.3). Example 3.3 in [12, Chapter 2] shows that

div x = 2 · (1 : 0 : 0)− 2 ·O,

div y = (1 : 0 : 0) + (1 : 1 : 0) + (1 : λ : 0)− 3 ·O,

so from (2.6), we have

div ω1 = div xy−1 = O + (1 : 0 : 0)− (1 : 1 : 0)− (1 : λ : 0). (2.7)

In particular, (div ω1)|U0∩U2 = 0, so that

D = {(U0, 1), (U2, ω1)}
5Formally, Cartier divisors are global sections of the so-called sheaf of total quotient rings—which is

meant to be the sheaf equivalent of the function field. See [7, Section 6].
6This more generally applies to varieties whose local rings are all unique factorization domains.
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is a Cartier divisor. By construction, νx(1) = 0 for all x ∈ U0, νx(ω1) = 0 for all x ∈ U2\{O},
and νO(ω1) = 1. Therefore the Weil divisor corresponding to this Cartier divisor is O. 4

2.3 Sheaves

Our results are primarily concerned with vector bundles over elliptic curves. However, there
is a correspondence between vector bundles and so-called locally free sheaves; and it is easier
to work with the sheaves instead. As such, we omit the definition of vector bundles here.
One can find the definition of vector bundles in [3, Chapter 6, Section 0] or [11, Chapter
VI, Section 1], together with their correspondence with locally free sheaves.

In this section, we recall a few definitions regarding sheaves, following [7, Chapter 2].
In addition, we will present some ways to explicitly work with vector bundles via transition
matrices. Throughout this discussion, we will assume X is a projective variety unless
otherwise specified.

Definition 2.20. Given a point x ∈ X and a sheaf F over X, the stalk at x of F is the set

Fx = {(U, s) | U ⊂ X open containing x, s ∈ F(U)}/ ∼

where (U, s) ∼ (V, t) if and only if there existsW ⊂ U∩V containing x such that s|W = t|W .
This is otherwise known as the direct limit of F(U) via the restriction maps ρ, which is
denoted by lim−→ρ

F(U). Given a section s ∈ F(U) and x ∈ U , we denote the image of s at
the stalk of x as the equivalence class sx = (U, s).

Definition 2.21. A sheaf of OX -modules F is said to be locally free of rank r if there exists
an open cover {Ui}i∈I of X such that for each i ∈ I, we have an isomorphism F|Ui

∼= OrUi
.

As mentioned above, we will refer to a vector bundle of rank r as being a locally free sheaf
of rank r. A line bundle is a locally free sheaf of rank 1.

Definition 2.22. Given a vector bundle E , L is said to be a subbundle of E if L is a locally
free subsheaf of E , and the quotient sheaf E/L is also locally free.

There is another equivalent characterization of locally free sheaves:

Lemma 2.23. A sheaf F is locally free of rank r if and only if Fx ∼= OrX,x for any x ∈ X.

Proof. This is (b) of Exercise 5.7 in [7, Chapter 2].

Definition 2.24. The trivial vector bundle of rank r is the sheaf

Ir =
r copies︷ ︸︸ ︷

OX ⊕ · · · ⊕ OX
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Proposition 2.25. Let E be a vector bundle of rank r. The sheaf Hom(E ,OX) defined by

Hom(E ,OX)(U) = HomOX(U)(E(U),OX(U))

is locally free. We call this the dual of E, and denote it by E∗.

Proof. This is Exercise 5.1 in [7, Chapter 2].

Proposition 2.26. Let E be a vector bundle of rank r. The sheaf
∧r E defined by the

sheafification of the presheaf (
r∧
E
)

(U) =
r∧
E(U)

is a line bundle.

Proof. Fix x ∈ X. By Exercise 2.20 in [2, Chapter 2], direct limits commute with tensor
products and quotients. Therefore they commute with exterior products, and so we have

lim−→
∧rρ

r∧
E(U) =

r∧
lim−→
ρ

E(U) =
r∧
Ex =

r∧
OrX,x = OX,x,

where ρ denotes the restriction maps given by E . Since sheafifying does not change the
stalks, we therefore have (

r∧
E
)
x

= OX,x.

Thus by Lemma 2.23,
∧r E is locally free of rank one.

Definition 2.27. Let F ,G be sheaves of OX -modules. An extension of F by G is an exact
sequence of OX -modules

0 G E F 0.

We will occasionally refer to E as being an extension of F by G.

Example 2.28. The simplest extensions are just direct sums of sheaves—for any two
sheaves F ,G, we always have the exact sequences

0 G F ⊕ G F 0

and also

0 F F ⊕ G G 0
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so that the sheaf F⊕G is both an extension of F by G and an extension of G by F . These are
known as split or trivial extensions. We shall see some examples of non-trivial extensions
via Proposition 2.42, Theorem 2.53, and Theorem 2.54. 4

We have a nice correspondence between line bundles and divisors.

Definition 2.29. Let D be a divisor. Then we can form the sheaf associated to D, denoted
O(D), by defining7

O(D)(U) := {f ∈ OX(U) | div f +D ≥ 0}.

Proposition 2.30. Let X be any projective curve.

1. The sheaf O(D) is a line bundle, and every line bundle is isomorphic to one of this
form. If D is of degree d, then O(D) is also of degree d as a line bundle.

2. If D1 ∼ D2, then O(D1) ∼= O(D2).

3. For any divisors D1, D2 we have O(D1 −D2) ∼= O(D1)⊗O(D2)∗.

Proof. The first point follows from Propositions 6.13 and 6.15 in [7, Chapter 2], and the
remaining just by Proposition 6.13.

Remark 2.31. Given a line bundle L, this shows that L ⊗ L∗ ∼= OX . As a result, line
bundles are referred to as invertible sheaves.

From this, we can obtain an additional invariant associated to any vector bundle.

Definition 2.32. Given a line bundle L, the degree of L is the degree of the corresponding
divisor class. For any vector bundle E of rank r, the degree of E is the degree of

∧r E (see
Proposition 2.26).

With the notion of degree for higher rank vector bundles, we can state Riemann-Roch:

Theorem 2.33 (Riemann-Roch). If X is an smooth projective curve, then for any vector
bundle E over X, we have

dim Γ(X, E)− dimH1(X, E) = deg(E) + r(1− g),

where H1(X, E) is the first cohomology group of E under the Γ(X, ·) functor (see [7, Chapter
3]).

Proof. This is proven in [1, Page 420].
7There is some ambiguity when using functional notation for both the sheaf associated to D and the ring

associated to U . If the ambiguity ever arises, we will be careful to remind the reader—though the distinction
between open sets and divisors is always made clear.
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Now we introduce the main tool used in the thesis, transition matrices.

Proposition 2.34. Let X be a projective variety together with an open cover {Ui}ni=0 and
matrices Mij ∈ GLr(OX(Ui ∩ Uj)) (called transition matrices) satisfying the compatibility
conditions

Mik = MijMjk on Ui ∩ Uj ∩ Uk (2.8)

Mij = M−1
ji on Ui ∩ Uj .

We can define a presheaf E via the matrices by setting E(U) to be the set of n-tuples si ∈
OX(U ∩ Ui)r such that for any pair i 6= j,

si|U∩Ui∩Uj = Mijsj |U∩Ui∩Uj . (2.9)

We have that E is a vector bundle of rank r over X.

Proof. The compatibility conditions of the matrices ensure that this is a sheaf. Furthermore,
we claim that E|Ui

∼= OrUi
, since sections of E|Ui(U) are completely determined by the i-th

term in the n-tuple si ∈ OX(U ∩Ui)r. The remaining terms are just restrictions of the i-th
term to a smaller open set. Therefore E is locally free of rank r.

Example 2.35. Let X = P1. We have the standard affine open cover of X given by

X = D+(x0) ∪D+(x1) = U0 ∪ U1,

and by setting x := x1
x0
, we have

OX(U0) = K [x]

OX(U1) = K
[
x−1

]
OX(U0 ∩ U1) = K

[
x±1

]
.

Then we can define

M10 =
(
x−1 −1
0 x−2

)
,

together with M01 = M−1
10 . These are transition matrices, and global sections of the bundle

associated to these matrices are pairs of the form

(s, t) ∈ OX(U0)2 ×OX(U1)2
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satisfying t = M10s (or equivalently s = M01t). For example, the pair

((
x

1

)
,

(
0
x−2

))

represents a global section. 4

Remark 2.36. Every vector bundle is isomorphic to one arising from some set of transition
matrices as in Proposition 2.34. Given a vector bundle E , there are isomorphisms αi : E|Ui →
OrUi

. From these, we obtain a commutative diagram

E|Ui(Ui ∩ Uj) E|Uj (Ui ∩ Uj)

OX(Ui ∩ Uj)r OX(Ui ∩ Uj)r

id

(αj)Ui∩Uj

Lij

(α−1
i )Ui∩Uj

where the Lij are defined by

Lij = (αj)Ui∩Uj ◦ (α−1
i )Ui∩Uj .

We obtain transition matrices via matrix representations of the linear maps Lij . In this
way, finding transition matrices for a bundle is analogous to finding a matrix representation
for a linear map between vector spaces.

The correspondence in Lemma 2.30 gives a construction to form transition matrices for
the bundle associated to a Cartier divisor. In particular, if D = {(Ui, fi)}ni=1, then we can
set the transition matrices

Mij =
(
fi
fj

)
.

Since D is a Cartier divisor, fi
fj
∈ OX(Ui ∩ Uj)∗ so that Mij is invertible. Furthermore, the

matrices satisfy the compatibility conditions in (2.8):

M−1
ij =

(
fj
fi

)
= Mji,

MijMjk =
(
fi
fj

)
·
(
fj
fk

)
=
(
fi
fk

)
= Mik.

Let L be the bundle associated to these matrices.

Lemma 2.37. We have an isomorphism L ∼= O(D).

Proof. This is proven in Theorem 6.0.18 of [3, Chapter 6].
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Example 2.38. Let X be an elliptic curve. In Example 2.19, we computed a representation
for the divisor O as a Cartier divisor, and obtained

O = {(U0, 1), (U2, ω1)}.

Therefore we have the transition matrices

M20 = (ω1), M02 = M−1
20 .

Consequently, the line bundle O(O) (Lemma 2.30) corresponding to the divisor O is isomor-
phic to the bundle arising from these transition matrices. This should be expected—since
ω1 is a uniformizer for local ring OX,O, and we have chosen our open cover with its zeroes
and poles in mind (ω1 is invertible on U0 ∩ U2). More generally, we can always pick our
open cover appropriately so that any uniformizer at a point P can represent a transition
matrix for the divisor P . 4

More generally, whenever we produce an open cover consisting of only two open sets
U1, U2 (such as (2.3) or later (3.11)), only one matrix M21 ∈ GLr(OX(U1 ∩U2)) is required
to describe a vector bundle (though the cover may depend on the bundle). We will denote
the vector bundle arising from M21 as BU1,U2(M21). When no ambiguity arises to the open
cover we are using, we will simply write B(M21).

Remark 2.39. As part of our notation, we are insisting to choose M21 instead of M12

because how global sections are described. Namely, global sections of B(M21) are pairs

(s, t) ∈ OX(U1)r ×OX(U2)r

satisfying t = M21s. In this way, they are completely determined by our choice of s ∈
OX(U1). On the other hand, if we were to use M12, our compatibility condition would give
us s = M12t, so that a global section would be completely determined by our choice of t.
This will be important to keep in mind when we are directly working with global sections,
such as in Theorem 3.19 or Theorem 4.8.

We can translate some sheaf operations such as tensoring and dualizing into the language
of transition matrices:

Lemma 2.40. Suppose we have an open cover U1, U2 of X, and f ∈ OX(U1 ∩ U2)∗. Then
for any matrix M ∈ GLr(OX(U1 ∩ U2)), we have

B(M)⊗ B((f)) ∼= B(f ·M).
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Proof. Denote the isomorphisms B(M)|Ui
∼= OrUi

and B(f)|Ui
∼= OUi by

α1 : B(M)|U1 → OU1 , α2 : B(M)|U2 → OU2 ,

β1 : B((f))|U1 → OU1 , β2 : B((f))|U2 → OU2 .

Then αi ⊗ βi give isomorphisms

B(M)|U1 ⊗ B((f))|U1
∼= (B(M)⊗ B((f)))|U1

∼= OrU1 ⊗OU1
∼= OrU1 ,

B(M)|U2 ⊗ B((f))|U2
∼= (B(M)⊗ B((f)))|U2

∼= OrU2 ⊗OU2
∼= OrU2 .

Furthermore, this sheaf can be described by a transition matrix via the linear map (see
Remark 2.36)

L12 = (α2)U1∩U2 ⊗ (β2)U1∩U2 ◦ ((α1)U1∩U2 ⊗ (β1)U1∩U2)−1

But tensors commute with composition, so

L12 = (α2)U1∩U2 ◦ (α−1
1 )U1∩U2 ⊗ (β2)U1∩U2 ◦ (β−1

1 )U1∩U2

= M ⊗ f

= f ·M ⊗ 1.

Therefore we have that a transition matrix for B(M)⊗B((f)) is f ·M and we are done.

Lemma 2.41. Suppose we have an open cover U1, U2 of X, and a matrixM ∈ GLr(OX(U1∩
U2)). Then

B(M)∗ ∼= B((M−1)T ).

Proof. Recall that B(M)∗ = Hom(B(M),OX). Similarly to our proof above, we have
isomorphisms

α1 : B(M)|U1 → OrU1 , α2 : B(M)|U2 → OrU2 .

We can use the standard basis in OUi(U)r to describe linear maps from B(M)|Ui(U) to
OUi(U) by passing through the isomorphism. More precisely, if φ ∈ Hom(B(M)|Ui ,OUi)(U),
then φ is of the form

φ =
[
(αi)−1

U (ei) 7→ si
]
,

where the ei denote the standard basis vectors in OUi(U)r, and si ∈ OUi(U) depend on φ.
Therefore homomorphisms φ correspond with row vectors (s1, s2, ..., sr) ∈ OUi(U)r. These
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then give isomorphisms

α∗1 : Hom(B(M),OU1)|U1 → OrU1 , α
∗
2 : Hom(B(M),OU2)|U2 → OrU2 ,

where we have

(α∗i )U : Hom(B(M),OU0)(U)→ OrU0(U)[
(α−1

i )U (ei) 7→ si
]
7→ (s1, s2, ..., sr).

Furthermore we have that the linear map (α∗2)U1∩U2 ◦(α∗1)−1
U1∩U2

describes a transition matrix
for B(M)∗, and in this case it is just

(α∗2)U1∩U2 ◦ (α∗1)−1
U1∩U2

=
[
(α−1

2 )U1∩U2 ◦ (α1)U1∩U2(ei) 7→ si
]

=
[
M−1(ei) 7→ si

]
= (M−1)T .

Lemma 2.42. Suppose we have an open cover U1, U2 of X, and a matrixM ∈ GLr(OX(U1∩
U2)) which is in block form

M =
(
B11 B12

0 B22

)
,

where B11 and B22 are square matrices. Then there is an exact sequence

0 B(B11) B(M) B(B22) 0.φ ψ

Proof. Let B11 be of size n× n, and B22 of size m×m. Then we represent global sections
in B(B11)(U) by pairs

(s, t) ∈ OX(U ∩ U1)n ×OX(U ∩ U2)n,

sections in B(B22)(U) by pairs

(s, t) ∈ OX(U ∩ U1)m ×OX(U ∩ U2)m,

and sections in B(M)(U) by pairs

((s1, s2), (t1, t2)) ∈ (OX(U ∩ U0)n ×OX(U ∩ U0)m)× (OX(U ∩ U2)n ×OX(U ∩ U2)m).

22



We can define the maps in the exact sequence explicitly. Define

φU : B(B11)(U)→ B(M)(U)

(s, t) 7→
((

s

0

)
,

(
t

0

))
,

and

ψU : B(M)(U)→ B(B22)(U)((
s1

s2

)
,

(
t1

t2

))
7→ (s2, t2).

where each
(
a

b

)
is a pair of vectors of length n and m respectively. These are both well-

defined morphisms: If t = B11s, then(
B11 B12

0 B22

)(
s

0

)
=
(
B11s

0

)
=
(
t

0

)
.

Similarly if (
B11 B12

0 B22

)(
s1

s2

)
=
(
t1

t2

)

then we have t2 = B22s2. Consequently, φU and ψU both give rise to well-defined sheaf
morphisms. To prove exactness, it suffices to do so on the stalks (Exercise 1.1 in [7, Chapter
2]). To this end, fix x ∈ X. Since each sheaf involved is locally free, we have the diagram

OnX,x On+m
X,x OmX,x,

φx ψx

where the maps φx and ψx are defined similarly to above. Since these are just the standard
inclusion and projection maps on free modules, we can conclude that this sequence is exact.

Remark 2.43. We can apply row operations with coefficients in OX(U2) and column
operations with coefficients in OX(U1) to reduce M (since we are transitioning from U2 to
U1). If M can be block diagonalized (i.e. B12 = 0), then the resulting extension of bundles
is split. On the other hand, if we cannot block diagonalize the matrix, then the extension
of bundles is non-trivial.

Finally, we will review some of the necessary tools to understand global generation.
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Definition 2.44. A sheaf of OX -modules F is globally generated if for any point x ∈ X,
there exist sections s1, ..., sn ∈ Γ(X,F) such that

〈(s1)x, (s2)x, ..., (sn)x〉OX,x
= Fx.

In other words, images of si in the stalk at x generate Fx as an OX,x-module.

Example 2.45. If X is a projective variety, then trivial bundle Ir is always globally gener-
ated. In particular, Γ(X,OrX) = Kr since X is projective, and so the standard basis vectors
ei (i.e. 1 in the i-th component) will globally generate the bundle, since the image of 1 in
any stalk is still 1. 4

Example 2.46. On the other hand, if E is a bundle of rank r such that dim Γ(X, E) = k < r,
then it is not globally generated, since the generating the module Ex ∼= OrX,x requires at
least r independent elements. 4

By Lemma 2.23 the stalk of a vector bundle of rank r at a point x ∈ X is isomorphic
to OrX,x. Hence it is useful to understand generating sets of free OX,x-modules.

Definition 2.47. Let X be a smooth projective curve and x ∈ X. Then a set of elements

si =


si1

si2
...
sir

 ∈ OrX,x

for 1 ≤ i ≤ r form an upper triangular generating set of OrX,x if each si satisfies

(i) The entry sii has valuation νx(sii) = 0.

(ii) For i < j ≤ r, the entry sij has valuation νx(sij) > 0.

Example 2.48. Let X = P1. We have that the stalk at the point (1 : 0) ∈ X is K[x]〈x〉,
the localization of K[x] at the ideal 〈x〉 (where x = x1

x0
). Let F = I3 be the trivial bundle,

and consider the following set of global sections of F

s1 =


1 + x

0
x2 + x

 , s2 =


1
1
x

 , s3 =


0
0
1

 .
The images of si at the stalk of (1 : 0) ∈ X form an upper triangular generating set, since
the valuation of x is one at (1 : 0). In other words, it vanishes at (1 : 0). In this way, if one
imagines evaluating x at zero, the resulting generating set would be upper triangular in the
usual sense. 4

24



To prove that these are actual generating sets of the stalks, we will need a standard tool
from algebra.

Lemma 2.49 (Local Nakayama). Let R be a local ring with unique maximal ideal m, and
let M be an R-module. If r1, ..., rk ∈ R are such that

〈r1, ..., rk〉R/m = M/mM,

then we have

〈r1, ..., rk〉R = M

Proof. This is a special case of Proposition 2.6 in [2, Chapter 2].

Lemma 2.50. An upper triangular generating set s1, s2, ..., sr of OrX,x indeed satisfies

〈(s1)x, (s2)x, · · · , (sr)x〉OX,x
= OrX,x.

Proof. We will apply Nakayama’s lemma in the case of local rings above. In our situation,
R = OX,x, and M = OrX,x. In order to apply the lemma, we must show that〈

(s1)x, ..., (sr)x
〉
OX,x/mx

= OrX,x/mxOrX,x,

where (si)x are the residues of (si)x modulo mxOrX,x. Since OX,x/mx is a field, this is
essentially just linear algebra. By property (i), the i-th entry of (si)x is invertible (hence
non-zero). Furthermore, property (ii) tells us that for i < j ≤ r, the j-th entry of (si)x is a
zero, since elements of valuation one or higher at x lie in mx. Consequently, the (si)x form
an upper triangular generating set in the usual sense, and hence generate OrX,x/mxOrX,x.

2.4 Atiyah’s Results

We will review the necessary tools developed by Atiyah in his 1957 paper [1]. Throughout
this discussion, X will refer to a smooth irreducible projective curve of genus one over an
algebraically closed field K (not necessarily with a base point). First, we present the tools
needed to prove that the bundles we construct in Chapter 3 are indecomposable.

Lemma 2.51. Let E be a vector bundle of rank r and degree d over X, and suppose we
have an exact sequence

0 Id E E ′ 0.

If either

1. d = dim Γ(X, E) = dim Γ(X, E ′) = 1, or
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2. dim Γ(X, E∗) = 0 and dim Γ(X, E ′) = d,

then E is indecomposable.

Proof. Recall that from any short exact sequence of sheaves, there is a long exact sequence
of cohomology from the global sections functor ([7, Chapter 3]). So we have

0 Γ(X, E ′∗) Γ(X, E∗) Γ(X, I∗d) H1(X, E ′∗) · · · .φ1 φ2 δ

First, we show that δ is injective. If (1) holds, then by exactness at Γ(X, E ′∗), we know that
φ1 is an inclusion, and since the dimensions of the vector spaces are equal, is surjective.
Furthermore, by exactness at Γ(X, E∗), we must conclude that φ2 = 0 since kerφ2 = Im φ1.
Then by exactness at Γ(X, I∗d), we have

ker δ = Im φ2 = 0

On the other hand if (2) holds, then Γ(X, E∗) = 0, so obviously φ2 = 0, implying δ is
injective.

Now Lemma 13∗ in [1] states that E is so-called Id-complete if and only if δ is injective.
Furthermore, as part of the proof of Lemma 16 in [1], Atiyah shows that if dim Γ(X, E ′) = d

(satisfied in both cases above), then E is indecomposable if and only if it is Id-complete, so
we are done.

Lemma 2.52. Let E be an indecomposable vector bundle over X of rank r and degree d ≥ 0.
Then

dim Γ(X, E) =

d if d > 0

0 or 1 if d = 0
.

Proof. This is part (i) of Lemma 15 in [1].

Atiyah’s classfication of vector bundles over elliptic curves is summarized via the follow-
ing three theorems.

Theorem 2.53. If X is an elliptic curve, then for any rank r ∈ N, there is an indecom-
posable vector bundle Fr of degree zero over X with Γ(X,Fr) 6= 0 which is unique up to
isomorphism. Furthermore, there is an exact sequence

0 I1 Fr Fr−1 0.

If E is any indecomposable vector bundle of rank r and degree zero, then there exists a unique
degree zero line bundle L such that E ∼= Fr ⊗ L.

Proof. This is Theorem 5 in [1].
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Note that F1 is isomorphic to the trivial line bundle by uniqueness, since I1 has a
one-dimensional space of global sections.

Theorem 2.54. Let A be a fixed degree one line bundle over X. For every rank r ∈ N and
degree d ∈ Z, there is a unique indecomposable vector bundle E(r, d) of rank r and degree d
characterized by the properties

(i) E(r, 0) = Fr.

(ii) E(r, d) = E(r, d− r)⊗A.

(iii) If 0 < d < r then there is an exact sequence

0 Id E(r, d) E(r − d, d) 0.

Proof. This is Theorem 6 in [1].

Remark 2.55. Fixing a degree one line bundle over X is equivalent to fixing a base point
by Lemmas 2.8 and 2.30—whichever point corresponds to this bundle becomes the marked
point O. In Example 2.38, we had seen that the line bundle associated to the divisor O was
B((ω1)) over the open cover U0, U2 (2.3). Consequently, we can see that representing X in
Legendre form will give an isomorphism B((ω1)) ∼= A.

Theorem 2.56. If E is an indecomposable vector bundle over an elliptic curve of rank r
and degree d, then there is a unique degree zero line bundle L such that

E ∼= E(r, d)⊗ L.

Proof. This is Theorem 7 in [1].

These results show that any indecomposable bundle over an elliptic curve is completely
determined by its rank, degree, and a point on the curve—since degree zero line bundles
are in correspondence with the points of the curve (Lemmas 2.8 and 2.30).

2.5 Integer Partitions

In this section, we will present a short discussion on partitions, which are necessary for our
main construction.

Definition 2.57. Given a positive integer n, an integer partition λ of n is a chain λ of
positive integers λ1 ≥ λ2 ≥ · · · ≥ λm such that

m∑
i=1

λi = n.
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We denote λ = (λ1, λ2, ..., λm). Each λi is referred to as a part, and m is the number of
parts of λ.

Remark 2.58. There is a related notion of integer combinations, which do not impose an
order on the λi. Removing the different possible rearrangements of the λi is one of the main
reasons to study partitions instead of combinations. Conventionally, the order is always
chosen to be greatest to least. However, any ordering would suffice. In Chapter 3, we will
instead choose to order the λi from least to greatest, as it serves our purposes better.

There is a natural involution on partitions which is not immediately obvious from the
definition. To understand this involution, we first recall a nice way to represent partitions
via Ferrers diagrams:

Definition 2.59. Given an integer partition λ = (λ1, λ2, ..., λm), we form the Ferrers
diagram of λ as the combinatorial object

• • • · · · • • λ1 dots
• • · · · • • λ2 dots
...
• · · · • • λm dots

Example 2.60. The Ferrers diagram for the partition λ = (6, 3, 3, 2, 1) is

• • • • • •
• • •
• • •
• •
•

4

Definition 2.61. Given a Ferrers diagram for a partition λ, the conjugate diagram is the
reflection of the Ferrers diagram along the diagonal line x = −y (the top-leftmost point is
considered to be the origin (0,0)). The corresponding partition to the conjugate diagram is
called the conjugate partition of λ.

Example 2.62. The conjugate diagram for λ = (6, 3, 3, 2, 1) is

• • • • •
• • • •
• • •
•
•
•
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which corresponds to the partition µ = (5, 4, 3, 1, 1, 1). Note that the number of parts of µ
is λ1, and conversely the number of parts of λ is µ1. 4

Lemma 2.63. Let λ be a partition, and µ its corresponding conjugate partition. Then the
number of parts of λ is µ1.

Proof. The number of rows in the Ferrers diagram is equal to the number of parts. Further-
more, the leftmost column necessarily contains one dot for each row. Clearly by reflecting
along the diagonal, the leftmost column becomes the first row, and hence µ1 is the number
of parts of λ.
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Chapter 3

Central Result

In this chapter, we present our main construction. Throughout this chapter, X will denote
an elliptic curve in Legendre form, with marked point O—which forces char K 6= 2. In
Section 3.1, we construct the distinguished bundles E(r, d) from Theorem 2.54, and then
conclude by providing the general case in Section 3.2.

3.1 Central Construction

Throughout this section, we fix the open cover U0, U2 of X in (2.3). We will produce a
transition matrix M(r, d) such that B(M(r, d)) ∼= E(r, d). Recall from Remark 2.39 that we
will be constructing the matrix M20— so that global sections of B(M(r, d)) will be pairs of
the form (s,M(r, d)s) for s ∈ OX(U0). To do so, we will make careful use of the elements
ωk from (2.6); their relation to the rings of regular functions on this open cover via Lemmas
2.11, 2.12, and 2.13; and the tools in Section 2.4.

In order to construct M(r, d) we must first construct a special integer partition of d
using the Euclidean algorithm.

Remark 3.1. As a reminder, integer partitions are conventionally ordered from greatest
to least. However, we will be ordering them from least to greatest in the interest of cleaner
notation later on.
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Starting with two integers (r, d) such that 0 < d < r, suppose that the Euclidean
algorithm returns

r−1 = r = q1d+ r1

r0 = d = q2r1 + r2 r1 < d

r1 = q3r2 + r3 and 0 < ri < ri−1 for i = 2, ..., k − 1

r2 = q4r3 + r4 rk = 0
...

rk−2 = qkrk−1 + rk,

Depending on the parity of the number of steps k, we can define a partition of d. If k is
even, then define

µ(r, d) =
qk terms︷ ︸︸ ︷

rk−1 + · · ·+ rk−1 +
qk−2 terms︷ ︸︸ ︷

rk−3 + · · ·+ rk−3 + · · ·+
q2 terms︷ ︸︸ ︷

r1 + · · ·+ r1 .

If k is odd, then define

µ(r, d) = rk−1 +
qk−1 terms︷ ︸︸ ︷

rk−2 + · · ·+ rk−2 +
qk−3 terms︷ ︸︸ ︷

rk−4 + · · ·+ rk−4 + · · ·+
q2 terms︷ ︸︸ ︷

r1 + · · ·+ r1 .

In other words, the ri appear qi+1 times, for all of the odd indices i. If k is odd, then there
is an additional appearance of a single rk−1. Alternatively, this definition can be expressed
recursively as

µ(r, 1) = 1

µ(1, d) =
d terms︷ ︸︸ ︷

1 + 1 + · · ·+ 1 (3.1)

µ(r, d) = µ(r1, r2) +
q2 terms︷ ︸︸ ︷

r1 + r1 + · · ·+ r1 .

Example 3.2. Let us carry out the construction for the pair (8, 5). In this case, k = 4:

8 = 1 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0.
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The relevant ri are on the odd steps: r1 = 3, r3 = 1, and the relevant qi are on the even
steps: q2 = 1, q4 = 2. Hence the partition is

r3 + r3 + r1 = 1 + 1 + 3.

4

Example 3.3. Now consider the pair (45, 17). In this case, k = 5:

45 = 2 · 17 + 11

17 = 1 · 11 + 6

11 = 1 · 6 + 5

6 = 1 · 5 + 1

5 = 5 · 1 + 0.

Again the relevant ri are the on the odd steps: r1 = 11, r3 = 5, and the relevant qi are on
the even steps, q2 = 1, q4 = 1. Since k is odd, we also include rk−1, in this case r4 = 1.
Therefore the partition is

r4 + r3 + r1 = 1 + 5 + 11.

4

Lemma 3.4. As constructed above, µ(r, d) is a partition of d. Its largest part is d if d|r,
and r1 = r − q1d otherwise.

Proof. We proceed by induction on k, the number of steps of the Euclidean algorithm. If
k = 1, then d | r and

r = q1d+ r1.

Therefore by definition µ(r, d) = d, which is clearly a partition of d. Note that k = 1 if and
only if d | r.

Now suppose that for any pair (r′, d′) with 0 < d′ < r′ such that the Euclidean algorithm
takes k steps, µ(r′, d′) is a partition of d′ with largest part either d′ or r′1, and suppose (r, d)
is a pair that takes k + 1 steps. Recall from (3.1),

µ(r, d) = µ(r1, r2) +
q2 terms︷ ︸︸ ︷

r1 + r1 + · · ·+ r1 .

By induction, µ(r1, r2) is a partition of r2. Then since d = q2r1 + r2, we can see that
µ(r, d) is a partition of d. Furthermore, by induction we can see that µ(r1, r2) either has

32



r2 or r3 = r1 − q3r2 as its largest part. Since the Euclidean algorithm produces strictly
decreasing ri, we know that r3 < r2 < r1, and hence r1 is the largest part of µ(r, d).

Definition 3.5. The GCD partition of d with respect to r is the conjugate (Definition 2.61)
of µ(r, d), which we denote λ(r, d) = (λ1, λ2, ..., λ`).

Corollary 3.6. The number of parts of λ(r, d) is ` = d if and only if d|r, otherwise ` =
r − q1d.

Proof. This follows from Lemmas 2.63 and 3.4.

Example 3.7. Listed below are various pairs (r, d) and their corresponding GCD partition.

λ(20, 7) = 1 + 1 + 1 + 1 + 1 + 2, λ(38, 17) = 4 + 4 + 4 + 5
λ(8, 5) = 1 + 1 + 3, λ(15, 13) = 6 + 7,

λ(16, 9) = 1 + 1 + 1 + 1 + 1 + 1 + 3, λ(18, 12) = 2 + 2 + 2 + 2 + 2 + 2,
λ(24, 19) = 3 + 3 + 3 + 3 + 7, λ(32, 29) = 9 + 9 + 11.

We can also examine the Ferrers diagrams:

λ(9, 6) =
• •
• •
• •

λ(13, 10) =
• • • •
• • •
• • •

4

Remark 3.8. We shall see in Lemma 3.16 that λ(r, d) completely describes what the
diagonal of the matrices M(r, d) will be.

Now we will construct the upper right block of M(r, d). First, define ω(1) = (ω−1), and
for k ≥ 2

ω(k) :=



ω−1

ω1

ω2
...

ωk−1


(3.2)

where the ωi are the special elements of valuation i at the base point O (see (2.6)).
Now suppose 0 < d < r. If 2d < r, define the block matrix

A(r, d) :=
(
ω−1Id 0d,r−2d

)
(3.3)
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and otherwise if 2d ≥ r, set

A(r, d) :=



ω(λ1) 0 0 · · · 0
0 ω(λ2) 0 0
0 0 ω(λ3) 0
... . . . ...
0 0 0 · · · ω(λ`)


(3.4)

where λ(r, d) = (λ1, ..., λ`) is the GCD partition of d with respect to r.

Lemma 3.9. When 0 < d < r, the matrix A(r, d) is a d× (r − d) matrix.

Proof. If 2d < r, we have constructed A(r, d) so that it consists of a d × d identity matrix
followed by r − 2d columns of zeroes, so it has exactly d rows and d + (r − 2d) = r − d
columns.

If 2d ≥ r, then A(r, d) is constructed to have d rows, since λ(r, d) is a partition of d by
Lemma 3.4, and ` columns, where ` is the number of parts of λ(r, d). Hence it suffices to
see that ` = r − d. By Corollary 3.6, there are two cases:

1. If ` = d, then we have that d|r, and since d < r and 2d ≥ r, we conclude that 2d = r,
so that r − d = d = `.

2. Otherwise ` = r1 = r− q1d. But since 2d ≥ r, we must have that q1 = 1, since r1 > 0.
Then r1 = r − d = `.

Example 3.10. Listed below are some examples of A(r, d).

A(5, 3) =


ω−1 0

0 ω−1

0 ω1

 A(7, 3) =


ω−1 0 0 0

0 ω−1 0 0
0 0 ω−1 0

 A(11, 9) =



ω−1 0
ω1 0
ω2 0
ω3 0
0 ω−1

0 ω1

0 ω2

0 ω3

0 ω4



(3.5)

The important observation to make in the construction of A(r, d) is that the columns
have strictly increasing valuations in the non-zero entries. Additionally, for our later explicit
proof of global generation, note that there are exactly d non-zero entries, one for each row.
4
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Finally, having constructed this block, we can form the matrix M(r, d) inductively. We
form “the initial condition”, for any r ∈ N and d = 0, as the r × r matrix

M(r, 0) =



1 ω−1 0 · · · 0
0 1 ω−1 0
... . . .

1 ω−1

0 0 · · · 0 1


=
(
I1 A(r, 1)
0 M(r − 1, 0)

)
. (3.6)

For any r ∈ N, d ∈ Z, the “first operation,” defines

M(r, d) = ω1M(r, d− r). (3.7)

For 0 < d < r, the “second operation,” defines

M(r, d) =
(
Id A(r, d)
0 M(r − d, d)

)
. (3.8)

Remark 3.11. Notice the resemblance between these conditions and those characterizing
E(r, d) in Theorem 2.54.

Example 3.12. Let us construct M(6, 2). The goal here is to use the initial condition or
the second operation to reduce to a smaller problem—and the first operation is used to
ensure 0 ≤ d < r, so that we can do this.

Since 0 < d < r, we start with the second operation, to see that

M(6, 2) =
(
I2 A(6, 2)
0 M(4, 2)

)
.

Since 2d < r, we don’t need λ(6, 2) to compute A(6, 2), and we can see that the first two
rows of the matrix are

M(6, 2)1-2,1-6 =
(

1 0 ω−1 0 0 0
0 1 0 ω−1 0 0

)
.

Next we need to compute M(4, 2), so we use the second operation again:

M(4, 2) =
(
I2 A(4, 2)
0 M(2, 2)

)
,
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which then requires us to compute M(2, 2). In this case, we must use the first operation,
M(2, 2) = ω1M(2, 0), where from (3.6), we see

M(2, 0) =
(

1 ω−1

0 1

)
.

Putting all of the pieces together, we arrive at the final result:

M(6, 2) =



1 0 ω−1 0 0 0
0 1 0 ω−1 0 0
0 0 1 0 ω−1 0
0 0 0 1 0 ω−1

0 0 0 0 ω1 ω1ω−1

0 0 0 0 0 ω1


.

4

Example 3.13. We will do one more example to illustrate some of the structure of the
matrices, as well as a useful example for our explicit proof of global generation. Let us
construct M(5, 8). We start with the first operation, since d ≥ r, which tells us that
M(5, 8) = ω1M(5, 3). Then we use the second operation to see

M(5, 3) =
(
I3 A(5, 3)
0 M(2, 3)

)
.

Recall that we had given A(5, 3) in (3.5). One can compute M(2, 3) by using the first
operation to reduce the problem to computing M(2, 1), the second operation to reduce the
problem to M(1, 1), and the first operation to reduce to M(1, 0), which is just the initial
condition. This gives

M(2, 3) =
(
ω1 ω1ω−1

0 ω2
1

)
.

Putting all of the pieces together yields

M(5, 8) =



ω1 0 0 ω1ω−1 0
0 ω1 0 0 ω1ω−1

0 0 ω1 0 ω2
1

0 0 0 ω2
1 ω2

1ω−1

0 0 0 0 ω3
1


. (3.9)
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Note that all entries in the block ω1A(5, 3) have a lower valuation at O than the diagonal
entry in their corresponding column. We shall see in Lemma 3.17 that this is no coincidence,
and the matrix A(r, d) is chosen specifically to ensure this structure. 4

Lemma 3.14. For any r ∈ N, d ∈ Z, the matrix M(r, d) is uniquely determined by (3.6),
(3.7), and (3.8). Furthermore, M(r, d) is upper triangular.

Proof. We will induct on r. The base case is r = 0, which is trivial. For the inductive step,
we first note that the only way to computeM(r, d) is using either the initial condition (3.6),
or if 0 < d < r, we can use the second operation (3.8). Let m be the greatest integer such
that mr ≤ d, and set d′ = d − mr, so that 0 ≤ d′ < r. In other words, d′ is the unique
residue of d modulo r.

We can apply the first operation (3.7) m times, and use the initial condition (3.6) if
d′ = 0 or the second operation (3.8) otherwise. In the former, we are done and it is upper
triangular by construction. In the latter, we can apply induction to M(r− d′, d′) to obtain
our results.

Lemma 3.15. For any r ∈ N, d ∈ Z the diagonal of M(r, d) consists only of powers of ω1,
and detM(r, d) = ωd1 .

Proof. We proceed by induction on r. The base case is r = 0, which is trivial. For the
inductive step, let m be the greatest integer such that mr ≤ d, and set d′ = d−mr, so that
0 ≤ d′ < r. If d′ = 0, then use the first operation (3.7) m times and the initial condition
(3.6) to see that

M(r, d) =



ωm1 ωm1 ω−1 0 · · · 0
0 ωm1 ωm1 ω−1 0
... . . .

ωm1 ωm1 ω−1

0 0 · · · 0 ωm1


,

which clearly has ωm1 on the diagonal, and detM(r, d) = ωmr1 = ωd1 . On the other hand, if
0 < d′ < r, then we apply the first operation m times and then the second operation (3.8)
to get

M(r, d) =
(
ωm1 Id′ ωm1 A(r, d′)

0 ωm1 M(r − d′, d′)

)
.
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By induction the M(r − d′, d′) diagonal consists only of powers of ω1, establishing the first
part. Furthermore

detM(r, d) = detωm1 Id′ · detωm1 M(r − d′, d′)

= ωmd
′

1 · ωm(r−d′)
1 ωd

′
1

= ωmr+d
′

1

= ωd1 .

Lemma 3.16. If 0 < d < r, the diagonal of M(r, d) is the sequence

(
d︷ ︸︸ ︷

1, 1, · · · , 1, ωλ1
1 , ωλ2

1 , · · · , ωλ`
1 ),

where λ(r, d) = (λ1, ..., λ`) is the GCD partition of d with respect to r.

Proof. By Lemma 3.15, the diagonal consists only of powers of ω1. Furthermore, note that
if i < j, then the exponent of the i-th diagonal entry is less than or equal to that of the
j-th diagonal entry. This follows from our construction, since the exponent of a diagonal
entry either increases via the first operation (3.7) in which case all entries increase by the
same amount; or it increases via the second operation (3.8) in which case only the bottom
right block raises the exponents.

SinceM(r, d) is upper-triangular, the determinant is the product of the diagonal entries,
and detM(r, d) = ωd1 by Lemma 3.15. This means that the (non-zero) exponents of ω1 in
the diagonal sequence of M(r, d) form a partition of d (particularly with our convention
of ordering). Therefore, it suffices to show that this partition, call it m(r, d), is equal to
λ(r, d). We will instead show that the conjugate partition m(r, d)∗ = µ(r, d) by showing it
satisfies the same recursion (3.1), and therefore m(r, d) = λ(r, d).

Since M(1, d) = (ωd1), we have m(1, d) = d, and so

m(1, d)∗ = (
d ones︷ ︸︸ ︷

1 + 1 + · · ·+ 1).

To compute m(r, 1)∗, we use the second operation (3.8) r times on M(r, 1), and see that

M(r, 1) =



1 ω−1 0 · · · 0
0 1 ω−1 0
... . . .

1 ω−1

0 0 · · · 0 ω1


.
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so that m(r, 1) = 1 and hence

m(r, 1)∗ = 1.

Finally, if

r = q1d+ r1,

d = q2r1 + r2,

then

m(r, d)∗ = m(r1, r2)∗ +
q2 terms︷ ︸︸ ︷

r1 + r1 + · · ·+ r1

since we apply the first operation to M(r, d) q2 times so that 0 ≤ d − q2r1 < r1. Then we
use the initial condition or second operation, which in either case reduces the problem to
computing the partition for the matrix

M(r1, d− q2r1) = M(r1, r2).

Therefore we conclude that m(r, d)∗ = µ(r, d), and hence the conjugate partitions are
also the same.

Corollary 3.17. If 0 < d < r the valuations of all non-zero entries in the i-th column of
A(r, d) are strictly lower than the valuation of the (d+ i)-th diagonal entry of M(r, d).

Proof. If 2d < r, then the valuation of all non-zero entries in A(r, d) is −1, and the diagonal
of M(r, d) has valuation 0 or higher by Lemma 3.16.

If 2d ≥ r, then the non-zero entries in the i-th column of A(r, d) are determined by the
vector ω(λi) (3.2). The (d + i)-th diagonal entry of M(r, d) in this case is ωλi

1 by Lemma
3.16. By construction, this has valuation strictly higher than any entry in ω(λi).

Lemma 3.18. For any r ∈ Z+, we have

dim Γ(X,B(M(r, 0))) = 1.

Proof. Recall that global sections of B(M(r, 0)) are determined by pairs (Proposition 2.34,
Remark 2.39)

(s,M(r, 0)s) ∈ OX(U0)r ×OX(U2)r
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In particular, we have the section represented by the pair

s =


1
0
...
0

 , M(r, 0)s =


1
0
...
0


using the structure of the initial condition ((3.6)). Now we need to show there cannot be
any other sections. Suppose

s =


s1

s2
...
sr

 ∈ OX(U0)r.

Then

M(r, 0)s =



s1 + ω−1s2

s2 + ω−1s3
...

sr−1 + ω−1sr

sr


.

But elements in OX(U0) have valuation 0 or less at O, and elements in OX(U2) must have
non-negative valuation, so this forces s2 = s3 = · · · = sr = 0. Furthermore, we are forced
to have s1 ∈ OX(U0) ∩ OX(U2), which is equal to K by Lemma 2.13.

With these tools in mind, we can present our central result.

Theorem 3.19. We have an isomorphism

B(M(r, d)) ∼= E(r, d).

Proof. Letm be the greatest integer such thatmr ≤ d, and set d′ = mr−d, so that 0 ≤ d′ <
r. In order to show that B(M(r, d)) ∼= E(r, d) it suffices to show that B(M(r, d′)) ∼= E(r, d′),
since E(r, d) ∼= E(r, d′)⊗Am (Theorem 2.54) and similarly

B(M(r, d)) = B(ωm1 M(r, d′)) ∼= B((ωm1 ))⊗ B(M(r, d′)) ∼= Am ⊗ B(M(r, d′)),

where the first equality is from applying the first operation (3.7)m times, and the subsequent
isomorphisms follow from Lemma 2.40 and Remark 2.55. Therefore we have reduced to
showing that B(M(r, d)) ∼= E(r, d) for 0 ≤ d < r.

40



If d = 0, then by Lemma 2.42 and (3.6), we have the exact sequence

0 I1 B(M(r, 0)) B(M(r − 1, 0)) 0.

and we may apply Lemma 3.18 to see that

Γ(X,B(M(r, 0)) = Γ(X,B(M(r − 1, 0) = 1.

Therefore the first part of Lemma 2.51 implies that B(M(r, 0)) is indecomposable. We
conclude by Theorem 2.53 that B(M(r, 0)) ∼= Fr = E(r, 0) since it has a non-trivial global
section (again by Lemma 3.18).

Now suppose 0 < d < r. Let us induct on r. The base case r = 1 is trivial as there is no
integer between 0 and 1. For the inductive step suppose r > 1 and for any 0 < d′ < r′ < r,
we have an isomorphism B(M(r′, d′)) ∼= E(r′, d′). The second operation yields

M(r, d) =
(
Id A(r, d)
0 M(r − d, d)

)

which then gives an exact sequence by Lemma 2.42

0 Id B(M(r, d)) B(M(r − d, d)) 0.

Therefore B(M(r, d)) is an extension of B(M(r − d, d)) by Id. We claim that to show
B(M(r, d)) ∼= E(r, d), it suffices to show that Γ(X,B(M(r, d))∗) = 0. Indeed, suppose this
was the case. First, we can apply induction to see that B(M(r − d, d)) ∼= E(r − d, d) after
reducing d just as we had done above. Then by Lemma 2.52, we have that

dim Γ(X,B(M(r − d, d))) = d.

Then by the second part of Lemma 2.51, the extension B(M(r, d)) is indecomposable.
Finally we apply Theorem 2.54 (iii) to conclude that B(M(r, d)) ∼= E(r, d).

Thus we have reduced to the situation of proving B(M(r, d))∗ has no non-trivial global
sections, for 0 < d < r, which we will do by induction on r. The base case is r = 1, which
is trivial. Now let r > 1 and 0 < d < r. Suppose that for any 0 < d′ < r′ < r we have

Γ(X,B(M(r′, d′))∗) = 0.

Recall that B(M(r, d))∗ ∼= B((M(r, d)−1)T ) by Lemma 2.41, so our goal is to show that
there are no non-zero pairs

(s, t) ∈ OX(U0)r ×OX(U2)r
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satisfying

s = M(r, d)T t.

Note that we have taken the inverse to move the matrix onto the left instead of the right
(cf. Remark 2.39). Let

t =


t1

t2
...
tr

 ∈ OX(U2)r

and suppose the pair

(M(r, d)T t, t) ∈ OX(U0)r ×OX(U2)r

is a global section of B(M(r, d))∗. Let us consider the structure of M(r, d)T :

M(r, d)T =
(

Id 0
A(r, d)T M(r − d, d)T

)
.

Therefore we have that the first d entries of M(r, d)T t are just t1, t2, ..., td. Since

(M(r, d)T t, t) ∈ OX(U0)r ×OX(U2)r

represents a global section, we must therefore conclude that

t1, t2, ..., td ∈ OX(U0) ∩ OX(U2) = K (Lemma 2.13) (3.10)

Ultimately, our goal is to show that all of the t1, t2, ..., tr vanish—which shows that any
global section of B(M(r, d))∗ is trivial. We will split into two cases:

1. Suppose 2d < r. In this case, we will instead just show that the first t1, t2, ..., td vanish,
and conclude the remaining by induction. Let 1 ≤ i ≤ d be fixed, and consider the
(d+i)-th entry ofM(r, d)T t. It is the dot product of the (d+i)-th row ofM(r, d)T with
t. The (d+ i)-th row of M(r, d)T is the concatenation of the i-th rows of A(r, d)T and
M(r − d, d)T . Since 2d < r, we have that the i-th row of A(r, d)T consists of a single
ω−1 in the i-th position ((3.3)). Similarly, since 2d < r, we have that 0 < d < r − d,
so that the second operation is needed to compute M(r − d, d). Consequently, the
first d rows of M(r − d, d)T form the identity matrix, so that the i-th row only has
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one non-zero entry which is a 1. Therefore the (d+ i)-th entry of M(r, d)T t is

(M(r, d)T t)i = tiω−1 + td+i

where ti ∈ K by (3.10) and td+i ∈ OX(U2). In order for this to represent a global
section, we must then have that ti = 0, since ω−1 6∈ OX(U0), and there are no valuation
−1 elements in OX(U2), so td+i could not cancel ω−1.

This argument works for any 1 ≤ i ≤ d, so we have t1 = t2 = · · · = td = 0.
Now a global section of B(M(r, d))∗ is completely determined by global sections of
B(M(r−d, d))∗, and we can apply induction to conclude that there are no non-trivial
global sections.

2. Now suppose 2d ≥ r. Let λ(r, d) = (λ1, ..., λ`) be the GCD partition of d with respect
to r. In this case we will not need the inductive hypothesis. We will instead prove
that td+i = 0 for 1 ≤ i ≤ r− d by induction on i. Along the way, we will also see that
every other ti for 1 ≤ i ≤ d vanishes, and therefore there are no non-trivial global
sections.

For the base case i = 1, let us examine the (d + 1)-th entry of M(r, d)T t. This is
determined by the dot product of t with the (d+ 1)-th row of M(r, d)T . Recall that

M(r, d)T =
(

ITd 0
A(r, d)T M(r − d, d)T

)
,

so that the (d+ 1)-th row is just the first row of A(r, d)T concatenated with the first
row of M(r − d, d)T . The first row of A(r, d)T is just ω(λ1)T , and since M(r − d, d)T

is lower triangular, its first row consists of a single non-zero entry on the diagonal.
By Lemma 3.16, this is ωλ1

1 , and hence the (d+ 1)-th entry of M(r, d)T t is

(M(r, d)T t)d+1 = t1ω−1 + t2ω1 + t3ω2 + · · ·+ tλ1ωλ1−1 + td+1ω
λ1
1 .

In order for this element to lie in OX(U0), it cannot have positive valuation at O
by Lemma 2.11, nor valuation −1 at O. However, since t1, t2, ..., td ∈ K, then in
particular we have that t1, ..., tλ1 ∈ K, since λ1 ≤ d. Assuming ti 6= 0 for 1 ≤ i ≤ λ1,
we have

νO(t1ω−1) = −1,

νO(tjωj−1) = j − 1, 2 ≤ j ≤ λ1,

νO(td+1ω
λ1
1 ) ≥ λ1.
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The last inequality comes from the fact that td+1 ∈ OX(U2) and hence νO(td+1) ≥ 0
(Lemma 2.12). Therefore all of the terms involved have distinct valuations at O, no
matter the choice of ti, and as a result, no linear combination of the terms can yield an
element of lower valuation—or cancel out to get zero. Finally, all of these valuations
are forbidden by Lemma 2.11, so we conclude that all of the ti involved vanish.

Now suppose i > 1, and set s =
∑i−1
k=1 λi. Our inductive hypothesis is that tj = 0 for

the ranges

1 ≤ j ≤ s,

d+ 1 ≤ j < d+ i.

Now consider the (d+ i)-th entry of M(r, d)T t. Just as above, this is the dot product
of t with the (d+ i)-th row of M(r, d)T . The (d+ i)-th row is exactly the i-th row of
A(r, d)T concatenated with the i-th row of M(r − d, d)T . However, by the inductive
hypothesis, we have assumed that td+j = 0 for d < j < d + i. Since M(r − d, d)T

is lower triangular, this means that its only contribution is the i-th diagonal entry.
Furthermore, Lemma 3.16 tells us that the i-th diagonal entry is ωλi

1 , and again the
i-th row of A(r, d)T is the vector ω(λi)T . Then the (d+ i)-th entry of M(r, d)T t is

(M(r, d)T t)d+i = ts+1ω−1 + ts+2ω1 + ts+3ω2 + · · ·+ ts+λi
ωλi−1 + td+iω

λi
1

However, just as above, since t1, ..., td ∈ K, and s ≤ d (since λ(r, d) is a partition of
d and we are taking only the first i terms), we also have that ts+1, ts+2, ..., ts+λi

∈ K.
Therefore, assuming none of them are zero, we have

ν(ts+1ω−1) = −1,

ν(ts+jωj−1) = j − 1, 2 ≤ j ≤ λi,

ν(td+iω
λi
1 ) ≥ λi.

Once again, the valuations of each term are distinct, and by Lemma 2.11, no elements
of OX(U0) can attain these valuations, so we must conclude that all terms involved
vanish. This establishes the induction.

Furthermore, along the way we also showed that ti = 0 for all 1 ≤ i ≤ d, since∑`
i=1 λi = d. Therefore all of the ti vanish for 1 ≤ i ≤ r, and so we conclude there

are no non-trivial global sections of B(M(r, d))∗.

We will conclude with an additional property of the matrices which will be useful for
our explicit proof of global generation.
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Lemma 3.20. If d ≥ r, then for any i, j, we have νO(M(r, d)i,j) ≥ 0.

Proof. We proceed by induction on r. The base case r = 0 is trivial. Now suppose that for
any r′ < r and d′ ≥ r′ we have that the valuation of every non-zero entry of M(r′, d′) is
non-negative. Let m be the greatest integer such that mr ≤ d, and set d′ = d−mr, so that
0 ≤ d′ < r. First suppose d′ = 0. Then to compute M(r, d), we apply the first operation
(3.7) m times, and then the initial condition (3.6) to get

M(r, d) =



ωm1 ωm1 ω−1 0 · · · 0
0 ωm1 ωm1 ω−1 0
... . . .

ωm1 ωm1 ω−1

0 0 · · · 0 ωm1


,

which clearly by construction only has terms of ωm1 , ωm1 ω−1 or zero. The valuations of these
elements are m, m−1 and∞ respectively, but since m ≥ 1, they are all non-negative. Now
suppose 0 < d′ < r. Then we use the first operation m times and instead use the second
operation (3.8) to see that

M(r, d) =
(
ωm1 Id′ ωm1 A(r, d′)

0 ωm1 M(r − d′, d′)

)
.

Clearly every entry in ωm1 Id′ is of non-negative valuation since it is either ωm1 or zero.
Furthermore, by using the first operation in reverse, the bottom right block is the same as
M(r−d′,m(r−d′)+d′). Sincem ≥ 1 and d′ > 0, we can conclude thatm(r−d′)+d′ ≥ r−d′,
so that we can apply induction on this block and conclude all of the entries have non-negative
valuation at O. Finally, we also have that the valuation of all entries in ωm1 A(r, d′) are non-
negative: By construction the minimum valuation of entries in A(r, d) is −1 (see (3.4)), and
since m ≥ 1, we are increasing the valuation by at least one. Therefore all of the entries in
that block are of valuation at least zero.

3.2 Twisted Case

To conclude our construction, we will provide a transition matrix for any degree zero line
bundle, thereby giving us a complete description of indecomposable vector bundles over
elliptic curves via Theorem 2.56, Theorem 3.19, and Lemma 2.40.

Recall that any degree zero divisor over an elliptic curve is linearly equivalent to P −O
for a unique P ∈ X (Lemma 2.8). We will first represent this as a Cartier divisor. Let
LP ∈ OX(U0) be such that the variety X(LP ) is a line which passes through P transversely
and does not pass through O. By transversely, we mean that X(LP ) is not tangent to P ,
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which is possible since X is smooth at P . Denote

div LP = P +Q1 +Q2 − 3 ·O,

where Q1, Q2 are the two other points (possibly equal) where X(LP ) intersects with X

(since X is a degree three curve, see Bezout’s Theorem, Corollary 7.8 in [7, Chapter 1]).
Now we will modify our open cover from (2.3). Set

V0 = U0\{Q1, Q2}, (3.11)

V2 = U2\{P},

so that V0 is the open set consisting of X without O, Q1, and Q2; and V2 is the open set
where we have removed P, (1 : 0 : 0), (1 : 1 : 0), and (1 : λ : 0). Now form the Cartier divisor

D =
{

(V0, LP ),
(
V2,

1
ω1

)}
.

By construction, we have (div LP )|V0 = P , and
(
div 1

ω1

)∣∣∣
V2

= −O, so that this represents
the Weil divisor P −O. We then obtain

O(P −O) ∼= BV0,V2

(( 1
ω1LP

))
.

Theorem 3.21. Let X be an elliptic curve in Legendre form. Let E be any indecomposable
vector bundle of rank r and degree d over X. Then either E ∼= BU0,U2(M(r, d)) or

E ∼= BV0,V2

( 1
ω1LP

M(r, d)
)

for a unique P ∈ X.

Proof. Therorem 2.56 gives us that E ∼= E(r, d) ⊗ L for some degree zero line bundle L.
By Theorem 3.19, we have that E(r, d) ∼= BU0,U2(M(r, d)). In fact, we further have that
E(r, d) ∼= BV0,V2(M(r, d)), since refining the open cover will not change the bundle. By the
above, we can represent L as BV0,V2

((
1

ω1LP

))
for a unique P ∈ X. Then the result follows

from Lemma 2.40.

Remark 3.22. We have insisted that X be in Legendre form, which implies that the char-
acteristic of K is not two. However, it may be possible to extend this result to characteristic
two by finding a suitable open cover of the elliptic curve which doesn’t depend on the Leg-
endre form. The main properties needed from the open cover are summarized by Lemmas
2.11, 2.12, and 2.13. If another open cover can be found which does not depend on the
Legendre form which satisfies these Lemmas, then it is possible to reproduce the proof for
any elliptic curve.
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Chapter 4

Applications

In this chapter we give a short proof exactly determining which indecomposable bundles
over an elliptic curve are globally generated via their degree and rank. As an application
of our constructed matrices, we give a constructive proof of this result for the distinguished
bundles E(r, d). Finally, we conclude by giving a theoretical verification that our included
software will successfully compute global sections of vector bundles over an elliptic curve.

4.1 Global Generation

Theorem 4.1. Let X be any elliptic curve over an algebraically closed field K (no restriction
on characteristic), and E a non-trivial indecomposable vector bundle over X of rank r and
degree d. Then E is globally generated if and only if

d ≥ r + 1.

Proof. First, if d = 0, since we assume E is non-trivial, then Lemma 2.52 tells us that E
has no non-trivial global sections. Similarly, if 0 < d < r, Lemma 2.52 gives us that E has
d < r independent sections, and they hence cannot possibly span an r-dimensional module.
If d = r and E is globally generated, then it is isomorphic to the trivial bundle, which
contradicts our assumption. This establishes the forward direction.

Now suppose d ≥ r + 1. Let E be an indecomposable bundle over X of rank r and
degree d. Recall from Definition 2.44 that for any point P ∈ X we must produce sections
s1, ..., sk ∈ Γ(X, E) such that their images (s1)P , ..., (sk)P span EP as an OX,P -module. By
Lemma 2.49, this is equivalent to showing that〈

(s1)P , ..., (sk)P
〉
OX,P /mP

= EP /mPEP ,

where mP is the unique maximal ideal of OX,P , and (si)P denotes the image of (s1)P
modulo mxEP . To this end, fix P ∈ X. Consider E ⊗ OX(−P ) (Lemma 2.30). Note that
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E ⊗ OX(−P ) is still indecomposable—if it decomposed into E1 ⊕ E2, then twisting back by
OX(P ) would yield a decomposition of E . Furthermore, we note that there is a natural
inclusion of E ⊗ OX(−P ) into E given by the presheaf morphism defined by

φU : (E ⊗ OX(−P ))(U)→ E(U)

s⊗ t 7→ t · s.

Note that since OX(−P )(U) ⊂ OX(U), this is a well-defined map, hence defining a presheaf
morphism (and consequently a sheaf morphism), and it is injective since t ·s = 0 if and only
if t or s is zero, either of which would imply s⊗ t = 0.

Since O(−P ) is of degree −1, we have that E ⊗ OX(−P ) has degree d − r ≥ 1, and so
by Lemma 2.52 we have

dim Γ(X, E ⊗ O(−P )) = d− r

and

dim Γ(X, E) = d.

Therefore

dim Γ(X, E)− dim Γ(X, E ⊗ OX(−P )) = r

so there are r global sections s1, ..., sr ∈ Γ(X, E) whose images in

Γ(X, E)/Γ(X, E ⊗ OX(−P ))

are linearly independent. Now suppose

c1(s1)P + · · ·+ cr(sr)P = 0,

where ci ∈ OX,x/mx, and (si)P are the residues of (si)P modulo mxEP . Then we have

c1(s1)P + · · ·+ cr(sr)P ∈ mPEP ,

so that c1s1 + · · ·+ crsr ∈ Γ(X, E ⊗ OX(−P )). But then this would imply that c1 = · · · =
cr = 0, so (s1)P , ..., (sr)P are linearly independent in EP /mPEP . Furthermore, EP /mPEP is
r-dimensional, and hence this is a spanning set, so that we are done.

Now we present an explicit construction to produce global sections generating the dis-
tinguished bundles E(r, d). Our strategy is to find global sections which span every stalk
except for at O, then we will deal with O separately. The former is very straightforward:
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Proposition 4.2. If d ≥ r, then for 1 ≤ i ≤ r, the pairs

(ei,M(r, d)ei) ∈ OX(U0)r ×OX(U2)r

represent global sections of E(r, d), where the ei are the standard basis vectors (i.e. the i-th
component is a one, and all other entries are zeroes).

Proof. Obviously we have ei ∈ OX(U0)r. The vector M(r, d)ei is just the i-th column of
M(r, d), which by Lemma 3.20 consists of entries in OX(U0∩U2) which are of non-negative
valuation at O. Therefore by Lemma 2.12, they all lie in OX(U2), so that M(r, d)ei ∈
OX(U2)r. Consequently, by Proposition 2.34, they form global sections of B(M(r, d)) ∼=
E(r, d) (Theorem 3.19).

For the stalk at O, we will need a much more technical construction.

Proposition 4.3. If d ≥ r+ 1 there are s1, s2, ..., sr ∈ OX(U0)r such that if ti = M(r, d)si,
then the pairs

(si, ti) ∈ OX(U0)r ×OX(U2)r

represent global sections of E(r, d), and the images (ti)O in the stalk at O form an upper
triangular generating set for E(r, d)O (see Definition 2.47).

Proof. As a rough proof overview, this will proceed in two steps. First, we view E(r, d) as
an extension

0 E ′ E(r, d) E(r′, d′) 0,

and lift global sections of E(r′, d′) to E(r, d), so that they span the last r − d′ components
of the stalks. Second, we span the remaining d′ components by manipulating the structure
of the matrix M(r, d)—particularly coming from the block A(r, d).

We proceed by induction on r. The base case is r = 0, which is trivial. Now suppose
that for B(M(r′, d′)) with r′ < r and d′ > r′ such si exist. Let m be the greatest integer
such that mr ≤ d, and set d′ = d − mr so that 0 ≤ d′ < r. Let q = d′ if d′ 6= 0, and
otherwise set q = 1. In either case, we get the exact sequence

0 Iq E(r, d′) E(r − q, d′) 0,

using Theorem 2.53 if d′ = 0, and otherwise applying Theorem 2.54 (iii). Tensoring by line
bundles preserves exactness, so we may tensor by Am to obtain

0 Am ⊗ Iq Am ⊗ E(r, d′) Am ⊗ E(r − q, d′) 0.
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The middle term above is isomorphic to E(r, d) using Theorem 2.54 (ii), and similarly we
have

Am ⊗ E(r − q, d′) ∼= E(r − q,m(r − q) + d′).

In either case, this bundle has degree at least one higher than its rank: If d′ = 0, then we
must have m ≥ 2 since we are assuming d ≥ r+1, and hence m(r−q) ≥ r−q+1. If d′ 6= 0,
then d′ ≥ 1, and so m(r − q) + d′ ≥ r − q + 1. Therefore, in both cases we can apply the
inductive hypothesis to Am ⊗ E(r − q, d′) to obtain pairs

(
s′i, ω

m
1 M(r − q, d′)s′i

)
∈ OX(U0)r−q ×OX(U2)r−q

for q + 1 ≤ i ≤ r. We will extend these to global sections on E(r, d). Denote

M(r, d) · (0, s′i) = (fi, t′i),

where each pair (a, b) consists of a vector a of length q, and a vector b of length r − q, so
that their combination gives a vector of length r. Furthermore, we have

s′i ∈ OX(U0)r−q, t′i ∈ OX(U2)r−q

by induction, and fi ∈ OX(U0 ∩ U2)q. Now we apply Lemma 2.16 to fi to obtain gi ∈
OX(U0)q such that (note that we have m ≥ 1)

fi − ωm1 Iqgi ∈ OX(U2)q

and set

si = (gi, s′i) ∈ OX(U0)q ×OX(U0)r−q.

To computeM(r, d), we apply the first operation (3.7) m times, then apply either the initial
condition (3.6) or the second operation (3.8). In either case, the first q rows and columns
of M(r, d) form the identity matrix multiplied by ωm1 . Therefore

ti = M(r, d)si = (fi − ωm1 Iqgi, t′i).

Thus ti ∈ OX(U2)r, and by induction the ti satisfy the two properties (i) and (ii) for an
upper triangular generating set at O (Definition 2.47). Now it suffices to find s1, s2, · · · , sq ∈
OX(U0)r satisfying that their corresponding ti = M(r, d)si are in OX(U2)r and satisfy the
properties defining an upper triangular generating set at O—in other words, they satisfy:

(i) For 1 ≤ i ≤ q, si ∈ OX(U0)r.
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(ii) For 1 ≤ i ≤ q, and 1 ≤ j < i, the j-th component of ti has non-negative valuation at
O.

(iii) For 1 ≤ i ≤ q, the i-th component of ti is of valuation zero at O.

(iv) For 1 ≤ i ≤ q, and i < j ≤ r, the j-th component of ti is of valuation strictly greater
than zero at O.

First, we tackle the easier case of m ≥ 2. In this case, for 1 ≤ i ≤ q, we can set

si = ω−mei.

By Lemma 2.11, these vectors lie in OX(U0)r, and furthermore we had just noticed that
the first q rows and columns of M(r, d) are the identity matrix multiplied by ωm1 , so

ti = M(r, d)si = ω−mω
m
1 ei.

Then each ti has valuation zero at O in the i-th entry, and all other entries are zero, so that
this is a diagonal generating set for the stalk at O.

Remark 4.4. This completely finishes the case where d′ = 0, since we cannot havem = 1—
otherwise d = r, failing the assumption.

From now on, we are only concerned with the case m = 1, and therefore d′ > 0 so
that q = d′. Once again we remind the reader that we are attempting to attain conditions
(i)–(iv). As an overview of the proof method, we use the structure of A(r, d) to choose a
vector immediately satisfying (iii), then we apply Lemma 2.15 to attain (ii) and (iv) while
still maintaining (i). Since this is technical, we will give an example to aid the reader. The
proof will continue on page 54.

Example 4.5. Recall from (3.9) that

M(5, 8) =



ω1 0 0 ω1ω−1 0
0 ω1 0 0 ω1ω−1

0 0 ω1 0 ω2
1

0 0 0 ω2
1 ω2

1ω−1

0 0 0 0 ω3
1


.

Note that m = 1 in this case. Our goal here is to find three sections s1, s2, s3 satisfying
the four properties above. What we shall see is that the sections essentially arise from the
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non-zero entries in the block ω1A(r, q) which in this case is the block

ω1A(5, 3) =


ω1ω−1 0

0 ω1ω−1

0 ω2
1

 .
First, set

s1 = e4,

the standard basis vector. Then this satisfies (i), and picks out the first row element of
ω1A(5, 3) and places it in the first entry of

t1 = M(5, 8)s1 =



ω1ω−1

0
0
ω2

1
0


,

so that it it satisfies (iii). Additionally, this happens to automatically satisfy (ii), and (iv)
particularly since ω2

1 has valuation 2 ≥ 1 (and all other entries are zeroes). What happened
here will essentially be what happens in Case 1 below—i.e. picking out one term of valuation
zero and another of valuation greater than zero. However, we note that the pair (5,8) isn’t
in Case 1.

Now for the second component, we set

s2 = e5

so that it satisfies (i) and places the second row element of ω1A(5, 3) in the second entry of

t2 = M(5, 8)s2 =



0
ω1ω−1

ω2
1

ω2
1ω−1

ω3
1


,

making it satisfy (iii). Once again this automatically satisfies (ii) and (iv). The only case
where cancelling is involved is the third component. First we try

s′3 = ω−2e5,
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and note that this is in OX(U0)5 by Lemma 2.11. Then this picks out the third row element
of ω1A(5, 3) and scales it so that its valuation is zero at O:

M(5, 8)s′3 =



0
ω1ω−1ω−2

ω2
1ω−2

ω2
1ω−1ω−2

ω3
1ω−2


,

so that it satisfies (iii). However, it fails (ii) and (iv) in the second and fourth entries
respectively. Furthermore, note that the fifth entry does not fail (iv)—this will always be
the case by Lemma 3.16 and Corollary 3.17. To resolve the second and fourth entries, we
must use the cancelling lemma, Lemma 2.15. This must be done from the bottom up,
due to the upper triangular structure of M(r, d). We apply the lemma to the fourth entry
ω2

1ω−1ω−2 first, to obtain g1 such that

f1 := ω2
1ω−1ω−2 − ω2

1g1 ∈ OX(U2).

Furthermore, we can insist that νO(f1) > 0, as per the second part of the lemma. We can
then set

s′′3 = ω−2e5 − g1e4

which will give us

M(5, 8)s′′3 =



−ω1ω−1g1

ω1ω−1ω−2

ω2
1ω−2

f1

ω3
1ω−2


,

so that (iv) is satisfied—namely, when we take the image at the stalk at O, the fourth and
fifth entries vanish, leaving us with the desired upper triangular form. Finally, we conclude
by cancelling the first and second entry using Lemma 2.15 or Lemma 2.16 to achieve (ii)
(we are using the former to be more explicit). To this end, let g2, g3 ∈ OX(U0) be such that

f2 := ω1ω−1ω−2 − ω1g2 ∈ OX(U2),

and

f3 := −ω1ω−1g1 − ω1g3 ∈ OX(U2).

53



We set

s3 = ω−2e5 − g1e4 − g2e2 − g3e1.

Then

t3 = M(5, 8)s3 =



f3

f2

ω2
1ω−2

f1

ω3
1ω−2


,

where

νO(f2), νO(f3) ≥ 0 ((ii)),

νO(ω2
1ω−2) = 0 ((iii)),

νO(f1), νO(ω3
1ω−2) > 0 ((iv))

so that all of the conditions are successfully satisfied.
We summarize the approach as follows: The block ω1A(r, q) has precisely one entry in

each row, and q rows—these are exactly used to construct the sections. We pick a column of
ω1A(r, q), and multiply it by an appropriate ω−k such that the desired entry has valuation
0 at O, ensuring (iii). Then we apply Lemma 2.15 strategically to ensure that (ii) and (iv)
hold, while still maintaining (i).

To motivate why we consider m ≥ 2 first, note that when m = 2, the term ω2
1ω−1

appears in ω1A(r, q), which is of valuation one at O. However, there are no elements of
valuation −1 in OX(U0) by Lemma 2.11, and so we cannot find f ∈ OX(U0) so that fω2

1ω−1

has valuation zero at O, which is vital to our method. 4

We remind the reader that q = d′ > 0, and m = 1, and we are constructing s1, ..., sq

to satisfy the conditions (i)–(iv). From here, we can compute M(r, d) by using the first
operation once, and then the second operation.

M(r, d) =
(
ω1Iq ω1A(r, q)

0 ω1M(r − q, q)

)
.

We separate into two cases:

1. Suppose 2q < r. Then take the standard basis vectors (which obviously satisfy (i))

si = eq+i, 1 ≤ i ≤ q.
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Then the corresponding ti = M(r, d)si is just the (q + i)-th column of M(r, d), which
is the concatentation of the i-th columns of ω1A(r, q) and ω1M(r−q, q). Since 2d < r,
the i-th column of ω1A(r, q) consists of a single non-zero entry ω1ω−1 in the i-th row
((3.3)). Furthermore, 2q < r implies that the second operation is needed to compute
M(r− q, q)—so the i-th column of ω1M(r− q, q) is part of the identity matrix in the
construction, and hence is also just a single entry of ω1 in the i-th row (hence the
(q + i)-th row of M(r, d)). So

ti = ω1ω−1ei + ω1eq+i.

We have that νO(ω1ω−1) = 0, and νO(ω1) = 1, and all of the remaining entries are
zeroes, with infinite valuation. Therefore ti satisfies (ii), (iii), and (iv) as desired.

2. Now suppose 2q ≥ r. First, observe that in ω1A(r, q), each row has exactly one non-
zero entry by construction (3.4)), so let αi denote the unique non-zero entry in the
i-th row of ω1A(r, q), and set c(i) to be the corresponding column in which it lies
in ω1A(r, q) (so that the term appears in the (q + c(i))-th column of M(r, d)). Set
ai = νO(αi), and note that ai ≥ 0, ai 6= 1 since the lowest valuation in ω1A(r, q) comes
from the term(s) ω1ω−1, and A(r, q) never contains ω0 by construction.

Example 4.6. In Example 4.5, we can see that for ω1A(5, 3)

α1 = ω1ω−1, c(1) = 1

α2 = ω1ω−1, c(2) = 2

α3 = ω2
1, c(3) = 2.

We have that α1 appears in the fourth column of M(5, 8), and α2, α3 appear in the
fifth column of M(5, 8). 4

So, for 1 ≤ i ≤ q, we will first set

s′i = ω−aieq+c(i)

which is in OX(U0)r since −ai ≤ −2 or ai = 0 (Lemma 2.11), hence satisfying (i).

Applying M(r, d) to s′i just returns the multiplication of the (q + c(i))-th column of
M(r, d) by ω−ai . In this case there are two terms which we are certain of—the entry
in ω1A(r, q) which we just defined, and the diagonal entry (of ω1M(r, q)) via Lemma
3.17. Hence

M(r, d)s′i = ω−aiαiei + ω−aiω1ω
λc(i)
1 eq+c(i) + fi, (4.1)
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where λ = λ(r, q) is the GCD partition of q with respect to r, and fi is some vector
in OX(U0 ∩U2)r. In other words, the i-th entry is ω−aiαi which has valuation zero at
O; the (q+ c(i))-th entry is ω−aiω1ω

λc(i)
1 which has strictly positive valuation at O by

Corollary 3.17; and fi consists of the remaining entries, with only the first q+ c(i)− 1
terms possibly non-zero since M(r, d) is upper triangular.

It remains to modify s′i in such a way that M(r, d)s′i satisfies (ii) and (iv). Due to
the upper triangular structure of M(r, d), it is necessary to start with (iv), which we
attain via the following lemma:

Lemma 4.7. Fix 1 ≤ i ≤ q. Then there exists gi ∈ OX(U0)r such that

M(r, d)(s′i − gi)

satisfies that its i-th entry has valuation 0 at O, and for i < j ≤ r, the j-th entry has
strictly positive valuation at O.

Proof. Denote

M(r, d)s′i =
(
f1 f2 · · · fq+c(i) 0 · · · 0

)T
. (4.2)

Recall that c(i) is the column containing the unique non-zero entry αi in the i-th row of
ω1A(r, q) (in other words, αi appears in the c(i)-th non-zero block). As a consequence,
the only non-zero entries of ω1A(r, q) appear in entries indexed by (i, c(i)).

First, we claim that if i < j ≤ q, then νO(fj) > 0 already. For i < j ≤ q, the entry
fj is determined by the block ω1A(r, q): it picks out the (j, c(i))-th entry. But if
c(j) 6= c(i) then we can conclude fj = 0 by our above observation (and hence has
infinite valuation at O).

On the other hand, if c(j) = c(i), then by the construction of ω(k) ((3.2)), since j > i,
the valuation of αj is strictly higher than that of αi. Furthermore, we have (by our
choice of s′i)

fi = αiω−ai , fj = αjω−ai ,

and hence νO(fj) > νO(fi) = 0. This proves the cases i < j ≤ q.

We will prove the remaining cases, q < j ≤ r, by reverse induction on j. We want to
show there exists gi such that the last r− j+1 entries ofM(r, d)(s′i−gi) have strictly
positive valuation at O, and all entries of M(r, d)gi are zero in the range i ≤ k ≤ q

(so that they do not affect the range we proved above, nor the i-th entry).
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The base case will be j = q + c(i), since the last r − q − c(i) entries already have
infinite valuation at O ((4.2)). We had already seen in (4.1) that the (q + c(i))-th
entry of M(r, d)s′i has positive valuation at O, establishing the base case.

Now suppose j < q + c(i), and that there exists a vector g′i satisfying the conditions
for j+1. Since j < q+c(i), we have that j−q > 0, so that λj−q is well-defined—where
λ(r, q) is the GCD partition of q with respect to r. Furthermore, by definition, we
have that λj−q ≥ 1, so that we can apply the second part of Lemma 2.15 to find gij
such that

νO((M(r, d)(s′i − g′i))j − ω1ω
λj−q

1 gij) > 0

In other words, gij cancels the j-th entry of M(r, d)(s′i − g′i). Now set

gi = gijej + g′i.

Then

M(r, d)gi = ω1ω
λj−q

1 gijej + g′′i +M(r, d)g′i,

where g′′i is some vector in OX(U0 ∩ U2)r, only possibly non-zero in the first j − 1
components. Note that the exponent of ω1 in the first term above comes from Lemma
3.16; we are choosing the j-th diagonal entry, which in this case is the (j− q)-th term
in the partition λ(r, q). The additional ω1 comes from the fact that we applied the
first operation once. By induction, the last r − j + 2 entries of M(r, d)(s′i − gi) have
strictly positive valuation, and by our choice of gij , we also have that the j-th entry
has strictly positive valuation.

It remains to show that for i ≤ k ≤ q, the k-th entry of M(r, d)gi is a zero. By
induction we already know that M(r, d)g′i has a zero in all entries of this range, so we
just need to check g′′i . The k-th entry of g′′i is determined by the block ω1A(r, q): it
picks out the ((k, j − q)-th entry. But since j < q + c(i), this is some column before
the c(i)-th column of ω1A(r, d). Consequently, it lands in the lower triangle of blocks
in ω1A(r, d), which are all zero blocks ((3.4)), so that the k-th entry of g′′i must be
zero.

To conclude the proof of Proposition 4.3, we can apply Lemma 4.7 to obtain a modi-
fication s′′i such that M(r, d)s′′i satisfies (iv), and we can finally apply Lemma 2.16 to
M(r, d)s′′i to obtain si such that M(r, d)si additionally satisfies (ii). The second part
of Lemma 2.16 ensures that we do not violate (iii) or (iv), thereby fulfilling all of the
four conditions.
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Theorem 4.8. If d ≥ r + 1, then the distinguished bundle E(r, d) is globally generated.

Proof. By Proposition 4.2, every stalk in U0 is spanned by a set of global sections. By
Proposition 4.3, the stalk at O is also spanned by a set of global sections. Then since (as a
set) X = U0 ∪ {O}, every stalk is spanned by a set of global sections, and hence E(r, d) is
globally generated.

Remark 4.9. This proof can also be adapted for the general twisted case, but it is similarly
long and technical. As a rough sketch, Theorem 3.21 shows that a general indecomposable
bundle has the same transition matrix, but divided by ω1LP . Since LP lies in OX(U0), we
can just multiply all of our sections si by LP to clear the denominator. This leaves us with
a division by ω1, thereby lowering the valuation at O of everything by one. We can then
construct a special element fP so that fP

LP
has valuation −1 at O, and can thereby cancel

all of the valuation −1 elements that are introduced.

4.2 Computing Global Sections

In this section, we discuss a method for computing global sections of BU0,U2(M), where M
is some upper triangular matrix and U0, U2 is the open cover given by (2.3). First, recall
that sections of BU0,U2(M) are of the form

(s,Ms) ∈ OX(U0)r ⊗OX(U2)r.

Therefore, to compute global sections, it suffices to compute the possible s ∈ OX(U0)r that
satisfy Ms ∈ OX(U2)r. First, let us provide a way to explicitly represent these sections:

Lemma 4.10. Any element f ∈ OX(U0) can be uniquely represented in the form

f = c0ω0 +
N∑
i=2

ciω−i

for some N ∈ N.

Proof. Fix the monomial ordering x > y. Recall thatOX(U0) = K[x, y]/〈y2−x(x−1)(x−λ)〉
(2.5). For any f ∈ OX(U0), we can take its representative in K[x, y], and apply Gröbner
basis reduction via the ideal 〈y2 − x(x− 1)(x− λ). Denote this reduction as f ′. Note that
f ≡ f ′ modulo the ideal, so that they are equal in OX(U0).

Furthermore, since y2 − x(x − 1)(x − λ) is degree three in x, all monomials of degree
three or higher in x in f will be cancelled in f ′. We had constructed ωk (2.6) so that they
do not exceed degree three in x, so these will be the only monomials which appear in f ′.

Now to compute global sections, we can set up a system of linear equations in the
coefficients of the monomials:
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Example 4.11. Suppose we have the matrix

M =
(
ω1 ω−1

0 ω2

)
,

and we wish to compute global sections of BU0,U2(M). They will be of the form

s1 = c01 +
−νO(s1)∑
i=2

ci1ω−i

s2 = c02 +
−νO(s1)∑
i=2

ci2ω−i,

and

M

(
s1

s2

)
=
(
ω1s1 + ω−1s2

ω2s2

)
.

In order for this to represent a global section, we need ω1s1 + ω−1s2 and ω2s2 to lie in
OX(U2). Consequently, this imposes a condition on c2i for i ≥ 3: if c2i 6= 0 for i ≥ 3, then
νO(s2) ≤ −3, so that

νO(ω2s2) ≤ −1,

and hence does not lie in OX(U2). Similarly, the first entry also gives conditions on the
coefficients, such as

c21 + c02 = 0,

since if this was not satisfied, then ω1s1 +ω−1s2 would have a non-zero valuation −1 term—
and hence would not lie in OX(U2). We know there are only finitely many cij which are
non-zero, but a priori we are unsure of how many coefficients to check for computation.
This motivates the next lemma. 4

Let M ∈ GLr(OX(U0 ∩ U2)) be upper triangular. We form the preliminary bounds

B1 = −max{0, νO(M11)},

Bj = −max{0, νO(Mii)}+ min
1≤i≤r

{0, νO(Mij)}, 2 ≤ j ≤ r.

Example 4.12. In the above example with

M =
(
ω1 ω−1

0 ω2

)
,
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we have

B1 = −1, B2 = 2− (−1) = −3.

Note that by definition, we always have that the Bi are non-positive. The preliminary
bounds Bj tell us what the lowest valuation each column could theoretically yield without
breaking the condition (Ms)j ∈ OX(U2).

For instance, in the second column, the lowest valuation we can pick without failing
(Ms)2 ∈ OX(U2) would be −2, but this introduces a valuation −3 term in (Ms)1. Similarly,
in the first column, the lowest valuation we can pick would be −1 (theoretically—Lemma
2.11 tells us this is impossible).

However, the bound for the second column influences the first. If the pair (s,Ms)
represent a global section and (Ms)1 contains a term of valuation −3 coming from s2, then
we must conclude that M11s1 also has a valuation −3 term to cancel it out. Consequently,
s1 would have valuation −4, so that its valuation is determined by all columns proceeding
it. This motivates the next lemma. 4

Lemma 4.13. Suppose M ∈ GLr(OX(U0 ∩ U2)) is upper triangular, and suppose the
pair (s,Ms) ∈ OX(U0)r × OX(U2)r represents a global section of BU0,U2(M), where s =
(s1, s2, · · · , sr)T . Then we have

νO(sj) ≥
r−j∑
k=1

Br−k

Proof. We will proceed by reverse induction on j. The base case is j = r. In this case, we
can easily see that the last entry of Ms is justMrrsr, and in order for this to lie in OX(U2),
we must have that its valuation is non-negative. Therefore

νO(Mrrsr) = νO(Mrr) + νO(sr) ≥ 0,

so that

νO(sr) ≥ −νO(Mrr) ≥ −max{0, νO(Mrr)}+ min
1≤i≤r

{0, νO(Mir)} = Br.

This establishes the base case. Now for the inductive step, we suppose that j < r, and for
j < j′, we have that

νO(sj′) ≥
r−j′∑
k=1

Br−k.
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Consider the j-th entry of M(r, d)s. Explicitly, it is

(M(r, d)s)j = Mjjsj +Mj(j+1)sj+1 + · · ·+Mjrsr.

Since we are assuming the pair (s,M(r, d)s) represents a global section, we must have that
this entry lies in OX(U2), so that in particular its valuation must be non-negative. Since all
of the Bj are non-positive, we have that

∑r−j
k=1Bk is decreasing as j decreases. Therefore

the valuation of Mj(j+1)sj+1 is minimal, and hence

νO(Mj(j+1)sj+1 + · · ·+Mjrsr) = νO(Mj(j+1)) + νO(sj+1)

≥ νO(Mj(j+1)) +
r−j−1∑
k=1

Br−k

≥ min
1≤i≤r

{0, νO(Mi(j+1))}+
r−j−1∑
k=1

Br−k.

Consequently, we conclude that Mjjsj must also be bounded by this valuation, since if it
were lower, it could not be cancelled out, and we would conclude that the i-th entry did
not lie in OX(U2). Therefore

νO(Mjjsj) ≥ min
1≤i≤r

{0, νO(Mi(j+1))} −
r−j−1∑
k=1

Br−k.

Using valuation rules and rearranging, this gives

νO(si) ≥ −νO(Mii) + min
1≤i≤r

{0, νO(Mi(j+1))}+
r−j−1∑
k=1

Br−k

≥ −max{0, νO(Mii)}+ min
1≤i≤r

{0, νO(Mi(j+1))}+
r−j−1∑
k=1

Br−k

= Bj +
r−j−1∑
k=1

Br−k

=
r−j∑
k=1

Br−k

With this lemma in hand, we only have to consider finitely many coefficients in order
to set up our linear system of equations.
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Appendix A

Software for Computing Global
Sections

For our computations, we opt to manually work with Laurent polynomial rings. In the
future, it would be prudent to make use of SageMath’s QuotientRing construction. Fur-
thermore, we note that in the interest of possibly implementing this method as a Class
(perhaps EllipticVectorBundle or some other suitable name), some methods are prefixed
with an underscore, so as to be private.

# Base polynomial ring. Here, xz = 1, yw = 1. a is the constant in the

equation:

# y^2 = x(x-1)(x-a).

R.<x,y,z,w,a> = QQ[];

S.<a> = QQ[]

The ring R forms our Laurent polynomial ring, where z = x−1 and w = y−1. The variable
a denotes the coefficient λ specified in the Legendre form of the elliptic curve. The ring S
is meant to act as our ground field K.

def _Reduction(f):

"""

Computes the Groebner basis reduction of the input under the

relation y^2 = x(x-1)(x-a), with monomial ordering x > y.

INPUT:
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f - a polynomial in R.

OUTPUT: The Groebner basis reduction of f.

"""

I = ideal(y**2 - x*(x-1)*(x-a),x*z-1,y*w-1);

B = I.groebner_basis();

newf = R(f).reduce(B);

return newf;

def _wdegree(f,low=False):

"""

Computes the weighted grading of the ring R (deg x = 2, deg y =

3) on an element.

INPUT:

f - a polynomial in R.

low - A boolean determining whether to find the highest degree

term, or lowest degree term.

OUTPUT: The weighted degree of f.

"""

# Initial degree.

d = (2*(f.monomials()[0].degrees()[0] -

f.monomials()[0].degrees()[2]) + 3*(f.monomials()[0].degrees()[1]

- f.monomials()[0].degrees()[3]));

for m in f.monomials():

if low:

d = min(d, 2*(m.degrees()[0] - m.degrees()[2]) +

3*(m.degrees()[1] - m.degrees()[3]));

else:

d = max(d, 2*(m.degrees()[0] - m.degrees()[2]) +

3*(m.degrees()[1] - m.degrees()[3]));

return d;

This method computes the valuation of a monomial in R. See (2.6) and Lemma 2.10. Note
that in this code, we are taking the negative of the valuation, and we refer to it as the
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degree. This is because it forms a weighted degree on K[x, y], where the degree of x is 2,
and the degree of y is 3, hence the abbreviation “wdegree.”

def _basismon(n):

"""

Computes the monomial omega_n.

INPUT:

n - an integer.

OUTPUT: The monomial omega_n.

"""

mon = 0;

if (n % 3 == 0):

if (n < 0):

mon = R(w^(-n/3));

else:

mon = R(y^(n/3));

if (n % 3 == 1):

if (n-4 < 0):

mon = R(x^2*w^(-(n-4)/3));

else:

mon = R(x^2*y^((n-4)/3));

if (n % 3 == 2):

if (n-2 < 0):

mon = R(x^1*w^(-(n-2)/3));

else:

mon = R(x^1*y^((n-2)/3));

return mon;

def _MonomialCleanup(f):

"""

Clears redundant variables.

INPUT:

f - a polynomial in R.

64



OUTPUT: Applies the relation xz = 1, yw = 1 to clear redundancies.

"""

newf = 0;

for m in f:

xdeg = min(m[1].degrees()[0],m[1].degrees()[2]);

ydeg = min(m[1].degrees()[1],m[1].degrees()[3]);

newf += m[0]*(m[1]/(x**xdeg*y**ydeg*z**xdeg*w**ydeg));

return newf;

As mentioned above, we opt to manually work over the Laurent polynomial ring, so this
method is meant to apply relations such as xx−1 = 1.

def _intpart(r,d):

"""

Computes a special integer partition related to the construction of

M(r,d).

INPUT:

r - a positive integer.

d - an integer.

OUTPUT: The GCD partition of d with respect to r.

"""

r1 = r;

d1 = d;

intpart = [];

while(d1 != 0):

if (d1 < r1):

r1 -= d1;

else:

d1 -= r1;

intpart += [r1];

intpart = Partition(intpart).conjugate();

intpart = list(intpart);

intpart.reverse();

return intpart;
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def _omegavector(k):

"""

Forms the vector omega(k).

INPUT:

k - a positive integer.

OUTPUT:

The vector omega(k).

"""

if k < 1:

raise ValueError("k must be positive");

vectorlist = [_basismon(1)];

for i in range(k-1):

vectorlist += [_basismon(-i-1)];

return Matrix(k,1,vectorlist);

def _matrixA(r,d):

"""

Constructs the upper right block in M(r,d).

INPUT:

r - a positive integer.

d - an integer.

OUTPUT: The block A(r,d).

"""

if (2*d <= r):

return block_matrix(1,2,[x**2*w*matrix.identity(R,d),matrix.zer

o(R,d,r-2*d)],subdivide=False);

else:

intpart = _intpart(r,d);

blocklist = [];

for i in intpart:
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blocklist += [_omegavector(i)];

return block_diagonal_matrix(blocklist,subdivide=False);

def _matrixM(r,d):

"""

Constructs the matrix M(r,d).

INPUT:

r - a positive integer.

d - an integer.

OUTPUT: The matrix M(r,d).

"""

if (r <= 0):

raise ValueError("Rank must be positive.");

if (d % r == 0):

M = [[0 for i in range(r)] for j in range(r)];

for i in range(r-1):

M[i][i+1] = x**2*w;

M = matrix(M) + matrix.identity(R,r);

else:

newd = d % r;

M = block_matrix([[matrix.identity(R,newd),_matrixA(r,newd)],[m

atrix.zero(R,r-newd,newd),_matrixM(r-newd,newd)]],subdivide=Fal

se);

if (floor(d/r) < 0):

M = (z*y)**(-floor(d/r))*M;

else:

M = (x*w)**(floor(d/r))*M;

return M;

def In_Rn(f,n):

"""

Determines whether an element is contained in a ring.

INPUT:
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f - a polynomial in R.

n - an integer, indicating the number of the ring we want.

OUTPUT: Returns [true, []] if f is in R_n.

Else, returns [false, mon], where mon is the list of

monomials not in R_n.

"""

flag = True;

newf = _Reduction(f);

# For each monomial, check if the degree satisfies that it is in R_n.

failedmons = [];

for m in newf:

# We consider a as a coefficient, not a variable, so we need to

do a proper unpacking.

coeff = S(m[0]*S(a)**(R(m[1]).degrees()[4]));

mon = R(x)**(m[1].degrees()[0])*R(y)**(m[1].degrees()[1])*R(z)*

*(m[1].degrees()[2])*R(w)**(m[1].degrees()[3]);

mdeg = _wdegree(mon);

# Clean up the monomials, since they might have some x*z’s and

y*w’s lying around.

mon = _MonomialCleanup(mon);

if (n == 1):

# Check if it’s not in R1. These are the degrees that work.

if (mdeg == 1 or mdeg < 0):

# If it’s in not in the ring, we add it to the failed

monomials

failedmons += [[mon,coeff]];

elif (n == 2):

# Check if it’s not in R2. These are the degrees that work.

if (mdeg > 0):

# If it’s in not in the ring, we add it to the failed

monomials

failedmons += [[mon,coeff]];

else:

# Something went wrong.

raise ValueError("Invalid value for n");
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# If the failed monomial list is empty, then return True. Else,

False, along with the list of failed monomials.

if not(failedmons == []):

flag = False;

return [flag, failedmons];

This method checks the valuation of a polynomial to determine whether it lies in OX(U0)
or OX(U2). In this case, n = 1 checks if the polynomial lies in OX(U0), and n = 2 checks
if it lies in OX(U2). The output is a dictionary of monomials which failed, so that we can
use them to form our system of equations.

def GlobalSections(M,dual=False):

"""

Method for computing global sections of a vector bundle over an

elliptic curve defined by the zero locus of

f = y^2 - x(x-1)(x-a)

INPUT:

M - an upper triangular n x n matrix with entries in R.

OUTPUT: A list of vectors in k[x,y]/f forming a basis for the space

of global sections of the bundle associated to M.

NOTES: Perhaps make a class: EllipticVectorBundle?

Include Quotient rings to include hyperelliptic curves,

potentially.

"""

ringnum = 2;

if (dual == True):

ringnum = 1;

# Initializing variables.

[n, n1] = M.dimensions();

if not(n == n1):

raise AttributeError("Matrix is not square.");

monorder = [];

equations = [];
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# First, we compute a naive bound for which monomials to use.

m = [0 for i in range(n)];

m[n-1] = -min(_wdegree(M[n-1][n-1]), 0) + max(max([_wdegree

(M[n-i-1][n-1]) for i in range(n-1)]),0);

for j in range(n-1):

m[n-j-2] += m[n-j-1];

m[n-j-2] += -min(_wdegree(M[n-j-2][n-j-2]),0) + max(max

([_wdegree(M[n-i-1][n-j-2]) for i in range(n-j)]),0);

# This will be the number of columns in our system.

totcnum = sum(m[i]+1 for i in range(n));

# This will be our linear system in the end.

equations = [];

# An intermediate storage variable.

tempterms = [];

# Primary loop. Starting from the top row:

for i in range(n):

# This tracks the monomial each row in our system corresponds to

monorder = [];

# These are all of the new rows we add to the system.

newrows = [];

# For each entry in the row, compute the eligible basis monomials.

for j in range(n):

# For every monomial under the magic bound,

# check the monomials outside of R_n and compile

# their coefficients.

# Depending on which ring we’re looking at, R_1

# or R_2, we need a different range for the

# degrees.

basisrange = range(m[j]+1)

if (dual==False):

if (m[j] > 0):

basisrange += [m[j]+1];

basisrange.remove(1);

else:

for k in range(m[j]+1):

basisrange[k] = -basisrange[k];
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# For each degree

for k in range(m[j]+1):

tempterms =

In_Rn(R(M[i][j]*_basismon(basisrange[k])),ringnum);

# Check if there were any failed monomials.

if not(tempterms[0]):

# If there were, iterate over those

for t in tempterms[1]:

# As long as we haven’t seen this

# monomial, add it to the system,

# and keep track of it.

if (monorder.count(t[0]) == 0):

monorder += [t[0]];

newrows += [[0 for a in range(totcnum)]];

# Fill in the rows. For each row (monomial)

for a in range(len(monorder)):

# Index tracking variable

p = sum(m[q]+1 for q in range(j));

# Go through the terms we’d computed.

# Check if there were any failed monomials.

if not(tempterms[0]):

# Over each failed monomial

for t in tempterms[1]:

# Check if it’s equal to the one

# we’re looking for

if (t[0] == monorder[a]):

# If so, extract its

# coefficient, put it in the row.

newrows[a][p+k] += S(t[1]);

# Add these new rows to the matrix.

equations += newrows

# Form the matrix. We reverse the order of equations here

# because it makes computing the kernel easier. This just

# makes the computation a bit faster due to the structure

# of the systems constructed. The point here is that

# reversing the order of equations yields a system which is

# ’’almost lower-triangular.’’
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equations.reverse();

equationsmatrix = Matrix(equations);

# Find the right kernel.

solutions = equationsmatrix.right_kernel();

vectorlist = solutions.basis();

# This just concerns translating the results of the

# kernel. This is just a bunch of index juggling

# and keeping track of which coefficient corresponds to

# which basis monomial.

gsections = [];

for v in vectorlist:

section = [0 for i in range(n)];

p = 0;

for j in range(n):

basisrange = range(m[j]+1)

if (dual==False):

if (m[j] > 0):

basisrange += [m[j]+1];

basisrange.remove(1);

else:

for k in range(m[j]+1):

basisrange[k] = -basisrange[k];

for k in range(m[j]+1):

section[j] += v[p+k]*_basismon(basisrange[k]);

p += (m[j]+1);

gsections += [section];

if gsections == []:

gsections = [0];

return gsections;

This is the primary method for computation. Roughly speaking, the goal is to create a
matrix whose columns are in correspondence with the coefficients cij from

sj = c0j +
−νO(sj)∑
i=2

cijω−i,

and the rows are in correspondence with “illegal” monomials.
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Example A.1. We will carry out the procedure on the matrix

M =
(
ω1 ω−1

0 ω2

)
.

In the interest of clarity, we will express this matrix explicitly as

M =
(
xy−1 x2y−1

0 x2y−2

)
,

however we note that these entries are representatives in the ringK[x, y]/〈y2−x(x−1)(x−α)〉
(i.e. we are excluding the overline for convenience). We begin by using the bound from
Lemma 4.13 to see that s2 has valuation at least −2 and s1 has valuation at least −3, so
that

s1 = c01 + c21x+ c31y,

s2 = c02 + c22x.

Now we multiply this vector by the matrix, and examine which monomials lie outside of
OX(U2). Namely, which monomials have strictly negative valuation. In this case, we have

M

(
s1

s2

)
=
(
c01 + c21x+ c31y + x2y−1(c02 + c22x)

x2y−2(c02 + c22x)

)
,

and we further apply Gröbner basis reduction via the method “_Reduction” to find

M

(
s1

s2

)
=
(
c01 + c21x+ (c31 + c22)y + (c02 + (1 + α)c22)x2y−1 − αc22xy

−1

(c02 + (1 + α)c22)x2y−2 + c22 − αc22xy
−2

)
.

In order to represent a global section, we must have that the valuations of each entry are
non-negative, so we must set the coefficients of all negative valuation monomials to zero. In
this case, these come from the monomials x, y and x2y−1. Therefore we get three equations
in four unknowns:

c21 = 0,

c31 + c22 = 0,

c02 + (1 + α)c22 = 0.

The remaining coefficients are free variables. Solving this system then provides a basis for
the space of global sections. In general, the method performs these products and reductions,
tracks which monomials are disallowed, and forms the corresponding linear system. We then
use a standard kernel solver to obtain a solution.
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We note that the method can also compute sections of the dual, without computing the
inverse of the matrix.

def is_globally_generated(M):

"""

Checks whether the bundle associated to an upper

triangular matrix M is globally generated.

INPUT:

M - an upper triangular matrix with coefficients

in R.

OUTPUT: Whether or not B(M) is globally generated.

"""

[n,n1] = M.dimensions();

gsects = GlobalSections(M);

r = len(gsects);

# If we don’t have enough sections, obviously it’ll fail.

if r < n:

return False;

sectM = Matrix(gsects);

I = ideal(sectM.minors(n));

B = I.groebner_basis();

# If there is some non-trivial solution, then we can

# make a minor vanish, and hence drop the rank.

if B != [1]:

return False;

# Otherwise, we move on to the point at infinity.

else:

infgsects = [M*vector(s) for s in gsects];

# We evaluate each entry at (0,0).

for t in infgsects:

for i in range(n):

t[i] = _Reduction(_MonomialCleanup(t[i]))(0,0,0,0,a);

infsectM = Matrix(infgsects);

infI = ideal(infsectM.minors(n));

infB = infI.groebner_basis();

if infB != [1]:
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return False;

return True;

This method checks whether B(M) is globally generated. This is done by placing the global
sections into a matrix, and computing its rank n minors, where n is the size of M . If the
ideal of minors generates the ring R, then we can conclude that the matrix is full rank no
matter which point one evaluates the matrix at. Finally, we check the fibre at (0 : 0 : 1) by
directly evaluating at this point and computing the rank.

Example A.2. We include some examples of using the code:

load ("GlobalSections.sage")

M = _matrixM(3,2);

print M;

> [ 1 0 x^2*w]

> [ 0 1 x*w]

> [ 0 0 x^2*w^2]

gsects = GlobalSections(M);

print "The global sections of B(M) are:",gsects;

> The global sections of B(M) are: [[1, 0, 0], [0, 1, 0]]

print is_globally_generated(M);

> False

M = _matrixM(4,5);

print M;

> [ x*w x^3*w^2 0 0]

> [ 0 x*w x^3*w^2 0]

> [ 0 0 x*w x^3*w^2]

> [ 0 0 0 x^2*w^2]

gsects = GlobalSections(M);

print "The global sections of B(M) are:",gsects;
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> The global sections of B(M) are: [[1, 0, 0, 0], [-x*y - y*a - y, x^2, -y,

x], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]

print is_globally_generated(M);

> True

We can compute global sections for matrices other than M(r, d) as well, such as for the
matrix

M =


1 ω−1 0 ω2

0 ω2
1 ω−1 0

0 0 1 ω1

0 0 0 ω3

 .

M = Matrix([[1, x^2*w, 0, x^2*w^2],[0, x^2*w^2, x^2*w, 0],

[0, 0, 1, x*w],[0, 0, 0, w]]);

print M;

> [ 1 x^2*w 0 x^2*w^2]

> [ 0 x^2*w^2 x^2*w 0]

> [ 0 0 1 x*w]

> [ 0 0 0 w]

gsects = GlobalSections(M);

print "The global sections of B(M) are:",gsects;

> The global sections of B(M) are: [][1, 0, 0, 0], [-x^2*a

- x^2 - y^2 + x*a, x*y - 1, -x, y], [y, -x + a + 1, 0, 0],

[x^2, -y, 1, 0], [0, 0, 0, 1]]

print is_globally_generated(M);

> True

4
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