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Abstract

Dispersion, the collective spatial movement of individuals in a population, often plays a
prominent role in the dynamics of the population. However, dispersion is a multiscale phe-
nomena bridging processes affecting individuals with processes affecting collections of indi-
viduals while the processes affecting collections of individuals are often unknown or difficult
to quantify. This raises the need to develop models of dispersion.

In this thesis, we construct and investigate a multiscale model of dispersion. Dispersion of
population density is modelled at a macroscale by a stochastic process inspired by cellular
automata models. The dispersion model is coupled to microscale models of population that
describe the local production of individuals in the population. Assuming that dispersion
occurs on a slower time scale than the production of individuals, we construct a systematic
approach to couple the macroscale dispersion model to the microscale population model.
The resulting multiscale model uses relatively few parameters and those parameters have
physical interpretations with respect to the population being modelled. The model is also
flexible in that it can incorporate a wide range of microscale population models.

We carry out a thorough numerical investigation of the properties of the multiscale model
for dispersion. The analysis shows that the multiscale dispersion model can yield a wide
range of spatial and dynamic behaviours depending on the choice of parameters. We also
demonstrate that the model parameters can be calibrated using data from specific statistics
that characterize the spatial patterns of dispersion.

We apply the stochastic model of dispersion to mountain pine beetle infestations of forest
in North America. Our results suggest that the model can produce patterns that are qual-
itatively similar to those infestations. We also calibrate the dispersion model using data
consisting of images of an actual pine beetle infestation.

Keywords: Dispersion process; Multiscale modelling; Stochastic Cellular Automaton model;
Calibration; Mountain Pine Beetle infestations
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Chapter 1

Introduction

1.1 Motivation

Dispersion processes, governing the movement of a population of individuals, play a vital
role in science and engineering including biology, microbiology, ecology, physics, epidemiol-
ogy, materials and geography. The study of dispersion processes has important applications
to the structure and dynamics of populations of various types. Dispersion processes typically
operate at a range of temporal and spatial scales. In practice, the dispersion of population
often has a stochastic nature at the macroscale that is driven by microscale processes af-
fecting the population of individuals at the microscale. By microscale, we mean that the
underlying stochastic driving process occurs at many highly localized spatial points at a
relatively rapid rate. Models of dispersion that incorporate information from individuals at
the microscale are thus appealing.

Modelling dispersion is a challenging task because the mechanisms are often unknown
or difficult to describe and the evolution of dispersion patterns for large-scale populations
depends on local interactions of individual entities. To address this challenge, we construct
a multiscale stochastic model for dispersion of the state of population that is described as
a density. The population is assumed to be generated on a small, fast time scale at many
localized regions while the dispersion takes place over a larger spatial scale at a slower rate.
The hierarchical structure of the model includes: 1. The microscale describes the individual
behaviours locally and can be well-modelled by existing models; 2. The macroscale captures
the movements of spatially distributed communities and is modelled by novel stochastic
cellular automata (SCA) approach. We use a sequential approach to bridge the two scales
such that the microscale can provide input for the macroscale and the macroscale influences
individual behaviours at the microscale.

The multiscale SCA model can be used for various applications. The primary applica-
tion in this thesis is modelling Mountain Pine Beetle (MPB) infestation. MPB epidemics
have had strong ecological and economic consequences. According to the biology and life
dynamics of mountain pine beetles, local individual behaviour leads to changes in tree
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infestation severity over large areas as the epidemic progresses. The microscale model is
used to characterize the individual dynamics of beetles in one or a few neighbouring trees,
while the macroscale SCA model is applied to the dispersion of infestation within a for-
est region. Nuclear radiation damage provides another application for the multiscale SCA
model. Nuclear reactor materials are continuously bombarded with different kinds of ener-
getic particles during service. Such kinds of particles interact with materials to produce high
concentrations of defects such as vacancies and interstitials. These defects eventually induce
microstructural changes in materials such as dislocation loops and voids, which drastically
change the thermal and mechanical properties of materials and limit their performance.
The microscale model characterizes the atomic displacement collision cascades that happen
within nanoseconds and induce microstructure changes in the fuel lattice, microstructure
changes over long-range space and time lead to radiation damage in materials which can be
evaluated by phase field models. The macroscale model characterizes the level of structure
change in materials where a large number of voids grow, shrink, and/or interact with each
other.

In this thesis, we derive a multiscale stochastic process model. Two main contributions
are the derivation of a novel stochastic process model for dispersion processes and a system-
atic method for coupling a macroscale stochastic process model to a microscale stochastic
driving process. In addition, we conduct a thorough numerical investigation of the model
properties, including numerically demonstrating that the model parameters can be cali-
brated. We explain how the model can be applied to study the dispersion of pine beetles
in an infestation and carry out a Bayesian calibration of the model using photographic
evidence of pine beetle damage.

1.2 Thesis Outline

In Chapter 2, we describe some of the social and economic implications of MPB out-
breaks, which motivates our work in modelling the population spread and predicting future
MPB epidemics. We also describe the biology of MPB and forest management plans, and
summarize the available data for MPB research. In Chapter 3, we provide the mathematical
background for constructing the multiscale SCA model and describe details for the SCA
model setup and choice of microscale model. We also present the sequential approach to
connect the models at different scales. We provide implementation details for the imple-
mentation of the stochastic process model in Chapter 4. We use R programming language
(version 4.1.1) to build a simulator that takes an initial cell configuration and a set of
parameter values for the SCA transition rules as input and outputs the cell configuration
evolution at a sequence of times as output. We investigate the properties of the SCA model
through numerical simulations in Chapter 5 under various situations. We present the math-
ematical background for solving the calibration problem and explain how the model can be
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applied to study the dispersion of pine beetles in an infestation and carry out a Bayesian
calibration of the model using photographic evidence of pine beetle damage in Chapter 6.

1.2.1 The Dispersion Model

A fundamental goal in the study of dispersion is to describe the patterns that is gen-
erated. These patterns describe how individuals are distributed in space, which effects how
they interact with each other and their surrounding environment over time. Population
density, which is the number of individuals per unit area or volume, driven by individual
motions such as aggregation and repulsion, plays a crucial role in determining the evolution
of dispersion patterns. Dispersion processes often display multiscale characteristics, in which
population is generated on a fast temporal and short spatial scale while dispersion takes
place over a larger scale at a slower rate. For this reason, we aim to build a multiscale frame-
work to characterize the complex population dynamics generated from dispersion process
at the community level while explicitly modelling individual behaviour.

There are two scales in our modelling framework, the microscale and the macroscale. At
the macroscale, dispersion is considered as a dynamic force for the movements of spatially
distributed communities described in terms of population density. It is described by an
SCA model that operates on grid of polygons. The dynamics of dispersion are governed by
probabilistic rules that reflect mortality, reproduction, immigration related to distance, and
chance of successful colonization in new locations. The parameters in the SCA model are
simple to adjust and combinations of assumptions can be handled. At the microscale, we
use a model that produces detailed information about individuals that has an impact on
dispersion patterns. In the application to MPB, we choose a simple birth-death process to
model the individual behaviours. The microscale process model produces input population
for the macroscale SCA. The model easily accommodates other microscale models.

The model characterizes the three stages of dispersion process that account for local
individual behaviours and spatial heterogeneity. The model is built upon four fundamental
assumptions about the dispersion process: 1. We assume that the model focus on simulating
the dispersion process that are driven by several mechanisms including active dispersion, an
individual controls its own locomotion and passive dispersion, and the individual movement
depends on external forces such as gravity and wind. 2. We assume that the model oper-
ates within a reasonable expanse of magnitude. Physical scale is defined by computational
capacity. Currently, computer simulations are too computational intensive if the model is
performed over a large landscape area, for example, thousands of kilometres. 3. We assume
that the geographic features of the grid are static as the model simulates evolution of pat-
terns over time. 4. The model applies to the situation in which there are enough individuals
to produce a viable density. We use a sequential approach to connect the two scales such
that the microscale can provide subject inputs for the macroscale and the macroscale in
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turn feed back into the individual behaviours at the microscale. We present more details
about the model in Chapter 3.

1.2.2 Bridging the Microscale and the Macroscale Model

We use a sequential approach to couple the microscale and macroscale models. In se-
quential approaches, information is obtained at the microscale, and the results summariz-
ing microscale behaviours are passed to macroscale models by an “upscaling” process. The
macroscale model is evaluated and the results are processed to provide to the microscale
model. In this approach, the models at each scale have to accurately produce the information
to be passed to the other scale. We simulate the microscale model for multiple realizations
in each cell and compute the expected value of population. We also use the expected value
of limiting distribution of microscale model when the macroscale time step is sufficiently
large.

Numerical experiments are used to decide the appropriate number of microscale simu-
lations between two time steps at the macroscale. According to the multiscale strategy to
link the two scales, we assume the dispersion process at the macroscale do not interact with
population fluctuation at the microscale. Insufficient simulations at the microscale between
two macroscale time steps can cause indistinguishable density updates at the macro scale,
while excessive simulations at the microscale between two macroscale time steps can lead to
significant population variation at the microscale and hence inadequate cell density update
at the macroscale. Therefore, it is crucial to determine the appropriate microscale time steps
between two neighbouring macroscale time steps to obtain reasonable patterns.

1.2.3 Numerical Investigations of Model Behaviour

The SCA model is highly non-linear and stochastic which complicates theoretical analy-
sis, and techniques that apply to linear Markov chain models are not applicable. Therefore,
we conduct numerical simulations to gain insight into model behaviour and qualitative fea-
tures of the model. Though the fundamental components of the model are simple, the SCA
model exhibit complex behaviour, The complexity arises from local interactions between
simple components and the interaction rules which lead to interesting geometric dispersion
patterns.

The simulations aim to explore the SCA model behaviour under various scenarios and
parameter values. Through numerical simulations, we develop a through understanding
of the dispersion process including hidden behaviours. We perform sensitivity analysis to
identify the critical parameters that influence the behaviour of the model. In addition to
presenting the dispersion patterns under various scenarios, we also derive some quantitative
statistics of the patterns to quantify important features of the model, and identify what
kind of model behaviour can be used to calibrate the model using experimental data.
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The model performance depend on several factors including both the microscale model
behaviour and the interactions of macroscale model parameters. Extensive simulation stud-
ies suggest that the macroscale model approaches three limiting situations when the mi-
croscale model generate enough individuals for the dispersion, fading away completely, set-
tling into a fixed size, and growing without limit at a fixed speed. Nevertheless when the
microscale model shows periodic behaviour, the macroscale model also shows periodic pat-
terns. The experiments suggest that even though the underlying rules for the model are
simple, the model can generate complex behaviour characteristic of dispersion processes
found in nature.

The simulation studies focus on scenarios when the model produces final patterns grow-
ing without limit. We conduct 100 experiments and 50 realizations in each of the experiments
to investigate the distribution of quantitative statistics including the average cell density,
average number of affected cells, and average complexity of the interaction neighbourhood.
We choose the appropriate grid size and time steps to run the model such that the model
produces perceptible patterns that are sensitive to different parameter settings. Based on
our exploration in model behaviour with different grid sizes and run time, we choose to sim-
ulate the model on a grid of 30 × 30 cells with 30 time steps to investigate the distributions
of the quantitative measurements.

There are four phases in the simulation studies. Phase I is to conduct sensitivity analysis
for each parameter in the model; Phase II is to investigate the interactions between different
parameter regimes; Phase III is to investigate the impact of geographical properties of the
domain, which is achieved by changing the attributes of certain cells to make them suitable
for various physical conditions; Phase IV is to investigate the evolution patterns between
interaction neighbourhoods.

There are seven parameters at the macroscale that determine the dispersion pattern.
We focus on two probability parameters to characterize the stochastic behaviour of the
model, the inclusion probability and the survival probability. Those two probability rules
are connected with different stages of the dispersion process. The inclusion probability is
linked to the emigration stage in which the potential cells for dispersion are selected, and
the survival probability is linked to the immigration stage in which the individuals establish
population in new cells. In the dispersion process, the amount of individuals provides a
source of cell densities that determines the pattern. The cell density is jointly regulated
by the SCA model at the macroscale and the birth-death process at the microscale. More
details are provided in Chapter 5.

1.2.4 Model Calibration

The parameters in a physical process model of a complex system represent important
physical characteristics of the system being modelled. Scientific inference using a model
of a complex system involves evaluating the model for parameter values that are relevant
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for the current physical state of the system. Unfortunately, it is often difficult to directly
observe the parameters in a physical process model. Thus solving a form of inverse problem
to determine parameter values from observed data is essential for using a model to fore-
cast behaviour of the system being modelled. We consider two Bayesian approaches to this
calibration problem, namely the Stochastic Inverse Problem (SIP) and Bayesian Inverse
Problem (BIP) using both simulated data and real data consisting of graphical represen-
tations that indicate the progression of tree damage in a pine beetle infestation. We find
that different quantities of interest (statistics) give distinct results for different parameters,
which suggest an influence of the choice of appropriate quantities of interest. We provide
more discussions about the calibration problem in Chapter 6.

1.3 Contribution of the Thesis

We have created an innovative multiscale SCA framekwork in modelling the dispersion
of mountain pine beetles. We set up two scales in the model, the microscale model simulates
the individual behavior to provide the source for the macroscale SCA model which simulates
the dispersion of population density. We use sequential approach to couple the two scales to
convert between the population size and population density. In fact, the multiscale frame-
work provides the flexibility to be expanded to handle a wide range of scales depending on
the resolution of dispersion patterns, and the sequential approach to couple different scales
of the model allows us to use various microscale models.

The SCA model is a novel non-linear stochastic process model for the dispersion of
population density. In the SCA, we use hexagonal cells to avoid the geometric sours of bias,
and we use density as the cell state where the probability of dispering to a small region
that depends on the local density in the surrounding neighbourhood. This is a stochastic
version of game-of-life that acts on density rather than the states of 0/1. We introduce
stochastic components to the transition rules in the SCA model and include a variety of
factors that influence the dispersion, therefore the model is not only capable of capturing
the uncertainties observed in dispersion, but reflects the beliefs of the known physics of the
dispersion. We conduct a comprehensive investigation of the properties of the model that
shows the temporal behaviors of the model. We show the model can be calibrated from
observational data using a Bayesian approach, we carry out the calibration using a real
image of the mountain pine beetle infestation pattern.
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Chapter 2

Mountain Pine Beetle Description

In this chapter, we introduce the social and economic implications of mountain pine
beetle (MPB) outbreaks, which motivates our work in modelling the population spread
and predicting the future MPB epidemics. We also describe the biology of MPB and forest
management plan, and summarize the available data for MPB research.

2.1 Introduction

The lodgepole pine forests provide an extensive range of advantages, such as habitats for
wildlife, recreational areas, and raw materials for wood products. However, lodgepole pines
are prone to natural disturbances - for example, the widespread MPB epidemics, which
have killed millions of acres of forests in the Rocky Mountains in the United States and
Canada. The mountain pine beetle, (MPB; Dendroctonus ponderosae Hopkins, Coleoptera:
Curculionidae, Scolytinae), is an indigenous insect in lodgepole pine forests and is an integral
component of the forest ecosystem throughout western North America. The beetle activities
can either beneficial or detrimental depending on the forest management objectives [68].
During some years, the beetles cause little damage as they infest weakened, standing dead
trees. But in other years, they attack living healthy lodgepole pines over extensive areas
when their population periodically reaches the epidemic level. The MPB epidemics may
stem from an alignment of factors, such as extensive forests of trees and climate change to
support MPB reproduction [110], and human impacts, for instance, logging that lead to an
imbalanced ecosystem.

Extensive areas of suitable hosts and climate changes are believed to foster the massive
MPB epidemics. In the past, regular wildfires have limited the lodgepole pines at mature
ages and ensured forest resilience from natural disturbances. With the efficient fire manage-
ment program, fire suppression has been observed to make a remarkable change to forest
composition; for example, forests dominated by large-diameter trees and dense stands with
a high proportion of hosts [160]; and this enables the beetle attacks to be more effective. Cli-
mate changes, such as increased temperatures and drought conditions are also considered to
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be major drivers of beetle epidemics. Increased temperatures support beetle growth and dis-
persion in the summer, and lead to high insect survival in the winter [74]. Besides, increased
temperatures cause more precipitation falling as rain rather than snow, which consequently
accelerate the decline of snowpack and drought conditions in Rocky Mountains. Decreasing
surface waterflow has further exacerbated drought conditions, leaving more mature healthy
trees water-stressed and reducing tree defences which makes the trees vulnerable to beetle
attacks [203]. Therefore, successive years of favourable weather conditions combined with
an abundance of vulnerable host trees that provide good habitat for MPB on the landscape
have contributed to the unprecedented MPB epidemics occurred in the last decades.

The MPB epidemics have caused various ecological and economic consequences, and
one of the most important concern is causing widespread tree mortality which could poten-
tially affect appearance of forests and harm the aesthetic value of the area and tourism [3].
Besides, widespread beetle-killed trees could impact timer commodities, leaving the timber
capacity unsustainable in the long run. Another frequently mentioned consequence of MPB
epidemics is increase in wildfire threats and impairing postfire resilience [93]. However, ex-
isting research does not suggest a direct link between tree mortality due to MPB attacks and
threat of wildfires in affected areas; since the MPB hosts - lodgepole pines - naturally burn
in fires to kill mature large trees and produce favourable conditions for the seeds to germi-
nate, which lead to a natural regeneration of the pine forests. There are other implications
associated with beetle epidemics, such as altering forest structure and composition [97],
modifying forest fuels [105], and threatening watersheds [156] and wildlife [161].

In general, MPB complete their life cycle in one year, and their life cycle mainly is com-
posed of three stages: attacking new hosts, mating and brooding under the bark, emergence
and dispersion to new hosts [157]. Successfully attacked trees usually display bole symp-
toms such as boring dust, small and numerous pitch tubes on the outer bark [68]. Later,
foliage fades to yellowish green, to red and finally brown [164]. Infested trees initially appear
in groups locally, and later develop into large infested patches that can be used for aerial
assessment over large areas [164].

It is challenging to control and manage MPB epidemics. Direct control strategies that are
used to decrease MPB populations and preventive methods that are used to reduce stand
susceptibility are combined to form an efficient forest management plan [164]. Tracking
the spatial and temporal patterns of MPB dynamics is crucial for assessing the risks and
controlling the epidemics, nevertheless, how MPB populations spread into new territories
and when the next epidemic occur can be incredibly challenging to predict based on current
remotely sensed data since the analysis results are typically subject to accuracy assessment
protocols [197]. Recently, unmanned aerial vehicles (UAVs) have become powerful tools for
remote-sensing in forest management due to its ability of collecting data at low altitude and
provide high quality data [169].
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2.2 The Biology of Mountain Pine Beetle

MPB usually only infest a few weakened, stressed pines scattered throughout the forest.
However, MPB population periodically erupt in epidemics and cause severe social and eco-
nomic consequences. Thus, there are extensive studies to understand the biology of MPB
and develop various models of their population dynamics.

2.2.1 Life Cycle

The MPB populations are normally univoltine (completing its life cycle in a single year),
while their life cycle varies depending on the temperature. Occasionally, MPB may remerge
and develop a second brood during warmer than usual summers [157]. MPB has four life
stages: egg, larva, pupa and adult. All the life stages happen within the subcortical tissues
of the host trees aside from the dispersion phase by mature adults [165]. Each year, young
adult beetles leave the dead, yellow- to red- top trees and disperse to new hosts in the warm
summer months. Upon successfully colonization, the female bores through the bark and
commences gallery construction in the inner bark. The male enters the gallery soon after
and mating occurs. Once mated, the female elongates the egg gallery vertically, small oval
eggs are laid into the sides of the gallery and are covered with boring dust. Following egg
hatch, larvae tunnel away from the egg galleries, feeding on the phloem tissue in the inner
bark, cutting off nutrient translocation, thereby killing the host tree. MPB larvae require
several months to develop to pupal stage, usually overwintering as larvae under the bark.
Mature larvae cut chambers in the inner bark in the spring and transform into pupae in
June and July, and the new adults emerge from mid-June through September. At first, new
adults are pale and soft, and they may require one to two weeks to mature and harden
before emergence. [157] [164] [13].

2.2.2 Dispersion Process

Most young adult MPB tend to disperse within short range throughout the forest for
reproduction [165] [164]. In a release-recapture field study [165], the number of recaptured
beetles was found to decline exponentially with respect to distance from the release point.
While short-range dispersion may foster beetle population growth, there is evidence for
beetles travelling long-distance flights to seek for suitable host trees. Recently, there are
observations of MPB expanding their historical range and thriving in the north of British
Columbia, where used to be considered as unfavourable for MPB [164]. Especially, with aid
of convective winds, beetles could be carried to a few kilometres from the host where they
emerge [163]. The long-distance dispersion could contribute to the MPB epidemic spread.
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2.2.3 Host Selection

The initial selection scheme of a host tree is unclear to human observers. The selection
could be spatially random and independent of population density and during initial selec-
tion, beetles may not respond to the mass-attack strategy [24]. Alternatively, MPB may
prefer large-diameter trees with a thicker phloem to provide a good habitat [165]. Further-
more, pioneer females could adopt a combination strategy of random landing and attraction
to subtle cues that is not apparent to human [138] [94].

2.2.4 Host Colonization

The colonization process of MPB is achieved in a complex scheme that is facilitated by
pheromones (beetle-produced) and kairomones (host-produced) [19] [164] [151]. Pioneering
females use kairomones to locate suitable hosts, and once they find the new host suitable for
reproduction, they release the aggregation pheromones to attract more beetles to start the
mass attack, after which females penetrate the bark and initiate gallery construction [151].
The mass attack is crucial as it enables beetles to overcome the tree defences.

2.2.5 Beetle Host Interactions

MPB normally prefer large-diameter trees with a thicker bark as they require a certain
thickness of bark to excavate egg galleries. Furthermore, large trees can provide more re-
sources and nutrients for beetle brood production. Therefore, small-diameter, young trees
with thin phloem are seldomly attacked in practice. However, during the dispersion-colonization
process, the trees are far from passive. Vigorous trees with large-diameter can often resist
the attack and successfully defend themselves while they are the priority host selection for
beetles. The trees release toxic resins as beetles bore through the bark [158] [14] which slows
and even expels the attacking beetles. The phloem become saturated as the resin is released
into the egg galleries, the beetles will be confined and killed in a lesion of dead tissues [164].

2.3 The Mountain Pine Beetle Epidemics

There are four major phases in the MPB population cycle: endemic, incipient-epidemic,
epidemic and post-epidemic. The transition between phases are determined by beetle popu-
lation size and spatial behavioural patterns. In endemic phases, the MPB populations have
low number of individuals and they usually attack stressed host trees for their subsequent
generation. As the populations develop to overcome the defences of vigorous and healthy
trees, the population transitions to incipient-epidemic phase. Epidemics happen when there
are large, contiguous areas of susceptible host trees and favourable weather conditions.
The post-epidemic phase is characterized by the decline in MPB populations, which could
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be a consequence of adverse weather or depletion of the host trees to maintain increasing
populations at the landscape level [164] [151].

At the beginning of the incipient-epidemic phase, spread is slow and infestation is limited
to single trees. As the population develop, infestation becomes patches with multiple trees,
the MPB population enters epidemic phase. The epidemic stage could last several years
with favourable weather conditions and sufficient susceptible host trees. There are three
conceptual models of the host switching process of pine beetles during an epidemic outbreak
[84]. The first model is termed as ‘Passive Model‘ and it suggests when a tree is infested
with pine beetles, it will provide signal for incoming beetles to switch host trees because of
the lack of resin exudation [189]. The second model is termed as ‘Threshold Model‘ because
it assumes that a threshold level of trans-verbenol is required to simulate landing and attack
on adjacent trees. When the pheromone concentration surrounding adjacent trees reaches
a sufficient threshold, incoming beetles are thought to land on and infest a nearby tree to
create a new host [84]. The third model is termed as the ‘Repelling Model‘, and it proposes
the switching of trans-verbenol and a ‘repelling pheromone‘. At the initial stage of the mass
attack, large quantities of trans-verbenol are secreted attracting large number of beetles.
However, at higher densities of infestation, the beetles emit a repelling pheromone that
deters further infestation and therefore infest neighbouring trees [78]. In the collapse stage
of an outbreak, i.e. the post-epidemic phase, the MPB population declines as the number
of susceptible trees decreases and the beetles switch back to weaker and smaller trees.

Trees attacked by MPB display various symptoms such as external-bole signs and crown
symptoms [164]. External-bole signs include pitch tubes on the trunk where beetle tunnelling
begins, boring dust in bark crevices, and patches of bark removal by woodpeckers in search
of larvae. Successfully attacked trees are usually killed and their crowns begin to fade from
green to greenish-yellow. Later, the crowns fade to a uniform yellow, red and finally brown.
First signs of fading usually occur in late spring of the year after attack. Most needles drop
from trees after two years of the attack, leaving a dead grey snag. The attacked trees are
also visible at the landscape level. During the onset of epidemics, infested trees appear in
small groups. Then the small groups of infested trees will grow and coalesce to form larger
patches. The colours of crowns are frequently used to assess the severity of epidemics over
large areas by aerial surveys.

2.4 Social, Ecological and Economic Impacts of Mountain
Pine Beetle Epidemics

As one of the most devastating forest insects in North America, MPB lead to various
social, ecological and economic costs far beyond impacts on forest industry. Due to climate
change, MPB have spread far outside its native range and the boreal forests are at risk to the
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(a) (b)

Figure 2.1: Aerial view of trees infested by mountain pine beetles. (a) A small group of tree
infestation in endemic stage. Photo is from [175]. (b) Large patches of infestation in the
epidemic stage. Photo is from [164].

infestation of MPB. MPB affect recreation, property values, landscape aesthetics, wildlife
habitat, biodiversity, watershed management and most importantly disrupt the long-term
forest management plans [68].

2.4.1 Social Impacts

MPB have significant negative impacts on healthy forests, which many communities
rely on for tourism, recreation, fishing and hunting. The dead trees, the discolouring of
trunks and crowns have led to aesthetic decline of forests, which affects the attitudes and
perceptions of tourism and outdoor recreation businesses [46]. Dead trees also increase
deadwood fuel, leading to potential wildfire, and consequently poor air quality and the loss
of infrastructure. Besides, due to the potential risk of falling, dead trees can present safety
hazard to forest users and nearby communities, therefore make the forests unsuitable for
tourism and recreational activities. Furthermore, the decrease in pine supply resulted from
MPB epidemics could lead to mill closure and loss of forestry jobs.

2.4.2 Ecological Impacts

MPB have ravaged extensive areas throughout the forests with potential impacts on
biochemical and biophysical processes for decades. One primary concern is the reduction in
forest productivity. Tree mortality and defoliation caused by MPB could decrease the plant
net carbon uptake, reduce carbon sink capacity of affected forests [111]. In addition, carbon
released by wildfires resulted from massive dead trees to the atmosphere, could aggravates
climate change, leading to further MPB epidemics. With MPB expanding its range into
new territories, the boreal forest is at risk of being infested, which could alter the forest
ecosystems and biodiversity [57], and reduce habitat for native wildlife.
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Another major concern is about the regeneration of lodgepole pine forests following the
MPB epidemics. The preference of MPB for large-diameter trees that produce most of the
seeds needed for regeneration, allows new seedling establishment following MPB epidemics
[112]. Due the release of resources, advance regeneration tend to form a new stand. However,
the regeneration composition and abundance may have long-term effects on silvicultural
treatments and ecological attributes such as hydrology and vegetation types [64].

2.4.3 Economic Impacts

There are several economic consequences of the extensive MPB infestation. The most
obvious economic impacts are on timber supplies and residential property values. People
who built homes in the forests face financial losses and safety threats when there is extensive
dead trees caused by MPB epidemics [150]. Especially for those who try to sell their homes,
few potential buyers are inclined to buy houses surrounded by dead trees, and thus the
home prices are likely to be depressed. Besides, the dead trees increase the vulnerability of
the homes to wildfires, which implies supplemental costs for homeowners.

MPB have direct impacts on the forest industry. Extensive infested forests have led to
the excess supply of low quality and low priced timber and in order to maintain the market
value of timber, the government has increased the annual allowable cut to salvage the dead
timber, which results in a long-term shortage in timber supplies since it takes decades for
the stand to regrow [53].

While MPB epidemics have increased the number of jobs needed to manage forests, they
have also increased the costs for forest management such as costs of remote sensing and
ground surveys for beetle monitoring and detection, the removal of hazard trees, and other
tactics and supplies to control beetle populations.

2.5 Mountain Pine Beetle Epidemics Management and Pre-
vention Plan

Generally, there are two types of strategies used to manage MPB epidemics. Direct
control approaches are used to reduce the MPB populations, and preventive management
approaches are used to increased stand vigour and reduce tree susceptibility to the MPB.
Direct control aims at reducing MPB populations after the observation of tree mortality
while preventive management is a proactive approach since it is done before the MPB
epidemics exacerbate. In practice, the two approaches are combined to form an efficient
forest management plan, and the adoption of direct control depends on an alignment of
factors such as beetle population levels and resources available for implementation [164].
Both approaches can save huge losses when the MPB population is at an endemic level, but
the management becomes more complicated when the population reaches epidemic level.
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2.5.1 Direct Control

Direct control approaches are expensive, and there have been debates about their ef-
fectiveness in reducing losses [68]. However, in endemic stages, when the infestations are
local, direct control approaches can be very effective to prohibit further development into
epidemics. Treatments need to be prioritized on economic criteria, thus direct control is
usually used to treat valuable stands. With timely detection and survey of the infested ar-
eas, once newly attacked trees are discovered, direct control such as sanitation cutting and
controlled burning [165] should be implemented. And to maintain the control effectiveness,
thorough treatment and follow-up surveillance [68] are needed. When MPB populations
reach epidemic levels, direct control approaches are no longer feasible.

2.5.2 Preventive Management

Preventive management is highly effective when the MPB population is at an endemic
level, a proactive thorough treatment of infested trees when beetle population is low can
prevent the infestation developing into an epidemic. Once populations increase to epidemic
level, the management of beetle populations becomes more complicated depending on real
situations.

2.5.2.1 Hazard Rating in Stands

The main objectives of forest management are to predict which pine stands are most
susceptible to MPB infestation, and how much loss will occur if the stands become infested.
Forest managers can use a hazard and risk rating system rate the susceptibility of stands to
MPB populations. Generally, hazard represents the possibility of an epidemic in a certain
time period and is defined as a function of stand conditions. Risk represents expected loss
and is determined by beetle populations [85].

There are several hazard rating systems that are developed based on influential factors
on beetle survival and dispersion such as climatic and stand conditions. Stand susceptibility
is determined by tree age, size, phloem thickness, and climatic conditions. Therefore, those
factors are considered when assessing the risk in lodgepole pine stands and it is often more
effective to incorporate data relative to beetle populations. The hazard rating system is the
first step to determine the response for next stage.

2.5.2.2 Silviculture Methods to Reduce Risks in Stands

Silviculture methods that reduce infestation risks by clearcutting small- to moderate-
sized blocks and creating a mosaic of age classes and tree species [85]. While there is no
direct evidence that mixed stands resist MPB infestation better than pure stands, the age
and size mosaics create a minimum area that is susceptible to the beetle, for example, having
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young trees or mixing other species in high risk areas, which makes the forest resilient to
MPB populations, and make the direct control action more feasible. This technique works
best in even-aged lodgepole pine tree forests and the implementation requires extensive
long-range planning.

Salvage and sanitation logging is favoured as salvage operations utilize timber and reduce
food source for beetles [85]. Salvage cutting should be planned according to the dynamics
of MPB, and for salvage cutting to be effective, timber should be harvested as quickly as
possible after tree death and before beetle dispersion to prevent timber deterioration and
protect adjacent trees.

In pure lodgepole pine stands, stocking control is an effective method to maintain tree
vigour and moderate sized stands. By maintaining a well-spaced tree area relative to desired
level of density, stocking control could favour trees that are not favourable to MPB, and
hence increase stand susceptibility.

2.5.2.3 Semiochemicals and Baiting

Semiochemicals are natural pheromones produced by beetles and kairomones produced
by hosts, which lead to mass attack in combination. Semiochemicals can be used to trap and
remove beetle populations from infested stands [85]. Spot baiting is developed to remove
small infestation patches and can be used in less than 30 trees. Forest managers choose two
or three susceptible trees as bait before beetle dispersion, and remove the infested and dead
trees after beetle flight. Pheromones and bait are effective short-term solutions to manage
MPB populations until resources are available to apply other silviculture techniques.

2.5.2.4 Replacement Fires

When there is no commercial value in stands, but there is essential social and ecological
function concerned, the fire management operations are more appropriate and ecologically
desirable because the dead trees can cause potential wildfire, build up of fuel and plant
succession. By utilizing prescribed fires, the forests are less susceptible to MPB since the
beetle populations and their hosts are eliminated [165]. But this method is not favourable
at landscape level especially when the forests are of great economic value.

2.5.2.5 Increase Sustainability and Forest Resiliency

To construct a more resilient and sustainable forest, forest managers need to develop
a more climate adapted portfolio of species to replace the pure, even-aged pine stands in
combination with proper silviculture techniques and detection methods [68]. The key to
develop a resilient and sustainable forest is to increase forest species compositions, promote
species diversity, manage water consumption [85], and use silviculture methods to prevent
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beetle disturbances. A healthy vigorous forests that are well adapted to the climate can
provide more economic values and ecologic benefits in the long run.

2.6 Detection and Monitoring of Mountain Pine Beetle on a
Global Scale

Forest management decisions are determined by the location, size and potential conse-
quences of beetle population [164]. And information regarding the location, size and conse-
quences of beetle population is collected by various survey techniques, such as a tree-by-tree
survey on the ground, aerial survey using airborne platforms or satellite-based sensors. The
choice of survey method depends on the objective for a particular forest management.
For example, investigation of beetle behavioural patterns and impacts require information
collected at the landscape level. Local severity of MPB infestations are detected through
systematic surveys conducted in a timely manner [164].

MPB detection is to identify and record locations of affected trees and potential locations
of trees that are being attacked. Field crews use detection methods to conduct infestation
assessments or to determine a mitigation plan. Mapping provides information regarding
spatially estimates of the number of trees affected, or of volume affected for a management
unit [164]. In order to control beetle populations, surveys need to locate the infestations
as soon as possible. Monitoring helps forest managers to detect trends in beetle population
dynamics and spatial pattern, and forecast potential risks resulted from infestation.

Aerial survey provide overall forest health status in broad-scale and gather information
about red attack for strategic planning, which is usually the primary concern of the govern-
ment. The forest health status help to identify areas that need further investigation, and the
red attacked trees provide clues to potential green attack locations to facilitate forest man-
agement. Aerial sketch mapping is normally adopted by forestry services to review timber
supply, manage resource and decide the annual allowable cut. The maps of stand infesta-
tions may also be used to form land use plans depending on management concerns. While
in preparation of sanitation cutting, forest managers need detailed information about red
attack locations and severity, and results from local area mapping of red attack are helpful
to target the current green attacks.

Different management objectives require different survey techniques that provide ap-
propriate level of details and extent. Aerial surveys are used to capture overall infestation
extent and intensity; ground surveys are used for local infestation investigations such as
confirmation of insect species, evaluation of dead timber and current green attacks; infesta-
tion trend assessment is used to determine the trend of affected forest by examining brood
status and counting the number of infested trees [164].
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2.6.1 Aerial Survey

Aerial surveys detect red attacked trees by observers in fixed wing or rotary aircraft,
and good visibility is required to undertake an aerial survey [164]. Up-to-date aerial photos
and custom drawn GIS maps help to orient the observers and improve the accuracy of
insect polygon placement. Aerial photos show clear details about logging and burns and
help observers to distinguish from infested stands, and custom drawn GIS maps highlight
fixed geographical features such as roads, water bodies and other landmarks.

All aerial surveys note the location and identification of insects and its infestation sever-
ity, but the notes may differ depending on the agency. Multiple maps are combined to form
digital infestations, but the information gathered from the air needs to be combined with
results obtained from ground surveys previous to and after sketch mapping since correct
identification of tree and insect species, and attack category are difficult to decide from the
air. Observer knowledge of the local forest and insects is also important to improve the
accuracy of the mapping. Aerial surveys results need to be combined with ground surveys
assessments to estimate the severity of beetle infestation since it is impossible to determine
the exact number of infested trees from the air [164]. Consequently, information collected by
aerial survey maps need to be cross-validated by aerial sketch mapping, global positioning
system (GPS) point data, air photo interpretation and other ground plot data [164].

(a) (b)

Figure 2.2: Aerial view of trees infested by mountain pine beetles. (a)A local scale tree
infestation with high resolution. Photo is from [139]. (b) A large scale tree infestation with
low resolution. Photo is from [43].

2.6.1.1 Sketch Mapping

The most general approach to detect red attacked trees is to sketch map from a fixed wing
aircraft, sketch maps can provide quick, quality information during epidemics. Observers
make notations on topographic maps at scales from 1:100000 to 1:250000 over millions of
hectares and check flights that repeat over an area are used to check consistency between
observers. With consistent mapping, cumulative mortality in a specific stand can be es-
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timated by using mapping of successive years of infestation taking the scales of mapping
into consideration [164]. Sketch mapping is used to characterize the disturbance patterns
over large areas, usually at the regional level, but there could be accuracy issues regarding
boundaries when incorporating with data represents small areas.

2.6.1.2 Global Positioning Systems

Once sketch maps have been obtained, infested landscapes undergo more detailed aerial
surveys conducted from a helicopter. Red trees are visually detected, their locations are
recorded with a GPS, and noted on topographic maps of 1:20 000 to 1:50 000 scale. The
helicopter pilot hovers above the centre of a group of attacked trees, and another person
will capture the GPS waypoint for the site. An estimate of the number of infested trees
at that location and the type of insect is also noted. The purpose of the GPS survey is to
accurately locate the beetle impacts to aid in rendering local or regional strategic decisions.

The likelihood of observers logging a non-existent red attack location is extremely low.
However, not detecting red attack areas on the landscape depends on the survey effort
covering an area. As mentioned above, knowledge of the population size is also required
support information for helicopter GPS surveys. The density of the affected trees at a
given point is also an issue. For a given survey point the trees identified may be dispersed
or clustered, yet this is not captured in the survey. The use of GPS carries the errors
associated with that technology and additional positional errors that are a function of the
viewing platform.

2.6.1.3 Air Photo Interpretation

Aerial photography is the most common imagery used in a forest inventory to charac-
terize forests and meet management objectives. Surveys that utilize aerial photography can
be grouped into classes based upon the type of information collected: damage detection,
damage location, damage amount and estimation of the relative size of the insect population
and the capacity for future damage.

Aerial photography is not as well suited to initial damage detection as visual aerial survey
methods, such as sketch mapping; information regarding insect populations and potential for
causing future damage is best collected through field survey. However, aerial photography
can address the information need for generating mortality estimates and precise locating of
infested areas [164]. The interpreter’s experience may affect the interpretation results.

2.6.2 Ground Survey

Ground surveys assess the population size, or the degree of forest infestation, within a
local area. Sample plots are generally less than 1 ha. Population estimates indicate whether
a local beetle population is increasing, static, or decreasing. Infestation estimates indicate
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the impact of a particular beetle population. Both types of techniques are used to drive the
selection of the most appropriate management response. Population assessments may be
based upon field surveys or aerial surveys. Field surveys enable a brood assessment to be
undertaken. Brood assessments are carried out in the late summer to fall and in the spring.
Beginning in mid-July, population surveys with sketch mapping may be undertaken. These
aerial surveys influence the placement of subsequent ground surveys.

Walkthroughs are used largely as an initial ground reconnaissance survey for determining
the characteristics of attacked stands and to contribute toward determining information
needs for more intensive surveys. Probes are systematic strip surveys that collect more
detailed information than the walkthrough survey. Probe information is compiled on a
polygon basis and includes attributes such as: location on map; size of beetles under bark;
relative brood success; percentage of attack category; rate of spread; and stems per hectare.
While useful, these survey techniques do not provide sufficient information for assessment of
volume or area infested. Prism cruises, on the other hand, are used for detection and impact
assessment, where the volume affected can be estimated on a stand basis. Line transects are
also used for detection and impact assessment, and are more efficient than prism cruising.
With these data, affected volume and area can be estimated from the survey, and can
potentially be statistically extrapolated to represent larger areas. An additional means to
characterize the population trend of a mountain pine beetle infestation is by calculating a
green-to-red ratio. A green-to-red ratio is the estimated number of currently attacked trees
compared to the number of red attacked trees. This ratio gives a rough indication of the
population growth [164].

2.6.3 Digital Remote Sensing

Digital remote sensing uses sensors (mounted on either airborne or satellite platforms)
that collect digital imagery of various spatial and spectral resolutions. One advantage to
using digital data in mapping red attack stage trees is that they portray continuous data
across the landscape. In this way, all areas in the image are examined for possible red attack,
independent of accessibility or position in a watershed. Another advantage of mapping from
digital sensing is the reduction or elimination of interpreter bias afforded by automated
classification algorithms. The products have greater consistency and reliability between dif-
ferent areas or dates by avoiding visual interpretation, which increase reliability of results
from the high positional accuracy of image data compared to aerial survey data. The results
of analysis of remotely sensed data are typically subjected to accuracy assessment proto-
cols. This is a unique element of remote sensing analyses in contrast to the more heuristic
assessments of the aerial survey products. The accuracy of an attribute, such as red attack,
and infested areas that are missed, may be characterized in relation to an independent
validation dataset to improve characterization accuracy.
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The key to employing digital data for mapping mountain pine beetle impacts is to match
the information needs of managers with the image information content and resolution char-
acteristics. For example, under endemic conditions, the information needs are for detection
of single and small clusters of red attack trees. To produce this information, the imagery
must have sufficiently high spatial and spectral resolution. In contrast, under epidemic con-
ditions, the information needs are for quantifying the impact of large groups of red attack
trees over large areas. Therefore, less expensive imagery with medium spatial resolution and
moderate spectral resolution would be sufficient.

2.6.3.1 Airborne Platforms

Digital images may be collected from airborne platforms over areas identified as infested
during aerial surveys. The key differences between airborne images and aerial or ground
surveys are that the spectral characteristics of the entire forest are captured and the data
can be re-examined if uncertainties occur. Airborne imagery includes traditional air photos
that are scanned into a digital format, digital camera images, videography, multispectral
scanners, and imaging spectrometers. Airborne images may be used to map the location
of small clusters or scattered red trees. The results are used to direct ground surveys or
to dispatch ground crews for sanitation treatment. The airborne digital imagery may be
subjected to enhancements that highlight the locations of red attacked trees.

Aerial videography provides some operational advantages over air photos including:
lower cost, no delay for photographic development, option for including audio commen-
tary, and high light sensitivity. Additionally, camera settings can be adjusted during data
collection in response to viewing the imagery as it is acquired. Similar to most airborne
sensors, the disadvantages are primarily image extent and resolution characteristics. Oth-
erwise, similar planning and processing options are available as they are with the digital
camera systems described above.

2.6.3.2 Satellite Platforms

Satellite images may be collected to map infested areas over a range of scales. Satellite
imagery is similar to airborne imagery in that the data is continuous across the extent of the
sampled area. In general, the comparatively high orbits of satellite systems result in more
favourable viewing geometry when compared to those of airborne systems. Airborne systems
often generate data that requires sophisticated processing to compensate for aircraft motion,
view angles, and variable illumination conditions over the acquisition period. Satellite images
are available over a range of spatial, spectral, and temporal scales. Therefore, they can be
used to address a variety of strategic and tactical planning decisions. The large image extents
of satellite imagery enable economies of scale.
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2.6.3.3 Unmanned Aerial Vehicles

Unmanned aerial vehicle (UAV), or simply drone, has emerged over the past few decades.
Flexible, low-cost, and high-resolution remote sensing systems that use drones as platforms
are important to fill data gaps and supplement the capabilities of aircraft and satellite
remote sensing systems. The advantages of drone remote sensing include low material and
operational costs, flexible control of spatial and temporal resolution, high-intensity data
collection, and the absence of risk to crews. The current forestry applications of drone
remote sensing are still at an experimental stage, but they are expected to expand rapidly.
To better guide the development of drone remote sensing for sustainable forestry, it is
important to systematically and continuously conduct comparative studies to determine the
appropriate drone remote sensing technologies for various forest conditions and/or forestry
applications [181].

2.7 Existing Models of Mountain Pine Beetle

Ecological entities are usually so complex that it is impossible to choose more than a
fraction of all factors to study, and the success of the models depend on whether those factors
included are really essential to explanation. The factors chosen should be able to improve
understanding of the relations under study and provide leads for subsequent investigations.
The study of only a few factors for a short period of time can lead to misinterpretations.
Conceptual or theoretical models give clues to modes of behavioural interactions and may
point toward important population characteristics. Empirical models give an accounting of
these facets. In either case, if the model is to be used as a measurement tool, the nature
or mode of operation of the ecological unit must be thoroughly understood to correctly
interpret these components in terms of population dynamics.

Both conceptual and predictive models are found in MPB literature. Models chosen to
be discussed in this section have to do with interactions of trees and beetle populations and
are presented in an order that is consistent with the life cycle of the beetle.

2.7.1 Beetle Life Table Models

The life table is one of the oldest, most useful and best known expressions in the field
of population studies. A life table is a concise summary of certain vital statistics of a
population. The life table approach was used to determine the principal factors affecting
natality and mortality of MPB. The life tables were based on intensive population sampling
from annually established plots within both high and low level populations of the beetle.
These data have been supplemented with detailed studies in both field and laboratory. Life
tables can be used to demonstrate population trend.
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2.7.2 Beetle Life Stage Models

The beetle life stage models are used to describe smoothed beetle density trends over
years by life stage and size of infested tree using data obtained by sampling for life tables.
The data include survival of various beetle stages with respect to lodgepole pine size, and
plot brood densities for each life stage over the infested tree and observed year of the
infestation. The model is derived by fitting through the plots using least deviations approach.

2.7.3 Beetle Dispersion and Aggregation Models

The beetle dispersion and aggregation models are developed based on several assump-
tions: 1. Pioneer beetles attack randomly over the available trees; 2. There is a threshold of
beetle population to induce aggregation on a tree; 3. Any tree that beetle aggregate on will
be mass attacked and killed. Usually, the surface area of a tree is measured in equivalent
units. Then the pioneer beetle attack density per unit could be estimated using the Poisson
distribution function, and the probability of having one or more pioneer beetles attack could
be calculated. The threshold of aggregation was estimated based on the number of square
units of the tree that must be attacked by one or more pioneer beetles to induce aggregation.
Thus, the probability of the tree becoming an aggregator could be calculated [94] [163] [68].

The mortality prediction model assumed that the threshold of aggregation is uniform
across both diameter and years within an epidemic. Thus, surface killed was estimated for
the stand. However, for each year, the predicted surface area mortality was forced to be the
same as that observed by adjusting the pioneer beetle attack density. Models show that in
the early part of the epidemic the pioneer density is low and the comparative probability of
large tree mortality versus small tree mortality is large. As the epidemic progresses, pioneer
density rises and smaller trees are attacked because of this and the depletion of larger trees.
Toward the end of the epidemic, pioneer beetle density decreases because emergence from
infested trees declines and, as a result, the epidemic collapses. However, data taken from
many epidemics show that gallery starts (the positive results of attack densities) are greater
in the early stages of an epidemic, decreasing in the midyears, and increasing again in the
latter years.

Other efforts have developed a mathematical model to both describe beetle aggregation
and predict the relation of tree susceptibility and switching to changes in beetle density. The
term “switching” is defined as the phenomenon of incoming beetles attacking an adjacent
recipient tree after the first tree had been attacked by the pioneering beetles. This recipient
tree is quickly mass attacked and killed more readily than the focus tree. When switching
occurs, the beetles usually attack trees with a diameter greater than the average in the
stand. This then enhances beetle survival because larger trees usually have thick phloem.
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2.7.4 Stand-Beetle Models

Interactions of the beetle with the infested trees, and tree losses to the beetles within
stands, follow a predictable pattern. A large proportion of large-diameter trees provides the
threshold food supply necessary for an epidemic because of the thick phloem found in such
trees. The epidemic potential exists primarily under optimal temperatures for beetle devel-
opment. Losses of lodgepole pine over the main epidemic years are proportionately much
greater in the large diameter classes. Most tree losses occurred during a 6-year period. Cu-
mulative losses show that most large diameter trees were killed during the infestation. Losses
shown are typical for stands of trees of similar size and distribution at similar elevations
and latitudes.

2.7.5 Rate of Tree Loss Model

The rate of loss model refines existing risk-rating systems and provides a method for
stratifying lodgepole pine stands and predicting tree and volume loss for habitat types.
The model is provided to assist land managers in projecting tree mortality over time, and
can be linked to the model for use in forest planning. Most models for epidemic processes
have dealt with the continuous-infection model for treating epidemic processes in a fully
stochastic manner, and most of these processes dealt with diseases. Continuous infection
assumes that an individual host tree can be infectious from the moment it receives the
infection (i.e. the beetle) until it dies, recovers, or is removed. This clearly is not the case
with the MPB. The beetles have a discrete generation and discrete stages of growth, and
its epidemic behaviour does not fit the continuous-infection assumptions.

There is an alternative to the continuous-infection assumption, and the model was pos-
tulated that the period of infectiousness is comparatively short. This alternative assumption
best fits the epidemic behaviour of the mountain pine beetle and amount of tree loss. The
period of attacking a tree is fairly short, a beetle epidemic can begin with one or several
simultaneously infested trees within a stand. The infestation then will spread in a series of
stages by each new generation of adult beetles attacking living green trees. The probability
of a tree becoming infested at any generation depends upon the numbers of infested trees
and susceptible green trees during the preceding generation of beetles.
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Chapter 3

Multiscale Modelling Framework

In this chapter, we describe the construction of a multiscale model based on an extension
of the concept of cellular automata (CA) that uses probabilistic rules to govern dispersion
process while a microscale physical process drives the evolution. The complex interrelated
processes at microscale and macroscale are connected via a hierarchical multiscale approach,
and structural mechanisms are constructed to drive phenomena at the macroscale using
collective behaviour at the microscale. In this coupled multiscale approach, computations
at different scales are linked, in which the simulation schemes at the macroscale employ the
detailed information obtained from microscale method and macroscale information initiates
the microscale model. Motivated by an application to the Mountain Pine Beetle infestation,
we focus on applications to dispersion processes in ecology and epidemiology, but the model
framework is of general interest and can be applied in other fields, such as void dynamics in
irradiated materials. We use a general birth-death process to represent individual behaviours
at the microscale, and leverage the stochastic CA model to address the dispersion patterns
at the macroscale. The model easily accommodates other microscale models.

3.1 Introduction

Dispersion, which is the movement of individual objects from one area to another, is a
fundamental process that typically operates at multiple temporal and spatial scales. The def-
inition of dispersion may vary within different contexts, as well as the scale considered. The
study of dispersion is ubiquitous in numerous fields such as biology, microbiology, ecology,
mathematics, physics, epidemiology, engineering and geography. For example, dispersion
has profound implications for both the reproduction of individuals and the structure and
dynamics of populations [142]. Modelling dispersion is a challenging task because the mech-
anism of dispersion is often unknown or difficult to describe in nature and the evolution of
dispersion patterns for large-scale populations emerge from local interactions of individual
objects.
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In population dynamics, a process may be viewed as a three-stage system: emigration,
transfer and immigration [130, 155]. Emigration is the stage when individuals leave their
source area. The transfer stage refers to exploratory phase where individuals explore and
travel through their surrounding areas. This stage can involve a high risk of mortality
associated with natural forces. The immigration stage refers to entering a new area or
joining a neighbouring group. In this case, there is a risk of mortality associated with
individuals adapting to the new environment and establishment of population in the new
areas.

A fundamental goal in the study of dispersion is to describe the patterns that it gen-
erates. Those patterns describe how individuals are distributed in space, and how they
interact with each other in the population and their surrounding environment over time.
For example, researchers study and measure the dispersion patterns in a certain species to
make general spatial recommendations for conservation [183]. In nature, individuals tend to
be influenced by the presence of their surrounding neighbours during dispersion, for exam-
ple, motile animals tend to aggregate to create a favourable environment for reproduction
and survival purposes. Therefore, population density, which is the number of individuals
per unit area or volume, driven by individual motions such as aggregation and repulsion,
plays a crucial role in determining the evolution of dispersion patterns. Dispersion processes
often display multiscale characteristics, in which population is generated on a fast temporal
and short spatial scale while dispersion takes place over a larger scale at a slower rate. For
this reason, we aim to use a multiscale approach to explore the complex population dy-
namics generated from dispersion process at the community level while explicitly modelling
individual behaviour.

There are two scales in our modelling framework, which we call microscale and macroscale.
At the macroscale, dispersion is considered as a dynamic force for the movements of spa-
tially distributed communities described in terms of population density. It is modelled by
a stochastic process that takes place on a grid of polygons. The dynamics are covered by
probabilistic rules for mortality, reproduction, immigration related to distance, and chance
of successful colonization. The parameters in the stochastic process model simple to adjust
and combinations of assumptions can be handled. Because of the inherent uncertainty in
dispersion processes, we use a model that includes stochasticity in the dynamics. At the
microscale, we use a model that produces detailed information about individuals that has
an impact on dispersion patterns. For our applications, we choose the birth-death process
to capture the individual behaviours locally such as reproduction, mortality, or competi-
tion for resources. The microscale process describes the input properties of the macroscale
subjects. The model easily accommodates other microscale models.

The model characterizes the three stages of dispersion process that account for local
individual behaviours and spatial heterogeneity. The model is built upon four fundamental
assumptions about the dispersion process: 1. We assume that the model focuses on simulat-
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ing the dispersion process that are driven by several mechanisms including active dispersion,
an individual controls its own locomotion and passive dispersion, and the individual move-
ment depends on external forces such as gravity and wind [130]. 2. We assume that the
model operates within a reasonable expanse of magnitude. Physical scale is defined by com-
putational capacity. Currently, computer simulations are too computational intensive if the
model is performed over a large landscape area, for example, thousands of kilometres. 3. We
assume that the geographic features of the grid are static as the model simulates evolution
of patterns over time. 4. The model applies to the situation in which there are enough indi-
viduals to produce a viable density. We use a sequential approach to connect the two scales
such that the microscale can provide subject inputs for the macroscale and the macroscale
in turn feed back into the individual behaviours at the microscale.

3.2 Multiscale Strategy for Bridging Scales

The ultimate goal of multiscale modelling is to simulate the population dispersion pat-
terns at larger scales by leveraging information obtained from smaller scales. Multiscale
modelling takes advantage of combining models specialized to different length and time
scales to obtain a model for describing the population behaviours over large regions. From
a computational standpoint, combining models at different scales is a demanding task, and
this challenge is further compounded by finding a well-founded strategy to bridge the scales
to balance accuracy and efficiency.

We use a sequential multiscale approach. In sequential approaches, information is ob-
tained at the microscale, and the results summarizing microscale behaviours are passed to
macroscale models by an “upscaling” process. The macroscale model is evaluated and the
results are processed to provide to the microscale model. In this approach, the models at
each scale have to accurately produce the information to be passed to the other scale.

Both the micro and macroscale models are stochastic. We simulate the microscale model
for multiple realizations in each cell and compute the expected value of population. We also
use the expected value of limiting distribution of microscale model when the macroscale time
step is sufficiently large. For example, in the application to MPB infestation, we consider
a population model at the microscale and a population density model at the macroscale.
When modelling the dispersion patterns generated by MPB epidemics, each cell represents
a small patch of trees with similar levels of infestation. We repeat the birth-death process
with the same parameter value settings for multiple realizations and compute the average
number of individuals obtained from those realizations, which is used as expected population
size in each cell, i.e., the expected number of beetles in each patch of trees. To use a birth-
death process, we determine the carrying capacity of each cell, i.e., the maximum number of
beetles that could survive in each patch of trees, from relevant literature or using the field
experiment data. We convert the population size obtained from microscale model into a cell
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density by using the ratio between population size to the carrying capacity, which is used as
the initial cell configuration for macroscale model. After simulating the dispersion process
at the macroscale, we acquire an updated cell density and convert it back to population size
in each cell. The updated population size is used as the new starting value for microscale
models to achieve the cell density for the next time step at macroscale. We alternate the
microscale and macroscale model for a sufficient number of time steps to investigate the
different patterns formed at the macroscale.

Numerical experiments are used to decide the appropriate number of microscale simu-
lations between two time steps at the macroscale. According to the multiscale strategy to
link the two scales, we assume the dispersion process at the macroscale do not interact with
population fluctuation at the microscale. Insufficient simulations at the microscale between
two macroscale time steps can cause indistinguishable density updates at the macro scale,
while excessive simulations at the microscale between two macroscale time steps can lead to
significant population variation at the microscale and hence inadequate cell density update
at the macroscale. Therefore, we need to determine the appropriate microscale time steps
between two neighbouring macroscale time steps to obtain reasonable patterns. We provide
more details below.

3.3 Modelling Schemes at Different Scales

We employ our macroscale dispersion model on a grid structure. The cell states are
represented by population density, and the state transitions depend on state of single cells
and other cells in a local region where those cells interact with each other and a set of rules.
We illustrate properties of the model with simple examples in this section. The macroscale
model can accommodate any population model at the microscale. We choose the birth-death
process to describe individual behaviours at the microscale because it is a widely used model
for population dynamics with a banded maximum population.

3.3.1 Macroscale Process and Model

We assume the model for the microscale system provides a detailed picture of the dy-
namic evolution of individual organisms. On the other hand, the macroscale model aims
to characterize the interactions between different regions that include a collection of com-
munities. It is challenging and expensive to coordinate interactions between the microscale
behaviours in macroscale models.

At the macroscale, population behaviours such as colonization, migration and formation,
emerge from the interactions of individuals in combination with local physical properties,
which typically display complex spatial patterns, and therefore requires a model that can
generate complex and realistic configurations that match the spatial patterns.
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We develop an analogue to a CA model called a stochastic cellular automaton (SCA).
SCA are rule-based discrete dynamical systems that are comprised of a grid cells. Each cell
has a state from a finite set, and the cells synchronously change their state according to
a global update rule that determines the new state based on the old states of the cell and
its immediate neighbours. All cells use the same update rule, and the update is repeated
over and over at discrete time steps. An SCA approach is suitable for modelling disper-
sion process and can provide critical insights to investigate the dynamic behaviours of the
dispersive system. The SCA is a variation of a Markov process, with a transition matrix
that depends on the state properties at each time step, rendering the transition probability
matrix nonautonomous. The properties depend on the state, so it is also a nonlinear pro-
cess. The model uses relatively few parameters but exhibits many kinds of behaviours, from
simple predictable behaviours to complex patterns. The nonlinear nature presents serious
challenges for theoretical analysis.

CA have been studied extensively since they were first invented in the late 1940s by John
von Neumann to build self-duplicating machines given proper instructions [83]. CA were
demonstrated to model the complex patterns of natural phenomena with simple compo-
nents [193] and later the general theoretical foundations for CA were constructed [194], CA
were defined as discrete dynamic systems such that global changes in space and time could
be generated by local interactions among simple components. CA are famous for their con-
ceptual advances and computational power. Conceptual advances have led to the flexibility
of CA such that CA can easily adapt to different real-world situations with special physical
properties when the update rule is chosen properly, while computational power has made it
possible for CA to perform complicated arbitrary computation tasks. The best-known ex-
ample is John Conway’s Game-of-Life, which resembles real-life processes given its analogies
with alterations of a society of living organisms [82]. CA can be mainly classified into four
categories based on their behaviours: CA that generate homogeneous stable patterns, CA
that evolve into oscillating structures, CA that develop chaotic fashion over long times, and
CA display complex patterns. The advantage of computational universality, homogeneity
and massive parallelism makes CA very popular in biological and epidemiological field, such
as interspecific competition for space [173], forest fire spreading [108], epidemic propaga-
tion [174], growth and inhibition processes [177], debris flows [60], and spatial dynamics of
corals [120].

The SCA is well suited for modelling dispersion processes. We modify the original struc-
ture of CA in order to obtain a model that allows for more complexity. The motivation for
developing such a model is that various external forces affect dispersion in a manner that
can be described stochastically. The result is a simple, flexible, intuitive and transparent
modelling framework to capture the complex patterns resulted from dispersion processes
on the plane. The model can be integrated with other models and provides a linking bridge
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between different scales to generate similar geometries that are characteristic of real-world
phenomena. The model specifications are as follows:

(1) Domain: We use hexagonal cells that are less affected by geometric sources of bias
to obtain a homogeneous pattern for evolution of dispersion.

(2) Cell states: Unlike conventional CA cell states that take binary values 1/0 or
live/death, we let cell states take quantitative values that represent population density,
therefore we have a continuum of values in [0, 1] in each cell.

(3) Non-homogeneous rules: Conventional CA have homogeneous rules for dynamics
across the domain. In the SCA, we allow the attributes of cells to vary across the domain.
We present the design and implementation of this idea in model simulation section.

(4) Transition rules: We consider a variety of factors that influence cell state tran-
sitions. We design the transition rules by introducing stochastic components to model the
uncertainties associated with ecological processes and including the weights and difference
between population density of neighbouring cells to reflect dispersion theories.

(5) Multiscale model: we use a microscale population model to drive the macroscale
model.

The model can be formally defined as follows.

3.3.1.1 Domain

We describe dispersion process on a tessellation of the domain using hexagonal cells.
This yields some practical benefits: 1. The shape of a hexagonal grid gives advantages
for representing curves of geographic features, such as rivers and roads more naturally than
squares; 2. The distance between centroids is the same in all six directions with hexagons; 3.
Finding neighbours of each cell is more straightforward with a hexagonal grid; 4. Hexagons
have a competitive edge in determining the transition rules in cellular automata as all
neighbouring hexagons have the same spatial relationship with the central hexagon; 5. A
hexagonal grid suffers less distortion due to the curvature of the earth than square grids;
6. Compared to square grids that restrict movement to four directions, hexagonal grids let
movement occur in six directions.

The model depends on identifying neighbourhoods of cells. We choose the Moore neigh-
bourhood which means that each cell is surrounded by six neighbouring cells. Since we build
the SCA model on a 2-dimensional space, we let Z2 denote the two-dimensional lattice field
which comprises a disjoint collection of m×n uniformly sized cells organized in m rows and
n columns.
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Figure 3.1: An example of a Moore neighbourhood. The central dark shaded cell is an
affected cell, the six light shaded cells are its neighbouring cells, the population dispersion
can occur from the central cell to the neighbouring cells.

3.3.1.2 Cell States

Cell states are represented by population densities that take values in an interval Π =
[0, 1]. The configuration space is Q = ΠZ2 , then at any given time, the automaton configu-
ration that specifies the states of cells is a mapping

c : Z2 → ΠZ2

3.3.1.3 Interaction Neighbourhood

In the model, a cell only potentially interacts with its neighbours in Moore neighbour-
hood. We group all cells that potentially interact in one “interaction neighbourhood”, which
comprises a group of affected cells and their neighbouring cells. An interaction neighbour-
hood contains directly adjacent affected cells and potentially affected cells in regions that
represent the spatial distance that the phenomena can spread in one time step during the
dispersion process. The modelling framework is built upon observations of population move-
ments, such as MPB infestations in lodgepole pines and radiation damage in nuclear fuel
rods, which prefers short-distance dispersion because there is often a high cost associated
with the dispersion process on longer scales [155]. Therefore, we consider directly adjacent
neighbours when setting up the interaction neighbourhood in the model, with each affected
cell having six neighbours in a Moore neighbourhood with the specific affected cell in the
centre. A group of affected cells that are not separated by more than two nonaffected (zero
density) cells along with all immediate neighbours formulate an interaction neighbourhood.
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Figure 3.2: An example of an interaction neighbourhood. The dark shaded cells (affected
cells) and their adjacent light shaded cells form an interaction neighbourhood in a portion
of a 2D hexagonal cellular space, the population dispersion can only occur within each
interaction neighbourhood.

3.3.1.4 Transition Rule

Transition rules specify how cells change their states over time. The SCA is simulated at
discrete time steps, one step comprises an application of the rule to all cells in the grid. The
transition rule is only applied once after all the cell states have been updated synchronously,
the next state of each cell depends on current state of itself and its neighbouring cells
according to the local transition rule F . For example, depending on whether the column j

is even or odd, the state of the cell (i, j) ∈ Z2 at t + 1 is:
If j is an even positive integer, then we have

π
(t+1)
ij = F

(
π

(t)
ij , π

(t)
i−1,j , π

(t)
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If j is an odd positive integer, then we have
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We design the transition rules in a way such that they can provide flexibility for adapt-
ing to different situations. For example, the transition rules can simulate both positive
density-dependent dispersion and negative density-dependent dispersion. In this modelling
framework, we focus on simulating positive density-dependent dispersion situations in which
increased population density drives individual movements. The transition rules are simple
while producing a model that can represent complex relationships.

In real life, dispersion is nondirectional. In this section, we design the transition rule
to simulate the nondirectional movement such that individuals can move in any direction
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Figure 3.3: The formal indexing for two configurations of the hexagonal cell neighbourhoods.
(a) The indexing for adjacent cells when the column index j is odd. (b) The indexing for
adjacent cells when the column index j is even.

without a specific destination in mind. However, we also recognize that there are influential
factors, such as winds and geography for MPB, that can affect the dispersion direction. We
illustrate in the simulation chapter reference. In the MPB application, the transition rule
mainly explains the exploratory and immigrating stage of dispersion where individuals seek
for new habitats and establish populations in the new habitats.

We now detail the model.

a. Inclusion probability

To appropriately address the random movement in dispersion, we use a probabilistic
rule to characterize one stochastic feature of the model: at each time step, the outcome of
local cell transitions is specified by a probability of updating to a new state. Specifically,
the probabilistic rule is the probability of including a cell (i, j) in the interaction process
at a given time step t. This probability is called the inclusion probability, denoted by p

(t)
I,ij ,

determined as

p
(t)
I,ij =


(
w

(t)
ij

)α
(t)
ij

1 +
(
w

(t)
ij

)α
(t)
ij

d
(t)
ij


β

(t)
ij

(3.3.3)

where w
(t)
ij is defined as the inclusion weight for cells and d

(t)
ij is the maximum of relative

density difference for neighbouring cells.
Inclusion weight w

(t)
ij . The model for dispersion is governed by population density be-

tween different areas. As a consequence, we assume that affected cells and non-affected
cells that are surrounded by more affected cells are more likely to be included in the cell
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interactions within each interaction neighbourhood. We define a dynamic inclusion weight
parameter, denoted by w

(t)
ij , to determine the likelihood of cell interaction inclusion for

each cell (i, j) at time t. For non-affected cells, the inclusion weight w
(t)
ij is calculated as

the number of adjacent affected neighbours for non-affected cells at each time step. For
affected cells, as they are more likely to be involved in dispersion process, and individuals
tend to leave high density areas and join their surrounding low density groups, so we add
an extra weight w∗ to the inclusion weight of affected cells to distinguish the likelihood of
affected cells involved in dispersion processes. The inclusion weight w

(t)
ij for affected cells is

the number of its adjacent affected neighbours plus the extra weight w∗. In our model, we
set w∗ = 1.
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Figure 3.4: An example of inclusion weight w
(t)
ij for each cell in an interaction neighbourhood.

The number in each cell represents its inclusion weight used in the cell state transition
process.(a) The cell states and their inclusion weights for an interaction neighbourhood
when there are three infested cells at a specific time step t∗. (b) The updated interaction
neighbourhood with new cell states and their corresponding inclusion weights at the next
time step t∗ + 1 when we assume there is one more cell that becomes infested during the
transition process from time t∗ to time t∗ + 1.

Maximum of relative density difference for neighbouring cells d
(t)
ij . We assume that the

relative density difference has an impact on the population density dispersion between
neighbouring cells and dispersion is less likely to happen between neighbouring cells when
their densities are close to each other. We use a parameter d

(t)
ij equate to the maximum value

of the density difference between the cell (i, j) and its six neighbouring cells to describe the
influence of cell density difference on population density dispersion.

The parameters α
(t)
ij and β

(t)
ij are used to adjust the inclusion probability under special

considerations. For example, they are used to emphasize the difference in inclusion proba-
bility between high density cells and low density cells as the exact cell selection mechanism
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is unknown. The parameters can be varied for each cell (i, j) at each time step t. α
(t)
ij is an

integer, it can be varied to change the impact of inclusion weights on inclusion probabilities.
At each time step, for each cell (i, j), we associate a Bernoulli random variable B

(t)
I,ij

with inclusion probability p
(t)
I,ij for taking the value of 1 and 1 − p

(t)
I,ij for taking the value of

0. We only include cells that have B
(t)
I,ij of value 1 when sampled.

The inclusion probabilities tend to increase as α
(t)
ij increases, so that a cell with a specific

weight is more likely to be included in the dispersion process when α
(t)
ij is large. β

(t)
ij can

also be used to adjust the inclusion probability, we set β
(t)
ij ∈ (0, 1) to increase the inclusion

probability for including a specific cell in the dispersion process, for example, regions where
there are favourable factors for population dispersion. On the other hand, we set β

(t)
ij ≥ 1 to

decrease the inclusion probability for regions where the population dispersion is less likely
to happen.
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Figure 3.5: Inclusion probabilities for different α and β values. The inclusion weight can
vary from 1 to 7 in the hexagonal cell neighbourhood. We set the maximum of relative
density difference d = 0.5. The first row displays the inclusion probabilities for different α
values when β is fixed. (a) β = 0.5. (b) β = 1. (c) β = 2. The second row displays the
inclusion probabilities for different β values when α is fixed. (d) α = 1. (e) α = 2. (f) α = 3.

We see in Figure 3.5, the inclusion probability increases as α increases and decreases
as β increases. However, when the inclusion weight w and the relative density different
d are fixed, α and β values do not have a radical influence on the inclusion probabilities
unless when they take extreme values. In practical situations, the parameter values depend
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on the physical properties of different interaction neighbourhoods. Therefore, α
(t)
ij and β

(t)
ij

values may be distinct for each cell at different time steps in the interaction neighbourhood.
However, in the simplest form of the model, we set α

(t)
ij and β

(t)
ij both to be a constant for

each cell at each time step t. In Chapter 5, we present detailed study of the impact of the
inclusion probability on model behaviour by varying α and β values.

b. Dispersion process

We determine a model for population dispersion assuming that populations tend to
disperse into areas with a low population density. At each step of cell interaction in a
given neighbourhood, we divide the included cells into two groups, the contributing cells
and the non-contributing cells, where the contributing cell densities are higher than the
mean density of all the included cells in the same interaction neighbourhood. We denote
the group of contributing cells by {π

(t)
ih

}H(t)
h=1 , where π

(t)
ih

≥ π̄(t), π̄(t) is the average density of
the inclusive cells in each interaction neighbourhood and H(t) is the number of contributing
cells at time step t. The rest of the cells in the interaction neighbourhood are considered to
be non-contributing cells {π

(t)
ik

}K(t)
k=1 , where K(t) represents the number of non-contributing

cells at time t. Then the total amount of population to be redistributed is,

π̃(t) =
H(t)∑
h=1

γ1(π(t)
ih

− π̄(t))

where the parameter γ1 determines the percentage of population to be redistributed.
To redistribute the population among the cells within the same interaction neighbour-

hood, considering a balance between the loss in the contributing cells and the gain in others,
we allow the contributing cells to lose a proportion of population that is above the average
of the interaction neighbourhood, thus the temporary state for contributing cells becomes,

π
(t)
ih

= π
(t)
ih

− γ1(π(t)
ih

− π̄(t)), h = 1, 2, . . . , H(t).

We assume the population survival rate is γ2, and thus there is a background mortality
rate 1 − γ2 that defines the population loss during the dispersion process. Assuming that
the population uniformly spread within the same interaction neighbourhood, the state for
contributing cells after receiving population is,

π
(t+1)
ih

= π
(t)
ih

− γ1(π(t)
ih

− π̄(t)) + 1
H(t) + K(t) γ2π̃(t), h = 1, 2, . . . , H(t).

The state for non-contributing cells becomes,

π
(t+1)
ik

= π
(t)
ik

+ 1
H(t) + K(t) γ2π̃(t), k = 1, 2, . . . , K(t).

The dispersion process is performed for all interaction neighbourhoods simultaneously.
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c. Survival probability

During the emigrating stage of dispersion, when individuals emigrate to new habitats,
there is a risk of mortality associated with population establishment in the area [155]. We
model this with a probabilistic rule as the probability of successful population dispersion
to low density cells. The setup of survival probability is inspired by the field experiments
conducted to investigate the dispersion of MPB described in [165]. The survival probability
is mainly comprised of two parts. For one part, we use a constant ϕ to describe the natural
conditions and geographical properties of the non-contributing cells in a particular region,
e.g. wind, light and temperature. For the other part, we choose the continuous arctan
function with two parameters ρ and ξ to describe the density-related effect during population
establishment in the new area. The survival probability is determined as,

p
(t)
S,ij = ϕ

(t)
ij + ρ

(t)
ij arctan(ξ(t)

ij π
(t)
ij ), (3.3.4)

where the shape parameters ϕ
(t)
ij , ρ

(t)
ij and ξ

(t)
ij are used to adjust the survival probability for

each non-contributing cell at each time step t.
At each time step, we also associate a Bernoulli random variable B

(t)
S,ij with survival

probability pS,ij of taking the value of 1 and 1 − pS,ij of taking the value of 0 for each
non-contributing cell. We only let the non-contributing cells that have B

(t)
S,ij of value 1

successfully receive the population, and other non-contributing cells with a B
(t)
S,ij of value 0

do not receive the population successfully, and thus their density becomes zero.
The survival probabilities tend to increase as the population density increases, suggest-

ing that a given non-contributing cell is more likely to be colonized if its density is large
enough. Similar to the inclusion probability, the parameter values in survival probability
vary in principle for each cell at different time steps in the same interaction neighbourhood.
Nevertheless, for the simplest form of the model, we let ϕ

(t)
ij , ρ

(t)
ij and ξ

(t)
ij have constant val-

ues for all non-contributing cells at each time step in the same interaction neighbourhood.
In Chapter 5, we also investigate the impact of the survival probability on model behaviours
by varying the parameter values.

We transform the m × n configuration array into a mn × 1 configuration vector for
one particular interaction neighbourhood. Let Q(t) denote the system configuration for one
interaction neighbourhood at time t, then

I : Q
(t)
Z2 → Q

(t)
Z1 ,

where
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Q
(t)
Z2 =


π

(t)
11 π

(t)
12 . . . π

(t)
1n

...
...

...
...

π
(t)
m1 π

(t)
m2 . . . π

(t)
mn

 → Q
(t)
Z1 =

[
π

(t)
11 π

(t)
12 . . . π

(t)
mn

]T
.

Using the probability transition matrix P (t), we obtain the cell update equation,

Q
(t+1)
Z1 = P (t)Q

(t)
Z1 . (3.3.5)

In the SCA model, the probability transition matrix P (t) is the product of the inclusion
probability matrix and survival probability matrix, i.e.

P (t) = P
(t)
S P

(t)
I . (3.3.6)

5. Boundary Conditions

In the formal definition of a CA model, the lattice is assumed to be infinite in all
dimensions. However, it is impossible to implement an infinite lattice on a computer, thus we
need to prescribe boundary conditions on the boundary of a finite domain. The formulation
of interaction neighbourhoods are different at a boundary as well. Three kinds of boundary
conditions are discussed here: periodic, reflective and absorbing boundary conditions.

Periodic boundary conditions come closest to simulating an infinite lattice, where the
top and bottom cells are connected, the left and right edges are connected, leading to the
grid surrounded by a copy of one row/column from the opposite edge. Period boundary
can avoid effects of border conditions by making the lattice invariant by translation, but
are expensive to use in computational cost. Reflective boundary conditions are obtained by
reflecting the grid at the boundary. They are suited for a situation in which the systems have
physical boundaries but the value of the physical variables is not fixed. Absorbing boundary
conditions are achieved by simulating “external” cells for the border which have the same
updating rule as other cells in the lattice. Absorbing boundary addresses the border-effect,
but it can avoid the reflective effects.

In the SCA model, we impose absorbing boundary conditions to handle boundary cell
behaviour. We create auxiliary adjacent cells for those boundary cells that have no neigh-
bours. We assume the auxiliary cells can only receive a proportion of population from the
boundary cells according to the state transition rule, but they cannot send population to
other cells in the interaction neighbourhood.

Using the same scheme, we derive a general form for cell updates of a community that
comprises numerous cells and multiple interaction neighbourhoods. Suppose there are sev-
eral interaction neighbourhoods in a local community defined by the lattice field Z2, the
field comprises M × N nonoverlapping cells, the configuration array is represented by Q(t)

Z2
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Figure 3.6: An example of auxiliary adjacent cells, the dark shaded cell represents a bound-
ary affected cell, and the four light orange cells represent the corresponding auxiliary adja-
cent cells.

at time t. We adopt the same transformation scheme to obtain a new configuration vector
Q(t)

Z1 , the mapping is

I : Q(t)
Z2 → Q(t)

Z1 ,

where

Q(t)
Z2 =



π
(t)
11 π

(t)
12 . . . . . . . . . π

(t)
1N

π
(t)
21 π

(t)
22 . . . . . . . . . π

(t)
2N

...
...

...
...

...
...

π
(t)
I1 π

(t)
I2 . . . . . . . . . π

(t)
IN

...
...

...
...

...
...

π
(t)
M1 π

(t)
M2 . . . . . . . . . π

(t)
MN


Q(t)

Z1 =
[
π

(t)
11 π

(t)
12 . . . . . . . . . π

(t)
MN

]T
.

With the probability matrix P(t), we have,

Q(t+1)
Z1 = P(t)Q(t)

Z1 . (3.3.7)

For computational efficiency, we do not attempt to deal with the entire matrix. Instead,
we construct a new cell configuration vector and its corresponding transition matrix by
assembling the cell configuration vector and transition matrix for each interaction neigh-
bourhood into the full cell vector Q(t)

Z1 and the transition matrix P(t).
Since there are many zero density cells and only a few interaction neighbourhoods in

the local community, we can rearrange the zero cells into one arbitrary interaction neigh-
bourhood and reposition the cell configuration Q(t)

Z1 and its corresponding matrix P(t). For
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example, suppose there are three active interaction neighbourhoods Q
(t)
1 , Q

(t)
2 and Q

(t)
3 at

time t in a local community with the corresponding transition matrix P
(t)
1 , P

(t)
2 and P

(t)
3 ,

we aggregate the rest of the cells in the community into one inactive neighbourhood Q
(t)
0 ,

where all the cells in Q
(t)
0 have zero density. We rewrite the cell configuration as,

Q(t)
Z1 =

[
Q

(t)
1 Q

(t)
2 Q

(t)
3 Q

(t)
0

]T
.

Since the cells do not interact with each other across different interaction neighbourhoods,
the transition matrix for the community can be expressed in the form

P(t) =


P

(t)
1 0 0 0
0 P

(t)
2 0 0

0 0 P
(t)
3 0

0 0 0 P
(t)
0

 ,

where the submatrix P
(t)
0 is a diagonal matrix that has the same dimension as the cell

configuration vector Q
(t)
0 . The cell updates for the community is in Equation 3.3.7.

We provide two illustrative examples. We start with an example of one affected cell. At a
given time t, suppose there is only one affected cell, we create the interaction neighbourhood
by including the affected cell and its six neighbouring cells. We roll the dice on the six
neighbouring cells with probability 1

2β , where β is the scale factor to adjust the inclusion
probability. We only include cells with the coin flipping outcome of 1, and assume there are
four selected non-contributing cells in the dispersion process.

In the first example, the number of contributing cells H = 1 and the number of non-
contributing cells K = 4 in the dispersion process. Let π̄(t) be the mean density of the cells
included in the dispersion process at each iteration, then

π̄ = 1
H + K

(π11 + π21 + π22 + π23 + π32) = π22
5 .

The total amount of population to be redistributed is π̃ = 4γ1π22
5 , and γ1 determines the

percentage of population to be redistributed. For the four non-contributing cells, the den-
sity becomes 4γ1γ2π22

25 , γ2 is the background population loss during the dispersion process;
whereas for the contributing cell (2, 2), the density becomes π22 − 4γ1π22

5 + 4γ1γ2π22
25 .

We then roll the dice on the four non-contributing cells with probability ϕ+ρ arctan(ξ 4γ1γ2π22
25 ),

and suppose we obtain a zero only for the non-contributing cell (3, 2). Then, the cell density
for (3, 2) becomes zero, and remains 4γ1γ2π22

25 for the other three non-contributing cells.
We obtain the inclusion probability matrix PI and the survival probability matrix PS ,

where
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Figure 3.7: An example of dispersion process with one affected cell. (a) One particular
interaction neighbourhood with the central cell affected and its six neighbouring cells that
could potentially receive population from the central cell before the start of one specific
dispersion process. (b) The same interaction neighbourhood with central cell affected and
selected four neighbouring cells in light green that are considered as non-contributing cells
during one specific dispersion process. (c) The same interaction neighbourhood with the
central cell affected and selected three neighbouring cells in light green that successfully
received the population at the end of one specific dispersion process.

PI =



1 0 0 0 4γ1γ2
25 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 4γ1γ2

25 0 0
0 0 0 0 1 − 4γ1

5 + 4γ1γ2
25 0 0

0 0 0 0 4γ1γ2
25 1 0

0 0 0 0 4γ1γ2
25 0 1


and

PS =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


.

According to the cell states update Equation 3.3.5 and Equation 3.3.6, we obtain
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π
(t+1)
11

π
(t+1)
12

π
(t+1)
13

π
(t+1)
21

π
(t+1)
22

π
(t+1)
23

π
(t+1)
32


=



1 0 0 0 4γ1γ2
25 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 4γ1γ2

25 0 0
0 0 0 0 1 − 4γ1

5 + 4γ1γ2
25 0 0

0 0 0 0 4γ1γ2
25 1 0

0 0 0 0 0 0 0





π
(t)
11

π
(t)
12

π
(t)
13

π
(t)
21

π
(t)
22

π
(t)
23

π
(t)
32


.

We discuss another illustrative example with multiple affected cells. Suppose there are
several affected cells at time step t, we create a minimum rectangular area that could envelop
the interaction neighbourhood of the affected cells. We employ the same coin flipping scheme
for each cell with respect to its inclusion probability (defined in the model) to decide which
cells to be included in the dispersion process, we only include cells with the coin flipping
outcome of 1. We assume at this iteration there are seven cells that are included in the
dispersion process, and three of which are contributing cells in dark green.
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Figure 3.8: An example of dispersion process with several affected cells. (a) One particular
interaction neighbourhood with a group of infested cells in dark green and their neighbouring
cells in light green, which are potential contributing cells and non-contributing cells before
the start of one specific dispersion process. (b) The same interaction neighbourhood with
the selected three contributing cells in dark green and four non-contributing cells in light
green during one specific dispersion process.(c) The same interaction neighbourhood with
the selected three contributing cells in dark green and three non-contributing cells in light
green that successfully receive the population at the end of one specific dispersion process.

In this case, the number of contributing cells H = 3, and the number of non-contributing
cells in the dispersion process K = 4. The mean cell density at time step t is:
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π̄ = 1
7(π24 + π34 + π42 + π43 + π53 + π54 + π63).

The population to be redistributed at the given time is:

π̃ =
3∑

h=1
γ1(πih

− π̄).

Subtracting the allocated population from contributing cells, the temporary density becomes

πih
= πih

− γ1(πih
− π̄) h = 1, 2, 3.

The density for the cells that are included in the specific dispersion process at next time
step becomes

π
(t+1)
l = πl + 1

7γ2π̃ l = 1, 2, . . . , 7.

Then the density at the next time step t + 1 is

π
(t+1)
ij =

πij − γ1(πij − π̄) + 1
7γ2π̃ for contributing cells,

πij + 1
7γ2π̃ for non-contributing cells.

We can obtain the inclusion probability matrix PI and the survival probability matrix
PS , where

PI =



1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
... . . .
0 . . . 1 . . . C(34) . . . . . . C(43) . . . C(53) . . . . . . . . . . . . 0
... . . .
0 . . . . . . . . . C34 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
... . . .
0 . . . . . . . . . C(34) . . . 1 C(43) . . . C(53) . . . . . . . . . . . . 0
0 . . . . . . . . . . . . . . . . . . C43 . . . . . . . . . . . . . . . . . . 0
... . . .
0 . . . . . . . . . . . . . . . . . . . . . . . . C53 . . . . . . . . . . . . 0
0 . . . . . . . . . C(34) . . . . . . C(43) . . . C(53) 1 . . . . . . . . . 0
... . . .
0 . . . . . . . . . C(34) . . . . . . C(43) . . . C(53) . . . . . . 1 . . . 0
... . . .
0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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and PS is a square matrix with entries on the main diagonal equal to 0 for cell (5, 4) and 1
for all the other cells, and the entries outside the main diagonal are zero.
Therefore, with the cell update equation 3.3.5 and 3.3.6,

[
π

(t+1)
11 . . . π

(t+1)
24 . . . π

(t+1)
34 . . . π

(t+1)
42 π

(t+1)
43 . . . π

(t+1)
53 π

(t+1)
54 . . . π

(t+1)
63 . . . π

(t+1)
66

]T
= P36×36

[
π

(t)
11 . . . π

(t)
24 . . . π

(t)
34 . . . π

(t)
42 π

(t)
43 . . . π

(t)
53 π

(t)
54 . . . π

(t)
63 . . . π

(t)
66

]T ,

where the transition matrix

P (t) =



1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
... . . .
0 . . . 1 . . . C(34) . . . . . . C(43) . . . C(53) . . . . . . . . . . . . 0
... . . .
0 . . . . . . . . . C34 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
... . . .
0 . . . . . . . . . C(34) . . . 1 C(43) . . . C(53) . . . . . . . . . . . . 0
0 . . . . . . . . . . . . . . . . . . C43 . . . . . . . . . . . . . . . . . . 0
... . . .
0 . . . . . . . . . . . . . . . . . . . . . . . . C53 . . . . . . . . . . . . 0
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . 0
... . . .
0 . . . . . . . . . C(34) . . . . . . C(43) . . . C(53) . . . . . . 1 . . . 0
... . . .
0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1


with

C(34) = γ2π̃

21π34
,

C(43) = γ2π̃

21π43
,

C(53) = γ2π̃

21π53
,

Cij = 1 − γ1

(
1 − π̄

πij

)
+ γ2π̃

7πij
.

From these examples, we conclude that the transition matrix for each interaction neigh-
bourhood has different dimensions in different regions, and the matrix elements depend on

43



the corresponding cell states at time t. The dimensions for transition matrix changes condi-
tional on whether the size of each interaction neighbourhood changes after each dispersion
iteration.

The above multiscale stochastic process model describes dispersion process in each in-
teraction region. The size of a complete model for an application depends on the size of
the domain where the phenomena is modelled and the computational resources available
for simulation. In the ideal case when there are unlimited computational resources, the
stochastic process model can theoretically be operated over an infinite region. However,
this is often not true in reality, i.e., the number of cells that are able to be performed by
the model is limited. For example, in the study of forest infestation patterns resulted from
MPB epidemics, the physical operational area of the stochastic process model depends on
the definition of the microscale model when the computational capacity is fixed. In the case
when the microscale model describes beetle behaviours on one single tree, the stochastic
process model describes beetle density dynamics from tree to tree and the model can cover
a large area when the trees are spaced far apart from each other. Under this circumstance,
each cell represents one single tree, and the cell state describes the infestation severity on
each tree. We compute the percentage of infestation for each tree as the macroscale input.
But when the trees are spaced close to each other, we tend to use the microscale model to
describe beetle behaviours on a patch of trees such that the macroscale stochastic process
model can cover a relatively large area. In this situation, each cell represents a small patch
of trees with similar infestation severity in the forest and the cell state refers to the MPB
density of each patch, the microscale model is run multiple times and the cell state is taken
as the average of the microscale model output for the macroscale model. Therefore, owning
to the number of cells that are able to be performed by the model, the physical operational
scale of the model depends on the tree density in a regional area.

3.3.2 Microscale Process and Model

The microscale is integrated with the macroscale model in order to provide the source of
affected population. We assume a physics/biology based model for the microscale that can
describe the dynamics of affected population locally. The macroscale model can employ any
microscale model, whose output can be converted into a density. In the simplest framework,
the microscale model is simulated for each macroscale step. But that is very computationally
intensive so we may consider strategies to increase efficiency. For example, the microscale
model has limiting behaviour for large macroscale time steps, we may be able to use that
to speed computation.

We illustrate with a birth-death process. A birth-death process is a stochastic process
that provides a useful theoretical framework for modelling population growth while taking
into account stochastic demographic factors. In real world situations, there can be a different
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(a) (b)

Figure 3.9: Photos of mountain pine beetles on a tree and trees infestations caused by
mountain pine beetles. (a) Individual mountain pine beetles on a tree, which is described
by the microscale model. Photo is from [1]. (b) Large patches of tree infestation caused
by mountain pine beetles, which is described by the macroscale model. Photo was taken
by Dezene Huber, University of Northern British Columbia. Source of the photo: https:
//www.flickr.com/photos/sfupamr/8621706223/. Licensed under a CC BY license.

modelling framework with different parameter values in each cell, we choose the birth-death
process to describe all individual activities in each cell and we determine the parameter
values are uniform regardless of the cell properties.

A birth-death process is a continuous-time Markov chain that counts the number of
individuals in the population over time. Let Xτ denote the population size at time τ , and Xτ

can take values in the finite state space {0, 1, 2, . . . , C}, where C is the maximum population
size (capacity). In a general process with n current individuals, the rate of births and deaths
at any time depends on the number of extant individuals, assume a new individual is born
with instantaneous rate bn and an individual dies with instantaneous rate dn, where bn and
dn can be a function of n.

There are multiple forms of birth death processes with respect to different kinds of birth
and death rates, among which, the simplest process has linear rates bn = nb and dn = nd,
where the constants b and d represent the per-individual birth and death rates with no
density effects. However, in realistic situations, populations that occupy a finite space may
be subject to various constraints on the population size over time. When there are too many
individuals competing for the living space and food supply, the birth rate may decline when
the population size is approaching the carrying capacity. We investigate two kinds of birth
rates at the microscale model, one is bn = nb(1 − n/C) which is inspired by the logistic
growth model [180] that can reflect the forementioned density-dependent constraints; and
the other is bn = nb(1 − n/C) + b0nb(1 − n/C)sin(2tπ/m) to reflect both the density-
dependent constraint and the periodic effect, where b0 is a constant reflecting the size of
periodic effect, t is the macroscale time point and m is a constant used to determine the
time period of the birth rate.
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Given n individuals at time τ , consider a very short time period ∆τ , the probability of
a birth in the interval (τ, τ + ∆τ) is

Pr(Xτ+∆τ = n + 1|Xτ = n) = bn∆τ + o(∆τ), (3.3.8)

where o(∆τ) represents terms that have smaller order than ∆τ , i.e.,

lim
∆τ→0

o(∆τ)
∆τ

= 0.

The probability of a death in (τ, τ + ∆τ) is

Pr(Xτ+∆τ = n − 1|Xτ = n) = dn∆τ + o(∆τ). (3.3.9)

At the micro scale, individuals usually have a much shorter life cycle than the system
they belong to. Thus we can assume the time interval τ → τ + 1 is small, and at most
one event, either a birth or a death, can occur during this time interval. We formulate the
transition probabilities as

Pr(Xτ+1 = j|Xτ = i) =



bi, if j = i + 1,

di, if j = i − 1,

1 − bi − di, if j = i,

0, otherwise.

(3.3.10)

The transition matrix P has the form,

P =



1 d1 0 0 . . . 0 0
0 1 − (b1 + d1) d2 0 . . . 0 0
0 b1 1 − (b2 + d2) d3 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 1 − (bN−1 + dN−1) dN

0 0 0 0 . . . bN−1 1 − dN


(3.3.11)

There are many microscale time steps for each macroscale time step. Suppose there are
Nt, where Nt is a positive integer, microscale time steps in each macroscale time step. Then
we have ∆τ = 1/Nt, and the transition probabilities at each microscale time step can be
formulated as

Pr(Xτ+∆τ = n + 1|Xτ = n) = bn

Nt

and
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Pr(Xτ+∆τ = n − 1|Xτ = n) = dn

Nt
.

The limiting population size is converted to a density by dividing by the carrying ca-
pacity of the birth-death process which can be used as the cell state at the macroscale.

3.4 Applications

The above multiscale modelling framework is suitable for dispersion process within a
variety of ecological and physical applications where the systems can be organized in a
hierarchical structure. We provide three examples, the MPB infestations, nuclear radiation
damage, and disease transmission patterns. In these examples, we introduce two scales of
the systems, the microscale and the macroscale, and explain how to connect different scales
of hierarchy.

3.4.1 Mountain Pine Beetle Infestations

Forest infestation patterns provide a good application for the SCA model as MPB indi-
vidual behaviours lead to changes in tree infestations severity - the state of density at the
regional level. Simulation results from the model reflect the process of MPB infestations
that are observed in the field and described in the literature, and exhibit non-linear dynam-
ics expected in dispersion process. This modelling can provide useful information for forest
management.

3.4.1.1 Macroscale Process and Model

We apply the SCA to MPB community dynamics to illustrate how local interactions can
influence the overall community structure. The model is built upon two assumptions. The
first assumption is that mountain pine beetles could only disperse to adjacent neighbouring
cells whereas beetles could actually conduct exceptionally long flights ranging from 2.12
to 5.95 km [70] during flight seasons. The second assumption is that the model does not
incorporate a separate model for host conditions. Most MPBs have a univoltine lifecycle,
each summer young beetles emerge from current brood and seek for new hosts, this successful
offspring production usually leads to the death of host trees. Since we do not consider any
cell as “dead”, the model could present an intensive dispersion pattern of the beetles.

The model is applied to the incipient-epidemic phase and the beginning of epidemic
phase of the MPB infestation within a local forest region. Because from the biology per-
spective of mountain pine beetles, the onset of an outbreak usually starts from a localized
infestation, and the beetle dispersion is slow and infestation is limited to small patches of
trees at the beginning of an outbreak. In addition, during those phases, there are enough
beetles to produce a viable density in each patch of trees. We represent the local forest
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region by a regular grid composed of hexagonal cells with each cell consisting of a patch of
trees with similar infestation severity. The MPB population density in each patch represents
the cell state, and is computed as the ratio of beetle population size to the carrying capacity
in each cell. In midsummer, young adult beetles emerge from their brood trees and seek
for new host trees, usually nearby trees, for the next generation of MPBs. Their disper-
sion activities often happen in a small window and dispersion probabilities decrease with
distance [44]. Thus we assume the beetle dispersion is restricted to adjacent neighbouring
trees, and they cannot fly to trees that are separated by more than two non-infested patches
of trees from their hosts. As defined in the model, each interaction neighbourhood should
be distinguished by at least two non-infested patches of tree areas. We adopt the absorbing
boundary conditions. There is a percentage of population loss in MPBs when the affected
region reaches the boundary. The state transition rule describes the MPB population dis-
persion between neighbouring cells. It follows the dispersion scheme of pine beetles and
also depends on the cell states (percentage of infestation in each cell). We assume uniform
dispersion from high density cells to low density cells following a probabilistic rule within
the same interaction neighbourhood. While the exact mechanisms of selecting perspective
host trees is not completely understood, the selection of new host trees could be spatially
random and independent of population density [14], we believe the states of neighbours
and the relative population density between the neighbouring cells are crucial to beetle
dispersion.

In practice, trees that are surrounded by more infested trees are more likely to be infested
during the pine beetle dispersion process. By using the inclusion weight for each tree, we
could characterize the impact of infestation severity of neighbouring trees on a specific
tree. We use the parameter maximum of relative density difference for neighbouring cells
to characterize the dynamic interaction between neighbouring trees. When neighbouring
trees are lightly infested, pine beetles are less likely to disperse between the trees since
there is enough resources on the current brood tree to support the reproduction of beetle
population. On the other hand, when neighbouring trees are severely infested, MPBs tend
to avoid those highly infested trees and seek colonization on less infested trees even though
we do not know the exact chemical biology behind this scheme. Therefore, it is reasonable to
propose the maximum of relative density difference for neighbouring cells as a determining
parameter in the inclusion probability to decide whether there is population dispersion
between neighbouring trees.

Besides the inclusion weights and maximum of relative density difference for neighbour-
ing cells, there are other physical properties to determine the probability of including certain
cells in dispersion process. We use parameters α

(t)
(i,j) and β

(t)
(i,j) to distinguish the inclusion

probability between high density and low density cells, and they can be varied for each tree
at each time step, but considering computational efficiency, we set both of the parameter
values to 1 since they do not have a radical influence on the inclusion probabilities.
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Young beetles usually seek for new host trees when there are not sufficient resources for
supporting next generation. When the female beetles initiate new attacks, they bore into the
bark and release trans-verbenol that can attract both sexes; attracted males produce exo-
brevicomin which primarily attracts females at low concentrations and inhibit aggregation
at higher concentrations. As the attacks progresses, the tree becomes more vulnerable, the
antiaggregation semiochemical, verbenone, is produced. The beetles seek other potential
hosts [124]. We assume the pine beetle population dispersion follows the process as we
described previously, the parameter γ1 is used to characterize the local physical features to
determine the amount of beetle population to disperse to neighbouring trees. The parameter
γ2 is used to determine the percentage of beetle population that can potentially enter the
new host trees.

The attacks of MPBs are not always successful, and many trees do not undergo aggre-
gation after being entered by beetles. The pitch tubes formed by the attacking beetles are
filled with tree resin and beetles have to clear the resin from their galleries. If the tree resin
seals the entrance of the galleries, the beetles either leave or die in the pitch tubes [124].
We use the survival probability to represent the stochastic feature of this process where the
landing and colonization of beetles may not be successful.

3.4.1.2 Microscale Process and Model

According to the biology of mountain pine beetles, spatial and temporal dynamics vary
with the level of aggressiveness. Host trees generally exhibit formidable defences that protect
them from beetle attacks when population levels are low, but aggregation of large number
of mountain pine beetles could successfully overwhelm the defences and colonize healthy
trees for reproduction [15]. Thus, there exists a critical population threshold that separates
endemic from epidemic phases. For the mountain pine beetles, they persist during endemic
periods when stressors within host trees provide a constraint on population reproduction,
and when appropriate conditions arise, they switch to an epidemic phase and there is a
population explosion. The threshold serves as the minimum aggregation population size
that is needed to successfully overwhelm tree defences and colonize a new host at the
individual tree level.

The birth-death-process can capture the Allee effect of MPB population on a particular
tree such that when there is no disturbance for pine beetles, their growth is positive below
the carrying capacity C, and the growth rate reaches a maximum at C/2. Once the pop-
ulation level rises close the capacity, the growth rate begins to decrease. The population
reproduction commonly happens in a small window of time during the summer. Therefore,
we consider the time period ∆τ is sufficiently small compared to the overall population
dynamics at the landscape level.
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3.4.1.3 Sequential Multiscale Approach to Link the Scales

We simulate the birth-death process at the microscale, use the percentage of infested
trees in each cell as a proxy for initial cell configuration of SCA models at the macroscale.
We update the cell density after simulating the dispersion process with SCA and convert the
updated density to a population size. We alternate between the microscale and macroscale
models and observe the resulting pattern at the macroscale.

3.4.2 Nuclear Radiation Damage

Nuclear reactor materials are continuously bombarded with different kinds of energetic
particles during service. Such kinds of particles interact with materials to produce high
concentrations of defects such as vacancies and interstitials. These defects eventually induce
microstructural changes in materials such as dislocation loops and voids, which drastically
change the thermal and mechanical properties of materials and limit their performance
[5, 159,176].

Due to the inherent multiscale nature of radiation effects in materials, the multiscale
modelling scheme can be employed to simulate the resulting microstructure processes.
Atomic displacement collision cascades that happen within nanoseconds induce microstruc-
ture changes in the fuel lattice, microstructure changes over long-range space and time lead
to radiation damage in materials which can be evaluated by phase field models. There ex-
ists an intermediate level of structure change in materials where a large number of voids
grow, shrink, and/ or interact with each other. [190] provides extensive discussion regarding
determining the appropriate scales in structure changes in fuels. The main objective is to
provide a brief description for our model application to these physical processes.

3.4.2.1 Macroscale Process and Model

The atomic displacement cascades, which occur in an uncorrelated fashion, produce an
increase in the concentration of point defects such as vacancies and interstitials. Owning to
dislocation bias - dislocations tend to absorb interstitials at faster rates than vacancies, the
absorption of interstitials removes more interstitials than vacancies from the system and
thus makes more vacancies available to cluster together to form voids in irradiated mate-
rials. Void formation results from the supersaturation of vacancies in irradiated materials.
With interstitials having the tendency to form dislocation loops, the presence of gas atoms
enhances the void nucleation process. These features have a significant impact on structural
changes in materials.

At the macroscale, we use the SCA model to describe these point defects behaviours
including annihilation, recombination, and diffusion which lead to void nucleation in irradi-
ated materials. The cell space is represented by a regular grid composed of square cells. Cell
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states are represented by the point defect percentage in each cell. We employ the stochastic
transition rule to introduce uncertainties in modelling the spatial patterns in materials.

3.4.2.2 Microscale Process and Model

An energetic particle knocks an atom from its lattice, which displaces many other atoms
through a cascade of atomic collisions and results in many vacancies and interstitials. These
binary collision cascade events at the microscale are well-modelled by a group of computer
programs called Stopping and Range of Ions in Matter (SRIM) which calculate interactions
between ions and materials. The core of SRIM is a program called Transport of Ions in
Matter (TRIM) [190, 202]. SRIM is used to generate ion implantation in any desired solid
lattice. However, they don’t take account of the structural or dynamic composition changes
in materials.

3.4.3 Infectious Disease Transmission

There is direct evidence for the spread of infectious disease in places where people
gather at high densities. Despite the fact that infectious disease transmission events are well
documented in public health literature, the characteristics of disease transport patterns are
not completely understood. Consequently, disease transmission to potential regions may
not be recognized and corresponding precautions against the disease spread may not be
taken. The SCA modelling scheme we build is applicable for multiple diseases. Through this
multiscale framework, we incorporate pedestrian dynamics such as infected and susceptible
individual interactions into a stochastic infection dynamics pattern, which can be used to
assist in better understanding the transmission characteristics of infectious diseases, and
provide guidelines for disease control and prevention.

3.4.3.1 Macroscale Process and Model

The macroscale represents the between-local community level disease transmission. The
community can either represents geographical components such as village and district, or
represent administrative units such as workplace, school, and hospital. For example, Q
fever can transmit from livestock farms to their surrounding communities [121], as well
as Legionnaires’ disease can lead to community-level breaks [22]. The SCA model is used
to simulate the emergence, evolution, spread patterns of infectious disease in the state of
percentage of infectious or susceptible individuals in each community by varying the input
parameters related to transmission mechanisms.

3.4.3.2 Microscale Process and Model

The microscale model describes the general behaviours between susceptible and infec-
tious individuals within-local community, it is used to estimate the number of infectious
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and susceptible individuals in the community. Each individual is treated as a mobile pedes-
trian, and the model captures the evolution of pedestrians and their interactions with other
pedestrians, and the formation of groups of pedestrians in each community.

3.5 Summary

In this chapter, we have described the details for setting up the SCA model for dis-
persion processes. We are inspired by the concept of CA, and we extend this concept by
relaxing some of the model settings to allow for more complexity which is characteristics of
dispersion processes. The SCA model is a stochastic process, but the transition matrix de-
pends on the state properties at each time step rendering the transition probability matrix
nonautonomous, which presents serious challenges for theoretical analysis. Therefore, we
investigate the model behaviour through numerical simulations. The model is intended to
run within a finite domain and a finite time step at the macroscale as the resulting patterns
exhibit similar behaviour when the model is run on an infinite domain and infinite time
step, details can be found in Chapter 5.

52



Chapter 4

Implementation

In this chapter, we provide implementation details for the implementation of the stochas-
tic process model defined in Chapter 3. We use R programming language (version 4.1.1) to
build a simulator that takes an initial cell configuration and a set of parameter values for
the CA transition rules as input and outputs the cell configuration evolution at a sequence
of times as output. The simulator is designed such that the input can be varied. The mi-
croscale model that is embedded in the simulator can also be varied to reflect the choice of
individual dynamic model.

4.1 Simulating the Dispersion Process

4.1.1 Domain

The simulation results for the stochastic cellular automaton model for dispersion pre-
sented in Chapter 3 that makes use of a two-dimensional tessellation, which generates
evolutionary patterns at specified times. The two-dimensional tessellation suffices for the
modelling purposes presented in the thesis. Using these images, we observe geometric in-
variant properties of dispersion patterns with different parameter settings. During an initial
exploration process, we use one-dimensional tessellation to study the behaviour of cells dur-
ing a dispersion process and the effects of boundary conditions. In general, the behaviour on
one dimensional tessellations if of limited interest, and we do not present detailed simulation
results based on one-dimensional tessellation.

We set up a domain that is composed of m × n non-overlapping cells using index i and
j to identify each cell in the domain, where index i and j represent the row and column
position of each cell, respectively. In the simulation studies, we focus on the scenarios when
the model produces final patterns that grow without limit to capture the essential features
of dispersion phenomena, and we use complexity of patterns and velocity of dispersion to
provide further information about the final patterns. Therefore, in experiments to study the
distribution of quantitative measurements including number of affected cells, average cell
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density and complexity of dispersion patterns, we choose m = 30 and n = 30 as the domain
size to obtain a “rough” pattern that is sensitive to the parameter values because the model
tend to behave in a similar way in terms of complexity of patterns when the grid size is
large and when the model is run long enough. In experiments to investigate the evolution
patterns generated by the model, we choose m = 50 and n = 50 as the domain size to
provide enough information about the dispersion pattern details and analyse the impact of
parameters on the model behaviours as most of the cells on the grid are affected. Details
for determining the domain size can be found in Chapter 5.

4.1.2 Interaction Neighbourhoods

In the modelling framework, the dispersion happens within interaction neighbourhoods.
It is crucial to correctly set up the interaction neighbourhood for the affected cells. When
there is only one affected cell in the domain, its interaction neighbourhood contains all
cells that surround the particular affected cell. In a two-dimensional domain, common cell
shapes are squares. However, we simulate dispersion process on a tessellation of the domain
using hexagonal cells because of the forementioned practical benefits in Chapter 3. Since we
use a tessellation based on hexagonal cells, the index varies according to the evenness and
oddness of the column index. When the column index j is odd, the adjacent neighbouring
cells include cells (i − 1, j − 1), (i − 1, j), (i − 1, j + 1), (i, j − 1), (i, j + 1), (i + 1, j); and
when j is even, the adjacent neighbouring cells include cells (i, j −1), (i−1, j), (i, j +1), (i+
1, j − 1), (i + 1, j + 1), (i + 1, j). When there is a group of adjacent affected cells, then
the interaction neighbourhood contains the smallest collection of cells that envelopes these
affected cells.

When there are several disconnected groups of affected cells, we create interaction neigh-
bourhoods for each group. The distinct interaction neighbourhoods must be separated by
at least two nonaffected adjacent cells. In this case, distinct affected cells that overlap in
immediate neighbours must be grouped into one interaction neighbourhood. It turns out
that the grouping of affected cells is incredibly expensive with even moderate domain size.
Thus, we adopt a grouping scheme built on a grid-based clustering approach that has a
faster processing time.

For cells on the boundary of the domain, we create auxiliary adjacent neighbours outside
the domain that could receive population from the affected cells. We remove the auxiliary
cells at the end of each dispersion iteration. The auxiliary cells only receive population and
never send populations to other cells in the interaction neighbourhood.

To detect the simulation code, we verify the population redistribution mechanisms man-
ually to make sure the code performs as intended.
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Algorithm 1 Algorithm for creating interaction neighbourhoods
1: Determine all affected cells in the domain.
2: for each affected cell in the domain do
3: Randomly pick an affected cell as the starting point, where the cell has not been

traversed before.
4: Create a two-cell radius shell around the picked cell, check if there is any affected

cell(s) in the shell. If yes, include the affected cell(s) with the picked cell to form one
interaction neighbourhood; otherwise, the starting point cell forms one separate inter-
action neighbourhood.

5: Repeat step 3 and 4 until there are no affected cells in the two-cell radius shell.
6: end for
7: All cells will be associated with some interaction neighbourhood.

4.1.3 Initial Cell Configuration

We create multiple initial cell configurations according to the study purposes.

1. We set up distinct initial cell configurations that display various shapes in the domain
in order to study the effect of initial cell configuration on dispersion patterns.

2. We use the same initial cell configuration that is composed of one group of adjacent
affected cells to perform sensitivity analysis and study the parameter interactions in
the model. The cell densities are randomly taken from the interval (0, 1].

3. We create two groups of affected cells that are far away from each other to study the
evolutional patterns of two interaction neighbourhoods.

4.1.4 Boundary Conditions

Boundary conditions affect the implementation and the simulation outcome. Therefore,
the information for boundary conditions is important. During some exploration, we used
periodic boundary conditions to simulate an infinite domain with a finite number of cells. For
the two-dimensional simulations, we use absorbing boundary conditions primarily because
periodic boundary conditions are computationally expensive.

4.1.5 Simulating Birth-Death Process in Each Cell

We choose computational parameters for the microscale birth-death process to balance
computational time versus predictability of the microscale model behaviour. We set the
population capacity C = 100. Since the birth rate and death rate of the microscale birth-
death process model depends on the time scale, we need the number of microscale time steps
τ such that the generated individuals do not exceed C. In consideration of computational
efficiency, we also choose Nt = 100. Given a specified initial cell density π∗, we can obtain
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the population size n∗ by multiplying the density π∗ by the capacity C in the cell. If the
population size n∗ is smaller than 1, then we set the population size to be 0.

For each birth-death process within the affected cells, we generate random integers
Xτ taking values -1, 0 or 1 for microscale time step τ = 1, . . . , 100. The probabilities for
generating each value depends on the cell density and the predefined birth and death rate:

Xτ =


1, with probability bij,τ ,

−1, with probability dij,τ ,

0, with probability 1 − bij,τ − dij,τ .

where b and d represent the predefined birth and death rate, respectively.
In the mountain pine beetle application, we assume there are multiple trees in each cell,

and each tree comes with a different density and birth-death process. Therefore, we simulate
the birth-death process multiple times in each cell, and take the average of those processes
to represent the average behaviour of those trees in the cell. In the simulation studies, we
simulate the birth-death process for 20 realizations in each cell, and take the average of the
final population size to obtain the updated cell density.

4.1.6 Evolution Patterns for Two Interaction Neighbourhoods

We create two disconnected groups of affected cells with different parameter settings to
observe the evolution of two interaction neighbourhoods that eventually join. One interac-
tion neighbourhood has a higher chance of dispersing populations. Once the two interaction
neighbourhoods join together, we take the average of the parameter settings for the com-
bined interaction neighbourhood.

4.1.7 Sequential Approach to Link the Scales

We use a sequential method to exchange cell densities between the microscale and the
macroscale cellular automata models. We obtain the population size from the microscale
birth-death process model, we transform it into the cell density and simulate the dispersion
process at the macroscale to obtain the updated cell density. Then we transform the updated
cell density to a population size that is passed to the birth-death process for simulation over
the microscale steps until the macroscale time step is reached. We march the microscale
and macroscale simulations over a sufficiently long time to obtain the evolutional dispersion
patterns.

We provide a comprehensive algorithm for simulating the dispersion process:
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Algorithm 2 Algorithm for simulating the dispersion process
1: Set up the implementation grid of m × n cells, where m = n = 50.
2: Set the initial pattern for a small number of affected cells on the grid.
3: for macroscale time step t = 1, 2, . . . do
4: Simulate multiple realizations of birth-death process and compute the average num-

ber of individuals at the microscale within each cell for microscale steps to reach the
macroscale time step.

5: Compute the ratio of the average number of individuals and the cell capacity at the
microscale and use the ratio as the cell density for dispersion process at the macroscale.

6: Simulate the dispersion process at the macroscale.
7: Convert the density to population size by multiplying by capacity to produce an

initial population for the microscale simulation in each cell.
8: Alternate the microscale and macroscale simulations for sufficient time steps to ob-

tain the ending cell states.
9: During the simulation, compute the statistics that are used to describe the evolution.

10: end for

4.2 Analysing Dispersion Patterns

We use two statistics to quantify the properties of dispersion patterns. The velocity of
dispersion is used to quantify how quickly populations disperse under certain scenarios, and
the complexity of dispersion patterns describes the roughness of the pattern boundaries
and provides information about the shape and size of dispersion patterns. The two statistic
results presented in Chapter 5 is computed by averaging of 500 realizations to reduce the
effects of stochasticity.

4.2.1 Velocity of Dispersion

Since the dispersion patterns usually present irregular shapes, it is difficult to determine
the extent to which populations move away from a starting location to a destination location.
We use the change in the area of affected cells to measure the velocity of dispersion. For
nondirectional movements, we assume the populations move in six directions with equal
probabilities. We draw a circle that has the same area as the interaction neighbourhood,
and use the change in the radius as a means to measure the velocity of dispersion.

The affected cells in the same interaction neighbourhood have individual densities. We
compute the centre of mass for each interaction neighbourhood to use as centroid of the
circle. The position of centre of mass is calculated as the weighted position of all cells in
the same interaction neighbourhood. The radius of the circle is computed in a way that the
area of the circle equals the total area of all affected cells in the interaction neighbourhood.
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Figure 4.1: An example of an interaction neighbourhood. The colour of the cells represent
the density of the cells. The black point in the middle of the interaction neighbourhood is
the centre of mass. The radius of the circle is used to measure the area of the interaction
neighbourhood.

4.2.2 Complexity of Dispersion Patterns

The boundary of interaction neighbourhood forms the outline of the interaction neigh-
bourhood, and its complexity is a way to quantify the behaviour. We define the measure of
complexity as the number of boundary edges divided by the number of affected cells in the
interaction neighbourhood. The complexity increases if there is complex geometry in the
boundary normalized by the number of cells in the interaction neighbourhood.

Figure 4.2: An example of an interaction neighbourhood with five affected cells.
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There are five affected cells in Figure 4.2, and the total number of boundary edges
is 16, according to the definition, the complexity of the pattern is thus 16/5 = 3.2. The
complexity can be used to assess the roughness of the pattern boundary. With the same
number of affected cells, the complexity is smaller for the pattern in which the affected
cells are more connected with each other. When the interaction neighbourhood becomes
extremely large, it is not feasible to use the definition to compute the complexity. We
provide an alternative formula for computing the complexity. For each affected cell in the
interaction neighbourhood, we count the number of its adjacent affected neighbours na,
where a = {1, . . . , Na}, and Na is the total number of affected cells in the pattern. The
formula for computing complexity is

complexity =
(

6Na −
Na∑
a=1

na

)
/Na (4.2.1)

(a) (b)

Figure 4.3: Two distinct interaction neighbourhood with identical number of affected cells.

There are identical number of affected cells in the interaction neighbourhood in Figure
4.3, but they display different shapes. The total number of boundary edges is 28 for pattern
(a) and 21 for pattern (b). Thus, the complexity for two patterns is 3.5 and 2.6, respectively.
In general, the complexity is smaller for patterns with a “smoother” boundary.

4.2.3 Distribution of Quantitative Statistics

We create two sets of experiments to study the distribution of quantitative statistics. In
each set of experiments, we generate 1000 samples and 50 realizations for each combination

59



of parameter values for 30 time steps, then we take average of the 50 realizations to obtain an
average of those quantitative statistics. We choose the parameter values in the experiments
to obtain evolution patterns that grow without limit at a fixed speed. The experiment data
obtained is also used in Chapter 6 for inversion purpose.

In the first set of experiment, we assume the percentage of redistributed population
γ1 and the percentage of survival population γ2 are both normally distributed with mean
being 0.8 and standard deviation 0.4/6, i.e. γ1, γ2 follows N(0.8, 0.4/6). In the second set
experiment, we let parameter ρ in the survival probability to follow a Beta distribution with
a modified domain, i.e. ρ follows Beta(2, 4) with ρ ∈ [1/6, 5/6]. We set the parameter ϕ to
be 1/12 and ξ to be 1 to reduce the impact of cell densities on the survival probability.

4.3 Parallel Computing

The simulations in this project were coded in R programming language and executed on
the Compute Canada’s high-performance computation system. We simulate 100 realizations
for these experiments in Phase I to compute the average complexity of the patterns. Since
each realization is independent of the other, and no effect is needed to communicate between
the realizations, we use parallel computing to carry out the simulations simultaneously.
When we investigate the evolutional patterns of two interaction neighbourhoods, we use
apply functions in R to simulate the dispersion process for two groups at the same time.
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Chapter 5

Numerical Investigations of Model
Behaviour

In this chapter, we investigate the properties of the SCA model through numerical
simulations. The SCA model can exhibit complex behaviour, even though the component
parts are simple. The complexity arises from local interactions between the components
and governed by simple rules which can lead to complex global behaviour and interesting
geometric dispersion patterns. The model is nonlinear and stochastic. This complicates
theoretical analysis, since techniques that apply to linear Markov chain models are not
easily applicable. We therefore conduct a numerical investigation to provide insight into
model behaviour and reveal some qualitative features of the model.

The simulations in this chapter aim to explore the behaviour of the model under various
scenarios and parameter values. We vary aspects of the model in a systematic fashion. We
present details of the simulations, including the experimental setup, parameter settings and
simulation results.

We begin with an example of a general analysis that reveals some common characteristics
of the model and the tools we use to investigate the behaviour. To give a sense of the dynamic
behaviour, we present plots at specified times, see Figure 5.1. The figure shows the solution
at six time steps, giving a sense of the evolution of the interaction neighbourhoods. As
described, we also compute quantitative statistics of complexity of patterns and velocity of
dispersion to describe the evolution patterns, illustrated in Figure 5.2. Detailed information
for calculating the two statistics can be found in Chapter 4.
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Evolution of patterns at specific time t = 0, 30, 60, 90, 120, 150. (a) t = 0. (b)
t = 30. (c) t = 60. (d) t = 90. (e) t = 120. (f) t = 150.
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Figure 5.2: Plots of the complexity of the patterns at each time with fitted curve and
velocity of dispersion of the model over time for one realization. (a) Complexity of patterns
at each time with a fitted curve. The points represent complexity of patterns at each time,
the curve represents the fitted model of the complexity over time with (ln(complexity) =
0.71 − 0.01 × time, R2 = .97, F (1, 150) = 5211, p < .001). (b) Velocity of dispersion. The
black dashed line represents the average dispersion velocity.
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Figure 5.3: Plots for velocity of dispersion for one realization. (a) Autocorrelation plot. (b)
Partial autocorrelation plot. (c) Empirical cumulative distribution function plot. (d) Normal
QQ plot.
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Generally, the complexity of patterns decreases exponentially over time, as the boundary
becomes “smoother” and the interaction neighbourhood grows, see Figure 5.2. The velocity
of dispersion oscillates around a straight line, which suggests that an interaction neighbour-
hood size grows at a predictable rate. According to the autocorrelation plot (ACF) and
partial autocorrelation plot (PACF) in Figure 5.3, there is no apparent structure in the
residuals, and the lag order of the correlations that lie outside the bands are not multiples
of each other, so the ACF and PACF plots resemble white noise. As a complement to the
visual examination, a Box-Ljung test (χ2 = 29.30, df = 20, p = .08) also suggests that the
velocity of dispersion resembles white noise. The empirical cumulative distribution function
(eCDF) plot and the normal QQ plot both indicate that the velocity of dispersion follows a
Gaussian distribution and the Kolmogorov–Smirnov test for normality (D = 0.11, p = .33)
verifies that the velocity of dispersion resembles Gaussian white noise.

Due to the stochastic nature of the model, the evolution patterns do not repeat even
with identical initial patterns and parameter settings. We show evolution patterns from
three realizations using the same initial pattern and parameter values in Figure 5.4. Despite
the stochastic variation, we see in Figure 5.5 that the evolution patterns have roughly the
same complexity of pattern, so the coefficients for three fitted models are fairly close. The
velocity of dispersion for three realizations also behave similarly. Therefore, we only present
the analysis results for realization 3 in Figure 5.6. There is no apparent structure in the
ACF and PACF plots and the Box-Ljung test (χ2 = 24.55, df = 20, p = .22) indicates
that the velocity of dispersion resemble white noise. The eCDF, normal QQ plot and the
Kolmogorov–Smirnov test for normality (D = 0.07, p = .95) suggest that the velocity of
dispersion follows a Gaussian distribution. Thus, we conclude that the velocity of dispersion
for realization 3 resembles Gaussian white noise. The results are characteristic of the general
trend in other realizations. These observations suggest that while a given initial pattern
and parameter settings leads to different pattern sequences, the sequences have similar
complexity and dispersion statistics.

We show evolution patterns for three different initial patterns with identical parameter
settings in Figure 5.7. The complexity of patterns and velocity of dispersion indicate that
different initial patterns lead to similar final patterns in the long run. We conclude that the
model has a kind of long time stability property.

These simulation results all exhibit non-linear dynamics expected in the dispersion pro-
cess. Though there are relatively few parameters, the model produces a wide range of
behaviours, which suggests that it can be useful for modelling complex phenomena.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.4: Evolution patterns at specific time t = 0, 40, 80, 120 for three realizations with
the same initial pattern and same parameter settings. Each row presents the evolution
patterns for one realization. (a) t = 0. (b) t = 40. (c) t = 80. (d) t = 120. (e) t = 0. (f) t =
40. (g) t = 80. (h) t = 120. (i) t = 0. (j) t = 40. (k) t = 80. (l) t = 120.
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Figure 5.5: Plots of complexity of the patterns at each time with fitted curve and veloc-
ity of dispersion with identical initial patterns and parameter settings for three realiza-
tions. (a) Complexity of patterns at each time with fitted curve. The points represent
complexity of patterns at each time, and the curve represents the fitted model of the
complexity over time, with (ln(complexity) = 0.42 − 0.01 × time, R2 = .95, F (1, 120) =
2253, p < .001; ln(complexity) = 0.45 − 0.01 × time, R2 = .95, F (1, 120) = 2223, p <
.001, ln(complexity) = 0.39 − 0.01 × time, R2 = .95, F (1, 120) = 2198, p < .001) for re-
alization 1, 2, and 3, respectively. (b) Velocity of dispersion.
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Figure 5.6: Plots for velocity of dispersion with identical initial patterns and parameter
settings for one realization. (a) Autocorrelation plot. (b) Partial autocorrelation plot. (c)
Empirical cumulative distribution function plot. (d) Normal QQ plot.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.7: Evolution patterns at specific time t = 0, 40, 80, 120 for three realizations with
different initial patterns and the same parameter settings. Each row presents the evolution
patterns for one realization. (a) t = 0. (b) t = 40. (c) t = 80. (d) t = 120. (e) t = 0. (f) t =
40. (g) t = 80. (h) t = 120. (i) t = 0. (j) t = 40. (k) t = 80. (l) t = 120.
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Figure 5.8: Plots of complexity of the patterns at each time with fitted curve and veloc-
ity of dispersion with the same parameter settings for three different initial patterns. (a)
Complexity of patterns at each time with fitted curve. The points represent complexity of
patterns at each time, the curve represents the fitted model of the complexity over time, with
(ln(complexity) = 0.53−0.01× time, R2 = .97, F (1, 120) = 3390, p < .001; ln(complexity) =
0.66 − 0.01 × time, R2 = .95, F (1, 120) = 2458, p < .001, ln(complexity) = 0.37 − 0.01 ×
time, R2 = .95, F (1, 120) = 1992, p < .001) for realization 1, 2, and 3, respectively. (b)
Velocity of dispersion.
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5.1 Goals for the Simulation Study

The goals for the simulation study includes:

1. Develop an understanding of the dispersion process, including hidden behaviours.

2. Explore behaviour of the model for different scenarios or conditions.

3. Perform sensitivity analysis of the model to identify the critical parameters that in-
fluence the behaviour of the model.

4. Develop statistics that can quantify important behaviour of the model and develop an
understanding of what kinds of model behaviour can be used to calibrate the model
using experimental data.

5.2 Simulation Methodology

We focus on three properties: the population available to disperse, the probability that
population disperses and the probability that population successfully immigrates to a new
region. These properties jointly determine the patterns generated by the stochastic process
model. The microscale model provides the population source for dispersion, while the change
of parameter settings in the microscale model affects the population size during dispersion.

Extensive simulation studies suggest that the behaviour approaches three limiting situ-
ations, illustrated in Figure 5.9, which are

1. Fade away completely;

2. Settle into a fixed finite size;

3. Grow without limit at a fixed speed.

The experiments suggest that even though the underlying rules for the model are simple,
the model can generate complex behaviour characteristic of dispersion processes found in
nature.

5.2.1 Impact of Boundary Conditions

The model requires boundary conditions to give values at the boundaries of the domain.
Boundary conditions are determined by the application of the model. In the previous dis-
cussion, we focus on the scenarios where the simulation runs are performed assuming there
is no boundary effect involved in the dispersion process, i.e., the border of the grid does not
affect the model behaviour. Periodic boundary conditions that connect the border cells are
closest to simulating an infinite grid, however, they are computationally expensive to use.
Besides, periodic boundary conditions are usually not realistic for real-world applications.
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(a) (b) (c) (d)

Figure 5.9: Initial pattern and classes of final patterns generated by the evolution of the
model from the same initial configuration when the parameter settings vary. (a) Initial
pattern. (b) Final pattern: growth without limit. (c) Final pattern: settle into a fixed finite
size. (d) Final pattern: fade away.

We choose “absorbing” boundary conditions in the model for practical purposes. We
create auxiliary “external” cells that have the same updating rule as cells in the grid, those
auxiliary cells can receive a proportion of population from the cells on the boundary but
they cannot send the population to other cells in the interaction neighbourhood. Com-
putationally, absorbing boundary conditions are advantageous in the sense that they can
simulate real-world applications with a minimum amount of computation and storage.

In this section, we aim to explore the boundary effects on model behaviours. In Figure
5.10, we observe that if there is sufficient density, the density tends to fills the entire space
after a sufficiently long time, except for a few vacant cells on the grid, regardless of the
grid size. Moreover, as time proceeds it becomes increasingly unlikely to find cells that are
vacant.

The simulations suggest that cell densities vary continuously with respect to the param-
eter settings in the transition rule. Most cells that are on the boundary of the grid have a
lower density than the cells that are in the centre of the grid, which is because those cells
lose a small proportion of density from absorbing boundary conditions.
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(a) (b) (c)

(d) (e) (f)

Figure 5.10: Evolution patterns at specific time t = 0, 10, 20, 30, 40, 50 on a domain size of
20 × 20 to reflect the impact of absorbing boundary conditions. (a) t = 0. (b) t = 10. (c)
t = 20. (d) t = 30. (e) t = 40. (f) t = 50.

71



5.2.2 Experiment Setup

In the simulation studies, we evaluate the evolution patterns to verify that the model
is capable of capturing expected behaviours common to the dispersion phenomena. In our
application, we focus on scenarios when the model produces final patterns that grow without
limit. We also use the complexity of patterns and dispersion velocity to provide additional
information when necessary.

Since we conduct 1000 experiments and 50 realizations in each of those experiments
to investigate the distribution of quantitative statistics including the average cell density,
average number of affected cells, and average complexity of the interaction neighbourhood,
it is not feasible to use a large grid size. Besides, in our previous discussions, the density
tends to fill the entire grid regardless of the parameter settings when the model is run
long enough and the quantitative statistics become indistinguishable. In this case, we want
to conduct the experiments with the minimum grid size and run time that is capable of
producing perceptible patterns that are sensitive to different parameter settings. Based
on our exploration in model behaviour with different grid sizes and run time, we choose
to simulate the model on a grid of 30 × 30 cells with 30 time steps to investigate the
distributions of the quantitative measurements.

In the simulation studies to investigate model behaviours, we set up four phases to
investigate the behaviour of the model. In each phase, we start with a specified interac-
tion neighbourhood and then observe the impact of different parameter values on evolution
patterns. In phase I, we conduct sensitivity analysis for each parameter in the model, in-
vestigating the impact of one parameter or one set of parameters on behaviours of the
model. In phase II, we investigate the interactions between different parameter regimes of
the model. We also investigate the change point for settling into a stable configuration. In
phase III, we investigate the impact of geographical properties of the domain. We change
the attributes of certain cells to make them suitable for various physical conditions, such as
a lake or a region for which individuals can pass through. We also consider the evolution
patterns affected by outer forces such as air flow. In phase IV, we investigate the evolution
patterns of two different interaction neighbourhoods, which represent two distinct popula-
tion groups with varying physical properties and we explore the evolution patterns of the
two interaction neighbourhoods. All of the experiments require some stability in model be-
haviour, therefore we simulate the process on a grid of 50 × 50 cells that defines a domain
big enough to observe the evolution patterns with up to 120 time steps before the boundary
of the domain affects the dispersion patterns.

5.3 Simulation Parameters

There are seven parameters at the macroscale that determine the dispersion pattern.
A detailed explanation is provided in Chapter 3. We focus on two probability parameters
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to characterize the stochastic behaviour of the model, the inclusion probability and the
survival probability. Those two probability rules are connected with different stages of the
dispersion process. The inclusion probability is linked to the emigration stage in which the
potential cells for dispersion are selected. The inclusion probability at a specific time point
t is defined as 3.3.3, where w

(t)
ij and d

(t)
ij represent the inclusion weight and the maximum of

relative density difference between neighbouring cells for cell (i, j), respectively. For a given
cell, the two parameters α and β are used to decide the likelihood of being involved in the
dispersion process.

The survival probability is linked to the immigration stage in which the individuals
establish population in new cells. It is defined as 3.3.4 for cell (i, j) at time t. There are three
parameters ϕ, ρ and ξ in the survival probability that are used to determine the likelihood
that the population successfully disperses to the new cells. In the dispersion process, the
amount of individuals provides a source of cell densities that determines the pattern. The
parameters γ1 and γ2 are used to regulate the cell density movements in each interaction
neighbourhood. In addition, we investigate the impact of cell density. The cell density is
regulated by the spread percentage γ1 and survival percentage γ2 at the macroscale, and
the birth-death process at the microscale.

There are five parameters at the microscale including birth rate, death rate, number
of microscale time steps in each macroscale time step, population capacity and number of
replications of the model in each cell. However, the microscale process mainly contributes
to the cell density, therefore, we only investigate the joint effect of the five parameters on
dispersion patterns.

5.4 Distributions of Quantitative Measurements

We aim to investigate the distributions of the three quantitative measurements including
average number of affected cells, average density and average complexity of the evolution
patterns. We set up two experiments with different priors on the parameters in the model.
In the first experiment, we assign a normal prior N(0.8, 0.4/6) for both spreading rate γ1

and survival rate γ2. In the second experiment, we assign a normal prior N(0.8, 0.4/6) for
γ1, and a Beta prior beta(2, 4) for ϕ in the survival probability with ϕ ∈ [1/6, 5/6], we
set ρ = 1/12 to make the quantitative measurements less dependent on the cell density.
According to the eCDF plots in Figure 5.11 and the Kolmogorov-Smirnov test results,
average number of affected cells (D = 0.11, p = .23), average density (D = 0.53, p = .27),
average complexity (D = 0.06, p = .84), the estimated normal probability distribution is
a good match to the empirical distribution of the three quantitative measurements in the
first experiment. According to the eCDF plots in Figure 5.12 and the Kolmogorov-Smirnov
test results, the average number of affected cells (D = 0.05, p = .53), average density
(D = 0.45, p = .46), average complexity (D = 0.09, p = .26), and the estimated gamma
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probability distribution appears to be a good match to the empirical distribution of the
three quantitative measurements in the second experiment.
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Figure 5.11: Empirical distribution functions along with the distribution functions for the
normal probability with the corresponding estimated mean and variance for each quanti-
tative measurement. (a) Average number of affected cells. (b) Average density. (c) Average
complexity.
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Figure 5.12: Empirical distribution functions along with the distribution functions for the
gamma probability with the corresponding estimated shape parameters for each quantita-
tive measurement. (a) Average number of affected cells. (b) Average density. (c) Average
complexity.
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5.5 Experiments

5.5.1 Phase I: Sensitivity Analysis for the Parameters

Generally, sensitivity analysis is the study of how uncertainty in the output of a model
can be apportioned to different sources of uncertainty in the model input. Conducting
sensitivity analysis has the potential to improve parameter calibration by making the process
more systematic. The motivations of the sensitivity analysis below includes:

1. Determine which parameters have the most effect on model output.

2. Check if the model can be simplified by eliminating parameters that have a minor
effect on the model output.

3. Identify critical regions in the space parameters, and identify parameters whose com-
bined effect leads to complex behaviour.

4. Determine scenarios in which the input parameters have greatest effect on model
output.

Sensitivity analysis can be performed at the local or global scale. A local analysis ex-
amines the sensitivity of one single parameter while a global analysis examines sensitivity
with respect to the entire parameter domain. Due to the higher computational complexity,
we prefer the local analysis and focus on the impact of a single parameter while keeping the
other inputs fixed.

However, due to the large number of parameters and the complex relationships among
the massively interacting parameters in the model, analytical exploration of the model
behaviour is very challenging. Computational expense limits the number of simulations
that can be performed, consequently, it is not feasible to evaluate the impact of every
single parameter and every parameter combination on the model behaviour. Therefore, we
perform sensitivity analysis for a few selected parameters of the model elements that govern
the behaviour of the model.

5.5.1.1 Impact of Cell Density on Dispersion Patterns

There are two possible ways to vary the cell density in the model. One way is to vary
the birth-death process at the microscale to vary the number of individuals produced and
therefore to vary the input cell density at the macroscale. The other way is to vary the
spread percentage and survival percentage at the macroscale.

5.5.1.1.1 Impact of the Birth-Death Process

We vary the death rate in the birth-death process with all the other parameters fixed
to obtain different levels of population at the microscale. Therefore, we obtain different
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levels of density at the macroscale. We choose high, medium, and low death rate at the
microscale which corresponds to low, medium and high cell density at the macroscale,
respectively. As we observe in Figure 5.13, the death rate that determines the population
size at the microscale affects the complexity and the dispersion velocity of the interaction
neighbourhood.

(a) (b) (c)

Figure 5.13: Final patterns at time t = 100 generated by the model from the same initial
configuration with different death rates in the birth-death process at the microscale. (a)
Low death rate (d = 0.2). (b) Medium death rate (d = 0.5). (c) High death rate (d = 0.8).
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Figure 5.14: Average complexity of the patterns for 100 realizations with different death rates
and velocity of dispersion of the model over the course of time for three realizations with
different death rates at the microscale of the model. (a) Average complexity of patterns. The
points represent the average complexity of patterns from 100 realizations at each time, and
the curve represents the fitted model of the complexity over time, with(complexity = 1.67−
0.002× time, R2 = .88, F (1, 99) = 697, p < .001), (ln(complexity) = 0.42−0.01× time, R2 =
.98, F (1, 99) = 6697, p < .001; ln(complexity) = 0.49 − 0.01 × time, R2 = .99, F (1, 99) =
10980, p < .001) for death rate = 0.8, 0.5, 0.2. (b) Velocity of dispersion for one realization.
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Figure 5.15: Plots for velocity of dispersion for the realization when death rate is 0.5. (a)
Autocorrelation plot. (b) Partial autocorrelation plot. (c) Empirical cumulative distribution
function plot. (d) Normal QQ plot.

In Figure 5.14, the average complexity decreases linearly when the death rate is at a
very high level. This is because the average complexity generally decreases as interaction
neighbourhood grows, but a high death rate in the birth-death process slows the growth
of the interaction neighbourhood. While when the death rate is at level of 0.2 and 0.5, the
average complexity decreases exponentially as the interaction neighbourhood grows at a
much higher rate. When the death rate is at a lower level, the interaction neighbourhood
expands at a much higher rate, as shown by the plot of velocity of dispersion oscillating
around different levels of straight lines in Figure 5.14. This suggests that the magnitude of
dispersion is dependent on population size. For the purpose of simplicity, we only present
the analysis plots of the velocity of dispersion when the death rate is at the level of 0.5 in
Figure 5.15, similar to our previous findings, the velocity of dispersion resemble Gaussian
white noise. The velocity of dispersion have similar structure for the other two death rate
levels.

We let the birth-death process show cyclic behaviour that occur in a 20 time step cycle,
which represents the natural cyclic characteristics of the mountain pine beetle biology. The
cell density at the macroscale also presents a cyclic behaviour, which lead to the same cyclic
behaviour in dispersion patterns. We use the radius of the circle that equals the total area
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of all affected cells in the interaction neighbourhood to measure the neighbourhood growth
over time. Apparently, the radius presents a cyclic behaviour in Figure 5.16. When there is
enough individuals to pass into the macroscale model, the interaction neighbourhood grows,
and when there is not enough individuals to pass into the macroscale model, the interaction
neighbourhood stops growing and even shrinks in size.
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Figure 5.16: Cyclic behaviour of the birth-death process. (a) Number of individuals gen-
erated from the birth-death process over time given the initial population size is 90. (b)
Radius of the circle that equals the total area of all affected cells in the interaction neigh-
bourhood..

5.5.1.1.2 Impact of the Spreading Rate γ1

(a) (b) (c)

Figure 5.17: Final patterns at time t = 50 generated by the model from the same initial
configuration with different spreading rates γ1 at the macroscale. (a) High spreading rate
(γ1 = 0.8). (b) Medium spreading rate (γ1 = 0.4). (c) Low spreading rate (γ1 = 0.2).
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Figure 5.18: Average complexity of the patterns and velocity of dispersion of the model over
the course of time for three realizations with different spreading rate at the macroscale of
the model. (a) Average complexity of patterns. The points represent average complexity
of patterns from 100 realizations at each time, the curve represents the fitted model of
the complexity over time, with ln(complexity) = 0.42 − 0.01 × time, R2 = .98, F (1, 99) =
6697, p < .001; ln(complexity) = 0.53 − 0.01 × time, R2 = .99, F (1, 99) = 25180, p < .001,
and complexity = 1.69 − 0.01 × time, R2 = .99, F (1, 99) = 16720, p < .001) for spread rate
0.8, 0.5, and 0.2, respectively. (b) Velocity of dispersion for one realization.

0.0

0.4

0.8

0 4 8 12 16 20
Lag

A
ut

oc
or

re
la

tio
ns

(a)

0.0

0.4

0.8

0 4 8 12 16 20
Lag

P
ar

tia
l A

ut
oc

or
re

la
tio

ns

(b)

0.00

0.25

0.50

0.75

1.00

−0.5 0.0 0.5 1.0
Velocity of dispersion

F
(V

el
oc

ity
 o

f d
is

pe
rs

io
n)

(c)

−0.5

0.0

0.5

1.0

−2 −1 0 1 2
Theoretical quantiles

S
am

pl
e 

qu
an

til
es

(d)

Figure 5.19: Plots for velocity of dispersion for one realization. (a) Autocorrelation plot.
(b) Partial autocorrelation plot. (c) Empirical cumulative distribution function plot. (d)
Normal QQ plot.
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An alternative way to vary the cell density is to vary the spreading rate γ1 at the
macroscale of the model. The spreading rate regulates the percentage of populations that
emigrate to new cells, therefore, different spreading rates lead to various model behaviours.
As we observe in Figure 5.17, the size of the interaction neighbourhood is much larger when
the spreading rate γ1 is at a higher level, which is verified in the velocity of dispersion plot.
This suggests the fact that the dispersion process is accelerated by the population size.

5.5.1.1.3 Impact of the Survival Rate γ2

Another option to vary the cell density is to vary the survival rate γ2 at the macroscale
of the model. The survival rate determines the percentage of population that successfully
immigrates into the new cells. We can see from the dispersion patterns in Figure 5.20, a
larger survival rate leads to a faster increase in the size of the interaction neighbourhood,
which once again indicates the positive influence of population size on dispersion process.

The average complexity of patterns decreases exponentially for the three survival rate
levels, and the velocity of dispersion also resembles Gaussian white noise.

(a) (b) (c)

Figure 5.20: Final patterns at time t = 50 generated by the model from the same initial
configuration with different survival rates γ2 at the macroscale. (a) High survival rate (γ2 =
0.8). (b) Medium survival rate (γ2 = 0.4). (c) Low survival rate (γ2 = 0.2).

Comparing the ending patterns from Figure 5.13, Figure 5.17, and Figure 5.20, we
conclude that varying the cell densities in the model using three different options all influence
the evolution patterns generated by the model. The spreading rate γ1 and the survival rate
γ2 seem to have similar effects on the model behaviours while the birth-death process
on the microscale appears to have a large effect on the model behaviour. Based on our
observations of the trend of average complexity over time, the average complexity tends to
decrease exponentially when there is enough density to disperse, and it tend to decrease
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Figure 5.21: Average complexity of the patterns and velocity of dispersion of the model
over the course of time for three realizations with different survival rate levels at the
macroscale of the model. (a) Average complexity of patterns. The points represent aver-
age complexity of patterns from 100 realizations at each time, and the curve represents the
fitted model of the complexity over time, with (ln(complexity) = 0.42 − 0.01 × time, R2 =
.98, F (1, 99) = 6697, p < .001; ln(complexity) = 0.5 − 0.01 × time, R2 = .99, F (1, 99) =
22210, p < .001, ln(complexity) = 0.55 − 0.01 × time, R2 = .99, F (1, 99) = 11380, p < .001)
for survival rate 0.8, 0.4, and 0.2, respectively. (b) Velocity of dispersion for one realization.
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Figure 5.22: Plots for velocity of dispersion for one realization. (a) Autocorrelation plot.
(b) Partial autocorrelation plot. (c) Empirical cumulative distribution function plot. (d)
Normal QQ plot.
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faster when the density is at a higher level. However, it tends to decrease linearly when the
density available to disperse is at a very low level.

5.5.1.2 Impact of the Inclusion Probability

The inclusion probability is determined as 3.3.3, where w
(t)
ij and d

(t)
ij are defined as

inclusion weights and difference in densities between adjacent cells that are described in
previous chapter, and the parameters α

(t)
ij and β

(t)
ij are used to distinguish the inclusion

probability between high density cells and low density cells. The parameters can be varied
for each cell (i, j) according to the local physical properties at each time step t. For simplicity,
we assume the cells are uniform in the simulation runs, therefore all cells have the same
α and β values. We vary the parameters α and β to investigate the impact of inclusion
probability on dispersion patterns.

(a) (b) (c)

Figure 5.23: Final patterns at time t = 50 generated by the model from the same initial
configuration with different inclusion probabilities at the macroscale. (a) High inclusion
probability (α = 1, β = 0.2). (b) Medium inclusion probability (α = 1, β = 1). (c) Low
inclusion probability (α = 1, β = 2).

Given fixed values for ω and d, varying α and β jointly leads to varying inclusion proba-
bilities. According to Figure 5.23, when the inclusion probability is large, the neighbouring
non-affected cells of the affected cells are more likely to be included in the dispersion pro-
cess, and the density is more likely to disperse to those non-affected cells. Therefore, we
observe the size of the interaction neighbourhood grows faster with a larger inclusion prob-
ability. Furthermore, the interaction neighbourhood grows with a “rougher” boundary and
there are lots of vacant cells inside the interaction neighbourhood. This suggests that the
neighbouring non-affected cells are more likely to be affected during the dispersion process.
On the contrary, when the inclusion probability is small, non-affected neighbouring cells are
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Figure 5.24: Average complexity of the patterns and velocity of dispersion of the model
over the course of time for three realizations with different inclusion probabilities at the
macroscale of the model. (a) Average complexity of patterns. The points represent average
complexity of patterns from 100 realizations at each time, and the curve represents the
fitted model of the complexity over time, with (ln(complexity) = 0.67 − 0.01 × time, R2 =
.97, F (1, 47) = 1496, p < .001; ln(complexity) = 0.5 − 0.02 × time, R2 = .99, F (1, 47) =
9088, p < .001; ln(complexity) = 0.44 − 0.01 × time, R2 = .99, F (1, 47) = 10900, p < .001)
for large, medium and small inclusion probability, respectively. (b) Velocity of dispersion
for one realization.
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Figure 5.25: Plots for velocity of dispersion for one realization of large inclusion probability.
(a) Autocorrelation plot. (b) Partial autocorrelation plot.

less likely to be included in the dispersion process, the interaction neighbourhood grows at
a much slower rate, and has a “smoother” boundary.

We observe some moderate deviation from the fitted model for average complexity of
large inclusion probability, and this is due to the unpredictable and complex pattern bound-
aries resulted by the large inclusion probability. In addition, this unpredictability is also
reflected in the velocity of dispersion as the dispersion velocity does not resemble white
noise.
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5.5.1.3 Impact of the Survival Probability

The survival probability is the probability of successful population dispersion to low den-
sity cells. It characterizes establishment of population in new areas. The survival probability
determined as 3.3.4, depends on the population size that is received by the non-contributing
cells. Similar to the scheme of inclusion probability parameters, ϕ

(t)
ij , ρ

(t)
ij and ξ

(t)
ij are used to

adjust the survival probability for each non-contributing cell at each time step t. We assume
all cells take the same parameter values in the simulation runs. We vary those parameters
jointly to study the impact of survival probability on dispersion patterns.

(a) (b) (c)

Figure 5.26: Final patterns at time t = 50 generated by the model from the same initial
configuration with different survival probabilities at the macroscale. (a) High survival prob-
ability (ϕ = 1/3, ρ = 1/3). (b) Medium survival probability (ϕ = 1/6, ρ = 1/6). (c) Low
survival probability (ϕ = 1/9, ρ = 1/9).

As we observe in Figure 5.26, the survival probability has a similar effect to the inclusion
probability in terms of interaction neighbourhood size. The interaction neighbourhood grows
faster and there are fewer vacant cells inside the interaction neighbourhood when the survival
probability is large. This is because a large survival probability means that the population
are more likely to establish in the new cells, thus, the non-affected cells are more likely
to be affected during the dispersion process. The average complexity decreases linearly
when the survival probability is at a very low level, this result is similar to the impact of
birth-death-process at the micro scale. The velocity resemble Gaussian white noise.

Compared to Figure 5.23, while a large inclusion probability and survival probability
both tend to accelerate the dispersion process, they lead to different evolution patterns. A
large inclusion probability leads to a much uncertain and complex pattern.
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Figure 5.27: Average complexity of the patterns and velocity of dispersion of the model
over the course of time for three realizations with different survival probabilities at the
macroscale of the model. (a) Average complexity of patterns. The points represent average
complexity of patterns from 100 realizations at each time, and the curve represents the
fitted model of the complexity over time, with (ln(complexity) = 0.42 − 0.01 × time, R2 =
.98, F (1, 99) = 6697, p < .001; ln(complexity) = 0.6 − 0.01 × time, R2 = .99, F (1, 99) =
49100, p < .001; complexity) = 1.8 − 0.006 × time, R2 = .98, F (1, 99) = 7267, p < .001)
for large, medium, and small survival rates, respectively. (b) Velocity of dispersion for one
realization.
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Figure 5.28: Plots for velocity of dispersion for one realization of small survival probability.
(a) Autocorrelation plot. (b) Partial autocorrelation plot. (c) Empirical cumulative distri-
bution function plot. (d) Normal QQ plot.
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5.5.2 Phase II: Interactions between the Model Regimes

Interactions due to varying parameters simultaneously also impacts the evolution pat-
terns of the model. Varying cell density, the inclusion probability and the survival probability
simultaneously leads to complex model behaviours. We aim to explore this effect. There are
three ways to vary the cell densities in the simulation runs, i.e., the birth-death process
at the microscale, the spreading rate γ1 and survival rate γ2 at the macroscale. But they
behave similarly so we only vary the spreading rate γ1 to vary the cell densities in phase II.

5.5.2.1 Varying Cell Density and Inclusion Probability Simultaneously

We aim to investigate the effect of varying cell density and inclusion probability simul-
taneously. In Figure 5.29, we see that when the cell population is large enough to support
the dispersion to new areas and the inclusion probability is sufficiently large, the interac-
tion neighbourhood grows with only a few vacant cells in the interior of the neighbourhood.
However, when the inclusion probability is large but the cell density is small, the interaction
neighbourhood grows but with a much rougher boundary and a higher number of vacant
cells in the interior. This is because when the cell density is small, it is very unlikely to
survive in the new cells due to the survival probability, leading to many vacant cells on the
boundary and interior. When the cell density and inclusion probability are both small, the
interaction neighbourhood grows at a very slow rate and there are no vacant cells in the
interior.

5.5.2.2 Varying Cell Density and Survival Probability Simultaneously

Varying the cell density and inclusion probability simultaneously yields a more uniform
pattern, as shown in Figure 5.30. When both are large, the interaction neighbourhood grows
at a faster rate and when both small, the neighbourhood grows at a very slow rate. Compared
to each plot in Figure 5.29, the boundary of the neighbourhood is much “smoother” with
fewer vacant cells in the interior of the neighbourhood.

5.5.2.3 Varying Inclusion Probability and Survival Probability Simultaneously

Varying the inclusion probability and survival probability simultaneously yields very
complex patterns. The inclusion probability determines how likely the cells are included in
the dispersion process, and the survival probability determines how likely the population
disperses to new cells. In Figure 5.31, when both of them are large, the interaction neigh-
bourhood grows at a much faster rate with a very rough boundary, but there are a lot of
vacant cells inside the neighbourhood; and when both of them are small, the interaction
neighbourhood barely grows with a much smoother boundary, and there are almost no
vacant cells inside the neighbourhood.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.29: Model patterns at time t = 30 while varying cell density and inclusion
probability simultaneously. (a) High cell density (γ1 = 0.8) and large inclusion proba-
bility (α = 1, β = 0.2). (b) Medium cell density (γ1 = 0.4) and large inclusion prob-
ability (α = 1, β = 0.2). (c) Low cell density (γ1 = 0.1) and large inclusion probabil-
ity (α = 1, β = 0.2). (d) Medium cell density (γ1 = 0.4) and large inclusion probabil-
ity (α = 1, β = 0.2).(e) Medium cell density (γ1 = 0.4) and medium inclusion proba-
bility (α = 1, β = 1).(f) Medium cell density (γ1 = 0.4) and medium inclusion prob-
ability (α = 1, β = 1). (g) Large cell density (γ1 = 0.8) and small inclusion proba-
bility (α = 1, β = 3). (h) Medium cell density (γ1 = 0.4) and small inclusion proba-
bility (α = 1, β = 3). (i) Small cell density (γ1 = 0.1) and small inclusion probability
(α = 1, β = 3).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.30: Model patterns at time t = 30 while varying cell density and survival probability
simultaneously. (a) High cell density (γ1 = 0.8) and large survival probability (ϕ = 1/2, ρ =
1/2). (b) Medium cell density (γ1 = 0.4) and large survival probability (ϕ = 1/2, ρ = 1/2).
(c) Low cell density (γ1 = 0.1) and large survival probability (ϕ = 1/2, ρ = 1/2). (d)
Medium cell density (γ1 = 0.4) and medium survival probability (ϕ = 1/3, ρ = 1/3).(e)
Medium cell density (γ1 = 0.4) and medium survival probability (ϕ = 1/3, ρ = 1/3).(f)
Small cell density (γ1 = 0.4) and medium survival probability (ϕ = 1/3, ρ = 1/3). (g) Large
cell density (γ1 = 0.8) and small survival probability (ϕ = 1/9, ρ = 1/9). (h) Medium cell
density (γ1 = 0.4) and small survival probability (ϕ = 1/9, ρ = 1/9). (i) Small cell density
(γ1 = 0.1) and small survival probability (ϕ = 1/9, ρ = 1/9).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.31: Model patterns at time t = 30 while varying inclusion probability and survival
probability simultaneously. (a) Large inclusion probability (α = 1, β = 0.2) and large sur-
vival probability (ϕ = 1/2, ρ = 1/2). (b) Large inclusion probability (α = 1, β = 0.2)
and medium survival probability (ϕ = 1/3, ρ = 1/3). (c) Large inclusion probability
(α = 1, β = 0.2) and small survival probability (ϕ = 1/9, ρ = 1/9). (d) Medium inclusion
probability (α = 1, β = 1) and large survival probability (ϕ = 1/2, ρ = 1/2).(e)Medium
inclusion probability (α = 1, β = 1) and medium survival probability (ϕ = 1/3, ρ =
1/3).(f) Medium inclusion probability (α = 1, β = 1) and small survival probability
(ϕ = 1/9, ρ = 1/9). (g) Small inclusion probability (α = 1, β = 3) and large survival
probability (ϕ = 1/2, ρ = 1/2). (h) Small inclusion probability (α = 1, β = 3) and medium
survival probability (ϕ = 1/3, ρ = 1/3). (i) Small inclusion probability (α = 1, β = 3) and
small survival probability (ϕ = 1/9, ρ = 1/9).
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5.5.3 Phase III: Impact of Inhomogeneous Cell Space

Physical environments may have inhomogeneous properties, e.g., population dispersion
is often disturbed by heterogeneity influence such as the geographical situations or the outer
forces. Thus, the conditions for dispersion vary cell to cell. For example, in mountain pine
beetle infestation study, there are deforested areas such as prairie, grassland, rocky hills,
large lakes or human constructions and dispersion is influenced by weather conditions such
as wind. We modify specific cell properties in the grid or vary the transition rule to mimic
this environmental inhomogeneity.

Figure 5.32: Mountain pine beetle infestation in a local inhomogeneous region of the Greater
Yellowstone Ecosystem. This aerial photograph was taken by Jane Pargiter during the
summer of 2007. Photo is from [123]. Licensed under a CC BY-NC license.

5.5.3.1 Geographical Properties of the Cell Space

We set up two experiments to investigate situations in which the population is only
allowed to disperse through some cells in the domain. In this way, we aim to simulate the
dispersion patterns to reflect the heterogeneous environment when there is a barrier for
the population to disperse. We see in Figure 5.33 and Figure 5.34, the population only
immigrates to specific cells as expected, and the dispersion patterns do not display the kind
of boundaries seen in other simulations. The dispersion also takes much longer to spread.
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(a) (b) (c)

(d) (e) (f)

Figure 5.33: Evolution patterns when there is a region for which individuals can pass through
in the domain. (a) t = 10. (b) t = 100. (c) t = 200. (d) t = 300. (e) t = 400. (f) t = 500.

(a) (b) (c)

(d) (e) (f)

Figure 5.34: Evolution patterns when there is a lake in the domain. (a) t = 10. (b) t = 100.
(c) t = 200. (d) t = 300. (e) t = 400. (f) t = 500.
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5.5.3.2 Outer Forces

The dispersion process may be affected by environmental forces. For example, mountain
pine beetles may be strongly affected by wind, i.e., they can fly to a larger region with
greater spatial variability.

We model an effect like wind by including a probability that is assigned to cells on
different locations of the grid and we encourage the directional movement of populations by
varying the likelihood of including specific cells in the grid according to the wind speed and
direction. For example, suppose the wind is blowing from West towards East. We assign
a probability to increase the chance of including high density cells on the West and low
density cells on the East while lowering the probability of including low density cells on
the West and high density cells on the East. In this way, the population in high density
cells in the West is more likely to disperse to low density cells in the East. By modifying
the transition rule, we are able to treat the atmosphere as a variable instead of a simple
“constant”.

(a) (b)

Figure 5.35: Evolution patterns at time t = 120 for a non-directional and directional move-
ment to the East with the same initial configurations and parameter settings. (a) Non-
directional movement. (b) Directional movement.

We see in Figure 5.35, compared to the non-directional movement (a), the population
tend to disperse to the East, and there are fewer affected cells at the same time steps.
The experiments in Phase III suggest that the model can provide flexibility for adapting to
different situations by simulating the heterogeneous environment in practice.
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5.5.4 Phase V: Evolutional Patterns of Two Groups of Cells with Differ-
ent Properties

The previous simulation runs are all based on one interaction neighbourhood. In prac-
tice, there may be more than one interaction neighbourhood which have different physical
properties, and we would like to simulate the dynamics of two distinct interaction neigh-
bourhoods with different initial patterns and physical properties to observe the evolution
when there are more than one interaction neighbourhood.

We assume there are two distinct interaction neighbourhoods in the grid that are far
away from each other at the start of the dispersion process. The two interaction neighbour-
hoods have distinct properties including different cell densities, inclusion probability and
survival probability. We assume that both are expanding in the grid. But the lower small
interaction neighbourhood disperses at a much slower rate, and the upper large interaction
neighbourhood disperses at a much faster rate. We see in Figure 5.36, the upper interaction
neighbourhood quickly grows and approaches the lower small interaction neighbourhood.
After certain time steps, the two interaction neighbourhoods merge with each other, and
they behave like one interaction neighbourhood.

(a) (b) (c)

(d) (e) (f)

Figure 5.36: Evolution patterns of interactions between two interaction neighbourhoods
when they both grow without limit. (a) t = 0. (b) t = 20. (c) t = 40. (d) t = 60. (e) t = 80.
(f) t = 100.
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5.6 Summary and Discussion

We investigate the various aspects of the multiscale SCA model behaviour. The numeri-
cal simulation results indicate that the SCA model capable of generating various dispersion
patterns. In general, the model behaviour approaches three limiting situations: fade away
completely, settle into a fixed finite size, and grow without limit at a fixed speed. The
dispersion patterns depend on the a couple of factors such as the choice of the microscale
model, the model parameters and the interactions between the model parameters. Some
parameters have similar effect and variations among those parameters tend to generate
patterns with almost identical physical characteristics. The microscale model provides the
input of the macroscale SCA model, which mainly determines the number of affected cells
and cell density at a specific time. The spreading rate and survival rate have similar effects
on model behaviour as the microscale model. The inclusion probabilistic rule and the sur-
vival probabilistic rule mainly determine the smoothness of the boundary of the dispersion
patterns, as well as the number of vacant cells inside the interaction neighbourhood.
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Chapter 6

Model Calibration

An important property of a model is the degree to which the parameters in the model
can be “calibrated” or determined from observed data on the model behaviour. Calibration
problem is an essential component in using a model to forecast behaviour of the system
being modelled. In this chapter, we conduct a numerical investigation of the calibration
problem for the Stochastic Cellular Automaton (SCA) model.

The calibration problem is a form of inverse problem. In general, the map that implicitly
relates the model parameters to the model output is not 1-1, so assumptions are required in
order that the calibration problem admits a well defined solution. In this chapter, we consider
two Bayesian approaches to the calibration problem, namely the Stochastic Inverse Problem
(SIP) and Bayesian Inverse Problem (BIP) [16]. The SIP requires fewer assumptions than
the BIP but requires sufficient data on the output to build a nonparametric approximate
distribution, so we conduct the investigation of the SIP using simulated data. To consider
a calibration using real data, we study the BIP approach for data consisting of graphical
representations that indicate the progression of tree damage in a pine beetle infestation.

The main goal of this chapter is to numerically demonstrate that the SCA can be
calibrated from observed data and to investigate the sensitivity of calibration for individual
parameters in the SCA. A complication with calibration for the SCA is the stochastic nature
of the output, which means that repeated simulations with the same parameters may yield
different results. To handle this, we calibrate the model results for the expectation of model
outputs. That is, we calibrate with respect to the output of the model obtained by averaging
over a large number of simulations.

6.1 Introduction

The parameters in a physical process model of a complex system represent important
physical characteristics of the system being modelled. Scientific inference using a model of
a complex system, e.g., forecasting behaviour, involves evaluating the model for parameter
values that are relevant for the current physical state of the system. However, in a great
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number of cases, it is difficult or impossible to directly observe the parameters in a physical
process model.

This raises the problem of model calibration. A form of inverse problem, in the stochas-
tic setting, the model calibration problem is to determine a probability distribution on
the model parameters from (noisy) observational data on behaviour of the solutions of the
model. Model calibration involves a number of technical complications and there are many
fundamental challenges. First, the models that are used to characterize the processes often
have limitations on the output values, for example, the models may be imperfect or impre-
cise in terms of characterizing the system behaviour. Also, in reality, the data is usually
uncertain, i.e., the data is affected by observational noise. Furthermore, the models may
be computationally expensive to evaluate. Most importantly, typically the model is not 1-1
and there are multiple parameter values that produce the same data.

There are a variety of approaches to tackle the problems of calibration of model param-
eters from observed data and forecasting for time-dependent systems. These include data
assimilation [178] [102], [10], [9], [119], Bayesian calibration [23] [90], [100], [113], and filter-
ing [107], which all use a dynamics approach focused on small perturbations of a particular
solution of the model. Some of these approaches are related to stochastic processes and time
series analysis.

In this chapter, we use two different approaches to the model calibration problem, the
Stochastic Inverse Problem (SIP) [16], [30], [21], [31] and Bayesian Inverse Problem (BIP)
[129], [113]. We carry out calibration using both simulated data and real data in the form
of graphical representations of tree damage from pine beetles.

We collect data on certain quantities that are considered to be quantities of interest
related to the model solution, i.e., the dispersion patterns. We infer the parameter infor-
mation from data based on these quantities. Therefore, the SCA model we build induces
a measurable nonlinear map from the domain of physical parameters to the range of some
observable quantities of interest that can be computed as some measurable features of the
dispersion patterns.

6.2 Data for Mountain Pine Beetle Infestations

It is difficult to obtain data suitable for calibration of a model for pine beetle infestations.
One possible data is obtained from aerial surveys by observers in aircraft that provide overall
forest health status in broad-scale and gather information about detect MPB infestations.
The aerial surveys identify the location of the insects and its infestation severity. Usually,
multiple maps are combined to form digital infestations, and the information gathered from
the air are combined with results obtained from ground surveys to estimate the severity of
beetle infestation since it is impossible to determine the exact number of infested trees from
the air.
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An important issue in model calibration using graphical data is the choice of physical
domain. This involves both the scale over which simulations can be carried out in reasonable
time and the validity of representation of the model. We perform calibration using the
graphical data from a region that was used to monitor the long-term ecological health of
the Crown of the Continent Ecosystem. The map keeps record of dead (red) pine trees
which indicate a high likelihood of mountain pine beetle attacks from 2001 to 2007. The
area of dead pine trees is about 2865 km2 and occupies about 4.4 % of the entire Crown of
the Continent Ecosystem region.

(a)

Figure 6.1: An aerial survey map for mountain pine beetle infestation in the Crown of the
Continent Ecosystem. Image of map is from the US Geological Survey database [58].

6.3 The Model Calibration Problem

To formulate the calibration problem, we assume the vector of parameters for the SCA
model M is λ and the corresponding parameter domain that describes the physical charac-
teristics of dispersion process is Λ, and the solution of the model is Y with M(Y, λ) = 0,
where λ takes values in the domain Λ. The solution of the model can be written as Y = Y (λ),
which is an implicit function of the parameters. We collect data on a “Quantity of Interest”,
which is a function of the model solution that constitute observable quantities. Suppose the
quantities of interest are computed by a function q defined on the model solution Y , then we
summarize the model as Q(λ) = q(Y (λ)), where Q is the map from the parameter domain
Λ to the “observable space” The map Q is rarely 1 − 1, i.e., there are multiple parameter
values that produce the same output value. For example, many combinations of parameters
in the SCA model lead to identical dispersion pattern. We let D denote the range of Q on
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Λ defined as D = {Q(λ) : λ ∈ Λ}. Therefore, the inverse Q−1 of Q is the map from D to
subsets of Λ,

Q−1(y) = {λ ∈ Λ : Q(λ) = y}.

6.3.1 The Stochastic Forward Problem

The stochastic inverse problem is the inverse of the classic stochastic forward problem.
We assume a stochastic model for the vector of model parameters λ, where Λ is the sample
space, BΛ is the Borel σ algebra, and (Λ, BΛ, P̃Λ) is the probability of possible sets of pa-
rameters, called the data generating distribution. This reflects uncertainty in the parameter
values. In the inverse problem, we treat the range D = Q(Λ) as the domain for the model
parameters, and our goal is to choose a sample value λ ∈ Λ corresponding to an observed
output d = Q(λ) ∈ D. We choose the Borel σ algebra BD on D to form the measurable
space (D, BD).

The Stochastic Forward Problem (SFP) is to compute the probability distribution PD

on (D, BD) that is induced by Q from the probability measure P̃Λ via

PD(B) = P̃Λ
(
Q−1(B)

)
for B ∈ BD.

The inverse map Q−1 of Q is the map from D to subsets of Λ defined by,

Q−1(y) = {λ ∈ Λ : Q(λ) = y} for y ∈ D. (6.3.1)

PD is sometimes called the push-forward measure, and the SFP is sometimes described
as propagating uncertainty through the model. The SFP provides a probability distribution
on the potential experimental results under the varying experimental conditions. The SFP
plays a central role in model forecasting and inference, and is a cornerstone for scientific
and engineering inference. The SFP focuses on the behaviour of a model over a wide range
of possible parameters, so the model can include a wide variety of behaviours in possible
solutions.

The ensemble approximation for solving the SFP is computed by conducting experiments
using the Monte Carlo method. According to the data generating distribution P̃ , we collect
samples {λi}n

i=1 and compute the corresponding output values {qi = Q(λi)}n
i=1. We then

use those output values to construct an approximation to PD.

6.3.2 The Stochastic Inverse Problem

The SIP is to compute a probability distribution PΛ on (Λ, BΛ) that induces a distribu-
tion PD on (D, BD) when the data generating distribution P̃ is unknown and the collection of
output values {qi = Q(λi)}n

i=1 is a sample from PD. The full theory for the existence, prop-
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erties, and approximate computation of solutions of the SIP under very general conditions
are presented in [16, 21, 30, 31, 37, 48–50, 198, 199]. The SCA model satisfies the conditions
and needed for formulating and solving the SIP.

In general, there is an infinite number of solutions P of the SIP. We adopt a Bayesian
approach to deal with this issue. We choose a prior distribution that specifies a unique
solution of the SIP, which is a Bayesian posterior. In this case, the SIP is well-posed in the
sense of Hadamard, and the posterior inverse probability distribution depends continuously
a.e. on initial conditions and parameters. The solution of the SIP is approximated by a
form of importance sampling. We choose an initial random sample in Λ according to some
fixed distribution (typically uniform), and use the initial sample to produce an updated
weighted sample with probabilities corresponding to the solution of the SIP. We use the
public domain Python code BET [89] that provides a variety of tools for solving the SIP
for simple and complex models.

In an experimental situation, choosing a good parameter domain Λ is part of the prob-
lem. It is important to choose a reasonable parameter domain Λ because Λ determines the
range of the parameters for which model behaviour is being studied. If Λ is too small or too
big or does not include the range of meaningful parameter values, then it may not be possible
to solve the calibration problem. Furthermore, it is also crucial to choose a prior family of
distributions. In the absence of additional information, we specify a non-informative prior
with maximum entropy since we have no idea which parameter values can generate the
output values and we assume any parameter value is equally likely. This prior is called the
uniform Ansatz [16]. That is used in all computations.

6.3.3 The Bayesian Inverse Problem

In the BIP, we assume there is a true value λ̃ for the vector of model parameters λ,
but we do not know the exact value. However, we can observe noisy values of the model
output value ỹ which can be written as ỹ = Q(λ̃). We model the uncertainty in the physical
process by choosing a small sample space that contains the true value λ̃ and we assume a
probability distribution on the domain to describe the uncertainty. Since the output values
are stochastic, we model the output as ỹ = Q(λ̃)+ϵ, where ϵ is normal noise with mean zero
and a fixed covariance matrix Σ. Given a collection of noisy model output values {ŷi}M

i=1, the
goal for BIP is to compute a posterior distribution on Λ from which we obtain an estimate
of λ̃.

We choose a sample space Λ̄ for the model parameter λ such that λ̃ ∈ Λ̄. Since the
true parameter value λ̃ is a fixed constant and it is not affected by the random “noise”,
we assume that the noisy model output values, i.e., Y = {ŷi}M

i=1, are independent draws
from N(Q(λ̃), Σ). Given Q(λ) ∼ N(Q(λ̃), Σ), we define the conditional probability density
as p(ŷ|λ) ∼ N(Q(λ), Σ) for ŷ ∈ Y and λ ∈ Λ̄.
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6.4 Model Parameters and Quantities of Interest

According to the simulation results in Chapter 5, the parameters in the SCA model affect
the model output in various ways. Some parameters have similar effect and variations among
those parameters tend to generate patterns with almost identical physical characteristics. It
is critical to identify the appropriate parameters for the calibration problem because some
parameters in the model reflect the domain knowledge of the dispersion process and some
parameters represent the specific stages of the process can be validated experimentally. The
microscale of the model is used to characterize dynamics and interactions between individual
mountain pine beetles in one or a few neighbouring trees, this is a separate process and the
model parameters should be validated in a separate exercise.

Table 6.1: List of parameters for the SCA model

Symbol Definition
α Shape parameter in the inclusion probability
β Shape parameter in the inclusion probability
γ1 Spreading rate
γ2 Survival rate
ϕ Shape parameter in the survival probability
ρ Shape parameter in the survival probability
ξ Shape parameter in the survival probability

The calibration problem is solved at the macroscale. We introduce two probabilistic rules
in the model to characterize the stochastic feature of the dispersion process. The inclusion
probability represents the host selection process, in which case beetles usually prefer large-
diameter trees with a thicker phloem and low infestations to provide a good habitat. α

and β are set to reflect these physical properties of the interaction neighbourhoods, such
as temperature, wind, light and health conditions of the trees in the neighbourhood. This
also applies to ρ and ξ in the survival probability. Therefore, α, β, ρ and ξ that are relevant
to physical properties of the interaction neighbourhoods and environmental conditions can
be validated using the domain knowledge. ϕ in the survival probability reflects the general
success of host colonization in the new areas, this process is a complex scheme facilitated by
pheromones and kairomones, which is more likely to be determined by the tree infestation
maps. γ1 and γ2 jointly decide the severity of infestations, γ1 characterizing the mass-attack
strategy of beetles which is not apparent to human, and it should be determined by the
infestation maps. γ2 also characterizes the host colonization process, but it can be validated
experimentally in the field recapture-release studies. For this reason, we identify γ1 and ϕ

as model parameters for the calibration problem, then λ = (γ1, ϕ).
For the experiments with simulated data, the setup of calibration problem for the SCA

model is based on using statistics of dispersion patterns, therefore, we choose the domain
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of the model parameters according to model behaviours that yield interesting patterns.
For the calibration using simulated data, the domain for γ1 and ϕ are [0.6, 1] and

[
1
6 , 5

6

]
,

respectively. We set a domain for the parameter ϕ to ensure that the survival probability
is large enough to generate a growing dispersion pattern. Thus, Λ = [0.6, 1] ×

[
1
6 , 5

6

]
⊂ R2.

We set the parameter ρ = 1
12 .

We use four measurable quantities of interest in solving the calibration problem. The
quantities of interest include the number of affected cells, the average cell density, the com-
plexity of dispersion pattern and the derivative of fitted exponential curve of the complexity.
The derivative of fitted curve of complexity is only feasible for the first two experiments
due to limitations in data generation. These quantities are observable and can be easily
computed from a dispersion pattern. Furthermore, they provide measurable information
about the dispersion patterns.

6.5 Experiments

We provide four experiments using the SIP and BIP approaches to solve the calibra-
tion problem. The first three experiments are based on the simulated data and the fourth
experiment is based on the real data in Figure 6.1.

We generate 1000 samples with 50 realizations for each combination of parameter values
for use in averaging. Since the dispersion patterns tend to behave similarly for large times,
we consider the patterns at 30 time steps to obtain patterns that have significant variation.
The data generation takes around 30 hours on the Compute Canada’s high-performance
computation system depending on the computation resources.

As for the quantities of interest, we compute the average of the number of affected cells,
the average cell density and the complexity of dispersion patterns. We fit the exponential
curve the average complexity to obtain the derivative.

6.5.1 Experiment 1

6.5.1.1 Data Generation

We adopt the BIP approach and assume the true values for γ1 and ϕ are 0.7 and 1
3 ,

respectively. To generate data, we choose a data generating distribution P̃ , draw a sample
from the distribution, solve multiple realizations of the model for each parameter sample,
then compute the indicated statistics. This yields the data for calibration. We then “forget”
the data generating distribution and solve the BIP. Note that we do not expect to recover
the data generating distribution in general. In this experiment, we add noise N(0, 0.052)
to the true values. We generate 1000 samples with 50 realizations for each combination
of γ1 and ϕ. We compute the four quantities of interest for the dispersion patterns as the
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experimental data y. Therefore, Q maps a four dimensional domain into a two dimensional
domain.

6.5.1.2 Results
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Figure 6.2: Bayesian posterior density contour plot for γ1 and ϕ generated from four quan-
titative measurements. (a) Average number of affected cells. (b) Average cell density. (c)
Average complexity of dispersion pattern. (d) Derivative of fitted curve of complexity.

The density contour plots of the inverse solution are shown in Figure 6.2. The plots
show a density that has the form of a “ridge” that is parallel to the γ1 axis, which indicates
that the distribution of γ1 is nearly uniform over the domain and many values of γ1 lead to
the same output data. This reflects the uniform Ansatz prior. This indicates that we chose
a reasonable range for γ1 in Λ. If we had the wrong interval for γ1, the numerical method
would indicate a singular distribution. As for ϕ, the contour lines in the first three plots
are spaced very close to each other, then the values change rapidly, which indicate that the
values for ϕ are concentrated within a small interval and the posterior density of ϕ is very
peaked around a single value, which is close to 0.3. However, in the fourth contour plot
that uses derivative of fitted curve for complexity as the quantity of interest, there are two
concentric shapes, this means the posterior density of ϕ has a bi-modal shape. The peaks
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Figure 6.3: Marginal distribution for γ1 generated from four quantitative measurements.
(a) Average number of affected cells. (b) Average cell density. (c) Average complexity of
dispersion pattern. (d) Derivative of fitted curve of complexity.

of the posterior are around 0.26 and 0.74. The results are also confirmed in the marginal
distributions for γ1 and ϕ in Figure 6.3 and Figure 6.4, respectively.

According to the plots, the model is more sensitive to the changes in ϕ than γ1. It is not
surprising that we can infer more information from the quantities of interest for the param-
eter ϕ because the characteristics of dispersion patterns, especially, the geometric shape of
the boundaries, are mainly determined by the survival probability which determines how
successful the population can build in new areas. However, different quantities of interest
may provide distinct information about the parameter value.
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Figure 6.4: Marginal distribution for ϕ generated from four quantitative measurements.
(a) Average number of affected cells. (b) Average cell density. (c) Average complexity of
dispersion pattern. (d) Derivative of fitted curve of complexity.
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6.5.2 Experiment 2

6.5.2.1 Data Generation

In this experiment, we adopt the SIP approach. For a data generating distribution,
we assume a normal prior N(0.8, (0.4/6)2) for γ1 and a beta prior Beta(2, 4) for ϕ with
ϕ ∈

[
1
6 , 5

6

]
, treating them as independent.

6.5.2.2 Results

The density contour plots also show similar behaviours for γ1 in Figure 6.5. Even though
the contour lines show some irregular shapes in the fourth plot, the contour lines in general
are almost parallel to the γ1 axis, which indicate that the same output data can be matched
with many values of γ1 and the density for γ1 is nearly uniform over the domain. This
reflects the uniform Ansatz prior. This conclusion is confirmed in the marginal density
plots in Figure 6.6.
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Figure 6.5: Bayesian posterior density contour plot for γ1 and ϕ generated from four quan-
titative measurements. (a) Average number of affected cells. (b) Average cell density. (c)
Average complexity of dispersion pattern. (d) Derivative of fitted curve of complexity.

For the first three quantities of interest, the contour lines are relatively close to each
other, which indicates that the values of ϕ are concentrated within a small interval and the
posterior density of ϕ is concentrated within a small interval. For the fourth quantity of
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Figure 6.6: Marginal distribution for γ1 generated from four quantitative measurements.
(a) Average number of affected cells. (b) Average cell density. (c) Average complexity of
dispersion pattern. (d) Derivative of fitted curve of complexity.

interest, the plot has fairly irregular contour lines and there are multiple concentric shapes
in the plot, which points to a multi-modal posterior density for ϕ. This is also confirmed in
Figure 6.7.

The marginal density plots for γ1 in Figure 6.6 indicate the posterior generated from
SIP approach has a much larger variance than the prior distribution, but the SIP approach
can locate the values for γ1 in the chosen domain. While the marginal plots for ϕ in Figure
6.7 display a high level of agreement between the posterior and prior densities except the
one using derivative of fitted curve of complexity as the quantity of interest. This conclude
that choosing the right quantity of interest can help to infer information for the parameter
values.
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Figure 6.7: Marginal distribution for ϕ generated from four quantitative measurements.
(a) Average number of affected cells. (b) Average cell density. (c) Average complexity of
dispersion pattern. (d) Derivative of fitted curve of complexity.
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6.5.3 Experiment 3

6.5.3.1 Data Generation

We conduct two experiments in this section. We assume the true value for γ1 is 0.7
in both experiments, and we assume there is one true value for ϕ which is 2

3 in the first
experiment and there are two true values for ϕ in the second experiment, which are 1

3 and
2
3 . We run the SCA model with the “true” parameter values for 30 time steps to obtain a
dispersion pattern. In order to create the noisy observations, we add “noise” N(0, 0.22) to
the cells with non-zero density, and N(0, 0.62) to the zero density cells that are adjacent
to at least one non-zero density cell in the dispersion. If a cell has density that is above 1,
then we set its density to 1; and if a cell has density that is below 0, we set its density to
0. We generate 1000 observations in both experiments with equal number of samples in the
second experiment.

6.5.3.2 Results

The density contour plots in Figure 6.8 show distinct behaviours for γ1. There is roughly
one concentric shape in the first two plots while the contour lines are almost parallel to the
γ1 axis in the third plot. This concludes that the posterior density has a ridged shape using
the average number of affected cells and average cell density as the quantities of interest,
and the density has a nearly uniform behaviour when using the average complexity as the
quantity of interest.

The density contour plots provide highly consistent indications for ϕ, there is one con-
centric shape, the posterior density for ϕ are concentrated within a very narrow region with
a single mode.

The marginal densities for γ1 in Figure 6.9 conclude that the experiment can locate
most of the γ1 values within the chosen domain. In Figure 6.10, the marginal densities for
ϕ are all unimodal, but they peaked at slightly different values, 0.42, 0.4 and 0.38 for the
three quantity of interest, respectively. They do not recover the “true” value of ϕ = 2

3 , but
they have very small variances.

In the density contour plots in Figure 6.11, the contour lines are almost parallel to the γ1

axis which indicates a nearly uniform posterior for γ1, which is confirmed by the marginal
density plot in Figure 6.12. There are two clear concentric areas for ϕ, this conclude a
bi-modal posterior for ϕ, and the marginal densities in Figure 6.13 are all bi-modal with
comparable variances. The marginal densities obtained from average number of affected cells
and average cell density are peaked at the same values 0.41 and 0.64. However, the marginal
density obtained from average complexity of dispersion pattern is peaked at slightly different
values, which are 0.36 and 0.57. The marginal densities do not recover the “true” values
for ϕ = 1

3 and ϕ = 2
3 . Compared to the marginal densities in Experiment 3, the marginal
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Figure 6.8: Bayesian posterior density contour plot for γ1 and ϕ generated from three quan-
titative measurements. (a) Average number of affected cells. (b) Average cell density. (c)
Average complexity of dispersion pattern.
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Figure 6.9: Marginal distribution for γ1 generated from three quantitative measurements.
(a) Average number of affected cells. (b) Average cell density. (c) Average complexity of
dispersion pattern.

densities in Experiment 1 are more accurate, this is likely because the BIP solutions are
affected by the “noise” added to the infestation map.
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Figure 6.10: Marginal distribution for ϕ generated from three quantitative measurements.
(a) Average number of affected cells. (b) Average cell density. (c) Average complexity of
dispersion pattern.
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Figure 6.11: Bayesian posterior density contour plot for γ1 and ϕ generated from three
quantitative measurements. (a) Average number of affected cells. (b) Average cell density.
(c) Average complexity of dispersion pattern.
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Figure 6.12: Marginal distribution for γ1 generated from three quantitative measurements.
(a) Average number of affected cells. (b) Average cell density. (c) Average complexity of
dispersion pattern.
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Figure 6.13: Marginal distribution for ϕ generated from three quantitative measurements.
(a) Average number of affected cells. (b) Average cell density. (c) Average complexity of
dispersion pattern.
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6.5.4 Experiment 4

6.5.4.1 Data Generation

The original aerial survey map in Figure 6.1 is in JPG format and it has 1291 × 1455
pixels translating into 2500km×3800km. We use Photoshop to crop the image to a region of
32x32 pixels, representing a region of 58km x 58 km. At this scale, it is possible to identify
well defined forested areas and there are many localized regions that hold a single mass
of pine beetle infestation in a roughly ellipsoidal shape in the centre of a square. Given
this is several years into an infestation, we believe that we should consider an infestation
shape that is roughly ellipsoidal. We do not consider regions where the local infestation
has a sparsely heterogeneous pattern at that scale as that indicates a very early stage of
infestation locally and we do not know the initial conditions.

Algorithm 3 Algorithm for map conversion
1: Convert the colour image into grey scale with 256 shades.
2: Use imread in Matlab to read in the image and convert to a 32x32 matrix whose values

are numbered from 1 to 256, divide the entries by 256 to get a grey density in each
entry.

3: Remove the background colour greys by setting matrix values below a threshold (.8) to
zero to form the mean vector for the noisy data.

4: Add iid zero mean normal noise to each nonzero value in the matrix, add N(0, 0.22) to
the cells with non-zero density, and N(0, 0.62) to the zero density cells that are adjacent
to at least one non-zero density cell. If a cell has density that is above 1, then we set its
density to 1; and if a cell has density that is below 0, we set its density to 0.

5: Generate 100 observations.

(a) (b)

Figure 6.14: Cropped Image from aerial survey map for the MPB infestation in a local
region. (a) Cropped image before transformation. (b) Cropped image after transformation.
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6.5.4.2 Results

The density contour plots in Figure 6.15 indicate somewhat similar behaviours for γ1.
The contour lines have some irregular shapes in the first two plots but they are close to
being parallel to the γ1 axis, while the contour lines in the third plot do not show specific
shapes and are almost parallel to the γ1 axis. Therefore, the marginal density is closest to
being uniform in the third plot in Figure 6.16.

Nevertheless, the density contour plots show consistent behaviours for ϕ, the values are
concentrated within a very narrow region, which indicates a peaked shape around a single
value, therefore, we calibrate ϕ to a small value interval. However, the observed peaked
values are not quite the same, which are 0.42, 0.34 and 0.48, respectively, in Figure 6.17.
The marginal densities all have very small variances.
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Figure 6.15: Bayesian posterior density contour plot for γ1 and ϕ generated from three
quantitative measurements. (a) Average number of affected cells. (b) Average cell density.
(c) Average complexity of dispersion pattern.
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Figure 6.16: Marginal distribution for γ1 generated from three quantitative measurements.
(a) Average number of affected cells. (b) Average cell density. (c) Average complexity of
dispersion pattern.
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Figure 6.17: Marginal distribution for ϕ generated from three quantitative measurements.
(a) Average number of affected cells. (b) Average cell density. (c) Average complexity of
dispersion pattern.
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Chapter 7

Conclusion

7.1 Summary of Contributions

In this thesis, we construct a multiscale stochastic cellular automaton (SCA) model
to characterize the macroscale dispersion process of a population considering collective be-
haviour of individuals at the microscale. The macroscale model is inspired by John Conway’s
Game-of-Life, but we use probabilistic rules to govern the cell states to describe stochas-
ticity effects in the dispersion process. The model includes a bridge between components
of the model at different scales, in which the simulation schemes at the macroscale employ
the detailed information obtained from the microscale and the macroscale information ini-
tiates the microscale model. We apply the SCA model to the mountain pine beetle (MPB)
infestation. The numerical simulation results suggest that the model is capable of produc-
ing patterns that resemble the physical characteristics of the MPB infestations, and the
calibration process indicates that the model parameters can be determined from observed
data.

A motivation for the construction of the SCA model is to use simple rules to generate
complex behaviour. The modelling framework is of general interest and can be applied in
other scientific practices to study a variety of phenomena. The transition rule of the model
is simple, yet the model produces a wide range of behaviour using only a few parameters.
In some cases at least, these parameters have physical interpretations. The structure of the
model is flexible, the model can be integrated with various kinds of microscale models and
can include multiple scales when there is an appropriate approach to link these scales.

Numerical simulations indicate that the SCA model is capable of generating various
dispersion patterns. In general, the model behaviour approaches three limiting situations:
fade away completely, settle into a fixed finite size, and grow without limit at a fixed speed.
The dispersion patterns depend on the a couple of factors such as the choice of the mi-
croscale model, the model parameters and the interactions between the model parameters.
Some parameters have similar effect and variations among those parameters tend to gener-
ate patterns with almost identical physical characteristics. The microscale model provides
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the input of the macroscale SCA model, which mainly determines the number of affected
cells and cell density at a specific time. The spreading rate and survival rate have similar
effects on model behaviour as the microscale model. The inclusion probabilistic rule and
the survival probabilistic rule determine the smoothness of the dispersion patterns, and the
boundary conditions also play a critical role in determining the model output. In addition to
visually evaluate dispersion patterns, we develop several statistics to quantify the dispersion
patterns, which are also used in the model calibration process.

The numerical investigations of the calibration problem demonstrate that the SCA
model can be calibrated from observed data. We use two approaches, the Stochastic In-
verse Problem (SIP) and Bayesian Inverse Problem (BIP), to solve the calibration problem.
For simulated data, we generate model output from a large number of realizations due to
the stochastic nature of the SCA model, and we calibrate the model output by averaging
over those realizations. For real data, we add “noise” to visual plot of a MPB infestation
to obtain model output. We also investigate the sensitivity of the SCA model output to
individual parameters in solving the calibration problem.

7.2 Future Investigations

We list a few possible subjects of further research.

7.2.1 Theoretical Analysis

In the thesis, we develop a two-dimensional SCA model to characterize the dispersion
process, and we perform numerical simulations to study the two-dimensional SCA model
behaviour because the SCA model is highly non-linear and stochastic which complicates
theoretical analysis, and techniques that apply to linear Markov chain models are not ap-
plicable. One possible future research subject is to develop a formal theoretical analysis for
the SCA model. A first step might be to derive a one-dimensional version.

7.2.2 Integration with Other Microscale Models

We use the birth-death process in the thesis to describe individual behaviour for the
MPB infestation, and we convert the population size at the microscale to the cell density
used as the model input at the macroscale. The model can integrate with other ecological
models when there is an appropriate way to upscale the model output to the SCA model,
i.e., to compute the microscale model output as the cell density for the SCA model.

7.2.3 Application to Other Fields

The multiscale SCA modelling framework is of general interest and can be applied in
other scientific practices to study a variety of phenomena. Two potential applications of im-
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mediate interest are the nuclear radiation damage and infectious disease transmission. The
multiscale SCA model requires an appropriate method to describe the individual behaviour
and to upscale the microscale model output.

7.2.4 Construction of Cascaded Stochastic Cellular Automaton Model

The SCA model in the thesis includes two scales, but the model can be expanded to
handle a wider range of scales. One possible subject of further research is to utilize the
SCA model flexibility to include more than two scales in the SCA model by constructing
a “cascaded” SCA model. For example, in Figure 7.1, we assume individual behaviour
occurs within each cell and the cells of the same colour belongs to the same interaction
neighbourhood with highly similar physical properties. We call cells of the same colour the
“child” unit, and the entire region the “parent” unit. We implement the SCA model within
each “child” unit, in which the “child” unit for colouring areas do not intersect. We treat
each “child” unit as cells in the “parent” unit and use the output of the “child” unit as the
input for the SCA model on the “parent” unit. This cascaded SCA model can be performed
efficiently in parallel. This interest in this approach is that it can be applied to a much
larger region.

Figure 7.1: A plot of cascade stochastic cellular automaton model. The hexagons represent
cells in the “child” unit, and the hexagons of the same colour form the interaction neigh-
bourhoods of the “child” unit. The interaction neighbourhoods of the “child” unit form the
cells of the “parent” unit.
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