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Abstract

This thesis introduces a technique that leverages a GPU to enhance the efficiency of loop
closure in visual-inertial SLAM systems, particularly in the approximation of Jacobians
using the Finite Difference Method (FDM). Traditional FDM techniques often encounter
computational overhead due to repeated perturbations in pose graphs. This work addresses
this challenge with a novel methodology that includes strategic graph partitioning and an
optimized approach to Jacobian approximation. By integrating this technique into ORB-
SLAM3’s g2o framework, the linearization process is significantly improved in terms of
speed and efficiency. The evaluation of this approach, conducted on 12 sequences of varying
lengths from the EuRoC and TUM-VI datasets, demonstrates a speedup of up to 4.23x
in the linearization stage and an overall performance improvement of up to 2.08x in the
optimization process.

Keywords: GPU Optimization; Jacobian Linearization; SLAM Acceleration; Pose Graph
Efficiency
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Chapter 1

Introduction

Statement
This thesis introduces a new method that applies strategic hybrid graph partitioning

to compute Jacobians using the Finite Difference Method (FDM) on GPUs, aimed at ac-
celerating the linearization in nonlinear optimization for SLAM problems. By combining
vertex-based partitioning for perturbations and edge-based partitioning for error computa-
tion, we improve the linearization process for loop closure in ORB-SLAM3’s g2o framework.

Overview
Simultaneous Localization and Mapping (SLAM) [2, 10] is a fundamental technique in

the field of robotics and autonomous systems. It addresses the critical challenge of how a
robot can navigate an unknown environment without a pre-existing map. SLAM involves
the dual tasks of localization, where a robot determines its position in space, and mapping,
where the robot concurrently constructs a map of the environment. This process is crucial
for a wide range of applications, from autonomous vehicles navigating city streets to robots
exploring extraterrestrial surfaces. The essence of SLAM lies in its ability to solve these two
tasks simultaneously – as the robot moves through an environment, it uses sensor data to
build a map and uses features of this map to refine its understanding of its location.

This complex interplay of mapping and localization in SLAM, particularly in dynamic,
real-world environments, demands significant computational resources. This is due to the
need to continuously process and analyze large volumes of data from various sensors, and
to update and refine the map of the environment in real time as changes occur. Modern
SLAM systems [4, 32, 31, 13] employ a diverse array of sensors, including cameras, LiDAR
(Light Detection and Ranging), and RGB-D (Red-Green-Blue-Depth) sensors, to capture
environmental data. A notable example is ORB-SLAM3 [4], a state-of-the-art SLAM sys-
tem known for its robustness and efficiency. It achieves visual-inertial SLAM by integrating
data from cameras and inertial measurement units (IMUs). This integration enhances the
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system’s ability to accurately track rapid movements and rotations, which is crucial in en-
vironments with varied and unpredictable dynamics. The collected data is processed to
identify landmarks or features in the environment. These features are essential for creating
a detailed map of the surroundings and for precisely estimating the robot’s position within
it. As the robot explores more of the environment, ORB-SLAM3 continuously updates and
refines this map, leading to progressively more accurate localization. This advanced method
of visual-inertial SLAM demonstrates how incorporating multiple data sources can signifi-
cantly enhance the performance of SLAM systems in complex and changing environments.

The intricacies of SLAM involve two primary processes: visual odometry and loop clo-
sure. Visual odometry is pivotal in estimating a robot’s motion based on sequential image
data from cameras, which often capture footage at high rates such as 30 frames per sec-
ond. This process is complex, involving the extraction and tracking of visual features across
consecutive frames to infer movement, as demonstrated in Figure 1.1. Loop closure is a
critical yet computationally demanding component of SLAM. It addresses the cumulative
error, or ’drift’, that accumulates over time in the robot’s estimated trajectory and the
map it constructs. This drift is inevitable due to minor inaccuracies in sensor readings and
visual odometry estimations. The loop closure module identifies when the robot revisits a
previously mapped area and uses this information to minimize the difference between the
actual path and the perceived path, aligning the current map with past observations.

Given the high frequency of data input, especially from advanced sensors like 30fps cam-
eras and 10Hz LiDARs, processing this information in real-time is a substantial challenge.
In visual SLAM, ensuring the loop closure operates efficiently and accurately is crucial,
especially in applications requiring quick, responsive navigation like autonomous vehicles
or drones.

In several such systems, the mapping component is efficiently represented through a
pose graph. This graph structure serves as a spatial framework, capturing the essential re-
lationships within an environment [14]. Within this framework, the robot’s various positions
(or ’poses’) are denoted as vertices, and the measurements from odometry - which provide
relative motion information - act as edge constraints between these vertices. Examples are
depicted in Figure 1.2. These constraints play a crucial role in maintaining the accuracy of
the robot’s understanding of its environment.

A key challenge in this process arises during loop closure, a scenario where the robot
revisits a previously mapped area as mentioned above. Addressing this challenge is critical,
as it helps in reconciling the constraints and minimizing any discrepancies in the overall map.
Essentially, it is an exercise in recalibrating the map, aligning the robot’s past positions with
its current location, thereby ensuring both continuity and accuracy in the representation
of the environment. This task of realignment and error minimization in the pose graph
is formulated as a Pose Graph Optimization (PGO) problem [6]. PGO is a sophisticated
problem-solving framework, typically approached as a non-linear least squares minimization
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challenge. Iterative algorithms like the Levenberg-Marquardt (LM) method [28] are often
employed to find optimal solutions to this complex problem.

One approach to simplify this non-linear optimization is by transforming it into a more
manageable linear approximation, which can be achieved through methods like the Finite
Difference Method (FDM). FDM is a numerical technique that approximates the derivative
of a function using differences of the function values at discrete points [24]. In the context of
PGO, FDM involves making small, calculated perturbations to pose dimensions – adjusted
by a factor of δ – in both positive and negative directions. This process helps to gauge their
impact on the cumulative error in the pose graph. While FDM offers valuable insights into
the optimization process, it is inherently computationally demanding.

The primary challenge in using FDM for PGO lies in its computational intensity, which
stems from the redundant computations required by repeated perturbations in scenarios in-
volving constraints with identical poses. Each perturbation necessitates a recalculation, sig-
nificantly increasing the computational load. These redundant computations lead to longer
processing times and place greater demands on the hardware, particularly in scenarios where
real-time processing is essential.

To enhance efficiency, libraries like g2o [15] expedite computation by implementing par-
allelization strategies, such as using APIs like OpenMP [7]. This parallelization is achieved
by dividing the graph based on its edges. However, this method does not completely ad-
dress the issue of redundant pose perturbations. The redundancy occurs when a pose in the
graph is linked to multiple edges, and a single perturbation affects all these edges, leading
to multiple perturbations overall.

To tackle the computational challenges of FDM in pose graph optimization, we introduce
JacobiGPU, a novel method tailored for GPU (Graphics Processing Unit) utilization. Our
approach involves partitioning the graph based on vertices and edges to optimize different
computational tasks. The vertex-based partitioning ensures that each pose in the graph
is perturbed only once, while the edge-based partitioning calculates the error for every
constraint using both the perturbed and original results.

A significant benefit of using GPUs in this context is their capacity to handle large
data volumes and perform multiple operations simultaneously, greatly decreasing process-
ing times. JacobiGPU is designed to leverage these capabilities by optimizing GPU memory
management, kernel operations, and the data transfer between the CPU and GPU. This
strategy capitalizes on the strengths of GPUs to boost the overall efficiency of the optimiza-
tion process.

We have seamlessly integrated JacobiGPU withing the g2o library, a core component
of the ORB-SLAM3 system, focusing primarily on refining the linearization phase of the
optimization process (Figure 4.1). This integration has been thoroughly tested using bench-
mark sequences from the EuRoC [3] and TUM-VI [33] datasets. JacobiGPU delivers up to
a 4.23-fold increase in speed for the linearization step, and a 2.08-fold acceleration for the
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entire optimization process. In addition, we have compared the χ2 error results from the
pose graph optimization and the SLAM trajectory between the conventional g2o and our
enhanced version incorporating JacobiGPU. These comparisons indicate that while Jaco-
biGPU brings significant gains in terms of speed and efficiency, the integrity and reliability
of the optimization process and the overall SLAM pipeline are maintained.

Note on Material Reuse
The research and findings presented in this thesis are primarily derived from work that

will be presented in the conference paper titled “JacobiGPU: GPU-Accelerated Numerical
Differentiation for Loop Closure in Visual SLAM” by Dhruv Kumar, Shishir Gopinath,
Karthik Dantu, and Steven Y. Ko. This paper is accepted for presentation at the 2024
IEEE International Conference on Robotics and Automation (ICRA) © 2024 IEEE [25].
Portions of the text, along with some equations, figures and tables from this paper, are
reused in this document.

IEEE Copyright Notice
In reference to IEEE copyrighted content in this thesis under permission, it is impor-

tant to note that IEEE does not support or endorse any products or services offered by
Simon Fraser University. The use of such material for internal or personal purposes is
allowed. Authors looking to reuse IEEE copyrighted material for commercial promotion,
advertising, or as part of creating new collective works intended for resale or redistribution
should consult http://www.ieee.org/publications_standards/publications/rights/

rights_link.html to acquire the necessary License through RightsLink. Furthermore, in
relevant cases, single copies of this thesis may be obtained from University Microfilms, the
ProQuest Library, or the Archives of Canada.
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(a) V1O2

(b) V201

Figure 1.1: Comparative frames from different sequences of the EuRoC dataset from ORB-
SLAM3, depicting the nuanced process of feature extraction and mapping in SLAM across
varied environmental complexities.
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(a) V1O2

(b) V201

Figure 1.2: Visualization of pose graphs for the EuRoC dataset sequences V1O2 and V201
as processed by ORB-SLAM3. In these graphs, the green lines indicate the constraints or
edges, while the blue marks represent the poses or nodes.
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Chapter 2

Background

2.1 Pose Graph

A pose graph captures the spatial evolution of a robot as it traverses through an environ-
ment. It is a graphical representation where each node (or vertex) and edge encapsulates
critical information about the robot’s journey and interaction with its surroundings.

• Vertices: In a pose graph, vertices are the fundamental elements that represent the
robot’s poses at different points in time. A pose is a comprehensive term that combines
the robot’s position and orientation in a three-dimensional space, thus involving 6
Degrees of Freedom (DoF) - three for position (x, y, z) and three for rotation (roll,
pitch, yaw). Each vertex in the graph is thus a mathematical construct, typically
a combination of a 3D position vector and a 3×3 rotation matrix. These vertices
are critical in capturing the trajectory of the robot, marking its path through the
environment.

• Edges: The edges of the pose graph are equally significant. They represent the per-
ceived movement or change between poses. These can be sequential, where each edge
connects consecutive poses based on the robot’s odometry data, forming a path that
tracks the robot’s immediate history. Alternatively, edges can manifest as loop closure
constraints. These are more complex since they link a current pose with a previous
one, usually identified with sophisticated place recognition algorithms. Loop closure
edges are pivotal in SLAM as they help in correcting any drift or cumulative error
that might have occurred in the robot’s trajectory estimation over time.

While the construction of a pose graph provides a structured representation of a robot’s
trajectory and the environment, the true efficacy of this approach lies in the optimization
of this graph. Pose graph optimization is a critical process where the goal is to refine
the graph to best reflect the true layout of the environment and the most accurate path
of the robot. This optimization process involves adjusting the vertices and edges of the
graph to minimize the overall accumulated sensor error, effectively aligning the robot’s
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perceived trajectory with the actual environment. The need for optimization arises because
of the inherent inaccuracies in sensor data and the possibility of drift over time, especially
in long trajectories or complex environments. The subsequent section on the pose graph
optimization problem will talk more about the methodologies and algorithms used to achieve
this optimization, discussing their roles, challenges, and the significance of accurately solving
this problem in the context of effective SLAM.

2.2 Pose Graph Optimization

Pose Graph Optimization (PGO) is a key technique in refining the pose graph, ensuring
that it accurately reflects the robot’s movement and its interactions with the environment.
The primary goal of PGO is to calibrate the vertices (representing the robot’s poses) and
their relational constraints (edges) in the graph to minimize the overall discrepancy between
the estimated and actual paths. This process is essential for enhancing the precision and
reliability of the SLAM system.

Mathematical Formulation of PGO: The optimization in PGO is formulated as a
minimization problem, mathematically expressed as:

min
x

∑
⟨i,j⟩∈G

eT
ijΩijeij , (2.1)

where G represents the set of all constraints within the pose graph, and Ωij is the information
matrix corresponding to the constraint between poses i and j. This objective function seeks
to minimize the sum of the squared errors across all constraints, leading to a more accurate
and coherent mapping of the robot’s trajectory.

Figure 2.1: Visual representation of the error function eij(xi, xj), illustrating the divergence
between observed and predicted relative poses. Figure from [14].
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Error Function in PGO: A critical component in PGO is the error function eij , which
quantifies the divergence between the observed relative pose (or measurement) zij and the
relative pose predicted from the current state estimates of the poses xi and xj . It is defined
as:

eij(xi, xj) = zij − ẑij(xi, xj), (2.2)

where xi and xj denote the state variables for vertices i and j, and ẑij(xi, xj) represents the
predicted relative pose based on the current estimates of xi and xj A visual representation of
this error function, illustrating the divergence between observed and predicted relative poses,
is provided in Figure 2.1, taken directly from [14]. The error function, eij , is instrumental
in identifying and correcting inconsistencies within the pose graph.

Detailed Computation of Error Function: The error function eij comprises two
main components: rotational ER and translational Et errors. These are computed as follows:[

ER

Et

]
=

[
logSO(3)(Ri

wRw
j Rj

i )
−Ri

w(Rw
j tj

w) + ti
w − ti

j

]
, (2.3)

where ER and Et represent the rotational and translational components of the error, respec-
tively. The term logSO(3)(Ri

wRw
j Rj

i ) computes the rotational error ER using the logarithm
map of the special orthogonal group SO(3). This involves the multiplication of the relative
rotation matrices Ri

w, Rw
j , and Rj

i , where:

• Ri
w is the rotation matrix from the world frame to the pose at vertex i.

• Rw
j is the rotation matrix from pose j back to the world frame.

• Rj
i is the measured or observed rotation from pose i to pose j.

The translational error Et is calculated with the term −Ri
w(Rw

j tj
w) + ti

w − ti
j , which

represents the difference between the observed and estimated translations as mentioned
above. This consists of:

• −Ri
w(Rw

j tj
w) computes the estimated translation from pose j to pose i, transformed

into the coordinate frame of pose i.

• ti
w and ti

j represent the estimated and observed translations, respectively, with ti
w being

the translation from the world frame to pose i and ti
j being the observed translation

from pose j to pose i.

This detailed breakdown of the error function enables the optimization algorithm to
accurately adjust the pose graph based on the differences between the estimated poses and
observed measurements.

Optimization Algorithms: In Pose Graph Optimization, various algorithms are em-
ployed to iteratively refine the pose estimates. Common choices include the Gauss-Newton,
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Gradient Descent, and Levenberg-Marquardt algorithm [28]. Each of these algorithms has
its own merits and is chosen based on the specific requirements and characteristics of the
problem at hand.

The Levenberg-Marquardt algorithm is a particularly popular choice due to its ro-
bustness. It is a modification of the Gauss-Newton algorithm that interpolates between
the Gauss-Newton and Gradient Descent methods [26, 34]. The update equation in the
Levenberg-Marquardt algorithm is given by:

∆x = −(JT ΩJ + λdiag(JT ΩJ))−1JT Ωe (2.4)

In this equation:

• J represents the Jacobian matrix of all error functions. It quantifies how changes in
the pose estimates affect the error.

• e is the vector of all errors, representing the discrepancies between the observed and
estimated measurements.

• Ω is the block-diagonal matrix composed of information matrices for each measure-
ment, reflecting the confidence or accuracy of these measurements.

• λ is the damping factor that is adjusted in each iteration. This factor is crucial in the
algorithm’s performance, as it balances the algorithm between the Gauss-Newton and
Gradient Descent methods. A higher λ tends to make the algorithm behave more like
Gradient Descent, making it more robust but possibly slower. Conversely, a lower λ

shifts the behavior towards the Gauss-Newton method, which can be faster but less
robust.

The choice of the damping factor λ and the adjustment strategy during iterations are
key to the success of the Levenberg-Marquardt algorithm in PGO. Proper tuning of this
parameter allows the algorithm to effectively navigate the complex error landscape of the
pose graph, achieving convergence to an optimal solution.

2.3 Linearization

Linearization plays a key role in PGO, especially when dealing with complex, non-linear
functions that describe the system’s behavior. By employing linearization, we can approxi-
mate these non-linear functions with linear ones, making the problem more tractable.

Taylor Series Expansion: The essence of linearization in PGO lies in the use of
the Taylor series expansion. For a vector-valued, multivariate function F : Rn → Rm, we
consider its behavior around a specific point p in the function’s domain. The first-order
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Taylor series expansion of F around p is given by:

F(x) ≈ F(p) + J(p)(x − p) (2.5)

where J(p) represents the Jacobian matrix of F evaluated at p. This approximation sim-
plifies the function by retaining only the first-order term, effectively turning the non-linear
function into a linear one near the point p.

In the context of PGO, linearization is vital. It allows the algorithm to handle complex
relationships between pose adjustments and resulting errors in a more manageable way. The
non-linear functions, which are inherently challenging to optimize directly, are approximated
as linear ones close to the current estimate. This simplification is crucial for applying itera-
tive optimization algorithms that require a linear model of the error function to update the
pose estimates effectively. The Jacobian matrix J(p) in the Taylor series expansion is par-
ticularly important in this process. It quantifies how small changes in the pose parameters
(represented by x) around the point p affect the error function F. Understanding the role
and computation of the Jacobian matrix becomes essential as it directly influences how the
PGO algorithm navigates the error landscape. This leads us to a deeper exploration of the
Jacobian matrix in the following section, where we will discuss its structure, computation,
and role in the optimization process in more detail.

2.4 The Jacobian Matrix

Jacobian Matrix captures the sensitivity of the error function to variations in the pose
parameters, a key factor in the optimization process. It is a matrix of partial derivatives
denoted as J in PGO. Each element Jij within this matrix represents how the ith component
of the error function responds to infinitesimal changes in the jth pose parameter. In essence,
it captures the rate of change of each error component with respect to each pose parameter,
thus guiding how the pose estimates should be updated to minimize the overall error.

Structure of the Jacobian Matrix: The Jacobian matrix is structured in a manner
that each row corresponds to a different component of the error function and each column
to a different pose parameter. It can be represented as:

J =


∂e1
∂x1

∂e1
∂x2

· · · ∂e1
∂xN

∂e2
∂x1

∂e2
∂x2

· · · ∂e2
∂xN...

... . . . ...
∂eM
∂x1

∂eM
∂x2

· · · ∂eM
∂xN

 (2.6)

Here, ∂ei
∂xj

is the partial derivative of the ith error component with respect to the jth pose
parameter. The arrangement of this matrix is key to understanding how variations in each
pose parameter affect different aspects of the error function, thereby informing the strategy
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for optimization. In our application, the structure of the Jacobian matrix is tailored to
represent specific error components in its rows: for each column, indexed by i, the first three
rows correspond to the derivatives of the rotational error with respect to a dimension which
serves as a pose parameter represented by that column. Similarly, the following three rows
are designated for the derivatives of the translational error components. This organization
aligns with the six degrees of freedom in 3D pose estimation – three for rotation and three
for translation – and is instrumental in directing the optimization process in PGO. This
is computed using (2.3). The clarity in separating rotational and translational components
in the Jacobian matrix allows for a nuanced adjustment of pose estimates, enhancing the
precision and effectiveness of the SLAM algorithm.

In optimization algorithms, especially those like Levenberg-Marquardt which iteratively
refine pose estimates, the Jacobian matrix J plays a pivotal role. It determines both the
direction and magnitude of updates to pose parameters. The matrix’s accuracy in reflecting
how these adjustments impact the error is crucial for the efficiency and effectiveness of the
optimization process, leading to more accurate and reliable pose graph estimation.

In summary, the Jacobian matrix J in PGO is key for gaining a understanding of the
influence of pose parameter changes on the resultant error function. This understanding is
essential for the successful application of optimization algorithms in SLAM. The Jacobian
guides the iterative refinement of poses, which is vital for accurate and reliable mapping
and localization. Moreover, it is instrumental in computing the update step ∆x in iterative
algorithms like Levenberg-Marquardt. The ability of the Jacobian matrix to precisely de-
tail the relationship between pose adjustments and subsequent changes in error is critical
for effective and efficient optimization. This precision aids in guiding the algorithm to an
optimal solution, highlighting the importance of the Jacobian matrix in PGO.

Methods for Computing Derivatives: There are several methods for computing
derivatives in the context of PGO, each with its own advantages:

• Analytical Derivation: This method involves computing the exact mathematical
derivatives of the error functions. While precise, it can be complex and computation-
ally intensive for non-linear functions.

• Automatic Differentiation (Auto-Diff): Auto-Diff computes derivatives accu-
rately and efficiently, using algorithms that can systematically apply the chain rule to
computer programs.

• Finite Difference Method (FDM): FDM offers a simpler, numerical approach to
derivative estimation, which is particularly useful when analytical or auto-diff methods
are impractical or overly complex.

As each method for computing derivatives presents unique advantages and drawbacks,
the selection largely hinges on the specific nature and demands of the problem at hand. In
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the subsequent section, our focus shifts to the Finite Difference Method (FDM), where we
will delve into its fundamental principles, its varied applications, and its particular signifi-
cance within the realm of PGO. This discussion is especially pertinent to our work, which
concentrates on tackling a crucial bottleneck in FDM and seeks to enhance its efficiency
and effectiveness using GPUs.

2.5 Finite Difference Method

The Finite Difference Method (FDM) is a valuable numerical technique for the estimation
of derivatives, especially in the computation of the Jacobian matrix. This technique proves
particularly advantageous in scenarios where deriving an analytical or automatic differen-
tiation (auto diff) Jacobian matrix is impractical, often due to the intricate nature of the
functions encountered in PGO.

FDM operates by perturbing input values slightly and observing the resulting change
in the function. This approach is based on the concept of approximating the derivative
of a function at a point by analyzing its values at nearby points. The technique is most
commonly applied using the central difference approximation, which provides a balance
between accuracy and computational efficiency.

Central Difference Approximation: The central difference formula for approximat-
ing the derivative of a function with respect to a specific parameter is given by:

∂F

∂x[j,k]
≈ F (x1, . . . , xk + δ, . . . ) − F (x1, . . . , xk − δ, . . . )

2δ
. (2.7)

Here, x[j,k] represents the kth dimension of the jth pose, and δ is a small perturbation. The
function F is evaluated at points slightly above and below the current estimate, and the
difference in these values, divided by twice the perturbation δ, gives an approximation of
the derivative.

Through the utilization of the central difference approximation in the FDM, incremental
adjustments, or perturbations, are made to each pose parameter individually, while main-
taining the other parameters constant across every constraint (edge) in the graph. This
technique facilitates the approximation of derivatives for each component of the Jacobian
matrix. In essence, the Jacobian matrix is incrementally constructed, with each column
being formulated one by one, each aligning with a specific pose parameter. This system-
atic process allows for the compilation of a comprehensive and precise Jacobian matrix. By
adopting FDM, PGO algorithms can more adeptly traverse the error landscape, enhancing
their capability to refine pose estimations and bolster the overall precision of the SLAM
process.
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2.6 Lie Algebra and the Special Orthogonal Group SO(3)

Lie algebra plays a fundamental role in the mathematical underpinnings of various fields
such as robotics, computer vision, and SLAM. It provides a formal framework for analyzing
and representing the continuous symmetries of mathematical structures [17]. One of the key
areas where Lie algebra finds application is in describing the properties and operations of
rotation groups, particularly the Special Orthogonal Group SO(3).

Lie algebra, symbolized as g, forms an essential link with Lie groups, which represent
groups capable of depicting continuous transformations [22]. The elements within these
algebras are essentially the infinitesimal generators of such transformations, laying the
groundwork for understanding complex movements in a structured manner. In the spe-
cific context of three-dimensional rotations, this algebra is represented as so(3), comprising
all skew-symmetric matrices [12]. These matrices are pivotal, encoding rotations around an
axis through infinitesimally small angles and serving as the fundamental components for
analyzing and calculating rotations within three-dimensional spaces.

Transitioning from the theoretical underpinnings provided by so(3), we encounter the
Special Orthogonal Group SO(3), a vital construct in the mathematical representation
of rotations [16]. SO(3) encompasses all conceivable rotations in three-dimensional space,
rendering it indispensable for any application that demands the manipulation of 3D orien-
tations. It is formally defined as the group of 3x3 rotation matrices that are orthogonal,
thus preserving vector lengths, and uniquely characterized by having a determinant of +1.
This definition bridges the gap between the abstract algebraic formulations of so(3) and
the tangible application of rotations, illustrating the seamless integration of mathematical
theory into the practical realm of three-dimensional orientation manipulation.

Two fundamental operations associated with SO(3) are the exponential and logarithmic
maps, facilitating the conversion between the Lie algebra so(3) and the Lie group SO(3).
These operations are essential for efficiently handling 3D rotations:

• Exponential Map (Exp : so(3) → SO(3)): Converts a rotation vector (axis-angle
representation) into a rotation matrix using Rodrigues’ rotation formula [8]. This
transformation is key for composing rotations and transforming coordinates in 3D
space.

ExpSO3(w) = I + sin(θ)ω̂ + (1 − cos(θ))ω̂2, (2.8)

where ω̂ is the skew-symmetric matrix formed from the rotation vector w, θ = ∥w∥ is
the magnitude of w denoting the rotation angle, and I represents the identity matrix.
The skew-symmetric matrix ω̂ is defined as:
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ω̂ =


0 −w3 w2

w3 0 −w1

−w2 w1 0

 . (2.9)

• Logarithmic Map (Log : SO(3) → so(3)): This transformative operation reverts a
rotation matrix back into a rotation vector, offering a streamlined representation of
rotation that is ideal for processes like optimization and interpolation. The formula
for this operation is articulated as follows:

LogSO3(R) = θ

2 sin(θ)


R32 − R23

R13 − R31

R21 − R12

 , (2.10)

where θ = cos−1
(

trace(R)−1
2

)
signifies the rotation angle. Here, trace(R), the sum of

the diagonal elements of the rotation matrix R, serves a pivotal role in determining θ.
It encapsulates the cumulative effect of the rotation around the axis, directly influenc-
ing the computation of the rotation angle. The terms Rij reference the matrix element
at the intersection of the ith row and jth column, with R32, R23, and so on, specifically
constructing a skew-symmetric matrix that encapsulates the axis of rotation through
its off-diagonal components.

These transitions between so(3) and SO(3) are fundamental in the articulation and
manipulation of 3D rotations. By employing the exponential and logarithmic maps,
we bridge the abstract algebraic domain of so(3) with the tangible geometric realm
of SO(3), thereby ensuring a precise and robust representation of rotations.
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Chapter 3

Related Work

Graph-based approaches offer a sophisticated framework for accurately determining the po-
sition and orientation of robots while concurrently mapping their environment. Among the
libraries developed for these crucial tasks, GTSAM [9] and g2o [15] stand out as widely used
resources. Each brings unique capabilities to PGO, enhancing the efficiency and precision
of SLAM operations.

GTSAM models the SLAM problem using factor graphs and Bayesian networks, of-
fering a flexible and modular system for environment representation. This setup simplifies
the integration of new sensors and information. A key feature, the iSAM algorithm [19],
introduces an incremental optimization method for efficient real-time updates. By using
a novel factorization strategy that recycles information from earlier computations, iSAM
avoids the need for global optimization with each new data point, reducing computational
demands. Its incremental approach ensures rapid solution delivery, ideal for the dynamic
environments encountered in mobile robotics. This efficiency is especially valuable in exten-
sive SLAM projects, allowing for the swift incorporation of new data without reprocessing
the entire dataset. iSAM is adept at managing nonlinear optimization challenges typical in
SLAM, through an advanced smoothing and mapping technique that effectively handles a
growing dataset of measurements and variables.

Conversely, g2o serves as a versatile framework for optimizing graph-based models in
both robotics and computer vision. Traditionally relying on the FDM for Jacobian calcu-
lations, it has recently incorporated the Ceres Solver’s automatic differentiation (auto-diff)
capabilities. This shift significantly enhances the precision and computational efficiency of
gradient calculations, thereby improving the performance of PGO. This integration sim-
plifies complex model implementations while boosting both the accuracy and efficiency of
PGO. Nonetheless, despite its computational advantages, auto-diff’s inherent limitations
still exist as discussed in Section 3.2. g2o’s flexibility is demonstrated through its applica-
tion in diverse areas, including 3D reconstruction and multi-robot localization, highlighting
its utility as a robust optimization tool.
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While GTSAM and g2o both significantly contribute to the advancement and efficiency
of SLAM operations through their unique features and optimizations, there remains room
for enhancement, particularly in addressing the computational limitations associated with
the FDM in g2o. This work aims to tackle one such limitation, focusing on refining the
FDM’s performance within the g2o framework to optimize gradient calculations further.

3.1 Pose Graph Optimization

The field of PGO has witnessed significant advancements, significantly enhancing the ac-
curacy and efficiency of SLAM processes. Among these innovations, the work by Fan et al.
[11] stands out by generalizing proximal methods for special Euclidean groups, achieving an
impressive speedup in optimization processes. Their methodology, resulting in a 9x speedup
compared to SE-Sync [30], represents a major advancement in optimization efficiency. This
is particularly significant in light of the analysis by Juri et al. [18], which confirmed the
superiority of SE-Sync over g2o in simulated environments [6]. Despite these advancements,
the practical application of SE-Sync in real-world visual and visual-inertial sequences re-
mains a fertile ground for further exploration, hinting at the potential for bridging the gap
between theoretical optimization speeds and real-world applicability.

In parallel, the exploration of deep reinforcement learning (DRL) by Kourtzanidis et
al. [23] marks a novel approach in PGO, particularly in addressing the longstanding chal-
lenge of escaping local minima in 2D graph optimizations. This venture into DRL not only
underscores the adaptability and potential of machine learning in enhancing traditional
optimization tasks but also sets a precedent for future explorations into AI-driven SLAM
optimizations.

Furthermore, the innovative approaches proposed by Carlone et al. [5] eliminate the
necessity for initial pose estimates, offering a path to overcoming one of the traditional
hurdles in SLAM. By devising methods that circumvent the initial guess requirement, they
showcase a possibility for achieving significant efficiency improvements over conventional
iterative methods, such as the Levenberg-Marquardt algorithm. Despite the promising na-
ture of these methods, their application has been primarily limited to 2D contexts, leaving
an uncharted territory in the extension and validation of these techniques within 3D visual-
inertial graph scenarios.

3.2 Automatic Differentiation

Automatic Differentiation (AD) is a computational technique within the realm of numerical
optimization that transforming complex mathematical functions into a series of basic oper-
ations. By adeptly applying the chain rule of calculus, AD enables the precise and efficient
computation of derivatives, a critical component in optimization algorithms. The utility of
AD is exemplified in the work of Agarwal et al. [1], who have implemented AD within the
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Ceres Solver to facilitate the linearization of constraints. In this framework, constraints are
represented as residual blocks, each associated with a distinct cost function. These functions
utilize a data structure known as a Jet, uniquely designed to support automatic differentia-
tion within Ceres. The Jet structure efficiently computes not only the residuals but also the
derivatives related to these residuals, thereby enhancing the solver’s ability to iteratively
refine solutions towards optimal states.

Extending the application of AD, Ren et al. [29] have developed SIMD-friendly JetVec-
tors specifically designed for large-scale distributed GPU-based bundle adjustment tasks.
With appropriate adjustments, this approach could similarly benefit PGO. This work demon-
strates the adaptability of AD to modern parallel computing architectures, offering signifi-
cant performance improvements in computationally demanding environments.

However, the adoption of AD is not without its challenges. A primary concern associated
with AD is the memory overhead incurred during its operation. This issue arises as AD
necessitates the retention of intermediate variables generated during the forward pass for
use in the subsequent backward pass, thereby increasing the overall memory footprint of
the computation. The utilization of dual numbers, as discussed by Pennestri et al. [27],
exacerbates this memory demand. Dual numbers store both the value of a function and its
derivative simultaneously, a requirement that, while beneficial for derivative computation,
significantly impacts memory usage.

A further complication emerges in scenarios such as pose estimation, where the proxim-
ity of poses can introduce numerical instabilities into the computation. Agarwal et al. [1]
highlights that numerical instability can arise when poses are close together or nearly over-
lap, as the computation of relative transformations may become unstable. This instability in
the intermediate computations challenges the optimization process, potentially resulting in
solutions that are not optimal. This underscores the need for careful management and val-
idation of AD processes, especially in sensitive applications where precision and reliability
are paramount.

In conclusion, while AD offers transformative potential for numerical optimization, its
effective deployment requires mindful consideration of its computational and memory impli-
cations, as well as the inherent numerical challenges posed by specific application contexts.
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Chapter 4

Approach

SLAM systems depend on sensor inputs to perform the dual tasks of understanding a
device’s location and mapping the environment around it. However, the real-world accuracy
of sensor data is inherently limited, introducing errors that can significantly impact the
effectiveness of SLAM operations. To mitigate these inaccuracies, processes such as bundle
adjustment [34] and loop closure are employed, aiming to refine and minimize sensor errors
through sophisticated optimization techniques.

The execution of these corrections, particularly during loop closure, presents a unique
set of challenges. SLAM systems often need to momentarily halt their tracking functions
to carry out these complex optimization procedures. The duration required to finalize this
optimization is crucial; prolonged periods can compromise the accuracy and reliability of
both mapping and localization efforts. This risk is magnified in environments characterized
by sparse features, where every moment of inactivity can result in the loss of critical data.
Thus, there is a pressing need to enhance the efficiency of these optimization stages to
ensure valuable information is captured and preserved, maintaining the fidelity of the SLAM
system’s output despite the inherent limitations of sensor accuracy, which serves as the
motivation for our work.

Loop closure primarily involves three crucial phases: building the graph, optimizing it,
and adjusting the poses. Initially, pose graph information is compiled incrementally and
stored. When a loop is detected, this information forms the foundation of the graph. Subse-
quently, the graph is optimized, at least in ORB-SLAM3 , to produce updated coordinates
(x,y,z) for refining the poses. Following this, the system updates each pose accordingly.
Among these stages, optimization emerges as the most time-consuming, as demonstrated
in Table 4.1. This makes it the prime target for enhancing efficiency and the main focus of
this study.

The optimization phase of loop closure consists of five key steps when employing the
Levenberg-Marquardt algorithm as outlined below:

1. Initialization: This step prepares the optimization problem by setting initial esti-
mates for the variables that will be optimized. This only happens in the first iteration.
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Sequence Construction (ms) Optimization (ms) Recovery (ms)
V102 1 16 6
V103 1 4 1
V202 1 18 5
V203 1 15 7
Room3 1 16 5
Room4 1 15 5
Magistrale1(1) 6 101 40
Magistrale1(2) 14 214 51
Magistrale2 8 139 32
Corridor1 13 156 51
Corridor5 9 133 36
Outdoors5 24 256 47
Outdoors7 35 619 100

Table 4.1: CPU times for core Loop Closure components across EuRoC and TUM-VI se-
quences in ORB-SLAM3.

2. Computing Active Errors: The algorithm calculates errors for the current state,
identifying the differences between predicted outcomes and actual observations.

3. Linearization: In this phase, the algorithm approximates the behavior of the system
around the current estimates using linear models. This is achieved by slightly adjusting
the variables to see how changes impact the error, which is a crucial use of FDM.

4. Determining Initial Lambda Value: This involves selecting an initial value for
the lambda parameter, which helps in balancing the algorithm’s performance between
gradient descent and Gauss-Newton methods.

5. Employing a Solver: The final step uses a solver to iteratively adjust the variables,
aiming to minimize the overall error. The Levenberg-Marquardt algorithm excels in
this step, striking a balance between convergence speed and accuracy.

The process of linearization, particularly when using FDM for approximating the Jaco-
bian matrices, often emerges as the most time-consuming step in the optimization sequence,
followed closely by the solver phase, as evidenced in Figure 5.1. With that in mind, our work
focuses on migrating this computationally intensive task to GPU processing. This shift aims
to significantly expedite the optimization process, enhancing the overall efficiency of loop
closure, a pivotal improvement detailed in Figure 4.1.

The g2o framework enhances the efficiency of Jacobian computations by leveraging the
parallel computing capabilities of OpenMP [7]. This approach distributes tasks across multi-
ple threads by partitioning the graph into subgraphs based on edges, resulting in significant
performance improvements. However, the primary cause of computational bottlenecks per-
sists, mainly due to the redundant repetition of pose perturbations in densely interconnected
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Figure 4.1: Visual Representation of the Levenberg-Marquardt Algorithm: Highlighting Ja-
cobiGPU’s Role in Offloading the Linearization Step. Figure from [25].

pose graphs. Such redundancy stems from the graph’s structure, often characterized by a
higher number of edges than unique poses, leading to unnecessary recalculations as individ-
ual poses, central to overlapping observational areas, loop closures, and odometry-induced
constraints, are repetitively perturbed through their associated edges.

For example, consider a pose, P2, linked to multiple constraints (e.g., landmarks, ad-
jacent poses). Using FDM for Jacobian calculation, P2 undergoes perturbation to estimate
error gradients. For each of the 10 constraints connected to P2, a separate perturbation is
performed to calculate the respective errors:

• This results in redundant calculations as P2 is perturbed 10 times independently for
each constraint, despite the perturbations being identical.

• The redundancy could be avoided by sharing the perturbation results across con-
straints, thereby reducing the computational burden and increasing efficiency. This is
the improvement our approach accomplishes.

GPUs are particularly well-suited to address this issue, as their architecture thrives when
executing uniform tasks across many threads, such as the mentioned pose perturbations.
Moreover, the graph data being represented as matrices and vectors, coupled with the
primary operations being matrix-matrix or matrix-vector multiplications, aligns well with
GPU strengths. This alignment is corroborated by the findings in [35], which highlight the
GPU’s superior performance in these types of computations. Additionally, GPUs provide a
way to partition the graph in different ways at different points, which might also be possible
on CPUs. However, the hybrid partitioning, coupled with the points mentioned earlier, has
proven to be advantageous according to our findings.

Our solution, JacobiGPU, innovates by integrating specialized GPU kernels [21] into the
FDM pipeline ensuring that each pose is perturbed precisely once per dimension. This en-
hancement directly addresses the inefficiencies previously identified, significantly streamlin-
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ing the computation process and reducing the time needed for calculations. By reconfiguring
the pipeline, JacobiGPU eliminates redundant recalculations, enhancing the optimization
process’s efficiency. This not only saves computational resources but also speeds up the
adjustment of poses.

4.1 Overview

Our work is developed utilizing the SYCL framework [20], a high-level, cross-platform ab-
straction layer introduced by the Khronos Group. SYCL is designed to facilitate code exe-
cution across a diverse range of GPU architectures, thereby offering extensive compatibility
and flexibility for application deployment on various hardware platforms. This capability
ensures that the library can be versatile and adaptable to any GPU, including those from
NVIDIA, AMD, or Intel, without necessitating specific coding tailored to each manufac-
turer’s architecture.

Furthermore, the library is crafted to provide a user-friendly interface that abstracts
the complexities of SYCL, thereby eliminating the need for applications integrating Jaco-
biGPU to compile SYCL code directly. This abstraction simplifies the integration process,
allowing developers to harness the power of SYCL and GPU acceleration effortlessly. As
a result, developers can focus on leveraging the functionalities of the library, streamlining
their development process.

Building on this foundation, JacobiGPU introduces two specialized kernels – perturb and
compute – to efficiently tackle the challenge of redundant perturbations during the PGO
linearization phase. The perturb kernel (k1), detailed in Section 4.3, partitions the graph
based on vertices. It updates poses in both positive (+) and negative (-) directions concur-
rently, storing outcomes in designated intermediate buffers that hold the new and perturbed
position of every pose in the graph (Figure 4.2). This ensures each pose is perturbed once,
significantly enhancing efficiency by eliminating redundant computations.

Following the perturbation phase, the compute kernel (k2), outlined in Section 4.3,
executes with its edge-based partitioning strategy. This allows for parallel error evaluations,
ensuring updated pose estimates comply with the graph’s constraints. Results, including
derived Jacobian columns, are stored in the red buffer (Figure 4.2), ready for CPU utilization
in solving the PGO problem.

The main insight upon which our work is built is the concept of hybrid partitioning
based on the task at hand, rather than sticking to a simple single vertex or edge-based
partitioning. This approach tailors the computational strategy to the specific needs of each
phase of the graph optimization, leveraging the strengths of both vertex and edge-based
methods to optimize performance and accuracy.

The development principles of JacobiGPU closely adhere to established best practices
in GPU programming, as detailed in [21]. These best practices encompass several key areas:
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1. Memory Access Patterns: JacobiGPU employs one-dimensional buffers to ensure
uniform and predictable memory access, maximizing the GPU’s throughput and re-
ducing latency. This approach diverges from multi-dimensional array storage to opti-
mize the GPU’s data processing capabilities.

2. Data Organization: It groups similar data types in contiguous memory spaces to
boost cache efficiency and spatial locality. This methodology aims to decrease cache
misses and global memory accesses, enhancing performance and responsiveness.

3. Host-Device Data Transfers: To minimize latency from frequent data exchanges
between CPU and GPU, JacobiGPU uses a third kernel for direct GPU pose updates
post-solver, as shown in Figure 4.1. This reduces the need for constant data transfers,
improving computation efficiency.

4. Task Management: JacobiGPU minimizes kernel launches and optimizes parallel
processing capabilities by assigning specific tasks to each kernel. This strategy ensures
efficient execution, leveraging the GPU’s architecture for intensive computations with
minimal delay.

The detailed implementation of these best practices and the impact on system perfor-
mance are further elaborated in Section 4.2 and Section 4.3.

Figure 4.2: g2o (top) vs JacobiGPU (bottom) linearization overview. Box labeled ‘J’ sym-
bolizes the computation of the Jacobian. Figure from [25].
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4.2 Data Organization and Memory Architecture

GPUs are designed to maximize memory access efficiency through a hierarchical memory
design characterized by varied access speeds. To enhance kernel performance, aligning with
this architecture by adopting an appropriate data organization strategy is crucial. A notable
technique involves reorganizing multi-dimensional data structures, such as rotation matri-
ces and translation vectors for PGO, into one-dimensional (1-D) arrays or buffers. Such a
reorganization facilitates linear and predictable data access patterns, enhancing memory
throughput and kernel execution times due to optimized GPU bandwidth utilization.

Building on this, our work is designed to include 18 unique 1-D buffers that store the
matrices and vectors in column-major format. Each buffer is designed to encapsulate spe-
cific components of the pose graph and the integrated multi-sensor system, aligning data
management with the GPU’s memory access paradigms.

Poses and Constraints

Pose and constraint information is distributed across ten 1-D buffers, divided as follows:

• Constraint Data Buffers: Two buffers are dedicated to storing the rotational and
translational data corresponding to the graph’s edges. They encapsulate the essential
relative poses between frames or nodes, effectively representing the constraints that
dictate spatial relationships and movements within the pose graph.

• Pose Data Buffers: Additionally, eight buffers are allocated for Pose Data, divided
equally into four buffers for rotational matrices and four for translation vectors. This
arrangement allows for a comprehensive depiction of:

1. The orientation of the primary body relative to the global coordinate system
(world), as detailed by the rotational matrices.

2. The position of the primary body concerning the world, as outlined by the trans-
lation vectors.

3. The orientation and position relationships between the primary body and any
attached cameras, further elaborated by the supplementary buffers for rotation
and translation.

This organization aims to optimize data storage by separating different types of data into
distinct buffers, simplifying GPU data upload and enhancing cache efficiency. By leveraging
spatial locality, where frequently accessed data elements are stored close together, this
approach facilitates efficient data access across threads, streamlining the management of
pose and constraint information while reducing the overhead associated with non-linear
memory access patterns.
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Intermediate Perturbed Pose

During the perturbation phase, essential for pose estimation, it’s crucial to perform ad-
justments in both the positive (+) and negative (-) directions across each dimension. This
bidirectional adjustment helps capture the effect of pose on error computation. A minimum
of two buffers—one for translation and one for rotational data—is required for this opera-
tion. Adopting only two intermediate buffers would necessitate a sequential approach: first,
perturbing in one direction and capturing the results with one kernel execution, followed by
the computation of error through another kernel. This process would have to be replicated
for perturbation in the opposite direction. For a system with four degrees of freedom (4DoF),
such a method would result in sixteen kernel launches—eight for each direction of pertur-
bation. For a six degrees of freedom (6DoF) system, this number escalates to twenty-four
kernel launches:

Kernel Launches = 2 (for +) × DoF × 2 (for −) (4.1)

However, by employing four intermediate buffers—two for storing the rotational and
translational data from positive perturbations, and two for the data from negative per-
turbations—we can capture the results for both perturbation directions in a single kernel
launch per dimension. This optimization effectively halves the number of required kernel
executions:

Optimized Kernel Launches = DoF × 2 (for both + and −) (4.2)

This optimization lowers the number of kernel launches to eight for a 4DoF system and
twelve for a 6DoF system with a slight uptick in memory usage. Let t be the time taken for
one kernel launch to execute, n the number of kernel launches, m the memory usage per
buffer, and b the number of buffers used. The memory used is then:

M = m × b (4.3)

The time saved by optimizing the number of kernel launches from 24 to 12 for a 6DoF
system is given by:

Tsaved = t × (24 − 12) = 12t (4.4)

The increase in memory usage from using two buffers to four buffers is:

∆M = m × (4 − 2) = 2m (4.5)

Jacobians

Within our pose graph optimization framework, two dedicated buffers are structured to hold
the Jacobian matrices in column-major format, essential for the re-calibration of source and
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target poses associated with each graph edge. These buffers are organized to enhance the
computational workflow:

• Source Pose Jacobians Buffer: This buffer is reserved for the Jacobian matri-
ces pertaining to source poses, encapsulating the partial derivatives crucial for pose
adjustments.

• Target Pose Jacobians Buffer: Similarly, this buffer is dedicated to the Jacobian
matrices of target poses, containing the derivatives necessary for refining pose esti-
mates.

The Compute Kernel, as mentioned in Section 4.3, is tasked with error computation,
populating these buffers with Rotation and Translation errors. Each buffer is indexed by
the constraint ID and the specific dimension under consideration, facilitating efficient data
retrieval and updates:

Buffer Size = Number of Constraints × 6 × DoF, (4.6)

where “DoF”, again, represents the degrees of freedom within the system, which could
be either 4 or 6, depending on the specific configuration being optimized. The factor of
6 accounts for the comprehensive data storage for a single dimension, or column, within
the Jacobian matrix. Specifically, the arrangement accommodates both the rotational and
translational error components, with the first three slots designated for rotational error and
the subsequent three slots for translational error computed based on Equation 2.3. Further
details on this configuration can be found in Section 2.4, which delves into the structure
and significance of the Jacobian Matrix with respect to our work. This organization ensures
that each dimension of the pose’s degrees of freedom is fully represented in terms of its
impact on both rotation and translation, facilitating detailed error analysis and subsequent
pose adjustments.

Pose IDs

In SLAM systems, the assignment of IDs to keyframes – which represent specific poses – is
often non-sequential, owing to the dynamic nature of updates with respect to pruning and
the inclusion of new data . This lack of sequentiality disrupts the GPU’s optimized patterns
for sequential data access, a cornerstone for achieving high performance in computational
tasks. The unpredictability introduced by non-sequential IDs complicates the GPU’s ability
to effectively prefetch data, which could lead to increased cache misses and, consequently,
slower data retrieval times.

With this in mind, our work implements a systematic approach for reindexing keyframes
as they are integrated into the system. This reindexing process assigns new, sequential IDs
to each keyframe, starting from an ID of zero. The purpose of this strategy is twofold:
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Figure 4.3: Illustration of converting a Jacobian matrix into 1-D column-major format for
buffer storage in a 4DoF setup. En, Er, and Et denote error in the nth dimension, rotational,
and translational errors, respectively. The bottom buffer demonstrates the column-major
storage on GPU, with elements ordered from left to right, starting from the first row.

1. Enhancing Data Access Efficiency: By ensuring that keyframe IDs follow a sequential
order, our library optimizes the GPU’s data access patterns. Sequential IDs allow for
more predictable data prefetching, thereby reducing cache misses and improving data
retrieval speeds.

2. Facilitating Data Organization: The reorganized IDs are stored within two dedicated
buffers. These buffers are structured to allow indexing based on the edge-ID, enabling
swift and direct retrieval of pose data for both source and target poses associated
with each graph constraint. This level of organization greatly simplifies the process
of understanding and navigating the complex relationships between poses defined by
the constraints in the pose graph.

Additionally on the host side, two critical mappings facilitate the seamless synchroniza-
tion between CPU and GPU regarding pose IDs. One map translates pose IDs from the
CPU context to their corresponding GPU context, while the reverse map translates pose
IDs from GPU back to CPU. To streamline the interaction between these computing en-
vironments, a dedicated function is designed to input a pose and output its corresponding
ID, accurately discerning whether the query is for the CPU or GPU context. This function
achieves its objective by efficiently indexing the relevant map, providing a straightforward
and rapid lookup mechanism. This setup significantly simplifies the integration process, en-
suring that the transition of pose data across CPU and GPU contexts is both smooth and
efficient.
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4.3 Kernels
Perturb (k1)

The Perturb Kernel plays the role of perturbing each pose in the graph in designated
dimensions. This subsection delves deeper into the kernel’s functionality and its impact on
the efficiency of the optimization process.

At its core, the Perturb Kernel operates by manipulating the original world-to-body
transformation matrices, including translations associated with each pose. For each dimen-
sion, the kernel introduces small perturbations (δR for rotation and δt for translation) to
simulate potential variations in the pose’s orientation and position. This approach to pose
adjustment is important as it facilitates a comprehensive exploration of the error landscape
surrounding each estimated pose. The outcome of these perturbations, incorporating both
positive and negative variations for each dimension, is systematically stored in green in-
termediate 1D buffers as show in Figure 4.2. These buffers serve as the groundwork for
subsequent calculations in the optimization pipeline.

It does so by employing the central difference method, as per Equation 4.7, to com-
pute the gradient of the error function efficiently. The kernel transforms the world-to-body
relationship into a body-centric perspective, followed by applying the camera-to-body trans-
formations. This allows for the calculation of a column within the Jacobian matrix, reflecting
the sensitivity of the error function to changes in pose parameters.

∂L
∂xj,k

≈
L(Rj,k

wpos , tj,k
wpos) − L(Rj,k

wneg , tj,k
wneg)

2δ
(4.7)

In this equation, L denotes the error function. The terms Rj,k
wpos and tj,k

wpos represent the
rotation and translation derived from a positive perturbation of pose j in the kth dimension,
while Rj,k

wneg and tj,k
wneg correspond to those from the negative perturbation. This formulation

underscores the significance of efficient pose transformations within the kernel, as they
directly influence the computation of the gradient of the error function via the central
difference method. Lie algebra [17] is used to facilitate the transformation between matrices
and vector spaces, and vice versa.

The Perturb Kernel’s capacity for processing multiple poses or nodes in parallel stands
as one of its fundamental strengths, achieved through several key mechanisms. Firstly, it
employs graph partitioning based on vertices. In this setup, each vertex (or pose) within the
pose graph is treated as an independent entity for perturbation. These vertices are then pro-
cessed concurrently, with different GPU threads handling different vertices. This approach
allows for independent and simultaneous perturbation of each pose. This guarantees that
each vertex is perturbed only once per dimension, avoiding the redundancy typical of se-
quential processing where a pose might be perturbed multiple times in the same dimension,
corresponding to its connections or degree. Instead, this method allows for simultaneous
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perturbations and computations for each pose, ensuring efficiency and consistency in pro-
cessing.

Compute (k2)

This kernel is launched after the Perturb kernel and is dependent on the output from that
kernel. In the process of optimizing the pose graph, a critical step involves the accurate
determination of the error between predicted and actual poses, followed by the estimation of
the Jacobian matrix, which is essential for iterative optimization. This process is facilitated
by this kernel, which leverages perturbations in pose parameters to compute these errors
and subsequently estimate the Jacobian.

After introducing perturbations in each pose’s parameters, the kernel proceeds to evalu-
ate the error associated with these perturbed poses. The error calculation is grounded in the
discrepancy between the predicted pose, as influenced by the perturbation, and the actual
observed pose. This comparison is quantitatively expressed by Equation 2.3, which encom-
passes both rotational (ER) and translational (Et) components of the error. The kernel
utilizes the difference in errors obtained from perturbations in both positive and negative
directions to estimate the Jacobian matrix. As elucidated by Equation 4.7, this estimation
involves computing the gradient of the error function with respect to each pose parameter:
This differential approach effectively captures the sensitivity of the error function to vari-
ations in pose parameters, with each dimension’s perturbation corresponding to a distinct
column in the Jacobian matrix.

Following the estimation, the kernel integrates the computed Jacobian columns into the
global Jacobian matrix. It identifies the vertices connected by the edges under consideration
and places each pose’s calculated column directly into the Jacobian buffers (Section 4.2).
This systematic arrangement ensures that the optimization algorithm can accurately ac-
count for the influence of each pose on the overall error landscape, facilitating effective
minimization of errors across the pose graph.

Update

This kernel has been developed to update poses directly on the GPU, based on 3D coordinate
adjustments output by the solver at the end of each iteration. Given PGO’s iterative nature,
which traditionally would necessitate frequent data transfers between the CPU and GPU to
adjust poses with each iteration’s results, this update kernel performs updates directly where
pose data reside—on the GPU. This approach avoids potential repetitive data transfers
across iterations. The introduction of this kernel significantly improves the handling of
iterative optimization algorithms by eliminating the inefficiencies associated with continuous
data movement between the CPU and GPU. By maintaining pose data on the GPU and
applying solver-derived adjustments directly, the need for data transfers between the CPU
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and GPU is reduced. As a result, the graph needs to be transferred only once for the entire
optimization cycle, significantly streamlining the PGO workflow.
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Chapter 5

Evaluation

5.1 Experimentation Setup

Our experimental setup features a 12th Gen Intel® Core™ i7-12700K CPU with 20 cores
operating at 5.0 GHz, 62GB of RAM, and an NVIDIA GeForce RTX 3090 GPU, providing
robust support for high-speed computations, handling large datasets, and performing inten-
sive graphical processing tasks. In our framework, we adapt g2o for use within the ORB-
SLAM3’s optimization routines, initially enhancing performance through vectorization and
the activation of OpenMP, which are not standard in the ORB-SLAM3 system. Vectoriza-
tion enables the simultaneous processing of multiple data points, while OpenMP facilitates
parallel computing, significantly reducing computational time. Whenever the CPU is men-
tioned in our results, it indicates that OpenMP was activated. Additionally, we compare our
modified approach with g2o’s parallel configuration to showcase the potential improvements
when leveraging GPU capabilities.

For evaluation, we execute ORB-SLAM3 on sequences from the EuRoC and TUM-
VI datasets, selected for their complex environments and varying loop closures in stereo-
inertial setups. The EuRoC dataset, known for its challenging machine hall and Vicon
room sequences, provides a test for aerial vehicle navigation, while the TUM-VI dataset
offers diverse indoor and outdoor scenes essential for validating visual-inertial odometry. To
validate our method, we compare the χ2 error and trajectory accuracy between the original
g2o and our modified version that incorporates our library. This comparison confirms that
our library enhances loop closure optimization efficiency without negatively impacting the
rest of the SLAM process.

Our benchmarks involve inputting sequences from the EuRoC and TUM-VI datasets,
which contain varied environmental data and loop closure scenarios. These inputs are inher-
ently nondeterministic because they represent real-world sensor data that can vary slightly
with each run due to noise, sensor drift, and differing initial conditions. This nondeterminism
means that our evaluations must account for variability in the results, necessitating multiple
runs to obtain statistically significant outcomes. Therefore, we conduct ten repeated trials
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Figure 5.1: A breakdown of a Levenberg-Marquardt call for loop closure for EuRoC and
TUM-VI sequences.

for each dataset sequence. This approach helps us confirm that improvements in perfor-
mance metrics, such as reduced computational time, are consistent and reproducible under
different conditions, rather than outcomes of random fluctuations in the data.

5.2 Runtime Performance

ORB-SLAM3’s use of the Levenberg-Marquardt algorithm in g2o iteratively refines solu-
tions, with Figure 5.1 detailing component timings. Linearization emerges as the most time-
consuming step, followed by the solver, pinpointing our optimization efforts to enhance loop
closure efficiency significantly. Integrating JacobiGPU show improvements in performance,
particularly for larger graphs compared to smaller ones. Table 5.1 demonstrates up to a 4.23-
fold increase in speed for Jacobian calculations and a 2.08-fold improvement in the overall
optimization process. Notably, for the V103 dataset, where the graph size is smaller, our
method underperforms slightly, attributed to the initial data transfer overhead outweighing
computational gains.

Specifically focusing on linearization, Figure 5.2 provides a breakdown of the JacobiGPU
kernel operations and the cumulative Jacobian data transfer time to the CPU over all iter-
ations. Notably, the Perturb and Compute kernel’s computation time for the V102 dataset
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Sequence
Graph Size Linearization Time (ms) Linearization Total Optimization Time (ms) Total Optimizer

Poses Constraints CPU JacobiGPU Speedup (%) CPU JacobiGPU Speedup (%)

V102 91 ± 7 425 ± 35 5.63 ± 1.44 3.47 ± 0.85 +38.37 (1.62x) 9.08 ± 2.04 6.16 ± 2.34 +32.16 (1.50x)

V103 52 ± 9 425 ± 34 2.69 ± 1.30 3.12 ± 1.00 −15.99 (0.86x) 3.99 ± 1.70 4.16 ± 1.92 −4.26 (0.95x)

V202 57 ± 2 248 ± 13 5.26 ± 2.43 4.13 ± 1.86 +21.48 (1.27x) 7.88 ± 2.50 6.64 ± 1.02 +15.72 (1.24x)

V203 143 ± 41 566 ± 110 11.05 ± 0.82 6.79 ± 1.09 +38.46 (1.63x) 19.54 ± 1.77 12.57 ± 0.68 +35.63 (1.55x)

Room3 65 ± 4 502 ± 52 6.64 ± 2.16 2.65 ± 0.41 +60.12 (2.50x) 9.77 ± 3.07 4.84 ± 0.72 +50.46 (2.02x)

Room4 75 ± 7 874 ± 37 8.71 ± 2.42 4.19 ± 1.10 +51.90 (2.08x) 14.35 ± 1.29 8.10 ± 1.85 +43.55 (1.77x)

Magistrale1(1) 472 ± 36 3577 ± 199 56.43 ± 0.87 16.07 ± 0.53 +71.53 (3.51x) 92.75 ± 3.00 46.22 ± 0.90 +50.17 (2.01x)

Magistrale1(2) 1173 ± 205 9111 ± 1091 102.33 ± 1.94 25.11 ± 1.75 +75.47 (4.08x) 184.16 ± 13.42 95.86 ± 11.08 +47.94 (1.92x)

Magistrale2 543 ± 29 4637 ± 403 61.58 ± 1.69 14.56 ± 1.05 +76.35 (4.23x) 105.03 ± 3.73 50.47 ± 1.19 +51.95 (2.08x)

Corridor1 899 ± 45 7381 ± 731 93.56 ± 10.89 29.04 ± 31.08 +68.95 (3.22x) 177.58 ± 1.16 106.70 ± 17.40 +39.91 (1.66x)

Corridor5 843 ± 12 6442 ± 194 95.82 ± 6.89 29.73 ± 6.67 +68.98 (3.22x) 174.23 ± 19.04 106.04 ± 19.45 +39.13 (1.64x)

Outdoors5 1100 ± 30 11713 ± 392 135.66 ± 2.85 44.19 ± 2.27 +67.44 (3.07x) 222.89 ± 3.72 149.68 ± 3.07 +32.85 (1.49x)

Outdoors7 913 ± 20 9438 ± 397 129.79 ± 16.51 39.28 ± 0.85 +69.76 (3.30x) 223.89 ± 30.30 142.64 ± 25.46 +36.30 (1.57x)

Table 5.1: Linearization and total optimization times (in ms) for ORB-SLAM3 across 10
runs. The Magistrale1 sequence features two distinct loop closures, represented separately
as Magistrale1(1) for the early stage and Magistrale1(2) for the later stage. The CPU Table
from [25].

is around 0.5ms, while for the larger graph of outdoors5 (as shown in Table 5.1), the total
computation time is 1.5ms. This is despite the graph for outdoors5 being nearly 11 times
larger in terms of Poses and 25 times for constraints.

This section investigates how integrating JacobiGPU into the ORB-SLAM3 frame-
work affects the computational efficiency during the linearization step of the Levenberg-
Marquardt optimization algorithm. The measures used, component timing breakdowns,
and speed improvements in Jacobian calculations and the overall optimization process are
chosen to quantify the efficiency gains in the most computationally demanding aspects of
the SLAM process directly.

5.3 GPU Memory Transfer

We used NVIDIA Nsight Systems for profiling memory transfers across different sequences,
as illustrated in Figure 5.3. The ’Magistrale1’ sequence emerged as the most demanding
in terms of GPU memory transfer, with a peak transfer size of approximately 53.84MB. A
substantial part of this transfer is attributed to host-to-device data movement, necessitated
by the need to copy the entire graph’s data to the GPU for processing. Specifically, the
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Figure 5.2: Breakdown of various components within JacobiGPU for EuRoC and TUM-VI
sequences.

Figure 5.3: Average memory transfer for buffer allocation across sequences, as profiled by
Nsight Systems over five runs. The ‘Magistrale1’ bar aggregates the memory transfers for
both loop closures 1 and 2. Figure from [25].
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transfer of Jacobian buffers from the device back to the host accounted for 3.4MB of the
total transfer.

This subsection details the memory transfers between the CPU and GPU across various
sequences, focusing on quantifying the total data transfer, especially the Jacobian buffers
from GPU to CPU. This helps in understanding the correlation between the graph sizes and
the volume of memory required for transfer, providing a clearer depiction of the system’s
operational demands.

5.4 Trajectory

To assess the impact of our modifications on trajectory accuracy, we conducted a compar-
ative analysis by running the same sequence twice: first under the standard ORB-SLAM3
setup and then using our enhanced version. This process was repeated for all sequences in
our study, with Figure 5.4 presenting the results for a representative sequence. Upon an-
alyzing the trajectory data from both runs, we observed that the trajectories were similar
overall. However, running the same sequences multiple times might lead to similar results
due to the deterministic aspects of the algorithm or consistent sensor error patterns, such as
repeatable processing of image features and consistent response to identical input data. It is
important to consider these factors when evaluating the generalizability and improvements
of the modified system in real-world conditions.

This subsection conducts a comparative analysis to ascertain whether the modified ORB-
SLAM3 setup maintains trajectory accuracy relative to the standard configuration across
identical datasets. This evaluation serves as an essential verification of the consistency and
reliability of the system enhancements under real-world conditions.

5.5 Error Convergence

The χ2 error metric, derived from the g2o optimization process, is pivotal for evaluating the
accuracy and dependability of the optimization efforts within our SLAM framework. In com-
paring the outcomes from the standard ORB-SLAM3 setup with those from our modified im-
plementation, we notice a similar error convergance. Detailed in Figure 5.5, the error profiles
of both versions exhibit a perfect alignment, underscoring that our JacobiGPU-enhanced
version maintains fidelity to the original implementation’s behavior. This alignment not
only validates the modifications we’ve introduced but also underscores the effectiveness of
JacobiGPU in replicating the established optimization behavior without compromising on
the system’s reliability and accuracy. This finding demonstrates our ability to enhance com-
putational efficiency while preserving the core functionalities and performance benchmarks
of the original system.

This subsection investigates how the JacobiGPU-enhanced version of ORB-SLAM3 com-
pares to the original in terms of χ2 error convergence during the optimization process. The
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χ2 error profiles from both versions are examined, ensuring that while computational effi-
ciency is enhanced, the accuracy of the optimization is not compromised.
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(a) V102 (b) V103 (c) V202

(d) Room3 (e) Room4 (f) Corridor1

(g) Corridor5 (h) Magistrale1 (i) Magistrale2

(j) Outdoors5 (k) Outdoors7

Figure 5.4: ORB-SLAM3 trajectories from two distinct runs of various sequences: the origi-
nal CPU-based implementation (blue) versus the enhanced version with JacobiGPU (green).
Some taken from [25].
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(a) V102 (b) V103 (c) V202

(d) Room3 (e) Room4 (f) Corridor1

(g) Corridor5 (h) Magistrale1 (i) Magistrale2

(j) Outdoors5 (k) Outdoors7

Figure 5.5: χ2 error when we run the original CPU version and JacobiGPU integrated
version of g2o block solver on outdoors7 sequence for ten iterations. Some taken from [25].
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Chapter 6

Conclusion

In this thesis, we present a novel technique aimed at overcoming the computational chal-
lenges associated with linearization. This is crucial when numerical differentiation is used, a
key component in the loop closure process of visual-inertial SLAM systems. Our approach,
named JacobiGPU, leverages GPU resources to enhance computational efficiency. Unlike
traditional methods that often rely on a singular partitioning strategy for graph-based
computations, JacobiGPU innovatively partitions the graph based on computational tasks,
thereby optimizing resource utilization and processing speed. This methodology has been
integrated into ORB-SLAM3 with g2o, where the linearization process is offloaded to the
GPU, representing a significant departure from conventional CPU-based processing.

The efficacy of JacobiGPU is evaluated using datasets from EuRoC and TUM-VI, en-
compassing both short and long sequences. The results demonstrate a notable average
speedup of 2x in the loop closure process, with the linearization step showing an impressive
improvement of up to 4x, particularly for longer sequences. These findings show the po-
tential of leveraging GPU resources for enhancing the performance of visual-inertial SLAM
systems, especially in the computationally intensive task of numerical differentiation.

Future Work
A potential direction for future research could involve conducting a comparative analysis

between JacobiGPU and libraries that use automatic differentiation (auto-diff) techniques,
with a focus on evaluating processing speed and memory consumption. Such a comparison
would be instrumental in determining the most efficient method for linearization within
SLAM systems, taking into account both computational efficiency and resource utilization.

Additionally, an interesting avenue for further exploration is the extension of Jaco-
biGPU to optimize the solver component, especially within the framework of the Levenberg-
Marquardt algorithm. As highlighted in Figure 5.1, the solver phase is the subsequent com-
putationally demanding step following linearization. By focusing on optimizing this compo-
nent, significant improvements in performance could be achieved. Investigating GPU-based
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approaches for enhancing solver efficiency has the potential to not only improve the overall
effectiveness of SLAM systems but also establish new standards in processing speed and
precision for real-time operations.
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