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Abstract

The Intensive Care Unit (ICU) represents a specialized sector within a hospital setting,
committed to offering advanced monitoring, precise therapeutic interventions, and highly
specialized nursing care for patients facing critical medical conditions that demand rigorous
medical supervision and support for essential physiological functions. Nonetheless, ICUs
are often constrained by a finite availability of critical resources, such as beds, specialized
nursing staff, and ventilatory equipment, among others. In this thesis, I construct a simula-
tion model to analyze the operational dynamics of a network comprising eight major ICUs
in British Columbia, Canada. The focus of this thesis is development and validation of a
robust discrete-event simulation model designed to estimate patient flow through individual
sections of the critical care system across multiple healthcare facilities. The model includes
various strategies for admitting new patients when an ICU reaches full capacity, such as
utilizing overflow beds, bumping patients, or transferring patients to other hospitals. The
simulation model was calibrated using real world data from the British Columbia Critical
Care Database and serves as an analytical tool for planning critical care capacity in the
context of endemics and pandemics such as COVID-19. This work was done in collaboration
with the Ministry of Health in British Columbia.

Keywords: Simulation Modelling ; Critical care model; AnyLogic Software; Intensive Care
Unit(ICU)
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Chapter 1

Introduction

1.1 The Essential Role of Intensive Care Units

The Intensive Care Unit (ICU) is a specialized section of the hospital designed for the treat-
ment of patients facing severe or life-threatening conditions. This facility has expert staff
and advanced technology to provide continuous 24/7 care focused on stabilizing patients
for transition to less critical environments. The ICU plays a crucial role in the hospital for
various reasons and serves a broad range of patients, from those with pre-existing condi-
tions to those with unexpected injuries or illness, as well as those who need support before
and after complex procedures. Nowadays with rapid growth of the aging population, ICU
demand has increased at a rate 62% faster than the availability of beds [52]. Patients can
be admitted to the ICU from different hospital wards, after surgery, directly from the emer-
gency department, or from ICU of other hospitals due to medical reasons [7] which require
a significant allocation of resources and staff. Their limited bed capacity means that when
demand exceeds supply, it can quickly lead to bottlenecks. Therefore, ICUs can function
as a bottleneck in hospital patient flow, where limited capacity can affect admissions and
impact both upstream and downstream departments [109] (Figure 1.1).

ICUs are widely recognized as one of the most financially demanding healthcare resources
within a hospital, typically utilizing over 13% of the hospital’s total budget [49]. Providing
medical care to patients in an ICU is more costly compared to treatment in a standard
hospital ward. Data from the United States and Canada indicates that ICU-related expenses
can be four to six times higher than those of a regular ward; ward beds cost as much as
$1,000 per day while critical care beds surpass $3,500 per day [94, 45, 88, 49]. Therefore,
the ICU plays a crucial role in hospital healthcare, both in terms of its critical importance

and its substantial financial impact.

How did COVID-19 affect the ICUs?

The recent outbreak of SARS-CoV-2 (COVID-19) has once again highlighted the crucial
role of ICUs in healthcare systems. High COVID-19 transmission rates, coupled with a



significant number of patients requiring medical care, have put an extraordinary strain
on healthcare providers [21]. This has led to a demand for resources, such as ICU beds
and ventilators, that often exceeds available capacity, potentially resulting in increased
patient mortality [117]. This limitation is a common issue in many hospitals across the UK,
USA, and Europe [38, 96]. For example, Italy encountered severe pressure on its critical
care system. Patients struggled to access ICU beds, and some tragically died in hospital
corridors while waiting for beds to become available. During COVID-19 pandemic, 9% to
11% of COVID-19 hospitalizations necessitate ICU care in a year, impacting the availability
of ICU beds, ventilators, and specialized nursing staff [96]. Also, a healthcare system’s
approach to managing COVID-19 has noteworthy effects on other categories of patients,
such as those needing routine emergency or elective care. Many operations cancelled or
delayed due to disruptions from COVID-19; therefore, the impact on these populations
should not be disregarded [21, 36, ?].

Beside COVID-19, seasonal influenza also constrains ICU resources. Influenza, charac-
terized by high severity, extensive spread, and long duration typically causes self-limiting
respiratory illnesses, with 5% — 10% of hospitalized cases needing ICU admission due to
severe symptoms [9, 21]. Intensivists are vital for triage during pandemics when demand
surpasses capacity, as they primarily care for severely ill patients who often arrive first in
emergency departments [51, 61]. Additionally, trauma patients also can place considerable
stress on ICU resources and staff due to the intensive care they require. Their conditions
often demand immediate, complex interventions, and a multidisciplinary approach to man-
age life-threatening injuries. The high demand for specialized equipment, such as ventilators
and advanced monitoring systems, alongside the necessity for a higher ratio of medical staff
to patients, strains the operational capacity of the unit. Therefore trauma patients can
similarly strain critical systems. Different patients exert varying levels of stress on ICUs,
each presenting distinct challenges and requiring unique approaches for management and
mitigation.

Governments are increasingly utilizing modeling to identify the most effective approaches
to inform pandemic planning. These models fall into two different categories: epidemic
models and operational models. For example, early in the COVID-19 pandemic special
emphasis was placed on strategies to flatten the growth curve of this disease, in order to
relieve stress on healthcare systems. There are significant numbers of epidemiological models
which are ideal for predicting the number of new cases or for identifying the best measures
to reduce transmission. Extensive epidemiological modeling has simulated pandemic spread,
highlighting its potential in offering solutions to numerous challenges [31]. However, such
models do not directly assist in managing ICU beds, ventilator use, medical staff allocation,
or understanding the impact of individual behavior on healthcare system capacity [31, 69].
Operational models on the other hand, are valuable tools for decision-making at various

levels, from national governments to local municipalities and individual hospitals to help



in planning capacity and managing limited resources efficiently for the care of critically ill
patients.

In scenarios where ICUs reach their capacity, critical care staff implement several strate-
gies to accommodate new admissions. These include utilizing additional, or overflow beds
located in other sections of the hospital [15, 70] or doctors might discharge current patients
sooner when high bed occupancy risks the care quality for new patients. This involves
the early discharge of patients who are nearing the completion of their ICU stay, relocating
them to High Acuity Units (HAUs) or medical wards [70]. High acuity units deliver essential
critical care to patients whose require more then can be accommodated by general medical
wards but fall short of necessitating the comprehensive care provided in ICUs. Patients may
also be transferred to ICUs at alternative hospitals may also be transferred. These strate-
gies are crucial in managing the dynamic and high-demand environment of ICUs, ensuring
optimal utilization of available resources and sustained provision of critical care [15, 117].

To effectively optimize ICU function, several important limitations of current simula-
tions must be addressed. Existing models are designed to function for a single ICU and
preventing analysis of all inter-ICU transfer [116, 117]. Hence there is a would be significant
benefit in expanding these models to facilitate collaboration between multiple ICUs, poten-
tially on both a provincial and national scale [102]. Particularly in the context of emerging
diseases, fostering collaboration across all hospitals is pivotal and such collaboration is es-
sential to mitigating impacts on the healthcare system, as exemplified by the coordinated
response required during the pandemic. By developing models that incorporate multiple
ICUs, hospitals can enhance their preparedness and response strategies for future health-
care challenges. A second key limitation of current simulation models is that existing studies
have typically considered only one or two resource pools, such as mechanical ventilation or
beds, in their ICU models [117, 116, 49].

This thesis addresses these limitations, broadening the scope of current simulations to
include both multiple ICUs and multiple resource pools. I developed a simulation model
designed to represent the network of eight major ICUs in British Columbia, Canada. The
model is designed to support the management of critical systems during endemic situations
and seasonal pandemics by coordinating the operations of various units and utilizing a
comprehensive, detailed database relevant to British Columbia.The model is enriched with
advanced features including, but not limited to, varying reasons for patient transfers, diverse
patient types, and distinctive time distributions for each event occurring within the model.
These features allow for a detailed examination of various patient admission strategies,
enabling a thorough evaluation of their effects on the ICU network.

The simulation aims to offer insights into the dynamic interplay between different com-
ponents of the critical care network, allowing for an improved understanding of optimal
operational strategies and management practices, especially during periods of heightened

demand such as pandemics. This work is motivated by the critical role that ICUs play in



healthcare systems and seeks to contribute to the ongoing efforts to enhance their resilience
and effectiveness in facing contemporary healthcare challenges. To ensure the privacy and
confidentiality of the institutions involved, I am unable to reveal the names of the hospi-
tals in this study. Instead, I have employed numerical labels, ranging from one to eight, to

represent each of them.

1.2 Organizing and Overseeing Critical Care

In this section, I explore the structure of the BC critical care network in more detail and how
the complexities of this network are captured in my simulations (Figure 1.1). The ability to
provide critical care in British Columbia is mainly restricted by the number of healthcare
resources available which includes ICU nurses and beds, and mechanical ventilation. During
the pandemic, the number of critical care beds was increased in healthcare settings [34].
However, this expansion faced significant challenges in securing sufficient staffing for the
added capacity. ICU management is challenging due to its unpredictable nature and nu-
merous uncertainties. For instance, predicting patient arrival patterns is difficult as patients
can be admitted either directly to the ICU, following a scheduled surgery, or via the emer-
gency department, sometimes with an operating room stop [7]. Hence I begin this section
by detailing, the admission process within the critical care system.

Patient pathways bridge the ICU with hospital units internally and externally, affecting
decisions for upstream patients from the Emergency Department (ED) due to injuries or
post-surgery (OR admission), and downstream for those transferred to the ICU from wards
or the HAU due to severe conditions (ICU readmission), in Figure 1.1 you can see the
arrival of patients [7]. Initial outbreaks and observations in affected countries revealed a
marked rise in hospital and critical care needs for pandemic patients. Patients are divided
into pandemic and non-pandemic groups for hospital admission [15].

In this study, the simulation model narrows its focus to four particular patient categories

depending on their diagnosis:

« Viral Pneumonia (VP) or Acute Respiratory Distress Syndrome (ARDS)
o medical patients without VP or ARDS
e surgical patients without VP or ARDS

e trauma patients without VP or ARDS

Patient category has important implications for both the patient’s length of stay (LOS) and
the resources required, e.g., ventilation.
To initiate the ICU admission process, a patient needs a bed in the ICU and when the

ICU reaches its capacity, critical care staff employ diverse strategies for managing patient



admissions. These include utilizing overflow beds in other parts of the hospital, moving
patients who are near the end of their ICU stay to HAUs or medical wards, or transferring
patients to ICUs at different hospitals. This simulation model incorporates ICUs and HAUs
to provide a more comprehensive understanding of healthcare dynamics under crisis condi-
tions [15, 95, 107, 75]. These strategies play a key role in optimizing healthcare resources
and patient care. In ICUs and HAUs, there are three pivotal initiating resources available
qualified ICU nursing staff, beds, and mechanical ventilators. These resources are illustrated
in the Figure 1.1.
The model considers three types of transfers. (Figure 1.1)

e When a patient arrives at the hospital needing an ICU bed, but none are available
(ICU and overflow bed), the patient may be transferred to another hospital with an

available ICU bed. This transfer is referred to as a “capacity reason transfer”.

e When critically ill patients can’t get necessary treatment at their original hospital,
they need to be transferred to another ICU for proper care. This transfer is termed

“medical reason transfers”.

e When patients transfer back to their home healthcare facility, usually after they have
received specialized care or treatment in a different ICU and patients recovery or
receive ongoing care in an ICU closer to home. This transfer is called repatriation

transfer.

After discharge from the ICU, strategic relocation of patients occurs to various sections of
the hospital to ensure smooth accommodation for new admissions.

Finally, I am going to discuss ways of measuring performance of the simulation model.
The simulation model captures key performance indicators (KPIs) for resource utilization
and patient outcomes. The main KPI for resource utilization is the expected number of
occupied ICU and overflow beds at each ICU, also model captured the ICU’s high de-
mand when occupancy surpasses 90% capacity, a level that adversely affects admissions
and discharges, and is not ideal for the hospital. In general, higher occupancy of ICUs leads
to higher mortality rates [47, 110]. In evaluating patient outcomes, the simulation model
quantifies specific aspects within each ICU such as the proportion of patients unable to
obtain a ventilator when necessary, the proportion of patients moved to the HAU due to
the ICU reaching its maximum capacity, and the proportion of patients who are transferred
to other facilities or units for different reasons. The model also addresses mortality resulting
from different factors, such as when patients can not receive bed or mechanical ventilation
(Figure 1.1). This simulation model tests various scenarios in critical care to identify the

most effective response to high hospital arrival rates.
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Figure 1.1: Functioning of individual ICUs are primarily determined by three key
resources: beds, mechanical ventilators, and nurses. Patients may be admitted into the
ICU from other departments such as operating room (OR), Emergency Department (ED),
or Wards for a variety of reasons with different patient categories. Transfers of patients
among [CUs within the hospital network as a result of capacity limitations, medical
reasons, or repatriation. The functioning of the ICU can be assessed using various metrics,
including key performance indicators (KPIs) capturing, for example, patient care and
patient flow, mortality rates attributed to various causes, and ICU occupancy.



Abbreviation Meaning

ICU Intensive Care Unit

HAU High Acuity Unit

HLC High Level of Care

OR Operating Room

KPI Key Performance Indicator

ED Emergency Department

DES Discrete Event Simulation

VP Viral Pneumonia

ARDS Acute Respiratory Distress Syndrome

Table 1.1: List of abbreviation

1.3 Essential Concepts in Simulation Modeling and Discrete
Event Simulation

The complexity of healthcare systems makes modeling them difficult, arising from the in-
terplay of diverse participants (patients, providers, insurers, policymakers), unpredictable
human behaviors, and a variety of health conditions. Coupled with the swift advancements
in technology and medicine and the ever-changing healthcare policies, these factors con-
tribute to a complex environment. This complexity necessitates sophisticated modeling ap-
proaches capable of adapting to and accurately capturing the nuanced aspects of healthcare
delivery. [108, 13]. As healthcare systems evolve, the global challenge is to enhance care
quality while minimizing costs. Consequently, strategic, tactical, and operational decisions
are routinely made to assess and enhance the efficiency of healthcare services. To predict
the impact of these decisions on system performance, healthcare providers require tools like
simulation to effectively explore alternative scenarios.

Simulations replicate real-world systems over time, identifying key issues and bottle-
necks, and enable the exploration of “what-if” scenarios without real-world limitations [63,
5, 35]. Simulations can evaluate healthcare interventions, incorporating behavioral factors
and personal choices, to identify the best scenario based on specific criteria. A simulation
study begins with developing a conceptual model—a theoretical or observed representation
of a system issue, covering objectives, inputs, outputs, content, boundaries, assumptions,
and simplifications. This model is then converted into computer software, helping health-
care professionals understand the relationship between input and output variables in the
system [14, 92].

Simulations can estimate the performance of time-dependent queue models by sampling
stochastic processes for various events (arrivals, service starts, and departures) using pseu-
dorandom numbers. Discrete Event Simulation (DES) tracks system state changes after
each event, creating a potential sequence of outcomes. In contrast, Discrete Time Simula-

tion (DTS) updates the system state at fixed intervals. By aggregating results from multiple



Characteristics of discrete event simulation

Scope: Operational, tactical

Purpose: Decision making like optimization, predictions,
and comparison

Prospective: Analytic, focus on detail complexity

Variability Importance: High

Tracking individuals importance: High

Number of Entities: Large

Control: Queues

Relative Timescale: Short

Clarification of Model: Distinct entities, attributes, decisions, and
events

Numeric data with some important elements
Prediction points, performance measurements,

KPI
Simul8, FlexSim, Simio, AnyLogic, TreeAge

Data Sources:
Model Results:

Software:

Table 1.2: Overview of Discrete-Event Simulation characteristics.

simulations, both methods can generate estimates for KPIs. DES generally provides more
precise performance estimates than DTS, but DTS’s efficiency can be enhanced by optimiz-
ing the time-step parameter. Both approaches effectively model complex queuing systems
with their respective advantages [79, 93, 46], in Table 1.2 you can see the summary of the
DES characteristics.

In healthcare, modeling and simulations can support clinical decisions, predict bed oc-
cupancy, help allocate resources like staffing, evaluate treatments, guide emergency room
redesign organization, and test ICU information system usability. The simulation does not

evaluate treatments, humans do that guided by the results of simulations. [3, 27, 29, 44].

1.4 Data Insights and User Perspectives
A Comprehensive Overview of Data Sources in This Thesis

The main source of data for this thesis comes from an anonymized extract of the British
Columbia Critical Care Database, covering the years 2010 to 2020. This includes data on
the patient treatment in the ICU, time of patient admission and discharge, patient transfers
reasons, the hospital the patient was transferred to, start and stop times for all mechanical
ventilation instances, and diagnostic information on the patient. This database was initiated
in 1997 as the British Columbia ICU Database. To enhance the completeness of the Critical
Care Database for some hospitals, I linked the Critical Care Database to the Discharge
Abstract Database (DAD) for British Columbia. The DAD offers a comprehensive overview
of all hospital admissions, it is notably less detailed when it comes to the specialized care

provided in ICUs and HAUs. This study specifically targets general ICUs, and purposefully



omits specialized ICUs such as those focused on cardiac surgery. The COVID-19 pandemic
exerted significant strain on the critical care system, compromising data completeness and

complicating the interpretation of data due to frequently fluctuating temporary capacities.

Applications and Impacts of Critical Care Modeling

The critical care system was already functioning at or above its designated capacity before
the onset of COVID-19 pandemic, in the province of British Columbia. This pre-existing
condition posed significant challenges to effectively managing and addressing sudden surges
in demand for critical care services throughout the pandemic. Critical patients require im-
mediate ICU admission and intensive monitoring due to the severe consequences of delayed
treatment. Hospital capacities vary, leading to potential transfers if the necessary care is
unavailable or if ICU beds are fully occupied. Through consultations with critical care ex-
perts in British Columbia, I identified the crucial need to integrate different transfer reasons
between hospitals into the model. This adjustment was critical for improving the model’s
preparedness for future emergencies, such as COVID-19. Strategies include temporarily re-
allocating ICU nurses and medical staff from across the network to address critical care
surges, and transferring stable patients from the ICU to other hospital sections to opti-
mize patient admission and minimize rejections. This experience underscored the critical
necessity of proactive operational planning to effectively anticipate and address surges in
demand for critical care services. Utilizing the simulation model of the critical care network
in British Columbia, I intend to provide support for planning across a spectrum of diverse
scenarios currently being developed by the British Columbia Health ministry and they may
employ this model to identify early warning indicators for a novel outbreak. These indica-
tors will serve as triggers, prompting the initiation of preparations for the implementation
of contingency measures.

This thesis is structured as follows. Chapter 2 gives background on operations research in
ICU and application operation research during the COVID-19 pandemic, queueing models,
and KPI estimation within queuing models. Chapter 3 outlines ICU resources, their allo-
cation, and detailed patient arrival patterns, including the introduction of various patient
transfer reasons and the model. Chapter 4 detail the analysis of ICU service time distribu-
tions and their application in modeling. Chapter 5 presents the simulation validation and
results, which are discussed in more details in Chapter 6 along with limitations and future

improvements broader conclusion.



Chapter 2

Literature Review

Modelling and simulation find widespread application in diverse scientific fields like ecology,
social sciences, economics, healthcare, and engineering [67]. Modeling enables understanding
of real system behavior, followed by simulation testing. Simulations explore multiple sce-
narios, explaining real system behavior and assess strategies for optimal system operation.
Simulation results assess model quality and offer insights for enhancing accuracy. Models
identify system deficiencies and forecast intervention impacts without disrupting complex
system operations [27]. In recent decades, modeling and simulation have made notable ad-
vancements in healthcare operations research, addressing areas like emergency department
efficiency, operating theatre scheduling, bed management, and waiting list optimization.

For example, various studies have demonstrated the utility of simulation and modeling
techniques in improving healthcare delivery and operational efficiency. M’Hallah et al. [87]
utilized a simulation model to optimize surgical scheduling in a hospital operating room
(OR), suggesting the cancellation of surgeries post-OR hours to improve resource utilization.
This approach directly addresses the inefficiencies in surgical scheduling, offering a practical
solution to maximize the use of available resources. Similarly, Wang et al. [111] developed a
model for emergency services aimed at enhancing doctor efficiency and introducing a fast-
track system. This innovation effectively reduced waiting times for patients, demonstrating
the potential of simulation models to streamline emergency department operations and
improve patient flow. In the optimization of nursing, Legrain et al. [68] examined nurse
scheduling at large hospitals. They introduced a multi-objective optimization model and
local search techniques, which surpassed traditional scheduling methods without incurring
extra costs. Their study highlights the significance of advanced scheduling techniques in
managing nursing staff more efficiently, ultimately leading to improved patient care and
staff satisfaction.

Furthermore, Harper et al. [50] explored various appointment scheduling strategies in an
outpatient department. They identified key factors capable of reducing patient wait times
and queue sizes without necessitating additional resources. This research underscores the

impact of strategic scheduling on enhancing patient experience and operational efficiency
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in outpatient settings. These examples collectively underline the critical role of simulation
and optimization models in healthcare settings. By employing these tools, healthcare fa-
cilities can significantly improve their service delivery, operational efficiency, and resource

utilization, ultimately benefiting both patients and healthcare providers.

2.1 Operation Research in ICU

In Canada, the demand for ICUs is escalating more rapidly than that for general acute
care hospitalizations. Based on information from the Canadian Institute for Health, the
period of 2013-2014 saw over 230,800 adult ICU admissions, marking a 12% increase since
2007-2008, while adult hospital admissions rose by 7% during the same interval. Notably,
80% of ICU admissions were emergent, affecting patient outcomes, the use of resources,
and the planning of capacity. Predominantly situated in large or teaching hospitals, it is
a significant challenge to keep pace with the demand for ICU beds. These ICUs typically
operate at approximately 90% capacity, experiencing overcapacity for up to 51 days annually
in 2013-2014.

Additionally, there is a rising trend of ICU patients requiring specialized and resource-
intensive care, such as invasive ventilation, which was necessary for 33% of patients in
2013-2014, an increase from 28% in 2007-2008. This upsurge, particularly in short-term
invasive ventilation, suggests a potential for further pressure on ICU capacities. ICU capacity
presents an ongoing and future challenge for Canada’s health system, exacerbated by an
aging population and the potential for more severe illnesses among hospital patients. The
scarcity of ICU capacity and wrong decision-making can pose serious risks to patient safety.
Issues such as ICU overcrowding have serious consequences, including higher morbidity and
mortality rates, staff burnout, diminished revenue, and bottlenecks in hospital-wide patient
flow. In response to these challenges, hospital administrators are diligently seeking strategies
to deliver high-quality care within the constraints of ICU capacity. Bai et al. [7] performed
an extensive review of how operational research supports ICU management, underscoring
the ICU’s central role in the hospital’s patient flow. This review methodically sorted the
existing literature, examining decision-making horizons, settings, and an array of modeling
and solution strategies.

To aid in decision-making at policy and operational levels, detailed mathematical models
offer valuable quantitative insights into evaluating critical care capacity strategies. Extend-
ing the focus beyond critical care, several researchers have delved into hospital bed allocation
and capacity planning. Williams [112], for example, developed a model aiding a physician
group in determining the optimal bed count for a hospital ICU expansion. The simulation
showed that increasing beds from 7 to 15 led to more empty beds and fewer premature
discharges, with changes in bed count affecting outcomes differently. Ultimately, the deci-

sion was made to maintain the ICU at 11 beds. This model facilitated decision-making by
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quantifying the impact of various options, resulting in an ICU that effectively met patient
needs amid fluctuating service demand.

Ridge et al. [97] introduced a simulation model for bed capacity planning, revealing a
non-linear connection between bed numbers, average occupancy, and patient transfers due to
bed shortages. It highlighted a significant trade-off between occupancy rates and transfers,
utilizing a basic deferral rule for elective patients when admissions are blocked by bed un-
availability. This suggests the potential for improving elective patient admission scheduling
systems. Mallor et al. [75] introduced a model for ICU bed occupancy analysis, incorporat-
ing generalized regression models to better capture patient stay variability. This analysis
underscored the importance of including clinical staff decisions in model accuracy, leading
to the creation of a mathematical model for these decisions. Furthermore, a combined op-
timization and simulation approach was developed for more precise parameter estimation.
Zhu et al. [116] developed a discrete event simulation (DES) model to assist in determining
optimal ICU bed capacity, aiming to balance high-quality service with cost-efficiency. This
model tackled the challenges of ambulance diversion and surgery cancellations due to bed
shortages, as well as the inefficiencies caused by surplus beds. Griffiths et al. [45] crafted
a detailed simulation model for a large teaching hospital’s ICU, which, despite being typi-
cally equipped with 14 beds, could accommodate additional beds and specialized equipment
during peak demand periods. The model provided a precise reflection of patient admission
times and durations, based on their sources of admission, and offered a strategic staffing
plan to reduce nursing costs.

Various strategies are employed by critical care staff to manage capacity, such as using
overflow beds, discharging nearly recovered patients to HAUs or medical wards, or transfer-
ring patients to other hospitals’ ICUs. Litvak et al. [70] proposed a cooperative strategy fo-
cusing on regional bed, overflow bed, allocation to minimize patient refusal rates, where hos-
pitals in a region reserve beds specifically for regional emergencies. This approach, inspired
by telecommunication systems with overflow capabilities, utilized mathematical methods
to determine the required number of regional beds to achieve desired acceptance rates,
showing that inter-hospital cooperation can enhance service quality with fewer beds. Steins
and Walther [107] developed a generic simulation model for ICU capacity planning, de-
signed to accurately predict occupancy and immediate admission rates, incorporating data
on overflow beds and patient transfers. This model, based on real admission data from four
ICUs, proved useful in forecasting capacity needs. Reader et al. [95] explored the concept
of “bumping” which is discharging patients nearing the end of their stay to make room
for new admissions. Through interviews, they examined the decision-making processes of
ICU physicians regarding admissions and bumping, revealing variations and implications
for patient safety.

Dobson et al. [26] introduced a stochastic model focusing on patient bumping to aid in

forecasting such events, utilizing a Markov chain model and an innovative algorithm to man-
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age the model’s complexity. Rodrigues et al. [99] created a DES model to forecast step-down
bed requirements for a large university hospital. This model stands out by encompassing
the hospital’s entire inpatient flow, with a focus on the ICU’s daily stochastic flows, utilizing
nursing workload scoring metrics. Utilizing data from a significant academic hospital, the
model demonstrates how step down beds enhance patient flow and reduce costs. Mitra et
al. [86] studies the effects of creation a new HAU on patient outcomes in a major tertiary-
care hospital in Canada, hypothesizing that the HAU would enable quicker access to critical
care and facilitate convalescent care, leading to reduced in-hospital mortality and shorter
ICU and hospital LOS. Their results confirmed that the HAU’s introduction was linked to
a lower risk of in-hospital mortality, shorter LOS in both the ICU and hospital.

2.2 Operation Research in Pandemic Responce

The COVID-19 pandemic has exerted immense pressure on healthcare systems worldwide,
particularly impacting ICU occupancy and patient management. The surge in critically ill
patients has strained ICU resources, leading to challenges in maintaining quality care and
managing bed availability. Therefore, the rapid onset of the COVID-19 pandemic highlighted
the value of integrating mathematical modeling with critical care system simulations. By
utilizing mathematical models and simulations, healthcare professionals can predict ICU
occupancy trends, assess resource needs, and strategize patient allocation more effectively.
These models allow for scenario planning, helping hospitals anticipate surges in demand and
optimize resource allocation accordingly. Moreover, simulations enable healthcare providers
to test different intervention strategies, evaluate their efficacy, and refine protocols to en-
hance patient outcomes.

Currie et al. [21] highlighted the challenges posed by the COVID-19 pandemic and
proposed simulation modeling as a tool for decision-makers to make informed early-stage
decisions. The article serves as a mobilizing call for modelers and a guide for decision-makers
on leveraging support from the simulation community. Meares and Jones [81] responded to
the exponential increase in cases and ICU demand by developing a queueing theory model
to estimate Australia’s ICU bed needs during an ongoing pandemic, using the situation
in late March 2020 and data from Lombardy for comparison. Bekker et al. [8] developed
models to forecast hospital admissions and bed occupancy by COVID-19 patients in the
Netherlands, aiding in both immediate patient transfer decisions and long-term policy for-
mulation. They introduced a novel linear programming technique for admission forecasting
and applied residual stay lengths and queueing theory to estimate bed occupancy. These
models enhanced prediction accuracy and trust, facilitating effective pandemic management
by optimizing bed use and preserving capacity for other care types.

Garcia-Vicunia et al. [32] developed a discrete event simulation model for enhancing
ICU bed planning during outbreaks, notably the COVID-19 pandemic. This model, aimed
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at short-term forecasting, necessitates precise depiction of the current healthcare system and
accurate simulation of its dynamics, primarily focusing on stochastic modeling of patient
admissions and flows. Implemented daily, it provided essential forecasts to the regional
healthcare logistics planning team, who then strategically allocated ward and ICU beds
based on these predictions. Lu et al. [74] introduced a hybrid simulation approach combining
a system dynamics model for COVID-19 case prediction and a discrete-event simulation
for evaluating and allocating hospital beds. They suggested two policies—type-dependent
admission control and early step-down, based on patient risk profiles—to decrease mortality
among intensive care patients. The strategy focused on optimizing bed allocation for low-
risk and high-risk patients to minimize death rates and maximize recovery outcomes. Baas
et al. [6] developed a model featuring a network of two infinite server queues for multiple
patient types, offering real-time forecasts of COVID-19 patient admissions to wards and
ICUs. This model predicts patient inflow, length of stay in wards and ICUs, and inter-
department transfers, utilizing data from the hospital’s data warehouse. Tested against data
from the Netherlands’ first COVID-19 peak, the algorithm demonstrated high accuracy in
its predictions.

During the COVID-19, mechanical ventilation emerged as a life-saving intervention for
patients with severe respiratory complications, particularly those suffering from acute res-
piratory distress syndrome (ARDS). Modeling and simulation became instrumental in pre-
dicting the demand for mechanical ventilators. These predictive models, based on various
epidemiological and healthcare data, helped healthcare systems and governments anticipate
the needs for ventilators, optimize their allocation, and manage supply chains effectively.
In pre-COVID-19 ventilator allocation studies, Zaza et al. [115] proposed a conceptual
framework for public emergency ventilator allocation, while Meltzer et al. [85] estimated
the mechanical ventilator demand during a US influenza pandemic. They project need for
35,000-60,500 additional ventilators in severe scenarios to prevent 178,000-308,000 deaths.
Huang et al. [53] present a method for optimizing stockpiles of mechanical ventilators crucial
for treating hospitalized influenza patients with respiratory failure. The studied examines
mild, moderate, and severe pandemic scenarios in Texas, prioritizing local over central stor-
age.

Huang et al. [53] do not address ventilator distribution over time but focused on mini-
mizing expected ventilator shortfall and total stockpiling cost. With COVID-19, ventilator
demand increased over time, posing challenges as only future demand forecasts are avail-
able. Mehrotra et al. [84] proposed a a stochastic optimization model for managing stochas-
tic demand for life-saving resources, such as mechanical ventilators during crises like the
COVID-19 pandemic. States exhibit varying peak demands, and each state’s reluctance to
share surplus resources due to risk aversion is captured by a safety threshold parameter.
Simulations of their model, based on realistic forecasts and inventory availability, under-

score the critical importance of ventilator allocation for COVID-19 patients. With over 40%
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of existing inventory allocated to COVID-19 cases, national demand can be met in mild
scenarios, but with less than 25%, shortages may occur, particularly in extreme scenarios.
Zimmerman et al. [117] introduced a multi-class Erlang loss model to simulate ventila-
tor demand from COVID-19 and non-COVID-19 patients, incorporating COVID-19 case
projections influenced by public health measures and social distancing. They used the BC
Intensive Care Unit Database for model calibration and validation. Through discrete event
simulation, they forecasted ventilator capacity and patient access, comparing simulations to
point-wise stationary approximation, modified offered load, and fixed point approximation

methods to assess ventilator allocation efficiency.

2.3 Queueing Models

The literature on queueing models, which are extensively applied in healthcare [54] and ICU
modeling, is reviewed in this section. Queueing models are stochastic processes that simulate
entities—like customers or patients—as they request, wait for, and receive services [83]. In
this thesis, model clients or modeled clients denote these simulated entities within queueing
models, distinct from actual clients in the real world. The term modeled service similarly
signifies the representation of services within these models. The service in a queueing model
can vary widely, from healthcare delivery by doctors to interactions with call center staff or
using a telephone line [43, 10, 30]. The key feature of this model is the service time (the time
taken to complete a service), modeled as a non-negative continuous random variable. Model
servers, representing staff or resources, are considered busy while providing services. Service
requests are modeled as arrivals, using a stochastic process to track the cumulative arrivals
over time [83]. If all servers are busy, incoming clients join a queue until a server is free.
A client then receives service for a random duration before exiting the system. Figure 2.1
illustrates this basic queueing system, highlighting the processes of arrivals, queueing, service

provision, and departures.

Background on Queuing Model

In a queueing model, the key elements are the arrival process, service time distribution,
and the number of servers. A model is termed homogeneous when the arrival and service
rates, along with the server count, remain constant. Models with service times and ar-
rivals following exponential and Poisson distributions, respectively, exhibit the Markovian
property, indicating future states depend solely on the current state, excluding historical
data [82]. Non-exponential service times or non-Poisson arrivals are classified as general
distributions. Phase-type distributions are defined by combining exponential distributions
either sequentially or in parallel, offering a versatile framework for modeling [16].

For any set of queueing model parameters, time-dependent probability distributions de-

scribe key performance metrics such as client count in the system, queue length, and waiting
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Service Completion

Arrivals

Figure 2.1: Queuing diagram illustrating a single-service queueing model where clients
arrive for service and join a queue when all servers are busy. They receive service as soon
as a server becomes available, and leave the system after their service is completed.

times. Under specific conditions, these systems can reach stochastic equilibrium, stabilizing
these distributions over time [83]. Such stable distributions are termed steady-state or sta-
tionary, while behaviors outside this equilibrium are known as transient or time-dependent.
While some queueing models allow for precise analytical solutions for steady-state distribu-
tions, more complex models necessitate approximation methods for these values.

Some queueing models account for client abandonment, where clients exit the queue
without service if the wait is too long [77]. These models vary; in some, clients may rejoin
the queue later, while in others, they exit the system permanently [77]. This phenomenon
is modeled using a random variable for clients’ waiting tolerance, known as patience, with a
specific distribution [77]. Such stochastic outcomes, including abandonment and prolonged
waits, serve as performance metrics to approximate real-world service quality and client
accessibility [78].

The number of servers is a crucial parameter in queueing models. Infinite server models
assume unlimited capacity, providing immediate service to all arriving clients [28]. Con-
versely, finite server models account for capacity constraints, leading to potential client
waiting and abandonment. These models may also adjust the number of servers over time
to reflect changes in staff availability or infrastructure, simulating real-world fluctuations. In
scenarios of reduced staffing, servers might operate under an exhaustive service policy, stay-
ing active to complete services for current clients [23, 24, 55]. Alternatively, a non-exhaustive
or preemptive policy may apply, where interrupted services lead clients to requeue for com-

pletion with an available server [56].
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The queue discipline, another key feature of queueing models, dictates the service order
for clients. The first-come-first-served (FCFS) principle services clients in their arrival order.
Some models, however, employ a service order based on randomness or a last-come-first-
served approach [82]. Models with priority classes serve clients based on their priority level,
applying FCFS within each class. Outcome metrics for clients can vary by priority class
in such models [106]. Additionally, in accumulating priority queues, clients’ priority levels

increase the longer they wait [17, 106].

Application of Queueing Models in Healthcare

Queueing models assess system performance through various stochastic metrics, including
client wait times, service completion, system occupancy, utilization rates, and server idle
periods [25]. These metrics, characterized by time-dependent distributions, are summarized
through key performance indicators (KPIs) such as average values, probabilities, propor-
tions, and rates. KPIs reflecting client experiences, like abandonment and extended waiting,
serve as proxies for service access and quality. This section will explore methodologies for
estimating or approximating these dynamic performance measures in queueing models.

To approximate time-dependent properties in queueing models, one strategy involves
utilizing steady-state equations within discrete time intervals [39, 40, 41, 80]. This includes
the pointwise stationary approximation, which integrates time-varying arrival rates into
steady-state equations [39, 40, 41], and the modified offered load method, which estimates
based on the expected number of occupied servers in an infinite server model [42, 59, 112].
These steady-state methodologies tend to be less precise with fluctuating arrival rates [58,
39, 55] and depend on the availability of precise steady-state equations [48].

Another set of techniques models time-dependent properties of queueing systems through
differential equations [18, 19, 22, 42]. Specifically, for Markovian models, the Chapman-
Kolmogorov equations offer a precise framework of ordinary differential equations (ODEs)
for state transitions [42, 22, 57]. Yet, solving these ODEs numerically becomes less effi-
cient as the model’s complexity increases [55]. To manage this, approximation methods like
state space truncation through randomization [55, 56], and closure approximation, which
simplifies the system to initial client numbers using a smaller set of ODEs [18, 101], are
employed.

Alternative methods in queueing models involve continuous frameworks, where fluid
approximations model the net flow of arrivals and departures through a deterministic
process, effectively capturing scenarios where changes in arrival rates significantly impact
queue variability [76, 72]. Diffusion models, leveraging reflected Brownian motion, simu-
late stochastic variations in arrivals and departures, formulated through partial differential
equations. These models are versatile, accommodating a variety of arrival, service, and
abandonment scenarios, including client retrials, service networks, and different customer

categories [71, 72, ?]. The accuracy of fluid and diffusion approaches depends on correctly
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identifying the queueing system’s load status—overloaded, underloaded, or critically bal-
anced [65, 72, T1].

Performance in time-dependent queue models can be simulated by generating stochas-
tic event processes (arrivals, service starts, and departures) through pseudorandom num-
bers [100]. Discrete event simulation (DES) captures system states post-event, offering a
sequence of possible outcomes, while discrete time simulation (DTS) updates states at fixed
intervals [11]. Both methods, through aggregation of multiple simulations, facilitate key per-
formance indicator (KPI) estimation [11]. DES generally provides more precise estimates
than DTS, but DTS efficiency can be optimized by adjusting the time-step parameter [11].
Both techniques adeptly model complex queueing scenarios.

In queueing models with a homogeneous Poisson process, Discrete Event Simulation
(DES) uses pseudorandom sampling from an exponential distribution to determine customer
inter-arrival times, thus scheduling their arrival in the event sequence. To simulate a non-
homogeneous Poisson process, one method involves creating a homogeneous Poisson process
at an increased rate and then using a time-dependent Bernoulli experiment to decide on the
acceptance of arrivals, based on the ratio of the non-homogeneous to the inflated rate [100].
This method, known as Poisson thinning, utilizes the decomposition property of Poisson

processes, where any randomly selected subset also forms a Poisson process [82].
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Chapter 3

Details of the Critical Care
Modeling

In this chapter of my thesis, I lay the groundwork for creating a model and simulation that
will help improve how ICUs operate by first looking closely at what resources are available.
This includes checking how many beds there are, how many nurses are working, and how
much ventilation equipment is on hand. It is important to understand not just what is
available, but also what each patient needs during their stay in the ICU, which can vary a
lot depending on their condition. I also take a close look at patient admission pattern to

the hospital and use this information to explain how I built a model of the ICU system.

3.1 Ciritical Care Resource Pool

In a hospital’s ICU, where a wrong decision can endanger a patient’s life, crucial decisions
affecting patients are made both inside and outside the unit, and not just after a patient has
been admitted, therefore, decisions need to be made regarding which patients are admitted
to the unit and the timing of each patient’s admission.

In an ideal scenario with unlimited resources, ICU beds and staff would be readily avail-
able for every patient. However, in reality, hospital administrators must balance costs and
benefits due to limited resources before deciding on resource allocation, therefore, the out-
come is ICU units functioning with diverse capacity limitations. Among these constraints,
the most critical typically arises from the fixed number of beds, nurses, and ventilators to
the unit. Insufficient resources, resulting in the referral of patients to ICUs in other hos-
pitals, early discharge of existing patients, and cancellation of elective surgical procedures,
have severe consequences for the recovery of the patient. There are several main resources
that need to be considered: namely, beds, specialist equipment and nursing staff [62, 60, 45].

Patients require immediate ICU admission once requests are made. A slight delay may
affect patient safety severely and lead to irreversible consequences. Therefore, we assume

that patients are unable to wait for a bed. When ICU beds are fully occupied, emergency
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arrivals are directed to available beds in other hospital departments which are referred to as
overflow beds which initially not staffed, is activated to accommodate an additional patient,
burdening the staff and leading to a reduced quality of care in the ICU. Overflow beds, used
when specific units like the ICU are at capacity, ensure patients receive the same treatment
as they would in a regular ICU bed [116, 7, 70], and they can move to the ICU as soon as a
bed becomes available. Length of stay for patients in overflow beds remains consistent with
ICU length of stay.

The hospital aims to improve patient flow, provide adequate care, and cut costs by es-
tablishing a step-down or HAU between the ICU and downstream wards [33, 90]. HAUs
offer more acute care and closer monitoring than general wards, with fewer resources than
an ICU. HAUs can admit stable, sub-acutely ill patients, thereby relieving ICU pressure
and freeing beds for more severely ill patients. While these wards typically do not support
mechanical ventilation, they do offer some organ support. HAUs offer a higher level of care
compared to general hospital wards, with better nurse-to-patient ratios, greater access to
respiratory therapists and perfusionists, and advanced equipment. HAUs are more econom-
ical in terms of technology and staffing, with a typical ratio of two patients per nurse,
compared to the one-to-one ratio in ICUs. They require fewer resources than ICUs but are
more expensive than standard hospital wards [99, 104, 66].

When a patient requires an ICU bed but none is available, and overflow beds are also
full, then patients nearing the end of their ICU stay may be discharged early to HAU to free
up beds for new critical care admissions, this process is known as bumping [98]. Releasing
a patient 48 hours early can raise post-discharge mortality risk by up to 39%, especially for
night discharges [37]. Patient vulnerability often emerges after a reduction in care level, and
care continuity is disrupted during the handover. On the other hand, bumping decisions may
affect patient safety; denying ICU admission to a critically ill patient reduces their survival
chances, as they are placed in an area with less intensive medical and nursing support [37].
If an ICU admission is granted, the displaced patient faces risks if their recovery assessment
is inaccurate. Full ICUs see more bumping decisions, often negatively impacting patients
who are improperly moved [105].

Considering the high demand for ICU admissions and the outcomes of bumping deci-
sions, the critical care model defines bumping as transferring an ICU patient who no longer
needs ventilation, has completed 85% of their treatment, and is not critically ill, to another
care setting. This frees up ICU beds for more critically ill patients. Rutherford et al. [102]
only considered the bumping from ICU, But I also assume that, like in the ICU, patients
in overflow can be bumped to a HAU to optimize bed and nurse availability.

Some patients, including those bumped from ICU and overflow or post-ICU stay, may
require a stay in HAU. The model assumes that if a patient is bumped from the ICU before
completion and needs to monitor more closely after ICU stay in HAU, their remaining
ICU time adds to their projected HAU length of stay. After completing HAU treatment,
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patients might transfer to a ward for further care or may transfer home. This model assumes
immediate ward bed availability without any wait after HAU stay [102]. Table 3.1 details
different bed resources in this model.

In the simulation, another key resource is the number of available nurses in the critical
care system. I will discuss the crucial roles of nurses in hospitals, particularly in ICUs, and
elaborate further on this in nurses are vital in hospitals and ICU, undertaking numerous

essential duties:

e Patient Care: Nurses provide direct care to patients, administering medication, mon-
itoring vital signs, and assisting with daily activities. In the ICU, this involves more

complex and critical care, often for patients with life-threatening conditions.

e Assessment and Monitoring: Nurses continuously evaluate and monitor patient health,
ensuring prompt intervention. This is especially crucial in the ICU for patients on life

support or with unstable conditions.

e Emergency Response: Nurses commonly serve as initial responders in emergencies,
administering crucial care before doctors’ arrival. In the ICU, their expertise lies in
swiftly assessing and responding to life-threatening situations, and ICU nurses are

required to have highly specialized training.

Therefore, nurse resource pool is one of the most important resources in the ICU. Shortages
of experienced nursing staff and rising demand largely contribute to ICU bed closures,
admission refusals, and excessive patient transfers to other hospitals [2]. I utilized a shared
resource pool for both HAU and ICU nurses, driven by the efficiency of pooled resources
over dedicated ones. For instance, a single queue for a group of servers (like cashiers, bank
tellers, ICU beds) leads to reduced waiting times compared to individual queues for each
server. Nurse-to-patient ratios are set using patient dependency scales, based on the idea
that critically ill patients require more nursing care. In the ICU and overflow, this ratio is one
nurse per patient, ensuring individualized care. In the HAU, it shifts to one nurse for every
two patients [45, 102, 64]. The model operates under the assumption that these specified
nurse-to-patient ratios remain consistent for all patients during their entire stay within each
respective unit. Currently, the model operates on the assumption that there exists a unified
pool of nurses shared between the ICU and HAU units, without distinguishing separate
staffing for each unit. In the Table 3.1 the ratio of patient to nurse in each section of this
critical care model is readily available

In addition to nurses and beds, the model also considers the availability of mechanical
ventilators for ICU stays. A mechanical ventilator is a medical device that supports or takes
over breathing for patients who are unable to breathe adequately on their own, typically
due to respiratory failure, neurological conditions, or post-surgery. It can either completely

control or assist with breathing and is used either invasively through a tracheal tube or
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Level of care Bed characteristics Patient /Nurse ratio

1 Standard Ward bed 3 or more to 1
No organ support, no ventilation
2 HAU bed 2to1

Support single failed organ system,
no ventilation
3 ICU bed 1tol
Invasive ventilation and multiple or-
gan support

Table 3.1: Levels of care characteristics at BC Hospital [1]. This information is current to
Aug 2019.
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Figure 3.1: Number of ICU visits involving ventilation usage at different ICU sites based
on critical care database 2019.

non-invasively with masks. Mechanical ventilation is a leading reason for ICU admissions.
Recent studies estimate that around 70% of occupied ICU beds are used by patients needing
mechanical ventilation at any given time [12, 114]. Figure 3.1 illustrates that most patients
require ventilation during their ICU stays, and Figure 3.2 indicates that patients needing
ventilation tend to have longer ICU stays. Mechanical ventilation is not available in the
HAU; it’s only accessible to patients in ICU or Overflow beds during their stay. The model
includes a provision for a maximum of five mechanical ventilators per ICU visit, since oc-
currences beyond this number are rare Figure 3.3 shows comparison of number of ICU visits
for patients with ventilation v.s. without ventilation usage. The simulation model captures
a 2-hour cleaning time for ventilators after each use, following expert recommendations.
Also, the mean ICU stay for patient with ventilation v.s without ventilation usage in ICU

is capture in Figure 3.2.
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Figure 3.2: Average ICU stay length of stay (Days) comparing ventilated and
non-ventilated patients across different ICU sites based on critical care database 2019.
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Figure 3.3: Distribution of patients across different categories for different number of
mechanical ventilator instance during their ICU stay based on critical care database.
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3.2 Patient Arrival Rates

Many studies [103, 70, 89, 97] use a Poisson process as a statistical model for patient arrival
at a health care center. For the critical care model, does the rate of arrival vary over time?
The arrival rates for each of the ICUs in the simulation model were calibrated from the
patient admission data in the Critical Care Database. Arrival rates were analyzed by time
of day and day of week and month of the year, and the results are shown in Figure 3.4.
Although the simulation model contains only the eight major ICUs in British Columbia,
arrival rates were calculated for 16 hospitals in the Critical Care Database. I found only
slight variation in the admission rates by days of week and months of the year as you
can see in the Figure 3.4 part (b) and (c), but there is a significant variation by time of
day in Figure 3.4 part(a). Therefore, the non-homogeneous Poisson processes that simulate
patient arrivals in the model were calibrated to use a different arrival by hour of day, but
day of week and moth of the year dependence were not included in the model. The following
characterization of a non-homogeneous Poisson process illustrates the model’s suitability for
representing the patient arrival pattern.

Let us denote by IN; the number of patients that arrive up to time t. The stochastic

arrival process of patients { Ny, ¢ > 0} is a Poisson process if:
1. Patients arrive one at a time.

2. The number of arrivals in the time interval (¢,t + s], Nyts — Ny, is independent of
the number and times of arrivals from 0 to time ¢. That is, it is independent of the
variable set {N,,0 < u < t}.

3. The distribution of N;is — N, is dependent of ¢ for all ¢, s > 0. Here t is defined as
the time of the day.

Patients arrive at the ICU on an individual basis, their arrival times are not influenced by
prior patient arrivals and they are not coordinated according to any pre-established plan
which are address the first two conditions, and Condition 3 sets the non-homogeneity of the

process through time.

Patient Arrival Capacity Check Protocol

The detailed algorithm for determining if there is sufficient capacity to admit a new patient
is as follows patient admission to the ICU depends on the availability of resources such as
beds and nurses. A new patient can be admitted without restrictions if an ICU bed and
a nurse are available. However, admissions become more challenging when the ICU has
limited resources. When there is only one available ICU nurse, Algorithm 1 is used to admit
patients. In situations where no ICU nurses are completely available and a HAU nurse is

caring for only one patient, Algorithm 2 is applied for admitting the patient. If there are
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Figure 3.4: Arrival rate by (a) hours of day and (b) day of week and (c) week of month for
ICUs at 16 hospitals in British Columbia.
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Figure 3.5: ICU Admission process for pandemic and non-pandemic patients based on bed
availability. The red line shows patients who they can not admit to the ICU because of no
avaiable bed then they can transfer to new ICU. The model includes bed assignments
(ICU or Overflow), ventilation needs, ICU stay phases (between, during,
after-Ventilation), and patient transfers to other ICUs due to repatriation and medical
transfer reason. After completing their treatment in the ICU, patients may be transferred
to a ward, HAU, another ICU, or in some cases, may pass away. Patients also will die if
they couldn’t recieve ventilation in time.

no available beds in either the overflow or ICU, and no patients in either area are suitable
for bumping, then Algorithm 3 should be utilized. Figure 3.5 presents a simplified overview
of the critical care system and its dynamic nature, offering a visual representation of the

complexities involved.

3.3 Simulation of the Critical Care Queueing Model

I developed a Discrete Event Simulation (DES) model to accurately estimate performance
indicators within the queueing framework, effectively capturing the dynamics of the Critical
Care network in major hospitals. This simulation modelling can demonstrate whether the
ICU supply is sufficient and estimate when capacity is reached. Additionally, comparing
different scenario plannings with the model can show the effect of different public health
policies on critical care system. The DES model, created using AnyLogic modeling software,
features a visual interface representing each element of the patient flow, as illustrated in
Figure 3.6. The simulation was presented to the Critical Care Services Executive Committee
in Fall 2023, and their feedback was incorporated into model development.

AnyLogic is a comprehensive simulation software used across various industries for mod-
eling complex systems and processes. Its multi-method modeling capability enables users
to integrate different modeling paradigms, such as agent-based, discrete event, and sys-
tem dynamics, within a single simulation model. With a user-friendly graphical interface
and extensive libraries of pre-built objects, AnyLogic facilitates the development of sophis-

ticated models with minimal coding effort. It also supports advanced visualization tools,
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Algorithm 1 Algorithm for assigning ICU beds to new patients with a single available
nurse in ICU

a new patient requires an ICU bed
while a nurse is available do
if an ICU bed is available then
Patient is assigned to an ICU bed
else if ICU beds are unavailable, but an overflow bed is available then

Patient is admitted to overflow and will be transferred to an ICU bed as soon as it
becomes available, thereby freeing up the overflow space.

else if ICU and overflow beds are unavailable then

if bumping is possible for an ICU patient and a HAU bed with nursing staff is
available then

ICU patient will be transferred to the HAU. Consequently, the patient in the
overflow can move to the ICU (First in, First out), making room in the overflow for a new
patient.

else if bumping from the ICU is not feasible and an overflow patient ready to bump
and a HAU bed with nursing staff is available then

Overflow patient will be transferred to the HAU, thereby making an overflow bed
available for a new patient.

end if
end if

end while
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Figure 3.6: Screenshot of the DES implementation of critical care model without different
transfer reasons in the Anylogic software
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Algorithm 2 Algorithm for allocating ICU Beds to Arriving Patients with One Available
Nurse in HAU

A new patient requires an ICU bed

while no nurses are entirely free, and there is a nurse in the HAU who is responsible for
only one patient do

if ICU patient is ready to bump, ICU patient transfers to HAU to free up a bed at ICU.
then

if an overflow patient exists then

Overflow patient will be moved to the newly available ICU bed (First in, First
out), thus freeing up an overflow bed for a new patient.

else if there are no patients in overflow then
A newly available ICU bed is ready for a new patient.
end if
else if an ICU patient is not ready to bump and ICU is full then
if Overflow patient is ready to bump from overflow then

A patient moves from overflow to HAU, making the overflow bed available for a
new ICU patient.

end if
end if

end while

Algorithm 3 Algorithm for Assigning ICU Beds to Incoming Patients with No Available
ICU Beds or Nurses

A new patient requires an ICU bed

while Neither overflow nor ICU beds are available, and there are no patients ready to bump
do

if transferring a patient is feasible then

the transfer will occur based on the capacity and preferences specified in the transfer
matrix.

else if no transfer is possible then
Regrettably, the patient is lost to the system.
end if

end while
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Figure 3.7: Screenshot of the ICU resources in the critical care model in the AnyLogic
software

allowing for the creation of interactive 2D and 3D animations to visualize system behavior.
Overall, AnyLogic empowers users to analyze and optimize the performance of complex
systems through simulation modeling, making it a valuable tool for researchers, engineers,
and decision-makers alike.

The model includes five resource pools: ICU beds, overflow beds, HAU beds, ventilators,
and nurses. These represent units that patients can seize and release during their ICU stay
and Figure 3.7 displays the ICU resources in AnyLogic model. The specific resource pool
quantities are determined based on data from each ICU site and can be easily updated as
needed.

On the far left of Figure 3.6 the DES model uses two source nodes based on pandemic
status, each of which generates patients according to a nonhomogeneous Poisson process
obtained by thinning a homogeneous Poisson process with a time-dependent rate. Pandemic
patient arrival rates are based on epidemic rate and a symptom delay service block trans-
lates this into ICU admission demand. Epidemiological case projections are translated into
ICU bed demand, using an M;/G /oo queue model for the time from symptom onset to
receiving an ICU bed [102], M;/G /oo queue model represents a stochastic queuing system
where arrivals follow a Markovian process (M), service times follow a general probability
distribution (G), and there are an infinite number of servers (oco). This infinite server sys-
tem simply implements a generally distributed stochastic delay and does not correspond to
utilization of any physical resource. The arrival process for this model is non-homogeneous

Poisson and can be based on localized pandemic epidemic projections, scaled by the propor-
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tion of critical patients. Each patient who is admitted to the hospital will be in the one of
the patient categories: trauma, medical, surgical and VP/ARDS. Each of these categories
is assigned a specific service time. The ICU bed used model is a single service block for dif-
ferent categories of patients, which sets the service time distribution based on their patien
category. If a bed is unavailable, the patient is transferred to an alternate ICU locations.

ICU and overflow beds, maintained as constant-size resource pools within each ICU, are
accessed by simulated patients through a seize block upon ICU admission. The seize block
is essential for entities to acquire necessary resources from a pool before proceeding with
their activities. Parameters within the block specify resource type, quantity, and acquisition
conditions. Once seized, entities utilize resources until release. This block is crucial for
modeling resource allocation and utilization in various industries. Patients will compete for
the bed and nurse at the same time if one of them it is not available then patient could not
admit to the ICU. If an arriving patient finds that all beds are occupied, they are sent to
a queue. If ICU bed available, patients occupy these beds throughout their ICU stay, and
patients my requiring ventilation or not.

The DES model simulates patient flow in the critical care network using two service
blocks representing two care components (ventilator usage and bumpable). The service
block is vital for simulating the processing of entities through specific tasks or services.
Entities enter the block when they require service and remain until their service time is
completed. Parameters within the block, such as service time distributions and resource
requirements, define the service process. The Service block is essential for modeling resource
utilization and queueing behavior in various industries within DES models. Each block
models a patient waiting until a resource (mechanical ventilator or HAU bed) becomes
available. Once available, both the patient and the resource experience a pseudo-randomly
generated service time. Simulated patients have a wait limit, and if exceeded, they timeout
and exit the model. Ventilation, nursing, and bed resources are each modeled with separate
resource pools, their levels varying within defined usage probabilities for both resources and
patients. When a simulated ICU stay ends or if a patient needs to transfer to HAU, or
if they cannot receive ventilation when needed, a release block frees up the bed resource
for other simulated patients. During their ICU stay, patients may need to use ventilation.
I present a queuing system, the core of which is a generalized Erlang loss model [117] for
ventilator use by non-pandemic and pandemic ICU patients.

The ventilator use model has the form of a generalized ./G/c/c Erlang loss model with
a limited supply of ¢ ventilators, where ventilation time has different distributions for differ-
ent patients categories. If all ¢ ventilators are in use, then ICU patients needing mechanical
ventilation are lost to the system, motivated by the life-threatening nature of respiratory
failure. ICU patients require a ventilator based on a non-homogeneous Poisson process,
which can capture time-dependence in ICU admission rates. Patients may discharge from

the ICU to HAU or experience a mid-stay bump, but there could be delays in receiving
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an HAU bed. This may result in patients staying in the ICU for a longer duration until
an HAU bed becomes available. HAU beds, represented as a constant-size resource pool,
are accessed by simulated patients through a seize block when they require an HAU bed.
Patients occupy these beds throughout their HAU stay for close monitoring. When a simu-
lated HAU stay concludes, a release block makes the HAU bed resource available for other
simulated patients. I utilized five delay blocks (without ventilation, before ventilation, after
ventilation, HAU stay, and ward stay) to determine patient ICU LOS. These blocks delay

patients based on distribution parameters specific to each block’s data.

3.4 Different Transfer Reasons

There are several reasons why patients may choose to transfer to a new hospital, including
factors such as capacity constraints, repatriation, and, most notably, a higher level of care.
This model considers various reasons for transfers. A detailed summary of these reasons can
be found in Table 3.2.

Capacity Related Transfer

Patients who can not receive a bed in the ICU and overflow and there is no bumping
possibility from ICU and overflow, therefore the home ICU site need to send this patient
to a new ICU site which has a available bed. When a transfer is requested, a transfer
preference/priority matrix is employed to evaluate and prioritize alternative ICU options,
assisting in the selection of the preferred destination ICU for capacity-dependent transfer
patients. Overflow beds are excluded from consideration when assessing availability in other
ICUs, ensuring that patients are not transferred based on bumping others in ICU or overflow.
The readiness of an ICU to accept transfer patients is determined by the availability of both
an ICU bed and nurse. If no ICU can accommodate the transfer due to lack of available
space, the patient is die.

The model integrates a database call to access transfer time data, currently set to zero
pending data analysis. Presently, the database call assume deterministic transfer times, but
introducing a stochastic element could better reflect real-world variations. However, intro-
ducing nonzero transfer times raises concerns about managing situations where a patient
begins transferring to an empty bed, but another patient arrives concurrently. Presently, the
model does not address this scenario, highlighting the need for further consideration and
potential implementation of protocols or mechanisms to manage conflicts during transfers.

Presently, the model operates under the assumption that a patient’s LOS is exclusively
determined by the host ICU and remains unaffected by transfers. However, future enhance-
ments could contemplate integrating additional factors such as potentially extending LOS

by one day to accommodate reduced stability stemming from transfers. Implementing this
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adjustment may pose increased complexity due to the existence of varying treatment com-

ponents within the model.

Medical Reason Transfer

Some patients, despite being critically ill, may be unable to receive the required treatment
at their original hospitals. In such cases, transferring them to the ICU becomes essential
to ensure they receive the necessary care. These transfers are classified as Medical Reason
Transfers or patients who need to receive higher level of care (HLC Transfer). The analysis
reveals that while the number of patients requiring transfer to a higher level of care may
be relatively low, these individuals tend to have significantly longer durations of stay in
the transferred hospital compared to the overall ICU patient population, as illustrated in
Figure 3.8. As this group of transferred patients tends to occupy ICU beds for an extended
period, it can significantly impact the capacity of critical care units, resulting in a reduction
in available ICU beds. From Figure 3.9, the majority of transferred patients will transfer to
larger hospitals like ICU sites 1, 2, and 3, primarily due to the presence of specialized units
for specific diseases or conditions.

Upon arrival at the receiving hospital, transferred patients receive expedited admission
to the ICU without the need to wait in a queue, ensuring prompt access to critical care.
If no ICU bed is available, the patient may be accommodated in the overflow unit. In
the event that neither the ICU nor the overflow unit has an available bed, the model
checks the possibility of bumping to free up a bed at either location. Patients may also be
transferred from the overflow unit to the ICU if a bed becomes available. If no such options
are feasible, the patient is accommodated at ICU site 1, as this particular site does not
have a refusal policy, thereby ensuring immediate care needs are met. This observation is
supported by Figure 3.10, which illustrates that ICU site 1 experiences higher ICU visitation
rates compared to other sites.

Additionally, patients within ICU site 1 who are unable to secure a bed in the ICU or
overflow units will be accommodated at the HLC Overflow of ICU site 1, which offers an
unlimited number of beds and nursing support. For patients outside of ICU site 1, if an ICU
bed is unavailable upon transfer, they will be redirected to ICU site 1 to ensure they receive
the necessary care. Furthermore, patients transferred from HLC have the highest priority
for securing a bed in the ICU compared to other patient types. Notably, HLC patients are
unable to bump in their original ICUs. Most patients transferred for medical reasons fall
within the Medical no VP/ARDS category, as shown in Figure 3.10, which also highlights
the mean ICU length of stay for medical reason transfer patients across different patient
types. From the database, it is observed that 2.247% of patients are transferred due to the

need for a higher level of care.
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Repatriation Transfer

Repatriation transfer can refer to the transfer of a patient back to their home hospital or
healthcare facility after receiving treatment or care at another facility, typically a higher-
level or specialized medical center. This transfer is often necessary when a patient’s condition
has stabilized or improved to the point where they no longer require the specialized services
or resources available at the treating facility, and it is more appropriate and convenient for
them to continue their care closer to home. In the context of ICU capacity management,
repatriation of patients becomes a practical solution when the admitting ICU is at full
capacity and needs to accommodate new critically ill patients. While these patients could
potentially be transferred to either an ICU or a HAU bed at their original location, this
model is focused solely on their return to the ICU, excluding HAUs. Notably, the volume of
repatriation patients is less than that of medical transfer patients, and their ICU stays are
typically shorter. This process highlights the intricate balance between ensuring ongoing

care for stabilized patients and freeing up vital resources for those in urgent need.

Transfer Type Transfer Reason Priority
Capacity Related Lack of available beds Low

Transfer

Medical Transfer Access to Advanced Care High

(HLC)

Repatriation No longer requires advanced moni- Low
Transfer toring

Table 3.2: Patient transfer reasons in the critical care model

Critical Care Model with Different Transfer Reasons

A key aspect that I now incorporate into the model is the process of medical transfers
between hospitals. This scenario typically arises when patients, already admitted to an ICU,
require more specialized care that is not available at their current location, necessitating
their transfer to larger facilities. I assume that patient will not bump in the current hospital
location as they are critically ill and we need to transfer them between ICU sites. Depending
on the nature of their condition, these patients are admitted through either non-pandemic
or pandemic streams.

High Level Care (HLC) patients represent a critical category requiring immediate ICU
admission upon request, given their severe health conditions. Any delay, even slight, in
providing the necessary care could have dire consequences, including irreversible harm or
endangering patient safety. Consequently, HLC patients are granted the highest priority,
without any waiting time for ICU beds. If ICU beds are fully occupied, these patients are
either overflowed to available beds in other departments or diverted to other hospitals.

When HLC patient receive an overflow bed, they remain in the queue for an ICU bed and
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are transferred to the ICU as soon as a bed becomes available. In extreme cases where
neither ICU nor overflow beds are available, and patient bumping is not an option, patients
are directed to a designated HLC overflow facility, specifically ICU site 1, Figure 3.12. This
site is unique in its refusal policy, ensuring HLC patients are guaranteed a bed; it acts as a
last resort when no other options are available.

This model implements a first-in, first-out queue system for managing ICU admissions,
emphasizing the elimination of waiting times for HLC patients. However, this placement is
not the end goal for their care pathway. While in the HLC overflow, patients are essentially
on a priority list, awaiting transfer to a more appropriate care setting that matches the
intensity of care they require. This could be either a standard ICU bed as it becomes
available or a bed in the overflow area that offers a closer approximation to the specialized
services found in an ICU.

Mechanical ventilation resources are not bound to a fixed location but are shared across
different care settings ICU, overflow, and HLC overflow. This flexible sharing mechanism
ensures that mechanical ventilation can be administered to patients irrespective of their
physical location within the hospital, reflecting a realistic and responsive approach to crit-
ical care. A key principle underpining the model is the prioritization of HLC patients for
mechanical ventilation access. Given the severity of their conditions, these patients are con-
sidered the most vulnerable and hence are given precedence in the allocation of ventilators.
Moreover, the model reflects a crucial operational detail from real-life healthcare settings:
the avoidance of unnecessary cleaning or sanitization tasks for the ventilation equipment
when it remains with the same patient during transfers between care settings. In actual
hospital environments, comprehensive cleaning and sanitization protocols for mechanical
ventilators are typically reserved for instances when equipment is transferred between dif-
ferent patients to prevent cross-infection and ensure patient safety.

An important aspect of this journey involves the stabilization of an HLC patient’s condi-
tion and the subsequent decisions regarding their care trajectory, including the potential for
them to be 'bumped’ if necessary or for them to undergo a process known as repatriation
transfer. Bumping refers to the practice of reassigning beds based on patient acuity and
resource availability, ensuring that those in most critical need have access to the appropri-
ate level of care. When an HLC patient’s condition stabilizes, they may be considered for
bumping to accommodate another patient requiring more urgent care. This transfer marks
a significant phase in the patient’s care journey, as it often indicates improvement to a
point where the specialized resources of the HLC overflow are no longer necessary. In the
model, these patients are considered “normal” patients upon their return to the initial ICU
site, meaning they no longer have the heightened priority status that was accorded to them

during their critical phase.
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Chapter 4

Analyzing Critical Care Data

In this chapter, I will analyze detailed data from the British Columbia Critical Care
Database covering the years 2010 to 2020. My focus is to use statistical analysis to fig-
ure out the best lengths of stay in the ICU for different groups of patients, considering their
diagnosis, whether they need to use mechanical ventilator, and other specific needs. I will
also look into the different Transfers between hospitals to better understand how the care

process works. The goal is to build a model that shows how the ICU really operates.

4.1 Different patient categories

Based on expert opinion, I categorized patients into four patient types:

Patients with either VP or ARDS

Patients with Viral Pneumonia (VP) or Acute Respiratory Distress Syndrome (ARDS)
present notable considerations for ICU management. Viral Pneumonia is characterized by
lung inflammation resulting from a viral infection, manifesting symptoms such as cough,
fever, and shortness of breath, with common viruses including influenza and SARS-CoV-
2. On the other hand, ARDS is a critical lung condition caused by the accumulation of
fluid in the air sacs, leading to reduced oxygen flow to the bloodstream. This condition can
arise from various sources, including pneumonia, and typically necessitates intensive care
and mechanical ventilation. The diagnosis of VP or ARDS significantly affects the LOS in
the ICU. However, due to their relatively low incidence rates in ICU populations, patients

within the VP or ARDS categories are not further subdivided by admission criteria.

Medical patients with neither VP or ARDS

Medical patients who do not have VP or ARDS encompass a diverse group with a wide range
of medical needs. These individuals present with various conditions that span from minor

infections to severe disorders, including heart disease, cancer, and respiratory problems. The
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nature of these conditions varies; they can be either acute, requiring immediate and short-
term care, or chronic, necessitating long-term management and treatment. This diversity
in patient conditions necessitates a flexible and responsive approach to care within medical

facilities.

Surgical patients with neither VP or ARDS

Surgical patients without VP or ARDS consist of individuals requiring intervention through
surgical procedures. The conditions prompting these surgeries are diverse, covering a spec-
trum that necessitates either elective surgeries, planned in advance for non-life-threatening
conditions, or emergency surgeries, required immediately to address acute, life-threatening
issues. This variety underscores the need for a broad range of surgical expertise and pre-
paredness within healthcare settings to effectively address the unique requirements of each

surgical patient.

Trauma patients with neither VP or ARDS

Trauma patients without VP or ARDS include individuals suffering from physical or psy-
chological injuries caused by external forces. The severity of these injuries varies widely,
from minor cuts and bruises to severe conditions such as head injuries and organ dam-
age. Such patients often require immediate and specialized care to address the complexities
of their injuries, underscoring the critical need for prompt, effective trauma management
within healthcare settings to mitigate the impact of these injuries and facilitate recovery.
Figure 4.1 presents the distribution of ICU visits by patient categories across non-Fraser
Health Authority sites, while hospitals 4 and 5 are within the FHA so there is no data avail-
able for these two hospitals. The figure indicates that medical patients without VP/ARDS
have the most ICU visits compared to other categories in each ICU site.

Figure 4.2 depicts the average ICU LOS days by patient categories across various ICU

sites. The figure indicates that VP /ARDS patients have the higher mean ICU LOS compared
to other categories in each ICU site.
Figure 4.3 shows the number of ICU visits across different patient categories with v.s without
ventilation usage, also the number of ICU visit across different patient categories for each
number of ventilation instances usage are shown in the Figure 3.3. Note that only instances
of ventilation usage up to five times are considered due to their limited occurrence.

For my critical care queuing model of multiple ICUs, I used data from the British
Columbia Critical Care Database (2010-20) to inform parameter choices. Where only par-
tial data was available, I relied on expert opinions from clinical experts. This database
began in 1997, originally known as the British Columbia ICU Database, and it provides
comprehensive details on ICU and HAU admissions in most British Columbia hospitals,
including patient treatment, admission and discharge times, transfers, mechanical ventila-

tion durations, and diagnostic details. It was linked with the DAD to supplement missing
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data. While DAD offers complete hospital admission data, it has less detail about ICUs
and HAUs. The model’s calibration and validation primarily relied on 2019 data, as it’s the
most recent full year before the COVID-19 pandemic. The pandemic’s impact on critical
care and the resulting data inconsistencies and capacity fluctuations led to the decision not

to use 2020 data for these processes.

4.2 Details of ICU Modeling and Analysis of Service Time

The decision-making process for patient flow in the ICU involves evaluating both the indi-
vidual characteristics of the patients—such as their type, the need for ventilation, LOS in
the ICU, and their expected outcomes—and the current state of the ICU itself, including the
availability of beds and ventilators as well as the potential for early discharge to make room
for incoming patients. The duration of a patient’s stay in the ICU can be broken down
into five distinct phases related to treatment, specifically for those requiring mechanical
ventilation: the period before they receive ventilation, the duration of ventilation, intervals
between ventilation sessions, and the period following ventilation. Additionally, there is con-
sideration for patients who do not require mechanical ventilation during their stay, focusing
on their overall time spent in the ICU.

Various distributions have been used to model the LOS distribution of hospital patients,
including lognormal [44, 70, 73], hyperexponential [44], weibull [91]. In this thesis, distribu-
tions for each temporal component associated with ICU stays were independently modeled
at each site. For the intervals preceding ventilation, during ventilation, between ventilation

sessions, and for the ICU LOS absent of ventilation, mixed gamma distributions were ap-
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plied, stratifying the data according to four distinct patient categories. It is important to
note that, for the distribution modeling of ventilation instances and the periods subsequent
to ventilation, differentiation among patient categories was not employed due to the limited
size of datasets for each category; instead, an aggregated approach was taken, combining all
patient categories into a single analysis. Furthermore, each entry in the ICU database was
treated as a discrete visit, acknowledging that multiple admissions to the ICU during a single
hospitalization episode might not exhibit statistical independence. Subsequent sections of
this document will elaborate on the precise definitions, methodologies for measurement, and

the specific techniques employed for fitting distributions to these defined temporal periods.

ICU Service Time Analysis: Time Before Ventilation

The time preceding ventilation is calculated by subtracting the ICU admission timestamp
from the first ventilation instance during each ICU visit. This requires merging two tables
from the ICU Database: the ICU admissions (MasterADM table) and the ventilation times
(Procedures table). This merger provides a complete overview of the patient’s experience
from admission to the start of ventilation. In scenarios where patients need immediate
ventilation upon ICU admission, some cases may show no delay in starting ventilation.
Considering that some patients are ventilated immediately upon ICU arrival, I calculated the
notable probability of zero time before ventilation, based on the proportion of data entries
with immediate ventilation. For each ICU location and patient group, we applied a hybrid
gamma distribution for the duration before ventilation, combining a Bernoulli distribution
for instances with zero time and a gamma distribution for non-zero times. The shape and
scale parameters of the gamma distribution were estimated using the fitdistr function in the
MASS R package, employing maximum likelihood estimation (MLE). Figure 4.4 displays

plot of the gamma distribution fits for before ventilation usage.

ICU Service Time Analysis: Ventilation Time

Ventilation duration is determined from the start and stop times of mechanical ventilation
in the ICU DB’s Procedures table, focusing on procedures with the ventilation usage code. 1
excluded entries lacking a start or stop time but did not filter for unusually long ventilation
duration as it is possible to have a long ventilation usage in ICU. My data analysis and model
treat each instance of mechanical ventilation as independent and and uniformly distributed,
even for multiple instances for the same patient during a single ICU visit. For each ICU
location and patient category, I fitted a distinct gamma distribution to the duration of
mechanical ventilation, using fitdistr for parameter estimation. Figure 4.5 displays plot of

the gamma distribution fits for before ventilation usage.
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Figure 4.4: Distribution of time before ventilation instances, ICU site 1
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Figure 4.5: Distribution of time between ventilation for all patient groups
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ICU Service Time Analysis: Time After Ventilation

In this thesis, I define the time after ventilation as the period from the last recorded venti-
lation instance in an ICU visit to the recorded “ready time” for patient discharge. If ready
time is not documented, the ICU discharge time is used instead. In cases where ready time
exceeds the actual ICU discharge time, the latter is considered. Our analysis excludes any
after ventilation times that are negative or exceed 30 days and 12 hours.

The plots for time after ventilation showed distinct daily peaks at 0,24,48, 72-hour
marks, etc. Consequently, I used a mixed distribution model with discrete probabilities for
specific day bins, segmented at 12,36,60 and 74-hour intervals, and so on. For the initial
interval of 0 to 12 hours, we fitted a hybrid truncated gamma distribution, accounting for
a notable probability of zero after ventilation time and using a truncated gamma distribu-
tion for non-zero outcomes. I encountered convergence problems with MLE for a directly
truncated gamma distribution. To address this, I estimated the shape and scale parameters
for a gamma distribution with an infinite right tail, and then applied these parameters to
a gamma distribution right-truncated at 12 hours. I faced convergence challenges when fit-
ting truncated normal distributions for subsequent bins. To resolve this, I aligned all after
ventilation time instances exceeding 12 hours into the (12,36) hour interval, then estimated
the mean and standard deviation for this shifted data. These estimates were used as the
adjusted mean and standard deviation for each daily group, with the mean subsequently
re-shifted to its original range for each group. I fitted the time after ventilation distribution
individually for each ICU site without further subdivision based on patient type.

Since I use observed ready and discharge times from a process with bumping as input
for a model that also includes bumping, we may underestimate the true after-ventilation

time distribution.

ICU Service Time Analysis: Number of Ventilation Instances

To determine the number of mechanical ventilation instances in each ICU visit, it’s essen-
tial to use the “Procedures” table in the dataset (detailing ventilation times). I used the
ventilation counts in visits to estimate the probability of ventilator use in a visit. I arbi-
trarily excluded visits with over 5 ventilation instances as outliers because more than fine
times ventilation is rare, but this can be reviewed. I modeled distributions for each ICU site
without differentiating by patient category.

The ventilator count relied heavily on the procedures table, so any ventilation episodes
not in that table were recorded, leading to an underestimation in our distribution. Another
source of underestimation is counting each ICU database entry as a single visit. For instance,
if someone used a ventilator at one of the ICU site for a few days, then transferred to another

ICU site and used a ventilator there, I counted this as two separate ICU visits, each with
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Figure 4.6: Distribution of time after ventilation for all patient groups

one instance of ventilation. However, an alternative approach might view it as one ICU

“episode” with two ventilation instances.

ICU Service Time Analysis: ICU Length of Stay Without Ventilation

ICU LOS without ventilation is the time from ICU admission to the “ready time to dis-
charge” for patients not designated as receiving mechanical ventilation in the procedures
table. If there’s no Ready Time to discharge recorded, I use the ICU discharge time. Also,
if the Ready Time to discharge is longer than the ICU discharge time, I still use the ICU
discharge time. ICU LOS without ventilation may be biased due to under-reporting of ven-
tilation in the procedures table, potentially leading to an overestimate of the number of
patients in this category.

I excluded stays with zero duration and those exceeding 45 days, then applied a gamma
distribution to this data for each ICU site and patient type. In this analysis, I treat each
entry in the ICU database as a separate visit, assuming they are independent and identically
distributed. However, this assumption may not hold for multiple ICU visits during the same
hospitalization. I do take into account multiple ICU visits for different transfer reasons, such

as repatriation and medical transfers between ICU sites.

ICU Service Time Analysis: Avoidable Time

Avoidable time is the period between the recorded "ready time to discharge" when a patient
could potentially leave the ICU and the recorded ICU discharge time. If there’s no Ready

Time to discharge recorded, then avoidable time is considered as zero. Avoidable time has
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Figure 4.7: Distribution of time without ventilation for all patient groups

many sources and it is influenced by external factors beyond the ICU, such as waiting for
an available HAU, ICU or ward bed, or transfer services.

I categorized avoidable time into three groups based on discharge diagnosis:
e In-ICU mortality when discharge disposition is labeled as died in the unit.

e HAU discharges identified HAU discharges by examining the discharge to special care
field, which included labels like high acuity unit, ICU step-down (same site), HAU —

Surgical, and cardiology stepdown.

e Other discharge dispositions For other discharge dispositions, which encompass direct
transfer from ICU to an outside facility, discharged home, transfer to hospital ward
(same facility), transfer to ICU (within same facility) — FHA only, and transfer to

special care unit (same facility).

Patients requiring transfers for medical reasons or repatriation may experience delays due
to factors like ambulance availability or securing an ICU bed at the new site. However, this
model does not account for avoidable time associated with various transfer reasons.

The model assumes zero avoidable time for ICU mortality, despite some non-zero entries.
I applied a single distribution for avoidable time to all non-mortality, non-HAU discharges,
separately fitting it for each ICU site without considering patient types. I applied a mixed
distribution to these avoidable times, following a similar approach as with time after ven-
tilation. The discrete time intervals were set as [0, 18], (18, 42], (42, 66], and so on in hours.
For bins over 18 hours, we fitted individual truncated normal distributions using the mean

within each time bin.
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ICU Discharge Diagnosis Frequency

I determined the probability of our five discharge diagnosis groups by analyzing their occur-
rence rates within the data for each site and patient type. The discharge diagnosis groups

are:
« HAU
e Mortality
e Repatriation transfer
o Medical Reason Transfer
e other discharge disposition

For the calculation of these probabilities, I employed data encompassing all available years,
operating under the assumption that these probabilities remain invariant over time. Within
the ICU database, entries indicative of mortality were delineated by an ICU discharge dis-
position status designated as died in the unit. Conversely, discharges directed towards the
HAU were discerned through identifiers such as high acuity unit - surgical, cardiology step-
down and high acuity unit or ICU step-down (same site), thereby facilitating a systematic
categorization of patient outcomes post-ICU stay.

Additionally, patients were classified as repatriation transfers if their ICU Discharge
Disposition matched repatriation within health authority or repatriation outside health
authority. They were considered medical reason transfers if ICU discharge disposition cor-
responded to higher level of care within health authority or higher level of care outside
health authority.

I utilized the proportion of patients discharged to the HAU as the probability of a patient
requiring HAU care, irrespective of whether they were bumped from the ICU to an overflow
bed. It’s important to note that the data I have on HAU discharges already accounts for

bumping, which means our model could potentially overestimate ICU discharges.
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Chapter 5

Results

In this chapter, I explore the validation of the simulation model against actual data from
the Critical Care Database, covering eight hospitals. The analysis focuses on comparing the
model’s predictions to real-world data from 2019, considering both standard and overflow
bed utilization within ICU sites. Each site’s unique characteristics, including their spe-
cializations and capacity, are taken into account. The validation process involves detailed
examination of admissions and discharges to determine ICU occupancy trends, essential for
assessing the model’s accuracy. I considered the model’s warm-up period, a critical phase
for ensuring its predictions reflect realistic operational conditions. I captured the compre-
hensive analysis of ICU resource utilization, taking into account the mortality associated

with various limitations and the diverse reasons for patient transfers.

5.1 Simulation Model Calibration and Validation

The model calibrated with the 2019 ICU database from the Critical Care Database across
eight hospitals and was validated using 2019 occupancy data, a complete year of records
before the COVID-19 pandemic. The pandemic-induced strain on the critical care system
compromised data integrity and interpretation due to variable temporary capacities. Thus,
I excluded 2020 data from the model’s calibration and validation process. ICU occupancy
in this model comes from the summation of ICU beds and overflow beds in each ICU site.
ICU occupancy was determined by monitoring admissions and discharges in the Critical
Care Database over several years.

For the simulation model, reaching a steady state (warm-up time) is crucial. Initially,
the simulation model was adapted to align with queuing model principles, facilitating the
identification of an optimal 'warm-up’ period to eliminate initial transient states and de-
termine an appropriate 'run time’ for the simulation outputs to converge with the limiting
values forecasted by queuing theory. I initially export hourly data points, calculate mean
values for ICU occupancy and HAU beds, and identify the earliest point these averages are

achieved, which we designate as the model’s warm-up time. The warm-up time is unique
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for each simulation model, as follows: in the construction of the base model, which does
not account for transfer factors, an initial warm-up period of 8 weeks, or 1,344 hours, was
determined to be adequate. However, the revised model, which includes considerations for
transfer reasons and allows for patient transfers from other hospitals to the 8 major hospi-
tals, necessitated a longer duration to achieve a steady state. Consequently, the warm-up
period for this model was extended to 21 weeks, equivalent to 3,528 hours, to accommodate
the additional complexity introduced by these factors.

Upon reaching steady state in the simulation model, the selection process for acquiring
additional data points is as follows: to secure robust data, the simulation model documented
the system’s state every 169 hours—mirroring a week plus an additional hour—to enable
nearly independent evaluations and the incremental acquisition of weekly data. Following a
critical warm-up phase to standardize initial conditions, the model initiated a comprehensive
data collection regimen, accumulating 100 data points across each of the 24 hours in a day,
resulting in a daily total of 2,400 points. This operation persisted for a duration of 409, 128
hours, calculated as (100 x 24 x 169 + 3,528 = 409, 128 hours), ensuring the collection of
detailed hourly data. This methodology significantly bolstered the data’s reliability and

analytical depth. Table 5.1 provides a summary of the critical care model’s running time.

Model version Warm up time Time interval Total run-
ning time
Without transfer rea- 1,344 hours 169 hours 406,944
sons (8 Weeks) hours
With transfer reasons 3,528 hours 169 hours 409,128
(21 Weeks) hours

Table 5.1: Summary of running time details for the simulation model

5.2 Validation Results and KPI Measurement

ICU Occupancy For Each Hospital

Table 5.2 compares simulation outcomes with mean occupancy from the Critical Care
Database. To maintain confidentiality, hospitals are anonymously numbered from one to
eight. Hospitals 1, 4, and 5 have large ICUs that provide specialized care. Although hospi-
tal 8 does not have a large ICU, it is a major regional centre for critical care. In line with my
expectations, the model accurately predicted the occupancy for ICU 1 upon incorporating
medical transfer data, acknowledging that patients in this category often have prolonged
stays, significantly influencing occupancy rates. Specifically, as the primary care center, hos-
pital 1’s ICU continuously accommodates patients needing specialized care, irrespective of
capacity constraints Conversely, the predictions for Hospitals 2 and 3 were overestimated,

a discrepancy attributable to missing of repatriation transfer data for many patients. Typ-
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‘ ICU Occupancy Comparison
ICU Site Mean ICU 2019 Data Updated Simulation

1 31.8 31.5
2 16.8 17.3
3 8.9 9.5
4 15.2 14.4
) 18.5 18.4
6 9.1 9.1
7 7.8 8.2
8 9.5 8.3

Table 5.2: Mean ICU occupancy (ICU and Overflow beds) and simulation results
comparison with 2019 ICU occupancy from 8 major hospitals in British Columbia.

ically, patients transferred for medical reasons are returned to their original home ICU
following the necessary treatment. However, the critical care database lacked substantial
information on these repatriation transfers, leading to the observed overestimation in the
model’s predictions for these hospitals.

Another contributing factor to the overestimation was the uniform application of the
transfer matrix across all types of medical patients. This approach overlooks the variability
in medical transfer reasons, as each hospital is equipped with specialized facilities catering
to specific medical conditions, such as cardiac issues. Table 5.2 shows that including trans-
fer reasons model ICU occupancy are close to mean ICU occupancy 2019 data. This is due
to most medically transferred patients moving to these major ICUs and their prolonged
stays impacting occupancy levels substantially. Table 5.3 summarizes the ICU simulation
validation, and ICU site 1 shows great accuracy, as it consistently accepts patients requir-
ing specialized care, regardless of capacity limits and it is the biggest hospital in the BC.
The validation test calculates the percentage difference between actual and simulated ICU
occupancy across various sites, quantifying the model’s prediction accuracy in relative er-
ror terms. This analysis, summarized in a validation table, highlights how the simulation
either underestimates or overestimates actual occupancy, using a straightforward statistical
approach known as percentage error calculation. This method, devoid of complex statisti-
cal techniques, evaluates the deviation of model predictions from real data, where positive
values signal underestimation and negative values denote overestimation. This approach
provides a clear, interpretable measure of the model’s accuracy through percentage differ-

ences, effectively assessing its performance.

Details of ICU and Overflow Bed Usage

Due to its status as one of BC’s largest and its high ICU bed demand, ICU site 1 is
under closer observation to analyze its operational dynamics. Figure 5.1 illustrates the use

of ICU and overflow beds, capturing 10 data points each hour (240 in total). The red line
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Simulation Model Validation
ICU Site Validation
0.94%
-2.97%
-6.74%
5.26%
0.54%
0%
-5.12%
12.90%
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Table 5.3: Results of simulation validation for eight major hospitals based on deviation of
model predictions from real data, where positive values denote underestimation and
negative values denote overestimation.

indicates the ICU’s bed capacity at site 1. Data points exceeding this line signify the need for
overflow beds or, if unavailable, patient transfer to HAU to accommodate new admissions.
Figure 5.2 separately depicts the counts of ICU and overflow beds. Denying a patient ICU
admission inappropriately lowers their survival and recovery chances due to reduced nursing
and medical support, increasing the risk of poor recovery and mortality.

Figure 5.1 illustrates that when patient numbers exceed ICU bed capacity, overflow
beds are utilized to accommodate additional patients, preventing deaths and the rejection
of new admissions, and hospitals in the real world favor retaining patients in ICU beds over
utilizing overflow beds to avoid added pressure on nurses and ICU resources, potentially
impacting ICU efficiency. Figure 5.2 shows the comparison of the ICU and overflow bed
for each data point. To provide a comprehensive analysis of ICU occupancy across different
hospitals, I have documented the ICU occupancy rates using 10 data points for every hour
of the day. This detailed representation can be found in Figure 5.3. This approach ensures
a understanding of occupancy trends and variations throughout each hospital site.

In healthcare systems, resorting to overflow beds or moving patients from the ICU to
the HAU is not the preferred strategy, as these measures can prolong treatment times and
potentially diminish the standard of care patients receive, reflecting real-world consequences.
As demonstrated in Figure 5.4, a more effective approach involves managing ICU demand
spikes by temporarily accommodating patients in overflow beds instead of the ICU (as seen
at 15:00 p.m.). This strategy prevents the immediate need to bump patients, preserving the
continuity of their care. Once a patient completes their treatment, and an ICU bed is free,
patients in overflow can be transitioned back to the proper ICU setting (evident at 16:00
p.m.), thereby optimizing bed usage and ensuring patients receive the appropriate level of
care. This cyclical adjustment not only maintains a balanced flow of patient care but also

minimizes the strain on critical healthcare resources.
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Figure 5.1: Number of ICU and overflow bed usage hourly for 10 data points for each hours
of the day, for ICU site 1. Red line shows the fixed number of ICU beds in ICU site 1.
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Figure 5.2: Number of ICU and overflow beds used over time. Data is shown for site 1
with 10 data points per hour. Overflow bed is used when there is no available ICU bed,
therefore if numbers of ICU bed exceed the fixed ICU bed we will have overflow.
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ICU Resources Usage

In an effort to detail resource allocation within ICUs, each category, including ICU beds,
overflow and HAU beds, mechanical ventilation, and nursing staff, has been distinctly an-
alyzed. Despite a uniform pool of nurses servicing both HAU and ICU across all sites,
patient-to-nurse ratios vary significantly. As depicted in Figure 5.5, the available nursing
staff effectively meets the requirements posed by the total ICU occupancy (encompassing
ICU and overflow beds) and HAU beds. It is important to note that for ICU sites 6, 7,
and 8, there is a lack of transfers from ICU to HAU during patient stays, evidenced by the
zero usage of HAU beds. This figure does not account for patients discharged from the ICU
directly to the HAU.

Over Occupancy in ICU

The 2016 Canadian Institute for Health Information report revealed that ICU occupancy
rates averaged 86% across Canada, with figures reaching 90% in major urban and teaching
hospitals. Such data highlight instances where occupancy nears full capacity, especially
during peak times like the winter influenza season or the trauma-heavy spring and summer
months. Studies have linked high ICU occupancies, specifically those exceeding 80%, with
increased rates of ICU and hospital mortality, as well as higher chances of ICU readmission
within a week post-discharge. Consequently, recommendations suggest maintaining ICU
occupancy rates below 80% to adequately accommodate demand surges. I conducted a
detailed analysis of ICU occupancy rates, focusing specifically on instances where occupancy
exceeded 90% across various hospitals in the Table 5.4. ICU site 1 plays a crucial role in

BC healthcare system, and most transfer patients will transfer to this ICU site. Due to the
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ICU Site 2019 Percentage of Simulation Percent- Simulation Percent-
time over 90% ca- age of time over 90% age of time over 90%

pacity capacity — No bump- capacity — bumping
ing or transfer or transfer
1 92.40 70.8 71.93
2 0 0.08 0.08
3 0 0.08 0.04
4 0 0.2 0.08
5 0 0 0.04
6 0 0 0
7 0 6.2 5.91
8 0.24 8.7 6.4

Table 5.4: ICU Occupancy over 90% capacity and simulation results comparison with 2019
ICU data for 8 major hospitals in British Columbia

Total ICU mortality rate in each ICU site

ICU Site Mortality rate

17.65%

13.94%

17.86%

20.22%

19.76%

19.6%

12.79%

15.55%

0 g O Tk W

Table 5.5: Simulation-based mortality rates across hospitals

elevated rate of patient arrivals and the absence of a refusal policy at this ICU facility, the
ICU operates at over 90% of its capacity in 71.93% of time. which means a lot of patients

need to receive a bed at ICU.

5.3 Mortality Rates

The model recognizes multiple critical care mortality factors such as bed unavailability,
insufficient ventilators, and critical health deterioration, detailed in Table 5.5, which lists
total mortality rates per ICU site. Total mortality for all ICU sites is 17.37%. At ICU site
1, I analyzed mortality reasons in greater detail, as shown in Table 5.6. Medical transfers
(HLC) are crucial in this model as they involve critically ill patients, and the model aims to
prevent their mortality when they are transferred to a new ICU. Given that most medical
transfers go to ICU site 1, I focus on examining these cases in greater detail. Mortality due
to bed unavailability for HLC patients is zero, assuming the ideal scenario where all HL.C

patients receive a bed, thus preventing any deaths due to bed shortage.When patients can’t
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receive necessary ventilation, it can lead to mortality. Refer to Table 5.6 for the mortality
rate due to ventilation unavailability for HLC patients.

In the model, bed availability is prioritized over ventilation, ensuring that most patients
who receive a bed and need ventilation will indeed receive it. Consequently, the primary

cause of patient mortality is attributed to bed unavailability rather than a lack of ventilation.

Each mortality reasons with rates

Mortality reason Rate
Total HLC patient mortality (No Vent) 0.003
Total HLC patient mortality (No Beds) 0.000
Total Mortality Non HLC patients (No Beds) 0.007
Total Mortality Non HLC (No Vent) 0.002
Total Mortality Rate for all ICU sites 0.176

Table 5.6: Different mortality rates in ICU site 1

5.4 Transfer Reasons Comparison

Most of the medical reason transfers occur from smaller or rural hospitals to bigger and
specialist hospitals, and from Table 5.7 you can see the results match with this assumption
as you can see most of the Medical reasons transfer to ICU site 1,2,3. Repatriation transfer
happens when patients receive the care they need in the bigger hospitals and when their
health condition become stable they can transfer back to the local ICU site, most of the
repatriation comes from bigger hospitals to smaller hospitals, you can find it in more details
in Table 5.7. Another reason for transfers is when the ICU reaches capacity, necessitating
the transfer of patients to a new site. This occurs when there is high demand for admission

to ICU site 1, leading to capacity-related transfers.

‘ Different transfer reason rate in each ICU site ‘
ICU Capacity  Transfer Medical Reason to Repatriation Trans-

Site From fer from
1 0.019 0.018 0.006

2 0 0.02 0.003

3 0 0.016 0.01

4 0 0 0

5 0 0.0002 0

6 0 0.013 0.002

7 0 0.003 0.007

8 0.005 0 0

Table 5.7: Different transfer rate comparison based on the simulation result
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I conducted a detailed comparison between the rates of medical reason transfers, (HLC),
as recorded in the Critical Care Database and the outcomes predicted by our simulation
model. This comparison is shown in Table 5.8, which serves as a critical reference point for
understanding the alignment between observed data and simulated predictions regarding
patient transfers for medical reasons across different ICU sites. It is important to note that
the Critical Care Database does not uniformly provide data on the reasons for patient
transfers at all ICU locations. In instances where the database lacks information on the
transfer reason for a specific ICU site, the analysis pragmatically accounts for these gaps

by recording the transfer rate as zero.

Medical Reason Transfer (HLC) ‘
ICU  Medical Reason (HLC) 2019 Medical Reason (HLC) Trans-

Site Data fer simulation
1 0.03 0.018

2 0.04 0.02

3 0.06 0.016

4 0 0

5 0.002 0.0002

6 0.03 0.013

7 0.006 0.003

8 0 0

Table 5.8: Medical reason transfer rate 2019 ICU comparison with simulation results eight
major hospitals in British Columbia

5.5 Enhancement of Results

The based simulation [102] closely matched the Critical Care Database, with a variance
of roughly 4% for ICU site 1. In model with various of error transfer reasons, enhanced
accuracy for larger ICU sites, narrowing the discrepancy to approximately 0.78% for ICU
site 1. This refinement indicates the simulated mean ICU occupancy aligns almost precisely
with the actual data, in Table 5.9 and Figure 5.6. The validation test encompassing all ICU
sites is comprehensively illustrated in Figure 5.7.

As shown in Table 5.10, the updated model predicts a significantly higher percentage of
time over 90% ICU capacity compared to the based model especially for the hospital 1. This
difference is attributed to the updated model’s inclusion of more comprehensive transfer
reasons across a wider hospital network. Note that minimizing hospital overcapacity is

crucial for effective emergency surge preparedness to avoid rejecting new patients.
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‘ ICU Occupancy comparison

|

ICU Site Mean ICU 2019 Based Simulation

Updated Simula-

Data tion
1 31.8 30.4 31.5
2 16.8 17 17.3
3 8.9 9.3 9.5
4 15.2 14.4 14.4
5 18.5 17.5 18.4
6 9.1 9 9.1
7 7.8 8.1 8.2
8 9.5 8.2 8.3

Table 5.9: Mean ICU Occupancy (ICU and overflow beds) and simulation results
comparison with 2019 ICU occupancy from 8 Major Hospitals in British Columbia

ICU Site 2019 Percentage of time
over 90% capacity

Simulation Percentage
of time over 90% ca-
pacity (Based Model) —

bumping or transfer

Simulation Percentage
of time over 90% capac-
ity (Updated Model) —
bumping or transfer

92.40

00 ~J O U i W N
O O OO o oo

.24

68.4
0.04
0
0.04
0
0
6.83
7.63

71.93
0.08
0.04
0.08
0.04
0
5.91
6.4

Table 5.10: ICU occupancy over 90% capacity and simulation results comparison for based

and updated model
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Chapter 6

Discussion and conclusions

In British Columbia, the critical care system was already operating at or beyond its capacity
before the COVID-19 pandemic. This situation made managing demand surges during the
pandemic challenging, underscoring the importance of operational planning for future criti-
cal care demand peaks. In this thesis, I developed a simulation model of British Columbia’s
critical care network by considering three different transfer reasons incorporating their pri-
orities between hospitals to aid in planning for various scenarios, as proposed by the British
government Columbia Centre for Disease Control (BCCDC). Despite the difficulty in fore-
casting future pandemic waves, this model could be instrumental in devising strategies to
manage the impacts of new pandemics, like seasonal influenza, without relying heavily on
extensive public health measures to limit transmission. The simulation modeling results are

valuable for managing ICU resources, analyzing scenarios, and determining mortality rates.

6.1 Discussion of Results

HAUs are becoming increasingly vital in the critical care system, offering a cost-effective
way to boost capacity during regular operations and providing additional surge capacity in
a crisis. This simulation model seeks to optimize policies for incorporating HAUs into the
critical care system, emphasizing their most effective utilization across patient pathways,
including step-down, step-up, and full-duration critical care units.

The pandemic led to the addition of extra critical care beds in hospitals, putting immense
pressure on ICU staff and resulting in extensive overtime for ICU nurses. Consequently, the
mental health of many critical care nurses deteriorated, with post traumatic stress disorder
rates among nurses rising from 9 — 20% before the pandemic to 49 — 73% during it [20].
Consultations with critical care experts in British Columbia highlighted the need to include
medical staff in our simulation model. This integration is believed to enhance the model’s
utility for future contingency planning, particularly for situations where ICU nurses and
other medical staff are transferred between hospitals to manage surges in critical care de-

mand within a network. The model can be used to determine early warning signals for both
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COVID-19 and seasonal influenza or upcoming pandemic that could trigger preparation for
these contingency measures. Therefore in this model I consider the nurse pool resource in
the ICU and HAU to model the critical resources. Also, mechanical ventilation is a key
resource, as most ICU patients require it during their stay. The model also accounts for
the cleaning time needed after each use of a ventilator. The model is capable of tracking
multiple ventilator uses within a single ICU stay.

Previous critical care simulation models mainly focused on single ICUs or hospitals.
This model, by encompassing a network of ICUs, enables the examination of scenarios
where demand surges in a specific hospital or region can be managed with support from
other network hospitals. This approach is particularly relevant in British Columbia, where
COVID-19 case peaks were not uniform across the province. This model evaluates the
critical care system’s capacity to operate as an integrated network, wherein ICUs outside
an outbreak region offer additional support to those directly affected. Integrating medical
transfers into the model was challenging, as it necessitates simulating aspects of medical
decision-making. The model captures three different transfer reasons. The most important
transfer reason is medical reason transfer. Patients transferred for medical reasons often
need extended ICU stays to recover from critical illnesses. Estimates suggest that 2 — 11%
of critically ill patients require such prolonged ICU care, accounting for 25—45% of total ICU
days and consuming a substantial portion of resources [113, 4]. This model uses multiple
ICU sites therefore, the model is able to capture medical reason transfer between ICU sites.
Patients who required long stay in ICU during their hospital stay comprised only a small
proportion of total ICU admissions but they can affect ICU occupancy especially if a new
pandemic happens like COVID-19 which brings a high pressure in ICU sites.

In a scenario where an ICU is full and must admit a new patient, “bumping” leads
to premature discharge of a current patient, potentially during off-hours. This increases
the risk of post-discharge mortality by up to 39%, particularly with nighttime discharges.
Bumping in ICUs, where a critically ill patient is refused admission, compromises patient
safety due to the lower survival chances when they are cared for in areas without intensive
nursing or specialized organ support [98, 37]. In critical care, bumping is a non-ideal but
sometimes necessary practice. Patients first compete for ICU beds, then for overflow beds.
Bumping is used only as a last resort to make room for new admissions, aiming to minimize
its occurrence except during a pandemic, as reflected in the results.

In the original critical care system simulation, ICU occupancy was underestimated for larger
hospitals. By incorporating medical transfers and other transfer factors, the simulation’s

ICU occupancy estimates became more aligned with actual ICU occupancy levels.
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6.2 Limitation and Future Works

Future research possibilities may involve integrating a reduction in nurse-to-patient ratios
for individuals approaching the conclusion of their treatment. This adjustment could occur
in response to new admissions, allowing for increased overflow capacity, or it could be an
automatic reduction when patients are deemed ready to leave the ICU and transition to
Avoidable or Alternate-Level-of-Care status. In practical settings, nurses are designated
either to the ICU or the HAU. Hence, it is essential to maintain separate nurse pools for
future assignments. The model does not account for direct admissions to HAU or transfers
from HAU to ICU.

In the real world it is possible critical ill patients need to receive higher level of care either
in ICU or HAU but this model only considers admission in the ICU and it did not consider
direct admision in HAU to receiving close monitoring during their stay. While the model
includes the step-down unit post-ICU LOS, it overlooks the step-up process, particularly the
transfer of patients from HAU to ICU, which predominantly occurs for patients requiring
ventilation due to the unavailability of ventilators in the HAU unit. Ventilation resource
is one of the important resources in the hospital and this model currently captures up to
five fold ventilation usage during a patient’s ICU stay, with potential for further increase
in future work and it can improve the model. I considered the bumping from ICU to step
down unit but bumping can extend a patient’s HAU stay due to ICU transfer and HAU’s
limited monitoring; however, this model doesn’t account for this effect. The model does not
incorporate any explicit avoidable time within the HAU as patients may wait for a ward
bed before HAU discharge. I treated each ICU visit as independent and didn’t consider
multiple ICU visits within a single hospitalization.

The VP or ARDS sub-group isn’t split by admission due to low patient numbers in each
ICU. Future analysis might explore other patient characteristics and expand the patient
categories to have more specilize categories such as heart, tumor, etc. This can be helpful
as some medical transfer patient in a specific type of patient will transfer to specilize ICU
site. In the limitations of my study, while the gamma distribution applied to pre-ventilation
times seemed reasonably fitting, it was not an exact match. This leaves room for potential
refinement. Subsequent studies might benefit from employing goodness of fit tests to validate
the chosen distribution and exploring alternative potentially to be more precise distribution
fits to enhance accuracy.

Some mechanical ventilation might be under different codes in the datasets; future re-
search should examine this, and consider them in the model. For ventilation time, I assume
each mechanical ventilation instance is independent and identically distributed, even within
a single ICU visit. This assumption may not be precise, and future research should delve
into the interrelations of subsequent ventilation.

For medical reason transfers and repatriation transfers, the model should account for avoid-
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able time since patients may experience delays in obtaining transfer facilities like ambulances

and ICU beds at the new ICU, resulting in waiting times.

6.3 Conclusions

The analysis in this thesis provide a new approach to model critical care system based
on various real world scenarios with considering the network between different hospitals in
British Columbia. This model incorporates distinct features, including unique state distribu-
tions, patient types with specific characteristics, and resource sharing with varied priorities
per patient type. By mapping the network between hospitals, it facilitates patient trans-
fers, minimizing the rejection of critically ill patients through the accommodation of diverse
scenarios. This model represents a highly accurate version of BC’s critical care system.
The ICU occupancy rates, derived from simulation outcomes and the 2019 dataset, closely
match, indicating significant improvement in model validation—especially in comparison
to previous models that either focused on a single ICU or overlooked transfers within and
between hospitals. This model facilitates scenario planning to reduce mortality rates caused
by factors like bed and ventilator shortages.

The model aims to minimize patient bumping from ICU mid-stay, closely aligning results

with the goal of keeping such occurrences near zero.
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