
Brief Dreams: An Interactive Procedural Virtual

World Builder for Imaginary Landscapes

by

Yiming Zheng

Master of Fine Arts, Bard College, 2020

Bachelor of Fine Arts, Beijing Film Academy, 2017

Project Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the

School of Interactive Arts and Technology

Faculty of Communication, Art and Technology

© Yiming Zheng 2024

SIMON FRASER UNIVERSITY

Spring 2024

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

ii

Declaration of Committee

Name: Yiming Zheng

Degree: Master of Science

Title: Brief Dreams: An Interactive Procedural Virtual
World Builder for Imaginary Landscapes

Committee: Kate Hennessy
Supervisor
Associate Professor, Interactive Arts and Technology

 Halil Erhan
Committee Member
Associate Professor, Interactive Arts and Technology

iii

Abstract

Brief Dreams is an interactive art project that allows users to design, build and explore

virtual environments using the procedural content generation (PCG) framework in Unreal

Engine 5.3. In this project, users will first build 3D environments on the empty terrain

with provided procedural contents to generate 3D models in predefined cluster patterns,

including natural biomes, canyons, trails and rivers. As users build their virtual

environments, they can explore their creations in a first-person walkthrough and modify

the appearance of the world by changing the time of the day and weather. This project

aims to provide an accessible way for general users, with or without a professional

design background, to take advantage of the PCG framework to build virtual worlds in a

short period of time.

Keywords: Procedural Content Generation; Unreal Engine; 3D World Building; Video

games

iv

Acknowledgements

I would like to express my deepest gratitude to my project supervisor, Dr. Hennessy, for

her invaluable guidance and support throughout the development of this project and its

documentation. Her insightful suggestions and advice motivated me to make steady

progress and complete this prototype, which I am proud to include in my portfolio.

I am also grateful to Dr. Erhan for providing valuable feedback that helped shape the

initial concept and refine it into the final iteration of the prototype.

I extend my sincere thanks to my friends, especially Henry Leung, who has always been

willing to offer help on my project and share his thoughts with me.

Finally, I want to express my heartfelt appreciation for the support of my family. Their

support has brightened my days and played a crucial role in helping me complete this

program.

v

Table of Contents

Declaration of Committee .. ii
Abstract .. iii
Acknowledgements .. iv
Table of Contents .. v
List of Figures... vi
Opening Image .. viii

Chapter 1. Introduction .. 1
1.1. Motivation .. 2
1.2. Project Goals ... 3

Chapter 2. Related Works .. 4
2.1. Procedural Content Generation ... 4
2.2. Barriers and Challenges .. 6

2.2.1. Multi-level, multi-content PCG .. 6
2.2.2. PCG-Based Game Design ... 7
2.2.3. Generate Complete Games ... 8

2.3. Conclusion... 8

Chapter 3. Methodology and Project Iteration .. 10
3.1. Planning .. 10
3.2. Design and implementation of PCG Cluster ... 14
3.3. Singleton Pattern ... 16

Chapter 4. Artifact Description .. 18
4.1. Development of PCG Clusters ... 18
4.2. Brief Dreams Interfaces ... 21

4.2.1. World Building UI ... 21
4.3. Character Controller Design and Development .. 24
4.4. Weather and Time of the Day .. 26

Chapter 5. Discussion .. 28
5.1. Reflections ... 28
5.2. Future Work and Improvements .. 28

References ... 30

vi

List of Figures

Figure 1 Screenshot from my VR game project Harmony, I built this underwater
scene by manually placing each 3D asset on the landscape. 2

Figure 2 A screenshot of Minecraft showcasing its diverse biome system based on
Whittaker diagram .. 5

Figure 3 Whittaker biome diagram demonstrates distribution of vegetation based
on temperature and precipitation. ... 5

Figure 4 Screenshot from No Man’s Sky showcasing 3D models randomly
generated on terrain. .. 7

Figure 5 Screenshot of Galactic Arms Races showcasing player’s weapon 8

Figure 6 There are three main phases in my project: Introduction, World Building
and Exploring. I break down each phase to specify and identify the
features of the project... 11

Figure 7 The user flow map shows the basic workflow of the project and identifying
the interaction loops in different phases of the experience 12

Figure 8 These mood boards serve as a visual guide for the composition of the
procedural environments to be developed, as well as a reference for the
selection of individual 3D models. .. 13

Figure 9 Screenshot of PCG forest overlapping with PCG trail in first iteration of
Brief Dreams .. 14

Figure 10 PCG Graph is a visual scripting language to create algorithms for PCG
clusters. In this graph I created the algorithm for a forest biome. 15

Figure 11 In the forest biome created from the PCG graph in Figure 11, I generate a
variety of ground plates above the terrain to seamlessly blend foliage into
the ground environment. .. 15

Figure 12 Unreal Editor outliner showcasing singletons are instanced in the game
and functions within the “BP_UIManager” singleton. 16

Figure 13 Custom event in BP_MainPlayerController singleton that performs
viewport transition and called functions from other singletons. 17

Figure 14 The main PCG graph for Brief Dreams, which I used to transfer mask
data between different clusters to avoid overlapping. 18

Figure 15 PCG forest cluster in debug mode. Large cubes represent point grids for
generating small to medium 3D assets such as shrubs. Small cube
represents the coordinate for generating the ground meshes. 19

Figure 16 A screen shot of forest PCG graph showcasing the static mesh spawner
node. .. 20

Figure 17 A Top-down view of forest PCG cluster. Foliage, ground plate and props
are populating on point grids. Trail spline and campsite cluster are being
masked out to avoid overlapping with the forest cluster. 21

Figure 18 An initial UI prototype that allows the user to generate procedural content
at run time. ... 22

Figure 19 Selecting the button on the right side of the screen will change the 3D
models in the PCG cluster to a different set of 3D models. 22

vii

Figure 20 Update PCG function in the MainPlayerController. This function is called
when the user changes the PCG content in the scene. 23

Figure 21 User interface from the final prototype of Brief Dreams. Users will be able
to drag and drop diamond and cubic shaped “cursors” to manipulate the
location and shape of PCG clusters. .. 24

Figure 22 Screen capture from the world building phase, showcasing the top-down
view. ... 25

Figure 23 Keyframes from camera transition from world building view to first person
view. ... 25

Figure 24 Screenshot captured during the exploration phase. 26

Figure 25 Time of day and Weather buttons for changing the visual effect of the
scene. .. 26

Figure 26 Screen captures showcasing the visual effects of different times of the
day and weather conditions. ... 27

viii

Opening Image

Yiming Zheng, 2024

1

Chapter 1.

Introduction

The video game industry has emerged as an exceptionally dynamic and rapidly

expanding domain, positioning itself as the leading force in the realm of entertainment

industry. As the scale and complexity of video games have grown, the development

process demands a significant amount of labor and resources (Adeel et al., 2021),

requiring years of development and hundreds of employees to complete (Kanode &

Haddad, 2009). This complexity has led to an increasing need for automated tools that

allow artists and designers to create expansive, intricate virtual environments.

Procedural content generation has emerged as a solution to address the challenges of

generating game content based on predetermined algorithms (Togelius et al., 2011).

PCG is a term that describes computer software capable of autonomously generating

game content, either independently or in collaboration with human players or

designers(Shaker et al., 2016), this technology can be widely used to generate various

types of content for video games, including 3D assets, game levels, and quests (Gravina

et al., 2019). Recent research demonstrates that combining the potential of PCG with

trained AI models can lead to the design of functional and playable 2D top-down arcade-

style game levels while maximizing diversity in the newly created levels (Steward, 2023).

Although many world-building approaches in video games utilize PCG to automatically

generate various elements within virtual worlds, PCG is defined as the algorithmic

creation of game content with limited or indirect user input (Togelius et al., 2011), such

as setting parameters to influence the generated content. This limitation may hinder the

creativity and engagement of players who wish to have more control and freedom in

creating a virtual environment (Volkmar et al., 2022). To address this issue, I propose a

new approach to utilize PCG in virtual world-building that invites beginner designers,

artists, and novices interested in world-building and level design, who may face

obstacles in manual world-building workflows, to directly manipulate the procedural

content provided through a user interface, allowing them to build virtual environments in

a short period of time.

2

1.1. Motivation

My motivation for creating this project comes from my practical experience as a

developer and artist in creating intermediate-scale 3D environments for video game

projects, as well as my experience as a player in navigating various procedural content

in large scale video games.

Working as a level designer and environmental artist on the VR game project Harmony

(2023), I started world building by first finding reference images and photographs of real-

life underwater scenes. Based on these references, I selected and imported 3D assets

from the asset store and manually placed individual 3D models on the terrain to create

coral reefs and the seabed (Figure 2). This process required a significant amount of time

to ensure that every 3D model was placed in the designated location without clipping or

floating above the terrain while also matching the visual appearance of the reference

images.

Figure 1 Screenshot from my VR game project Harmony, I built this
underwater scene by manually placing each 3D asset on the
landscape.

Yiming Zheng, 2023

3

The entire world-building process spanned several weeks to complete, and such world-

building methods made changing level design halfway to a challenging task, as it

required partially redoing the labor-intensive world-building process to modify the

environment. In such cases, I suggest that procedural content generation (PCG) could

potentially serve as a solution to the problems encountered in traditional world-building

workflows by generating 3D assets in predefined patterns and automatically snapping

them to the terrain. My personal experiences and challenges in building virtual worlds for

video games have motivated me to develop a PCG world building system that provides

an accessible approach for people with or without professional experience in virtual

world building to create virtual environments with PCG in a relatively short amount of

time.

1.2. Project Goals

The primary goal of this project is to develop an interactive world building system built on

top of the Unreal Engine’s Procedural Content Generation Framework. Users will be

able to interact with the PCG system through a mouse interface to select and generate

pre-made procedural contents from a top-down perspective. The procedural content

includes the environments such as forest, burnt forest, canyons, campsites, pathways,

and rivers.

In addition to enabling users to create virtual environments using PCG, this project

features an immersive experience by allowing users to explore and examine the design

of the virtual world from a first-person perspective and enable them to revise their design

by going back to the world building top-down perspective at any points of the

exploration. The documentation of this project serves as a comprehensive record of my

research, design, and development. It also provides valuable insight and reference for

my future development in PCG frameworks in Unreal Engine.

By achieving these goals, this project has provided me with an in-depth understanding of

building interactive runtime PCG systems within Unreal Engine. Moreover, it has

resulted in a functional prototype that serves as a proof of concept, demonstrating that a

runtime PCG system can offer an accessible and user-friendly world-building approach,

allowing audiences with or without professional backgrounds in virtual world building to

participate in the creation of diverse and immersive virtual environments.

4

Chapter 2.

Related Works

2.1. Procedural Content Generation

In recent years, the video game industry has establishing itself as a highly innovative

and fast-growing sector that has become a dominant player in the entertainment industry.

Taking advantage of technological advances, video games are becoming more visually

appealing, realistic, and immersive. The increasing scale of the game demands a

significant amount of effort and resources to create intricate virtual environments (Adeel

et al., 2021). While traditional hand-built virtual environments are rich in detail and

creativity, such environments often require extensive time, resources, and artistic

expertise. To reduce the intensive labor and time cost of hand-building virtual

environments, Procedural Content Generation (PCG) has been introduced to game

development to accelerate the creation of video games by algorithmically generating

environments from a combination of human-created assets and computer-generated

randomness (Lech et al., 2021; De Seta & Alviano, 2022).

A prime example of successful PCG implementation is seen in Minecraft (Figure 3), an

open-world crafting sandbox game that utilizes PCG to create visually infinite terrain and

biomes. The game world is composed with procedural generated cubical blocks that

relied on different materials to visually identify the nature of the blocks. In generating the

landscape, the game utilized scaled 3D Perlin noise with linear interpolation (Procedural

Content Generation Wiki, 2012) to create pseudo-random heightmap, enabling the

generation of large and continuous terrain with seamless blending near boundaries (Jain,

A et al., 2022). To create biomes in its cubical world, Minecraft used Whittaker diagram

to determine what plants and terrain features (such as sand and snow) should be

created in a particular area based on the height map (Figure 3) (Procedural Content

Generation Wiki, 2012).

5

Figure 2 A screenshot of Minecraft showcasing its diverse biome system
based on Whittaker diagram

Screen Shot, Mojang, 2024. Accessed April 24, 2024.

Figure 3 Whittaker biome diagram demonstrates distribution of vegetation
based on temperature and precipitation.

Frankemann, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia
Commons

6

2.2. Barriers and Challenges

While PCG helped numerous video games to scale up art production in the development

pipeline (Chia, A, 2022), there are challenges and barriers that remain unresolved with

current technology. In "Procedural Content Generation in Games" (Shaker et al., 2016),

the authors listed out three visions that highlight the limitations of PCG and present

interesting research opportunities for the future. The three key problems discussed by

the authors are multi-level/multi-content PCG, PCG-based game design, and generating

complete games with PCG.

2.2.1. Multi-level, multi-content PCG

This concept refers to the creation of a comprehensive set of game elements, such as

lore, quests, characters, items, terrain, using procedural content generation within a

game's ruleset and engine (Shaker et al., 2016). No Man's Sky (2016) is a notable

example of the use of PCG to address such issues (Figure 5). The game features a

universe-scale exploration experience that heavily relies on PCG, with pre-built

algorithms creating its environments, from large assemblies such as spaceships and

alien creatures, to smaller details such as planetary vegetation (Tait, E. R., & Nelson, I.

L. 2022). While this approach aims to increase variety and replayability, it can result in

content that feels repetitive and predictable, diminishing player engagement in the

playthrough. The vastness and uncontrollability of these elements can sometimes result

in a world that feels lifeless and insignificant to players, ultimately affecting their interest

and immersion in the game (D. Heaven, 2016).

7

Figure 4 Screenshot from No Man’s Sky showcasing 3D models randomly
generated on terrain.

Screen Shot, Hello Games, 2024. Accessed April 25, 2024

2.2.2. PCG-Based Game Design

PCG-based game design refers to the design and creation of video games whose core

mechanics are based on PCG. This means that the game, or the genre as a whole,

would be fundamentally different or would not exist without PCG (Shaker et al., 2016).

Many games use PCG to generate content alongside handcrafted assets, but the core

gameplay loop remains independent of PCG (Togelius et al., 2013). For example, while

No Man's Sky is known for its rich exploration powered by PCG, it could still be playable

with hand-built assets. However, the integration of PCG as an essential part of the game

design requires a new approach to both the game design and the parameters of the

PCG algorithm, which should respond to the player's actions in a meaningful way

(Togelius et al., 2013).

Regarding the vision of using PCG in the core loop of the game, Galactic Arms Races,

created by Evolutionary Complexity Research Group at University of Central Florida,

features a unique algorithm named content-generating NeuroEvolution of Augmenting

Topologies (cgNEAT) that gradually evolves player’s weapons system based on player’s

performance (Figure 6) (Hastings et al, 2009).

8

Figure 5 Screenshot of Galactic Arms Races showcasing player’s weapon

Screen Shot, © Evolutionary Games 2014. Accessed April 26, 2024.

2.2.3. Generate Complete Games

Beyond generating in-game content, this vision refers to a game generator that will

generate complete games, including game mechanics, levels, and game assets (Shaker

et al., 2016). Generating complete games is considered to be much harder than

generating content for existing games (Togelius et al., 2014) and requires encoding

existing game rules into a format that can be processed by software systems and could

be a challenging task without specifying the category of the game. A feasible starting

point is to pick a specific genre and allow the game generator to generate variants of the

game (Shaker et al., 2016). While many approaches focus on generating different rules

though a predefined algorithm, the rules generated from the algorithm are rather simple

compared to a man-made game (Shaker et al., 2016).

2.3. Conclusion

These three challenges illustrate the current limitations of PCG in creating diverse,

engaging, and fully integrated game experiences. Multi-level/multi-content PCG

9

struggles with generating a comprehensive set of game elements that feel cohesive and

meaningful to players. PCG-based game design aims to make PCG an essential part of

the core gameplay loop, requiring new approaches to game design and PCG algorithms.

Finally, generating complete games with PCG remains a daunting task, as it involves

encoding complex game rules and mechanics into a format that can be processed by

software systems.

In the following chapter, I will discuss how "Brief Dreams" addresses the first two

challenges by developing a runtime PCG framework that utilizes PCG as an essential

feature of the program, enabling users to create diverse and engaging virtual

environments through user-friendly interfaces.

10

Chapter 3. Methodology and Project Iteration

The methodology being used "Brief Dreams" is Research Creation. A curiosity-drive,

interdisciplinary approach that transcends the boundaries between practice and theory

and (Loveless, 2019). This method will allow me to utilize the artifact I developed and the

documentation from the developing process as my project/research outcome. In

developing this interactive experience, I centered around an iterative and incremental

model, incorporating agile development principles. This approach is particularly suited

for developing the PCG framework, allowing for the modular development of world-

building components. Each component undergoes cycles of planning, implementation,

and self review to ensure continuous refinement based on visual feedback and technical

demands.

3.1. Planning

In planning the development of Brief Dreams, I wrote several user stories for my target

users: Beginners and novices to the virtual world building and more experienced

intermediate environmental artists and level designers in the video game industry

(Figure 7). These user stories tell the user goals for three phases of the project:

Introduction, World Building and Exploration.

11

Figure 6 There are three main phases in my project: Introduction, World
Building and Exploring. I break down each phase to specify and
identify the features of the project.

Yiming Zheng, 2024

In the introduction phase, to give users a first impression of the project. I'm planning to

start with a landing page with visual elements including pre-captured screenshots of the

PCG world and an introductory video to provide a short tutorial for beginners to get

familiar with the user interfaces. More experienced users with professional backgrounds

can skip the tutorial and start building the world with PCG directly.

The world building phase is the main phase of the project. In this section my goal was for

the user to be able to create virtual environments by selecting 3D assets and populating

them with PCG clusters on the provided terrain through a simple drag and drop mouse

user interface. They would be able to modify the properties of the generated assets,

including shapes, scales, and rotation of the PCG clusters. In addition, users can select

one of the predefined lightings/seasonal settings to change the atmosphere of the

scene. For beginners, they could start with predefined world templates, customize and

blend their design to the scene. Advanced users can choose to expose more parameters

12

to manipulate PCG environments, such as adding waypoints to the road, randomizing

seeds for PCG, defining the density of certain 3D assets in the PCG clusters, etc.

After learning pain points and opportunities from the user story map, I created a user

flow map to design the program workflow and identify various features to implement in

the development phase (Figure 8).

Figure 7 The user flow map shows the basic workflow of the project and
identifying the interaction loops in different phases of the
experience

Yiming Zheng, 2024

Furthermore, I created mood boards to narrow down the aesthetics of the procedural

contents for selecting 3D assets and building visual effects (Figure 9). These mood

boards are curated collections of images, notes, 3D scans from various online sources

13

and personal documentation of real-world environments (nature reserves, housing

developments, parks, etc.) in the Metro Vancouver Area.

Figure 8 These mood boards serve as a visual guide for the composition of
the procedural environments to be developed, as well as a reference
for the selection of individual 3D models.

Yiming Zheng, 2024

In selecting 3D assets, it is not only to make the assets aesthetically consistent with the

mood board reference, but also to ensure that individual models don't have a large

14

impact on performance, as procedural content will be generated repeatedly in the world.

In addition to providing aesthetic direction, the mood boards ensure that the procedural

content remains grounded in real-world references, enhancing the authenticity and

relatability of the virtual environments. This phase is critical to establishing a clear,

cohesive vision for the project and aligning subsequent development phases with the

original creative intent.

Figure 9 Screenshot of PCG forest overlapping with PCG trail in first iteration
of Brief Dreams

Yiming Zheng, 2024

3.2. Design and implementation of PCG Cluster

The implementation phase translated the vision established in the planning phase into

adaptive procedural elements within the Unreal Engine. This phase involved the use of

visual scripting language (PCG Graph and Blueprints) to define the algorithm for

populating 3D assets within the PCG clusters.

15

Figure 10 PCG Graph is a visual scripting language to create algorithms for
PCG clusters. In this graph I created the algorithm for a forest
biome.

Yiming Zheng, 2024

Figure 11 In the forest biome created from the PCG graph in Figure 11, I
generate a variety of ground plates above the terrain to seamlessly
blend foliage into the ground environment.

Yiming Zheng, 2024

The implementation phase was iterative in nature, allowing adjustments and refinements

to be made as needed to ensure that the procedural content is seamlessly aligned with

the mood board design and fully functional for generation in the environment.

16

3.3. Singleton Pattern

In designing the game architecture for this project, I used the singleton pattern that

restricts variables, instance related functions to a singular instance that is created to

manage a specific field of functions. This design pattern requires an initialization for each

singleton instance and permit call-by-need which provides a relatively clear and

straightforward approach in developing core functions for the game (Figure 13, 14).

Figure 12 Unreal Editor outliner showcasing singletons are instanced in the
game and functions within the “BP_UIManager” singleton.

Yiming Zheng, 2024

17

Figure 13 Custom event in BP_MainPlayerController singleton that performs
viewport transition and called functions from other singletons.

Yiming Zheng, 2024

18

Chapter 4. Artifact Description

4.1. Development of PCG Clusters

The main feature of Brief Dreams is to enable users to generate 3D assets with

predefined algorithms captured in a visual script over any existing terrain. The

development of the PCG clusters requires the use of the experimental procedural

content generation framework plugin in Unreal Engine 5.3. The visual description of the

algorithm is composed of six clusters (Figure 15): (a) road generator, (b) river generator,

(c) desert generator, (d) campsite generator, (e) forest generator, (f) tower generator.

The road and river generators populate assets along a path, while forest, desert and

campsite generators populate assets in a user defined perimeter. The tower can be

inserted to the scene at any point on the terrain. This framework is flexible enough to

add different terrain characteristics later on.

Figure 14 The main PCG graph for Brief Dreams, which I used to transfer mask
data between different clusters to avoid overlapping.

Yiming Zheng, 2024

19

The following describes the forest generation clusters in detail (Fig 14). In the forest

PCG cluster the algorithm receives the perimeter of the forest as a closed spline curve

defined by the user. The spline sampler and project nodes generate point grids from the

spline data within the forest spline loop and then project and snap to the terrain. The

forest graph also receives multiple point grids as masks from other PCG clusters to

constrain forest generation in the projected curve on the terrain and over the random

point grid again projected on the terrain. This process is mainly performed in the

Projection and Input nodes (Figure 11).

To be able to generate and manipulate different patterns of point grids and later

generate 3D meshes on top of coordinates of these points, Brief Dream visualizes the

point grids on different nodes, and generates placeholder cubes with in grayscales that

represent the transformation and density parameter of each point in the grids (Figure

16).

Figure 15 PCG forest cluster in debug mode. Large cubes represent point
grids for generating small to medium 3D assets such as shrubs.
Small cube represents the coordinate for generating the ground
meshes.

Yiming Zheng, 2024

20

After creating and manipulating the point grids, static mesh spawner nodes are added to

substitute points with 3D assets such as trees, shrubs, mushrooms (Figure 17).

Figure 16 A screen shot of forest PCG graph showcasing the static mesh
spawner node.

Yiming Zheng, 2024

In this node, the users can add different 3D assets to the static mesh array, set attributes

such as collision and material to the meshes, and assign the weight parameter to set the

probability of selected 3D assets being generated in the cluster. Figure 18 shows a PCG

cluster spline projected on a terrain defining forest boundary which is populated by

various 3D assets that can usually be seen in a forest.

21

Figure 17 A Top-down view of forest PCG cluster. Foliage, ground plate and
props are populating on point grids. Trail spline and campsite
cluster are being masked out to avoid overlapping with the forest
cluster.

Yiming Zheng, 2024

4.2. Brief Dreams Interfaces

4.2.1. World Building UI

The goal of the user interface in Brief Dreams is to enable users to generate and

manipulate procedural contents at runtime and turning the application into a game for

building virtual worlds.

The World Building interface allows users to create virtual environments from a top-down

or bird-eye view (Figure 19). A user interface prototype was created to test the runtime

capabilities and direct input of the PCG clusters. In this prototype, users can drag and

drop 2D widgets from the left column onto the terrain using the mouse cursor, which

generates the corresponding PCG cluster that is linked to the widget. A size slider at the

bottom of the interface will allow users to adjust the scale of the PCG cluster.

22

Additionally, three buttons on the right side enable users to change the 3D models within

the PCG, which completely alter the visual appearance of the scene (Figure 20).

Figure 18 An initial UI prototype that allows the user to generate procedural
content at run time.

Yiming Zheng, 2024

Figure 19 Selecting the button on the right side of the screen will change the
3D models in the PCG cluster to a different set of 3D models.

Yiming Zheng, 2024

23

To update PCG clusters after making changes at runtime, an update PCG function was

created to clean up all procedural generated content in the scene and regenerate the

content with updated changes (Figure 21). This function is called whenever the user

modifies the PCG content in the scene.

Figure 20 Update PCG function in the MainPlayerController. This function is
called when the user changes the PCG content in the scene.

Yiming Zheng, 2024

In the later stage of the user interface development, various cursor shapes were

introduced in the world-building phase to enable users to perform drag-and-drop

functions for modifying the location and shape of the PCG clusters and road splines

(Figure 22). To effectively highlight the changes made to the PCG clusters and splines in

real-time, a guiding outline feature is introduced to dynamically render borders around

the clusters and road splines by procedurally generating linear runtime spline meshes

with emissive color materials. The guiding outlines provide users with immediate visual

feedback of the modifications to the PCG clusters.

24

Figure 21 User interface from the final prototype of Brief Dreams. Users will be
able to drag and drop diamond and cubic shaped “cursors” to
manipulate the location and shape of PCG clusters.

Yiming Zheng, 2024

4.3. Character Controller Design and Development

To ensure smooth interaction and navigation within the game experience, two distinct

character controller systems were introduced: a top-down, drag-and-drop controller for

the world-building phase and a first-person controller for the exploration phase.

The top-down controller allows users to orbit around the center of the terrain from a

bird's-eye perspective (Figure 23). This viewport enables users to generate procedural

content through the user interface without constantly changing the camera location,

providing an overview of the landscape.

25

Figure 22 Screen capture from the world building phase, showcasing the top-
down view.

Yiming Zheng, 2024

Once users have completed designing the environment in the world building phase, they

can seamlessly transition to the first-person perspective by dragging the exploration icon

into the scene. This action switches the control to the first-person controller (Figure 24),

allowing users to explore the environment from an immersive, eye-level first person

viewpoint (Figure 25). The first-person controller enables players to directly control the

camera movement by using mouse and keyboard inputs, which provides an intuitive and

engaging way to navigate though the world.

Figure 23 Keyframes from camera transition from world building view to first
person view.

Yiming Zheng, 2024

26

Figure 24 Screenshot captured during the exploration phase.

A first-person perspective allows users to immerse themselves in the photorealistic environment
by navigating and interacting with the virtual world from an eye-level viewpoint. Yiming Zheng,
2024

4.4. Weather and Time of the Day

To enhance the visual diversity of the generated environments, a time and weather

system is introduced to enable users to change the time of day and weather conditions

using the "Ultimate Dynamic Weather" plugin (refer-website). Users can control the time

and weather settings by selecting the corresponding buttons in the panel at the top of

the screen (Figure 26). Each button is connected to the plugin and assigned a specific

float value that adjusts the relevant parameters of the plugin. For example, selecting the

“sun” button sets the time value of the plugin to 1200, representing midday. This feature

offers users an additional layer of customization and realism, empowering them to

explore the generated world under a variety of atmospheric conditions (Figure 27).

Figure 25 Time of day and Weather buttons for changing the visual effect of
the scene.

Yiming Zheng, 2024

27

Figure 26 Screen captures showcasing the visual effects of different times of
the day and weather conditions.

A video trailer for showcasing these features can be viewed at
https://yimingzheng.carrd.co/#briefdreams Yiming Zheng, 2024

https://yimingzheng.carrd.co/#briefdreams

28

Chapter 5. Discussion

5.1. Reflections

The development of Brief Dreams has demonstrated that the procedural content

generation (PCG) framework can be integrated with a user-friendly interface, allowing

users to have direct input to the PCG system and to create intermediate-scale,

customizable 3D environments without the need for manual placement of 3D assets.

The current prototype also showcases runtime capability in both the play mode of the

Unreal Editor and packaged builds, suggesting that future development of the PCG

framework could be treated as a core mechanic in world building games.

This project was originally planned to feature different sets of PCG environments and

allow users to completely change the environment during the exploration phase, bringing

awareness to current environmental hazards in BC, such as altering the forest cluster to

a burning wildfire cluster with fire and audio effects. However, due to time constraints,

this feature was not fully implemented and was partially altered to include a burnt forest

cluster featuring static 3D assets of dead trees, charcoal, and rough grounds that can be

placed on the terrain in the world building phase.

5.2. Future Work and Improvements

In the next iteration of Brief Dreams, the development will focus on enabling users to

import custom 3D assets into the project and create personalized PCG clusters. This

feature will significantly expand the creative possibilities for users without requiring

modifications to the existing PCG cluster algorithms. Additionally, providing support for

low-poly assets will improve the program's performance, ensuring a smooth and efficient

user experience even with custom assets. A streamlined process for asset integration

will be implemented, making it easy for users to import and utilize their desired 3D

models within the Brief Dreams framework.

Another potential area for improvement is the manipulation of PCG cluster patterns.

Implementing user-controlled parameters for adjusting the density and distribution of

foliage, this could be achieved by exposing additional backend settings within the user

29

interface, such as sliders or numerical inputs, which would directly influence the

algorithms responsible for generating the PCG clusters.

During an internal critique session with research fellows in the SFU SIAT Making Culture

Lab and criticalMediArtStudio, an intriguing question was raised regarding the possibility

of generating 3D assets on top of any 3D model, such as a photogrammetry scan of a

sculpture. This idea presents an opportunity to extend the capabilities of Brief Dreams

beyond virtual world creation. By enabling the system to recognize and populate 3D

assets on user-created 3D models, users could employ Brief Dreams to create new

variations of their assets. For instance, users could procedurally generate moss and

mushroom models on the surface of a tree trunk model. This functionality would allow

users to enhance and modify their existing 3D assets with procedurally generated

elements, opening new possibilities for customizing small scale assets.

Looking to the future, the PCG clusters in Brief Dreams could be extended to other types

of content, such as animated characters, creatures, and props. By incorporating

additional algorithms and user-defined parameters, the system could generate entire

virtual worlds populated with diverse and dynamic elements, enhancing the versatility

and functionality of the generated environments.

The development of Brief Dreams has been a rewarding and enlightening experience,

showcasing the immense potential of procedural content generation in creating vast and

immersive virtual worlds. As Brief Dreams continues to grow and evolve, I am excited to

see how it will shape as a procedural world builder and inspire users to create and

explore the endless possibilities of PCG-generated environments.

30

References

Adeel Zafar, Hasan Mujtaba, & Omer Beg. (2021). Procedural Content Generation for

General Video Game Level Generation. Inteligencia Artificial, 24(68).

C. M. Kanode and H. M. Haddad. (2009) Software Engineering Challenges in Game

Development, Sixth International Conference on Information Technology: New

Generations, 2009, pp. 260-265, https://doi.org/10.1109/ITNG.2009.74.

Togelius, J., Kastbjerg, E., Schedl, D., & Yannakakis, G. (2011). What is procedural

content generation? ACM International Conference Proceeding Series, 1–6.

https://doi.org/10.1145/2000919.2000922

Shaker, N., Togelius, J., & Nelson, M. J. (2016). Procedural Content Generation in

Games by Noor Shaker, Julian Togelius, Mark J. Nelson. (1st ed. 2016.). Springer

International Publishing: Imprint: Springer.

Steward, J. (2023). Procedural Content Generation: Generating Procedural Game

Content Using Machine Learning (Doctoral dissertation, California State University,

Northridge).

Volkmar, G., Alexandrovsky, D., Eilks, A. E., Queck, D., Herrlich, M., & Malaka, R.

(2022). Effects of PCG on Creativity in Playful City-Building Environments in VR.

Proceedings of the ACM on Human-Computer Interaction, 6(CHI PLAY), 1–20.

Gravina, D., Khalifa, A., Liapis, A., Togelius, J., & Yannakakis, G. N. (2019). Procedural

Content Generation through Quality Diversity. 2019 IEEE Conference on Games (CoG),

2019, 1–8. https://doi.org/10.1109/CIG.2019.8848053

Lech, B., Azad, S., Welnitz, J., Jonasson, J., & Martens, C. (2021). Designing a

Combined World and Story Procedural Content Generation Engine.

De Seta, A., & Alviano, M. (2022). An Application of ASP for Procedural Content

Generation in Video Games. In CEUR WORKSHOP PROCEEDINGS (Vol. 3204, pp.

134-140). CEUR-WS.

https://doi.org/10.1145/2000919.2000922
https://doi.org/10.1109/CIG.2019.8848053

31

Procedural Content Generation Wiki. (2012). Minecraft, Use of Procedural Content

Generation Methods. http://pcg.wikidot.com/pcg-games:minecraft

Jain, A., Sharma, A., & Rajan, R. (2022). Adaptive & Multi-Resolution Procedural Infinite

Terrain Generation with Diffusion Models and Perlin Noise. ACM International

Conference Proceeding Series.

Procedural Content Generation Wiki. (2012). Whittaker Diagram, Use of Procedural

Content Generation Methods. http://pcg.wikidot.com/pcg-algorithm:whittaker-diagram

Chia, A. (2022). The artist and the automaton in digital game production.

Convergence (London, England), 28(2), 389–412

Tait, E. R., & Nelson, I. L. (2022). Nonscalability and generating digital outer space

natures in No Man’s Sky. Environment and Planning. E, Nature and Space (Print), 5(2),

694–718. https://doi.org/10.1177/25148486211000746

D. Heaven.(2016) "When infinity gets boring: What went wrong with No Man's Sky"

https://www.newscientist.com/article/2104873-when-infinity-gets-boring-what-went-

wrong-with-no-mans-sky/.

Togelius, J., Champandard, A.J., Lanzi, P.L., Mateas, M., Paiva, A., Preuss, M., &

Stanley, K.O. (2013). Procedural Content Generation: Goals, Challenges and Actionable

Steps. Artificial and Computational Intelligence in Games.

Hastings, E. J., Guha, R. K., & Stanley, K. O. (2009). Automatic Content Generation in

the Galactic Arms Race Video Game. IEEE Transactions on Computational Intelligence

and AI in Games., 1(4), 245–263. https://doi.org/10.1109/TCIAIG.2009.2038365

Togelius, J., Nelson, M. J., & Liapis, A. (2014). Characteristics of generatable games.

Proceedings of the FDG Workshop on Procedural Content Generation in Games, Fort

Lauderdal.

Loveless, N. (2019). How to make art at the end of the world: a manifesto for research-

creation / Natalie Loveless. Duke University Press. pp. 37

http://pcg.wikidot.com/pcg-games:minecraft
http://pcg.wikidot.com/pcg-algorithm:whittaker-diagram
https://doi.org/10.1177/25148486211000746
https://www.newscientist.com/article/2104873-when-infinity-gets-boring-what-went-wrong-with-no-mans-sky/
https://www.newscientist.com/article/2104873-when-infinity-gets-boring-what-went-wrong-with-no-mans-sky/

